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1

Chapter 1

Introduction

On a quiet morning in April 2018, a few weeks before completing this thesis, I was travel-

ing on country roads through north-eastern Bosnia. The sun was shining brightly, traffic

was low, and I had time to observe the family homes, the restaurants, and the commercial

areas that string together along the road between the towns of Orašje and Tuzla. Some

of these looked abandoned, some were run-down, others appeared neat and tidy. Interest-

ingly, or expectedly, the run-down as well as the neat properties seemed to cluster, and

there were hardly any two of a different kind to be found next to each other. Certainly,

knowing a household’s income or a restaurant’s revenue would have been a good indicator

for the state of a property; at the same time, manpower and time are no scarce resources

in Bosnia.1 Hence, equally certainly, low financial means could not have explained alone

why some properties were run-down, while others seemed well-maintained. Instead, in ac-

tively or passively determining their degree of engagement, households and estate owners

are likely to also take into account their neighbors’ behavior. This theoretical reasoning

leads to the notion of network autocorrelation (Leenders, 1995; White et al., 1981).

Network autocorrelation refers to the correlation of observations for a variable of in-

terest among related actors in a network. In general, a network is characterized by a set

of actors together with a set of ties, where a tie indicates that two actors are related to

each other. For example, we could define a network as the set of households in a village

with ties between two households based on property adjacency. Likewise, we could also

define ties between households based on social similarity rather than property adjacency.

In this thesis, we develop statistical methods for quantifying and testing the strength of

the network autocorrelation of a variable of interest, as induced by a given network, while

controlling for a set of explanatory variables, or covariates. This includes methods for

continuous as well as count variables of interest and extends to settings in which multiple

distinct networks give rise to multiple network autocorrelations.

1The unemployment rate in Bosnia and Herzegovina is one of the highest in Europe and reported to be
25.4% in 2016 by the International Labour Organization (ILO) at http://ilo.org/gateway/faces/home/
ctryHome?locale=EN&countryCode=BIH& adf.ctrl-state=2oss1sbtj 9.
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1.1 The network autocorrelation model

Throughout the larger part of this thesis, we model network autocorrelation using the

network autocorrelation model (Ord, 1975). Ever since its introduction, the network au-

tocorrelation model has been indispensable for modeling network influence on individual

behavior and has been applied in many different fields, such as criminology (Tita & Radil,

2011), ecology (McPherson & Nieswiadomy, 2005), economics (Dall’erba et al., 2009), ge-

ography (Mur et al., 2008), political science (Kowal, 2018), psychology (Barnett et al.,

2014), public health (Myneni et al., 2015), and sociology (Mizruchi & Stearns, 2006).

In the network autocorrelation model, actor observations, or responses, for a variable

of interest are allowed to be correlated and a network autocorrelation parameter ρ is es-

timated, quantifying the network influence on the variable of interest. Hence, an actor’s

response is assumed to be a function not only of a set of explanatory variables but also of

the responses for the actor’s neighbors, i.e., other actors in the network this actor is tied

to. More precisely, the network autocorrelation model expands a standard linear regres-

sion model by including an additional term that contains a weighted sum of the actors’

neighbors’ responses. The corresponding weights are given in a pre-defined connectivity

matrix whose entries stand for the extent to which two actors influence each other based

on a particular influence mechanism, e.g., geographic adjacency. Then, the dependence

of an actor’s response on its neighbors’ responses is modeled using a variance-covariance

matrix that is a function of the chosen connectivity matrix.

Let y ∈ Rg be the vector of responses for g actors in a network, and let X ∈ Rg×k

denote a matrix comprising values for the g actors on k covariates (possibly including

a column of ones for an intercept term). Furthermore, let W ∈ Rg×g be a connectivity

matrix with zero diagonal, where the elements Wij represent the influence of actor j on

actor i; the larger Wij , the larger this influence. Given the observed quantities y, X, and

W , the standard, or first-order, network autocorrelation model takes the form

y = ρWy +Xβ + ε, (1.1)

where ρ is a scalar and called the network autocorrelation parameter, β ∈ Rk is a vector

of regression coefficients, and ε ∈ Rg is a vector of independent and normally distributed

error terms with zero mean and variance of σ2. The network autocorrelation parameter

ρ is the model’s key parameter and quantifies the effect of network ties on a variable of

interest. When ρ = 0, the network autocorrelation model in (1.1) reduces to a standard

linear regression model with only the vector of regression coefficients β and the error

variance σ2 to be estimated.

1.2 Inferential limitations in the network autocorrelation

model

While the network autocorrelation model has yielded valuable insights into the structure

of influence processes in numerous networks from a variety of fields, there was a lack of
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adequate statistical tools for applying the model in situations often encountered in empir-

ical practice when starting to work on this thesis four years ago.

First, the commonly used maximum likelihood estimator for the network autocorre-

lation parameter ρ has been shown to be biased for high levels of network density and

small network sizes (Mizruchi & Neuman, 2008; Neuman & Mizruchi, 2010; Smith, 2009).

Moreover, in such scenarios the maximum likelihood estimator’s sampling distribution

has also been found to be strongly asymmetric (La Rocca et al., 2018), leading to dis-

torted asymptotic standard errors and confidence intervals. Thus, relying on maximum

likelihood-based inference when analyzing small and dense networks can result in incor-

rect conclusions about the magnitude as well as the statistical significance of the network

influence on a variable of interest.

Second, classical null hypothesis significance testing procedures for the network auto-

correlation parameter can only be used to falsify the precise null hypothesis H0 : ρ = 0

of no network influence. In practice though, researchers are often interested in testing

multiple competing hypotheses on the network autocorrelation parameter against each

other and in determining which out of these hypotheses is most supported by the data.

For example, when interested in testing if the network influence is zero, positive, or neg-

ative, this could be done by testing H0 : ρ = 0 versus H1 : ρ > 0 versus H2 : ρ < 0

against one another. Classical null hypothesis significance testing procedures, however,

can merely test hypothesis H1 and hypothesis H2 separately against the null, while they

cannot quantify the amount of evidence in favor of any of the hypotheses tested (Wetzels

& Wagenmakers, 2012).

Third, in many network studies, different types of network influence are likely to be

present simultaneously. For example, two households can be tied to each other based

on geographic adjacency and/or social similarity, where both associated networks might

exert network influence. These multiple influence mechanisms can be modeled by adding

as many connectivity matrices, representing the different influence mechanisms, and net-

work autocorrelation parameters to the first-order network autocorrelation model in (1.1)

as relevant to one’s theory. This leads to so-called higher-order network autocorrelation

models, which generally allow for a richer and more realistic modeling of network de-

pendence. Most often, researchers then have expectations about the order of strength of

the different influence mechanisms that they would like to test explicitly. Such expecta-

tions can be formulated as hypotheses on the network autocorrelation parameters, e.g., as

H1 : ρ1 > ρ2 > 0, H2 : ρ1 = ρ2 > 0, or H3 : 0 < ρ1 < ρ2, where ρ1 and ρ2 correspond to

the strength of two influence mechanisms, respectively. However, null hypothesis signifi-

cance testing procedures for the network autocorrelation model cannot be applied to test

hypotheses on the relative strength of different influence mechanisms.

Fourth, the network autocorrelation model cannot be directly used to model count

data, i.e., responses that can take only non-negative integer values. Nevertheless doing so

when dealing with count data would lead to predicted non-integer and potentially negative

responses. In some cases, it is possible to employ appropriate data transformation tech-

niques to convert the original counts into approximately normally distributed data and



4 Chapter 1. Introduction

fit the network autocorrelation model to the transformed data. In many cases though,

these transformations are not suitable, e.g., when modeling rare events such as homicide,

and the network autocorrelation model then also cannot be indirectly sensibly applied to

count data.

1.3 Addressing the inferential limitations in the network

autocorrelation model

In this thesis, we will develop a Bayesian framework for first- and higher-order network

autocorrelation models to address the first three inferential limitations in the network

autocorrelation model outlined above. Furthermore, we will propose a discrete exponential

family model to analyze network autocorrelated count data. We introduce the main ideas

of the Bayesian and the discrete exponential family framework, and how these frameworks

can help in overcoming the inferential limitations, next.

1.3.1 Bayesian estimation

Bayesian estimation is fundamentally different from classical frequentist estimation. In

Bayesian estimation, all parameters are modeled as random variables, where the informa-

tion contained in the observed data is used to update the knowledge about the parameters.

This prior, i.e., before observing the data, as well as posterior, i.e., after observing the

data, knowledge is expressed in terms of probability distributions for the model param-

eters. We denote the vector of model parameters by θ and the joint prior distribution

for θ by p (θ). Sometimes, genuine prior knowledge is available, e.g., based on substan-

tive theory or from previous empirical studies, which can be employed to specify so-called

informative prior distributions. On the other hand, often such knowledge is absent and

so-called non-informative prior distributions, representing prior ignorance, are relied upon

instead.

In a next step, the data y are taken to update the prior distribution for the model

parameters and to obtain their posterior distribution. Applying elementary rules of prob-

ability theory (Jeffreys, 1961), the posterior distribution for θ given the data y, p (θ|y),
can be written as

p (θ|y) = p (θ) f (y|θ)∫
p (θ) f (y|θ) dθ

, (1.2)

where f (y|θ) denotes the likelihood function of the data, and the denominator of (1.2)

is known as the marginal likelihood that ensures that the posterior distribution integrates

to unity (Kass & Raftery, 1995). In Bayesian estimation, the marginal likelihood can be

ignored if it is finite, whereas it plays a central role in Bayesian hypothesis testing (Lynch,

2007).

The posterior distribution p (θ|y) is used for all inference in the model. For example,

it can be used to compute Bayesian point estimates of a model parameter, to construct

so-called credible intervals, i.e., intervals in the domain of the posterior that contain an
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unknown model parameter with a specific probability, or to quantify any other statistic of

interest, such as p (θ|y) > 0.

Apart from axiomatic considerations, estimating the network autocorrelation model

taking the Bayesian route is advantageous for at least two reasons. First, including

empirical prior information can potentially mitigate the negative bias in the estimation

of the network autocorrelation parameter ρ for high levels of network density. Second,

Bayesian inference is solely based on the posterior distribution and, in contrast to maxi-

mum likelihood-based inference, does not rely on asymptotic theory for computing stan-

dard errors or credible intervals. Consequently, uncertainty about the model parameters

is appropriately accounted for even in small networks.

1.3.2 Bayesian hypothesis testing

Bayesian hypothesis testing adheres to the same inherently Bayesian principle along the

lines of the previous section: all hypotheses under consideration are assigned prior proba-

bilities before the information in the observed data is used to update the initial probabil-

ities and to obtain posterior probabilities for the hypotheses. Assume that we are inter-

ested in testing T ≥ 2 competing hypotheses, H0, ..., HT−1, against each other and that

one out of the T hypotheses under consideration is the true hypothesis. We denote the

prior probability for a hypothesis Ht by p (Ht), t ∈ {0, ..., T − 1}, where
∑T−1

t=0 p (Ht) = 1.

In the absence of prior preferences for the hypotheses, these prior hypotheses probabilities

are typically chosen uniformly, i.e., p (H0) = ... = p (HT−1) = 1/T (Berger & Sellke, 1987;

Berger et al., 1997; Raftery, 1995). On the other hand, if relevant previous empirical

evidence is available, it is also possible to formulate specific prior hypotheses probabilities

based on such evidence.

Subsequently, the data y are used to update the prior probabilities for the hypotheses,

and the posterior hypotheses probabilities are given by Bayes’ theorem as

p (Ht|y) =
p (Ht) p (y|Ht)

T−1∑
t′=0

p (Ht′) p (y|Ht′)

=
p (Ht)

∫
pt (θt) ft (y|θt) dθt

T−1∑
t′=0

p (Ht′)
∫
pt′ (θt′) ft′ (y|θt′) dθt′

, (1.3)

where pt (θt) is the prior distribution for the model parameters θt under hypothesis Ht

and ft (y|θt) is the likelihood function of the data under hypothesis Ht. The marginal

likelihood under hypothesis Ht in (1.3), p (y|Ht), can be seen as the average likelihood

under hypothesis Ht weighted by the corresponding prior pt (θt) and represents the plau-

sibility that the data y were observed under hypothesis Ht; the larger p (y|Ht), the more

plausible that the data were observed under hypothesis Ht. The posterior hypotheses

probabilities in (1.3) can then be used to quantify the plausibility of any hypothesis under

consideration, including (order) hypotheses on one or multiple network autocorrelation

parameters.

When testing two hypotheses Ht and Ht′ , t, t′ ∈ {0, ..., T − 1}, against each other,

their posterior odds, i.e., the ratio of their posterior probabilities, measures to what extent

hypothesis Ht is favored over hypothesis Ht′ . By (1.3), the posterior odds can be written
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as

p (Ht|y)
p (Ht′ |y)

=
p (Ht)

p (Ht′)

p (y|Ht)

p (y|Ht′)
. (1.4)

The first fraction on the right-hand side of (1.4), p (Ht) /p (Ht′), is the prior odds of the

two hypotheses that indicate how much more, or less, likely one hypothesis is compared

to the other prior to observing the data. The second fraction on the right-hand side of

(1.4), p (y|Ht) /p (y|Ht′), is the ratio of the marginal likelihoods under the two competing

hypotheses and is called the Bayes factor (Jeffreys, 1961). We denote the Bayes factor

of hypothesis Ht against hypothesis Ht′ by BFtt′ . As such, the Bayes factor measures to

what extent the data change the prior odds to the posterior odds and can be interpreted

as the amount of evidence in the data in support of hypothesis Ht against hypothesis Ht′ .

For example, when Btt′ = 3, the data are three times more likely to have occurred under

hypothesis Ht rather than hypothesis Ht′ . Vice versa, when Btt′ = 1/3, the data are three

times more likely to have occurred under hypothesis Ht′ rather than hypothesis Ht.

The Bayes factor does not depend on and can be computed without specifying prior

hypotheses probabilities. Hence, when testing two competing hypotheses against each

other, the Bayes factor does not assume one of the hypotheses to be true but provides

relative support for the two hypotheses based on the evidence in the data. However,

the Bayes factor does depend on and is sensitive to the prior distribution for the model

parameters under each hypothesis (Kass & Raftery, 1995). In fact, if improper priors, i.e.,

priors that do not integrate to a finite value, on the tested model parameters are imposed,

the Bayes factor depends on unspecified constants and is not well-defined (O’Hagan, 1995).

Such improper priors are typically used when trying to represent the absence of prior

information about the model parameters. One way to resolve this issue is to use part of

the information in the observed data to obtain a proper prior distribution and subsequently

compute a pseudo-Bayes factor with the remaining information in the data (C. Han &

Carlin, 2001; Robert, 2001). In Chapters 3 and 4, we will investigate the sensitivity of

Bayes factor tests for the network autocorrelation parameter(s) to various priors for the

latter.

1.3.3 The discrete exponential family

The discrete exponential family is a widely used general formalism for modeling data with

complex dependence structures (Butts, 2007; Robins, Pattison, et al., 2007; Strauss, 1986).

In the context of this thesis, we rely on the formalism to specify the joint distribution for a

random count variable Y that can take only values in a finite set of count configurations Y,

i.e., we assume the count value each actor can have to be bounded. Under the formalism,

the distribution for Y is written as

p (Y = y|θ) =
exp

(
θT t (y)

)∑
y′∈Y

exp
(
θT t (y′)

) , (1.5)

where y ∈ Y is an attainable count configuration, θ is a vector of real-valued parameters,
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and t (y) denotes a vector of sufficient statistics. The denominator of (1.5) is a normalizing

constant that ensures that the defined probability distribution sums to unity.

This probability distribution is formulated in terms of its sufficient statistics that serve

as summary measures of structural properties of a joint count configuration. While in prin-

ciple, there are no constraints on the choice of the sufficient statistics, this choice is guided

by including those sufficient statistics that describe structural properties that are linked

to mechanisms giving rise to an observed count configuration. In other words, and slightly

abusing notation, the sufficient statistics are specified such to represent structural prop-

erties that are well-known to be enhanced, when θ > 0, or suppressed, when θ < 0, under

certain mechanisms.

Hence, the discrete exponential family formalism can be used to model network auto-

correlated count data by constructing sufficient statistics that appropriately capture the

net tendency of tied actors to show similar (or dissimilar) counts, commonly understood

as positive (or negative) network autocorrelation. Likewise, additional sufficient statistics

incorporating standard covariate or any other effects on the counts can be designed.

1.4 Outline of the thesis

The core of this thesis consists of the ensuing four chapters that have been written as

journal articles and can be read comprehensibly independently from each other. Chapters

2, 3, and 4 focus on developing Bayesian methodology for the network autocorrelation

model. Chapter 5 introduces a discrete exponential family model for analyzing network

autocorrelated count data and is slightly less expository in style than the other chapters.

In Chapter 2, we provide new Bayesian estimation methods for the network autocor-

relation model that address the issues inherent to maximum likelihood estimation of the

model. For any Bayesian estimator, the prior distribution for the model parameters im-

pacts the properties and the performance of the estimator. Thus, we motivate and derive

several priors for the parameters in the network autocorrelation model in this chapter. We

first derive two versions of Jeffreys prior (Jeffreys, 1961), Jeffreys rule prior and Indepen-

dence Jeffreys prior, which have not yet been established for the network autocorrelation

model. Jeffreys prior construes the concept of a non-informative prior in a formal way, and

these priors can be used for a Bayesian estimation of the network autocorrelation model

when prior information is unavailable. Second, we propose an informative prior for the

network autocorrelation parameter ρ based on a meta-analysis of empirical applications

of the network autocorrelation model. This is the first empirically justified informative

prior for ρ to be found in the literature and systematically shows that positive network

autocorrelation is much more prevalent in empirical practice than negative network auto-

correlation. All of the resulting posterior distributions do not belong to a family of known

probability distributions and hence, summary measures for the posteriors, such as the

mean or quantiles, are analytically not available. We present new and more efficient pro-

cedures than currently to be found in the literature for sampling from the corresponding

posterior distributions. Lastly, we conduct a simulation study to evaluate the performance
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of the different Bayesian estimators as well as the maximum likelihood estimator.

In Chapter 3, we introduce Bayesian hypothesis tests for the network autocorrelation

parameter ρ, including precise hypotheses, e.g., H0 : ρ = 0, as well as interval hypotheses,

e.g., H1 : 0 < ρ < 1. When testing such hypotheses on the network autocorrelation pa-

rameter using the Bayes factor, the Bayes factor can be sensitive to the choice of the prior

distribution for ρ under interval hypotheses. We present three Bayes factors for testing

the aforementioned hypotheses that are not yet available for the network autocorrelation

model: first, we consider a Bayes factor using the empirical informative prior from Chap-

ter 2; second, a Bayes factor based on the standard uniform prior for ρ typically used

in the literature (Hepple, 1995a; Holloway et al., 2002; LeSage, 1997a); third, we develop

a so-called fractional Bayes factor (O’Hagan, 1995) where a default prior for ρ is auto-

matically constructed by updating an improper prior with a fraction of the information

contained in the observed data, while the fractional Bayes factor itself is computed using

the remaining information in the data. Furthermore, we employ the empirical informative

prior also for specifying prior probabilities for interval hypotheses, which is new to the

literature. We show how the presented methodology can be straightforwardly adapted

to test more than two hypotheses against each other, which is particularly relevant in

the network autocorrelation model, as the literature suggests that the question is not if

network autocorrelation occurs but to what extent. We carry out a simulation study to

investigate numerical properties of these Bayes factors, and we demonstrate their use by

re-analyzing three empirical data sets from the literature.

In Chapter 4, we extend the developed methods for the first-order network autocorre-

lation model in Chapters 2 and 3 to higher-order network autocorrelation models involving

multiple connectivity matrices and network autocorrelation parameters. As to that, we

propose computationally efficient Bayesian estimation techniques for higher-order network

autocorrelation models based on a general multivariate normal prior for the network au-

tocorrelation paramaters. Moreover, we introduce adeptly implemented Bayes factors for

simultaneously testing multiple order hypotheses on the network autocorrelation parame-

ters against one another. Our Bayes factors are based on automatically constructed multi-

variate normal default priors for the network autocorrelation paramaters, which eliminates

the need for difficult prior elicitation under each hypothesis. As such, the proposed Bayes

factors provide means for quantifying the relative evidence in the data in favor of any hy-

pothesis on the network autocorrelations parameters, including equality constraints, e.g.,

H0 : ρ1 = ρ2 = 0, inequality constraints, e.g., H1 : ρ1 > ρ2 > 0, or a combination of

equality and inequality constraints, e.g., H2 : ρ1 > ρ2 = 0. Subsequently, we investigate to

what extent the Bayes factors provide evidence for a true data-generating hypothesis when

tested against several competing hypotheses by means of a simulation study. Finally, we

illustrate our methods on a data set from the economic growth theory, where we explore

the structure of spatial autocorrelation of growth rates of labor productivity in service

industry across 188 territorial units in the European Union.

In Chapter 5, we present a discrete exponential family model for analyzing network au-

tocorrelated count data. In our approach, we use the discrete exponential family to specify
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the joint count distribution in terms of its sufficient statistics. We propose various sets of

sufficient statistics representing network autocorrelation, standard covariate effects, and

basic structural properties of the counts, such as the central tendency, the dispersion, and

the sparsity of the counts, that are deemed to have generated an observed count configu-

ration. Furthermore, we provide algorithms to simulate count configurations and to carry

out maximum likelihood-based inference in the model. In addition, we introduce tailored

goodness-of-fit measures based on the predictive distribution for the counts. Lastly, we

illustrate the capability and the practical implementation of our model by re-investigating

the causes of homicide in 343 neighborhoods in Chicago, Illinois.

In Chapter 6, the final chapter of this thesis, we summarize our main results and reflect

upon their usefulness in resolving the inferential limitations in the network autocorrela-

tion model that inspired this thesis. We conclude by pointing out remaining issues and

by discussing future research topics related to network autocorrelation modeling.
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Chapter 2

Bayesian estimation of the

network autcorrelation model

Abstract

The network autocorrelation model has been extensively used by researchers interested

modeling social influence effects in social networks. The most common inferential method

in the model is classical maximum likelihood estimation. This approach, however, has

known problems such as negative bias of the network autocorrelation parameter and poor

coverage of confidence intervals. In this chapter, we develop new Bayesian estimation

techniques for the network autocorrelation model that address the issues inherent to max-

imum likelihood estimation. A key ingredient of the Bayesian approach is the choice of

the prior distribution. We derive two versions of Jeffreys prior, Jeffreys rule prior and

Independence Jeffreys prior, which have not yet been developed for the network auto-

correlation model. These priors can be used for Bayesian estimation of the model when

prior information is unavailable. Moreover, we propose an informative as well as a weakly

informative prior for the network autocorrelation parameter that are both based on an

extensive literature review of empirical applications of the network autocorrelation model

across many fields. Finally, we provide new and efficient Markov Chain Monte Carlo al-

gorithms to sample from the resulting posterior distributions. Simulation results suggest

that the considered Bayesian estimators outperform the maximum likelihood estimator

with respect to bias of and frequentist coverage of credible and confidence intervals for the

network autocorrelation parameter.

This chapter is based on: Dittrich, D., Leenders, R.Th.A.J., and Mulder, J. (2017). Bayesian estimation of
the network autocorrelation model. Social Networks, 48(1): 213-236. http://doi.org/10.1016/j.socnet
.2016.09.002.
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2.1 Introduction

Identifying and estimating network influence on individual behavior is a common and im-

portant challenge encountered in social network analysis. Throughout the last decades, a

number of different models studying network influence effects have emerged, out of which

the network autocorrelation model is probably the most popular one (Leenders, 2002;

Marsden & Friedkin, 1993; Plümper & Neumayer, 2010; W. Wang et al., 2014).

A traditional and widely used technique for parameter estimation in the network au-

tocorrelation model is maximum likelihood estimation (Doreian, 1981; Ord, 1975), which

has also been implemented in common statistical software packages such as R (Bivand

& Piras, 2015; Butts, 2008; Leifeld et al., 2015; McMillen, 2013; Wilhelm & Godinho de

Matos, 2015), MATLAB (LeSage, 1999), Python (Rey & Anselin, 2007), and Stata (Pisati,

2001). Despite the popularity and usefulness of maximum likelihood estimation, there are

also important issues related to this estimation technique of the model. First, several

simulation studies have suggested that the maximum likelihood estimator for the network

autocorrelation parameter ρ is negatively biased under many different scenarios, that the

underestimation of ρ becomes more severe for increasing network density, and that it oc-

curs regardless of the network structure and the network size (Mizruchi & Neuman, 2008;

Neuman & Mizruchi, 2010; Smith, 2009). Second, maximum likelihood-based precision

estimates, such as confidence intervals, rely heavily on asymptotic theory. Consequently,

the coverage of the associated confidence intervals may be distorted for small to medium

samples that are often encountered in social science research, such as school classes, care

teams, or members of an executive board. Notwithstanding the tremendous capability

of the network autocorrelation model and the theoretical advances it has yielded for un-

derstanding the structure of social influence in social networks, the concerns regarding

the maximum likelihood estimation approach may ultimately discourage researchers from

utilizing the model at all.

In this chapter, we develop Bayesian statistical estimation methods for the network

autocorrelation model that may attenuate the issues which have been encountered with

maximum likelihood estimation. The Bayesian approach has at least two attractive fea-

tures that are not shared by classical methods. First, it allows researchers to incorporate

external information about the model parameters via a prior distribution. For example, if

previous research has suggested that people in a certain network are positively influenced

by each other, as is often the case in social networks, one could specify a prior distribu-

tion that assumes positive values for the network autocorrelation ρ to be more likely than

negative ones. Indeed, as we will show in Section 2.4, the vast empirical literature on

the model suggests that network effects are much more likely, a priori, to be in certain

intervals than in others. Second, Bayesian analysis provides “exact” inference without

the need for asymptotic approximations (De Oliveira & Song, 2008). This characteristic

is especially appealing for small- to moderate-sized groups and can be seen as a distinct

advantage of the Bayesian approach over classical frequentist methods. In other words,

when networks are small, Bayesian estimation of the network autocorrelation model is
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statistically preferable over frequentist estimation.

Bayesian statistics is a fundamentally different approach than classical statistics. In

brief, a Bayesian data analysis is carried out as follows. First, a prior distribution, or

simply prior, for the model parameters is needed, where the prior distribution reflects the

prior knowledge about the model parameters before observing the data. If prior informa-

tion is available, e.g., based on published literature, an informative prior can be specified.

On the other hand, if such information is absent, a so-called non-informative prior can

be employed. After observing the data, Bayes’ theorem is used to update the prior expec-

tations with the information contained in the data to arrive at the posterior distribution,

or posterior, for the model parameters. All inference is based on the posterior, and it is

used to obtain Bayesian point estimates and credible intervals, the Bayesian equivalent to

classical confidence intervals.

Although the specification of the prior distribution is one of the most important steps

in any Bayesian analysis, it has not received much attention in the literature on Bayesian

estimation of the network autocorrelation model (X. Han & Lee, 2013; Hepple, 1995b;

Holloway et al., 2002; LeSage, 2000; LeSage & Pace, 2009), with the exception of LeSage

(1997a) and LeSage & Parent (2007). In some cases, it is in fact difficult to elicit a prior,

e.g., when prior information is absent, or when a researcher would like to add as little prior

information as possible to the analysis. For these situations, non-informative priors are

typically used to carry out a Bayesian analysis. In this chapter, we are the first to derive

two versions of Jeffreys prior (Jeffreys, 1961), called Jeffreys rule prior and Independence

Jeffreys prior, for the network autocorrelation model and to establish results on the pro-

priety of the resulting posterior distributions. Jeffreys rule prior construes the concept of

a non-informative prior in a formal way and is the most commonly used non-informative

prior (De Oliveira & Song, 2008). Moreover, in several simulation studies of related au-

toregressive models, Independence Jeffreys prior has been shown to result in superior in-

ferences compared to those based on maximum likelihood estimation (De Oliveira, 2012;

De Oliveira & Song, 2008). These findings serve as another motivation to consider the

two versions of Jeffreys prior for the network autocorrelation model as well.

Furthermore, we provide a novel informative prior for the network effect ρ based on an

extensive literature review of empirical applications of the network autocorrelation model.

To the best of our knowledge, this is the first empirically justified informative prior for ρ

to be found in the literature. Because of the empirical justification of this prior, it is a

reasonable “entry point” for a Bayesian analysis of the network autocorrelation model, as

it summarizes the currently available evidence about observed network autocorrelations

from many different sources. Moreover, we introduce a related weakly informative prior

for ρ that can be used by a researcher who agrees that past findings should not be dis-

missed but who is at the same time reluctant and deliberately refrains from including all

available prior information.

In addition, we present efficient Markov Chain Monte Carlo (MCMC) algorithms for

sampling from the resulting posterior distributions, which we find to be computationally

superior compared to existing schemes (LeSage, 2000; LeSage & Pace, 2009). We conduct
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a simulation study to investigate numerical properties of Bayesian inferences about the

network effect ρ and the error variance σ2 based on the proposed priors and to compare

them to inferences coming from maximum likelihood estimation. As will be shown, the

Bayesian estimator based on the informative prior performs overall the best when network

effects are positive, while using the weakly informative prior eliminates virtually all the

negative bias in the estimation of ρ in case of no or marginal network effects.

We proceed as follows: in Section 2.2, we discuss the network autocorrelation model

in more detail. We continue with a short introduction to the Bayesian approach in regard

to the model in Section 2.3. In Section 2.4, we derive two versions of Jeffreys prior and

propose an informative as well as a weakly informative prior for the network autocorre-

lation parameter ρ based on reported network effects from the literature. Moreover, we

state properties of these priors and their corresponding posteriors and provide compar-

isons between the priors. In Section 2.5, we present efficient MCMC implementations for

Bayesian estimation of the model. We assess the numerical performance of the Bayesian

estimators and the maximum likelihood estimator in a simulation study in Section 2.6.

Section 2.7 concludes.

2.2 The network autocorrelation model

Originally developed by geographers (Ord, 1975), the network autocorrelation model has

been used to address the problem of structured dependence ever since. In contrast to

a standard linear regression model, the network autocorrelation model does not assume

observations for a variable of interest to be independent from each other but allows for

dependence among them. In a social network context, this has the interpretation that

ego’s opinion may not solely depend on exogenous variables; instead, ego’s opinion might

be influenced by the opinions of other actors in the network as well. Thus, in the net-

work autocorrelation model, ego’s opinion is viewed as a combination of interaction and

exogenous variables, formally expressed as

y = ρWy +Xβ + ε, ε ∼ N
(
0g, σ

2Ig
)
, (2.1)

where, as in standard linear regression, y is a vector of length g consisting of values for

a dependent variable for the g network actors, X is a (g × k) matrix of values for the

g actors on k covariates (possibly including a vector of ones in the first column for an

intercept term), β is a vector of regression coefficients of length k, 0g is a vector of zeros of

length g, Ig symbolizes the (g × g) identity matrix, and ε is a vector of length g containing

independent and identically normally distributed error terms with zero mean and variance

of σ2. Furthermore, W denotes a given (g × g) connectivity matrix representing social ties

in a network, where each entry Wij stands for the degree of influence of actor j (alter) on

actor i (ego). By convention, we exclude loops, i.e., relationships from an actor to himself,

so Wii = 0 for all i ∈ {1, ..., g}. Finally, ρ is a scalar termed the network autocorrelation

parameter. It is the key parameter of the model and measures the level of network influence

on a variable of interest for given y, W , and X. Note that when ρ = 0, the model reduces
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to a standard linear regression model.

The likelihood of the model in (2.1) is given by

f
(
y|ρ, σ2,β

)
= |det (Aρ)|

(
2πσ2

)− g
2 exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
, (2.2)

where Aρ := Ig − ρW (see e.g., Doreian, 1980). To ensure that |det (Aρ)| is non-zero

and the model’s likelihood function in (2.2) is well-defined, there are restrictions on the

feasible values for ρ. In practice, the admissible range of ρ is usually chosen as the interval

containing ρ = 0 for which Aρ is non-singular (Hepple, 1995a; Holloway et al., 2002; Lee,

2004; LeSage, 1997a, 2000; LeSage & Pace, 2009; Smith, 2009). This interval is given

by
(
λ−1
g , λ−1

1

)
, where λ1 ≥ λ2 ≥ ... ≥ λg are the ordered eigenvalues of W (Hepple,

1995a), and we follow this convention in the remainder of the chapter.1,2 We denote the

resulting set of model parameters by θ :=
(
ρ, σ2,β

)
and the associated parameter space

by Θ := Θρ ×Θσ2 ×Θβ =
(
λ−1
g , λ−1

1

)
× (0,∞)×Rk. Hence, the model’s parameter space

has the remarkable property that it depends on properties, i.e., the eigenvalues, of the

connectivity matrix W .

Throughout the literature, the model is also referred to as mixed regressive-autoregres-

sive model (Ord, 1975), spatial effects model (Doreian, 1980), network effects model (Dow

et al., 1982), or spatial lag model (Anselin, 2002), and it has been applied in many different

fields, such as criminology (Baller et al., 2001; Fornango, 2010; Tita & Radil, 2011),

geography (Fingleton, 2001; McMillen, 2010; Seldadyo et al., 2010), political science (Beck

et al., 2006; Shin & Ward, 1999; Tam Cho, 2003), and sociology (Kirk & Papachristos,

2011; Land et al., 1991; Ruggles, 2007).

2.3 Bayesian network autocorrelation modeling

The starting point of every Bayesian analysis is the formulation of prior expectations about

the parameters in a statistical model. Formally, these prior expectations are expressed in

terms of probability distributions, where the resulting prior distributions represent the

available knowledge about the model parameters before observing data. We denote the

joint prior distribution for all model parameters by p (θ). In general, prior expectations

can come from a researcher’s beliefs or from accumulated empirical evidence from previous

1To avoid unnecessary complications, we restrict ourselves to connectivity matrices with real eigenvalues.
These include all W that are either symmetric or row standardizations, i.e., where each row sums to one,
of symmetric matrices (Smith, 2009). Furthermore, we assume that λ1 > 0, which includes all non-zero
symmetric connectivity matrices (Smith, 2009), so λg < 0 < λ1 since tr (W ) = 0. In the common case of
row-standardized connectivity matrices, it follows that λ1 = 1 (Anselin, 1982).

2It is mathematically not necessary to constrain the parameter space of ρ to
(
λ−1
g , λ−1

1

)
. It suffices to

exclude the reciprocals of the eigenvalues of W from the domain of ρ, as Aρ is singular only for those values
(Leenders, 1995). Some authors prefer to restrict ρ to (−1, 1), as ∀ρ ∈ (−1, 1) : A−1 =

∑∞
k=0 ρ

kW k, which
implies an underlying stationary process (Griffith, 1979). We choose the interval

(
λ−1
g , λ−1

1

)
rather than

(−1, 1) as admissible range of ρ, as the latter choice might yield estimates of ρ at the lower boundary of the
interval and considering the whole parameter space R\

{
λ1

−1, λ2
−1, ..., λg

−1
}
typically results in improper

posterior distributions (see the remark in the proof of Corollary 2.1). Lastly, ∀ρ ∈
(
λ−1
g , λ−1

1

)
: det (Aρ) > 0,

so we write |Aρ| for | det (Aρ) | in the remainder of the chapter.
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studies in a field. Alternatively, one might also (purposely) stay vague and opt for a non-

informative prior distribution. The idea of a non-informative prior is that it is completely

dominated by the data and different methods have been proposed how to construct such

priors (Bernardo, 1979; Box & Tiao, 1973; ?; Kass & Wasserman, 1996).

After having specified a prior distribution, the data y are observed. Since the data

contain information about the unknown parameters, they can be used to update the initial

expectations. The information about the model parameters in the data is summarized by

the likelihood function, f (y|θ). Linking information from the prior distribution and the

data leads to the posterior distribution for the model parameters, which we denote by

p (θ|y). Applying elementary rules of probability theory, the posterior can be written by

Bayes’ theorem as

p (θ|y) = f (y|θ) p (θ)
p (y)

. (2.3)

The denominator of (2.3) is called the marginal likelihood and serves as normalizing

constant to ensure that the posterior integrates to unity. However, as the normalizing con-

stant does not depend on the model parameters and does not affect parameter estimation,

the expression in (2.3) can be simplified to

p (θ|y) ∝ f (y|θ) p (θ) . (2.4)

Hence, (2.4) means that the posterior distribution is proportional, with respect to

the model parameters θ, to the prior distribution multiplied by the likelihood function.

Formally, the normalizing constant can only be dropped if it is finite, i.e., if the posterior

is integrable and thus a proper probability distribution. For the network autocorrelation

model, this is the case when the network size, compared to the number of covariates, is

large enough. We will come back to this in the following section.

The posterior distribution can then be used to derive point estimates of the model

parameters (e.g., the posterior mean or the posterior median), credible intervals (i.e.,

intervals in the domain of the posterior), or to get other statistics of interest, such as the

probability that the network autocorrelation is positive for given data, p (ρ > 0|y). The

latter statistic is quite useful for quantifying a researcher’s belief that people in a network

positively influence each other with respect to some variable of interest. However, such a

probability cannot be obtained when using classical frequentist methods but only when

taking the Bayesian route.

2.4 Prior choices in the network autocorrelation model

The specification of the prior distribution is one of the most important steps in a Bayesian

analysis. Despite its importance, prior specification in the network autocorrelation model

has been largely neglected. Most of the previous work on Bayesian estimation of the model

has been based on using uniform priors for ρ, β, and log
(
σ2
)
(Hepple, 1995b; Holloway et

al., 2002; LeSage, 1997a, 2000). Only recently, X. Han & Lee (2013) and LeSage & Pace
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(2009) considered the standard normal inverse gamma priors for β and σ2 from linear

regression, resulting in an inverse gamma prior for σ2 and a normal prior for β conditional

on σ2, together with the standard uniform prior for ρ.

In this section, we briefly review the standard uniform prior for ρ first, before deriving

two versions of Jeffreys prior and proposing two novel informative priors for the network

effect ρ.

2.4.1 Flat prior

Using flat, or uniform, priors is the simplest and most intuitive way to quantify prior

ignorance about model parameters. A uniform prior assigns equal, or uniform, probabil-

ity to all possible values a parameter can attain, resulting in a flat prior density func-

tion. Applying this rationale to the network autocorrelation model means that all possi-

ble network effects ρ and regression coefficients β are considered as equally likely before

observing the data. In mathematical notation, we denote the flat prior distributions for

ρ and β by pF (ρ) ∝ 1 and pF (β) ∝ 1, respectively. As noted in the previous section, for

estimation purposes it suffices to give the prior distributions in these unnormalized forms.

Furthermore, the error variance σ2 is constrained to the positive axis, and it is customary

to consider its logarithm and assign a flat prior to this transformed variable (Fernández

et al., 2001; Kass & Wasserman, 1996). Retransforming the flat prior for log
(
σ2
)
back in

terms of σ2 yields pF
(
σ2
)
∝ 1/σ2. Finally, under the flat prior all parameters are assumed

to be a priori independent. The flat prior for θ =
(
ρ, σ2,β

)
is then written as

pF (θ) = pF (ρ)× pF
(
σ2
)
× pF (β) ∝ 1/σ2.

This prior is sometimes also referred to as the diffuse prior in the literature (Hepple,

1979; LeSage, 1997a, 2000). While it is obvious that the flat prior itself is improper, i.e.,

the integral of pF (θ) on Θ is not finite, it is easy to verify that the resulting posterior

distribution is proper under the very weak conditions stated in Corollary 2.1.

