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Updating Latent Class Imputations with External
Auxiliary Variables

Laura Boeschoten,1,2 Daniel L. Oberski,3 Ton De Waal,1,2 and Jeroen K. Vermunt1
1Tilburg University

2Statistics Netherlands
3Utrecht University

Latent class models are often used to assign values to categorical variables that cannot be measured
directly. This “imputed” latent variable is then used in further analyses with auxiliary variables. The
relationship between the imputed latent variable and auxiliary variables can only be correctly
estimated if these auxiliary variables are included in the latent class model. Otherwise, point
estimates will be biased. We develop a method that correctly estimates the relationship between
an imputed latent variable and external auxiliary variables, by updating the latent variable imputa-
tions to be conditional on the external auxiliary variables using a combination of multiple imputation
of latent classes and the so-called three-step approach. In contrast with existing “one-step” and
“three-step” approaches, our method allows the resulting imputations to be analyzed using the
familiar methods favored by substantive researchers.

Keywords: Latent class analysis, misclassification, multiple imputation, three-step approach

INTRODUCTION

In many different disciplines, multiple observed variables are
used as indicators of one latent categorical variable that cannot
be measured directly. For example in sociology, multiple indi-
cators are used to distinguish latent classes of sexual morality
and pro-life values (McCutcheon, 1987). In official statistics
(the field of research concerned with the publishing of statistics
for government or other official agencies), indicators from mul-
tiple sources are used to estimate the number of temporary and
permanent employment contracts in the Netherlands
(Pavlopoulos & Vermunt, 2015). In these settings, the latent

variable of interest is estimated by including observed variables
as indicators in a latent class (LC) model. This LCmodel is then
used to assign values to the latent variable itself. This “imputed”
latent variable (also known as a “plausible value” (Mislevy,
1991; Mislevy, Beaton, & Kaplan, 1992)) is often used in
further analyses with auxiliary variables. For example, to relate
different levels of sexual morality and pro-life values to attitudes
toward abortion (McCutcheon, 1987) or to relate type of
employment contract to level of education (Pavlopoulos &
Vermunt, 2015).

The relationship between the imputed latent variable and
auxiliary variables can only be correctly estimated if the aux-
iliary variables of interest are included in the LC model.
Otherwise, point estimates will be biased (Monseur & Adams,
2009; Wu, 2005). This bias is due to the estimates being condi-
tional on the imputed latent variable and not on the latent
variable itself (Bolck, Croon, & Hagenaars, 2004). Therefore,
all auxiliary variables potentially of interest should be included
in the LC model. However, this may not be possible or desired.
For example, in cases where an auxiliary variable is considered
a distal outcome of the latent variable (Bakk, 2015, p. 2).
Another example is when the constructors of the measurement
model do not want to share the indicator variables with the
analysts due to privacy concerns. A third example is when the
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auxiliary variables are unavailable when constructing the mea-
surement model due to a longitudinal or composite nature of the
dataset.

Bias in the point estimates, caused by the absence of the
auxiliary variables in the LC model, can be seen as a form
of misclassification in the imputed latent variable.
Therefore, methods that correct for misclassification should
be considered, and we distinguish between different groups
of methods. The first group of methods focus on correcting
the imputations of the latent variable and include multiple
imputation for measurement error (Cole, Chu, & Greenland,
2006), regression calibration (Spiegelman, McDermott, &
Rosner, 1997), and the complete re-estimation of the LC
model (Schofield, Junker, Taylor, & Black, 2015). For the
latter, multiple imputation of latent classes (MILC) can be
used (Boeschoten, Oberski, & de Waal, 2017). The advan-
tage of these methods is that after correction, an adapted
dataset is produced that can be used to perform any type of
analysis. The main drawback is that every time that new
external auxiliary variables are acquired, complete re-esti-
mation of the LC model is required. The second group of
methods correct the estimate describing the relationship that
is prone to bias. This group includes methods as simulation
extrapolation (SIMEX) (Cook & Stefanski, 1994) and the
latent class three-step approach (Bolck et al., 2004). Their
main advantage is that uncertainty due to misclassification is
correctly incorporated into the estimates after new external
variables are acquired. However, an important disadvantage
is their inflexibility; a separate procedure needs to be fol-
lowed for every analysis and a likelihood needs to be avail-
able to obtain the estimates of interest. Such complications
prevent these important corrections from gaining traction
among substantive researchers.

We develop a general approach by combining a method
based on model correction (implementation of the LC model
using the MILC method) with a method that is based on
correction for bias (the three-step approach). This new
approach preserves the advantages of both methods while
discarding their disadvantages due to its generic nature. More
specifically, this combined method (from now on denoted as
the three-step MILC method) uses an LC model to create
multiple imputations of the latent variable, which includes
both parameter uncertainty and latent variable uncertainty
into the estimate of the variance. Next, information from the
LCmodel is used to estimate the amount of misclassification in
the imputed latent variable. The estimate of this misclassifica-
tion is then used to correct the relationship between the
imputed latent variable and external auxiliary variables.
Finally, the latent variable imputations are updated to be con-
ditional on the external variables.

