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Abstract

In case of a product innovation firms start producing a new product. While doing so, such a firm

should decide what to do with its existing product after the firm has innovated. Essentially it can choose

∗C. Nunes gratefully acknowledges the financial support of Fundação para a Ciência e Tecnologia (FCT-Portugal), through

the research project PTDC/EGE-ECO/30535/2017 (Finance Analytics Using Robust Statistics). Most of R. Pimentel’s research

was supported by her Ph.D. research grant from FCT with reference number SFRH/BD/97259/2013. The final part of the

work was carried out during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship Programme.
†corresponding author: E-mail address: verena.hagspiel@ntnu.no

1



between replacing the established product by the new one, or keep on producing the established product

so that it produces two products at the same time.

The aim of this paper is to design a theoretical framework to analyze this problem. Due to tech-

nological progress the quality of the newest available technology, and thus the quality of the innovative

product that can be produced by this technology, increases over time. The implication is that a later

innovation enables the firm to produce a better innovative product. So, typically the firm faces the

tradeoff between innovating fast, which boosts its profits soon but only by a small amount, or innovating

later, which leads to a larger payoff increase. The drawback here is that the firm is stuck with producing

the established product for a longer time.

We find that a highly uncertain economic environment makes the firm delay abolishing the old product

market. But if the innovative market is more volatile, the firm enters the market sooner, provided it will

be active on the old market, at least for some time. Moreover, the smaller the initial demand for the

innovative product market, the better the quality of the innovative product needs to be for the product

innovation to be optimal.

1 Introduction

Technological progress implies that, as time passes, better technologies and therewith, also better products,

appear on the market. One of the questions is then: when should a firm invest in such technologies and

products, and what should the firm do with the existing ones? Should the firm keep producing old products,

or replace the old product when introducing a more innovative one? Essentially it can choose between

replacing the established production process by the new one (single rollover), or keep on producing the

established product so that it produces two products at the same time (dual rollover). The advantage of the

latter is that the firm earns revenue from both markets, but, if the innovative product is a strategic substitute

to the established product, the firm is competing with itself in the sense that growth of the innovative product

market will attract consumers that at the same time leave the established product market, or the other way

around. Also after initially choosing to simultaneously produce the established and the innovative product,

after some time it can be optimal to stop taking the established product into production due to the just

described cannibalization effects.
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The aim of this paper is to design a theoretical framework to analyze this problem. We start out with a

firm producing an established product. The firm has an option to carry out a product innovation. To do so

it has to adopt a new technology by which it can produce the innovative product. New technologies become

available as time passes. Due to technological progress the quality of the newest available technology, and

thus the quality of the innovative product that can be produced by this technology, increases over time,

albeit in a stochastic way, because the firm does not know beforehand how fast technologies will develop. To

capture this we impose that the technological progress is modelled by a Poisson process, where at discrete

moments in time the quality jumps upward. The implication is that a later innovation enables the firm

to produce a better innovative product, which will stimulate the innovative product demand and thus the

innovative product revenue. So, typically the firm faces the tradeoff between innovating fast that enlarges

its payoff soon but only by a small amount, or innovating later that leads to a larger payoff increase, the

drawback being that the firm is stuck with producing the established product for a longer time.

While perfectly being aware of the size of the demand of the established product, the firm does not know

beforehand how consumers will appreciate the innovative product and thus how demand of this product will

develop over time. Therefore, we assume that demand of the new product is also stochastic, such that the

output price satisfies a geometric Brownian motion (GBM) process. A change in demand on the new market

directly influences the size of the cannibalization effect on the established market, so therefore we impose

that this cannibalization effect is also subject to the same GBM process.

Except from determining the optimal time to innovate, we also analyze the choice between the “add” and

the “replace” option, where the replace option reflects the possibility that at the innovation time the firm

stops producing the established product and begins producing the innovative product. The add option means

that after innovating the firm produces both the established and the innovative product. After deciding to

produce both products, the firm still has the option to stop producing the established product, which will

boost demand of the innovative product.

We now explain in what way we extend the existing literature. Farzin et al. [1998], Doraszelski [2001]

and Doraszelski [2004] focus on the time to innovate where technological progress develops stochastically

over time. The expected rate of new technologies arriving over time is constant, an assumption which is
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relaxed in Hagspiel et al. [2015]. Cho and McCardle [2009] consider a firm simultaneously using two types

of technologies and analyze the effect of their interdepencies on the timing of adopting upgrades. Smith and

Ulu [2012] allow for uncertainty in future costs of adoption. Murto [2007] considers the effect of revenue

uncertainty. Our paper also takes revenue uncertainty into account, but in addition to the just mentioned

papers we explicitly analyze how to go further with the established product market after innovating.

In Grenadier and Weiss [1997] different innovation strategies are outlined that take into account the

established technology, but to innovate or not is just a yes-or-no decision. The new technology has given

characteristics, so it is not taken into account that the newest technologies improve as time passes, as we do.

Reinganum [1981], Fudenberg and Tirole [1985], and Milliou and Petrakis [2011] determine the optimal

time to innovate in a framework where two firms have this innovation option, but their models are determin-

istic. Another difference with our work is that a process innovation that reduces costs is considered instead

of a product innovation. Stenbacka and Tombak [1994] add a new element to the literature on the timing

of adoption by explicitly taking the uncertainty in the length of time required for successful implementation

into consideration.

Huisman and Kort [2004] present a model with two firms that both can choose between adopting an

existing technology immediately or wait for a given new technology that is better than the old one, which

becomes available at some future unknown point in time.

Our work is closely related with Kwon [2010] and Hagspiel et al. [2016a], in the sense that we also study

the option to invest in a new product to boost the firm’s profit. But here we consider some remarkable

extensions. First, we assume that innovations occur according to a jump process, and therefore we have,

besides the (stochastic) price, the state of technology. The former authors also address the option to invest in

a new product, but there are no innovation events, being the price as the only stochastic variable. Moreover,

we include the option to produce both kinds of products until it is no longer optimal, and therefore the

established product stops being produced. We show that the firm has more incentive to first add the

innovative product to the product portfolio if demand volatility for the new product is high. In fact, the

option to replace increases with demand volatility. Therefore, the firm keeps this option alive for a longer

time if demand for the new product is more uncertain. If the interest rate is large, however, the firm is more
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inclined to replace the old product immediately.

Accounting for the option to eventually replace the old product, we find that the decision whether to add

the new product to the product portfolio or replace the old product immediately, has a crucial effect on

the innovation decision. We show that if the innovative market is more volatile, the firm enters the market

sooner, provided it will be active on the old market, at least for some time. This is due to the replace option

the firm gains after deciding to innovate, which increases in uncertainty, and therefore leads to a higher value

of investing. Furthermore, the smaller the initial demand for the innovative product, the better the quality

of the new product needs to be before it is optimal to innovate.

The remaining paper is organized as follows. Section 2 introduces the model. In Section 3 we derive

the optimal innovation policy and show the optimal time to replace the old product by new one. In this

section we also introduce a benchmark case, where the demand of the innovative product is assumed to be

deterministic, which serves us as reference point in the comparative statics presented in Section 4. Section

5 concludes.

2 Model

Our model will consider a market for established and innovated products. The research questions we want

to deal with are, first, to establish the optimal time to innovate of the firm. Second, after the firm has

innovated, how long, if at all, the firm should be active on the established product market. In order to do so,

we keep our framework as simple as possible. Among others this requires that capacity sizes for the old and

the new product are treated as parameters. Later on, on top of our analytical comparative statics results, we

provide a numerical illustration showing how results determine on different capacity sizes of both products.

We consider an incumbent firm that is currently producing an established product with capacity K0. The
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firm produces up to capacity1. The price for the established product satisfies

p0 = ξ0 − αK0,

assuming that ξ0 > αK0, where ξ0 is the maximum willingness to pay for the established product and α > 0

is a constant parameter reflecting the sensitivity of the quantity with respect to the price. The instantaneous

profit on the established product market equals

π0 = (ξ0 − αK0)K0. (1)

As the firm produces up to capacity and therefore, the variable costs are constant, we simplify notation by

omitting these costs.

The firm has an option to innovate, i.e. to adopt a new technology by which it can produce a new

innovative product. To do so the firm has to incur an investment cost. We consider that this cost is

proportional to the capacity level of the new product, K1, specifically the cost is equal to δK1, with δ > 0.

For the new product we also assume that the firm produces up to capacity.

Similar to Farzin et al. [1998] and Huisman [2001], the state of the technology is given by a compound

Poisson process, θ = {θt : t ≥ 0}. We may express θt as θt = θ0 + uNt, where θ0 denotes the state of

technology at the initial point in time, u > 0 is the jump size and {Nt, t ≥ 0} follows a homogeneous Poisson

process with rate λ > 0. The later the firm adopts the higher quality the product has, so the higher the

demand for this product will be.