Corollary 2.1. Consider the network autocorrelation model in (2.1). Then,

(i) The flat prior pF (θ) is unbounded and not integrable on Θ =
(
λ−1
g , λ−1

1

)
×(0,∞)×Rk.

(ii) The corresponding posterior pF (θ|y) is proper on Θ =
(
λ−1
g , λ−1

1

)
× (0,∞) × Rk

when g > k,
(
XTX

)−1
exists, and

(
yTMWy

)2 6= yTW TMWyyTMy, where M :=

Ig −X
(
XTX

)−1
XT .

Proof. See Appendix 2.B. �

Thus, given the two mild regularity conditions in Corollary 2.1 (ii) hold, the flat prior

yields a proper posterior when the number of actors in a network is larger than the number

of external covariates. While the first regularity condition can be easily controlled for by

avoiding perfect collinearity, the second one is of technical nature and needs to be checked

for each data set.
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2.4.2 Jeffreys rule prior

Flat priors are only one possible way to state prior ignorance; they are driven mainly by

what intuitively seems to represent non-informativeness, rather than being based on a set

of formal rules that defines non-informativeness mathematically. The first formal rule for

specifying non-informative prior distributions was introduced by Sir Harold Jeffreys, and

much of subsequent related work is based on modifications of Jeffreys’ scheme (Jeffreys,

1961; Kass & Wasserman, 1996). The main motivation for Jeffreys rule prior is that

statistical inference should not depend on any specific parametrization of the model, which

could often be rather arbitrary. For example, if the network autocorrelation model is

rewritten in terms of a precision parameter ω := 1/σ2, rather than σ2, applying Jeffreys

rule prior to the model formulated with respect to ω or σ2 results in the same posterior

conclusions about the network effect. Hence, when using Jeffreys rule prior, there is no

need to determine a privileged parametrization as the prior is parametrization-invariant.

Formally, Jeffreys rule prior is defined as

pJ (θ) ∝
√

det (I (θ)),

where I (θ) denotes the model’s Fisher information matrix. The exact analytical form of

the prior is given in Theorem 2.1. Since Jeffreys rule prior for the network autocorrelation

model is improper, the propriety of the resulting posterior needs to be checked and is

verified in Corollary 2.2.

Theorem 2.1. Consider the network autocorrelation model in (2.1) and assume that(
XTX

)−1
exists. Then, Jeffreys rule prior for θ =

(
ρ, σ2,β

)
, denoted by pJ (θ), is

pJ (θ) ∝
(
σ2
)− k+2

2

{
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

} 1
2

, (2.5)

where Bρ := WA−1
ρ .

Proof. See Appendix 2.B. �

Corollary 2.2. Consider the network autocorrelation model in (2.1) and assume that(
XTX

)−1
exists. Then,

(i) Jeffreys rule prior pJ (θ) is unbounded and not integrable on Θ =
(
λ−1
g , λ−1

1

)
×

(0,∞)× Rk.

(ii) Jeffreys rule posterior pJ (θ|y) is proper on Θ =
(
λ−1
g , λ−1

1

)
× (0,∞) × Rk when(

yTMWy
)2 6= yTW TMWyyTMy.

Proof. See Appendix 2.B. �

2.4.3 Independence Jeffreys prior

Jeffreys rule prior has the desirable property to be invariant under one-to-one parame-

ter transformations and most often results in reasonable priors in one-dimensional mod-
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els. However, applying the rule in multi-parameter models may result in poor frequen-

tist properties of Bayesian inferences (Berger et al., 2001; De Oliveira, 2010; De Oliveira

& Song, 2008), or even improper posteriors (Berger et al., 2001; Bolstad, 2009; Rubio

& Steel, 2014). Thus, already Jeffreys himself argued that it is often better to consider

certain blocks of parameters as a priori “independent” from each other and to compute

the marginal prior for each parameter block using Jeffreys rule, assuming the other pa-

rameters to be known (De Oliveira & Song, 2008). The resulting product of the marginal

priors is then called Independence Jeffreys prior. Following Bayesian analyses of related

autoregressive models (Berger et al., 2001; De Oliveira, 2012; De Oliveira & Song, 2008),

we split the network autocorrelation model parameters into the two blocks
(
ρ, σ2

)
and β

and derive Independence Jeffreys prior based on this partitioning of the model parame-

ters. We give the prior’s analytical form in Theorem 2.2 and provide its main theoretical

properties in Corollary 2.3.

Theorem 2.2. Consider the network autocorrelation model in (2.1). Then, Independence

Jeffreys prior for θ =
(
ρ, σ2,β

)
, denoted by pIJ (θ), is

pIJ (θ) ∝
1

σ2

{
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ BρXβ − 2

g
tr2 (Bρ)

} 1
2

. (2.6)

Proof. See Appendix 2.B. �

Corollary 2.3. Consider the network autocorrelation model in (2.1). Then,

(i) Independence Jeffreys prior pIJ (θ) is unbounded and not integrable on Θ =
(
λ−1
g , λ−1

1

)
×

(0,∞)× Rk.

(ii) Independence Jeffreys posterior pIJ (θ|y) is proper on Θ =
(
λ−1
g , λ−1

1

)
× (0,∞)×Rk

when g > k,
(
XTX

)−1
exists, and

(
yTMWy

)2 6= yTW TMWyyTMy.

Proof. See Appendix 2.B. �

The analytical expression of Independence Jeffreys prior in (2.6) is similar, but slightly

simpler, to the one of Jeffreys rule prior in (2.5). The major difference between the two

is that for Jeffreys rule prior the exponent of the error variance depends on the number

of covariates, k, while it does not for Independence Jeffreys prior. For related models

(Berger et al., 2001; De Oliveira, 2012; De Oliveira & Song, 2008), it has been shown that

having k in the exponent of σ2, as in Jeffreys rule prior, could result in an underestimation

of the error variance. We will therefore investigate whether this is also the case in the

network autocorrelation model, and if this underestimation occurs, whether it can be

circumvented by using Independence Jeffreys prior. Hence, while Jeffreys rule prior is

based on an invariance principle, Independence Jeffreys prior is a heuristic modification

of Jeffreys rule prior that can result in better inferences.
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2.4.4 An informative prior for ρ

Having discussed three prominent non-informative priors above, in this subsection, we

derive a population distribution for ρ based on an extensive literature review of empirical

applications of the network autocorrelation model. Subsequently, this population distri-

bution is used as an informative prior for ρ.

In our literature search, we considered 81 peer-reviewed publications and a total of

183 estimated network autocorrelation parameters. The most important characteristics

of this sample are summarized in Table 2.1.3 As network effects in one publication are

usually from the same field and closely related, this suggests that these network autocor-

relations are more similar than network effects coming from different studies. To take this

into account, we relied on a hierarchical approach and used the following multilevel model

(Gelman et al., 2003) to estimate the population distribution of the network effects:

Level 1: ρij ∼ N
(
ρj , σ

2
ρ

)
,

Level 2: ρj ∼ N
(
µρ, τ

2
ρ

)
,

(2.7)

where i ∈ {1, ..., nj}, j ∈ {1, ..., 81}, ρij is the observed i-th network effect from field j,

and {ρj}j , µρ, σ
2
ρ, and τ2ρ are model parameters that have to be estimated. The distribu-

tion in Level 1 corresponds to the empirical distribution of a network effect in a specific

field. The distribution in Level 2 denotes the overall population distribution in which

we are ultimately interested in. We fitted the model in R (R Core Team, 2017) relying

on a Bayesian framework and using standard non-informative uniform priors for µρ, τρ,

and log
(
σ2
ρ

)
(Gelman, 2006). This resulted in posterior mean estimates of µρ = .36 and

τρ = .19.4 The resulting informative prior for ρ, pEI (ρ) ∼ N
(
µρ, τ

2
ρ

)
, and the histogram

of the average network effects from each field are plotted in Figure 2.1. As can be seen,

the multilevel model in (2.7) provides a reasonably good fit to the empirical data.

Figure 2.1 also shows that there are substantially more reported positive network ef-

fects than negative ones in the literature. This finding conflicts with a flat prior for ρ on(
λ−1
g , λ−1

1

)
, which typically implies that negative network effects are a priori more likely

than positive network effects and is clearly unrealistic.5

We combine this empirical informative prior for ρ with the standard non-informative

prior for
(
σ2,β

)
from Section 2.4.1, assuming all parameters to be a priori independent.6

3We did not attempt to be fully comprehensive here and do not claim to have included all available
literature on empirical applications of the network autocorrelation model. Our selection features work that
(i) used row-standardized connectivity matrices, (ii) specified the network size and the type of connectivity
matrix, and (iii) employed appropriate estimation techniques for the given type of data.

4The associated 95% credible intervals for µρ and τρ were (.33, .39) and (.16, .22), respectively.
5For row-standardized connectivity matrices, it holds that λ−1

g ≤ −1 (Stewart, 2009, Property 10.1.2),
and for most of the simulated data sets we considered, we observed that λ−1

g < −1. Thus, as λ−1
1 = 1, in

these cases the flat prior assigns more probability mass to negative network effects than to positive ones.
6Propriety of the resulting posterior distribution, under the conditions given in Corollary 2.1, follows

immediately from the corollary’s proof. Our informative prior for ρ can be easily combined with informative
priors for σ2 and β as well. We use non-informative improper priors for the latter parameters because our
main focus lies on estimating the network effect ρ.
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Figure 2.1 Histogram of the average network effects from each field
{
ρj
}
j
, ρj :=∑nj

i=1 ρij/nj , and probability density function of the fitted normal population distribution
for ρ.

Hence, the resulting empirical informative joint prior for θ is

pEI (θ) = pEI (ρ)× pF
(
σ2
)
× pF (β) ∝ Nρ

(
.36, .192

)
× 1/σ2.

2.4.5 A weakly informative prior for ρ

There may be cases in which a researcher does not expect a network effect to be present in

the data, or it may be that the researcher does not (want to) entertain the prior belief that

the level of network autocorrelation in a data set is likely to fit with the empirical literature

at large. In these cases, a researcher might purposely prefer to use less prior knowledge

than actually available in the literature and rely on a so-called weakly informative prior

distribution (Gelman et al., 2003). We construct such a weakly informative prior for ρ by

imposing a normal prior that is centered around .36, as is the empirical informative prior,

but with a deliberately much larger standard deviation, accounting for the uncertainty

in one’s prior beliefs. We set the weakly informative prior’s standard deviation to .7,

compared to .19 for the empirical informative prior, yielding a broad and fairly flat prior

that still results in at least 62% of prior probability mass being contained in the unit

interval (0, 1). As for the empirical informative prior, we impose standard non-informative

priors for
(
σ2,β

)
, assuming all parameters to be a priori independent. Thus,

pWI (θ) = pWI (ρ)× pF
(
σ2
)
× pF (β) ∝ Nρ

(
.36, .72

)
× 1/σ2.



22 Chapter 2. Bayesian estimation of the network autcorrelation model

Table 2.1 Characteristics of the studies used for the specification of the empirical informa-
tive prior for ρ.

Study Field g Type of W Method ρ

1 Andersson et al. (2010) Property prices 1,034 Inverse distance ML .52

2 Anselin (1984) House values 49 First-order contiguity ML .28

3 Anselin (1990) Wage rates 25 First-order contiguity ML -.62

4 Anselin & Le Gallo (2006) House prices 115,732 First-order contiguity ML .44

5 Anselin & Lozano-Gracia (2008) House prices 103,867 First-order contiguity 2SLS .33

6 Anselin et al. (2010) House rents 1,671 First-order contiguity HAC .24

7 Anselin et al. (2000) Innovation transfer 89 Distance-based contiguity 2SLS .23

8.1 Arbia & Basile (2005) GDP growth rates 92 First-order contiguity ML .33

8.2 .18

8.3 .34

9 Armstrong & Rodŕıguez (2006) Property values 1,860 Inverse distance ML .36

10.1 Baller et al. (2001) Homicide rates 1,412 Nearest neighbors IV .71

10.2 .65

10.3 .18

10.4 .23

11.1 Bernat Jr. (1996) Economic growth 49 Squared inverse distance ML .35

11.2 .42

11.3 .70

12.1 Bivand & Szymanski (2000) Garbage collection 324 First-order contiguity ML .15

12.2 .10

13 Bordignon et al. (2003) Tax rates 143 First-order contiguity ML .16

14.1 Brueckner & Saavedra (2001) Tax rates 70 Population weights ML .16

14.2 .04

14.3 .26

15.1 Buonanno et al. (2009) Crime patterns 103 Inverse traveling distance 2SLS -.54

15.2 .19

15.3 .21

16.1 Burt & Doreian (1982) Scientific publishing 52 Structural equivalence ML .26

16.2 .21

16.3 .25

16.4 .45

16.5 .29

16.6 .31

16.7 .26

16.8 .54

17 Can (1992) House prices 563 Squared inverse distance ML .41

18 Carruthers & Clark (2010) House prices 28,165 Nearest neighbors 2SLS .17

19.1 Chang (2008) Water quality 94 First-order contiguity ML .19

19.2 .14

19.3 .49

19.4 .48

19.5 .56

19.6 .15

19.7 .42

19.8 .43

19.9 .37

19.10 .56

19.11 .44

19.12 .41

19.13 .55

19.14 .47

19.15 .36

19.16 .24

19.17 .35

19.18 .29

19.19 .25

19.20 .28

19.21 .24

19.22 .50

19.23 .42

19.24 .51

19.25 .47
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Table 2.1 (continued).

Study Field g Type of W Method ρ

20 Cohen & Coughlin (2008) House prices 508 Inverse distance ML .26

21 Conway et al. (2010) House prices 260 First-order contiguity ML .11

22 Dall’erba (2005) GDP growth rates 48 Most accessible neighbors ML .40

23 Doreian (1980) Huk rebellion 57 First-order contiguity ML .47

24.1 Doreian (1980) Voting behavior 64 First-order contiguity ML .61

24.2 .26

24.3 Doreian (1981) .12

24.4 .29

24.5 Leenders (2002) .31

25 Dow (2007) Income contributions 158 Lexical distance 2SLS .76

26 Easterly & Levine (1998) GDP growth rates 234 Economic size 2SLS .55

27 Elhorst (2014) Crime rates 49 First-order contiguity ML .43

28 Ertur et al. (2007) GDP growth rates 138 Nearest neighbors ML .75

29.1 Fingleton (2001) Economic growth 178 Economic size&distance 3SLS -.19

29.2 .56

29.3 .73

30 Fingleton et al. (2005) Change in employment 408 Squared inverse distance 2SLS .41

31 Fingleton & Le Gallo (2008) House prices 353 Economic distance ML .72

32 Florax et al. (2002) Agricultural yields 100 First-order contiguity ML .50

33 Ford & Rork (2010) Patent rates 186 First-order contiguity ML .08

34 Fornango (2010) Homicide rates 110 First-order contiguity ML .30

35 Gimpel & Schuknecht (2003) Voting turnout 363 Distance-based contiguity ML .67

36.1 Gould (1991) Battalion enlistment 20 Cross-district enlistment ML .29

36.2 .49

36.3 .49

37 Greenbaum (2002) Teacher salaries 483 Inverse income difference ML .66

38 Heikkila & Kantiotou (1992) Police expenditures 57 First-order contiguity ML .43

39.1 Heyndels & Vuchelen (1998) Tax rates 589 First-order contiguity 3SLS .67

39.2 .70

40 Holloway et al. (2002) Crop adoption 406 First-order contiguity Bayes .54

41 Hunt et al. (2005) Fishing trip prices 770 Inverse distance-based ML .80

42.1 Joines et al. (2003) Hospitalization rates 100 First-order contiguity ML .53

42.2 .51

43 Kalenkoski & Lacombe (2008) Youth employment 3,065 First-order contiguity ML .49

44.1 Kalnins (2003) Fast food prices 1,385 Distance&contiguity-based ML .11

44.2 .21

45.1 Kim & Goldsmith (2009) Property values 262 Nearest neighbors 2SLS .22

45.2 523 .19

45.3 730 .14

46 Kim & Zhang (2005) Land values 731 Nearest neighbors ML .39

47.1 Kirk & Papachristos (2011) Homicide rates 342 First-order contiguity ML .43

47.2 .33

48.1 Land et al. (1991) Church adherence 731 Inverse distance 2SLS .33

48.2 697 .29

48.3 663 .28

49 Lauridsen et al. (2010) Medical expenditures 400 Inverse distance ML .87

50 LeSage (1997b) House values 88 First-order contiguity ML .45

51 Levine et al. (1995) Road accidents 362 Squared inverse distance ML .22

52.1 Lin (2010) GPA scores 68,131 Friendship ML .30

52.2 49,559 .29

52.3 79,067 .30

53 Lu & Zhang (2011) Tree heights 3,982 Variogram ML .59

54 McMillen (2010) Land ratios 1,322 First-order contiguity ML .71

55.1 McMillen et al. (2007) Tuition fees 929 Distance&contiguity-based ML .22

55.2 .34

56.1 McPherson & Nieswiadomy (2005) Species threat 113 Shared border length ML .23

56.2 .16

57 Moreno & Trehan (1997) Worker output growth 89 Inverse distance ML .51

58.1 Morenoff (2003) Birth weights 342 First-order contiguity 2SLS .53

58.2 .69

59.1 Mur et al. (2008) Purchasing power 1,274 Distance&contiguity-based ML .60

59.2 .61

60 Niebuhr (2010) R&D spillovers 95 First-order contiguity ML .16
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Table 2.1 (continued).

Study Field g Type of W Method ρ

61.1 Osland (2010) Voting patterns 1,691 Nearest neighbors ML .07

61.2 766 .06

62 Patton & McErlean (2003) Land prices 197 Squared inverse distance IV .66

63 Plümper & Neumayer (2010) Tax rates 581 First-order contiguity ML .12

64.1 Pons-Novell & Viladecans-Marsal (1999) GDP growth rates 74 First-order contiguity ML .23

64.2 .20

64.3 .17

65 Revelli (2003) Expenditure levels 238 Contiguity-based ML .11

66 Ruggles (2007) Co-residence behavior 276 Shared border length ML .15

67 Rupasingha et al. (2002) Income growth 2,995 First-order contiguity ML .49

68.1 Saavedra (2000) Welfare competition 47 First-order contiguity ML .28

68.2 .30

68.3 .32

69 Seldadyo et al. (2010) Governance patterns 188 Nearest neighbors ML .28

70 Shin & Ward (1999) Military spendings 95 Distance&contiguity-based ML .08

71.1 Tam Cho (2003) Campaign donations 671 Inverse distance 2SLS .06

71.2 455 ML .04

71.3 657 ML .03

71.4 1,183 ML .03

71.5 1,420 2SLS .03

71.6 2,072 2SLS .03

71.7 1,821 2SLS .03

71.8 2,288 2SLS .02

71.9 2,206 2SLS .03

71.10 291 ML .07

71.11 229 ML .06

71.12 249 ML .06

71.13 273 ML .05

71.14 458 2SLS .05

71.15 502 2SLS .05

71.16 698 2SLS .05

71.17 606 2SLS .04

71.18 660 2SLS .05

71.19 752 2SLS .03

71.20 401 2SLS .00

71.21 613 2SLS .02

71.22 581 2SLS .02

71.23 324 ML .05

71.24 918 ML .01

71.25 760 2SLS .03

71.26 701 ML .06

71.27 980 2SLS .05

71.28 874 ML .07

72 Tita & Greenbaum (2009) Gun violence 244 Gang rivalry ML .22

73 Varga (2000) Technology innovation 125 Distance-based contiguity IV .14

74 Halleck Vega & Elhorst (2015) Cigarette sales 1,380 First-order contiguity ML .20

75 Vitale et al. (2016) Student performance 66 Personal advice ML .31

76 Voss & Chi (2006) Population change 1,837 Nearest neighbors ML .27

77.1 Voss et al. (2006) Child poverty 3,136 First-order contiguity ML .31

77.2 .27

78 Wilhelmsson (2002) House prices 1,377 Inverse distance ML .95

79.1 Whitt (2010) Crime rates 85 First-order contiguity ML .37

79.2 .58

79.3 .50

79.4 .54

80 Won Kim et al. (2003) House prices 609 Distance&contiguity-based 2SLS .55

81.1 N. Yang et al. (2012) Wine prices 79 Nearest neighbors ML .33

81.2 876 Nearest neighbors .34

Note: g = network size; 2SLS = two-stage least squares; 3SLS = three-stage least squares; HAC = Kelejian-Prucha

heteroskedasticity and autocorrelation consistent estimator; IV = instrumental variables; ML = maximum likelihood.
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2.4.6 Graphical prior comparison

In order to get more insight into the differences between the discussed priors, we inspected

them graphically. We base our visualization on a randomly generated network of 20 actors

with four covariates, including an intercept term. The shape of these priors is essentially

the same for other data sets that are generated under different specifications of W and X

(not shown).

Figure 2.2 shows the flat prior, the conditional Jeffreys rule prior, the conditional Inde-

pendence Jeffreys prior, the empirical informative prior, and the weakly informative prior

for ρ for the simulated data set. We fixed σ2 to 1 and β to (1,1,1,1) for both versions

of Jeffreys prior as the corresponding marginal priors for ρ are analytically not available.

The graphs of the two versions of Jeffreys prior are “bathtub-shaped”, contrary to the

flat prior and the informative priors for ρ. In particular, pIJ
(
ρ|σ2,β

)
assigns substan-

tial weight to values for ρ close to the boundaries of the admissible interval for ρ, while

pJ
(
ρ|σ2,β

)
does essentially the same but with slightly more weight for values for ρ close

to the left boundary and less prior mass for values for ρ close to the right boundary.7

As the main analytical difference between Jeffreys rule prior and Independence Jeffreys

prior is that for the latter the exponent of the error variance does not depend on the number

of covariates, we also considered the bivariate conditional prior for
(
ρ, σ2|β = (1, 1, 1, 1)

)
.

In contrast to the conditional prior for ρ, pJ
(
ρ, σ2|β

)
places more prior mass at bound-

ary values of the two-dimensional parameter space
(
λ−1
g , λ−1

1

)
× (0,∞), compared to

pIJ
(
ρ, σ2|β

)
(not shown). Thus, we expect the Bayesian posterior estimates of ρ and

σ2 based on Jeffreys rule prior to tend more towards their respective boundary values

compared to the estimates based on Independence Jeffreys prior.
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Figure 2.2 Conditional prior distributions for
(
ρ|σ2 = 1,β = (1, 1, 1, 1)

)
for simulated data.

7The (inverse of the) eigenvalues of the simulated network yield (−1.75, 1) as the admissible interval
for ρ as defined in Section 2.2.
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2.5 Bayesian computation

In this section, we present an efficient algorithm for a Bayesian estimation of the network

autocorrelation model. The methodology can be used to sample from the various arising

posterior distributions based on the priors discussed in Section 2.4. As is common in

Bayesian computation, the goal is to obtain a sample from the joint posterior for the

unknown model parameters by sequentially drawing from the conditional posteriors, i.e.,

given the remaining parameters and the data (Gelfand & Smith, 1990; Geman & Geman,

1984). This is repeated until a sufficiently large sample is obtained.8 We propose to sample

the parameters according to the following blocks: (ρ, β1) , σ
2, and β̃, where β1 denotes the

model’s intercept and β̃ = (β2, ..., βk) contains all the other regression coefficients. The

reason for simultaneously sampling ρ and β1 in one block is the high posterior correlation

between these parameters.9 Sampling these parameters separately would result in slow

mixing, i.e., more draws would be needed to get both a good approximation of the posterior

distribution and small estimation errors (Brooks, 1998; Gelman et al., 2003; Raftery &

Lewis, 1996).

We illustrate the sampling algorithm when using the flat prior and the informative prior

firsts, before discussing sampling from the more complex posteriors based on Jeffreys rule

prior and Independence Jeffreys prior. For the former, the conditional posteriors are given

by (see e.g., LeSage, 1997a)

p
(
(ρ, β1) |σ2, β̃,y

)
∝ |Aρ| exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
p (ρ) , (2.8)

p
(
σ2| (ρ, β1) , β̃,y

)
∼ IG

(
g

2
,
(Aρy −Xβ)T (Aρy −Xβ)

2

)
, (2.9)

p
(
β̃| (ρ, β1) , σ2,y

)
∼ N

(
µ
β̃
,Σ

β̃

)
, (2.10)

where IG (·, ·) denotes the inverse gamma distribution and µ
β̃
and Σ

β̃
are given in Ap-

pendix 2.C.

Sampling from the inverse gamma distribution in (2.9) and the normal distribution

in (2.10) is straightforward, whereas due to the appearance of the determinant in (2.8),

the conditional posterior for (ρ, β1) does not have a well-known form. In order to effi-

ciently sample from this distribution, we rely on the Metropolis-Hastings algorithm (Hast-

ings, 1970; Metropolis et al., 1953). In the algorithm, a candidate-generating distribution

is chosen from which candidate values for the target distribution, here: the conditional

posterior, are drawn. The specification of the candidate-generating distribution is crucial

for the algorithm’s efficiency, where we aim to construct a distribution that closely ap-

8This approach is needed as for none of the priors previously discussed the corresponding posterior
belongs to a family of known probability distributions. Geman & Geman (1984) showed that sampling
from the sequence of conditional posteriors for all parameters indeed produces estimates that converge in
the limit to the true marginal posteriors for the parameters.

9This correlation is particularly pronounced for high levels of network density and we have not found
this issue being discussed in the literature before. Only Hepple (1995b) provided a plot of the bivariate
marginal posterior density pF ((ρ, β1) |y) for an empirical data set that clearly shows this dependence.
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Figure 2.3 Trace plots of posterior draws for ρ for novel (left) and random walk scheme
(right) for simulated data.

proximates the actual conditional posterior target distribution, which typically results in

efficient solutions (Chib & Greenberg, 1995).

In (2.8), we approximate log (|Aρ|) by a second-order Taylor polynomial at ρ = 0, which

results in a normal approximation of the first factor, |Aρ|. The second factor, exp (·), if
considered as a function of (ρ, β1), has a bivariate normal kernel. The third factor, i.e.,

the marginal prior for ρ, is ignored in the candidate-generating distribution when using

the flat prior and is normal for the informative priors. Hence, the overall product of these

normal densities results in a bivariate normal candidate-generating distribution for (ρ, β1)

that incorporates the dependence between the two parameters and is tailored to the con-

ditional posterior for (ρ, β1).

Due to the complex prior expression for both Jeffreys rule and Independence Jeffreys

prior, a Metropolis-Hastings step is needed to sample from all three conditional posteri-

ors when employing these priors. For the first parameter block, (ρ, β1), we use the same

candidate-generating distribution as for the flat prior, as the prior information for (ρ, β1) is

quite vague compared to the likelihood. For the conditional posteriors for σ2, we propose

inverse gamma distributions as candidate-generating distributions but with different shape

parameters than those used in (2.9), accounting for the different exponents of σ2 in the two

priors. Finally, we rely on the normal distribution in (2.10) as the candidate-generating

distribution for the conditional posterior for β̃. All details and the full sampling schemes

for all of the discussed priors can be found in Appendix 2.C.

We implemented our approach and compared its performance to existing sampling

schemes that do not block (ρ, β1) but build on a one-dimensional random walk algorithm

to generate draws for ρ instead (Holloway et al., 2002; LeSage, 2000; LeSage & Pace,

2009). We found that our method produces well-mixed Markov chains with very low

autocorrelations. Figure 2.3 displays sample trace plots of posterior draws for ρ based on

our algorithm (left panel) and based on existing schemes (right panel) when using the flat
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prior. As can be seen, our algorithm generates Markov chains that are moving quicker

and explore the parameter space much faster compared to traditional methods.10

2.6 Simulation study

We performed a thorough simulation study to examine properties of the Bayesian estima-

tors based on the flat prior, Jeffreys rule prior, Independence Jeffreys prior, the empirical

informative prior, and the weakly informative prior, and compared them to those based

on maximum likelihood estimation. The main focus in this study was to evaluate the bias

of ρ and the frequentist coverage of credible and confidence intervals for ρ for the different

estimators, i.e., the extent to which a true data-generating network effect is contained in

those intervals. Furthermore, as the most likely outcome of the negative bias in the esti-

mation of ρ is a Type II error, we considered the average of Type I and Type II errors as

well.11 Such average error rates are increasingly used as optimal decision criteria instead

of the prevailing paradigm, which is fixing Type I error probability and then minimizing

Type II error probability (Chance & Rossman, 2006; DeGroot & Schervish, 2010; Per-

icchi & Pereira, 2016). Lastly, we also investigated the bias in the estimation of σ2, as

it is known that Jeffreys rule prior can result in poor estimates of the error variance in

multi-parameter models (De Oliveira, 2012; De Oliveira & Song, 2008).

2.6.1 Study design

In our study design, we largely followed setups from previous simulation studies of the

network autocorrelation model (Mizruchi & Neuman, 2008; Neuman & Mizruchi, 2010;

W. Wang et al., 2014). Hence, we generated data y by using random networks and

varying the size of the network, the density of the network, the number of covariates,

and the magnitude of ρ. We did so by y = (Ig − ρW )−1 (Xβ + ε).12 We considered

three network sizes (g ∈ {10, 20, 50}), three levels of network density (d ∈ {.1, .3, .5}), two
sets of covariates plus an intercept term (k ∈ {4, 7}), and three fixed network effect sizes

(ρ ∈ {0, .2, .5}).13 We obtained random binary symmetric connectivity matrices with ze-

ros in the diagonal entries by relying on the rgraph() function from the sna package in R

(Butts, 2008) and subsequently row-normalized the raw connectivity matrices. Moreover,

we drew independent values from a standard normal distribution for the elements of X

(excluding the first column of X which is a vector of ones), β, and ε, so σ2 = 1. In addi-

tion to simulating data using a fixed network effect ρ, we also allowed for fluctuations in

the underlying network effects by sampling them from the estimated population distribu-

10Also note that there are no parameters to be tuned in the Metropolis-Hastings steps in our approach,
such as the variances of candidate-generating distributions. This stands in stark contrast to existing
schemes, where this is commonly done in order to achieve specific acceptance rates.

11We thank an anonymous reviewer for this suggestion.
12For all simulated data sets we looked at, none of the regularity conditions needed for posterior propriety

was violated, and it seems highly unlikely to encounter such a situation in empirical practice.
13Simulation results for negative values for ρ and different specifications of W are available from the

authors upon request. We do not present them here, as the analyses provide no additional, i.e., different,
insights.
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tion from Section 2.4.4. As the true network autocorrelation is unknown in practice, this

appears to be a much more realistic simulation setup compared to setting ρ to a specific

value a priori.14 In total, we considered 60 scenarios (1 network size × 3 network densities

× 1 set of covariates × 4 sampling schemes for ρ and 2 network sizes × 3 network densities

× 2 sets of covariates × 4 sampling schemes for ρ) and simulated 500 data sets for each

scenario.

For the Bayesian estimators, we drew 10,000 samples from the corresponding poste-

riors, applying the sampling schemes described in Section 2.5. We used the marginal

posterior median as point estimator and 95% equal-tailed credible intervals by discarding

the 2.5% smallest and largest draws, respectively, for coverage analyses of ρ and σ2. In

contrast to that, we employed asymptotic standard errors based on the model’s observed

Fisher information matrix to obtain maximum likelihood-based confidence intervals for ρ

and σ2.15

2.6.2 Simulation results

Table 2.2 shows the average bias of ρ for the different estimators. Overall, the Bayesian

estimators based on the non-informative priors yield similar results to those based on max-

imum likelihood estimation. In particular, there is still some negative bias present, which

is a well-known issue in the network autocorrelation model. On the other hand, if the true

underlying ρ equals zero, the Bayesian estimator based on the weakly informative prior

eliminates virtually all the negative bias in the estimation of ρ. Furthermore, when the

data-generating network effect is positive, using the empirical informative prior generally

results in the least absolute bias of ρ. Given our review of empirically observed network

autocorrelations in Section 2.4.4, this is clearly the most common situation to be encoun-

tered in practice. Lastly, we also observe a much smaller increase in bias for higher levels

of network density for this estimator, compared to the non-informative Bayesian ones and

the maximum likelihood estimator.

Table 2.3 shows the empirical frequentist coverage of equal-tailed 95% credible intervals

for ρ for the Bayesian estimators and the coverage of asymptotic 95% confidence intervals

for ρ. The coverage of credible intervals based on the flat prior and Independence Jeffreys

prior is very close to the nominal .95. In contrast to that, the coverage of credible intervals

corresponding to Jeffreys rule prior and the coverage of maximum likelihood-based con-

fidence intervals are below nominal for all considered scenarios. The problem of subpar

coverage of maximum likelihood-based confidence intervals for ρ is completely resolved

14In fact, we sampled ρ from the estimated population distribution truncated to (−1, 1) to ensure that
the generated network effects always lied in the chosen admissible interval

(
λ−1
g , 1

)
. Note that less than

0.1% of probability mass of the estimated population distribution actually falls outside (−1, 1). For each
draw for ρ from this estimated population distribution, we recorded the drawn value for ρ (which was the
true value for ρ for that particular draw) and base our simulation results on those recorded underlying
network effects.

15All computation was performed in R using self-written routines. We used maximum likelihood esti-
mates as starting values for the MCMC procedures and discarded the first 1,000 iterations as so-called
burn-in values (Gelman et al., 2003). As most of the marginal posterior distributions for ρ and σ2 were
skewed, we opted for the posterior median as Bayesian point estimator, which was a less extreme estimator
than the posterior mean or the posterior mode.
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when using Bayesian estimators based on the flat prior or Independence Jeffreys prior.

Table 2.4 reports the average empirical Type I and Type II error rates of ρ for the

different estimators. In general, the average error rates increase with the network density

due to the negative bias in the estimation of ρ, and they decrease for higher network

autocorrelations as a result of higher power. For all considered scenarios, the Bayesian

estimator based on the empirical informative prior clearly yields the smallest average Type

I and Type II error rates across the board. The other estimators perform relatively sim-

ilar to each other, with the maximum likelihood estimator having slightly smaller aver-

age error rates than the remaining Bayesian ones but still considerably higher than the

estimator based on the empirical informative prior. The greater power of the maximum

likelihood estimator, compared to the Bayesian estimators based on the non-informative

priors, comes at the price of underestimating the standard error of ρ. In turn, this results

in narrower confidence intervals for ρ, leading to lower coverage but slightly higher power.

Regardless, estimating ρ using the empirical informative prior yields the lowest average

Type I and Type II error rates.

Table 2.5 displays the average bias of σ2 for the Bayesian estimators and the maximum

likelihood estimator. The estimates of σ2 corresponding to the use of the flat prior, Inde-

pendence Jeffreys prior, and the informative priors are nearly unbiased, while the results

based on Jeffreys rule prior and maximum likelihood estimation exhibit a large negative

bias. This bias is particularly pronounced for a higher number of covariates. We also

investigated the associated coverage of Bayesian equal-tailed 95% credible intervals and

asymptotic 95% confidence intervals for σ2. In line with the results for the average bias of

σ2, we found that the coverage of credible intervals based on the flat prior, Independence

Jeffreys prior, and the informative priors is very close to the nominal .95. On the other

hand, the coverage of credible intervals corresponding to Jeffreys rule prior and the cov-

erage of maximum likelihood-based confidence intervals are well below the nominal rate

for all considered scenarios. These results are not shown here but are available from the

authors upon request.

Based on our simulation output, we suggest the following: first, if a researcher is willing

to expect that his, or her, study might have a network effect along the lines of the overall

distribution of network autocorrelation effects across the literature at large, using the em-

pirical informative prior is highly recommended as it leads to a dramatic decrease of the

bias in the estimation of ρ. Furthermore, the corresponding estimator exhibits by far the

smallest average Type I and Type II error rates of ρ and accurately estimates σ2. At the

same time, applying the empirical informative prior can result in a mild overestimation of

ρ for small positive network effects. However, we believe this to be less of a concern than

falsely dismissing positive network effects and stress that overall, this estimator performs

clearly the best.

Second, if a researcher does not expect a network effect to be present in the data, or

if the researcher does not (want to) entertain the prior belief that the level of network

autocorrelation in a data set is likely to fit with the extant empirical empirical literature,

relying on the weakly informative prior yields nearly adequate point estimates of the net-
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work effect in these cases. This does, however, require the researcher to sacrifice the Type

I and Type II error rate reducing benefits of the empirical informative prior.

Third, if a researcher prefers to refrain from employing any empirical-based prior in-

formation, we recommend using the non-informative Independence Jeffreys prior. While

this does not attenuate the negative bias in the estimation of ρ, the issue of poor coverage

of confidence intervals, associated with maximum likelihood estimation of the model, can

be completely eluded at least. We wish to emphasize that there is never a case in which

maximum likelihood estimation can be recommended.

Lastly, when analyzing a real data set, we advise researchers to estimate the model

using all three recommended priors. If the resulting estimates of ρ are close to each other,

this implies that the data contain sufficient information and the estimates are most likely

highly reliable; else, this strongly points at (negative) bias in the estimation of the network

effect.

2.7 Conclusions

In this chapter, we derived two versions of Jeffreys prior for the network autocorrelation

model that provide default Bayesian analyses of the model. Moreover, we specified an

empirical informative prior and a weakly informative prior for the network effect ρ based

on reported network effects from the literature.

We evaluated the Bayesian estimators by means of a simulation study and compared

their performance to the performance of the maximum likelihood estimator. We found

that the Bayesian estimator based on the empirical informative prior performs superior

and that the estimator based on the weakly informative prior can be a useful alternative.

Concomitantly, we also provided a very efficient MCMC implementation of the Bayesian

approach that is preferable to existing sampling schemes and ensures a fast and accurate

Bayesian estimation of the network autocorrelation model.

In order to allow researchers and practitioners to easily use the newly developed meth-

ods in this chapter, it is essential to make them accessible in a statistical software package.

In addition, as we primarily focused on Bayesian point estimation in this work, further

work needs to be done in studying Bayesian model selection procedures for the discussed

priors. Finally, despite the improved numerical properties of the Bayesian estimators, the

negative bias of ρ in the model is not entirely resolved. We did resolve much of the bias for

data sets that are typical in the empirical literature at large, but more research is needed

to untangle it completely. It remains a major challenge to investigate what causes this

negative bias and why it becomes increasingly salient at high levels of network density.
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Appendix 2.A Auxiliary facts

(1) Let Aρ = Ig − ρW . If
(
XTX

)−1
exists, then

(Aρy −Xβ)T (Aρy −Xβ)

=
(
Aρy −Xβ̂

)T (
Aρy −Xβ̂

)
+
(
β − β̂

)T (
XTX

) (
β − β̂

)
= yTAT

ρMAρy +
(
β − β̂

)T (
XTX

) (
β − β̂

)
,

where β̂ :=
(
XTX

)−1
XTAρy and M = Ig − X

(
XTX

)−1
XT . Note that M is

symmetric and idempotent.

(2) Let A be an invertible matrix, and let u and v be two vectors. Then, A + uvT is

invertible and (see e.g., Ding & Zhou, 2007, Lemma 1.1)

det
(
A+ uvT

)
=
(
1 + vTA−1u

)
det (A) .

(3) Let Z ∼ N (µ,Σ) and let A be a symmetric matrix. Then (see e.g., Mathai & Provost,

1992, Corollary 3.2b.1),

E
[
ZTAZ

]
= tr (AΣ) + µTAµ.

