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Chapter 1

Introduction

This thesis concerns a group of investors who have joined their endowments and formed a

collective. To a certain extent, this collective is solving the same investment decisions as

the individuals from which it is composed of. In addition, the collective can construct an

internal market where its members exchange assets under conditions that are different to

those that prevail outside of the collective. This thesis focuses on exchanges conducted on

these internal markets of collectives.

Throughout this thesis, we assume that all members of the collective are rational

individuals. The rationality which we have in mind is characterised by von Neumann-

Morgenstern axioms and hence individuals’ decision-making preferences can be described

by utility functions. The individuals within a collective are simply called agents. Each

agent is assumed to be endowed with initial assets, which can be exchanged or traded on

the internal market. The initial endowments of each agent can also be viewed as a contri-

bution to the collective. Furthermore, we assume that both the sizes of contributions and

the preferences of the agents are common knowledge within the collective.

Examples of agents grouped in a collective with an internal market include investors

participating in a closed investment fund, insurance companies participating in a reinsur-

ance market, or a pension fund where agents are different participating generations. The

agents’ motivation for participating in collectives can vary greatly. Individuals participat-

ing in investment funds may be seeking investment opportunities that would be too cost

prohibitive for an individual investor. Similarly, the participants in a reinsurance mar-

ket could be looking to diversify their risks outside of a region. Individuals grouped into

pension funds may even have been coerced into a particular pension scheme through a

combination of corporate or state legislation. Irrespective of the motivation, collectives

can be found in many areas of the economy. In this thesis, we focus not on the motivation

1



2 Chapter 1. Introduction

behind the formation of collectives, nor the process of forming a collective itself. Rather,

we consider collectives that already exist, and which contain a fixed number of agents.

In the internal market, agents are, under certain conditions, permitted to trade or

conclude contracts with each other. These trades can be perceived as a redistribution of

the agents’ endowments; therefore the trades within the collective are often referred to as

the redistribution. From agents’ point of view, a natural condition on any redistribution is

that the value of the agents’ assets before and after any redistribution, remains unchanged.

This condition is called financial fairness and it will be imposed on all internal market trades

in the following two chapters. In the final chapter, this condition is not imposed, but it is

rather a consequence of its setting where prices are endogenously determined.

The investment decisions of a collective differ from those of an individual not only

because it includes the potential for an internal market, but also because the collective, in

general, does not have its own preferences - it has to reflect those of its agents. Whereas an

individual’s investment decision can be viewed as a single objective optimization problem,

the collective is in general solving a multi-objective optimization problem. The solutions

of a multi-objective optimization are considered those allocations which are both feasible

and not dominated by another. Such solutions are called Pareto efficient. Pareto efficiency

condition on trades, per se, does not consider individual rationality, which is the sole

determinant of the individual investment decision. Imposing Pareto efficiency on internal

market trades, as applied later in this thesis, can be perceived as focusing on a collective

rather than on the individual preferences of agents.

The following two chapters focus on redistributions of pooled contributions of agents

that are both Pareto efficient and financially fair with respect to exogenously given pric-

ing measure. Under mild conditions we show that such redistribution within a collective

(intra-group) exists and it is unique; Chapter 2. A more general situation arises when

the collective of agents is allowed to take a decision and trade some of the pooled agents’

contributions on an extra-group market. Also in this situation, we can get a uniqueness of

Pareto efficient and financially fair redistribution; Chapter 3. Finally, we consider a collec-

tive in a setting where there are bid-ask spreads on an extra-group market and the collective

is free to use its intra-group market. In this setting we define an equilibrium similar to

the competitive equilibria and we investigate under which bid-ask spreads the intra-group

market is superfluous or, to the contrary, when it can accommodate all equilibrium trades;

Chapter 4.



Chapter 2

The Composite Iteration Algorithm

for Finding Efficient and Financially

Fair Risk-Sharing Rules

Joint work with J.M. Schumacher and B.J.M. Werker

2.1 Introduction

This chapter is concerned with the design of risk sharing systems. For an example of the

type of situation we have in mind, consider a collective pension fund of the type existing for

instance in the Netherlands. The claim to future benefits that participants receive in return

for their contributions is a contingent claim, since benefits depend on the funding status

at the time of payment, and the funding status in turn depends on realized investment

returns as well as on prevailing interest rates. In the design of a system of this nature, it

would seem reasonable to include considerations relating to preferences (different degrees

of risk aversion among participants) as well as considerations relating to financial fairness

(balance between the value of agents’ contributions on the one hand, and the value of the

contingent claims they receive in return on the other hand). The aspect of value brings

prices into play. Since the agents in the risk sharing systems we have in mind constitute

only a small part of the entire economy, prices will be taken as exogenously given.

The results described in this chapter were published in Pazdera et al. (2017)

3



4 2.1 Introduction

The model that we use as a basis for risk sharing design is a two-period model (time

points 0 and 1) with a finite number of von Neumann-Morgenstern agents. We allow for

a continuum of possible time-1 states of nature. We assume the availability of a valuation

operator that is of sufficiently wide scope to determine the value of any contingent claim

that might be defined as a result of risk sharing. The inputs to the design problem are

(i) agents’ preferences, specified by utility functions and objective probabilities, (ii) their

claim values (in monetary units),1 and (iii) the aggregate endowment (i.e., shared risk—for

instance, the uncertain outcome of joint investment). The objective of the design is to find

a Pareto efficient allocation of the aggregate endowment such that all agents’ allotments

are within their budget sets as determined by their claim values and by the given valuation

operator. We refer to such allocations as being Pareto efficient and financially fair (PEFF).

This form of the risk sharing problem has been formulated in the literature already

several decades ago (Gale, 1977; Gale and Sobel, 1979; Bühlmann and Jewell, 1978, 1979;

Balasko, 1979). Results on existence and uniqueness of PEFF solutions are available in the

cited papers under various assumptions. The purpose of the present chapter is to propose

an effective and easily implemented computational algorithm, which may stimulate a more

widespread use of the PEFF solution concept. We suggest an iterative method that is

built up from simple steps. We provide a proof of convergence of the iteration, and we

demonstrate that the asymptotic rate of convergence is linear. The analysis is cast in the

framework of nonlinear Perron-Frobenius theory.

The model used in this chapter can be looked at from the point of view of optimal risk

sharing, but it also relates to the theory of fixed-price equilibria, and to the theory of fair

division. A discussion of these relationships can be given as follows.

Research on optimal risk sharing has a long history. The origins of the theory of

reciprocal reinsurance treaties are traced back by Seal (1969) to de Finetti (1942). Borch

(1962) obtained a parametrization of the collection of all Pareto optimal solutions to a risk

sharing problem, when the preferences of agents can be described by expected utility. The

value-based notion of fairness that is used in this chapter was proposed by Gale (1977) in

the context of distribution of a random harvest in proportion to ownership rights. The

applicability of Gale’s ideas to risk sharing was noted by Bühlmann and Jewell (1978,

1The term “claim value” refers to the time-0 value of an agent’s share. For instance, if a project with

time-0 value 100 is jointly owned by two agents A and B who hold 60% and 40% of the ownership rights,

respectively, then the claim value of agent A is 60 and the claim value of agent B is 40. These claim values

can be achieved in many ways; for instance, agent A’s claim might be 50% of the outcome of the project

up to a certain threshold plus 100% of the amount by which the project outcome exceeds the threshold.
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1979), who generalized the problem formulation by allowing the weights of future states

that are used in the fairness condition to be different from probabilities as perceived by the

agents. For the allocation problem as formulated by Gale (1977), the uniqueness of Pareto

optimal and fair allocations was shown by Gale and Sobel (1979) under the assumption of

a finite number of possible future states, and by Gale and Sobel (1982) in the continuous

case, under somewhat restrictive conditions on utility functions. The proof of uniqueness in

these papers is based on the construction of a “social welfare function”, which is such that

it reaches its optimum on the set of financially fair allocations at a Pareto efficient point.

Bühlmann and Jewell (1979) note that essentially the same technique can be applied as well

to their formulation of the problem. Sobel (1981) gives a proof of uniqueness that avoids

the introduction of the social welfare function, in order to accommodate a generalization

in which agents use private valuation functionals.

In recent years, formulations of the risk sharing problem in which the preferences of

agents are specified by risk measures (monetary valuation functionals) have attracted con-

siderable interest; see for instance Chateauneuf et al. (2000); Barrieu and El Karoui (2005);

Acciaio (2007); Jouini et al. (2008); Filipovic and Svindland (2008); Kiesel and Rüschendorf

(2008). When all agents use a translation invariant risk measure (as in Artzner et al., 1999)

for evaluation, Pareto optimal solutions can only be unique up to addition of determin-

istic side payments which sum to zero. In such a case, the existence of Pareto optimal

solutions automatically implies the existence of solutions that are both Pareto optimal

and financially fair, and the question of uniqueness comes down to uniqueness of Pareto

optimal solutions up to “rebalancing the cash”. Uniqueness results of this type are given

by Filipovic and Svindland (2008) and Kiesel and Rüschendorf (2008) under a condition

of strict convexity.

A model similar to those proposed by Gale (1977) and by Bühlmann and Jewell (1979),

but using more general preference specifications, was developed contemporaneously and

independently by Balasko (1979). Balasko was motivated by developments in general equi-

librium theory, in particular fixed-price equilibria as studied by Drèze (1975) and Benassy

(1975). He used methods of differential topology to show existence of Pareto efficient and

financially fair allocations. Keiding (1981) gives an existence result under a very general

preference specification and mentions that, at this level of generality, uniqueness cannot

be guaranteed.

In more recent work, Herings and Polemarchakis (2002, 2005) study fixed-price equilib-

ria from the point of view of Pareto-improving interventions. The interventions discussed

by these authors are based on price regulation. It may be viewed as an advantage of such

interventions that they operate anonymously, by means of market variables. In this chap-
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ter, intervention takes place directly through allocation, but is subject to the constraint of

respecting agents’ claim values.

Fair division problems are studied extensively in social choice theory; see for instance

Brams and Taylor (1996) and Brandt et al. (2016). A typical setting, as used for instance by

Brams and Taylor (1996), equips agents with a linear valuation operator, which generally

is different for different agents. This operator serves to define the ranking of alternatives by

agents, and at the same time it also supports a notion of fairness. Fairness can be expressed

as proportionality. All agents receive a share that, according to their own valuation, is at

least equal to 1/n-th of the total, where n is the number of agents. More generally, the

fractions 1/n may be replaced by “entitlements” that are not necessarily equal to each

other. These fairness constraints are expressed through inequalities, and consequently

they usually do not determine a unique solution. As a stronger notion, envy-freeness is

used extensively (no agent should prefer another agent’s allotment to his or her own).

One way in which the setting of the present chapter is different from the framework

commonly used in fair division theory is that a distinction is made between utility value

on the one hand, and financial value on the other hand. Moreover, financial value is taken

to be agent-independent. The notion of “claim value” used in this chapter is similar to the

notion of “entitlement” (applied to financial value). However, while entitlements are used

to formulate inequality constraints, claim values are used to specify equality constraints.

Indeed, due to the agent-independent nature of financial value, the sum of the claim values

of the agents is fixed, which makes it impossible to raise one agent’s claim value without

reducing the claim values of others. The separation between utility value and financial

value makes it possible to define the notion of efficiency in terms of utility value, so that

a distinction between efficient and inefficient solutions can still be made, even though

claim values are fixed. This is analogous to the classical single-agent problem of portfolio

optimization, in which the role of the claim value is played by the budget constraint, and

the agent aims to maximize utility subject to the given budget.

Both in general equilibrium theory and in the literature on fair division, much atten-

tion has been paid to computational methods. In comparison, algorithms for finding PEFF

solutions have not been explored as extensively. One possible approach is to employ the

transformation to single-objective optimization problems from Gale (1977) that was used in

subsequent papers to prove existence and uniqueness of solutions. Since the optimization

problems resulting from this transformation are convex, any method for solving convex

optimization problems subject to equality constraints (see for instance Boyd and Vanden-

berghe, 2004, Ch. 10) can qualify as a method for obtaining PEFF solutions. However,

it would be of interest to make more use of the particular structure of PEFF problems.
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An early discussion of specialized methods is given by Bühlmann and Jewell (1979). They

discuss in particular the case of two agents, for which a line search suffices, and the case

of exponential utility.

The iterative algorithm for finding PEFF solutions that is proposed in this chapter can

be related to a matrix algorithm known as the “iterative proportional fitting procedure”

(IPFP). This algorithm finds, among all matrices with given positive row and column sums,

the one that is closest, in the sense of Kullback-Leibler divergence, to a given nonnegative

matrix. The procedure was proposed as a matrix fitting method by Kruithof (1937) and

independently by Deming and Stephan (1940), but the optimization problem solved by it

was only identified decades later by Ireland and Kullback (1968). Convergence of IPFP was

proved by Csiszár (1975) in the discrete case and by Rüschendorf (1995) in the continuous

case.

The iterative proportional fitting procedure can be viewed as an implementation of

the method of successive projections due to Bregman (1967). This method is generally

applicable to convex optimization problems with equality constraints. In particular, it may

be applied to the optimization problems that result from Gale’s transformation of PEFF

problems. Making use of the Borch parametrization (see Section 2.3.2), one then arrives

at the same procedure as the one that is studied in this chapter, and that is motivated

below directly from the PEFF problem.

In the framework of successive projections, one would be led to convergence analysis

in the style of Csiszár (1975), based on generalized versions of the Pythagorean theorem.

While convergence of Bregman projections has been discussed extensively in the literature

(see for instance Censor and Lent, 1981; Bauschke and Borwein, 1996), we are unaware

of a result along these lines that would apply directly to the situation considered in the

present chapter. Below we use an alternative perspective, which relates PEFF solutions

to positive eigenvectors of a nonlinear mapping. The analogous approach in the context of

IPFP has been pioneered by Menon (1967) and Brualdi et al. (1966).

If the approximation problem solved by IPFP would be translated to the PEFF context

by applying Gale’s transformation backwards, it would lead to a problem in which the

number of future states is finite, the probabilities of future states are agent-dependent

(i.e., subjective probabilities), and agents’ utility functions are logarithmic. In this chapter

it is assumed that all agents assign the same probabilities to future states (since this is

a standard assumption in a large part of the literature, and it simplifies notation), but

extension to the case of subjective probabilities would be straightforward; cf. for instance

Wilson (1968). IPFP would then become a special case of the algorithm considered here.

In the present chapter, we work within the classical framework of expected utility. We
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demonstrate that the problem of finding a Pareto efficient and financially fair allocation

can be written as the problem of finding a positive eigenvector of a homogeneous nonlinear

mapping from the nonnegative cone into itself. This leads naturally to the use of nonlinear

Perron-Frobenius theory. For a general introduction to this subject, see for instance the

book by Lemmens and Nussbaum (2012). We show that the homogeneous mapping asso-

ciated to the fair allocation problem enjoys a number of properties that are useful within

the Perron-Frobenius theory, such as continuity, monotonicity, and a more exotic property

called nonsectionality.

The formulation as an eigenvector problem suggests an iterative solution method, anal-

ogous to the “power method” in the linear case (Wilkinson, 1965). We prove that conver-

gence takes place from any given initial point within the positive cone. The iteration is

built up from mappings that are easy to compute, so that it offers an attractive alternative

to other methods which call for solution of large nonlinear equation systems.

This chapter takes a “social planner” point of view. We do not model a negotiation

process between the agents, as for instance in Boonen (2016). State prices, which are

used to determine financial fairness, are assumed to be given. The risk to be shared is

taken to be given as well, as in the paper by Borch (1962). The reader may refer to

Chapter 3 for the construction of a suitable homogeneous mapping in the context of risk

sharing situations as in Wilson (1968), where the risk itself is subject to a decision by the

collective. The uniqueness of the PEFF solution is preconditioned upon the uniqueness of

state prices. In more extensive model where state prices would be obtained for instance by

a bargaining process among the members of the collective, and the bargaining could have

several different outcomes, the corresponding PEFF solutions would be in general different.

We also do not take individual rationality of the agents into consideration. Because the

choice of Pareto efficient solution is based solely upon the financial fairness constraint,

there is no guarantee in general that the PEFF solution is individually rational.

This chapter is organized as follows. Notation and assumptions are covered in the

section following this introduction. Section 2.3 discusses the problem formulation, and

Section 2.4 presents a brief review of requisite mathematical material. The main results

of this chapter are in Section 2.5. A special case is discussed in Section 2.6, followed by a

discussion of the rate of convergence in Section 2.7. Finally, Section 2.8 concludes.
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2.2 Notation and assumptions

The model that we use in this chapter can be understood as a two-period exchange economy

under uncertainty. There is a single good and a continuum of future states of nature.

State prices are supposed to be given and are described by means of a pricing measure Q.

There is a finite number n of agents. The agents’ preferences across distributions of future

consumption are of the von Neumann-Morgenstern type: agent i ranks distributions on the

basis of expected utility of future consumption, where the expectation is taken under an

objective probability measure P , and utility is measured by a utility function ui. Subject to

the given pricing measure Q, the budget set of agent i is determined by a number vi which

quantifies the ownership rights of agent i, and which can be interpreted as the value (under

the given pricing measure Q) of the agent’s initial endowment. The aggregate endowment

is denoted by X. The relationship

n∑
i=1

vi = EQ[X] (2.1)

holds, where the symbol EQ denotes expectation under Q. This relation states that the sum

of the claim values of the agents is equal to the time-0 value of the aggregate endowment.

The aggregate endowment X is also referred to as the total risk that is to be shared

among the agents. Our sign convention is that positive values of X indicate gains and

negative values indicate losses, so that the term “risk” is to be understood as “uncertain

outcome” without necessarily a negative connotation.

In mathematical terms, risks are modeled as bounded random variables on a measurable

space (Ω,F). The agents’ utility functions are taken to be defined on intervals of the form

(bi,∞) where bi ∈ [−∞,∞) and bi < vi, for i = 1, . . . , n, and will always be assumed to

satisfy the following conditions.

Assumption 2.1 For each i = 1, . . . , n, the function ui : (bi,∞) → R is twice continu-

ously differentiable, strictly increasing, and strictly concave. Moreover, the following Inada

conditions are satisfied:

lim
x↓bi

u′i(x) =∞, lim
x→∞

u′i(x) = 0. (2.2)

As a result of this assumption, all marginal utilities u′i are continuous and strictly

decreasing functions whose range covers the positive real axis. The inverse marginal utility
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of agent i will be denoted by Ii. In other words, Ii is the function from (0,∞) to (bi,∞)

that is defined implicitly by

u′i(Ii(z)) = z (z > 0). (2.3)

The inverse marginal utility is a continuous and strictly decreasing function that has the

interval (bi,∞) as its image. We write

b :=
n∑
i=1

bi, D := (b,∞) (2.4)

with the convention that b = −∞ if there is an index i such that bi = −∞. The space of

continuous functions from D to R will be denoted by C(D,R).

If all lower bounds bi are finite and if the total risk X is such that P (X ≤
∑n

i=1 bi) > 0,

then it is not possible to allocate the risk in such a way that the expected utility of each

agent is finite. To make the problem feasible, we need to impose that P (X ∈ D) = 1. We

shall in fact work under the stronger assumption that the risk X is bounded away from

the critical level.

Assumption 2.2 The total risk X takes values in a compact set A ⊂ (b,∞).

For vectors α, β ∈ Rn, the notation α < β (α ≤ β) indicates that αi < βi (αi ≤ βi)

for all i, whereas α � β means α ≤ β and α 6= β. Similar notation will be used for

real-valued functions: in particular, for functions f, g ∈ C(D,R) we write f < g when

f(x) < g(x) for all x ∈ D. A mapping f from one ordered space into another will be said

to be monotone if x ≤ y implies f(x) ≤ f(y), strictly monotone if it is monotone and

x < y implies f(x) < f(y), and strongly monotone if x � y implies f(x) < f(y).

The nonnegative cone {α ∈ Rn | α ≥ 0} is denoted by Rn+, and Rn++ indicates the

positive cone {α ∈ Rn | α > 0}. When α is a given vector in Rn and S = {i1, . . . , ik} is a

nonempty subset of the index set {1, . . . , n}, we write αS := (αi1 , . . . , αik). If (αk)k=1,2,... is

a sequence of vectors in Rn, the notation αk →∞ means that αki →∞ for all i = 1, . . . , n.

The pricing measure that is used in the financial fairness condition is obtained from

a probability measure Q defined on (Ω,F). In the two-period model that we consider,

discounting can be dispensed with. The time-0 value of a random payoff X at time 1 will

therefore simply be represented by the expectation of X with respect to the measure Q.

We do not require the valuation measure Q to be absolutely continuous with respect to

the probability measure P used by agents to compute expected utility, nor do we require

that the measure P should be absolutely continuous with respect to Q. The development

of this chapter still applies even when the measure Q is concentrated on a single outcome of
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the total risk X. Such a situation may be realistic; it occurs when a group, in neglect of the

stochasticity of X, has only made a decision in advance about how to divide a particular

outcome. The principles of Pareto efficiency and financial fairness are then sufficient, given

the agents’ utility functions, to arrive at a well-defined allocation even if a different outcome

is realized.

2.3 The allocation problem

2.3.1 Definitions

A risk-sharing rule is a vector (y1, . . . , yn) of functions in C(D,R) satisfying the feasibility

condition
n∑
i=1

yi(x) = x (x ∈ D). (2.5)

By requiring the equality to hold for all x in the domain D, which is determined by the

preferences of the agents, we avoid dependence on the range of values taken by a specific

risk X. It will be seen below that this extension of the problem setting affects neither

existence nor uniqueness of solutions.

The risk of agent i after allocation is Yi := yi(X), and the corresponding utility for

agent i is EP [ui(Yi)]. Risk sharing can be thought of as a particular form of allocation,

so that we also sometimes use the term “allocation rule” or simply “allocation” instead of

“risk-sharing rule”. The functions yi( · ) are called allocation functions.

We will be looking for risk-sharing rules that are Pareto efficient as well as financially

fair. The definition of Pareto efficiency is standard.

Definition 2.3 A risk-sharing rule (y1, . . . , yn) is Pareto efficient (or Pareto optimal)

if there does not exist a risk-sharing rule (ỹ1, . . . , ỹn), with associated allocated risks

(Ỹ1, . . . , Ỹn), such that (EP [u1(Ỹ1]), . . . , EP [un(Ỹn)])  (EP [u1(Y1)], . . . , EP [un(Yn)]).

To state the definition of financial fairness, we use numbers vi, for i = 1, . . . , n, to indicate

the ownership rights of agents. These numbers may also be called claim values. The claim

value specifies only the time-0 value of the allotment to be received by agent i, not the

allotment itself.

Definition 2.4 A risk-sharing rule (y1, . . . , yn) for the given total risk X is financially

fair if, for each agent, the value of the allocated share is equal to that agent’s claim value,



12 2.3 The allocation problem

i.e.,

EQ[yi(X)] = vi (i = 1, . . . , n). (2.6)

Because the allocation functions are continuous, and because of Assumption (2.1), the

random variables Yi = yi(X) are bounded, so that their expectations under Q are indeed

well defined. Feasibility of the requirement (2.6) taking into account the market clearing

property (2.5) is guaranteed by the relation (2.1).

In this chapter we are interested in allocation functions that combine financial fairness

with Pareto efficiency. It should be noted that the notion of Pareto efficiency that we use

here is subject to feasibility (2.5), but not to financial fairness. In other words, we want to

find feasible allocations that are financially fair, and that are Pareto efficient even among

feasible allocations that violate financial fairness.

2.3.2 Borch’s parametrization

To convert the allocation problem into a system of equations, we use the parametrization

of Pareto efficient risk-sharing rules that was devised by Borch (1962).

Theorem 2.5 (Borch, 1962) A risk-sharing rule (y1, . . . , yn) is Pareto efficient if and only

if there exist a continuous function J : D → R++ and positive constants α1, . . . , αn such

that

αiu
′
i(yi(x)) = J(x) (2.7)

for all x ∈ D and for all i = 1, . . . , n.

Details of the proof can be found in DuMouchel (1968); Gerber and Pafumi (1998); Barrieu

and Scandolo (2008). The quantity J(x) can be interpreted as a Lagrange multiplier asso-

ciated to the feasibility constraint (2.5). We can now state the central problem considered

in this chapter as follows.

Problem 2.6 Assume given: a finite group of n agents, with utility functions ui satisfying

Assumption 2.1; a risk X satisfying Assumption 2.2; a pricing measure Q; and agents’ claim

values vi satisfying (2.1). Find a vector of functions (y1, . . . , yn) in C(D,R) such that the

following conditions are satisfied:

• feasibility, i.e.
∑n

i=1 yi(x) = x for all x ∈ D;
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• Pareto efficiency, i.e. there exist positive constants α1, . . . , αn and a continuous func-

tion J : D → R++ such that (2.7) holds for all x ∈ D and for all i;

• financial fairness, i.e. EQ[yi(X)] = vi for all i.

The Borch condition (2.7) can be rewritten as follows in terms of the inverse marginal

utilities (cf. (2.3)):

yi(x) = Ii
(
J(x)/αi

)
. (2.8)

Since the functions yi must satisfy the feasibility condition, the following condition has to

be satisfied for all x ∈ D:
n∑
i=1

Ii
(
J(x)/αi

)
= x. (2.9)

For a given positive vector (α1, . . . , αn) and given x ∈ D, the above equation determines

J(x) uniquely, since the function z 7→
∑n

i=1 Ii(z/αi) is strictly decreasing. We may there-

fore consider the function J to be defined by the relation (2.9); to emphasize this point

of view, we will sometimes write J(x;α) instead of J(x). Conversely, if (2.9) is satisfied

for a set of positive numbers α1, . . . , αn, then the functions y1, . . . , yn in (2.8) determine a

Pareto efficient risk-sharing rule.

In this way, Borch’s theorem provides a parametrization of Pareto efficient risk-sharing

rules in terms of the utility weights α1, . . . , αn. The effective number of parameters is in

fact n − 1 rather than n, since the allocation rule that is generated by a positive vector

(α1, . . . , αn) does not change if all numbers αi are multiplied by the same positive constant.