We denote the time of adoption of a new technology by τ1. When the firm invests in the new product, it

1This assumption is often referred to as the market clearance assumption (see, e.g., R. Deneckere [1997], Anand and Girotra

[2007] and Goyal and Netessine [2007]). Always producing up to capacity arises because firms may find it difficult to produce

below capacity due to fixed costs associated with, for example, labour, commitments to suppliers, and production ramp-up

(Goyal and Netessine [2007]). Even when firms can keep some capacity idle, a temporary suspension of production is often

costly due to, for instance, maintenance costs needed to avoid deterioration of the equipment. Therefore, in practice firms often

reduce prices to keep production lines running (see Mackintosh [2003], Anand and Girotra [2007] and Goyal and Netessine

[2007]). However, counterexamples to the assumption of producing up to capacity also exist. Hagspiel et al. [2016b] showed

that allowing the firm to produce below capacity leads to larger capacity investment while the effect on timing shows a tradeoff:

on the one hand the firm likes to invest earlier as the project is more valuable due to this volume flexibility, but on the other

hand the firm has an incentive to invest later because investing in a larger capacity is more costly.
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has two options. It can decide to either produce both products, or to immediately replace the old product

by the innovative one. In case the firm decides to replace the old product by the new one, the price of the

new product satisfies:

pR1 (Xt, θτ1) = (θτ1 − αK1)Xt, t ≥ τ1.

The way inverse demand shifts with X follows the real option literature. It started with Dixit and Pindyck

[1994], who consider P = XD (Q) with D (Q) unspecified. This variant, but then with Q being linear in

D (Q) has been adopted in, e.g., Huisman and Kort [2015] and Hagspiel et al. [2016b]. The demand curve

having a parallel shift, which would be, for instance, pR1 = X−αK, would require a completely new analysis

(for an application see Hagspiel et al. [2016a]).

If the new product is produced together with the established one, the demand system for the two products

is given as follows2:

pA0 (Xt, θτ1) = ξ0 − αK0 − βK1Xt, t ≥ τ1,

pA1 (Xt, θτ1) = (θτ1 − αK1 − βK0)Xt, t ≥ τ1.

The new product is horizontally differentiated from the old one, where β > 0 represents the horizontal

differentiation parameter. We assume β to be positive to reflect that the two products are substitutes. The

upper bound of β is given by α (β < α) meaning that it can never be the case that the quantity of the

other product has a larger effect on the product price than the quantity of the product itself. Besides β,

the mixeed terms in the demand system are also linearly dependent on X. There are two reasons for this.

The first reason is that the mixed terms in the demand system should be connected such that they can be

derived from a specific utility function (see footnote 2). Second, the economic argument is that, since the

products are strategic substitutes, when demand for the innovative product goes up, demand for the old

product goes down and vice versa.

2The demand system can be derived from the following utility function

U = ξ0K0 −
1

2
αK2

0 − βK0K1X + θτ1K1X −
1

2
αK2

1X − p0K0 − p1K1.
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The instantaneous profit function for the case that only the new product is produced is then equal to

πR1 (Xt, θτ1) = (θτ1 − αK1)XtK1, t ≥ τ1

while, in case that both products are produced, it is given by

πA1 (Xt, θτ1) = (ξ0 − αK0 − βK1Xt)K0 + (θτ1 − αK1 − βK0)XtK1, t ≥ τ1.

Regarding the demand we will address the following two cases:

i) The demand of the new product is known beforehand, and deterministic. Therefore, we have Xt = x

for all t ≥ τ1. We will refer to this case as the benchmark case.

ii) The demand of the new product is not known beforehand. It depends on, X = {Xt, t ≥ τ1}. Specifi-

cally, X follows a GBM with drift µ and volatility σ > 0, with r−µ > 0 3, where r > 0 is the (constant)

interest rate. Typically for these new products the market is expected to be growing. Therefore, we

assume that the drift is non-negative, i.e. µ ≥ 0. In order to make sure that the price of the old market

stays always positive, we need to impose the additional assumption r + µ > σ2. We let x denote its

initial value, i.e., x is the value of the demand at the time that the investment in the new technology

takes place, meaning that Xτ1 = x. This case will be referred to as the stochastic case.

Finally, we note that for the benchmark case, upon investment in the new technology the firm either

replaces the old product right away or produces both products, forever, due to the assumption that the

demand is fixed. In the stochastic case, the demand may fluctuate. Therefore, it can happen that the firm

first adds the second product to the initial one, and only latter abolishes the original one. Therefore, the

optimization problems have to be treated differently, depending on the case that we are considering.

In the next section we solve the optimal stopping time problems for each one of the considered cases.

3 Optimization Problem

In this section we derive the optimal decision regarding the following times: i) when to invest in the new

technology, i.e. determine τ1 (for the benchmark and for the stochastic cases); and ii) when to stop producing

3This is a standard assumption to ensure that the optimal investment time is finite.
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the first product, which is denoted by τ2, with τ2 ≥ τ1 (only relevant for the stochastic case).

In general, the optimal stopping problem is defined as follows:

Vx(θ) = sup
τ1

E
[∫ τ1

0

π0e
−rsds +

{
sup

τ2:τ2≥τ1
E
[∫ τ2

τ1

πA1 (Xs, θτ1)e−rsds− δK1e
−rτ1

+

{∫ +∞

τ2

πR1 (Xs, θτ1)e−rsds

}
χ{τ2<+∞}

∣∣∣∣Xτ1 = x

]}
χ{τ1<+∞}

∣∣∣∣ θ0 = θ

]
, (2)

for θ, x ∈ R+, where χ{A} represents the indicator function of set A. In the benchmark case the process X

is constant and equal to x, whereas in the stochastic case it is a GBM with initial value x. Note that we

have indexed the value function by x as it explicitly depends on this value, which is fixed exogenously. This

will play an important role in the sequel, in particular, in the stochastic case.

3.1 Benchmark case

In the benchmark case, substituting Xs by x in (2) and doing simple transformations we get

Vx(θ) = sup
τ1

Eθ0=θ
[∫ τ1

0

π0e
−rsds +

{∫ +∞

τ1

πA1 (x, θτ1)e−rsds− δK1e
−rτ1

+ sup
τ2:τ2≥τ1

{∫ +∞

τ2

[
πR1 (x, θτ1)− πA1 (x, θτ1)

]
e−rsds

}
χ{τ2<+∞}

}
χ{τ1<+∞}

]
,

where, in order to ease the notation, we denote the conditional expectation E [...|θ0 = θ] by Eθ0=θ [...].

Therefore, the decision between replacing the old product by the new one, and producing both, depends

only on the relationship between the revenues for each case. Moreover, the firm either decides to produce

both products forever (τ2 = +∞) or to replace the old product by the new one immediately (τ2 = τ1).

Indeed, upon investment (at time τ1) the firm should replace the old product by the new one if and only if

πR1 (x, θτ1) > πA1 (x, θτ1)⇔ x >
π0

2βK0K1
≡ x∗B . (3)

Consequently, the optimal stopping problem may be written as follows

Vx(θ) = sup
τ1

Eθ0=θ
[∫ τ1

0

π0e
−rsds

+

{∫ +∞

τ1

[
πA1 (x, θτ1)χ{0<x<x∗

B} + πR1 (x, θτ1)χ{x≥x∗
B}

]
e−rsds− δK1e

−rτ1
}
χ{τ1<+∞}

]
.

which can be rewritten as follows

Vx(θ) =
π0
r

+ sup
τ1

Eθ0=θ
[
e−rτ1ρBx (θτ1)

]
, (4)
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where

ρBx (θ) =
(θ − αK1)K1x

r
− δK1 −

2βK0K1x

r
χ{0<x<x∗

B} −
π0
r
χ{x≥x∗

B}. (5)

3.2 Stochastic case

In the stochastic case the firm needs to decide about when to invest in the new market, and also for how long

to produce both products. We remark that in this case, it can be optimal for the company to produce both

products for a certain period - during (τ1, τ2) - and then abandon the first product at τ2 and thereupon, only

produce the new product. From simple manipulations and applying a change of variable in (2), we obtain

Vx(θ) =
π0
r

+ sup
τ1

Eθ0=θ
[
e−rτ1

{
sup
τ2

EXτ1=x
[∫ τ2−τ1

0

(
πA1 (Xτ1+s, θτ1)− π0

)
e−rsds − δK1

+

{∫ +∞

τ2−τ1

(
πR1 (Xτ1+s, θτ1)− π0

)
e−rsds

}
χ{τ2<+∞}

]}
χ{τ1<+∞}

]
,

where, similarly to θ, we denote the conditional expectation E [...|Xτ1 = x] by EXτ1=x [...]. Denoting τ as

the time period in which the firm is producing both products (i.e. τ = τ2 − τ1), we, therewith can rewrite

the value function V as

Vx(θ) =
π0
r

+ sup
τ1

Eθ0=θ
[
e−rτ1

{
EXτ1=x

[∫ +∞

0

(
πA1 (Xτ1+s, θτ1)− π0

)
e−rsds

]
− δK1 (6)

+ sup
τ

EXτ1=x
[{∫ +∞

τ

[
πR1 (Xτ1+s, θτ1)− πA1 (Xτ1+s, θτ1)

]
e−rsds

}
χ{τ<+∞}

]}
χ{τ1<+∞}

]
.

