

Tilburg University

RegularizedSCA

Gu, Zhengguo; Van Deun, Katrijn

Published in:
Behavior Research Methods

DOI:
10.3758/s13428-018-1163-z

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Gu, Z., & Van Deun, K. (2019). RegularizedSCA: Regularized simultaneous component analysis of multiblock
data in R. Behavior Research Methods, 51(5), 2268-2289. https://doi.org/10.3758/s13428-018-1163-z

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. Nov. 2022

https://doi.org/10.3758/s13428-018-1163-z
https://research.tilburguniversity.edu/en/publications/a326d0ed-5b1b-473c-bffd-331cfee42837
https://doi.org/10.3758/s13428-018-1163-z

Behavior Research Methods
https://doi.org/10.3758/s13428-018-1163-z

RegularizedSCA: Regularized simultaneous component analysis
of multiblock data inR

Zhengguo Gu1 · Katrijn Van Deun1

© The Author(s) 2018

Abstract
This article introduces a package developed for R (R Core Team, 2017) for performing an integrated analysis of multiple
data blocks (i.e., linked data) coming from different sources. The methods in this package combine simultaneous component
analysis (SCA) with structured selection of variables. The key feature of this package is that it allows to (1) identify joint
variation that is shared across all the data sources and specific variation that is associated with one or a few of the data
sources and (2) flexibly estimate component matrices with predefined structures. Linked data occur in many disciplines
(e.g., biomedical research, bioinformatics, chemometrics, finance, genomics, psychology, and sociology) and especially in
multidisciplinary research. Hence, we expect our package to be useful in various fields.

Keywords Common/distinctive components · Group Lasso · Lasso · Linked data analysis · Multiblock analysis ·
Simultaneous component analysis

Joint analysis of multiblock data (also referred to as inte-
grated analysis of multiblock data, linked data analysis, or
broadly speaking, data fusion; see, Van Mechelen & Smilde,
2010) is getting increasingly popular in recent years. Thanks
to modern technology, researchers gather comprehensive
data from multiple sources and analyze them jointly. For
example, global positioning systems (GPS) data have been
combined with self-report travel diary data, and their joint
analysis provides a deeper insight into people’s traveling
behavior (Mavoa et al., 2011). Social media data such as
financial tweets and linked business ontology data have
been used to jointly predict the stock market (Sánchez
Rada et al., 2014). Other examples can be found in studies
on complex interactions between genetic information and
environmental conditions (Meloni, 2015), between longitu-
dinal survey data and bio-measures (Buck & McFall, 2011),
and between behavioral data (e.g., school census, clinical
data) and genetic data (Boyd et al., 2012).

This article introduces an R package for performing
joint analysis on large-scale multiblock data from multiple

� Zhengguo Gu
z.gu@tilburguniversity.edu

1 Department of Methodology and Statistics,
TSB, Tilburg University, PO Box 90153,
5000LE, Tilburg, The Netherlands

sources. The core algorithms of this package have their roots
in traditional simultaneous component analysis (SCA),
which has been widely used for performing data integration
from multiple sources in biomedical research, bioinformat-
ics, genomics, and psychology (e.g., De Tayrac, Lê, Aubry,
Mosser, & Husson, 2009; Gu & Van Deun, 2016; Lock,
Hoadley, Marron, & Nobel, 2013; Van Deun, Smilde, van
der Werf, Kiers, & Van Mechelen, 2009; Van Deun et al.,
2012: Van Deun, Smilde, Thorrez, Kiers, & Van Mechelen,
2013; Wilderjans, Ceulemans, Van Mechelen, & van den
Berg, 2011). One may notice that, aside from SCA, other
methods, such as canonical correlation analysis (Tenenhaus
& Tenenhaus, 2014), may also be used for joint analysis
of multiblock data, but we refrain from discussing other
methods in this article.

The major advantage of traditional simultaneous
component-based data integration methods is that they
allow for identifying the same components for all sources,
which facilitates joint interpretation across all sources.
However, the traditional methods are also limited: First,
interpretation of components is based on all variables,
which makes the results difficult to interpret especially in
the case of big data (Van Deun et al., 2011). Second, they are
not designed for identifying joint sources of variation that
offer shared information across data blocks and identifying
unique variation that provides critical information on a few
but not all data blocks. An example of joint variation is
genes–environment interactions. Researchers are interested

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1163-z&domain=pdf
mailto: z.gu@tilburguniversity.edu

Behav Res

in whether specific (susceptible) genes pose a risk in a
certain risk-inducing environment, which boils down to
linking (a few selected) variables from each of the sources
(i.e., genes from the genetic data and environment-relevant
variables from the survey data). Here, the linked variables
highlight the joint sources of variation in the data. An
example of specific variation is personality research in
cross-cultural psychology, where specific variation belong-
ing to a particular culture is of substantial interest (Kuppens
et al., 2006).

Van Deun et al. (2011) proposed a sparse SCA frame-
work for identifying joint and specific variation in multi-
block data. In the sparse SCA framework, the joint and
specific variation is manifested in the common and dis-
tinctive components of a component loading matrix. The
interpretation of the component loading matrix is similar to
that in principal component analysis (PCA). Based on the
sparse SCA framework, Gu and Van Deun (2016) proposed
a majorization-minimization (MM) algorithm for identify-
ing common and distinctive components and provided the
MATLAB code. Their method performs variable selection by
using state-of-the-art penalization methods like the Lasso
and thus includes sparse PCA (Shen & Huang, 2008) as a
special case. So far, only the MATLAB code implementing
the core algorithms is available, which, in essence, makes
the method only accessible to those having time, good pro-
gramming skills, and insight in the method and model selec-
tion procedures. Furthermore, the algorithmic approach
taken by Gu and Van Deun (2016) has some drawbacks:
The MM procedure tends to be slow in searching for the
minimum, which may not be desirable in applied research.
In addition, MM is an iterative procedure that converges
to the optimal solution but, in general, does not reach the
optimum exactly. For the particular penalized problem con-
sidered here and for that studied by Gu and Van Deun
(2016), the exact solution to the (conditional) optimization
problem can be found by using sub-gradient techniques.
With strong penalties, the estimated loadings can be exact
zeros instead of approximate zeros, which is what users
desire in case of variable selection.

In this article, we introduce the RegularizedSCA package
for multiblock data analysis with the capability of identi-
fying joint and specific variation in terms of common and
distinctive components, which offers a great interpretational
advantage to users. This package incorporates comprehen-
sive algorithms for solving regularized SCA problems and
provides user-friendly tools to facilitate model selection and
interpretation. In addition, we show that the sparse SCA
framework (Van Deun et al., 2011) can be transformed into a
sparse Group Lasso regression problem (Yuan & Lin, 2006)
resulting in a procedure that not only is more computa-
tionally efficient than the MM procedure implemented by
Gu and Van Deun (2016) and Van Deun et al. (2011) but

can also generate exact zeroes. Furthermore, prior informa-
tion regarding joint and specific variation in the data can
directly be incorporated and analyzed by the algorithms in
RegularizedSCA.

An additional bonus of the RegularizedSCA package is
that it incorporates several approaches, including DISCO-
SCA, the variance accounted for (VAF) method (Schout-
eden et al., 2014), and the PCA-GCA method (Smilde
et al., 2017), to data integration that have been proposed
previously but were mainly implemented in MATLAB and
not in R. These are all non-sparse approaches and have
been included with the purpose of model selection but,
if needed, can be used on their own. The existence of
multiple approaches is due to the nonunanimously agreed
upon concept of joint and specific variation (Smilde et al.,
2017). Some researchers focus on the explained variance
in each data block (e.g., in psychological research), and
therefore joint and specific variation is identified by exam-
ining explained variance using, for example, DISCO-SCA
together with the VAF method. Others argue that joint and
specific variation should be decided based on the correlation
between data blocks by using the PCA-GCA method. The
RegularizedSCA package includes DISCO-SCA, the VAF
method, and the PCA-GCA method to meet researchers’
diverging needs.

In what follows, we first introduce the SCA method, the
regularized SCA model, and model selection methods for
the regularized SCA model. Next, we illustrate the extensive
functionality of RegularizedSCA by using a simple dataset
included in the package. Finally, we present an application
to joint analysis on three-block survey data on parent–
child relationships to help readers understand what kind of
research questions in social and behavioral sciences can be
answered by using RegularizedSCA.

Method

The simultaneous component analysis (SCA) model

SCA can be regarded as an extension of principal
component analysis (PCA). Suppose K data blocks are to
be integrated, and let Xk , a Ik × Jk matrix, denote the kth
(k = 1, 2, ..., K) data block containing scores of Ik subjects,
objects, or experimental conditions on Jk variables. Based
on PCA, Xk can be decomposed as follows

Xk = TkPT
k + Ek, (1)

with R components. The component score matrix Tk is of
size Ik × R; the matrix of component loadings Pk is of size
Jk × R. Ek denotes the residuals. To identify the solution,
extra constraints, such as TT

k Tk = I and a principal axis
orientation, are assumed (Van Deun et al., 2009).