In the second section, issues currently faced by research-
ers are discussed in more detail, for which we present the
three-step MILC method as a solution in the third section. In
the fourth section, a simulation study is conducted to inves-
tigate the performance of the three-step MILC method. In

the fifth section, the three-step MILC method is applied on
two empirical datasets, followed by a discussion in the sixth
section.

BACKGROUND

Researchers frequently summarize multiple observed vari-
ables (Y1; :::; YL) into one latent variable (X ). A model
PðYjX Þ is constructed to estimate the values of X . This
model is used to assign estimated values to X , resulting in
an imputed version of the latent variable, W . Different rules
can be used to assign values to W using PðX jYÞ, such as
modal (McLachlan, 1992), proportional (Dias & Vermunt,
2008), or random assignment. With the latter, individuals
are assigned to classes by sampling from the posterior
PðX jYÞ, so W,PðX jYÞ (Bakk, 2015, p. 11). Regardless of
the method used for assigning values to W , W is never a
perfect representation of X ; some misclassification is always
introduced (Bakk, 2015, p. 12).

The imputed variable W is created so it can be used in
further analyses with auxiliary variables (Q). As addressed by
Lanza, Tan, and Bray (2013) and implied by Blackwell,
Honaker, and King (2015), PðX jQÞ can only be correctly
estimated using PðW jQÞ if Q is included in the model used
to assign values to W . In other words, when the covariate-
adjusted posterior PðX jY;QÞ is used to determine W .
Otherwise, biased estimates for PðX jQÞ are obtained
(Bartlett, Seaman, White, & Carpenter, 2015; Bolck et al.,
2004; Schofield et al., 2015; Tanner & Wong, 1987), unless
the measurement is perfect, such that PðW jXÞ ¼ 1 for exactly
one value of X for each value ofW (see also Marsman, Maris,
Bechger, and Glas (2016) for the same result in IRT).

Although this problem does not arise if Q is included in
the LC model used when estimating X , we consider situa-
tions here where this is neither possible nor desired. For
example, Q may not have been collected yet when PðYjX Þ
was estimated, or researchers may be resistant to include Q
in the initial measurement model. As a result, PðX jY;QÞ is
not available, only PðX jYÞ is. It is, however, possible to
obtain information about the misclassification in W from the
LC model, PðW jX Þ, which is estimated as a by-product of
the parameters in PðYjX Þ and PðX Þ and the chosen assign-
ment rule (Bakk, Tekle, & Vermunt, 2013). These two
pieces of information, PðW jX Þ and PðW jQÞ, can be com-
bined to obtain an estimate for PðX jQÞ using maximum
likelihood (Vermunt, 2010) or weighting (Bolck et al.,
2004), which are both approaches of latent class three-step
modeling. By specifying the log-linear model in its most
general form, the newly imputed version of W can be used
to estimate any type of relationship with Q. Consequently,
researchers do not have to think in advance about the kind
of relationship to investigate at a later stage.

However, when a single imputation of W is created using
this approach, uncertainty about X is not included in the
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estimate of the variance. Therefore, multiple imputations of
W should be created so that the differences between the
imputations reflect this uncertainty (Rubin, 1987, p. 76).
This approach is a combination of the MILC method used
for model correction and the three-step approach used to
correct for bias.

METHODOLOGY

In this section, we present a solution for the problem that
biased estimates are obtained when an imputed latent variable
is related to external auxiliary covariates. The methodology is

discussed step by step, starting with the methodology of the
MILC method (Boeschoten et al., 2017) followed by its
three-step (Vermunt, 2010) extension.

MILC

On the left-hand side of Figure 1, a graphical overview of the
MILC method is shown. The starting point of the method is a
dataset comprising L indicator variables. In the first step, m
bootstrap samples are drawn by sampling with replacement
from the observed probability distribution of the original data,
wherem is equal to the number of multiple imputations created
in a later stage. Using multiple imputations, we are able to

FIGURE 1 Graphical overview of the MILC method in the left pane and the Three-step MILC (using ML and BCH) in the right pane. All methods start with
a dataset containing indicators and available covariate variables. At step 1, m bootstrap samples are drawn from the original dataset. At step 2, an LC model is
built for each bootstrap sample (denoted by π). At step 3, m imputations for the latent variable are created. Estimates of interest are obtained from the m
imputations, represented by θ̂ (step 4). Pooling these estimates to obtain �θ is the fifth step. If the imputed latent variable needs to be related to external variables,
step 4 is obtaining the classification table. Step 5 is to apply the ML or BCH correction procedure. Posterior membership probabilities are used to update the
imputations for the latent variable (step 6). From the imputations, estimates can then be obtained (step 7) and pooled (step 8).
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include uncertainty due to measurement error in the indicators
when estimating the variance. Using bootstrap samples, para-
meter uncertainty is also included. This is especially recom-
mended when datasets with smaller sample sizes are used as
parameter uncertainty can be substantial in such cases (Wisz
et al., 2008).