Indeed, in this case the corresponding function J is multiplied by the same constant, so

that the ratios J(x)/αi remain the same.

Remark 2.7 Given a vector α ∈ Rn++, let (y1, . . . , yn) = (y1( · ;α), . . . , yn( · ;α)) denote

the Pareto efficient risk-sharing rule defined through (2.8) and (2.9). The “weighted group

utility” u( · ;α) corresponding to given weights α = (α1, . . . , αn) is defined by

u(x;α) =
n∑
i=1

αiui(yi(x)) (x ∈ D). (2.10)

Under the assumption that the utility functions ui are twice continuously differentiable and

the inverse marginal utilities are continuously differentiable, it follows that the function J ,

being the inverse of the mapping z 7→
∑n

i=1 Ii(z/αi), is differentiable as well. Consequently,
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the allocation functions yi defined by (2.8) are likewise differentiable. We can then write

(cf., for instance, Xia, 2004)

u′(x;α) =
n∑
i=1

αiu
′
i(yi(x))y′i(x) = J(x;α)

n∑
i=1

y′i(x) = J(x;α) (2.11)

where the second equality follows from Borch’s condition (2.7) and the third uses the

feasibility condition (2.5). The function J( · ;α) can thus be interpreted as the marginal

group utility that corresponds to a given set of weights α.

2.3.3 Computational approaches

Consider now the problem of numerically solving the equation system consisting of the

feasibility condition (2.5), the financial fairness condition (2.6), and the efficiency condition

(2.7). The unknowns in these equations consist of the utility weights αi, the marginal utility

(or multipliers) J(x), and the allocation functions yi. The equation system suggests at least

three broad computational approaches.

First of all, using the fact that the marginal utility J can be thought of as being defined

by the utility weights, as discussed above, the system (2.5–2.6–2.7) can be rewritten as a

system of n nonlinear equations in n unknowns α1, . . . , αn:

EQ
[
Ii(J(X;α1, . . . , αn))/αi

]
= vi (i = 1, . . . , n). (2.12)

Subsequently, a nonlinear equation solver may be applied. This approach, which uses

utility weights as the reduced set of unknowns, is analogous to Negishi’s method in the

theory of Arrow-Debreu equilibrium (Negishi, 1960).

Alternatively, one can express the utility weights in terms of the marginal utility by

making use of the financial fairness conditions. Indeed, as will be discussed in more detail

below, the equations (2.6) and (2.8) determine the weights αi when the function J is given.

Writing α = α(J) to indicate this dependence, we can find Pareto efficient and financially

fair allocations by solving the equation

n∑
i=1

Ii
(
J(x)/αi(J)

)
= x (x ∈ D) (2.13)

for the unknown function J . This approach is analogous to the standard method of finding

Arrow-Debreu equilibria by making use of the excess demand function; see for instance

Kehoe (1991). Here, the excess demand is given by the difference of the left-hand side and

the right-hand side in (2.13).
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The weights that solve the equation system (2.12) can alternatively be characterized

as fixed points of the composite mapping that is formed by applying the mapping α 7→ J

of the first method, followed by the mapping J 7→ α of the second method. This leads

to a third computational approach. The analogous technique in the case of Arrow-Debreu

equilibrium appears in a paper by Dana (2001, p. 170) under the name “price-weight,

weight-price approach”. It is natural to attempt to find fixed points by iteration of the

composite mapping. While the first two methods that we discussed produce nonlinear

equation systems that can be challenging to solve, the composite iteration method relies

on repeated use of mappings that are easy to compute. As already mentioned in the

Introduction, the iterative method can be constructed as an application of Bregman’s

successive projections method via reformulation of the PEFF problem as an optimization

problem; however, the motivation as given above seems more direct.

In the present chapter we focus on the “price-weight, weight-price” approach; we call

it here the composite iteration algorithm. We aim to establish relevant properties of the

composite iteration mapping, which allow to prove convergence of the algorithm. In partic-

ular, we prove (Theorem 2.21 below) that the composite iteration mapping can be uniquely

extended to a continuous, homogeneous,2 and monotone mapping from the nonnegative

cone to itself. Moreover, it will be shown that the fixed-point problem for the composite

mapping can be reformulated as the problem of finding a positive eigenvector of the map-

ping. These facts lead towards the use of nonlinear Perron-Frobenius theory. Application

of a theorem of Oshime (1983) (see Theorem 2.9 below) allows us to conclude existence and

uniqueness of solutions as well as convergence of the iterative algorithm. Before proceeding

to the main results, we first review mathematical preliminaries.

2.4 Preliminaries

Order-preserving (monotone) nonlinear maps can be viewed as generalizations of positive

matrices. It turns out that much of the Perron-Frobenius theory concerning eigenvalues

and eigenvectors of such matrices can be extended to the nonlinear case. An extensive

discussion of nonlinear Perron-Frobenius theory is provided by Lemmens and Nussbaum

(2012).

A particular class of interest is the class of monotone mappings that are homogeneous

in the sense that ϕ(λx) = λϕ(x) for all positive λ. For continuous homogeneous mappings

from the nonnegative cone into itself, the existence of nonnegative eigenvectors follows

2In this chapter we always use the term “homogeneous” in the sense of “homogeneous of degree 1”.
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from Brouwer’s fixed-point theorem. However, for the application to Pareto efficient and

financially fair allocations, we need an eigenvector with entries that are strictly positive.

Conditions for existence and uniqueness of such eigenvectors form an important topic

in nonlinear Perron-Frobenius theory; see, for instance, Lemmens and Nussbaum (2012,

Ch. 6). Here we use a result of Oshime (1983) that guarantees the existence of a unique

positive eigenvector. For ease of reference, this result is stated below. First the definition

is given of a notion that can be thought of as a nonlinear variant of the irreducibility

condition that is well known in linear Perron-Frobenius theory.

Definition 2.8 A mapping ϕ from Rn+ into itself is nonsectional if, for every decomposi-

tion of the index set {1, . . . , n} into two complementary nonempty subsets R and S, there

exists s ∈ S satisfying

(i) (ϕ(x))s > (ϕ(y))s for all x, y ∈ Rn+ such that xR > yR and xS = yS > 0;

(ii) (ϕ(xk))s →∞ for all sequences (xk)k=1,2,... in Rn+ such that xkR →∞ while xkS is fixed

and positive.

Theorem 2.9 (Oshime, 1983, Thm. 8, Remark 2) If a mapping ϕ from Rn+ into itself is

continuous, monotone, homogeneous, and nonsectional, then the mapping ϕ has a positive

eigenvector, which is unique up to scalar multiplication, with a positive associated eigen-

value. In other words, there exist a constant η∗ > 0 and a vector x∗ ∈ Rn++ such that

ϕ(x∗) = η∗x∗, and if η > 0 and x ∈ Rn++ are such that ϕ(x) = ηx, then x is a scalar

multiple of x∗.

The eigenvalue associated to the positive eigenvector in the above theorem is in fact

the maximal eigenvalue of the mapping ϕ (Oshime, 1983, Thm. 3). Iteration is a standard

method to find the eigenvector associated to the maximal eigenvalue. In the linear case, this

technique is known as the power method (see for instance Wilkinson (1965, p. 570)). Due to

the homogeneity of the problem, it is possible to reduce the iteration to the unit simplex. In

relation to a given homogeneous mapping ϕ from the positive cone into itself, we can define

a normalized mapping ψ from the open unit simplex {(x1, . . . , xn) ∈ Rn++ |
∑n

i=1 xi = 1}
into itself by

ψ(x) =
ϕ(x)

‖ϕ(x)‖1

(2.14)

where ‖v‖1 =
∑n

i=1 |vi| is the 1-norm of v ∈ Rn. Positive eigenvectors of the mapping ϕ

correspond to fixed points of the mapping ψ.
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To prove convergence of the iterative algorithm, it is natural to use a suitable contrac-

tion mapping theorem. First of all, an appropriate metric needs to be defined. A standard

metric used in nonlinear Perron-Frobenius theory is the Hilbert metric, which is defined

as follows.

Definition 2.10 The Hilbert metric assigns to a pair (x, y) with x, y ∈ Rn++ the distance

d(x, y) given by

d(x, y) = log
maxi(xi/yi)

mini(xi/yi)
.

Points on the same ray are equivalent with respect to the Hilbert metric, since

d(ax, by) = d(x, y) for all a, b > 0. (2.15)

On the positive cone, the Hilbert metric is therefore only a pseudometric. Alternatively, it

can be viewed as a true metric on the space of positive rays, or on the open unit simplex

(cf. Lemmens and Nussbaum, 2012, Prop. 2.1.1).

The following lemma is a standard fact (see for instance Lemmens and Nussbaum

(2012, Ch. 2)); for the reader’s convenience, we provide a proof of the version that we need

here. Recall that a mapping ϕ from a metric space into itself is said to be contractive if

d(ϕ(x), ϕ(y)) < d(x, y) for all x, y such that d(x, y) > 0.

Lemma 2.11 If ϕ : Rn++ → Rn++ is homogeneous and strongly monotone (i.e., x � y

implies ϕ(x) < ϕ(y)), then ϕ is contractive with respect to the Hilbert metric.

Proof. Take x, y ∈ Rn++ with d(x, y) > 0. Define M := maxi(xi/yi), m := mini(xi/yi). We

then have my � x � My, and by homogeneity and strong monotonicity of ϕ we obtain

mϕ(y) < ϕ(x) < Mϕ(y). Therefore,

min
i

ϕ(x)i
ϕ(y)i

> m, max
i

ϕ(x)i
ϕ(y)i

< M

and hence d(ϕ(x), ϕ(y)) < log(M/m) = d(x, y).

As a consequence of property (2.15), the mapping ψ that is obtained from ϕ by nor-

malization to the unit simplex is contractive if ϕ is. Lemma 2.11 only establishes that

ϕ is contractive, not that it is a contraction mapping; in other words, the lemma does

not provide a positive number δ such that d(ϕ(x), ϕ(y)) ≤ (1 − δ)d(x, y) for all x and y.

Therefore, we are not in a position to apply the Banach contraction mapping theorem.

Instead we use the following theorem due to Nadler, which in our application guarantees

convergence as a result of the assumption that the number of agents is finite.
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Theorem 2.12 (Nadler, 1972, Thm. 1) When (X , d) is a locally compact and connected

metric space, and f : X → X is a contractive mapping with fixed point x∗ ∈ X , then for

every x ∈ X the sequence of iterates (f (k)(x))k=1,2,...) converges to the point x∗.

Alternatively, one might use an argument based on the fact that the open unit simplex

with the Hilbert metric is a geodesic space (there is a geodesic path from any given point

to any other given point); cf. Lemmens and Nussbaum (2012, Prop. 3.2.3, Thm. 6.5.1).

2.5 Main results

In this section, we prove the convergence of the composite iteration method. Our method

of proof is based on application of nonlinear Perron-Frobenius theory, which calls for the

verification of a number of properties of the iteration mapping. This will be done in a series

of lemmas below. We also demonstrate that the approach via nonlinear Perron-Frobenius

theory leads to a proof of existence and uniqueness of Pareto efficient and financially fair

solutions, independent from the approach via reformulation as an optimization problem

(Gale and Sobel, 1979; Bühlmann and Jewell, 1979).

First we need to introduce some notation. Recall that the domain D is defined as

(b,∞), where b =
∑n

i=1 bi and the bounds bi are the left limits of the domains of the utility

functions of the individual agents. Within the space C(D,R+) of continuous functions

from D to [0,∞), equipped with the topology of pointwise convergence, we define the cone

of strictly decreasing functions

L = {f ∈ C(D,R+) | f(y) < f(x) for all x, y ∈ D s. t. y > x} ∪ {0}.

The inclusion of the zero function within this set is natural when the functions in L
are thought of as in terms of their graphs as subsets of the region [b,∞] × [0,∞] in the

extended two-dimensional space. The function 0 can then be viewed as a representation of

the multivalued mapping whose graph is ({b} × [0,∞]) ∪ ([b,∞]× {0}).

2.5.1 Mapping from utility weights to marginal group utility

Agents whose utility functions are defined on all of the real line will need to be distinguished

from agents who can tolerate only a limited loss. We therefore introduce the index set

(possibly empty)

U = {i | bi = −∞}. (2.16)
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For α ∈ Rn+ such that αU > 0, define

F (z, α) =
∑
i:αi>0

Ii(z/αi) +
∑
i:αi=0

bi, (z > 0). (2.17)

This function is a continuous mapping from the product space R++ × {α ∈ Rn+ | αU > 0}
to (b,∞). For fixed nonzero α, the function F ( · , α) : (0,∞) → (b,∞) is continuous and

strictly decreasing, and satisfies

lim
z→∞

F (z, α) = b, lim
z↓0

F (z, α) =∞. (2.18)

Therefore there is a well-defined inverse function, which is denoted by J( · , α). Since

F ( · , α) is strictly decreasing and continuous, the same properties hold for J( · , α). For

α ∈ Rn+, we can therefore define the function ϕ1(α) ∈ L by

(ϕ1(α))(x) =

J(x, α) if α 6= 0 and αU > 0

0 otherwise
(2.19)

for all x ∈ D. For α > 0, the defining relationship for the mapping ϕ1 may also be written

in a more implicit but perhaps also more evocative form as

ϕ1 : α 7→ J,
n∑
i=1

Ii
(
J(x)/αi

)
= x (x ∈ D). (2.20)

We now establish various properties of this mapping such as monotonicity and continuity.

Lemma 2.13 The mapping ϕ1 is homogeneous and monotone. If α1 ∈ Rn+ and α2 ∈ Rn+
are such that α1

U > 0 and α1  α2, then we have in fact ϕ1(α1) > ϕ1(α2).

Proof. The homogeneity is immediate from the definitions. Concerning the monotonicity,

take α1 and α2 in Rn+ such that α1 ≥ α2. Firstly, assume that α1
U > 0 and α2

U > 0. Take

x ∈ D, and let z1 and z2 be defined by F (z1, α
1) = x and F (z2, α

2) = x. We then have

zi = (ϕ1(αi))(x) for i = 1, 2. Because the function F ( · , · ) is strictly increasing in each

of the components of its second argument and strictly decreasing in its first argument,

the vector inequality α1 ≥ α2 and the equality F (z1, α
1) = F (z2, α

2) together imply that

z1 ≥ z2, with strict inequality as soon as α1 and α2 are not equal. Secondly, assume that

α1
U > 0 while α2

i = 0 for some i ∈ U , then the strict inequality ϕ1(α1) > ϕ1(α2) trivially

holds, since ϕ1(α1) takes positive values, while ϕ1(α2) = 0 by definition. Finally, if there

is i ∈ U such that α1
i = 0, then ϕ1(α1) = ϕ1(α2) = 0.
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To show the continuity of ϕ1, we make use of the following lemma.

Lemma 2.14 Let a topological space Y and a sequentially continuous mapping f( · , · )
from R++ × Y to R be given. Suppose that for every y ∈ Y there is exactly one x ∈ R++

such that f(x, y) = 0. Let (yk)k=1,2,... be a sequence in Y that converges to ȳ ∈ Y. Define

xk (k = 1, 2, . . . ) by the equations f(xk, yk) = 0, and let x̄ be defined by f(x̄, ȳ) = 0. If the

collection {xk | k ∈ N} is bounded, then limk→∞ xk = x̄.

Proof. By the assumed boundedness of the collection {xk | k ∈ N}, it suffices to show that

any accumulation point of this collection must coincide with x̄. Let x̃ be an accumulation

point, and let (kj)j=1,2,... satisfy limj→∞ xkj = x̃. From the continuity of the mapping f ,

we have f(x̃, ȳ) = limj→∞ f(xkj , ykj) = 0. The assumed uniqueness of the solution of the

equation f(x, y) = 0 for given y then implies the equality x̃ = x̄.

Lemma 2.15 The mapping ϕ1 : Rn+ → L is continuous.

Proof. Let (αk)k=1,2,... be a sequence of vectors in Rn+ converging to a vector α ∈ Rn+. Take

x ∈ D; write zk := (ϕ1(αk))(x) and z := (ϕ1(α))(x). We need to show that the sequence

(zk)k=1,2,... converges to z.

First consider the case in which αU > 0. In this case we also have αkU > 0 for all

sufficiently large k. By definition, the numbers zk and z are positive and satisfy F (zk, α
k) =

x and F (z, α) = x. Suppose there would be a subsequence (zkj)j=1,2,... that tends to

infinity. For all i with αi > 0, the sequences (α
kj
i )j=1,2,... tend to finite limits, namely αi.

Consequently, the quotients zkj/α
kj
i tend to infinity, and therefore

x = lim
j→∞

F (zkj , α
kj) = b.

However, we have x ∈ (b,∞) so that x > b. From this contradiction it follows that the set

{zk | k ∈ N} is bounded, and it follows from Lemma 2.14 that limk→∞ zk = z.

Now suppose that there is an index ` ∈ U such that α` = 0. By definition, we then

have z = 0. To avoid trivialities, we may assume that αkU > 0 for all k. The numbers

zk > 0 are then given as the solutions of F (zk, α
k) = x. Take ε > 0, and suppose there

would be a subsequence (zkj)j=1,2,... such that zkj > ε for all j. The quotient zkj/α
kj
` then

tends to infinity because of the assumption that α` = 0, and the corresponding inverse
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marginal utility function I`(z) tends to −∞ when its argument tends to infinity, due to

the assumption that ` ∈ U . Because zkj > ε for all j and the sequences (α
kj
i )j=1,2,... tend

to finite limits, the inverse marginal utilities Ii(zkj/α
kj
i ) (i = 1, . . . , n) are bounded from

above. Therefore, we obtain

x = lim
j→∞

F (zkj , α
kj) = −∞.

This is a contradiction. We therefore have limk→∞ zk = 0, as was to be proved.

The next lemma states a property of the mapping ϕ1 that relates to nonsectionality.

Lemma 2.16 Let (αk)k=1,2,... be a sequence in Rn+ that has the following property: there

exist complementary nonempty index sets R and S in {1, . . . , n} and a vector αS ∈ R|S|++

such that αkR →∞ as k →∞, while αkS = αS for all k. Then (ϕ1(αk))(x)→∞ as k →∞
for all x ∈ D.

Proof. Take x ∈ D. Since the entries with indices in S are assumed to be positive and

those with indices in R tend to infinity, we can assume that all entries of αk are positive.

Then the numbers zk := ϕ1(αk)(x) are defined implicitly by∑
i∈R

Ii(zk/α
k
i ) +

∑
i∈S

Ii(zk/αi) = x. (2.21)

Suppose that (zk)k=1,2,... has a bounded subsequence (zkj)j=1,2,.... The quotients zkj/α
kj
i

tend to zero for i ∈ R so that the first term on the left-hand side in (2.21) tends to infinity.

The quotients zkj/αi for i ∈ S remain bounded, so that the second term at the left-hand

side is bounded from below. Therefore the left-hand side tends to infinity as j →∞, which

leads to a contradiction. The statement in the lemma follows.

2.5.2 Mapping from marginal group utility to utility weights

We now turn to the mapping ϕ2. Recall that the numbers vi (i = 1, . . . , n) represent the

claim values of the agents, and that vi > bi for all i. We have assumed that the total risk

X is bounded; consequently, for any given nonzero function J ∈ L, the random variable

J(X) is bounded as well. For each i = 1, . . . , n, the mapping αi 7→ EQIi(J(X)/αi) defines

a strictly increasing function with

lim
αi→∞

EQIi(J(X)/αi) =∞, lim
αi↓0

EQIi(J(X)/αi) = bi.
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By the assumed inequality vi > bi, the equation

EQIi(J(X)/αi) = vi (2.22)

therefore has a unique solution αi > 0. The mapping from collective marginal utility J to

utility weights α can be extended to a mapping defined on L by

(ϕ2(J))i =

αi satisfying (2.22) if J 6= 0

0 if J = 0
(2.23)

for i = 1, . . . , n.

Lemma 2.17 The mapping ϕ2 is homogeneous and strictly monotone, i.e., ϕ2(J1) ≥
ϕ2(J2) when J1 ≥ J2 and ϕ2(J1) > ϕ2(J2) when J1 > J2.

Proof. The homogeneity is immediate from the definition. The strict monotonicity follows

from the fact that all inverse marginal utilities Ii are strictly decreasing; in case J2 = 0,

the strict monotonicity is immediate from the definition.

Lemma 2.18 The mapping ϕ2 is sequentially continuous.

Proof. Let (Jk)k=1,2,... be a sequence in L, converging pointwise to J ∈ L, and fix i ∈
{1, . . . , n}. Write αki := (ϕ2(Jk))i and αi := (ϕ2(J))i. We want to show that (αki )k=1,2,...

converges to αi.

First assume that the limit function J is nonzero; we can then assume that all elements

of the sequence Jk are nonzero as well. Note that the collection of random variables Jk(X)

is bounded above by supk Jk(inf X) and below by infk Jk(supX). Therefore, if there would

exist a subsequence (α
kj
i )j=1,2,... converging to infinity, we would have

vi = lim
j→∞

EQIi(Jkj(X)/α
kj
i ) =∞. (2.24)

This would contradict the assumptions. Consequently, the collection {αki | k ∈ N} is

bounded. Consider the function G : R++ × L → R defined by

G(αi, J) = EQIi(J(X)/αi).

It follows from the bounded convergence theorem that this function is sequentially contin-

uous. The relation limαki = αi follows from Lemma 2.14.
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Consider now the case in which J = 0. In this case, we have by definition αi = 0. Take

ε > 0 and suppose that there would exist a subsequence (α
kj
i )j=1,2,... such that α

kj
i > ε

for all j = 1, 2, . . . . The convergence of (Jk)k=1,2,... to J = 0 would then imply the same

conclusion as in (2.24). Consequently, we have limk→∞ α
k
i = 0, as was to be shown.

The final lemma establishes a property that will be used in a nonsectionality argument.

Lemma 2.19 Let (Jk)k=1,2,... be a sequence in L such that Jk(x) → ∞ for all x ∈ D as

k →∞. Then (ϕ2(Jk))i →∞ for all i = 1, . . . , n.

Proof. Choose i ∈ {1, . . . , n}. Suppose that the i-th entry of αk := ϕ2(Jk) does not tend

to infinity. Then there exist a finite number M and a subsequence (α
kj
i )j=1,2,... such that

α
kj
i < M for all j. We would then have

vi = lim
j→∞

EQIi(J
kj(X)/α

kj
i ) = bi. (2.25)

This is a contradiction, since it is assumed that vi > bi. Therefore the statement of the

lemma follows.

2.5.3 The complete iteration mapping

With the mappings ϕ1 : Rn+ → L and ϕ2 : L → Rn+ in hand, one can define a mapping ϕ

from Rn+ into itself in the obvious way by

ϕ(α) = ϕ2(ϕ1(α)). (2.26)

It follows from the development above and the Borch parametrization (2.8) that Pareto

efficient and financially fair solutions of the risk sharing problem are in one-to-one cor-

respondence with vectors α ∈ Rn++ such that ϕ(α) = α. The proposition below implies

that it is in fact sufficient to look for positive eigenvectors of the mapping ϕ. A similar

argument was used by Menon (1967) in an analysis of the IPFP.

Proposition 2.20 The mapping ϕ can only have 1 as an eigenvalue corresponding to a

positive eigenvector. In other words, if α ∈ Rn++ is such that ϕ(α) = λα, then λ = 1.

Proof. Let α > 0 be such that ϕ(α) = λα. Since ϕ maps the positive cone into itself, the

eigenvalue λ must be positive. Define J = ϕ1(α); then ϕ2(J) = λα. Note that J(x) > 0
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for all x ∈ D. By definition, we have

n∑
i=1

Ii(J(x)/αi) = x (x ∈ D)

EQIi(J(X)/(λαi)) = vi (i = 1, . . . , n).

Therefore,

n∑
i=1

EQIi(J(X)/(λαi)) =
n∑
i=1

vi = EQX =
n∑
i=1

EQIi(J(X)/αi).

The claim follows by noting that the function λ 7→ Ii(J(x)/(λαi)), for fixed x and fixed i,

is strictly increasing in λ.

Theorem 2.21 The mapping ϕ defined by (2.19, 2.23, 2.26) has a unique continuous

extension to a mapping from the nonnegative cone to itself. This extension is homogeneous,

monotone, and nonsectional. On the positive cone, the mapping ϕ is strongly monotone.

Proof. The continuity follows from Lemmas 2.15 and 2.18. Monotonicity and homogeneity

follow from Lemmas 2.13 and 2.17. These lemmas also imply strong monotonicity of ϕ

on the positive cone. Consider now two nonempty complementary subsets R and S of the

index set {1, . . . , n} as in Definition 2.8. If α1 and α2 are such that α2
S > 0, α1

S = α2
S, and

α1
R > α2

R, then it follows from Lemma 2.13 that ϕ1(α1) > ϕ1(α2). The strict inequality is

preserved by the mapping ϕ2 according to Lemma 2.17, so that item (i) in Definition 2.8

is satisfied. The condition in item (ii) in Definition 2.8 is fulfilled due to Lemma 2.16 and

Lemma 2.19.

By Oshime’s theorem (Theorem 2.9), we can now conclude the following.

Corollary 2.22 Problem 2.6 has a unique solution. The unique allocation rule that is

Pareto efficient and financially fair is given by

yi(x) = Ii(J(x)/αi) (2.27)

for i = 1, . . . , n and x ∈ D, where Ii is the inverse marginal utility function of agent i,

α = (α1, . . . , αn) is a positive eigenvector (unique up to multiplication by a positive scalar)

of the mapping ϕ defined in (2.26), and J is given by J = ϕ1(α) through the mapping ϕ1

defined in (2.19).
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The mapping ϕ induces a normalized mapping ψ from the open unit simplex into itself

via (2.14). Under the assumptions of the above theorem, this mapping is contractive and

has a fixed point. Using the fact that the open simplex in finite dimensions is a locally

compact and connected metric space, we can therefore apply Theorem 2.12 to conclude the

global convergence of the composite iteration algorithm.