(4) LetA andB be symmetric and positive semi-definite matrices. Then (see e.g., X. Yang,

2000, Lemma 1),

0 ≤ tr (AB) ≤ tr (A) tr (B) .

(5) Let A and B be matrices. Then,

tr (AB) ≤ 1

2

(
tr
(
A2
)
+ tr

(
B2
))

.

(6) Let A be an idempotent matrix. Then, the eigenvalues of A are either 0 or 1 (see e.g.,

Harville, 1997, Theorem 21.8.2).

Appendix 2.B Proofs

Proof of Corollary 2.1

(i) Follows immediately from the prior’s definition and Θ =
(
λ−1
g , λ−1

1

)
× (0,∞)× Rk.

(ii) Using auxiliary fact (1), Hepple (1995a) showed that if
(
XTX

)−1
exists and g > k,

the corresponding marginal posterior for ρ is

pF (ρ|y) ∝ |Aρ|yTAT
ρMAρy

− g−k
2 .
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As |Aρ| ≤ 1 and the assumption that
(
yTMWy

)2 6= yTW TMWyyTMy ensures

that yTAT
ρMAρy > 0, pF (ρ|y) is bounded on

(
λ−1
g , λ−1

1

)
, which proves the state-

ment.

Remark: As for ρ → ∞, |Aρ| = O (ρg−m0) (where m0 ≥ 0 denotes the algebraic mul-

tiplicity of a potential zero eigenvalue of W ) and yTAT
ρMAρy

−(g−k)/2 = O
(
ρk−g

)
, it

follows that pF (ρ|y) = O
(
ρk−m0

)
. Hence, the marginal posterior for ρ is integrable on

R \
{
λ1

−1, λ2
−1, ..., λg

−1
}
only if k < m0 − 1, which is typically not the case.

Proof of Theorem 2.1

The model’s Fisher information Matrix for θ =
(
ρ, σ2,β

)
is (see e.g., Doreian, 1981)

I (θ) =
1

σ2
I∗ (θ)

=
1

σ2


σ2
(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

))
+ βTXTBT

ρ BρXβ tr (Bρ)
(
XTBρXβ

)T
tr (Bρ)

g
2σ2 0Tk

XTBρXβ 0k XTX

(2.11)

=
1

σ2


I∗ρ,ρ I∗ρ,σ2 I∗ρ,β

I∗σ2,ρ I∗σ2,σ2 I∗σ2,β

I∗β,ρ I∗β,σ2 I∗β,β

 .

Using cofactor expansion and determinant properties of block matrices (see e.g., Harville,

1997), we can write

det (I∗ (θ)) = −I∗σ2,ρ det

(
I∗ρ,σ2 I∗ρ,β

I∗β,σ2 I∗β,β

)
+ I∗σ2,σ2 det

(
I∗ρ,ρ I∗ρ,β

I∗β,ρ I∗β,β

)

= −I∗σ2,ρ det
(
I∗ρ,σ2

)
det
(
I∗β,β

)
+ I∗σ2,σ2 det

(
I∗ρ,ρ I∗ρ,β

I∗β,ρ I∗β,β

)
= −I∗σ2,ρ

2 det
(
I∗β,β

)
+ I∗σ2,σ2 det

(
I∗ρ,ρ
)
det
(
I∗β,β − I∗β,ρI

∗
ρ,ρ

−1I∗ρ,β

)
= −I∗σ2,ρ

2 det
(
I∗β,β

)
+ I∗σ2,σ2I

∗
ρ,ρ det

(
I∗β,β − I∗β,ρI

∗
ρ,ρ

−1I∗ρ,β

)
. (2.12)

By auxiliary fact (2), we can further write (2.12) as

det (I∗ (θ)) = −I∗σ2,ρ
2 det

(
I∗β,β

)
+ I∗σ2,σ2I

∗
ρ,ρ

(
1− I∗ρ,βI

∗
β,β

−1I∗β,ρI
∗
ρ,ρ

−1
)
det
(
I∗β,β

)
= det

(
I∗β,β

) (
I∗σ2,σ2Iρ,ρ − I∗σ2,σ2I

∗
ρ,βI

∗
β,β

−1I∗β,ρ − I∗σ2,ρ
2
)
.

Plugging in the actual entries for the respective blocks yields
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I∗σ2,σ2I
∗
ρ,ρ − I∗σ2,σ2I

∗
ρ,βI

∗
β,β

−1I∗β,ρ − I∗σ2,ρ
2

=
g

2σ2

(
σ2
(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

))
+ βTXTBT

ρ BρXβ
)

− g

2σ2

(
XTBρXβ

)T (
XTX

)−1
XTBρXβ − tr2 (Bρ)

=
g

2

(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ

(
Ig −X

(
XTX

)−1
XT
)
BρXβ − 2

g
tr2 (Bρ)

)

=
g

2

(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

)
.

Thus,

det (I (θ)) = det

(
1

σ2
I∗ (θ)

)
=
(
σ2
)−k−2

det (I∗ (θ))

=
(
σ2
)−k−2

det
(
XTX

) g
2

(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

)
∝
(
σ2
)−k−2

(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

)
,

from which, together with the definition of Jeffreys rule prior, the result follows.

Proof of Corollary 2.2

(i) From the definition of Jeffreys rule prior, it follows that

∫ ∞

0
pJ (θ) dσ

2

>

∫ 1

0
pJ (θ) dσ

2

∝
∫ 1

0

(
σ2
)− k+2

2

{
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

}1/2

dσ2

>

∫ 1

0

(
σ2
)− k+2

2

{
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+ βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

}1/2

dσ2

=

{
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+ βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

}1/2 ∫ 1

0

(
σ2
)− k+2

2 dσ2

= ∞.

(ii) Defining h1 (ρ) := tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
≥ 0 and h2 (ρ,β) := βTXTBT

ρ MBρXβ ≥ 0,

we can write for Jeffreys rule posterior
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pJ (θ|y) ∝
(
σ2
)− k+2

2

√
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ MBρXβ − 2

g
tr2 (Bρ)

|Aρ|
(
σ2
)− g

2 exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
≤
(
σ2
)− g+k

2
−1

√
h1 (ρ) +

1

σ2
h2 (ρ,β)

|Aρ| exp
(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
.

(2.13)

Using auxilliary fact (1) and integrating (2.13) over β yields

∫
Rk

(
σ2
)− g+k

2
−1

√
h1 (ρ) +

1

σ2
h2 (ρ,β)|Aρ|

exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
dβ

≤
(
σ2
)− g+k

2
−1 |Aρ|∫

Rk

(√
h1 (ρ) +

√
1

σ2
h2 (ρ,β)

)
exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
dβ

=
(
σ2
)− g+k

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)
∫
Rk

(√
h1 (ρ) +

√
1

σ2
h2 (ρ,β)

)
exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ

=
(
σ2
)− g+k

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)√
h1 (ρ)∫

Rk

exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ

(2.14)

+
(
σ2
)− g+k

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)(
σ2
)− 1

2∫
Rk

√
h2 (ρ,β) exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ.

(2.15)

The integrand in (2.14) is the kernel of the probability density function of a multi-

variate normal random variable Z ∼ N
(
β̂, σ2

(
XTX

)−1
)
, so when

(
XTX

)−1
exists,

it follows that

∫
Rk

exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ ∝

(
σ2
) k

2 .

Similarly, the integrand in (2.15) can be expressed as the expected value for the

square root of a quadratic form involving Z. By using auxiliary fact (3) and Jensen’s

inequality, we can write
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∫
Rk

√
h2 (ρ,β) exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ

∝
(
σ2
) k

2

∫
Rk

√
zTXTBT

ρ MBρXz
(
(2π)k

∣∣∣σ2
(
XTX

)−1
∣∣∣)− 1

2

exp

(
− 1

2σ2

(
z − β̂

)T (
XTX

) (
z − β̂

))
dz

=
(
σ2
) k

2 EZ

[√
ZTXTBT

ρ MBρXZ

]
≤
(
σ2
)k/2√EZ

[
ZTXTBT

ρ MBρXZ
]

=
(
σ2
) k

2

√
tr
(
XTBT

ρ MBρXσ2 (XTX)−1
)
+ β̂

T
XTBT

ρ MBρXβ̂

=
(
σ2
) k

2

√
σ2 tr

(
BT

ρ MBρP
)
+ β̂

T
XTBT

ρ MBρXβ̂

≤
(
σ2
) k

2

((
σ2
) 1

2

√
tr
(
BT

ρ MBρP
)
+

√
β̂
T
XTBT

ρ MBρXβ̂

)
,

where P := X
(
XTX

)−1
XT , which is symmetric, idempotent, and positive semi-

definite, so tr
(
BT

ρ MBρP
)
≥ 0 by auxiliary fact (4). Combining these observations

with (2.14) and (2.15), it follows that

(
σ2
)− g+k

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)
∫
Rk

(√
h1 (ρ) +

√
1

σ2
h2 (ρ,β)

)
exp

(
− 1

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ

≤
(
σ2
)− g+k

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)
(√

h1 (ρ)
(
σ2
) k

2 +
(
σ2
) k−1

2

((
σ2
) 1

2

√
tr
(
BT

ρ MBρP
)
+

√
β̂
T
XTBT

ρ MBρXβ̂

))

=
(
σ2
)− g

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)(√
h1 (ρ) +

√
tr
(
BT

ρ MBρP
))

(2.16)

+
(
σ2
)− g+1

2
−1 |Aρ| exp

(
− 1

2σ2
yTAT

ρMAρy

)√
β̂
T
XTBT

ρ MBρXβ̂. (2.17)

Next, observe that the terms involving σ2 in (2.16) and (2.17) correspond to kernels

of probability density functions of inverse gamma distributed random variables, so

integrating over σ2 yields

∫ ∞

0

(
σ2
)− g

2
−1

exp

(
− 1

2σ2
yTAT

ρMAρy

)
dσ2 ∝ yTAT

ρMAρy
− g

2 , (2.18)
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∫ ∞

0

(
σ2
)− g+1

2
−1

exp

(
− 1

2σ2
yTAT

ρMAρy

)
dσ2 ∝ yTAT

ρMAρy
− g+1

2 , (2.19)

where the terms on the right hand side of (2.18) and (2.19) are bounded for ρ ∈(
λ−1
g , λ−1

1

)
by assumption. Hence, it only remains to show that the term

|Aρ|
(√

h1 (ρ) +
√

tr
(
BT

ρ MBρP
)
+

√
β̂
T
XTBT

ρ MBρXβ̂

)
is bounded for ρ ∈

(
λ−1
g , λ−1

1

)
. First, applying auxiliary fact (5) yields

√
h1 (ρ) =

√
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
≤
√

tr
(
BT

ρ Bρ

)
+
√

tr
(
B2

ρ

)
≤
√

1

2

(
tr
(
BT

ρ B
T
ρ

)
+ tr

(
B2

ρ

))
+
√

tr
(
B2

ρ

)
∝
√

tr
(
B2

ρ

)
=

√√√√ g∑
i=1

λ2
i

(1− ρλi)
2

≤
g∑

i=1

√
λ2
i

(1− ρλi)
2 ≤

g∑
i=1

|λi|
1− ρλi

.

Second, using auxiliary facts (4) and (6), it holds that

√
tr
(
BT

ρ MBρP
)
≤
√

tr
(
BT

ρ MBρ

)
tr (P ) ∝

√
tr
(
BT

ρ MBρ

)
=
√

tr
(
BρBT

ρ M
)

≤
√

tr
(
BρBT

ρ

)
tr (M) ∝

√
tr
(
BT

ρ Bρ

)
≤

g∑
i=1

|λi|
1− ρλi

, (2.20)

where (2.20) follows from the considerations above and the idempotence of M and

P , respectively. Finally, with auxiliary facts (4)-(6) and after some algebraic manip-

ulations, we can write

√
β̂
T
XTBT

ρ MBρXβ̂ =

√(
(XTX)−1XTAρy

)T
XTBT

ρ MBρX (XTX)−1XTAρy

=
√

tr
(
BT

ρ MBρPAρyyTAT
ρ P
)
=
√

tr
(
BT

ρ MBρPAρyyTAT
ρ P

T
)

≤
√

tr
(
BT

ρ MBρ

)
tr
((

yTAT
ρ P

T
)T

yTAT
ρ P

T
)
=
√

tr
(
BρBT

ρ M
)
yTAT

ρ PAρy

≤
√

tr
(
BρBT

ρ

)
tr (M)yTAT

ρ PAρy ∝
√

tr
(
BT

ρ Bρ

)
yTAT

ρ PAρy

=
√

tr
(
BT

ρ Bρ

)√(
yTAT

ρ PAρy
)
. (2.21)

As yTAT
ρ PAρy is bounded for ρ ∈

(
λ−1
g , λ−1

1

)
, the expression in (2.21) can be



42 Chapter 2. Bayesian estimation of the network autcorrelation model

bounded itself by a multiple of the sum term in (2.20). Furthermore, if m1 and

mg denote the algebraic multiplicity of λ1 and λg, respectively, then

|Aρ|
g∑

i=1

|λi|
1− ρλi

=

(
g∏

i=1

(1− ρλi)

)(
g∑

i=1

|λi|
1− ρλi

)

=

(
g∏

i=1

(1− ρλi)

)
|λ1|

1− ρλ1
+ ...+

(
g∏

i=1

(1− ρλi)

)
|λg|

1− ρλg

= |λ1|

(
g∏

i=m1+1

(1− ρλi)

)
+ ...+ |λg|

 g∏
i=g−mg

(1− ρλi)

 (2.22)

< ∞,

as every summand in (2.22) is bounded for ρ ∈
(
λ−1
g , λ−1

1

)
. This completes the proof.

Proof of Theorem 2.2

The model’s Fisher information Matrix in (2.11) gives

det
(
I(ρ,σ2),(ρ,σ2) (θ)

)
=
(
σ2
)−2

(
I∗ρ,ρI

∗
σ2,σ2 − I∗ρ,σ2

2
)

=
(
σ2
)−2

( g

2σ2

(
σ2
(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

))
+ βTXTBT

ρ BρXβ
)
− tr2 (Bρ)

)
∝
(
σ2
)−2

(
tr
(
BT

ρ Bρ

)
+ tr

(
B2

ρ

)
+

1

σ2
βTXTBT

ρ BρXβ − 2

g
tr2 (Bρ)

)
,

and det
(
I(β,β) (θ)

)
∝ 1. The result follows from these observations and by the definition

of Independence Jeffreys prior.

Proof of Corollary 2.3

These results are proved in an identical way as the ones in Corollary 2.2 and follow almost

immediately.

Appendix 2.C Posterior sampling

We outlined the sampling procedure and gave the conditional posteriors based on the

flat prior and the informative priors in Section 2.5. However, it remains to specify the

exact forms of the candidate-generating distributions for the conditional posteriors for the

parameter blocks (ρ, β1) and β̃. As to the conditional posterior for (ρ, β1) based on the

flat prior, we first approximate log (|Aρ|) by a second-order Taylor polynomial at ρ = 0,

so |Aρ| ≈ exp
(
−ρ2

∑g
i=1 λ

2
i /2
)
. Using this approximation, we can write
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pF

(
(ρ, β1) |σ2, β̃,y

)
∝ |Aρ| exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
≈ exp

(
−ρ2

2

g∑
i=1

λ2
i

)
exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)

∝ exp

(
−ρ2

2

g∑
i=1

λ2
i −

1

2σ2

(
ρ2yTW TWy − 2ρyTW T

(
y − X̃β̃

)
+ 2ρβ1y

TW T1g

−2β11
T
g

(
y − X̃β̃

)
+ β2

1g
))

, (2.23)

where the proportionality holds with respect to (ρ, β1), X̃ denotes the matrix X with

its first column removed, β̃ = (β2, ..., βg), and 1g is the vector of ones of length g. The

expression in (2.23) corresponds to the kernel of a bivariate normal density qF (ρ, β1) with

mean vector µ and covariance matrix Σ. By equating coefficients and after some algebraic

manipulation, it follows that

µ =

(
µ1

µ2

)
=


1T
g ((y−X̃β̃)yTWT 1g−1gyTWT (y−X̃β̃))

(yTWT 1g)
2−g

(
σ2

g∑
i=1

λ2
i+yTWTWy

)
yTWT (y−X̃β̃)−µ1

(
σ2

g∑
i=1

λ2
i+yTWTWy

)
yTWT 1g

 ,

Σ = σ2

σ2
g∑

i=1
λ2
i + yTW TWy yTW T1g

yTW T1g g


−1

.

We use this candidate-generating normal distribution also for the conditional posterior

for (ρ, β1) based on Jeffreys rule prior and Independence Jeffreys prior, as for these priors

the prior information for (ρ, β1) is quite vague compared to the likelihood. Note that due

to the chosen parameter space of ρ, qF (ρ, β1) is in fact truncated to
(
λ−1
g , λ−1

1

)
× R. In

the simulation study, we relied on the rtmvnorm() function from the tmvtnorm package

in R to sample from this truncated distribution (Wilhelm & Manjunath, 2015). Similarly,

we can obtain the corresponding mean vector and covariance matrix of the candidate-

generating bivariate normal distribution for (ρ, β1) when using a normal prior for ρ.

The conditional posterior for β̃ based on the flat prior and the informative priors is a

multivariate normal distribution and can be directly sampled from, for which we used the

rmvnorm() function from the mvtnorm package in R (Genz et al., 2014). Its mean vector

and covariance matrix are given by

µ
β̃
= µβ2

+Σβ21
Σ−1
β11

(β1 − µβ1) , (2.24)

Σ
β̃
= Σβ22

− Σβ21
Σ−1
β11

Σβ12
, (2.25)
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where

µβ =
(
XTX

)−1
XTAρy =

(
µβ1

µβ2

)
sized

(
1× 1

(k − 1)× 1

)
,

Σβ = σ2
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=
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Σβ11 Σβ12
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)
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1× 1 1× (k − 1)

(k − 1)× 1 (k − 1)× (k − 1)

)
.

For the same reasons as before, we use this candidate-generating distribution also for the

conditional posterior for β̃ based on Jeffreys rule prior and Independence Jeffreys prior.

Combining (2.2) and (2.5), the full conditionals based on Jeffreys rule prior can be

written as

pJ

(
(ρ, β1) |σ2, β̃,y

)
∝ |Aρ| exp
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− 1
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(
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) 1
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,

where ε = Aρy − Xβ. As none of these full conditionals is of known analytical form, a

Metropolis-Hastings step for each parameter (block) is needed. The candidate-generating

distributions for the conditional posteriors for (ρ, β1) and β̃ have already been given above,

while we propose

qJ

(
σ2| (ρ, β1) , β̃,y

)
∼ IG

(
g + k + 1

2
,
εTε

2

)
as candidate-generating distribution for pJ

(
σ2| (ρ, β1) , β̃,y

)
, which resulted in well-mixed

Markov chains. Equivalently, we can also easily formulate the conditional posteriors based

on Independence Jeffreys prior, where we suggest

qIJ

(
σ2| (ρ, β1) , β̃,y

)
∼ IG

(
g + 1

2
,
εTε

2

)
as corresponding candidate-generating distribution for pIJ

(
σ2| (ρ, β1) , β̃,y

)
.
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We outline the full sampling algorithm based on using the flat prior in the following:

(1) Set starting values
(
ρ0, β0

1

)
,
(
σ2
)0
, and β̃

0
, e.g., to their maximum likelihood esti-

mates, and the number of draws N .

(2) Repeat steps (3) - (5) for i = 1 : N .

(3) Perform a Metropolis-Hastings step for (ρ, β1) with the target density

pF

(
(ρ, β1) |σ2, β̃,y

)
and the candidate-generating density qF (ρ, β1), i.e.,

• Draw from qF (ρ, β1) until a draw
(
ρ̂, β̂1

)
satisfies

(
ρ̂, β̂1

)
∈
(
λ−1
g , λ−1

1

)
× R.

Draw u from the uniform distribution U (0, 1).

• Calculate the acceptance probability α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
, defined as

α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
:=

min

 pF

(
ρ̂, β̂1|

(
σ2
)i−1

, β̃
i−1

,y
)
qF
(
ρi−1, βi−1

1

)
pF

(
ρi−1, βi−1

1 | (σ2)i−1 , β̃
i−1

,y
)
qF

(
ρ̂, β̂1

) , 1
 .

• If u ≤ α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
, set

(
ρi, βi

1

)
=
(
ρ̂, β̂1

)
.

• Else, set
(
ρi, βi

1

)
=
(
ρi−1, βi−1

1

)
.

(4) Draw
(
σ2
)i
, given

(
ρi, βi

1

)
and β̃

i−1
, from the inverse gamma distribution in (2.9).

(5) Draw β̃
i
, given

(
ρi, βi

1

)
and

(
σ2
)i
, from the (k − 1)-variate normal distribution with

mean µ
β̃
and covariance matrix Σ

β̃
as in (2.24), (2.25).

Note that when using Jeffreys rule prior or Independence Jeffreys prior, the direct sam-

pling procedures in (4) and (5) are replaced by Metropolis-Hastings steps based on the

corresponding candidate-generating densities.
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Chapter 3

Bayesian hypothesis testing in the

network autocorrelation model

Abstract

Currently available (classical) testing procedures for the network autocorrelation param-

eter can only be used to falsify a precise null hypothesis of no network effect. Classical

methods can be neither used to quantify evidence for the null nor to test multiple hy-

potheses on the network autocorrelation parameter simultaneously. This article presents

flexible Bayes factor testing procedures that do not have these limitations. We propose

Bayes factors based on an empirical and a uniform prior for the network effect, respec-

tively, first. Next, we develop a fractional Bayes factor where a default prior is automati-

cally constructed. Simulation results suggest that the first two Bayes factors show superior

performance and are the Bayes factors we recommend. We apply the recommended Bayes

factors to three data sets from the literature and compare the results to those coming from

classical analyses using p-values. R code for efficient computation of the Bayes factors is

provided.

This chapter is based on: Dittrich, D., Leenders, R.Th.A.J., and Mulder, J. (in press). Network Auto-
correlation Modeling: A Bayes Factor Approach for Testing (Multiple) Precise and Interval Hypotheses.
Sociological Methods & Research. http://doi.org/10.1177/0049124117729712.
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3.1 Introduction

The network autocorrelation model (Ord, 1975) has been extensively used to represent

theories of social influence throughout recent decades. It allows researchers to quantify

the strength of a peer effect in a network for a given theory of interpersonal influence

while controlling for sociological and other covariates. The identification and magnitude

of the peer, or network, effect ρ, also known as the network autocorrelation, is often the

focus of interest in model applications. Typically, a researcher aims to identify if there is

social influence present in the network, resulting in an inferential test of H0 : ρ = 0 versus

H1 : ρ 6= 0. Subsequently, if the null hypothesis is rejected, the researcher then concludes

that there is evidence for some degree of social influence.

Even though the network autocorrelation model and this statistical approach have

yielded many interesting and theoretically useful findings, more intricate hypothesis tests

are often more informative. For example, when a researcher is interested in testing whether

the degree of social influence is either zero, small, medium, or large, a more informative

test would be H0 : ρ = 0 versus H1 : 0 < ρ ≤ .25 versus H2 : .25 < ρ ≤ .5 versus

H3 : .5 < ρ < 1. This not only allows the researcher to conclude if there is evidence for a

non-zero amount of network autocorrelation in the network, but it grants the researcher

the opportunity to simultaneously test several strengths of social influence against each

other as well. This chapter focuses on Bayesian hypothesis testing procedures for such

multiple precise and interval hypotheses on the network autocorrelation.

The standard approach to testing a network effect is null hypothesis significance test-

ing. Classical null hypothesis significance tests such as the Wald test, the likelihood ratio

test, or the Lagrange multiplier test are based on different test statistics, summary val-

ues constructed from the sample, which have asymptotically known distributions under

the null hypothesis (Leenders, 1995). Then, assuming the null hypothesis to be true, the

probability of observing a test statistic at least as extreme as the observed test statistic is

calculated. This probability is called the p-value. Subsequently, the p-value is compared

to a pre-specified significance level α, which is usually set to .05 (Weakliem, 2004). If the

p-value is smaller than α, the null hypothesis is rejected. In this case, one would conclude

that there is enough evidence in the data to reject the null hypothesis of no network effect.

If the p-value is larger than α, there is not enough evidence in the data to reject the null.

Classical null hypothesis significance testing in the network autocorrelation model has

a number of disadvantages. First, the procedure cannot be used to provide evidence in

favor of the null hypothesis (Wetzels & Wagenmakers, 2012); it can only falsify the null

hypothesis. If the p-value is larger than α, this ultimately implies a state of ignorance

where the null can be neither rejected nor supported by the data. For example, if the

estimated autocorrelation parameter is ρ̂ = .16 with a two-sided p-value of .08 (so the null

hypothesis that ρ = 0 would not be rejected based on α = .05), this does not mean that

the null hypothesis is “accepted”; it merely means that judgment regarding the rejection

of this particular hypothesis is suspended and that no degree of belief in the hypothesis

has been determined. On the other hand, if the p-value is smaller than α, it is still not
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possible to say how much evidence there is against the null (and certainly not how much

evidence there is in favor of ρ being .16 indeed), only that there is enough evidence to reject

the null that ρ = 0 based on a chosen significance level. Second, classical null hypothesis

significance tests are not consistent. If the null is true and the sample size grows to infinity,

there is still a probability of α (typically .05) of drawing the incorrect conclusion that the

null is false. This is undesirable, as one should be able to draw more accurate conclusions

with growing sample size. Third, p-values in the network autocorrelation model depend

heavily on asymptotic theory and consequently, the Type I error rate is not controlled

for in an accurate manner in the case of small networks (Dittrich et al., 2017). A final

important issue in the context of this chapter is that p-values cannot be adequately used

when testing multiple competing hypotheses against each other (Shaffer, 1995). Instead,

one can only test each hypothesis against the null that does not answer the question which

hypothesis, out of a set of precise and interval hypotheses, is most supported by the data.

In this chapter, we propose Bayes factor tests (Jeffreys, 1961; Kass & Raftery, 1995;

Mulder & Wagenmakers, 2016) as an alternative approach to classical null hypothesis sig-

nificance testing in the network autocorrelation model. The Bayes factor is a Bayesian

hypothesis testing criterion that circumvents the aforementioned issues with null hypoth-

esis significance testing. First, in contrast to classical null hypothesis significance test-

ing, it allows the researcher to evaluate and quantify the relative evidence in the data

in favor of the null, or any other, hypothesis against another hypothesis (Kuha, 2004).

These hypotheses can be precise hypotheses, e.g., H0 : ρ = 0, or interval hypotheses, e.g.,

H1 : 0 < ρ < 1. For example, a Bayes factor of B01 = 5 implies that it is five times

more likely to observe the data under the null hypothesis than under a specific alternative

hypothesis H1. Second, Bayes factors are consistent, i.e., if the null hypothesis is true,

the Bayes factor B01 tends to infinity as the sample size goes to infinity (Casella et al.,

2009). In other words, the larger the sample size, the more do the data support one

hypothesis over another. Third, the Bayes factor provides “exact” inference without the

need for asymptotic approximations (De Oliveira & Song, 2008). Lastly, the Bayes factor

can be straightforwardly extended to test more than two hypotheses against each other,

e.g., H0 : ρ = 0 versus H1 : −.25 < ρ < 0 versus H2 : 0 < ρ ≤ .25 versus H3 : .25 < ρ ≤ .5

versus H4 : .5 < ρ < 1 (Raftery et al., 1997). This feature is of particular relevance in the

network autocorrelation model, as in many network studies, researchers do not doubt that

social influence occurs but are interested in testing competing theories about its strength.

In summary, these advantageous properties explain the increasing usage of Bayes factors in

social science research, such as in ANOVA (Klugkist et al., 2005), linear regression models

(Braeken et al., 2015), repeated measures (Mulder et al., 2009), or structural equation

modeling (Gu et al., 2014).

So far, only two Bayes factors in the network autocorrelation model have been de-

veloped in the literature. Hepple (1995a) proposed a Bayes factor for testing competing

connectivity matrices against each other, while LeSage & Parent (2007) provided Bayes

factors for testing different explanatory variables. We have neither found any Bayes factor

for the standard one-sided test H0 : ρ = 0 versus H1 : 0 < ρ < 1 nor for any multiple
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hypothesis tests. This is surprising, as the network autocorrelation parameter is at the

heart of the model and testing for network effects is of crucial importance for network

scientists when testing for and understanding theories of social influence. In sum, the

objective of this chapter is to provide methodology that

• makes it possible to test multiple competing hypotheses on ρ against each other and

precisely quantify the amount of evidence in favor of any of the hypotheses tested

(including a null hypothesis),

• works for any combination of precise and/or interval hypotheses, and

• overcomes the problems with classical null hypothesis significance testing of ρ.

We also provide ready-to-use R code (R Core Team, 2017) to make the methodology easily

applicable for applied researchers.

In order to compute the Bayes factor, so-called prior distributions, or simply priors, for

the unknown model parameters have to be specified under each hypothesis. These priors

quantify which values for the parameters are most likely before observing the data. For

the testing problems considered in this chapter, the prior for the network autocorrelation

parameter ρ under the alternative(s) is most important. We develop and explore several

Bayes factors for testing the network effect: first, a Bayes factor based on an empirical

informative prior that stems from an extensive literature review of empirical applications

of the network autocorrelation model; second, a Bayes factor based on a uniform prior that

assumes every value for ρ to be equally likely a priori; third, a so-called fractional Bayes

factor (O’Hagan, 1995) that can be computed without needing to formulate a proper, i.e.,

integrable, prior distribution for ρ based on one’s prior beliefs. Subsequently, we conduct

a simulation study to investigate the numerical properties of and differences between the

proposed Bayes factors and then use the Bayes factors to re-analyze three data sets from

the literature. Finally, we give R code for the computation of the Bayes factors.

The chapter is organized as follows: in Section 3.2, we discuss the network autocorre-

lation model in more detail and continue with a short introduction to Bayesian hypothesis

testing in Section 3.3. In Section 3.4, we motivate several prior choices for the network

autocorrelation parameter ρ. We assess the numerical performance of the Bayes factors in

a simulation study in Section 3.5 and highlight their practical use with three examples in

Section 3.6. Section 3.7 concludes.

3.2 The network autocorrelation model

Most social phenomena are embedded within networks of interdependencies. Building

from a standard linear regression model, the network autocorrelation model effectively in-

corporates such interdependencies between individuals. In the model, the network struc-

ture is explicitly used to account for network influence on a variable of interest and to

estimate the magnitude of this influence that is considered to be a model parameter, the

network autocorrelation ρ. Formally, the network autocorrelation model is expressed as
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y = ρWy +Xβ + ε, ε ∼ N
(
0g, σ

2Ig
)
, (3.1)

where y is a (g × 1) vector of values for a dependent variable for the g network actors, X is

a (g × k) matrix of values for the g actors on k covariates (possibly including a column of

ones for an intercept term), β is a (k × 1) vector of regression coefficients, 0g is a (g × 1)

vector of zeros, Ig denotes the (g × g) identity matrix, and ε is a (g × 1) vector containing

independent and identically normally distributed error terms with zero mean and variance

of σ2. Furthermore, W is a given (g × g) connectivity matrix representing social ties in

a network, with Wij denoting the degree of influence of actor j on actor i.1 Finally, the

network autocorrelation ρ is the key parameter of the model and quantifies the social

influence for given y, W , and X. We denote the resulting set of model parameters as

θ :=
(
ρ, σ2,β

)
.

Subsequently, we will repeatedly rely on the model’s likelihood, given by

f
(
y|ρ, σ2,β

)
= |det (Aρ)|

(
2πσ2

)− g
2 exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
,

where Aρ := Ig − ρW (see e.g., Doreian, 1980). To ensure that the model is well-defined,

there are restrictions on the region of support for ρ. Typically, this region is chosen as the

interval containing ρ = 0 for which Aρ is non-singular (Hepple, 1995a; LeSage & Parent,

2007; Smith, 2009). In this case, the corresponding admissible interval for ρ is given by(
λ−1
g , λ−1

1

)
, where λ1 ≥ λ2 ≥ ... ≥ λg are the ordered eigenvalues of W (Hepple, 1995a).

For row-standardized connectivity matrices W , i.e., where each row sum is one, it holds

that λ1 = 1 (Anselin, 1982). Without loss of generality, we restrict ourselves to such

commonly used row-standardized connectivity matrices in the remainder of this chapter.

Hence, the model’s parameter space becomes Θ := Θρ×Θσ2×Θβ =
(
λ−1
g , 1

)
×(0,∞)×Rk.

Throughout the literature, the model has also been named as mixed regressive-autore-

gressive model (Ord, 1975), spatial effects model (Doreian, 1980), network effects model

(Marsden & Friedkin, 1993), or spatial lag model (Anselin, 2002), and it has been applied

in many different fields, such as criminology (Baller et al., 2001; Tita & Radil, 2011),

geography (McMillen, 2010; Mur et al., 2008), political science (Beck et al., 2006; Gimpel

& Schuknecht, 2003), or sociology (Duke, 1993; Kirk & Papachristos, 2011; Mizruchi &

Stearns, 2006).

3.3 Bayesian hypothesis testing

In many network studies, researchers have expectations about the magnitude of the net-

work effect. An interesting research question is whether the network effect can be classified

as zero, small, medium, or large. These expectations can be translated to a set of multiple

1By convention, we exclude loops, i.e., relationships from an actor to himself, so Wii = 0 for all
i ∈ {1, ..., g}.
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hypotheses on the network autocorrelation by setting H0 : ρ = 0, H1 : 0 < ρ ≤ .25,

H2 : .25 < ρ ≤ .5, and H3 : .5 < ρ < 1, and the question to be answered is which of

these hypotheses is most plausible. In general, such a test is much more insightful than

the standard test of no network effect versus “some” (positive) network effect, H0 : ρ = 0

versus H1 : 0 < ρ < 1. In order to illustrate this, consider a situation in which the esti-

mated network autocorrelation parameter is ρ̂ = .16, with a 95% confidence interval for

ρ of (−.06, .37), and a one-sided p-value of .08. Using the standard significance level of

α = .05, we would not reject the null hypothesis that ρ = 0 and conclude that there is no

statistically significant network effect present in the data. Based on the confidence inter-

val, however, we do have quite a lot of confidence that the network effect may be positive.

Hence, based on these classical outcomes, it is very difficult to state how plausible it is

that the true network effect is zero, small, medium, or large, which was the initial research

question.

The Bayes factor is a Bayesian hypothesis testing criterion that resolves this issue by

providing a means to directly quantify how plausible each hypothesis is after observing

the data. Suppose that we are interested in testing T ≥ 2 hypotheses, H0, H1, H2, ...,

HT−1. First, in Bayesian hypothesis testing, prior probabilities have to be assigned to

both the model parameters under each hypothesis and to the hypotheses themselves. We

denote these latter prior hypotheses probabilities by p (H0), p (H1), ..., p (HT−1), with∑T−1
t=0 p (Ht) = 1, which reflect how plausible we believe each hypothesis to be (relative to

each other) before observing the data. There are multiple ways to assign prior hypotheses

probabilities, e.g., by assuming equal prior probabilities (reflecting prior ignorance), i.e.,

p (H0) = ... = p (HT−1) = 1/T (Hepple, 1995a; LeSage & Parent, 2007), or by formulat-

ing specific prior probabilities for the various hypotheses. We will discuss procedures for

eliciting prior probabilities for interval hypotheses in Section 3.4.

Next, after observing the data y, Bayes’ theorem is applied to update the prior ex-

pectations with the information contained in the data. The resulting posterior hypotheses

probabilities, p (Ht|y), can then be written as

p (Ht|y) =
p (y|Ht) p (Ht)

p (y)
=

p (y|Ht) p (Ht)
T−1∑
t′=0

p (y|Ht′) p (Ht′)

, t ∈ {0, 1, ..., T − 1} . (3.2)

These posterior probabilities quantify how probable each hypothesis is after observing the

data, the quantity that researchers are typically interested in.

The term p (y|Ht) in (3.2) is called the marginal likelihood under hypothesis Ht and

denotes the probability that the data were observed under hypothesis Ht. It is computed

by integrating the product of the model’s likelihood function and the prior distribution for

the model parameters under hypothesis Ht. Hence, the marginal likelihood can be seen as

a weighted likelihood over the parameter space under hypothesis Ht, with the prior under

hypothesis Ht acting as a weight function. In formal notation,
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p (y|Ht) =

∫
Θt

f (y|θt) pt (θt|Ht) dθt, (3.3)

where θt are the model parameters under hypothesis Ht, pt (θt|Ht) their prior density, and

Θt the corresponding parameter space. For example, for H0 : ρ = 0 and H1 : 0 < ρ < 1 in

the network autocorrelation model (3.1), it follows that θ0 =
(
σ2,β

)
, Θ0 = R+ ×Rk, and

θ1 =
(
ρ, σ2,β

)
, Θ1 = (0, 1)× R+ × Rk.

When performing pairwise model comparisons between two hypotheses Ht and Ht′ ,

t, t′ ∈ {0, ..., T − 1}, we can consider the ratio of the corresponding posterior hypotheses

probabilities. In this case, the normalizing constant p (y) in (3.2) cancels out and we can

write

p (Ht|y)
p (Ht′ |y)

=
p (y|Ht)

p (y|Ht′)
× p (Ht)

p (Ht′)
:= BFtt′ ×

p (Ht)

p (Ht′)
. (3.4)

The term p (Ht) /p (Ht′) in (3.4) is called the prior odds of the two hypotheses and

quantifies how much more, or less, likely a researcher expects hypothesisHt to be compared

to hypothesis Ht′ before observing the data. When a researcher does not a priori believe

one to be more likely than the other, the prior odds can be set equal to one. The term

p (Ht|y) /p (Ht′ |y) in (3.4) is known as the posterior odds and reflects how much more (if

larger than one), or less (if smaller than one), likely hypothesis Ht is than hypothesis Ht′

after taking the observed data into account. For example, if the posterior odds is five, this

means that hypothesis Ht is five times more likely than hypothesis Ht′ for this data set.

From (3.4) we can see that the posterior odds can be written as the prior odds multiplied

by the Bayes factor, BFtt′ , which is defined as the ratio of two marginal likelihoods.

Hence, the Bayes factor indicates to what extent the data change the prior odds to the

posterior odds. Note that the Bayes factor can be used to quantify the relative evidence

in the data in favor of the hypotheses without needing to specify how plausible they are

before observing the data. If both models are considered as equally likely a priori, i.e.,

p (Ht) = p (Ht′), the Bayes factor equals the posterior odds.2

The Bayes factor is a measure of relative evidence; it quantifies the amount of evidence

in the data in favor of one hypothesis relative to another hypothesis. Jeffreys (1961)

proposed a classification scheme to group Bayes factors into different categories, see Table

3.1. For example, there is “substantial” (relative) evidence in the data for hypothesis Ht

when the Bayes factor BFtt′ exceeds three and, equivalently, “substantial” evidence for

hypothesis Ht′ when the Bayes factor is less than 1/3. These labels provide some rough

guidelines when speaking of relative evidence in favor of a hypothesis but the interpretation

should ultimately depend on the context of the research question (Kass & Raftery, 1995).

2We use the terms hypothesis and model interchangeably throughout the chapter.
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Table 3.1 Evidence categories for the Bayes factor BFtt′ as given by Jeffreys (1961).