Behav Res

Unlike PCA, which focuses on one data block, SCA
analyzes multiple data blocks altogether. Since data blocks
are integrated with respect to the same rows, we have I1 =
· · · = Ik = · · · = IK = I . SCA requires that the component
scores should be the same across all data blocks, and thus
for each data block

Xk = TPT
k + Ek, (2)

with TT T = I and T1 = · · · = Tk = · · · = TK = T.
Estimates of the model (2) can be obtained by solving the
following least squares minimization problem

min
T,Pk

∑

k

‖Xk − TPT
k ‖2

2 (3)

under the constraints. Optimal T and Pk for Eq. 3 can be
obtained from the singular value decomposition (SVD) of
the concatenated data [X1 · · ·XK] (see, e.g., Van Deun et
al., 2009).

Common and distinctive components

The SCA model cannot be used to identify joint and specific
variation in data, which is well known in psychometrics
(Smilde et al., 2017) for data integration. Schouteden et al.
(2013) and Schouteden et al. (2014) proposed the DISCO-
SCA method, which involves rotating the SCA solution to
common and distinctive components by introducing a target
matrix that defines distinctive components by loadings that
are zero everywhere except for the variables of the block(s)
that they are supposed to underlie; common components are
left unspecified in the target. In general, the rotated loadings
will not result in zero or close-to-zero loadings for the
distinctive components and loadings that are (much) higher
in absolute value than zeros for the common component.
To check if the rotated loadings are indeed distinctive, the
proportion of VAF by the component in each of the blocks
is computed: if this proportion is considerably higher in the
block(s) underlying the component than in the other blocks,
the component is called distinctive according to the DISCO-
SCA method; if the proportion is approximately the same in
all blocks, the component is called common.

In this article, we give a formal definition of common
and distinctive components as follows. For the rth
component (r = 1, 2, ..., R), its component loading vector
corresponding to the kth data block is denoted by pk

r . The
rth component is referred to as a common component across
all data blocks, if pk

r �= 0 (i.e., at least one loading in the
rth component belonging to the kth block is not zero) for
all k (k = 1, ..., K). Figure 1 presents a schematic view
of a concatenated component loading matrix from two data
blocks with four components (i.e., columns), where “×”
denotes a non-zero loading, and “0” denotes a zero loading.
In Fig. 1, the first column is such a common component,

Fig. 1 An example of common/distinctive components in a concate-
nated component loading matrix. The columns represent components,
and the rows represent variables. The first six rows contain loadings
from the first data block, and the remaining five rows contain loadings
from the second data block. “×” indicates a non-zero loading, and “0”
denotes a zero loading

which we refer to as a “non-sparse” common component.
Common components reflect the joint variation across all
data blocks. The rth component is referred to as a distinctive
component, if for some k, pk

r = 0 (i.e., all loadings in the rth
component belonging to the kth block are zero). In Fig. 1,
the fourth column is a “non-sparse” distinctive component.
Distinctive components reflect specific variation presented
in some, but not all, data blocks. The second and third
columns in Fig. 1 are referred to as “sparse” common
and distinctive components, discussed shortly in the next
subsection.

Defining common and distinctive components with
respect to Pk (k = 1, ..., K), as we do here, gives a very
clear meaning to the components. Zero loadings suggest
that the corresponding variables are not associated to the
component, whereas variables with non-zero loadings are
associated to the component. These components represent
structural sources of variation, and components with
linked variables across data blocks represent joint variation

Behav Res

while components with non-zero loadings for variables of
only one or a few blocks represent specific sources of
variation. Unfortunately, the SCA model does not yield such
structures of zero loadings (Van Deun et al., 2011), and
therefore regularization is introduced to the SCA model.

The regularized SCAmodels

Throughout this section, we assume that the total number of
components for all data blocks, R, is known, and we will
discuss how to obtain R in the Model Selection section.
We distinguish two situations. Situation (1): We do not
know the specific component structure; that is, for each
component, we do not know whether zero loadings are fixed
for a single block or for multiple but not all blocks (i.e., a
distinctive component) or whether all blocks contain non-
zero loadings (i.e., a common component). Situation (2):
We know the specific component structure (based on, for
example, existing literature); that is, we know the position of
zero loadings defining the distinctive structure but we need
to estimate the remaining undefined (non-zero) loadings.

Regularized SCAmodelwith unknown component structure

Building upon sparse principal component analysis (Zou
et al., 2006) and simultaneous component analysis, the
regularized SCA (also called sparse SCA) model was
proposed by Van Deun et al. (2011) and extended by
Gu and Van Deun (2016) to component-specific penalties
(see Eq. 4 below). The latter extension was needed to
allow for solutions with a mix of common and distinctive
components. The regularized SCA model is capable of
identifying common components (i.e., joint variation) in
the component loading matrix across all data blocks and
distinctive components (i.e., specific variation) that belong
to one or a few blocks. The regularized SCA model can
identify non-sparse common components (e.g., the first
column in Fig. 1), sparse common components (e.g., the
second column), sparse distinctive components (e.g., the
third column), and non-sparse distinctive components (e.g.,
the fourth column).

The regularized SCA model minimizes the following
objective function

min
T,Pk

∑

k

‖Xk −TPT
k ‖2

2 + λL

∑

k

‖Pk‖1 + λG

∑

k

√
Jk‖Pk‖2

(4)

subject to

TT T = I; λL, λG ≥ 0,

where
∑

k ‖Pk‖1 = ∑
k

∑
jk,r

|pjkr | is the Lasso penalty,
∑

k

√
Jk‖Pk‖2 = ∑

k

√
Jk

∑
jk,r

(p2
jkr

) is the Group Lasso

penalty, and pjkr denotes the element on the j th row and
rth column in matrix Pk . All the variables in Xk are mean-
centered and scaled to norm one, which is a commonly used
pre-processing step (see, e.g., Gu & Van Deun, 2016; Van
Deun et al., 2011). Note that the penalties

∑
k ‖Pk‖1 and∑

k

√
Jk‖Pk‖2 result in shrinkage of coefficients associated

to loadings and a block of loadings to zero, respectively.
The amount of shrinkage and zero loadings is tuned by
the tuning parameter λL for the Lasso and by the tuning
parameter λG for the Group Lasso. As a side note, by
introducing penalties, the regularized SCA model may
suffer from some loss in fit of the solution to the data, which
is not the case for the DISCO-SCA method mentioned
previously. The minimization problem (4) can be rewritten
in the following vectorized form

min
T,Pk

∑

k

‖vec(Xk)−(I⊗ T)vec(PT
k)‖2

2 + λL

∑

k

‖vec(Pk)‖1

+λG

∑

k

√
Jk‖vec(Pk)‖2 (5)

subject to

TT T = I; λL, λG ≥ 0.

To solve the minimization problem (5), T and Pk

are estimated iteratively until convergence, given R

components, λL, and λG (i.e., pre-specified R, λL, and λG).
We discuss how to identify R, λL, and λG in the Model
Selection section below. T is estimated by T = VUT , where
U�VT is the SVD of PT

CX
T
C . Here, PC is the concatenated

component loading matrix consisting of K blocks of
component loadings Pk , and XC is the concatenated data
consisting of K blocks. To estimate Pk , Gu and Van Deun
(2016) proposed to use the MM procedure; that is, they
replaced (5) with a surrogate function

min
T,Pk

∑

k

‖vec(Xk)−(I ⊗ T)vec(PT
k)‖2

2 + λL

∑

k

‖vec(Pk)‖1

+
∑

k

{
λG

2
vec(PT

k)T
√

JkD
{
mG

kr

}
vec(PT

k)

}

+λG

2

∑

k,r

(
mG

kr

)−1
,

where D{x} denotes a diagonal matrix with element x on

its diagonal, and mG
kr =

(∑
jk

‖p(o)
jkr

‖2
)−1/2

, which is a

scalar depending on the current estimate of the component
loadings in Pk (i.e., p

(o)
jkr

). Note that the particular MM
iterations here are such that no exact zeros can result from
the Group Lasso penalty, although, with sufficiently high
λG, these are the solutions to the optimization problem. Gu
and Van Deun (2016) used rounding (with some arbitrary

Behav Res

cut-off) at termination of the MM procedure, despite
that, strictly speaking, exact zeros were needed to obtain
distinctive components.