In the second step, an LC model is estimated for
every bootstrap sample using the L indicator variables
(Y1; :::; YL) of latent variable X , which has C categories
denoted by x ¼ 1; :::;C. C is equal over the bootstrap
samples. If MILC is used to correct for measurement
error in combined datasets, C is equal to the number of
categories in the indicators. Available auxiliary variables
can also be incorporated in the LC model as covariates
and are denoted by Z. The LC model for the probability
of response pattern PðY ¼ yjZ ¼ zÞ is then defined as:

PðY ¼ yjZ ¼ zÞ ¼
XC

x¼1

PðX ¼ xjZ ¼ zÞ
YL

l¼1

PðYl ¼ yljX ¼ xÞ: (1)

In some applications, one may wish to account for com-
binations of scores between the covariate variables and
the latent variable that are not possible in practice. An
example of such an impossible combination of scores is a
Dutch person having marital status “married” and age
“below 16 years,” as this is prohibited by law. Edit
restrictions are used to account for such impossible com-
binations of scores (De Waal, Pannekoek, & Scholtus,
2012) and can be specified in the LC model:

PðX ¼ 0married0jZ ¼ 0age below 160Þ ¼ 0: (2)

This is especially relevant in cases where LC models are
used to correct for misclassification (Biemer, 2011),
because a violation of an edit restriction is by definition
due to misclassification in one of the variables to which
the edit restriction applies. By including the edit restric-
tion in the LC model, the appearance of the impossible
combination of scores is prevented by constraining the
parameter estimates of the LC model.

In the third step, m new empty variables are created in
the original dataset and imputed by sampling one the LC’s
using the posterior membership probabilities obtained from
the corresponding m LC models:

PðX ¼ xjY ¼ y;Z ¼ zÞ ¼

PðX ¼ xjZ ¼ zÞ Q
L

l¼1
PðYl ¼ yljX ¼ xÞ

PC

x0¼1
PðX ¼ x0jZ ¼ zÞ Q

L

l¼1
PðYl ¼ yljX ¼ x0Þ

:
(3)

These posterior membership probabilities represent the prob-
ability that a unit is a member of an LC given its combination
of scores on the indicators and covariates used in the LC

model. At this point, a dataset is obtained containing multiple
imputations of the latent variable. From now on, the indicators
themselves are no longer needed.

In the fourth step, estimates of interest are obtained from the
m imputed variables. These can be logistic regression coeffi-
cients, tests for model fit, cell proportions in cross tables, or
any other estimate of interest to the researcher.

In the fifth step, the m estimates are pooled using the rules
defined by Rubin (Rubin, 1987, p. 76). The pooled estimate is
obtained by:

θ̂ ¼ 1

m

Xm

i¼1

θ̂i: (4)

The total variance is estimated as

VARtotal ¼ VARwithin þ VARbetween þ VARbetween

m
; (5)

where VARwithin is the average within imputation variance
and VARbetween is the between imputation variance.
VARwithin is calculated by

VARwithin ¼ 1

m

Xm

i¼1

VARwithini ; (6)

and VARbetween is calculated by

VARbetween ¼ 1

m� 1

Xm

i¼1

ðθ̂i � θ̂Þðθ̂i � θ̂Þ0: (7)

VARbetween contains both uncertainty caused by missing or
conflicting data and parameter uncertainty (Van der Palm,
Van Der Ark, & Vermunt, 2016).

Three-step MILC

The MILC method can be expanded to incorporate the three-
step approach, enabling the investigation of relationships
between latent variable X and auxiliary variables not included
in the initial LC model (Q). This procedure is shown on the
right-hand side of Figure 1.

The first three steps of the MILC method are applied to
create imputations for W : bootstrap samples are created
(step one), LC models are estimated (step two), and m
empty variables are imputed (step three). An extra step is
now required to estimate the classification error of the
imputed variables W1; ::;Wm (step four):

PðW ¼ wjX ¼ xÞ ¼
P
y

P
z
PðY ¼ y;Z ¼ zÞPðX ¼ xjY ¼ y;Z ¼ zÞ

PðW ¼ wjY ¼ y;Z ¼ zÞPðX ¼ xÞ :
(8)

UPDATING LC IMPUTATIONS WITH EXTERNAL VARIABLES 753



Note that PðW ¼ wjX ¼ xÞ can be estimated from
the imputed dataset directly and that a separate estimate
for PðW ¼ wjX ¼ xÞ is obtained for every imputation
of W .