BFtt′ log (BFtt′) Interpretation

> 100 > 4.61 Decisive evidence for hypothesis Ht

30 - 100 3.40 - 4.61 Very strong evidence for hypothesis Ht

10 - 30 2.30 - 3.40 Strong evidence for hypothesis Ht

3 - 10 1.10 - 2.30 Substantial evidence for hypothesis Ht

1 - 3 0 - 1.10 Not worth more than a bare mention

1/3 - 1 -1.10 - 0 Not worth more than a bare mention

1/10 - 1/3 -2.30 - -1.10 Substantial evidence for hypothesis Ht′

1/30 - 1/10 -3.40 - -2.30 Strong evidence for hypothesis Ht′

1/100 - 1/30 -4.61 - -3.40 Very strong evidence for hypothesis Ht′

< 1/100 < -4.61 Decisive evidence for hypothesis Ht′

3.4 Bayes factor tests for the network autocorrelation pa-

rameter

In this section, we propose three Bayes factor tests when testing precise hypotheses,

Hprecise : ρ = c, and interval hypotheses, Hinterval : a1 < ρ < a2, on the network au-

tocorrelation parameter. One of the most important steps in Bayesian hypothesis testing

is the prior specification of the model parameters. In the network autocorrelation model

(3.1), a prior for ρ must be specified under an interval hypothesis, while no prior for ρ

needs to be formulated under a precise hypothesis, as ρ is not a free parameter in this

case. Despite its importance, prior specification of the network effect ρ has been largely

neglected in the scarce literature on Bayesian hypothesis testing in the network autocor-

relation model. The previous works of Hepple (1995a), X. Han & Lee (2013), and LeSage

(2014a) are exclusively based on a uniform prior for ρ when testing the plausibility of

different connectivity matrices (Hepple, 1995a) and spatial model specifications (X. Han

& Lee, 2013; LeSage, 2014a), respectively. LeSage & Parent (2007) additionally employed

a beta prior for ρ in a variable selection problem. As these authors did not consider testing

ρ in particular, the prior choice was also less important in those contexts. In our setting,

however, the prior for the network effect ρ under the alternative(s) should be carefully

chosen, as the Bayes factor can be sensitive to the prior for the tested parameter (Kass &

Raftery, 1995; Liu & Aitkin, 2008; Sinharay & Stern, 2002).

Prior expectations about the network autocorrelation parameter can be formulated

based on a researcher’s beliefs or stem from previous empirical evidence from the litera-

ture. On the other hand, if the available prior information is weak or a researcher prefers

to avoid adding prior information to an analysis, so-called non-informative priors are of-

ten used. Such non-informative priors are typically improper, i.e., they do not integrate

to a finite value, and are supposed to be completely dominated by the data (Gelman et

al., 2013). In the following, we first present an empirical informative prior for ρ, second, a

vague proper prior for ρ, and third, an improper prior for the network effect. We combine

these different marginal prior distributions for ρ with the standard non-informative prior

for the nuisance parameters
(
σ2,β

)
, p
(
σ2,β

)
∝ 1/σ2, assuming all parameters to be a



3.4. Bayes factor tests for the network autocorrelation parameter 55

priori independent (Hepple, 1995a; Holloway et al., 2002; LeSage, 1997a). However, note

that the exact choice of the prior for the nuisance parameters hardly has an effect on the

Bayes factor as long as this prior is relatively vague (Kass & Raftery, 1995).3

3.4.1 The Bayes factor based on an empirical prior

In our review of published empirical applications of the network autocorrelation model in

Chapter 2, we showed that medium network effects, e.g., ρ ≈ .3, are much more likely

to be found in real-world networks than larger effects, e.g., ρ ≈ .8, or negative effects,

e.g., ρ ≈ −.2. We also showed that the distribution of empirically observed network

effects is well-approximated by a normal distribution centered around .36 with a standard

deviation of .19. Unless a new study considers a case that is fundamentally different from

the networks studied in the literature at large to date, a network autocorrelation in a new

study is likely to come from a population distribution for ρ that resembles this normal

distribution. This yields the empirically motivated prior

pE (ρ|Hinterval) ∼ N
(
.36, .192

)
(a1, a2) , (3.5)

which is the aforementioned normal distribution with a mean of .36 and a standard de-

viation of .19, truncated to the corresponding parameter space of ρ under an interval hy-

pothesis. Based on this empirical prior, the marginal likelihoods under precise and under

interval hypotheses on ρ, respectively, are given by

pE (y|Hprecise) = π− g−k
2 Γ

(
g − k

2

)√∣∣∣(XTX)
−1
∣∣∣ |Ac|yTAT

c MAcy
− g−k

2 , (3.6)

pE (y|Hinterval)

= π− g−k
2 Γ

(
g − k

2

)√∣∣∣(XTX)
−1
∣∣∣ ∫ pE (ρ|Hinterval) |Aρ|yTAT

ρ MAρy
− g−k

2 dρ (3.7)

=

π− g−k
2 Γ

(
g−k
2

)√∣∣∣(XTX)
−1
∣∣∣

√
2π × .192

(
Φ
(
a2−.36

.19

)
− Φ

(
a1−.36

.19

)) a2∫
a1

exp

(
− (ρ− .36)

2

.192

)
|Aρ|yTAT

ρ MAρy
− g−k

2 dρ,

where Γ (·) represents the gamma function, M := Ig −X
(
XTX

)−1
XT , and Φ (·) denotes

the cumulative distribution function of the standard normal distribution (see e.g., Hepple,

1995a).

The uni-dimensional integral in (3.7) does not have a closed-form solution and has to

be evaluated numerically. This can be done by relying on standard numerical methods,

e.g., Simpson’s rule (Atkinson, 1989), and we present R code therefor in Appendix 3.A,

allowing researchers to use the Bayes factor without having to deal with the formulae

themselves. Subsequently, the desired Bayes factors are obtained through (3.4) by using

the marginal likelihoods under the precise and interval hypotheses under consideration.

3Improper priors for nuisance parameters appearing in both the null and the alternative model(s) are
routinely used in Bayesian hypothesis testing (Hepple, 1995a; Jeffreys, 1961).
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Figure 3.1 Probability density function of the unconstrained empirical prior for ρ, pE (ρ) ∼
N
(
.36, .192

)
. The shaded areas under the probability density function correspond to the

probabilities of ρ falling in the intervals (.25, .5] (black) and (.5, 1) (gray), which are equal to
.49 and .23, respectively.

The unconstrained version of the empirical prior in (3.5), i.e., pE (ρ) ∼ N
(
.36, .192

)
,

can also be employed to determine prior probabilities for interval hypotheses. In this

approach, the prior hypotheses probabilities are based on the probabilities of the tested

model parameter falling in the respective intervals under a proper unconstrained prior. As

an example, consider the two interval hypotheses H1 : .25 < ρ ≤ .5 and H2 : .5 < ρ < 1.

The probabilities of ρ falling in the intervals (.25, .5] and (.5, 1) under the unconstrained

empirical prior are equal to .49 and .23, respectively, see Figure 3.1.4 These probabilities

give a quantification of the plausibility of the hypotheses under the unconstrained empirical

prior. Hence, the corresponding prior odds, p (H1) /p (H2), in this example is 2.12 (≈
.49/.23). In other words, under the empirical prior and before considering the data, a

value for ρ inside the interval (.25, .5] is 2.12 times as likely as ρ being inside (.5, 1).

Thus, if we assume that either hypothesis H1 or hypothesis H2 is true and that their

prior odds corresponds to 2.12, the prior probabilities for the hypotheses are p (H1) = .68

(≈ .49/ (.49 + .23)) and p (H2) = .32 (≈ .23/ (.49 + .23)). This seems reasonable, as

medium effects (hypothesis H1) are generally more plausible than large effects (hypothesis

H2) in social network research (Dittrich et al., 2017). To the best of our knowledge,

using an unconstrained prior to specify prior odds of interval hypotheses is novel in the

literature.5

In the remainder of this chapter, we rely on the following method to assign prior model

probabilities when testing one precise null hypothesis and T − 1 interval hypotheses. As

4In R, these probabilities are calculated as pnorm(.5,mean = .36, sd = .19) − pnorm(.25,mean =
.36, sd = .19) = .49 and pnorm(1,mean = .36, sd = .19) − pnorm(.5,mean = .36, sd = .19) = .23. We
rounded all probabilities to two decimal places in this chapter.

5Only Mulder (2014a) discussed a similar method for assigning prior probabilities to hypotheses with
order constraints on the tested parameters.
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there are T hypotheses in total, we set a prior probability of 1/T to the precise null

hypothesis. Subsequently, the remaining probability of (T − 1) /T is divided upon the

interval hypotheses, H1, ..., HT−1, using the prior probabilities of the intervals under a

proper unconstrained prior. For example, consider H0 : ρ = 0, H1 : −.25 < ρ < 0,

H2 : 0 < ρ ≤ .25, H3 : .25 < ρ ≤ .5, and H4 : .5 < ρ < 1. Here, we test five

hypotheses in total, so the null hypothesis is assigned a prior probability of 1/5 = .2. The

remaining probability of 4/5 = .8 is split between the four interval hypotheses based on

the probability mass contained in the four intervals under the unconstrained empirical

prior. For the hypotheses considered above, the probabilities of ρ falling in these intervals

are .03, .25, .49, and .23. As we have already set p (H0) = .2, there is a total probability

of .8 left for the remaining hypotheses. Rescaling and making them add up to .8 results in

the prior model probabilities p (H1) = .02, p (H2) = .20, p (H3) = .39, and p (H4) = .19.6

Finally, when combining the prior hypotheses probabilities and the marginal likelihoods

in (3.6) and (3.7), the corresponding posterior model probabilities can be calculated via

(3.2).

3.4.2 The Bayes factor based on a uniform prior

The uniform prior treats all possible network effects under the alternative(s) as equally

likely before observing the data, resulting in a uniform prior distribution for ρ. As the

region of support for ρ is bounded, the uniform prior for the network autocorrelation is a

vague proper prior. Hence, it is less informative than the empirical prior but also does not

represent complete prior ignorance that is typically expressed by using improper priors.

The uniform prior under an interval hypothesis is written as

pU (ρ|Hinterval) ∼ U (a1, a2) ,

where U (a1, a2) denotes the uniform distribution on (a1, a2). The marginal likelihood un-

der a precise hypothesis Hprecise remains the same as in (3.6), while the marginal likelihood

under an interval hypothesis Hinterval in combination with a uniform prior for ρ is given

by

pU (y|Hinterval)

= π− g−k
2 Γ

(
g − k

2

)√∣∣∣(XTX)−1
∣∣∣ ∫ pU (ρ|Hinterval) |Aρ|yTAT

ρMAρy
− g−k

2 dρ

= π− g−k
2 Γ

(
g − k

2

)√∣∣∣(XTX)−1
∣∣∣ 1

a2 − a1

∫ a2

a1

|Aρ|yTAT
ρMAρy

− g−k
2 dρ. (3.8)

Again, the Bayes factor is computed as the ratio of two marginal likelihoods based on

the uniform prior for ρ. Similarly as for the empirical prior, an unconstrained uniform prior

6Note that the prior odds of any two interval hypotheses does not depend on the choice of the prior
probability for the precise hypothesis.
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can also be used to specify prior model probabilities. In the uniform prior setting, this

implies that the prior odds of two interval hypotheses is equal to the ratio of their interval

lengths. Posterior model probabilities can then be obtained via (3.2) by plugging in the

marginal likelihoods under consideration and the prior probabilities for the hypotheses

based on the uniform prior.

3.4.3 The fractional Bayes factor

Finally, there may be situations in which a researcher does not have any prior beliefs

about possible network effects if the null were false, or in which a researcher prefers not

to specify a proper prior for ρ based on external knowledge. Such prior ignorance is

usually reflected by employing improper priors. However, if improper priors for the tested

parameters are imposed, the Bayes factor depends on unknown normalizing constants and

is not well-defined (O’Hagan, 1995). To that end, the fractional Bayes factor methodology

was originally proposed by O’Hagan (1995) as a way to bypass this issue. In the fractional

Bayes factor, the main idea is to split the information in the data into two different fractions

that sum up to one. The first (small) fraction, denoted by b, is used to update the initial

improper prior into a proper default prior; the second fraction, 1− b, is taken to evaluate

the hypotheses under investigation based on this proper default prior. In mathematical

notation, this comes down to rewriting the marginal likelihood in (3.3) as

p (y|Ht, b) =

∫
Θt

f (y|θt) pNI (θt|Ht) dθt∫
Θt

f (y|θt)
b pNI (θt|Ht) dθt

=

∫
Θt

f (y|θt)
1−b p

(
θt|Ht,y

b
)
dθt, (3.9)

where pNI (θt|Ht) denotes a non-informative improper prior density for θt under hypothesis

Ht and p
(
θt|Ht,y

b
)
:= f (y|θt)

b pNI (θt|Ht) /
∫
Θt

f (y|θt)
b pNI (θt|Ht) dθt is the updated

proper default prior. Thus, in order to compute the marginal likelihood in the network

autocorrelation model in the fractional Bayes factor approach, one needs to choose a non-

informative improper prior for ρ and to specify the fraction b. As improper prior for ρ we

use

pNI (ρ|Hinterval) = (1− ρ)−1
1(0,1) (ρ) . (3.10)

This prior approximates the model’s Independence Jeffreys prior very well (see Ap-

pendix 3.C) that has been shown to outperform the standard uniform prior for ρ in

Bayesian estimation of the model in Chapter 2.7 At the same time, Independence Jeffreys

prior itself also imposes an a priori dependence structure between the model parameters

(Dittrich et al., 2017), which makes it difficult to compare its inferences to those based

7The prior in (3.10) has the same asymptotic behavior as the model’s conditional Independence Jeffreys
prior for ρ for ρ → 1, see Appendix 3.C for a proof.
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on the previously proposed normal and uniform marginal priors for ρ. For this reason, we

rely on the marginal improper prior for ρ in (3.10) as it relaxes this a priori dependence.

Note that in the fractional Bayes factor approach, we consider Hinterval : 0 < ρ < 1 as the

only alternative interval hypothesis. Else, if a researcher had more precise expectations

about the magnitude of the network effect, e.g., Hinterval : .25 < ρ < .5, it seems much

more sensible to use a proper prior for ρ instead.

Typically, the fraction b in the fractional Bayes factor is chosen as the smallest value

for which the updated default prior in (3.9) is proper (Berger & Mortera, 1999; Mulder,

2014b; O’Hagan, 1995). This choice results in maximal possible use of the information

in the data for hypothesis testing. If the proposed improper prior in (3.10) is combined

with the standard non-informative prior for
(
σ2,β

)
, p
(
σ2,β

)
∝ 1/σ2, the correspond-

ing updated prior in (3.9) is proper if b > k/g (see Appendix 3.D for a proof). The

proof shows that this also holds for the updated prior in (3.9) under a precise hypothesis

Hprecise. We denote the resulting choice for b as b1 = (k + 1) /g. On the other hand, if

misspecification of the improper prior is a concern, larger values for b may be preferred,

as they can reduce the sensitivity of the fractional Bayes factor to prior misspecification

(Conigliani & O’Hagan, 2000; O’Hagan, 1995). Since empirical network autocorrelations

are more likely to come from the estimated unconstrained population distribution for ρ

in (3.5) than from a distribution that resembles the improper prior in (3.10), prior mis-

specification is indeed a valid concern here. In this case, O’Hagan (1995) suggested to

use b2 = max (k + 1; ln (g)) /g, which makes the fractional Bayes factor more robust but

increases slowly with g, or b3 = max
(
k + 1;

√
g
)
/g, when sensitivity to misspecification of

the prior is a serious concern. Finally, the marginal likelihoods under a precise hypothesis

Hprecise and under an interval hypothesis Hinterval in the fractional Bayes factor approach

are given by

p (y|Hprecise, b) = b
gb
2 π

g(b−1)
2

Γ
(
g−k
2

)
Γ
(
gb−k
2

) |Ac|1−byTAT
c MAcy

g(b−1)
2 , (3.11)

p (y|Hinterval, b) = b
gb
2 π

g(b−1)
2

Γ
(
g−k
2

) ∫
pNI (ρ|Hinterval) |Aρ|yTAT

ρMAρy
− g−k

2 dρ

Γ
(
gb−k
2

) ∫
pNI (ρ|Hinterval) |Aρ|byTAT

ρMAρy
− gb−k

2 dρ

= b
gb
2 π

g(b−1)
2

Γ
(
g−k
2

) ∫ 1
0 (1− ρ)−1 |Aρ|yTAT

ρMAρy
− g−k

2 dρ

Γ
(
gb−k
2

) ∫ 1
0 (1− ρ)−1 |Aρ|byTAT

ρMAρy
− gb−k

2 dρ
. (3.12)

For more technical details about the computation of (3.12), we refer the reader to

Appendix 3.E. As before, the marginal likelihoods in (3.11) and (3.12) are used to calculate

the fractional Bayes factor itself, which is again the ratio of two marginal likelihoods. If a

researcher is also interested in obtaining posterior model probabilities, a default choice is

to impose equal prior model probabilities, i.e., p (H0) = p (H1) = .5, while subjective prior

model probabilities could be assigned if a researcher has clear beliefs about the plausibility

of the null hypothesis of a zero network effect.
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3.5 Simulation study

In this section, we present results of a simulation study that investigated the performance of

and the differences between the Bayes factors discussed in Section 3.4. To that end, we first

looked at the one-sided test A: H0 : ρ = 0 versus H1 : 0 < ρ < 1. In particular, we explored

which Bayes factor converges fastest to a true data-generating hypothesis and assessed the

sensitivity of the fractional Bayes factor to the choice of b. Next, we considered a multiple

hypothesis test B with a precise hypothesis and four interval hypotheses: H0 : ρ = 0 versus

H1 : −.25 < ρ < 0 versus H2 : 0 < ρ ≤ .25 versus H3 : .25 < ρ ≤ .5 versus H4 : .5 < ρ < 1.

Our primary goal here was to study how fast the posterior model probabilities converge

to the true model for different data-generating hypotheses and to check how robust these

findings are to different marginal priors for ρ as well as different prior model probabilities.

3.5.1 Study design

In order to mimic realistic networks, we considered two different approaches to obtain con-

nectivity matricesW in test A. First, we used the well-known small-world structure (Watts

& Strogatz, 1998) to generate simulated networks. Such networks are highly clustered, i.e.,

there is a tendency that network actors create very dense subnetworks but at the same time

have small path lengths, i.e., there is a high probability that any two actors in the network

are connected by short paths of acquaintances (Watts & Strogatz, 1998). Typically, this

results in networks in which most actors are linked to only a few others, while some actors,

also known as hubs, have a lot of ties. These hubs function as connectors between differ-

ent subnetworks and shorten the path lengths between two actors in the entire network.

Small-world structures can be observed in online social networks (Fu et al., 2007), scientific

collaboration networks (Newman, 2001), or corporate elite networks (Davis et al., 2003).

We obtained simulated small-world networks by relying on the watts.strogatz.game() func-

tion from the igraph package in R (Csárdi & Nepusz, 2006). In the underlying algorithm,

a ring lattice of g actors, each connected to its d nearest neighbors by undirected ties, is

constructed first. Next, with probability r, each tie in the network is randomly rewired.

Following Neuman & Mizruchi (2010) and W. Wang et al. (2014), we set r = .1, which

lead to highly clustered networks with low average path lengths. In our simulation study,

we considered 14 network sizes (g ∈ {25, 50, 75, 100, 150, 200, 300, ..., 1000}) and two aver-

age degrees (d ∈ {4, 8}). The simulated connectivity matrices were binary, i.e., Wij = 1 if

there was a tie between actor i and j and zero otherwise. Subsequently, we row-normalized

the generated symmetric raw connectivity matrices.8

Second, we also ran simulations using two prominent contiguity-based spatial networks;

the 49 neighborhoods in Columbus, Ohio, analyzed in e.g., Anselin (1988), Elhorst (2014),

and Hepple (1995a), and the 64 Louisiana parishes studied in Doreian (1980), Howard

(1971), and Leenders (2002), among others. In general, networks based on spatial conti-

8According to Watts & Strogatz (1998), small-world networks are usually large and sparse with g � d �
ln (g). Obviously, this relationship does not hold for all of our generated networks as e.g., ln (100) = 4.61.
However, we aimed to construct networks with a partially realistic, non-random configuration and simulated
networks that at least resemble small-world structures.
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Figure 3.2 Simulated small-world network for g = 50, d = 4, r = .1 (left), the network
of the 49 Columbus neighborhoods (middle), and the network of the 64 Louisiana parishes
(right).

guity do not exhibit small-world properties, as there may be no short path between two

distant nodes. Thus, we relied on these two real-world networks to gain insights into the

behavior of the Bayes factors for network configurations that are different from typical

small-world structures. We set Wij to one if area i is adjacent to area j, to zero otherwise,

and row-standardized the raw adjacency matrices. Graphical representations of the two

spatial networks and an example of a simulated small-world network appear in Figure

3.2.9

For each of the network types, we included three covariates plus an intercept term

(so k = 4) and used three fixed network effect sizes (ρ ∈ {0, .25, .5}) to generate y via

y = (Ig − ρW )−1 (Xβ + ε) for test A. Furthermore, we also sampled network effects from

the estimated empirical population distribution from Section 3.4.1, truncated to (0, 1),

rather than fixing ρ to a specific value. As the true network autocorrelation is unknown in

practice, this is a more realistic setup than choosing specific values for ρ a priori. Finally,

we drew independent values from a standard normal distribution for the elements of X

(excluding the first column which is a vector of ones), β, and ε. Hence, we considered 120

scenarios for test A in total (14 small-world networks × 2 average degrees × 4 sampling

schemes for ρ and 2 spatial networks × 4 sampling schemes for ρ) and simulated 1,000

data sets for each scenario.

For test B, we generated network effects using the empirical prior for ρ, truncated to

the corresponding parameter space under each hypothesis. We assigned prior probabilities

to the hypotheses based on both the unconstrained empirical the uniform prior for ρ. We

drew values for the elements of X, β, and ε as described in the previous paragraph, so for

test B we examined 140 scenarios in total (14 small-world networks × 2 average degrees

× 5 data-generating hypotheses) and generated 1,000 data sets for each scenario.

9We created the network plots using the plot.igraph() function from the igraph package in R.
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3.5.2 Simulation results

Figure 3.3 and Table 3.2 show the average weight of evidence, i.e., the natural logarithm

of the Bayes factor (Good, 1985), for the different Bayes factors and network structures

for test A: H0 : ρ = 0 versus H1 : 0 < ρ < 1.10
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Figure 3.3 Average weight of evidence (WoE) for BFE
10 (thick solid line), BFU

10 (thin solid
line), FBF b1

10 (dashed line), FBF b2
10 (dotted line), and FBF b3

10 (dot-dashed line) for test A:
H0 : ρ = 0 versus H1 : 0 < ρ < 1 for 1,000 simulated data sets using generated small-world
networks.

10In Table 3.2, we do not present the results for the fractional Bayes factor based on b2, as b1 = b2 for
both spatial networks when k = 4.
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Table 3.2 Average weight of evidence for BFE
10, BFU

10, FBF b1
10 , and FBF b3

10 for test A: H0 :
ρ = 0 versus H1 : 0 < ρ < 1 for 1,000 simulated data sets using the network of the 49
Columbus neighborhoods and the network of the 64 Louisiana parishes.

Columbus neighborhoods Louisiana parishes

ρ = 0 ρ = .25 ρ = .5 ρ ∼ pE (ρ) ρ = 0 ρ = .25 ρ = .5 ρ ∼ pE (ρ)

ln
(
BFE

10

)
-1.7 1.0 7.4 4.8 -1.9 1.4 9.0 6.0

ln
(
BFU

10

)
-1.7 .7 7.0 4.5 -1.7 1.0 8.6 5.7

ln
(
FBF b1

10

)
-2.8 -.5 6.0 3.4 -3.2 -.4 7.3 4.4

ln
(
FBF b3

10

)
-2.0 .2 6.2 3.8 -2.0 .5 7.7 5.0

We can conclude the following from these results. First, the Bayes factor based on

the empirical prior, BFE
10 (thick solid line), and the Bayes factor based on the uniform

prior, BFU
10 (thin solid line), show consistent behavior, i.e., the evidence for a true data-

generating hypothesis is increasing with the network size. In addition, they almost always

provide most evidence for the true hypothesis, except for ρ = .25 and some smaller network

sizes in the small-world networks. Second, the evidence for a true alternative hypothesis

grows with the network size at a faster rate than the evidence for a true null, as is common

in other statistical models (Johnson & Rossell, 2010) and for precise hypotheses in general.

Third, the Bayes factor based on the empirical prior results in slightly even more evidence

for a true hypothesis than the Bayes factor based on the uniform prior. Fourth, the smaller

the average degree, the bigger the evidence for a true alternative hypothesis provided by

both BFE
10 and BFU

10 for fixed g and ρ. This behavior is due to the negative bias of

ρ for increasing network densities in the model (Mizruchi & Neuman, 2008; Neuman &

Mizruchi, 2010; Smith, 2009). Fifth, the fractional Bayes factors based on b1 (dashed line)

and b2 (dotted line) yield very similar results. Overall, they provide less evidence for the

alternative hypothesis compared to BFE
10, or BFU

10, and appear to be biased towards the

null. For example, this bias is manifest from the fact that networks of approximately 300

nodes are needed before the fractional Bayes factors based on b1 and b2 result in evidence

for the true alternative hypothesis when ρ equals .25 and d = 8, see Figure 3.3. By way of

comparison, the Bayes factors based on the empirical prior and the uniform prior already

point towards evidence for the alternative for small networks in this scenario. Sixth, the

fractional Bayes factor based on b3 (dot-dashed line) does not show consistent behavior

when the null is true. In particular, the evidence for a true null hypothesis does not

increase with the network size but remains constant, or in some cases even decreases.

In order to provide more insights into the behavior of the fractional Bayes factor, we

investigated its behavior more thoroughly. To that end, we observe that for small values

for b, the updated marginal prior for ρ in the fractional Bayes factor approach in (3.9)

is just proper, with most of its probability mass still at values close to one for which

the likelihood function is vanishing, see Figure 3.4. As the marginal likelihood under

hypothesis H1 in the fractional Bayes factor approach is essentially an average weighted

likelihood over (0, 1), with the updated prior acting as weight function, the fractional

Bayes factors based on b1 and b2 tend to favor the null by construction. On the other
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Figure 3.4 Normalized integrated likelihood components f (y|ρ)1−b1 (black dashed line),

f (y|ρ)1−b3 (black dot-dashed line), and the updated marginal priors p
(
ρ|H1,y

b1
)
(gray

dashed line) and p
(
ρ|H1,y

b3
)
(gray dot-dashed line) under H1 : 0 < ρ < 1 based on

pNI (ρ|H1) = (1− ρ)
−1

for simulated data using generated small-world networks (g =
100, d = 8). The integrated likelihood component and the updated marginal prior based
on b2 are not plotted, as they are graphically indistinguishable from the curves based on b1.

hand, for large values for b, the updated marginal prior for ρ exhibits a local maximum

near the maximum likelihood estimate of ρ, see Figure 3.4. When the data are generated

under the null, this results in a relatively larger average weighted likelihood over (0, 1) and

considerable support for the alternative, which explains the inconsistent behavior of the

fractional Bayes factor based on the fraction b3 when the null is true.

Given the results from our simulation study, we recommend using the Bayes factor

based on the empirical prior for ρ when testing H0 : ρ = 0 versus H1 : 0 < ρ < 1, or the

Bayes factor based on the uniform prior as a reasonable alternative. We do not recommend

any of the fractional Bayes factors for this test, as they are either biased towards the null

when the data are generated under the alternative or they show inconsistent behavior

when the null is true. As a result, the fractional Bayes factors provide little improvement

over classical null hypothesis significance testing, whereas the Bayes factors based on the

empirical and the uniform prior for ρ clearly do perform considerably well.

Figure 3.5 reports the average posterior model probabilities for test B based on the em-

pirical prior (left panel) and the ones based on the uniform prior (right panel) for different

network sizes and data-generating hypotheses.11 In general, the evidence for a true data-

generating hypothesis is increasing with the sample size in all scenarios. Furthermore, the

data-generating hypothesis always receives the most support, except for some very small

network sizes and when the data are based on negative network effects in combination

with using the empirical prior for ρ. In the latter case, the prior probability for hypothesis

H1, pE (H1) = .02, is very small compared to the one for the null, pE (H0) = .20. This

means that the data need to support hypothesis H1 approximately 10 times more than

11Simulation results for d = 8 are available from the authors upon request. We do not present them
here, as they do no provide any additional, i.e., different, insights.
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Figure 3.5 Average posterior model probabilities (PMP) for the hypotheses H0 (solid line),
H1 (dashed line), H2 (dotted line), H3 (dot-dashed line), and H4 (long-dashed line) for test
B: H0 : ρ = 0 versus H1 : −.25 < ρ < 0 versus H2 : 0 < ρ ≤ .25 versus H3 : .25 < ρ ≤ .5
versus H4 : .5 < ρ < 1 based on the empirical prior for ρ, pE (Ht|y) , t ∈ {0, 1, 2, 3, 4} (left
panel), and based on the uniform prior for ρ, pU (Ht|y) (right panel), for 1,000 simulated
data sets using generated small-world networks.

the null such that the hypotheses receive at least equal posterior probability. However,

we believe this behavior not to be a real concern, as the empirical literature suggests that

it is highly unlikely to observe negative values for ρ in practice (Dittrich et al., 2017).

Else, if a researcher deems such negative network autocorrelations to be more plausible

than implied by pE (H1) = .02, hypothesis H1 should accordingly be given a higher prior

probability.
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3.6 Empirical examples

In the following, we apply the Bayes factor based on the empirical prior for ρ to three

data sets from the literature to quantify the relative evidence in the data for competing

hypotheses of interest. We tested the five hypotheses H0 : ρ = 0, H1 : −.25 < ρ < 0,

H2 : 0 < ρ ≤ .25, H3 : .25 < ρ ≤ .5, and H4 : .5 < ρ < 1 against each other, corresponding

to the notion of “no network effect”, a “minor negative network effect”, a “minor (positive)

network effect”, a “medium network effect”, and a “large network effect”, respectively. We

assigned prior probabilities to these hypotheses using the unconstrained empirical prior

from Section 3.4, which yields pE (H0) = .20, pE (H1) = .02, pE (H2) = .20, pE (H3) = .39,

and pE (H4) = .19. In order to check for robustness to the choice of the prior for ρ and

the prior model probabilities, we performed our analyses also using a uniform prior for the

network autocorrelation parameter as well as for specifying prior model probabilities via

the uniform unconstrained prior, i.e., pU (H0) = .20, pU (H1) = pU (H2) = pU (H3) = .16,

and pU (H4) = .32. Finally, we compared the results to those coming from classical tests

using p-values.

3.6.1 Crime data

In the cross-sectional data set for 49 neighborhoods in Columbus, Ohio, first analyzed by

Anselin (1988), the network autocorrelation model was used to explain the 1980 neigh-

borhood crime rates, operationalized as the combined total of residential burglaries and

vehicle thefts per 1,000 households. This data set is openly accessible as part of the colum-

bus data from the R package spdep (Bivand & Piras, 2015) and Figure 3.6 (left) shows

the spatial distribution of the crime rates. Anselin (1988) modeled these crime rates as a

function of household income and housing value (in 1,000USD$), plus an intercept term.

In his study, both explanatory variables had a negative impact on the crime rate, while the

maximum likelihood estimate of the network effect was ρ̂ML = .40, with a 95% confidence

interval for ρ of (.17, .64), and p = .0008.12

Using the empirical prior for ρ, the posterior hypotheses probabilities are pE (H0|y) =
.01, pE (H1|y) = .00, pE (H2|y) = .11, pE (H3|y) = .74, and pE (H4|y) = .14. In other

words, hypothesisH3 is by far the most likely hypothesis and approximately 83 (≈ .74/.01),

1744, 7, and 6 times more plausible than hypothesis H0, H1, H2, and H4, respectively.

Furthermore, the Bayes factor of hypothesis H3 against hypothesis H0 is 42.3, which is

considered as very strong evidence in the data for hypothesis H3, and the Bayes factor of

hypothesis H3 against hypothesis H4 (the second most supported hypothesis) is 2.6, which

implies minor evidence for a medium effect relative to a large effect. R code for computing

these posterior model probabilities and corresponding Bayes factors is provided in Ap-

pendix 3.A. When relying on the uniform prior for ρ, the posterior model probabilities are

pU (H0|y) = .02, pU (H1|y) = .00, pU (H2|y) = .14, pU (H3|y) = .64, and pU (H4|y) = .20.

Again, hypothesis H3 is by far the most likely hypothesis out of the five, followed by

12All reported p-values are for the one-sided test H0 : ρ = 0 versus H1 : 0 < ρ < 1 and based on the
Wald test statistic using the expected Fisher information matrix for computing standard errors.
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Figure 3.6 Number of residential burglaries and vehicle thefts per thousand households
across 49 neighborhoods in Columbus, Ohio, in 1980 (left) and logarithm of voter turnout in
the 1980 U.S. presidential election across 3,076 US counties (right). The shading color of an
entity indicates to which quintile of the sample it belongs.

hypothesis H4, which is approximately three times as unlikely as hypothesis H3. Thus,

in line with the results from classical maximum likelihood-based inference, there is very

strong evidence for a positive network effect. Contrary to maximum likelihood-based in-

ference, however, the Bayesian approach also allows one to draw conclusions as to how

much support there is in the data for particular values for ρ. In this data set, evidence

is strong that the network effect resides between .25 and .5, a conclusion that is neither

affected by the choice of the prior for ρ nor by the choice of the prior model probabilities.

Ultimately, among these Columbus neighborhoods, there is the most evidence for medium

autocorrelation (between .25 and .5) with respect to crime rates. Table 3.3 summarizes

the findings.

3.6.2 Threatened birds data

In the following example, McPherson & Nieswiadomy (2005) studied the percentage of

threatened birds in 113 countries around the globe in the year 2000 via the network au-

tocorrelation model, considering that “threats to a species in one country may spill over

to neighboring countries’ species” (McPherson & Nieswiadomy, 2005, p.401). In this data

set, the spatial connectivity matrix was based on the shared border length between two

neighboring countries, which made several island countries isolates in the network.13 In

addition, the authors included 10, mainly socio-economic, explanatory variables in the

analysis, plus an intercept term. The resulting maximum likelihood estimate of the net-

work autocorrelation was ρ̂ML = .16, with a 95% confidence interval for ρ of (−.06, .37),

and p = .08, so “in other words, threats to birds spill over into adjoining countries”

(McPherson & Nieswiadomy, 2005, p.405).

13All raw connectivity matrices in the examples were subsequently row-normalized by the authors.
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Table 3.3 Bayes factors BFE
t0 and BFU

t0 , t ∈ {0, 1, 2, 3, 4}, posterior model probabilities
pE (Ht|y) and pU (Ht|y) for the hypotheses H0 : ρ = 0, H1 : −.25 < ρ < 0, H2 : 0 < ρ ≤ .25,
H3 : .25 < ρ ≤ .5, and H4 : .5 < ρ < 1, and maximum likelihood estimates ρ̂ML of ρ and
corresponding p-values for the crime data set, the threatened birds data set, and the voting
data set.

Crime data Threatened birds data Voting data

H0 H1 H2 H3 H4 H0 H1 H2 H3 H4 H0 H1 H2 H3 H4

BFE
t0 1 .4 12.5 42.3 16.3 1 .5 2.0 .5 0.0 1 0.0 > 106 > 106 > 106

BFU
t0 1 .2 9.4 42.0 6.4 1 .3 1.9 .5 0.0 1 0.0 > 106 > 106 > 106

pE (Ht|y) .01 .00 .11 .74 .14 .26 .01 .50 .23 .00 .00 .00 .00 .00 1

pU (Ht|y) .02 .00 .14 .64 .20 .32 .07 .49 .12 .00 .00 .00 .00 .00 1

ML-based ρ̂ML = .40, p = .0008 ρ̂ML = .16, p = .08 ρ̂ML = .61, p < 10−6

Based on the empirical prior for ρ, the data yield posterior model probabilities of

pE (H0|y) = .26, pE (H1|y) = .01, pE (H2|y) = .50, pE (H3|y) = .23, and pE (H4|y) = .00.

Hence, the hypothesis that there is a minor spillover effect of threats to birds across ad-

joining countries, i.e., H2 : 0 < ρ ≤ .25, is most supported by the data and consequently

results in the highest Bayes factor, see Table 3.3. However, the Bayes factor of a minor

spillover effect against no spillover effect is only 2.0, so the support in the data for hypoth-

esis H2 is far from decisive. In case of considering a uniform for ρ, the resulting posterior

probabilities for the hypotheses are similar and given by pU (H0|y) = .32, pU (H1|y) = .07,

pU (H2|y) = .49, pU (H3|y) = .12, and pU (H4|y) = .00. Again, none of the alternative

hypotheses receives convincing evidence to outweigh the null. Overall, the data provide

most evidence for ρ being between 0 and .25 but the Bayes factors also show that the

strength of this evidence is rather small. These findings vividly illustrate the well-known

issue that p-values tend to overestimate the evidence against the null (Berger & Sellke,

1987; Jeffreys, 1961; Rouder et al., 2009; Sellke et al., 2001; Wagenmakers, 2007).

3.6.3 Voting data

The voting data set contains voter turnout in the 1980 U.S. presidential election from

3,107 U.S. counties. Pace & Barry (1997) employed a Spatial Durbin model, a variant of

the network autocorrelation model given by y = ρWy + α1 + Xβ + WXγ + ε (where

α denotes the model’s intercept term, 1 a vector of ones, and γ another vector of re-

gression coefficients), to analyze the logarithm of the voter turnout (TURNOUT) across

these U.S. counties.14 The spatial distribution of the logarithm of the voter turnout is

shown in Figure 3.6 (right).15 As explanatory variables, the authors used the logarithm

of, first, the population of 18 years of age or older eligible to vote in each county (POP);

second, the population of 25 years of age or older with a 12-th grade or higher education in

each county (EDUCATION); third, the number of owner-occupied housing units in each

county (HOUSES); fourth, the aggregate income of each county (INCOME), as well as the

14Note that a Spatial Durbin model can be represented as a network autocorrelation (3.1) by rewriting
α1+Xβ +WXγ as X̃β̃, where X̃ := (1, X,WX) and β̃ := (α,β,γ).

15We created the U.S. county map by using the map() function from the maps package in R (Becker et
al., 2016). The depicted county map does not include several very small counties in Virginia, which is why
there are data for only 3,076, instead of the full 3,107, counties displayed.
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four corresponding spatially lagged variables. Furthermore, the connectivity matrix W in

this example was constructed on the basis of the four nearest neighbors of each county.16

Except for POP and the spatially lagged HOUSES and INCOME variables, all other pre-

dictors were found to have a positive impact on TURNOUT, with a maximum likelihood

estimate of ρ̂ML = .62 (Pace & Barry, 1997, p.242), an associated 95% confidence interval

for ρ of (.58, .65), and p < 10−6.

Computing the corresponding posterior model probabilities underpins the decisive ev-

idence for a large network effect, as pE (H0|y) = pE (H1|y) = pE (H2|y) = pE (H3|y) = .00

and pE (H4|y) = 1. Accordingly, the concomitant Bayes factor of hypothesis H4 against

any other considered hypothesis exceeds 106, which provides “decisive” evidence in the

data in favor of hypothesis H4 compared to hypothesis H0, H1, H2, and H3, respectively.