We now show that Eq. 5 does not require the MM
procedure. Pk can be solved by noticing that the minimiza-
tion problem (5) is in fact a special case of sparse Group
Lasso, and its solution (i.e., estimated component loading
matrix P̂k) is directly derived from Yuan and Lin (2006) and
Friedman et al. (2010). To see this, notice that the objective
function (4) with respect to Pk is

min
Pk

∑

l �=k

‖Xl −TPT
l ‖2

2 + ‖Xk − TPT
k ‖2

2 + λL

∑

l �=k

‖Pl‖1

+λL‖Pk‖1 +
∑

l �=k

λG

√
Jl‖Pl‖2 + λG

√
Jk‖Pk‖2 (6)

⇒ min
Pk

‖Xk − TPT
k ‖2

2 + λL‖Pk‖1 + λG

√
Jk‖Pk‖2 (7)

= min
Pk

‖vec(Xk)−(I⊗T)vec(PT
k)‖2

2+λL‖Pk‖1+λG

√
Jk‖Pk‖2. (8)

Note that Eq. 8 is in the form of a regression problem,
where vec(Xk) plays the role of the outcome, I ⊗ T of the
predictors, and vec(PT

k) of the regression weights. Because
(I⊗T)T (I⊗T) = I (i.e., the predictors are independent), Eq.
8 is a sparse group Lasso problem whose standard solution
is given by Yuan and Lin (2006). It can be shown that the
solution to Eq. 8 is

vec(P̂T
k) =

[
1

2
− λG

√
Jk

2‖S (
2(I ⊗ T)T vec(Xk), λL

) ‖2

]

+
×S

(
2(I ⊗ T)T vec(Xk), λL

)
. (9)

S(·) is the soft-thresholding operator. [x]+ = x, if x > 0;
[x]+ = 0, if x ≤ 0. Equation 9 is a closed form solution
(unlike the solution based on the MM procedure) for one
group of coefficients. To solve for all groups, the algo-
rithm iterates over each group. Notice that in Eq. 8, the
Group Lasso penalty is imposed on the entire component
matrix Pk , which we refer to as the block-wise method.
Equation 9 is informative on how the sparseness is
achieved. The first half of Equ. 9,

[
1/2 − (λG

√
Jk)/(

2‖S (
2(I ⊗ T)T vec(Xk), λL

) ‖2
)]

+, dictates whether
an entire block of component loadings should
be replaced with zeros, and if

[
1/2 − (λG

√
Jk)/(

2‖S (
2(I ⊗ T)T vec(Xk), λL

) ‖2
)]

+ > 0, then the sec-

ond half, S
(
2(I ⊗ T)T vec(Xk), λL

)
, works as a shrinkage

operator within the entire block of component loadings and
shrinks some but not all loadings to zeros.

Alternatively, the Group Lasso penalty can be imposed
on the rth component (r = 1, 2, ..., R), denoted by pk

r , of
Pk , resulting in the component-wise method. In this case,

starting from Eq. 7, we solve the following minimization
problem with respect to pk

r

min
pk

r

‖Xk−TPT
k ‖2

2 + λL

R∑

r=1

‖pk
r‖1+ λG

√
Jk

R∑

r=1

‖pk
r‖2 (10)

= min
pk

r

‖XT
k −

R∑

r=1

pk
r t

T
r ‖2

2+λL

R∑

r=1

‖pk
r‖1+λG

√
Jk

R∑

r=1

‖pk
r‖2, (11)

where tr is the rth column in T. Let

Rk := XT
k −

R∑

s �=r

pk
s t

T
s ,

and then Eq. 11 becomes

min
pk

r

‖Rk − pk
r t

T
r ‖2

2 + λL

R∑

r=1

‖pk
r‖1 + λG

√
Jk

R∑

r=1

‖pk
r‖2 (12)

⇒ min
pk

r

‖Rk − pk
r t

T
r ‖2

2 + λL‖pk
r‖1 + λG

√
Jk‖pk

r‖2 (13)

= min
pk

r

‖vec(Rk) − (tr ⊗ I)pk
r‖2

2 + λL‖pk
r‖1 + λG

√
Jk‖pk

r‖2. (14)

Because (tr ⊗ I)T (tr ⊗ I) = I, it can be proven that

p̂k
r =

[
1

2
− λG

√
Jk

2‖S (
2(tr ⊗ I)T vec(Rk), λL

) ‖2

]

+
×S

(
2(tr ⊗ I)T vec(Rk), λL

)
, (15)

see Yuan and Lin (2006). The first half of Eq. 15,[
1/2 − (λG

√
Jk)/(2‖S (

2(tr ⊗ I)T vec(Rk), λL

) ‖2)
]
+,

decides whether an entire component in a block should
be replaced with zeros, and if

[
1/2 − (λG

√
Jk)/

(2‖S (
2(tr ⊗ I)T vec(Rk), λL

) ‖2)
]
+ > 0, then the second

half S
(
2(tr ⊗ I)T vec(Rk), λL

)
searches through the com-

ponent and shrinks some (but not all) loadings to zeros.
We present the algorithm for solving the regularized SCA
model with unknown component structure in Appendix
(see Algorithm 1).

Our experience is that the component-wise method is
more useful in practice, because by imposing Group Lasso
penalties on each component of each block, the common
and distinctive components are directly identified. The
block-wise method is useful when users are not sure
whether certain data blocks provide any information at all—
if not, the entire data blocks can be dropped from analysis.
In the remainder of this article, we focus on the use of the
component-wise method, but the block-wise method is also
mentioned when necessary.

Because the sparse group lasso regression satisfies the
Karush–Kuhn–Tucker (KKT) conditions (Yuan & Lin,
2006), the convergence is guaranteed for each iteration
where PC is updated. PC and T are updated iteratively, and

Behav Res

this procedure guarantees that the loss is non-increasing,
but local minima rather than the global minimum might
be attained. Thus, Algorithm 1 (see the Appendix) is
combined with a multi-start procedure; that is, the algorithm
is repeated multiple times with different starting values
of PC . It should be noted that the running time of the
algorithm increases because of the multi-start procedure. In
the RegularizedSCA package, users can freely decide the
number of random starts for the multi-start procedure. In
addition, due to the regularization penalties, the non-zero
component loadings are closer to zero than if there would be
no penalties. If desired, one may also undo the shrinkage by
re-estimating the non-zero loadings by means of OLS (Gu
& Van Deun, 2016).

Regularized SCAmodel with known component structure

Sometimes, a researcher may know the general component
structure a priori; that is, she/he knows for each compo-
nent whether it is common or distinctive for one or a few
particular blocks. In such circumstances, what interests a
researcher often is that, whether it is possible to achieve
a higher level of sparseness. For example, suppose previ-
ous research suggests that there are two components, one
of which is a non-sparse common component like the first
column in Fig. 1 and the other of which is a non-sparse
distinctive component like the fourth column in the same
figure. Can we further introduce some sparseness to the
two non-sparse components by turning them into sparse
common and distinctive components like the second and
third columns in Fig. 1? In this case, one may fix the
zero loadings that are known a priori and let the algorithm
estimate the remaining loadings freely. To fix the zero load-
ings, the RegularizedSCA package requires users to enter a
so-called target matrix, which contains the information of
the specific component structure known to users. How to
specify the target matrix is explained in “The Regularized-
SCA package” Section below. Also, because the specific
component structure is known, the Group Lasso penalty,
which originally is included to identify the component
structure (i.e., by suppressing component loadings of a
component or a block to zeros), is not needed. Thus, the
minimization problem (5) simplifies to a Lasso regression
problem, and the Group Lasso penalty is removed (i.e.,
λG = 0; Gu & Van Deun, 2016). In fact, we can consider
this Lasso regression problem as a special, component-wise
case of the regularized SCA model with unknown compo-
nent structure (see Eq. 15): The difference is that, when
the component structure is known, the first half of Eq. 15,[
1/2 − (λG

√
Jk)/(2‖S (

2(tr ⊗ I)T vec(Rk), λL

) ‖2)
]
+ ≡

1/2 (because λG = 0), and the remaining half of Eq. 15,
S

(
2(tr ⊗ I)T vec(Rk), λL

)
, is the standard solution to a

Lasso regression problem. The Lasso regression satisfies the
KKT conditions (Hastie, Tibshirani, & Wainwright, 2015,
p. 9), and therefore the convergence is guaranteed for each
iteration where PC is updated. Because the loss function is
biconvex, convergence is thus to a local minimum and the
algorithm also requires a multi-start procedure. In addition,
one may undo the shrinkage of the non-zero loadings by
means of OLS (Gu & Van Deun, 2016). We present the algo-
rithm for solving the regularized SCA model with known
component structure in the Appendix (see, Algorithm 2).

Model selection

The regularized SCA model (5) with unknown component
structure is formulated with a fixed number of components
(i.e., R) and fixed values for the tuning parameters for the
Lasso and Group Lasso (i.e., λL and λG). The regularized
SCA model with known component structure (i.e., Eq. 5
with λG = 0) is formulated with a fixed number of
R and a fixed value for λL. To help users choose the
most suitable model, we present a flow chart (Fig. 2).
Users are advised to ask themselves three questions, which
are (1) “How many components (R) for all blocks to
retain?”, (2) “How to identify the component structure,
given R?”, and (3) “Is there a reason (e.g., according to
previous research) to believe that there is some sparseness
within common/distinctive components?” Depending on the
answers to the questions, one chooses a model in Fig. 2.