In step five, the relationship between external auxiliary
variables Q and latent variable X (PðX ¼ xjQ ¼ qÞ) is
estimated using the m imputations obtained in step three
and the corresponding classification errors obtained in
step four. PðX ¼ xjQ ¼ qÞ is estimated either using the
ML approach (Vermunt, 2010) or the Bolck–Croon–
Hagenaars (BCH) approach (Bolck et al., 2004). For
both approaches, an LC model is estimated. With the
ML approach this is done using a procedure that is
comparable to estimating a regular LC model, while for
the BCH approach this is done using a weighting
procedure.

With the ML approach, an LC model is specified where
W is used as the only indicator of X and this relationship
is fixed to the classification error PðW ¼ wjX ¼ xÞ. The
form of the PðX ¼ xjQ ¼ qÞ distribution is specified in its
most general form and is estimated as:

PðW ¼ wjQ ¼ qÞ ¼
XC

x¼1

PðX ¼ x Q ¼ qÞPðW ¼ wj jX ¼ xÞ: (9)

Based on Equation 9, posterior membership probabilities can
be obtained for every combination of scores on W and Q:

PðX ¼ xjQ ¼ q;W ¼ wÞ ¼
PðX ¼ x Q ¼ qÞPðW ¼ wj jX ¼ xÞ

PC

x0¼1
PðX ¼ x0 Q ¼ qÞPðW ¼ wj jX ¼ x0Þ

: (10)

With the BCH correction method, PðX ¼ xjQ ¼ qÞ is esti-
mated by weighting PðW ¼ wjQ ¼ qÞ by the inverse of
PðW ¼ wjX ¼ xÞ:

PðX ¼ xjQ ¼ qÞ ¼
XC

w¼1

PðW ¼ wjQ ¼ qÞd�wx; (11)

where d�wx represents an element of the inverted C � C
matrix D with elements PðW ¼ wjX ¼ xÞ. The obtained
result can be plugged into Equation 9 to obtain posterior
membership probabilities for every combination of
scores on W and Q, as shown in Equation 10.

The original BCHmethod has two major drawbacks. First, it
can create negative values for the elements PðX ¼ xjQ ¼ qÞ,
resulting in inadmissible solutions. Second, edit restrictions (to
prevent the appearance of impossible combinations of scores on
X and Q) cannot be incorporated. To circumvent these issues,
Boeschoten, Croon, and Oberski (2017) placed the BCH
approach in a framework of quadratic loss functions and linear

equality and inequality constraints. This approach is used
throughout the remainder of this article.

Both the ML and the BCH correction procedure result in a
set of posterior membership probabilities for every combina-
tion of scores on W and Q (and for each of the m bootstrap
samples), which can be used to create m new imputations for
W . The same procedure as followed in step three is used here,
although the posteriors are now also conditional on Q.
Performing these new imputations is the sixth step of the
procedure. Step seven is then to obtain estimates of interest
for each bootstrap sample, which are likely to be parameter
estimates describing the relationship between the imputed
latent variable W and the external auxiliary variables Q. In
step eight, these estimates are pooled using Rubin’s rules.

SIMULATION

Simulation setup

To empirically evaluate the performance of the three-stepMILC
method, we conducted a simulation study using R (R Core
Team, 2014). We started by creating a theoretical population
using Latent GOLD (Vermunt & Magidson, 2013) containing
five variables: three dichotomous indicators (Y1, Y2, Y3) of the
property of interest (X ) and two dichotomous variables Q1 and
Q2 that we consider as external auxiliary variables, so they are
not included in the initial LC model. Variations are made
according to scenarios described in the subsequent subsections.
A theoretical population is used to draw 1; 000 samples and
these are used to evaluate the performance of the three-step
MILC approach, following the steps described in section 3.2.
In the initial LC model (step two), only the three indicators are
included in the LC model. At step five, the three-step procedure
is applied for external auxiliary variables Q1 and Q2

simultaneously.
In this simulation study, the performance of two different

approaches to the three-step MILC method is evaluated: ML
and BCH. As a reference, we also include estimates
obtained when no correction method was applied, so
where W is imputed using an LC model containing only
indicators, and its relationship with Q1 and Q2 is investi-
gated directly.

When evaluating the correction methods, the relationship
between X and Q1 and Q2 should be preserved. There are
two types of relationships we are specifically interested in.
For the first, we compare the logit coefficient of latent vari-
able X regressed on Q1 in the theoretical population with the
logit coefficient of imputed W regressed on Q1. This relation-
ship is investigated using four performance measures:

● The bias of the logit coefficient, which is equal to the
difference between the average estimate over all replica-
tions and the value found in the theoretical population.
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● The coverage of the 95% confidence interval.
● The ratio of the average standard error of the estimate
over the standard deviation of the 1; 000 replication
estimates is examined to confirm that the standard
errors of the estimates are properly estimated.

● The root mean squared error, which is the root of the
average of the squares of the errors.