Corollary 2.23 Under Assumptions 2.1 and 2.2, the mapping ψ defined by (2.19, 2.23,

2.26) and (2.14) has the following property: for every α0 in the open unit simplex {α ∈
Rn++ |

∑n
i=1 αi = 1}, the sequence of vectors (α0, α1, . . . ) defined iteratively by

αi+1 = ψ(αi) (2.28)

converges to the unique eigenvector in the open unit simplex of the mapping ϕ defined by

(2.19, 2.23, 2.26).

Concerning implementation, it can be noted that the equations in (2.19) and (2.23)

can be solved in parallel for different x ∈ D and different i ∈ {1, . . . , n}, respectively, and

that in each case the problem comes down to determining the root of a strictly monotone

scalar function. The normalization is used above to simplify the proof of convergence.

The fact that the eigenvalue associated to the positive eigenvector is equal to 1 suggests

that normalization is not really needed. Computational experience indeed indicates that

the composite iteration algorithm performs just as well, or perhaps even better, when

normalization is not applied.

2.6 Equicautious HARA collectives

The class of utility functions with hyperbolic absolute risk aversion (HARA class) consists

of the functions u( · ) for which the corresponding coefficient of risk aversion −u′′(x)/u′(x)

is of the form 1/(σx + τ), where σ and τ are constants. Special cases are the exponential

utility functions (σ = 0) and the power utilities (τ = 0). The coefficient σ is called

cautiousness by Wilson (1968); it measures how quickly the coefficient of risk aversion

increases as wealth goes down. As noted by Wilson, collectives of agents who have identical

cautiousness enjoy special properties. Such collectives are called equicautious by Amershi

and Stoeckenius (1983). Examples are collectives of power utility agents who all have

the same degree of relative risk aversion, and collectives consisting of exponential utility

agents. The proposition below shows that, in the equicautious HARA case, the composite
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iteration mapping ϕ enjoys special properties too; the normalized iteration based on this

mapping converges in one step.

Proposition 2.24 In the case of an equicautious HARA collective, the mapping ψ defined

by (2.19, 2.23, 2.26) and (2.14) satisfies ψ(ψ(α)) = ψ(α) for all α ∈ Rn++.

Proof. Suppose that u1, . . . , un are utility functions of an equicautious HARA collective,

and let −u′i(x)/u′′i (x) = σx + τi. By definition of the functions Ii we have, for all z > 0,

u′i(Ii(z)) = z and hence u′′i (Ii(z))I ′i(z) = 1, so that

−zI ′i(z) = − u
′
i(Ii(z))

u′′i (Ii(z))
= σIi(z) + τi.

For any given weight vector α ∈ Rn++, the function I defined by I(z) =
∑n

i=1 Ii(z/αi)

satisfies

−zI ′(z) = −
n∑
i=1

(z/αi)I
′
i(z/αi) =

n∑
i=1

(
σIi(z/αi) + τi

)
= σI(z) +

n∑
i=1

τi. (2.29)

Write τ :=
∑n

i=1 τi. Since J as defined in (2.19) is the inverse function of I, we have

−J(x)I ′(J(x)) = σx+ τ. (2.30)

From the relation I(J(x)) = x it follows that I ′(J(x))J ′(x) = 1; therefore (2.30) implies

that −J(x)/J ′(x) = σx+ τ . This shows that the function J defined by (2.19) depends on

the coefficients α1, . . . , αn only through a multiplicative factor. Consequently, the coeffi-

cients α1, . . . , αn that are determined from the function J via (2.22) represent a positive

eigenvector of ϕ, so that convergence of the iteration (2.28) is achieved in one step.

2.7 Rate of convergence

The asymptotic rate of convergence of the composite iteration algorithm is governed by the

linearization of the iteration map around the fixed point of the iteration. As is well known

(Wilkinson, 1965, Ch. 9), the power method for finding the eigenvector corresponding to

the dominant eigenvalue of a matrix has a linear rate of convergence, and the speed of

convergence is determined by the ratio of the absolute value of the second largest eigen-

value with respect to the absolute value of the largest eigenvalue. In our case the largest
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eigenvalue is equal to 1, and therefore the asymptotic convergence speed of the compos-

ite iteration algorithm is simply given by the size of the second largest eigenvalue of the

Jacobian of this matrix at the fixed point of the iteration. The Jacobian matrix can be com-

puted on the basis of the following proposition. First we introduce some notation. Given a

utility function u that is twice differentiable, strictly increasing, and strictly concave, the

corresponding coefficient of absolute risk tolerance is the function T defined by

T (x) = − u
′(x)

u′′(x)
. (2.31)

This is the inverse of the usual Arrow-Pratt coefficient of absolute risk aversion.

Proposition 2.25 Consider the mappings ϕ1, ϕ2, and the composite mapping ϕ as defined

in (2.26) on the basis of a given group of agents with utility functions ui( · ) and claim values

vi. The agents’ coefficients of absolute risk tolerance are denoted by Ti( · ). Let α ∈ Rn++

be such that ϕ(α) = α, and let yi( · ) denote the corresponding allocation functions as

determined by (2.8). The linearization of the mapping ϕ1 at the point α is given by

Dϕ1(α) : ∆α 7→ ∆J, ∆J(x) =
J(x)∑n

i=1 Ti(yi(x))

n∑
i=1

Ti(yi(x))
∆αi
αi

(x ∈ D). (2.32)

The linearization of the mapping ϕ2 at J = ϕ1(α) is given by

Dϕ2(J) : ∆J 7→ ∆α, ∆αi =
αi

EQ[Ti(yi(X))]
EQ
[
Ti(yi(X))

∆J(X)

J(X)

]
(i = 1, . . . , n).

(2.33)

The Jacobian at α of the composite mapping ϕ is given by

(
Dϕ(α)

)
ik

=
αi/αk

EQ[Ti(yi(X))]
EQ

[
Ti(yi(X))Tk(yk(X))∑n

i=1 Ti(yi(X))

]
(i = 1, . . . , n; k = 1, . . . , n).

(2.34)

Proof. The linearization of the defining relationship (2.20) of the mapping ϕ1 around a

given point α ∈ Rn++ is given by

n∑
i=1

1

αi
I ′i(J(x)/αi)∆J(x)−

n∑
i=1

J(x)

α2
i

I ′i(J(x)/αi)∆αi = 0. (2.35)

In terms of the allocation functions that are associated to the point α by means of Borch’s

condition for Pareto efficiency (2.7), we can write

I ′i(J(x)/αi) = I ′i(u
′
i(yi(x))) =

1

u′′i (yi(x))
=

αi
J(x)

u′i(yi(x))

u′′i (yi(x))
= − αi

J(x)
Ti(yi(x)). (2.36)
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Together with (2.35), this leads to (2.32). The defining relationship (2.22) of the mapping

ϕ2 is linearized as follows:

EQ
[ 1

αi
I ′i(J(X)/αi)∆J(X)

]
− EQ

[J(X)

α2
i

I ′i(J(X)/αi)∆αi

]
= 0. (2.37)

Together with (2.36), this leads to (2.33). Finally, the expression (2.34) is obtained by

combining (2.32) and (2.33).

The quantity Ti(yi(x))/
∑n

i=1 Ti(yi(x)) might be called the tolerance share of agent i at

outcome x, within the allocation scheme defined by the functions yi. Under the efficiency

condition (2.7), this function can be given an alternative interpretation as follows. Since

(2.7) implies the equality J ′(x) = αiu
′′
i (yi(x))y′i(x), we can write

Ti(yi(x)) = − u
′
i(yi(x))

u′′i (yi(x))
= − J(x)

J ′(x)
y′i(x).

Therefore we have
n∑
i=1

Ti(yi(x)) = − J(x)

J ′(x)
, (2.38)

and hence
Ti(yi(x))∑n
i=1 Ti(yi(x))

= y′i(x). (2.39)

In other words, in Pareto efficient allocations the tolerance share of each agent is equal, at

every outcome x, to the derivative of that agent’s allocation function at the point x. Given

the interpretation of J(x) as a group marginal utility, the right hand side of (2.38) can be

viewed as a group risk tolerance, which agrees with the natural interpretation of the left

hand side.

The expression for the Jacobian can be simplified further by introducing a probability

measure Qi, which is associated to agent i under a given allocation scheme, as follows:

EQi [Z] =
EQ[Ti(yi(X))Z]

EQ[Ti(yi(X))]
(Z ∈ L∞(Ω,F , Q)). (2.40)

Using also (2.39), we can then write the elements of the Jacobian at the fixed point of the

iteration mapping as (
Dϕ(α)

)
ik

=
αi
αk

EQi [y′k(X)]. (2.41)

While this is a short formula, an advantage of the expression (2.34) as given in the propo-

sition above is that it does not require computing derivatives of the allocation functions.
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Remark 2.26 In the case of equicautious HARA utilities, it is well known that efficient

allocation rules must be linear (Amershi and Stoeckenius, 1983, Thm. 5). Suppose the

allocation functions are given by yi(x) = aix + bi where ai and bi (i = 1, . . . , n) are

constants. In this case, it follows from the expression (2.33) that the Jacobian of the

iteration mapping at the fixed point is given by(
Dϕ(α)

)
ik

=
αi
αk

ak.

This implies that the Jacobian has rank 1, as expected from Section 2.6.

We conclude this section with a small numerical example in which we illustrate the

convergence behavior of the composite iteration algorithm.

Example 2.27 Suppose a risk is to be divided between three agents who are referred to

as “senior” (S), “mezzanine” (M), and “equity” (E). The agents use power utility ui(x) =

x1−γi/(1−γi), with different coefficients of relative risk aversion γi (10, 5, and 2). The agents

have agreed on a pricing functional that gives positive weights to nine possible outcomes

of the risk X. These outcomes are of the form exp z, with z = −2,−1.5, . . . , 2, and

the corresponding weights (state prices) are proportional to exp(−1
2
z2). In other words,

under the pricing measure, the risk X follows a discrete approximation to a lognormal

distribution; numerical values are given in the second row of Table 2.1. There is no need

to specify the probability measure P since the PEFF solution does not depend on it, due

to the assumption that agents all use the same probabilities to compute expected utility.

The three agents have equal ownership rights.

The composite iteration algorithm, initialized at the point α0 =
(

1
3
, 1

3
, 1

3

)
, without

renormalization of iterates αi, produces after four iterations a solution that satisfies the

feasibility constraint (2.5) up to an error that is less than 0.5% (i.e. max
∣∣(∑3

i=1 yi(X) −
X
)∣∣/EQ[X] < 0.005). The fairness constraints (2.6) are satisfied up to machine precision

by the design of the algorithm. After three more iterations, the error in the feasibility

constraint is less than 0.01%. The fixed point (corresponding to the scaling as given in the

definition of the utility functions) is α = (0.03, 0.41, 0.56). The resulting allocation rule is

shown in Table 2.1 for the outcomes of X that receive positive weights under Q. It can be

verified that the claims held by the agents all have equal value when the value is computed

by taking the weighted sum of the payoffs, with weights given in the row labeled q.
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X 0.1353 0.2231 0.3679 0.6065 1.0000 1.6487 2.7183 4.4817 7.3891

q 0.0276 0.0663 0.1238 0.1802 0.2042 0.1802 0.1238 0.0663 0.0276

S 0.1138 0.1730 0.2554 0.3627 0.4888 0.6221 0.7554 0.8881 1.0228

M 0.0214 0.0495 0.1080 0.2178 0.3956 0.6408 0.9447 1.3060 1.7321

E 0.0001 0.0006 0.0045 0.0260 0.1155 0.3858 1.0182 2.2876 4.6342

Table 2.1: Pareto efficient and financially fair allocation of an approximately lognormal
risk among three power utility agents labeled S, M, and E, with different coefficients of risk
aversion, and with equal ownership rights. The row labeled X shows possible payoffs that
are to be divided among the agents; the row labeled q shows valuation weights (measure Q).
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Figure 2.1: Error in the feasibility constraint as a function of the number of iterations

The size of the error as a function of the number of iterations is shown in Figure 2.1.

It is seen that the asymptotic regime sets in almost immediately. The slope of the line

in the figure closely matches the magnitude of the second largest eigenvalue of the Jaco-

bian, which can be found from (2.34) and which for the data as given equals 0.197. The

convergence becomes only marginally slower when the grid size is increased to get a closer

approximation to a lognormal variable under Q. Reducing the differences between the risk

aversion coefficients of the agents tends to make the convergence faster, and the same holds

when the differences between the ownership rights of the agents are made larger.
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2.8 Conclusions and further research

In this chapter we have studied the application of the composite iteration method to a fair

division problem under a linear notion of fairness. The application features agents with

concave and additively separable preferences. In this setting, the composite iteration map

can be easily computed. We have established a number of relevant properties of the map,

which allow to prove existence and uniqueness of solutions and global convergence of the

corresponding iteration map.

We have assumed that the total risk which is to be allocated among the agents is given.

However, in many situations, the collective can decide to a certain extent how much risk

it wants to take. Problems of collective investment decisions have been considered for

instance by Wilson (1968) and Xia (2004). The notion of financial fairness would seem to

be relevant in this context, but has not received much attention in the literature so far.

A treatment of collective investment along the lines of the present chapter is given in the

following chapter.

Multiperiod allocation problems have been considered for instance by Gale and Machado

(1982); Barrieu and Scandolo (2008); Gollier (2008); Cui et al. (2011). Existence and

uniqueness of Pareto efficient and financially fair allocation rules in the multiperiod con-

text has been shown by Bao et al. (2017) using methods analogous to the ones in the

present chapter.

The composite iteration algorithm can be applied analogously (cf. Dana, 2001) in the

case of Arrow-Debreu equilibrium. Among the known sufficient conditions for the compos-

ite iteration map to be strongly monotone in this case, the most important one is additive

separability with low risk aversion; see Dana (2001) for details. The algorithm can be

formulated for general preferences under suitable concavity assumptions, but simplifies

notably in the case of additively separable preferences as considered in this chapter.

It would be of interest to give an economic meaning to the magnitude of the second

largest eigenvalue of the Jacobian of the composite iteration mapping at the fixed point.

As noted in Remark 2.26, this number equals zero in the equicautious case. The ques-

tion therefore arises to what extent the magnitude of the second largest eigenvalue could

be viewed as a quantitative measure of nonequicautiousness, or (since equicautiousness

makes it possible to aggregate preferences) as a quantitative measure of inaggregability of

preferences.





Chapter 3

Cooperative Investment in

Incomplete Markets Under Financial

Fairness

Joint work with J.M. Schumacher and B.J.M. Werker

3.1 Introduction

A large literature has emanated from the seminal paper by Borch (1962), which char-

acterized Pareto optimality for risk sharing among a group of agents. In the model of

Borch’s theorem, the only essential attributes of agents are their preferences across risky

prospects. In particular, the framework does not include a concept of ownership rights,

which potentially could be used to provide additional guidelines for risk sharing agree-

ments. An extension of Borch’s framework in this direction was carried out by Bühlmann

and Jewell (1978, 1979). These authors define the notion of a “fair Pareto optimal risk

exchange” (FAIRPOREX). Fairness is understood here in the sense of a financial valuation

operator (expectation under a risk-neutral measure). The basic presumption is that it is

possible to assign a financial value both to what each agent contributes to the collective

and to the stochastic payoff that the agent receives from the collective. Fairness then

means that, for each agent separately, equality should hold between the two values.

While the purely preference-based setting of Borch typically leads to an infinite num-

The results described in this chapter were published in Pazdera et al. (2016)
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ber of solutions (the “contract curve”), Bühlmann and Jewell (1978, 1979) show that their

framework, which employs preferences as well as financial values, produces a unique solu-

tion under quite general conditions. Their proof makes use of an ingenious argument due

to Gale (1977) (cf. Gale and Sobel, 1979). The problem considered by Gale (1977) is to

find a rule for the division of the uncertain proceeds of a jointly owned enterprise, in such

a way that Pareto efficiency holds and the expected sizes (under the real-world measure)

of the portions received by the shareholders are proportional to their ownership rights.

Analytical solutions of the problem of finding the Pareto efficient and financially fair

risk-sharing rule are only available in special cases. These cases include in particular the

situation of an equicautious HARA collective (Amershi and Stoeckenius, 1983), in which

it is known (Thm. 5 in the cited paper) that Pareto efficient risk sharing rules consist of

affine functions of the realized outcome. In other cases, a numerical solution procedure

must be followed. Bühlmann and Jewell (1978, 1979) have hinted at an iterative method

to compute the fair Pareto optimal risk exchange, but they did not work out the details. A

study of an iterative algorithm to compute the Pareto efficient and financially fair solution

was undertaken in Chapter 2. The algorithm reduces the problem to a series of steps, each

of which requires only to determine the root of a continuous and monotonic scalar function.

The approach is based on the characterization of the Pareto efficient and financially fair

allocation in terms of the positive eigenvector of an associated homogeneous nonlinear

mapping. In this way, it also leads to an existence and uniqueness proof via nonlinear

Perron-Frobenius theory, different from the original argument of Gale (1977).

In the models studied by Borch (1962), Gale (1977), and Bühlmann and Jewell (1978,

1979), the risk that agents are confronted with is given exogenously. Such models are

applicable for instance to the pooling of underwriting risks of insurance companies. In

other situations, agents may have a certain amount of freedom in selecting their exposure

to risk. Such situations arise for instance in collective pension funds, where trustees must

decide on the investment policy of the collective as well as on benefit policy (Gollier,

2008; Cui et al., 2011). An extension of Borch’s framework covering endogenous risk was

undertaken by Wilson (1968). For a discussion of financial fairness within this context, we

need to distinguish between complete and incomplete markets.

When the market is complete, agents can achieve individual optimality subject to their

budget constraints by trading just for themselves. This solution is automatically financially

fair, and one can verify that it is also Pareto efficient under only the global budget constraint

(Arrow, 1951; Xia, 2004). Consequently, when the market is complete there is no reason

for agents to form a collective (other than reasons of convenience which we do not discuss

here). Therefore, the complete markets are not our prime interest. However, when markets
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are incomplete, it may be beneficial for agents to trade among each other, in addition to

trading at the market. On the other hand, when markets are incomplete, it is more difficult

to address financial fairness, because the market does not fully specify a valuation operator.

A simple example may be helpful here. Suppose two neighbors both use a particular

brand of chinaware. Suppose that one neighbor needs to replace a cup, while the other

has suffered the loss of a saucer. At the shop, they find out that cups and saucers are only

sold together, not separately. Knowing of each other’s predicament, they decide to form a

collective. Together, they purchase a set consisting of a cup and saucer; subsequently, the

cup goes to one neighbor, and the saucer to the other. To make the agreement financially

fair, the contribution of each participant to the collective should be equal in value to what

that participant receives from the collective. This boils down to the question which part

of the total cost of a cup and saucer should be borne by each of the two neighbors. Due to

incompleteness, market prices by themselves do not provide the values of cups and saucers

separately. In spite of this lack of information, the two neighbors may still find ways to

arrive at the required valuation. For instance, they might negotiate between themselves

in order to arrive at a common pricing rule, or they might agree to lay the matter in the

hands of an expert who can make a statement about what market prices for cups and

saucers would be if they would be traded on their own.

In this chapter, we consider a collective in which participants have agreed on a common

pricing rule. We do not model the process by which they arrive at such a common rule;

it may be based on negotiation, or on the advice of an authority. Instead, we simply take

the common pricing rule as a primitive of the model. One of the main questions we are

interested in is whether, once the pricing rule has been fixed, the requirements of Pareto

efficiency and financial fairness (in the sense of the chosen rule) are sufficient to determine

both the joint investment decision and the allocation rule uniquely. It is understood here

that uniqueness is conditional on the chosen pricing rule, which, as noted before, is not

fully objectively determined in an incomplete market.

We show that the approach from Chapter 2 can be used in this case as well. The

iterative algorithm that we present here is quite similar to the one in Chapter 2, but it

includes an additional optimization step in each cycle of the iteration. The optimization

problem to be solved is of the convex type, and can be reformulated in such a way to take

advantage of either the presence of few constraints (close-to-complete markets) or of many

constraints (few degrees of freedom in the investment decision). The situation with respect

to uniqueness is different, and we are not able to prove a uniqueness theorem at a level of

generality similar to Corollary 2.22. We discuss the source of the difficulties, and we give

several sufficient conditions under which uniqueness does hold.
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The model of this chapter can be reinterpreted in terms of production economies.

Instead of different future states, we then have different commodities that can be produced

on the basis of inputs (such as labor) provided by a collective. The collective needs to

take a decision both on the amounts of goods produced and on the allocation of these

goods to participants. While in the financial interpretation of the model it is natural

to work with linear budget constraints, these may be replaced by nonlinear constraints

in the context of production. A model of this type has been considered by Gale and

Machado (1982). These authors state that the solution is not unique in general, and

they provide a proof of uniqueness under a condition which they call “separability of

production sets”. The condition implies that production sets can be characterized by a

single constraint. In the financial interpretation, this comes down to market completeness,

the single constraint being the budget constraint. Below we provide (Proposition 3.10) a

short proof of uniqueness in the complete market case, which differs from the one due to

Gale and Machado (1982).

The approach of this chapter is different from the traditional approach in game the-

ory where typically the collection of Pareto optimal solutions is restricted by coalitional

stability, rather than by a notion of financial fairness. In fact, we do not take individual

rationality into consideration. There is no guarantee that a Pareto efficient and financially

fair solution is utility-improving for every agent in a given collective. Differently from tra-

ditional game theoretical approach we do not consider that agents can choose to participate

or not in the collective. We consider that agents in the collective are fixed.

We work in the simple setting of a one-period model and a finite probability space. We

consider collectives consisting of agents whose preferences can be described by expected

utility, and we assume that the agents have common beliefs in the sense that they all

assign the same probabilities to events. The utility functions, which may be different for

different agents, will be assumed to satisfy a number of standard conditions. We assume

that investments take place in a liquid financial market so that the possible investment

decisions are parametrized by a subspace of the payoff space.

This chapter is organized as follows. Assumptions and notations are specified in Sec-

tion 3.2. Section 3.3 presents the main results of this chapter. Special cases which can be

solved analytically are mentioned in Section 3.4, and a numerical example is presented in

Section 3.5. Conclusions follow in Section 3.6. Most proofs are relegated to the appendix.
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3.2 Notation, assumptions, and definitions

3.2.1 Mathematical conventions

Notation and terminology relating to vector inequalities will be as follows. Inequalities are

interpreted componentwise; in other words, the expression a ≥ b for a = (a1, . . . , an) and

b = (b1, . . . , bn) means that ai ≥ bi for all i = 1, . . . , n, and a > b means ai > bi for all i.

The expression a  b indicates that a ≥ b and a 6= b. Analogous notation will be used in

the case of function spaces; when f and g are functions from a set D to R, we write f ≥ g

when f(x) ≥ g(x) for all x ∈ D, f > g when f(x) > g(x) for all x ∈ D, and f  g when

f ≥ g while f 6= g.

A function f from (a subset of) Rn into Rm will be said to be strictly increasing if, for

x and y in the domain of f , the inequality x  y implies that f(x)  f(y), and strongly

increasing when x  y implies that f(x) > f(y). A sequence of vectors (ak)k=1,2,... in Rn is

said to converge to infinity if all scalar sequences (aki )k=1,2,... (i = 1, . . . , n) tend to infinity.

The nonnegative orthant and the positive orthant in Rn are defined by Rn+ := {x ∈ Rn |
x ≥ 0} and Rn++ := {x ∈ Rn | x > 0}, respectively. A cone in a real vector space V is a

subset of V that is closed under multiplication by nonnegative scalars. The term positive

cone refers to the set Rn++ ∪ {0}. The closed unit simplex (or simply unit simplex ) in Rn

is the set {x ∈ Rn+ |
∑n

i=1 xi = 1}. The restriction of this set to the positive orthant is

called the open unit simplex. We use the term “homogeneous” as shorthand for “positively

homogeneous of degree 1”; that is, a function f defined on a cone in Rn is homogeneous if

the equality f(λx) = λf(x) holds for all λ > 0 and all x in the domain of f .

3.2.2 Economic assumptions

The risks in the economy that we consider are modeled as random variables on a finite

outcome space Ω = {ω1, . . . , ωm}. The space RΩ of random variables defined on Ω (i.e.

functions from Ω to R) will correspondingly be written as Rm. The probability of outcome

ωj, j = 1, . . . ,m, is denoted by pj > 0, and the measure that is defined in this way is

written as P . The expectation operator under this measure is denoted by E, as opposed to

EQ which is the expectation under the pricing measure to be introduced below. Elements

of Rm will also be referred to as assets or contingent claims.

We consider a group of a finite number of agents, n, in the economy. Each agent is

endowed with a utility function ui : (0,∞)→ R being strictly increasing, strictly concave,

and twice continuously differentiable, and which moreover satisfies the following Inada



38 3.2 Notation, assumptions, and definitions

conditions:

lim
x↓0

u′i(x) =∞, lim
x→∞

u′i(x) = 0. (3.1)

A common class of utility functions fulfilling these conditions is the class of power utility

functions. Objective functions described by the utility functions are defined by

Ui(X) =
m∑
j=1

pjui(Xj) = E[ui(X)], X ∈ Rm++. (3.2)

The inverse of the marginal utility function u′i is denoted by Ii; this is a strictly decreasing

and continuous function defined on (0,∞) with

lim
z↓0

Ii(z) =∞, lim
z→∞

Ii(z) = 0.

A pricing functional is defined on the asset space Rm by expectation under a measure Q

that is equivalent to measure P ; we set the discount factor equal to unity without loss of

generality. The Q-probability of an outcome ωj ∈ Ω is denoted by qj, so that the expression

EQX =
m∑
j=1

qjXj

gives the price of an asset X ∈ Rm.

We assume furthermore that a vector X in ∈ Rm and a subspace X0 ⊂ {X ∈ Rm |
EQX = 0} are given, which are interpreted as the initial endowment of the group of

agents (collective risk) and the space of zero-cost trades that are available to the group,

respectively. Under the assumption that the collective as a whole has agreed on prices of

all assets in X, the space X0 is well-defined even in an incomplete market setting. By its

investment decision, the collective modifies its position from X in to X in +X, with X ∈ X0.

