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Estévez-Fernández, and Ruud Hendrickx for giving me the opportunity to follow a
PhD program under their supervision. Their encouraging and stimulating guidance
has introduced me to the academic world in general, and to scientific research in
particular. Working as a researcher and teacher in Tilburg has been a very rewarding
experience.

I have been fortunate to have the opportunity to work with Hans Peters and
would like to thank him for the inspiring and motivating meetings in Maastricht.

Thanks too to committee members Jean-Jacques Herings, Dolf Talman, William
Thomson, and José Zarzuelo for carefully reviewing my manuscript and providing
valuable feedback. Their comments significantly improved this dissertation. Additio-
nal thanks to Dolf Talman for my first experience with research during the bachelor’s
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1 Introduction

Egalitarianism is a paradigm of economic thought that favors the idea of equality.
Economic equality, or equity, refers to the concept of fairness in economics and under-
lies many theories of distributive justice. Since the seminal work of Rawls (1971), eco-
nomic equality plays a central role in fundamental principles of justice and is widely
applied within several disciplines of social science. Young (1995) provides a rich sur-
vey on equity concepts in both theoretical and practical contexts. The interpretation
of equality, and which notions should exactly be equated, depends on the model at
hand, its characteristics, and its underlying assumptions. The leading thread of this
dissertation is constituted by the implementation and analysis of egalitarianism and
corresponding principles in models for allocation problems, in particular bankruptcy
problems with nontransferable utility and cooperative games. This contributes to a
better understanding of fair allocation rules and their properties.

A bankruptcy problem is an elementary allocation problem in which claimants
have individual claims on an insufficient estate. The question arises which of the
possible estate allocations could or should be selected. For this, bankruptcy theory
studies appropriate bankruptcy rules which prescribe for any bankruptcy problem
an efficient and feasible allocation, i.e. an estate allocation for which the individual
payoffs are bounded by the corresponding claims. Starting from O’Neill (1982), many
scientific studies are devoted to bankruptcy problems with transferable utility where
the estate and claims are of a monetary nature. We refer to Thomson (2003) for an
extensive survey, to Thomson (2013) for recent advances, and to Thomson (2015) for
an update. An egalitarian alternative for the well-known proportional rule in this
context is the constrained equal awards rule, which divides the monetary estate as
equal as possible under the condition that no claimants are allocated more than their
corresponding claims.
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12 Chapter 1 Introduction

The first part of this dissertation builds upon the foundations of bankruptcy pro-
blems with nontransferable utility as introduced by Orshan, Valenciano, and Zarzuelo
(2003). There, individual payoffs are represented in a utility space and the estate is
expressed in a set of attainable utility allocations. Throughout this dissertation, we
assume that individual utility is normalized in such a way that allocating nothing
corresponds to a utility level of zero. Since claimants generally not only differ in
their claims, but also in their utility measure, the implementation of egalitarianism
in this model cannot simply boil down to equal division. Instead, it makes sense to
compare the claims in relation to the estate. Therefore, we take a solid and deli-
berate approach using the zero vector and the utopia vector as benchmarks. Since
allocating zero to all claimants generates the same well-being as the event in which
the bankruptcy problem is not solved, claimants are then comparable in terms of
minimal satisfaction and the allocation is in that sense egalitarian. Similarly, when
allocating to all claimants their corresponding utopia values, defined as the maximal
individual payoffs within the estate, claimants are comparable in terms of maximal
satisfaction and the allocation is in that sense egalitarian.1 In this way, we interpret
the utopia vector as an egalitarian direction starting from the zero vector and all
payoff allocations following this direction are considered to be relatively equal. This
approach leads to an adequate definition of the constrained relative equal awards rule
for bankruptcy problems with nontransferable utility, which allocates payoffs as re-
latively equal as possible under the condition that no claimants are allocated more
than their corresponding claims. On the class of NTU-bankruptcy problems induced
by TU-bankruptcy problems, the constrained relative equal awards rule boils down
to the standard constrained equal awards rule.

Focusing on fundamental principles and structures, we study the rich model of
bankruptcy problems with nontransferable utility from several perspectives. From
an axiomatic perspective, we formulate appropriate properties for bankruptcy rules
and study their implications. Our interpretation of egalitarianism is reflected in
a property called relative symmetry, which imposes that claimants with relatively
equal claims are allocated relatively equal payoffs. Another important property is
truncation invariance, which imposes invariance of the prescribed allocation under
truncation of the claims by the corresponding utopia values. A higher claim than
the corresponding utopia value is then not considered as relevant, supported by the
fact that claimants are not allocated more than their utopia values in any feasible
estate allocation. We derive several axiomatic characterizations of the constrained
relative equal awards rule using these and other properties which are generally based
on counterparts within the theory on bankruptcy problems with transferable utility.

1In the context of bargaining problems (cf. Nash (1950)), the use of utopia values as initiated
by Raiffa (1953) is nowadays fully embedded in the literature.
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Besides, we explore the relation of the constrained relative equal awards rule
with duality, consistency, and the relative adjustment principle. These fundamen-
tal concepts are based on duality, consistency, and the contested garment principle
for TU-bankruptcy rules which play an essential role in the seminal work of Aumann
and Maschler (1985) on Talmudic principles for monetary bankruptcy problems. Two
bankruptcy rules are called dual if one rule allocates awards in the same way as the
other rule allocates losses. Consistency notions are based on thought experiments in
which bankruptcy problems are reevaluated in case some claimants depart with their
allocated payoffs. The relative adjustment principle describes a standard solution
for bankruptcy problems with nontransferable utility and two claimants, merging the
properties relative symmetry and truncation invariance with minimal rights first. The
minimal rights first property requires that first allocating minimal rights, defined as
the maximal individual payoffs within the estate when all other claimants are allo-
cated their claims, and subsequently applying the bankruptcy rule to the remaining
bankruptcy problem leads to the same payoff allocation as direct application of the
bankruptcy rule to the original bankruptcy problem.

Surprisingly, while studying bankruptcy problems with nontransferable utility,
we not only encounter similarities with the theory on bankruptcy problems with
transferable utility, but also common interesting features from the theory on other
well-studied domains, e.g. cost sharing theory, bargaining theory, and game the-
ory. In particular, we show that the constrained relative equal awards rule shares
characteristics with the serial mechanism for cost sharing problems (cf. Moulin and
Shenker (1992)) by deriving a corresponding axiomatic characterization in terms of
relative symmetry and independence of larger relative claims. Moreover, we translate
several axioms from bargaining theory concerning changes in the estate or the claims
to obtain a new characterization of the constrained relative equal awards rule while
elaborating on the similarities between bankruptcy problems with nontransferable
utility and bargaining problems with claims as introduced by Chun and Thomson
(1992). Furthermore, we discuss the game theoretic modeling of NTU-bankruptcy
problems along the lines of Curiel, Maschler, and Tijs (1987) for TU-bankruptcy
problems by defining an appropriate coalitional bankruptcy game, focusing on the
structure of the core, and characterizing the class of game theoretic bankruptcy rules
using truncation invariance. Interestingly, the constrained relative equal awards rule
is a game theoretic bankruptcy rule, which means that it can be generalized to a
solution for the full class of nontransferable utility games. This is exploited in the
second part of this dissertation.



14 Chapter 1 Introduction

The second part of this dissertation focusses on the incorporation of egalitaria-
nism in transferable utility games and nontransferable utility games. A cooperative
game models an allocation problem in which players collectively gain revenues while
taking into account the possibility to act in coalitions. Following our interpretation of
egalitarianism, the interpersonal relations of utopia values form the key ingredient for
the determination of egalitarian payoff allocations. However, to allow for a coherent
comparison of egalitarian opportunities within coalitions, it is required to consistently
apply a fixed interpretation of equality. For that reason, the utopia values within the
grand coalition are used as a common benchmark for egalitarian allocations within
any subcoalition. We design an egalitarian negotiation procedure in which players
iteratively take their coalitional egalitarian opportunities into consideration. This
egalitarian procedure converges to a steady state in which each player has acquired
a claim attainable in one or more egalitarian admissible coalitions. These egalitarian
claims can be interpreted as aspiration levels for a payoff allocation within the grand
coalition. The possibly resulting infeasibility is modeled as a bankruptcy problem in
which these egalitarian claims are adopted. By solving these bankruptcy problems in
an egalitarian way following from the first part of this dissertation, a new and general
solution concept for cooperative games arises, which can be considered as a trade-off
between egalitarianism and coalitional rationality.

On the domain of transferable utility games (cf. Von Neumann and Morgen-
stern (1944)), our interpretation of egalitarianism boils down to equal division and
the result of the egalitarian procedure is called the procedural egalitarian solution.
Remarkably, this is the first single-valued solution which exists for any transferable
utility game and coincides with the well-known egalitarian solution of Dutta and Ray
(1989) on the class of convex games. On the class of bankruptcy games with transfe-
rable utility, the procedural egalitarian solution coincides with the constrained equal
awards rule for underlying monetary bankruptcy problems.

On the domain of nontransferable utility games (cf. Shapley and Shubik (1953)
and Aumann and Peleg (1960)), the result of the egalitarian procedure is called the
constrained egalitarian solution. Naturally, the constrained egalitarian solution of a
nontransferable utility game induced by a transferable utility game corresponds to the
procedural egalitarian solution. On the class of bankruptcy games with nontransfera-
ble utility, the constrained egalitarian solution coincides with the constrained relative
equal awards rule for underlying bankruptcy problems. On the class of bargaining
games, the constrained egalitarian solution induces a new and interesting way to solve
bargaining problems on the basis of utopia values, as an alternative for the solutions
proposed by Kalai and Smorodinsky (1975) and Kalai and Rosenthal (1978).
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The third part of this dissertation is devoted to communication situations which
arise when the players of a transferable utility game are subject to cooperation re-
strictions as modeled by an undirected graph. This outlying part contains no refe-
rence to an egalitarian allocation principle. Instead, we focus on the decomposition
of network communication games into unanimity games and we introduce a general
class of network control values based on the Shapley value (cf. Shapley (1953)) for
transferable utility games. The well-studied Myerson value (cf. Myerson (1977)) and
position value (cf. Borm, Owen, and Tijs (1992)) both belong to this new class.

Overview

This dissertation is organized as follows. Chapter 2 provides an overview of prelimi-
nary notions for bankruptcy problems with transferable utility, transferable utility
games, and nontransferable utility games.

Chapter 3 analyzes bankruptcy problems with nontransferable utility following
the classical axiomatic theory of bankruptcy by formulating some appropriate pro-
perties for bankruptcy rules and studying their implications. We explore duality of
bankruptcy rules and we derive several characterizations of the proportional rule and
the constrained relative equal awards rule.

Chapter 4 continues on this axiomatic approach by examining the relation of
the proportional rule and the constrained relative equal awards rule with several
consistency notions and the relative adjustment principle.

Chapter 5 takes an axiomatic bargaining approach to bankruptcy problems with
nontransferable utility by characterizing bankruptcy rules in terms of properties from
bargaining theory. In particular, we derive new axiomatic characterizations of the
proportional rule and the constrained relative equal awards rule using properties
which concern changes in the estate or the claims.

Chapter 6 analyzes bankruptcy problems with nontransferable utility from a game
theoretic perspective by studying the core of corresponding bankruptcy games. More-
over, we derive a necessary and sufficient condition for a bankruptcy rule to be game
theoretic.

Chapter 7 introduces and analyzes the procedural egalitarian solution for transfe-
rable utility games. This new concept is based on the result of a coalitional negotiation
procedure in which egalitarian considerations play a central role.

Chapter 8 generalizes the procedural egalitarian solution to the constrained egali-
tarian solution for nontransferable utility games. We explore the new solution using
the famous examples of Roth (1980) and Shafer (1980) and we formulate conditions
under which it leads to a core element.
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Using network control structures, Chapter 9 introduces a general class of net-
work communication games and studies their decomposition into unanimity games.
Moreover, we introduce a new class of network control values which contains both
the Myerson value and the position value. The decomposition results are used to
explicitly express these values in terms of dividends.



2 Preliminaries

Let N be a nonempty and finite set. An order of N is a bijection σ : {1, . . . , |N |} →
N . The set of all orders of N is denoted by Π(N). The collection of all subsets of N
is denoted by 2N = {S | S ⊆ N}. A collection B ⊆ 2N \{∅} is a cover if ⋃S∈B S = N ,
is independent if S 6⊂ T for all S, T ∈ B, and is balanced if there exists a function
δ : B → R++ for which ∑S∈B:i∈S δ(S) = 1 for all i ∈ N .

A vector x ∈ RN denotes x = (xi)i∈N , and xS ∈ RS denotes xS = (xi)i∈S for any
S ∈ 2N . The zero vector x ∈ RN with xi = 0 for all i ∈ N is denoted by 0N . For
any x, y ∈ RN , x ≤ y denotes xi ≤ yi for all i ∈ N , and x < y denotes xi < yi for all
i ∈ N . A function f : RN → RN is increasing if f(x) ≤ f(y) and f(x) 6= f(y) for all
x, y ∈ RN for which x ≤ y and x 6= y. A decreasing function is defined similarly. A
function is monotonic if it is increasing or decreasing.

Let A ⊆ RN+ be a nonempty, closed, and bounded set. Some related notions are

– the vector of utopia values uA = (max{xi | x ∈ A})i∈N ;

– the convex hull

conv(A) =
{
x ∈ RN+

∣∣∣∣ ∃A′⊆A,|A′|∈N∃θ:A′→R+,
∑

y∈A′ θ(y)=1 :
∑

y∈A′
θ(y)y = x

}
;

– the comprehensive hull comp(A) = {x ∈ RN+ | ∃y∈A : y ≥ x};

– the strong Pareto set SP(A) = {x ∈ A | ¬∃y∈A,y 6=x : y ≥ x};

– the weak Pareto set WP(A) = {x ∈ A | ¬∃y∈A : y > x};

– the strong upper contour set SUC(A) = {x ∈ RN+ | ¬∃y∈A,y 6=x : y ≥ x};

– the weak upper contour set WUC(A) = {x ∈ RN+ | ¬∃y∈A : y > x}.

17



18 Chapter 2 Preliminaries

Note that SP(A) ⊆ WP(A) ⊆ WUC(A) and SP(A) ⊆ SUC(A) ⊆ WUC(A). The
set A ⊆ RN+ is nontrivial if uA ∈ RN++, is convex if A = conv(A), is comprehensive
if A = comp(A), and is nonleveled if SP(A) = WP(A), or equivalently, SUC(A) =
WUC(A).

2.1 Bankruptcy problems with transferable utility
A bankruptcy problem with transferable utility (cf. O’Neill (1982)) is a triple (N, e, c)
in which N is a nonempty and finite set of claimants, e ∈ R+ is an estate, and c ∈ RN+
is a vector of claims of N on e for which ∑i∈N ci ≥ e. Let TUBRN denote the class of
bankruptcy problems with transferable utility and claimant set N . For convenience,
a TU-bankruptcy problem on N is denoted by (e, c) ∈ TUBRN .

A bankruptcy rule f : TUBRN → RN+ assigns to any (e, c) ∈ TUBRN a payoff
allocation f(e, c) ∈ RN+ for which ∑i∈N fi(e, c) = e and f(e, c) ≤ c.

The proportional rule Prop : TUBRN → RN+ is the bankruptcy rule which assigns
to any (e, c) ∈ TUBRN the payoff allocation

Prop(e, c) = λe,cc,

where λe,c = max{t ∈ [0, 1] | ∑i∈N tci = e}.
The constrained equal awards rule CEA : TUBRN → RN+ is the bankruptcy rule

which assigns to any (e, c) ∈ TUBRN the payoff allocation

CEA(e, c) = (min{ci, ae,c})i∈N ,

where ae,c = max{t ∈ [0, e] | ∑i∈N min{ci, t} = e}.
The constrained equal losses rule CEL : TUBRN → RN+ is the bankruptcy rule

which assigns to any (e, c) ∈ TUBRN the payoff allocation

CEL(e, c) = (max{ci − be,c, 0})i∈N ,

where be,c = min{t ∈ R+ |
∑
i∈N max{ci − t, 0} = e}.

2.2 Transferable utility games
A transferable utility game (cf. Von Neumann and Morgenstern (1944)) is a pair
(N, v) in which N is a nonempty and finite set of players and v : 2N → R assigns to
each coalition S ∈ 2N its worth v(S) ∈ R such that v(∅) = 0. The number v(S)

|S| is the
average worth of coalition S ∈ 2N \ {∅}. Let TUN denote the class of transferable
utility games with player set N . For convenience, a TU-game on N is denoted by
v ∈ TUN . The subgame vS ∈ TUS of v ∈ TUN on S ∈ 2N \ {∅} is defined by
vS(R) = v(R) for all R ∈ 2S.
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Let v ∈ TUN . The vector Mσ(v) ∈ RN corresponding to σ ∈ Π(N) is given by

Mσ
σ(k)(v) = v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)})

for all k ∈ {1, . . . , |N |}. The vector K(v) ∈ RN is given by

Ki(v) = v(N)− v(N \ {i})

for all i ∈ N , and the vector k(v) ∈ RN is given by

ki(v) = max
S∈2N :i∈S

v(S)−
∑

j∈S\{i}
Kj(v)


for all i ∈ N . The core (cf. Gillies (1959)) is given by

C(v) =
{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N), ∀S∈2N :
∑
i∈S

xi ≥ v(S)
}
,

the Weber set (cf. Weber (1988)) is given by

W(v) = conv ({Mσ(v) | σ ∈ Π(N)}) ,

the core cover (cf. Tijs and Lipperts (1982)) is given by

CC(v) =
{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N), k(v) ≤ x ≤ K(v)
}
,

and the reasonable set (cf. Gerard-Varet and Zamir (1987)) is given by

R(v) =
{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀i∈N : min
σ∈Π(N)

Mσ
i (v) ≤ xi ≤ max

σ∈Π(N)
Mσ

i (v)
}
.

It is known that C(v) ⊆ W(v) ⊆ R(v) and C(v) ⊆ CC(v) ⊆ R(v).

A transferable utility game v ∈ TUN is

– monotonic if v(S) ≤ v(T ) for all S, T ∈ 2N for which S ⊆ T ;

– superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ∈ 2N for which S ∩ T = ∅;

– convex (cf. Shapley (1971)) if v(S)+v(T ) ≤ v(S∪T )+v(S∩T ) for all S, T ∈ 2N ;

– balanced (cf. Bondareva (1963) and Shapley (1967)) if ∑S∈B δ(S)v(S) ≤ v(N)
for all balanced collections B ⊆ 2N \ {∅} and any δ : B → R++ for which∑
S∈B:i∈S δ(S) = 1 for all i ∈ N .
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Note that convexity implies superadditivity. For any convex game v ∈ TUN , Shapley
(1971) showed that maxσ∈Π(N) M

σ
i (v) = v(N) − v(N \ {i}) and minσ∈Π(N) M

σ
i (v) =

v({i}) for all i ∈ N , and Tijs and Lipperts (1982) showed that ki(v) = v({i}) for all
i ∈ N .

Bondareva (1963) and Shapley (1967) showed that C(v) 6= ∅ if and only if v ∈ TUN

is balanced. Ichiishi (1981) showed that C(v) = W(v) if and only if v ∈ TUN is
convex. A transferable utility game v ∈ TUN is compromise stable (cf. Quant, Borm,
Reijnierse, and Van Velzen (2005)) if C(v) = CC(v) and CC(v) 6= ∅. This means that
both convexity and compromise stability individually imply balancedness.

We introduce the notion of reasonable stability to describe games for which the
core and the reasonable set coincide. Moreover, we show that reasonable stability is
equivalent to the combination of convexity and compromise stability.

Definition (Reasonable Stability (cf. Dietzenbacher (2018)))
A transferable utility game v ∈ TUN is reasonable stable if C(v) = R(v).

Theorem 2.2.1
A transferable utility game is reasonable stable if and only if it is convex and com-
promise stable.

Proof. Assume that v ∈ TUN is reasonable stable. Then C(v) = R(v) and C(v) 6= ∅.
Since C(v) ⊆ W(v) ⊆ R(v) and C(v) ⊆ CC(v) ⊆ R(v), this means that C(v) =W(v)
and C(v) = CC(v). Hence, v ∈ TUN is convex and compromise stable.

Assume that v ∈ TUN is convex and compromise stable. Since v ∈ TUN is convex,
minσ∈Π(N) M

σ
i (v) = v({i}) and maxσ∈Π(N)M

σ
i (v) = v(N)− v(N \ {i}) for all i ∈ N .

Moreover, ki(v) = v({i}) for all i ∈ N . This means that minσ∈Π(N) M
σ
i (v) = ki(v)

and maxσ∈Π(N) M
σ
i (v) = Ki(v) for all i ∈ N , so CC(v) = R(v). Since v ∈ TUN

is compromise stable, this implies that C(v) = CC(v) = R(v). Hence, v ∈ TUN is
reasonable stable.

The bankruptcy game with transferable utility (cf. O’Neill (1982)) ve,c ∈ TUN

corresponding to the bankruptcy problem (e, c) ∈ TUBRN is given by

ve,c(S) = max

e− ∑
i∈N\S

ci, 0


for all S ∈ 2N . Curiel, Maschler, and Tijs (1987) showed that bankruptcy games
are convex and compromise stable. Quant, Borm, Reijnierse, and Van Velzen (2005)
showed that convex and compromise stable games are strategically equivalent to bank-
ruptcy games. By Theorem 2.2.1, this means that bankruptcy games are reasonable
stable, and reasonable stable games are strategically equivalent to bankruptcy games.
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A solution for transferable utility games f : TUN → RN assigns to any v ∈ TUN

a payoff allocation f(v) ∈ RN for which ∑i∈N fi(v) = v(N).

A solution f : TUN → RN satisfies

– symmetry if fi(v) = fj(v) for all v ∈ TUN and any i, j ∈ N for which
v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j};

– dummy invariance if fi(v) = v({i}) for all v ∈ TUN and any i ∈ N for which
v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N \ {i};

– strong strategic covariance if f(v) = (αfi(v′) + βi)i∈N for all v, v′ ∈ TUN and
any α ∈ R++ and β ∈ RN for which v(S) = αv′(S) +∑

i∈S βi for all S ∈ 2N ;

– weak strategic covariance if f(v) = (αfi(v′) + β)i∈N for all v, v′ ∈ TUN and any
α ∈ R++ and β ∈ R for which v(S) = αv′(S) + β|S| for all S ∈ 2N ;

– marginal monotonicity (cf. Young (1985)) if fi(v) ≤ fi(v′) for all v, v′ ∈ TUN

and any i ∈ N for which v(S∪{i})−v(S) ≤ v′(S∪{i})−v′(S) for all S ⊆ N\{i};

– coalitional monotonicity (cf. Young (1985)) if fS(v) ≤ fS(v′) for all v, v′ ∈ TUN

and any S ∈ 2N for which v(S) ≤ v′(S) and v(T ) = v′(T ) for all T ∈ 2N \ {S};

– aggregate monotonicity (cf. Megiddo (1974)) if f(v) ≤ f(v′) for all v, v′ ∈ TUN

for which v(N) ≤ v′(N) and v(S) = v′(S) for all S ⊂ N .

Note that strong strategic covariance implies weak strategic covariance, marginal
monotonicity implies coalitional monotonicity, and coalitional monotonicity implies
aggregate monotonicity.

2.3 Nontransferable utility games
A nontransferable utility game (cf. Shapley and Shubik (1953) and Aumann and Pe-
leg (1960)) is a pair (N, V ) in which N is a nonempty and finite set of players and
V assigns to each coalition S ∈ 2N \ {∅} a nonempty, closed, bounded, and compre-
hensive set of payoff allocations V (S) ⊆ RS+. Note that V (S) is explicitly restricted
to nonnegative payoff allocations. Let NTUN denote the class of nontransferable uti-
lity games with player set N . For convenience, an NTU-game on N is denoted by
V ∈ NTUN . The subgame VS ∈ NTUS of V ∈ NTUN on S ∈ 2N \ {∅} is defined
by VS(R) = V (R) for all R ∈ 2S \ {∅}. Note that any nonnegative game v ∈ TUN

induces the game V ∈ NTUN given by V (S) = {x ∈ RS+ |
∑
i∈S xi ≤ v(S)} for all

S ∈ 2N \ {∅}.
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Let V ∈ NTUN . The strong core is given by

CS(V ) =
{
x ∈ V (N)

∣∣∣ ∀S∈2N\{∅} : xS ∈ SUC(V (S))
}

and the weak core is given by

CW(V ) =
{
x ∈ V (N)

∣∣∣ ∀S∈2N\{∅} : xS ∈WUC(V (S))
}
.

Note that CS(V ) ⊆ CW(V ). Moreover, CS(V ) = CW(V ) if V (S) is nonleveled for all
S ∈ 2N \ {∅}, as is the case for NTU-games induced by TU-games.

A nontransferable utility game V ∈ NTUN is

– monotonic if V (S)× {0T\S} ⊆ V (T ) for all S, T ∈ 2N \ {∅} for which S ⊆ T ;

– superadditive if V (S) × V (T ) ⊆ V (S ∪ T ) for all S, T ∈ 2N \ {∅} for which
S ∩ T = ∅;

– ordinal convex (cf. Vilkov (1977)) if V is superadditive, and xS∪T ∈ V (S ∪ T )
or xS∩T ∈ V (S ∩T ) for all S, T ∈ 2N \{∅} for which S ∩T 6= ∅ and any x ∈ RN+
for which xS ∈ V (S) and xT ∈ V (T );

– coalitional merge convex (cf. Hendrickx, Borm, and Timmer (2002)) if V is
superadditive, and for all R ∈ 2N \ {∅} and S, T ∈ 2N\R \ {∅} for which S ⊂ T ,
and any s ∈ WP(V (S)), t ∈ WP(V (T )), and x ∈ V (S ∪ R) for which xS ≥ s,
there exists a y ∈ V (T ∪R) for which yT ≥ t and yR ≥ xR;

– balanced (cf. Scarf (1967)) if for all balanced collections B ⊆ 2N \{∅}, x ∈ V (N)
if xS ∈ V (S) for all S ∈ B.

Note that superadditivity implies monotonicity. Greenberg (1985), Hendrickx, Borm,
and Timmer (2002), and Scarf (1967) showed that CW(V ) 6= ∅ if V ∈ NTUN is ordinal
convex, coalitional merge convex, or balanced, respectively.

A solution for nontransferable utility games F : NTUN → RN+ assigns to any
V ∈ NTUN a payoff allocation F (V ) ∈WP(V (N)).
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3 Proportionality, Equality,
and Duality

3.1 Introduction

A bankruptcy problem is an elementary allocation problem in which claimants have
individual claims on an insufficient estate. Bankruptcy theory studies allocations
of the estate among the claimants, taking into account the corresponding claims.
In a bankruptcy problem with transferable utility (cf. O’Neill (1982)), the estate
and claims are of a monetary nature. These problems are well-studied, both from an
axiomatic perspective and a game theoretic perspective. We refer to Thomson (2003)
for an extensive survey, to Thomson (2013) for recent advances, and to Thomson
(2015) for an update.

In a bankruptcy problem with nontransferable utility, claimants have incompara-
ble claims and the estate is expressed in a set of attainable utility allocations. These
problems arise when claimants have individual utility functions over their monetary
payoffs. NTU-bankruptcy problems form a natural generalization of TU-bankruptcy
problems. Thomson (2013) states that, although the passage from TU to NTU is in
general fraught with difficulties, an NTU generalization is worthwhile in the search
for greater generality.

Orshan, Valenciano, and Zarzuelo (2003) analyzed NTU-bankruptcy problems
from a game theoretic perspective by showing that the intersection of the bilateral
consistent prekernel and the core is nonempty for every smooth bankruptcy game.
Estévez-Fernández, Borm, and Fiestras-Janeiro (2014) redefined NTU-bankruptcy
games on the basis of convexity and compromise stability. This chapter, based
on Dietzenbacher, Estévez-Fernández, Borm, and Hendrickx (2016), analyzes NTU-
bankruptcy problems from an axiomatic perspective by formulating appropriate pro-
perties for bankruptcy rules and studying their implications.

25
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Bankruptcy problems with nontransferable utility share characteristics with bar-
gaining problems with claims (cf. Chun and Thomson (1992)) and Nash rationing
problems (cf. Mariotti and Villar (2005)). These models are studied on the basis of
solutions and axioms originating from bargaining theory. Instead, we aim to gene-
ralize monetary bankruptcy problems and particularly show that bankruptcy theory
can be extended by adequately reformulating the main notions and properties.

The proportional rule for bankruptcy problems prescribes the efficient allocation
which is proportional to the vector of claims. We study the proportional rule for NTU-
bankruptcy problems and extend the axiomatic characterizations of Young (1988)
and Chun (1988) using adequate generalizations of the properties composition down,
composition up, self-duality, and path linearity.

The constrained equal awards rule for TU-bankruptcy problems divides the estate
equally such that all claimants are not allocated more than their claims. In bank-
ruptcy problems with nontransferable utility, it makes sense to compare the claims
in relation to the estate since claimants differ in their measure of utility. For that
reason, we introduce the constrained relative equal awards rule for NTU-bankruptcy
problems which takes into account the relative claims of the claimants, i.e. the claims
in relation to their utopia values. We extend the axiomatic characterizations of Dagan
(1996), Herrero and Villar (2002), Yeh (2004), and Yeh (2006) using generalizations
of the properties symmetry, truncation invariance, conditional full compensation, and
claim monotonicity. By extending its axiomatic characterization based on symme-
try and independence of larger claims, we show that the constrained relative equal
awards rule also shares a characteristic feature with the serial mechanism for cost
sharing problems (cf. Moulin and Shenker (1992)). In those problems, agents share
a production technology and distribute the joint costs among them.

Two bankruptcy rules are called dual (cf. Aumann and Maschler (1985)) if one
rule allocates awards in the same way as the other rule allocates losses. Two properties
for bankruptcy rules are called dual (cf. Herrero and Villar (2001)) if for any two dual
bankruptcy rules it holds that one rule satisfies one property if and only if the other
rule satisfies the other property. We generalize the notions of dual bankruptcy rules
and dual properties to the context of NTU-bankruptcy problems without explicitly
formulating dual bankruptcy problems. In particular, we exploit duality, we show
that the proportional rule is self-dual, and we adequately construct the dual of the
constrained relative equal awards rule, the constrained relative equal losses rule.

This chapter is organized in the following way. Section 3.2 formally introduces
NTU-bankruptcy problems and defines basic notions for NTU-bankruptcy rules. In
Section 3.3, we explore duality and analyze dual properties. Section 3.4 studies the
proportional rule and Section 3.5 analyzes the constrained relative equal awards rule.
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3.2 Bankruptcy problems
A bankruptcy problem with nontransferable utility (cf. Orshan, Valenciano, and Zar-
zuelo (2003)) is a triple (N,E, c) in which N is a nonempty and finite set of claimants,
E ⊆ RN+ is a nonempty, closed, bounded, comprehensive, and nonleveled estate, and
c ∈WUC(E) is a vector of claims of N on E. Note that 0N ∈ E, and E is nontrivial
if and only if E 6= {0N}. The estate is expressed in a set of attainable utility allo-
cations which are assumed to be normalized in such a way that allocating nothing
corresponds to a utility level of zero. The claim vector represents the individual uti-
lity claims on the estate. Let BRN denote the class of bankruptcy problems with
nontransferable utility and claimant set N . For convenience, an NTU-bankruptcy
problem on N is denoted by (E, c) ∈ BRN . Note that (E ∪E ′, c), (E ∩E ′, c) ∈ BRN

for all (E, c), (E ′, c) ∈ BRN . Moreover, any bankruptcy problem (e, c) ∈ TUBRN in-
duces the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |

∑
i∈N xi ≤ e}.

Let (E, c) ∈ BRN be such that E 6= {0N}. Throughout this chapter, scaling the
estate is an essential and fundamental operation which preserves its shape. Applying
the scaling operation to the estate allows to analyze the implications for the claimants
when their interpersonal relations remain at a constant ratio. For any t ∈ R+, the
set tE ⊆ RN+ is given by tE = {tx | x ∈ E}. Note that utE = tuE for all t ∈ R+. Let
x ∈ RN+ . The scalar τE,x ∈ R+ is defined in such a way that

x ∈WP(τE,xE).

Note that the conditions on E imply that τE,x is well-defined and increasing in x. We
have τE,x ≤ 1 if x ∈ E, and τE,x > 1 if x 6∈ E. Moreover, τ tE,x = τE,x

t
for all t ∈ R++,

and τE,tx = tτE,x for all t ∈ R+. Note that (tE, x) ∈ BRN for all t ∈ [0, τE,x].

Example 3.1
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4). Then τE,c = 11
2 and τE,cE = {x ∈ RN+ |

x2
1 + 18x2 ≤ 81}. This is illustrated as follows.

τE,cE

E

c

x10 1 2 3 4 5 6 7 8 9

x2

1

2

3

4

4
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A bankruptcy rule f : BRN → RN+ assigns to any (E, c) ∈ BRN a payoff allocation
f(E, c) ∈ WP(E) for which f(E, c) ≤ c. Note that f(E, c) = 0N if and only if
E = {0N}, and f(E, c) = c if and only if c ∈ E.

Let f : BRN → RN+ be a bankruptcy rule, let (E, c) ∈ BRN be such that E 6=
{0N}, and let x ∈ RN+ . The payoff path pE,xf : [0, τE,x] → RN+ of f from 0N to x is
defined by

pE,xf (t) = f(tE, x)

for all t ∈ [0, τE,x]. Note that pE,xf is injective.
All payoff allocations obtained from scaling the estate are represented by the

payoff path of the corresponding bankruptcy rule. The path monotonicity property
describes bankruptcy rules for which payoffs increase when the estate is enlarged by
a scaling operation.1 Path monotonicity is a stronger property than path continuity,
as is the case for TU-bankruptcy rules.

Definition (Path Monotonicity)
A bankruptcy rule f : BRN → RN+ satisfies path monotonicity if pE,cf is increasing for
all (E, c) ∈ BRN for which E 6= {0N}.

Definition (Path Continuity)
A bankruptcy rule f : BRN → RN+ satisfies path continuity if pE,cf is continuous for
all (E, c) ∈ BRN for which E 6= {0N}.

Lemma 3.2.1
Let f : BRN → RN+ be a bankruptcy rule. If f satisfies path monotonicity, then f

satisfies path continuity.

Proof. Assume that f satisfies path monotonicity. Suppose that f does not satisfy
path continuity. Then there exists an (E, c) ∈ BRN such that E 6= {0N} and pE,cf

is not continuous at a certain t̂ ∈ [0, τE,c]. Suppose that t̂ ∈ (0, τE,c). Since pE,cf is
increasing,

lim
t↑t̂

pE,cf (t) = sup
t∈[0,t̂)

pE,cf (t) ≤ pE,cf (t̂) ≤ inf
t∈(t̂,τE,c]

pE,cf (t) = lim
t↓t̂

pE,cf (t).

Since pE,cf is not continuous at t̂, limt↑t̂ p
E,c
f (t) 6= pE,cf (t̂) or pE,cf (t̂) 6= limt↓t̂ p

E,c
f (t). This

means that supt∈[0,t̂) p
E,c
f (t) 6= pE,cf (t̂) or pE,cf (t̂) 6= inft∈(t̂,τE,c] p

E,c
f (t). Suppose that

supt∈[0,t̂) p
E,c
f (t) 6= pE,cf (t̂). Then there exists an x ∈ RN+ such that supt∈[0,t̂) p

E,c
f (t) ≤

x ≤ pE,cf (t̂) and supt∈[0,t̂) p
E,c
f (t) 6= x 6= pE,cf (t̂). This means that t < τE,x < t̂ for all

t ∈ [0, t̂). This is not possible. Similarly, pE,cf (t̂) 6= inft∈(t̂,τE,c] p
E,c
f (t) is not possible.

One of these cases also applies if t̂ ∈ {0, τE,c}. Hence, f satisfies path continuity.
1A stronger monotonicity property based on estate inclusion instead of estate scaling appears in

Section 5.2 as estate monotonicity.
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3.3 Duality
In this section, we explore duality and analyze dual properties for bankruptcy rules.
Two rules are called dual (cf. Aumann and Maschler (1985)) if one rule allocates
awards in the same way as the other rule allocates losses. We generalize this idea to
rules for bankruptcy problems with nontransferable utility.

Definition (Dual Bankruptcy Rules)
Two bankruptcy rules f : BRN → RN+ and g : BRN → RN+ are dual if

f(E, c) = c− g(τE,c−f(E,c)E, c)2 and g(E, c) = c− f(τE,c−g(E,c)E, c)

for all (E, c) ∈ BRN for which E 6= {0N}.

Note that for any two dual bankruptcy rules f : BRN → RN+ and g : BRN → RN+ ,

f(tE, c) = c− g(τE,c−f(tE,c)E, c)

for all (E, c) ∈ BRN for which E 6= {0N} and any t ∈ [0, τE,c].
Following our scaling approach, a dual rule assigns the corresponding losses to

the bankruptcy problem obtained by scaling the estate in opposite direction from
the claims point such that the boundary intersects with the awards assigned by the
original rule, as illustrated by the following example.

Example 3.2
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1. Let f : BRN → RN+ and
g : BRN → RN+ be two dual bankruptcy rules. Then f(E, c) = c− g(τE,c−f(E,c)E, c).
This is illustrated as follows.

c
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4

f(E, c)
g(τE,c−f(E,c)E, c)

4

The following example shows that, contrary to TU-bankruptcy rules, a dual NTU-
bankruptcy rule does not necessarily exist.

2Note that (τE,c−f(E,c)E, c) ∈ BRN since τE,c−f(E,c) ∈ [0, τE,c].
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Example 3.3
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + x2 ≤ 9} and c = (4, 10). Then (2, 5), (1, 8) ∈WP(E). Let t ∈ [0, τE,c]
be given by t = 1

9(1 +
√

82) and let f : BRN → RN+ be a bankruptcy rule such that
f(E, c) = (2, 5) and f(tE, c) = (3, 2). This is illustrated as follows.