Second, we are interested in a restricted relationship as
described in Equation 2. In the theoretical population,
PðX ¼ 1jQ2 ¼ 2Þ ¼ 0. When an impossible combination
of scores between X and an external auxiliary variable
exists but is not accounted for in the LC model, it can
appear in the imputed dataset because LC models do not
assign probabilities of exactly 0 by default. Therefore, we
investigate whether the restricted cell in the imputed
dataset PðW ¼ 1jQ2 ¼ 2Þ indeed contains zero observa-
tions. This is done by investigating the observed fre-
quency of this specific cell (the observed cell proportion
is multiplied by the sample size to obtain the observed
frequency).

Previous research has shown that the performance of
the MILC method is strongly related to the entropy R2

value of the LC model (Boeschoten et al., 2017). The
entropy R2 indicates how well one can predict class
membership based on the observed variables and is
influenced by the measurement quality of the indicators.
Therefore, we investigate a range of realistic values for
the measurement quality of the indicators in the simula-
tion study. The conclusion was also made that 5 imputa-
tions are sufficient to obtain unbiased estimates and
appropriate coverage of the 95% confidence interval
(Boeschoten et al., 2017), so m ¼ 5 is used in this
simulation study as well. Furthermore, different sample
sizes are investigated, since they influence the standard
errors and thereby the confidence intervals. The main
properties of this simulation study are summarized as
follows:

● Class-specific response probabilities of the three
dichotomous indicators of dichotomous X (Y1, Y2,
Y3): 0:70; 0:80; 0:90; 0:95; 0:99 (corresponding
entropy R2 values respectively: 0:31; 0:59; 0:86;
0:96; 0:99).

● Logit coefficients of X regressed on Q1: 0:00; 0:50;
1:00; 2:00.

● Different proportions for PðQ2 ¼ 2Þ, where PðW ¼
1jQ2 ¼ 2Þ should contain zero observations: PðQ2Þ=
0:01; 0:05; 0:10; 0:20.

● Sample size: 200; 500; 1; 000.
● Number of bootstrap samples and multiple imputations
m ¼ 5.

● Correction methods: No correction method; ML; BCH.

Simulation results

Figure 2 shows the bias of the logit coefficient of latent variable
X regressed on covariate Q1 when estimated using imputed
variable W regressed on covariate Q1. When comparing the
results over different strengths of the logit coefficients, in gen-
eral there is more bias when the logit coefficient increases.
When the logit coefficient is 0 (i.e., there is no effect), there is
approximately no bias in all conditions for both correction
methods, and when no correction method is applied. When the
logit coefficient increases, bias increases as well if no correction
method is applied, while it remains low when correction meth-
ods are applied. The only exception is when the class-specific
response probabilities are low (0:70).

Figure 3 shows the coverage of the 95% confidence
interval of the logit coefficient of imputed variable W
regressed on covariate Q1. If the population logit coefficient
is 0, the correction methods perform approximately equally
well, and not using a correction method also leads to desired
results. As the population logit coefficient becomes larger,
undercoverage becomes more of a problem when no correc-
tion method is applied, especially when the class-specific
response probabilities are low. The results obtained for the
ML and BCH method are very similar. The coverage rates
are generally somewhat higher for ML when the class-
specific response probabilities are lower, while the coverage
rates are almost identical when the class-specific response
probabilities are higher. This is unrelated to the strength of
the population logit coefficient.

Figure 4 shows the ratio of the average standard error
of the estimated logit coefficients over the standard devia-
tion of the logit coefficient of imputed variable W
regressed on covariate Q1. Here, we investigate whether
the estimated standard errors are indeed equal to the
standard deviation of the estimates. When no correction
is applied, the standard errors are too large when the
class-specific response probabilities are low, and the
ratio comes closer to 1 as the class-specific response
probabilities increase. This is unrelated to the size of the
population logit coefficient. A comparable trend is seen
for the ML and BCH correction methods. The ratio is
however much closer to the desired value of 1 for both
methods compared to when no correction method is
applied. The trend for BCH method becomes a bit more
unstable as the size of the logit coefficient increases,
while the trend for the ML method seems more stable.

Figure 5 shows us the root mean square error, where the
errors are represented by the difference between the logit
coefficient of imputed W and Q1 and its value in the
theoretical population. When the logit coefficient is 0,
using no correction is the best option in terms of RMSE.
However, as soon as the logit coefficient increases, the
RMSE of using no correction becomes larger compared to
both correction methods. This effect becomes stronger as
the logit coefficient increases. The correction methods
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perform approximately equally well, where the RMSE is
generally a bit lower for the ML method.