We write

X := {X in +X | X ∈ X0}. (3.3)

The space of accessible trades X0 is a subspace of the space of zero-price assets {X | EQX =

0}; it is allowed, and actually it is the main situation of interest below, that the inclusion is

strict, because the strict inclusion corresponds to an incomplete market setting. A standing

assumption is that the initial endowment of the collective X in and the space of accessible

trades X0 are such that the shifted space X = {X in}+X0 has nonempty intersection with

the positive orthant. In other words, on the basis of its initial endowment it is possible

for the collective to take positions that produce positive payoffs in every state of nature.

This condition is required because the utility functions that we use are defined only on the

positive half line.
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Finally we assume that for each agent i a number vi is given, which is referred to as

the claim value of the agent or the value of the contribution of that agent to the group.

These numbers will be used to define the notion of financial fairness for risk sharing rules.

The numbers vi must satisfy the consistency requirement

n∑
i=1

vi = EQX in. (3.4)

Moreover, the numbers vi should be positive for the allocation problem to be meaningful.

For the purpose of the design of risk sharing systems along the lines of this chapter, no

further information concerning the agents is required. However, to be able to compare the

outcomes of collective schemes to individual schemes, one needs to define initial endow-

ments as well as accessible trading spaces for the individual agents. If X in
i ∈ Rm denotes

the initial endowment of agent i (i = 1, . . . , n), then one may define

X in =
n∑
i=1

X in
i and vi = EQX in

i

so that the consistency requirement (3.4) is satisfied automatically.

3.2.3 Risk sharing schemes

A risk sharing scheme is a combination of a collective investment decision and a rule for

the allocation of investment returns to the participants in the collective. In more formal

terms, a risk sharing scheme is a tuple (X; y) where X ∈ Rm and y = (y1, . . . , yn) is a

vector of functions from (0,∞) to (0,∞). The corresponding agent shares are defined by

Yi := yi(X). The risk sharing scheme is said to be feasible if the vector X belongs to the

constraint set X and is moreover positive, and the allocation functions y1, . . . , yn satisfy

the redistribution property

n∑
i=1

yi(x) = x for all x > 0. (3.5)

Positivity of the position X taken by the collective is needed, because the agent’s utilities

are defined only on the positive halfline. If there would be a state of nature in which the

payoff of the collective would be nonpositive, then no feasible allocation assigns positive

payoffs to all agents.

Above, we have introduced the values vi of agent’s contributions. These are used below

to define the notion of financial fairness. The definition below follows Bühlmann and Jewell

(1979).
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Definition 3.1 Let a pricing measure Q, a collective risk X, and values of agent’s con-

tributions vi be given, with EQX =
∑n

i=1 vi. An allocation rule (y1, . . . , yn) is financially

fair if EQ[yi(X)] = vi for all i = 1, . . . , n.

We work with a notion of Pareto efficiency that is constrained only by feasibility, not

by financial fairness.

Definition 3.2 A feasible risk sharing scheme (X; y) for n agents with objective functions

Ui is Pareto efficient if there does not exist another feasible scheme (X̃; ỹ) such that[
U1

(
ỹ1(X̃)

)
, . . . , Un

(
ỹn(X̃)

)]

[
U1

(
y1(X)

)
, . . . , Un

(
yn(X)

)]
.

In this chapter we consider preferences to be given by expected utility as in (3.2). In

(3.2), expectations are taken with respect to the objective probability measure P , whereas

the financial fairness constraint involves the pricing measure Q.

Remark 3.3 Uniqueness of risk sharing schemes will always be understood in the sense of

uniqueness with probability 1. In other words, two risk sharing schemes (X, y) and (X ′, y′)

(both for n agents) are considered to be the same if the random variables Yi := yi(X) and

Y ′i := y′i(X
′) are equal with probability 1 for all i = 1, . . . , n.

3.3 Main result

In this section we establish, under some conditions, the existence of a unique Pareto efficient

and financially fair (PEFF) risk sharing scheme. The result applies to situations in which

the collective is to a certain extent free in choosing its risk exposure. The classical work of

Borch (1962) is concerned with the situation in which a collective faces a given risk, such

as when a number of insurance companies form a pool with respect to the claims that may

be received in a given year. It was shown by Borch that, in this case, the collection of all

Pareto optimal solutions for risk sharing between the agents can be parametrized in terms

of positive parameters α1, . . . , αn by the prescription

yi(x) = Ii
(
J(x;α)/αi

)
, (3.6)

where the notation α is used to refer to the vector of parameters (α1, . . . , αn), and where,

for α > 0, the function J(x;α) is defined implicitly by

J( · ;α) : x 7→ z s.t.
n∑
i=1

Ii
(
z/αi

)
= x (x > 0). (3.7)
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As is easily verified, the equation (3.7) indeed uniquely defines J(x;α) for each given x > 0

and given α > 0. The proof of Borch’s result (see for instance DuMouchel (1968), Barrieu

and Scandolo (2008) for details) is based on the fact that, under convexity assumptions,

all points in the Pareto efficient set can be found by solving weighted-sum optimization

problems of the form

n∑
i=1

αiE
[
ui
(
yi(X)

)]
→ max subject to

n∑
i=1

yi(X) = X, (3.8)

where X is the given total risk. The restriction to positive (rather than nonnegative)

coefficients αi can be motivated by noting that the weighted-sum optimization problem

that results from setting one or more (but not all) of the αi’s equal to zero does not give

rise to boundary points of the set of achievable joint preference levels of the agents, since

the levels of agents who are taken into account in the weighted sum can always be improved

when the allocations to the agents with zero weight are made smaller.

When the total risk X is not fixed but can be chosen to a given extent by the collective,

the idea of weighted-sum optimization still applies, but this time the optimization is carried

out not only with respect to the allocation functions but also with respect to X. The

optimal allocation functions for a given risk are provided by Borch’s result; in fact, as

noted by Borch, these functions do not depend on the distribution of the risk X because

the problem (3.8) can be solved for each realization of X separately. As a consequence,

the weighted-sum optimization problem can be formulated directly in terms of the risk X

that is to be chosen by the collective:

n∑
i=1

αiE
[
ui
(
Ii(J(X)/αi)

)]
→ max subject to X ∈ X , (3.9)

where the set X ⊂ Rm represents the positions that can be taken. Given the above, it is

convenient to introduce the function

u(x;α) =
n∑
i=1

αiui
(
Ii(J(x)/αi)

)
. (3.10)

Calculation shows (Xia, 2004) that in fact

u′(x;α) = J(x;α) (3.11)

so that, if u(x;α) is interpreted as a weighted group utility, then J(x;α) is the correspond-

ing weighted marginal group utility. It can be verified that the function u( · ;α) inherits all

properties that were assumed for the utility functions ui in Section 3.2.2. It then follows
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that the optimization problem in (3.9) has a unique solution. Consequently (Xia, 2004,

Thm. 3.1), a risk sharing scheme (X̂; y) is Pareto efficient if and only if there exists a set

of positive parameters α = (α1, . . . , αn) such that

yi(x) = Ii
(
J(x;α)/αi

)
(i = 1, . . . , n) (3.12a)

X̂ = arg max
X∈X

E[u(X;α)], (3.12b)

where the weighted group utility u(x;α) is defined in (3.10) and the constraint set X is

given by (3.3). Financial fairness for the scheme (X̂; y) holds if

EQ[yi(X̂)] = vi. (3.12c)

It can be verified immediately that the solutions of (3.12a–3.12b) that correspond to

(α1, . . . , αn) and (λα1, . . . λαn) are identical for any positive λ, so that we are free to

impose the constraint
n∑
i=1

αi = 1 (3.13)

on parameter vectors. Our parameter set then becomes the open unit simplex.

In the analysis below, an important role is played by the mapping from the open unit

simplex to Rm that assigns to a vector α = (α1, . . . , αn) the random variable J(X̂), where

X̂ is defined by the optimization problem (3.12b) and J is defined in (3.7). For a fixed

random variable X, the mapping α 7→ J(X;α) is strictly (even strongly) increasing. This

follows from the fact that the marginal utilities u′i, and hence also their inverses Ii, are

strictly decreasing functions of their arguments. However, the same may not hold for

the mapping α 7→ J(X̂), since the location of the optimum X̂ depends on the parameter

vector α. An example of nonmonotonicity is shown in the appendix. Whether or not

monotonicity holds depends on the specifications of the preferences of the agents, as well

as on the restrictions that are imposed on the positions that may be taken by the collective.

We state the monotonicity below as an assumption.

Assumption 3.4 The mapping α 7→ J(X̂;α), where J is defined by (3.7) and X̂ by

(3.12b), is strictly increasing.

One sufficient condition for this assumption to be satisfied is that the agents form a so

called equicautious HARA collective; see the discussion in Section 3.4.3 below. While that

is a condition in terms of the agents’ utilities, the proposition below (which is proved in

the appendix) gives a sufficient condition that is independent of the utilities and instead

is stated in terms of the constraint set.
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Proposition 3.5 Assumption 3.4 is satisfied if there exists a random variable G defined

on Ω such that the space of accessible zero-cost trades X0 is given by

X0 = {X ∈ Rm | EQ[X |G] = 0}. (3.14)

The condition appearing in (3.14) may be rewritten in a more explicit form as∑
j∈S(g)

qjXj = 0 for all g such that P (G = g) > 0,

where

S(g) = {j | G(ωj) = g}.

The random variable G can be thought of as a device by which the outcomes ωj are grouped

into non-overlapping categories. Situations in which there indeed exists such a categorizer

include the case of no choice (X0 = {0}; take G = X) and the complete-market case

(take G = constant). An example of a situation that does not correspond to one of these

extremes is the following.

Example 3.6 Let Ω consist of four points, and assume that the space X0 is spanned by

the vectors [1, 1,−1,−1] and [1,−1, 1,−1]. This situation is obtained when the accessible

assets are bets on the results of two Bernoulli trials, both with equal Q-probabilities of the

two outcomes “heads” and “tails”. The space Ω may then be described as {HH, HT, TH, TT}.
Introduce a new random variable G by G(HH) = G(TT) = 1 and G(HT) = G(TH) = 2.

The condition (3.14) is equivalent to the two conditions X(HH) +X(TT) = 0 and X(HT) +

X(TH) = 0, which together characterize the space X0.

At this point we can state the main result of this chapter and give an outline of its

proof. Details of the proof are provided in the appendix. For the reader’s convenience, we

recapitulate the setting. Our context is a single-period financial market, given by a finite

probability space with objective probability measure P and pricing measure Q. A collective

is formed by n agents whose characteristics are given by their utility functions ui (of the

type described in Section 3.2.2) and by the market values vi > 0 of their contributions. A

risk sharing scheme consists of a combination of a collective investment decision and a rule

for allocation of the investment returns to the participants. The position that can be taken

by the collective is constrained to lie in a given affine subset X of the asset space Rm such

that EQX = v :=
∑n

i=1 vi for all X ∈ X . We are looking for risk sharing schemes that are

both financially fair in the sense of Definition 3.1 and unconstrained Pareto efficient in the
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sense of Definition 3.2 (i.e. Pareto efficiency should hold even among schemes that are not

financially fair). Our main result is as follows.

Theorem 3.7 In the setting as described above, if Assumption 3.4 holds, then there exists

a unique risk sharing scheme that is both Pareto efficient and financially fair.

The proof is based on the parametrization of Pareto efficient solutions in terms of the

unit simplex in Rn. Each parameter vector α = (α1, . . . , αn) ∈ Rn++ with
∑n

i=1 αi = 1

gives rise to a Pareto efficient risk sharing scheme through the specification (3.12). The

resulting individual risks of the agents are given by Yi = yi(X̂), where the function yi and

the random variable X̂ are defined in (3.12a) and (3.12b), respectively. The corresponding

weighted group marginal utility is Ẑ(α) := J(X̂;α), and we have Yi = Ii(Ẑ(α)/αi). On

the other hand, by the fact that the individual inverse marginal utilities Ii are strictly

decreasing functions traversing all positive values, any given positive random variable Z

defined on Ω gives rise to a uniquely determined vector α̂ ∈ Rn++ through the equations

EQ[Ii(Z/α̂i)] = vi (i = 1, . . . , n). (3.15)

The Pareto efficient risk sharing scheme associated to a given parameter vector α is finan-

cially fair if and only if the mapping Z 7→ α̂(Z) defined by (3.15) takes Ẑ(α) to α. The

problem of finding a Pareto efficient and financially fair risk sharing scheme can therefore

be phrased as a fixed-point problem for the composite mapping

ϕ : α 7→ Ẑ 7→ α̂. (3.16)

This fixed-point problem is addressed in the appendix. For convenience, the mapping

α 7→ Ẑ(α) will be formulated as the composition of two separate mappings, so that the

mapping ϕ is actually written as a composition of three mappings. The required fixed-point

theorem will be obtained as a consequence of an eigenvalue theorem in nonlinear Perron-

Frobenius theory due to Oshime (1983). To make application of this theorem possible, a

number of properties of the mapping ϕ must be established; among other things, it needs

to be shown that ϕ can be extended to a continuous mapping defined on the closed unit

simplex, and that positive eigenvectors of the mapping ϕ can only occur with eigenvalue 1,

so that a positive eigenvector of ϕ gives rise to a fixed point. These properties are shown

in a series of lemmas which are relegated to the appendix.

The reformulation of the problem of finding a PEFF solution as a fixed-point problem

naturally suggests the use of iteration as a numerical procedure. The mapping ϕ as defined

above does not map the unit simplex into itself. However, the mapping always produces a
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strictly positive vector, so that we can construct a related mapping ψ that does map the

unit simplex into itself by

ψ(α) =
ϕ(α)∑n

i=1(ϕ(α))i
. (3.17)

A vector α in the open unit simplex is a fixed point of ψ if and only if it is an eigenvector

of the mapping ϕ.

Theorem 3.8 In the same setting as in Theorem 3.7, if Assumption 3.4 holds, then the

sequence (αk)k=1,2,... defined by αk+1 = ψ(αk) converges to the unique fixed point in the

open unit simplex of the mapping ϕ defined in (3.16), for any choice of the initial point

α0 ∈ Rn++.

The theorem can be proved in the same way as Corollary 2.23, on the basis of the properties

of the mapping ϕ as established in the appendix.

3.4 Special cases

This section is devoted to some special cases in which explicit solutions exist to the problem

of finding a Pareto efficient and financially fair risk sharing scheme.

3.4.1 Identical preferences and identical contributions

One situation in which existence and uniqueness of the PEFF solution can be proved

directly, without a monotonicity assumption, is the case of agents with identical preferences

and identical contributions.

Proposition 3.9 If a collective consists of n agents who all employ the same utility

function u0(x) and whose contributions to the collective all have the same economic value

w0, then the risk sharing problem allows a unique Pareto efficient and financially fair

solution. This solution is given by (X̂; y1, . . . , yn) with

yi(x) = x/n (i = 1, . . . , n) (3.18a)

X̂ = arg max
X∈X

E[u0(X/n)], (3.18b)

where X represents the set of positions available to the collective.
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Proof. The parameter vector α = [1, . . . , 1] leads to the solution (3.18) which is financially

fair. To prove uniqueness, suppose that a parameter vector (α1, . . . , αn) > 0 gives rise to a

risk sharing scheme (X; y) that is Pareto efficient and financially fair. Write Z = J(X;α),

and let I0(·) denote the inverse marginal utility corresponding to the utility function u0(x).

The Pareto optimal allocation functions are given by (3.6). From the financial fairness

constraint, we then obtain that EQ[I0(J(Z)/αi)] = w0 for all i = 1, . . . , n, so that in

particular for all i and j we have

EQ[I0(J(Z)/αi)] = EQ[I0(J(Z)/αj)].

Since the inverse marginal utility function, I0(·), is strictly decreasing, the function α 7→
EQ[I0(J(Z)/α)] is strictly monotonic. The equality above therefore implies that αi = αj,

and we find that all entries of α must be equal.

In the situation of the proposition above, the agents may still differ in their initial

endowments; also, they might face different trading constraints. As a consequence, the

utility gains (or losses) of the agents in a Pareto efficient and financially fair risk sharing

scheme may be different as well. When agents enter a PEFF risk sharing scheme under the

conditions of equal preferences and equal contributions, they effectively replace their initial

endowment X in
i by the average initial endowment 1

n

∑n
i=1X

in
i . This replacement can be

beneficial to all participants when the collective is of suitable composition, as illustrated in

the example in Section 3.5. When agents are heterogeneous in terms of preferences and/or

contributions as well, the benefits of cooperation in a collective may even be larger.

3.4.2 Complete market

In case the collective faces a complete market, the PEFF solution can be implemented

as follows. All agents turn over their wealth vi to the collective and communicate their

individual optimal investment plans; the collective then implements these plans and returns

to the agents the proceeds that they would have received if they would have implemented

their plans on their own. The following proposition shows that this is indeed the only

PEFF solution. We use X∗i to indicate the solution of the individual optimization problem

of agent i in a complete market:

E[ui(X)]→ max subject to EQX = vi. (3.19)

Due to the assumptions we have imposed on the utility functions ui, the above problem

indeed has a unique solution X∗i > 0. Moreover, the Lagrange multiplier associated to the
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budget constraint is positive, so that the optimal utility E[ui(X
∗
i )] is a strictly increasing

function of the available wealth vi.

Proposition 3.10 In a complete market, there is a unique Pareto efficient and financially

fair risk sharing scheme, which is given by the collective investment decision

X∗ =
n∑
i=1

X∗i , with X∗i = arg max
X:EQX=vi

E[ui(X)], (3.20)

and by the agent shares

Yi = X∗i (i = 1, . . . , n). (3.21)

Proof. The position X∗ given by (3.20) satisfies EQX∗ =
∑n

i=1E
QX∗i =

∑n
i=1 vi = v, and

therefore, since the market is complete, this is a feasible position. The allocation rules are

also obviously financially fair. The Pareto efficiency of the scheme can be proved as in Xia

(2004). To show the uniqueness of the PEFF solution, consider any risk sharing scheme

(X ′; y′) that is Pareto efficient and financially fair, and write Y ′i = y′i(X
′). Due to the

financial fairness constraint, we must have E[ui(Y
′
i )] ≤ E[ui(X

∗
i )] for all i. Because the

scheme (X ′; y′) is assumed to be Pareto efficient, in fact equality must hold. This implies

that Y ′i = X∗i for all i, since the maximization problem in (3.20) has a unique solution.

If there are no access restrictions for agents, so that the agents operate in the same complete

market as the collective does, then the role of the collective is merely administrative. The

collective can provide gains to the participants only by effects that are not modeled in this

chapter, such as economies of scale.

Remark 3.11 The rule (3.21) does not specify the allocation functions explicitly. For such

functions to be obtainable from (3.21), it is required that, for all i = 1, . . . , n, the equality

X∗i (ω) = X∗i (ω′) holds whenever the outcomes ω and ω′ are such that X∗(ω) = X∗(ω′).

Satisfaction of this requirement follows from the comonotonicity property of optimal port-

folios. The optimal position of agent i is given by X∗i,j = Ii(µiθj) (j = 1, . . . ,m), where

µi > 0 is a Lagrange multiplier chosen such that the individual budget constraint of agent

i is satisfied, and θj is defined by θj = qj/pj. If we define a function Ĩ : R++ → R++ by

Ĩ(θ) =
∑n

i=1 Ii(µiθ), then Ĩ is strictly decreasing, and the allocation functions are given by

yi(x) = Ii(µiĨ
−1(x)) (i = 1, . . . , n).
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3.4.3 Equicautious HARA collectives

It is well known that equicautious HARA collectives enjoy special properties (see, for

instance, Section 2.6).

Lemma 3.12 Suppose that u1, . . . , un are utility functions of the HARA class, and write

−u′i(x)/u′′i (x) = σix+ τi. If all coefficients σi are the same, say σi = σ for all i, then, for

any set of weights (α1, . . . , αn) ∈ Rn++, the group utility function u(x) defined in (3.10) is

in the HARA class as well. Specifically, we have −u′(x)/u′′(x) = σx+τ where τ =
∑n

i=1 τi.

In particular the lemma shows that, in the case of an equicautious HARA collective,

the group risk tolerance does not depend on the weights αi. Since the group risk tolerance

defines the group utility up to equivalence of utility functions, it follows that the optimal

decision X̂ given by (3.12b) does not depend on (α1, . . . , αn). From the point of view of

allocation, the situation is then the same as when the risk is given exogenously. In this

situation, the mapping (α1, . . . , αn) 7→ J(X̂) is strictly increasing, as already noted in the

paragraph preceding the statement of Assumption 3.4. It follows that Assumption 3.4 is

satisfied for equicautious HARA collectives, so that uniqueness holds in this case.

A utility function that is defined on the positive halfline, as required in this chapter,

belongs to the HARA class if and only if it belongs to the CRRA class (constant relative

risk aversion); these are the power utilities and logarithmic utility. An equicautious CRRA

collective consists of agents who all have the same constant coefficient of risk aversion, so

essentially all members have the same utility function. The group utility is also the same.

The allocation rule in the unique Pareto efficient and financially fair risk sharing scheme

for an equicautious CRRA collective is

yi(x) =
vi

EQX
x (i = 1, . . . , n).

Therefore this is a case in which the combination of Pareto efficiency and financial fairness

leads to the simple ex-post proportional division rule. Moreover, the investment decision

that is taken by the collective is the same as the one that would be taken by an individual

who has the same coefficient of relative risk aversion as all participants, and whose capital

is equal to the sum of the contributions of all participants.

3.5 Example

We present a simple example, which illustrates the notions of Pareto efficiency and finan-

cially fair risk sharing in complete and incomplete markets in the context of a coin tossing
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experiment. We compare the levels of utility that can be reached by the agents when

they operate on their own and when they form a collective, under various assumptions on

the restrictions to which their bets are subject. The example may be viewed as a highly

stylized representation of the situation of two generations that take part in a collective

pension fund.

Consider a situation in which two Bernoulli trials will take place, and in which there

are two agents who are allowed to place bets. The two possible outcomes of the trials are

denoted by H (heads) and T (tails), so that the outcome space is {HH, HT, TH, TT}. It will be

assumed that all outcomes have equal Q-probabilities, or in other words, the state prices

of all outcomes are the same. We shall consider a number of different settings, which are

distinguished by the constraints that are placed on the positions that can be taken by the

agents. First consider the “autarky” settings, in which the agents operate on their own.

A1 Agent A can only bet on the outcome of Coin 1, and agent B can only bet on the out-

come of Coin 2. In this setting, both agents have only one degree of freedom. Specif-

ically, agent A has access to the zero-price payoff given by the vector [1, 1, −1, −1],

and agent B has access to the zero-price payoff given by [1, −1, 1, −1].

A2 Both agents can bet on both coins. The agents now each have access to the

two-dimensional space of zero-price payoff vectors generated by [1, 1, −1, −1] and

[1, −1, 1, −1].

A3 Both agents have access to the full (three-dimensional) set of payoffs that have zero

price. For instance, this means that they may place bets on “first coin heads and

second coin tails” with payoff vector [−1, 3, −1, −1], which would not be possible in

setting A2.

Next we proceed to the settings in which the agents may form a collective. We consider

situations in which the agents are subject to financial fairness, as well as situations in

which this constraint is not imposed.

C2F The collective has access to both coins, as in setting A2 for the individual agents,

and can implement any financially fair division rule.

C2U The collective has access to both coins and can use any division rule.

C3F The collective has access to the full space of zero-price payoffs, as in setting A3,

and can use any financially fair division rule.
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C3U The collective has access to the full space of zero-price payoffs and can use any

division rule.

All of these settings correspond to certain subspaces of the eight-dimensional space of

vectors along which the initial endowments of the two agents can be modified. In the

autarky settings, these subspaces are just the products of the corresponding subspaces for

the agents individually, and consequently the subspaces corresponding to settings A1, A2,

and A3 have dimensions 2, 4, and 6, respectively. The subspaces associated to the setting

A3 and the setting C3F coincide; this reflects the fact that when agents individually have

access to a complete market, they can by themselves construct any position that can be

obtained from a collective implementing financially fair risk sharing (see Section 3.4.2).

The subspace associated to setting C2F however has dimension 5 and is strictly larger

than the space associated to A2. The subspace associated to C2U has dimension 6 just

like the subspace associated to A3 and C3F, but these subspaces do not coincide. Finally,

the subspace associated to C3U is subject only to the overall budget constraint; it has

dimension 7 and contains all lower-dimensional subspaces mentioned above.

Given objective functions of the agents, any point in the product of the payoff spaces

of the two agents gives rise to a point in the two-dimensional space of preference levels

of the two agents. The collection of these points for any of the settings specified above

generates a Pareto set (set of points for which no strict Pareto improvement exists within

the specified setting). The inclusion relations discussed above give rise to certain relations

among these sets which are indicated schematically in the left panel of Figure 3.1. If the

agents’ preferences are of the form as assumed in Section 3.2.2, it follows from our main

result and Example 3.6 that there exist unique PEFF solutions both in the incomplete-

market setting C2 and in the complete-market setting C3. In the diagram, these solutions

are indicated by circles marked PEFF2 and PEFF3. The autarky settings give rise to

solutions in which both agents select their optimal policy individually; these solutions

appear as corner points of the corresponding Pareto sets. The autarky solution A3 coincides

with PEFF3.