We now treat the two integrals separately. First, we derive

EXτ1=x
[∫ +∞

0

(
πA1 (Xτ1+s, θτ1)− π0

)
e−rsds

]
=

(θτ1 − αK1 − 2βK0)K1x

r − µ
, (7)

using Fubini’s theorem (see Hildebrandt [1963]) and the fact that the GBM has stationary increments. The

integral convergence is guaranteed by the initial assumption r > µ. Regarding the second integral, one

note in view of the strong Markov property of the GBM (see Karlin [2014]) that {(Xt|Xτ1 = x) , t ≥ τ1}
d
=

{(Xt|X0 = x) , t ≥ 0}, and by Fubini’s theorem, it follows that

EXτ1=x
[∫ +∞

τ

[
πR1 (Xτ1+s, θτ1)− πA1 (Xτ1+s, θτ1)

]
e−rsds

]
= EX0=x

[
e−rτ

(
2βK0K1Xτ

r − µ
− π0

r

)]
. (8)

Plugging (7) and (8) into (6) we arrive to the following expression for the value of the firm

Vx(θ) =
π0
r

+ sup
τ1

Eθ0=θ
[
e−rτ1ρSx (θτ1)χ{τ1<+∞}

]
, (9)
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with

ρSx (θ) = F (x) +
[(θ − αK1 − 2βK0)x− ε]K1

r − µ
,

where

ε = δ(r − µ), (10)

and

F (x) = sup
τ

EX0=x
[
e−rτg(Xτ )χ{τ<+∞}

]
and g(x) =

2βK0K1

r − µ
x− π0

r
. (11)

In fact, in the stochastic case, the optimization problem (2) can be seen as two optimization problems that

need to be solved: one related with the optimal investment time in the new product (τ1), and the other

related with the time, from which on the firm produces only the innovative product (τ2 = τ1 + τ). Note that

F , defined in (11), is the value function for a standard investment problem, for which the solution is given

in the following proposition.

Proposition 1 The solution of the problem presented in (11) is given by

F (x) =


axd1 0 < x < x?S ,

2βK0K1

r−µ x− π0

r x ≥ x?S ,

for all x > 0, where

x?S =
Kb

K1
, (12)

a =
π0

r(d1 − 1)
x?S
−d1 =

[
2βK0K1

d1(r − µ)

]d1 [ π0
r(d1 − 1)

]1−d1
, (13)

with

Kb =
d1

2(d1 − 1)

(r − µ)π0
rβK0

and d1 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2r

σ2
> 1. (14)

Proof of Proposition 1 See Appendix 6.1.1 for the proof.

Using the expression derived for F in Proposition 1, we can rewrite

ρSx (θ) =
(θ − αK1)K1x

r − µ
− δK1 +

(
axd1 − 2βK0K1x

r − µ

)
χ{0<x<x∗

S} −
π0
r
χ{x≥x∗

S}. (15)
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3.3 General result

Next we present a general Theorem that is the basis to prove Proposition 2. We highlight that this theorem

is general enough to be applied in other stopping time problems that involve decisions regarding technology

innovations driven by compounded Poisson processes, as the problems addressed in Huisman and Kort [2004]

or Hagspiel et al. [2016a].

Theorem 1 Let us consider the optimal stopping problem G(θ) = supτ Eθ0=θ
[
e−rτg(θτ )χ{τ<+∞}

]
, where

θ = {θt : t > 0} is a compound Poisson process, with rate λ > 0 and jump size u > 0, and g is a continuous

function. Let us also assume that

∃ ! θ? > 0 : h(θ) > 0⇔ θ > θ?, (16)

where h(θ) = (r + λ)g(θ)− λg(θ + u). Then, the solution of the problem is given by

G(θ) =


(

λ
λ+r

)n(θ)
g(θ + n(θ)u) 0 < θ < θ?,

g(θ) θ ≥ θ?,

(17)

with n(θ) =
⌈
θ?−θ
u

⌉
, where, for k ≥ 0, dke = min {n ∈ N : n ≥ k}.

Proof of Theorem 1 See Appendix 6.1.2 for the proof.

For the solution of the problems (4) and (9), one can use the result of Theorem 1, replacing the function

g by

ρBx (θ) =
(θ − αK1)K1x

r
− δK1 −

2βK1xK0

r
χ{0<x<x∗

B} −
π0
r
χ{x>x∗

B}.

for the benchmark case, and

ρSx (θ) =
(θ − αK1)K1x

r − µ
− δK1 +

(
axd1 − 2βK0K1x

r − µ

)
χ{0<x<x∗

S} −
π0
r
χ{x≥x∗

S}.

for the stochastic case, respectively. Therewith, we can finally present the solution of the optimization

problem (2) including the exercise boundaries. This is presented in Proposition 2, for the benchmark and

for the stochastic case, respectively.

12



Proposition 2 The solution of the optimal stopping problem (2) is given by

Vx(θ) =
π0
r

+


(

λ
λ+r

)nx(θ)
ρx(θ + nx(θ) u) 0 < θ < θ∗(x)

ρx(θ) θ ≥ θ?(x)

(18)

for all x, θ ∈ R+ , where nx(θ) =
⌈
θ?(x)−θ

u

⌉
and

θ?(x) = υA(x)χ{0<x<x?} + υR(x)χ{x≥x?}. (19)

Moreover, for each case we have the following definitions 4.

• Benchmark case: x∗ is given in (3), ρx is defined at (5), and

υA(x) = υAB(x) :=
rδ

x
+
λu

r
+ αK1 + 2βK0 and υR(x) = υRB(x) :=

rδ

x
+
λu

r
+ αK1 +

π0
K1x

.

• Stochastic case: x∗ is given in (12), ρx is defined at (15), and

υA(x) = υAS (x) :=
ε

x
+
λu

r
+αK1+2βK0−

a(r − µ)xd1−1

K1
and υR(x) = υRS (x) :=

ε

x
+
λu

r
+αK1+

(r − µ)π0
rK1x

,

where π0, ε, a and d1 are defined in (1), (10), (13) and (14), respectively.

Proof of Proposition 2 See Appendix 6.1.3 for the proof.

Proposition 2 presents the optimal value function, as well as the boundary curve, θ?(x). For technology levels

smaller than this boundary (i.e. 0 < θ < θ?(x)), it is optimal to wait with adoption of a new technology.

At the moment this boundary curve is passed, it is optimal to adopt the current technology level. Figure 1

presents an illustration of this boundary curve in the (θ, x) – plane (bold line). For values to the lower left of

the threshold curve θ?(x), it is optimal to wait with adoption and continue producing only the established

product. As soon as the technology process passes the threshold curve for a given value of x, it is optimal

to invest and therewith, introduce the innovative product to the market.

The optimal product portfolio decision can be interpreted as follows: at the optimal time τ1 the firm

invests in a certain technology level θτ1 . Depending on the value of the initial price intercept x, and given

4As we have been doing before, in order to ease the notation, we use the subscripts B and S to denote, respectively, the

benchmark and the stochastic cases.
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Figure 1: Plan division.

the technology level adopted (θτ1), the firm will produce both products (for a certain time period in the

stochastic case) after investment, or replace the old one by the innovative one immediately. We also define

the following sets

ΘA =
{

(x, θ) ∈ R+ × R+ : 0 < x < x? ∧ θ > υA(x)
}

ΘR =
{

(x, θ) ∈ R+ × R+ : x ≥ x? ∧ θ > υR(x)
}
,

where in the benchmark case x∗ = x∗B , υA = υAB , and υR = υRB , and in the stochastic case x∗ = x∗S , υA = υAS

and υR = υRS . The set ΘA represents the region where the firm produces both products, whereas ΘR is the

region where it is optimal to replace the original product by the innovative. See Figure 1 for a representation

of these two regions.

In Figure 2 we illustrate the difference of the two cases regarding the technology adoption and product

portfolio decisions of the firm. Figure 2a refers to the benchmark case, should be read as follows: given

that the current technology level is equal to θ0, and the initial demand intercept is equal to x0, it is optimal

to wait for new technology improvements. When the level of the technology hits or exceeds the threshold

θ?(x0) (illustrated by the bold curve), the firm undertakes the investment. If the price intercept is such that

0 < x0 < x∗B , then upon investment, the firm produces both products. In case x0 ≥ x∗B , the firm replaces

the old product by the new one upon investment.
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(b) Stochastic case.