Figure 6 shows the number of times that the combina-
tion of scores that is in practice impossible,
PðW ¼ 1jQ2 ¼ 2Þ, is observed in the imputed dataset
averaged over 1; 000 replicates. We see the results when
no correction is applied, and for the ML and BCH

correction methods. Furthermore, we see the results for
different class-specific response probabilities. When no
correction is applied, the observed frequency (the cell
proportion multiplied with the sample size) is strongly
related to these class-specific response probabilities. We
see that when the class-specific response probabilities are
low (0:70), the observed frequency of PðW ¼ 1jQ2 ¼ 2Þ

FIGURE 2 Displayed is the bias of the logit coefficient of imputed variable W regressed on covariate Q1.The different shapes represent the different correction
methods (ML; BCH) and when no correction method is used, they are connected by lines of different types. Results are shown for different population values of the
logit coefficient and for different class-specific response probabilities of the indicators of the latent variable. Sample size is 1,000 and P(Z=2)=0.2.

FIGURE 3 Displayed is the coverage of the 95% confidence interval of the logit coefficient of imputed variable W regressed on covariate Q1. The different
shapes represent the different correction methods (ML; BCH) and when no correction method is used, they are connected by lines of different types. Results are
shown for different population values of the logit coefficient and for different class-specific response probabilities of the indicators of the latent variable.
Sample size is 1,000 and P(Z=2)=0.2.
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in this condition is around 65. This number decreases as
the class-specific response increases, but even when the
class-specific response probabilities are 0:90, there are
still impossible combinations of scores created. When
the ML correction method is applied, 0 impossible com-
binations of scores are created under all conditions inves-
tigated, only when the class-specific response

probabilities are 0:70, the number of impossible combina-
tions created is not exactly 0, but still below 1. With the
BCH correction method, impossible combinations of
scores are only created when the class-specific response
probabilities are 0:70. This makes sense, the entropy R2 is
very low in these conditions so we did not expect the
correction methods to perform well here. In all other

FIGURE 4 Displayed is the ratio of the average standard error of the logit coefficients over the standard deviation of the logit coefficients of imputed variable
W regressed on covariate Q1. The different shapes represent the different correction methods (ML; BCH) and when no correction method is used, they are
connected by lines of different types. Results are shown for different population values of the logit coefficient and for different class-specific response
probabilities of the indicators of the latent variables. Sample size is 1,000 and P(Z=2)=0.2.

FIGURE 5 Displayed is the root mean squared error, where the errors are represented by the difference between the logit coefficient of imputed W on Q1 and
its value in the theoretical population. The different shapes represent the different correction methods (ML; BCH) and when no correction method is used, they
are connected by lines of different types. Results are shown for different population values of the logit coefficient and for different class-specific response
probabilities of the indicators of the latent variables. Sample size is 1,000 and P(Z=2)=0.2.
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conditions, no impossible combinations of scores are
created.

Overall it can be said that problems in terms of bias and
coverage of estimates can be severe if no correction is
applied when performing a latent class three-step method.
Both correction methods (ML and BCH) have shown to
improve these results, and the differences in results between
the methods are minimal. Even with low class-specific
response probabilities, improvements were detected for
both methods, although not all problems are solved in
these low-quality cases. For example, BCH was not able
to handle edit restrictions in combination with low class-
specific response probabilities and the coverage rates for
BCH were also somewhat lower in these cases.

APPLICATIONS

In this section, the flexibility of the three-step MILC method is
illustrated by applying the method to two empirical datasets.
First, the method is applied to a composite dataset used in
official statistics, where researchers use LC models to correct
for measurement error. Second, the method is applied to a
dataset containing scores on math items, where discretized
IRT models can be used to measure mathematical ability.

In each application, the relationship between an imputed
latent variable and an external auxiliary variable is investi-
gated. First, an LC model is applied without including the
auxiliary variable, this will be denoted as uncorrected MILC.
The relationship between the imputed latent variable and the
auxiliary variable is then investigated. Next, the estimate of
this relationship is corrected using the ML and BCH method.
For comparison, the estimate of this relationship is also

investigated when the external variable was included in the
initial LC model.

A latent class model to correct for measurement error
in official statistics

We investigate the relationship between home ownership
and marital status. To estimate this relationship, a compo-
site dataset is used that consists of two surveys carried
out by Longitudinal Internet Studies for the Social
Sciences from 2013 (Scherpenzeel, 2011), which is admi-
nistered by CentERdata (Tilburg University, The
Netherlands) and a population register from Statistics
Netherlands from 2013. Since this composite dataset con-
tains two variables indicating whether a person is either a
“home-owner” or “home-renter or other,” we use these as
indicators to measure the “true” variable “home-owner”/
“home-renter or other,” which can correct for misclassifi-
cation in the indicator variables. Since an LC model with
only two indicators is not identifiable, we also included a
covariate measuring whether someone receives rent ben-
efit from the government. Since a person can only receive
rent benefit if this person rents a house, we included an
edit restriction here. For a detailed description of the
composite dataset and the processing it, we refer to
(Boeschoten et al., 2017). Next, we impute the true vari-
able measuring “home-owner”/“home-renter or other”
using the LC model, and we investigate the relationship
between this variable and a covariate measuring marital
status.