In order to get an impression of the actual location of various Pareto curves in a specific

case, we assume the following. The real-world probability of outcome H is taken to be equal

to 0.6 in both experiments, so that there is an incentive for both agents to place bets even

when they are risk averse, since the risk-neutral probability of outcome H is 0.5. The agents’

preferences are described by power utility ui(x) = x1−γi/(1 − γi), i = 1, 2, with relative

risk aversion coefficients γ1 = γ2 = 2. The initial allocations of the agents are given by

X in
1 = [2, 1, 0.5, 1] and X in

2 = [0.5, 1, 2, 1], so that the values of the contributions of the
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schematic Pareto curves

expected utility agent 1

ex
pe

ct
ed

 u
til

ity
 a

ge
nt

 2

C3U

C2U

C2F

C3F = A3

A2

A1

−0.8713 −0.8712 −0.8711 −0.871 −0.8709 −0.8708
−0.8713

−0.8712

−0.8711

−0.871

−0.8709

−0.8708

expected utility agent 1
ex

pe
ct

ed
 u

til
ity

 a
ge

nt
 2

actual Pareto curves

PEFF3

PEFF2

PEFF2

PEFF3

C2U

C3F=A3

C2F

C3U

Figure 3.1: Schematic and actual Pareto curves for the coin toss example. PEFF solutions
are indicated by circles. In the right panel, the scale is chosen such that the distinctions
between the C2U and C3U curves and between the C2F and C3F/A3 curves are visible; as
a consequence, only small parts of these curves are shown, and the Pareto curves A1 and A2
are outside the domain of the plot.

two agents are the same: v1 = v2 = 1.125. Table 3.1 shows the optimal allocations for

both agents in the three autarky settings as well as the two PEFF solutions corresponding

to the settings C2F and C3F. In both PEFF solutions, the proceeds are divided equally

between the two agents in all states of the world, as it should be the case according to

Proposition 3.9. In the example, it turns out that both the allocations and the utility gains

for both agents in the PEFF solution under incomplete accessibility are only slightly below

the ones obtained from the individually optimal complete-market solutions. The proximity

of the incomplete-market PEFF solution to the complete-market autarky solution is also

demonstrated in the right panel of Figure 3.1. By taking part in a collective that follows

the PEFF rule, both agents in the C2 setting realize a utility gain that is almost the same

as the one they would realize in a complete-market situation.

3.6 Conclusion

In this chapter, we have used the notions of Pareto efficiency and financially fairness to

arrive at a particular solution of the joint investment and allocation problem. We have

given conditions under which the solution is ensured to be unique. An iterative algorithm

has been provided, which reduces the computation of the PEFF solution to a series of



52 3.6 Conclusion

agent HH HT TH TT premium

initial 1 2.0000 1.0000 0.5000 1.0000 –
2 0.5000 1.0000 2.0000 1.0000 –

A1 1 1.7559 0.7559 0.7442 1.2441 6.52
2 0.7435 0.7565 2.2435 0.7565 6.87

A2 1 1.8000 0.7500 0.7500 1.2000 6.53
2 0.9000 1.5000 1.5000 0.6000 15.78

PEFF2 1 1.3500 1.1250 1.1250 0.9000 17.74
2 1.3500 1.1250 1.1250 0.9000 29.48

PEFF3/A3 1 1.3638 1.1135 1.1135 0.9092 17.75

2 1.3638 1.1135 1.1135 0.9092 29.49

Table 3.1: The final holdings of the agents in the coin toss example with different spaces
of accessible trades. The term “premium” refers to the percentage of initial wealth that an
agent would be maximally willing to give up in order to take part in a given risk sharing
scheme. The solutions given in the autarky settings are the ones that are individually optimal
for both agents.

relatively simple steps. Even when there is no guarantee of uniqueness, the algorithm can

still be used to compute candidate solutions. It has been shown in an example that, in an

incomplete market, agents may achieve substantial utility improvements by taking part in

a collective, even while strictly adhering to financial fairness.

A basic assumption in this chapter is that a pricing functional is fixed, by negotiation

or by authority. We have also taken the composition of the collective as fixed; we do

not consider, for instance, different collectives that might be formed within a group of

agents. Our focus has been on the existence and uniqueness of the PEFF solution for a

given collective that uses a given price functional, and on the computation of solutions. It

may turn out that the PEFF solution is not utility improving for some agents, or that a

subgroup from the collective can do better by forming a collective of its own. Issues of such

a nature have been discussed extensively in cooperative game theory. However, typically

no financial fairness constraint has been applied in game-theoretic studies, so that there

may be room for further investigation.

Several additional possible directions of future research can be mentioned. Technically,

the analysis in this chapter is restricted to discrete probability spaces. A further step would

be to formulate and solve problems combining Pareto efficiency and financial fairness for

continuous and possibly unbounded random variables. A multiperiod version of the PEFF
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problem for given risks has been studied in Bao et al. (2017). It would be of interest to

add the investment decision also in this context. We have worked in this chapter with

agents who satisfy the von Neumann-Morgenstern axioms, so that their preferences can be

described in terms of expected utility with respect to an objective probability measure. Of

course this is a limitation, and one might consider collectives of agents whose preferences

are not necessarily of this type. Another topic of possible interest is to investigate in what

sense, if any, the investment decision of a collective following the PEFF rule can be viewed

as representing preferences that are an aggregate of the preferences of the participants.

Finally, Assumption 3.4 (monotonicity) presents a challenge. The assumption seems quite

far from being necessary for existence and uniqueness of PEFF solutions, but on the other

hand it appears that a rather different mathematical approach would be needed to avoid

this assumption altogether.

3.7 Appendix

We start by introducing a notation for what might be called the “weighted inverse marginal

group utility”, and noting a few elementary properties of this function. Let L′ denote the

set of all continuous and strictly decreasing functions f : R++ → R++ such that

lim
x↓0

f(x) =∞ and lim
x→∞

f(x) = 0.

The notation J used below is in line with the definition in (3.7).

Lemma 3.13 For any α ∈ Rn+ \ {0}, the function I defined on R++ by

I(z) :=
∑
i:αi 6=0

Ii(z/αi) (z > 0) (3.22)

is invertible. The inverse J = I−1 belongs to L′.

Proof. For given α ∈ Rn+ \ {0}, the functions Ii(·/αi) in (3.22) are strictly decreasing

and continuous on (0,∞). Therefore, their sum I is strictly decreasing and continuous as

well, so that its inverse J exists. Clearly, J is strictly decreasing and continuous. The

Inada conditions (3.1) imply that limz→∞ I(z) = 0 and limz↓0 I(z) = ∞. It follows that

limx↓0 J(x) =∞ and limx→∞ J(x) = 0, i.e., J ∈ L′.

Instead of I(z) and J(x) we sometimes also write I(z;α) and J(x;α) in order to stress

the dependence on the parameter vector α.
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3.7.1 Proof of Proposition 3.5

Since the random variable G is defined on a finite probability space, it can only take

finitely many values, say g1, . . . , g`. For k = 1, . . . , `, write Sk = {j | G(ωj) = gk}. The

sets S1, . . . , S` form a partition of the index set {1, . . . ,m}. The Lagrangian function

associated to the constrained optimization problem (3.9) can be written as

L(X1, . . . , Xm, λ1, . . . , λ`) =
m∑
j=1

pju(Xj;α) +
∑̀
k=1

λk
∑
j∈Sk

qj(X
in
j −Xj)

where the function u(x;α) is defined in (3.10), and where Xj (j = 1, . . . ,m) represents

the outcome of total risk in future state j. Differentiation with respect to Xj leads to the

conditions pju
′(Xj;α) = λkqj (j ∈ Sk, k = 1, . . . , `). It follows that the location of the

optimum is given by

X̂j = I(λkqj/pj;α) (j ∈ Sk, k = 1, . . . , `) (3.23)

where I(x;α) is defined in (3.22). The Lagrange multipliers λk are determined by the

constraints
∑

j∈Sk qj(X
in
j − X̂j) = 0 (k = 1, . . . , `). These constraints may be written as∑

j∈Sk

qjI(λkqj/pj ;α) =
∑
j∈Sk

qjX
in
j (k = 1, . . . , `). (3.24)

The expression that appears on the left-hand side of (3.24) is strictly decreasing as a

function of λk and strictly increasing as a function of any of the weights αi. Since the

right-hand side of (3.24) does not depend on either the variable λk or the variables αi, it

follows that an increase of any of the variables αi must be accompanied by an increase of

λk in order to maintain equality in (3.24). In other words, the function α 7→ λk defined

implicitly by (3.24) is strictly increasing. Since (J(X̂))j = J(X̂j) = λkqj/pj by (3.23), the

statement of the proposition follows.

3.7.2 Mapping used in fixed-point theorem

The proof of our main result, Theorem 3.7, is based on showing existence and uniqueness

of the fixed point of a particular mapping ϕ from the nonnegative cone into itself. This

mapping is constructed as the composition of three mappings, as follows:

Rn+
ϕ1−→ L ϕ2−→ Rm++ ∪ {0}

ϕ3−→ Rn+.

Here, L is the cone defined by L = L′ ∪ {0}. Below we make use of L equipped with the

topology of pointwise convergence.
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Our aim is to show that the composite mapping ϕ satisfies the conditions for the ex-

istence of a unique positive eigenvector as formulated by Oshime (1983), and that the

corresponding eigenvalue is equal to 1. In the following three subsections, the three map-

pings are defined and it is proved that they satisfy certain continuity and monotonicity

properties. On the basis of this, we then show that the mapping ϕ indeed has the required

properties.

First component ϕ1

On the basis of Lemma 3.13, we can define a mapping ϕ1 from Rn+ to L by

ϕ1(α) =

J as defined in Lemma 3.13 if α 6= 0

0 if α = 0.
(3.25)

Given that J is defined as the inverse function of the mapping I which appears in (3.22),

and also given that limα↓0 I(z;α) = 0 for all z > 0, the definition ϕ1(0) = 0 in (3.25) can

be viewed as corresponding to the convention that the inverse function of 0 is 0. While this

might not seem intuitive at first, the convention becomes natural if we think of functions

in L′ in terms of their graphs as subsets of the extended nonnegative quadrant [0,∞]2.

In this point of view, the function denoted by 0 in fact represents the union of the two

nonnegative semi-axes
(
{0} × [0,∞]

)
∪
(
[0,∞] × {0}

)
, and the customary generalization

of the notion of inverse function to multivalued mappings leads to the statement 0−1 = 0.

We now note some properties of the mapping ϕ1 that will be needed below.

Lemma 3.14 The mapping ϕ1 is a continuous and homogeneous mapping from Rn+ to L.

Proof. For the first statement, see Lemma 2.15. Homogeneity is immediate.

Lemma 3.15 If (αk)k is a sequence in Rn+ such that there is an index i′ with αki′ → ∞,

then ϕ1(αk)→∞.

Proof. Let (αk)k be a sequence as in the statement of the lemma, and write Jk = ϕ1(αk).

Take x > 0. By definition, we have

n∑
i=1

Ii(J
k(x)/αki ) = x. (3.26)

If the sequence (Jk(x))k would have a bounded subsequence, then the corresponding sub-

sequence of (Ii′(J
k(x)/αki′))k would tend to infinity. Since all terms on the left-hand side
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of (3.26) are positive, this leads to a contradiction. It follows that Jk(x) → ∞, and since

this holds for all x > 0, we obtain Jk →∞.

Second component ϕ2

When u : (0,∞) → R is a utility function of the type described in Section 3.2.2, then

its derivative u′ belongs to L′. Given also the subspace X0 of accessible zero-cost trades

and an initial endowment X in such that
(
{X in} + X0

)
∩ Rm++ 6= ∅, we can formulate the

optimization problem

E[u(X)]→ max subject to X ∈ X ∩ Rm++, (3.27)

where X := {X in} + X0. A vector X̂ ∈ Rm++ is a solution of this optimization problem if

and only if the conditions

X̂ ∈ X , J(X̂) ∈ X⊥0 (3.28)

hold, where J := u′ is the marginal utility and where orthogonality is taken in the sense

of the inner product defined by expectation under P , i.e.

X⊥0 = {Z | E[X0Z] = 0 for all X0 ∈ X0}.

Lemma 3.16 For J ∈ L′, the equations (3.28) admit a unique solution X̂ ∈ Rm++.

Proof. Let u : (0,∞) → R be such that u′ = J . The function u is increasing, strictly

concave, and can be extended continuously to a function from [0,∞) to R ∪ {−∞} which

will still be denoted by u. The function X 7→ E[u(X)] is continuous, bounded from above

on the compact set X ∩Rm+ , and strictly concave. Therefore there exists a unique point X̂

in X ∩ Rm+ at which the function takes its maximum. The set X ∩ Rm+ is convex and has

nonempty relative interior by assumption. Take X1 ∈ X ∩ Rm++, and define the function

ũ : [0, 1]→ [−∞,∞) by

ũ(λ) = E[u
(
(1− λ)X̂ + λX1

)
].

Given that the function E[u(X)] is maximized at X = X̂, the function ũ(λ) takes its

maximum at λ = 0. The derivative of ũ(λ) on the open interval (0, 1) is given by

ũ′(λ) =
m∑
j=1

pjJ
(
(1− λ)X̂j + λX1

j

)
(X1

j − X̂j).
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For indices j such that X̂j = 0, we have X1
j − X̂j = X1

j > 0, so that the corresponding

term in the summation at the right-hand side of the equation above tends to ∞ as λ

tends to 0. In the case of indices j such that X̂j 6= 0, the corresponding term in the

summation tends to a finite limit. Therefore, if there are any indices j such that X̂j = 0,

then limλ↓0 ũ
′(λ) = ∞, which is not possible given that ũ takes its maximum at 0. It

follows that all entries of X̂ are strictly positive, and consequently the vector X̂ satisfies

the necessary conditions (3.28). From the strict concavity of the mapping X 7→ E[u(X)]

it follows that these conditions are sufficient as well, so that the solution is unique.

On the basis of the lemma above, we can define a mapping ϕ2 : L → Rm++ ∪{0} as follows:

ϕ2(J) =

J(X̂) where X̂ is defined by (3.28) if J ∈ L′

0 if J = 0.
(3.29)

The question of continuity of the mapping ϕ2 leads to the problem of showing that the

solution of a portfolio optimization problem depends continuously on the preference specifi-

cation. This problem has been studied in the literature in various contexts; a discrete-time

formulation has been used by Carassus and Rasonyi (2007), while Jouini and Napp (2004)

have obtained results in continuous time. Here we cannot follow the work of Carassus and

Rasonyi entirely since they work with utility functions that are defined on the whole real

line, but part of the proof of Lemma 3.18 below makes use of ideas in their paper. First

we show an auxiliary result.

Lemma 3.17 If (Jk)k is a sequence of functions in L′ that converges pointwise to a

function J ∈ L, then the sequence (Jk(X̂k))k is bounded, where X̂k denotes the element of

Rm++ associated to Jk via Lemma 3.16.

Proof. All vectors X̂k belong to the bounded set X0 ∩ Rm++, so that it is sufficient to

conduct the proof under the assumption that the sequence (X̂k)k converges to a limit, say

X̂∞. Then X̂∞ ∈ X0 ∩ Rm+ . Because Jk(X̂k) ∈ X⊥0 for all k, we have in particular

m∑
j=1

Jk(X̂k
j )(X̂k

j −X in
j ) = 0 (3.30)

for all k. Moreover, we may assume (shifting X in by an element of X0 if necessary) that

all components of X in are positive. Define index sets S+ and S− by

S+ = {j | X̂∞j ≥ X in
j }, S− = {j | X̂∞j < X in

j }.
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From (3.30) we have∑
j∈S+

Jk(X̂k
j )(X̂k

j −X in
j ) =

∑
j∈S−

Jk(X̂k
j )(X in

j − X̂k
j ). (3.31)

For j ∈ S+, the inequality X̂k
j ≥ 1

2
X in
j holds for all sufficiently large k, so that

Jk(X̂k
j ) ≤ Jk(1

2
X in
j )

k→∞−→ J(1
2
X in
j ).

This shows that the sequences
(
Jk(X̂k

j )
)
k

are bounded for j ∈ S+. Given that limk→∞ X̂
k
j =

X̂∞j , it follows that the left-hand side of (3.31) is bounded as k tends to infinity. Conse-

quently the right-hand side is bounded as well. Since the sequences
(
X in
j −X̂k

j

)
k

for j ∈ S−
converge to limits that are strictly positive, this implies the boundedness of

(
Jk(X̂k

j )
)
k

for

j ∈ S−.

Lemma 3.18 Let (Jk)k be a sequence of functions in L′ that converges pointwise to a

function J ∈ L′, and let X̂k (k = 1, 2, . . . ) and X̂ be the elements of Rm++ that are

associated to Jk and J , respectively, via Lemma 3.16. Under these conditions, we have

limk→∞ J
k(X̂k) = J(X̂).

Proof. We first show that all limit points of the sequence (X̂k)k belong to the positive

orthant Rm++. Let X̂∞ denote such a limit point. Then there is a subsequence that converges

to X̂∞, which for convenience of notation will still be denoted by (X̂k)k. All vectors X̂k

belong to Rm++, and therefore X̂∞ ∈ Rm+ . Suppose that j′ is such that X̂∞j′ = 0. It follows

from the previous lemma that the sequence (Jk(X̂k
j′))k must remain bounded as k tends to

infinity. Let M be such that Jk(X̂k
j′) ≤M for all k. Define x̄ > 0 by J(2x̄) = M . Because

the function J is strictly decreasing, we have J(x̄) > M . The inequality X̂k
j′ < x̄ holds

for all sufficiently large k, so that Jk(x̄) < Jk(Xk
j′) ≤ M for all such k. But this implies

that limk→∞ J
k(x̄) is strictly less than J(x̄), which contradicts the assumption that the

sequence (Jk)k converges pointwise to J . Therefore the limit point X̂∞ must be strictly

positive.

We next show that the sequence (X̂k)k converges to X̂. Since the set X ∩ Rm++ is

bounded, it is enough to show that any limit point of the sequence (X̂k)k is equal to X̂.

Let X̂∞ denote such a limit point. Passing to a subsequence if necessary, we can assume

that limk→∞ X̂
k = X̂∞. A classical theorem of analysis (Buchanan and Hildebrandt, 1908)
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states that pointwise convergence of the monotonically decreasing functions Jk to J implies

uniform convergence of the sequence (Jk)k to J on compacts. Let u and uk be primitive

functions of J and Jk, respectively; we may and will assume that u(1) = uk(1) = 0 for

all k. Under this condition, it is an easy exercise to show that the uniform convergence of

(Jk)k to J on compacts implies the uniform convergence of (uk)k to u on compacts. By

definition, we have

E[uk(X̂k)] ≥ E[uk(X̂)] (3.32)

for all k. The estimate∣∣E[uk(X̂k)]− E[u(X̂∞)]
∣∣ ≤ ∣∣E[uk(X̂k)]− E[u(X̂k)]

∣∣+
∣∣E[u(X̂k)]− E[u(X̂∞)]

∣∣
shows, in combination with the fact that X̂∞ ∈ Rm++ and the uniform convergence of

(uk)k on compacts, that limk→∞E[uk(X̂k)] = E[u(X̂∞)]. Since the right-hand side of the

inequality (3.32) converges to E[u(X̂)] as k tends to infinity, it follows that E[u(X̂∞)] =

E[u(X̂)] and hence that X̂∞ = X̂, by the uniqueness of the maximizer in the optimization

problem defined by J .

Given that the sequence (X̂k)k converges to X̂ ∈ Rm++, the convergence of (Jk(X̂k))k

to J(X̂) is now immediate from the uniform convergence of (Jk)k to J on compacts.

To complete the proof of sequential continuity of ϕ2 on L, we show the continuity at 0.

Lemma 3.19 Let (Jk)k be a sequence of functions in L′ converging pointwise to 0, and

let X̂k (k = 1, 2, . . . ) be the elements of Rm++ that are associated to Jk via Lemma 3.16.

Then Jk(X̂k)→ 0.

Proof. Write Zk := Jk(X̂k). It follows from Lemma 3.17 that the sequence (Zk)k is

bounded, so that without loss of generality we may assume that the sequence tends to

a limit. By restricting to a further subsequence if necessary, we may furthermore assume

that the sequence (X̂k)k tends to a limit as well; let the limit be denoted by X̂∞. Since

Zk ∈ X⊥0 for all k, we have in particular

m∑
j=1

pjZ
k
jX

in
j =

m∑
j=1

pjZ
k
j X̂

k
j (k = 1, 2, . . . ) (3.33)

where, as before, we may assume that X in
j > 0 for all j. For j such that X̂∞j > 0, we have

0 ≤ Zk
j = Jk(X̂k

j ) ≤ Jk(1
2
X̂∞j ) for all sufficiently large k, and since limk→∞ J

k(1
2
X̂∞j ) = 0 it
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follows that the term Zk
j X̂

k
j tends to 0 as k tends to infinity. For j such that X̂∞j = 0, the

term Zk
j X̂

k
j tends to 0 as well, since the sequence

(
Zk
)
k

is bounded as shown in Lemma 3.17.

Therefore the right-hand side of (3.33) tends to 0 as k tends to infinity. The left-hand side

therefore converges to 0 as well; given that pj > 0 and X in
j > 0 for all j, this implies that

Zk → 0.

Finally we establish two simple properties of the mapping ϕ2 that will be required below.

Lemma 3.20 The mapping ϕ2 is homogeneous.

Proof. Multiplication of J ∈ L′ by a positive scalar has no effect on the vector X̂ defined

by (3.28). Hence the mapping J 7→ J(X̂) is homogeneous for all J ∈ L′. For J = 0, the

statement holds trivially.

Lemma 3.21 Let
(
Jk
)
k

be a sequence of functions in L with vectors X̂k (k = 1, 2, . . . )

associated via Lemma 3.16. If Jk(x)→∞ for all x > 0, then Jk(X̂k)→∞.

Proof. Let M be such that X̂k
j ≤M for all k and all j. Then, for all j, Jk(X̂k

j ) ≥ Jk(M)→
∞ as k →∞.

Third component ϕ3

Lemma 3.22 Let Z ∈ Rm++ and let vi > 0, for i = 1, . . . , n, be given. Then there exists a

unique vector α = (α1, . . . , αn) ∈ Rn++ such that

EQ
[
Ii(Z/αi)

]
= vi (i = 1, . . . , n). (3.34)

Proof. For each i, the mapping αi 7→ EQIi(Z/αi) is strictly monotonic and continu-

ous. From the Inada conditions (3.1), we also have limαi→∞E
Q[Ii(Z/αi)] = ∞ and

limαi↓0E
QIi(Z/αi) = 0. Therefore, there exists a unique positive vector α = (α1, . . . , αn)

that solves (3.34).

The above lemma enables us to define a mapping ϕ3 from Rm++∪{0} to Rn+ in the following

way:

ϕ3(Z) =

α as defined by (3.34) if Z > 0

0 ∈ Rn if Z = 0.
(3.35)
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Lemma 3.23 The mapping ϕ3 defined by (3.35) is a continuous mapping from Rm++∪{0}
to Rn

+.

Proof. Let (Zk)k be a sequence in Rm++ ∪ {0} converging to Z̄ ∈ Rm++ ∪ {0}. Write αk =

(αk1, . . . , α
k
n) = ϕ3(Zk), and ᾱ = (ᾱ1, . . . , ᾱn) = ϕ3(Z̄). First consider the case in which

Z̄ = 0, and take i ∈ {1, . . . , n}. To avoid trivialities, we can assume that Zk > 0 for all

k. If there would be a subsequence of (αki )k that would be bounded away from 0, then

the corresponding quantities EQ[Ii(Z
k/αki )] would tend to infinity given that Zk → 0,

contradicting the requirement EQ[Ii(Z
k/αki )] = vi. It follows that limk→∞ α

k
i = 0 for all i.

Now, consider the case in which Z̄ > 0. There is no loss in generality if we assume that

Zk > 0 for all k. Fix i ∈ {1, . . . , n}. The numbers αki and ᾱi are defined uniquely by the

equations fi(α
k
i , Z

k) = vi and fi(ᾱi, Z̄) = vi, respectively, where fi is the mapping from

R++×Rm++ defined by fi(α,Z) = EQ[Ii(Z/α)]. Each mapping fi is continuous. Moreover,

because the sequence (Zk)k is bounded, the sequence (αki )k is bounded as well. Indeed,

if there would be a subsequence converging to infinity, then the corresponding quantities

EQ[Ii(Z
k/αki )] would converge to infinity also, which is a contradiction. We can therefore

conclude, following Lemma 2.14, that limk→∞ α
k
i = ᾱi. Since this holds for each i, it follows

that limk→∞ α
k = ᾱ.

Lemma 3.24 The mapping ϕ3 is strongly increasing.

Proof. Take Z1 and Z2 in Rm++ ∪ {0} with Z2  Z1, and write αi = ϕ3(Zi) (i = 1, 2). If

Z1 = 0, then α1 = 0 < α2. Assume now that Z1 > 0, and take i ∈ {1, . . . , n}. Since

the mapping Z 7→ EQ[Ii(Z)] is strongly decreasing, it would follow from the supposition

α2
i ≤ α1

i that Z2/α2
i  Z1/α1

i and hence

vi = EQ
[
Ii(Z

2/α2
i )
]
< EQ

[
Ii(Z

1/α1
i )
]

= vi,

which is a contradiction. It follows that α2
i > α1

i for all i.

Lemma 3.25 If the sequence (Zk)k in Rm++∪{0} tends to infinity, then the sequence (αk)k

defined by αk = ϕ3(Zk) tends to infinity as well.

Proof. Suppose to the contrary that for some i ∈ {1, . . . , n} there are a subsequence (α
kj
i )j

and a constant M such that α
kj
i ≤M for all j. Then

vi = EQ[Ii(Z
kj/α

kj
i )] ≤ EQ[Ii(Z

kj/M)].
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The right-hand side tends to 0 because Zkj tends to infinity, and so we arrive at a contra-

diction since vi > 0.

Lemma 3.26 The mapping ϕ3 is homogeneous.

Proof. This is immediate from the definition.

3.7.3 Proof of Theorem 3.7

We now define a mapping ϕ from the nonnegative cone to itself by

ϕ = ϕ3 ◦ ϕ2 ◦ ϕ1, (3.36)

where the components ϕ1, ϕ2, and ϕ3 are given by (3.25), (3.29), and (3.35), respectively.

Lemma 3.27 The mapping ϕ defined by (3.36) is continuous and homogeneous. Under

Assumption 3.4, the mapping ϕ is strongly increasing on Rn++

Proof. Continuity follows from Lemmas 3.14, 3.18, 3.19, and 3.23; homogeneity results from

Lemmas 3.14, 3.20, and 3.26. From Assumption 3.4 and Lemma 3.24 it follows that ϕ is

strongly increasing on Rn++.

To allow the application of an appropriate fixed-point theorem, we verify an additional

condition that acts as a substitute for the indecomposability condition of linear Perron-

Frobenius theory. The definition below follows Oshime (1983).