Figure 2: Possible movements of the bivariate process (x, θ).

For the stochastic case, we refer to the corresponding Figure 2b. It illustrates that, given that the firm is

currently producing according to the technology level θ0 and the initial value of the process X is such that

0 < x0 < x?S , it is optimal for the firm to wait for new technology improvements. When the level of the

technology hits or exceeds the threshold θ?(x0), the firm undertakes the investment. From time τ1 on, the

process X, with initial value x0, evolves, which is represented by a horizontal movement in Figure 2b. As

soon as the demand intercept process X hits the level x?S for the first time, the firm abandons the established

product and produces only the innovative one from then on.

Next we study the relative position of the investment thresholds for the benchmark and the stochastic

cases. First we compare the add/replace thresholds (3) and (12), in the two cases. The result is presented

in the following proposition.

Proposition 3 The replace decision in the stochastic case occurs for higher levels of the demand intercept

than in the benchmark case, i.e., x∗S > x∗B.

Proof of Proposition 3 See Appendix 6.1.4 for the proof.

In view of this result, it follows that for values of x such that x∗B < x < x∗S , the decision in the benchmark

case is to replace the old product by the new one, whereas in the stochastic case the new product is added

to the established one. However, unlike in the benchmark case, in the stochastic case X is fluctuating over

time, implying that there is a positive probability that the firm will still abolish producing the established
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product in the future, which happens once X reaches the level x∗S .

Next we compare the threshold curves for the two cases.

Proposition 4 For the same value of the current demand intercept x, the firm invests earlier in the stochas-

tic case than in the benchmark case.

Proof of Proposition 4 See Appendix 6.1.5 for the proof.

The intuition is that it is more attractive to invest in the stochastic case, because, first, X is expected to

increase because of the positive trend parameter µ, which means that expected demand is increasing over

time. Second, when it invests in the add domain, it acquires the option to replace, and the value of this

option is especially large when uncertainty is high.

4 Comparative statics

In this section we study the behaviour of the add/replace boundary and the decision threshold with the

different parameters and analyze the difference regarding, whether the demand for the innovative product is

stochastic or not.

We start by analyzing how the add/replace boundaries, x?B and x?S , are affected by a change in several

parameters.

Proposition 5 The add/replace boundary for the benchmark case, x?B, increases with ξ0, decreases for

α, β,K0 and K1, and it is constant with r, δ, λ and u. For the stochastic case the add/replace boundary, x?S,

increases with ξ0 and σ, decreases with α, β,K0,K1, µ and r, and it is constant with δ, λ and u.

Proof of Proposition 5 See Appendix 6.2.1 for the proof.

Proposition 5 shows that accounting for stochasticity of the new product demand, the add/replace boundary

is decreasing in the discount rate, while it is constant in r when we assume that the demand for the new

product is deterministic. The reason for that is related to the fact that by choosing to add the new product to

the product portfolio, the firm gets the option to replace eventually in the stochastic case. In the benchmark
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case, however, the firm would keep on producing both products forever. The firm has a higher incentive to

add the innovative product to the product portfolio if the discount rate r is small in the stochastic case. In

that case the option to replace eventually is of high value and therefore, the firm wants to keep this option

alive. If the interest rate increases, however, the firm is more myopic and values the replace option less.

Therefore, it is more inclined to replace the old product immediately by the innovative one.

The add/replace boundary naturally only depends on µ and σ for the stochastic case. Proposition 5 shows

that the firm is more inclined to first add the innovative product, i.e. x?S is larger, if the demand volatility

for the new product σ is large. Regarding the drift the opposite holds. If µ increases the innovative product

market becomes more attractive and therefore, the firm has more incentive to increase the instantaneous

profit of the innovative product by getting rid of the cannibalization effect. If demand uncertainty, however,

goes up, it is known from real options theory that it is optimal to delay irreversible decision. In this case it

means that the firm wants to delay leaving the old market. This implies that the add region gets larger and

the eventual switch to replace will occur for a larger value of x (i.e. later). Therefore, x?S increases with σ.

The comparative statics of the other parameters are not affected by introducing stochasticity for the

innovative product demand. We show that the add/replace boundary is decreasing in α due to the fact that

the old market becomes less attractive with a higher α, while the cannibalization effect stays the same. The

firm looses less revenue on the old market and therewith, has more incentive to switch to only producing

the innovative product. Regarding to the cannibalization parameter, β, we notice that the stronger the

cannibalization effect the less attractive it is for the firm to produce both products, and therefore, replacing

the old product becomes more attractive. In all previous cases replace gets more attractive relative to add.

Concerning the capacities, the add/replace boundary is also decreasing with both of them. The higher

the capacity of the innovative product, K1, the larger the cannibalization effect. This hurts the profit of add

so that replace becomes more attractive. Relatively to the capacity of the old product, K0, three effects can

be distinguished. Due to an increase of K0, the x?S decreases because the output price on the old market

becomes lower and because of the increased cannibalization effect. On the other hand, a higher K0 leads

to a larger quantity on the old market and this has a positive effect on the x?S . It turns out that the latter

effect cancels against the cannibalization effect. Hence, x? (for both the benchmark and the stochastic case)
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decreases because the market price of the old product becomes lower.

Furthermore, we show that the add/replace boundary is increasing in the demand intercept for the old

product, ξ0. The higher the demand intercept for the old product, the higher the value of the old product

and therefore, the firm is more hesitant to replace it so that x?S gets larger.

In the following propositions we present the behaviour of the investment threshold with the relevant

parameters, for the benchmark (Proposition 6) and the stochastic case (Proposition 7), respectively. We

note that the comparative statics for the investment threshold involves to compare curves rather than points.

Proposition 6 For the benchmark case, the investment threshold, θ?B, increases with δ, λ and u, and

decreases with x; increases with β in the add region, and stays constant in the replace region; increases

with K0,K1 and α in the add region, and does not have a monotonic behaviour in the replace region; stays

constant with ξ0 in the add region, and increases in the replace region; and does not have a monotonic

behaviour with r.

Proof of Proposition 6 See Appendix 6.2.2 for the proof.

Proposition 7 For the stochastic case, the investment threshold, θ?S, increases with δ, λ, u, and ξ0, and

decreases with µ and x; decreases/increases with σ/β in the add region, and stays constant in the replace

region; and does not have a monotonic behaviour with K0, K1, α and r.

Proof of Proposition 7 See Appendix 6.2.3 for the proof.

We now interpret the results of Proposition 7 (stochastic case). The results of Proposition 6 are mainly the

same in a qualitative sense, but there where they are different we explain why.

When accounting for demand uncertainty in the innovative product market, we show that the investment

threshold curve is decreasing in demand volatility of the innovative product market given that the firm stays

in the old market for a given time upon investment. This at first sight counterintuitive result stems from

the fact that, upon adding the new product to the product portfolio, the firm gains the option to eventually

replace the old product. The value of this option is increasing in volatility, which in turn increases the value

of investment and therefore, the firm is more eager to invest early. If the firm decides to replace the old
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product immediately, the demand volatility of the innovative product market does not have an effect on the

innovation decision.

The investment threshold is also decreasing in the drift, µ. The larger the growth of the innovative

product market, the more attractive the market is and therefore, the firm invests sooner. The same holds

for the initial value x of the demand intercept at the time the investment in the new technology is made, as

a higher x makes the innovative product market more attractive. This in turn means that, the smaller the

initial demand for the innovative product market, the better the quality of the innovative product needs to

be for the product innovation to be optimal.

As expected the parameter β will only affect the investment threshold when the firm will produce both

the old as well as the innovative product right after the investment. Since this parameter enhances the

cannibalization effect, a larger β makes investment in that case less attractive.

Moving to the parameters with which the investment threshold is always increasing. Regarding the unit

investment cost δ, we notice that the higher the costs for a given capacity K1 the higher the technology level

needs to be for the firm to justify investment. With regard to λ and u, θ? increases as well because it pays

more for the firm to wait for the next technology jump if this is effected to arrive sooner and/or when this

jump is larger in size. These results are robust for the benchmark and stochastic model. Furthermore, the

investment threshold is increasing with ξ0, as the old market is more profitable for a higher ξ0 and therefore,

the firm waits for a higher technology level to justify investment.

The investment threshold does not have a monotonic behaviour with the remaining parameters. In some

cases there are several effects driven the movements, which makes the interpretation very complex or not

understandable. Hence, in this case we omit an explanation for the effect of the interest rate, r.