When using the uniform prior, the posterior model probabilities remain essentially un-

changed, as the evidence in the data for a large network effect is conclusive in this exam-

ple. Although the implications of the Bayesian approach seem in line with the traditional

approach, this is not the case completely: the only thing we can deduce from classical null

hypothesis significance testing here is that we can reject the null hypothesis that ρ = 0.

On the other hand, the Bayesian approach gives us much more detail about which values

for ρ are most supported by the data and quantifies to what extent.

3.7 Conclusions

In this chapter, we developed three Bayes factors for testing precise and interval hypothe-

ses on the network effect in the network autocorrelation model. The Bayesian approach to

these tests comes with several practical advantages compared to classical null hypothesis

significance testing. For example, the Bayes factors and the resulting posterior model

probabilities allow us to quantify the amount of evidence for a precise null hypothesis, or

any other hypothesis, and they allow us to test multiple precise and interval hypotheses

simultaneously without any of the drawbacks of classical null hypothesis significance test-

ing.

We ran an extensive simulation study to evaluate the numerical behavior of the pre-

sented Bayes factors for a wide range of network configurations. We found that the Bayes

factor based on an empirical prior for the network effect, relying on a summary of pub-

lished network autocorrelations from many different sources, is always consistent, displays

superior performance, and is the Bayes factor we recommend. At the same time, using a

uniform prior for ρ instead yields properties that are almost as good as those based on

the empirical prior. Finally, we do not recommend employing improper priors for ρ in

combination with the fractional Bayes factor methodology. We illustrated the practical

use of the recommended Bayes factors with three examples and provided computer code in

R, making the proposed Bayes factors easily available to researchers interested in testing

for the existence and magnitude of a network effect in the network autocorrelation model.

16Data on the dependent and the independent variables were taken from the 1980 U.S. Census and
are available along with a sparse matrix representation of W from the Spatial Econometrics Toolbox for
Matlab at http://spatial-econometrics.com/html/jplv7.zip, files elect.data and elect.ford.
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Given the importance of the network autocorrelation model in a variety of fields, we

believe there is much value to having available an approach that makes it possible for

researchers to test hypotheses that go beyond the standard significance test H0 : ρ = 0

versus H1 : ρ 6= 0, which is only useful for falsifying the null. The new Bayesian tests

provide means for quantifying evidence in favor of any hypothesis and enable researchers

to test multiple hypotheses against one another in a single analysis including, but not

restricted to, any combination of precise and interval hypotheses. Overall, we hope that

these tools will enrich the toolkit of researchers studying network effects through the net-

work autocorrelation model.
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Appendix 3.A Calculating Bayes factors using R

## Function to compute the logarithm of the marginal likelihood

## under a precise hypothesis rho=c and data y, X, W

lnmarglik.p <- function(y, X, W, c) {

g <- length(y)

k <- ncol(X)

gminusk2 <- .5*(g - k)

EW <- eigen(W, only.values=TRUE)$values

XtX <- t(X) %*% X

M <- diag(g) - X %*% solve(XtX) %*% t(X)

yMy <- sum(c(M %*% y)**2)

Wy <- W %*% y

MWy <- c(M %*% Wy)

yMWy <- sum(y*MWy)

yWMWy <- sum(MWy**2)

yAMAy <- c(yMy - 2*c*yMWy + c**2*yWMWy)

lnml <- (- gminusk2*log(pi) + lgamma(gminusk2) - .5*log(det(XtX))

+ Re(sum(log(1 - c*EW))) - gminusk2*log(yAMAy))

return(lnml)

}

## Function to compute the logarithm of the marginal likelihood under an

## interval hypothesis a1<rho<a2 for a normal prior (mean, sd)

## for rho, data y, X, W, and N grid points

lnmarglik.n <- function(N=1e3, y, X, W, mean, sd, a1, a2) {

g <- length(y)

k <- ncol(X)

gminusk2 <- .5*(g - k)

EW <- eigen(W, only.values=TRUE)$values

XtX <- t(X) %*% X

M <- diag(g) - X %*% solve(XtX) %*% t(X)

yMy <- sum(c(M %*% y)**2)

Wy <- W %*% y

MWy <- c(M %*% Wy)

yMWy <- sum(y*MWy)

yWMWy <- sum(MWy**2)

scalefac <- .999

rhoseqh <- seq(scalefac*a1, scalefac*a2, length=100)

yAMAyh <- c(yMy - 2*rhoseqh*yMWy + rhoseqh**2*yWMWy)

lognormdensh <- dnorm(rhoseqh, mean=mean, sd=sd, log=T)

inth <- NULL



72 Chapter 3. Bayesian hypothesis testing in the network autocorrelation model

for (r in 1:100) {

inth[r] <- Re(sum(log(1 - rhoseqh[r]*EW))) - gminusk2*log(yAMAyh[r])

+ lognormdensh[r]}

d <- 650 - max(inth)

rhoseq <- seq(scalefac*a1, scalefac*a2, length=2*N - 1)

yAMAy <- c(yMy - 2*rhoseq*yMWy + rhoseq**2*yWMWy)

spread <- (rhoseq[3] - rhoseq[1])/6

weights <- c(1, rep(c(4, 2), .5*(2*N - 4)), c(4, 1))

normc <- pnorm(a2, mean=mean, sd=sd) - pnorm(a1, mean=mean, sd=sd)

lognormdens <- dnorm(rhoseq, mean=mean, sd=sd, log=T)

int <- NULL

for (r in 1:(2*N - 1)) {

int[r] <- weights[r]*exp(Re(sum(log(1 - rhoseq[r]*EW)))

- gminusk2*log(yAMAy[r]) + lognormdens[r] + d)}

lnml <- (- gminusk2*log(pi) + lgamma(gminusk2) - .5*log(det(XtX))

- log(normc) - d + log(spread) + log(sum(int)))

return(lnml)

}

## Function to compute the logarithm of the marginal likelihood under an

## interval hypothesis a1<rho<a2 for a uniform prior for rho,

## data y, X, W, and N grid points

lnmarglik.u <- function(N=1e3, y, X, W, a1, a2) {

g <- length(y)

k <- ncol(X)

gminusk2 <- .5*(g - k)

EW <- eigen(W, only.values=TRUE)$values

XtX <- t(X) %*% X

M <- diag(g) - X %*% solve(XtX) %*% t(X)

yMy <- sum(c(M %*% y)**2)

Wy <- W %*% y

MWy <- c(M %*% Wy)

yMWy <- sum(y*MWy)

yWMWy <- sum(MWy**2)

scalefac <- .999

rhoseqh <- seq(scalefac*a1, scalefac*a2, length=100)

yAMAyh <- c(yMy - 2*rhoseqh*yMWy + rhoseqh**2*yWMWy)

inth <- NULL

for (r in 1:100) {

inth[r] <- Re(sum(log(1 - rhoseqh[r]*EW))) - gminusk2*log(yAMAyh[r])}

d <- 650 - max(inth)

rhoseq <- seq(scalefac*a1, scalefac*a2, length=2*N - 1)
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yAMAy <- c(yMy - 2*rhoseq*yMWy + rhoseq**2*yWMWy)

spread <- (rhoseq[3] - rhoseq[1])/6

weights <- c(1, rep(c(4, 2), .5*(2*N - 4)), c(4, 1))

int <- NULL

for (r in 1:(2*N - 1)) {

int[r] <- weights[r]*exp(Re(sum(1 - rhoseq[r]*EW))

- gminusk2*log(yAMAy[r]) + d)}

lnml <- (- gminusk2*log(pi) + lgamma(gminusk2) - .5*log(det(XtX))

- log(a2 - a1) - d + log(spread) + log(sum(int)))

return(lnml)

}

For all of the scenarios considered in this chapter, using N = 1, 000 equally spaced grid

points for ρ proved to be more than sufficient to obtain reliable results for the marginal

likelihoods given in (3.7) and (3.8). In addition, we also compared our numerical integra-

tion scheme to an importance sampling procedure (A. Owen & Zhou, 2000). As to that,

we approximated log (|Aρ|) and log
(
yTAT

ρMAρy
)
by second-order Taylor polynomials at

their maximum values, ρ = 0 and ρ = yTMWy/yW TMWy, respectively. This results in

normal approximations of |Aρ| and yTAT
ρMAρy

−(g−k)/2
. Hence, the overall expressions in

(3.7) and (3.8) can be approximated by normal distributions, which we used as importance

sampling distributions. R code therefor is available from the authors upon request. The

two methods give virtually identical results and we thank an anonymous reviewer for this

suggestion.

We provide code for computing the logarithms of the marginal likelihoods only, as cal-

culating the marginal likelihoods themselves directly might result in underflow in R. Ob-

taining the Bayes factor from two logarithms of the marginal likelihoods is straightforward,

while posterior probabilities for the hypotheses can be calculated via

p (Ht|y) =
p (y|Ht) p (Ht)

T−1∑
t′=0

p (y|Ht′) p (Ht′)

=
exp (log (p (y|Ht)) + log (p (Ht)))

T−1∑
t′=0

exp (log (p (y|Ht′)) + log (p (Ht′)))

=
exp (log (p (y|Ht)) + log (p (Ht)) + d)

T−1∑
t′=0

exp (log (p (y|Ht′)) + log (p (Ht′)) + d)

,

where an auxiliary constant d, e.g., d = 650− max
t∈{0,1,...,T−1}

log (p (y|Ht)), might be added

in case that the marginal likelihoods are too small to be distinguished from zero in R.
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## Run the script below to compute posterior model probabilities and

## Bayes factors based on the empirical prior for rho

## for the crime data set (Anselin, 1988)

install.packages("spdep"); library(spdep); data(columbus)

priormean <- .36; priorsd <- .19

nc <- pnorm(1, mean=priormean, sd=priorsd)

- pnorm(-.25, mean=priormean, sd=priorsd)

prior.H0 <- .2

prior.H1 <- .8*(pnorm(0, mean=priormean, sd=priorsd)

- pnorm(-.25, mean=priormean, sd=priorsd))/nc

prior.H2 <- .8*(pnorm(.25, mean=priormean, sd=priorsd)

- pnorm(0, mean=priormean, sd=priorsd))/nc

prior.H3 <- .8*(pnorm(.5, mean=priormean, sd=priorsd)

- pnorm(.25, mean=priormean, sd=priorsd))/nc

prior.H4 <- .8*(pnorm(1, mean=priormean, sd=priorsd)

- pnorm(.5, mean=priormean, sd=priorsd))/nc

prior.H <- c(prior.H0, prior.H1, prior.H2, prior.H3, prior.H4)

W.crime.list <- nb2listw(col.gal.nb)

crime.ml <- lagsarlm(CRIME~INC + HOVAL, data=columbus, listw=W.crime.list)

summary(crime.ml) # maximum likelihood estimates

W.crime <- nb2mat(col.gal.nb)

X.crime <- cbind(rep(1, nrow(W.crime)), columbus$INC, columbus$HOVAL)

y.crime <- columbus$CRIME

lnmarglik.H0.crime <- lnmarglik.p(y=y.crime, X=X.crime, W=W.crime, c=0)

lnmarglik.H1.crime <- lnmarglik.n(N=1e3, y=y.crime, X=X.crime, W=W.crime,

mean=priormean, sd=priorsd, a1=-.25, a2=0)

lnmarglik.H2.crime <- lnmarglik.n(N=1e3, y=y.crime, X=X.crime, W=W.crime,

mean=priormean, sd=priorsd, a1=0, a2=.25)

lnmarglik.H3.crime <- lnmarglik.n(N=1e3, y=y.crime, X=X.crime, W=W.crime,

mean=priormean, sd=priorsd, a1=.25, a2=.5)

lnmarglik.H4.crime <- lnmarglik.n(N=1e3, y=y.crime, X=X.crime, W=W.crime,

mean=priormean, sd=priorsd, a1=.5, a2=1)

ln.marglik.crime <- c(lnmarglik.H0.crime, lnmarglik.H1.crime,

lnmarglik.H2.crime, lnmarglik.H3.crime, lnmarglik.H4.crime)

exp(ln.marglik.crime-lnmarglik.H0.crime) # Bayes factors

(exp(ln.marglik.crime + log(prior.H))

/sum(exp(ln.marglik.crime + log(prior.H)))) #posterior model probabilities
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Appendix 3.B Auxiliary facts

(1) LetA andB be symmetric and positive semi-definite matrices. Then (see e.g., X. Yang,

2000, Lemma 1),

0 ≤ tr (AB) ≤ tr (A) tr (B) .

(2) Let A and B be matrices. Then,

tr (AB) ≤ 1

2

(
tr
(
A2
)
+ tr

(
B2
))

.

(3) Let Aρ = Ig − ρW . If
(
XTX

)−1
exists, then

(Aρy −Xβ)T (Aρy −Xβ)

=
(
Aρy −Xβ̂

)T (
Aρy −Xβ̂

)
+
(
β − β̂

)T (
XTX

) (
β − β̂

)
= yTAT

ρMAρy +
(
β − β̂

)T (
XTX

) (
β − β̂

)
,

where β̂ :=
(
XTX

)−1
XTAρy and M = Ig −X

(
XTX

)−1
XT .

Appendix 3.C Asymptotic prior behavior

We need to show that the proposed improper prior for ρ, pNI (ρ|Hinterval) = (1− ρ)−1
1(0,1) (ρ),

is asymptotically of the same order as the conditional Independence Jeffreys prior for ρ

for ρ → 1. In particular, it is to show that

(i) pIJ
(
ρ|σ2 = σ2

1,β = β1

)
= O

(
(1− ρ)−1

)
,

(ii) (1− ρ)−1 = O
(
pIJ
(
ρ|σ2 = σ2

1,β = β1

))
,

where pIJ
(
ρ|σ2 = σ2

1,β = β1

)
denotes the model’s conditional Independence Jeffreys prior

for ρ and σ2
1 ∈ R+ and β1 ∈ Rk are constants.

Proof.

(i) Applying auxiliary facts (1), (2), and using the functional form of the model’s Inde-

pendence Jeffreys prior given in Dittrich et al. (2017) yields

pIJ
(
ρ|σ2 = σ2

1,β = β1

)
∝ 1

σ2
1

{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

βT
1 X

TBT
ρ BρXβ1 −

2

g
tr2 (Bρ)

} 1
2

∝
{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

βT
1 X

TBT
ρ BρXβ1 −

2

g
tr2 (Bρ)

} 1
2

≤
{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

βT
1 X

TBT
ρ BρXβ1

} 1
2
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=

{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

tr
(
Xβ1β

T
1 X

TBT
ρ Bρ

)} 1
2

≤
{
1

2

(
tr(BT

ρ B
T
ρ ) + tr

(
B2

ρ

))
+ tr

(
B2

ρ

)
+

1

σ2
1

tr
(
Xβ1β

T
1 X

T
) 1
2

(
tr(BT

ρ B
T
ρ ) + tr

(
B2

ρ

))} 1
2

∝ tr
(
B2

ρ

) 1
2 ,

where Bρ := WA−1
ρ . Without loss of generality, we assume throughout the remainder

of the proof that the multiplicity of the largest eigenvalue of W , λ1 = 1, is one.

Then, there exists ρ
′
such that (1− ρ)−2 >

∑g
i=2

λ2
i

(1−ρλi)
2 for all ρ ∈

(
ρ
′
, 1
)
. As

the eigenvalues of B2
ρ are given by

(
λ2
i / (1− ρλi)

2
)
i
, i ∈ {1, ..., g}, it holds for all

ρ ∈
(
ρ
′
, 1
)
that

tr
(
B2

ρ

) 1
2 =

{
g∑

i=1

λ2
i

(1− ρλi)
2

} 1
2

<

{
2

(1− ρ)2

} 1
2

∝ 1

1− ρ
.

(ii) Note that

tr2 (Bρ) =

{
g∑

i=1

λi

1− ρλi

}2

=

g∑
i=1

λ2
i

(1− ρλi)
2 +

g∑
i,j=1,i 6=j

λiλj

(1− ρλi) (1− ρλj)
.

Consequently, there exists ρ
′′
such that tr2 (Bρ) ≤ 2 (1− ρ)−2 for all ρ ∈

(
ρ
′′
, 1
)
.

Furthermore, it holds that tr
(
B2

ρ

)
=
∑g

i=1
λ2
i

(1−ρλi)
2 ≥ (1− ρ)−2. Thus, we can write

for all ρ ∈
(
ρ
′′
, 1
)

pIJ
(
ρ|σ2 = σ2

1,β = β1

)
∝ 1

σ2
1

{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

βT
1 X

TBT
ρ BρXβ1 −

2

g
tr2 (Bρ)

} 1
2

∝
{
tr(BT

ρ Bρ) + tr
(
B2

ρ

)
+

1

σ2
1

βT
1 X

TBT
ρ BρXβ1 −

2

g
tr2 (Bρ)

} 1
2

≥
{
tr
(
B2

ρ

)
− 2

g
tr2 (Bρ)

} 1
2

≥
{

1

(1− ρ)2
− 2

g

2

(1− ρ)2

} 1
2

∝ 1

1− ρ
,

which completes the proof. �
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Appendix 3.D Minimum bound for b in the fractional Bayes

factor approach

When using the proposed improper prior for ρ, pNI (ρ|Hinterval) = (1− ρ)−1
1(0,1) (ρ), in

combination with the standard non-informative prior for the remaining nuisance param-

eters, p
(
σ2,β

)
∝ 1/σ2, we can write for the the resulting updated prior in (3.9) under

Hinterval

p
(
ρ, σ2,β|Hinterval,y

b
)
∝ f

(
y|ρ, σ2,β

)b
pNI

(
ρ, σ2,β|Hinterval

)
∝ (1− ρ)−1 |Aρ|b

(
σ2
)− gb

2
−1

exp

(
− b

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
.

Integrating over β and using auxiliary fact (3) yields

∫
Rk

p
(
ρ, σ2,β|Hinterval,y

b
)
dβ

∝
∫
Rk

(1− ρ)−1 |Aρ|b
(
σ2
)− gb

2
−1

exp

(
− b

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
dβ

= (1− ρ)−1 |Aρ|b
(
σ2
)− gb

2
−1
∫
Rk

exp

(
− b

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
dβ

= (1− ρ)−1 |Aρ|b
(
σ2
)− gb

2
−1

exp

(
− b

2σ2
yTAT

ρMAρy

)
∫
Rk

exp

(
− b

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ. (3.13)

If
(
XTX

)−1
exists, the integrand in (3.13) is the kernel of the probability density function

of a multivariate normal random variable Z ∼ N
(
β̂, σ

2

b

(
XTX

)−1
)
. Thus, it follows that

∫
Rk

exp

(
− b

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ ∝

(
σ2
) k

2 .

Hence, overall ∫
Rk

p
(
ρ, σ2,β|Hinterval,y

b
)
dβ

∝ (1− ρ)−1 |Aρ|b
(
σ2
)− gb

2
−1

exp

(
− b

2σ2
yTAT

ρMAρy

)
∫
Rk

exp

(
− b

2σ2

(
β − β̂

)T (
XTX

) (
β − β̂

))
dβ

∝ (1− ρ)−1 |Aρ|b
(
σ2
)− gb−k

2
−1

exp

(
− b

2σ2
yTAT

ρMAρy

)
. (3.14)

Next, observe that the terms in (3.14) involving σ2 correspond to the kernel of the prob-

ability density function of an inverse gamma distributed random variable when gb > k,
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i.e., when b > k/g. In this case, integrating over σ2 gives

∫ ∞

0
(1− ρ)−1 |Aρ|b

(
σ2
)− gb−k

2
−1

exp

(
− b

2σ2
yTAT

ρMAρy

)
dσ2

∝ (1− ρ)−1 |Aρ|byTAT
ρMAρy

− gb−k
2 . (3.15)

As the last term in (3.15) is a quadratic polynomial in ρ, it is bounded for ρ ∈ (0, 1).

Thus, it only remains to show that

∫ 1

0
(1− ρ)−1 |Aρ|bdρ =

∫ 1

0
(1− ρ)−1 (1− ρ)b

g∏
i=2

(1− ρλi)
b dρ < ∞. (3.16)

Similarly to before, the last product in (3.16) is bounded for ρ ∈ (0, 1), so it suffices to

check that

∫ 1

0
(1− ρ)−1 (1− ρ)b dρ =

∫ 1

0
(1− ρ)b−1 dρ =

1

b

[
(1− ρ)b

]1
0
< ∞,

which proves the statement.

Appendix 3.E Fractional Bayes factor computation

Computing the integral in the numerator of (3.12) can be done using standard numerical

techniques. On the other hand, evaluating the integral in the denominator of (3.12)

directly is numerically unstable, as the integrand approaches infinity at the upper bound.

Integration by parts provides a simple solution that results in a new smooth integrand and

is presented in the following. Without loss of generality, we assume that the multiplicity

of the largest eigenvalue of W , λ1 = 1, is one. Then, the integral in the denominator of

(3.12) can be written as

∫ 1

0
(1− ρ)−1 |Aρ|byTAT

ρMAρy
− gb−k

2 dρ

=

∫ 1

0
(1− ρ)−1 (1− ρ)b

g∏
i=2

(1− ρλi)
b yTAT

ρMAρy
− gb−k

2 dρ

=

∫ 1

0
(1− ρ)b−1

g∏
i=2

(1− ρλi)
b yTAT

ρMAρy
− gb−k

2 dρ

=

∫ 1

0
(1− ρ)b−1H (ρ) dρ

=

[
−1

b
(1− ρ)bH (ρ)

]1
0

−
∫ 1

0
−1

b
(1− ρ)bH ′ (ρ) dρ (3.17)
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=
1

b

(
yTMy− gb−k

2 +

∫ 1

0
(1− ρ)bH ′ (ρ) dρ

)
,

where (3.17) follows from integration by parts and H (ρ) :=
g∏

i=2

(1− ρλi)
b
yTAT

ρ MAρy
− gb−k

2 .

After some algebraic manipulation, we can write

H ′ (ρ) = −H (ρ)

(
b

g∑
i=2

λi

1− ρλi
+

gb− k

yTAT
ρMAρy

(
ρyTW TMWy − yTMWy

))
= H (ρ)h (ρ) ,

with h (ρ) := −
(
b
∑g

i=2
λi

1−ρλi
+ gb−k

yTAT
ρ MAρy

(
ρyTW TMWy − yTMWy

))
. Hence, overall

it holds that

∫ 1

0
(1− ρ)−1 |Aρ|byTAT

ρMAρy
− gb−k

2 dρ

=
1

b

(
yTMy− gb−k

2 +

∫ 1

0
(1− ρ)bH ′ (ρ) dρ

)
=

1

b

(
yTMy− gb−k

2 +

∫ 1

0
(1− ρ)bH (ρ)h (ρ) dρ

)
=

1

b

(
yTMy− gb−k

2 +

∫ 1

0
|Aρ|byTAT

ρMAρy
− gb−k

2 h (ρ) dρ

)
, (3.18)

where the remaining integral in (3.18) is smooth and can be well-approximated by standard

schemes such as Simpson’s rule.
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Chapter 4

Bayesian analysis of higher-order

network autocorrelation models

Abstract

The network autocorrelation model has been the workhorse for estimating and testing the

strength of theories of social influence in a network. In many network studies, different

types of social influence are present simultaneously and can be modeled using various

connectivity matrices. Often, researchers have expectations about the order of strength

of these different influence mechanisms. However, currently available methods cannot be

applied to test a specific order of social influence in a network. In this chapter, we first

present flexible Bayesian techniques for estimating network autocorrelation models with

multiple network autocorrelation parameters. Second, we develop new Bayes factors that

allow researchers to test hypotheses with order constraints on the network autocorrelation

parameters in a direct manner. Concomitantly, we give efficient algorithms for sampling

from the posterior distributions and for computing the Bayes factors. Simulation results

suggest that frequentist properties of Bayesian estimators based on non-informative priors

for the network autocorrelation parameters are overall slightly superior to those based

on maximum likelihood estimation. Furthermore, when testing statistical hypotheses, the

Bayes factors show consistent behavior with evidence for a true data-generating hypothesis

increasing with the sample size. Finally, we illustrate our methods using a data set from

the economic growth theory.

This chapter is under review at Sociological Methodology (revise and resubmit) as: Dittrich, D., Leenders,
R.Th.A.J., and Mulder, J. Network autocorrelation modeling: Bayesian techniques for estimating and
testing multiple network autocorrelations.
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4.1 Introduction

Social network research plays an important role in understanding how persons, organiza-

tions, or countries influence each other’s behavior, decision-making, or well-being. The

network autocorrelation model (Ord, 1975; Doreian, 1981) has been the workhorse for

estimating and testing the strength of social influence in a given network (Fujimoto et al.,

2011). In the network autocorrelation model, actors’ behavior, opinions, or well-beings

are assumed to be correlated and a network autocorrelation parameter ρ is estimated,

representing the strength of a social influence mechanism in the network. The network

autocorrelation model has been used to analyze network influence on individual behavior

across many different fields, such as criminology (Tita & Radil, 2011), ecology (McPher-

son & Nieswiadomy, 2005), economics (Kalenkoski & Lacombe, 2008), geography (Mur et

al., 2008), organization studies (Mizruchi & Stearns, 2006), political science (Gimpel &

Schuknecht, 2003), and sociology (Burt & Doreian, 1982).

While the network autocorrelation model has yielded many useful findings, the stan-

dard, or first-order, specification of the model implicitly assumes the presence of a single

network influence mechanism on the outcome of interest only. However, this may be too

restrictive in many cases, as different types of social influence are likely to be present

simultaneously. For example, an actor is often a member of multiple distinct but poten-

tially overlapping networks, such as a friendship network, a collaboration network, or an

information-sharing network. Similarly, ties need not only be defined by social interaction

but can also refer to geographical proximity, money flows, or joint memberships. Each of

these networks may have some connection to the outcome of interest; hence, a model that

ignores multiple social influence mechanisms might be overly simplistic.

Besides the fact that individuals are often members of multiple, potentially overlap-

ping, networks, conversely it is also the case that many networks are characterized by sub-

groups. For example, children in school classes may belong to separate social classes and

we might ask if, with respect to school performance and petty crime, children of socially

disadvantaged backgrounds influence each other based on the same influence mechanism,

say friendship, stronger than those of a more privileged background? Another example

of grouping can be found in economic growth theory, where, with respect to economic

growth, central nations are expected to be subject to other processes than peripheral de-

veloping nations (Dall’erba et al., 2009; Leenders, 1995).

The network autocorrelation model can be straightforwardly extended to include mul-

tiple influence mechanisms and different subgroups within a network (McMillen et al.,

2007). Badinger & Egger (2011), Elhorst et al. (2012), Hepple (1995a), and Lee & Liu

(2010) provided theoretical discussions of and estimation procedures for these so-called

higher-order network autocorrelation models, while empirical applications can be found

in e.g., Beck et al. (2006), Dall’erba et al. (2009), Lacombe (2004), McMillen et al. (2007),

and Tita & Radil (2011).

In this chapter, we develop a fully Bayesian framework for estimating higher-order

network autocorrelation models and for simultaneously testing multiple constraints on
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the relative order of network effects, such as H0 : ρ1 = ρ2 = 0, H1 : ρ1 > ρ2 = 0,

H2 : ρ1 > ρ2 > 0, or H3 : ρ1 = ρ2 > 0, where ρ1 and ρ2 quantify the strength of dif-

ferent influence mechanisms, respectively. Using a Bayesian approach for estimating and

testing higher-order network autocorrelation models has several advantages compared to

classical methods such as maximum likelihood estimation and null hypothesis significance

testing. First, in contrast to maximum likelihood estimation of higher-order models, rely-

ing on Bayesian estimation eliminates the need to perform an optimization procedure over

a constrained parameter space, the latter not always resulting in the optimal parameter

estimates (LeSage & Pace, 2011). Second, opposed to null hypothesis significance testing,

so-called Bayes factors allow researchers to quantify relative evidence in the data in favor

of the null, or any other, hypothesis against another hypothesis (Kass & Raftery, 1995)

and can also be easily extended to test more than two hypotheses against each other simul-

taneously (Raftery et al., 1997). Hence, this enables researchers to precisely test multiple

network operationalizations against each other. Third, Bayes factors have been proven to

be very effective for testing hypotheses with order constraints on the parameters of interest

(Braeken et al., 2015; Klugkist et al., 2005; Mulder, 2016; Mulder & Wagenmakers, 2016).

For example, this makes it possible to precisely test whether social influence is larger

among actors with low socio-economic status (SES) than from actors of high SES to those

with low SES (or more complicated combinations of equality and inequality expectations).

This cannot be done using classical tests and is of particular importance in higher-order

network autocorrelation models, as in this setting, researchers often have expectations

about the order of strength of different network effects. Whereas such expectations have

tended to remain implicit in most research, Bayes factors permit researchers to state them

as actual hypotheses and then test them in a precise and straightforward manner.

Thus, we propose Bayes factors for testing multiple hypotheses on the relative impor-

tance of social influence in a given network. The presented methodology not only allows

a researcher to conclude if there is evidence in the data for, or against, non-zero network

autocorrelations in the network, but it grants the researcher the opportunity to simulta-

neously test any number of competing hypotheses on the relative strength of the network

effects against each other as well. Subsequently, we conduct an extensive simulation study

to investigate and show the desirable numerical properties of the new procedures, which

we then use to re-analyze a data set from the economic growth literature.

We proceed as follows. In the next section, we present higher-order network autocorre-

lation models in detail before introducing Bayesian estimation and hypothesis testing tech-

niques for the model in Sections 4.3 and 4.4. Concomitantly, we provide efficient imple-

mentations for estimating higher-order network autocorrelation models and for computing

Bayes factors involving order hypotheses on the network autocorrelation parameters. We

assess the numerical behavior of the proposed methods in Section 4.5. In Section 4.6, we

illustrate our approaches with an empirical example and Section 4.7 concludes.
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4.2 The network autocorrelation model

4.2.1 The first-order network autocorrelation model

Building on a standard linear regression model, the network autocorrelation model relaxes

the assumption of independence of observations and allows for correlation between them

by explicitly using the underlying network structure. More precisely, an actor’s response is

modeled as the weighted sum of the actor’s neighbor responses and a linear combination of

actor attributes. In mathematical notation, the first-order network autocorrelation model

is given by

y = ρWy +Xβ + ε, ε ∼ N
(
0g, σ

2Ig
)
, (4.1)

where y is a vector of length g containing the observations for a variable of interest for the

g actors in a network, X ∈ Rg×k is a standard design matrix (possibly including a vector of

ones in the first column for an intercept term), β ∈ Rk is a vector of k regression coefficients

as in standard linear regression, ε ∈ Rg comprises the error terms that are assumed to be

independent and identically normally distributed with zero mean and variance of σ2, 0g is

a vector of zeros of length g, and Ig denotes the (g × g) identity matrix. Furthermore, W

is a (g × g) connectivity matrix, where a non-zero entry Wij amounts to the influence of

actor j on actor i and Wii = 0 for all i ∈ {1, ..., g}. Typically, W is row-standardized, i.e.,

all rows sum up to one, which in this case means that the term Wy represents the vector of

the actors’ neighbors’ average responses. Finally, ρ is called the network autocorrelation

parameter and quantifies the magnitude of social influence on a variable of interest in

a given network as induced by W . For a substantive interpretation of the model, see

Leenders (1995, 2002).

The model’s likelihood is multivariate normal and can be written as

f
(
y|ρ, σ2,β

)
= |det (Aρ)|

(
2πσ2

)− g
2 exp

(
− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
, (4.2)

where Aρ := Ig − ρW (see e.g., Doreian, 1981). Usually, the parameter space of ρ is

chosen as the interval around ρ = 0 for which Aρ is non-singular (Hepple, 1995a; LeSage

& Parent, 2007; Smith, 2009). The bounds of this feasible range of ρ are determined by

the eigenvalues of W with the smallest and largest real part, respectively, which means

that ρ has to be contained in (1/Re (λg [W ]) , 1/Re (λ1 [W ])), where λ1 [W ] , ..., λg [W ]

denote the eigenvalues of W with Re (λ1 [W ]) ≥ ... ≥ Re (λg [W ]) (Hepple, 1995a). The

model’s overall parameter space of θ :=
(
ρ, σ2,β

)
is then given by Θ := Θρ×Θσ2 ×Θβ =

(1/Re (λg [W ]) , 1/Re (λ1 [W ]))× (0,∞)× Rk.1

1Except for Leenders (1995), the literature on the network autocorrelation model ignores the occurrence
of potentially complex eigenvalues that can arise when considering non-symmetric connectivity matrices.
If W is row-standardized, it follows that Re (λ1 [W ]) = 1. Lastly, as det (Aρ) > 0 for all ρ ∈ Θρ, we simply
write |Aρ| for | det (Aρ) | in the following.
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4.2.2 Higher-order network autocorrelation models

The standard, or first-order, network autocorrelation model in (4.1) is limited to a single

network autocorrelation parameter ρ and a single connectivity matrix W . Hence, in this

model the social influence is assumed to be homogeneously distributed in the network

based on a single influence mechanism. Extending the first-order model to higher-order

network autocorrelation models allows for a richer dependence structure by including mul-

tiple connectivity matrices, representing different influence mechanisms, e.g., geographic

adjacency and social similarity. This amounts to the functional form

y =

R∑
r=1

ρrWry +Xβ + ε, ε ∼ N
(
0g, σ

2Ig
)
, (4.3)

where {Wr}r are distinct connectivity matrices and the corresponding network autocorre-

lation parameters {ρr}r denote the strength of the different influence mechanisms.

In practice, there can be overlap between connectivity matrices, i.e., different connec-

tivity matrices may share common ties. While partially overlapping connectivity matrices

do not pose identification problems as long as there is no complete overlap (Elhorst et

al., 2012), overlap does make interpretability of the network autocorrelation parameters

more difficult (Elhorst et al., 2012; LeSage & Pace, 2011). In particular, partial overlap

may result in empirically unlikely negative autocorrelations (Dittrich et al., 2017; Elhorst

et al., 2012). We will analyze the numerical effect of overlapping connectivity matrices on

the estimation of and hypothesis tests on ρ := (ρ1, ..., ρR) in more detail in a simulation

study in Section 4.5.

Higher-order network autocorrelation models do not only allow to consider multiple

influence mechanisms but also to partition a network into several subgroups. In the lat-

ter case, we include possible heterogeneity in social influence strengths by allowing for

different levels of network autocorrelation within and between subgroups for a given in-

fluence mechanism, e.g., geographic adjacency. Dividing the actors in a network into S

subgroups, with sizes g1, ..., gS and
∑S

s=1 gs = g, we can express a model with multiple

subgroups using the representation in (4.3) by writing

y =


y1

· · ·
yS

 =


ρ11W11 · · · ρ1SW1S

· · · · · · · · ·
ρS1WS1 · · · ρSSWSS



y1

· · ·
yS

+Xβ + ε, ε ∼ N
(
0g, σ

2Ig
)

=

(
ρ11

[
W11 0 · · ·
0 · · · 0

]
+ · · ·+ ρSS

[
0 · · · 0

0 · · · WSS

])
y1

· · ·
yS

+Xβ + ε,

where ys is a vector of length gs containing the observations for the gs actors in the s-th

subgroup of the network, Wss′ is a (gs × gs′) connectivity matrix defining the influence

relationships between members of subgroup s′ and members of subgroup s, and ρss′ is the
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network autocorrelation parameter representing the strength of the social influence of the

actors in subgroup s′ on the actors in subgroup s. As the sizes of the S subgroups poten-

tially differ, each Wss′ is typically row-standardized separately, which removes scale effects

and eases direct comparison between the network autocorrelation parameters (McMillen

et al., 2007).

The structure of the likelihood function of higher-order network autocorrelation mod-

els remains the same as the one of the first-order network autocorrelation model in (4.2),

with Aρ being replaced by Aρ := Ig −
∑R

r=1 ρrWr. As in the first-order model, we define

the R-dimensional parameter space of ρ = (ρ1, ..., ρR) as the space containing the origin

for which Aρ is non-singular. Elhorst et al. (2012) provided a simple general procedure for

checking if a point ρ∗ ∈ RR, given W1, ...,WR, lies in the corresponding feasible parameter

space Θρ.
2

4.2.3 Application of a higher-order network autocorrelation model: Eco-

nomic growth of labor productivity

In this subsection, we introduce a data set from the economic growth literature that

prompts questions readily answered using Bayes factors. Here, we merely describe the

data set and the research questions, while we will come back and provide solutions to

them in Section 4.6.

Dall’erba et al. (2009) employed a second-order network autocorrelation model to ex-

plain the growth rates of labor productivity in service industry across 188 European re-

gions in 12 countries from 1980 to 2003. In order to adequately deal with interregional

spillovers, the authors introduced two different spatial weight matrices, W1 and W2, “un-

der the assumption that economic interactions decrease very substantially when a national

border is passed” (Dall’erba et al., 2009, p.337). Hence, W1 was constructed using the

three nearest neighbors of a region within the same country, while W2 was based on the

three nearest neighbors in the bordering countries. These raw binary connectivity matri-

ces were subsequently row-normalized by the authors. In addition to an intercept term,

Dall’erba et al. (2009) considered four more explanatory variables: the growth rate of

market service output in a region, the initial labor productivity gap between the region

and the leading region, a measure of urbanization of the region, and a measure of the

accessibility of the region. Thus, their model is given by

y = ρ1W1y+ρ2W2y+β1X ·1+β2X ·2+β3X ·3+β4X ·4+β5X ·5+ε, ε ∼ N
(
0, σ2I

)
, (4.4)

where y ∈ R188 is the vector of growth rates of labor productivity in service industry

across the 188 regions, β ∈ R5 represents the vector of the four regression coefficients plus

an intercept term, X ∈ R188×5 contains the values for the explanatory variables for the

188 regions, where X .i, i ∈ {1, ..., 5}, denotes the i-th column of X, 0 ∈ R188 is a vector

of zeros, and I ∈ R188×188 represents the corresponding identity matrix.

2In Elhorst et al. (2012), the term tan (α) /rmax [W
∗] needs to be replaced by tan (α) /rmin [W

∗] in
Equation (15) on page 213.
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The authors found that the estimate of ρ1, reflecting interactions within the same

country, was positive and statistically significant, indicating the presence of positive spatial

within-country spillover effects. On the other hand, the estimate of ρ2 was very close to

zero and statistically not significant. Dall’erba et al. (2009) concluded by saying that

“the results obtained also confirm the hypothesis that economic interactions decrease very

substantially when a national border is passed (indeed, the coefficient reflecting external

spillovers is not statistically significant)” (Dall’erba et al., 2009, p.342). However, in

order to draw this conclusion, one needs to directly test a corresponding hypothesis, e.g.,

H1 : ρ1 > ρ2 = 0, against a (set of) competing hypothesis (hypotheses), such as H0 : ρ1 =

ρ2 = 0, H2 : ρ1 > ρ2 > 0, or (and) H3 : ρ1 = ρ2 > 0. These four hypotheses correspond

to the notion of “no network effects” (hypothesis H0), “a positive within-country network

effect only” (hypothesis H1), “positive but decreasing network effects after a national

border is passed” (hypothesis H2), and “positive and equally strong within-country and

between-country network effects” (hypothesisH3). Currently, no formal statistical method

is available to directly test such hypotheses on multiple network autocorrelations. In the

remainder of this chapter, we develop a Bayesian framework for testing and quantifying

the evidence in the data for such hypotheses involving equality and order constraints

on the network effects. We will come back to this empirical example and test these

hypotheses against each other using Bayes factors in Section 4.6. Lastly, the authors

stated that “there is evidence that the coefficients in a growth model are potentially

varying for different subsets of the total sample” (Dall’erba et al., 2009, p.342). In Section

4.6, we will also investigate if there is such evidence in this data set by considering a

network autocorrelation model with two subgroups, allowing for differing levels of network

autocorrelation within and between the two subgroups.