E

c

x10 1 2 3 4

x2

3

6

9

f(E, c)

f(tE, c)

Suppose that there exists a dual bankruptcy rule g : BRN → RN+ . Then

(2, 5) = f(E, c) = c− g(τE,c−f(E,c)E, c) = c− g(τE,(2,5)E, c) = c− g(E, c)
and (3, 2) = f(tE, c) = c− g(τE,c−f(tE,c)E, c) = c− g(τE,(1,8)E, c) = c− g(E, c).

This is impossible. Hence, f does not have a dual bankruptcy rule. 4

To still justify the term duality, we show that a dual rule is unique.

Lemma 3.3.1
Let f : BRN → RN+ , g : BRN → RN+ , and h : BRN → RN+ be three bankruptcy rules.
If f and g are dual, and f and h are dual, then g = h.

Proof. Assume that f and g are dual, and that f and h are dual. Let (E, c) ∈ BRN

be such that E 6= {0N}. Then

g(E, c) = c− f(τE,c−g(E,c)E, c) = h(τE,c−f(τE,c−g(E,c)E,c)E, c)
= h(τE,g(E,c)E, c) = h(E, c),

where the first and third equality follow from duality of f and g, the second equality
follows from duality of f and h, and the last equality follows from g(E, c) ∈WP(E)
implying that τE,g(E,c) = 1. Hence, g = h.

A rule is self-dual if it coincides with its dual.

Definition (Self-Dual Bankruptcy Rule)
A bankruptcy rule f : BRN → RN+ is self-dual if f(E, c) = c − f(τE,c−f(E,c)E, c) for
all (E, c) ∈ BRN for which E 6= {0N}.



Section 3.3 Duality 31

The remainder of this section studies relations between properties of two dual
bankruptcy rules. Two properties for bankruptcy rules are dual (cf. Herrero and
Villar (2001)) if for any two dual bankruptcy rules, one property is satisfied by one
rule if and only if the other property is satisfied by the other rule. A property for
bankruptcy rules is self-dual if any two dual bankruptcy rules either both satisfy the
property, or neither. Note that self-duality is a self-dual property. We show that
path monotonicity is a self-dual property as well.

Lemma 3.3.2
Path monotonicity is self-dual.

Proof. Let f : BRN → RN+ and g : BRN → RN+ be two dual bankruptcy rules. Assume
that f satisfies path monotonicity. Let (E, c) ∈ BRN be such that E 6= {0N}. Then

pE,cf (t) = f(tE, c) = c− g(τE,c−f(tE,c)E, c) = c− pE,cg (τE,c−p
E,c
f

(t))

for all t ∈ [0, τE,c], where the second equality follows from duality. Since pE,cf is
increasing, this means that τE,c−p

E,c
f

(t) is decreasing in t. This implies that pE,cg is
increasing, so g satisfies path monotonicity. Hence, path monotonicity is self-dual.

Next, we study a self-dual symmetry property. The idea of equality, equity, or
symmetry underlies many theories of economic justice (cf. Rawls (1971) and Young
(1995)). The interpretation of symmetry depends on the underlying model. In a
bankruptcy problem with nontransferable utility, claimants not only differ in their
claims, but also differ in their measure of utility. It makes sense to compare their
claims in relation to the estate. Preserving the most important characteristics, the
maximal individual payoffs within the estate, or utopia values, form a natural bench-
mark for a symmetry property.

Definition (Relative Symmetry)
A bankruptcy rule f : BRN → RN+ satisfies relative symmetry if fi(E, c)uEj =
fj(E, c)uEi for all (E, c) ∈ BRN and any i, j ∈ N for which ciu

E
j = cju

E
i .

Note that relative symmetry is an interpretation of equality which is covariant
under individual rescaling of utility. Moreover, for any bankruptcy problem (E, c) ∈
BRN in which E = {x ∈ RN+ |

∑
i∈N xi ≤ e}, induced by a bankruptcy problem

(e, c) ∈ TUBRN , uEi = e for all i ∈ N and relative symmetry boils down to the
standard property equal treatment of claimants with equal claims.
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Example 3.4
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ |

√
6x1 + 2x2 ≤ 6} and c = (4, 2). Then uE = (6, 3) and f(E, c) =

(9 − 3
√

5, 9
2 −

3
2

√
5) for any bankruptcy rule f : BRN → RN+ satisfying relative

symmetry. This is illustrated as follows.
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Lemma 3.3.3
Relative symmetry is self-dual.

Proof. Let f : BRN → RN+ and g : BRN → RN+ be two dual bankruptcy rules. Assume
that f satisfies relative symmetry. Let (E, c) ∈ BRN be such that E 6= {0N} and
let i, j ∈ N be such that ciuEj = cju

E
i . Denote d = τE,c−g(E,c). Then fi(dE, c)udEj =

fj(dE, c)udEi since ciudEj = cju
dE
i . This means that

gi(E, c)uEj = (ci − fi(dE, c))uEj = ciu
E
j − fi(dE, c)uEj

= cju
E
i − fj(dE, c)uEi = (cj − fj(dE, c))uEi = gj(E, c)uEi ,

where the first and last equality follow from duality, and the third equality follows
from relative symmetry. This means that g satisfies relative symmetry. Hence, rela-
tive symmetry is self-dual.

Two other interesting properties from TU-bankruptcy theory are composition
down and composition up. Composition down implies that solutions on the pay-
off path can replace the claim vector when the estate is scaled down. Composition
up implies that solutions on the payoff path can act as a new origin from which the
estate is scaled again.3

Definition (Composition Down)
A bankruptcy rule f : BRN → RN+ satisfies composition down if

f(tE, c) = f(tE, f(E, c))

for all (E, c) ∈ BRN for which E 6= {0N} and any t ∈ [0, 1].
3Another composition property based on estate inclusion instead of estate scaling appears in

Section 5.2 as step-by-step negotiations.
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Definition (Composition Up)
A bankruptcy rule f : BRN → RN+ satisfies composition up if

f(E, c) = f(tE, c) + f(τE,f(E,c)−f(tE,c)E, c− f(tE, c))

for all (E, c) ∈ BRN for which E 6= {0N} and any t ∈ [0, 1].

Example 3.5
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1. Then

f(E, c) = f
(1

2E, c
)

+ f
(
τE,f(E,c)−f( 1

2E,c)E, c− f
(1

2E, c
))

for any bankruptcy rule f : BRN → RN+ satisfying composition up. This is illustrated
as follows.

c
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Both composition properties are stronger than path monotonicity.

Lemma 3.3.4
Let f : BRN → RN+ be a bankruptcy rule.

(i) If f satisfies composition down, then f satisfies path monotonicity.

(ii) If f satisfies composition up, then f satisfies path monotonicity.

Proof. (i) Assume that f satisfies composition down. Let (E, c) ∈ BRN be such that
E 6= {0N} and let t1, t2 ∈ [0, τE,c] be such that t1 < t2. Then t1

t2
∈ [0, 1) and

pE,cf (t1) = f(t1E, c) = f
(
t1
t2
t2E, c

)
= f

(
t1
t2
t2E, f(t2E, c)

)
= f(t1E, f(t2E, c)) ≤ f(t2E, c) = pE,cf (t2),

where the third equality follows from composition down and the inequality follows
from the definition of a bankruptcy rule. Moreover, pE,cf (t1) 6= pE,cf (t2) since pE,cf is
injective. Hence, f satisfies path monotonicity.
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(ii) Assume that f satisfies composition up. Let (E, c) ∈ BRN be such that
E 6= {0N} and let t1, t2 ∈ [0, τE,c] be such that t1 < t2. Then t1

t2
∈ [0, 1) and

pE,cf (t2) = f(t2E, c)

= f
(
t1
t2
t2E, c

)
+ f

(
τ
t2E,f(t2E,c)−f

(
t1
t2
t2E,c

)
t2E, c− f

(
t1
t2
t2E, c

))
= f(t1E, c) + f(τE,f(t2E,c)−f(t1E,c)E, c− f(t1E, c))
≥ f(t1E, c)
= pE,cf (t1),

where the second equality follows from composition up and the inequality follows
from the definition of a bankruptcy rule. Moreover, pE,cf (t2) 6= pE,cf (t1) since pE,cf is
injective. Hence, f satisfies path monotonicity.

Finally, we show that composition down and composition up are dual properties.

Lemma 3.3.5
Composition down and composition up are dual.

Proof. Let f : BRN → RN+ and g : BRN → RN+ be two dual bankruptcy rules.

First, assume that f satisfies composition down. Then f satisfies path monoto-
nicity by Lemma 3.3.4. Then g satisfies path monotonicity by Lemma 3.3.2. Let
(E, c) ∈ BRN be such that E 6= {0N} and let t ∈ [0, 1]. If t ∈ {0, 1}, then
g(E, c) = g(tE, c) + g(τE,g(E,c)−g(tE,c)E, c− g(tE, c)). Suppose that t ∈ (0, 1). Denote
d = τE,c−g(E,c) and denote d′ = τE,c−g(tE,c). Then d < d′ since g(tE, c) ≤ g(E, c) and
g(tE, c) 6= g(E, c). This means that d

d′
∈ [0, 1) and

g(E, c)− g(tE, c) = (c− f(dE, c))− (c− f(d′E, c))
= f(d′E, c)− f(dE, c)
= f(d′E, c)− f(dE, f(d′E, c))

= f(d′E, c)−
(
f(d′E, c)− g(τE,f(d′E,c)−f(dE,f(d′E,c))E, f(d′E, c))

)
= g(τE,g(E,c)−g(tE,c)E, c− g(tE, c)),

where the first and fourth equality follow from duality, and the third equality follows
from composition down. Hence, g satisfies composition up.
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Next, assume that g satisfies composition up. Then g satisfies path monotonicity
by Lemma 3.3.4. Then f satisfies path monotonicity by Lemma 3.3.2. Let (E, c) ∈
BRN be such that E 6= {0N} and let t ∈ [0, 1]. If t ∈ {0, 1}, then f(tE, c) =
f(tE, f(E, c)). Suppose that t ∈ (0, 1). Denote d = τE,c−f(E,c) and denote d′ =
τE,c−f(tE,c). Then d < d′ since f(tE, c) ≤ f(E, c) and f(tE, c) 6= f(E, c). This means
that d

d′
∈ [0, 1) and

f(tE, c) = c− g(d′E, c)

= c−
(
g(dE, c) + g(τE,g(d′E,c)−g(dE,c)E, c− g(dE, c))

)
= f(E, c)− g(τE,f(E,c)−f(tE,c)E, f(E, c))

= f(E, c)−
(
f(E, c)− f(τE,f(E,c)−g(τE,f(E,c)−f(tE,c)E,f(E,c))E, f(E, c))

)
= f(τE,f(tE,c)E, f(E, c))
= f(tE, f(E, c)),

where the first, third, fourth, and fifth equality follow from duality, the second
equality follows from composition up, and the last equality follows from f(tE, c) ∈
WP(tE) implying that τE,f(tE,c) = t. Hence, f satisfies composition down.

3.4 The proportional rule
This section introduces the proportional rule for bankruptcy problems with nontrans-
ferable utility and provides three axiomatic characterizations.

Definition (Proportional Rule)
The proportional rule Prop : BRN → RN+ is the bankruptcy rule which assigns to any
(E, c) ∈ BRN the payoff allocation

Prop(E, c) = λE,cc,

where λE,c = max{t ∈ [0, 1] | tc ∈WP(E)}.

Note that if E 6= {0N}, then λE,c = 1
τE,c

,

λtE,c = tλE,c for all t ∈ [0, τE,c],
and λE,tc = λE,c

t
for all t ≥ λE,c.
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Example 3.6
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1. Then λE,c = 1
τE,c

= 2
3

and Prop(E, c) = λE,cc = (2, 22
3). This is illustrated as follows.
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The characterization of the proportional rule for TU-bankruptcy problems in
terms of composition down and self-duality (cf. Thomson (2016)), or composition
up and self-duality (cf. Young (1988)), can be extended to NTU-bankruptcy pro-
blems.

Theorem 3.4.1

(i) The proportional rule is the unique self-dual bankruptcy rule satisfying compo-
sition down.

(ii) The proportional rule is the unique self-dual bankruptcy rule satisfying compo-
sition up.

Proof. Since (ii) follows from (i) and Lemma 3.3.5, it suffices to prove only (i).

First, let (E, c) ∈ BRN be such that E 6= {0N}. Then

Prop(τE,c−Prop(E,c)E, c) = λτ
E,(1−λE,c)cE,cc = τE,(1−λ

E,c)cλE,cc = (1− λE,c)τE,cλE,cc
= (1− λE,c)c = c− λE,cc = c− Prop(E, c).

Hence, the proportional rule is self-dual. Let t ∈ [0, 1]. Then

Prop(tE,Prop(E, c)) = λtE,Prop(E,c)Prop(E, c) = λtE,λ
E,ccλE,cc

= λtE,cc = Prop(tE, c).

Hence, the proportional rule satisfies composition down.
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Second, let f : BRN → RN+ be a self-dual bankruptcy rule satisfying composition
down. Then f satisfies path monotonicity by Lemma 3.3.4. Then f satisfies path
continuity by Lemma 3.2.1. Let (E, c) ∈ BRN . If E = {0N}, then f(E, c) = 0N =
Prop(E, c). Suppose that E 6= {0N}. Let x ∈ RN+ . For any s ∈ [0,∑i∈N xi], there
exists a unique t ∈ [0, τE,x] for which ∑i∈N fi(tE, x) = s. Let t ∈ [0, τE,x]. Then

pE,xf (τE,x−p
E,x
f

(t)) = f(τE,x−p
E,x
f

(t)E, x) = f(τE,x−f(tE,x)E, x)
= x− f(tE, x) = x− pE,xf (t),

where the third equality follows from self-duality. This means that for any vector
y ∈ RN+ on the payoff path of f from 0N to x, x − y is also on the payoff path of f
from 0N to x. Let t′ ∈ [0, t]. Then

p
E,pE,x

f
(t)

f (t′) = f(t′E, pE,xf (t)) = f(t′E, f(tE, x)) = f(t′E, x) = pE,xf (t′),

where the third equality follows from composition down. This means that for any
vector y ∈ RN+ on the payoff path of f from 0N to x, any vector on the payoff path
of f from 0N to y is also on the payoff path of f from 0N to x.

Now, let t ∈ [0, τE,x] be such that ∑i∈N fi(tE, x) = 1
2
∑
i∈N xi. Then f(tE, x) and

x− f(tE, x) are both on the payoff path of f from 0N to x. Moreover,

∑
i∈N

(xi − fi(tE, x)) =
∑
i∈N

xi −
∑
i∈N

fi(tE, x) =
∑
i∈N

xi −
1
2
∑
i∈N

xi = 1
2
∑
i∈N

xi.

This means that f(tE, x) = 1
2x, so 1

2x is on the payoff path of f from 0N to x.
In particular, 1

2c is on the payoff path of f from 0N to c, and 1
4c is on the payoff

path of f from 0N to 1
2c, which means that 1

4c and 3
4c are on the payoff path of f

from 0N to c. Continuing this reasoning, m
2n c is on the payoff path of f from 0N to

c for any m,n ∈ N for which m ≤ 2n. Since f satisfies path continuity, this means
that tc is on the payoff path of f from 0N to c for any t ∈ [0, 1]. In other words,
f(E, c) = λE,cc = Prop(E, c). Hence, f = Prop.

The bankruptcy rule f : BRN → RN+ which assigns to any (E, c) ∈ BRN the
payoff allocation

f(E, c) =


(
min{1

2ci, η}
)
i∈N

if 1
2c /∈ E;(

max{1
2ci, ci − η}

)
i∈N

if 1
2c ∈ E,

where η ∈ R+ is such that f(E, c) ∈ WP(E), is also self-dual. This means that the
proportional rule is not the unique self-dual bankruptcy rule.
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Chun (1988) characterized the proportional rule in terms of a linearity axiom. We
extend this characterization by showing that the proportional rule is the only rule
with a linear payoff path for any bankruptcy problem.

Definition (Path Linearity)
A bankruptcy rule f : BRN → RN+ satisfies path linearity if

f(θE + (1− θ)tE, c) = θf(E, c) + (1− θ)f(tE, c)

for all (E, c) ∈ BRN for which E 6= {0N}, any t ∈ [0, τE,c], and any θ ∈ [0, 1].

Theorem 3.4.2
The proportional rule is the unique bankruptcy rule satisfying path linearity.

Proof. First, let (E, c) ∈ BRN be such that E 6= {0N}, let t ∈ [0, τE,c], and let
θ ∈ [0, 1]. Then

Prop(θE + (1− θ)tE, c) = λθE+(1−θ)tE,cc

= λ(θ+(1−θ)t)E,cc

= (θ + (1− θ)t)λE,cc
= θλE,cc+ (1− θ)tλE,cc
= θλE,cc+ (1− θ)λtE,cc
= θProp(E, c) + (1− θ)Prop(tE, c).

Hence, the proportional rule satisfies path linearity.

Second, let f : BRN → RN+ be a bankruptcy rule satisfying path linearity. Let
(E, c) ∈ BRN . If E = {0N}, then f(E, c) = 0N = Prop(E, c). Suppose that
E 6= {0N}. Then

f(E, c) = f(λE,cτE,cE + (1− λE,c)0τE,cE, c)
= λE,cf(τE,cE, c) + (1− λE,c)f(0τE,cE, c)
= λE,cf(τE,cE, c) + (1− λE,c)f({0N}, c)
= λE,cc+ (1− λE,c)0N
= λE,cc

= Prop(E, c),

where the second equality follows from path linearity. Hence, f = Prop.
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3.5 The constrained relative equal awards rule

This section introduces the constrained relative equal awards rule for bankruptcy
problems with nontransferable utility and provides four axiomatic characterizations.
The constrained relative equal awards rule generalizes the constrained equal awards
rule for bankruptcy problems with transferable utility which divides the estate equally
such that all claimants are not allocated more than their claims. Following our
interpretation of equality and symmetry in bankruptcy problems with nontransferable
utility, it makes sense to define a rule which allocates payoffs relatively equal such
that all claimants are not allocated more than their claims.

Definition (Constrained Relative Equal Awards Rule)
The constrained relative equal awards rule CREA : BRN → RN+ is the bankruptcy
rule which assigns to any (E, c) ∈ BRN the payoff allocation

CREA(E, c) =
(
min{ci, αE,cuEi }

)
i∈N

,

where αE,c = max{t ∈ [0, 1] | (min{ci, tuEi })i∈N ∈WP(E)}.

Note that for any bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |∑
i∈N xi ≤ e}, induced by a bankruptcy problem (e, c) ∈ TUBRN , uEi = e for all

i ∈ N and the constrained relative equal awards rule coincides with the standard
constrained equal awards rule.

Example 3.7
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1. Then uE = (6, 3),
αE,c = 3

4 , and CREA(E, c) = (3, 21
4). This is illustrated as follows.
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Throughout this section, we refer to the appendix of this chapter for derivations
of the specific properties stated for the constrained relative equal awards rule.
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Let (E, c) ∈ BRN . The vector of truncated claims ĉE ∈ RN+ is defined by

ĉE =
(
min{ci, uEi }

)
i∈N

.

Note that ĉE ∈WUC(E) and f(E, c) ≤ ĉE for any bankruptcy rule f : BRN → RN+ .

Example 3.8
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1 and Example 3.7. Then
ĉE = (3, 3). This is illustrated as follows.

E

c
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The truncation invariance property requires that bankruptcy rules only take the
truncated claims of the claimants into account.

Definition (Truncation Invariance)
A bankruptcy rule f : BRN → RN+ satisfies truncation invariance if f(E, c) =
f(E, ĉE) for all (E, c) ∈ BRN .

Inspired by Dagan (1996), we axiomatically characterize the constrained relative
equal awards rule using the properties relative symmetry, composition up, and trun-
cation invariance. Note that the proportional rule also satisfies relative symmetry
and composition up, but does not satisfy truncation invariance.

Theorem 3.5.1
The constrained relative equal awards rule is the unique bankruptcy rule satisfying
relative symmetry, truncation invariance, and composition up.

Proof. By Lemma 3.A.1, Lemma 3.A.2, and Lemma 3.A.3, the constrained relative
equal awards rule satisfies relative symmetry, truncation invariance, and composition
up. Let f : BRN → RN+ be a bankruptcy rule satisfying relative symmetry, truncation
invariance, and composition up. Then f satisfies path monotonicity by Lemma 3.3.4.
Then f satisfies path continuity by Lemma 3.2.1.
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Let (E, c) ∈ BRN be such that E 6= {0N}. Suppose that f(tE, c) 6= CREA(tE, c)
for some t ∈ [0, τE,c]. Let t̂ = inf{t ∈ [0, τE,c] | f(tE, c) 6= CREA(tE, c)}. Since f
and CREA satisfy path continuity, t̂ ∈ [0, τE,c) and f(t̂E, c) = CREA(t̂E, c). Denote
N = {1, . . . , n} such that c1

uE1
≤ · · · ≤ cn

uEn
. Let k ∈ N be such that fi(t̂E, c) = ci for

all i < k, and fi(t̂E, c) = t̂αt̂E,cuEk < ci for all i ≥ k.
Let m = min{‖x‖ | x ∈ WP(E)}. Note that the conditions on E imply that

m exists. Take ε ∈ (0,m( ck−fk(t̂E,c)
uE
k

)). Since f satisfies path continuity, there exists
a δ > 0 such that ‖f(tE, c) − f(t̂E, c)‖ < ε for all t ∈ (t̂,min{t̂ + δ, τE,c}). Let
t ∈ (t̂,min{t̂+ δ, τE,c}). Denote d = τE,f(tE,c)−f(t̂E,c). Then

m

(
ck − fk(t̂E, c)

uEk

)
> ε > ‖f(tE, c)− f(t̂E, c)‖ = ‖f(dE, c− f(t̂E, c))‖ ≥ dm,

where the equality follows from composition up. This means that d < ck−fk(t̂E,c)
uE
k

. Let
x ∈ RN+ be defined by

xi =

0 for all i ∈ N for which i < k;
udEi for all i ∈ N for which i ≥ k.

Then
xi = 0 = ci − ci = ci − fi(t̂E, c) = ci − CREAi(t̂E, c)

for all i ∈ N for which i < k. Moreover,

xi = udEi = duEi <

(
ck − fk(t̂E, c)

uEk

)
uEi ≤

(
ci
uEi
− t̂αt̂E,cuEk

uEk

)
uEi

= ci − t̂αt̂E,cuEi = ci − fi(t̂E, c) = ci − CREAi(t̂E, c)

for all i ∈ N for which i ≥ k. Then

f(dE, c− f(t̂E, c)) = f(dE, x) = λdE,xx

= CREA(dE, x) = CREA(dE, c− CREA(t̂E, c)),

where the first and last equality follow from truncation invariance, and the second
and third equality follow from relative symmetry. Moreover,

f(tE, c) = f(t̂E, c) + f(dE, c− f(t̂E, c))
= CREA(t̂E, c) + CREA(dE, c− CREA(t̂E, c))
= CREA(tE, c),

where the first and the last equality follow from composition up. This contradicts
the definition of t̂. Hence, f(tE, c) = CREA(tE, c) for all t ∈ [0, τE,c].
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The second axiomatic characterization is in the spirit of Yeh (2006), who showed
that the constrained equal awards rule for TU-bankruptcy problems is the only rule
that satisfies claim monotonicity and a property which requires that the claimants
with small enough claims are fully compensated. We generalize this idea to a con-
ditional full compensation property for NTU-bankruptcy rules based on the relative
claims and characterize the constrained relative equal awards rule in terms of claim
monotonicity and conditional full compensation.

Definition (Conditional Full Compensation)
A bankruptcy rule f : BRN → RN+ satisfies conditional full compensation if fi(E, c) =
ci for all (E, c) ∈ BRN for which E 6= {0N} and any i ∈ N for which(

min
{
ci
uEi
,
cj
uEj

}
uEj

)
j∈N
∈ E.

Example 3.9
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 3.1 and Example 3.7. Let
f : BRN → RN+ be a bankruptcy rule satisfying conditional full compensation, let
x ∈ RN+ be given by x = (c1,min{ c1

uE1
, c2
uE2
}uE2 ) = (3, 11

2), and let y ∈ RN+ be given
by y = (min{ c1

uE1
, c2
uE2
}uE1 , c2) = (3, 4). Then x ∈ E and y /∈ E. This means that

f(E, c) = (3, 21
4). This is illustrated as follows.
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Definition (Claim Monotonicity)
A bankruptcy rule f : BRN → RN+ satisfies claim monotonicity if fi(E, c) ≤ fi(E, c′)
for all (E, c) ∈ BRN , any i ∈ N , and any c′ ∈ RN+ for which c′i ≥ ci and c′N\{i} = cN\{i}.
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Theorem 3.5.2
The constrained relative equal awards rule is the unique bankruptcy rule satisfying
conditional full compensation and claim monotonicity.

Proof. By Lemma 3.A.4 and Lemma 3.A.5, the constrained relative equal awards rule
satisfies conditional full compensation and claim monotonicity. Let f : BRN → RN+
be a bankruptcy rule satisfying conditional full compensation and claim monotonicity.

Let (E, c) ∈ BRN be such that E 6= {0N}. Let i ∈ N be such that CREAi(E, c) =
ci. Then

min
{
ci
uEi
,
cj
uEj

}
uEj ≤ min

{
αE,c,

cj
uEj

}
uEj = min{cj, αE,cuEj } = CREAj(E, c)

for all j ∈ N . Since E is comprehensive, this means that(
min

{
ci
uEi
,
cj
uEj

}
uEj

)
j∈N
∈ E.

Since f satisfies conditional full compensation, this implies that fi(E, c) = ci.
Suppose that f(E, c) 6= CREA(E, c). Since E is nonleveled, there exists a k ∈ N

such that fk(E, c) < CREAk(E, c) = αE,cuEk < ck. Let x ∈ RN+ be defined by
xk = αE,cuEk and xN\{k} = cN\{k}.

E

c

x10

x2

uE

x

CREA(E, c)

f(E, c)

Then f(E, c) ≤ x ≤ c and

min
{
xk
uEk
,
xj
uEj

}
uEj = min

{
αE,c,

cj
uEj

}
uEj = min{cj, αE,cuEj } = CREAj(E, c)

for all j ∈ N . This means that(
min

{
xk
uEk
,
xj
uEj

}
uEj

)
j∈N
∈ E.

Since f satisfies conditional full compensation, this implies that fk(E, x) = xk. Then
fk(E, x) > fk(E, c), which contradicts that f satisfies claim monotonicity. Hence,
f(E, c) = CREA(E, c).



44 Chapter 3 Proportionality, Equality, and Duality

Next, we generalize the characterization of Herrero and Villar (2002) and Yeh
(2004) by showing that the constrained relative equal awards rule is the only rule
satisfying conditional full compensation and composition down.

Theorem 3.5.3
The constrained relative equal awards rule is the unique bankruptcy rule satisfying
conditional full compensation and composition down.

Proof. By Lemma 3.A.4 and Lemma 3.A.6, the constrained relative equal awards rule
satisfies conditional full compensation and composition down. Let f : BRN → RN+
be a bankruptcy rule satisfying conditional full compensation and composition down.
Then f satisfies path monotonicity by Lemma 3.3.4. Then f satisfies path continuity
by Lemma 3.2.1.

Let (E, c) ∈ BRN be such that E 6= {0N}. Let i ∈ N be such that CREAi(E, c) =
ci. Then

min
{
ci
uEi
,
cj
uEj

}
uEj ≤ min

{
αE,c,

cj
uEj

}
uEj = min{cj, αE,cuEj } = CREAj(E, c)

for all j ∈ N . Since E is comprehensive, this means that(
min

{
ci
uEi
,
cj
uEj

}
uEj

)
j∈N
∈ E.

Since f satisfies conditional full compensation, this implies that fi(E, c) = ci.
Suppose that f(E, c) 6= CREA(E, c). Since E is nonleveled, there exists a k ∈ N

such that fk(E, c) < CREAk(E, c) = αE,cuEk < ck. Since f satisfies path monotonicity
and path continuity, there exists a t ∈ (1, τE,c) such that fk(tE, c) = αE,cuEk .

tE
E

c

x10

x2

uEf(tE, c)

CREA(E, c)

f(E, c)

Then

min
{
fk(tE, c)
uEk

,
fj(tE, c)
uEj

}
uEj ≤ min

{
αE,c,

cj
uEj

}
uEj

= min{cj, αE,cuEj }
= CREAj(E, c)

for all j ∈ N .
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Since E is comprehensive,(
min

{
fk(tE, c)
uEk

,
fj(tE, c)
uEj

}
uEj

)
j∈N
∈ E.

Since f satisfies conditional full compensation, this means that fk(E, f(tE, c)) =
fk(tE, c). Since f satisfies composition down, this implies that fk(E, c) = fk(tE, c).
This is a contradiction. Hence, f(E, c) = CREA(E, c).

The serial mechanism for cost sharing problems is characterized by symmetry
and a property which requires that individual cost shares are independent of the cost
shares of agents with higher demands (cf. Moulin and Shenker (1992)). Interestingly,
we can also formulate a fourth characterization of the constrained relative equal
awards rule based on relative symmetry and independence of larger relative claims.

Definition (Independence of Larger Relative Claims)
A bankruptcy rule f : BRN → RN+ satisfies independence of larger relative claims
if fi(E, c) = fi(E, c′) for all (E, c) ∈ BRN , any i ∈ N , and any c′ ∈ RN+ for which
c′j ≥ cj and c′N\{j} = cN\{j} for some j ∈ N \ {i} for which cju

E
i ≥ ciu

E
j .

Theorem 3.5.4
The constrained relative equal awards rule is the unique bankruptcy rule satisfying
relative symmetry and independence of larger relative claims.

Proof. By Lemma 3.A.1 and Lemma 3.A.7, the constrained relative equal awards
rule satisfies relative symmetry and independence of larger relative claims. Let f :
BRN → RN+ be a bankruptcy rule satisfying relative symmetry and independence of
larger relative claims.

Let (E, c) ∈ BRN be such that E 6= {0N}. If c ∈ E, then f(E, c) = c =
CREA(E, c). Suppose that c /∈ E. Denote N = {1, . . . , n} such that c1

uE1
≤ · · · ≤ cn

uEn
.

Let k ∈ N be such that CREAi(E, c) = ci for all i ∈ N for which i < k, and
CREAi(E, c) = αE,cuEi < ci for all i ∈ N for which i ≥ k. Then

fi(E, c) = fi(E,CREA(E, c)) = CREAi(E, c)

for all i ∈ N for which i < k, where the first equality follows from independence of
larger relative claims. For any i ∈ N for which i ≥ k, let xi ∈ RN+ be defined by

xij =

cj for all j ≤ i;
ci
uEi
uEj for all j > i.
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Then

fk(E, c) = fk(E, xk) = αE,x
k

uEk = CREAk(E, xk) = CREAk(E, c),

where the first and last equality follow from independence of larger relative claims,
and the second and third equality follow from relative symmetry. Next, this argument
can be applied to claimant k + 1, and so on. Following this reasoning, fi(E, c) =
CREAi(E, c) for all i ∈ N for which i ≥ k. Hence, f(E, c) = CREA(E, c).

Finally, we explore duality in the context of the constrained relative equal awards
rule. We introduce the constrained relative equal losses rule for NTU-bankruptcy
problems which allocates losses relatively equal such that all claimants are allocated
a nonnegative payoff and show that the constrained relative equal awards rule and
the constrained relative equal losses rule are dual. By Lemma 3.3.3, Lemma 3.3.5,
Lemma 3.A.1, Lemma 3.A.3, and Lemma 3.A.6, this means that the constrained
relative equal losses rule also satisfies relative symmetry, composition down, and
composition up.

Definition (Constrained Relative Equal Losses Rule)
The constrained relative equal losses rule CREL : BRN → RN+ is the bankruptcy rule
which assigns to any (E, c) ∈ BRN for which E 6= {0N} the payoff allocation

CREL(E, c) =
(
max{0, ci − βE,cuEi }

)
i∈N

,

where βE,c = min{t ∈ R+ | (max{0, ci − tuEi })i∈N ∈WP(E)}.

Note that for any bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |∑
i∈N xi ≤ e}, induced by a bankruptcy problem (e, c) ∈ TUBRN , uEi = e for all

i ∈ N and the constrained relative equal losses rule coincides with the standard
constrained equal losses rule.

Example 3.10
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ |

√
x1 + x2 ≤ 2} and c = (3, 4). Then uE = (4, 2), βE,c = 1, and

CREL(E, c) = (0, 2). This is illustrated as follows.

E

c

x10 1 2 3 4 5

x2

1

2

3
uECREL(E, c)

4
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Proposition 3.5.5
The constrained relative equal awards rule and the constrained relative equal losses
rule are dual.

Proof. Let (E, c) ∈ BRN be such that E 6= {0N}. Denote d = τE,c−CREL(E,c). Suppose
that dαdE,c ≤ βE,c. Then

CREAi(dE, c) = min{ci, αdE,cudEi } = ci −max{0, ci − dαdE,cuEi }
≤ ci −max{0, ci − βE,cuEi } = ci − CRELi(E, c)

for all i ∈ N . Since E is nonleveled, this means that CREA(dE, c) = c−CREL(E, c).
Similarly, dαdE,c ≥ βE,c leads to CREA(dE, c) = c− CREL(E, c).

Denote d′ = τE,c−CREA(E,c). Suppose that d′βd′E,c ≤ αE,c. Then

CRELi(d′E, c) = max{0, ci − βd
′E,cud

′E
i } = ci −min{ci, d′βd

′E,cuEi }
≥ ci −min{ci, αE,cuEi } = ci − CREAi(E, c)

for all i ∈ N . Since E is nonleveled, this means that CREL(d′E, c) = c−CREA(E, c).
Similarly, d′βd′E,c ≥ αE,c leads to CREL(d′E, c) = c − CREA(E, c). Hence, the
constrained relative equal awards rule and the constrained relative equal losses rule
are dual.

Future research could search for axiomatic characterizations of the constrained
relative equal losses rule for bankruptcy problems with nontransferable utility.

3.A Appendix
Lemma 3.A.1
The constrained relative equal awards rule satisfies relative symmetry.

Proof. Let (E, c) ∈ BRN and let i, j ∈ N be such that ciuEj = cju
E
i . Then

CREAi(E, c)uEj = min{ci, αE,cuEi }uEj
= min{ciuEj , αE,cuEi uEj }
= min{cjuEi , αE,cuEj uEi }
= min{cj, αE,cuEj }uEi
= CREAj(E, c)uEi .

Hence, the constrained relative equal awards rule satisfies relative symmetry.
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Lemma 3.A.2
The constrained relative equal awards rule satisfies truncation invariance.

Proof. Let (E, c) ∈ BRN . Then

CREAi(E, ĉE) = min{ĉEi , αE,ĉ
E

uEi } = min{min{ci, uEi }, αE,ĉ
E

uEi }

= min{ci, uEi , αE,ĉ
E

uEi } = min{ci, αE,ĉ
E

uEi }

for all i ∈ N . Since E is nonleveled, this means that CREA(E, c) = CREA(E, ĉE).
Hence, the constrained relative equal awards rule satisfies truncation invariance.

Lemma 3.A.3
The constrained relative equal awards rule satisfies composition up.

Proof. Let (E, c) ∈ BRN be such that E 6= {0N} and let t ∈ [0, 1]. If t ∈ {0, 1}, then

CREA(E, c) = CREA(tE, c) + CREA(τE,CREA(E,c)−CREA(tE,c)E, c− CREA(tE, c)).

Suppose that t ∈ (0, 1). Since CREA(tE, c) ∈ tE, we have (min{ ci
t
, αtE,cuEi })i∈N ∈ E.

Since E is comprehensive, this means that (min{ci, tαtE,cuEi })i∈N ∈ E. This implies
that CREA(tE, c) ≤ CREA(E, c) ≤ c. Denote d = τE,CREA(E,c)−CREA(tE,c). Suppose
that dαdE,c−CREA(tE,c) ≤ αE,c − tαtE,c. Then

CREAi(dE, c− CREA(tE, c)) = 0 = ci − ci = CREAi(E, c)− CREAi(tE, c)

for all i ∈ N for which CREAi(tE, c) = ci. Moreover,

CREAi(dE, c− CREA(tE, c)) = min{ci − CREAi(tE, c), αdE,c−CREA(tE,c)udEi }
= min{ci − αtE,cutEi , dαdE,c−CREA(tE,c)uEi }
≤ min{ci − αtE,cutEi , αE,cuEi − tαtE,cuEi }
= min{ci, αE,cuEi } − αtE,cutEi
= CREAi(E, c)− CREAi(tE, c)

for all i ∈ N for which CREAi(tE, c) = αtE,cutEi . Since E is nonleveled, this means
that

CREA(dE, c− CREA(tE, c)) = CREA(E, c)− CREA(tE, c).

Similarly, dαdE,c−CREA(tE,c) ≥ αE,c − tαtE,c leads to

CREA(dE, c− CREA(tE, c)) = CREA(E, c)− CREA(tE, c).

Hence, the constrained relative equal awards rule satisfies composition up.
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Lemma 3.A.4
The constrained relative equal awards rule satisfies conditional full compensation.

Proof. Let (E, c) ∈ BRN be such that E 6= {0N} and let i ∈ N be such that(
min

{
ci
uEi
,
cj
uEj

}
uEj

)
j∈N
∈ E.

Suppose that CREAi(E, c) = αE,cuEi . Then

CREAj(E, c) = min{cj, αE,cuEj } = min
{
αE,c,

cj
uEj

}
uEj ≤ min

{
ci
uEi
,
cj
uEj

}
uEj

for all j ∈ N . Since E is nonleveled, this means that CREAi(E, c) = ci. Hence, the
constrained relative equal awards rule satisfies conditional full compensation.

Lemma 3.A.5
The constrained relative equal awards rule satisfies claim monotonicity.