In general the firm invests later for a higher α because it has to wait for a higher technology level to

justify the capacity K1. However, three other effects can be identified that in total could result in investing

earlier when α goes up. The first effect is what we refer to as the option effect. It explains that the option

to replace after having added the innovative product in the first place, is smaller for higher α. The second

effect has to do with the revenue before the firm invests. The higher the α the smaller the revenue on the

old market on which the firm solely produces before the investment. We refer to this as the opportunity
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cost effect. In Proposition 5 we have established that the add/replace boundary x? decreases with α. So if

α goes up it could happen that the firm changes from an add to a replace strategy. This implies that no

cannibalization takes place anymore and therefore, the firm will invest earlier. This is the third effect which

we call the cannibalization effect.

Finally, the investment threshold is non-monotonic, in both the capacity of the old and the capacity

of the new product. The investment threshold in the benchmark case is decreasing in K1 for low values

and increasing for high values of K1, following a typical U – shape with the smallest threshold value for

the optimal capacity level, at which the value of investment in the innovative product is the highest, and

therefore, investment optimal earliest. With respect to K0 an inverse U – shape can be observed. The

threshold is increasing for low values of K0 and decreasing for high values. At the optimal capacity level for

the old product, investment in the innovative product is the least appealing.

In the benchmark case we have a similar behavior for replace, but for add the threshold is monotonically

increasing in both K0 and K1. The latter result holds, because the deterministic demand for the new product

implies that there is no uncertainty regarding the value of the option to replace, which reduces this option

value considerably. Therefore, the cannibalization effect is the dominant factor. This cannibalization effect

increases in both K0 and K1, making investment less attractive. Hence, the threshold is monotonically

increasing in both K0 and K1. In addition, this effect regarding K1 is reinforced by the fact that for a larger

K1 the investment costs are also larger.

4.1 Numerical Illustration

In the following, we compute the thresholds for the benchmark and for the stochastic case, using the base-

case parameters presented in Table 1, which are similar to the ones used in Hagspiel et al. [2016b] and

Huisman [2013].

The corresponding decision thresholds are presented in Table 2. For these values, the thresholds for the

benchmark and for the stochastic case are not very different. In both cases we have the same decision

regarding keeping the old product in the market just after the investment in the new product.

In Table 3 we illustrate the behavior of the thresholds when we change the capacity before investment
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r risk-free rate 0.05

µ drift 0.02

σ volatility 0.1

K0 initial capacity 200

K1 capacity after investment 300

λ Poisson intensity 0.1

u jump size 0.5

θ0 initial technology level 1

x constant price before investment 1

ξ0 maximum willingness 30

α sensitivity of the quantity w.r.t. price 0.1

β horizontal differentiation 0.05

δ investment cost 100

Table 1: Base–case parameters used to calculate the thresholds

x∗ θ? decision

Benchmark case 0.33 42.7 add

Stochastic case 0.40 38 add

Table 2: Thresholds for the base–case parameters

(K0). The main conclusion is that when the investment in the new market is considerable larger than in the

old market (i.e, when K1 is considerably larger than K0), the decision in the benchmark case is to replace

the old product by the new one, whereas in the stochastic case the firm will produce both products during

some period. When K0 increases, both situations lead to the replace decision. We remark also that the

investment threshold is not monotonic with increasing K0, for both cases (benchmark and stochastic), which

is according to our findings of Proposition 6.

Finally, we show how the thresholds change with the capacity after investment (K1) (see Table 4). The
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x∗B θ∗B decision (benchmark) x∗S θ∗S decision (stochastic)

K0 = 25 0.92 38.3 replace 1.1 35.4 add

K0 = 50 0.83 40.2 replace 1.0 36.5 add

K0 = 100 0.67 42.7 replace 0.8 38.0 replace

K0 = 200 0.33 42.7 replace 0.4 38.0 replace

K0 = 220 0.27 41.9 replace 0.32 37.5 replace

Table 3: Behavior of thresholds with K0

results show that once K1 is larger than K0 (i.e., the firm is investing in more capacity) the firm replaces

the old product by the new one, both in the benchmark and in the stochastic case.

x∗B θ∗B decision (benchmark) x∗S θ∗S decision (stochastic)

K1 = 50 2 31 add 2.4 24.8 add

K1 = 100 1 36 add 1.2 25.7 add

K1 = 200 0.5 36 replace 0.6 30 replace

K1 = 300 0.33 42.7 replace 0.4 38 replace

Table 4: Behavior of thresholds with K1

5 Conclusion

This paper studies a setting where the firm, currently producing an established product, has the option to

invest in a more innovative technology, in order to boost its profits by introducing a new, innovative product

on the market. Moreover, the firm may decide whether to add the new product to its product portfolio, or

to immediately replace the old product upon investment. In the earlier case it can decide to eventually stop

the production of the old product at a later point in time.

We find that if the innovative product market is more volatile, the firm has more incentive to first add

the innovative product to the product portfolio, and only replace the old product eventually. If the interest
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rate is larger, however, the firm is more inclined to replace the old product immediately.

Contrary to the standard investment problem, the investment threshold is not a single point but repre-

sented by a threshold curve. We find that the threshold curve is decreasing in the demand volatility of the

innovative product market, and therefore, the firm innovates sooner, given that the firm will be active on

the old market for at least some time. Furthermore, the threshold curve is decreasing in the initial demand

of the innovative product, implying that the smaller the initial demand, the better the quality of the new

product needs to be before it is optimal to innovate.

This paper is the first in a series of contributions that concentrates on when a firm should innovate and

with how much. At the same time it also has to decide on whether to keep on producing the established

product. The present paper focuses on the innovation timing decision and on the question what to do with

the established product. The plan is that follow up papers will deal with the optimal determination of the

capacity size for the established and the innovative product. It would be interesting to establish to what

extent our present results will change when the firm can control the capacities.

6 Appendix

6.1 Proofs of the optimal stopping problems

6.1.1 Proof of Proposition 1

We want to solve the optimal stopping time (11), i.e.

F (x) = sup
τ

EX0=x
[
e−rτg(Xτ )χ{τ<+∞}

]
, (20)

where

g(x) =
2βK0K1

r − µ
x− π0

r
.

The corresponding Hamilton-Jacobi-Bellman (HJB, for short) equation for the optimization problem is given

by

min{rF (x)− LXF (x), F (x)− g(x)} = 0
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where LX is the infinitesimal generator of the process X, i.e.

LXf(x) =
σ2

2
x2f ′′(x) + µxf ′(x).

By construction, in the stopping region we trivially have F (x) = g(x). Moreover, the continuation region,

hereby denoted by CX , must contain the following set (see Øksendal [2014] for details)

UX = {u > 0 : rg(u)− LXg(u) < 0} =

(
0,

π0
2βK0K1

)

which implies that CX = (0, x?S), where x?S still needs to be derived, such that x?S ≥
π0

2βK0K1
.

In the continuation region the function F must satisfy the left hand side of the HJB equation. Let us

define ζ as the solution of the equation rζ(x)− LXζ(x) = 0, that is

σ2

2
x2ζ ′′(x) + µxζ ′(x)− rζ(x) = 0. (21)

The differential Equation (21) is a Cauchy-Euler equation, which means that the solution is given by

ζ(x) = axd1 + bxd2 , (22)

where d1 and d2 are the positive and negative solutions, respectively, of the quadratic equation

σ2

2
d(d− 1) + µd− r = 0, (23)

given by

d1 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2r

σ2
and d2 =

1

2
− µ

σ2
−

√(
1

2
− µ

σ2

)2

+
2r

σ2
.

Given that r > µ, it follows that d1 > 1 and d2 < 0.

We note that this optimization problem is in fact a special case of the case studied by Guerra et al. [2016].

The profit function g is a non-decreasing function of polynomial type, as considered by the referred authors.

Then, one of the boundary conditions is that the solution for x = 0 needs to be zero, i.e. limx→0+ ζ(x) = 0.

Therefore, we must have b = 0, and thus ζ(x) = axd1 .

As the value function needs to be continuous and smooth in all its domain and, in particular, in x?S , then

it follows from the smooth pasting conditions, F (x?S) = g(x?S) and F ′(x) = F ′(x)|x=x?S (for more details see

Øksendal [2014]), that x?S and a are as presented in Expressions (12) and (13), respectively. The remain of
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the proof is to check that F (x) = ζ(x)χ{0<x<x?S}+ g(x)χ{x≥x?S} is indeed the solution of the HJB equation.

For that we need to prove that:

• in the stopping region rg(x)− LXg(x) ≥ 0.

As rg(x) − LXg(x) = 2βK0K1x − π0, it will be positive if and only if x > π0

2βK0K1
. The result holds

in case x?S >
π0

2βK0K1
, which, in view of the expression for x?S , is equivalent to

r − µ
r

d1
d1 − 1

> 1⇔ r − µd1 > 0.

Recalling the d1 definition, which comes from Equation (23), we have

r − µd1 =
σ2

2
d1(d1 − 1),

which is always positive. Thus x?S >
π0

2βK0K1
and therefore rg(x)− LXg(x) ≥ 0 for x ≥ x?S .