Definition 3.28 A mapping ϕ from Rn+ into itself is nonsectional if, for every partition

of the index set {1, . . . , n} into two nonempty subsets R and S, there exists s ∈ S such

that

(i) (ϕ(x))s > (ϕ(y))s for all x, y ∈ Rn+ such that xR > yR and xS = yS > 0;

(ii) (ϕ(xk))s →∞ for all sequences (xk)k in Rn+ such that xkR →∞ while xkS is fixed and

positive.

Lemma 3.29 Under Assumption 3.4, the mapping ϕ defined by (3.36) is nonsectional.
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Proof. Let a nontrivial partition of the index set {1, . . . , n} into complementary subsets

R and S be given, and take any s ∈ S. Item (i) follows from the fact that ϕ is strongly

increasing (Lemma 3.27). Item (ii) follows from Lemmas 3.15, 3.21, and 3.25.

We will use the following nonlinear Perron-Frobenius theorem, due to Oshime (1983).

Theorem 3.30 (Oshime, 1983) If a mapping ϕ from Rn+ into itself is continuous, mono-

tonic, homogeneous of degree 1, and nonsectional, then the mapping ϕ has a positive eigen-

vector, which is unique up to scalar multiplication. In other words, there exist a constant

λ∗ > 0 and a vector x∗ ∈ Rn++ such that ϕ(x∗) = λ∗x∗, and if λ > 0 and x ∈ Rn++ are such

that ϕ(x) = λx, then x is a scalar multiple of x∗.

The theorem by itself does not prove that the mapping ϕ has a fixed point. For this, it

needs to be shown that the corresponding eigenvalue is equal to 1. This is established in

the lemma below.

Lemma 3.31 Let ϕ be defined by (3.36). If λ ∈ R++ is such that ϕ(α) = λα for some

α ∈ Rn++, then λ = 1.

Proof. Let α ∈ Rn++ and λ > 0 be such that ϕ(α) = λα. Write J = ϕ1(α). Because

ϕ3(J(X̂)) = λα, we have

n∑
i=1

EQ[Ii(J(X̂)/(λαi))] =
n∑
i=1

vi =: v. (3.37)

On the other hand, from the relation
∑n

i=1 Ii(J(x)/αi) = x it follows that

n∑
i=1

EQ[Ii(J(X̂)/αi)] = EQX̂ = v. (3.38)

Since the mapping λ 7→ EQ[Ii(J(X̂)/(λαi))] is strictly increasing, a comparison of (3.37)

and (3.38) shows that λ = 1.

This leads to the proof of our main result.

Proof of Theorem 3.7. By Thm. 3.1 in Xia (2004), the collection of all Pareto efficient risk

sharing schemes
(
X̂; y1(·), . . . , yn(·)

)
is parametrized completely by the open unit simplex

in Rn through the prescription (3.12). It was already argued in the main text, following
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the statement of Theorem 3.7, that PEFF schemes correspond exactly to those parameter

vectors that are fixed points under the mapping ϕ. By Lemma 3.27 and Lemma 3.29, if

Assumption 3.4 holds, then the mapping ϕ satisfies all conditions of Oshime’s theorem,

and consequently a unique positive eigenvector exists. Lemma 3.31 shows that the corre-

sponding eigenvalue is equal to 1, and consequently the eigenvector gives rise to a fixed

point of the mapping ϕ on the open unit simplex. Since conversely any fixed point of ϕ

on the open simplex gives rise to an eigenvector, the uniqueness of the eigenvector implies

the uniqueness of the fixed point. The statement of the theorem follows.

The method of proof that we have followed naturally suggests a computational al-

gorithm. Numerical implementation of the mappings ϕ1 and ϕ3 requires a routine to

determine the root of a scalar monotonic and continuous function. The mapping ϕ2 calls

for the solution of an optimization problem, which can be more difficult; however, the

problem is of convex type, so that there are no local optima. To solve the equations (3.28),

the primary set of unknowns could be taken as X or as J(X); the former is likely to be

more convenient when the dimension of the space X0 is low (few degrees of freedom in

the investment decision), whereas the latter may be preferable when the dimension of that

space is high (close-to-complete market).

3.7.4 On the necessity of the monotonicity assumption

The following example demonstrates that the condition of Assumption 3.4 is not always

satisfied. Let two agents be given with identical marginal utilities defined by

u′i(x) =


1
x

for x ∈ (0, z1),

z2−x
z2−z1

1
z1

+ x−z1
z2−z1

1
z1+d

for x ∈ [z1, z2),

1
x−z2+z1+d

for x ∈ [z2,∞)

(3.39)

(i = 1, 2), with z1 = 0.05, z2 = 2, and d = 0.01. (Actually a small modification of

the definition above would be needed to ensure continuity of the second derivative as

required by our assumptions; we choose here to ignore this issue.) A plot of the marginal

utility defined by (3.39) is shown in Figure 3.3. The agents also have identical initial

endowments given by [1, 1, 1]. The objective probability measure is given by [p1, p2, p3] =

[0.1, 0.1, 0.8], whereas the pricing measure is defined by [q1, q2, q3] = [0.5, 0.125, 0.375].
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Figure 3.2: The panels show the three components of J(X̂;α) = ϕ2(ϕ1(α)) (left) and the
two components of ϕ(α) (right) as a function of α1, while α2 is kept fixed at the value 1.
The two components of ϕ(α) are identical to each other.

The space of accessible zero-cost trades is defined by

X0 = ker

[
4 1 3

10 2 15

]
.

The left panel of Figure 3.2 shows a plot of the three components of the vector J(X̂;α)

as a function of α1, when α2 is kept constant at the value 1. Monotonicity does not hold.

The right panel shows the behavior of the two components of ϕ(α1, 1); since the agents

have identical utility functions and identical wealths, these components are equal to each

other. It is seen that the mapping ϕ is in this case also not monotonic. However, the

symmetry between the agents implies that there is a unique Pareto efficient and financially

fair solution, as shown in Proposition 3.9. It is therefore apparent that the monotonicity

in Assumption 3.4 is only a sufficient and not a necessary condition.

The example shown above was obtained by experimentation, and seems too complicated

for a clear economic interpretation. The particular shape of the utility is likely to play a

role in the violation of monotonicity.
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Figure 3.3: Marginal utility as defined by (3.39).



Chapter 4

Bid-ask spreads and intra-group

trading

Joint work with J.M. Schumacher and B.J.M. Werker

4.1 Introduction

We consider a setting where a group of agents can conclude both trades within the group

(intra-group or internal trades) and trades with an external market (extra-group or external

trades). We assume that the extra-group trades take place within exogenously given bid-ask

spreads, whereas the intra-group trades are concluded at endogenously determined prices

with zero bid-ask spreads. We assume that the bid-ask spreads on an external market are

the sole group’s incentive to trade internally. In this chapter, we provide a framework to

explore which bid-ask spreads on the external market allow the group of agents to reach

an equilibrium position purely by extra-group trades, purely by intra-group trades, or by

both means of trades.

To define an external market, we build on the work of Jouini and Kallal (1999) and

Cherny and Madan (2010). We consider an external market with bid-ask spreads that can

be used by agents as a counterparty for trading. In such trades the agents are assumed

to act as price takers in the sense that both the bid and the ask prices on the external

market are exogenously specified to the agents. We choose to model the bid-ask spreads

as a convex cone. This convex cone represents the tradeable assets and can be referred

to as a cone of acceptable risks or, as we will call it in this chapter, a cone of marketed

67
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assets. We can then refer to such external market as a ‘conic market’ and hence the name

‘conic economy’ which we will use throughout the chapter. We assume that the external

market, can accept unlimited quantities of marketed assets and is not affected by them.

Some basic properties of the conic external market are studied in Jouini and Kallal (1999)

and in Schachermayer (2004), where the conditions for no arbitrage and the fundamental

theorem of asset pricing are stated, respectively.

An indication of the way in which observed bid-ask spreads can be related to convex

cone is given in Example 4.34. When there are only zero bid-ask spreads on the external

market, the cone of marketed assets is a half-space and such external market is said to

be complete. On the contrary, when there are non-zero bid-ask spreads on the external

market, the cone of marketed assets is strictly smaller than a half space and the external

market is said to be incomplete. The ‘incompleteness’ here could be understood in the

context of financial mathematics as non-existence of a unique pricing functional, rather

than in the context of standard Arrow-Debreu definition, because all underlying assets

could be in fact tradeable.

The reason why agents perceive bid-ask spreads on the external market can vary. For

instance, the bid-ask spreads can be caused by transaction costs such as market fees or

management fees. We do not investigate the origin of bid-ask spreads on external market

and we simply take bid-ask spreads on external market as a primitive of our model.

In addition to an external market, we consider a group of finitely many agents who act

as price takers with respect to the external market and as price makers with respect to the

internal (intra-group) market, which has to satisfy a market clearing condition. Intra-group

trades may be in general motivated by minimization of a counterparty risk or avoidance

of transaction costs such as market fees and bid-ask spreads. In this chapter, we consider

the bid-ask spreads to be the only incentive for intra-group trades. In this setting, we

use a concept of equilibrium which is formally identical to competitive equilibrium in an

economy where all agents have access to the same production set, and this production set

is given by a closed convex cone. For brevity, and in line with the terminology already used

above, we will refer to this equilibrium concept as “conic equilibrium”, although Madan

and Schoutens (2012) use the same term for a somewhat different notion of equilibrium.

The conic equilibrium determines prices that are used by agents on internal market and,

when required, also indicates whether bid or ask price is used on the external market.

The conic equilibrium presented here is, in fact, a type of Walrasian equilibrium in

a production economy, as we show in Proposition 4.9. However, we will work mainly

in the context of conic equilibria, where both external and internal trades are explicitly

expressed, and where we can use sets of nested cones to measure the group’s tendency to
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trade internally. In general, a conic equilibrium can be reached using external trades or

using intra-group trades or it may be necessary to use both types of trades. The first two

ways of reaching the equilibrium are of our particular interest as one type of trade, internal

or external, is superfluous.

Our framework can be used to model, for instance, a situation of a pension fund with

several generations or a general mutual fund with several sub-funds. The generations or

the sub-funds typically cover various needs of clients by offering different strategies ranging

from aggressive to conservative. Each pension fund generation or sub-fund can act on its

own and trade assets for bid or ask prices on external markets. However, the pension fund

or a mutual fund can choose to trade some assets in-house. Our result provides conditions

on the external market bid-ask spreads under which building an internal trading desk is

superfluous or, on the contrary, is favorable.

We state necessary and sufficient conditions under which the cone of marketed assets

induces purely internal equilibrium trades in Section 4.4. We show that the cones of

marketed assets that are compatible with purely intra-group equilibrium trades have a

nesting property, i.e., if a cone is compatible with purely intra-group equilibrium trades,

then so are all embedded cones of marketed assets. Later, in Section 4.6, we build on

this result and define a measure of tendency to trade internally. Our proposed measure

is expressed by the size of the maximal cone of marketed assets that is compatible with

only internal equilibrium trades. Further, the measure of tendency to trade internally

can be linked to the term “heterogeneity measure of a group” in the following way. If a

group consists of identical agents, such group can be considered homogeneous, and one

expects that agents would prefer to conclude only trades with the external conic market.

Hence, their tendency to trade internally will be relatively low. On the other hand, if the

group consists of agents with complementary needs, i.e., the group exhibits some level of

heterogeneity, one would expect that the demand for internal trades would be relatively

higher. Hence, the group’s tendency to trade internally will be also higher. In terms of

bid-ask spreads, the group heterogeneity can be linked to the tendency to trade internally

measured by the smallest bid-ask spreads under which a specific group is still trading purely

internally.

The description of market situations in which a group concludes only external equilib-

rium trades allows us to address situations in which agents are “on the same side of the

market”. This term intuitively describes situations in which no agent benefits from any

internal trade. Being on the same side of the market is easily understood in case of two

agents and two assets as equally signed demand for each asset. But this intuition may fail

in higher dimensions. By analyzing cones of marketed assets compatible with purely exter-
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nal equilibrium trades in Section 4.5, we provide a geometrical interpretation of the term

“being on the same side of market” for a more general case. We observe that this term can

be understood as “being in the interior of the same face of the cone of marketed assets”.

We support this by showing that when the individual demands of all agents, computed as

if each agent would act on her own on the external conic market, are in the interior of the

same face of the cone of marketed assets, then intra-group trades are superfluous.

Section 4.2 details the settings and assumptions on a group of agents and a conic market.

Section 4.3 links concepts of conic and competitive equilibria and provides conditions for

existence of conic equilibria. In Section 4.4, we analyze the conic economies in which the

conic equilibrium can be achieved using intra-group trades only. We provide a necessary

and sufficient condition on the cone of marketed assets that admit purely intra-group

equilibrium trades. In Section 4.5, we focus on situations in which agents can achieve the

conic equilibrium using only external trades. Also, we describe such situations by providing

sufficient and necessary conditions on the cone of marketed assets. Because these conditions

might be difficult to check, we also provide a sufficient condition that is easier to verify. In

Section 4.6, we propose and formalize a measure to this effect and we investigate how this

measure is influenced by a correlation of the initial risks, the risk aversion of agents, and

by the number of agents within the group. We compare these results with the intuition

behind the term “group heterogeneity”. In the last section, we summarize and conclude

this chapter. Proofs are mainly presented in the appendix.

4.2 Setting

We consider an economy in which assets are represented by m-dimensional vectors, i.e.,

let X = Rm denote the linear space of available assets. For convenience, we define X+ =

{x ∈ X | x ≥ 0} as the non-negative orthant and X++ = {x ∈ X | x > 0} as the strictly

positive orthant, where the vector inequalities are used in the elementwise sense. Let X ′

denote the space of linear functionals on X. Given p ∈ X ′, the value or price assigned by p

to an asset x ∈ X is denoted as px. On this market we consider a finite group of n agents.

Each agent i, i = 1, . . . , n, is endowed with an objective function Ui : X+ → R ∪ {−∞},
and initial endowment x0

i ∈ X++.

Assumption 4.1 The functions Ui : X+ → R ∪ {−∞}, i = 1, . . . , n, are on X++ strictly

concave, twice continuously differentiable, and strictly increasing in all of their arguments.

We assume that all agents have access to an external market where they can trade
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certain assets. More precisely, we introduce a closed convex cone C ⊂ X which denotes

a set of vectors tradeable at zero price on the external market. We call C the cone of

marketed assets. The interpretation is that any agent can freely dispose of any asset x ∈ C
in the external market. A natural requirement on C is free disposal of a non-negative asset,

i.e., X+ ⊆ C.

Definition 4.2 A cone of marketed assets is a closed convex cone C ⊂ X that contains

the non-negative cone X+. A pricing functional is a non-negative and non-zero element of

X ′.

Let C∗ denote the set of pricing functionals that assign a non-negative value to all

elements of the cone of marketed assets C,

C∗ = {q ∈ X ′ | qx ≥ 0 for all x ∈ C}.

Because C is convex, closed and nonempty, from the bipolar theorem, we get that the cone

of marketed assets C can be obtained from C∗, its dual cone, as

C = {x ∈ X | qx ≥ 0 for all q ∈ C∗}.

Therefore agents cannot dispose of assets in the external market if and only if there exists

a pricing functional in C∗ for which the assets have a negative value.

By definition, the cone of marketed assets is convex and includes the non-negative

orthant. Let us have a look at the extreme cases. The smallest cone of marketed assets is

the non-negative orthant X+ itself. If C = X+, agents can only dispose of non-negative

assets. Because by Assumption 4.1 we consider agents’ objective functions to be increasing,

any trading on such external market would decrease the agent’s objective function and,

hence, would not be rational. The other extreme case is where the cone of marketed assets

is a half-space containing X+. In that case, the set of pricing functionals is a singleton,

thus, bid and ask prices are equal for each asset. The most interesting cases, for our

purposes, occur in between these two extremes. Such a situation represents an external

market with different bid and ask prices for individual assets.

In addition to disposing of assets in the external market, we assume that agents also

have a possibility to exchange assets among each other. We call this exchange of assets

internal or intra-group trades and we say that it takes place on the internal or intra-

group market. We assume that the internal trades happen at prices that are determined

endogenously, which is contrary to the situation on the external market where we assume

that agents act as price takers with prices given by a cone of marketed assets.
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A general market situation in which a group of agents has access to both internal and

external markets will be called a conic economy.

Definition 4.3 An economy is specified by objective functions Ui, i = 1, . . . , n, fulfilling

Assumption 4.1, and initial endowments x0
i ∈ X++, i = 1, . . . , n. An economy together

with a cone of marketed assets C is a conic economy.

Now we can formulate the notion of equilibrium for a conic economy.

Definition 4.4 In a conic economy specified by
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)
, a pric-

ing functional p achieves a conic equilibrium (CE) if there exists a collection of triples

(x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, such that the following conditions hold:

(i) (budget constraint) p x∗ini = 0, x∗ex
i ∈ C, and x∗i = x0

i +x∗ini −x∗ex
i , for all i = 1, . . . , n;

(ii) (individual optimality) for any given i ∈ {1, . . . , n} and for any triple (xi, x
in
i , x

ex
i )

such that p xin
i = 0, xex

i ∈ C, and xi = x0
i + xin

i − xex
i , the inequality Ui(xi) ≤ Ui(x

∗
i )

holds;

(iii) (internal market clearing)
n∑
i=1

x∗ini = 0.

The triplet (x∗i , x
∗in
i , x∗ex

i ) in the above definition of conic equilibrium describes the

equilibrium allocation of agent i, where x∗i , x
∗in
i , and x∗ex

i denote the agent’s total allocation,

the internal trade, and the external trade, respectively. We call (x∗i , x
∗in
i , x∗ex

i ) a triplet

associated to the equilibrium pricing functional p.

Remark 4.5 When a pricing functional p achieves a conic equilibrium then p ∈ C∗. In

fact, for p ∈ C∗ it is sufficient that p fulfills only Conditions (i) and (ii) in Definition

4.4 and only for one agent. To prove this, assume the contrary; p /∈ C∗. Then from the

definition of C∗ there exist y ∈ C and x ∈ X++ such that py < 0 and px + py = 0. Let

(x∗i , x
∗in
i , x∗ex

i ) be a triplet satisfying Conditions (i) and (ii) in Definition 4.4. Then the

triplet (x∗i + x, x∗ini + x + y, x∗ex
i + y) is such that p (x∗ini + x + y) = 0, x∗ex

i + y ∈ C and

Ui(x
∗
i + x) > Ui(x

∗
i ), which contradicts the individual optimality of (x∗i , x

∗in
i , x∗ex

i ).
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The following proposition asserts that the pricing functional, for which the conic equi-

librium is achieved, must assign zero value to all external trades, i.e., external equilibrium

trades have zero value. This follows solely from the individual optimality condition and

the budget constraint. The proof is given in the appendix.

Proposition 4.6 Consider a conic economy given by
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and

let p ∈ X ′ achieve a conic equilibrium with a collection of triplets (x∗i , x
∗in
i , x∗ex

i ), i =

1, . . . , n. Then px∗ex
i = 0, for all i = 1, . . . , n.

Note that when a conic equilibrium is achieved for some pricing functional p, then the

internal and external equilibrium trades of agents are not necessarily uniquely determined.

For instance, without any influence on total allocations any non-zero external equilibrium

trade of one agent can be substituted with a non-zero external equilibrium trade of a

different agent followed by internal reselling.

4.3 On the existence of conic equilibria

The concept of conic equilibria can be linked to the concept of Walrasian (competitive)

equilibria in a production economy with a constant returns to scale technology. First we

recall the notion of production economy in our setting.

Definition 4.7 A production economy is an economy
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

together

with production sets Yj ⊂ X, j = 1, . . . , k, and ownership shares θi,j ≥ 0,
∑n

i=1 θi,j = 1,

for i = 1, . . . , n and j = 1, . . . , k.

For a production economy (a private ownership economy) the standard notion of equi-

librium is defined in textbooks, e.g. Mas-Colell et al. (1995).

Definition 4.8 Walrasian equilibrium (Mas-Colell et al., 1995, Def. 17.B.1) In a pro-

duction economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and
(
(Y1, . . . , Yk), (θ1,1, . . . , θn,k)

)
,

an allocation (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
k), where x∗i ∈ X for all i and y∗j ∈ Yj for all j, and a

pricing functional p ∈ X ′ constitute a Walrasian equilibrium if

(i) for any j ∈ {1, . . . , k} and any yj ∈ Yj, the inequality pyj ≤ py∗j holds,

(ii) for any i ∈ {1, . . . , n}, px∗i ≤ px0
i +

∑k
j=1 θi,jpy

∗
j , and for any xi ∈ X such that

pxi ≤ px0
i +

∑k
j=1 θi,jpy

∗
i , the inequality Ui(xi) ≤ Ui(x

∗
i ) holds,
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(iii)
∑n

i=1 x
∗
i =

∑n
i=1 x

0
i +

∑k
j=1 y

∗
k.

The conic equilibrium is, in fact, a special case of the Walrasian equilibrium where the

production sets are represented by the opposite cone of marketed assets, i.e., by −C, and

where each agent owns one company (or one production unit, or accesses one production

set). The access of each agent to one production set mimics the access to the external

market.

Proposition 4.9 Consider a conic economy given by
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and

a production economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and
(
(Y1, . . . , Yk), (θ1,1, . . . , θn,k)

)
.

Let k = n, Yi = −C, for i = 1, . . . , n, and let θi,j = 1, for i = j, and θi,j = 0 else.

(i) If a pricing functional p achieves a conic equilibrium with a collection of triplets

(x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, then the set of allocations (x∗1, . . . , x
∗
n,−x∗ex

1 , . . . ,−x∗ex
n )

and p constitute a Walrasian equilibrium.

(ii) If a pricing functional p and an allocation (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
n) constitute a Wal-

rasian equilibrium, then p achieves a conic equilibrium with the collection of triplets

(x∗i , x
∗
i − y∗i − x0

i ,−y∗i ), i = 1, . . . , n.

We express equilibria in this chapter in the context of a conic economy rather than in

the context of a production economy because this allows us to observe directly whether

external or internal equilibrium trades occur. This might be advantageous for instance

in the context of markets where different risks may be associated with intra-group and

extra-group trading.

There are some convenient properties of the conic equilibria that follow instantly from

their equivalence with Walrasian equilibria. For instance, we get the validity of the Funda-

mental Theorems of Welfare Economics for conic equilibria. Under assumption of non-zero

bid-ask spreads, we obtain also the existence of equilibrium.

Proposition 4.10 For any conic economy, where −C ∩ C = {0}, there exists a pricing

functional that achieves a conic equilibrium.

Proof. From Proposition 4.9, we get the equivalence between the existence of a conic

equilibrium and a Walrasian equilibrium. The existence of the latter is a classic result. For

instance, we can use Debreu (1959, p. 83) where we verify Assumptions (a)–(d.4). Here,

the assumption −C ∩ C = {0} is directly Assumption (d.3). The other assumptions are

direct consequences of our settings.
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The conic equilibrium depends both on the characteristics of the agents and on the cone

of marketed assets. In the following sections we investigate the dependency on the cone of

marketed assets while keeping the characteristics of agents fixed. Namely, we investigate

how the cone of marketed assets influences the intra-group and extra-group equilibrium

trades of these agents. In general, three statements about equilibrium trades can be made.

Firstly, a conic equilibrium can be achieved by using intra-group trades only; secondly,

a conic equilibrium can be achieved by using extra-group trades only; thirdly, a conic

equilibrium can be achieved using both internal and external trades. Note that two or

even all three statements can be true simultaneously, Example 4.31.

4.4 Intra-group trades only

In this section, we describe conic economies in which a given group of agents can reach their

conic equilibrium allocations using intra-group trades only. This can be used to identify

external markets which agents do not have to use to reach equilibrium allocations.

The following definition formalizes the notion of cones of marketed assets that admit

conic equilibria using internal trading only.

Definition 4.11 In an economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)
, a cone of marketed

assets C is compatible with internal trading only (CIO) if there exists a pricing functional

p and triplets (x∗i , x
∗in
i , 0), i = 1, . . . , n, such that p achieves a conic equilibrium with these

associated triplets.

The CIO property of cones naturally depends on the objective functions of the agents

as well as on their initial endowments. From the definition above, we also see that we

can relate the CIO property of a cone to a pricing functional that would arise in a pure

exchange market equilibrium. For our purposes we call such equilibrium Internal-Market-

Only equilibrium to emphasise the link with an internal market.

Definition 4.12 Assume an economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)
. A pricing

functional p achieves an internal-market-only (IMO) equilibrium if there exists a collection

of pairs (x∗i , x
∗in
i ), i = 1, . . . , n, such that:

(i) (budget constraint) p x∗ini = 0 and x∗i = x0
i + x∗ini for all i = 1, . . . , n;

(ii) (individual optimality) for all i ∈ {1, . . . , n} and for any pair (xi, x
in
i ) such that

p xin
i = 0 and xi = x0

i + xin
i , we have Ui(xi) ≤ Ui(x

∗
i );
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(iii) (internal market clearing)
∑n

i=1 x
∗in
i = 0.

We can characterize CIO cones using the just defined IMO equilibria. Intuitively, a

cone of marketed assets is a CIO cone if and only if there exists an IMO equilibrium with

the same allocations as a conic equilibrium. This can occur only in cases when the sum of

all external equilibrium trades equals zero. A formal characterization of a CIO cone using

IMO equilibria is provided in the following proposition.

Proposition 4.13 Consider an economy
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and a cone of mar-

keted assets C. The cone of marketed assets C is a CIO cone if and only if there exists a

pricing functional p and triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, such that p achieves a conic

equilibrium with these triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, and an IMO equilibrium with

pairs (x∗i , x
∗in
i − x∗ex

i ), i = 1, . . . , n.

Remark 4.14 Note that if a conic and an IMO equilibrium are achieved by the same

pricing functional, then there exist total equilibrium allocations that are equal for both

equilibria. This can be justified by the following argument. Firstly, for a given pricing

functional we note that the optimization problems in Conditions (ii) in both Definition

4.4 and Definition 4.12 have unique solutions because of Assumption 4.1. Secondly, the

optimal solutions of the problem in Definition 4.4(ii) are always feasible for the problem

in Definition 4.12(ii) (see Lemma 4.33). Thirdly, the feasible solutions of the problem in

Definition 4.12(ii) are included in the feasible solutions of the problem in Definition 4.4(ii).