Proof. Let (E, c) ∈ BRN , let i ∈ N , and let c′ ∈ RN+ be such that c′i ≥ ci and
c′N\{i} = cN\{i}. If αE,c′ ≥ αE,c, then

CREAi(E, c′) = min{c′i, αE,c
′
uEi } ≥ min{ci, αE,cuEi } = CREAi(E, c).

Suppose that αE,c′ ≤ αE,c. For all j ∈ N \ {i},

CREAj(E, c′) = min{c′j, αE,c
′
uEj } ≤ min{cj, αE,cuEj } = CREAj(E, c).

Since E is nonleveled, this means that CREAi(E, c′) ≥ CREAi(E, c). Hence, the
constrained relative equal awards rule satisfies claim monotonicity.

Lemma 3.A.6
The constrained relative equal awards rule satisfies composition down.

Proof. Let (E, c) ∈ BRN be such that E 6= {0N} and let t ∈ [0, 1]. If t ∈ {0, 1},
then CREA(tE, c) = CREA(tE,CREA(E, c)). Suppose that t ∈ (0, 1). Since
CREA(tE, c) ∈ tE, we have (min{ ci

t
, αtE,cuEi })i∈N ∈ E. Since E is comprehen-

sive, this means that (min{ci, tαtE,cuEi })i∈N ∈ E. This implies that CREA(tE, c) ≤
CREA(E, c) ≤ c. Suppose that αtE,CREA(E,c) ≤ αtE,c. Then

CREAi(tE,CREA(E, c)) = min{CREAi(E, c), αtE,CREA(E,c)utEi }
≤ min{min{ci, αE,cuEi }, αtE,cutEi }
= min{ci, αE,cuEi , αtE,cutEi }
= min{CREAi(E, c),CREAi(tE, c)}
= CREAi(tE, c)

for all i ∈ N .
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This means that CREA(tE,CREA(E, c)) ≤ CREA(tE, c). Since E is nonleveled,
this implies that CREA(tE,CREA(E, c)) = CREA(tE, c). Similarly, αtE,CREA(E,c) ≥
αtE,c leads to CREA(tE,CREA(E, c)) = CREA(tE, c). Hence, the constrained rela-
tive equal awards rule satisfies composition down.

Lemma 3.A.7
The constrained relative equal awards rule satisfies independence of larger relative
claims.

Proof. Let (E, c) ∈ BRN , let i ∈ N , and let c′ ∈ RN+ be such that c′j ≥ cj and
c′N\{j} = cN\{j} for some j ∈ N \ {i} for which cju

E
i ≥ ciu

E
j . If αE,c′ ≥ αE,c, then

CREAk(E, c′) = min{c′k, αE,c
′
uEk } ≥ min{ck, αE,cuEk } = CREAk(E, c)

for all k ∈ N , which means that CREA(E, c′) = CREA(E, c) since E is nonleveled.
Suppose that αE,c′ < αE,c. Then

CREAk(E, c′) = min{c′k, αE,c
′
uEk } ≤ min{ck, αE,cuEk } = CREAk(E, c)

for all k ∈ N \ {j}. Since E is nonleveled, this means that CREAj(E, c′) ≥
CREAj(E, c). Moreover, if CREAj(E, c′) = CREAj(E, c), then CREA(E, c′) =
CREA(E, c). Suppose that CREAj(E, c′) > CREAj(E, c). Then min{c′j, αE,c

′
uEj } >

min{cj, αE,cuEj }. Since αE,c′ < αE,c, this means that ci
uEi
≤ cj

uEj
< αE,c

′
< αE,c. Then

CREAi(E, c′) = min{c′i, αE,c
′
uEi } = min

{
ci
uEi
, αE,c

′
}
uEi

= min
{
ci
uEi
, αE,c

}
uEi = min{ci, αE,cuEi } = CREAi(E, c).

Hence, the constrained relative equal awards rule satisfies independence of larger
relative claims.



4 Consistency and the
Relative Adjustment Principle

4.1 Introduction
The proportional rule, the constrained equal awards rule, and the constrained equal
losses rule can be considered as the three basic bankruptcy rules for bankruptcy pro-
blems with transferable utility. Herrero and Villar (2001) called these bankruptcy
rules the three musketeers. Similarly, we interpret the proportional rule, the con-
strained relative equal awards rule, and the constrained relative equal losses rule as
the three basic bankruptcy rules for bankruptcy problems with nontransferable utility.
Another well-studied rule for bankruptcy problems with transferable utility, which
according to Herrero and Villar (2001) plays the role of D’Artagnan, is the so-called
Talmud rule. Aumann and Maschler (1985) showed that the Talmud rule is the uni-
que TU-bankruptcy rule satisfying consistency and the contested garment principle.
This chapter, based on Dietzenbacher, Borm, and Estévez-Fernández (2017), studies
generalizations of these two concepts to bankruptcy problems with nontransferable
utility on which a generalized Talmud rule can be based in future research.

Following Thomson (2011), the consistency principle can be stated as follows.
Consider a bankruptcy problem and the corresponding payoff allocation assigned by
a particular bankruptcy rule. Suppose that some claimants depart with their alloca-
ted payoffs and that the remaining claimants reevaluate their allocated payoffs. The
bankruptcy rule is called consistent if it prescribes for this reduced problem the same
payoffs for the involved claimants. The design of these reduced problems for NTU-
bankruptcy problems is however not straightforward, and different modeling choices
have different consequences.

51
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We examine the relation of the proportional rule, the constrained relative equal
awards rule, and the constrained relative equal losses rule with several consistency
notions. The proportional rule satisfies a multilateral consistency notion which con-
verts reduced problems into new bankruptcy problems for the remaining claimants.
This result is used to derive new axiomatic characterizations from those in the previ-
ous chapter using an elevator lemma. The constrained relative equal awards rule and
the constrained relative equal losses rule do not satisfy multilateral consistency, but
they do satisfy consistency on a restricted domain which includes NTU-bankruptcy
problems induced by TU-bankruptcy problems. Inspired by Young (1987), we also
introduce a class of parametric bankruptcy rules which contains the three basic bank-
ruptcy rules, and we show that all parametric bankruptcy rules satisfy a consistency
notion which interprets the reduced problem as the original bankruptcy problem
where the departing claimants leave a footprint behind.

The contested garment principle for TU-bankruptcy rules describes a standard
solution for bankruptcy problems with two claimants where they first concede the mi-
nimal rights to each other and subsequently divide the remaining estate equally. To
adequately generalize this two-claimant solution to the relative adjustment principle
for NTU-bankruptcy rules, we study minimal rights in NTU-bankruptcy problems.
The minimal rights first property requires that first allocating minimal rights, the
maximal individual payoffs within the estate when all other claimants are allocated
their claims, and subsequently applying the bankruptcy rule to the remaining bank-
ruptcy problem, leads to the same payoff allocation as application of the bankruptcy
rule to the original bankruptcy problem.

The three basic bankruptcy rules do not satisfy minimal rights first. Inspired by
Thomson and Yeh (2008), we introduce the truncation operator and minimal rights
operator which ‘force’ bankruptcy rules to satisfy truncation invariance and mini-
mal rights first, respectively. The new bankruptcy rules obtained by applying both
operators to existing ones form the class of adjusted bankruptcy rules. All adjusted
counterparts of bankruptcy rules which satisfy relative symmetry coincide on the class
of bankruptcy problems with two claimants. This is called the relative adjustment
principle for NTU-bankruptcy rules which generalizes the contested garment prin-
ciple for TU-bankruptcy rules. The new principle merges the properties truncation
invariance, minimal rights first, and a restricted form of relative symmetry.

This chapter is organized in the following way. Section 4.2 discusses several con-
sistency notions and introduces the class of parametric bankruptcy rules. Section 4.3
introduces the class of adjusted bankruptcy rules and studies the relative adjustment
principle.
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4.2 Consistency
Consistency requires that application of a bankruptcy rule to a reduced problem leads
to the same payoffs for the involved claimants as within the original bankruptcy pro-
blem. For TU-bankruptcy problems, the estate of such a reduced problem can simply
be defined as the original estate subtracted with the allocated payoffs to the depar-
ting claimants (cf. Aumann and Maschler (1985)). For NTU-bankruptcy problems,
the design of such a reduced problem is not straightforward. We discuss several ways
to generalize the consistency property for TU-bankruptcy rules.

A natural option is to convert the reduced problem into a new problem for the
remaining claimants in which the estate is defined as the part of the original estate
where all departing claimants are allocated their corresponding payoffs. For this, we
need to extend the domain of bankruptcy rules to bankruptcy problems for any non-
empty subset of claimants. Formally, let BRN denote ⋃S∈2N\{∅} BRS. A bankruptcy
rule f on BRN assigns to any (E, c) ∈ BRS for which S ∈ 2N \{∅} a payoff allocation
f(E, c) ∈WP(E) for which f(E, c) ≤ c.

Let (E, c) ∈ BRN , let x ∈ RN+ , and let S ∈ 2N \ {∅}. The set of payoff allocations
Ex
S ⊆ RS+ is defined by

Ex
S =

{
y ∈ RS+

∣∣∣ (y, xN\S) ∈ E
}
.

Note that (Ef(E,c)
S , cS) ∈ BRS for any bankruptcy rule f on BRN .

A rule is multilaterally consistent if it assigns to all reduced problems the same
payoffs for the remaining claimants as within the original problem.

Definition (Multilateral Consistency)
A bankruptcy rule f on BRN satisfies multilateral consistency if

fS(E, c) = f(Ef(E,c)
S , cS)

for all (E, c) ∈ BRN and any S ∈ 2N \ {∅}.

The corresponding weaker property which only considers reduced problems for
two remaining claimants is called bilateral consistency.

Definition (Bilateral Consistency)
A bankruptcy rule f on BRN satisfies bilateral consistency if

fS(E, c) = f(Ef(E,c)
S , cS)

for all (E, c) ∈ BRN and any S ∈ 2N for which |S| = 2.
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In other words, a rule is bilaterally consistent if it assigns to all reduced problems
with two claimants the same payoffs for the remaining claimants as within the original
problem. This principle can also be applied in reverse direction. Consider a problem
and a corresponding feasible payoff allocation. Suppose that for all reduced problems
with two claimants a rule prescribes the corresponding payoffs within this allocation.
Then the rule is called conversely consistent (cf. Thomson (2011)) if it assigns this
payoff allocation to the original problem.

Definition (Converse Consistency)
A bankruptcy rule f on BRN satisfies converse consistency if f(E, c) = x for all
(E, c) ∈ BRN and any x ∈WP(E) for which x ≤ c and xS = f(Ex

S, cS) for all S ∈ 2N

for which |S| = 2.

If a bilateral consistent rule coincides with a conversely consistent rule on the
class of two-claimant problems, then the rules coincide for any problem. This type
of result is known as an elevator lemma (cf. Thomson (2011)).

Lemma 4.2.1 (Elevator Lemma)
Let f and g be two bankruptcy rules on BRN . If f satisfies bilateral consistency, g
satisfies converse consistency, and f(E, c) = g(E, c) for all (E, c) ∈ BRS for which
S ∈ 2N and |S| = 2, then f = g.

Proof. Let (E, c) ∈ BRN and let x = f(E, c). Since f satisfies bilateral consistency,
xS = f(Ex

S, cS) for all S ∈ 2N for which |S| = 2. This means that xS = g(Ex
S, cS) for

all S ∈ 2N for which |S| = 2. Since g satisfies converse consistency, this implies that
g(E, c) = x. Hence, f(E, c) = g(E, c).

For a rule which satisfies both bilateral consistency and converse consistency, the
Elevator Lemma can be used to extend axiomatic characterizations from problems
with two claimants to problems with any number of claimants.

Theorem 4.2.2
Consider a bankruptcy rule satisfying bilateral consistency and converse consistency.
Any axiomatic characterization for bankruptcy problems with two claimants yields an
axiomatic characterization for bankruptcy problems with any number of claimants if
bilateral consistency or converse consistency is required in addition.

Proof. Let f be a bankruptcy rule on BRN satisfying bilateral consistency and con-
verse consistency. Let g be a bankruptcy rule on BRN satisfying the properties in
the axiomatic characterization of f on the class of two-claimant bankruptcy problems
and either bilateral consistency or converse consistency. Then g(E, c) = f(E, c) for
all (E, c) ∈ BRS for which S ∈ 2N and |S| = 2. Since f satisfies bilateral consistency
and converse consistency, g = f by Lemma 4.2.1.
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An example of a rule satisfying both bilateral consistency and converse consistency
is the proportional rule.

Lemma 4.2.3
The proportional rule satisfies multilateral consistency.

Proof. Let (E, c) ∈ BRN and let S ∈ 2N \ {∅}. Then PropS(E, c) = λE,ccS and

Prop(EProp(E,c)
S , cS) = λE

Prop(E,c)
S ,cScS,

where λE,c ∈ [0, 1] is such that λE,cc ∈WP(E) and λE
Prop(E,c)
S ,cS ∈ [0, 1] is such that

λE
Prop(E,c)
S ,cScS ∈WP(EProp(E,c)

S ).

Since E is comprehensive, this means that(
λE

Prop(E,c)
S ,cScS, λ

E,ccN\S

)
∈WP(E).

Since E is nonleveled, this implies that PropS(E, c) = Prop(EProp(E,c)
S , cS). Hence,

the proportional rule satisfies multilateral consistency.

Lemma 4.2.4
The proportional rule satisfies converse consistency.

Proof. Let (E, c) ∈ BRN and let x ∈ WP(E) be such that x ≤ c and xS =
Prop(Ex

S, cS) for all S ∈ 2N for which |S| = 2. Then Prop(E, c) = λE,cc and
xS = λE

x
S ,cScS for all S ∈ 2N for which |S| = 2. This means that x = tc for

some t ∈ [0, 1]. Since E is nonleveled, this implies that Prop(E, c) = x. Hence, the
proportional rule satisfies converse consistency.

From Theorem 3.4.1, Theorem 3.4.2, Theorem 4.2.2, Lemma 4.2.3, and Lemma
4.2.4, we derive the following corollary.

Corollary 4.2.5

(i) The proportional rule is the unique bankruptcy rule satisfying self-duality and
composition down on the class of bankruptcy problems with two claimants, and
bilateral consistency or converse consistency.

(ii) The proportional rule is the unique bankruptcy rule satisfying self-duality and
composition up on the class of bankruptcy problems with two claimants, and
bilateral consistency or converse consistency.

(iii) The proportional rule is the unique bankruptcy rule satisfying path linearity on
the class of bankruptcy problems with two claimants, and bilateral consistency
or converse consistency.
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To show that the proportional rule is not the only rule satisfying multilateral
consistency, we introduce the constrained equal awards rule and the constrained equal
losses rule for bankruptcy problems with nontransferable utility. The constrained
equal awards rule CEA : BRN → RN+ is the bankruptcy rule which assigns to any
(E, c) ∈ BRN the payoff allocation

CEA(E, c) = (min{ci, a})i∈N ,

where a ∈ R+ is such that CEA(E, c) ∈ WP(E). The constrained equal losses rule
CEL : BRN → RN+ is the bankruptcy rule which assigns to any (E, c) ∈ BRN the
payoff allocation

CEL(E, c) = (max{ci − b, 0})i∈N ,

where b ∈ R+ is such that CEL(E, c) ∈WP(E). Where the constrained relative equal
awards rule and the constrained relative equal losses rule aim to allocate payoffs and
losses relatively equal among the claimants, respectively, the constrained equal awards
rule and the constrained equal losses rule aim to allocate payoffs and losses absolutely
equal among the claimants, respectively.

The constrained equal awards rule and the constrained equal losses rule satisfy
multilateral consistency. However, the following example shows that the constrained
relative equal awards rule and the constrained relative equal losses rule do not satisfy
multilateral consistency.

Example 4.1
Let N = {1, 2, 3} and consider the bankruptcy problem (E, c) ∈ BRN given by
E = {x ∈ RN+ | x2

1 + 2x2 + x2
3 ≤ 4} and c = (2, 2, 2). Then uE = (2, 2, 2) and

Prop(E, c) = CREA(E, c) = CREL(E, c) = (1, 1, 1).

This means that

E
Prop(E,c)
{1,2} = E

CREA(E,c)
{1,2} = E

CREL(E,c)
{1,2} =

{
x ∈ R{1,2}+

∣∣∣ x2
1 + 2x2 ≤ 3

}
,

which implies that

Prop(EProp(E,c)
{1,2} , c{1,2}) = (1, 1, ·) ,

CREA(ECREA(E,c)
{1,2} , c{1,2}) =

(
1
2

√
15− 1

2

√
3, 3

4

√
5− 3

4 , ·
)
,

and CREL(ECREL(E,c)
{1,2} , c{1,2}) =

(
1
6

√
72
√

3− 9− 1
2

√
3, 1

4

√
24
√

3− 3−
√

3 + 5
4 , ·
)
.

Hence, the constrained relative equal awards rule and the constrained relative equal
losses rule do not satisfy multilateral consistency.
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However,

E
Prop(E,c)
{1,3} = E

CREA(E,c)
{1,3} = E

CREL(E,c)
{1,3} =

{
x ∈ R{1,3}+

∣∣∣ x2
1 + x2

3 ≤ 2
}

and

Prop(EProp(E,c)
{1,3} , c{1,3}) = CREA(ECREA(E,c)

{1,3} , c{1,3})

= CREL(ECREL(E,c)
{1,3} , c{1,3})

= (1, ·, 1) .

4

As illustrated in Example 4.1, the constrained relative equal awards rule and the
constrained relative equal losses rule do satisfy consistency on the restricted domain
of reduced problems for which the ratio of utopia values is equal to the ratio of utopia
values in the original problem. We introduce the restricted consistency property to
describe these type of bankruptcy rules. Peters, Tijs, and Zarzuelo (1994) introduced
a similar property for bargaining solutions.

Definition (Restricted Consistency)
A bankruptcy rule f on BRN satisfies restricted consistency if

fS(E, c) = f(Ef(E,c)
S , cS)

for all (E, c) ∈ BRN and any S ∈ 2N \{∅} for which uE
f(E,c)
S = tuES for some t ∈ [0, 1].

Note that both multilateral consistency and restricted consistency generalize the
consistency notion for TU-bankruptcy rules.

Proposition 4.2.6
The constrained relative equal awards rule satisfies restricted consistency.

Proof. Let (E, c) ∈ BRN and let S ∈ 2N \ {∅} be such that uE
CREA(E,c)
S = tuES for

some t ∈ [0, 1]. Then CREAi(E, c) = min{ci, αE,cuEi } for all i ∈ S and

CREA(ECREA(E,c)
S , cS) = (min{ci, αE

CREA(E,c)
S ,cSu

E
CREA(E,c)
S

i })i∈S
= (min{ci, tαE

CREA(E,c)
S ,cSuEi })i∈S,

where αE,c ∈ [0, 1] is such that CREA(E, c) ∈ WP(E) and αE
CREA(E,c)
S ,cS ∈ [0, 1] is

such that
CREA(ECREA(E,c)

S , cS) ∈WP(ECREA(E,c)
S ).

Since E is comprehensive, this means that(
CREA(ECREA(E,c)

S , cS),CREAN\S(E, c)
)
∈WP(E).

Since E is nonleveled, this implies that CREAS(E, c) = CREA(ECREA(E,c)
S , cS).

Hence, the constrained relative equal awards rule satisfies restricted consistency.
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Proposition 4.2.7
The constrained relative equal losses rule satisfies restricted consistency.

Proof. Let (E, c) ∈ BRN and let S ∈ 2N \{∅} be such that uE
CREL(E,c)
S = tuES for some

t ∈ [0, 1]. If E = {0N}, then CRELS(E, c) = CREL(ECREL(E,c)
S , cS). Suppose that

E 6= {0N}. Then CRELi(E, c) = max{0, ci − βE,cuEi } for all i ∈ S and

CREL(ECREL(E,c)
S , cS) = (max{0, ci − βE

CREL(E,c)
S ,cSu

E
CREL(E,c)
S

i })i∈S
= (max{0, ci − tβE

CREL(E,c)
S ,cSuEi })i∈S,

where βE,c ∈ R+ is such that CREL(E, c) ∈ WP(E) and βE
CREL(E,c)
S ,cS ∈ R+ is such

that
CREL(ECREL(E,c)

S , cS) ∈WP(ECREL(E,c)
S ).

Since E is comprehensive, this means that(
CREL(ECREL(E,c)

S , cS),CRELN\S(E, c)
)
∈WP(E).

Since E is nonleveled, this implies that CRELS(E, c) = CREL(ECREL(E,c)
S , cS). Hence,

the constrained relative equal losses rule satisfies restricted consistency.

Converting reduced problems into new problems for the remaining claimants by
projecting on the corresponding lower dimensional space tends to lose characteristics
of the original problems. Instead, one could also interpret the reduced problem as
the original problem where the payoffs of the departing claimants are fixed. In a
sense, the original problem has already been solved for the departing claimants and
they leave a footprint behind. To formalize this approach, we first need to redefine
bankruptcy rules on the domain of footprint bankruptcy problems.

A footprint bankruptcy problem is a quintuple (N,E, c, x, S) in which (E, c) ∈ BRN

is a bankruptcy problem, x ∈ RN+ is a vector of footprints, and S ∈ 2N \ {∅} is the
set of remaining claimants such that (Ex

S, cS) ∈ BRS. Let FBRN denote the class
of footprint bankruptcy problems with claimant set N . For convenience, a footprint
bankruptcy problem on N is denoted by (E, c, x, S) ∈ FBRN , and (E, c, x,N) ∈
FBRN is abbreviated to (E, c) ∈ FBRN .

A bankruptcy rule f on FBRN assigns to any footprint bankruptcy problem
(E, c, x, S) ∈ FBRN a payoff allocation f(E, c, x, S) ∈WP(E) for which

fS(E, c, x, S) ≤ cS and fN\S(E, c, x, S) = xN\S.

Note that (E, c, f(E, c), S) ∈ FBRN for all (E, c) ∈ BRN , any S ∈ 2N \ {∅}, and any
bankruptcy rule f on FBRN .
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The proportional rule Prop on FBRN is the bankruptcy rule which assigns to any
footprint bankruptcy problem (E, c, x, S) ∈ FBRN the payoff allocation for which

PropS(E, c, x, S) = λE,c,x,ScS,

where λE,c,x,S = max{t ∈ [0, 1] | (tcS, xN\S) ∈WP(E)}.
The constrained relative equal awards rule CREA on FBRN is the bankruptcy rule

which assigns to any footprint bankruptcy problem (E, c, x, S) ∈ FBRN the payoff
allocation for which

CREAS(E, c, x, S) =
(
min{ci, αE,c,x,SuEi }

)
i∈S

,

where αE,c,x,S = max{t ∈ [0, 1] | ((min{ci, tuEi })i∈S, xN\S) ∈WP(E)}.
The constrained relative equal losses rule CREL on FBRN is the bankruptcy rule

which assigns to any footprint bankruptcy problem (E, c, x, S) ∈ FBRN for which
E 6= {0N} the payoff allocation for which

CRELS(E, c, x, S) =
(
max{0, ci − βE,c,x,SuEi }

)
i∈S

,

where βE,c,x,S = min{t ∈ R+ | ((max{0, ci − tuEi })i∈S, xN\S) ∈WP(E)}.

We now introduce the footprint consistency property to describe rules which pre-
scribe the same payoff allocation for the original problem as for any footprint bank-
ruptcy problem in which the departing claimants fix their allocated payoffs.

Definition (Footprint Consistency)
A bankruptcy rule f on FBRN satisfies footprint consistency if

f(E, c) = f(E, c, f(E, c), S)

for all (E, c) ∈ BRN and any S ∈ 2N \ {∅}.

Inspired by Young (1987), we introduce the class of parametric rules for which
the payoff allocated to a claimant only depends on individual characteristics within
the bankruptcy problem and a common parameter.

Definition (Parametric Bankruptcy Rule)
A bankruptcy rule f on FBRN is parametric if there exists a function rf : R3

+ → R+,
monotonic in its third argument, such that fS(E, c, x, S) = (rf (ci, uEi , θE,c,x,S))i∈S for
all (E, c, x, S) ∈ FBRN and some parameter θE,c,x,S ∈ R+.
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Theorem 4.2.8
All parametric bankruptcy rules satisfy footprint consistency.

Proof. Let f be a parametric bankruptcy rule on FBRN , let (E, c) ∈ BRN , and
let S ∈ 2N \ {∅}. Then fN\S(E, c) = fN\S(E, c, f(E, c), S). Moreover, fi(E, c) =
rf (ci, uEi , θE,c) and fi(E, c, f(E, c), S) = rf (ci, uEi , θE,c,f(E,c),S) for all i ∈ S. Since rf

is monotonic in its third argument, this means that fS(E, c) ≤ fS(E, c, f(E, c), S)
or fS(E, c) ≥ fS(E, c, f(E, c), S). Since E is nonleveled, this implies that f(E, c) =
f(E, c, f(E, c), S). Hence, f satisfies footprint consistency.

Specific examples of parametric rules are the proportional rule, the constrained
relative equal awards rule, and the constrained relative equal losses rule. We have

rProp(ci, uEi , θE,c,x,S) = θE,c,Prop(E,c),Sci, θE,c,Prop(E,c),S = λE,c,x,S,

rCREA(ci, uEi , θE,c,x,S) = min{ci, θE,c,CREA(E,c),SuEi }, θE,c,CREA(E,c),S = αE,c,x,S,

rCREL(ci, uEi , θE,c,x,S) = max{0, ci − θE,c,CREL(E,c),SuEi } and θE,c,CREL(E,c),S = βE,c,x,S

for all (E, c, x, S) ∈ FBRN and any i ∈ S.

Corollary 4.2.9
The proportional rule, the constrained relative equal awards rule, and the constrained
relative equal losses rule satisfy footprint consistency.

Example 4.2
Let N = {1, 2, 3} and consider the bankruptcy problem (E, c) ∈ BRN given by
E = {x ∈ RN+ | x2

1 + 2x2 + x2
3 ≤ 4} and c = (2, 2, 2) as in Example 4.1. Then

Prop{1,2}(E, c,Prop(E, c), {1, 2}) = CREA{1,2}(E, c,CREA(E, c), {1, 2})
= CREL{1,2}(E, c,CREL(E, c), {1, 2})
= (1, 1, ·).

4
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4.3 The relative adjustment principle
The contested garment principle for TU-bankruptcy rules (cf. Aumann and Maschler
(1985)) describes a standard solution for bankruptcy problems with two claimants
where they first concede the minimal rights to each other and subsequently divide
the remaining estate equally. To adequately generalize this two-claimant solution to
the relative adjustment principle for NTU-bankruptcy rules, we first study minimal
rights in NTU-bankruptcy problems.

The minimal right of a claimant in a TU-bankruptcy problem is defined as the
remaining part of the estate when all other claimants are allocated their claims (cf.
Curiel, Maschler, and Tijs (1987)). Following Estévez-Fernández, Borm, and Fiestras-
Janeiro (2014), we define the minimal right of a claimant in an NTU-bankruptcy
problem as the maximal individual payoff within the estate when all other claimants
are allocated their claims.

Let (E, c) ∈ BRN . The vector of minimal rights m(E, c) ∈ RN+ is defined by

mi(E, c) =

max{x | (x, cN\{i}) ∈ E} if (0, cN\{i}) ∈ E;
0 if (0, cN\{i}) /∈ E

for all i ∈ N . We have m(E, c) ∈ E and m(E, c) ≤ ĉE ≤ c, which means that

((E − {m(E, c)})+, c−m(E, c)) ∈ BRN .

Moreover, m(E, c) ≤ f(E, c) ≤ ĉE for any bankruptcy rule f : BRN → RN+ .

Example 4.3
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4). Then uE = (6, 3), ĉE = (3, 3), and
m(E, c) = (0, 21

4). This is illustrated as follows.

E

c

x10 1 2 3 4 5 6

x2

1

2

3 uE
ĉE

m(E, c)

4

The following lemma derives some elementary relations between truncated claims
and minimal rights.
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Lemma 4.3.1
Let (E, c) ∈ BRN . Then

(i) ̂̂cEE = ĉE;

(ii) m((E − {m(E, c)})+, c−m(E, c)) = 0N ;

(iii) m(E, ĉE) = m(E, c);

(iv) c−m(E, c)
∧(E−{m(E,c)})+ = ĉE −m(E, c).

Proof. (i) Let i ∈ N . Then

̂̂cEEi = min{ĉEi , uEi } = min{min{ci, uEi }, uEi } = min{ci, uEi } = ĉEi .

(ii) Let i ∈ N . Suppose that mi((E − {m(E, c)})+, c−m(E, c)) > 0. Then(
mi((E − {m(E, c)})+, c−m(E, c)), (c−m(E, c))N\{i}

)
∈ (E − {m(E, c)})+.

This means that(
mi((E − {m(E, c)})+, c−m(E, c)) +mi(E, c), cN\{i}

)
∈ E.

This contradicts the definition of mi(E, c).

(iii) Let i ∈ N . If ĉEN\{i} = cN\{i}, then mi(E, ĉE) = mi(E, c). If ĉEN\{i} 6= cN\{i},
then (0, cN\{i}) /∈ E, so mi(E, ĉE) = 0 = mi(E, c).

(iv) Let i ∈ N . If mN\{i}(E, c) = 0N\{i}, then u
(E−{m(E,c)})+
i = uEi −mi(E, c) and

(c−m(E, c))
∧(E−{m(E,c)})+

i = min
{
ci −mi(E, c), u(E−{m(E,c)})+

i

}
= min{ci −mi(E, c), uEi −mi(E, c)}
= min{ci, uEi } −mi(E, c)
= ĉEi −mi(E, c).

Suppose that there exists a j ∈ N \ {i} for which mj(E, c) > 0. Then ĉEi = ci and
(mj(E, c), cN\{j}) ∈ E. Since E is comprehensive and m(E, c) ≤ c, this means that
(ci,mN\{i}(E, c)) ∈ E, so (ci − mi(E, c), 0N\{i}) ∈ (E − {m(E, c)})+. This implies
that u(E−{m(E,c)})+

i ≥ ci −mi(E, c). Then

(c−m(E, c))
∧(E−{m(E,c)})+

i = min
{
ci −mi(E, c), u(E−{m(E,c)})+

i

}
= ci −mi(E, c)
= ĉEi −mi(E, c).
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The minimal rights first property requires that first allocating minimal rights and
subsequently applying the rule to the remaining problem leads to the same payoff
allocation as application of the rule to the original problem.

Definition (Minimal Rights First)
A bankruptcy rule f : BRN → RN+ satisfies minimal rights first if

f(E, c) = m(E, c) + f((E − {m(E, c)})+, c−m(E, c))

for all (E, c) ∈ BRN .

The following example shows that the proportional rule, the constrained relative
equal awards rule, and the constrained relative equal losses rule do not satisfy minimal
rights first.

Example 4.4
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 +12x2 ≤ 36} and c = (5, 21
2). Then m(E, c) = (

√
6, 11

12). Let f : BRN →
RN+ be a bankruptcy rule satisfying relative symmetry, e.g. the proportional rule, the
constrained relative equal awards rule, or the constrained relative equal losses rule.
Then f(E, c) = (3

√
5− 3, 3

2

√
5− 3

2). However,

m1(E, c) + f1((E − {m(E, c)})+, c−m(E, c)) =
√

18745
√

6−36630
860
√

6−1944 + 19
2
√

6−10

and

m2(E, c) + f2((E − {m(E, c)})+, c−m(E, c)) =
√

6766945
√

6−13223430
6638400

√
6−16108416 + 1735

√
6−5198

1720
√

6−3888 .

This is illustrated as follows.

E

c

x10 1 2 3 4 5 6

x2

1

2

3 uE

m(E, c)

4
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By Proposition 3.5.5, the constrained relative equal awards rule and the con-
strained relative equal losses rule are dual rules, and by Lemma 3.A.2, the constrained
relative equal awards rule satisfies truncation invariance. This means that minimal
rights first and truncation invariance are not dual properties, in contrast to the TU-
bankruptcy context (cf. Herrero and Villar (2001)).

Inspired by Thomson and Yeh (2008), we introduce two operators which ‘force’
rules to satisfy truncation invariance and minimal rights first. Let BR denote the
class of bankruptcy problems with an arbitrary set of claimants. A bankruptcy
rule f on BR assigns to any (E, c) ∈ BRN with arbitrary N a payoff allocation
f(E, c) ∈ WP(E) for which f(E, c) ≤ c. Let F denote the space of all bankruptcy
rules on BR. The truncation operator T : F → F assigns to any bankruptcy rule
f ∈ F the bankruptcy rule T (f) ∈ F which assigns to any (E, c) ∈ BRN with
arbitrary N the payoff allocation

T (f)(E, c) = f(E, ĉE).

In particular, the truncated proportional rule T (Prop) ∈ F assigns to any (E, c) ∈
BRN with arbitrary N the payoff allocation T (Prop)(E, c) = Prop(E, ĉE).

Example 4.5
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 4.3. Then λE,ĉ
E = 2

√
2− 2

and T (Prop)(E, c) = (6
√

2− 6, 6
√

2− 6). This is illustrated as follows.

E

uE

c

ĉE

x10 1 2 3 4 5 6

x2

1

2

3
T (Prop)

4

The minimal rights operator M : F → F assigns to any bankruptcy rule f ∈ F
the bankruptcy ruleM(f) ∈ F which assigns to any (E, c) ∈ BRN with arbitrary N
the payoff allocation

M(f)(E, c) = m(E, c) + f((E − {m(E, c)})+, c−m(E, c)).
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A bankruptcy rule on BR satisfies a property if it satisfies that property on BRN

for all arbitrary N . Note that f ∈ F satisfies truncation invariance if and only if
f = T (f), and f ∈ F satisfies minimal rights first if and only if f = M(f). In
particular, this means that CREA = T (CREA) by Lemma 3.A.2.

The next theorem studies some consequences of the truncation operator and the
minimal rights operator for the properties of the rules to which they are applied.

Theorem 4.3.2
Let f ∈ F be a bankruptcy rule.

(i) Then T (f) satisfies truncation invariance.

(ii) Then M(f) satisfies minimal rights first.

(iii) If f satisfies relative symmetry, then T (f) satisfies relative symmetry.

(iv) If f satisfies truncation invariance, then M(f) satisfies truncation invariance.

(v) If f satisfies minimal rights first, then T (f) satisfies minimal rights first.

Proof. (i) Let (E, c) ∈ BRN with arbitrary N . Then

T (f)(E, ĉE) = f(E, ̂̂cEE) = f(E, ĉE) = T (f)(E, c),

where the second equality follows from Lemma 4.3.1(i).

(ii) Let (E, c) ∈ BRN with arbitrary N . Then

m(E, c) +M(f)((E − {m(E, c)})+, c−m(E, c))
= m(E, c) + f((E − {m(E, c)})+, c−m(E, c))
= M(f)(E, c),

where the first equality follows from Lemma 4.3.1(ii).

(iii) Assume that f satisfies relative symmetry. Let (E, c) ∈ BRN with arbitrary
N and let i, j ∈ N be such that ciuEj = cju

E
i . Then

ĉEi u
E
j = min{ci, uEi }uEj = min{ciuEj , uEi uEj }

= min{cjuEi , uEj uEi } = min{cj, uEj }uEi = ĉEj u
E
i .

Since f satisfies relative symmetry, this means that

T (f)i(E, c)uEj = fi(E, ĉE)uEj = fj(E, ĉE)uEi = T (f)j(E, c)uEi .
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(iv) Assume that f satisfies truncation invariance. Let (E, c) ∈ BRN with arbi-
trary N . Then

M(f)(E, ĉE) = m(E, ĉE) + f((E − {m(E, ĉE)})+, ĉ
E −m(E, ĉE))

= m(E, c) + f((E − {m(E, c)})+, ĉ
E −m(E, c))

= m(E, c) + f((E − {m(E, c)})+, c−m(E, c)
∧(E−{m(E,c)})+)

= m(E, c) + f((E − {m(E, c)})+, c−m(E, c))
=M(f)(E, c),

where the second equality follows from Lemma 4.3.1(iii), the third equality follows
from Lemma 4.3.1(iv), and the fourth equality follows from f satisfying truncation
invariance.

(v) Assume that f satisfies minimal rights first. Let (E, c) ∈ BRN with arbitrary
N . Then

m(E, c) + T (f)((E − {m(E, c)})+, c−m(E, c))

= m(E, c) + f((E − {m(E, c)})+, c−m(E, c)
∧(E−{m(E,c)})+)

= m(E, c) + f((E − {m(E, c)})+, ĉ
E −m(E, c))

= m(E, ĉE) + f((E − {m(E, ĉE)})+, ĉ
E −m(E, ĉE))

= f(E, ĉE)
= T (f)(E, c),

where the second equality follows from Lemma 4.3.1(iv), the third equality follows
from Lemma 4.3.1(iii), and the fourth equality follows from f satisfying minimal
rights first.

The purpose of Theorem 4.3.2 is twofold. First, it shows that the truncation
operator and the minimal rights operator indeed ‘force’ rules to satisfy truncation
invariance and minimal rights first, respectively. Second, it studies the preservation
of properties under the truncation operator and the minimal rights operator. Both
operators preserve truncation invariance and minimal rights first, and relative sym-
metry is preserved under the truncation operator, as is the case for TU-bankruptcy
rules. However, as illustrated by Example 4.4, relative symmetry is not preserved
under the minimal rights operator, in contrast to TU-bankruptcy rules.
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Let f ∈ F . By Theorem 4.3.2, T (f) satisfies truncation invariance and M(f)
satisfies minimal rights first, which means that T (T (f)) = T (f) and M(M(f)) =
M(f). By Theorem 4.3.2, T (M(f)) and M(T (f)) both satisfy truncation inva-
riance and minimal rights first, which means that T (M(f)) = T (M(T (f))) =
T (M(M(f))) and M(T (f)) = M(T (T (f))) = M(T (M(f))). Hence, nothing
changes when one of the operators is applied more than once. However, the two
operators can be combined to obtain a rule which satisfies both truncation invariance
and minimal rights first. The following proposition shows that the order in which the
operators are applied does not matter, as is the case for TU-bankruptcy rules.