• in the continuation region ζ(x) ≥ g(x).

By construction g is tangent with ζ at point x?S . Moreover g(0) = −π0

r < 0, ζ(0) = 0 and ζ is a convex

function (because a > 0 and d1 > 1). Therefore, by Boyd and Vandenberghe [2004], ζ must be above

all its tangents, and thus, in particular, is above g.

Therefore, we conclude that F is indeed the solution of the HJB equation, which ends the proof.

�

6.1.2 Proof of Theorem 1

We want to solve the problem G(θ) = supτ Eθ0=θ
[
e−rτg(θτ )χ{τ<+∞}

]
, for which the HJB equation is given

by

min{rG(θ)− LθG(θ), G(θ)− g(θ)} = 0,

with Lθ being the infinitesimal generator of the compounded Poisson process θ, Lθ l(θ) = λ [l(θ + u)− l(θ)].

In the continuation region we should have G(θ) = λ
λ+rG(θ+ u) and G(x) ≥ g(x). In the stopping region we

should haveG(θ) = g(θ) and rg(θ)−Lθg(θ) ≥ 0. Considering the function h(θ) = (r+λ)g(θ)−λg(θ+u), which

is continuous, and taking into account the Condition (16), we realize that h(θ?) = 0⇔ λ
λ+rG(θ?+u) = g(θ?),

i.e. θ? is exactly the threshold between the continuation and the stopping regions. Given Condition (16), we
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propose that the continuation region stands for lower values of θ and the stopping region stands for higher

values of θ. Therefore, we may write

G(θ) =


λ
λ+rG(θ + u) 0 < θ < θ?

g(θ) θ ≥ θ?

Using a backwards iterative reasoning, we can conclude that for θ such that θ? − nu ≤ θ < θ? − (n − 1)u,

with n ∈ N such that θ? − nu ≥ 0, we have

G(θ) =

(
λ

λ+ r

)n
g(θ + nu).

This expression can be written in a more compact way as presented in (17).

To finish the proof, it remains to check rg(θ) − Lθg(θ) ≥ 0 when θ ≥ θ?, and G(θ) ≥ g(θ) when

0 < θ < θ?. The first part comes instantly from Condition (16). For the second part, we must prove that(
λ
λ+r

)n
g(θ + nu) ≥ g(θ) for θ? − nu ≤ θ ≤ θ? − (n − 1)u, with n ∈ N such that θ? − nu ≥ 0. In order to

prove it, we start realizing that(
λ

λ+ r

)n−1
g(θ + (n− 1)u) ≤

(
λ

λ+ r

)n
g(θ + nu)⇔ h (θ + (n− 1)u) ≤ 0⇔ θ ≤ θ? − (n− 1)u.

This imply that, for a specific n ∈ N and θ > 0, such that θ ≤ θ? − (n− 1)u < ... < θ? − 2u < θ? − u < θ?,

we have

g(θ) ≤
(

λ

λ+ r

)
g(θ + u) ≤

(
λ

λ+ r

)2

g(θ + 2u) ≤ ... ≤
(

λ

λ+ r

)n
g(θ + nu).

So, we proved that
(

λ
λ+r

)n
g(θ + nu) ≥ g(θ) for θ? − nu ≤ θ ≤ θ? − (n− 1)u.

Therefore, we conclude that function G, given by (17), is indeed the solution of the HJB equation, which

ends the proof.

�

6.1.3 Proof of Proposition 2

Here we provide the proof for the stochastic case, as the benchmark case is similar and simpler. For the

stochastic case, we want to solve the problem (9), which is given by

Vx(θ) =
π0
r

+ sup
τ1

Eθ0=θ
[
e−rτ1ρSx (θτ1)χ{τ1<+∞}

]
,
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where

ρSx (θ) =
[(θ − αK1)x− ε]K1

r − µ
+

(
axd1 − 2βK0K1x

r − µ

)
χ{0<x<x?S} −

π0
r
χ{x≥x?S}

with x?S , a and d1 defined in (12), (13) and (14), respectively.

For each x > 0, the optimal stopping problem Gx(θ) = supτ1 E
θ0=θ

[
e−rτ1ρSx (θτ1)χ{τ1<+∞}

]
is of the same

type as that presented in Theorem 1. Given that ρSx is a continuous function, we only need to prove that

Condition (16) holds, in order to have the solution.

Let us consider the function hx(θ) = (r + λ)ρSx (θ)− λρSx (θ + u), which can be written as

hx(θ) =
[[r (θ − αK1)− λu]x− rε]K1

r − µ
+ r

(
axd1 − 2βK0K1x

r − µ

)
χ{0<x<x?S} − π0χ{x≥x?S}.

Notice that, for a fixed x, hx is an increasing linear function in θ, with zero at

γx =
ε

x
+
λu

r
+ αK1 +

(
2βK0 −

a(r − µ)

K1
xd1−1

)
χ{0<x<x?S} +

(r − µ)π0
rK1x

χ{x≥x?S}.

Obviously, if x ≥ x?S we certainly have γx > 0. If 0 < x < x?S then, in view of the definitions of a and x?S , it

follows that 2βK0K1 − a(r − µ)xd1−1 > 2βK0K1 − a(r − µ)x?S
d1−1 = 2βK0K1(d1−1)

d1
> 0. Therefore γx > 0

for all x > 0. Hence θ?x = γx is the only zero of hx, and hx(θ) > 0 ⇔ θ > θ?, which means that Condition

(16) holds. By Theorem 1, we conclude that function Vx, given by (18), is indeed the solution of the optimal

stopping problem (9).

�

6.1.4 Proof of Proposition 3

In the proof of Proposition 1 we already have shown that x?S >
π0

2βK0K1
, which is exactly what we want to

prove here.

�

6.1.5 Proof of Proposition 4

We want to investigate the relative position of the threshold curves θ?B and θ?S , where

θ?B(x) = υAB(x)χ{0<x<x?B} + υRB(x)χ{x≥x?B}
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and

θ?S(x) = υAS (x)χ{0<x<x?S} + υRS (x)χ{x≥x?S}.

We start calculating the difference of the respective functions in the add and replace regions, namely,

υAB(x)− υAS (x) > 0⇔ xd1 > − µδK1

a(r − µ)

and

υRB(x)− υRS (x) > 0⇔ µ

x

(
1 +

π0
rK1

)
> 0.

Given that we are assuming that µ > 0, both previous inequalities hold for x > 0. Furthermore, both

threshold curves are continuous and decrease with x, then we conclude that θ?B(x) > θ?S(x), for all x > 0.

�

6.2 Proofs for comparative statics

In the comparative statics it is important to highlight the dependence of the functions in each parameter. For

ease the notation, when we want to emphasize the dependency of one quantity (a, say) with one parameter

(β, say) we simply write the dependency on that parameter, assuming the others constant (a(β), say).

We start studying how the parameter d1, defined in (14), change with the parameters µ, σ and r.

Proposition 8 The parameter d1 decreases with µ and σ and increases with r.

Proof of Proposition 8 We look at d1, defined in (14),

d1 =
1

2
− µ

σ2
+∇,

with ∇ =

√(
1
2 −

µ
σ2

)2
+ 2r

σ2 . It is straightforward to conclude that d1 increases with r. It is also very simple

to take conclusions with respect to µ and σ, considering the derivatives, namely,

∂d1(µ)

∂µ
= − d1

σ2∇
< 0 and

∂d1(σ)

∂σ
=

2

σ3∇
(µd1 − r) < 0

because r − µd1 = σ2

2 d1(d1 − 1) > 0. Thus, d1 decreases with µ and σ.

�
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6.2.1 Proof of Proposition 5

The proof for the benchmark case is trivial, as the equation that defines x?B is easy to analyze. Therefore

we skip the proof. For the stochastic case, the calculations are less trivial and therefore we present them in

here.

We have x?S = Kb
K1

, where Kb = d1
2(d1−1)

(r−µ)π0

rβK0
. As Kb does not depend on δ, λ and u, neither does x?S .

Also Kb does not depend on K1, but x?S decreases with it. Obviously, Kb decreases with β and x?S , as well.

Taking into account the π0 definition, we easily conclude that Kb increases with ξ0 and decreases with α and

K0, and therefore so does x?S . To study the behavior of x?S with σ, we need to explore d1(σ)
d1(σ)−1 = 1 + 1

d1(σ)−1 ,

as a function of σ. Given that d1 decreases with σ, then d1(σ)
d1(σ)−1 increases with σ, as well as Kb and,

consequently, x?S . The challenging cases are µ and r.