More specifically, we investigate whether marriage can
predict home ownership. First, uncorrected MILC was applied
(marriage was not included in the LC model). Second, MILC

FIGURE 6 The bars in this histogram display the number of times that the impossible combination P(W=1|Q2) is observed when no correction, ML and BCH are
applied. The sample size is 1,000 and the marginal of Q2 is 0.2. Results are displayed for different class-specific response probabilities of the indicator variables.
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was applied while the auxiliary variable “marriage” was
included as a covariate in the LC model. Results of both
these models can be found in Table 1. Here, we see that both
the intercept and the logit coefficient are closer to 0 when the
auxiliary variable was not included in the initial model, com-
pared to when it is included.

Furthermore, if we apply either the ML or BCH method to
correct the imputations made using a model without covariate,
we see that the differences between these corrected estimates
and the estimates when including the auxiliary variable into the
model are much smaller, although they are not exactly equal.

In general, we can conclude that non-married individuals are
approximately equally likely to own than rent a house (non-
married individuals are approximately e�2:7 ¼ 0:07 times more
likely to own than rent a house). Married individuals are more
likely to own a house than to rent it. However, if we would not
have included this auxiliary variable in the LCmodel, we would
conclude that they are approximately e1:2524 ¼ 3:4987 times
more likely to own than to rent a house. If we would have either
included the auxiliary variable in the model or used a correction
method, we would conclude that this relation is actually some-
what stronger, either e1:3247 ¼ 3:7611 (ML), e1:3866 ¼ 4:0012
(BCH), or e1:3817 ¼ 3:9817 (included) times more likely. In
general, the results from the included model and from both the
correction methods are quite close.

A discretized IRT model in psychometrics

Here, we investigate the relationship between mathematical
ability of a child and the level of education of its mother. To
investigate this relationship, wemake use of the 2015 PISAdata.
More specifically, we use a subset of the data containing 141
Dutch 15-year-old pupils who conducted booklet number 43 of
the mathematical ability test. This booklet contains 20 mathe-
matical ability questions which can be graded with either “cor-
rect”/“incorrect” or “correct”/“partly correct”/“incorrect.” The
scores obtained by answering these questions are used as

indicators of the latent variable “mathematical ability,” which
wemeasure using a discretized IRTmodel in Latent GOLDwith
2 classes (“low level”/“high level”). We impute the latent vari-
able ofmathematical ability using the discretized IRTmodel, and
we investigate the relationship between mathematical ability of
the child and its mothers’ level of education. To measure the
level of education of themother,we used a dichotomous variable
indicating whether she finished the International Standard
Classification Level 4 (ISCL 4: post-secondary non-tertiary
education).

We investigate whether mothers’ level of education can
predict math ability of her child. First, uncorrected MILC was
applied (where mothers’ level of education was not included
in the LC model as a covariate). Here, the intercept is
e0:6837 ¼ 1:9812 (as can be seen in Table 2), which can be
interpreted as the odds that a mother has education level ISCL
4 when a child has mathematical ability “above level.” The
logit coefficient is e�1:0867 ¼ 0:3373. The odds for a mother
to have education level ISCL 4 when her child does not have
mathematical ability “above level” is 0:3373 times the odds
when her child has mathematical ability “below level.”

In this example, it can be particularly undesirable that
mothers’ level of education is included in the LC model as
a covariate, since it then contributes to the assignment of
children to classes measuring their mathematical ability, and
researchers can find it undesirable that children are assigned
to a math ability class based on their mothers’ ability. It can
be seen in the results that the relationship between the two
variables is stronger when the mothers’ level of education is
included in the model. When MILC is applied with mothers’
level of education included in the LC model as covariate, this
logit coefficient is e�0:9293 ¼ 0:3948, so the estimated rela-
tionship between mothers’ level of education and math ability
of her child is stronger when this variable is included in the
model compared to when it is not included in the model.

However, when the model without covariate is used, there
is no correction for the fact that the relationship of interest is
estimated using an imputed version of “math ability” and not

TABLE 1
The Columns Represent the (Pooled) Estimate and 95% Confidence
Interval Around the Intercept and the Logit Coefficient of the Variable

Owning/Renting a House

Intercept Marriage

Estimate 95% CI Estimate 95% CI

No correction −2.6829 [−2.9533; −2.4126] 1.2524 [0.9820; 1.5227]
ML −2.7221 [−2.9898; −2.4544] 1.3247 [1.0570; 1.5924]
BCH −2.6097 [−2.8669; −2.3526] 1.3866 [1.1294; 1.6437]
Included −2.7712 [−3.0389; −2.5036] 1.3817 [1.1140; 1.6493]

Note. The first row represents the results obtained when no correction
method is applied. The second and third row represent the ML and BCH
correction methods. The last row represents the results obtained when the
auxiliary variable “marital status” is included in the initial LC model

TABLE 2
The Columns Represent the (Pooled) Estimate and 95% Confidence

Interval Around the Intercept and the Logit Coefficient of the
Outcome Variable “Math Ability”