Proposition 4.3.3
Let f ∈ F . Then T (M(f)) =M(T (f)).

Proof. Let (E, c) ∈ BRN with arbitrary N . Then

T (M(f))(E, c) =M(f)(E, ĉE)
= m(E, ĉE) + f((E − {m(E, ĉE)})+, ĉ

E −m(E, ĉE))
= m(E, c) + f((E − {m(E, c)})+, ĉ

E −m(E, c))

= m(E, c) + f((E − {m(E, c)})+, c−m(E, c)
∧(E−{m(E,c)})+)

= m(E, c) + T (f)((E − {m(E, c)})+, c−m(E, c))
=M(T (f))(E, c),

where the third equality follows from Lemma 4.3.1(iii) and the fourth equality follows
from Lemma 4.3.1(iv).

The bankruptcy rule T (M(f)) is the adjusted counterpart of the rule f ∈ F .
Three examples of adjusted rules are the adjusted proportional rule1 T (M(Prop)),
the adjusted constrained relative equal awards rule T (M(CREA)), and the adjusted
constrained relative equal losses rule T (M(CREL)). On the class of bankruptcy
problems with two claimants, these three adjusted rules coincide. This standard
solution is called the relative adjustment principle.2

Definition (Relative Adjustment Principle)
A bankruptcy rule f ∈ F satisfies the relative adjustment principle if it assigns to
any (E, c) ∈ BRN with arbitrary N for which |N | = 2 the payoff allocation

f(E, c) = m(E, c) + κE,c
(
ĉE −m(E, c)

)
,

where κE,c = max{t ∈ [0, 1] | m(E, c) + t(ĉE −m(E, c)) ∈WP(E)}.
1The adjusted proportional rule for TU-bankruptcy problems was introduced by Curiel, Maschler,

and Tijs (1987).
2For TU-bankruptcy problems, Aumann and Maschler (1985) called this standard solution the

contested garment principle. Later, Thomson (2003) named it the concede-and-divide principle.
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Example 4.6
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 4.3. Then f(E, c) =
(3

2

√
5− 3

2 ,
3
8

√
5+ 15

8 ) for any bankruptcy rule f ∈ F satisfying the relative adjustment
principle. This is illustrated as follows.
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ĉE

m(E, c)

f(E, c)

4

In order to axiomatically study the relative adjustment principle, we introduce
the class of simple bankruptcy problems.

Definition (Simple Bankruptcy Problem)
A bankruptcy problem (E, c) ∈ BRN is simple if ĉE = c and m(E, c) = 0N .

Let SBRN denote the class of simple bankruptcy problems with claimant set N .

Lemma 4.3.4
Let (E, c) ∈ BRN . Then ((E − {m(E, c)})+, ĉ

E −m(E, c)) ∈ SBRN .

Proof. We have

(ĉE −m(E, c))
∧(E−{m(E,c)})+

= (ĉE −m(E, ĉE))
∧(E−{m(E,ĉE)})+

= ̂̂cEE −m(E, ĉE)
= ĉE −m(E, c),

where the first equality follows from Lemma 4.3.1(iii), the second equality follows
from Lemma 4.3.1(iv), and the third equality follows from Lemma 4.3.1(i) and Lemma
4.3.1(iii). Moreover,

m((E − {m(E, c)})+, ĉ
E −m(E, c)) = m((E − {m(E, ĉE)})+, ĉ

E −m(E, ĉE)) = 0N ,

where the first equality follows from Lemma 4.3.1(iii) and the second equality follows
from Lemma 4.3.1(ii).
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A rule satisfies the simple counterpart of a property if it satisfies that property
on the class of simple problems. For example, a rule f ∈ F satisfies simple relative
symmetry if fi(E, c)uEj = fj(E, c)uEi for all (E, c) ∈ SBRN with arbitrary N and
any i, j ∈ N for which ciu

E
j = cju

E
i . Note that all bankruptcy rules satisfy simple

truncation invariance and simple minimal rights first.
If a rule satisfies a property, then Lemma 4.3.4 implies that its adjusted coun-

terpart satisfies the simple counterpart of that property. For example, the adjusted
counterpart of any relatively symmetric rule satisfies simple relative symmetry. In-
spired by Dagan (1996), we show that the relative adjustment principle is equivalent
to the combination of simple relative symmetry, truncation invariance, and minimal
rights first on the class of bankruptcy problems with two claimants. In particular,
since the adjusted counterpart of any rule satisfies truncation invariance and mini-
mal rights first, this means that the adjusted counterpart of any relatively symmetric
bankruptcy rule satisfies the relative adjustment principle.

Theorem 4.3.5
A bankruptcy rule on BR satisfies the relative adjustment principle if and only if it
satisfies simple relative symmetry, truncation invariance, and minimal rights first on
BRN for all arbitrary N for which |N | = 2.

Proof. Let f ∈ F be a bankruptcy rule satisfying the relative adjustment principle.
Let (E, c) ∈ SBRN with arbitrary N be such that |N | = 2 and let i, j ∈ N be such
that ciuEj = cju

E
i . Then

fi(E, c)uEj =
(
mi(E, c) + κE,c

(
ĉEi −mi(E, c)

))
uEj

= κE,cciu
E
j

= κE,ccju
E
i

=
(
mj(E, c) + κE,c

(
ĉEj −mj(E, c)

))
uEi

= fj(E, c)uEi .

Hence, f satisfies simple relative symmetry. Now, let (E, c) ∈ BRN with arbitrary N
be such that |N | = 2. Then

f(E, ĉE) = m(E, ĉE) + κE,ĉ
E
(̂̂cEE −m(E, ĉE)

)
= m(E, c) + κE,c

(
ĉE −m(E, c)

)
= f(E, c),

where the second equality follows from Lemma 4.3.1(i) and Lemma 4.3.1(iii). Hence,
f satisfies truncation invariance.
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Moreover,

m(E, c) + f((E − {m(E, c)})+, c−m(E, c))

= m(E, c) + κ(E−{m(E,c)})+,c−m(E,c)
(
c−m(E, c)
∧(E−{m(E,c)})+

)
= m(E, c) + κE,c

(
ĉE −m(E, c)

)
= f(E, c),

where the first equality follows from Lemma 4.3.1(ii) and the second equality follows
from Lemma 4.3.1(iv). Hence, f satisfies minimal rights first.

Let f ∈ F be a bankruptcy rule satisfying simple relative symmetry, truncation
invariance, and minimal rights first on BRN for all arbitrary N for which |N | = 2.
Let (E, c) ∈ BRN with arbitrary N be such that |N | = 2. Since f satisfies truncation
invariance and minimal rights first,

f(E, c) = m(E, c) + f((E − {m(E, c)})+, ĉ
E −m(E, c)).

By Lemma 4.3.4, ((E − {m(E, c)})+, ĉ
E − m(E, c)) ∈ SBRN . Let i ∈ N and let

j ∈ N \ {i}. Then

u
(E−{m(E,c)})+
i = max{xi | x ∈ (E − {m(E, c)})+}

= max{xi | (xi +mi(E, c),mj(E, c)) ∈ E}

=

u
E
i −mi(E, c) if mj(E, c) = 0;
ci −mi(E, c) if mj(E, c) > 0

=

u
E
i −mi(E, c) if ĉEi = uEi ;
ci −mi(E, c) if ĉEi = ci

= ĉEi −mi(E, c).

This means that(
ĉEi −mi(E, c)

)
u

(E−{m(E,c)})+
j =

(
ĉEj −mj(E, c)

)
u

(E−{m(E,c)})+
i .

Since f satisfies simple relative symmetry, this implies that

f((E − {m(E, c)})+, ĉ
E −m(E, c)) = κE,c

(
ĉE −m(E, c)

)
.

Then

f(E, c) = m(E, c) + f((E − {m(E, c)})+, ĉ
E −m(E, c))

= m(E, c) + κE,c
(
ĉE −m(E, c)

)
.

Hence, f satisfies the relative adjustment principle.
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By Theorem 4.3.5, all adjusted counterparts of rules which satisfy relative symme-
try coincide. Since the proportional rule, the constrained relative equal awards rule,
and the constrained relative equal losses rule satisfy relative symmetry, we derive the
following corollary.

Corollary 4.3.6
The adjusted proportional rule, the adjusted constrained relative equal awards rule,
and the adjusted constrained relative equal losses rule satisfy the relative adjustment
principle.

Future research could study generalizations of other bankruptcy rules which sa-
tisfy the relative adjustment principle on the class of TU-bankruptcy problems, such
as the random arrival rule (cf. O’Neill (1982)), the minimal overlap rule (cf. O’Neill
(1982)), and the Talmud rule (cf. Aumann and Maschler (1985)).





5 Bargaining Axioms

5.1 Introduction

Bankruptcy problems with nontransferable utility share some similarities with bar-
gaining problems with claims as introduced by Chun and Thomson (1992). In a
bargaining problem (cf. Nash (1950)), agents need to agree upon a surplus allo-
cation within a feasible set while taking into account their individual disagreement
payoffs. Chun and Thomson (1992) enriched these bargaining problems with a vector
of claims. In a bankruptcy problem with nontransferable utility, the estate is of a
similar nature as the feasible set in a bargaining problem. However, in a bankruptcy
problem, it is assumed that individual utility is normalized in such a way that allo-
cating nothing corresponds to a utility level of zero. Therefore, it is convenient to
consider the zero vector as a natural benchmark for allocations within bankruptcy
problems instead of an exogenous disagreement point as within bargaining problems.

This chapter, based on Dietzenbacher and Peters (2018), takes an axiomatic bar-
gaining approach to bankruptcy problems with nontransferable utility by characteri-
zing bankruptcy rules in terms of properties from bargaining theory. We consider the
role of the claims vector within bankruptcy problems as being ‘dual’ to the role of
the disagreement point within bargaining problems. Where the disagreement point
serves as a lower bound for rational payoff allocations within a bargaining problem,
the claims vector serves as an upper bound for feasible payoff allocations within a
bankruptcy problem.1

1Although not addressed in this chapter, one could also consider the role of the minimal rights
vector within bankruptcy problems as being analogous to the role of the disagreement point within
bargaining problems. Following this approach, Herrero (1997) interpreted the minimal rights vector
of a bankruptcy problem as an endogenous disagreement point of a bargaining problem with claims.

73
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Following the classical axiomatic theory of bargaining, we formulate several pro-
perties which concern changes in the estate or the claims, where the latter ones are
based on axioms concerning changes in the disagreement point, and study their im-
plications. In particular, we translate several axioms from bargaining theory to the
domain of bankruptcy problems with nontransferable utility, study their relations,
and combine them with the properties relative symmetry and truncation invariance
from bankruptcy theory to derive new axiomatic characterizations of the proportional
rule, the truncated proportional rule, and the constrained relative equal awards rule.

Alternatively, one could also interpret solutions for bargaining problems as new
rules for bankruptcy problems, in line with the work of Dagan and Volij (1993) for
bankruptcy problems with transferable utility. Future research allows to formalize
this reverse approach in order to further connect bankruptcy problems with bargai-
ning problems.

This chapter is organized in the following way. In Section 5.2, we introduce and
study the implications of axioms concerning changes in the estate. In Section 5.3, we
introduce and study the implications of axioms concerning changes in the claims.

5.2 Estate Axioms
In this section, we introduce and study the implications of axioms concerning changes
in the estate. Starting from the well-known independence of irrelevant alternatives
axiom introduced by Nash (1950), several axioms concerning changes in the feasible
set of bargaining problems have been proposed in the literature. As exploited by
Roth (1977) for the independence of irrelevant alternatives axiom, in the formulation
of these properties the disagreement point is required to be fixed. We translate these
properties to the domain of bankruptcy problems with nontransferable utility in such
a way that the vector of claims is required to be fixed.

Let (E, c) ∈ BRN . Throughout this chapter, the set of positive claimants is
defined by

N c
+ = {i ∈ N | ci > 0}

and the truncated estate Êc ⊆ RN+ is defined by

Êc = {x ∈ E | x ≤ c}.

Note that uÊc = ĉE and Êc = ÊĉE .
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Example 5.1
Let N = N c

+ = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by
E = {x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4). Then Êc = ÊĉE = {x ∈ RN+ |
x2

1 + 12x2 ≤ 36, x1 ≤ 3}, uE = (6, 3), and ĉE = uÊc = (3, 3). This is illustrated as
follows.

Êc

uE

c

ĉE
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x2
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Definition (Estate Axioms)
A bankruptcy rule f : BRN → RN+ satisfies

– step-by-step negotiations if f(E, c) = f(E ′, c)+f((E−{f(E ′, c)})+, c−f(E ′, c))
for all (E, c), (E ′, c) ∈ BRN for which E ′ ⊆ E;

– estate monotonicity if f(E, c) ≥ f(E ′, c) for all (E, c), (E ′, c) ∈ BRN for which
E ′ ⊆ E;

– domination if f(E, c) ≤ f(E ′, c) or f(E, c) ≥ f(E ′, c) for all (E, c), (E ′, c) ∈
BRN ;

– independence of irrelevant alternatives if f(E, c) = f(E ′, c) for all (E, c) ∈ BRN

and (E ′, c) ∈ BRN for which E ′ ⊆ E and f(E, c) ∈WP(E ′);

– independence of undominating alternatives if f(E, c) = f(E ′, c) for all (E, c) ∈
BRN and (E ′, c) ∈ BRN for which E ′ ⊆ E and f(E ′, c) ∈WP(E);

– independence of unclaimed alternatives if f(E, c) = f(E ′, c) for all (E, c) ∈ BRN

and (E ′, c) ∈ BRN for which Êc = Ê ′c.

The axioms step-by-step negotiations, estate monotonicity, domination, and in-
dependence of undominating alternatives are based on bargaining axioms of Kalai
(1977), Roth (1979), and Thomson and Myerson (1980). The independence of un-
claimed alternatives axiom, describing bankruptcy rules which only take the trunca-
ted estate into account, is used in a similar form by Chun and Thomson (1992) and
originates from the bargaining axiom of Peters (2010) describing bargaining solutions
which only take the rational payoff allocations within the feasible set into account.
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The following lemma studies the relations between the estate axioms. Some of
these relations bear similarities with the results of Thomson and Myerson (1980)
on the domain of bargaining problems. Throughout this chapter, we refer to the
appendix for the derivations of properties satisfied by specific bankruptcy rules.

Lemma 5.2.1
Let f : BRN → RN+ be a bankruptcy rule.

(i) If f satisfies step-by-step negotiations, then f satisfies estate monotonicity.

(ii) Then f satisfies estate monotonicity if and only if f satisfies domination.

(iii) If f satisfies estate monotonicity, then f satisfies independence of irrelevant
alternatives.

(iv) If f satisfies estate monotonicity, then f satisfies independence of undominating
alternatives.

(v) If f satisfies independence of irrelevant alternatives, then f satisfies indepen-
dence of unclaimed alternatives.

(vi) If f satisfies independence of undominating alternatives, then f satisfies inde-
pendence of unclaimed alternatives.

Proof. (i) Assume that f satisfies step-by-step negotiations. Let (E, c), (E ′, c) ∈ BRN

be such that E ′ ⊆ E. Then

f(E, c) = f(E ′, c) + f((E − {f(E ′, c)})+, c− f(E ′, c)) ≥ f(E ′, c).

Hence, f satisfies estate monotonicity.

(ii) Assume that f satisfies estate monotonicity. Let (E, c), (E ′, c) ∈ BRN . Sup-
pose that f(E, c) ∈ E ′. Then f(E, c) ∈ WP(E ∩ E ′), f(E ∩ E ′, c) ≤ f(E, c),
and f(E ∩ E ′, c) ≤ f(E ′, c). Since E is nonleveled, this implies that f(E, c) =
f(E ∩ E ′, c) ≤ f(E ′, c).

Now suppose that f(E, c) /∈ E ′. Then f(E, c) ∈ WP(E ∪ E ′), f(E, c) ≤ f(E ∪
E ′, c), and f(E ′, c) ≤ f(E ∪E ′, c). Since E is nonleveled, this implies that f(E, c) =
f(E ∪ E ′, c) ≥ f(E ′, c). Hence, f satisfies domination.

Assume that f satisfies domination. Let (E, c), (E ′, c) ∈ BRN be such that E ′ ⊆
E. Then f(E, c) ≤ f(E ′, c) or f(E, c) ≥ f(E ′, c). Since E is nonleveled, this implies
that f(E ′, c) ≤ f(E, c). Hence, f satisfies estate monotonicity.
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(iii) Assume that f satisfies estate monotonicity. Let (E, c), (E ′, c) ∈ BRN be
such that E ′ ⊆ E and f(E, c) ∈ WP(E ′). Then f(E, c) ≥ f(E ′, c). Since E is
nonleveled, this implies that f(E, c) = f(E ′, c). Hence, f satisfies independence of
irrelevant alternatives.

(iv) Assume that f satisfies estate monotonicity. Let (E, c), (E ′, c) ∈ BRN be
such that E ′ ⊆ E and f(E ′, c) ∈ WP(E). Then f(E, c) ≥ f(E ′, c). Since E is
nonleveled, this implies that f(E, c) = f(E ′, c). Hence, f satisfies independence of
undominating alternatives.

(v) Assume that f satisfies independence of irrelevant alternatives. Let (E, c) ∈
BRN and (E ′, c) ∈ BRN be such that Êc = Ê ′c. Then f(E, c), f(E ′, c) ∈WP(E∩E ′).
This implies that f(E, c) = f(E ∩ E ′, c) = f(E ′, c). Hence, f satisfies independence
of unclaimed alternatives.

(vi) Assume that f satisfies independence of undominating alternatives. Let
(E, c), (E ′, c) ∈ BRN be such that Êc = Ê ′c. Then f(E, c), f(E ′, c) ∈ WP(E ∪ E ′).
This implies that f(E, c) = f(E ∪ E ′, c) = f(E ′, c). Hence, f satisfies independence
of unclaimed alternatives.

As shown by the following two rules, the axioms independence of irrelevant alter-
natives and independence of undominating alternatives are independent.

The bankruptcy rule f : BRN → RN+ which assigns to any (E, c) ∈ BRN the
payoff allocation

f(E, c) =


(ĉE1 ,max{x | (ĉE1 , x) ∈ E}) if N = {1, 2} and ĉE1 ≥ ĉE2 ;
(max{x | (x, ĉE2 ) ∈ E}, ĉE2 ) if N = {1, 2} and ĉE1 < ĉE2 ;
Prop(E, c) otherwise

satisfies independence of irrelevant alternatives, but does not satisfy independence of
undominating alternatives.

The bankruptcy rule f : BRN → RN+ which assigns to any (E, c) ∈ BRN the
payoff allocation

f(E, c) =


(ĉE1 ,max{x | (ĉE1 , x) ∈ E}) if N = {1, 2} and ĉE1 ≤ ĉE2 ;
(max{x | (x, ĉE2 ) ∈ E}, ĉE2 ) if N = {1, 2} and ĉE1 > ĉE2 ;
Prop(E, c) otherwise

satisfies independence of undominating alternatives, but does not satisfy indepen-
dence of irrelevant alternatives.
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The relations of all estate axioms can be summarized by the following diagram.

step-by-step negotiations

estate monotonicity domination

indep. of irrelevant alternatives indep. of undominating alternatives

independence of unclaimed alternatives

//

The axioms independence of irrelevant alternatives and independence of undomina-
ting alternatives are independent. However, if relative symmetry is required, then
independence of irrelevant alternatives and independence of undominating alternati-
ves become equivalent and are only satisfied by the proportional rule.

Theorem 5.2.2
The proportional rule is the unique bankruptcy rule satisfying relative symmetry and
independence of irrelevant alternatives.

Proof. By Lemma 5.2.1 and Lemma 5.A.1, the proportional rule satisfies indepen-
dence of irrelevant alternatives. Let f : BRN → RN+ be a bankruptcy rule satisfying
relative symmetry and independence of irrelevant alternatives. Let (E, c) ∈ BRN .
If E = {0N}, then f(E, c) = 0N = Prop(E, c). Suppose that E 6= {0N}. Then
uE ∈ RN++ and N c

+ 6= ∅. Denote

t = max
i∈Nc

+

{
uEi
ci

}
and ε = min

i∈Nc
+
{Propi(E, c)} .

Define

E ′ =
⋃
i∈Nc

+

comp
(
conv

({(
tci, 0N\{i}

)}
∪
{(
ε, 0N\{j}

) ∣∣∣ j ∈ N \ {i}})) ∪ E.

uE
′

c

x10 ε tc1

ε

tc2

x2

f(E ′, c)
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Then (E ′, c) ∈ BRN and E ⊆ E ′. Moreover, uE′Nc
+

= tcNc
+

and λE
′,c = λE,c. We

have ciuE
′

j = tcicj = cju
E′
i for all i, j ∈ N c

+. Since f satisfies relative symmetry, this
means that f(E ′, c) = λE

′,cc = λE,cc = Prop(E, c). Since f satisfies independence of
irrelevant alternatives, this implies that f(E, c) = f(E ′, c) = Prop(E, c).

Theorem 5.2.3
The proportional rule is the unique bankruptcy rule satisfying relative symmetry and
independence of undominating alternatives.

Proof. By Lemma 5.2.1 and Lemma 5.A.1, the proportional rule satisfies indepen-
dence of undominating alternatives. Let f : BRN → RN+ be a bankruptcy rule
satisfying relative symmetry and independence of undominating alternatives. Let
(E, c) ∈ BRN . If E = {0N}, then f(E, c) = 0N = Prop(E, c). Suppose that
E 6= {0N}. Then uE ∈ RN++ and N c

+ 6= ∅. If |N c
+| = 1, then f(E, c) = (uENc

+
, 0N\Nc

+
) =

Prop(E, c). Suppose that |N c
+| ≥ 2. Denote

t = min
i∈Nc

+

{
uEi
ci

}
.

Let ε ∈ RN++ be defined by

εi =


1

|Nc
+|−1 (tci − Propi(E, c)) for all i ∈ N c

+;

uEi for all i ∈ N \N c
+.

Define E ′ = comp(conv(A1 ∪ A2)) ∩ E, where

A1 =
{((

Propi(E, c) + |N c
+ \ S|εi

)
i∈S

, 0N\S
) ∣∣∣∣ S ∈ 2Nc

+ \ {∅}
}

and A2 =
{(
εi, 0N\{i}

) ∣∣∣ i ∈ N \N c
+

}
.

uE
′

c

x10 tc1

x2

tc2

f(E ′, c)

Then (E ′, c) ∈ BRN and E ′ ⊆ E. Moreover, uE′Nc
+

= tcNc
+

and λE
′,c = λE,c. We

have ciuE
′

j = tcicj = cju
E′
i for all i, j ∈ N c

+. Since f satisfies relative symmetry, this
means that f(E ′, c) = λE

′,cc = λE,cc = Prop(E, c). Since f satisfies independence of
undominating alternatives, this implies that f(E, c) = f(E ′, c) = Prop(E, c).



80 Chapter 5 Bargaining Axioms

The constrained relative equal awards rule satisfies relative symmetry, but does
not satisfy independence of unclaimed alternatives. The constrained equal awards
rule satisfies step-by-step negotiations, but does not satisfy relative symmetry. This
is summarized in the following table.

Prop CREA CEA
relative symmetry + + −
step-by-step negotiations + − +
estate monotonicity + − +
domination + − +
independence of irrelevant alternatives + − +
independence of undominating alternatives + − +
independence of unclaimed alternatives + − +

This means that relative symmetry is independent of any estate axiom. This implies
that the properties in an axiomatic characterization of the proportional rule remain
independent if independence of irrelevant alternatives in Theorem 5.2.2 or indepen-
dence of undominating alternatives in Theorem 5.2.3 is strengthened to domination,
estate monotonicity, or step-by-step negotiations.

The proportional rule is not the unique rule satisfying relative symmetry and
independence of unclaimed alternatives, since the truncated proportional rule also
satisfies these two properties. Nevertheless, these two properties lead to the propor-
tional rule for a large class of problems.

Lemma 5.2.4
Let f : BRN → RN+ be a bankruptcy rule. If f satisfies relative symmetry and
independence of unclaimed alternatives, then f(E, c) = Prop(E, c) for all (E, c) ∈
BRN for which c < uE.

Proof. Assume that f satisfies relative symmetry and independence of unclaimed
alternatives. Let (E, c) ∈ BRN be such that c < uE. Then uE ∈ RN++ and |N c

+| ≥ 2.
Denote

t = max
i∈Nc

+

{
uEi
ci

}
and ε = min

i,j∈Nc
+

{
xi | (xi, cj, 0N\{i,j}) ∈WP(E)

}
.

Define

E ′ =
⋃
i∈Nc

+

comp
(
conv

({(
tci, 0N\{i}

)}
∪
{(
ε, 0N\{j}

) ∣∣∣ j ∈ N \ {i}})) ∪ E.
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uE
′

c

x10 ε tc1

x2

ε

tc2

f(E ′, c)

Then (E ′, c) ∈ BRN and Êc = Ê ′c. Moreover, uE′Nc
+

= tcNc
+

and λE
′,c = λE,c. We

have ciuE
′

j = tcicj = cju
E′
i for all i, j ∈ N c

+. Since f satisfies relative symmetry, this
means that f(E ′, c) = λE

′,cc = λE,cc = Prop(E, c). Since f satisfies independence of
unclaimed alternatives, this implies that f(E, c) = f(E ′, c) = Prop(E, c).

If we combine independence of unclaimed alternatives with the bankruptcy axi-
oms relative symmetry and truncation invariance, and the weak technical requirement
claims continuity, we derive an axiomatic characterization of the truncated propor-
tional rule by using Lemma 5.2.4.

Definition (Claims Continuity)
A bankruptcy rule f : BRN → RN+ satisfies claims continuity if f(E, c) is continuous
in c for all (E, c) ∈ BRN .

Theorem 5.2.5
The truncated proportional rule is the unique bankruptcy rule satisfying relative sym-
metry, truncation invariance, independence of unclaimed alternatives, and claims
continuity.

Proof. By Theorem 4.3.2, Lemma 5.A.2, and Lemma 5.A.3, the truncated propor-
tional rule satisfies relative symmetry, truncation invariance, independence of unclai-
med alternatives, and claims continuity. Let f : BRN → RN+ be a bankruptcy
rule satisfying relative symmetry, truncation invariance, independence of unclai-
med alternatives, and claims continuity. Let (E, c) ∈ BRN . If E = {0N}, then
f(E, c) = 0N = T (Prop)(E, c). Suppose that E 6= {0N}. Then uE ∈ RN++ and
N c

+ 6= ∅. If |N c
+| = 1, then f(E, c) = (uENc

+
, 0N\Nc

+
) = T (Prop)(E, c).
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Suppose that |N c
+| ≥ 2. Let {xk}k∈N be a sequence in WUC(E) defined by

xk = 1
k
Prop(E, ĉE) + (1 − 1

k
)ĉE for all k ∈ N. Then xk < uE for all k ∈ N and

limk→∞ xk = ĉE. Since f satisfies relative symmetry and independence of unclaimed
alternatives, Lemma 5.2.4 implies that f(E, xk) = Prop(E, xk) = Prop(E, ĉE) =
T (Prop)(E, c) for all k ∈ N. Since f satisfies claims continuity, this means that
f(E, ĉE) = limk→∞ f(E, xk) = T (Prop)(E, c). Since f satisfies truncation invariance,
this implies that f(E, c) = f(E, ĉE) = T (Prop)(E, c).

To show that the properties in Theorem 5.2.5 are independent, we introduce
the restricted truncated proportional rule. The restricted truncated proportional rule
RTProp : BRN → RN+ is the bankruptcy rule which assigns to any (E, c) ∈ BRN the
payoff allocation

RTProp(E, c) =

Prop(E, c) if c < uE;
(tuES , 0N\S) otherwise,

where S = {i ∈ N | ci ≥ uEi } and t ∈ [0, 1] is such that RTProp(E, c) ∈WP(E).
The restricted truncated proportional rule satisfies relative symmetry, truncation

invariance, and independence of unclaimed alternatives, but does not satisfy claims
continuity. The constrained relative equal awards rule satisfies relative symmetry,
truncation invariance, and claims continuity, but does not satisfy independence of
unclaimed alternatives. The proportional rule satisfies relative symmetry, indepen-
dence of unclaimed alternatives, and claims continuity, but does not satisfy trunca-
tion invariance. The constrained equal awards rule satisfies truncation invariance,
independence of unclaimed alternatives, and claims continuity, but does not satisfy
relative symmetry. This is summarized in the following table.

T (Prop) RTProp CREA Prop CEA
relative symmetry + + + + −
truncation invariance + + + − +
indep. of unclaimed alternatives + + − + +
claims continuity + − + + +

This means that the properties in Theorem 5.2.5 are independent.

5.3 Claims Axioms
In this section, we introduce and study the implications of axioms concerning changes
in the claims. Several axioms concerning changes in the disagreement point of bargai-
ning problems have been proposed in the literature. We translate these properties to
the domain of bankruptcy problems in such a way that they concern similar changes
in the vector of claims while the estate is required to be fixed.
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Definition (Claims Axioms)
A bankruptcy rule f : BRN → RN+ satisfies

– claims linearity if f(E, c) = f(E, θc+ (1− θ)c′) for all (E, c), (E, c′) ∈ BRN for
which f(E, c) = f(E, c′) and any θ ∈ R for which (E, θc+ (1− θ)c′) ∈ BRN ;

– weak claims linearity if f(E, c) = f(E, θc+ (1− θ)f(E, c)) for all (E, c) ∈ BRN

and any θ ∈ R+;

– claims convexity if f(E, c) = f(E, θc + (1 − θ)c′)2 for all (E, c), (E, c′) ∈ BRN

for which f(E, c) = f(E, c′) and any θ ∈ [0, 1];

– weak claims convexity if f(E, c) = f(E, θc+(1−θ)f(E, c)) for all (E, c) ∈ BRN

and any θ ∈ [0, 1].

The claims linearity axiom describes bankruptcy rules for which all claim vectors
on the line connecting two claim vectors with equal outcomes lead to the same payoff
allocation. The claims convexity axiom is based on a bargaining axiom of Livne
(1988) and Chun and Thomson (1990). If there is uncertainty about which of the
two claim vectors with equal outcomes applies, then any expected value leads to the
same payoff allocation. The corresponding weaker axioms of claims linearity and
claims convexity, which only require that linear or convex combinations of the claim
vector and its outcome lead to the same payoff allocation, are based on bargaining
axioms of Peters and Van Damme (1991) and Peters (2010).

The following lemma studies the relations between the claims axioms.

Lemma 5.3.1
Let f : BRN → RN+ be a bankruptcy rule.

(i) If f satisfies claims linearity, then f satisfies claims convexity.

(ii) If f satisfies claims linearity, then f satisfies weak claims linearity.

(iii) If f satisfies claims convexity, then f satisfies weak claims convexity.

(iv) If f satisfies weak claims linearity, then f satisfies weak claims convexity.

2Note that (E, θc + (1 − θ)c′) ∈ BRN for all (E, c), (E, c′) ∈ BRN for which f(E, c) = f(E, c′)
and any θ ∈ [0, 1].
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Proof. (i) Assume that f satisfies claims linearity. Let (E, c), (E, c′) ∈ BRN be such
that f(E, c) = f(E, c′) and let θ ∈ [0, 1]. Then (E, θc+ (1− θ)c′) ∈ BRN . By claims
linearity, f(E, c) = f(E, θc+ (1− θ)c′). Hence, f satisfies claims convexity.

(ii) Assume that f satisfies claims linearity. Let (E, c) ∈ BRN and let θ ∈ R+.
Then f(E, c) = f(E, f(E, c)) and (E, θc+(1−θ)f(E, c)) ∈ BRN . By claims linearity,
f(E, c) = f(E, θc+ (1− θ)f(E, c)). Hence, f satisfies weak claims linearity.

(iii) Assume that f satisfies claims convexity. Let (E, c) ∈ BRN and let θ ∈
[0, 1]. Then f(E, c) = f(E, f(E, c)). By claims convexity, f(E, c) = f(E, θc + (1 −
θ)f(E, c)). Hence, f satisfies weak claims convexity.

(iv) Assume that f satisfies weak claims linearity. Let (E, c) ∈ BRN and let
θ ∈ [0, 1]. By weak claims linearity, f(E, c) = f(E, θc + (1 − θ)f(E, c)). Hence, f
satisfies weak claims convexity.

As shown by the following two rules, the axioms weak claims linearity and claims
convexity are independent.

The restricted constrained relative equal awards rule RCREA : BRN → RN+ , the
bankruptcy rule which assigns to any (E, c) ∈ BRN the payoff allocation

RCREA(E, c) =

CREA(E, c) if c < uE or c ≥ λE,u
E
uE;

(tuES , 0N\S) otherwise,

where S = {i ∈ N | ci ≥ uEi } and t ∈ [0, 1] is such that RCREA(E, c) ∈ WP(E),
satisfies claims convexity, but does not satisfy weak claims linearity.

The bankruptcy rule f : BRN → RN+ which assigns to any (E, c) ∈ BRN the
payoff allocation

f(E, c) =

(ĉE1 ,min{c2, tu
E
2 },min{c3, tu

E
3 }) if N = {1, 2, 3} and c2u

E
3 = c3u

E
2 ;

CREA(E, c) otherwise,

where t ∈ [0, 1] is such that f(E, c) ∈ WP(E), satisfies weak claims linearity, but
does not satisfy claims convexity.

The relations of all claims axioms can be summarized by the following diagram.

claims linearity

claims convexity weak claims linearity

weak claims convexity

//
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The constrained relative equal awards rule is not the unique rule satisfying rela-
tive symmetry, truncation invariance, and claims convexity, since the restricted con-
strained relative equal awards rule also satisfies these three properties. However, the
constrained relative equal awards rule is the only bankruptcy rule satisfying relative
symmetry, truncation invariance, and weak claims linearity.
Theorem 5.3.2
The constrained relative equal awards rule is the unique bankruptcy rule satisfying
relative symmetry, truncation invariance, and weak claims linearity.

Proof. By Lemma 3.A.1, Lemma 3.A.2, and Lemma 5.A.4, the constrained relative
equal awards rule satisfies relative symmetry, truncation invariance, and weak claims
linearity. Let f : BRN → RN+ be a bankruptcy rule satisfying relative symmetry,
truncation invariance, and weak claims linearity. Let (E, c) ∈ BRN . If c ∈ E, then
f(E, c) = c = CREA(E, c). Suppose that c /∈ E. Denote S = {i ∈ N | fi(E, c) < ci}.
Then S 6= ∅. Let x = θc + (1 − θ)f(E, c) for some θ ∈ R+ be such that xS ≥ uES .
Then x̂ES = uES and x̂Ei u

E
j = uEi u

E
j = x̂Ej u

E
i for all i, j ∈ S. Since f satisfies relative

symmetry, this means that fS(E, x̂E) = tuES for some t ∈ [0, 1]. Since f satisfies
truncation invariance, this implies that fS(E, x) = fS(E, x̂E) = tuES . Since f satisfies
weak claims linearity, fS(E, c) = fS(E, x) = tuES . Then fS(E, c) ≤ αE,cuES , since
otherwise f(E, c) ≥ CREA(E, c) and f(E, c) 6= CREA(E, c), which contradicts that
E is nonleveled.

Suppose that there exists an i ∈ N \ S such that fi(E, c) > αE,cuEi . Then
fj(E, c)uEi ≤ αE,cuEj u

E
i < fi(E, c)uEj for all j ∈ S. Let y = θc+(1−θ)f(E, c) for some

θ ∈ R++ be such that yjuEi = fi(E, c)uEj for some j ∈ S. Then yiu
E
j = fi(E, c)uEj =

yju
E
i . Since f satisfies relative symmetry, this means that fi(E, y)uEj = fj(E, y)uEi .

Since f satisfies weak claims linearity, this implies that fi(E, c)uEj = fj(E, c)uEi . This
is a contradiction. Hence, fi(E, c) ≤ min{ci, αE,cuEi } = CREAi(E, c) for all i ∈ N .
Since E is nonleveled, this implies that f(E, c) = CREA(E, c).

The truncated proportional rule satisfies relative symmetry and truncation in-
variance, but does not satisfy weak claims linearity. The proportional rule satisfies
relative symmetry and weak claims linearity, but does not satisfy truncation inva-
riance. The constrained equal awards rule satisfies truncation invariance and weak
claims linearity, but does not satisfy relative symmetry. This is summarized in the
following table.

CREA T (Prop) Prop CEA
relative symmetry + + + −
truncation invariance + + − +
weak claims linearity + − + +

This means that the properties in Theorem 5.3.2 are independent.
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The axioms concerning changes in the claims can also be combined with the
independence of unclaimed alternatives axiom. The proportional rule is not the
unique rule satisfying relative symmetry and independence of unclaimed alternatives,
since the truncated proportional rule also satisfies these two properties. However, if
weak claims linearity is required in addition, then these properties are only satisfied
by the proportional rule.

Theorem 5.3.3
The proportional rule is the unique bankruptcy rule satisfying relative symmetry, in-
dependence of unclaimed alternatives, and weak claims linearity.

Proof. By Lemma 5.2.1, Lemma 5.3.1, Lemma 5.A.1, and Lemma 5.A.5, the propor-
tional rule satisfies independence of unclaimed alternatives and weak claims linearity.
Let f : BRN → RN+ be a bankruptcy rule satisfying relative symmetry, independence
of unclaimed alternatives, and weak claims linearity. Let (E, c) ∈ BRN . If E = {0N},
then f(E, c) = 0N = Prop(E, c). Suppose that E 6= {0N}. Then uE ∈ RN++ and N c

+ 6=
∅. If |N c

+| = 1, then f(E, c) = (uENc
+
, 0N\Nc

+
) = Prop(E, c). Suppose that |N c

+| ≥ 2.
Let x = θc+(1−θ)Prop(E, c) for some θ ∈ (0, 1] be such that x < uE. Since f satisfies
relative symmetry and independence of unclaimed alternatives, Lemma 5.2.4 implies
that f(E, x) = Prop(E, x) = Prop(E, c). Since f satisfies weak claims linearity, this
implies that f(E, c) = f(E, 1

θ
x+ (1− 1

θ
)f(E, x)) = f(E, x) = Prop(E, c).