Deciding the number of components R for all data blocks

The RegularizedSCA package provides the VAF method
and the PCA-GCA method for identifying the number of
components. The VAF method computes the proportion of
VAF for each simultaneous component in each data block
(Schouteden et al., 2013; Schouteden et al., 2014). One may
perform simultaneous component analysis without Lasso
and Group Lasso penalties given an arbitrarily large number
of components R∗ >> R and compute the VAF for each
component in each block. According to Schouteden et al.
(2013, 2014), one may choose a proper value for R such that
the VAF for the first R components is clearly higher than for
the remaining (R∗ − R) components in any block.

The PCA-GCA method (for details, see, Smilde et al.,
2017) works in two steps. The first step concerns identifying
the number of components for each data block. In this
step, PCA is performed separately on each block, and
the appropriate number of components for each block
is identified (via, for example, a scree plot). However,
deciding R for all data blocks by means of the PCA-GCA
method requires a second step (discussed below); that is, R

is obtained once the component structure is identified.

Behav Res

Fig. 2 A flow chart for model selection. Note that CS stands for component structure, and C/D stands for common and distinctive components

Identifying the component structure

Several tools are available for this purpose. The first tool is
the DISCO-SCA method (Schouteden et al., 2013, 2014),
provided that the VAF method has been used for deciding
R. In a nutshell, DISCO-SCA is performed in such a way
that PC is rotated towards a sequence of so-called target
matrices, each target matrix corresponding to a possible
combination of common and distinctive components. Since
PC is rotated, T will be rotated accordingly. The best
combination of common and distinctive components is
identified by certain rules based on the sum of squared
scores of components (see, Schouteden et al., 2013,
for details). We emphasize that, in RegularizedSCA, the
DISCO-SCA method is not used to estimate common and
distinctive components but is used to identify the component
structure. As a side note, readers may wonder why not
first let DISCO-SCA identify the component structure, then
the sum of the number of common/distinctive components
is R. However, this is impossible, because the procedure
(Schouteden et al., 2013, 2014) was proposed as a stepwise
method where first R has to be determined and next the
common/distinctive structure is determined by checking
all possible configurations of common and distinctive
components for R.

The second tool is the PCA-GCA method, provided that
the same method has been used for deciding the number of
components for each data block. To identify the component
structure, generalized canonical correlation analysis (GCA)
is performed on the component scores of every two data
blocks to identify the number of common components. A
common component is identified if the correlation is above
a threshold. For example, Smilde et al. (2017, p. 15) used
.7 as the correlation threshold for the medical biology data.
Once the number of common components is identified, the
rest are the distinctive components, and thus the component
structure is identified.

The third tool requires the Group Lasso penalty by
means of the component-wise method, provided that R has
been decided by the VAF method. In this case, we let the
algorithm identify a suitable component structure for us by
identifying λG via cross-validation.

Sparseness within common/distinctive components

Once a component structure is identified, one may decide
whether there is sparseness within the common/distinctive
components; that is, whether the components should look
like the first and fourth columns in Fig. 1 or look like
the second and third columns in the figure. The sparseness

Behav Res

within common/distinctive components is achieved by using
a Lasso penalty with λL �= 0, and λL is identified by
means of a cross-validation procedure. By giving answers
to the three questions, users choose one of the six models
in Fig. 2. Take models 1 and 2 in the figure for example.
When R is decided by means of the VAF method, and the
component structure is identified by means of DISCO-SCA,
the recommended model is the regularized SCA model with
known structure with λL ≡ 0, if it is believed that there is
no sparseness within common/distinctive components (i.e.,
Model 1). Alternatively, one may first use Model 2 and
check whether the cross-validation procedure recommends
a very small λL. A very small λL may suggest that there is
little support for a sparse model, and therefore one may use
Model 1 instead. If one intends to achieve some sparseness
within common/distinctive components, then Model 2 is
preferred.

Note that models 2, 3, 4, and 6 incorporate a K-fold
cross-validation procedure for identifying the optimal λL

and/or λG. When both λL and λG are used (i.e., Model 4),
the algorithm searches through a grid of λL and λG values,
and for each pair of λL and λG, K-fold cross-validation is
performed. Take 10-fold cross-validation for example, 10%
of the cells from the data are replaced with missing values,
which are then replaced with the mean across subjects that
do not contain missing values. The optimal combination
of λL and λG is identified as follows. First, the algorithm
computes mean squared prediction errors (James, Witten,
Hastie, & Tibshirani, 2013, p. 181) given each combination
of λL and λG. Let MSPE(λL, λG) denote the mean squared
prediction error given λL and λG. Let (λ∗

L, λ∗
G) denote

the combination that generates the lowest mean squared
prediction error. Second, the algorithm computes the sample
standard deviation in the K estimates of the prediction
error associated to (λ∗

L, λ∗
G) (i.e., the standard error in the

estimates of the prediction error for (λ∗
L, λ∗

G)), denoted by
SE(λ∗

L, λ∗
G). Finally, the optimal combination of λL and λG,

denoted by (λo
L, λo

G), is the one for which the mean squared
prediction error MSPE(λo

L, λo
G) is closest to (but not higher

than) MSPE(λ∗
L, λ∗

G)+SE(λ∗
L, λ∗

G). This method is referred
to as the “one standard error rule” recommended by Hastie
et al. (2015, p. 13). When only λL or λG is used (i.e.,
models 2, 3, 6), the algorithm searches through a sequence
of λL or λG, and the optimal λL or λG is also obtained
based on the “one standard error rule”. For example, when
only λL is used, the algorithm first computes the mean
squared prediction errors and looks for the lowest mean
squared prediction error, denoted by MSPE(λ∗

L). Then, the
algorithm computes the standard error associated to λ∗

L,
denoted by SE(λ∗

L). The optimal λo
L is the one for which

the mean squared prediction error MSPE(λo
L) is closest to

(but not higher than) MSPE(λ∗
L) + SE(λ∗

L). For detailed

explanations about cross-validation and its application to
sparse models, we recommend James et al. (2013) and
Witten et al. (2009), and in the context of component models
we recommend Bro et al. (2008).

The package includes the VAF method, DISCO-SCA,
and the PCA-GCA method, because they represent two
different view points in multi-block data research (Smilde
et al., 2017). The VAF method and DISCO-SCA focus
on explained variation in each data block, whereas the
PCA-GCA method emphasizes the correlation between data
blocks. Since they follow different approaches, we do not
expect them to always generate the same R and identify the
same component structure. We advise readers to choose one
of the two approaches, depending on their research fields
and/or existing research. It is possible to establish a cross-
validation procedure for deciding R, λL, and λG altogether
in one step (and therefore the VAF method, the DISCO-SCA
method, and the PCA-GCA method are no longer needed).
However, such a comprehensive cross-validation procedure
is computationally expensive and still too immature to be
included in RegularizedSCA, because such a procedure
requires an algorithm to search through a three-dimensional
grid using a multi-start procedure. Studying the usefulness
of such comprehensive procedures is much needed and
deserves full attention in a separate article. Recently, Gu
and Van Deun (2018) studied a few model selection
methods for regularized SCA and found that a relatively
lesser known, computationally efficient method, namely
the Index of Sparseness (Gajjar et al., 2017; Trendafilov,
2014; Zou et al., 2006), outperformed cross-validation in
terms of selecting the proper component loading structure.
Thus, a comprehensive, yet computationally feasible model
selection procedure for deciding R, λL, and λG based on the
Index of Sparseness may be promising, but in this article we
refrain from discussing it, because the procedure requires
development and validation via, for example, simulation
studies.

The RegularizedSCA package

In this section, we use a small dataset, referred to as the
“Herring” data, included in the package because of its
didactic value. We present an empirical example in the
next section. The following code loads the package and its
accompanying dataset “Herring”. The data are originally
from Bro et al. (2002) and Nielsen et al. (1999).

R> library(RegularizedSCA)
R> names(Herring)

The “Herring” data consist of two small datasets. The
“Herring ChemPhy” dataset contains physical and chemical

Behav Res

changes of 21 salted herring samples in a ripening
experiment. The “Herring Sensory” dataset contains the
same 21 samples’ sensory data (such as the smell and the
sweetness of the herring). Researchers in chemometrics and
food sciences are interested in whether certain physical
or chemical changes in herring (such as protein level)
are associated with certain sensory characteristics (such
as sweetness). Thus, we perform a joint analysis on
these two datasets and inspect the association between the
two datasets by means of their common and distinctive
components.

The first step is to pre-process the data by using the
function pre process (that is, to standardize each column
over the rows) and then to concatenate the data.

R>ChemPhy<– pre process(Herring$Herring ChemPhy)
R> Sensory<– pre process(Herring$Herring Sensory)
R> herring data − num var <– cbind(dim(ChemPhy)
[2], dim(Sensory)[2])
pre process can automatically handle missing data by

using multiple imputation. In addition, when the number of
variables in one block is much larger than another block, it is
likely that the information in the former block dominates the
latter block. We recommend weighting each block by taking
into account the number of variables (e.g., Van Deun et al.,
2009, for details). This is done by using the argument weight
in pre process (e.g., pre process(DATA, weight = TRUE)).
In the last line of the code above, we record the number
of variables (i.e., columns) per data block, which is used
later. We conduct the joint analysis by using models 2, 4,
and 5 (see Fig. 2) to illustrate all the important functions
in RegularizedSCA. We emphasize that in practice it is not
necessary to apply multiple models; users typically choose
only one model, and the choice is based on common practice
in their research fields and existing literature.