4.3 Bayesian estimation of higher-order network autocorre-

lation models

4.3.1 Prior specification

Bayesian estimation starts with formulating prior expectations about the parameters in

a model that is done in terms of so-called prior distributions, or priors. These priors

summarize the (lack of) information about the model parameters before observing the

data. If such prior information is available, e.g., based on previous literature, informative

priors for the parameters of interest can be formulated. In Chapter 2, we performed a

literature study for the first-order network autocorrelation model, where we looked at the

distribution of reported network autocorrelations across many different fields. Our results

showed that most of the analyzed data in the literature exhibit positive network auto-

correlation between 0 and .5, while it seems highly unlikely to observe negative network

autocorrelation, as previously also noted by e.g., Neuman & Mizruchi (2010). This infor-

mation could then be used to formulate an informative prior for ρ in a first-order network

autocorrelation model (see e.g., Dittrich et al., in press).
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On the other hand, if such prior information is missing, or a researcher deliberately

refrains from adding additional information to the model through the prior, usually so-

called non-informative priors are used (Gelman et al., 2003). In the network autocor-

relation model, σ2 and β are commonly assigned the standard non-informative priors

p
(
σ2
)
∝ 1/σ2 and p (β) ∝ 1, respectively (Hepple, 1995a; Holloway et al., 2002; LeSage,

1997b, 2000). These priors assume that all possible values for log
(
σ2
)
and β are equally

likely a priori. We also do so throughout this chapter. Note that these priors are not

proper in the sense that they do not integrate to a finite value, but this does not affect

estimation of the model.

We use a general R-variate normal prior for ρ, p (ρ) = φµ,Σ (ρ)1Θρ (ρ) c
−1, where

φµ,Σ (·) denotes the probability density function of a multivariate normal distribution

with prior mean µ and prior covariance matrix Σ, 1· (·) is the standard indicator function,

and c :=
∫
Θρ

φµ,Σ (ρ) dρ is a normalizing constant representing the probability mass of

φµ,Σ (·) contained in the network autocorrelation parameters’ space Θρ. If researchers

have sufficient prior information about the network autocorrelations, they can specify µ

and Σ directly. Alternatively, when specifying Σ vaguely enough, i.e., with very large

diagonal elements, the prior becomes essentially identical to a proper uniform distribution

for ρ on the bounded parameter space Θρ.

In summary, we use the following priors for the model parameters, which we assume

to be a priori independent from each other:

p (ρ) = φµ,Σ (ρ)1Θρ (ρ) c
−1, (4.5)

p
(
σ2
)
∝ 1/σ2, (4.6)

p (β) ∝ 1, (4.7)

p
(
ρ, σ2,β

)
= p (ρ)× p

(
σ2
)
× p (β) .

4.3.2 Posterior computation

After having specified a prior distribution for the model parameters, the information con-

tained in the observed data y is used to update the prior distribution and to arrive at the

posterior distribution, or simply posterior. The posterior is used for all Bayesian inference

in the model, e.g., to obtain point estimates of model parameters (the posterior mean or

the posterior median), to construct Bayesian credible intervals (i.e., intervals in the do-

main of the posterior), or to determine other statistics of interest, such as the probability

that one network effect is stronger than another one for given data, p (ρ1 > ρ2|y). In this

subsection, we specify the posterior for higher-order network autocorrelation models based

on the priors from Section 4.3.1 and provide an automatic and efficient scheme to sample

from this posterior.

First, Bayes’ theorem gives that the posterior is proportional to the prior multiplied

by the likelihood, more precisely
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p
(
ρ, σ2,β|y

)
=

p
(
ρ, σ2,β

)
f
(
y|ρ, σ2,β

)∫
Θρ

∫
Θσ2

∫
Θβ

p (ρ, σ2,β) f (y|ρ, σ2,β) dβdσ2dρ
(4.8)

∝ p
(
ρ, σ2,β

)
f
(
y|ρ, σ2,β

)
.

The denominator of (4.8) is called themarginal likelihood and ensures that the posterior

integrates to unity. The marginal likelihood does not depend on any model parameters

and can be ignored in Bayesian estimation. On the other hand, when testing hypotheses,

the marginal likelihood does play a central role as it quantifies how plausible the data are

under a specific hypothesis, which we will discuss in the following section.

Next, using the priors in (4.5), (4.6), (4.7), and the likelihood function in (4.2), we can

express the posterior p
(
ρ, σ2,β|y

)
for higher-order network autocorrelation models as

p
(
ρ, σ2,β|y

)
∝ |Aρ|

(
σ2
)− g

2
−1

exp

(
−1

2
(ρ− µ)T Σ−1 (ρ− µ)− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
. (4.9)

However, the posterior distribution in (4.9) does not belong to a family of known prob-

ability distributions, so we cannot directly infer its posterior mean, its quantiles, or other

quantities of interest.3 In this case, it is common to sample random draws from the pos-

terior distribution and to use these posterior draws to approximate any desired statistic.

An efficient method is to sequentially draw from the conditional posterior distributions,

i.e., the posterior distribution of one parameter (block) given the remaining parameters

and the data (Geman & Geman, 1984; Gelfand & Smith, 1990).4 Extending the proposed

method for the first-order network autocorrelation model in Chapter 2 to higher-order

models, we sample the model parameters according to the following blocks: (ρ, β1) , σ
2,

and β̃, where β1 denotes the model’s intercept and β̃ = (β2, ..., βk) contains the remain-

ing regression coefficients. By simultaneously sampling ρ and β1, we can better capture

potential posterior correlation between the network effects as well as potential correlation

between the network effects and the intercept (Dittrich et al., 2017). The conditional

posteriors for the proposed blocks are then given by (see e.g., LeSage, 1997a)

3The posterior p
(
ρ, σ2,β|y

)
in (4.9) is proper given very mild regularity conditions. The proof for

higher-order models is quasi-identical to and an adaptation of the one for the first-order model in Chapter
2.

4This is iteratively repeated N times for a large number N . Geman & Geman (1984) showed that as
N → ∞, the draws based on the sequence of conditional posteriors can be seen as samples from the actual
marginal posteriors, i.e., the posteriors for a parameter (block) given the data, e.g., p (ρ|y).
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p
(
ρ, β1|σ2, β̃,y

)
∝ |Aρ| exp

(
−1

2
(ρ− µ)T Σ−1 (ρ− µ)− 1

2σ2
(Aρy −Xβ)T (Aρy −Xβ)

)
, (4.10)

p
(
σ2|ρ, β1, β̃,y

)
∼ IG

(
g

2
,
(Aρy −Xβ)T (Aρy −Xβ)

2

)
, (4.11)

p
(
β̃|ρ, β1, σ2,y

)
∼ N

(
µ
β̃
,Σ

β̃

)
, (4.12)

where IG (·, ·) denotes the inverse gamma distribution and µ
β̃
and Σ

β̃
are given in Ap-

pendix 4.A.

Drawing from the conditional posteriors in (4.11) and (4.12) can be done using stan-

dard statistical software. In contrast, the conditional posterior in (4.10) does not have

a well-known form and cannot be directly sampled from. Instead, we use the so-called

Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) to generate draws

from the conditional posterior for (ρ, β1). In short, the algorithm generates candidate

values for the conditional posterior from a candidate-generating distribution that can be

easily sampled from and subsequently accepts, or rejects, the draws with a certain proba-

bility. The algorithm’s efficiency mainly depends on the shape of the proposed candidate-

generating distribution; if possible, exploiting the form of the conditional posterior and

specifying a candidate-generating distribution that closely approximates it results in effi-

cient solutions (Chib & Greenberg, 1995).

As to that, we first approximate log (|Aρ|) by a quadratic polynomial in ρ by virtue

of Jacobi’s formula and the Mercator series, see Appendix 4.A. Next, we observe that

the logarithm of the exponential in (4.10) can also be written as a quadratic polynomial

in (ρ, β1). Hence, the logarithm of the conditional posterior itself can be approximated

by a quadratic polynomial in (ρ, β1). Finally, by equating coefficients of this quadratic

polynomial with the log-kernel of the probability density function of a (R+ 1)-variate nor-

mal distribution, the density in (4.10) can be approximated by a (R+ 1)-variate normal

candidate-generating density for (ρ, β1) that is tailored to the conditional posterior for

(ρ, β1).
5 All details and the full sampling scheme can be found in Appendix 4.A.

We implemented our proposed approach in R (R Core Team, 2017) and compared

its performance to a sampling scheme that does not block the network autocorrelation

parameters and the intercept but uses one-dimensional random walk algorithms to gen-

erate draws for each network effect sequentially, as in Zhang et al. (2013). Figure 4.1

shows exemplary trace plots of posterior draws for ρ1 and ρ2 based on the two sampling

schemes and the data in Dall’erba et al. (2009) and model (4.4). We can observe that

5It can (rarely) happen that, after equating coefficients, the obtained covariance matrix of the normal
candidate-generating distribution is not positive definite, as the Hessian in the second-order approximation

of log (|Aρ|) itself is not always positive definite, e.g., for W1 =

(
0 0

1 0

)
and W2 =

(
0 1

0 0

)
. Thus, if the

initially obtained matrix is not positive definite, we instead use its nearest positive definite one as the normal
candidate-generating distribution’s covariance matrix. This can be done using the nearPD() function from
the Matrix package in R (Bates & Maechler, 2017).
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Figure 4.1 Trace plots of posterior draws for ρ1 and ρ2 based on our proposed scheme (top
row) and a random walk algorithm (bottom row) for the data in Dall’erba et al. (2009) and
model (4.4).

our method results in a more efficient implementation than drawing each network effect

separately, as it generates Markov chains that explore the corresponding parameter space

of (ρ1, ρ2) much faster. Lastly, our approach is fully automatic in the sense that there are

no parameters to be tuned in the Metropolis-Hastings algorithm, such as the variances of

candidate-generating distributions.

To conclude, the presented sampling algorithm allows researchers to automatically

and efficiently draw from the posterior based on a general multivariate normal prior for

the network autocorrelation parameters, including informative as well as non-informative

specifications. Such efficient sampling is essential for performing any Bayesian estimation

of the model, which solely relies upon the generated posterior draws.

4.4 Bayesian hypothesis testing in higher-order network au-

tocorrelation models

In many network studies, researchers have competing theories about the specific order

of different network effect strengths. These theories can be formulated as hypotheses on
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the network autocorrelation parameters, e.g., as H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, or

H3 : ρ1 = ρ2 > 0, and can include as many network autocorrelation parameters as relevant

to one’s theory. The focus of interest then lies on which substantive theory, or hypothesis,

is most plausible and most supported by the data and how strongly. In this chapter, we

consider T ≥ 2 constrained hypotheses on the network effects, where a hypothesis Ht,

t ∈ {0, ..., T − 1}, contains qIt inequality and qEt equality constraints on ρ, i.e.,

Ht :=

RI
tρ > rIt

RE
t ρ = rEt ,

(4.13)

where RI
t and rIt are a

(
qIt ×R

)
matrix and a vector of length R, respectively, containing

the coefficients of the qIt inequality constraints under hypothesis Ht. Equivalently, the(
qEt ×R

)
matrix RE

t and the vector rEt contain the coefficients of the qEt equality con-

straints. For example, the constraints induced by the three hypotheses H1 : ρ1 > ρ2 = 0,

H2 : ρ1 > ρ2 > 0, and H3 : ρ1 = ρ2 > 0 can be represented by (4.13) according to6

H1 : RI
1 = (1, 0) , rI1 = 0, RE

1 = (0, 1) , rE1 = 0,

H2 : RI
2 =

(
1 −1

0 1

)
, rI2 = (0, 0) ,

H3 : RI
3 = (1, 0) , rI3 = 0, RE

3 = (1,−1) , rE3 = 0.

4.4.1 The Bayes factor

The Bayes factor is a comparative Bayesian hypothesis testing criterion that directly

quantifies the relative evidence for a hypothesis in the data. The Bayes factor of hypothesis

Ht against hypothesis Ht′ , t, t
′ ∈ {0, ..., T − 1}, is defined as the ratio of the marginal

likelihoods under the two hypotheses, i.e., in the network autocorrelation model as

Btt′ =
mt (y)

mt′ (y)
(4.14)

=

∫
Θρt

∫∞
0

∫
Rk pt (ρt) p

(
σ2
)
p (β) f

(
y|ρt, σ

2,β
)
dβdσ2dρt∫

Θρt′

∫∞
0

∫
Rk pt′ (ρt′) p (σ

2) p (β) f (y|ρt′ , σ
2,β) dβdσ2dρt′

,

where ρt are the network autocorrelation parameters under hypothesis Ht, pt (ρt) denotes

their prior density, and Θρt
the corresponding parameter space (Kass & Raftery, 1995).

We assume common priors for σ2 and β under both hypothesis Ht and hypothesis Ht′ as

they are seen as nuisance parameters in the presented framework. The exact form of the

priors for these nuisance parameters typically does not alter the magnitude of the Bayes

factor (Kass & Raftery, 1995).

6For hypothesis H1, R
I
1 and rI1 imply 1× ρ1 +0× ρ2 > 0, while RE

1 and rE1 lead to 0× ρ1 +1× ρ2 = 0.
Together, this constitutes hypothesis H1. For hypothesis H2, we have 1×ρ1−1×ρ2 > 0 and 0×ρ1+1×ρ2 >
0. Analogously, for hypothesis H3, 1× ρ1 + 0× ρ2 > 0 and 1× ρ1 − 1× ρ2 = 0.
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Table 4.1 Evidence categories for the Bayes factor BFtt′ as given by Jeffreys (1961).

BFtt′ log (BFtt′) Interpretation

> 100 > 4.61 Decisive evidence for hypothesis Ht

30 - 100 3.40 - 4.61 Very strong evidence for hypothesis Ht

10 - 30 2.30 - 3.40 Strong evidence for hypothesis Ht

3 - 10 1.10 - 2.30 Substantial evidence for hypothesis Ht

1 - 3 0 - 1.10 Not worth more than a bare mention

1/3 - 1 -1.10 - 0 Not worth more than a bare mention

1/10 - 1/3 -2.30 - -1.10 Substantial evidence for hypothesis Ht′

1/30 - 1/10 -3.40 - -2.30 Strong evidence for hypothesis Ht′

1/100 - 1/30 -4.61 - -3.40 Very strong evidence for hypothesis Ht′

< 1/100 < -4.61 Decisive evidence for hypothesis Ht′

The marginal likelihood under hypothesis Ht, mt (y), is a weighted average likelihood

over the parameter space under hypothesis Ht, with the prior pt (ρt) under hypothesis Ht

acting as a weight function. As such, it can be interpreted as the probability that the data

were observed under hypothesis Ht. Hence, the Bayes factor, as the ratio of two marginal

likelihoods, quantifies the relative evidence that the data were observed under hypothesis

Ht rather than hypothesis Ht′ . For example, when Btt′ = 5, this indicates that the data

are five times more likely to have occurred under hypothesis Ht compared to hypothesis

Ht′ . Conversely, when Btt′ = 1/5, it is five times more likely to have observed the data

under hypothesis Ht′ than under hypothesis Ht.

In order to facilitate interpretation of the Bayes factor, Jeffreys (1961) proposed a

classification scheme that groups Bayes factors into different categories, see Table 4.1. For

example, there is “strong” evidence in the data for hypothesis Ht, relative to hypothesis

Ht′ , when Btt′ > 10 and, equivalently, “strong” relative evidence in the data for hypothesis

Ht′ when Btt′ < 1/10. This grouping provides verbal descriptions and rules of thumb when

speaking of relative evidence in the data in favor of a hypothesis but is still somewhat

arbitrary. Ultimately, the interpretation of the magnitude of a Bayes factor should hinge

upon the context of the research question (Kass & Raftery, 1995). For some introductory

texts on Bayes factor testing in social science research, we refer the interested reader to

Raftery (1995), van de Schoot et al. (2011), or Wagenmakers (2007).

4.4.2 Bayes factor computation

In this section, we present efficient methods to compute marginal likelihoods and Bayes

factors in higher-order network autocorrelation models. Using a multivariate normal prior

for ρt under hypothesis Ht, pt (ρt) = φµt,Σt (ρt)1Θρt
(ρt) c

−1
t , ct :=

∫
Θρt

φµt,Σt (ρt) dρt,

the non-informative prior p
(
σ2,β

)
∝ 1/σ2 for the nuisance parameters σ2 and β, and

after analytically integrating out σ2 and β, the Bayes factor of hypothesis Ht against

hypothesis Ht′ in (4.14) reduces to
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Btt′ =
mt (y)

mt′ (y)

=
ct′ |2πΣt|−

1
2

ct |2πΣt′ |−
1
2∫

Θρt

∣∣Aρt

∣∣ exp(−1
2 (ρt − µt)

T Σ−1
t (ρt − µt)

)
yTAT

ρt
MAρt

y
− g−k

2 dρt∫
Θρt′

∣∣Aρt′

∣∣ exp(−1
2 (ρt′ − µt′)

T Σ−1
t′ (ρt′ − µt′)

)
yTAT

ρt′
MAρt′y

− g−k
2 dρt′

, (4.15)

where M := Ig −X
(
XTX

)−1
XT .7

The normalizing constants ct and ct′ in (4.15) correspond to the prior probabilities

that the unconstrained priors for ρt under hypothesis Ht and for ρt′ under hypothesis

Ht′ , N (µt,Σt) and N (µt′ ,Σt′), are in agreement with the constraints imposed under

the two hypotheses. They can be approximated by simple rejection sampling, i.e., by

sampling draws from the unconstrained priors and recording the proportions of draws

that are in agreement with the constraints. The remaining integrals in the numerator

and the denominator of (4.15) do not have closed-form solutions and have to be evaluated

numerically. For this purpose, we rely on an importance sampling procedure (A. Owen &

Zhou, 2000) that is explained next.

Let ht (ρt) :=
∣∣Aρt

∣∣ exp(−1
2 (ρt − µt)

T Σ−1
t (ρt − µt)

)
yTAT

ρt
MAρt

y
− g−k

2 denote the

integrand in the numerator of (4.15) (all steps equivalently apply to ht′ (ρt′)). Then, we

can write for the numerator of (4.15)

It :=

∫
Θρt

ht (ρt) dρt =

∫
Θρt

qt (ρt)
ht (ρt)

qt (ρt)
dρt = E

[
ht (P )

qt (P )

]
(4.16)

≈ N−1
N∑
i=1

ht (ρi)

qt (ρi)
:= Ît,

where P is a random variable with probability density function qt (·) known as the impor-

tance density, E [ht (P ) /qt (P )] denotes the expected value for ht (P ) /qt (P ), and ρi are

draws from qt (·), forming realizations of P . The specification of the importance density

is crucial for the algorithm’s efficiency, where we aim to construct a density that closely

follows the actual integrand but has heavier tails than the latter and is easy to sample

from (A. Owen & Zhou, 2000).

As in Section 4.3.2, we approximate log
(
|Aρt

|
)
by a second-order polynomial in ρt

at its maximum, the origin. This results in a normal approximation of
∣∣Aρt

∣∣. We apply

the same rationale to the third term in ht (ρt), y
TAT

ρt
MAρt

y
−(g−k)/2

. Hence, ht (ρt) can

be approximated by the product of three multivariate normal densities that itself is a

multivariate normal density, which we use as importance density in (4.16).8 Finally, as ρt

7We can use improper priors for the nuisance parameters σ2 and β, p
(
σ2,β

)
∝ 1/σ2, as they appear

in both hypothesis Ht and hypothesis Ht′ and the corresponding normalizing constants cancel out after
integrating out σ2 and β (Hepple, 1995a). Note that depending on the specifications of hypothesis Ht and
hypothesis Ht′ , the dimensions of Σt and Σt′ may differ, e.g., for H1 : ρ1 > ρ2 = 0 and H2 : ρ1 > ρ2 > 0.

8As in Section 4.3.2, if the resulting covariance matrix of the normal distribution approximating |Aρt
|

is not positive definite, we use its nearest positive definite matrix as covariance matrix instead.
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approaches the boundary of Θρt
, the proposed normal importance density has heavier tails

than ht (ρt), since in this case
∣∣Aρt

∣∣ decreases toward zero, while the normal importance

density does not. This ensures a finite variance of the importance sampling estimate Ît

and reliable estimation of the associated Bayes factors. All details hereto can be found in

Appendix 4.B.

4.4.3 A default prior for ρ

When testing multiple hypotheses against each other, a prior for the tested model param-

eters has to be specified under each hypothesis. Arguably, eliciting a prior under each

hypothesis directly can become difficult and cumbersome, especially with a large number

of hypotheses at hand. As an alternative, we propose an automatic empirical Bayes proce-

dure (Carlin & Louis, 2000) for constructing a default prior pt (ρt) under each hypothesis

Ht such that the marginal likelihood under every hypothesis Ht is maximized.

First, we center the multivariate normal default prior pt (ρt) under hypothesis Ht

around the origin. The motivation for this choice is that the origin is located at the

boundary of typical (in)equality constrained hypotheses in the network autocorrelation

model, such as H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, or H3 : ρ1 = ρ2 > 0, and previous

literature on order constrained hypothesis testing has suggested that “there is a gain of

evidence for the inequality constrained hypothesis that is supported by the data when

the unconstrained prior is located on the boundary” (Mulder, 2014b, p.452). Second, in

contrast to Bayesian estimation, assigning very large values to the diagonal elements of

the prior’s covariance matrix Σt is not feasible in hypothesis testing. In hypothesis test-

ing, we need to explicitly calculate the normalizing constant ct =
∫
Θρt

φµt,Σt (ρt) dρt and

a vague formulation of Σt makes this computation either unstable or tremendously time

consuming due to the fairly small parameter space Θρt
.9 Instead, we set the prior covari-

ance matrix Σt of the free network autocorrelation parameter(s) under a hypothesis, e.g.,

ρ1 under hypothesis H1 : ρ1 > ρ2 = 0, to the product of the corresponding asymptotic

variance-covariance matrix of the maximum likelihood estimate of ρt and a hypothesis-

specific scaling factor σ2
t , similarly as in Zellner’s g-prior (Zellner, 1986). In mathematical

notation, Σt = σ2
t I (ρt)

−1, where I (ρt) denotes the submatrix of the network autocorre-

lation model’s Fisher information matrix I
(
ρt, σ

2,β
)
. Hence, there is only one free pa-

rameter in the prior specification of Σt left, σ
2
t . Following Hansen & Yu (2001) and Liang

et al. (2008), we employ a local empirical Bayes approach and choose σ2
t such that the

associated marginal likelihood mt (y) is maximized, avoiding arbitrary prior specification.

As there is no analytical solution to this maximization problem, one way to approximate

the maximum of mt (y) is to compute the marginal likelihood on a grid of increasing values

for σ2
t until a stopping rule is reached, e.g., until the marginal likelihood is not increasing

anymore, or until it is not increasing by more than some tolerance factor.10

9As Θρt
is bounded and small, Bartlett’s paradox (Bartlett, 1957) is not an issue in the considered

tests on the network autocorrelations.
10The marginal likelihood mt (y) can be strictly increasing with σ2

t , which is why we cannot use more
efficient optimization techniques, such as Newton’s method or the BFGS algorithm (Nocedal & Wright,
2006).
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Figure 4.2 Marginal likelihoods mt (y), t ∈ {1, 2, 3, u}, under the hypotheses H1 : ρ1 > ρ2 =
0, H2 : ρ1 > ρ2 > 0, H3 : ρ1 = ρ2 = 0, and Hu : (ρ1, ρ2) ∈ Θ(ρ1,ρ2) as a function of σ2

t (left)
and the logarithm of the Bayes factors log (BF1u) , log (BF2u) , and log (BF3u) as a function
of σ2

t (right) for the data in Dall’erba et al. (2009) and model (4.4).

Figure 4.2 shows the marginal likelihoods under the three constrained hypotheses

H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, and H3 : ρ1 = ρ2 > 0, the marginal likelihood

under an unconstrained hypothesis Hu : (ρ1, ρ2) ∈ Θ(ρ1,ρ2), and the logarithm of the

Bayes factors of the three constrained hypotheses against the unconstrained hypothesis

Hu as a function of σ2
t , t ∈ {1, 2, 3, u}, for the data in Dall’erba et al. (2009) and model

(4.4). As can be seen, all of the marginal likelihoods sharply increase for smaller values

for σ2
t before they gradually decrease after having reached their respective maxima. At

the same time, the associated Bayes factors, in which we are ultimately interested, appear

fairly robust to the choice of σ2
t , except for extremely small values for σ2

t . For the vast

majority of data sets we looked at, we observed essentially the same pattern with almost

all of the optimal values for σ2
t laying between 2 and 10.

In summary, in this section we showed how researchers can use Bayes factors to test

and quantify the evidence in the data for hypotheses with order constraints on the net-

work autocorrelation parameters. Parallel hereto, we provided methodology to efficiently

compute such Bayes factors without any need to subjectively elicit priors for the network

effects. Altogether, this ultimately allows network scholars to test and verify any kind of

expectations they have about the strength of different network effects.

4.5 Simulation study

We performed a simulation study to investigate the performance of the proposed Bayesian

estimator and the proposed Bayes factors in a second-order network autocorrelation model.

First, we compared the Bayesian estimator from Section 4.3.2 to the maximum likelihood

estimator in terms of bias of the network effects and frequentist coverage of the corre-

sponding credible and confidence intervals. Here, we use the term coverage to indicate the

proportion of times in which the true, i.e., data-generating, network effects were contained

in the credible and confidence intervals, respectively. Second, as researchers are generally
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interested in testing whether (some) network effects are zero or whether one network effect

is larger than another one, we considered a multiple hypothesis test with the following five

hypotheses: H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, H3 : ρ1 = ρ2 > 0, H4 : 0 < ρ1 < ρ2, and

H5 : 0 = ρ1 < ρ2. We investigated if and how fast the different Bayes factors converge to

a true data-generating hypothesis and how robust these findings are to various degrees of

overlap between two connectivity matrices.

4.5.1 Study design

In our simulation study, we generated data y via y = A−1
(ρ1,ρ2)

(Xβ + ε) , ε ∼ N (0g, Ig),

for four network sizes g (g ∈ {50, 100, 200, 400}), three levels of overlap between W1 and

W2 (0%, 20%, 40%), and both W1 and W2 having an average degree of four. We simulated

random non-symmetric binary connectivity matrices using the rgraph() function from the

sna package in R (Butts, 2008), randomly rearranged ties when accounting for overlap,

and subsequently row-standardized the raw connectivity matrices. Furthermore, we drew

independent values from a standard normal distribution for the elements of X ∈ Rg×4

(excluding the first column which is a vector of ones), β ∈ R4, and ε ∈ Rg.

In our first experiment, we set the two network effects to (ρ1, ρ2) = (.2, .2) and simu-

lated 1,000 data sets for each of the 12 scenarios (4 network sizes × 3 levels of overlap ×
1 network effects size).11 For the Bayesian estimator, we employed the standard improper

prior p
(
σ2,β

)
∝ 1/σ2 for the nuisance parameters and a non-informative bivariate normal

prior for (ρ1, ρ2), p (ρ1, ρ2) ∝ N (02, 100× I2), which essentially corresponds to a uniform

prior for (ρ1, ρ2) ∈ Θ(ρ1,ρ2). We drew 1,000 realizations from the resulting posteriors by re-

lying on the methods described in Section 4.3.2, taking the maximum likelihood estimate

of
(
(ρ1, ρ2) , σ

2,β
)
as starting value in the sampling algorithm, see Appendix 4.A. We

used the marginal posterior median as point estimator and the 95% equal-tailed credible

interval for coverage analysis. We obtained the maximum likelihood estimates as well as

their standard errors and associated asymptotic confidence intervals applying the lnam()

function from the sna package in R.

In our second experiment, we considered 41 network effects sizes (ρ1, ρ2) ((ρ1, ρ2) ∈
{(.4, 0) , (.39, .01) ..., (0, .4)}) and simulated 100 data sets for each of the 492 scenarios (4

network sizes × 3 levels of overlap × 41 network effects sizes). Figure 4.3 shows the tra-

jectory of the network effects and a graphical representation of the five tested hypothe-

ses H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, H3 : ρ1 = ρ2 > 0, H4 : 0 < ρ1 < ρ2, and

H5 : 0 = ρ1 < ρ2. We specified the prior under each of the five hypotheses based on the

proposed empirical Bayes procedure in Section 4.4.3.12 In order to compute the normal-

izing constants c2 and c4, we generated draws from the unconstrained bivariate normal

prior for (ρ1, ρ2) until we obtained 1,000 draws in agreement with the constraints imposed

11Simulation results for different combinations of (ρ1, ρ2) are available from the authors upon request.
We do not present them here as they do not provide any additional insights.

12We used the lnam() function from the sna package in R to obtain the asymptotic variance-covariance
matrices of the maximum likelihood estimates of the free network autocorrelation parameters. Furthermore,
we started with σ2

t = 1, t ∈ {1, 2, 3, 4, 5}, and kept increasing σ2
t by 1 until either the increment in the

marginal likelihood mt (y) was less than .01 or σ2
t reached the cut-off value 20.
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Figure 4.3 Graphical representation of the admissible subspaces of (ρ1, ρ2) under the five
constrained hypotheses and the trajectory of the data-generating network effects (ρ1, ρ2) =
(.4, 0) (dashed line).

under hypothesis H2 and hypothesis H4, respectively. Then, we approximated the nor-

malizing constants by the reciprocals of the proportion of the total number of draws in

agreement with the constraints. For the hypotheses with only one free network autocor-

relation parameter, i.e., H1 : ρ1 > ρ2 = 0, H3 : ρ1 = ρ2 > 0, and H5 : 0 = ρ1 < ρ2, we

directly obtained the corresponding normalizing constants by using the pnorm() function

in R, as the bounds of the feasible range of a single free network autocorrelation parameter

are known exactly, see Section 4.2.1. Finally, for all hypotheses we drew 1,000 realiza-

tions from their (unconstrained) importance densities and computed the logarithm of the

Bayes factor of each constrained hypothesis against an unconstrained reference hypothesis

Hu : (ρ1, ρ2) ∈ Θ(ρ1,ρ2).
13

4.5.2 Simulation results

Table 4.2 shows the average estimates and root mean squared errors of ρ1 and ρ2 for

the Bayesian as well as the maximum likelihood estimator. Overall, the two estimators

yield nearly identical results for all considered scenarios. As expected, the (negative)

bias in the estimation of the network effects and the associated root mean squared errors

are decreasing with the network size, the bias being virtually non-existent for g = 400.

Introducing 20% and 40% of overlap between two connectivity matrices does not appear

to impact the estimation results, even if there is mild negative correlation between the

estimated network effects in these cases, see Figure 4.4.

13For the hypotheses with only one free network autocorrelation parameter, i.e., H1 : ρ1 > ρ2 = 0,
H3 : ρ1 = ρ2 > 0, and H5 : 0 = ρ1 < ρ2, we directly generated 1,000 draws in agreement with the
respective constraints by using the rtruncnorm() function from the truncnorm package in R (Trautmann
et al., 2015). As the unconstrained hypothesis Hu only serves as reference hypothesis to which all other
hypotheses are compared to, we did not maximize over σ2

u when computing mu (y) but fixed σ2
u to 5.
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Table 4.2 Average posterior median and maximum likelihood estimates of (ρ1, ρ2) = (.2, .2)
and corresponding average root mean squared errors (RMSE) for 1,000 simulated data sets.

0% overlap 20% overlap 40% overlap

Estimate RMSE Estimate RMSE Estimate RMSE

ρ1 ρ2 ρ1 ρ2 ρ1 ρ2 ρ1 ρ2 ρ1 ρ2 ρ1 ρ2
g = 50

Bayes .149 .152 .155 .157 .160 .148 .163 .151 .159 .166 .168 .168

MLE .157 .160 .156 .157 .167 .154 .164 .151 .164 .172 .168 .169

g = 100

Bayes .180 .182 .107 .104 .178 .184 .111 .107 .188 .183 .107 .107

MLE .182 .184 .108 .104 .179 .186 .111 .107 .189 .185 .108 .108

g = 200

Bayes .189 .187 .074 .074 .198 .190 .076 .075 .194 .195 .077 .077

MLE .190 .188 .074 .074 .198 .190 .076 .075 .194 .195 .078 .077

g = 400

Bayes .196 .196 .052 .051 .197 .197 .050 .051 .198 .196 .054 .053

MLE .196 .196 .052 .051 .197 .197 .050 .051 .198 .196 .053 .053
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Figure 4.4 Posterior median estimates (black) of (ρ1, ρ2) = (.2, .2) (gray) for 1,000 simu-
lated data sets.
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Table 4.3 Empirical frequentist coverage of 95% credible and confidence intervals for ρ1 and
ρ2 for 1,000 simulated data sets.

0% overlap 20% overlap 40% overlap

ρ1 ρ2 ρ1 ρ2 ρ1 ρ2
g = 50

Bayes .953 .949 .936 .946 .948 .943

MLE .928 .928 .912 .937 .923 .930

g = 100

Bayes .949 .958 .949 .946 .957 .961

MLE .936 .950 .942 .936 .951 .955

g = 200

Bayes .943 .948 .947 .953 .954 .937

MLE .934 .943 .950 .951 .951 .932

g = 400

Bayes .954 .948 .964 .940 .953 .943

MLE .955 .949 .964 .946 .953 .943

Table 4.3 reports the empirical frequentist coverage of Bayesian equal-tailed 95% cred-

ible intervals and asymptotic 95% maximum likelihood-based confidence intervals for ρ1

and ρ2. The coverage of Bayesian credible intervals is very close to the nominal .95 for

all considered scenarios, while the coverage of confidence intervals is below nominal for

network sizes of 50. These observations are in line with the subpar coverage of maximum

likelihood-based confidence intervals for small samples in the first-order network autocor-

relation model in Chapter 2.

Based on the results from our first simulation experiment, we draw two main con-

clusions. First, we recommend using the non-informative Bayesian estimator over the

maximum likelihood estimator, as both estimators yield nearly identical network effect

estimates but the coverage of Bayesian credible intervals appears accurate, whereas for

smaller network sizes the coverage of maximum likelihood-based confidence intervals is

not. Second, estimating second-order network autocorrelation models with moderately

overlapping connectivity matrices, i.e., with up to 40% shared ties, does not alter the

estimation of the network effects. This second finding is of particular importance to social

network researchers who often encounter distinct but partially overlapping networks in

empirical practice.

Figure 4.5 displays the average logarithm of the Bayes factors of the hypotheses H1

(thick solid line), H2 (thick dashed line), H3 (dotted line), H4 (dashed line), and H5 (solid

line) against an unconstrained reference hypothesis Hu as a function of network effects

(ρ1, ρ2) from (.4, 0) to (, 0.4). Overall, the results indicate that the Bayes factors show

consistent behavior, i.e., there is the most evidence for the data-generating hypothesis

if the network size is large enough. This evidence is monotonically increasing with the

network size. In particular, there is little discrimination between the five hypotheses

for g = 50, while there is clear support for the data-generating hypothesis for network

sizes of 200 and 400. Two of the lines in Figure 4.5 are discontinued due to numerical

reasons: when computing the Bayes factor, we need to calculate the probability mass

of the unconstrained importance density contained in the parameter space imposed by
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Figure 4.5 Average logarithm of the Bayes factors log (Btu), t ∈ {1, 2, 3, 4, 5}, of the hy-
potheses H1 : ρ1 > ρ2 = 0 (thick solid line), H2 : ρ1 > ρ2 > 0 (thick dashed line),
H3 : ρ1 = ρ2 > 0 (dotted line), H4 : 0 < ρ1 < ρ2 (dashed line), and H5 : 0 = ρ1 < ρ2
(solid line) against Hu : (ρ1, ρ2) ∈ Θ(ρ1,ρ2) as function of network effects (ρ1, ρ2) from (.40, 0)
to (0, .40) for 100 simulated data sets.

the constraints under a hypothesis, see Appendix 4.B. For the Bayes factors involving

the purely inequality constrained hypotheses H2 : ρ1 > ρ2 > 0 and H4 : 0 < ρ1 < ρ2,

we approximated these probabilities numerically by the proportion of 1,000 draws from

the unconstrained importance densities that were in agreement with hypothesis H2 and

hypothesis H4, respectively. For some data sets, however, none of the draws were in

agreement with hypothesis H2, or hypothesis H4, in which case we set the corresponding

marginal likelihood to −∞. If this happened for at least one of the 100 simulated data

sets, then the average logarithm of the Bayes factor was −∞ as well. Finally, as in our first

simulation experiment, these findings are robust to moderate degrees of overlap between

two connectivity matrices.
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4.6 Application revisited

In this section, we re-analyze a data set from the economic growth literature initially

studied by Dall’erba et al. (2009) and address the questions raised in Section 4.2.3. First,

we re-estimated the second-order network autocorrelation model in (4.4) based on non-

informative priors for all model parameters and compared the results to those coming from

maximum likelihood estimation. Second, we used Bayes factors to quantify the relative

evidence in the data for different competing hypotheses of interest with respect to this

data set. Finally, we considered a network autocorrelation model with two subgroups,

assuming only one dominant common influence mechanism within and between the two

subgroups.

4.6.1 Bayesian estimation of a second-order network autocorrelation

model

Table 4.4 displays the results of a Bayesian estimation of the second-order model in (4.4),

along with the corresponding maximum likelihood estimates.14 The Bayesian and the

maximum likelihood estimates of all parameters are similar to each other, in line with

the results from our simulation study in Section 4.5.2. In particular, the (Bayesian) esti-

mate of ρ1, reflecting interactions within the same country, is of large positive magnitude

(.350), while the (Bayesian) estimate of ρ2, reflecting spillovers from regions in neighbor-

ing countries, is much smaller and close to zero (-.058). Dall’erba et al. (2009) concluded

by saying that “the results obtained also confirm the hypothesis that economic interac-

tions decrease very substantially when a national border is passed (indeed, the coefficient

reflecting external spillovers is not statistically significant)” (Dall’erba et al., 2009, p.342).

4.6.2 Bayesian hypothesis testing in a second-order network autocorre-

lation model

Using Bayes factors, we quantified the evidence in the data for two hypotheses representing

the notion of decreasing economic interactions once a national border is passed, H1 : ρ1 >

ρ2 = 0 and H2 : ρ1 > ρ2 > 0, and tested them against two competing hypotheses,

H0 : ρ1 = ρ2 = 0 and H3 : ρ1 = ρ2 > 0.15 Furthermore, we also included a hypothesis

Hc : ¬ (H0 ∨H1 ∨H2 ∨H3) in our test that consists of the complement of all other possible

hypotheses on (ρ1, ρ2) except hypotheses H0, H1, H2, and H3, i.e., which contains all the

orders of network effects we did not hypothesize.

Table 4.5 provides the Bayes factors for every pair out of the set of the five considered

hypotheses above using the prior specifications from Sections 4.4.2 and 4.4.3. Notably,

14As in our simulation study in Section 4.5, we used the prior p
(
ρ1, ρ2, σ

2,β
)
∝ N (02, 100× I2)× 1/σ2

and relied on the lnam() function from the sna package in R to compute the maximum likelihood estimates
and the corresponding confidence intervals.