To show that relative symmetry and independence of unclaimed alternatives are
independent of any claims axiom, we introduce two other rules. For any (E, c) ∈ BRN

for which N = N c
+ = {1, 2}, E 6= {0N}, and c /∈ E, let ξE,c ∈WP(E) be defined such

that
√

ξE,c2
ξE,c1

= c2−ξE,c2
c1−ξE,c1

. Note that ξE,c exists and is uniquely defined.

The bankruptcy rule ψ1 : BRN → RN+ assigns to any (E, c) ∈ BRN the payoff
allocation

ψ1(E, c) =


ξE,c if N = N c

+ = {1, 2}, E = {x ∈ RN+ | x1 + x2 ≤ 1},
and c /∈ E;

Prop(E, c) otherwise.

The bankruptcy rule ψ2 : BRN → RN+ assigns to any (E, c) ∈ BRN the payoff
allocation

ψ2(E, c) =

ξ
E,c if N = N c

+ = {1, 2}, E 6= {0N}, and c /∈ E;
Prop(E, c) otherwise.
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The truncated proportional rule satisfies relative symmetry and independence of
unclaimed alternatives, but does not satisfy weak claims convexity. The bankruptcy
rule ψ1 satisfies relative symmetry and claims linearity, but does not satisfy indepen-
dence of unclaimed alternatives. The bankruptcy rule ψ2 satisfies independence of
unclaimed alternatives and claims linearity, but does not satisfy relative symmetry.
This is summarized in the following table.

Prop T (Prop) ψ1 ψ2

relative symmetry + + + −
independence of unclaimed alternatives + + − +
claims linearity + − + +
weak claims linearity + − + +
claims convexity + − + +
weak claims convexity + − + +

This means that relative symmetry and independence of unclaimed alternatives are
independent of any claims axiom. In particular, the properties in Theorem 5.3.3
are independent. Moreover, the properties in the axiomatic characterization of the
proportional rule remain independent if weak claims linearity in Theorem 5.3.3 is
strengthened to claims linearity.

The proportional rule is not the unique rule satisfying relative symmetry, inde-
pendence of unclaimed alternatives, and claims convexity. The restricted proportional
rule RProp : BRN → RN+ , the bankruptcy rule which assigns to any (E, c) ∈ BRN

the payoff allocation

RProp(E, c) =

Prop(E, c) if c < uE;
(tcS, 0N\S) otherwise,

where S = {i ∈ N | ∀j∈N : cjuEi ≤ ciu
E
j } and t ∈ [0, 1] is such that RProp(E, c) ∈

WP(E), also satisfies relative symmetry, independence of unclaimed alternatives, and
claims convexity. However, if positive claimants are required to get positive awards,
then these properties are only satisfied by the proportional rule.

Definition (Positive Awards)
A bankruptcy rule f : BRN → RN+ satisfies positive awards if fNc

+
(E, c) > 0Nc

+
for all

(E, c) ∈ BRN for which E 6= {0N}.
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Theorem 5.3.4
The proportional rule is the unique bankruptcy rule satisfying relative symmetry, in-
dependence of unclaimed alternatives, weak claims convexity, and positive awards.

Proof. By Lemma 5.2.1, Lemma 5.3.1, Lemma 5.A.1, Lemma 5.A.5, and Lemma
5.A.6, the proportional rule satisfies independence of unclaimed alternatives, weak
claims convexity, and positive awards. Let f : BRN → RN+ be a bankruptcy rule
satisfying relative symmetry, independence of unclaimed alternatives, weak claims
convexity, and positive awards. Let (E, c) ∈ BRN . If E = {0N}, then f(E, c) = 0N =
Prop(E, c). Suppose that E 6= {0N}. Then uE ∈ RN++ and N c

+ 6= ∅. If |N c
+| = 1,

then f(E, c) = (uENc
+
, 0N\Nc

+
) = Prop(E, c). Suppose that |N c

+| ≥ 2. Since f satisfies
positive awards, there exists an x ∈ RN+ with x = θc+(1−θ)f(E, c) for some θ ∈ (0, 1]
such that x < uE. Since f satisfies relative symmetry and independence of unclaimed
alternatives, Lemma 5.2.4 implies that f(E, x) = Prop(E, x). Since f satisfies weak
claims convexity, this implies that f(E, c) = f(E, x) = Prop(E, x) = Prop(E, c).

The restricted proportional rule satisfies relative symmetry, independence of un-
claimed alternatives, and claims convexity, but does not satisfy positive awards. The
truncated proportional rule satisfies relative symmetry, independence of unclaimed
alternatives, and positive awards, but does not satisfy weak claims convexity. The
constrained relative equal awards rule satisfies relative symmetry, claims convexity,
and positive awards, but does not satisfy independence of unclaimed alternatives.
The constrained equal awards rule satisfies independence of unclaimed alternatives,
claims convexity, and positive awards, but does not satisfy relative symmetry. This
is summarized in the following table.

Prop RProp T (Prop) CREA CEA
relative symmetry + + + + −
indep. of unclaimed alternatives + + + − +
claims convexity + + − + +
weak claims convexity + + − + +
positive awards + − + + +

This means that the properties in Theorem 5.3.4 are independent. Moreover, the pro-
perties in the axiomatic characterization of the proportional rule remain independent
if weak claims convexity in Theorem 5.3.4 is strengthened to claims convexity.
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In this chapter, we derived new axiomatic characterizations of the proportional
rule, the truncated proportional rule, and the constrained relative equal awards rule
for bankruptcy problems with nontransferable utility using axioms from bargaining
theory. An overview of the corresponding properties, including the bankruptcy axi-
oms relative symmetry and truncation invariance, the axioms concerning changes in
the estate, the axioms concerning changes in the claims, and the weak technical re-
quirements claims continuity and positive awards, is provided in the following table.
The constrained equal awards rule is included for illustrative purposes.

Prop T (Prop) CREA CEA
relative symmetry + + + −
truncation invariance − + + +
step-by-step negotiations + − − +
estate monotonicity + − − +
domination + − − +
independence of irrelevant alternatives + − − +
independence of undominating alternatives + − − +
independence of unclaimed alternatives + + − +
claims continuity + + + +
claims linearity + − − −
weak claims linearity + − + +
claims convexity + − + +
weak claims convexity + − + +
positive awards + + + +

The following table provides an overview of the axiomatic characterizations derived
in this chapter.

Prop Prop Prop Prop T (Prop) CREA
relative symmetry ? ? ? ? ? ?

truncation invariance ? ?

indep. of irrelevant alt. ?

indep. of undominating alt. ?

indep. of unclaimed alt. ? ? ?

claims continuity ?

weak claims linearity ? ?

weak claims convexity ?

positive awards ?
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5.A Appendix
Lemma 5.A.1
The proportional rule satisfies step-by-step negotiations.

Proof. Let (E, c), (E ′, c) ∈ BRN be such that E ′ ⊆ E. Then Prop(E, c) = λE,cc and

Prop(E ′, c) + Prop((E − {Prop(E ′, c)})+, c− Prop(E ′, c))
= λE

′,cc+ Prop((E − {λE′,cc})+, c− λE
′,cc)

= λE
′,cc+ λ(E−{λE′,cc})+,(1−λE

′,c)c(1− λE′,c)c

=
(
λE
′,c + λ(E−{λE′,cc})+,c

)
c.

Since E is nonleveled, this implies that

Prop(E, c) = Prop(E ′, c) + Prop((E − {Prop(E ′, c)})+, c− Prop(E ′, c)).

Hence, the proportional rule satisfies step-by-step negotiations.

Lemma 5.A.2
The truncated proportional rule satisfies independence of unclaimed alternatives.

Proof. Let (E, c), (E ′, c) ∈ BRN be such that Êc = Ê ′c. Then ÊĉE = Êc = Ê ′c = Ê ′
ĉE′

and ĉE = uÊc = uÊ
′
c = ĉE

′ . By Lemma 5.2.1 and Lemma 5.A.1, the proportional rule
satisfies independence of unclaimed alternatives. Then

T (Prop)(E, c) = Prop(E, ĉE) = Prop(E ′, ĉE′) = T (Prop)(E ′, c).

Hence, the truncated proportional rule satisfies independence of unclaimed alterna-
tives.

Lemma 5.A.3
The truncated proportional rule satisfies claims continuity.

Proof. Let (E, c) ∈ BRN . Then limx→c x̂
E = ĉE, limx→c λ

E,x̂E = λE,ĉ
E , and

lim
x→c
T (Prop)(E, x) = lim

x→c
Prop(E, x̂E) = lim

x→c
λE,x̂

E

x̂E = lim
x→c

λE,x̂
E lim
x→c

x̂E

= λE,ĉ
E

ĉE = Prop(E, ĉE) = T (Prop)(E, c).

Hence, the truncated proportional rule satisfies claims continuity.
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Lemma 5.A.4
The constrained relative equal awards rule satisfies weak claims linearity.

Proof. Let (E, c) ∈ BRN and let θ ∈ R+. Suppose that αE,θc+(1−θ)CREA(E,c) ≥ αE,c.
Then

CREAi(E, θc+ (1− θ)CREA(E, c))
= min{θci + (1− θ)CREAi(E, c), αE,θc+(1−θ)CREA(E,c)uEi }
= min{CREAi(E, c) + θ(ci − CREAi(E, c)), αE,θc+(1−θ)CREA(E,c)uEi }
≥ min{CREAi(E, c), αE,cuEi }
= CREAi(E, c)

for all i ∈ N . Since E is nonleveled, this implies that

CREA(E, c) = CREA(E, θc+ (1− θ)CREA(E, c)).

Now, suppose that αE,θc+(1−θ)CREA(E,c) ≤ αE,c. Then

CREAi(E, θc+ (1− θ)CREA(E, c))
= min{θci + (1− θ)CREAi(E, c), αE,θc+(1−θ)CREA(E,c)uEi }
= min{CREAi(E, c) + θ(ci − CREAi(E, c)), αE,θc+(1−θ)CREA(E,c)uEi }
≤ min{CREAi(E, c) + θ(ci − CREAi(E, c)), αE,cuEi }
= CREAi(E, c)

for all i ∈ N . Since E is nonleveled, this implies that

CREA(E, c) = CREA(E, θc+ (1− θ)CREA(E, c)).

Hence, the constrained relative equal awards rule satisfies weak claims linearity.
Lemma 5.A.5
The proportional rule satisfies claims linearity.

Proof. Let (E, c), (E, c′) ∈ BRN be such that Prop(E, c) = Prop(E, c′), and let θ ∈ R
be such that (E, θc + (1 − θ)c′) ∈ BRN . If E = {0N}, then Prop(E, c) = 0N =
Prop(E, θc+ (1− θ)c′). Suppose that E 6= {0N}. Then λE,cc = λE,c

′
c′ and

Prop(E, θc+(1−θ)c′) = λE,θc+(1−θ)c′(θc+(1−θ)c′) = λE,θc+(1−θ)c′
(
θ + (1− θ) λ

E,c

λE,c′

)
c.

Since E is nonleveled, this implies that Prop(E, c) = Prop(E, θc+ (1− θ)c′). Hence,
the proportional rule satisfies claims linearity.
Lemma 5.A.6
The proportional rule satisfies positive awards.

Proof. Let (E, c) ∈ BRN be such that E 6= {0N} and let i ∈ N c
+. Then Propi(E, c) =

λE,cci > 0. Hence, the proportional rule satisfies positive awards.





6 Bankruptcy Games

6.1 Introduction
Already in the work of O’Neill (1982), bankruptcy problems with transferable utility
are analyzed from a game theoretic perspective by studying a corresponding bank-
ruptcy game. One model for bankruptcy games with nontransferable utility was in-
troduced by Orshan, Valenciano, and Zarzuelo (2003). However, Estévez-Fernández,
Borm, and Fiestras-Janeiro (2014) pointed out that coalitions can attain payoff allo-
cations outside the estate in this game, which contradicts the original idea of O’Neill
(1982). They redefined NTU-bankruptcy games to stay in line with this original idea,
while focusing on convexity and compromise stability. However, their model for NTU-
bankruptcy games does not straightforwardly generalize the original TU-bankruptcy
games in the sense that NTU-bankruptcy games corresponding to NTU-bankruptcy
problems induced by TU-bankruptcy problems are different from the NTU-games
induced by TU-bankruptcy games.

This chapter, based on Dietzenbacher (2018), introduces a slightly modified ver-
sion of the model of Orshan, Valenciano, and Zarzuelo (2003) for NTU-bankruptcy
games which both generalizes the model for TU-bankruptcy games and stays in line
with the idea of O’Neill (1982). Focusing on the structure of the core, we analyze
NTU-bankruptcy games along the lines of Curiel, Maschler, and Tijs (1987). In
particular, generalizing the core cover and the reasonable set, we define compromise
stability and reasonable stability for NTU-games. Contrary to TU-games, the ge-
neralized reasonable set does not necessarily contain the core of an NTU-game and
consequently reasonable stability does not imply compromise stability. Interestingly,
the core of an NTU-bankruptcy game still coincides with the core cover and the rea-
sonable set, which leads to a compact expression for the core of bankruptcy games.
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Besides, we show that a bankruptcy rule is game theoretic if and only if it satisfies
truncation invariance. This means that there exists a solution for NTU-games which
coincides on the class of bankruptcy games with a certain bankruptcy rule if and only
if this bankruptcy rule satisfies truncation invariance.

This chapter is organized in the following way. In Section 6.2, we generalize some
notions for transferable utility games to nontransferable utility games. Section 6.3
discusses the modeling of NTU-bankruptcy games. In Section 6.4, we study the core
and some properties of a modified model for NTU-bankruptcy games.

6.2 Compromise stability and reasonable stability

Let V ∈ NTUN be a monotonic nontransferable utility game. Similar to Otten,
Borm, Peleg, and Tijs (1998), we define Mσ(V ) ∈ RN+ corresponding to σ ∈ Π(N) by

Mσ
σ(k)(V ) = max

{
x ∈ R+

∣∣∣ (Mσ
σ(1)(V ), . . . ,Mσ

σ(k−1)(V ), x) ∈ V ({σ(1), . . . , σ(k)})
}

for all k ∈ {1, . . . , |N |}. Note that the conditions on V imply that this maximum
exists. As in the context of TU-games, Mσ

σ(k)(V ) can be interpreted as the maximal
payoff of player σ(k) ∈ N in a certain order σ ∈ Π(N) when joining the predecessors,
which have already been allocated their contributions. For any game V ∈ NTUN

for which V (S) = {x ∈ RS+ |
∑
i∈S xi ≤ v(S)} for all S ∈ 2N \ {∅}, induced by a

nonnegative monotonic game v ∈ TUN , Mσ(V ) = Mσ(v) for all σ ∈ Π(N).
Inspired by Borm, Keiding, McLean, Oortwijn, and Tijs (1992), we define K(V ) ∈

RN+ by
Ki(V ) = max

{
xi
∣∣∣ x ∈ V (N), xN\{i} ∈ SUC(V (N \ {i}))

}
for all i ∈ N , and k(V ) ∈ RN+ by

ki(V ) = max
S∈2N :i∈S

sup
{
x ∈ R+

∣∣∣ (x,KS\{i}(V )) ∈ V (S)
}

for all i ∈ N . Note that the conditions on V imply that these maxima exist. As in
the context of TU-games, Ki(V ) can be interpreted as the maximal payoff of player
i ∈ N within an allocation of V (N) which is stable against a coalitional deviation of
the other players together. Moreover, ki(V ) can be interpreted as the maximal payoff
of player i ∈ N which can be obtained within some coalition S ∈ 2N for which i ∈ S
when each other member j ∈ S \ {i} is allocated Kj(V ). For any game V ∈ NTUN

for which V (S) = {x ∈ RS+ |
∑
i∈S xi ≤ v(S)} for all S ∈ 2N \ {∅}, induced by a

nonnegative monotonic game v ∈ TUN , K(V ) = K(v) and k(V ) = k(v).
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Using these notions, we can generalize the core cover and the reasonable set to the
class of nontransferable utility games. Let V ∈ NTUN be a monotonic nontransferable
utility game. The core cover is defined by

CC(V ) = {x ∈ SP(V (N)) | k(V ) ≤ x ≤ K(V )} ,

and the reasonable set is defined by

R(V ) =
{
x ∈ SP(V (N))

∣∣∣∣∣ ∀i∈N : min
σ∈Π(N)

Mσ
i (V ) ≤ xi ≤ max

σ∈Π(N)
Mσ

i (V )
}
.

Lemma 6.2.1
Let V ∈ NTUN be monotonic. Then CS(V ) ⊆ CC(V ).

Proof. Let x ∈ CS(V ). Then

xi ≤ max{yi | y ∈ CS(V )}
= max{yi | y ∈ V (N),∀S∈2N\{∅} : yS ∈ SUC(V (S))}
≤ max{yi | y ∈ V (N), yN\{i} ∈ SUC(V (N \ {i}))}
= Ki(V )

for all i ∈ N . Suppose that there exists an i ∈ N such that xi < ki(V ). Let S ∈ 2N

be such that i ∈ S and (ki(V ), KS\{i}(V )) ∈ V (S). Then xS ≤ (ki(V ), KS\{i}(V ))
and xS 6= (ki(V ), KS\{i}(V )). This means that xS /∈ SUC(V (S)), which contradicts
that x ∈ CS(V ). Hence, k(V ) ≤ x ≤ K(V ) and x ∈ CC(V ).

Lemma 6.2.1 shows that the core cover indeed contains the strong core. NTU-
games for which the core cover coincides with the nonempty strong core are called
compromise stable.

Definition (Compromise Stability)
A monotonic game V ∈ NTUN is compromise stable if CS(V ) 6= ∅ and CS(V ) =
CC(V ).

Contrary to TU-games, the following example shows that the reasonable set does
not necessarily contain the strong core of an NTU-game.

Example 6.1
Let N = {1, 2, 3} and consider the monotonic game V ∈ NTUN given by

V (S) =


{x ∈ RS+ | x2

1 + x2
2 ≤ (9− x3)2, x3 ≤ 9} if S = N ;

{x ∈ RS+ | x1 + x2 ≤ 4} if S = {1, 2};
{0S} otherwise

for all S ∈ 2N \ {∅}.
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The vectors Mσ(V ) ∈ RN+ corresponding to all σ ∈ Π(N) are presented in the
following table.

σ Mσ
1 (V ) Mσ

2 (V ) Mσ
3 (V )

(1, 2, 3) 0 4 5
(1, 3, 2) 0 9 0
(2, 1, 3) 4 0 5
(2, 3, 1) 9 0 0
(3, 1, 2) 0 9 0
(3, 2, 1) 9 0 0

This means that the reasonable set is given by

R(V ) = {x ∈ SP(V (N)) | 0 ≤ x1 ≤ 9, 0 ≤ x2 ≤ 9, 0 ≤ x3 ≤ 5} .

One can verify that (2, 2, 9− 2
√

2) ∈ CS(V ) \ R(V ). Hence, CS(V ) 6⊆ R(V ). 4

The minimal and maximal contributions can still be considered as reasonable
bounds for payoff allocations. NTU-games for which the strong core coincides with
the reasonable set are called reasonable stable.

Definition (Reasonable Stability)
A monotonic game V ∈ NTUN is reasonable stable if CS(V ) = R(V ).

Note that reasonable stability is stronger than marginal convexity (cf. Hendrickx,
Borm, and Timmer (2002)), which requires that Mσ(V ) ∈ CS(V ) for all σ ∈ Π(N).

6.3 Modeling bankruptcy games
This section discusses the modeling of bankruptcy games with nontransferable utility.
Since NTU-bankruptcy problems generalize TU-bankruptcy problems, and NTU-
games generalize TU-games, an appropriate model for NTU-bankruptcy games would
generalize TU-bankruptcy games.

One model for NTU-bankruptcy games was introduced by Orshan, Valenciano,
and Zarzuelo (2003). Their bankruptcy game with nontransferable utility V̇ E,c cor-
responding to the bankruptcy problem (E, c) ∈ BRN boils down to

V̇ E,c(S) = comp
({
x ∈ RN+

∣∣∣ (xS, cN\S) ∈ E or xS = 0S
})

for all S ∈ 2N \ {∅}.
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Example 6.2
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4). Then V̇ E,c({1}) = {x ∈ RN+ | x1 = 0},
V̇ E,c({2}) = {x ∈ RN+ | x2 ≤ 21

4}, and V̇ E,c(N) = E. This is illustrated as follows.

V̇ E,c({2})

c

x10 1 2 3 4 5 6

x2

1

2

3

4

Estévez-Fernández, Borm, and Fiestras-Janeiro (2014) pointed out that coalitions
can attain payoff allocations outside the estate in this game, as in Example 6.2, which
contradicts the original idea of O’Neill (1982). They redefined NTU-bankruptcy
games to stay in line with this original idea. Their bankruptcy game with nontrans-
ferable utility V̈ E,c corresponding to the bankruptcy problem (E, c) ∈ BRN boils
down to V̈ E,c(N) = E and

V̈ E,c(S) =

compS({x ∈ SP(E) | xS ≤ cS, xN\S = cN\S}) if (0S, cN\S) ∈ E;
compS({x ∈ SP(E) | xS = 0S, xN\S ≤ cN\S}) if (0S, cN\S) /∈ E

for all S ∈ 2N \ {∅, N}, where

compS(E) =
{
x ∈ RN+

∣∣∣ ∃y∈E : yS ≥ xS, yN\S = xN\S
}
.

Example 6.3
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 6.2. Then V̈ E,c({1}) = {x ∈
RN+ | x1 = 0, x2 = 3}, V̈ E,c({2}) = {x ∈ RN+ | x1 = 3, x2 ≤ 21

4}, and V̈ E,c(N) = E.
This is illustrated as follows.

V̈ E,c({2})

c

x10 1 2 3 4 5 6

x2

1

2

3

4
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However, the following example shows that their model for NTU-bankruptcy
games does not straightforwardly generalize the original TU-bankruptcy games in
the sense that NTU-bankruptcy games corresponding to NTU-bankruptcy problems
induced by TU-bankruptcy problems are different from the NTU-games induced by
TU-bankruptcy games.

Example 6.4
Let N = {1, 2, 3} and consider the bankruptcy problem (e, c) ∈ TUBRN given by
e = 4 and c = (1, 2, 3). The corresponding bankruptcy game ve,c ∈ TUN is presented
in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ve,c(S) 0 0 1 1 2 3 4

This induces the game V ∈ NTUN in which V ({2, 3}) = {x ∈ R{2,3}+ | x2 + x3 ≤ 3}.
However, V̈ E,c({2, 3}) = {x ∈ RN+ | x1 = 1, x2 ≤ 2, x2 + x3 ≤ 3} in the bankruptcy
game corresponding to the induced bankruptcy problem (E, c) ∈ BRN in which
E = {x ∈ RN+ | x1 + x2 + x3 ≤ 4}. 4

Next, we introduce a slightly modified version of the model of Orshan, Valenciano,
and Zarzuelo (2003) for NTU-bankruptcy games, which generalizes TU-bankruptcy
games and simultaneously stays in line with the original idea of O’Neill (1982).

Definition (Bankruptcy Game with Nontransferable Utility)
The bankruptcy game with nontransferable utility V E,c ∈ NTUN corresponding to the
bankruptcy problem (E, c) ∈ BRN is given by

V E,c(S) =

{x ∈ R
S
+ | (x, cN\S) ∈ E} if (0S, cN\S) ∈ E;

{0S} if (0S, cN\S) /∈ E

for all S ∈ 2N \ {∅}.

Note that V E,c is monotonic, V E,c(N) = E, and V E,c({i}) = [0,mi(E, c)] for all
i ∈ N . Moreover, V E,c(S) is nonleveled for all S ∈ 2N \ {∅}, which means that
CS(V E,c) = CW(V E,c).

Example 6.5
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN given by E =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and c = (3, 4) as in Example 6.2 and Example 6.3. Then
V E,c({1}) = {0}, V E,c({2}) = [0, 21

4 ], and V E,c(N) = E. 4
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An interesting feature of this model is that any subgame of this new NTU-
bankruptcy game is a bankruptcy game too, as is the case for TU-bankruptcy games.

Proposition 6.3.1
All subgames of bankruptcy games are bankruptcy games.

Proof. Let (E, c) ∈ BRN and let S ∈ 2N \ {∅}. Then V E,c(S) is nonempty, closed,
bounded, comprehensive, and nonleveled, and cS ∈WUC(V E,c(S)). This means that
(V E,c(S), cS) ∈ BRS. We have

V V E,c(S),cS(R) =

{x ∈ R
R
+ | (x, cS\R) ∈ V E,c(S)} if (0R, cS\R) ∈ V E,c(S);

{0R} if (0R, cS\R) /∈ V E,c(S)

=

{x ∈ R
R
+ | (x, cS\R, cN\S) ∈ E} if (0R, cS\R, cN\S) ∈ E;

{0R} if (0R, cS\R, cN\S) /∈ E

=

{x ∈ R
R
+ | (x, cN\R) ∈ E} if (0R, cN\R) ∈ E;

{0R} if (0R, cN\R) /∈ E

= V E,c(R)
= V E,c

S (R)

for all R ∈ 2S \ {∅}. Hence, V E,c
S ∈ NTUS is a bankruptcy game.

6.4 Core structures
This section studies the relationship between the core, the core cover, and the rea-
sonable set of bankruptcy games. A useful observation for this analysis is that
NTU-bankruptcy games are invariant under claim truncation, as is the case for TU-
bankruptcy games.

Lemma 6.4.1
Let (E, c) ∈ BRN . Then V E,c = V E,ĉE .

Proof. Let S ∈ 2N \ {∅}. If ĉEN\S = cN\S, then V E,c(S) = V E,ĉE(S). Suppose that
ĉEN\S 6= cN\S. Then there exists an i ∈ N \ S for which ĉEi = uEi < ci. This means
that (0S, cN\S) /∈ E, so V E,c(S) = {0S}. Since E is nonleveled, V E,ĉE(S) = {x ∈ RS+ |
(x, ĉEN\S) ∈ E} = {0S} if (0S, ĉEN\S) ∈ E. Hence, V E,c(S) = V E,ĉE(S).

The vector of truncated claims and the vector of minimal rights determine the
upper and lower bound for the core cover of bankruptcy games, respectively.
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Lemma 6.4.2
Let (E, c) ∈ BRN . Then

(i) K(V E,c) = ĉE;

(ii) k(V E,c) = m(E, c).

Proof. (i) By Lemma 6.4.1, V E,c = V E,ĉE , so K(V E,c) = K(V E,ĉE). Let i ∈ N .
Then (ĉEi , x) ∈ E for all x ∈ V E,ĉE(N \ {i}), so (ĉEi , x) ∈ V E,ĉE(N) for all x ∈
SP(V E,ĉE(N \ {i})). This means that Ki(V E,ĉE) ≥ ĉEi . Suppose that Ki(V E,ĉE) >
ĉEi . Let x ∈ SUC(V E,ĉE(N \ {i})) be such that (Ki(V E,ĉE), x) ∈ V E,ĉE(N). Since
V E,ĉE(N) is comprehensive, (ĉEi , x) ∈ V E,ĉE(N)\SP(V E,ĉE(N)). This means that x ∈
V E,ĉE(N \ {i}), so x ∈ SP(V E,ĉE(N \ {i})). Moreover, since V E,ĉE(N) is nonleveled,
this implies that (ĉEi , x) /∈ WP(V E,ĉE(N)). Then there exists a y ∈ V E,ĉE(N) such
that y > (ĉEi , x). Since V E,ĉE(N) is comprehensive, (ĉEi , yN\{i}) ∈ V E,ĉE(N). This
means that yN\{i} ∈ V E,ĉE(N \ {i}), which contradicts that x ∈ SP(V E,ĉE(N \ {i})).
Hence, Ki(V E,c) = Ki(V E,ĉE) = ĉEi .

(ii) Let i ∈ N . Then

ki(V E,c) ≥ sup
{
x ∈ R+ | x ∈ V E,c({i})

}
= max

{
x ∈ V E,c({i})

}
= mi(E, c).

Suppose that ki(V E,c) > mi(E, c). Let S ∈ 2N be such that i ∈ S and

(ki(V E,c), KS\{i}(V E,c)) ∈ V E,c(S).

Then (ki(V E,ĉE), ĉES\{i}) ∈ V E,ĉE(S) by Lemma 6.4.1 and Lemma 6.4.2(i). This means
that (ki(V E,ĉE), ĉES\{i}, ĉEN\S) ∈ E, which implies that ki(V E,ĉE) ∈ V E,ĉE({i}). This
contradicts that ki(V E,ĉE) > mi(E, c). Hence, ki(V E,c) = ki(V E,ĉE) = mi(E, c).

By Lemma 6.2.1 and Example 6.1, the core cover is not necessarily contained in
the reasonable set of an NTU-game. Surprisingly, for the reasonable set of an NTU-
bankruptcy game we find the same upper bound and lower bound as for the core cover,
which means that the core cover and the reasonable set of an NTU-bankruptcy game
coincide.

Lemma 6.4.3
Let (E, c) ∈ BRN and let i ∈ N . Then

(i) max
σ∈Π(N)

Mσ
i (V E,c) = ĉEi ;

(ii) min
σ∈Π(N)

Mσ
i (V E,c) = mi(E, c).
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Proof. (i) By Lemma 6.4.1, V E,c = V E,ĉE , so

max
σ∈Π(N)

Mσ
i (V E,c) = max

σ∈Π(N)
Mσ

i (V E,ĉE).

Let σ̂ ∈ Π(N) be such that σ̂(|N |) = i. Then (x, ĉEi ) ∈ E for all x ∈ V E,ĉE(N \ {i}),
so (

M σ̂
σ̂(1)(V E,ĉE), . . . ,M σ̂

σ̂(|N |−1)(V E,ĉE), ĉEi
)
∈ V E,ĉE(N).

This means that maxσ∈Π(N) M
σ
i (V E,ĉE) ≥ ĉEi . Suppose that maxσ∈Π(N) M

σ
i (V E,ĉE) >

ĉEi . Let σ̂ ∈ Π(N) be such that M σ̂
i (V E,ĉE) = maxσ∈Π(N)M

σ
i (V E,ĉE) and let k ∈

{2, . . . , |N |} be such that σ̂(k) = i. Then(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k)(V E,ĉE)

)
∈ V E,ĉE({σ̂(1), . . . , σ̂(k)}).

This means that(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k)(V E,ĉE), ĉEσ̂(k+1), . . . , ĉ

E
σ̂(|N |)

)
∈ E.

Since E is comprehensive,(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−1)(V E,ĉE), ĉEσ̂(k), . . . , ĉ

E
σ̂(|N |)

)
∈ E \ SP(E).

Since E is nonleveled,(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−1)(V E,ĉE), ĉEσ̂(k), . . . , ĉ

E
σ̂(|N |)

)
∈ E \WP(E).

This means that there exists a y ∈ E such that

y >
(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−1)(V E,ĉE), ĉEσ̂(k), . . . , ĉ

E
σ̂(|N |)

)
.

Since E is comprehensive,(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−2)(V E,ĉE), yσ̂(k−1), ĉ

E
σ̂(k), . . . , ĉ

E
σ̂(|N |)

)
∈ E.

This means that(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−2)(V E,ĉE), yσ̂(k−1)

)
∈ V E,ĉE({σ̂(1), . . . , σ̂(k − 1)}),

which contradicts the definition of M σ̂
σ̂(k−1)(V E,ĉE). Hence, maxσ∈Π(N) M

σ
i (V E,c) =

maxσ∈Π(N) M
σ
i (V E,ĉE) = ĉEi .



102 Chapter 6 Bankruptcy Games

(ii) Let σ̂ ∈ Π(N) be such that σ̂(1) = i. Then

M σ̂
i (V E,c) = max

{
x ∈ R+ | x ∈ V E,c({i})

}
= max

{
x ∈ V E,c({i})

}
= mi(E, c).

This means that minσ∈Π(N) M
σ
i (V E,c) ≤ mi(E, c). Suppose that

min
σ∈Π(N)

Mσ
i (V E,c) < mi(E, c).

By Lemma 6.4.1, V E,c = V E,ĉE , so minσ∈Π(N)M
σ
i (V E,c) = minσ∈Π(N) M

σ
i (V E,ĉE). Let

σ̂ ∈ Π(N) be such that M σ̂
i (V E,ĉE) = minσ∈Π(N) M

σ
i (V E,ĉE) and let k ∈ {2, . . . , |N |}

be such that σ̂(k) = i. Then(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−1)(V E,ĉE),mi(E, c)

)
/∈ V E,ĉE({σ̂(1), . . . , σ̂(k)}).

This means that(
M σ̂

σ̂(1)(V E,ĉE), . . . ,M σ̂
σ̂(k−1)(V E,ĉE),mi(E, c), ĉEσ̂(k+1), . . . , ĉ

E
σ̂(|N |)

)
/∈ E.

Since E is comprehensive, (mi(E, c), ĉEN\{i}) /∈ E by Lemma 6.4.3(i). This contradicts
that mi(E, c) ∈ V E,ĉE({i}). Hence, minσ∈Π(N) M

σ
i (V E,c) = minσ∈Π(N) M

σ
i (V E,ĉE) =

mi(E, c).

By Lemma 6.2.1, Lemma 6.4.2, and Lemma 6.4.3, the core of a bankruptcy game
is contained in the core cover and in the reasonable set. Next, we generalize the result
for TU-bankruptcy games which states that the core of a bankruptcy game coincides
with the core cover and the reasonable set.

Theorem 6.4.4
Bankruptcy games are compromise stable and reasonable stable.

Proof. Let (E, c) ∈ BRN . Then CC(V E,c) = R(V E,c) by Lemma 6.4.2 and Lemma
6.4.3, so it suffices to show that CC(V E,c) 6= ∅ and CS(V E,c) = CC(V E,c). By Lemma
6.4.2, CC(V E,c) = {x ∈ SP(E) | m(E, c) ≤ x ≤ ĉE}. Since m(E, c) ∈ E, ĉE ∈
WUC(E), m(E, c) ≤ ĉE, and E is nonleveled, there exists an x ∈ SP(E) for which
m(E, c) ≤ x ≤ ĉE. This means that CC(V E,c) 6= ∅.

Let x ∈ CC(V E,c). Then x ≤ ĉE ≤ c. Suppose that x /∈ CS(V E,c). Then there
exists an S ∈ 2N \ {∅} such that xS /∈ SUC(V E,c(S)). This means that there exists a
y ∈ V E,c(S) for which y ≥ xS and y 6= xS. Then (y, cN\S) ∈ E. Since x ≤ (y, cN\S)
and x 6= (y, cN\S), this means that x /∈ SP(E). This contradicts that x ∈ CC(V E,c),
so x ∈ CS(V E,c) and CC(V E,c) ⊆ CS(V E,c). By Lemma 6.2.1, CS(V E,c) ⊆ CC(V E,c).
Hence, CS(V E,c) = CC(V E,c).
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Using Lemma 6.4.2, Lemma 6.4.3, Theorem 6.4.4, and using that E is nonleveled
and x ≤ ĉE implies that x ≥ m(E, c) for all (E, c) ∈ BRN and any x ∈ SP(E), we
derive a compact expression for the core of a bankruptcy game.

Corollary 6.4.5
Let (E, c) ∈ BRN . Then CS(V E,c) = {x ∈WP(E) | x ≤ c}.

In other words, bankruptcy rules assign to bankruptcy problems a core element
of the corresponding bankruptcy game. This means that a solution for NTU-games
corresponds on the class of bankruptcy games to some bankruptcy rule if and only
if it assigns to any bankruptcy game a core element. The other way around, the
question arises which bankruptcy rules correspond to a solution for NTU-games on
the class of bankruptcy games. These bankruptcy rules are called game theoretic.

Definition (Game Theoretic Bankruptcy Rule)
A bankruptcy rule f : BRN → RN+ is game theoretic if there exists a solution F :
NTUN → RN+ such that f(E, c) = F (V E,c) for all (E, c) ∈ BRN .

A necessary and sufficient condition for an NTU-bankruptcy rule to be game
theoretic is to satisfy truncation invariance, as is the case for TU-bankruptcy rules
(cf. Curiel, Maschler, and Tijs (1987)).

Theorem 6.4.6
A bankruptcy rule is game theoretic if and only if it satisfies truncation invariance.

Proof. Let f : BRN → RN+ be a game theoretic bankruptcy rule. Let (E, c) ∈ BRN .
Then V E,c = V E,ĉE by Lemma 6.4.1 and

f(E, c) = F (V E,c) = F (V E,ĉE) = f(E, ĉE)

for some solution F : NTUN → RN+ . Hence, f satisfies truncation invariance.

Let f : BRN → RN+ be a bankruptcy rule satisfying truncation invariance. Let
F : NTUN → RN+ be a solution such that F (V E,c) = f(V E,c(N), K(V E,c)) for any
bankruptcy game V E,c ∈ NTUN . Let (E, c) ∈ BRN . Then K(V E,c) = ĉE by Lemma
6.4.2 and

f(E, c) = f(E, ĉE) = f(V E,c(N), K(V E,c)) = F (V E,c).

Hence, f is game theoretic.

The constrained relative equal awards rule, the truncated proportional rule, and
all adjusted bankruptcy rules are examples of game theoretic bankruptcy rules. Fu-
ture research could study the solutions for nontransferable utility games to which
they correspond in order to further extend the relation between NTU-bankruptcy
problems and NTU-games.
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7 Egalitarianism in
Transferable Utility Games

7.1 Introduction
Egalitarianism is a paradigm of economic thought that favors the idea of equality.
Economic equality, or equity, refers to the concept of fairness in economics and un-
derlies many theories of distributive justice. In the seminal work of Rawls (1971),
equality plays a central role in two fundamental principles of justice. This has inspired
scientists within several areas, e.g. social philosophy and welfare economics. Young
(1995) provides a rich survey on equity concepts in both theoretical and practical con-
texts. This chapter, based on Dietzenbacher, Borm, and Hendrickx (2017c), focusses
on the role of egalitarianism in distributive justice applied to coalitional arrangements
which affect the distribution of joint revenues among cooperating participants.