Joint analysis using model 2

Model 2 states that the number of components R is decided
by means of the VAF method, the component structure
is identified by means of the DISCO-SCA method, and
there is some sparseness within the common and distinctive

components, determined by tuning λL. To use the VAF
method, we evaluate the following function:

R> vaf <– VAF(DATA = herring data, Jk = num var,
R = 10)
R> summary(vaf)

We have let the function evaluate the proportion of VAF,
if there would be R = 10 components in the concatenated
data. The VAF function displays the proportion of VAF
per block and per component in each block. We primarily
focus on the component part. In the first block (i.e.,
the “Herring ChemPhy” data), the first three components
explain most of the information of the block (42.2, 31.6, and
12.8%, respectively), whereas the remaining components
explain much less information. In the second block (i.e., the
“Herring Sensory” data), the first four components explain
most of the information (55.1, .9, .9, and 12%, respectively).
Thus, taking two blocks together, we may conclude that at
most four components are needed for further analysis. As
a side note, despite that the fourth component in the first
block accounts for a much smaller variance than the first
three components, it has to be retained for further analysis
because we decide to retain four components for the second
block.

Next, we use the DISCO-SCA method to identify the
component structure, given R = 4:

R> discoresult <– DISCOsca(DATA = herring data,
R = 4, Jk = num var)
R> summary(discoresult)

Figure 3 presents the screenshot of the result of the
DISCO-SCA method. By evaluating summary(discoresult),
the program produces a matrix of 1’s and 0’s indicating
(non-sparse) common and distinctive components. The
matrix has two rows, with the first row representing the
first data block (i.e., the “Herring ChemPhy” data) and the
second row representing the second data block (i.e., the
“Herring Sensory” data). The four columns represent the
four components (i.e., R = 4). The element in the first
row and the first column of the matrix is a “1”, meaning
that all the component loadings in the first component in

Fig. 3 A screenshot of the result of the DISCO-SCA method

Behav Res

the first block may be non-zero loadings. The element in
the first row and the fourth column is a “0”, meaning
that all the loadings in the fourth component in the first
block may be zero loadings. The remaining elements in the
matrix are interpreted in the same way. Thus, the matrix
suggests that there are two common components (i.e., the
first two columns) and two distinctive components (i.e., the
remaining two columns).

We now use the regularized SCA model with known
component structure (generated by DISCO-SCA) and λL,
which in RegularizedSCA is realized by the functions
structuredSCA and cv structuredSCA. Note that the former
function requires the user to specify a value for λL,
whereas the latter function uses K-fold (by default, 10-fold)
cross-validation to decide the proper value for λL. Here
we use cv structuredSCA first. cv structuredSCA (and also
structuredSCA) requires the user to specify the component
structure, which in this case is generated by the DISCO-
SCA method (also see Fig. 3):

“Herring ChemPhy”: 1 1 1 0
“Herring Sensory”: 1 1 0 1.

Thus, in R, we specify the component structure, which
we refer to as a target matrix, as follows:

R> targetmatrix <– matrix(c(1, 1, 1, 1, 1, 0, 0, 1), nrow
= 2, ncol = 4)

which is simply the matrix in Fig. 3. Next, we perform a
joint analysis with 10-fold cross-validation.

R> maxLasso <– maxLGlasso(DATA = herring data,
num var, R = 4)$Lasso
R> set.seed(115)
R> results cvS <– cv structuredSCA(DATA = her-
ring data, Jk = num var, R = 4, Target = targetmatrix,
Position = c(1, 2, 3, 4), LassoSequence = seq(from
= 0.0000001, to = maxLasso, length.out = 200))
R> plot(results cvS)

Note that in the code above, we use the function
maxLGlasso to decide the smallest value for λL, denoted by
λmax

L , that makes the entire concatenated component loading
matrix a zero matrix (i.e., PC ≡ 0). Thus, sparse results
are found when λL is between 0 and λmax

L . The algorithm
goes through a sequence of 200 evenly spaced values from
0 to λmax

L and performs 10-fold cross-validation. Three
comments are in order regarding the cv structuredSCA
function. First, if the LassoSequence argument is missing,
the algorithm will first run maxLGlasso internally and then
perform cross-validation on a sequence of 50 (instead of
200) even spaced values from 0 to λmax

L . The Position

argument specifies which component(s) is estimated with
the Lasso penalty. Here, Position = c(1, 2, 3, 4) means that
the Lasso penalty is imposed on all four components. If,
for example, the user defines Position = c(1, 3), then the
first and third components will be estimated with the Lasso
penalty, resulting in a sparse common component (i.e., the
first component), a non-sparse common component (i.e., the
second component), a sparse distinctive component (i.e., the
third component), and a non-sparse distinctive component
(i.e., the fourth component). Third, by default the algorithm
performs a 10-fold cross-validation, but another number
of folds can be specified (see the help documentation in
RegularizedSCA).

Figure 4 displays the cross-validation curve, generated
by plot(results cvS). The region between the vertical red
dashed lines in the figure indicates the region for proper
Lasso tuning parameters based on the “one-standard-error”
rule (which is indicated by the vertical black dotted line),
and the region of proper Lasso tuning parameters can be
obtained as follows:

R> results cvS$LassoRegion,

The region is between .8814759 and .9029753, and thus
a proper Lasso value could be .8922256, the average of the
two. We remind readers that the optimal value lies within
this region, meaning that if one choose .9029753, the largest
of the two, then the estimated component loading matrix
may be sparser than the matrix by using the optimal value.
Because, in this example, the algorithm uses a sequence
of 200 evenly spaced values, the region generated by the
algorithm is very small (.9029753-.8814759 = .0214994).
Thus, using either the average value (i.e., .8922256) or the
larger value (i.e., .9029753) does not drastically influence
the final result. Using the smaller value (i.e., .8814759)
may be a safer choice. Alternatively, users may also ask
for a Lasso value that is recommended by the algorithm
by calling for summary(results cvS), but we remind readers
that the recommended value is the one whose MSPE is
closest to (i.e., could be slightly larger or smaller than) the
smallest MSPE plus one standard error. Users who prefer
a value whose MSPE is closest to and smaller than the
smallest MSPE plus one standard error may consult the full
report by using summary(results cvS, disp = “full”). We now
re-run the analysis with λL = .8922256:

R> set.seed(115)
R> result str <– structuredSCA(DATA = herring data,
Jk = num var, R = 4, Target = targetmatrix, Position
= c(1, 2, 3, 4), LASSO = 0.8922256)

The Lasso not only puts component loadings exactly to zero
but also shrinks each of the non-zero loadings towards zero.

Behav Res

Fig. 4 The cross-validation curve

Such shrinkage of the non-zero loadings can be undone as
follows:

R> final comLoadingS <– undoShrinkage(DATA =
herring data, R = 4, Phat = result str$Pmatrix)
R> summary(final comLoadingS)

Now we obtain a component loading matrix with combina-
tion of common and distinctive components as defined pre-
viously, and meanwhile there is some sparseness within the
common and distinctive components. Figure 5 presents the
screenshot of the output of summary(final comLoadingS). In
some research fields, such as chemometrics and genomics,
a heatmap of the component loading matrix P̂ is often used
to interpret the loadings (see Fig. 6). Figure 6 shows that
the first two components are sparse common components,
where both data blocks contribute information, whereas the
last two components represent the sparse distinctive pro-
cesses that are not shared across blocks. As a side note,
the heatmap function is not included in the RegularizedSCA

package, since other packages, such as ggplot2 (Wickham,
2009), have already provided adequate functions for plotting
heatmaps.

Joint analysis using model 4

Model 4 states that the number of components R is decided
by means of the VAF method (R = 4 for the “Herring”
data), the component structure is identified by λG, and the
regularized SCA model with λL and λG is used. The 10-fold
cross-validation for λL and λG is performed by evaluating
the following code:

R> set.seed(115)
R> results cv <– cv sparseSCA(DATA = her-
ring data, Jk = num var, R = 4)

Note that if not specified otherwise, cv sparseSCA per-
forms 10-fold cross-validation, with a sequence of 20 Lasso
tuning parameters and 20 Group Lasso tuning parameters

Behav Res

Fig. 5 A screenshot of the output of the estimated loadings (Model 2). Note that the final re-estimated non-shrinkage component loading matrix
P̂ automatically includes row names if the raw data contains variable names

(from .00000001 to the smallest tuning parameter value that
makes all the component loadings equal to zero). Users may
also use maxLGlasso and specify a sequence of Lasso and
Group Lasso tuning parameters by themselves. In addition,
the Group Lasso penalty is applied to each component sep-
arately, which is the component-wise method mentioned in
the Method section. As an aside, the user may also impose
the Group Lasso penalty on an entire data block (i.e., the
block-wise method) by calling cv sparseSCA(DATA = her-
ring data, Jk = num var, R = 4, method = “datablock”). By
evaluating the following command

R> summary(results cv)

we obtain the recommended Lasso tuning parameter
(λL = 1.503148) and Group Lasso tuning parameter
(λG = .3655355) based on the “one-standard-error” rule.
Users may also consult summary(results cv, disp = “full”) to
get a full view of results of the cross-validation procedure,
which includes, for example, the values of tuning parame-
ters that have been evaluated, and mean squared prediction
errors etc. We remind readers that the recommended Lasso
and Group Lasso values here are the ones whose MSPE
is closest to (i.e., could be slightly larger or smaller than)
the smallest MSPE plus one standard error. Users may also
consult summary(results cv, disp = “full”) to identify a pair
of Lasso and Group Lasso values whose MSPE is closest
to but smaller than the smallest MSPE plus one standard
error. We run the final model with the recommended tuning

parameters λL = 1.503148, λG = .3655355, and R = 4,
and check the estimated component loading matrix P̂ for its
sparseness.