For µ, we need to study %1(µ) = (r−µ) d1(µ)
d1(µ)−1 . Note that %′1(µ) = −d1(µ)[d1(µ)−1]+(r−µ) ∂d1(µ)

∂µ

[d1(µ)−1]2
, which can

be simplified as %′1(µ) = −d1(µ)σ2∇
[
σ2∇ (d1(µ)− 1)− (r − µ)

]
. After some calculations we end up with %′1(µ) =

−d1(µ)∇
[(

1
2 −

µ
σ2

)2
+ r+µ

σ2 −
(
1
2 + µ

σ2

)
∇
]
, to which we can apply the conjugate and after some comprehensive

calculations, we get %′1(µ) = − d1(µ)( r−µσ2 )
2

∇
[
( 1

2−
µ

σ2
)
2
+ r+µ

σ2
+( 1

2+
µ

σ2
)∇

] < 0. Therefore, we conclude that Kb and x?S

decrease with µ.

For r we need to study %2(r) = r−µ
r

d1(r)
d1(r)−1 . Note that %′2(r) =

µd1(r)(d1(r)−1)−r(r−µ) ∂d1(r)
∂r

[r(d1(r)−1)]2
, which

is equivalent to %′2(r) =
2µ∇[r−µ( 1

2−
µ

σ2
)−µ∇]−r(r−µ)

∇[rσ(d1(r)−1)]2
. Applying again the conjugate, we obtain %′2(r) =

− (r−µ)2

∇[σ(d1(r)−1)]2
[
2µ∇[r−µ( 1

2−
µ

σ2
)]+

[
2µ2

[
( 1

2−
µ

σ2
)
2
+ 2r
σ2

]
+r(r−µ)

]] < 0. Then, Kb and x?S also decrease with r.

�

6.2.2 Proof of Proposition 6

We want to investigate how the decision threshold, θ?S , defined in (19), evolves with the different parameters.

The functions that define θ?S , presented in Proposition 2, are elementary functions of the parameters, and

therefore their analysis is straightforward. For that reason, we omit these derivations.

�
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6.2.3 Proof of Proposition 7

Contrary to the benchmark case, the stochastic case the proofs for the comparative statics of the investment

threshold require many arguments, calculations, and we need to invoke an auxiliary lemma, that we provide

(along with its proof) afterwards.

We start by recalling the expressions that define the investment thresholds curves for the stochastic case:

υAS (x) =
ε

x
+
λu

r
+ αK1 + 2βK0 −

a(r − µ)xd1−1

K1

υRS (x) =
ε

x
+
λu

r
+ αK1 +

(r − µ)π0
rK1x

.

It is immediate to see that the derivatives of υAS and υRS in order to either δ, λ or u are equal and positive,

and thus θ?S increases with those parameters, and that the opposite holds for x.

Note that we can rewrite a as follows a =
[
r(d1−1)
π0

]d1−1 [
2βK0K1

(r−µ)d1

]d1
, showing that a decreases with ξ0

and increases with β. Then,
∂υAS (x,ξ0)

∂ξ0
= − (r−µ)xd1(ξ0)−1

K1

∂a(ξ0)
∂ξ0

> 0 and
∂υRS (x,ξ0)

∂ξ0
= (r−µ)K0

rK1x
> 0, implying

that θ?S increases with ξ0. Now we notice that υRS does not depend on either σ or β, thus for replacement

the threshold θ?S is the same for any σ or β. The proofs for those two parameters are very similar.

Regarding σ, let us consider σ1 < σ2. First we want to discover the sign of υAS (x, σ2) − υAS (x, σ1) =

− r−µK1

[
a(σ2)xd1(σ2)−1 − a(σ1)xd1(σ1)−1

]
. We have that υAS (x, σ2) > υAS (x, σ1) ⇔ x >

[
a(σ2)
a(σ1)

] 1
d1(σ1)−d1(σ2)

,

which means that the graphs of υAS (x, σ1) and υAS (x, σ2) intercept each other only once. We know that the

graphs of υAS (x, σ1) and υAS (x, σ2) are tangent to the graph of υRS (x), respectively, at x?S(σ1) and x?S(σ2),

where we already proved that x?S(σ1) < x?S(σ2). Given that υAS (x?S(σ1), σ1) = υRS (x?S(σ1)) > υAS (x?S(σ1), σ2)

and υAS (x?S(σ2), σ2) = υRS (x?S(σ2)) > υAS (x?S(σ2), σ1), this implies that the graphs of υAS (x, σ1) and υAS (x, σ2)

need to intercept each other between x?S(σ1) and x?S(σ2). Since they only intercept once, we conclude that

x?S(σ1) <
[
a(σ2)
a(σ1)

] 1
d1(σ1)−d1(σ2)

< x?S(σ2). We can conclude that θ?S(x, σ1) > θ?S(x, σ2) for 0 < x < x?S(σ2) and

θ?S(x, σ1) = θ?S(x, σ2) for x ≥ x?S(σ2).

Concerning β, let us take β1 < β2, and study the sign of υAS (x, β2) − υAS (x, β1) = 2(β2 − β1)K0 −

(r−µ)xd1−1

K1
[a(β2)− a(β1)]. As in the previous case, the graphs of υAS (x, β1) and υAS (x, β2) only intercept

each other once; also υAS (x, β2) > υAS (x, β1) ⇔ x >
[

2(β2−β1)K0K1

(r−µ)[a(β2)−a(β1)]

] 1
d1−1 5. Given that υAS (x?(β1), β1) =

5Given that a increases with β, we have a(β2)− a(β1) > 0.
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υRS (x?S(β1)) > υAS (x?S(β1), β2) and υAS (x?S(β2), β2) = υRS (x?S(β2)) > υAS (x?S(β2), β1), and recalling that

x?S(β2) < x?S(β1), then the graphs of υAS (x, β1) and υAS (x, β2) need to intercept each other between x?S(β2)

and x?S(β1). Since they only intercept once, we conclude that x?S(β2) <
[

2(β2−β1)K0K1

(r−µ)[a(β2)−a(β1)]

] 1
d1−1

< x?S(β1).

We can conclude that θ?S(x, β1) < θ?S(x, β2) for 0 < x < x?S(β1) and θ?S(x, β1) = θ?S(x, β2) for x ≥ x?S(β1).

The study of µ has some more complex details. The replace case is straightforward, as
∂υRS (x,µ)

∂µ =

− 1
x

[
δ + π0(µ)

rK1

]
< 0. Let us consider υAS (x, µ2)− υAS (x, µ1) = − 1

xν(x), where

ν(x) = δ (µ2 − µ1) +
1

K1

[
a(µ2)(r − µ2)xd1(µ2) − a(µ1)(r − µ1)xd1(µ1)

]
,

for µ2 > µ1. Given that d1(µ1) > d1(µ2), we have ν(0) = δ (µ2 − µ1) > 0 and limx→+∞ ν(x) = −∞.

Considering the derivative

ν′(x) =
1

K1

[
a(µ2)(r − µ2)d1(µ2)xd1(µ2)−1 − a(µ1)(r − µ1)d1(µ1)xd1(µ1)−1

]
,

we see that its sign is changing only once; indeed ν′(x) > 0 ⇔ x <
[
a(µ2)(r−µ2)d1(µ2)
a(µ1)(r−µ1)d1(µ1)

] 1
d1(µ1)−d1(µ2)

. Then

ν has only one zero, changing from positive to negative. Moreover, given that υRS decreases on µ, we have

υAS (x?S(µ2), µ1) > υRS (x?S(µ2), µ1) > υR(x?S(µ2), µ2) = υAS (x?S(µ2), µ2), which means that ν (x?S(µ2)) > 0.

Thus, for 0 < x ≤ x?S(µ2), we have ν(x) > 0, i.e. υAS (x, µ2) < υAS (x, µ1). It remains to see that for

x?S(µ2) < x ≤ x?S(µ1), υRS (x, µ2) < υRS (x, µ1) ≤ υAS (x, µ1). With this we conclude that θ?S decreases with µ.

The behaviour of θ?S with respect to K0,K1, α and r depends intrinsically on the way the functions υAS

and υRS behave when one changes values of the parameters. As some of the arguments are similar for all

these parameters, we propose to use y to denote one of the parameters under study.

In order to clarify the proof, we present a sketch of the basic idea. We start by recalling that x?S decreases

with K0,K1, α and r, i.e., for y1 < y2, we have x?S(y1) > x?S(y2). In all cases, the following functions have

to be compared

ΦAA(x; y1, y2) = υAS (x, y2)− υAS (x, y1) (24)

ΦRR(x; y1, y2) = υRS (x, y2)− υRS (x, y1) (25)

ΦRA(x; y1, y2) = υRS (x, y2)− υAS (x, y1) (26)
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In Lemma 1 we derive the following expressions

ΦAA(x; y1, y2) =


ς1 − ς2xd1−1 if the parameter is α,K0 or K1

1
x

[
ς4 − ς5xd1(y2) + ς6x

d1(y1)
]
− ς3 if the parameter is r

(27)

where ςi > 0 for i = 1, 2, 3, 4, 5, 6. Furthermore,

ΦRR(x; y1, y2) = ς1 −
ς2
x

(28)

where, for i = 1, 2, ςi > 0 for K1 and α, and ςi < 0 for r. For K0, ς1 = 0 and ς2 > 0⇔ y1 + y2 <
ξ0
α . Finally,

ΦRA(x; y1, y2) =
ς1
x

[
ς2x

d1 + ς3
]
− ς4 (29)

where ςi > 0 for i = 1, 2, 3 and ς4 ∈ R.