Dutta and Ray (1989) introduced a concept of egalitarianism under participation
constraints for transferable utility games. A transferable utility game describes an
allocation problem for a set of cooperating players in which the economic possibilities
of all subcoalitions are taken into account. The egalitarian solution of Dutta and Ray
(1989) applies a Lorenz criterion to select a payoff allocation. Their most important
result states that their egalitarian solution selects at most one feasible allocation,
despite the partial ordering generated by the Lorenz criterion. However, existence
of their egalitarian solution is only shown to be guaranteed for the special class of
convex games.
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The egalitarian solution of Dutta and Ray (1989) is well-studied on the class of
convex games. Dutta and Ray (1989) showed that the egalitarian solution of a convex
game cannot be blocked by any subcoalition, i.e. it is an element of the core. Dutta
(1990) axiomatically characterized this solution on the class of convex games using
consistency properties for reduced games of Davis and Maschler (1965) and Hart and
Mas-Colell (1989). Other characterizations of this egalitarian solution on the class
of convex games are provided by Klijn, Slikker, Tijs, and Zarzuelo (2000) and Arin,
Kuipers, and Vermeulen (2003).

Another line of research studies egalitarian concepts similar to the egalitarian solu-
tion of Dutta and Ray (1989) for a larger class of transferable utility games. Branzei,
Dimitrov, and Tijs (2006) extended the corresponding computational algorithm for
convex games to superadditive games by introducing the equal split-off set. Arin and
Iñarra (2001) applied an egalitarian criterion to the core of balanced games by intro-
ducing the egalitarian core which satisfies the consistency property for reduced games
of Davis and Maschler (1965). Both the equal split-off set and the egalitarian core
coincide with the egalitarian solution of Dutta and Ray (1989) on the class of convex
games. The most important shortcoming of these notions is that they generally lack
the fundamental uniqueness property. To our knowledge, no appropriate egalitarian,
single-valued solution concept has been defined in the literature which coincides with
the egalitarian solution of Dutta and Ray (1989) on the class of convex games and
exists for any transferable utility game.

In this chapter, we introduce the procedural egalitarian solution as an egalitarian
solution concept for which existence and uniqueness is guaranteed for any transfera-
ble utility game. Moreover, it coincides with the egalitarian solution of Dutta and
Ray (1989) on the class of convex games. The procedural egalitarian solution follows
from an egalitarian procedure which is inspired by ideas underlying the average rules
for cooperative TU-games of Sugumaran, Thangaraj, and Ravindran (2013). In a
model where utility is transferable, our interpretation of egalitarianism boils down to
equal division. However, in a coalitional game, simple equal division of the worth of
the grand coalition is not satisfactory. The egalitarian procedure models a natural
way of negotiating by members of coalitions about an egalitarian distribution of their
worth, taking into account their coalitional egalitarian externalities. This egalitarian
procedure converges to a steady state in which each player has acquired a claim at-
tainable in one or more egalitarian admissible coalitions. Using the constrained equal
awards rule, the procedural egalitarian solution allocates the worth of the grand co-
alition in an egalitarian way among the players, taking into account their claims. In
this way, the procedural egalitarian solution can be considered as a trade-off between
egalitarianism and coalitional rationality.
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Selten (1972) showed that egalitarian allocations successfully explain outcomes of
experimental cooperative games. Experimental evidence clearly suggests that equity
considerations have a strong influence on observed payoff divisions. Coalition mem-
bers look for easily accessible cues like equitable shares in order to form aspiration
levels for their payoffs (cf. Selten (1987)). The egalitarian procedure seamlessly con-
nects this phenomenon with transferable utility games.

This chapter is organized in the following way. Section 7.2 formally introduces
the egalitarian procedure and studies its underlying structure. In Section 7.3, we
introduce the procedural egalitarian solution, derive some of its properties, and show
that it coincides with the egalitarian solution of Dutta and Ray (1989) on the class
of convex games.

7.2 The egalitarian procedure

In this section we introduce the egalitarian procedure for transferable utility games.
This iterative procedure models negotiations between members of coalitions about the
allocation of their worth, taking into account their coalitional egalitarian externalities.
We formally define the egalitarian procedure after an illustrative example.

Example 7.1
Let N = {1, 2, 3} and consider the game v ∈ TUN for which the worth of each
coalition and the egalitarian distribution in all iterations of the egalitarian procedure
are presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 5 0 0 8 0 0 9
χv,1(S) (5, ·, ·) (·, 0, ·) (·, ·, 0) (4, 4, ·) (0, ·, 0) (·, 0, 0) (3, 3, 3)
χv,2(S) (5, ·, ·) (·, 0, ·) (·, ·, 0) (5, 3, ·) (5, ·,-5) (·, 0, 0) (5, 2, 2)
χv,3(S) (5, ·, ·) (·,3, ·) (·, ·, 0) (5,3, ·) (5, ·,-5) (·,3,-3) (5,3, 1)

χv,k(S) (k ≥ 4) (5, ·, ·) (·,3, ·) (·, ·,1) (5,3, ·) (5, ·,1) (·,3,1) (5,3,1)

A natural way to start negotiating about the allocation of the worth of a coalition
among its members is to divide it equally, i.e. in the first iteration, the egalitarian
distribution χv,1 allocates in any coalition S ∈ 2N \{∅} the average worth v(S)

|S| to each
member i ∈ S. Players can only claim their highest allocated payoff if no other mem-
ber of the corresponding coalition is allocated a higher payoff in any other coalition.
All such players constitute the set of egalitarian claimants P v,1 with corresponding
claims γv,1, and the coalitions in which they obtained their claims are contained in
the collection of egalitarian admissible coalitions Av,1.
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The highest payoff allocated by χv,1 to player 1 is 5 in coalition {1}, which player 1
can claim since this coalition contains no other members. The highest payoff allocated
to player 2 is 4 in coalition {1, 2}, which player 2 cannot claim since player 1 is
allocated a higher payoff in another coalition. The highest payoff allocated to player
3 is 3 in coalition {1, 2, 3}, which player 3 cannot claim since players 1 and 2 are
allocated a higher payoff in other coalitions. This means that the set of 1-egalitarian
claimants is given by P v,1 = {1}, the corresponding vector of 1-egalitarian claims
is given by γv,1 = (5, ·, ·), and the collection of 1-egalitarian admissible coalitions is
given by Av,1 = {{1}}.

In the next iteration, the claimants claim their egalitarian claim in any coalition of
which they are member and χv,2 divides the remaining worth equally among the other
members. The claimants in P v,2 and their corresponding claims γv,2 are constructed
similarly to the first iteration, and Av,2 contains the coalitions in which all members
can obtain their claims. In this way, the players continue negotiating in further
iterations. Note that, once a player has acquired an egalitarian claim, it remains
fixed in all further iterations.

In particular, the highest payoff allocated by χv,2 to player 2 is 3 in coalition
{1, 2}, which player 2 can claim since no other member is allocated a higher payoff in
any other coalition. The highest payoff allocated to player 3 is 2 in coalition {1, 2, 3},
which player 3 cannot claim since player 2 is allocated a higher payoff in another
coalition. This means that P v,2 = {1, 2}, γv,2 = (5, 3, ·), and Av,2 = {{1}, {1, 2}}. In
the third iteration, the highest payoff allocated by χv,3 to player 3 is 1 in coalition
{1, 2, 3}, which player 3 can claim. This means that P v,3 = {1, 2, 3}, γv,3 = (5, 3, 1),
and Av,3 = {{1}, {1, 2}, {1, 2, 3}}. In all further iterations, all players are allocated
their claims in all coalitions of which they are member and the collection of egalitarian
admissible coalitions remains unchanged. 4

Definition (Egalitarian Procedure)
Let v ∈ TUN be a transferable utility game. The set of 0-egalitarian claimants is
given by P v,0 = ∅. Let k ∈ N. The k-egalitarian distribution χv,k assigns to each
S ∈ 2N \ {∅} the payoff allocation χv,k(S) ∈ RS given by

χv,ki (S) =


γv,k−1
i for all i ∈ S ∩ P v,k−1;
v(S)−

∑
j∈S∩Pv,k−1 γ

v,k−1
j

|S\P v,k−1| for all i ∈ S \ P v,k−1.

The collection of k-egalitarian admissible coalitions is given by Av,k = {S ∈ 2N \{∅} |∑
i∈S χ

v,k
i (S) = v(S),∀i∈S∀T∈2N :i∈T : χv,ki (T ) ≤ χv,ki (S)}. The set of k-egalitarian

claimants P v,k ∈ 2N \ {∅} is given by P v,k = ⋃
S∈Av,k S. The vector of k-egalitarian

claims γv,k ∈ RP v,k is given by γv,ki = χv,ki (S) for all i ∈ P v,k, where S ∈ Av,k and
i ∈ S.
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The payoff χv,ki (S) allocated to a player i ∈ S \ P v,k−1 is the average remaining
worth of S ∈ 2N \ {∅}. In the first step, the worth of each coalition is equally dis-
tributed among its members. A coalition is called admissible if all its members are
allocated their highest payoff. The players which are member of these egalitarian ad-
missible coalitions are called claimants and their allocated payoffs form their claims.
Although egalitarian admissible coalitions need not be unique, the egalitarian claims
of their members are uniquely defined. In the next iteration, the claimants are allo-
cated their claims and the other players are allocated the average remaining worth in
all coalitions. A typical observation is that the egalitarian distribution is in general
overefficient, i.e. it allocates at least the worth of a coalition.

Lemma 7.2.1
Let v ∈ TUN and let S ∈ 2N \ {∅}. Then ∑

i∈S χ
v,k
i (S) ≥ v(S) for all k ∈ N.

Moreover, if S 6⊆ P v,k−1 for some k ∈ N, then ∑
i∈S χ

v,k
i (S) = v(S).

Proof. We show the statement by induction. Since P v,0 = ∅,

∑
i∈S

χv,1i (S) =
∑

i∈S\P v,0

(
v(S)−∑j∈S∩P v,0 γ

v,0
j

|S \ P v,0|

)
=
∑
i∈S

(
v(S)
|S|

)
= |S|

(
v(S)
|S|

)
= v(S).

Let k ∈ N and assume that ∑i∈S χ
v,k
i (S) ≥ v(S). If S ⊆ P v,k, then

∑
i∈S

χv,k+1
i (S) =

∑
i∈S

γv,ki ≥
∑
i∈S

χv,ki (S) ≥ v(S).

If S 6⊆ P v,k, then
∑
i∈S

χv,k+1
i (S) =

∑
i∈S∩P v,k

χv,k+1
i (S) +

∑
i∈S\P v,k

χv,k+1
i (S)

=
∑

i∈S∩P v,k
γv,ki +

∑
i∈S\P v,k

v(S)−∑j∈S∩P v,k γ
v,k
j

|S \ P v,k|


=

∑
i∈S∩P v,k

γv,ki + |S \ P v,k|

v(S)−∑j∈S∩P v,k γ
v,k
j

|S \ P v,k|


=

∑
i∈S∩P v,k

γv,ki + v(S)−
∑

j∈S∩P v,k
γv,kj

= v(S).
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Only coalitions for which the egalitarian distribution allocates exactly the worth
among its members can be egalitarian admissible. The question arises whether ega-
litarian admissible coalitions exist in all iterations for any transferable utility game.
We show that in all iterations of the egalitarian procedure at least one additional
player becomes an egalitarian claimant as long as the collection of egalitarian ad-
missible coalitions is not a cover, which implies that egalitarian admissible coalitions
indeed always exist.

Lemma 7.2.2
Let v ∈ TUN and let k ∈ N. Then Av,k ⊆ Av,k+1. Moreover, if P v,k−1 6= N , then
P v,k−1 ⊂ P v,k.

Proof. Let S ∈ Av,k. Then S ⊆ P v,k and
∑
i∈S

χv,k+1
i (S) =

∑
i∈S

γv,ki =
∑
i∈S

χv,ki (S) = v(S).

Moreover, χv,k+1
i (T ) ≤ χv,k+1

i (S) for all i ∈ S and any T ∈ 2N for which i ∈ T . This
means that S ∈ Av,k+1. Hence, Av,k ⊆ Av,k+1.

Assume that P v,k−1 6= N . Let S ∈ 2N with S 6⊆ P v,k−1 be a coalition with highest
average remaining worth. Then ∑

i∈S χ
v,k
i (S) = v(S) by Lemma 7.2.1. Moreover,

χv,ki (T ) ≤ χv,ki (S) for all i ∈ S and any T ∈ 2N for which i ∈ T . This means that
S ∈ Av,k and S ⊆ P v,k. Hence, P v,k−1 ⊂ P v,k.

Lemma 7.2.2 not only tells us that egalitarian admissible coalitions always exist,
but also that the collection of egalitarian admissible coalitions weakly expands in
all iterations. The structure of this collection is determined by the structure of
the underlying transferable utility game. Well-known properties for TU-games have
interesting implications for the structure of the collection of egalitarian admissible
coalitions in all iterations. We derive those implications for superadditive, convex,
and balanced transferable utility games.

Proposition 7.2.3
Let v ∈ TUN and let k ∈ N.

(i) If v is superadditive, then S ∪ T ∈ Av,k for all S, T ∈ Av,k for which S ∩ T = ∅.

(ii) If v is convex, then S ∪T ∈ Av,k and S ∩T ∈ Av,k for all S, T ∈ Av,k for which
S ∩ T 6= ∅.

(iii) If v is balanced, then N ∈ Av,k if there exists a balanced collection B ⊆ Av,k.
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Proof. (i) Assume that v is superadditive. Let S, T ∈ Av,k be such that S ∩ T = ∅.
Then ∑i∈S∪T χ

v,k
i (S ∪ T ) ≥ v(S ∪ T ) by Lemma 7.2.1, and

v(S ∪ T ) ≥ v(S) + v(T )
=
∑
i∈S

χv,ki (S) +
∑
i∈T

χv,ki (T )

≥
∑
i∈S

χv,ki (S ∪ T ) +
∑
i∈T

χv,ki (S ∪ T )

=
∑

i∈S∪T
χv,ki (S ∪ T )

≥ v(S ∪ T ).

This means that ∑i∈S∪T χ
v,k
i (S ∪ T ) = v(S ∪ T ), χv,kS (S ∪ T ) = χv,kS (S), and

χv,kT (S ∪ T ) = χv,kT (T ). Hence, S ∪ T ∈ Av,k.

(ii) Assume that v is convex. Let S, T ∈ Av,k be such that S ∩ T 6= ∅. Then∑
i∈S∪T χ

v,k
i (S ∪ T ) ≥ v(S ∪ T ) and ∑i∈S∩T χ

v,k
i (S ∩ T ) ≥ v(S ∩ T ) by Lemma 7.2.1,

and

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )
=
∑
i∈S

χv,ki (S) +
∑
i∈T

χv,ki (T )

=
∑
i∈S

γv,ki +
∑
i∈T

γv,ki

=
∑

i∈S∪T
γv,ki +

∑
i∈S∩T

γv,ki

≥
∑

i∈S∪T
χv,ki (S ∪ T ) +

∑
i∈S∩T

χv,ki (S ∩ T )

≥ v(S ∪ T ) + v(S ∩ T ).

This means that ∑i∈S∪T χ
v,k
i (S ∪ T ) = v(S ∪ T ) and ∑i∈S∩T χ

v,k
i (S ∩ T ) = v(S ∩ T ).

Moreover, χv,kS∪T (S ∪ T ) = γv,kS∪T and χv,kS∩T (S ∩ T ) = γv,kS∩T . Hence, S ∪ T ∈ Av,k and
S ∩ T ∈ Av,k.

(iii) Assume that v is balanced. Let B ⊆ Av,k be a balanced collection and let δ :
B → R++ be such that ∑S∈B:i∈S δ(S) = 1 for all i ∈ N . Then ∑i∈N χ

v,k
i (N) ≥ v(N)

by Lemma 7.2.1, and

v(N) ≥
∑
S∈B

δ(S)v(S) =
∑
S∈B

δ(S)
∑
i∈S

χv,ki (S) =
∑
i∈N

∑
S∈B:i∈S

δ(S)χv,ki (S)

≥
∑
i∈N

∑
S∈B:i∈S

δ(S)χv,ki (N) =
∑
i∈N

χv,ki (N)
∑

S∈B:i∈S
δ(S) =

∑
i∈N

χv,ki (N) ≥ v(N).

This means that ∑i∈N χ
v,k
i (N) = v(N) and χv,ki (N) = χv,ki (S) for all i ∈ N and any

S ∈ B for which i ∈ S. Hence, N ∈ Av,k.
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The egalitarian procedure is an egalitarian bargaining model that takes partici-
pation constraints explicitly into account. The egalitarian admissible coalitions can
be considered as the coalitions in which members prefer to participate, concerning
the corresponding allocation prescribed by the egalitarian distribution. This consi-
deration suggests that the assigned allocation, consisting of the egalitarian claims for
all members, is stable against subcoalitional deviations. Indeed, the vector of egali-
tarian claims corresponding to the members of an egalitarian admissible coalition is
an element of the core of the induced subgame.

Proposition 7.2.4
Let v ∈ TUN and let k ∈ N. Then γv,kS ∈ C(vS) for all S ∈ Av,k.

Proof. Let S ∈ Av,k. Then
∑
i∈S

γv,ki =
∑
i∈S

χv,ki (S) = v(S) = vS(S).

Moreover, by Lemma 7.2.1,
∑
i∈R

γv,ki =
∑
i∈R

χv,ki (S) ≥
∑
i∈R

χv,ki (R) ≥ v(R) = vS(R)

for all R ∈ 2S. Hence, γv,kS ∈ C(vS).

The egalitarian procedure reaches a steady state when the collection of egalitarian
admissible coalitions is a cover, i.e. all players have become egalitarian claimants.
By Lemma 7.2.2, the egalitarian procedure converges to this steady state within a
number of iterations which is bounded by the number of players in the underlying
transferable utility game.

The players stop negotiating when they all have acquired an egalitarian claim.
Although this egalitarian claim is bounded from below by the individual worth of the
player, it is possibly negative. In any case, the egalitarian claims can be obtained
in one or more egalitarian admissible coalitions. They form aspiration levels for the
allocation of the worth of the grand coalition. A special situation arises when the
grand coalition is egalitarian admissible. In the next section, we further describe the
egalitarian steady state and define the procedural egalitarian solution which allocates
the worth of the grand coalition in an egalitarian way among the players, taking into
account their (generally overefficient) egalitarian claims.
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7.3 The procedural egalitarian solution
In this section, we introduce the procedural egalitarian solution for transferable utility
games. This solution is based on the egalitarian steady state to which the egalitarian
procedure converges.

Definition
Let v ∈ TUN be a transferable utility game. The iteration nv ∈ {1, . . . , |N |} is given
by nv = min{k ∈ N | P v,k = N}. The vector of egalitarian claims γ̂v ∈ RN is given
by γ̂v = γv,n

v . The collection Âv ⊆ 2N \ {∅} is given by Âv = {S ∈ Av,nv | ∀T∈Av,nv :
S 6⊂ T}. The set of strong egalitarian claimants Dv ∈ 2N is given by Dv = ⋂

S∈Âv S.

Note that ∑i∈S γ̂
v
i ≥ v(S) for all S ∈ 2N andAv,nv = {S ∈ 2N\{∅} | ∑i∈S γ̂

v
i = v(S)}.

Players can obtain their egalitarian claim in the egalitarian admissible coalitions of
which they are member. We only consider the inclusion-wise maximal egalitarian
admissible coalitions. Players which are member of all maximal egalitarian admissible
coalitions are called strong egalitarian claimants. The procedural egalitarian solution
assigns to the strong egalitarian claimants their claims and divides the remaining
worth of the grand coalition among the other players according to the constrained
equal awards rule, the standard concept of egalitarianism in the context of bankruptcy
problems with transferable utility.

Definition (Procedural Egalitarian Solution)
The procedural egalitarian solution Γ : TUN → RN is the solution which assigns to
any v ∈ TUN the payoff allocation

Γ(v) =
(
γ̂vDv ,CEAN\Dv

(
v(N)−

∑
i∈Dv

γ̂vi , γ̂
v
N\Dv

))
.

Note that the procedural egalitarian solution is well-defined by extending the
domain of CEA to bankruptcy problems with negative estate or claims and allowing
a
v(N)−

∑
i∈Dv γ̂

v
i ,γ̂

v
N\Dv to take a negative value for any v ∈ TUN .

Example 7.2
Let N = {1, 2, 3} and consider the game v ∈ TUN from Example 7.1. Then nv = 3,
γ̂v = (5, 3, 1), Âv = {N}, and Dv = N . Hence, Γ(v) = (5, 3, 1). 4

As in Example 7.1 and Example 7.2, an interesting situation arises when the grand
coalition is egalitarian admissible and all players are strong egalitarian claimants.
We introduce the notion of egalitarian stability to describe these games and we show
that egalitarian stability characterizes the class of games for which the procedural
egalitarian solution is a core element.
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Definition (Egalitarian Stability)
A transferable utility game v ∈ TUN is egalitarian stable if Âv = {N}.

Theorem 7.3.1
A transferable utility game v ∈ TUN is egalitarian stable if and only if Γ(v) ∈ C(v).

Proof. Assume that v ∈ TUN is egalitarian stable. Then N ∈ Av,nv and Dv = N .
This means that Γ(v) = γ̂v = γv,n

v . Moreover, Proposition 7.2.4 implies that γv,nv ∈
C(v). Hence, Γ(v) ∈ C(v).

Assume that Γ(v) ∈ C(v). Suppose that v is not egalitarian stable. Then∑
i∈N γ̂

v
i > v(N) and there exists an i ∈ N \ Dv such that Γi(v) < γ̂vi . This means

that ∑
i∈S

Γi(v) <
∑
i∈S

γ̂vi = v(S)

for all S ∈ Av,nv for which i ∈ S. This contradicts that Γ(v) ∈ C(v). Hence, v is
egalitarian stable.

Since the collection of egalitarian admissible coalitions is a cover, convexity is a
sufficient condition for egalitarian stability by Proposition 7.2.3. Examples of convex
games are bankruptcy games. Interestingly, we show that the procedural egalitarian
solution of a bankruptcy game coincides with the constrained equal awards rule of
the underlying bankruptcy problem. This illustrates the strong connection between
the procedural egalitarian solution and the constrained equal awards rule. Besides,
it justifies the use of the latter in the definition of the procedural egalitarian solution
for transferable utility games which are not egalitarian stable.

Theorem 7.3.2
Let (e, c) ∈ TUBRN be a bankruptcy problem. Then Γ(ve,c) = CEA(e, c).

Proof. Since bankruptcy games are convex, bankruptcy games are egalitarian stable
by Proposition 7.2.3. Then Γ(ve,c) ∈ C(ve,c) by Theorem 7.3.1. First, we show that
Γ(ve,c) ≤ c. Suppose that there exists an i ∈ N such that Γi(ve,c) > ci ≥ min{ci, e}.
Then

∑
j∈N\{i}

Γj(ve,c) =
∑
j∈N

Γj(ve,c)− Γi(ve,c) = ve,c(N)− Γi(ve,c)

< e−min{ci, e} = ve,c(N \ {i}).

This contradicts that Γ(ve,c) ∈ C(ve,c). Hence, Γ(ve,c) ≤ c.
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If ∑j∈N cj = e, then Γ(ve,c) = c = CEA(e, c). Suppose that ∑j∈N cj > e. We
show that χv

e,c,1
i (S) ≤ ae,c for all S ∈ 2N \ {∅} and any i ∈ S. Let S ∈ 2N \ {∅} and

let i ∈ S. If ∑j∈N\S cj > e, then χv
e,c,1
i (S) = ve,c(S)

|S| = 0 ≤ ae,c. If ∑j∈N\S cj ≤ e, then

χv
e,c,1
i (S) = ve,c(S)

|S|
=
e−∑j∈N\S cj

|S|
=
∑
j∈N CEAj(e, c)−

∑
j∈N\S cj

|S|

≤
∑
j∈S CEAj(e, c)
|S|

≤
∑
j∈S a

e,c

|S|
= |S|a

e,c

|S|
= ae,c.

Hence, χv
e,c,1
i (S) ≤ ae,c for all S ∈ 2N \ {∅} and any i ∈ S.

Now, let He,c ∈ 2N \ {∅} be defined by

He,c = {i ∈ N | CEAi(e, c) = ae,c} .

Then

χv
e,c,1
i (He,c) = ve,c(He,c)

|He,c|
=
e−∑j∈N\He,c cj

|He,c|
=
∑
j∈He,c CEAj(e, c)
|He,c|

=
∑
j∈He,c ae,c

|He,c|
= |H

e,c|ae,c

|He,c|
= ae,c

for all i ∈ He,c. This means that Γi(ve,c) = γ̂v
e,c

i = γv
e,c,1
i = χv

e,c,1
i (He,c) = ae,c for

all i ∈ He,c. Since Γ(ve,c) ≤ c, this implies that ΓN\He,c(ve,c) = cN\He,c . Hence,
Γ(ve,c) = CEA(e, c).

Example 7.3
Let N = {1, 2, 3} and consider the bankruptcy problem (e, c) ∈ TUBRN given by
e = 12 and c = (2, 6, 8). Then CEA(e, c) = (2, 5, 5). The worth of each coalition
in the corresponding bankruptcy game ve,c ∈ TUN and the egalitarian distribution
in the first two iterations of the egalitarian procedure are presented in the following
table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ve,c(S) 0 2 4 4 6 10 12
χv

e,c,1(S) (0, ·, ·) (·, 2, ·) (·, ·, 4) (2, 2, ·) (3, ·, 3) (·, 5, 5) (4, 4, 4)
χv

e,c,2(S) (0, ·, ·) (·,5, ·) (·, ·,5) (-1,5, ·) (1, ·,5) (·,5,5) (2,5,5)

In the first iteration, Ave,c,1 = {{2, 3}}, P ve,c,1 = {2, 3}, and γv
e,c,1 = (·, 5, 5). In

the second iteration, Ave,c,2 = {{2, 3}, {1, 2, 3}}, P ve,c,2 = N , and γv
e,c,2 = (2, 5, 5).

This means that nve,c = 2, γ̂ve,c = (2, 5, 5), Âve,c = {N}, and Dve,c = N . Hence,
Γ(ve,c) = (2, 5, 5). 4
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Although convexity is a sufficient condition for egalitarian stability, Example 7.1
shows that this condition is not necessary. Balancedness is a necessary condition
for egalitarian stability and it is sufficient if there exists a balanced collection of
egalitarian admissible coalitions by Proposition 7.2.3. The next example shows that
balancedness is not a sufficient condition for egalitarian stability.

Example 7.4
In a glove game v ∈ TUN , there exist L,R ∈ 2N \ {∅} such that N = L ∪ R and
L ∩ R = ∅. Players in L are each endowed with a left-hand glove and players in
R are each endowed with a right-hand glove, but only pairs of one left-hand and
one right-hand glove have value. The worth of a coalition S ∈ 2N can therefore be
described by v(S) = min{|L ∩ S|, |R ∩ S|}. In a glove game, the egalitarian steady
state is reached in the first iteration, i.e. nv = 1. Moreover, Âv = {S ∈ 2N | v(S) =
v(N), |L ∩ S| = |R ∩ S|} and γ̂vi = 1

2 for all i ∈ N . This means that

Dv =


L if |L| < |R|;
N if |L| = |R|;
R if |L| > |R|.

This means that a glove game is egalitarian stable if and only if |L| = |R|. The
procedural egalitarian solution divides a half per pair of gloves equally among the
left-hand glove players, and the other half per pair of gloves equally among the right-
hand glove players.

Let N = {1, 2, 3} and consider the glove game v ∈ TUN in which L = {1} and
R = {2, 3}. The worth of each coalition and the egalitarian distribution in the first
iteration of the egalitarian procedure are presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 1 1 0 1
χv,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) (1

2 ,
1
2 , ·) (1

2 , ·,
1
2) (·, 0, 0) (1

3 ,
1
3 ,

1
3)

Then Av,1 = {{1, 2}, {1, 3}}, P v,1 = N , and γv,1 = (1
2 ,

1
2 ,

1
2). This means that nv = 1,

γ̂v = (1
2 ,

1
2 ,

1
2), Âv = {{1, 2}, {1, 3}}, and Dv = {1}. Hence, Γ(v) = (1

2 ,
1
4 ,

1
4).

Besides, the Shapley value (cf. Shapley (1953)) is given by (2
3 ,

1
6 ,

1
6) and the nu-

cleolus (cf. Schmeidler (1969)) is given by (1, 0, 0). The egalitarian solution of Dutta
and Ray (1989) does not exist, since the set {x ∈ RN | x1 >

1
2 , x1 +x2 +x3 = 1} does

not have a Lorenz maximal element. Contrary to these solution concepts, the pro-
cedural egalitarian solution treats not only the players within L or R symmetrically,
but also L and R as groups symmetrically. 4
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Future research could look for a characterization of the class of egalitarian stable
transferable utility games. This will contribute to a better understanding of situati-
ons in which egalitarianism and coalitional rationality do not conflict.

Next, we discuss some properties of the procedural egalitarian solution. We show
that the procedural egalitarian solution satisfies the properties symmetry, dummy
invariance, weak strategic covariance, and aggregate monotonicity. The proof is pro-
vided in the appendix.

Proposition 7.3.3

(i) The procedural egalitarian solution satisfies symmetry.

(ii) The procedural egalitarian solution satisfies dummy invariance.

(iii) The procedural egalitarian solution satisfies weak strategic covariance.

(iv) The procedural egalitarian solution satisfies aggregate monotonicity.

Contrary to the Shapley value (cf. Shapley (1953)) and the the nucleolus (cf.
Schmeidler (1969)), the procedural egalitarian solution does not satisfy strong strate-
gic covariance. We refer to Dutta and Ray (1989) for a discussion on why egalitarian
solution concepts actually should fail to satisfy this strong property.

Megiddo (1974) showed that the nucleolus does not satisfy aggregate monotoni-
city. Young (1985) showed that the Shapley value is the unique solution satisfying
symmetry and marginal monotonicity. This means that the procedural egalitarian
solution does not satisfy marginal monotonicity. The following example shows that
the procedural egalitarian does not satisfy coalitional monotonicity either.

Example 7.5
Let N = {1, 2, 3} and consider the game v′ ∈ TUN for which the worth of each
coalition and the egalitarian distribution in the first two iterations of the egalitarian
procedure are presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v′(S) 5 0 0 10 0 0 9
χv
′,1(S) (5, ·, ·) (·, 0, ·) (·, ·, 0) (5, 5, ·) (0, ·, 0) (·, 0, 0) (3, 3, 3)

χv
′,2(S) (5, ·, ·) (·,5, ·) (·, ·, 0) (5,5, ·) (5, ·,-5) (·,5,-5) (5,5,-1)

In the first iteration, Av′,1 = {{1}, {1, 2}}, P v′,1 = {1, 2}, and γv
′,1 = (5, 5, ·). In

the second iteration, Av′,2 = {{1}, {3}, {1, 2}}, P v′,2 = N , and γv
′,2 = (5, 5, 0). This

means that nv′ = 2, γ̂v′ = (5, 5, 0), Âv′ = {{3}, {1, 2}}, and Dv′ = ∅. Hence,
Γ(v′) = (41

2 , 4
1
2 , 0).
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Consider the game v ∈ TUN from Example 7.1 and Example 7.2. We have
v({1, 2}) ≤ v′({1, 2}) and v(S) = v′(S) for all S ∈ 2N for which S 6= {1, 2}. However,
Γ{1,2}(v) � Γ{1,2}(v′). Hence, the procedural egalitarian solution does not satisfy
coalitional monotonicity. 4

Besides, contrary to both the Shapley value and the nucleolus, the procedural
egalitarian solution prescribes equal division of the worth of the grand coalition when
the grand coalition has highest average worth, i.e.(

v(N)
|N |

)
i∈N
∈ C(v) implies that Γ(v) =

(
v(N)
|N |

)
i∈N

.

Finally, we show that the procedural egalitarian solution coincides with the ega-
litarian solution of Dutta and Ray (1989) on the class of convex games.

Definition (Egalitarian Solution of Dutta and Ray (1989))
Let v ∈ TUN be a convex transferable utility game. Let v0 = v and T v0 = ∅. For any
k ∈ N, let vk assign to each S ⊆ N \ (⋃k−1

s=0 T
v
s ) the worth vk(S) = vk−1(S ∪ T vk−1) −

vk−1(T vk−1) and let T vk ∈ 2N \ {∅} be the largest coalition having the highest average
worth in vk. Let i ∈ N and let k ∈ N be such that i ∈ T vk . The egalitarian solution
ES is given by ESi(v) = vk(T vk )

|T v
k
| .

Theorem 7.3.4
The procedural egalitarian solution coincides with the egalitarian solution of Dutta
and Ray (1989) on the class of convex games.

Proof. Let v ∈ TUN be a convex transferable utility game. Since v is egalitarian
stable, Γ(v) = γ̂v. First, we show by induction that vk(S) = v(S ∪ P v,k−1) −∑
j∈P v,k−1 γv,k−1

j for all k ∈ N and any S ⊆ N \ (⋃k−1
s=0 T

v
s ). We have

v1(S) = v0(S ∪ T v0 )− v0(T v0 ) = v(S)− v(∅) = v(S) = v(S ∪ P v,0)−
∑

j∈P v,0
γv,0j

for all S ⊆ N .
Let k ∈ N and assume that vk(S) = v(S ∪ P v,k−1) − ∑

j∈P v,k−1 γv,k−1
j for all

S ⊆ N \ (⋃k−1
s=0 T

v
s ). Then

vk+1(S) = vk(S ∪ T vk )− vk(T vk )
= v(S ∪ T vk ∪ P v,k−1)−

∑
j∈P v,k−1

γv,k−1
j − v(T vk ∪ P v,k−1) +

∑
j∈P v,k−1

γv,k−1
j

= v(S ∪ P v,k)− v(P v,k)
= v(S ∪ P v,k)−

∑
j∈P v,k

γv,kj

for all S ⊆ N \ (⋃ks=0 T
v
s ), where the last equality follows from Proposition 7.2.3.



Section 7.A Appendix 121

Hence, vk(S) = v(S ∪ P v,k−1) − ∑
j∈P v,k−1 γv,k−1

j for all k ∈ N and any S ⊆
N \ (⋃k−1

s=0 T
v
s ). This means that T vk = P v,k \P v,k−1 for all k ∈ N and ESi(v) = γ̂vi for

all i ∈ P v,k. Hence, ES(v) = Γ(v).

This means that the procedural egalitarian solution for convex games is axio-
matically characterized by Dutta (1990), Klijn, Slikker, Tijs, and Zarzuelo (2000),
and Arin, Kuipers, and Vermeulen (2003). Future research could look for properties
which extend axiomatic characterizations of the procedural egalitarian solution for
convex games to a more general class of games.

7.A Appendix

Proposition 7.3.3

Proof. (i) Let v ∈ TUN and let i, j ∈ N be such that v(S ∪ {i}) = v(S ∪ {j}) for all
S ⊆ N \ {i, j}. First, we show by induction that χv,ki (S ∪ {i}) = χv,kj (S ∪ {j}) and
χv,kh (S ∪ {i}) = χv,kh (S ∪ {j}) for all k ∈ N, any S ∈ 2N for which i, j ∈ S or i, j /∈ S,
and any h ∈ S. Then

χv,1h (S ∪ {i}) = χv,1i (S ∪ {i}) = v(S ∪ {i})
|S ∪ {i}|

= v(S ∪ {j})
|S ∪ {j}|

= χv,1j (S ∪ {j}) = χv,1h (S ∪ {j})

for all S ∈ 2N for which i, j ∈ S or i, j /∈ S, and any h ∈ S.
Let k ∈ N and assume that χv,ki (S ∪ {i}) = χv,kj (S ∪ {j}) and χv,kh (S ∪ {i}) =

χv,kh (S ∪ {j}) for all S ∈ 2N for which i, j ∈ S or i, j /∈ S, and any h ∈ S. Then
S ∪ {i} ∈ Av,k if and only if S ∪ {j} ∈ Av,k for all S ∈ 2N for which i, j ∈ S or
i, j /∈ S, which means that i ∈ P v,k if and only if j ∈ P v,k. Moreover, γv,ki = γv,kj if
i, j ∈ P v,k. We have

χv,k+1
i (S ∪ {i}) =


γv,ki if i ∈ P v,k;
v(S∪{i})−

∑
p∈S∩Pv,k γ

v,k
p

|(S∪{i})\P v,k| if i /∈ P v,k

=


γv,kj if j ∈ P v,k;
v(S∪{j})−

∑
p∈S∩Pv,k γ

v,k
p

|(S∪{j})\P v,k| if j /∈ P v,k

= χv,k+1
j (S ∪ {j})
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and

χv,k+1
h (S ∪ {i}) =


γv,kh if h ∈ P v,k;
v(S∪{i})−

∑
p∈(S∪{i})∩Pv,k γ

v,k
p

|(S∪{i})\P v,k| if h /∈ P v,k

=


γv,kh if h ∈ P v,k;
v(S∪{j})−

∑
p∈(S∪{j})∩Pv,k γ

v,k
p

|(S∪{j})\P v,k| if h /∈ P v,k

= χv,k+1
h (S ∪ {j})

for all S ∈ 2N for which i, j ∈ S or i, j /∈ S, and any h ∈ S. Hence, χv,ki (S ∪ {i}) =
χv,kj (S ∪ {j}) and χv,kh (S ∪ {i}) = χv,kh (S ∪ {j}) for all k ∈ N, any S ∈ 2N for which
i, j ∈ S or i, j /∈ S, and any h ∈ S.