R> set.seed(115)
R> final results <– sparseSCA(herring data,
num var, R = 4, LASSO = 1.503148, GROUPLASSO
= 0.3655355, NRSTART = 20)

Because both the Lasso and the Group Lasso shrink the non-
zero component loadings towards zeros, the shrinkage may
be undone as follows:

R> final Loading <- undoShrinkage(herring data, R
= 4, Phat = final results$Pmatrix)
R> summary(final Loading)

Figure 7 presents the screenshot of the output of
summary(final Loading). We also include the heat map (see,
Fig. 8). Comparing Figs. 6 and 8, one may notice that the
results are very close. The components switch positions and
signs due to invariance of the regularized SCA solution
under permutations and reflections of the components.
However, the results cannot be identical, because two
different models are used after all. Readers may notice that
the optimal λL for Model 2 is approximately .89, and that
for Model 4 is 1.50. We do not expect that the λLs for the
two models are of similar magnitude, because in Model 4,
both the Lasso and the Group Lasso cause shrinkage, but in
Model 2 the Lasso has to account for all the shrinkage.

Behav Res

pHB

ProteinM

ProteinB

Water

AshM

Fat

TCAIndexM

TCAIndexB

TCAM

TCAB

Ripened

Rawness

Malt

Stockfish smell

Sweetness

Salty

Spice

Softness

Toughness

Watery

Component 1 Component 2 Component 3 Component 4

−4

−2

0

2

4

Loadings

Fig. 6 A heatmap of the component loading matrix (Model 2). The first ten rows represent the loadings from the “Herring Sensory” data (hence
the second block), and the remaining ten rows represent the loadings from the “Herring ChemPhy” data (hence the first block)

Behav Res

Fig. 7 A screenshot of the output of the estimated loadings (Model 4). Note that the final re-estimated non-shrinkage component loading matrix
P̂ automatically includes row names if the raw data contains variable names

One may notice that, for Model 4, a cross-validation
curve like Fig. 4 is not available, because the cross-
validation procedure involves a grid of λL and λG. A
possible solution is to provide a series of cross-validation
curves conditional on λGs, and therefore for each λG a
cross-validation curve is presented. But this solution is
problematic for two reasons. First, imagine a sequence of
100 λGs is evaluated by the algorithm, then 100 cross-
validation curves have to be provided, making interpretation
difficult. Second, based on user feedback, we noticed that
users were often confused by this conditional approach.

Joint analysis using model 5

Model 5 states that the number of common and distinctive
components and correspondingly the component structure
are identified by means of the PCA-GCA method.
Afterwards, the regularized SCA model with known
component structure and λL ≡ 0 is used to estimate the
component loadings and scores. Because λL ≡ 0, there is
no sparseness within the common/distinctive components.

To use the PCA-GCA method, we first evaluate the
following function:

R> pca gca(DATA = herring data, Jk = num var) (16)

The pca gca function incorporates a user–computer interac-
tion procedure (see the screenshot in Fig. 9): The function

first performs PCA on each data block, and then presents
the eigenvalues and also a scree plot to the user. The user
must tell the program whether she would like to see the
scree plot. (We advise the user to see the scree plot.) After-
wards, the user tells the program how many components
should be retained for each block based on the eigenval-
ues and the scree plots. The next step in the PCA-GCA
procedure, automated by the package, is to decide the
number of common and distinctive components. Here,
the default is to consider a component to be common if
the correlation between two components, one from the
“Herring ChemPhy” block and the other from the “Her-
ring Sensory” block, is higher than .7. The user may change
the default value. We emphasize that, more research is
needed on the correlation threshold. Here we followed
Smilde et al. (2017, p. 15) and used .7 as the threshold.

The output (see, Fig. 9) starts with presenting the
eigenvalues of the first block, and then the program asks
whether to show the scree plot. We answer “yes” by
entering “1” on the keyboard, and then a scree plot is
shown (see, Fig. 10). Afterwards, the program asks how
many components to retain, and we enter “3”, based on the
eigenvalues and the scree plot. The program then moves
on to the second block and repeats the aforementioned
procedure. In the end, pca gca tells us that in each block
there are three components, but there are two common
components shared by the two blocks (see, Fig. 9).
This means that, for each block, there are two common

Behav Res

pHB

ProteinM

ProteinB

Water

AshM

Fat

TCAIndexM

TCAIndexB

TCAM

TCAB

Ripened

Rawness

Malt

Stockfish smell

Sweetness

Salty

Spice

Softness

Toughness

Watery

Component 1 Component 2 Component 3 Component 4

−4

−2

0

2

Loadings

Fig. 8 A heatmap of the estimated component loading matrix (Model 4). The first ten rows represent the loadings from the “Herring Sensory”
data (hence the second block), and the remaining ten rows represent the loadings from the “Herring ChemPhy” data (hence the first block)

Behav Res

Fig. 9 The user–computer interaction procedure for the PCA-GCA method

components and one distinctive component, and thus there
should be R = 4 components in total in the integrated data.

Thus, a possible component structure (i.e., target matrix)
could be

“Herring ChemPhy”: 1 1 1 0
“Herring Sensory” : 1 1 0 1,

whose corresponding target matrix is matrix(c(1, 1, 1, 1, 1,
0, 0, 1), nrow = 2, ncol = 4). We emphasize that, because of
invariance of the DISCO-SCA solution under permutations
of components, the component structure proposed above

is one of the many equivalent structures. Another possible
component structure, by switching the position of the first
and third columns, is

“Herring ChemPhy”: 1 1 1 0
“Herring Sensory” : 0 1 1 1,

whose corresponding target matrix is matrix(c(1, 0, 1, 1, 1,
1, 0, 1), nrow = 2, ncol = 4). Because the structures are
equivalent, the resulting estimated component scores and
loadings are identical, after switching the columns and/or
signs of loadings. In other words, both target matrices above

0

2
4

6
8

10

2 4 6 8 10

Component Number

10

2 4 6 8 10

Component Number

8
6

4
2

0

Ei
ge

nv
al

ue

Ei
ge

nv
al

ue

Fig. 10 The scree plots generated by the pca gca function

Behav Res

Fig. 11 A screenshot of the output of the estimated loadings (Model 5). Note that the final re-estimated non-shrinkage component loading matrix
P̂ automatically includes row names if the raw data contains variable names

can be used. We now use the first target matrix and estimate
the final model.

R> targetmatrix <– matrix(c(1, 1, 1, 1, 1, 0, 0, 1),
nrow = 2, ncol = 4)
R> set.seed(115)
R> result strModel5 <– structuredSCA(DATA = her-
ring data, Jk = num var, R = 4,
Target = targetmatrix, LASSO = 0)
R> final LoadingModel5 <– undoShrink-
age(herring data, R = 4,
Phat = result strModel5$Pmatrix)
R> summary(final LoadingModel5)

A screenshot of the estimated loadings can be found in
Fig. 11. There is no sparseness within the common and
distinctive components, as desired. The heatmap is omitted.

Before concluding this section, we mention two points
about the specification of the target matrix. First, when
the PCA-GCA method is used, because one chooses the
number of components for each block based on PCA, it
is normal to have a different number of components per
block. For example, imagine that one block with many
variables requires ten components, and another block with,
say, two variables that requires one component. We further
assume that there is no common component, and therefore

R = 10 + 1 = 11. In this case, one may specify the target
matrix as follows:

Block 1: 1 1 1 1 1 1 1 1 1 1 0
Block 2 : 0 0 0 0 0 0 0 0 0 0 1,

provided that R is smaller than the number of subjects.
Second, the specification of the target matrix can be easily
done by calling the (summary of) DISCOsca function as
shown before. When more than two blocks are to be
analyzed jointly, we recommend using DISCOsca, because
this function can directly analyze more than two data blocks.

An empirical application

To illustrate the usefulness of RegularizedSCA, we present
an analysis of empirical data on parent–child relationship,
which readers in behavioral sciences are familiar with.
We use this example to show how information regarding
parent–child relationship can be obtained by examining the
components estimated by the model.