15We considered the hypothesis H2 : ρ1 > ρ2 > 0 rather than a hypothesis H2′ : ρ1 > ρ2 here, as the
hypotheses H1 and H2′ would not be unambiguous. This does not mean that hypothesis H2′ in itself
cannot be tested against other hypotheses, only the combination of hypotheses in a given test has to be
considered carefully.
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Table 4.4 Posterior median and maximum likelihood estimates and associated 95%
Bayesian credible and confidence intervals (in brackets) for the data in Dall’erba et al. (2009)
and model (4.4).

Parameter Bayes MLE

ρ1 .350 .348

(.238, .464) (.235, .460)

ρ2 -.058 -.058

(−.169, .052) (−.168, .052)

Intercept -.682 -.696

(−.887,−.451) (−.924,−.469)

Market Service Growth .484 .483

(.384, .585) (.385, .580)

Productivity Gap .212 .218

(.122, .296) (.127, .309)

Urbanization 3.094× 10−5 3.119× 10−5(
4.728× 10−6, 5.703× 10−5

) (
5.894× 10−6, 5.648× 10−5

)
Accessibility 1.052× 10−5 1.164× 10−5(

−3.937× 10−6, 2.516× 10−5
) (

−3.132× 10−6, 2.642× 10−5
)

Table 4.5 Bayes factors Btt′ , t, t
′ ∈ {0, 1, 2, 3, c}, for the hypotheses H0 : ρ1 = ρ2 = 0,

H1 : ρ1 > ρ2 = 0, H2 : ρ1 > ρ2 > 0, H3 : ρ1 = ρ2 > 0, and Hc : ¬ (H0 ∨H1 ∨H2 ∨H3) for the
data in Dall’erba et al. (2009) and model (4.4).

Hypothesis H0 H1 H2 H3 Hc

H0 - 1.893× 10−7 3.043× 10−5 .059 2.966× 10−6

H1 5.283× 106 - 160.746 3.117× 105 14.085

H2 3.286× 104 6.220× 10−3 - 1.939× 103 .089

H3 16.945 3.208× 10−6 5.157× 10−4 - 4.539× 10−5

Hc 3.732× 105 .071 11.359 2.203× 104 -

H1 : ρ1 > ρ2 = 0 is the hypothesis most supported by the data and approximately

5.283 × 106, 160.746, 3.117 × 105, and 14.085 times more supported than hypothesis H0,

H2, H3, and Hc, respectively. Moreover, there is the least evidence for the null in the

data. Consequently, regardless the specification of alternative expectations about ρ1 and

ρ2, the hypothesis that both network effects are zero has to be strongly rejected. Although

these implications seem in line with the authors’ claim that network effects are decreasing

after a national border is passed, using Bayes factors provides us with much more extensive

conclusions about the characteristic evidence in the data. Hence, we can now quantify how

much more likely these conclusions are than competing conclusions (hypotheses) and how

(un)likely it is that an entirely different mechanism Hc generated the data. Ultimately,

in this data set there is the most and very strong evidence for a positive within-country

network effect only.

4.6.3 Bayesian hypothesis testing in a fourth-order network autocorre-

lation model

Dall’erba et al. (2009) also pointed out potentially asymmetric growth rates across the

regions, depending on the initial productivity level of a region. Thus, the authors pro-
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Lower productivity
Higher productivity

Figure 4.6 Spatial distribution of productivity levels in 1980 across the 188 regions.

ceeded by dividing the sample into two clusters; 111 initially more productive regions and

77 initially less productive regions, implying a core-periphery pattern, see Figure 4.6.16

Next, they separately estimated two second-order network autocorrelation models for the

two clusters. Here, for illustrative purposes, we allow for varying levels of network auto-

correlation within and between the two clusters and consider a model with two subgroups

instead. For example, we could expect the network effects among regions of the same sub-

group to be larger than the network effects between regions of different subgroups, or we

could expect the initially more productive regions to influence the initially less productive

ones more strongly than the other way around.

Our previous analyses in Section 4.6.2 suggested that there is very strong evidence for

a positive within-country network effect only, i.e., ρ1 > 0 and ρ2 = 0. Thus, we merely

16We created the map of the European NUTS-2 regions by using Eurostat data from http://ec.europa

.eu/eurostat/cache/GISCO/geodatafiles/NUTS 2010 60M SH.zip, file NUTS RG 60M 2010.shp, and the
readOGR() function from the rgdal package in R (Bivand et al., 2017). The depicted map shows 189 instead
of the original 188 regions, as the Trentino-Alto Adige region in Italy has been divided into two NUTS-2
regions.
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consider spillover effects within the same country, in other words, we assume that only W1

plays a role, not W2. We denote by ρhh, ρhl, ρlh, and ρll the network effect within regions

with initially higher productivity levels, the network effect of the initially less productive

regions on the initially more productive regions, the network effect of the initially more

productive regions on the initially less productive ones, and the network effect within

regions with initially lower productivity levels, respectively. Accordingly, yh ∈ R111 and

yl ∈ R77 contain the growth rates of labor productivity of the initially more and the ini-

tially less productive regions, respectively, and we partitionedW1, the unstandardized con-

nectivity matrix using the three nearest neighbors of a region within the same state, into

the four submatrices Whh ∈ R111×111, Whl ∈ R111×77, Wlh ∈ R77×111, and Wll ∈ R77×77,

representing ties within and between the two subgroups.17 This resulted in the following

fourth-order network autocorrelation model

y =

[
yh

yl

]
=

[
ρhhWhh ρhlWhl

ρlhWlh ρllWll

][
yh

yl

]
+ β1X ·1 + β2X ·2 + β3X ·3 + β4X ·4 + β5X ·5 + ε

=

(
ρhh

[
Whh 0

0 0

]
+ ρhl

[
0 Whl

0 0

]
+ ρlh

[
0 0

Wlh 0

]
+ ρll

[
0 0

0 Wll

])[
yh

yl

]
+ β1X ·1 + β2X ·2 + β3X ·3 + β4X ·4 + β5X ·5 + ε.

(4.17)

We generally expect the network effects within the two subgroups to be larger than

the network effects between subgroups, i.e., {ρhh, ρll} > {ρhl, ρlh}, where the “>” sign

holds pairwise for any two elements of the first and second set, respectively. Further-

more, hypotheses of substantial interest might be based on expectations of positive net-

work effects within both subgroups but with potentially differing magnitudes. We trans-

lated these expectations to the hypotheses H1 : {ρhh > ρll > 0}∧{{ρhh, ρll} > {ρhl, ρlh}}, H2 :

{ρhh = ρll > 0} ∧ {{ρhh, ρll} > {ρhl, ρlh}}, and H3 : {0 < ρhh < ρll} ∧ {{ρhh, ρll} > {ρhl, ρlh}}.18

We supplemented these three hypotheses with the hypothesis of no network effects, H0 :

ρhh = ρhl = ρlh = ρll = 0, and the complement of all the orders of network effects we did

not have hypotheses for, Hc : ¬ (H0 ∨H1 ∨H2 ∨H3).

Table 4.6 shows the Bayes factors for every pair out of the set of the five considered hy-

potheses. As can be seen, H2 : {ρhh = ρll > 0}∧ {{ρhh, ρll} > {ρhl, ρlh}} is the hypothesis

that is most supported by the data and receives approximately 3.149× 105, 3.222, 3.704,

and 55.556 more support than hypothesis H0, H1, H3, and Hc, respectively. Hence, there

is no evidence in the data for differing network effects within the initially more and the

initially less productive regions, while there is very strong evidence for the network effects

within the two subgroups to be larger than the network effects between the subgroups.

17We row-standardized Whh, Whl, Wlh, and Wll separately.
18Another hypothesis of interest could be that (with respect to the growth of labor productivity) the

initially more productive regions influence the initially less productive ones stronger than the other way
around, i.e., ρlh > ρhl. We did not include this hypothesis, as it would overlap with the other considered
hypotheses and because of the undesirable behavior of such overlapping-hypotheses Bayes factors (Morey
& Rouder, 2011). Separate analyses showed, however, that there is actually no evidence for a hypothesis
involving ρlh > ρhl.
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Table 4.6 Bayes factors Btt′ , t, t
′ ∈ {0, 1, 2, 3, c}, for the hypotheses H0 : ρhh = ρhl = ρlh =

ρll = 0, H1 : {ρhh > ρll > 0} ∧ {ρhh, ρll} > {ρhl, ρlh}, H2 : {ρhh = ρll > 0} ∧ {ρhh, ρll} >
{ρhl, ρlh}, {H3 : 0 < ρhh < ρll} ∧ {ρhh, ρll} > {ρhl, ρlh}, and Hc : ¬ (H0 ∨H1 ∨H2 ∨H3) for
the data in Dall’erba et al. (2009) and model (4.17).

Hypothesis H0 H1 H2 H3 Hc

H0 - 1.023× 10−5 3.176× 10−6 1.177× 10−5 1.800× 10−4

H1 9.773× 104 - .310 1.151 17.241

H2 3.149× 105 3.222 - 3.704 55.556

H3 8.497× 104 .869 .270 - 14.925

Hc 5.563× 103 .058 .018 .067 -

4.7 Conclusions

In this chapter, we developed Bayesian techniques for estimating and testing higher-order

network autocorrelation models with multiple network autocorrelations. In particular,

we provided default Bayes factors that enable researchers to test hypotheses with order

constraints on the network effects in a direct manner. Thus, the proposed methods allow

researchers to simultaneously test any number of competing hypotheses on the relative

strength of network effects against each other and to quantify the amount of evidence in

the data for any of these hypotheses. This has not yet been possible using the currently

available statistical techniques in the literature on network autocorrelation models.

We ran an extensive simulation study to evaluate the numerical behavior of the pre-

sented Bayesian procedures for a number of different network specifications, including

varying network sizes and network overlap. First, we found that the Bayesian estimator

based on a non-informative prior and the maximum likelihood estimator have comparable

frequentist properties under most scenarios, except for smaller network sizes. For smaller

network sizes, only the Bayesian estimator exhibits accurate coverage of credible intervals

and overall shows slightly superior performance. Second, we observed that the introduced

Bayes factors always result in the largest evidence for a true data-generating hypothe-

sis, with this evidence increasing with the network size. Furthermore, we also provided

efficient algorithms for sampling from the posterior distributions and for computing the

Bayes factors. We illustrated the practical utility of the Bayes factors by applying them

to a data set on economic growth in 188 European regions. This resulted in additional

and more precise insights into how the various network effects are related to each other in

comparison to classical null hypothesis significance testing.

Given the many, often implicit, expectations researchers have about the relative im-

portance of different network effects, we hope that by enabling researchers to test these ex-

pectations directly and explicitly, higher-order network autocorrelation models will bring

for a more thorough understanding of social contagion processes that goes beyond the

current state of the art.
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Appendix 4.A Posterior sampling

We outlined the procedure for sampling from the full posterior p
(
ρ, σ2,β|y

)
for higher-

order network autocorrelation models in Section 4.3.2. However, it remains to spec-

ify the exact form of the candidate-generating distribution for the conditional posterior

p
(
ρ, β1|σ2, β̃,y

)
and the expressions µ

β̃
and Σ

β̃
in (4.12).

Approximating the conditional posterior for (ρ, β1)

In the following, we show how to approximate p
(
ρ, β1|σ2, β̃,y

)
by a (R+ 1)-variate nor-

mal distribution. First, by Jacobi’s formula (see e.g., Hall, 2003, Theorem 2.11), for any

complex matrix X it holds that det (exp (X)) = |exp (X)| = exp (tr (X)). As we set the

R-dimensional parameter space of ρ as the space containing the origin for which Aρ is

non-singular, we know that |Aρ| > 0, Aρ is invertible, and that log (Aρ) exists (see e.g.,

Higham, 2008, Theorem 1.27). Thus, we can write for X := Aρ = Ig −
∑R

r=1 ρrWr

|exp (Aρ)| = exp (tr (Aρ))

⇔|exp (log (Aρ))| = exp (tr (log (Aρ)))

⇔ log (|Aρ|) = tr (log (Aρ)) . (4.18)

Using the Mercator series for the matrix logarithm (see e.g., Hall, 2003, Theorem 2.7), we

can rewrite (4.18) as

log (|Aρ|) = tr (log (Aρ)) = tr

( ∞∑
m=1

(−1)m+1 (Aρ − Ig)
m

m

)

=
∞∑

m=1

(−1)m+1 1

m
tr

((
−

R∑
r=1

ρrWr

)m)
. (4.19)

The first two sum terms in (4.19) are given by

m = 1 : (−1)2 tr

(
−

R∑
r=1

ρrWr

)
= −

R∑
r=1

ρr tr (Wr) = 0,

m = 2 : (−1)3
1

2
tr

(− R∑
r=1

ρrWr

)2
 = −1

2

R∑
r,r′=1

ρrρr′ tr (WrWr′) .

Hence, log (|Aρ|) can be approximated by a quadratic polynomial in ρ as
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log (|Aρ|) ≈ −1

2

R∑
r,r′=1

ρrρr′ tr (WrWr′) ,

⇒ |Aρ| ≈ exp

−1

2

R∑
r,r′=1

ρrρr′ tr (WrWr′)

 . (4.20)

Second, after some algebraic manipulation,

exp

(
−1

2
(ρ− µ)

T
Σ−1 (ρ− µ)

)
∝ exp

−1

2

 R∑
r,r′=1

ρrρr′Σ
−1
rr′ − 2

R∑
r,r′=1

ρrΣ
−1
rr′µr′

 , (4.21)

exp

(
− 1

2σ2
(Aρy −Xβ)

T
(Aρy −Xβ)

)

∝ exp

− 1

2σ2

 R∑
r,r′=1

ρrρr′y
TWT

r Wr′y − 2

R∑
r=1

ρry
TWT

r

(
y − X̃β̃

)

+2

R∑
r=1

ρrβ1y
TWT

r 1g − 2β11
T
g

(
y − X̃β̃

)
+ β2

1g

))
, (4.22)

where the proportionality in (4.21) holds with respect to ρ, in (4.22) with respect to

(ρ, β1), X̃ denotes the matrix X with its first column removed, β̃ = (β2, ..., βk), and 1g

is the vector of ones of length g. By equating the coefficients of the product of (4.20),

(4.21), and (4.22), i.e., the approximated conditional posterior for (ρ, β1), to the kernel of

the probability density function of a multivariate normal distribution N (µMH ,ΣMH), we

obtain for the coefficients of Σ−1
MH

Σ−1
MHrr′ = tr (WrWr′) + Σ−1

rr′ + yTW T
r Wr′y/σ

2, r, r′ ∈ {1, ..., R} ,

Σ−1
MH (R+1)r′ = Σ−1

MHr′(R+1) = yTW T
r′1g/σ

2,

Σ−1
MH (R+1)(R+1) = g/σ2,

and µMH = ΣMHzMH , where zMH is a vector of length R+ 1 with

zMHr = yTW T
r

(
y − X̃β̃

)
/σ2 +

R∑
r′=1

Σ−1
rr′µ,

zMHR+1
= 1Tg

(
y − X̃β̃

)
/σ2.

If the (R×R) matrix T, Trr′ := tr (WrWr′), is not positive definite, Σ−1
MH , and conse-

quently ΣMH , may not be positive definite either. In this case, we consider the nearest

positive definite matrix to Σ−1
MH as Σ−1

MH instead. Subsequently, we use qMH (ρ, β1) =

φµMH ,ΣMH
(ρ, β1) as candidate-generating density in the Metropolis-Hastings algorithm.



4.A. Posterior sampling 109

Sampling from the conditional posterior for β̃

The (k − 1)-variate normal conditional posterior for β̃ in (4.12) can be directly sampled

from, with its mean vector and covariance matrix given by µ
β̃
= µβ2

+Σβ21
Σ−1
β11

(β1 − µβ1)

and Σ
β̃
= Σβ22

− Σβ21
Σ−1
β11

Σβ12
, where

µβ =
(
XTX

)−1
XTAρy =

(
µβ1

µβ2

)
sized

(
1× 1

(k − 1)× 1

)
, (4.23)

Σβ = σ2
(
XTX

)−1
=

(
Σβ11 Σβ12

Σβ21
Σβ22

)
sized

(
1× 1 1× (k − 1)

(k − 1)× 1 (k − 1)× (k − 1)

)
. (4.24)

Sampling algorithm

The full sampling algorithm for drawing from the posterior p
(
ρ, σ2,β|y

)
in higher-order

network autocorrelation models can be written as follows:

(1) Set starting values
(
ρ0, β0

1

)
,
(
σ2
)0
, and β̃

0
, e.g., to their maximum likelihood esti-

mates, and the number of draws N .

(2) Repeat steps (3) - (5) for i=1:N.

(3) Perform a Metropolis-Hastings step for (ρ, β1) with the target density

p
(
ρ, β1|σ2, β̃,y

)
and the candidate-generating density qMH (ρ, β1), i.e.,

• Draw from qMH (ρ, β1) until a draw
(
ρ̂, β̂1

)
satisfies

(
ρ̂, β̂1

)
∈ Θρ × R. Draw u

from the uniform distribution U (0, 1).

• Calculate the acceptance probability α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
, defined as

α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
:=

min

 p
(
ρ̂, β̂1|

(
σ2
)i−1

, β̃
i−1

,y
)
qMH

(
ρi−1, βi−1

1

)
p
(
ρi−1, βi−1

1 | (σ2)i−1 , β̃
i−1

,y
)
qMH

(
ρ̂, β̂1

) , 1
 .

• If u ≤ α
[(
ρi−1, βi−1

1

)
,
(
ρ̂, β̂1

)]
, set

(
ρi, βi

1

)
=
(
ρ̂, β̂1

)
.

• Else, set
(
ρi, βi

1

)
=
(
ρi−1, βi−1

1

)
.

(4) Draw
(
σ2
)i
, given

(
ρi, βi

1

)
and β̃

i−1
, from the inverse gamma distribution in (4.11).

(5) Draw β̃
i
, given

(
ρi, βi

1

)
and

(
σ2
)i
, from the (k − 1)-variate normal distribution with

mean µ
β̃
and covariance matrix Σ

β̃
as in (4.23), (4.24).
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Appendix 4.B Bayes factor computation

In the following, we show how the integral It =
∫
Θρt

ht (ρt) dρt in (4.16) can be effectively

approximated by its importance sampling estimate Ît,

Ît = N−1
N∑
i=1

ht (ρi)

qt (ρi)

= N−1
N∑
i=1

∣∣Aρi

∣∣ exp(−1
2 (ρi − µt)

T Σ−1
t (ρi − µt)

)
yTAT

ρi
MAρi

y
− g−k

2

qt (ρi)
, (4.25)

where ρi are draws from a suitable importance density qt (·). We specify qt (·) such that

it closely follows the integrand ht (ρt) but has heavier tails than the latter, which ensures

a reliable estimation of It.

As in Appendix 4.A, we approximate log
(
|Aρt

|
)
by a quadratic polynomial in ρt

at its maximum value, the origin. This results in a normal approximation of
∣∣Aρt

∣∣,
i.e.,

∣∣Aρt

∣∣ ≈ N
(
0R, T

−1
)
, where Trr′ := tr (WrWr′), r, r′ ∈ {1, ..., R}. In the case

that T is not positive definite, we use the nearest positive definite matrix to T in-

stead. The second term in the denominator of (4.25) already equals the kernel of the

probability density function of the normal distribution N (µt,Σt). Lastly, we also ap-

proximate the logarithm of the third term in ht (ρt) by a second-order Taylor poly-

nomial at its maximum. It follows that yTAT
ρt
MAρt

y
−(g−k)/2 ≈ N (µ3,Σ3), where

µ3 =
(
yTW T

· MW·y
)−1

yTMW·y, Σ3 =
(
yTW T

· MW·y
)−1

(
yTAT

µ3
MAµ3

y
)
/ (g − k) and(

yTW T
· MW·y

)
rr′

:= yTW T
r MWr′y,

(
yTMW·y

)
r
:= yTMWry. Thus, ht (ρt) can be ap-

proximated by a product of three multivariate normal densities that is multivariate nor-

mal itself, so qt (ρt) := φµISt
,ΣISt

(ρt)1Θρt
(ρt) c

−1
ISt

, cISt :=
∫
Θρt

φµISt
,ΣISt

(ρt) dρt, with

ΣISt =
(
T +Σ−1

t +Σ−1
3

)−1
, µISt

= ΣISt

(
Σ−1
t µt +Σ−1

3 µ3

)
.

Calculating Ît directly might result in underflow in R, which is why we show how to

compute its logarithm only, next. We can write

log
(
Ît
)
= log

(
N−1

N∑
i=1

ht (ρi)

qt (ρi)

)
= − log (N) + log

(
N∑
i=1

ht (ρi)

qt (ρi)

)

= − log (N) + log

(
N∑
i=1

exp

(
log

(
ht (ρi)

qt (ρi)

)
+ d− d

))

= − log (N)− d+ log

(
N∑
i=1

exp

(
log

(
ht (ρi)

qt (ρi)

)
+ d

))

= − log (N)− d+ log

(
N∑
i=1

exp

(
log (|Aρi

|)− g − k

2
log
(
yTAT

ρi
MAρi

y
)

−1

2
(ρi − µt)

T Σ−1
t (ρi − µt)

− log

(
φµISt

,ΣISt
(ρi)1Θρt

(ρi)

cISt

)
+ d

))
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≈ − log (N)− d+ log

(
N∑
i=1

exp

(
log (|Aρi

|)− g − k

2
log
(
yTAT

ρi
MAρi

y
)

−1

2
(ρi − µt)

T Σ−1
t (ρi − µt)

− log

φµISt
,ΣISt

(ρi)1Θρt
(ρi)

N∑
i=1

1Θρt
(ρi)

N

+ d




= −2 log (N) + log

(
N∑
i=1

1Θρt
(ρi)

)
− d

+ log

(
N∑
i=1

exp

(
log (|Aρi

|)− g − k

2
log
(
yTAT

ρi
MAρi

y
)

−1

2
(ρi − µt)

T Σ−1
t (ρi − µt)− log

(
φµISt

,ΣISt
(ρi)1Θρt

(ρi)
)
+ d

))
,

where ρi are draws from the unconstrained importance density N
(
µISt

,ΣISt

)
and d is an

auxiliary constant, e.g., d = −g−k
2 min

i∈{1,...,N}

(
yTAT

ρi
MAρi

y
)
, which is added to prevent

the marginal likelihood to become too small to be distinguished from zero in R. The

auxiliary constant d is set in advance after generating the N draws from the unconstrained

importance density N
(
µISt

,ΣISt

)
first.
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Chapter 5

A discrete exponential family

model for network autocorrelated

count data

Abstract

We introduce a discrete exponential family model for analyzing network autocorrelated

count data. In our approach, we model the joint distribution for the counts using a dis-

crete exponential family specified in terms of sufficient statistics of a count configuration.

We propose several sufficient statistics representing key structural properties of a count

configuration, such as lower-order moments, zero inflation, and network autocorrelation.

As such, the approach does not rely on any distributional assumptions on the marginal

or conditional counts and is flexible enough to model a wide range of count patterns. We

provide algorithms to simulate count configurations from the model and to perform max-

imum likelihood-based inference, along with goodness-of-fit measures assessing the model

fit to observed data based on simulated count configurations. Finally, we illustrate our

model by re-analyzing the sources of reported homicide counts in 343 neighborhoods in

Chicago, Illinois.

This chapter will be submitted for publication as: Dittrich, D., Butts, C.T., Leenders, R.Th.A.J., and
Mulder, J. A discrete exponential family model for network autocorrelated count data.
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5.1 Introduction

Individual behavior, corporate decisions, or entries intro armed conflict do not happen in

vacuum. Instead, individuals, firms, and countries interact and thereby influence as well

as are influenced by each other. Out of the numerous models that address effects of such

social interaction on a variable of interest, the network autocorrelation model (Ord, 1975)

has been the flagship model for incorporating global network autocorrelation in cross-

sectional data. It is also known as spatial effects model (Doreian, 1980), network effects

model (Dow et al., 1982), mixed regressive-spatial autoregressive model (Anselin, 1988),

or spatial lag model (Anselin, 2002), and has been widely applied in a variety of fields,

such as criminology (Tita & Radil, 2011), ecology (McPherson & Nieswiadomy, 2005),

economics (Conway et al., 2010), geography (Dall’erba, 2005), and sociology (Mizruchi &

Stearns, 2006).

For the moment, assume that we observed values for a variable of interest for g actors

in a network, who may be tied to each other based on a given influence mechanism,

e.g., friendship. The network autocorrelation model expands a standard linear regression

model and accommodates potential network autocorrelation, i.e., interdependence of the

observations for the actors across the network, by including an additional endogenous

covariate. For each actor in the network, the additional covariate consists of a weighted

sum of the values for the variable of interest for this actor’s neighbors, i.e., other actors

in the network this actor is tied to. The associated regression coefficient is known as the

network autocorrelation parameter ρ. Thus, the network autocorrelation model is given

by

y = ρWy +Xβ + ε (5.1)

⇔ y = (Ig − ρW )−1 (Xβ + ε) , (5.2)

where y ∈ Rg contains the values for a dependent variable of interest for the g actors,

X ∈ Rg×k comprises values for the g actors on k covariates, β ∈ Rk is a vector of regression

coefficients, ε ∈ Rg is a vector of error terms, Ig ∈ Rg×g denotes the identity matrix, and

W ∈ Rg×g is an a priori defined connectivity matrix, specifying the influence relationships

between the actors; the larger the entry Wij , the larger the influence of actor j on actor i,

where we exclude relationships from an actor to himself, i.e., Wii = 0 for all i ∈ {1, ..., g}.
The scalar network autocorrelation parameter ρ quantifies the magnitude of the network

autocorrelation on the variable of interest in the network defined by W . Under regularity

conditions, the matrix inverse in the reduced form of the model in (5.2) can be rewritten

using the so-called “Leontief expansion” as (Ig − ρW )−1 = Ig + ρW + ρ2W 2 + ... (see

e.g., Griffith, 1979). Consequently, in the network autocorrelation model, a change in one

actor’s covariate value does not only affect this actor’s neighbors’ values for a variable of

interest but potentially, depending on the structure of W , also those for all other actors

in the network, with the impact on the variable of interest decreasing with the network

distance from the actor. Such a spillover pattern is also called a global spillover (Anselin,

2003; Elhorst, 2010; LeSage, 2014b).
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Despite the usefulness of the network autocorrelation model, an important limitation

of the model is that it cannot be directly applied to count data, which would, among

other issues, lead to predicted non-integer and potentially negative values for a variable of

interest. As a potential ad-hoc remedy, some authors suggested to transform the counts

into an approximately normal variable and then fit a network autocorrelation model to

the transformed variable (LeSage & Pace, 2008; Quddus, 2008). Often though, count data

cannot be appropriately transformed to become approximately normal, e.g., when model-

ing rare counts such as violent crimes or the number of sexual partners; merely transform-

ing counts is of limited applicability in such complex real-life settings and also does not

substantially address the problem of how to adequately deal with network autocorrelated

counts. Hence, any prudent model for network autocorrelated count data has to forfeit a

direct functional relationship between the dependent variable of interest and the covariates

while retaining the network autocorrelation model’s global spillover pattern.

To be sure, a number of models for dealing with count data building on global spillover

patterns have been proposed in the literature. McMillen (1992) was the first to provide an

extension of the network autocorrelation model for binary data and LeSage (2000) further

refined the method to allow modeling of heteroskedastic data.1 More recently, Lambert et

al. (2010) and Glaser (2017) developed spatial autoregressive count models for Poisson and

negative binomial data. In both approaches, the conditional expected count for each actor

is modeled as a function of the actor’s neighbors’ counts and actor covariates. Castro et al.

(2012) and Bhat et al. (2014) considered models that are characterized by the counts being

driven by a Gaussian latent variable that is assumed to follow the network autocorrelation

model in (5.1). Subsequently, in all of the four latter approaches the authors constructed a

pseudo-likelihood function by multiplying suitable conditional probability mass functions

and maximized the resulting product to obtain a maximum pseudo-likelihood estimate

of the model parameters. However, these maximum pseudo-likelihood estimates ignore

dependencies between the conditional probability mass functions and cannot adequately

capture the dependence in the data when network autocorrelation is strong. Liesenfeld et

al. (2016) presented a model for spatially correlated Poisson and negative binomial data

similar to the ones in Castro et al. (2012) and Bhat et al. (2014) but additionally provided

a numerically accurate, albeit computationally very expensive, algorithm for full maxi-

mum likelihood estimation of their model. In contrast, Bhati (2008) took a rather differ-

ent approach when modeling spatially correlated counts by introducing a semi-parametric

estimator based on a generalized cross-entropy formulation.

In this chapter, we propose a discrete exponential family model for network autocor-

related count data that unifies several ideas from the literature. In our proposed model,

we directly model the joint distribution for all actor counts using a discrete exponential

family specified by its sufficient statistics. These sufficient statistics are specified such to

represent structural properties of a joint count configuration and that are characteristic

of underlying processes believed to have generated an observed count configuration. For

1Martinetti & Geniaux (2016), McMillen (2013), and Wilhelm & Godinho de Matos (2015) implemented
estimation procedures for the probit network autocorrelation model in R, while LeSage (1999) did so in
MATLAB.
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example, under network autocorrelation, we would expect neighboring actors to exhibit

fairly similar counts, which would be accordingly captured by a sufficient statistic embody-

ing network autocorrelation. There are several advantages to using a discrete exponential

family for the joint count distribution for the actors. First, our model naturally incorpo-

rates global spillover patterns across the network. Second, we do not (have to) make any

restrictive and potentially limiting distributional assumptions on the conditional counts.

Third, by choosing appropriate sufficient statistics, our model is flexible enough to ac-

commodate highly skewed raw count distributions as well as count configurations exhibit-

ing excess zeros, making it particularly appealing when analyzing rare counts or events.

Fourth, we are able to easily simulate joint count configurations from the model and to

compute accurate simulation-based maximum likelihood estimates, providing the basis for

inference in the model. Hence, our model permits for principled inference in the presence

of both strong network autocorrelation and complex real-life data structures going well

beyond standard Poisson and negative binomial specifications.

We proceed as follows. In the next section, we motivate and describe our discrete expo-

nential family model for network autocorrelated count data. In Section 5.3, we introduce

several sufficient statistics representing a range of structural count properties and show

how to interpret them. In Section 5.4, we present simulation and maximum likelihood

estimation procedures for the model as well as useful measures for assessing model fit to

observed data. We apply our model to re-analyze the drivers of homicide counts registered

in 343 neighborhoods in Chicago, Illinois, in Section 5.5. We conclude this chapter with a

short discussion of our main findings and highlight directions for fruitful future research

within our proposed framework in Section 5.6.

5.2 Model definition

Let us consider g actors and an associated g-variate random count variable of interest Y

that can take values in {0, ...,m− 1}g. We denote this set of attainable count configura-

tions by Y := {0, ...,m− 1}g and define an attainable count as an integer between 0 and

m−1. Here, the upper bound m−1 for the maximum count each actor can have needs to

be chosen in advance, such that the set of attainable count configurations is large enough

to contain all likely count configurations.

Under this general framework, we are interested in modeling a joint actor count con-

figuration while accounting for exogenous and endogenous mechanisms that have suppos-

edly generated the count configuration. For this, we use a discrete exponential family

that specifies the joint distribution for the counts precisely in terms of these potentially

count-generating mechanisms. In the literature, the discrete exponential family has been

extensively employed, e.g., to model various forms of relational data through exponential

random graph models (Holland & Leinhardt, 1981; Krivitsky, 2012; Krivitsky & Butts,

2017), to define probabilistic graphical models (Lauritzen, 1996), or to control the ar-

rangement of “objects” into “locations” in generalized location systems (Butts, 2007). As

we can reformulate the modeling task in this chapter as assigning actors to attainable
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counts, our approach is closely related to the one in generalized location systems and we

will repeatedly draw parallels between the two.

Using notation similar to that of Butts (2007) and Hummel et al. (2012), we define the

probability of the random count variable Y occupying a particular count configuration y

as

p (Y = y|θ) :=
exp

(
θT t (y)

)
κ (θ)

,y ∈ Y, (5.3)

where θ is a vector of real-valued parameters, t (y) is a vector of sufficient statistics, and

κ (θ) :=
∑

y′∈Y exp
(
θT t (y′)

)
denotes a normalizing constant, which ensures that the

probabilities of all attainable count configurations in (5.3) sum to unity. The specification

in (5.3) is a fairly general one, where the sufficient statistics can be seen as summary

measures of structural properties of a joint count configuration. In practice, the sufficient

statistics are chosen such to represent mechanisms that are hypothesized to have generated

and can explain an observed count configuration, e.g., why some actors have zero counts,

why others exhibit high counts, or why certain actor counts tend to cluster. The parameter

θi then weights the relative importance of the corresponding sufficient statistic ti (y).

5.3 Model specification and interpretation

In this section, we first motivate the choice for specific sufficient statistics embodying a

variety of common structural properties of a count configuration that govern the count

distribution, before we show how to properly interpret the corresponding model parame-

ters.

5.3.1 Specification of sufficient statistics

Network autocorrelation

We include network autocorrelation to our model by proposing a sufficient statistic, orig-

inally introduced slightly differently in Butts (2007), that captures the tendency of con-

nected actors to show similar (or different) counts. Let W ∈ Rr×g×g be an array of r a pri-

ori defined connectivity matrices specifying the influence relationships between the actors,

where Wijk amounts to the influence of actor k on actor j based on influence mechanism

i. Moreover, let R ∈ Rm×r be a matrix containing values for the m attainable counts

on r count attributes, i.e., values that are functions of the counts. For example, R could

simply contain the attainable counts (0, ...,m− 1) in each of its r columns. Alternatively,

when trying to account for the shape of the raw count distribution, R could also contain

a reference count distribution’s percentiles. We set the elements of the vector of sufficient

statistics tNAC (y) :=
(
tNAC
1 (y) , ..., tNAC

r (y)
)
representing network autocorrelation to

tNAC
i (y) := −

g∑
j=1

g∑
k=1

Wijk

∣∣Ryji −Ryki

∣∣ , i ∈ {1, ..., r} , (5.4)
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where yj is the count for actor j and Ryji is the value for this count’s i-th attribute. We

denote the corresponding parameter vector by ρ ∈ Rr and negate the sum in (5.4) such that

a positive parameter value leads to positive network autocorrelation.2 In order to illustrate

the behavior of the sufficient statistics in (5.4), consider a network of urban neighborhoods

equipped with a single binary adjacency matrix W , i.e., Wjk = 1 if neighborhood j

and k are adjacent and zero otherwise, and R = (0, ...,m− 1). In this case, similar

counts between adjacent neighborhoods result in relatively larger (less negative) values

for the (scalar) sufficient statistic, which would imply positive network autocorrelation

across the neighborhood network. Equivalently, more divergent counts between adjacent

neighborhoods would lead to smaller (more negative) values for the sufficient statistic and

reveal negative network autocorrelation. Accordingly, the magnitude of ρ indicates the

importance of network autocorrelation as underlying mechanism in explaining an observed

count configuration. Lastly, the specification in (5.4) can include several connectivity

matrices, e.g., based on geographic adjacency and social similarity between neighborhoods,

resulting in multiple network autocorrelations and adding to the model’s flexibility.

Covariate modeling

In addition to network autocorrelation, our model also needs to incorporate count homo-

or heterogeneity based on exogenous actor attributes. We model such effects by sufficient

statistics that are based on products of actor and count attributes.3 Let X ∈ Rg×q contain

values for the g actors on q actor attributes (possible including columns of ones) and let

Q ∈ Rm×q carry values for the m attainable counts on q count attributes. We define the

elements of the vector of sufficient statistics tCHG (y) :=
(
tCHG
1 (y) , ..., tCHG

q (y)
)
reflecting

count homo- or heterogeneity based on exogenous actor attributes as

tCHG
i′ (y) :=

g∑
j=1

Qyji′Xji′ , i
′ ∈ {1, ..., q} , (5.5)

and we denote the corresponding parameter vector by β ∈ Rq. For example, consider

again a network of urban neighborhoods with Q·i′ = (0, ...,m− 1), where Q·i′ denotes the

i′-th column of Q, and let X ·i′ comprise values for a resource deprivation index of the

neighborhoods. Then, ceteris paribus, βi′ > 0 implies that more resource deprived neigh-

borhoods are more likely to exhibit higher counts for a variable of interest, e.g., homicide

counts, and less resource deprived ones are accordingly less likely so.

If one or several columns of X do not vary across actors but are constant, i.e., equal

to a vector of ones, the sufficient statistics in (5.5) can also be used to capture basic en-

dogenous forces that gave rise to an observed count configuration. These basic endoge-

nous forces can be seen as control variables that govern the baseline shape of the count

2The sufficient statistics in (5.4) also bear resemblance to Geary’s c (Geary, 1954), a well-known measure
of spatial autocorrelation, and more remotely to a sufficient statistic in Krivitsky (2012) that models
mutuality in directed valued exponential random graph models.

3Since the probability mass function in (5.3) is invariant up to additive constants, any sufficient statistic
that is invariant over Y, e.g., solely based on actor attributes such as age, gender, etc., can be left out
(Butts, 2007). Instead, all relevant sufficient statistics need to link actor and count attributes.
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distribution notwithstanding other, more substantive, effects based on network autocor-

relation or exogenous actor attributes, which may not always be available. We show how

to attain some control over basic properties of the count configuration, such as the mean,

the variance, and the sparsity of the counts, next. First, we can perfectly model the mean

count of a count configuration by setting a column of Q to (0, ...,m− 1), leading to a

sufficient statistic that is the sum of the actor counts, tAVG (y) :=
∑g

j=1 yj . Second, we

can reach partial control over the variance of the counts by taking a column of Q to be

(0a, ..., (m− 1)a) , a 6= 1, resulting in a sufficient statistic of the form tVAR (y) =
∑g

j=1 y
a
j .

We have found experimentally that choosing a = 2 typically appropriately controls the

variance of the counts. Third, we can capture count sparsity, i.e., the tendency of count

configurations to have excess zeros, by specifying a column of Q as the binary vector

(1, 0, ..., 0). This produces a sufficient statistic tZIF (y) :=
∑g

j=1 1 (yj = 0), which simply

equals the number of zero counts in a count configuration.

Taken together, the sufficient statistics in (5.4) and (5.5) can be substituted into (5.3)

to fully determine the probability of observing a count configuration y, given by

p (Y = y|θ) =
exp

(
θT t (y)

)
κ (θ)

,y ∈ Y,

=
exp

(
(ρ,β)T

(
tNAC (y) , tCHG (y)

))
κ (θ)

=

exp

(
−

r∑
i=1

ρi
g∑

j=1

g∑
k=1

Wijk

∣∣Ryji −Ryki

∣∣+ q∑
i′=1

βi′
g∑

j=1
Qyji′Xji′

)
κ (θ)

, (5.6)

where θ := (ρ,β) and t (y) :=
(
tNAC (y) , tCHG (y)

)
.

5.3.2 Interpretation of model parameters

In contrast to the standard network autocorrelation model, a parameter θi in the discrete

exponential family model in (5.6) cannot be interpreted as the effect that a one-unit change

in an actor attribute has on the expected actor counts in the network. Instead, the most

direct way to interpret parameters in the model is in terms of the probability ratio of two

count configurations y,y′ ∈ Y. In this case,

p (Y = y′|θ)
p (Y = y|θ)

=
exp

(
θT t (y′)

)
κ (θ)

κ (θ)

exp
(
θT t (y)

) = exp
(
θT
(
t
(
y′)− t (y)

))
. (5.7)

Hence, the log-odds of observing count configuration y′ rather than count configuration

y increase by θi for a one-unit change in the associated sufficient statistic.4 While (5.7)

gives a clear quantitative interpretation of the model parameters in terms of relative

4As the normalizing constant κ (θ) implicitly depends on X, the probability ratio in (5.7) involving
a change in X would depend on the ratio of the corresponding intractable normalizing constants and θi
could not be interpreted in the same way.