Then S ∪ {i} ∈ Âv if and only if S ∪ {j} ∈ Âv for all S ∈ 2N for which i, j ∈ S
or i, j /∈ S, which means that i ∈ Dv if and only if j ∈ Dv. Moreover, γ̂vi = γ̂vj . This
implies that

Γi(v) =

γ̂
v
i if i ∈ Dv;

CEAi

(
v(N)−∑k∈Dv γ̂

v
k , γ̂

v
N\Dv

)
if i /∈ Dv

=

γ̂
v
j if j ∈ Dv;

CEAj

(
v(N)−∑k∈Dv γ̂

v
k , γ̂

v
N\Dv

)
if j /∈ Dv

= Γj(v).

Hence, the procedural egalitarian solution satisfies symmetry.

(ii) Let v ∈ TUN and let i ∈ N be such that v(S ∪ {i}) = v(S) + v({i}) for all
S ⊆ N \ {i}. Then

v(S \ {i}) = v(S)− v({i}) =
∑
j∈S

γ̂vj − v({i}) ≥
∑
j∈S

γ̂vj − γ̂vi =
∑

j∈S\{i}
γ̂vj ≥ v(S \ {i})

for all S ∈ Av,nv for which i ∈ S. This means that γ̂vi = v({i}). Then

v(S ∪ {i}) = v(S) + v({i}) =
∑
j∈S

γ̂vj + γ̂vi =
∑

j∈S∪{i}
γ̂vj

for all S ∈ Av,nv for which i /∈ S. This means that S ∪ {i} ∈ Av,nv for all S ∈ Av,nv .
This implies that i ∈ Dv, so Γi(v) = γ̂vi = v({i}). Hence, the procedural egalitarian
solution satisfies dummy invariance.



Section 7.A Appendix 123

(iii) Let v, v′ ∈ TUN , let α ∈ R++, and let β ∈ R be such that v(S) = αv′(S)+β|S|
for all S ∈ 2N . First, we show by induction that χv,ki (S) = αχv

′,k
i (S)+β for all k ∈ N,

any S ∈ 2N \ {∅}, and any i ∈ S. We have

χv,1i (S) = v(S)
|S|

= αv′(S) + β|S|
|S|

= α
v′(S)
|S|

+ β = αχv
′,1
i (S) + β

for all S ∈ 2N \ {∅} and any i ∈ S.
Let k ∈ N and assume that χv,ki (S) = αχv

′,k
i (S) + β for all S ∈ 2N \ {∅} and

any i ∈ S. Then Av,k = Av′,k, which means that P v,k = P v′,k. Moreover, γv,k =
(αγv

′,k
j + β)j∈P v′,k . We have

χv,k+1
i (S) =


γv,ki if i ∈ P v,k;
v(S)−

∑
j∈S∩Pv,k γ

v,k
j

|S\P v,k| if i /∈ P v,k

=


αγv

′,k
i + β if i ∈ P v′,k;

αv′(S)+β|S|−
∑

j∈S∩Pv′,k
(αγv

′,k
j +β)

|S\P v′,k| if i /∈ P v′,k

=


αγv

′,k
i + β if i ∈ P v′,k;

α
v′(S)−

∑
j∈S∩Pv′,k

γv
′,k
j

|S\P v′,k| + β if i /∈ P v′,k

= αχv
′,k+1
i (S) + β

for all S ∈ 2N \ {∅} and any i ∈ S. Hence, χv,ki (S) = αχv
′,k
i (S) + β for all k ∈ N, any

S ∈ 2N \ {∅}, and any i ∈ S.
Then nv = nv

′ and Âv = Âv′ , which means that Dv = Dv′ . Moreover, γ̂v =
(αγ̂v′j + β)j∈N . This implies that

Γi(v) =

γ̂
v
i if i ∈ Dv;

CEAi

(
v(N)−∑j∈Dv γ̂

v
j , γ̂

v
N\Dv

)
if i /∈ Dv

=

αγ̂
v′
i + β if i ∈ Dv′ ;

CEAi

(
αv′(N) + β|N | −∑j∈Dv′ (αγ̂v

′
j + β), (αγ̂v′j + β)j∈N\Dv′

)
if i /∈ Dv′

=

αγ̂
v′
i + β if i ∈ Dv′ ;

CEAi

(
α(v′(N)−∑j∈Dv′ γ̂

v′
j ) + β|N\Dv′|), (αγ̂v′j + β)j∈N\Dv′

)
if i /∈ Dv′

=

αγ̂
v′
i + β if i ∈ Dv′ ;

αCEAi

(
v′(N)−∑j∈Dv′ γ̂

v′
j , γ̂

v′

N\Dv′
)

+ β if i /∈ Dv′

= αΓi(v′) + β

for all i ∈ N . Hence, the procedural egalitarian solution satisfies weak covariance.
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(iv) First, we show that χv,k+1
i (S) ≤ χv,ki (S) for all v ∈ TUN , any k ∈ N, any

i ∈ N \P v,k, and any S ∈ 2N for which i ∈ S. Let v ∈ TUN , let k ∈ N, let i ∈ N \P v,k,
and let S ∈ 2N be such that i ∈ S. Then i /∈ P v,k−1 by Lemma 7.2.2 and

χv,k+1
i (S) =

v(S)−∑j∈S∩P v,k γ
v,k
j

|S \ P v,k|

=
v(S)−∑j∈S∩P v,k−1 γv,kj −

∑
j∈S∩(P v,k\P v,k−1) γ

v,k
j

|S \ P v,k|

≤
v(S)−∑j∈S∩P v,k−1 γv,k−1

j −∑j∈S∩(P v,k\P v,k−1) χ
v,k
j (S)

|S \ P v,k|

= |S \ P
v,k−1|χv,ki (S)− |S ∩ (P v,k \ P v,k−1)|χv,ki (S)

|S \ P v,k|

= |S \ P
v,k|χv,ki (S)

|S \ P v,k|
= χv,ki (S).

Hence, χv,k+1
i (S) ≤ χv,ki (S) for all v ∈ TUN , any k ∈ N, any i ∈ N \ P v,k, and any

S ∈ 2N for which i ∈ S. This also means that, for all v ∈ TUN and any k ∈ N,
γv,ki ≤ γv,kj for all i ∈ P v,k \ P v,k−1 and any j ∈ P v,k for which i, j ∈ S for some
S ∈ Av,k. In other words, for all v ∈ TUN and any i ∈ N , there is a coalition
S ∈ Av,nv for which γ̂vi ≤ γ̂vj for all j ∈ S.

Now, let v, v′ ∈ TUN be such that v(N) ≤ v′(N) and v(S) = v′(S) for all S ⊂ N .
We show by induction that, for all k ∈ N, γv′,k ≥ γ̂v if N ∈ Av′,k, and γv

′,k
i = γ̂vi for

all i ∈ P v′,k if N /∈ Av′,k. If N ∈ Av′,1, then

γv
′,1
i = χv

′,1
i (N) ≥ χv

′,1
i (S) = v′(S)

|S|
≥ v(S)
|S|

= χv,1i (S) ≥ χv,ki (S) = γv,ki = γ̂vi

for all i ∈ N , where S ∈ 2N and k ∈ N are such that i ∈ S ∩ (P v,k \ P v,k−1) and
S ∈ Av,k. If N /∈ Av′,1, then

χv,1i (S) = v(S)
|S|

= v′(S)
|S|

= χv
′,1
i (S) ≥ χv

′,1
i (T ) = v′(T )

|T |
≥ v(T )
|T |

= χv,1i (T )

for all S ∈ Av′,1, any i ∈ S, and any T ∈ 2N for which i ∈ T , which means that
Av′,1 ⊆ Av,1 and γv

′,1
i = γv,1i = γ̂vi for all i ∈ P v′,1.
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Let k ∈ N and assume that γv′,k ≥ γ̂v if N ∈ Av′,k, and γv
′,k
i = γ̂vi for all i ∈ P v′,k

if N /∈ Av′,k. If N ∈ Av′,k, then N ∈ Av′,k+1 by Lemma 7.2.2 and γv′,k+1 = γv
′,k ≥ γ̂v.

Suppose that N /∈ Av′,k. Then γv
′,k+1
i = γv

′,k
i = γ̂vi for all i ∈ P v′,k and

γv
′,k+1
i ≥ χv

′,k+1
i (S) =

v′(S)−∑j∈S∩P v′,k γ
v′,k
j

|S \ P v′,k|
≥
v(S)−∑j∈S∩P v′,k γ̂

v
j

|S \ P v′,k|
≥ v(S)−

∑
j∈S\{i}

γ̂vj = γ̂vi

for all i ∈ P v′,k+1 \ P v′,k, where S ∈ Av,nv is such that γ̂vi ≤ γ̂vj for all j ∈ S. If
N ∈ Av′,k+1, this means that γv′,k+1 ≥ γ̂v. If N /∈ Av′,k+1, then

v′(S) =
∑
i∈S

γv
′,k+1
i ≥

∑
i∈S

γ̂vi ≥ v(S) = v′(S)

for all S ∈ Av′,k+1, which means that γv
′,k+1
i = γ̂vi for all i ∈ P v′,k+1. Hence, for all

k ∈ N, γv′,k ≥ γ̂v if N ∈ Av′,k, and γv
′,k
i = γ̂vi for all i ∈ P v′,k if N /∈ Av′,k.

In particular, γ̂v′ = γv
′,nv
′
≥ γ̂v if N ∈ Av′,nv

′
, and γ̂v′ = γv

′,nv
′

= γ̂v if N /∈ Av′,nv
′
.

This means that Γ(v′) = γ̂v
′ ≥ γ̂v ≥ Γ(v) if v′ is egalitarian stable, and

Γ(v′) =
γ̂v′Dv′ ,CEAN\Dv′

v′(N)−
∑
i∈Dv′

γ̂v
′

i , γ̂
v′

N\Dv′


=
(
γ̂vDv ,CEAN\Dv

(
v′(N)−

∑
i∈Dv

γ̂vi , γ̂
v
N\Dv

))

≥
(
γ̂vDv ,CEAN\Dv

(
v(N)−

∑
i∈Dv

γ̂vi , γ̂
v
N\Dv

))

= Γ(v)

if v′ is not egalitarian stable. Hence, the procedural egalitarian solution satisfies
aggregate monotonicity.





8 Egalitarianism in
Nontransferable Utility Games

8.1 Introduction
This chapter, based on Dietzenbacher, Borm, and Hendrickx (2017b), focusses on
egalitarianism in the context of nontransferable utility games. In a general payoff
space where utility levels are individually measured, egalitarianism cannot be applied
straightforwardly. To do so, it is necessary to impose assumptions which allow to
compare utility not only intrapersonally, but to some extent also interpersonally. In
a general allocation problem, a natural and helpful operation is normalization. In
particular, zero-normalization requires transforming individual utility in such a way
that allocating nothing corresponds to a utility level of zero. In other words, a payoff
of zero utility generates the same well-being for an involved agent as the event in
which the allocation problem is not solved. This implies that, in case of allocating
revenues, it is convenient to restrict to feasible payoff allocations that are nonnegative.

After zero-normalization, the zero vector plays a fundamental role. There, agents
are comparable in terms of well-being and the allocation is in that sense egalitarian.
The zero vector actually serves as a benchmark for egalitarian allocations. However,
in order to study efficient egalitarianism, this single point is not sufficient. For this, at
least a second reference point is necessary. The maximal individual payoffs within the
feasible allocations, or utopia values, constitute a natural candidate. There, agents
are comparable in terms of maximal satisfaction on the basis of feasible allocations
and the corresponding vector of utopia values is in that sense egalitarian. The utopia
vector relative to the zero vector can be interpreted as an egalitarian direction. It is
important to note that this direction and the subsequent results are covariant under
individual rescaling of utility.
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In a cooperative game, solutions focus on allocations for the grand coalition while
taking the opportunities of subcoalitions into account. To allow for an appropriate
egalitarian comparison of subcoalitions, it is required to consistently apply a fixed
interpretation of egalitarianism. Therefore, the utopia values of the grand coalition
are used as a common benchmark within any subcoalition. Applying this approach
to nontransferable utility games, we define an egalitarian procedure in which players
iteratively consider their egalitarian opportunities within subcoalitions in a similar
way as in the previous chapter. We introduce the constrained egalitarian solution
for nontransferable utility games which takes the result of this egalitarian procedure
into account to prescribe a unique egalitarian allocation for the grand coalition. The
constrained egalitarian solution generalizes the nonnegative procedural egalitarian
solution for transferable utility games.

We compare the constrained egalitarian solution with other well-known solution
concepts for nontransferable utility games like the Shapley value (cf. Shapley (1969)),
the Harsanyi value (cf. Harsanyi (1963)), and the monotonic solution of Kalai and Sa-
met (1985) using the famous examples introduced by Roth (1980) and Shafer (1980).
Contrary to the other solution concepts, the constrained egalitarian solution exactly
prescribes the allocation which was proposed by Roth (1980). Moreover, it neatly
follows the line of reasoning stated by Shafer (1980).

Interestingly, we show that the constrained egalitarian solution of a bankruptcy
game corresponds to the constrained relative equal awards rule of the underlying
bankruptcy problem. This illustrates the strong connection between the constrained
egalitarian solution and the constrained relative equal awards rule. On the class of
bargaining games (cf. Nash (1950)) corresponding to bargaining problems with the
zero vector as disagreement point, the constrained egalitarian solution corresponds to
the solutions introduced by Kalai and Smorodinsky (1975) and Kalai and Rosenthal
(1978). For bargaining games with nonzero disagreement point, it is illustrated that
the constrained egalitarian solution offers a new, interesting way to solve bargaining
problems.

This chapter is organized in the following way. Section 8.2 formally introduces the
constrained egalitarian solution and the underlying egalitarian procedure. Section 8.3
studies the new solution for the Roth-Shafer examples. In Section 8.4 and Section
8.5, the constrained egalitarian solution is analyzed on the class of bankruptcy games
and the class of bargaining games, respectively.
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8.2 The constrained egalitarian solution

In this section, we introduce the constrained egalitarian solution as an egalitarian so-
lution concept for nontransferable utility games. The constrained egalitarian solution
is based on an egalitarian procedure in which coalitional opportunities are explicitly
taken into account. By applying the utopia values of the grand coalition as an ega-
litarian direction in any subcoalition, the procedure starts assigning to any coalition
the maximally feasible egalitarian allocation. Players can fix their allocated payoff
in a coalition if no member is allocated a higher payoff in any other coalition. These
players would still be willing to cooperate within other coalitions provided that they
are compensated. Therefore, they claim their fixed payoff in any coalition and the
other members are assigned the maximally feasible egalitarian allocation. This itera-
tive procedure continues and eventually all players acquire a claim which is attainable
in at least one coalition.

Definition (Egalitarian Procedure)
Let V ∈ NTUN be a nontransferable utility game such that V (N) is nontrivial. The
set of 0-egalitarian claimants is given by P V,0 = ∅. Let k ∈ N. The k-egalitarian
distribution χV,k assigns to each S ∈ 2N \ {∅} the payoff allocation χV,k(S) ∈ RS+
given by

χV,k(S) =
(
γV,k−1
S∩PV,k−1 , λ

V,k(S)uV (N)
S\PV,k−1

)
,

where λV,k assigns to each S ∈ 2N \ {∅} for which S * P V,k−1 the scalar

λV,k(S) =


max{t ∈ R+ | (γV,k−1

S∩PV,k−1 , tu
V (N)
S\PV,k−1) ∈WP(V (S))}

if (γV,k−1
S∩PV,k−1 , 0S\PV,k−1) ∈ V (S);

0 if (γV,k−1
S∩PV,k−1 , 0S\PV,k−1) /∈ V (S).

The collection of k-egalitarian admissible coalitions is given by

AV,k =
{
S ∈ 2N \ {∅}

∣∣∣ χV,k(S) ∈WP(V (S)),∀i∈S∀T∈2N :i∈T : χV,ki (T ) ≤ χV,ki (S)
}
.

The set of k-egalitarian claimants P V,k ∈ 2N \ {∅} is given by P V,k = ⋃
S∈AV,k S. The

vector of k-egalitarian claims γV,k ∈ RPV,k+ is given by γV,ki = χV,ki (S) for all i ∈ P V,k,
where S ∈ AV,k and i ∈ S.

Later, we show that this procedure is well-defined. First, we provide an illustrative
example.
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Example 8.1
Let N = {1, 2, 3} and consider the game V ∈ NTUN given by

V ({1}) =
{
x ∈ R{1}+

∣∣∣ x ≤ 4
}

;

V ({2}) =
{
x ∈ R{2}+

∣∣∣ x ≤ 1
}

;

V ({3}) =
{
x ∈ R{3}+

∣∣∣ x ≤ 0
}

;

V ({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 ≤ 4, x2 ≤ 2
}

;

V ({1, 3}) =
{
x ∈ R{1,3}+

∣∣∣ x1 ≤ 2, x3 ≤ 2
}

;

V ({2, 3}) =
{
x ∈ R{2,3}+

∣∣∣ 2x2 + x3 ≤ 4
}

;

V ({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ 2x1 + 2x2 + x3 ≤ 12
}
.

Then uV (N) = (6, 6, 12). The egalitarian distribution in all iterations of the egalitarian
procedure is presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χV,1(S) (4, ·, ·) (·, 1, ·) (·, ·, 0) (2, 2, ·) (1, ·, 2) (·, 1, 2) (2, 2, 4)
χV,2(S) (4, ·, ·) (·, 1, ·) (·, ·, 0) (4, 2, ·) (4, ·, 0) (·, 1, 2) (4, 1, 2)
χV,3(S) (4, ·, ·) (·,2, ·) (·, ·, 0) (4,2, ·) (4, ·, 0) (·,2, 0) (4,2, 0)

χV,k(S) (k ≥ 4) (4, ·, ·) (·,2, ·) (·, ·,0) (4,2, ·) (4, ·,0) (·,2,0) (4,2,0)
In the first iteration, AV,1 = {{1}}, P V,1 = {1}, and γV,1 = (4, ·, ·). In the second
iteration, AV,2 = {{1}, {1, 2}}, P V,2 = {1, 2}, and γV,2 = (4, 2, ·). In all subsequent
iterations k ≥ 3, AV,k = {{1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}, P V,k = N , and γV,k =
(4, 2, 0). 4

Lemma 8.2.1
Let V ∈ NTUN be such that V (N) is nontrivial and let S ∈ 2N \{∅}. Then χV,k(S) ∈
WUC(V (S)) for all k ∈ N.

Proof. We show the statement by induction. Suppose that χV,1(S) /∈ WUC(V (S)).
Then there exists an x ∈ V (S) for which x > χV,1(S). Since V (S) is comprehensive,
this means that there exists a y ∈ V (S) with y > χV,1(S) for which y = tu

V (N)
S for

some t ∈ R+. Since P V,0 = ∅, this means that t > λV,1(S), which contradicts the
definition of λV,1(S). Hence, χV,1(S) ∈WUC(V (S)).

Let k ∈ N and assume that χV,k(S) ∈WUC(V (S)). If S ⊆ P V,k, then χV,k+1(S) =
γV,kS ≥ χV,k(S), so χV,k+1(S) ∈WUC(V (S)). Assume that S 6⊆ P V,k and suppose that
χV,k+1(S) /∈ WUC(V (S)). Then there exists an x ∈ V (S) for which x > χV,k+1(S).
Since V (S) is comprehensive, this means that there exists a y ∈ V (S) with y ≥
χV,k+1(S) and y 6= χV,k+1(S) for which y = (γV,kS∩PV,k , tu

V (N)
S\PV,k) for some t ∈ R+.

This means that t > λV,k+1(S), which contradicts the definition of λV,k+1(S). Hence,
χV,k+1(S) ∈WUC(V (S)).
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Lemma 8.2.1 shows that the egalitarian distribution generally assigns an overef-
ficient allocation to each coalition. Only coalitions which are assigned an efficient
allocation can be egalitarian admissible. There, members fix their allocated payoff
and claim it in all further iterations. Efficiency can only be achieved when it is pos-
sible to allocate to the egalitarian claimants which are member of the coalition their
corresponding egalitarian claims. Formally, for all S ∈ 2N \ {∅} and any k ∈ N,
χV,k(S) ∈ WP(V (S)) if and only if (γV,k−1

S∩PV,k−1 , 0S\PV,k−1) ∈ V (S). In particular, this
means that the egalitarian distribution assigns in the first iteration an efficient allo-
cation to each coalition.

To an egalitarian admissible coalition, the egalitarian distribution assigns an effi-
cient allocation for which no member is allocated a higher payoff in any other coali-
tion. This suggests that the payoff allocation is an element of the core. Indeed, for
each egalitarian admissible coalition, the corresponding vector of egalitarian claims
is a core element of the induced subgame.

Proposition 8.2.2
Let V ∈ NTUN be such that V (N) is nontrivial and let k ∈ N. Then γV,kS ∈ CW(VS)
for all S ∈ AV,k.

Proof. Let S ∈ AV,k. Then γV,kS = χV,k(S) and χV,k(S) ∈ VS(S). Suppose that
γV,kS /∈ CW(VS). Then there exists anR ∈ 2S\{∅} for which γV,kR ∈ VS(R)\WP(VS(R)).
We have γV,kR = χV,kR (S) ≥ χV,k(R). Since VS(R) is comprehensive, this means that
χV,k(R) ∈ VS(R)\WP(VS(R)). This contradicts Lemma 8.2.1. Hence, γV,kS ∈ CW(VS).

The question arises whether egalitarian admissible coalitions and egalitarian clai-
mants exist in every nontransferable utility game. Are players always able to acquire
an egalitarian claim? The answer is affirmative.

Lemma 8.2.3
Let V ∈ NTUN be such that V (N) is nontrivial and let k ∈ N. Then AV,k ⊆ AV,k+1.
Moreover, if P V,k−1 6= N , then P V,k−1 ⊂ P V,k.

Proof. Let S ∈ AV,k. Then χV,k(S) ∈WP(V (S)), S ⊆ P V,k, and χV,k+1(S) = γV,kS =
χV,k(S). This means that χV,k+1(S) ∈ WP(V (S)) and χV,k+1

i (T ) = γV,ki ≤ χV,k+1
i (S)

for all i ∈ S and any T ∈ 2N for which i ∈ T , so S ∈ AV,k+1. Hence, AV,k ⊆ AV,k+1.
Assume that P V,k−1 6= N . Let S ∈ 2N with S 6⊆ P V,k−1 and (γV,k−1

S∩PV,k−1 , 0S\PV,k−1) ∈
V (S) be a coalition such that λV,k(S) equals the highest λV,k(R) over all coalitions
R ∈ 2N with R 6⊆ P V,k−1. Then χV,k(S) ∈ WP(V (S)) and χV,ki (T ) ≤ χV,ki (S) for all
i ∈ S and any T ∈ 2N for which i ∈ T . This means that S ∈ AV,k and S ⊆ P V,k.
Hence, P V,k−1 ⊂ P V,k.
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Lemma 8.2.3 shows that the collection of egalitarian admissible coalitions weakly
expands in each iteration and eventually covers all players. Interestingly, some well-
known properties for nontransferable utility games have implications for the relation
of the collections of egalitarian admissible coalitions in two subsequent iterations.

Proposition 8.2.4
Let V ∈ NTUN be such that V (N) is nontrivial and let k ∈ N.

(i) If V is superadditive, then S∪T ∈ AV,k+1 for all S, T ∈ AV,k for which S∩T = ∅.

(ii) If V is ordinal convex, then S∪T ∈ AV,k+1 or S∩T ∈ AV,k+1 for all S, T ∈ AV,k

for which S ∩ T 6= ∅.

(iii) If V is coalitional merge convex, then S ∪ T ∈ AV,k+1 for all S, T ∈ AV,k.

(iv) If V is balanced, then N ∈ AV,k+1 if there exists a balanced collection B ⊆ AV,k.

Proof. (i) Assume that V is superadditive. Let S, T ∈ AV,k be such that S ∩ T = ∅.
Then γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since V is superadditive, this means that
γV,kS∪T ∈ V (S ∪ T ). By Lemma 8.2.1, χV,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )). Since
χV,k+1(S ∪ T ) = γV,kS∪T , this implies that χV,k+1(S ∪ T ) ∈ WP(V (S ∪ T )). Hence,
S ∪ T ∈ AV,k+1.

(ii) Assume that V is ordinal convex. Let S, T ∈ AV,k be such that S ∩ T 6=
∅. Then γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since V is ordinal convex, this means
that γV,kS∪T ∈ V (S ∪ T ) or γV,kS∩T ∈ V (S ∩ T ). By Lemma 8.2.1, χV,k+1(S ∪ T ) ∈
WUC(V (S ∪ T )) and χV,k+1(S ∩ T ) ∈WUC(V (S ∩ T )). Since χV,k+1(S ∪ T ) = γV,kS∪T

and χV,k+1(S ∩ T ) = γV,kS∩T , this implies that χV,k+1(S ∪ T ) ∈ WP(V (S ∪ T )) or
χV,k+1(S ∩ T ) ∈WP(V (S ∩ T )). Hence, S ∪ T ∈ AV,k+1 or S ∩ T ∈ AV,k+1.

(iii) Assume that V is coalitional merge convex. Let S, T ∈ AV,k. If S ∩ T = ∅,
S ⊆ T , or T ⊆ S, then S ∪ T ∈ AV,k+1 by (i) and Lemma 8.2.3. Suppose that
S ∩ T 6= ∅, S 6⊆ T , and T 6⊆ S. Then γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since
V is coalitional merge convex, there exists a y ∈ V (S ∪ T ) for which yS ≥ γV,kS

and yT\S ≥ γV,kT\S, i.e. y ≥ γV,kS∪T . Since V (S ∪ T ) is comprehensive, this means
that γV,kS∪T ∈ V (S ∪ T ). By Lemma 8.2.1, χV,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )). Since
χV,k+1(S ∪ T ) = γV,kS∪T , this implies that χV,k+1(S ∪ T ) ∈ WP(V (S ∪ T )). Hence,
S ∪ T ∈ AV,k+1.

(iv) Assume that V is balanced. Let B ⊆ AV,k be a balanced collection. Then
γV,kS ∈ V (S) for all S ∈ B. Since V is balanced, this means that γV,k ∈ V (N). By
Lemma 8.2.1, χV,k+1(N) ∈ WUC(V (N)). Since χV,k+1(N) = γV,k, this implies that
χV,k+1(N) ∈WP(V (N)). Hence, N ∈ AV,k+1.
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Furthermore, Lemma 8.2.3 also shows that in each iteration of the egalitarian
procedure, at least one additional player acquires an egalitarian claim as long as
the collection of egalitarian admissible coalitions does not cover all players. The
egalitarian procedure reaches a steady state when all players are egalitarian claimants.
This means that the number of iterations needed to converge to a steady state is
bounded by the number of players. Example 8.1 shows that this bound is tight.

Definition
Let V ∈ NTUN be a nontransferable utility game such that V (N) is nontrivial. The
iteration nV ∈ {1, . . . , |N |} is given by nV = min{k ∈ N | P V,k = N}. The vector of
egalitarian claims γ̂V ∈ RN+ is given by γ̂V = γV,n

V . The collection ÂV ⊆ 2N \ {∅} is
given by ÂV = {S ∈ 2N \ {∅} | γ̂VS ∈ V (S),∀T∈2N\{∅}:γ̂VT ∈V (T ) : S 6⊂ T}. The set of
strong egalitarian claimants DV ∈ 2N is given by DV = ⋂

S∈ÂV S.

The constrained egalitarian solution is a solution concept which takes both the
set of strong egalitarian claimants and the vector of egalitarian claims into account
to prescribe a payoff allocation for the grand coalition. The egalitarian claims can be
interpreted as aspiration levels for such an allocation, which are based on egalitarian
opportunities within subcoalitions. The constrained egalitarian solution first allocates
to all strong egalitarian claimants their claims and subsequently allocates to all other
players their claims. The possibly resulting infeasibility is modeled as a bankruptcy
problem in which the egalitarian claims are adopted.

Taking the egalitarian claims and the set of strong egalitarian claimants into
account, the constrained egalitarian solution for nontransferable utility games uses
the constrained relative equal awards rule to prescribe a payoff allocation for the
grand coalition. In Section 8.4, we further elaborate on the choice of this specific
bankruptcy rule.

Definition (Constrained Egalitarian Solution)
The constrained egalitarian solution Γ : NTUN → RN+ is the solution which assigns
to any V ∈ NTUN for which V (N) is nontrivial the payoff allocation

Γ(V ) =



(
γ̂VDV ,CREA({x ∈ RN\D

V

+ | (γ̂VDV , x) ∈ V (N)}, γ̂VN\DV )
)

if (γ̂VDV , 0N\DV ) ∈ V (N);(
CREA({x ∈ RDV+ | (x, 0N\DV ) ∈ V (N)}, γ̂VDV ), 0N\DV

)
if (γ̂VDV , 0N\DV ) /∈ V (N).

Note that the constrained egalitarian solution is well-defined by extending the
domain of CREA to bankruptcy problems for which the estate is not necessarily
nonleveled.
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Moreover, for any NTU-game V ∈ NTUN for which V (S) = {x ∈ RS+ |
∑
i∈S xi ≤

v(S)} for all S ∈ 2N \ {∅}, induced by a nonnegative TU-game v ∈ TUN for which
v(N) > 0, Γ(V ) = Γ(v) if Γ(v) ∈ RN+ , i.e. the constrained egalitarian solution
coincides with the procedural egalitarian solution if the latter is nonnegative.

Example 8.2
Let N = {1, 2, 3} and consider the game V ∈ NTUN from Example 8.1. Then nV = 3,
γ̂V = (4, 2, 0), ÂV = {N}, and DV = N . Hence, Γ(V ) = (4, 2, 0). 4

As in Example 8.1 and Example 8.2, an interesting situation arises when the grand
coalition is egalitarian admissible. Then all players are strong egalitarian claimants,
there is no infeasibility, and the constrained egalitarian solution assigns to all players
their egalitarian claims. Moreover, by Proposition 8.2.2, the constrained egalitarian
solution constitutes a core element. Therefore, such nontransferable utility games are
called egalitarian stable.

Definition (Egalitarian Stability)
A nontransferable utility game V ∈ NTUN for which V (N) is nontrivial is egalitarian
stable if ÂV = {N}.

Egalitarian stability is a sufficient condition for nontransferable utility games to
contain the constrained egalitarian solution in the core. The following example shows
that this condition is not necessary.

Example 8.3
Let N = {1, 2, 3} and consider the game V ∈ NTUN given by

V ({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ N ;

V ({1, i}) =
{
x ∈ R{1,i}+

∣∣∣ x1 ≤ 4, xi ≤ 4
}

for i ∈ {2, 3};

V ({2, 3}) =
{
x ∈ R{2,3}+

∣∣∣ x2 ≤ 0, x3 ≤ 0
}

;

V ({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x1 + x2 + x3 ≤ 6
}
.

Then uV (N) = (6, 6, 6). The egalitarian distribution in the first iteration of the
egalitarian procedure is presented in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χV,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) (4, 4, ·) (4, ·, 4) (·, 0, 0) (2, 2, 2)

In the first iteration, AV,1 = {{1, 2}, {1, 3}}, P V,1 = N , and γV,1 = (4, 4, 4). This
means that nV = 1, γ̂V = (4, 4, 4), ÂV = {{1, 2}, {1, 3}}, and DV = {1}. Hence,

Γ(V ) =
(
4,CREA({x ∈ R{2,3}+ | x2 + x3 ≤ 2}, (·, 4, 4))

)
= (4, 1, 1).

Note that Γ(V ) ∈ CW(V ). 4
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In Example 8.3, the sets of payoff allocations V ({1, 2}) and V ({1, 3}) are not
nonleveled. For nontransferable utility games V ∈ NTUN for which V (N) is nontri-
vial and V (S) is nonleveled for all S ∈ 2N \ {∅}, egalitarian stability is a necessary
and sufficient condition to contain the constrained egalitarian solution in the core.
The question arises which nontransferable utility games are egalitarian stable. By
Proposition 8.2.4, coalitional merge convex games are egalitarian stable. In the next
sections we show that the Roth-Shafer examples, bankruptcy games, and bargaining
games are all egalitarian stable as well.

8.3 Roth-Shafer examples
In this section, we study the constrained egalitarian solution for the examples intro-
duced by Roth (1980) and Shafer (1980). These examples initiated an interesting
and extensive discussion on the interpretation of solutions for nontransferable utility
games. Along the lines of this discussion, we compare the constrained egalitarian so-
lution with the Shapley value (cf. Shapley (1969)), the Harsanyi value (cf. Harsanyi
(1963)), and the monotonic solution of Kalai and Samet (1985). For more details,
we refer to Harsanyi (1980), Aumann (1985), Hart (1985), Roth (1986), and Aumann
(1986).

Example 8.4 (cf. Roth (1980))
Let N = {1, 2, 3} and consider the game Vp ∈ NTUN which is for all p ∈ (0, 1

2) given
by

Vp({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ N ;

Vp({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 ≤ 1
2 , x2 ≤ 1

2

}
;

Vp({i, 3}) =
{
x ∈ R{i,3}+

∣∣∣ xi ≤ p, x3 ≤ 1− p
}

for i ∈ {1, 2};

Vp({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x ∈ comp(conv({(1
2 ,

1
2 , 0), (p, 0, 1− p), (0, p, 1− p)}))

}
.

Then uVp(N) = (1
2 ,

1
2 , 1 − p). A part of the egalitarian distribution in the first two

iterations of the egalitarian procedure is presented in the following table.

S {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χVp,1(S) (·, ·, 0) (1

2 ,
1
2 , ·) (p, ·, 2p(1− p)) (·, p, 2p(1− p)) λVp,1(N)uVp(N)

χVp,2(S) (·, ·, 0) (1
2 ,

1
2 , ·) (1

2 , ·, 0) (·, 1
2 , 0) (1

2 ,
1
2 , 0)

In the first iteration, AVp,1 = {{1, 2}}, P Vp,1 = {1, 2}, and γVp,1 = (1
2 ,

1
2 , ·). In the

second iteration, AVp,2 = {{3}, {1, 2}, {1, 2, 3}}, P Vp,2 = N , and γVp,2 = (1
2 ,

1
2 , 0).

This means that nVp = 2, γ̂Vp = (1
2 ,

1
2 , 0), ÂVp = {N}, and DVp = N . Hence,

Γ(Vp) = (1
2 ,

1
2 , 0).
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Besides, the Shapley value equals (1
3 ,

1
3 ,

1
3), and the Harsanyi value and the mono-

tonic solution both equal (1
2 −

1
3p,

1
2 −

1
3p,

2
3p). Note that, contrary to the constrained

egalitarian solution, these solutions do not belong to the core. Roth argues that the
payoff allocation (1

2 ,
1
2 , 0) is the unique outcome of this game which is consistent with

the hypothesis that the players are rational utility maximizers, since this payoff allo-
cation is strictly preferred by both players 1 and 2, and it can be achieved without
player 3. The constrained egalitarian solution perfectly matches this idea. 4

Example 8.5 (cf. Shafer (1980) and Hart and Kurz (1983))
Let N = {1, 2, 3} and consider the game Vε ∈ NTUN which is for all ε ∈ [0, 1

6) given
by

Vε({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ {1, 2};

Vε({3}) =
{
x ∈ R{3}+

∣∣∣ x ≤ ε
}

;

Vε({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 + x2 ≤ 1− ε
}

;

Vε({i, 3}) =
{
x ∈ R{i,3}+

∣∣∣ xi ≤ ε, xi + x3 ≤ 1
2 + 1

2ε
}

for i ∈ {1, 2};

Vε({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x1 + x2 + x3 ≤ 1
}
.

Then uVε(N) = (1, 1, 1). A part of the egalitarian distribution in the first two iterations
of the egalitarian procedure is presented in the following table.

S {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χVε,1(S) (·, ·, ε) (1−ε

2 , 1−ε
2 , ·) (ε, ·, ε) (·, ε, ε) (1

3 ,
1
3 ,

1
3)

χVε,2(S) (·, ·, ε) (1−ε
2 , 1−ε

2 , ·) (1−ε
2 , ·, 0) (·, 1−ε

2 , 0) (1−ε
2 , 1−ε

2 , ε)

In the first iteration, AVε,1 = {{1, 2}}, P Vε,1 = {1, 2}, and γVε,1 = (1−ε
2 , 1−ε

2 , ·). In the
second iteration, AVε,2 = {{3}, {1, 2}, {1, 2, 3}}, P Vε,2 = N , and γVε,2 = (1−ε

2 , 1−ε
2 , ε).

This means that nVε = 2, γ̂Vε = (1−ε
2 , 1−ε

2 , ε), ÂVε = {N}, and DVε = N . Hence,
Γ(Vε) = (1

2 −
1
2ε,

1
2 −

1
2ε, ε).

Besides, the Shapley value equals ( 5
12 −

5
12ε,

5
12 −

5
12ε,

2
12 + 10

12ε), and the Harsanyi
value and the monotonic solution both equal (1

2−
5
6ε,

1
2−

5
6ε,

10
6 ε). Note that, contrary

to the constrained egalitarian solution, these solutions do not belong to the core.
Shafer states that it is unreasonable to allocate at least 1

6 to player 3, independent
of ε and especially in the case ε = 0. The constrained egalitarian solution seamlessly
connects with this idea. 4
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8.4 Bankruptcy games
In this section, we analyze the constrained egalitarian solution on the class of bank-
ruptcy games with nontransferable utility. We show that bankruptcy games are
egalitarian stable, which means that the constrained egalitarian solution assigns to
all players their egalitarian claims without having to rely on the constrained rela-
tive equal awards rule in its definition. Interestingly, we show that the constrained
egalitarian solution of a bankruptcy game corresponds to the constrained relative
equal awards rule of the underlying bankruptcy problem. This illustrates the strong
connection between the constrained egalitarian solution and the constrained rela-
tive equal awards rule. Besides, it justifies the use of the latter in the definition of
the constrained egalitarian solution for nontransferable utility games which are not
egalitarian stable.

Theorem 8.4.1
Let (E, c) ∈ BRN be a bankruptcy problem such that E 6= {0N}. Then Γ(V E,c) =
CREA(E, c).