In psychological, sociological, educational, and medical
research, researchers are often interested in the relation
between parents’ behavior and children’s behavior (e.g.,
Frome & Eccles, 1998; Moore et al., 1991; Sharpley,

Behav Res

Bitsika, & Efremidis, 1997; Cummings & Davies, 1995;
Acock, 1984; Trost et al., 2003). In this section, we conduct
a regularized SCA analysis on survey data of 195 families,
which were originally from the dataset entitled “The 500
Family Study” (Schneider & Waite, 2008). Three hundred
and five families were removed because they contained
many missing entries. For each family, the parents filled in
eight questionnaires, and their child filled in seven ques-
tionnaires (see, Table 1), regarding their feelings, recent
activities, and their opinions about relationship, etc. For
each questionnaire, a sum score is computed. Thus, the
mother, father, and child datasets contain 8, 8, and 7 scores,
respectively. The supplementary material contains the R
script for running the analysis. For obtaining the data from
the original “500 Family Study”, please see https://github.
com/ZhengguoGu/paperRegularizedSCA/blob/master/ForA
uthorsOnly/500FamilyData.Rmd.

We performed the regularized SCA analysis on the
concatenated data matrix consisting of three data blocks
for the mothers, the fathers, and the children, respectively;
thus, the data matrices were concatenated with respect to
the same family unit. To choose the appropriate model,
we resorted to Fig. 2. In the first step, we decided to use
the VAF method, because this method could be readily
applied to the three data blocks. We decided to retain five

components. In the second step, we used cross-validation
to identify the component structure. Note that for this step,
one may also use the DISCO-SCA method. In the last step,
we also used cross-validation to achieve some sparseness
within the common/distinctive components. Therefore, we
used Model 4 in Fig. 2. The estimated component loading
matrix is presented in Table 2: The first component
is a sparse common component. The second and third
components are sparse distinctive component specific for
parents. The fourth component is a distinctive component
specific for children. The last component is a sparse
distinctive component specific for fathers. The first, second,
and third components are of particular interest because
they reveal the relation between parents and children (the
first component) and between parents themselves (the
second and third components). To interpret the table, we
take the first and the third components for illustration.
The first component shows that a child’s higher self-
confidence is positively associated with parents’ higher
confidence in the child’s future, parents’ more positive
feeling about parenting, parents’ less aggressiveness during
arguments with the child, mother’s being less violent during
arguments with the father, mother’s more communication
and activities with the child, and mother’s higher self-
confidence. The third component suggests that more

Table 1 Descriptive statistics of the 195 family data

Questionnaire title Mean SD

Mother
Relationship with partners (the higher the score, the more satisfied) 3.58 .79
Argue with partners (the higher the score, the less violent) 3.65 .42
Child’s bright future (the higher the score, the stronger the feeling of bright future) 4.49 .52
Activities with the child (the higher the score, the more activities) 2.40 .39
Feelings about parenting (the higher the score, the more positive about parenting) 3.33 .68
Communication with the child (the higher the score, the more communication) 4.16 .50
Argue (aggressively) with the child (the higher the score, the less aggressive) 3.08 .45
Confidence about oneself (the higher the score, the more confident) 2.71 .43

Father
Relationship with partners (the higher the score, the more satisfied) 3.67 .70
Argue with partners (the higher the score, the less violent) 3.77 .42
Child’s bright future (the higher the score, the stronger the feeling of bright future) 4.48 .51
Activities with the child (the higher the score, the more activities) 2.30 .38
Feelings about parenting (the higher the score, the more positive about parenting) 3.40 .64
Communication with the child (the higher the score, the more communication) 3.97 .60
Argue (aggressively) with the child (the higher the score, the less aggressive) 3.18 .42
Confidence about oneself (the higher the score, the more confident) 2.78 .47

Child
Self confidence/esteem (the higher the score, the more confident) 2.08 .46
Academic performance (the higher the score, the better the performance) 6.87 1.32
Social life and extracurricular activities (the higher the score, the more social life) 2.22 .38
Importance of friendship (the higher the score, the more important friendship is) 3.94 .61
Self image (the higher the score, the more positive self image is) 2.56 .52
Happiness (the higher the score, the happier) 2.29 .44
Confidence about the future (the higher the score, the more confident about the future) 3.94 .47

https://github.com/ZhengguoGu/paperRegularizedSCA/blob/master/ForAuthorsOnly/500FamilyData.Rmd
https://github.com/ZhengguoGu/paperRegularizedSCA/blob/master/ForAuthorsOnly/500FamilyData.Rmd
https://github.com/ZhengguoGu/paperRegularizedSCA/blob/master/ForAuthorsOnly/500FamilyData.Rmd

Behav Res

Table 2 The estimated component loading matrix of the 195 family data

Component 1 Component 2 Component 3 Component 4 Component 5

Mother
Relationship with partners 0 0 11.92 0 0
Argue with partners −5.53 0 5.88 0 0
Child’s bright future −8.83 0 0 0 0
Activities with children −4.65 −9.02 0 0 0
Feeling about parenting −9.02 0 0 0 0
Communication with children −9.20 0 0 0 0
Argue with children −8.78 0 0 0 0
Confidence about oneself −6.66 0 7.26 0 0

Father
Relationship with partners 0 0 11.80 0 0
Argue with partners 0 0 5.26 0 −9.17
Child’s bright future −3.39 0 0 0 −5.76
Activities with children 0 −11.56 0 0 0
Feeling about parenting −4.04 0 0 0 −6.94
Communication with children 0 −8.17 0 0 0
Argue with children −4.98 0 0 0 −9.88
Confidence about oneself 0 0 5.60 0 −8.19

Child
Self confidence/esteem −5.82 0 0 8.66 0
Academic performance 0 0 0 7.08 0
Social life and extracurricular 0 0 0 4.10 0
Importance of friendship 0 0 0 9.60 0
Self Image 0 0 0 10.36 0
Happiness 0 0 0 9.55 0
Confidence about the future 0 0 0 7.48 0

Note. To interpret the loadings, we compare the signs of the loadings of each block within a component. Take Component 1 for example, all
the non-zero loadings are of the same sign (in this case, ‘-’ sign), meaning that the variables corresponding to those loadings are positively
associated with each other; that is, the higher a mother scores on, for example, “Argue with partners”, the higher she scores on the remaining
variables (excluding “Relationship with partners”), and also the higher her partner (i.e., the father) scores on “Child’s bright future”, “Feeling
about parenting”, and “Argue with children”, and also the higher the child scores on “Self confidence/esteem” and “Self image”

satisfaction in the relationship and less aggressive behavior
during an argument with the partner go together with more
confident feelings about oneself; this relationship holds for
both mothers and fathers.

This empirical example shows that the regularized SCA
approach to multiblock analysis can provide an interesting
insight in dyadic relationship between parents and children
and between parents themselves. One may notice that the
regularized SCA approach (and SCA in general) does
not provide information regarding the directionality of the
dyadic relationship, and thus if directionality is of primary
interest, readers are advised to use other methods, such as
directional network models.

Concluding remarks

With an increasing trend in using large datasets coming from
multiple sources, data integration tools that yield insights in

joint and specific sources of variation and select the impor-
tant variables therein are of crucial importance. The package
proposed here fulfills this need. The functions in this pack-
age are flexible, and they cover important methods for iden-
tifying common and unique information in datasets. Regu-
larizedSCA is available from the Comprehensive R Archive
Network (CRAN) at https://cran.r-project.org/web/packages/
RegularizedSCA/index.html. RegularizedSCA, as far as we
know, is the first R package that focuses on data integration
from the (regularized) simultaneous component perspective.

The Regularized SCA approach to data integration is
a fruitful field for future research. At this moment, little
is known about which model selection method(s) are
suitable for regularized simultaneous component analysis:
Cross-validation is a popular choice, but it is known that
cross-validation methods tend to retain more variables
than needed (Chen & Chen, 2008). Other model selection
methods, such as Index of Sparseness (Gajjar et al., 2017;
Trendafilov, 2014; Zou et al., 2006), stability selection

https://cran.r-project.org/web/packages/RegularizedSCA/index.html
https://cran.r-project.org/web/packages/RegularizedSCA/index.html

Behav Res

(Meinshausen & Bühlmann, 2010), and AIC, BIC type
methods (e.g., Chen & Chen, 2008; Croux,Filzmoser, &
Fritz, 2013; Guo, James, Levina, Michailidis, & Zhu,
2010), may be considered as alternative methods for model
selection. Furthermore, regularized SCA needs to be further
extended to incorporate categorical data, which are often
seen in social and behavioral research.

Author Note This research was funded by a personal grant from
the Netherlands Organisation for Scientific Research [NWO-VIDI
452.16.012] awarded to Katrijn Van Deun. The authors thank the
anonymous reviewers for the helpful comments on earlier drafts of the
manuscript.

Appendix: Algorithms for solving
regularized SCAmodels

×

×

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

References

Acock, A. C. (1984). Parents and their children: The study of
inter-generational influence. Sociology & Social Research, 68(2),
151–171.

Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A.,
Henderson, J., & Smith, G. D. (2012). Cohort profile: The
‘children of the 90s’ - the index offspring of the Avon
Longitudinal Study of Parents and Children. International Journal
of Epidemiology, 42(1), 111–127.

Bro, R., Kjeldahl, K., Smilde, A., & Kiers, H. (2008). Cross-validation
of component models: A critical look at current methods.
Analytical and Bioanalytical Chemistry, 390(5), 1241–1251.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Behav Res

Bro, R., Nielsen, H. H., Stefánsson, G., & Skåra, T. (2002). A
phenomenological study of ripening of salted herring. Assessing
homogeneity of data from different countries and laboratories.
Journal of Chemometrics, 16(2), 81–88.

Buck, N., & McFall, S. (2011). Understanding society: Design
overview. Longitudinal and Life Course Studies, 3(1), 5–17.

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria
for model selection with large model spaces. Biometrika, 95(3),
759–771.

Croux, C., Filzmoser, P., & Fritz, H. (2013). Robust sparse principal
component analysis. Technometrics, 55(2), 202–214.

Cummings, E. M., & Davies, P. T. (1995). The impact of parents on
their children: An emotional security perspective. Annals of Child
Development: A Research Annual, 10, 167–208.

De Tayrac, M., Lê, S., Aubry, M., Mosser, J., & Husson, F. (2009).
Simultaneous analysis of distinct omics data sets with integration
of biological knowledge: Multiple factor analysis approach. BMC
Genomics, 10(1), 32.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). A note on the group
lasso and a sparse group lasso. arXiv:1001.0736.

Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s
achievement-related perceptions. Journal of Personality and
Social Psychology, 74(2), 435–452.

Gajjar, S., Kulahci, M., & Palazoglu, A. (2017). Selection of non-zero
loadings in sparse principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 162, 160–171.

Gu, Z., & Van Deun, K. (2016). A variable selection method for
simultaneous component-based data integration. Chemometrics
and Intelligent Laboratory Systems, 158, 187–199.

Gu, Z., & Van Deun, K. (2018). Variable selection in the regularized
simultaneous component analysis method for multi-source data
integration. Manuscript in preparation.

Guo, J., James, G., Levina, E., Michailidis, G., & Zhu, J. (2010).
Principal component analysis with sparse fused loadings. Journal
of Computational and Graphical Statistics, 19(4), 930–946.

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical
learning with sparsity: The Lasso and generalizations. FL: CRC
Press; Taylor & Francis Group.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning with applications in R. NY:
Springer Science & Business Media.

Kuppens, P., Ceulemans, E., Timmerman, M. E., Diener, E., &
Kim-Prieto, C. (2006). Universal intracultural and intercultural
dimensions of the recalled frequency of emotional experience.
Journal of Cross-Cultural Psychology, 37(5), 491–515.

Lock, E. F., Hoadley, K. A., Marron, J. S., & Nobel, A. B. (2013). Joint
and individual variation explained (JIVE) for integrated analysis of
multiple data types. The Annals of Applied Statistics, 7(1), 523–
542.

Mavoa, S., Oliver, M., Witten, K., & Badland, H. M. (2011). Linking
GPS and travel diary data using sequence alignment in a study of
children’s independent mobility. International Journal of Health
Geographics, 10(1), 64.

Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal
of the Royal Statistical Society: Series B (Statistical Methodology),
72(4), 417–473.

Meloni, M. (2015). Epigenetics for the social sciences: Justice,
embodiment, and inheritance in the postgenomic age. New
Genetics and Society, 34(2), 125–151.

Moore, L. L., Lombardi, D. A., White, M. J., Campbell, J. L., Oliveria,
S. A., & Ellison, R. C. (1991). Influence of parents’ physical
activity levels on activity levels of young children. The Journal of
Pediatrics, 118(2), 215–219.

Nielsen, H. H., Bro, R., Stefansson, G., & Skara, T. (1999). Salting and
ripening of herring: Collection and analysis of research results and
industrial experience within the Nordic countries. TemaNord, 578.

R Core Team (2017). R: A language and environment for statis-
tical computing [Computer software manual]. Vienna, Austria.
Retrieved from https://www.R-project.org/.

Sánchez Rada, J. F., Torres, M., Iglesias Fernandez, C. A., Maestre
Martı́nez, R., & Peinado, E. (2014). A linked data approach to
sentiment and emotion analysis of Twitter in the financial domain.
In Wassabi-feosw@eswc.

Schneider, B., & Waite, L. (2008). The 500 family study [1998-2000:
United states]. icpsr04549-v1. Retrieved from https://doi.org/10.
3886/ICPSR04549.v1.

Schouteden, M., Van Deun, K., Pattyn, S., & Van Mechelen, I.
(2013). SCA with rotation to distinguish common and distinctive
information in linked data. Behavior Research Methods, 45(3),
822–833.

Schouteden, M., Van Deun, K., Wilderjans, T. F., & Van Mechelen,
I. (2014). Performing DISCO-SCA to search for distinctive and
common information in linked data. Behavior Research Methods,
46(2), 576–587.

Sharpley, C. F., Bitsika, V., & Efremidis, B. (1997). Influence of
gender, parental health, and perceived expertise of assistance
upon stress, anxiety, and depression among parents of children
with autism. Journal of Intellectual and Developmental Disability,
22(1), 19–28.

Shen, H., & Huang, J. Z. (2008). Sparse principal component
analysis via regularized low rank matrix approximation. Journal
of Multivariate Analysis, 99(6), 1015–1034.

Smilde, A. K., Måge, I., Naes, T., Hankemeier, T., Lips, M. A., Kiers,
H. A., & Bro, R. (2017). Common and distinct components in
data fusion. Journal of Chemometrics, 31, 7.

Tenenhaus, A., & Tenenhaus, M. (2014). Regularized generalized
canonical correlation analysis for multiblock or multigroup data
analysis. European Journal of Operational Research, 238(2), 391–
403.

Trendafilov, N. T. (2014). From simple structure to sparse compo-
nents: A review. Computational Statistics, 29(3–4), 431–454.

Trost, S. G., Sallis, J. F., Pate, R. R., Freedson, P. S., Taylor, W. C.,
& Dowda, M. (2003). Evaluating a model of parental influence on
youth physical activity. American Journal of Preventive Medicine,
25(4), 277–282.

Van Deun, K., Smilde, A., Thorrez, L., Kiers, H., & Van Mechelen, I.
(2013). Identifying common and distinctive processes underlying
multiset data. Chemometrics and Intelligent Laboratory Systems,
129, 40–51.

Van Deun, K., Smilde, A. K., van der Werf, M. J., Kiers, H. A., &
Van Mechelen, I. (2009). A structured overview of simultaneous
component-based data integration. BMC Bioinformatics, 10(1),
246.

Van Deun, K., Wilderjans, T. F., Van den Berg, R. A., Antoniadis,
A., & Van Mechelen, I. (2011). A flexible framework for
sparse simultaneous component-based data integration. BMC
Bioinformatics, 12(1), 448.

Van Deun, K., Van Mechelen, I., Thorrez, L., Schouteden, M., De
Moor, B., van der Werf, M. J., & Kiers, H. A. (2012). DISCO-SCA
and properly applied GSVD as swinging methods to find common
and distinctive processes. PloS One, 7(5), e37840.

Van Mechelen, I., & Smilde, A. K. (2010). A generic linked-
mode decomposition model for data fusion. Chemometrics and
Intelligent Laboratory Systems, 104(1), 83–94.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New
York: Springer. Retrieved from http://ggplot2.org.

http://arXiv.org/abs/1001.0736
https://www.R-project.org/
https://doi.org/10.3886/ICPSR04549.v1
https://doi.org/10.3886/ICPSR04549.v1
http://ggplot2.org

Behav Res

Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & van den
Berg, R. A. (2011). Simultaneous analysis of coupled data
matrices subject to different amounts of noise. British Journal of
Mathematical and Statistical Psychology, 64(2), 277–290.

Witten, D., Tibshirani, R., & Hastie, T. (2009). A penalized matrix
decomposition, with applications to sparse principal components
and canonical correlation analysis. Biostatistics, 10(3), 515–534.

Yuan, M., & Lin, Y. (2006). Model selection and estimation
in regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(1), 49–
67.

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal
component analysis. Journal of Computational and Graphical
Statistics, 15(2), 265–286.

	RegularizedSCA: Regularized simultaneous component analysis of multiblock data in R
	Abstract
	Method
	The simultaneous component analysis (SCA) model
	Common and distinctive components

	The regularized SCA models
	Regularized SCA model with unknown component structure
	Regularized SCA model with known component structure

	Model selection
	Deciding the number of components R for all data blocks
	Identifying the component structure
	Sparseness within common/distinctive components

	The RegularizedSCA package
	Joint analysis using model 2
	Joint analysis using model 4
	Joint analysis using model 5

	An empirical application
	Concluding remarks
	Author Note
	Appendix 0 Appendix: Algorithms for solving regularized SCA models
	Publisher's Note
	Open Access
	References