Next we study the sign of these functions. When the parameter in study is α,K0 orK1, then ΦAA(x; y1, y2) >

0 ⇔ x <
(
ς1
ς2

) 1
d1−1

= i1. For r, as limx→0+ ΦAA(x; y1, y2) = +∞ and limx→+∞ ΦAA(x; y1, y2) = −∞, it

follows that ΦAA has at least one zero. So, here we just consider the case where we have exactly one zero,

hereby denoted by i1. Then ΦAA(x; y1, y2) > 0⇔ x < i1.

For ΦRR the following holds:

• for K0, ΦRR(x; y1, y2) > 0⇔ y1 + y2 <
ξ0
α ;

• for K1 and α, ΦRR(x; y1, y2) > 0⇔ x > ξ2
ξ1

= i2;

• for r, ΦRR(x; y1, y2) > 0⇔ x < ξ2
ξ1

= i2.

Regarding ΦRA, given that d1 > 1, then it follows that limx→0+ ΦRA(x; y1, y2) = +∞ and limx→+∞ ΦRA(x; y1, y2) =

+∞. We have Φ′RA(x; y1, y2) = ς1
x2

[
ς2(d1 − 1)xd1 − ς3

]
, which has only one zero when x =

[
ς3

ς2(d1−1)

] 1
d1

.

Thus ΦRA is a convex function, that either it is always non negative or there are two points, j1 and j2, such

that ΦRA(x; y1, y2) < 0⇔ x ∈ (j1, j2). This fact only depends on the sign ofm = ΦRA

([
ς3

ς2(d1−1)

] 1
d1

; y1, y2

)
=

d1ς1ς
1
d1
2

[
ς3

d1−1

] d1−1
d1 − ς4. Summing up, if m ≥ 0 then ΦRA(x; y1, y2) ≥ 0 for all x > 0; if m < 0 then

ΦRA(x; y1, y2) < 0⇔ x ∈ (j1, j2).

In view of the behaviour of these functions, for α and K1 we conclude that: if m ≥ 0 then θ?S(x, y1) ≤

θ?S(x, y2); if m < 0 then θ?S(x, y1) ≤ θ?S(x, y2) when 0 < x ≤ $1 or x ≥ $2 and θ?S(x, y1) > θ?S(x, y2) when

$1 < x < $2, where
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• if i1 ≤ x?S(y2) then $1 = i1, otherwise $1 = j1;

• if i2 ≥ x?S(y1) then $2 = i2, otherwise $2 = j2.

For K0, if y1 + y2 ≤ ξ0
α then θ?S(x, y1) ≤ θ?S(x, y2); otherwise θ?S(x, y1) ≤ θ?S(x, y2) when 0 < x ≤ $ and

θ?S(x, y1) > θ?S(x, y2) when x > $, where $ = i1 if i1 ≤ x?S(y2) and $ = j1 if i1 > x?S(y2).

Finally, with respect to r, we have the following behaviours: θ?S(x, y1) ≤ θ?S(x, y2) when 0 < x ≤ $ and

θ?S(x, y1) > θ?S(x, y2) when x > $, where

• $ = i1 if m > 0 and j1 < x?S(y2) < x?S(y1) < j2;

• $ = j1 if m > 0 and x?S(y2) < x?S(y1) < j2;

• $ = i2 otherwise 6.

�

Lemma 1 For the parameters K0,K1, α and r, the functions defined in (24), (25) and (26) are given by

(27), (28) and (29), respectively.

Proof of Lemma 1

• For parameter K0, let us consider two possible values, K01 < K02.

i) ΦAA(x;K01,K02) = 2β (K02 −K01)− (r−µ)[a(K02)−a(K01)]
K1

xd1−1.

Note that a (K02)− a (K01) > 0⇔ K01 [ξ0 − αK01]
1−d1 < K02 [ξ0 − αK02]

1−d1 . Considering the

function φ(k) = k (ξ0 − αk)
1−d1 , with k < ξ0

α , we have φ′(k) = (ξ0−αk)+αk(d1−1)
(ξ0−αk)d1

> 0, meaning

that φ is an increasing function. Thus, it holds a (K02)− a (K01) > 0.

ii) ΦRR(x;K01,K02) = (r−µ)[π0(K02)−π0(K01)]
rK1x

.

Note that π0 (K02)− π0 (K01) > 0⇔ K01 +K02 <
ξ0
α .

iii) ΦRA(x;K01,K02) = (r−µ)
rK1x

[
ra (K01)xd1 + π0 (K02)

]
− 2βK01.

• For parameter K1, let us consider two possible values, K11 < K12.

6Note that we always have x?S(y1) < j2
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i) ΦAA(x;K11,K12) = α (K12 −K11)− (r−µ)[K11a(K12)−K12a(K11)]
K11K12

xd1−1.

Note that K11a(K12) − K12a(K11) > 0 ⇔
(
K11

K12

)d1−1
< 1, which is true because d1 > 1 and

K11

K12
< 1.

ii) ΦRR(x;K11,K12) = (K12 −K11)
[
α− (r−µ)π0

rK11K12x

]
.

iii) ΦRA(x;K11,K12) = (r−µ)
x

[
a(K11)
K11

xd1 + π0

rK12

]
− [2βK0 − α (K12 −K11)].

• For parameter α, let us consider two possible values, α1 < α2.

i) ΦAA(x;α1, α2) = K1 (α2 − α1)− (r−µ)[a(α2)−a(α1)]
K1

xd1−1.

Note that a(α2)−a(α1) =
[
2βK0K1

(r−µ)d1

]d1
[r(d1 − 1)]

d1−1
[
π0(α2)

1−d1 − π0(α1)
1−d1

]
and π0(α2)

1−d1−

π0(α1)
1−d1 > 0⇔

[
ξ0−α1K0

ξ0−α2K0

]d1−1
> 1, which is always true because ξ0−α1K0

ξ0−α2K0
> 1 and d1 > 1.

ii) ΦRR(x;α1, α2) = (α2 − α1)
[
K1 − (r−µ)K0

2

rK1x

]
.

iii) ΦRA(x;α1, α2) = (r−µ)
rK1x

[
ra(α1)xd1 + π0(α2)

]
− [2βK0 −K1(α2 − α1)].

• For parameter r, let us consider two possible values, r1 < r2.

i) ΦAA(x; r1, r2) = 1
x

[
δ(r2 − r1)− 1

K1

[
(r2 − µ)a (r2)xd1(r2)−1 − (r1 − µ)a (r1)xd1(r1)−1

]]
+λu(r2−r1)

r1r2
.

ii) ΦRR(x; r1, r2) = (r2−r1)
r1r2

[
−λu+ δK1r1r2+µπ0

K1x

]
.

iii) ΦRA(x; r1, r2) = 1
r2K1x

[
r2(r1 − µ)a(r1)xd1(r1) + r2 (r2 − r1) δK1 + (r2 − µ)π0

]
−
[
2βK0 + λu(r2−r1)

r1r2

]
.

�

References

Krishnan S. Anand and Karan Girotra. The strategic perils of delayed differentiation. Management Science,

53(5):697–712, 2007.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York,

NY, USA, 2004.

Soo-Haeng Cho and Kevin F McCardle. The adoption of multiple dependent technologies. Operations

Research, 57(1):157–169, 2009.

34



A. K. Dixit and R. S. Pindyck. Investment Under Uncertainty. Princeton University Press, Princeton, New

Jersey, United States of America, 1994.

U. Doraszelski. The net present value method versus the option value of waiting: A note on Farzin, Huisman

and Kort (1998). Journal of Economic Dynamics & Control, 25:1109–1115, 2001.

Ulrich Doraszelski. Choosing among alternative discrete investment projects under uncertainty. Journal of

Economic Dynamics and Control, 28(7):1461–1480, 2004.

Y. H. Farzin, K. J. M. Huisman, and P. M. Kort. Optimal timing of technology adoption. Journal of

Economic Dynamics & Control, 22:779–799, 1998.

D. Fudenberg and J. Tirole. Preemption and rent equalization in the adoption of new technology. The

Review of Economic Studies, 52:383–401, 1985.

Manu Goyal and Serguei Netessine. Strategic technology choice and capacity investment under demand

uncertainty. Management Science, 53:192–207, 2007.

S. R. Grenadier and A. M. Weiss. Investment in technological innovations: An option pricing approach.

Journal of Financial Economics, 44:397–416, 1997.
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