Therefore, these two optimization problems for the same pricing functionals will have the

same solutions which are the total equilibrium allocations.

In view of this remark, we can state a necessary and sufficient condition for a cone of

marketed assets to be CIO in terms of IMO equilibrium prices.

Proposition 4.15 Assume an economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)
. Let P be

the set of all functionals in which IMO equilibria are achieved. Then a cone of marketed

assets C is a CIO cone if and only if p ∈ C∗ for some p ∈ P.

Using this proposition, if we compute the IMO equilibria pricing functionals and com-

pare them with the dual of the cone of marketed assets, we observe directly whether the

cone of marketed assets is CIO. Let us now return to our two extreme examples: a cone of

marketed assets being a half-space and the positive orthant.
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Remark 4.16 From Proposition 4.15, it follows that a half-space is a CIO cone if and only

if an IMO equilibrium is achieved in the pricing functional orthogonal to the half-space.

Remark 4.17 The non-negative orthant X+ is a CIO cone. This immediately follows

from Propositions 4.10 and 4.15.

An advantageous property of CIO cones is that they remain CIO when reduced.

Proposition 4.18 Assume a conic economy. Any cone of marketed assets that is included

in a CIO cone is a CIO cone.

Proof. Let K be a CIO cone and let C, C ⊂ K, be a cone of marketed assets. Let P be

the set of functionals in which an IMO equilibrium is achieved. From Proposition 4.15, we

know that there exists p ∈ P such that p ∈ K∗. Since C ⊂ K, we have K∗ ⊂ C∗ and,

hence, p ∈ C∗. Using Proposition 4.15 once more, we see that C is also a CIO cone.

Due to this nesting property of CIO cones, we have a simple rule for identifying a whole

set of market situations in which no external market is needed for a given group of agents.

From the theory of general equilibrium, we know that uniqueness of equilibria is not

granted without additional conditions. The conditions that would guarantee uniqueness

are not within the scope of this chapter; we refer to Mas-Colell (1991) for a thorough

discussion. However, we can express the uniqueness of IMO equilibria using the notion of

CIO cones.

Proposition 4.19 In a conic economy, a pricing functional that achieves an IMO equi-

librium is unique up to scalar multiplication if and only if all CIO cones are in a single

half-space.

Proof. Consider pricing functionals on a unit sphere. Firstly, assume that there exists a

unique pricing functional, say p, that achieves an IMO equilibrium. Then, by Proposi-

tion 4.15, only the cones of marketed assets whose dual cones contain p are CIO cones.

All these cones are contained in the half-space that is obtained as the dual cone of p, by

Proposition 4.18 and Remark 4.16. Secondly, assume that there would exist two different

pricing functionals p 6= q that achieve IMO equilibrium. Then there exist two different

half-spaces that contain the positive orthant and that are dual to p or q. According to

Remark 4.16, these half-spaces are CIO cones. Hence, there are two CIO cones that do

not belong to the same half-space.
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Remark 4.20 The set of cones that are CIO has a unique maximal cone if and only if there

exists a unique ray of pricing functional that achieves an IMO equilibrium. This maximal

cone is a half-space which is the dual cone of the IMO equilibrium pricing functional. This

is a direct consequence of Propositions 4.15, 4.18, and 4.19.

In the next section, a similar analysis that was done for CIO cones is done for the cones

of marketed assets that allow solely external equilibrium trades.

4.5 External trades only

In this section, we describe conic economies in which a given group of agents can reach

equilibrium allocations by using external trades only. By this, we identify market situ-

ations where an internal market provides no additional utility improvement in reaching

equilibrium allocation for the agents. Let us start by formalizing the notion of cones of

marketed assets that admit conic equilibria using external trading only.

Definition 4.21 Consider an economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and a cone

of marketed assets C. The cone of marketed assets C is compatible with external trading

only (CEO) if there exists a pricing functional p and triplets of the form (x∗i , 0, x
∗ex
i ),

i = 1, . . . , n, such that p achieves a conic equilibrium with these associated triplets.

Let us list at least one example of a cone of marketed assets with the CEO property.

Remark 4.22 Let a cone of marketed assets be a half-space and let a conic equilibrium

exist, then the cone of marketed assets is a CEO cone. This can be justified as follows.

Let C be a half-space; then C∗ contains only one pricing functional, say p. Since the conic

equilibrium exists, there exists a collection of triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, fulfilling

Conditions (i)–(iii) in Definition 4.4. Given that p ∈ C∗ and px∗ini = 0, we have x∗ini ∈ −C
for i = 1, . . . , n. Because −x∗ini + x∗ex

i ∈ C, the collection of triplets (x∗i , 0,−x∗ini + x∗ex
i ),

i = 1, . . . , n, fulfills Conditions (i)–(iii) in Definition 4.4. Therefore, C is a CEO cone.

In the previous section, Proposition 4.15 relates the concept of CIO cones to equilibrium

pricing functionals that arise in an economy which allows internal trades only. Similarly,

the CEO property can be linked to market situations where each agent can access only the

external market. We, therefore, introduce the following notion of an optimal position. We

use the term optimal position rather than equilibrium as no interaction among agents is

required.
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Definition 4.23 Let
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

denote a conic economy. Then a col-

lection of pairs (x∗i , x
∗ex
i ), i = 1, . . . , n, achieves an optimal external-market-only (EMO)

position if the following conditions hold:

(i) (budget constraint) the relations x∗ex
i ∈ C and x∗i = x0

i − x∗ex
i are satisfied for all

i = 1, . . . , n;

(ii) (individual optimality) for any given i ∈ {1, . . . , n} and for any pair (xi, x
ex
i ) such

that xex
i ∈ C and xi = x0

i − xex
i , the inequality Ui(xi) ≤ Ui(x

∗
i ) holds.

The relation between CEO cones and optimal EMO positions is similar to that between

CIO cones and IMO equilibria, i.e., a cone is CEO if and only if an optimal EMO position

and conic equilibrium have the same total allocations.

Proposition 4.24 Assume an economy given by
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and a cone

of marketed assets C. The cone of marketed assets C is CEO if and only if there exists a

pricing functional p and triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, such that p achieves a conic

equilibrium with these triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, and an optimal EMO position

is achieved with the collection of pairs (x∗i , x
∗ex
i − x∗ini ), i = 1, . . . , n.

For a given group of agents, we have shown in the previous section that if there exists

a unique IMO equilibrium then the set of CIO cones has a unique maximal element. One

could ask if a similar result, i.e., the existence of a unique minimal element, holds for the

set of CEO cones. But unfortunately, CEO cones do not have a nesting property like CIO

cones and hence a unique minimal CEO cone does not necessarily exist. This lack of a

nesting property is shown in Example 4.30 and sets of CEO cones are illustrated later in

Example 4.31.

Identifying the CEO property using the previous proposition would involve computing

both the optimal EMO positions and all conic equilibria, and hence it would be inconve-

nient. The identification of a CEO cone can be based solely on conic equilibria, as hinted

by the definition of the CEO property. Namely, if there exists a conic equilibrium in which

all individual excess demands are inside the opposite of the cone of marketed assets (inside

−C), then the agents can satisfy their demands by using the external market only, and

hence such a cone of marketed assets would be CEO. This is formalized in the following

proposition.
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Proposition 4.25 Let
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

denote an economy and C a cone of

marketed assets. The cone C is a CEO cone if and only if there exists a pricing functional

p and di ∈ −C, for all i = 1, . . . , n, such that a conic equilibrium is achieved in p and

di = arg max
{d|pd=0}

Ui(x
0
i + d), for i = 1, . . . , n.

The above proposition provides a necessary and sufficient condition for a cone of mar-

keted assets to be a CEO cone. However, this condition is still not easily verifiable as it

involves computing all pricing functionals in which the conic equilibrium is achieved. There-

fore, one may ask if we can recognize a CEO cone without the computation of equilibrium

pricing functionals. The rest of this section will be devoted to several less computationally

demanding tests that can help us to identify CEO cones.

Proposition 4.25 can be interpreted as that there is no need for internal trade if all

individual demands in conic equilibria are in one hyperplane which is orthogonal to a conic

equilibrium pricing functional. Hence, using Proposition 4.24, we can see that a necessary

condition for a cone to be a CEO cone is that all external trades in the EMO situation

must be in the same hyperplane. The verification of this condition is much simpler, as we

do not need to consider any equilibrium pricing functional and we simply solve n separate

optimizations. We formalize this necessary condition in the following proposition.

Proposition 4.26 Let
(
(U1, . . . , Un), (x0

1, . . . , x
0
n)
)

denote an economy and C a cone of

marketed assets. Let a collection of pairs (x∗i , x
∗ex
i ), i = 1, . . . , n achieve an optimal EMO

position. If the cone C is a CEO cone, then there exists p ∈ C∗ such that px∗ex
i = 0 for all

i = 1, . . . , n.

Proof. Assumption 4.1 guarantees that (x∗i , x
∗ex
i ), i = 1, . . . , n, are uniquely determined.

From Proposition 4.24, it follows that there exists a pricing functional p with associated

triplets (x∗i , 0, x
∗ex
i ), i = 1, . . . , n, achieving a conic equilibrium. From Proposition 4.6 and

Remark 4.5, we find that p ∈ C∗ and px∗ex
i = 0, for i = 1, . . . , n.

Proposition 4.26 states only a necessary condition for the CEO property. Naturally,

this condition does not have to be sufficient because the allocations (x∗i , 0, x
∗ex
i ), where

px∗ex
i = 0, i = 1, . . . , n, do not have to constitute a conic equilibrium. We provide a simple

example showing this in Example 4.30. A set of sufficient and necessary conditions can be

derived by comparing local optimality conditions of the optimal EMO allocations and the

conic equilibrium allocations. To illustrate this approach we describe a cone of marketed

assets using a finite number of convex functions.
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Proposition 4.27 Let
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

denote a conic economy and let gj,

for j = 1, . . . , k, be twice differentiable convex functions such that C = {x ∈ X | gj(x) ≤
0, ∀j ∈ {1, . . . , k}}. Let a collection of pairs (x∗i , x

∗ex
i ), i = 1, . . . , n, be an optimal EMO

position. The cone C is a CEO cone if and only if there exists p ∈ C∗ such that ∂
∂x
Ui(x

0
i −

x∗ex
i ) ∝ p for all i = 1, . . . , n.

Up to now, we have mainly considered a cone of marketed assets to be a general

convex cone. In the rest of this section we concentrate on polyhedral cones, i.e., cones

given by an intersection of finitely many half-spaces which may arise from specification of

the cone of marketed assets in terms of bid-ask spreads, see, for instance, Example 4.34.

Polyhedral cones of marketed assets and Proposition 4.27 will help us to derive a simple

sufficiency condition on the CEO property. But firstly, with this assumption let us revisit

Proposition 4.26 from which it follows that a cone can be a CEO cone only if all trades in

the EMO situation are in the same hyperplane. For polyhedral cones, this is possible only

if all trades in the EMO situation are in the same face of this cone, i.e. if a polyhedral cone

of marketed assets has CEO property then all trades in the EMO situation are in the same

face. If all trades in an EMO situation are in the interior of the same face of a polyhedral

cone of marketed assets then the polyhedral cone of marketed assets has CEO property.

Remark 4.28 To some extent, the market settings, where all trades in an EMO situation

are in the interior of the same face of the cone of marketed assets, can be perceived as a

formal definition and generalization of the term “being on the same side of the market”.

The natural intuition behind this term is that agents that are on the same side of the market

have no incentive to trade internally, even if such trades are allowed. This is exactly what

happens when the conic economy is described by a polyhedral cone of marketed assets and

all EMO trades are in the interior of the same face of the cone.

A polyhedral cone C can be represented by a matrix A ∈ Rm×k as follows: −C =

{x ∈ X | ∃y ≥ 0 : Ay = x}. In the context of general equilibrium theory, the matrix A

is often called the activity, technology or production matrix. This is because the matrix

A can be read in the following way. The columns are production options for the agents,

and negative entries denote production inputs, whereas positive entries denote production

output. The vector y is then called an activity vector or a production vector. Note that

the external trades of agents can be fully described by a particular activity vector. Based

on activity vectors, we can derive a sufficient condition for a cone to be a CEO cone.

This condition involves computing only the trades in an EMO situation and, hence, it is
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relatively easy to verify as it leads to n independent optimization problems. The main

idea of this condition is that if all trades in an EMO situation are in the interior of one

face, then d
dx
Ui(x

0
i −x∗ex

i ) ∝ p, for i = 1, . . . , n, and hence, from Proposition 4.27, the cone

of marketed assets is a CEO cone. When expressed in terms of activity vectors of each

agent yi, this condition reduces to counting non-zero elements of yi and comparing their

positions.

Proposition 4.29 Let
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

denote a conic economy. Let −C =

{x ∈ X | ∃y ≥ 0 : Ay = x}, where A ∈ Rm×k, m ≤ k, and where no column of A can be

expressed as a non-negative linear combination of the remaining columns. Let a collection

of pairs (x∗i , x
∗ex
i ), i = 1, . . . , n, be an optimal EMO position. Let J1 = {j1, . . . , jm−1} and

J0 = {jm . . . , jk} be index sets denoting columns of A such that J1 ∪ J0 = {1, . . . , k}. Let

vectors yi ∈ Rk+, i = 1, . . . , n, be such that Ayi = −x∗ex
i and let (yi)j > 0 for j ∈ J1 and

(yi)j = 0 for j ∈ J0. Let the columns of the matrix A indexed by J1 be linearly independent.

Then the cone C is a CEO cone.

This proposition states that if there are no redundant columns in the activity matrix A,

then a sufficient condition for the cone of marketed assets to be a CEO cone is relatively

simple. It is enough to compute activity vectors in the EMO situation for each agent

separately, yi’s, and compare whether the positions of the non-zero elements that are

indexed by set J1 are the same across the agents. If each of these activity vectors has

exactly m − 1 non-zero elements on the same positions J1, then the cone of marketed

assets is a CEO cone. For instance, in case of two dimensional asset space it is sufficient to

verify that each agent has one non-zero element on the same position in its activity vector.

We illustrate the use of this proposition in the following example. The following example

can also be used to demonstrate that the CEO cones do not possess the nesting property.

Example 4.30 Assume two agents, expected utility maximizers, with utility functions

u1(x) = −x−1, u2(x) = log(x). Consider a three-dimensional asset space, where assets

express a position in Arrow-Debreu securities with the probability measure P = (1
3
, 1

3
, 1

3
)

which is also equal to the agents’ beliefs. Let the agents’ initial endowments be x0
1 = (1, 4, 1)

and x0
2 = (2, 3, 2). We will consider two conic economies given by cones of marketed assets
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Conic economy given by C1

pricing functional 0.4828 0.2759 0.2414

total excess demand 0.1084 −2.2167 2.3165

agent 1 demand 0.5370 −1.9667 1.1737

agent 2 demand −0.4286 −0.2500 1.1429

Conic economy given by C2

pricing functional 0.2857 0.5714 0.1429

total excess demand 3.0436 −3.3479 7.3043

agent 1 demand 2.0436 −1.8479 3.3043

agent 2 demand 1.0000 −1.5000 4.0000

Table 4.1: A conic equilibrium pricing functional and corresponding demands for the settings
described in Example 4.30.

C1 and C2 such that −Ci = {x ∈ X | ∃y ≥ 0 : Aiy = x} with production matrices

Ai =


−1 0 0 1 −1

0 −1 0 ai 0

0 0 −1 2 2

 ,

for i = 1, 2, a1 = −3.5, and a2 = −1. Note that −C1 = pos (A1), −C2 = pos (A2), where

pos (·) is the set of nonnegative linear combinations of the columns of a matrix. Also note

that the fourth column of matrix A1 can be expressed as a positive linear combination

of the second and fourth column of matrix A2, namely (1,−3.5, 2)′ = 2.5 · (0,−1, 0)′ +

1 · (1,−1, 2)′. Because the fourth column of matrix A2 cannot be expressed as a positive

linear combination of columns in A1, C1 ( C2. For illustration we present the conic

equilibrium pricing functionals and the corresponding demands in Table 4.1. In general,

if the individual demands are in the cone of marketed assets, then the agents can satisfy

their needs by external trading only. From Proposition 4.25, we know that only in such

a case the cone of marketed assets is a CEO cone. To find out whether the individual

demands are inside the cones, we can use the fact that the cones C1 and C2 are defined by

activity matrices. Hence, the individual demands are inside the cone of marketed assets

if the corresponding activity vector y exists. The activity vectors are listed in Table 4.2.

One individual demand in the conic economy given by C2 cannot be expressed using an
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Case Activity vectors

Cone C1 (matrix A1)
agent 1 demand 0.0000 0.0000 0.0000 0.5619 0.0498

agent 2 demand 0.0000 0.0000 0.0000 0.0714 1.0000

Cone C2 (matrix A2)
agent 1 demand does not exist

agent 2 demand 0.0000 0.0000 0.0000 1.5000 1.0000

Table 4.2: The corresponding activity vectors to individual demands listed in Table 4.1.
Activity matrices A1 and A2 are specified in Example 4.30. In the conic economy described
by activity matrix A2, the equilibrium demand of agent 1 cannot be described by an activity
vector and, thus, is not in the cone of marketed asset C2. Therefore the demand of agent 1
cannot be satisfied in external-market-only situation and C2 is not CEO cone.

activity vector. Therefore, by Proposition 4.25, the cone C1 is a CEO cone, but C2 is

not. Because C1 ⊂ C2, we observe that CEO cones are not nested in general. In fact,

we could show that C1 is a CEO cone without computing the conic equilibrium pricing

functional, by using the sufficiency condition defined in Proposition 4.29. This can be done

by computing the optimal EMO trades and the corresponding activity vectors individually

for each agent. For the cone C1, these activity vectors are the same as presented above.

Note that these activity vectors have exactly 2 positive entries in the same positions, and

the dimension of asset space, m, equals 3, we have verified the condition in Proposition 4.29

(here J0 = {1, 2, 3} and J1 = {4, 5}), and hence C1 is a CEO cone.

This example is visualized in Figure 4.1 where we can see individual demands in both

conic equilibrium and EMO situations for both cones of marketed assets. In this figure,

we observe that the optimal EMO trades are in the same face for both cone of marketed

assets. However, the optimal EMO trades are in the interior of face only in the case of C1.

This is in line with our Remark 4.28 that the term “being on the same side of the market”

can be understood as “being in the interior of the same face” in higher dimensional asset

spaces. We can also observe that the necessary condition for a cone to be a CEO cone from

Proposition 4.26, i.e., being in the same hyperplane, is satisfied in both cases. Because C2

is not a CEO cone, we see that this condition is indeed not sufficient.
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Individual demands for
the cone of marketed assets C

1

(0,0,0)

(1,0,-2)

(0,0,1)

(-1,3.5,-2)

Individual demands for
the cone of marketed assets C

2

(0,0,0)

(1,0,-2)

(0,0,1)

(-1,1,-2)

positive orthant
cone of mark. assets
demands in CE
demands in EMO

Figure 4.1: A diagram of individual demands in two conic economies (CE) with the agents
as described in Example 4.30. For the cone of marketed assets C2, we observe that even
though external-market-only (EMO) individual trades are in the same face, the cone is not
compatible with external trading only, because one CE individual demand is outside the
face.

4.6 Measures of group’s tendency to trade internally

The focus of this section is to quantify the group’s tendency to trade internally. We propose

a measure of group’s tendency to trade internally based on bid-ask spreads and we illustrate

how various factors, such as agent’s risk aversion, correlation of risks, and the number of

agents, influence this measure. Since we will rely heavily on the nesting property of CIO

cones, we illustrate how CIO cones are nested also in case of multiple equilibria and we

show that the CEO cones do not have the same favorable nested structure.

If the group consists of identical agents in terms of preference as well as in terms of

initial endowment, one can say that such a group is homogeneous. In that case, one

would expect that agents in a conic economy conclude only external trades, if any. On

the other hand, if the group consists of agents with complementary needs, one can say

that the group is heterogeneous and one would expect that the need for external trades

would be low because agents can satisfy their needs by internal trading. This suggests that

the measure of group’s tendency to trade internally can indicate the heterogeneity of the

group. To test this idea, we investigate the way in which the tendency to trade internally

depends on parameters which relate to different forms of heterogeneity.

To formalize a higher or lower tendency to trade internally, we use the nesting property

of CIO cones, Proposition 4.18. With a suitable parametrization of cones of marketed
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assets we can use this nesting property to find the maximal CIO cone. Then we can say

that one group of agents tends to trade internally more than a second group if the maximal

CIO cone of the first group includes the maximal CIO cone of the second group. Given

the equivalence between cones of marketed assets and bid-ask spreads, Example 4.34, we

can express this relation more naturally in terms of bid-ask spreads. Assume two groups of

agents that trade only internally for the given bid-ask spreads. If we decrease the bid-ask

spreads and the first group still trades only internally while the second group does not,

we say that the first group tends to trade internally more than the second group. To

summarize the arguments above, we will say that one group tends to trade internally more

than the other group if it has a bigger maximal CIO cone than the other group.

For the proposed measure of tendency to trade internally, we need to be able to compare

the CIO cones. In general, this can be complicated as there is no simple method to

compare two general cones which possibly intersect each other. To avoid these problems,

we parametrize sets of nested cones of marketed assets and for their generating we use

families of distortion functions (see (4.1) below). We consider a distortion function g to

be a non-decreasing concave function such that g : [0, 1] → [0, 1], g(0) = 0 and g(1) = 1.

Let {gα}α∈[0,1] denote a set of distortion functions parametrized by α such that gα1 ≥ gα2

if α1 ≤ α2; and let g0(u) = 1 and g1(u) = u for u ∈ (0, 1]. For economic and statistical

interpretation of distortion functions, see for instance Wang (2000).

In the rest of this section, we assume that the assets in a conic economy are random

cashflows. Any element of the asset space X = Rm identifies a specific holding of m

Arrow-Debreu securities, i.e. x ∈ X denotes a random variable on a finite probability

space (P,F ,Ω). This allows us to define the set of cones of marketed assets {Cα}α∈[0,1] as

follows

Cα = {x ∈ X | EQx ≥ 0, ∀ prob. measures Q, s.t. Q(A) ≤ gα(P (A)) ∀A ⊂ Ω}, (4.1)

where gα is a distortion function. The chosen parametrization of cones follows recent works

in the field of conic finance where tradeable assets are linked to distortion functions, e.g.,

Eberlein et al. (2012) and Madan and Schoutens (2012).

Note some properties of {Cα}α∈[0,1]. For α1 ≤ α2 we have that Cα1 ⊂ Cα2 , because

gα1 ≥ gα2 , and hence elements in Cα1 have to pass the positivity test against a larger set of

test measures Q than elements in Cα2 . Therefore, the cones in the set {Cα}α∈[0,1] are nested.

Because we assumed that g0(u) = 1 and g1(u) = u for u ∈ (0, 1], the boundary cones C0

and C1 are the positive orthant X+ and a half-space given by the reference measure P ,

respectively.

We can use any family of distortion functions to generate the sets of nested cones of
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Wang’s distortion function gwα (u) = Φ
(

Φ−1(u)− Φ−1(α/2)
)

proportional hazard distortion function gpα(u) = uα

minvar distortion function gmvα (u) = 1− (1− u)
1
α

minmaxvar distortion function gmmvα (u) = 1− (1− uα)
1
α

CVaR gcα(u) = min{u/α, 1}

Table 4.3: The list of families of distortion functions and their reparametrizations that are
considered in later examples. We define all listed functions for u ∈ [0, 1], α ∈ (0, 1), and Φ
denotes the cumulative distribution function of the standard normal distribution.

marketed assets. To investigate how the proposed measure of tendency to trade internally

depends on a particular choice of a family of distortion functions, we use several distor-

tion functions that are often used in the literature. To adhere to the above assumptions,

we use an elementary reparametrization of these distortion functions. In later examples

we consider families of proportional hazard, minvar, minmaxvar, Wang’s, and CVaR dis-

tortion functions; see Table 4.3 for their reparametrizations. The proportional hazard

distortion function is sometimes also called a power or maxvar distortion function in this

reparametrization, see Wang (1995) and Cherny and Madan (2009). For motivation and

more information about minvar and minmaxvar distortion functions we refer to Cherny and

Madan (2009) and for Wang’s distortion function to Wang (2000). The CVaR distortion

function is a function corresponding to the conditional value-at-risk, a measure often used

in risk measurement. For illustration, these selected distortion functions are displayed in

Figure 4.2.

IMO equilibria are not unique in general, therefore, according to Remark 4.20, there

does not have to exist a unique maximal CIO cone. However, because CIO cones are

nested according to Proposition 4.18, any set of nested cones of marketed assets will have

a unique maximal CIO cone regardless of the number of IMO equilibria. Therefore, we

can define a maximal CIO cone for each of our proposed sets of nested cones of marketed

assets. For a given parametrization, we identify the maximal CIO cone by a parameter

αCIO ∈ [0, 1], where αCIO = sup{α|Cα is CIO cone}. The parameter αCIO denotes a critical

bid-ask spread for only internal trading and can be used to express the above discussed

tendency to trade internally as follows. Assume two groups of agents and a given set of

nested cones. If the value of αCIO is larger for one group than for another, then the first

group tends to trade internally under a smaller bid-ask spread. Therefore, larger values of

αCIO correspond to a stronger tendency to trade internally.
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Figure 4.2: Selected distortion functions that can be used for generating nested cones.

In the following example we demonstrate the concept of a maximal CIO cone in case

of multiple equilibria. For illustration we use a simple two-dimensional asset space and a

Shapley-Shubik symmetric economy. In this example, for the sake of simplicity, the utility

functions do not fulfill Assumption 4.1 on the entire X+. However, as the considered utility

functions could be approximated by strictly concave, increasing and differentiable functions

on the concerned domain, the breach of the strict concavity assumption is not crucial.