120 Chapter 5. Network autocorrelated count data modeling

count configuration probabilities and changes in the sufficient statistics, the changes in

the sufficient statistics are ultimately a result of changes in the counts themselves. Thus,

it is more intuitive and insightful to consider the effect that a model parameter has on the

probability ratio in (5.7) based on increments, or reductions, in the counts. Let y ∈ Y be

a count configuration in which actor j has count k. Using (5.7) and conditional on the

counts for the remaining actors, we can express the conditional log-odds of actor j having

an attainable count l instead as

log

(
p
(
Yj = l|Y −j = y−j ;θ

)
p
(
Yj = k|Y −j = y−j ;θ

)) = log

(
p
(
Yj = l,Y −j = y−j |θ

)
p
(
Yj = k,Y −j = y−j |θ

) p (Y −j = y−j |θ
)

p
(
Y −j = y−j |θ

))

= −
r∑

i=1

ρi

g∑
j′=1

(Wijj′ +Wij′j)
(∣∣∣Rli −Ryj′ i

∣∣∣− ∣∣∣Rki −Ryj′ i

∣∣∣)+ q∑
i′=1

βi′Xji′ (Qli′ −Qki′) , (5.8)

where Y −j ,y−j denote all elements of Y and y, respectively, other than element j.

5.4 Model inference

5.4.1 Simulation

In order to perform maximum likelihood-based inference in the model, it is essential

to be able to simulate count configurations from the model given a particular param-

eter value θ. Opposed to the standard network autocorrelation model, it is not pos-

sible to simulate count configurations from the model directly; however, count config-

urations can be straightforwardly simulated using the Metropolis algorithm (Metropolis

et al., 1953). In the Metropolis algorithm, starting from an initial count configuration

y0 ∈ Y, a candidate count configuration ŷ ∈ Y for the target distribution p (Y |θ) is

proposed, first. Next, the candidate count configuration ŷ is accepted with probability

α := min
(
1, p (Y = ŷ|θ) /p

(
Y = y0|θ

))
. If the candidate count configuration is accepted,

ŷ becomes the next element in the sequence of simulated count configurations, i.e., y1 = ŷ,

else y1 = y0. This so-called Metropolis step is repeated a large number of times until the

desired number of draws of count configurations has been obtained. These draws can then

be, possibly after an appropriate number of initial draws, regarded as realizations from

the target distribution p (Y |θ) itself.
Following similar simulation procedures for related discrete exponential family models

(Butts, 2007; Snijders, 2002), we form a candidate count configuration ŷ ∈ Y, given count

configuration y ∈ Y, by assigning one randomly chosen actor j a random attainable count

k, i.e., ŷj = k, ŷ−j = y−j . In each Metropolis step, the corresponding acceptance prob-

ability can then be easily calculated using (5.8). However, as the described Metropolis

algorithm often starts with a random count configuration and at most one actor’s count is

changed in each step of the algorithm, the first simulated count configurations are typically

highly dependent on the initial count configuration and not representative of the target

distribution p (Y |θ). Thus, an initial number of draws, known as the burn-in (Gelman et
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al., 2003), is usually discarded.5 Moreover, the sequence of simulated count configurations

may be sub-sampled, or thinned, i.e., every k − 1 out of k draws may be discarded, due

to limitations in computer memory and storage, or due to intending to reduce the auto-

correlation in the draws, e.g., when aiming to obtain (nearly) independent realizations.

In general though, thinning does not improve statistical efficiency (Geyer, 1992; Link &

Eaton, 2012; A. B. Owen, 2017).

5.4.2 Estimation

In this section, we present techniques for maximum (pseudo-)likelihood estimation of

the model. While the availability of the full likelihood function in (5.3) readily per-

mits likelihood-based inference in theory, the intractability of the normalizing constant

κ (θ) makes direct evaluation or maximization of the likelihood function numerically in-

feasible. One way to bypass this issue is to construct a pseudo-likelihood function de-

fined as the product of the conditional likelihoods and to maximize this product to ob-

tain the maximum pseudo-likelihood estimate of the model parameters. The maximum

pseudo-likelihood estimator, however, is only identical to the maximum likelihood esti-

mator in case of no network autocorrelation and has been shown to be generally inferior

to the maximum likelihood estimator in structurally similar exponential random graph

models (Desmarais & Cranmer, 2012b; Robins, Pattison, et al., 2007; van Duijn et al.,

2009). Nevertheless, we first establish the model’s maximum pseudo-likelihood estima-

tor, which will serve as an initial approximation to the maximum likelihood estimator.

Subsequently, we describe a simulation-based stepping algorithm that, starting from the

maximum pseudo-likelihood estimate, iteratively moves towards the maximum likelihood

estimate.

Maximum pseudo-likelihood estimation

As explained in the previous paragraph, we first need to specify the conditional likelihood

for an actor given the counts for all other actors in the network. Following Butts (2007),

the conditional likelihood for actor j is given by

p
(
Yj = yj |Y −j = y−j ;θ

)
=

(
m−1∑
k=0

exp
(
θT
(
t
(
j,ky

)
− t (y)

)))−1

, (5.9)

where j,ky denotes a vector with j,kyj = k,j,k y−j = y−j , and the differences in the

sufficient statistics in (5.9) can be efficiently evaluated using (5.8). Hence, the resulting

pseudo-likelihood function equals

p̃ (Y = y|θ) :=
g∏

j=1

p
(
Yj = yj |Y −j = y−j ;θ

)
,

5An informal but powerful empirical way to check for the algorithm’s convergence is to inspect the
trace plots of the sufficient statistics of the simulated count configurations. An overview on more formal
convergence diagnostics can be found in Cowles & Carlin (1996).
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and the maximum pseudo-likelihood estimate θ̃ is taken to be the maximizer of this

function, which can be numerically obtained using standard optimization techniques such

as Newton’s method or trust region optimization (Nocedal & Wright, 2006).

Maximum likelihood estimation

Given that the maximum likelihood estimate θ̂ exists, it is a well-known result that

Eθ̂ [t (Y )] = t
(
yobs

)
, where t

(
yobs

)
refers to the vector of observed sufficient statistics

(Barndorff-Nielsen, 1978). This results provides the theoretical justification for a heuristic

approach for computing the maximum likelihood estimate in the model, which is based on

simulating count configurations given an initial parameter value and successive refinement

of the initial value by comparing the simulated sufficient statistics to the observed ones.

For this, we rely on the stepping algorithm from Hummel et al. (2012) that has been origi-

nally introduced for maximum likelihood estimation of exponential random graph models.

In short, we set an arbitrary parameter value θ0, consider the difference between the

log-likelihoods of the observed count configuration yobs given θ and θ0, respectively, and

subsequently maximize this difference over θ. However, due to the appearance of the

intractable normalizing constants κ (θ) and κ
(
θ0
)
in the log-likelihood difference, direct

evaluation and maximization is impossible. Instead, we use an analytic law-of-large num-

bers approximation provided by Geyer (1992) and given by

log
(
p
(
Y = yobs|θ

))
− log

(
p
(
Y = yobs|θ0

))
≈
(
θ − θ0

)T
t
(
yobs

)
− log

(
1

n

n∑
i=1

exp
((

θ − θ0
)T

t (yi)
))

,
(5.10)

where y1, ...,yn are simulated count configurations given θ0. Regrettably, the approxima-

tion in (5.10) only works well if θ is “close” to θ0 (Geyer, 1992; Hummel et al., 2012).

Worse, if the vector of observed sufficient statistics t
(
yobs

)
is not contained in the convex

hull of the vectors of simulated sufficient statistics t
(
y1
)
, ..., t (yn), the maximum likeli-

hood estimate θ̂ does not even exist (Desmarais & Cranmer, 2012a; Hunter et al., 2012).6

Before describing a stepping algorithm that iteratively shifts θ0 closer to θ̂, the approx-

imation in (5.10) itself can be improved by replacing it with a log-normal approximation

(Hummel et al., 2012). This log-normal approximation is based on a normal approxima-

tion of the vector of sufficient statistics t (Y ) ∼ N (m0,Σ0), where m0 and Σ0 are the

mean vector and variance-covariance matrix of t (Y ) given θ0, respectively. Hence, (5.10)

can be rewritten as

log
(
p
(
Y = yobs|θ

))
− log

(
p
(
Y = yobs|θ0

))
≈
(
θ − θ0

)T (
t
(
yobs

)
− m̂0

)
− 1

2

(
θ − θ0

)T
Σ̂0

(
θ − θ0

)
,

(5.11)

6The is.inCH() function from the ergm package in R (Handcock et al., 2017; Hunter et al., 2008) can
be used to check whether a vector lies in the closure of the convex hull of a set of vectors.
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where m̂0 and Σ̂0 are the sample estimators of m0 and Σ0, respectively, and (5.11) is

maximized by θ̂ = θ0 + Σ̂−1
0

(
t
(
yobs

)
− m̂0

)
. Thus, replacing (5.10) by (5.11) not only

provides an improvement in terms of accuracy of the maximum likelihood estimate but

also leads to a reduction in computation time, as it eliminates the need for a numerical

optimization procedure.

In the actual stepping algorithm, in each iteration t of the algorithm, the vector of

observed sufficient statistics t
(
yobs

)
is moved towards the sample mean of the simulated

sufficient statistics t
(
y1
)
, ..., t (yn) given θt by replacing t

(
yobs

)
with a convex combina-

tion of the two in the log-likelihood difference in (5.11). Hummel et al. (2012) set a safety

margin, 1.05, and chose the weight γt ∈ (0, 1] in this convex combination adaptively as the

largest value such that 1.05γtt
(
yobs

)
+
(
1− 1.05γt

)
n−1

∑n
i=1 t

(
yi
)
is in the convex hull

of t
(
y1
)
, ..., t (yn).7 Subsequently, in each iteration the adjusted log-likelihood difference

is maximized over θ. Once γt = 1 for two consecutive iterations in the algorithm, the

algorithm is terminated and the final iterated maximum θt+1 is taken as the maximum

likelihood estimate. The algorithm can be summarized in six steps as follows:

(1) Set t to zero and choose θ0, e.g., as the maximum pseudo-likelihood estimate θ̃.

(2) Simulate count configurations y1, ...,yn given θt.

(3) Compute the sample mean m̂t of the simulated sufficient statistics,

m̂t = n−1
∑n

i=1 t
(
yi
)
.

(4) Choose the largest γt ∈ (0, 1] such that 1.05γtt
(
yobs

)
+
(
1− 1.05γt

)
m̂t lies in the

convex hull of t
(
y1
)
, ..., t (yn).

(5) Replace t
(
yobs

)
with γtt

(
yobs

)
+
(
1− γt

)
m̂t in (5.11) and maximize. Set θt+1 =

θt + Σ̂−1
t

(
t
(
yobs

)
− m̂t

)
, where Σ̂t = (n− 1)−1∑n

i=1

(
t
(
yi
)
− m̂t

) (
t
(
yi
)
− m̂t

)T
.

(6) If γt = γt−1 = 1 (for t > 0), terminate and return the (approximate) maximum

likelihood estimate θ̂ = θt+1. Else, set t = t+ 1 and return to step (2).

After the maximum likelihood estimate θ̂ has been obtained, we draw a final sample

of simulated count configurations y1, ...,yn given θ̂ to estimate the standard error of θ̂.

The standard error consists of two components. First, the typical error resulting from

fluctuations in the maximum likelihood estimate’s sampling distribution, and second, the

error introduced by approximating the log-likelihood difference in (5.11).

Relying on standard asymptotic theory, the first error component can be computed

using the inverse of the model’s Fisher information matrix I (θ), which itself can only

be approximated by the variance-covariance matrix of the simulated count configurations

y1, ...,yn given θ̂, Σ̂t+1.
8 However, as is the case for exponential random graph models, it

has not yet been shown that such asymptotic arguments can be legitimately employed for

approximating the first error component (Butts, 2007). Hummel et al. (2012) and Hunter

7More conservative, i.e., larger, values for the safety margin than 1.05 can be chosen if the iterated
maximum θt gets stuck, while values between 1 and 1.05 may lead to a faster convergence of the algorithm.

8More precisely, the approximate first error component equals the square root of the diagonal of Σ̂−1
t+1.
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& Handcock (2006) provided details on the computation of the second error component,

which we experimentally found to be negligible in magnitude compared to the first error

component when drawing sufficiently large samples of count configurations in step (2) of

the above algorithm. Alternatively, approximate standard errors can also be obtained by

running a parametric bootstrap procedure, i.e., by taking the standard deviation of max-

imum likelihood estimates of repeatedly simulated count configurations given θ̂, which

naturally accommodates both error components but requires longer computation times.

5.4.3 Goodness-of-fit

Once the maximum likelihood estimate and its standard error are determined, it remains

to assess how well the estimated model fits an observed count configuration. Traditional

measures for assessing (relative) goodness-of-fit such as the AIC (Akaike, 1974), the BIC

(Schwarz, 1978), or chi-squared tests (Pearson, 1900) cannot be adequately used in our

proposed model for one or several of the following reasons. First, the assumptions under-

lying the derivation of all of these measures are violated here, as in general, the counts are

not independent and identically distributed across the network. Second, network autocor-

related data do not have a clear notion of sample size (Berger et al., 2014), which can lead

to ambiguous conclusions depending on the definition of effective sample size adopted.

Third, evaluating the model’s likelihood function directly is infeasible and hinders practi-

cal applicability of the AIC and the BIC. While several extensions of the above measures

for correlated data exist, we instead turn to graphical goodness-of-fit procedures based on

the predictive count distribution that are straightforward to implement and interpret, and

which provide a much richer picture of goodness-of-fit than scalar summary measures.

By construction of the stepping algorithm in Section 5.4.2, simulated sufficient statis-

tics given the maximum likelihood estimate will center around the observed sufficient

statistics. At the same time, some estimated models may still lead to simulated count

configurations that are vastly different from the observed count configuration and that

typically exhibit a very high number of minimum and maximum attainable counts. This

phenomenon is well-known in exponential random graph models and termed degeneracy

(Handcock, 2003). In exponential random graph models, degeneracy problems largely

stem from including certain sufficient statistics such as triangle and k-star counts (Krivit-

sky, 2012) but we have not found that using any of the sufficient statistics in Section 5.3.1

systematically results in degeneracy of our model.

If the estimated model is deemed non-degenerate, sufficient statistics that have not

been added to the model are not guaranteed to be well-reproduced by the simulated count

configurations. However, if these unmodeled sufficient statistics are recovered well, there is

evidence that the modeled structural properties are the only ones necessary to adequately

describe the count generating process (Robins, Snijders, et al., 2007). Else, this suggests

refinements to the model, e.g., by including more parameters. In the following, we pro-

pose two (sets of) sufficient statistics for assessing model fit that serve as independent

goodness-of-fit measures: the raw count distribution, and count 2-stars.
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Actor 1
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Actor 4

Actor 5

Count 1
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Figure 5.1 Hypothetical count configuration for five actors (A) in a network, where dashed
lines indicate ties between actors. Here, the neighbor count 2-stars are (A1, A2) and (A3, A5).

First, we would like our estimated model to properly capture the observed raw count

distribution, irrespectively of the dependence of the counts. Accordingly, we denote

the number of actors in a network having count i by the sufficient statistic tCi (y) :=∑g
j=1 1 (yj = i) , i ∈ {0, ...,m− 1}. Second, we wish our model to appropriately reveal

potential clustering tendencies in the counts. While the sufficient statistics embodying

network autocorrelation in (5.4) are designed to reflect such clustering tendencies for con-

nected actors, we introduce a set of count 2-star sufficient statistics that check if the

model can reproduce various other forms of clustering in the data. We define a gen-

eral count 2-star as a pair of actors that have the same count, adapting the definition

of a general event 2-star in exponential random graph models for affiliation networks

in Agneessens & Roose (2008). Since the total number of general count 2-stars in a

count configuration is a function of the raw count distribution, modeling the number of

general count 2-stars and the raw count distribution is equivalent though.9 Instead, we

consider more specific count 2-stars that also take network properties and/or actor at-

tributes into account. We define a neighbor count 2-star as a pair of tied actors, based

on connectivity mechanism i, that have the same count. We set the associated suffi-

cient statistic to the total number of neighbor count 2-stars in a count configuration,

i.e., t2∗Wi (y) :=
∑g

j=1

∑g
k=1 1 (Wijk > 0)1 (yj = yk) , i ∈ {1, ..., r}. As such, it captures

rather rigidly count clustering tendencies of tied actors and we have found that it only

mildly correlates with the sufficient statistic tNAC
i (y) representing network autocorrela-

tion.10 Figure 5.1 visualizes neighbor count 2-stars for a simple hypothetical count and

network configuration. Similarly, we can define attribute count 2-stars that include actor

attributes and measure count clustering based on actor attributes, e.g., by counting the

number of pairs of actors that not only have the same count but also the same covariate

value.

9The total number of general count 2-stars in a count configuration can be written as t2* (y) :=∑m−1
i=0

(
tCi (y)

2

)
.

10We ignored the strength of actor ties in the definition of t2∗Wi (y), which could be easily modeled
though by replacing 1 (Wijk > 0) with Wijk.
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Figure 5.2 Spatial distribution of homicide counts for the years 1989 through 1991 across
the 343 Chicago neighborhood clusters.

5.5 Application: Homicide in Chicago neighborhoods

In this section, we illustrate our model by reanalyzing homicide data for the city of Chicago,

Illinois.11 The data consist of aggregated homicide counts for the years 1989 through 1991

and socio-economic variables for 343 neighborhood clusters taken from the 1990 census.

These neighborhood clusters are composed of the city’s 865 census tracts that are geo-

graphically adjacent and socially similar, resulting in fairly demographically-homogenous

neighborhood clusters (Morenoff et al., 2001). Figure 5.2 shows the spatial distribution

of the homicide counts across the 343 neighborhoods, revealing that neighborhoods with

similar homicide counts tend to cluster in space.12

Bhati (2008) employed a generalized Poisson regression model using four socio-economic

variables to explain the spatial patterns of homicide across the 343 neighborhoods. These

were, first, a neighborhood resource deprivation index (RDI); second, the residential sta-

bility of a neighborhood (RST); third, young men aged 15 to 25 as a proportion of a

neighborhood’s total population (MEN); fourth, the logarithm of a neighborhood’s pop-

ulation (POP). As expected, all of these variables were found to be positively associated

with homicide. In addition, Bhati (2008) considered more extended models that hinted

at overdispersion, compared to a Poisson specification, and spatial autocorrelation in the

counts.

11The data can be obtained from the Inter-university Consortium for Political and Social Research after
submitting a data access proposal at http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4079.

12The figure was copied from Bhati (2008) with kind permission from the author.
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Figure 5.3 Box plots of the normalized simulated sufficient statistics for the Chicago homi-
cide data set. The box plots show the median (thick black solid line), the interquartile range
(black solid rectangle), as well as the 2.5-th and 97.5-th percentiles (short solid black lines).
The thick grey lines show the normalized observed sufficient statistics that are equal zero.

We applied the proposed discrete exponential family model to explain the structural

properties of the Chicago homicide counts as a function of exogenous and endogenous forces

in the neighborhood network. We used the four socio-economic variables described above

as actor attributes and accordingly specified sufficient statistics of the form in (5.5), rep-

resenting count heterogeneity based on actor attributes, where we took the corresponding

elements of Q to be the attainable counts themselves.13 Furthermore, we included three

endogenous sufficient statistics of the form in (5.5) to model the baseline shape of the

count distribution: first, the sum of all counts, controlling for the mean count (AVG);

second, the sum of all squared counts, controlling for the variance of the counts (VAR);

third, the number of zero counts, controlling for zero-inflation (ZIF). Lastly, we added a

scalar sufficient statistic of the form in (5.4) embodying network autocorrelation (NAC)

to the model that is based on a binary spatial neighborhood adjacency matrix.

We implemented our model and obtained the maximum likelihood estimate using the

stepping algorithm in Section 5.4.2.14 Subsequently, we simulated 25,000,000 count con-

figurations given the maximum likelihood estimate and sub-sampled every 25,000-th draw

to compute standard errors and assess goodness-of-fit; Figure 5.3 depicts box plots of

the corresponding normalized simulated sufficient statistics, i.e., after subtracting the ob-

served sufficient statistics and dividing by the respective sample standard deviations. As

is evident, their sample means closely follow the observed sufficient statistics, which sug-

gests that the stepping algorithm has indeed converged to the maximum likelihood esti-

mate. Moreover, the simulated marginal predictive distributions for the homicide counts

in Figure 5.4 do not indicate any degeneracy issues with our model specification.

13We set the attainable upper bound of the counts to twice the largest count value in the data, which is
33. Our results are also robust to larger values for the upper bound that lead to longer computation times
though.

14We set the initial value θ0 to the maximum pseudo-likelihood estimate, the safety margin in the
stepping algorithm to 10, and iteratively refined θ0 until the stopping criterion was reached.
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Figure 5.4 Box plots of the simulated marginal homicide counts for the 343 Chicago neigh-
borhoods. The box plots show the mode (thick black solid line), the interquartile range
(black solid rectangle), as well as the 2.5-th and 97.5-th percentiles (short solid black line).
The thick grey lines show the observed homicide counts.
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Table 5.1 Maximum likelihood estimates and asymptotic as well as bootstrapped standard
errors (SE) under the full model and under a reduced model that ignores network autocorre-
lation for the Chicago homicide data set.

Full model Reduced model

Asymptotic Bootstrapped Asymptotic Bootstrapped

Parameter Estimate SE SE Estimate SE SE

Resource deprivation 0.341 0.038 0.044 0.415 0.038 0.045

Residential stability 0.895 0.412 0.447 0.944 0.412 0.440

Young men 2.907 0.862 0.996 3.103 0.905 1.039

Population 0.530 0.067 0.074 0.536 0.066 0.075

Count mean -5.090 0.611 0.681 -5.113 0.614 0.677

Count variance -0.017 0.003 0.003 -0.025 0.003 0.003

Zero inflation -0.280 0.188 0.215 -0.474 0.209 0.208

Network autocorrelation 0.021 0.004 0.005

Table 5.1 reports the maximum likelihood estimates and their asymptotic standard

errors. In addition, we computed bootstrapped standard errors based on the 1,000 drawn

count configurations given the maximum likelihood estimate, which are also included in

Table 5.1. While the bootstrapped standard errors are consistently somewhat larger than

their asymptotic counter parts, these differences do not alter any of our substantive find-

ings. At the same time, this underlines that researchers should be cautious when interpret-

ing asymptotic standard errors in the model and computer-intensive bootstrapped stan-

dard errors are not available. In line with the results in Bhati (2008), the four covariates

RDI, RST, MEN, and POP are also positively associated with higher levels of homicide

in our model. The endogenous baseline terms are generally difficult to interpret but their

negative coefficients suggest that the homicide counts are smaller, vary less, and exhibit

fewer zeros than in typical count configurations given a model that would ignore these

baseline terms. Finally, the positive coefficient of the network autocorrelation parameter

indicates that the spatial clustering in the homicide counts cannot be accounted for by

socio-economic variability in the neighborhoods and the shape of the baseline count dis-

tribution alone; instead, underlying network autocorrelation is central to explaining the

non-random spatial homicide pattern in the data.

We assessed the model fit based on two independent goodness-of-fit measures from

Section 5.4.2, the raw count distribution and neighbor count-2 stars. Figure 5.5 (top row)

shows the simulated sampling distribution of these quantities, along with the actual raw

count distribution and the number of neighbor count 2-stars in the observed data. As can

be seen, the model captures the raw count distribution very well, as is the case for the

neighbor count 2-stars. Hence, the proposed model specification is able to reproduce a

variety of distinct structural properties of the homicide counts besides the one explicitly

modeled and can be said to adequately describe the count generating process.

As the development of this model was primarily inspired by the desire to sensibly an-

alyze network autocorrelated count data, we were particularly interested in understand-

ing the effect of network autocorrelation on structural properties of the homicide counts.
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Figure 5.5 Left panel: Box plots of the simulated raw count distribution under the full
model (top row) and under a reduced model ignoring network autocorrelation (bottom)
for the Chicago homicide data set. The box plots show the median (thick black solid line),
the interquartile range (black solid rectangle), as well as the 2.5-th and 97.5-th percentiles
(short solid black lines). The thick grey lines show the observed raw counts. Right panel:
Histogram of the simulated number of neighbor count 2-stars under the full model (top) and
under the reduced model (bottom). The thick grey lines show the observed number of neigh-
bor count 2-stars.

Therefore, we estimated a reduced model leaving out network autocorrelation and com-

pared its inferences to those under the full model including network autocorrelation. The

maximum likelihood estimates under the reduced model in Table 5.1 are overall qualita-

tively similar to the ones under the full model, with the estimates of the four covariates

being slightly inflated and the estimates of the baseline terms slightly deflated compared

to the full model. Furthermore, Figure 5.5 (bottom row) shows that the reduced model

preserves the raw count distribution, while it does not seem to accurately capture the

number of neighbor count 2-stars, i.e., the number of adjacent neighborhoods that have

the same count. In sum, these results provide further evidence that network autocorrela-

tion is an essential mechanism underlying the spatial distribution of homicide in this data

set.
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5.6 Conclusions

In this chapter, we introduced a discrete exponential family model for analyzing network

autocorrelated count data. In the model, we used a discrete exponential family to specify

the joint count distribution, where we did not rely on any distributional assumptions on

the marginal or conditional counts. We showed how to specify the joint distribution in

terms of sufficient statistics that capture a range of characteristic structural properties

of a count configuration, such as network autocorrelation, the number of zero counts, or

count homo- or heterogeneity through actor attributes variability. In addition, we pro-

vided algorithms to simulate count configurations from the model and to perform max-

imum likelihood-based inference. We implemented and illustrated the usefulness of our

model by analyzing the drivers of homicide across 343 neighborhoods in Chicago, Illinois,

where we found that network autocorrelation was fundamental to understanding the spa-

tial clustering of the homicide counts.

The work in this chapter leaves room for several improvements and extensions of the

model. First, we operationalized and modeled network autocorrelation through a statis-

tic that is based on the sum of absolute differences between counts, or generally count

attributes, of tied actors. At the same time, this is only one possible way of capturing

network autocorrelation in a count configuration, and it may well be that other formu-

lations, e.g., along the lines of the introduced neighbor count 2-stars or building upon

spatial association measures, are better suited in certain situations. It remains to system-

atically analyze the capacity and power of different operationalizations and to formulate

recommendations as to when to use which. Second, we relied upon a simple Metropolis

algorithm to simulate count configurations from the model that explores the space of at-

tainable count configurations rather slowly, in particular when the chosen upper bound

for the counts is very high. Thus, developing adaptive algorithms that automatically find

“good” candidate count configurations would be a valuable improvement of the model.

Third, we implicitly used a discrete uniform base measure in the discrete exponential fam-

ily that defines the joint count distribution. Generalizing the model to include additional

base measures, where the base measure represents the joint count distribution in absence

of any other endogenous or exogenous forces, and thus allowing for even richer modeling

is left for future work.

To conclude, we hope that providing researchers with a flexible and interpretable model

for analyzing network autocorrelated count data of manifold distributional shapes will con-

tribute to a better understanding of influence patterns underlying many count processes.
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Chapter 6

Epilogue

In this thesis, we developed a fully Bayesian framework to model network autocorrelation of

a variable of interest using the network autocorrelation model. Furthermore, we introduced

a discrete exponential family model for analyzing network autocorrelated count data for

which the network autocorrelation model itself is not well-suited. In this final chapter, we

summarize our most important findings, highlight the remaining limitations of our work,

and outline future research directions for modeling network autocorrelation.

6.1 Bayesian analysis of the network autocorrelation model

We have provided comprehensive Bayesian inference methods for the network autocorre-

lation model in the first three chapters of the body of the thesis. In Chapter 2, we focused

on Bayesian estimation of a first-order model and considered estimation of higher-order

models in Chapter 4. Analogously, we presented Bayes factors for testing hypotheses on a

single network autocorrelation parameter ρ in a first-order model in Chapter 3, which we

then generalized to test equality and inequality constrained hypotheses on multiple net-

work autocorrelation parameters in higher-order models in Chapter 4. For both Bayesian

estimation of and hypothesis testing in the network autocorrelation model, the specifica-

tion of the prior for the network autocorrelation parameter(s) is a major challenge. Thus,

we constructed several theoretically and empirically guided priors for the network auto-

correlation parameter(s) and assessed the sensitivity of the performance of our methods

to different prior choices.

By means of an extensive simulation study, we found that the Bayesian estimators

based on the two versions of the newly derived Jeffreys prior for the first-order model do

not perform substantially differently than the maximum likelihood estimator with respect

to bias of the network autocorrelation parameter; in particular, relying on these priors does

not lessen the severe negative bias in the estimation of ρ for high levels of network density.

At the same time, using Independence Jeffreys prior and the standard uniform prior for

ρ results in accurate coverage of credible intervals for ρ even for high levels of network

density and small network sizes, as opposed to the below-nominal coverage of maximum

likelihood-based confidence intervals in such scenarios. We also observed that the Bayesian
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estimator based on the empirical informative prior for ρ dramatically decreases the bias

in the estimation of ρ if the expected network autocorrelation in a study is in line with

previous empirical results on the magnitude of ρ. Meanwhile, several authors (Bao, 2013;

Z. Yang, 2015; Yu et al., 2015) have proposed different bias-corrected maximum likelihood

estimation procedures that almost eliminate the bias in the estimation of ρ when network

density is not excessively high, as is the case for most spatial networks. However, it re-

mains to investigate if the good performance of these procedures also holds for very small

and dense networks that are often encountered in social network research. Nevertheless,

this stimulates the future development of similar bias-corrected Bayesian estimators in the

network autocorrelation model.

We did not pursue further the two versions of Jeffreys prior in higher-order models,

as relying on these priors in a first-order model merely marginally improves inferences

compared to employing the uniform prior for ρ but results in more complex posteriors and

considerably longer computation times.1 Moreover, higher-order models have not been ap-

plied nearly as extensively in the literature as the first-order model, and we saw little value

in constructing an empirical reference prior for the network autocorrelation parameters

here. Instead, we used a general multivariate normal prior for the network autocorrelation

parameters in combination with standard non-informative priors for the remaining model

parameters. Based on a non-informative and essentially uniform prior specification for

the network autocorrelation parameters in a second-order model, we came to qualitatively

same conclusions as in the first-order model in terms of bias of the network autocorrela-

tion parameters and coverage of the corresponding credible intervals. In addition, these

conclusions are robust to modest overlap between two connectivity matrices.

Apart from enabling researchers to include various amounts of prior knowledge about

the model parameters to their analyses, our advocated Bayesian framework also permits

researchers to simultaneously test multiple competing hypotheses on the network autocor-

relation parameter(s), which allows for much richer and more nuanced insights compared

to classical null hypothesis significance testing. First, we proposed several Bayes factors

for the first-order model that quantify the amount of relative evidence in the data for

precise and interval hypotheses on ρ. Similar as in Bayesian estimation, the amount of

evidence for interval hypotheses, such as H1 : 0 < ρ < 1, is sensitive to the chosen prior

for ρ though. We conducted a large simulation study and found that Bayes factors based

on the empirical informative prior and the uniform prior for ρ provide the largest evidence

for a true data-generating hypothesis and show consistent behavior, i.e., the evidence for a

true data-generating hypothesis is increasing with the network size. On the other hand, we

also noticed that using a fractional Bayes factor based on an improper prior for ρ results

in sub-optimal inferences and is therefore not recommended. Second, we presented Bayes

factors based on automatically constructed multivariate normal priors for the network au-

tocorrelation parameters for testing any number of equality and inequality constrained hy-

potheses on them in higher-order models, such as H1 : ρ1 > ρ2 = 0 and H2 : ρ1 > ρ2 > 0.

1The derivation of Jeffreys rule prior and Independence Jeffreys prior in higher-order network autocor-
relation models is a straightforward exercise and analogous to the derivation in the first-order model.
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As in the first-order model, the analyzed Bayes factors appear to be consistent but require

somewhat larger network sizes to provide substantial evidence for a true-data generating

hypothesis. At the same time, both in first-order and higher-order models, the evidence

for a true data-generating hypothesis is also decreasing with the network density, owing

to the increasingly distorted (concentrated) likelihood function. Hence, future work on

Bayesian bias-correction procedures would not only be of great value for reducing the

negative bias in the estimation of the network autocorrelation parameter(s) but equally

beneficial for improving inference about them using Bayes factors.

All of our proposed methods in the network autocorrelation model rely on the as-

sumption that the variable of interest is normally distributed and can be modeled assum-

ing homogeneous statistical errors across the network. Needless to say, this assumption

may often not be met in empirical practice and more research is needed to examine how

robust our findings are to violations of these underlying conjectures. While it may seem

tempting to simply expand our methods to accommodate variables of interest following

other continuous distributions, such as the beta, the gamma, or the log-normal, using gen-

eralized linear models theory, such approaches would usually build upon pseudo-likelihood

inference and may not appropriately capture complex dependencies in the data. Instead,

a more promising approach could be based on generalizing the discrete exponential family

model from Chapter 5 to continuous data, allowing for full likelihood-based inference and

retaining distributional flexibility.2

6.2 Network autocorrelation modeling of count data

In Chapter 5, we made use of an entirely different formalism to model network autocor-

related count data, the discrete exponential family. In contrast to most network auto-

correlation count models currently available in the literature, relying on the discrete ex-

ponential formalism allows for full likelihood-based inference, and we demonstrated how

the formalism can be utilized to model network autocorrelated count data. In particular,

we showed how to incorporate network autocorrelation and covariate effects by defining

the joint count distribution as a discrete exponential family specified in terms of suitable

sufficient statistics representing these effects. Hence, even though leaving the network

autocorrelation model framework and taking a rather different modeling approach might

make this thesis appear somewhat less consistent at first sight, we believe this stride makes

it in fact methodologically more sound upon second thought.

One considerable strength of our proposed model is that no potentially restrictive dis-

tributional assumptions on the marginal or conditional counts need to be made, but the

model is able to handle a wide range of different count configurations. On the other hand,

we implicitly assumed a discrete uniform base measure in the discrete exponential family

formulation of the joint count distribution. The choice of this base measure determines

the joint count distribution net of any other effects in the model and likewise, at least par-

2Interestingly, recent research on the network autocorrelation model has focused more on developing
model extensions for non-continuous data such as ordinal data (Dow, 2008) and multinomial data (Y. Wang
et al., 2014).
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tially, governs the shape of the marginal count distributions under a fully specified model

that is, however, in general analytically unavailable. The derivation of other meaningful

base measures, e.g., along the lines of Krivitsky (2012) and yielding Poisson-like marginal

count distributions, is an important topic left for future research. This especially applies

to a more general model with no a priori upper bound for the counts, where certain base

measures, in combination with particular parameter configurations, may lead to non-finite

normalizing constants.

Finally, we provided maximum likelihood-based inference methods for the model in

Chapter 5 only, as opposed to proposing Bayesian inferential tools for the network au-

tocorrelation model in Chapters 2, 3, and 4. Here, practical implementation of similar

Bayesian tools is greatly hindered by the intractability of the normalizing constant in

the model’s likelihood, resulting in so-called doubly intractable posteriors (Murray et al.,

2006) due to an additional parameter-dependent normalizing constant. For the future,

adapting existing algorithms for Bayesian analyses of related exponential random graph

models (Caimo & Friel, 2011) would be a valuable addition to the inferential toolbox for

the model.

6.3 Concluding thoughts

In addition to introducing new methodology, we devoted considerable effort to developing

efficient implementations of these methods, which we meticulously described throughout

the thesis. While, in principle, this allows researchers to straightforwardly reconstruct our

implementations in their familiar software environment and apply our methods in practice,

we are aware that it is rather the wish being the father to the thought here; merely pro-

viding verbal and symbolic guidance will hardly bridge the gap between presented theory

and practical application. Thus, a major overarching goal for future research is to bundle

our existing implementations in a freely available software package to help disseminate our

methods within the network science community and facilitate obtaining more profound

insights into the structure of network autocorrelation. An obvious thought that comes to

mind is how these insights can be actually used to answer substantive research problems

encountered in empirical practice. Admittedly, this raises questions that go beyond the

scope of this thesis and primarily need to be addressed by applied network researchers

and policy makers. To conclude, we nevertheless hope that the methods developed in this

thesis can ultimately help policy makers in conducting targeted interventions taking into

account the structure of network autocorrelation.
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Armstrong, R. J., & Rodŕıguez, D. A. (2006). An evaluation of the Accessibility Benefits

of Commuter Rail in Eastern Massachusetts using Spatial Hedonic Price Functions.

Transportation, 33 (1), 21-43.

Atkinson, K. E. (1989). An Introduction to Numerical Analysis (Second ed.). New York,

NY: John Wiley & Sons.

Badinger, H., & Egger, P. (2011). Estimation of higher-order spatial autoregressive cross-

section models with heteroscedastic disturbances. Papers in Regional Science, 90 (1),

213-235.

Baller, R. D., Anselin, L., Messner, S. F., Deane, G., & Hawkins, D. F. (2001). Structural

Covariates of U.S. County Homicide Rates: Incorporating Spatial Effects. Criminology ,

39 (3), 561-588.

Bao, Y. (2013). Finite Sample Bias of the QMLE in Spatial Autoregressive Models.

Econometric Theory , 29 (1), 68-88.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical

Theory. New York, NY: John Wiley & Sons.

Barnett, N. P., Ott, M. Q., Rogers, M. L., Loxley, M., Linkletter, C., & Clark, M. A.

(2014). Peer Associations for Substance Use and Exercise in a College Student Social

Network. Health Psychology , 33 (10), 1134-1142.

Bartlett, M. S. (1957). A comment on D. V. Lindley’s statistical paradox. Biometrika,

44 (3-4), 533-534.

Bates, D., & Maechler, M. (2017). Matrix: Sparse and Dense Matrix Classes and Methods

[Computer software manual]. Retrieved from http://CRAN.R-project.org/package=

Matrix (R package version 1.2-8)

Beck, N., Gleditsch, K. S., & Beardsley, K. (2006). Space is More than Geography:

Using Spatial Econometrics in the Study of Political Economy. International Studies

Quarterly , 50 (1), 27-44.

Becker, R. A., Brownrigg, R., Deckmyn, A., Minka, T. P., & Wilks, A. R. (2016). maps:

Draw Geographical Maps [Computer software manual]. Retrieved from http://CRAN.R

-project.org/package=maps (R package version 3.1.1)

Berger, J. O., Bayarri, M. J., & Pericchi, L. R. (2014). The Effective Sample Size.

Econometric Reviews, 33 (1-4), 197-217.

Berger, J. O., Boukai, B., & Wang, Y. (1997). Unified Frequentist and Bayesian Testing

of a Precise Hypothesis. Statistical Science, 12 (3), 133-160.



References 139
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Stevan, thank you for the Wednesday lunches, for the nights out, for the trips together,

and for all the laughs, you rock. I would also like to thank Christina, Francesca, and Gaby

for your friendship.

To my ski ninjas, Mario, Moritz, Nora, Ozren, and Peter B., thank you for brightening

up winters in the lowlands and for not being a complete débutant in powder anymore. To
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