Intercept Marriage

Estimate 95% CI Estimate 95% CI

No correction 0.6837 [0.1917; 1.1757] −1.0867 [−1.8377; −0.3358]
ML 0.7259 [0.2223; 1.2294] −1.1329 [−1.8794; −0.3864]
BCH 0.7351 [0.2176; 1.2527] −1.0726 [−1.8128; −0.3325]
Included 0.7421 [0.1767; 1.3075] −0.9293 [−1.6718; −0.1869]

Note. The first row represents the results obtained when no correction
method is applied. The second and the third row represents the results of the
ML and BCH correction methods, the last row represents the results
obtained when the auxiliary variable is included in the initial LC model
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the true values of “math ability.” Therefore, correction meth-
ods are applied and they both result in small adjustments
compared to the uncorrected results. For both ML and BCH,
the intercept is a bit larger compared to the uncorrected results,
while the logit coefficient is a bit smaller.

DISCUSSION

In this article, we introduced the three-step MILC method,
which updates latent variable imputations to be conditional
on external variables. If the latent variable imputation is
not corrected to be conditional on external variables, the
point estimates of the relationship between the imputed
latent variable and the external variables are biased. This
bias is caused by the fact that an imputation of a latent
variable is generally not a perfect representation of that
latent variable, it contains some measurement error. While
a method that corrects for measurement error is required,
current methods lack either general applicability or flex-
ibility. Therefore, the MILC method and the three-step
approach of the latent class model are combined into one
generic procedure.

We incorporated two alternative correction procedures in
the three-step MILC method, and evaluated them in terms of
their ability to correct for bias in point estimates due to
measurement error in the imputed latent variable. We assessed
the different procedures in terms of bias of the estimates,
coverage of their 95% confidence interval, standard error of
the estimate over the standard deviation over the estimates,
and root mean squared error. Furthermore, we investigated
whether the different correction procedures were able to suc-
cessfully incorporate edit restrictions. This all was investigated
under a number of different conditions in a simulation study.

From the simulation study, it can be concluded that
the necessity of applying the three-step MILC method
(or probably any other correction procedure) was
strongly related to the strength of the relationship
under investigation. If the true logit coefficient was 0,
i.e., there was no relationship between the imputed latent
variable and the external covariate, then there was also
no bias if no correction procedure was used. In other
words, there was nothing to correct. Furthermore, the
necessity of applying the three-step MILC was also
related to class separation.

When class separation was higher, results of better quality
were obtained when no correction was applied. However,
regardless of the strength of the relationship under investigation
or the strength of the class separation, results always improved
when a correction method was applied compared to when no
correction method was applied. Furthermore, the BCH and ML
correction methods performed in a very comparable way. ML
can be recommended overBCH in caseswhere the class-specific
response probabilities of the indicators are low, since the simula-
tion results showed that the coverage rates were somewhat lower

for BCH here, and they showed that BCH was not able to
succesfully incorporate edit restrictions in these situations.

It should also be noted that estimates of interest can also be
obtained directly after applying the BCH or ML correction
procedure. These results are then obtained from the output
generated by these correction procedures and not by creating
new imputations and investigating these. To be able to directly
obtain these corrected estimates, the researcher needs to think
about the type of relationship that he or she wants to investigate
and specify the correction procedure correspondingly.
However, using an imputed variable allows for much more
flexibility, because when investigating this variable in relation-
ship with other variables, the researcher is not limited to how
these relationships are specified in the correction procedure.

The two applications show the great flexibility of the
three-step MILC method. In the first application, a composite
dataset from official statistics is used, where LC models are
applied to correct for measurement error. In the second appli-
cation, a dataset containing childrens’ scores on math items is
used, where a discretized IRT model is used to investigate
childrens’ math ability. In both applications, both ML and
BCH perform approximately equally well. Furthermore, the
second application also shows that directly including an
external variable into the LC model can have an undesirable
influence on the class assignments.

The results in this article invite further investigation of
the applicability of the three-step MILC method to con-
tinuous data or other types of models that can be fit into
the latent class framework, such as hidden Markov or
multilevel latent class models.

Further research into the three-step MILC method is also
required due to the limited scope of the current simulation
study. Only a small latent class model is investigated, where
various model assumptions were made. For example, the aux-
iliary variables were assumed to be free of measurement error.
This can be strange in an official statistics setting where the LC
model itself is used to correct for measurement error in the
indicator variables. In addition, the indicator variables are
assumed to be conditionally independent and the misclassifica-
tion error in these indicators is assumed to be unrelated to the
auxiliary variables. Unfortunately, these assumptions will not
always bemet in practice, and thus, how robust this method is to
violations of these assumptions should be looked into.

In summary, the three-step extension of the MILC method
presented in this article allows correct estimation of relationships
between an imputed latent variable and external auxiliary vari-
ables. This method is a promising solution to correct for mis-
classification, due to its general applicability and flexibility.
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