Example 4.31 Shapley-Shubik economy equilibria, Bergstrom et al. (2009) Assume two

agents with objective functions given by

U1(x, y) = x+
7

2
y − 1

2
y2, U2(x, y) =

7

2
x− 1

2
x2 + y.

Assume that the initial holdings of agents are x0
1 = (4, 0) and x0

2 = (0, 4). By computa-

tion, we can verify that the agents achieve IMO equilibrium for three pricing functionals:

(1
2
, 1

2
), (1

3
, 2

3
), (2

3
, 1

3
). The three equilibria imply that three half-spaces, dual to the pricing

functionals, are both CIO and CEO cones. Therefore, from Proposition 4.19 it follows

that the set of CIO cones does not have a unique maximal element. Any two-dimensional

cone of marketed assets can be described by two angles that give its distance from the

positive quadrant. In Figure 4.3 we plot all combination of these angles that determine

the cones of marketed assets in this setting and we display whether they have the CIO

or CEO property. Any parametrized set of nested cones of marketed assets is displayed

in this plot as a non-decreasing curve connecting the origin (the cone of marketed assets



Chapter 4. Bid-ask spreads and intra-group trading 89

0 π/6 π/3 π/2
angle α

0

π/6

π/3

π/2

an
gl

e 
β

 Decomposition of trades in Shapley Shubik economy

β

α

mixed trades
CIO cones
CEO cones
CVaR
prop. haz.
minmaxvar
Wang‘s
minvar

Figure 4.3: A diagram representing a set of all possible cones of marketed assets in the
two-agents-two-assets case for Shapley-Shubik economy given in Example 4.31. The cones
are represented by angles from the positive quadrant. These angles are plotted on the axes.
The triangular shape is caused by considering only convex cones. In the diagram, we can
observe what type of equilibrium trades can be realized for a given cone of marketed assets.

being the positive quadrant) and a point on diagonal line (the cone of marketed assets

being a half-space). The point on the diagonal line is, in case of the considered distortion

functions, given by the agents’ beliefs and expressed by a probability measure P in (4.1);

here we set P = (0.4, 0.6). The maximal CIO cone for a given parametrization would be

displayed as a point where the corresponding curve leaves the set of CIO cones.

As we have motivated and argued above, as a measure of group’s tendency to trade

internally we use the CIO cone that is maximal from a set of nested cones. Such measure

depends on a particular parametrization of a set of nested cones. To test this dependency,

we compute αCIO for each of the proposed parametrizations for various groups of agents.

We vary the group characteristics to investigate to which extent the measure of group’s

tendency to trade internally can capture the group heterogeneity. Namely, we investigate

how correlation of initial risks, risk aversion of agents, and the number of agents in the

group influence this measure.



90 4.6 Measures of group’s tendency to trade internally

Example 4.32 Assume n agents, expected utility maximizers with power utility functions

ui(x) = x1−γ

1−γ , for γ > 0, γ 6= 1, and ui(x) = log(x), for γ = 1, i = 1, . . . , n. Assume that

the initial holdings of agents are given by random variables X0
i , i = 1, . . . , n, such that

X0
i =

2 if
√

1− ρ2Yi + ρY0 > 0,

1 if
√

1− ρ2Yi + ρY0 ≤ 0,

where Yi ∼ N(0, 1), i = 0, 1, . . . , n, are independent random variables and ρ ∈ [0, 1] is

a given correlation coefficient. Assume that agents’ beliefs, expressed by P in (4.1), are

equal to a reference probability measure of agents initial holdings.

In the setting of Example 4.32, the groups of agents are identified by three parameters:

by the number of agents n, by the correlation of assets ρ, and by the risk aversion parameter

γ. By varying these parameters, we get groups with different characteristics. For these

different groups, we will observe the behaviour of the measure αCIO and whether it is in

line with a common perception of group heterogeneity and tendency to trade internally.

Example 4.32 (continued) (correlation) Assume γ = 2 and a given number of agents n.

Then by varying ρ over [0, 1], we get groups of agents with initial positions ranging from

uncorrelated risks to fully correlated ones. In Figure 4.4, we have plotted αCIO depending

on the correlation of initial holdings, i.e. corr(X0
1 , X

0
2 ), for differently parametrized sets

of nested cones and for groups of 2 and 4 agents. Except for the parametrizations by

CVaR and minvar distortion functions, we can observe that, with higher correlation, the

proposed measure of tendency to trade internally αCIO decreases. The decrease corresponds

to general intuition behind group heterogeneity with respect to correlation, as an increase

in correlation of the agents’ initial holdings leads to a decrease in the group heterogeneity.

In the same manner, we investigate how risk aversion of individual agents in the group

influences the proposed measure of group’s tendency to trade internally.

Example 4.32 (continued) (risk aversion) Assume n = 2 and a given risk correlation ρ.

Then by varying the coefficient of relative risk aversion γ, we get groups of agents with

relatively low risk aversion and groups of agents with relatively high risk aversion. For

these groups, we investigate the behavior of our proposed measure, αCIO. In Figure 4.5, we
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Figure 4.4: The dependency of αCIO on the correlation of initial risks of agents corr(X0
1 , X

0
2 )

given by 2
π arcsin ρ2. The plots display the dependency for groups of 2 and 4 agents, respec-

tively.

have plotted αCIO using differently parametrized sets of nested cones. We can observe that,

with higher risk aversion, the proposed measure is decreasing. The more risk-averse agents

are, the more they require access to all assets to diversify their risks and to obtain a less

variable outcome. Because the group can provide them only with certain assets, the more

risk-averse agents will seek more external than internal trades. By this argumentation, we

can say that our result is in line with the general notion of tendency to trade internally.

As a final example, we investigate how the number of agents in a group influences the

proposed measure of group’s tendency to trade internally.

Example 4.32 (continued) (number of agents) Assume n agents with a given relative

risk aversion coefficient γ and risk correlation ρ. By varying the number of agents n, we

investigate the behavior of αCIO. In Figure 4.6, we have plotted αCIO using differently

parametrized sets of nested cones. Except for the parametrizations by CVaR and minvar

distortion functions, we can observe that as the number of agents increases, the proposed

measure of group’s tendency to trade internally is also increasing. Our proposed measure

can be linked with group heterogeneity in this example as follows. Each agent brings his

own specific source of risk. Hence, a large group can be perceived as more heterogeneous.

Therefore, except for the CVaR and minvar parametrizations, we can say that the proposed
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Figure 4.5: The dependency of the proposed measure of tendency to trade internally on the
relative risk aversion parameter of agents, γ. The plots display the dependency for groups
with correlation parameter ρ = 0 and ρ = 0.95, respectively.
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Figure 4.6: The dependency of the proposed measure of tendency to trade internally on the
number of agents, n. The plots display the dependency for groups with correlation parameter
ρ = 0 and ρ = 0.95, respectively.

measure of tendency to trade internally corresponds to general intuition behind the group

heterogeneity with respect to the number of agents.

Based on the examples, it is confirmed that the proposed measure of tendency to trade
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internally is dependent on the chosen parametrization. While the measure of tendency to

trade internally based on proportional hazard, minmaxvar and Wang’s distortion functions

is in line with an intuition behind the term measure of heterogeneity of group, the behavior

of the measure for CVaR and minvar parametrizations is not. Within the settings of our

example, we found that minvar parametrization can lead to nonmonotonic behavior of the

measure of tendency to trade internally. Therefore, for practical usage of the proposed

measure a suitable choice of distortion function must be done first.

4.7 Conclusions

In this chapter, we have analyzed different types of equilibrium trades in a conic economy.

We considered a group of agents that is allowed to conclude intra-group trades as well

as external trades with a conic market described by inelastic bid and ask prices. We

have shown the equivalence between the conic equilibrium and a simplified Walrasian

equilibrium. Firstly, we have described for which external conic markets the group can

reach the conic equilibrium by internal trades only. We have described the structure of

these external conic markets and their relation with the uniqueness of equilibria. Secondly,

we have described the external conic markets for which the group can reach the conic

equilibrium by external trades only. We have proposed a computationally simple rule on

how to identify such external conic markets. Thirdly, we have proposed a measure of

tendency to trade internally and its link with heterogeneity of the group. We have shown

behavior of this measure with respect to chosen characteristics, and we concluded that

for some parametrizations this behavior conforms with a general perception of measure of

groups heterogeneity.

Our setting has several limitations, as we have considered only a finite asset space.

However, this assumption is not crucial and could be relaxed. This shortfall could indicate

the immediate direction of possible further research.

Another direction of possible further research regards the proposed measure of tendency

to trade internally and its usage as a measure of heterogeneity. A more extensive com-

parison would provide a deeper insight into effects of different parametrizations of nested

cones.
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4.8 Appendix

This appendix gathers the proofs of various results in the main text of the chapter. We

start by a simple observation that will be used several times.

Lemma 4.33 Consider a conic economy given by
(
C, (U1, . . . , Un), (x0

1, . . . , x
0
n)
)

and let

p be a pricing functional. Let, for some i, x∗i , x
∗in
i , x∗ex

i be such that x∗i = x0
i + x∗ini − x∗ex

i ,

px∗ini = 0, and x∗ex
i ∈ C. If x∗i fulfills Condition (ii) in Definition 4.4, then px∗ex

i = 0.

Proof. By Remark 4.5, p ∈ C∗. From Condition (ii) in Definition 4.4, we find that

(x∗ini , x∗ex
i ) solves

max
{(xini ,xexi )|x0i+xini −xexi ∈X+, pxini =0, xexi ∈C}

U(x0
i + xin

i − xex
i ). (4.2)

Because x∗ex
i ∈ C and p ∈ C∗, we have px∗ex

i ≥ 0 from the definition of C∗. If px∗ex
i = α > 0,

then we can find x ∈ X++ such that px = α and thus p(x∗ex
i − x) = 0. Because p(x∗ini −

x∗ex
i + x) = 0, the pair (x∗ini − x∗ex

i + x, 0) is a feasible solution of (4.2). However, U(x0
i +

x∗ini − x∗ex
i + x) = U(x∗i + x) > U(x∗i ), which contradicts the optimality of (x∗ini , x∗ex

i ).

Proof of Proposition 4.6. The claim follows by applying Lemma 4.33 to each individual

agent.

Proof of Proposition 4.9. We start with claim (i). Let p be a pricing functional that

achieves the conic equilibrium with allocations (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n. We want to

show that p, x∗i , and y∗i := −x∗ex
i , i = 1, . . . , n fulfill Conditions (i)–(iii) in Definition 4.8.

By Remark 4.5, p ∈ C∗ and therefore −pxex ≤ 0 for all xex ∈ C. From Lemma 4.33, we find

that 0 = −px∗ex
i and, hence, −pxex

i ≤ 0 = −px∗ex
i for all xex

i ∈ C. By setting yi = −xex
i ,

we get that pyi ≤ py∗i for all yi ∈ Y . Hence Condition (i) in Definition 4.8 holds. To fulfill

Condition (ii) in Definition 4.8, we have to show that, for each i = 1, . . . , n, the allocation

x∗i solves the optimization problems

max
{xi∈X+|pxi≤px0i+py∗i }

Ui(xi). (4.3)

Note that py∗i = 0 and the function Ui is strictly increasing. Therefore, x∗i solves problem

(4.3) if and only if it solves

max
{xi∈X+|pxi=px0i }

Ui(xi). (4.4)
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From the individual optimality of the conic equilibrium, we find that x∗i = x0
i + x∗ini − x∗ex

i

solves

max
{xi∈X+|xi=x0i+xini −xexi , pxini =0, xexi ∈C}

Ui(xi). (4.5)

By Proposition 4.6 and because px∗ini = 0, we have px∗i = px0
i + px∗ini − px∗ex

i = px0
i .

Hence, x∗i is a feasible solution of problem (4.4). In fact, by Lemma 4.33, any solution of

problem (4.5) is a feasible solution of problem (4.4). And since trivially the set of feasible

solutions of problem (4.4) is included in the set of feasible solutions of problem (4.5) and

the objective functions of both problems are the same, we see that x∗i solves problem

(4.4) if and only if it solves problem (4.5). By equivalence of problems (4.3) and (4.4)

and by equivalence of problems (4.5) and (4.4), x∗i solves problem (4.3) and Condition (ii)

in Definition 4.8 holds. Condition (iii) in Definition 4.8 is fulfilled immediately because∑n
i=1 x

∗
i =

∑n
i=1(x0

i + xin
i − x∗ex

i ) =
∑n

i=1 x
0
i +

∑n
i=1 y

∗
i .

We continue by showing the validity of the claim in (ii). We are given a pricing func-

tional p and the set of allocations (x∗i , y
∗
i ), i = 1, . . . , n, that constitute a Walrasian equi-

librium, and we want to show that p achieves a conic equilibrium with the collection of

triplets (x∗i , x
∗
i − y∗i − x0

i ,−y∗i ), i = 1, . . . , n. For x∗ini := x∗i − y∗i − x0
i , x

∗ex
i := −y∗i we verify

Conditions (i)–(iii) in the conic equilibrium definition, Definition 4.4.

Assume that p ∈ C∗. From the choice of x∗ini and x∗ex
i it follows that x∗ex

i ∈ C and

x∗i = x0
i + x∗ini − x∗ex

i . To verify Condition (i) in Definition 4.4 it remains to show that

px∗ini = 0. Since pyi ≤ py∗i for all yi ∈ −C, and 0 ∈ C, we have that py∗i = 0 = px∗ex
i .

From the optimality of x∗i in Condition (ii) in Definition 4.8 we get that px∗i = px0
i . By

substitution we have that px∗ini = px∗i + px∗ex
i − px0

i = 0 and Condition (i) in Definition

4.4 holds. Condition (ii) in Definition 4.4 follows from a similar argumentation as above.

Because x∗i is a Walrasian equilibrium allocation, it solves problem (4.3). Because px∗ex
i =

−py∗i = 0, x∗i also solves problem (4.4). Since the solution sets of problems (4.4) and (4.5)

are the same, by the discussion above, x∗i also solves (4.5). Conditions (iii) in Definition

4.4 follows immediately because

n∑
i=1

x∗ini =
n∑
i=1

(x∗i − y∗i − x0
i ) =

n∑
i=1

x0
i +

n∑
i=1

y∗i +
n∑
i=1

(−y∗i − x0
i ) = 0.

It remains to show that p ∈ C∗. Assume that p 6∈ C∗. Then 0 < py for some y ∈ −C.

From the definition of the Walrasian equilibrium, we know that py ≤ py∗i for all y ∈ −C.
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Therefore, 0 < py∗i . Because py ≤ py∗i for all y ∈ −C, it also holds for y := 2y∗i ∈ −C.

However, then 0 < 2py∗i ≤ py∗i and we have a contradiction. Therefore, p ∈ C∗.

Proof of Proposition 4.13. If C is a CIO cone, then there exists a pricing functional p

and a collection of triplets (x∗i , x
∗in
i , 0), i = 1, . . . , n, such that they fulfill the conditions

in Definition 4.4. Then the pricing functional p and the collection of pairs (x∗i , x
∗in
i ),

i = 1, . . . , n, also fulfill Conditions (i)–(iii) in Definition 4.12.

For the reverse implication, let a pricing functional p with a collection of triplets

(x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, achieve conic equilibrium and with a collection of pairs (x∗i , x
∗in
i −

x∗ex
i ), i = 1, . . . , n, achieve IMO equilibrium. Then we show that p with the collection of

triplets (x∗i , x
∗in
i −x∗ex

i , 0), i = 1, . . . , n, achieves a conic equilibrium by verifying Conditions

(i)–(iii) in Definition 4.4. Because the pairs (x∗i , x
∗in
i − x∗ex

i ), i = 1, . . . , n, are positions in

IMO equilibrium, we find that p(x∗ini − x∗ex
i ) = 0 so that Condition (i) holds. Since p with

(x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, achieves a conic equilibrium, the total allocations of agents, x∗i ,

fulfill Condition (ii). The remaining Condition (iii) is satisfied because
∑n

i=1(x∗ini −x∗ex
i ) = 0

by the definition of the IMO equilibrium. Hence, the cone of marketed assets is a CIO

cone.

Proof of Proposition 4.15. Let C be a CIO cone. By Proposition 4.13 there exists p ∈ P
which also achieves a conic equilibrium and hence p ∈ C∗, by Remark 4.5.

Let p ∈ C∗ achieve IMO equilibrium with a collection of pairs (x∗i , x
∗in
i ), i = 1, . . . , n.

We will show that p and the collection of triples (x∗i , x
∗in
i , 0), i = 1, . . . , n, constitute a

conic equilibrium. Conditions (i) and (iii) in Definition 4.4 are satisfied trivially. To

satisfy Condition (ii), it remains to show that, for each i = 1, . . . , n, x∗i solves

max
{xi∈X+|xi=x0i+xini −xexi , pxini =0, xexi ∈C}

Ui(xi). (4.6)

Using Lemma 4.33, any solution of (4.6) also solves

max
{xi∈X+|xi=x0i+xini , pxini =0}

Ui(xi). (4.7)

Note also that all feasible solutions of (4.7) are included in the set of feasible solutions

(4.6). Therefore, the sets of solutions for both problems are equal. Because (x∗i , x
∗in
i ),

i = 1, . . . , n, are IMO equilibrium allocations, each x∗i solves problem (4.7) and, hence, x∗i
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solves also problem (4.6). Hence, p achieves a conic equilibrium with a collection of triples

(x∗i , x
∗in
i , 0) and by Proposition 4.13 the cone C is a CIO cone.

Proof of Proposition 4.24. Let C be a CEO cone. From the definition, there exist a pricing

functional p and a collection of triplets (x∗i , 0, x
∗ex
i ), i = 1, . . . , n, such that the conditions

in Definition 4.4 are fulfilled. Then the pricing functional p and the collection of pairs

(x∗i , x
∗ex
i ), i = 1, . . . , n, fulfill Conditions (i)–(ii) in Definition 4.23.

For the reverse implication, let there exist a pricing functional p which achieves a conic

equilibrium with a collection of triplets (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, and an optimal EMO

position with the collection of pairs (x∗i , x
∗ex
i − x∗ini ), i = 1, . . . , n. To conclude the proof,

we show that p with associated triplets (x∗i , 0, x
∗ex
i − x∗ini ), i = 1, . . . , n, achieves a conic

equilibrium. From the budget constraint in EMO position, we know that x∗ex
i −x∗ini ∈ C and

thus Condition (i) of Definition 4.4 holds. Since p with (x∗i , x
∗in
i , x∗ex

i ), i = 1, . . . , n, achieves

a conic equilibrium, the total allocations of agents, x∗i , fulfill Condition (ii). Condition (iii)

holds trivially. Hence, C is a CEO cone.

Proof of Proposition 4.25. Let C be a CEO cone; then there exist a pricing functional p

and a collection of triplets (x∗i , 0, x
∗ex
i ), i = 1, . . . , n, satisfying Condition (ii) in Definition

4.4. Hence, (0, x∗ex
i ) solves

max
{(xini ,xexi )|x0i+xini −xexi ∈X+, pxini =0, xexi ∈C}

Ui(x
0
i + xin

i − xex
i ). (4.8)

From Proposition 4.6 we know that px∗ex
i = 0; hence, also (−x∗ex

i , 0) solves problem (4.8).

Thus, −x∗ex
i solves

max
{s|x0i+s∈X+, ps=0}

Ui(x
0
i + s). (4.9)

The conditions are satisfied by di := −x∗ex
i .

For the reverse implication, we assume that p achieves a conic equilibrium and that

−C 3 di = arg max{s|ps=0} Ui(x
0
i + s), for all i = 1, . . . , n. By Proposition 4.6, problems

(4.8) and (4.9) have the same value of the objective function in the optimum. Hence, the

triplets (x0
i + di, 0,−di) comply with Condition (ii) in Definition 4.4. Conditions (i) and

(iii) hold trivially for these triplets. Therefore, C is a CEO cone by definition.

Proof of Proposition 4.27. We start by showing necessity. Let a cone C be a CEO cone.

From Proposition 4.25 we know that there exist a pricing functional p and allocations di,
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i = 1, . . . , n, such that di solves

max
{x|px=0}

Ui(x
0
i + x), for i = 1, . . . , n. (4.10)

From the first-order conditions of (4.10), it follows that
[
∂
∂x
Ui(x

0
i + x)

]
x=di
∝ p for all i.

From the same proposition it follows that a conic equilibrium is reached in p and that

di ∈ −C, for i = 1, . . . , n. Hence, by Propositions 4.24 and 4.6 the pair (x∗i ,−di) is an

optimal EMO position. The strict concavity of Ui, i = 1, . . . , n, and the convexity of

the constraint set guarantee the uniqueness of such position. Hence, di = −x∗ex
i which

concludes the necessity part.

To show the sufficiency, let there exist p ∈ C∗ such that
[
∂
∂x
Ui(x

0
i + x)

]
x=−x∗exi

∝ p for

i = 1, . . . , n. Because (x∗i , x
∗ex
i ), i = 1, . . . , n, are the optimal EMO positions, we have that

x∗ex
i solves

max
{x|gj(x)≤0 j=1,...,k}

Ui(x
0
i − x),

for each i = 1, . . . , n. From the Kuhn-Tucker conditions, we know that there exist scalars

vji ≥ 0, j = 1, . . . , k, such that

0 =

[
∂

∂x
Ui(x

0
i − x)

]
x=x∗exi

−
k∑
j=1

vji

[
∂

∂x
gj(x)

]
x=x∗exi

,

0 = vji g
j(x∗ex

i ),

0 ≥ gj(x∗ex
i ).

We want to show that the pricing functional p achieves the conic equilibrium with the

collection of triplets (x∗i , 0, x
∗ex
i ), i = 1, . . . , n, because then C is a CEO cone. Conditions

(i) and (iii) in the definition of conic economy are fulfilled trivially. It remains to be shown

that (0, x∗ex
i ) solves

max
{(xin,xex)|pxin=0, gj(xex)≤0 j=1,...,k}

Ui(x
0
i + xin − xex). (4.11)

From the Kuhn-Tucker conditions, if some (x̂in
i , x̂

ex
i ) solves problem (4.11), then scalars λi
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and wji ≥ 0, j = 1, . . . , k, exist such that

0 =

[
∂

∂x
Ui(x

0
i + x− x̂ex

i )

]
x=x̂ini

− λip,

0 =

[
∂

∂x
Ui(x

0
i + x̂in

i − x)

]
x=x̂exi

−
k∑
j=1

wji

[
∂

∂x
gj(x)

]
x=x̂exi

,

0 = px̂in
i ,

0 = wji g
j(x̂ex

i ),

0 ≥ gj(x̂ex
i ).

The second order condition is satisfied because we assume that −Ui and gi are twice

differentiable convex functions. Therefore, if and only if there exist scalars λi and wji , j =

1, . . . , k, fulfilling these local optimality conditions, then (x̂in
i , x̂

ex
i ) solves problem (4.11).

Since
[
∂
∂x
Ui(x

0
i + x)

]
x=−x∗exi

∝ p, let us set λi such that λip =
[
∂
∂x
Ui(x

0
i + x)

]
x=−x∗exi

. By

setting x̂in
i := 0, x̂ex

i := x∗ex
i , and wji := vji , j = 1, . . . , n, the local optimality conditions are

satisfied and hence (0, x∗ex
i ) solves problem (4.11). Therefore, p achieves a conic equilibrium

with the collection of allocations (x∗i , 0, x
∗ex
i ), i = 1, . . . , n, and the cone C is a CEO

cone.

Proof of Proposition 4.29. Fix i ∈ {1, . . . , n}. Because (x∗i , x
∗ex
i ) is the optimal EMO allo-

cation and Ayi = −x∗ex
i , yi solves

max
{y|y≥0}

Ui(x
0
i + Ay).

To simplify our notation, let ui(x) := ∂
∂x
Ui(x). From the Kuhn-Tucker conditions, there

exists a vector vi ∈ Rk+ such that

A>ui(x
0
i + Ayi)− vi = 0

y>i vi = 0.

Because (yi)j > 0, for j ∈ J1, the last equality implies that (vi)j = 0, for j ∈ J1. Let B

denote the submatrix of A> formed from the rows indexed by J1. From the assumptions,

the rows of B ∈ R(m−1)×m are linearly independent. Therefore, the dimension of the null

space of B is 1. Note that the vector Bui(x
0
i +Ayi) = 0 ∈ Rm−1, for all i = 1, . . . , n. Since

the dimension of the null space of B is 1, we have that ui1(x
0
i1

+Ayi1) ∝ ui2(x
0
i2

+Ayi2) for
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any i1, i2 ∈ {1, . . . , n}. Now we will show that ui(x
0
i + Ayi) ∈ C∗. Because the functions

Ui are strictly increasing, we have that ui(x
0
i + Ayi) > 0. We know that for any x ∈ C,

there exists y ≥ 0 such that x = Ay. Note that q ∈ C∗ if A>q ≥ 0, because for any x ∈ C,

we have q>x = q>Ay ≥ 0. From the nonnegativity of vi, we have that A>ui(x
0
i +Ayi) ≥ 0

and hence ui(x
0
i −x∗ex

i ) ∈ C∗. We have shown that there exists a pricing functional p ∈ C∗

such that ui(x
0
i − x∗ex

i ) ∝ p for all i. By Proposition 4.27, we conclude that C is a CEO

cone.

Example 4.34 (Construction of a cone of marketed assets from bid-ask spreads) Suppose

that the space of assets is three-dimensional, and that it is generated by the assets a0, a1,

and a2. Assume that the external market allows anyone to buy from the market assets a1

and a2 for p1 and p2 units of asset a0, respectively; and to sell these assets to the market

for q1 and q2 units of a0, respectively. To avoid degenerate cases assume that pi ≥ qi ≥ 0,

for i = 1, 2. The external market also allows the free disposal of non-negative assets. All

these allowed trades with external market can be organized as columns of a matrix, for

instance,

A =


−1 0 0 −p1 q1 −p2 q2

0 −1 0 1 −1 0 0

0 0 −1 0 0 1 −1

 .

The cone of marketed assets C is then defined as C = − pos (A), where pos (A) is the set

of nonnegative linear combinations of the columns of the matrix A.
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