Proof. First, we show that γ̂V E,c ≤ c. Suppose that there exists an i ∈ N for which
γ̂V

E,c

i > ci. Let k ∈ N be such that i ∈ P V E,c,k \P V E,c,k−1 and let S ∈ AV E,c,k be such
that i ∈ S. Then γ̂V

E,c

i /∈ V E,c({i}) and χV
E,c,k(S) ∈WP(V E,c(S)), so S 6= {i} and(

γV
E,c,k−1

S∩PV E,c,k−1 , λ
V E,c,k(S)uV

E,c(N)
S\PV E,c,k−1

)
∈WP(V E,c(S)).

Since E is comprehensive and nonleveled, this means that(
γV

E,c,k−1
S∩PV E,c,k−1 , λ

V E,c,k(S)uV
E,c(N)

S\PV E,c,k−1 , cN\S

)
∈ SP(E).

Since E is comprehensive,(
γV

E,c,k−1
S∩PV E,c,k−1 , λ

V E,c,k(S)uV
E,c(N)

S\(PV E,c,k−1∪{i})
, ci, cN\S

)
∈ E \ SP(E).

Since E is nonleveled,(
γV

E,c,k−1
S∩PV E,c,k−1 , λ

V E,c,k(S)uV
E,c(N)

S\(PV E,c,k−1∪{i})

)
∈ V E,c(S \ {i}) \WP(V E,c(S \ {i})).

By Lemma 8.2.1, χV E,c,k(S \ {i}) ∈WUC(V E,c(S \ {i})). Then

χV
E,c,k

S\(PV E,c,k−1∪{i})
(S \ {i}) = λV

E,c,k(S \ {i})uV
E,c(N)

S\(PV E,c,k−1∪{i})

> λV
E,c,k(S)uV

E,c(N)
S\(PV E,c,k−1∪{i})

= χV
E,c,k

S\(PV E,c,k−1∪{i})
(S).

This contradicts that S ∈ AV E,c,k. Hence, γ̂V E,c ≤ c.
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Suppose that c ∈ E. Then χV
E,c,nV

E,c

(N) ≤ γV
E,c,nV

E,c

= γ̂V
E,c ≤ c. By Lemma

8.2.1, χV E,c,nV
E,c

(N) ∈ WUC(E). Since E is nonleveled, this means that γ̂V E,c = c,
ÂV E,c = {N}, and DV E,c = N . Hence, Γ(V E,c) = c = CREA(E, c).

Now suppose that c /∈ E. First, we show that χV E,c,1(S) ≤ αE,cuES for all S ∈
2N \ {∅}. Suppose that there exists an S ∈ 2N \ {∅} for which χV

E,c,1
i (S) > αE,cuEi

for some i ∈ S. Then χV
E,c,1(S) ∈WP(V E,c(S)) and

χV
E,c,1(S) = λV

E,c,1(S)uES > αE,cuES ≥ CREAS(E, c).

Since E is comprehensive and nonleveled, we have (χV E,c,1(S), cN\S) ∈ WP(E),
(χV E,c,1(S), cN\S) ≥ CREA(E, c), and (χV E,c,1(S), cN\S) 6= CREA(E, c). Since E is
nonleveled, this contradicts that CREA(E, c) ∈WP(E). Hence, χV E,c,1(S) ≤ αE,cuES
for all S ∈ 2N \ {∅}. Next, let HE,c ∈ 2N \ {∅} be defined by

HE,c =
{
i ∈ N

∣∣∣ CREAi(E, c) = αE,cuEi
}
.

Then χV
E,c,1(HE,c) ∈WP(V E,c(HE,c)) and

χV
E,c,1(HE,c) = λV

E,c,1(HE,c)uEHE,c = αE,cuEHE,c = CREAHE,c(E, c).

This means that HE,c ∈ AV E,c,1, HE,c ⊆ P V E,c,1 and γV
E,c,1

HE,c = CREAHE,c(E, c). Now,

χV
E,c,nV

E,c

(N) ≤ γV
E,c,nV

E,c

= γ̂V
E,c ≤

(
CREAHE,c(E, c), cN\HE,c

)
= CREA(E, c).

By Lemma 8.2.1, χV E,c,nV
E,c

(N) ∈ WUC(E). Since CREA(E, c) ∈ WP(E) and E

is nonleveled, this means that γ̂V E,c = CREA(E, c), ÂV E,c = {N}, and DV E,c = N .
Hence, Γ(V E,c) = CREA(E, c).

8.5 Bargaining games
In this section, we analyze the constrained egalitarian solution on the class of bar-
gaining games. A bargaining problem (cf. Nash (1950)) is a triple (N,F, d) in which
N is a nonempty and finite set of bargainers, F ⊆ RN+ is a nonempty, closed, boun-
ded, nontrivial and comprehensive feasible set, and d ∈ F is a disagreement point.
Let BGN denote the class of all bargaining problems with bargainer set N . For
convenience, a bargaining problem on N is denoted by (F, d) ∈ BGN .

Kalai and Smorodinsky (1975) introduced the solution KS : BGN → RN+ assigning
to any bargaining problem (F, d) ∈ BGN the payoff allocation

KS(F, d) = d+ κF,d1

(
uFd − d

)
,

where Fd = {x ∈ F | x ≥ d} and κF,d1 = max{t ∈ [0, 1] | d+ t(uFd − d) ∈WP(F )}.
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Kalai and Rosenthal (1978) introduced the solution KR : BGN → RN+ assigning
to any bargaining problem (F, d) ∈ BGN the payoff allocation

KR(F, d) = d+ κF,d2

(
uF − d

)
,

where κF,d2 = max{t ∈ [0, 1] | d+ t(uF − d) ∈WP(F )}.

The bargaining game V F,d ∈ NTUN corresponding to the bargaining problem
(F, d) ∈ BGN is given by

V F,d(S) =

F for S = N ;
{x ∈ RS+ | x ≤ dS} for all S ∈ 2N \ {∅, N}.

The core of a bargaining game is given by CW(V F,d) = {x ∈ WP(F ) | x ≥ d}. Note
that bargaining games are coalitional merge convex, which implies that bargaining
games are egalitarian stable and that the constrained egalitarian solution constitutes
a core element.

Theorem 8.5.1
Let (F, d) ∈ BGN be a bargaining problem such that d = 0N . Then Γ(V F,d) =
KS(F, d) = KR(F, d).

Proof. Since d = 0N , Fd = F and KS(F, d) = κF,d1 uFd = κF,d2 uF = KR(F, d). In the
first iteration of the egalitarian procedure,

χV
F,d,1(S) =

λ
V F,d,1(N)uF for S = N ;

0S for all S ∈ 2N \ {∅, N},

where λV
F,d,1(N) ∈ [0, 1] is such that λV F,d,1(N)uF ∈ WP(F ). This means that

N ∈ AV F,d,1, P V F,d,1 = N , and γV
F,d,1 = λV

F,d,1(N)uF , which implies that nV F,d = 1,
γ̂V

F,d = λV
F,d,1(N)uF , ÂV F,d = {N}, andDV F,d = N . Hence, Γ(V F,d) = λV

F,d,1(N)uF .
Moreover, the assumptions on F imply that λV

F,d,1(N) = κF,d1 = κF,d2 . Hence,
Γ(V F,d) = KS(F, d) = KR(F, d).

Theorem 8.5.1 shows that the constrained egalitarian solution of a bargaining
game corresponds to the solutions of Kalai and Smorodinsky (1975) and Kalai and
Rosenthal (1978) of the underlying bargaining problem if the disagreement point
equals the zero vector. In general, the constrained egalitarian solution assigns to any
bargaining problem (F, d) ∈ BGN the payoff allocation

Γ(V F,d) =
(
max{di, αF,duFi }

)
i∈N

,

where αF,d = max{t ∈ [0, 1] | (max{di, tuFi })i∈N ∈WP(F )}.
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The following two examples illustrate the nature of the constrained egalitarian
solution for bargaining problems with nonzero disagreement point.

Example 8.6
Let N = {1, 2} and consider the bargaining problem (F, d) ∈ BGN given by F =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and d = (0, 11
12). Then uF = (6, 3) and uFd = (5, 3).

This means that KS(F, d) = (5
2

√
5− 5

2 ,
25
24

√
5− 1

8) ( ), KR(F, d) = (31
3 , 2

2
27) ( ), and

Γ(V F,d) = (3
√

5− 3, 3
2

√
5− 3

2) ( ). This is illustrated as follows.

F

x10 1 2 3 4 5 6

x2

1

2

3 uF

d

uFd

4

Example 8.7
Let N = {1, 2} and consider the bargaining problem (F, d) ∈ BGN given by F =
{x ∈ RN+ | x2

1 + 12x2 ≤ 36} and d = (0, 21
4). Then uF = (6, 3) and uFd = (3, 3). This

means that KS(F, d) = (3
2

√
5− 3

2 ,
3
8

√
5 + 15

8 ) ( ), KR(F, d) = (3
4

√
17− 3

4 ,
3
32

√
17 + 69

32)
( ), and Γ(V F,d) = (3, 21

4) ( ). This is illustrated as follows.

F

x10 1 2 3 4 5 6

x2

1

2

3 uF

d

uFd

4

Future research could further study the interpretation and axiomatic significance
of this new egalitarian solution concept for bargaining problems.



Part III

Communication Situations





9 Decomposition of Network
Communication Games

9.1 Introduction
In a cooperative game with communication structure, the players of a transfera-
ble utility game are subject to cooperation restrictions. Myerson (1977) introduced
communication situations in which these cooperation restrictions are modeled by an
undirected graph. Nodes of the undirected graph represent the players of the game
and there is a link between two nodes if and only if the corresponding players are
able to communicate directly. A coalition can attain its worth if its members are able
to communicate, i.e. if their corresponding nodes induce a connected subgraph.

Myerson (1977) introduced the graph-restricted game corresponding to a commu-
nication situation in which each coalition of nodes is assigned the sum of the worths of
the components in its induced subgraph. We refer to this game as the corresponding
node game. Owen (1986) studied the decomposition into unanimity games of these
node games for the special case that the communication network is cycle-free. The
Myerson value of a communication situation is defined as the Shapley value of the
corresponding node game.

Borm, Owen, and Tijs (1992) introduced a game on the links corresponding to a
communication situation in which each coalition of links is assigned the sum of the
worths of the components in its induced subgraph. We refer to this game as the cor-
responding link game. Borm, Owen, and Tijs (1992) also studied the decomposition
into unanimity games of these link games for the special case that the communication
network is cycle-free. The position value of a communication situation assigns to each
player half of the payoffs allocated to the incident links by the Shapley value of the
corresponding link game.

143
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This chapter, which is based on Dietzenbacher, Borm, and Hendrickx (2017a), in-
troduces a general class of network communication games and a corresponding class
of network control values for communication situations. A network communication
game is a transferable utility game integrating the features of a communication situ-
ation and a network control structure on a communication network. Here, a network
control structure models the way in which the nodes and links of the graph con-
trol the communication network. Where Myerson (1977) considered the nodes and
Borm, Owen, and Tijs (1992) considered the links as controllers of the network, a
network control structure allows both the nodes and links to control the network in
any way. In the corresponding network communication game, each coalition of nodes
and links is assigned the sum of the worths of the components in the subgraph which
the members control together.

Focusing on the decomposition into unanimity games of network communication
games, communication situations with an underlying unanimity game induce simple
network communication games for any network control structure. The minimal win-
ning coalitions in this game play a central role in its decomposition. We obtain a
relation between the dividends in the network communication game and in the under-
lying transferable utility game, which depends on the structure of the communication
network. This relation extends the results of Owen (1986) and Borm, Owen, and Tijs
(1992) for cycle-free networks to all undirected graphs.

For any network control structure, the corresponding network control value of a
communication situation assigns to each player the payoff allocated by the Shapley
value of the corresponding network communication game to its corresponding node
and half of the payoff allocated to the incident links. The Myerson value and the
position value are network control values which correspond to specific network control
structures. We derive an explicit expression for any network control value in terms
of the dividends in the underlying transferable utility game.

The main aim of this chapter is to develop the decomposition theory for network
communication games as a mathematical tool which can be used to derive any net-
work control value for communication situations in a structured way. Future research
could study further interpretations and applications of this new framework.

This chapter is organized in the following way. Section 9.2 provides an overview of
basic game theoretic and graph theoretic notions and notations. Section 9.3 formally
introduces network control structures, network communication games, and network
control values, and studies the decomposition into unanimity games. Section 9.4
discusses the Myerson value and the position value, and the decomposition of their
corresponding node games and link games. Section 9.5 illustrates how the decompo-
sition theory can be extended to more general communication structures.
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9.2 Preliminaries

A transferable utility game v ∈ TUN is simple if v is monotonic, v(S) ∈ {0, 1} for
all S ∈ 2N , and v(N) = 1. Let SIN denote the class of simple games with player set
N . A coalition S ∈ 2N is winning in v ∈ SIN if v(S) = 1 and losing in v ∈ SIN if
v(S) = 0. The collection of minimal winning coalitions in v ∈ SIN is given by

M(v) =
{
S ∈ 2N

∣∣∣ v(S) = 1,∀R⊂S : v(R) = 0
}
. (9.1)

The maximum game max{v | v ∈ V} ∈ TUN of a nonempty and finite set of transfe-
rable utility games V ⊆ TUN is given by max{v | v ∈ V}(S) = max{v(S) | v ∈ V} for
all S ∈ 2N . The minimum game is defined similarly. Note that both the maximum
game and the minimum game of a nonempty set of simple games are simple.

The unanimity game uR ∈ SIN on R ∈ 2N \ {∅} is given by

uR(S) =

1 if R ⊆ S;
0 if R 6⊆ S

for all S ∈ 2N . We have v ∈ SIN and M(v) = B if and only if B ⊆ 2N \ {∅} is
independent and v = max{uR | R ∈ B}.

A TU-game v ∈ TUN can be uniquely decomposed into unanimity games,

v =
∑

S∈2N\{∅}
∆v(S)uS, (9.2)

where ∆v : 2N \{∅} → R assigns to each nonempty coalition S ∈ 2N \{∅} its dividend
(cf. Harsanyi (1959))

∆v(S) =
∑
R⊆S

(−1)|S|−|R|v(R). (9.3)

The Shapley value (cf. Shapley (1953)) Φ : TUN → RN assigns to any v ∈ TUN

the payoff allocation given by

Φi(v) =
∑

S∈2N :i∈S

1
|S|

∆v(S) (9.4)

for all i ∈ N .

Let L ⊆ {S ∈ 2N | |S| = 2} be a set of unordered pairs of players. The pair
(N,L) represents an undirected graph in which N is the set of nodes and L is the set
of links. We denote Li = {l ∈ L | i ∈ l} for all i ∈ N , L[S] = {l ∈ L | l ⊆ S} for all
S ∈ 2N , and N [T ] = ⋃

l∈T l for all T ∈ 2L.
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A pair (S, T ) is a subgraph of (N,L) if S ∈ 2N , T ∈ 2L, and N [T ] ⊆ S. The
collection of all subgraphs of (N,L) is denoted by GN,L. Let N [H] denote the set of
nodes and let L[H] denote the set of links of a subgraph H ∈ GN,L, respectively. The
subgraph of (N,L) induced by S ∈ 2N is (S, L[S]). The subgraph of (N,L) induced
by T ∈ 2L is (N [T ], T ).

A path in (S, T ) ∈ GN,L from i1 ∈ S to in ∈ S is a sequence (ik)nk=1 of n ≥ 2
distinct nodes in S such that {ik, ik+1} ∈ T for all k ∈ {1, . . . , n − 1}. A subgraph
H ∈ GN,L connects R ∈ 2N \ {∅} if for any i, j ∈ R, i 6= j, there exists a path in H

from i to j. A coalition C ∈ 2N \ {∅} is a component in H ∈ GN,L if H connects C
and H does not connect any R ∈ 2N \ {∅} for which C ⊂ R. The collection of all
components in H ∈ GN,L is denoted by K(H). A subgraph (S, T ) ∈ GN,L is connected
if it connects S. A connected subgraph (S, T ) ∈ GN,L is cycle-free if for any i, j ∈ S,
i 6= j, there exists a unique path in (S, T ) from i to j.

A subgraph (S, L[S]) ∈ GN,L is a minimal R-connecting node-induced subgraph if it
connects R ∈ 2N \ {∅} and any (S ′, L[S ′]) for which S ′ ⊂ S does not connect R. The
collection of coalitions of nodes that induce a minimal R-connecting node-induced
subgraph of (N,L) is denoted by NR

L ⊆ 2N \ {∅}. A subgraph (N [T ], T ) ∈ GN,L is
a minimal R-connecting link-induced subgraph if it connects R ∈ 2N \ {∅} and any
(N [T ′], T ′) for which T ′ ⊂ T does not connect R. The collection of coalitions of links
that induce a minimal R-connecting link-induced subgraph of (N,L) is denoted by
LRN ⊆ 2L \ {∅}.

Example 9.1
Let N = {1, 2, 3, 4}, let L =

{
{1, 2}, {1, 3}, {2, 4}, {3, 4}

}
, and consider the graph

(N,L). This is illustrated as follows.

1 2

3 4

Then

N {1,2,3}L =
{
{1, 2, 3}

}
and L{1,2,3}N =

{{
{1, 2}, {1, 3}

}
,
{
{1, 2}, {2, 4}, {3, 4}

}
,
{
{1, 3}, {2, 4}, {3, 4}

}}
.

4
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A communication situation (cf. Myerson (1977)) is a triple (N, v, L) in which v ∈
TUN is a transferable utility game such that v({i}) = 0 for all i ∈ N , and (N,L) is a
connected undirected graph representing the communication possibilities between the
players. Let CSN,L denote the class of communication situations with communication
network (N,L). For convenience, a communication situation on (N,L) is denoted by
v ∈ CSN,L. A solution for communication situations f : CSN,L → RN assigns to
any communication situation v ∈ CSN,L a payoff allocation f(v) ∈ RN for which∑
i∈N fi(v) = v(N).

The node game wvL ∈ TUN corresponding to v ∈ CSN,L (cf. Myerson (1977)) is
given by

wvL(S) =
∑

C∈K(S,L[S])
v(C)

for all S ∈ 2N . The Myerson value µ : CSN,L → RN assigns to any v ∈ CSN,L the
payoff allocation given by

µ(v) = Φ(wvL).

The link game wvN ∈ TUL corresponding to v ∈ CSN,L (cf. Borm, Owen, and Tijs
(1992)) is given by

wvN(T ) =
∑

C∈K(N [T ],T )
v(C)

for all T ∈ 2L. The position value π : CSN,L → RN assigns to any v ∈ CSN,L the
payoff allocation given by

πi(v) = 1
2
∑
l∈Li

Φl(wvN)

for all i ∈ N .

Example 9.2
Let N = {1, 2, 3}, let L =

{
{1, 2}, {2, 3}

}
, and consider the graph (N,L). This is

illustrated as follows.

1 2 3

Consider the communication situation u{1,3} ∈ CSN,L. Then

w
u{1,3}
L = uN and w

u{1,3}
N = uL.

Hence,
µ(u{1,3}) =

(1
3 ,

1
3 ,

1
3

)
and π(u{1,3}) =

(1
4 ,

1
2 ,

1
4

)
.

4
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9.3 Network communication games
In this section, we introduce network communication games and study their decompo-
sition into unanimity games. The corresponding network control structure explicitly
models the control of the nodes and links in the underlying communication network.

Definition (Network Control Structure)
A network control structure is a triple (N,L,G) in which (N,L) is an undirected
graph and G : 2N∪L → GN,L assigns to each coalition of nodes and links a subgraph
of (N,L) such that G(∅) = (∅, ∅), G(N ∪L) = (N,L), and N [G(Z)] ⊆ N [G(Z ′)] and
L[G(Z)] ⊆ L[G(Z ′)] for all Z,Z ′ ∈ 2N∪L for which Z ⊆ Z ′.

Let NCSN,L denote the class of network control structures on (N,L). For conve-
nience, a network control structure on (N,L) is denoted by G ∈ NCSN,L.

Example 9.3
Let N = {1, 2, 3}, let L =

{
{1, 2}, {2, 3}

}
, and consider the network control structure

G ∈ NCSN,L given by G(Z) =
(
(Z∩N)∪N [Z∩L], (Z∩L)∪L[Z∩N ]

)
for all Z ∈ 2N∪L.

This means that each node is controlled by itself and its incident links. Moreover,
each link is controlled by itself and its two endpoints together. This is presented in
the following table.

Z G(Z)
∅ (∅, ∅)
{1} ({1}, ∅)
{2} ({2}, ∅)
{3} ({3}, ∅)

{1, 2},
{
{1, 2}

}
,
{

1, {1, 2}
}
,
{

2, {1, 2}
}
,
{

1, 2, {1, 2}
}

({1, 2},
{
{1, 2}

}
)

{1, 3} ({1, 3}, ∅)
{2, 3},

{
{2, 3}

}
,
{

2, {2, 3}
}
,
{

3, {2, 3}
}
,
{

2, 3, {2, 3}
}

({2, 3},
{
{2, 3}

}
){

1, {2, 3}
}
,
{

1, 3, {2, 3}
}

({1, 2, 3},
{
{2, 3}

}
){

3, {1, 2}
}
,
{

1, 3, {1, 2}
}

({1, 2, 3},
{
{1, 2}

}
){

{1, 2}, {2, 3}
}
, {1, 2, 3},

{
1, 2, {2, 3}

}
,
{

2, 3, {1, 2}
}

({1, 2, 3},
{
{1, 2}, {2, 3}

}
){

1, {1, 2}, {2, 3}
}
,
{

2, {1, 2}, {2, 3}
}
,
{

3, {1, 2}, {2, 3}
}

({1, 2, 3},
{
{1, 2}, {2, 3}

}
){

1, 2, {1, 2}, {2, 3}
}
,
{

2, 3, {1, 2}, {2, 3}
}

({1, 2, 3},
{
{1, 2}, {2, 3}

}
){

1, 3, {1, 2}, {2, 3}
}

({1, 2, 3},
{
{1, 2}, {2, 3}

}
){

1, 2, 3, {1, 2}
}
,
{

1, 2, 3, {2, 3}
}
,
{

1, 2, 3, {1, 2}, {2, 3}
}

({1, 2, 3},
{
{1, 2}, {2, 3}

}
)

4
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A network communication game integrates the features of a network control struc-
ture G ∈ NCSN,L and a communication situation v ∈ CSN,L into a transferable utility
game on N ∪L in which the worth of a coalition of nodes and links equals the sum of
the worths of the components in the subgraph which the members control together.

Definition (Network Communication Game)
LetG ∈ NCSN,L be a network control structure and let v ∈ CSN,L be a communication
situation. In the corresponding network communication game wvG ∈ TUN∪L, the
worth of each coalition of nodes and links Z ∈ 2N∪L is given by

wvG(Z) =
∑

C∈K(G(Z))
v(C). (9.5)

For any network control structure, the network control value of a communication
situation assigns to each player the payoff allocated by the Shapley value of the
corresponding network communication game to the corresponding node and half of
the payoff allocated to the incident links.

Definition (Network Control Value)
Let G ∈ NCSN,L be a network control structure. The corresponding network control
value φG : CSN,L → RN is the solution which assigns to any communication situation
v ∈ CSN,L the payoff allocation given by

φGi (v) = Φi(wvG) + 1
2
∑
l∈Li

Φl(wvG) (9.6)

for all i ∈ N .

We focus on the decomposition of network communication games into unani-
mity games. For any network control structure, a communication situation with an
underlying unanimity game induces a simple network communication game. The cor-
responding collection of minimal winning coalitions is given by MR

G ⊆ 2N∪L \ {∅},
the collection of coalitions of nodes and links Z ∈ 2N∪L for which G(Z) connects
R ∈ 2N\{∅} and any G(Z ′) for which Z ′ ⊂ Z does not connect R for any G ∈ NCSN,L.

Lemma 9.3.1
Let G ∈ NCSN,L and let R ∈ 2N \ {∅}. Then wuRG ∈ SIN∪L and M(wuRG ) =MR

G.

Proof. Since for any coalition of nodes and links Z ∈ 2N∪L there is at most one
component C ∈ K(G(Z)) for which R ⊆ C,

wuRG (Z) (9.5)=
∑

C∈K(G(Z))
uR(C) = |{C ∈ K(G(Z)) | R ⊆ C}|

=

1 if ∃C∈K(G(Z)) : R ⊆ C;
0 if ∀C∈K(G(Z)) : R * C

=

1 if G(Z) connects R;
0 if G(Z) does not connect R

for all Z ∈ 2N∪L.
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Since (N,L) is connected, G(N ∪ L) = (N,L) connects R, so wuRG (N ∪ L) = 1.
If G(Z) connects R for some Z ∈ 2N∪L, then G(Z ′) connects R for all Z ′ ∈ 2N∪L

for which Z ⊆ Z ′, so wuRG (Z) ≤ wuRG (Z ′) for all Z,Z ′ ∈ 2N∪L for which Z ⊆ Z ′.
This means that wuRG (Z) ∈ {0, 1} for all Z ∈ 2N∪L, wuRG (N ∪ L) = 1, and wuRG (Z) ≤
wuRG (Z ′) for all Z,Z ′ ∈ 2N∪L for which Z ⊆ Z ′. Hence, wuRG ∈ SIN∪L. Moreover,
M(wuRG ) =MR

G is a direct consequence of (9.1).

The following lemma presents the decomposition of simple games into unanimity
games.

Lemma 9.3.2
Let v ∈ SIN . Then

v =
∑

B⊆M(v):B6=∅
(−1)|B|+1u⋃

R∈B R
. (9.7)

Moreover,
∆v(S) =

∑
B⊆M(v):

⋃
R∈B R=S

(−1)|B|+1 (9.8)

for all S ∈ 2N \ {∅}.

Proof. Since (9.8) is a direct consequence of (9.7), it suffices to show (9.7). We first
show that

min{v′, uR′} =
∑

R∈2N\{∅}
∆v′(R)uR∪R′ (9.9)

for all v′ ∈ SIN and for any R′ ∈ 2N \ {∅}. Let v′ ∈ SIN and let S ∈ 2N . Let
R′ ∈ 2N \ {∅} and suppose that R′ 6⊆ S. Then uR′(S) = 0 and R ∪ R′ 6⊆ S for any
R ∈ 2N \ {∅}, which means that uR∪R′(S) = 0 for any R ∈ 2N \ {∅}. This implies
that,

min{v′, uR′}(S) = min{v′(S), uR′(S)} = min{v′(S), 0}
= 0 =

∑
R∈2N\{∅}

∆v′(R)uR∪R′(S).

Next, suppose that R′ ⊆ S. Then uR′(S) = 1, and R ∪ R′ ⊆ S if and only if R ⊆ S

for any R ∈ 2N \ {∅}, which means that uR∪R′(S) = uR(S) for any R ∈ 2N \ {∅}.
This implies that

min{v′, uR′}(S) = min{v′(S), uR′(S)} = min{v′(S), 1} = v′(S)
(9.2)=

∑
R∈2N\{∅}

∆v′(R)uR(S) =
∑

R∈2N\{∅}
∆v′(R)uR∪R′(S).

Hence, (9.9) holds.
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Next, we prove (9.7) by induction on |M(v)|. Suppose that |M(v)| = 1 and
denote M(v) = {R1}. Then

v = max{uR | R ∈M(v)} = max{uR1} = uR1 =
∑

B⊆M(v):B6=∅
(−1)|B|+1u⋃

R∈B R
.

Let k ∈ N and assume that v′ = ∑
B⊆M(v′):B6=∅(−1)|B|+1u⋃

R∈B R
for any simple game

v′ ∈ SIN for which |M(v′)| = k. Suppose that |M(v)| = k + 1. Denote M(v) =
{R1, . . . , Rk+1}. Then

v = max{uR | R ∈M(v)}
= max{uR1 , . . . , uRk+1}
= max{max{uR1 , . . . , uRk}, uRk+1}
= max{uR1 , . . . , uRk}+ uRk+1 −min{max{uR1 , . . . , uRk}, uRk+1}
=

∑
B⊆{R1,...,Rk}:B6=∅

(−1)|B|+1u⋃
R∈B R

+ uRk+1 −
∑

B⊆{R1,...,Rk}:B6=∅
(−1)|B|+1u⋃

R∈B R∪Rk+1

=
∑

B⊆{R1,...,Rk+1}:B6=∅
(−1)|B|+1u⋃

R∈B R

=
∑

B⊆M(v):B6=∅
(−1)|B|+1u⋃

R∈B R
,

where the fifth equality follows from (9.9).

Example 9.4
Let N = {1, 2, 3}, let L =

{
{1, 2}, {2, 3}

}
, and consider the network control structure

G ∈ NCSN,L given by G(Z) =
(
(Z∩N)∪N [Z∩L], (Z∩L)∪L[Z∩N ]

)
for all Z ∈ 2N∪L

as in Example 9.3. Then

M{1,3}
G =

{{
1, 2, 3

}
,
{

1, 2, {2, 3}
}
,
{

2, 3, {1, 2}
}
,
{
{1, 2}, {2, 3}

}}
.

Note that (N,L) is cycle-free and M{1,3}
G contains multiple elements. Consider the

communication situation u{1,3} ∈ CSN,L as in Example 9.2. By Lemma 9.3.1 and
Lemma 9.3.2,

w
u{1,3}
G = u{1,2,3} + u{1,2,{2,3}} + u{2,3,{1,2}} + u{{1,2},{2,3}}

− u{1,2,3,{2,3}} − u{1,2,3,{1,2}} − u{1,2,3,{1,2},{2,3}}
− u{1,2,3,{1,2},{2,3}} − u{1,2,{1,2},{2,3}} − u{2,3,{1,2},{2,3}}
+ u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}}

− u{1,2,3,{1,2},{2,3}}
= u{1,2,3} + u{1,2,{2,3}} + u{2,3,{1,2}} + u{{1,2},{2,3}} − u{1,2,3,{1,2}} − u{1,2,3,{2,3}}
− u{1,2,{1,2},{2,3}} − u{2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}}.
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The corresponding network control value is given by

φG(u{1,3}) =
( 31

120 ,
58
120 ,

31
120

)
.

4

For any network control structure, the dividends in a general network communi-
cation game can be derived from the dividends in the underlying transferable utility
game and the dividends in network communication games with an underlying unani-
mity game.

Lemma 9.3.3
Let G ∈ NCSN,L, let v ∈ CSN,L, and let Z ∈ 2N∪L \ {∅}. Then

∆wvG(Z) =
∑

R∈2N\{∅}
∆v(R)∆w

uR
G (Z). (9.10)

Proof. We have

∆wvG(Z) (9.3)=
∑
Z′⊆Z

(−1)|Z|−|Z′|wvG(Z ′)

(9.5)=
∑
Z′⊆Z

(−1)|Z|−|Z′|
∑

C∈K(G(Z′))
v(C)

(9.2)=
∑
Z′⊆Z

(−1)|Z|−|Z′|
∑

C∈K(G(Z′))

 ∑
R∈2N\{∅}

∆v(R)uR(C)


=
∑

R∈2N\{∅}
∆v(R)

∑
Z′⊆Z

(−1)|Z|−|Z′|
∑

C∈K(G(Z′))
uR(C)

(9.5)=
∑

R∈2N\{∅}
∆v(R)

∑
Z′⊆Z

(−1)|Z|−|Z′|wuRG (Z ′)

(9.3)=
∑

R∈2N\{∅}
∆v(R)∆w

uR
G (Z).

Using Lemma 9.3.3, we can extend the decomposition results for network com-
munication games with an underlying unanimity game to general network commu-
nication games for any network control structure. Moreover, we derive an explicit
expression for any network control value in terms of the dividends in the underlying
transferable utility game.
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Theorem 9.3.4
Let G ∈ NCSN,L be a network control structure and let v ∈ CSN,L be a communication
situation. Then

wvG =
∑

R∈2N\{∅}
∆v(R)

∑
B⊆MR

G:B6=∅
(−1)|B|+1u⋃

Z∈B Z
.

Proof. By Lemma 9.3.1, Lemma 9.3.2, and Lemma 9.3.3,

wvG
(9.2)=

∑
Z∈2N∪L\{∅}

∆wvG(Z)uZ

(9.10)=
∑

Z∈2N∪L\{∅}

 ∑
R∈2N\{∅}

∆v(R)∆w
uR
G (Z)uZ


=

∑
R∈2N\{∅}

∆v(R)
∑

Z∈2N∪L\{∅}
∆w

uR
G (Z)uZ

(9.2)=
∑

R∈2N\{∅}
∆v(R)wuRG

(9.7)=
∑

R∈2N\{∅}
∆v(R)

∑
B⊆MR

G:B6=∅
(−1)|B|+1u⋃

Z∈B Z
.

Theorem 9.3.5
Let G ∈ NCSN,L be a network control structure, let v ∈ CSN,L be a communication
situation, and let i ∈ N be a player. Then

φGi (v) =
∑

Z∈2N∪L

|Z ∩ {i}|+ 1
2 |Z ∩ Li|

|Z|
∑

R∈2N\{∅}
∆v(R)

∑
B⊆MR

G:
⋃
Z′∈B Z

′=Z
(−1)|B|+1.

Proof. By Lemma 9.3.1, Lemma 9.3.2, and Lemma 9.3.3,

φGi (v) (9.6)= Φi(wvG) + 1
2
∑
l∈Li

Φl(wvG)

(9.4)=
∑

Z∈2N∪L:i∈Z

1
|Z|

∆wvG(Z) + 1
2
∑
l∈Li

∑
Z∈2N∪L:l∈Z

1
|Z|

∆wvG(Z)

=
∑

Z∈2N∪L

|Z ∩ {i}|+ 1
2 |Z ∩ Li|

|Z|
∆wvG(Z)

(9.10)=
∑

Z∈2N∪L

|Z ∩ {i}|+ 1
2 |Z ∩ Li|

|Z|
∑

R∈2N\{∅}
∆v(R)∆w

uR
G (Z)

(9.8)=
∑

Z∈2N∪L

|Z ∩ {i}|+ 1
2 |Z ∩ Li|

|Z|
∑

R∈2N\{∅}
∆v(R)

∑
B⊆MR

G:
⋃
Z′∈B Z

′=Z
(−1)|B|+1.
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9.4 Network control values
In this section, we discuss the Myerson value, the position value, and the decompo-
sition of their corresponding node games and link games. Moreover, we focus on the
special case that the underlying communication network is cycle-free.

From the viewpoint of Myerson (1977), the nodes of the graph control the network
in such a way that each node controls itself and each link is controlled by its two end-
points together. In other words, each coalition of nodes controls its induced subgraph.
This can be described by the network control structure G ∈ NCSN,L given by
G(Z) = (Z ∩N,L[Z ∩N ]) for all Z ∈ 2N∪L. ThenMR

G =M(wuRG ) =M(wuRL ) = NR
L

for any R ∈ 2N \{∅} and the corresponding network control value for communication
situations coincides with the Myerson value.

From the viewpoint of Borm, Owen, and Tijs (1992), the links of the graph
control the network in such a way that each link controls itself and both its end-
points. In other words, each coalition of links controls its induced subgraph. This
can be described by the network control structure G ∈ NCSN,L given by G(Z) =
(N [Z ∩ L], Z ∩ L) for all Z ∈ 2N∪L. Then MR

G = M(wuRG ) = M(wuRN ) = LRN for
any R ∈ 2N \ {∅} and the corresponding network control value for communication
situations coincides with the position value.

Using Theorem 9.3.4, we find the decomposition into unanimity games of node
games and link games in terms of the dividends in the transferable utility game
underlying the corresponding communication situation.

Theorem 9.4.1
Let v ∈ CSN,L be a communication situation. Then

wvL =
∑

R∈2N\{∅}
∆v(R)

∑
B⊆NRL :B6=∅

(−1)|B|+1u⋃
S∈B S

and wvN =
∑

R∈2N\{∅}
∆v(R)

∑
B⊆LRN :B6=∅

(−1)|B|+1u⋃
T∈B T

.

Using Theorem 9.3.5, we obtain alternative expressions for the Myerson value and
the position value in terms of the dividends in the transferable utility game underlying
the corresponding communication situation.
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Theorem 9.4.2
Let v ∈ CSN,L be a communication situation and let i ∈ N be a player. Then

µi(v) =
∑

S∈2N :i∈S

1
|S|

∑
R∈2N\{∅}

∆v(R)
∑

B⊆NRL :
⋃
S′∈B S

′=S
(−1)|B|+1

and πi(v) =
∑
T∈2L

|T ∩ Li|
2|T |

∑
R∈2N\{∅}

∆v(R)
∑

B⊆LRN :
⋃
T ′∈B T

′=T
(−1)|B|+1.

If the underlying communication network is cycle-free, then it contains for any
R ∈ 2N for which |R| ≥ 2, a unique minimal R-connecting node-induced subgraph
and a unique minimal R-connecting link-induced subgraph, which both coincide. This
means that any node game or link game for which a unanimity game underlies the
corresponding communication situation is a unanimity game as well.

If (N,L) is cycle-free, for any R ∈ 2N for which |R| ≥ 2, let SRL ∈ 2N \ {∅} denote
the unique coalition of nodes for which SRL ∈ NR

L . Then NR
L = {SRL } and LRN =

{L[SRL ]}. Moreover, wuRL = uSRL and wuRN = uL[SRL ]. Combining these observations
with Lemma 9.3.3, we obtain the following relations.

Corollary 9.4.3
Let v ∈ CSN,L be a communication situation. If (N,L) is cycle-free, then

∆wvL(S) = 1
∑

R∈2N\{∅}:SRL=S
∆v(R) for all S ∈ 2N \ {∅}

and ∆wvN (T ) =
∑

R∈2N\{∅}:L[SRL ]=T
∆v(R) for all T ∈ 2L \ {∅}.

Corollary 9.4.3 offers results which were also found by Owen (1986) and Borm,
Owen, and Tijs (1992). The following results are derived from Theorem 9.4.1 and
Theorem 9.4.2, respectively.

Corollary 9.4.4
Let v ∈ CSN,L be a communication situation. If (N,L) is cycle-free, then

wvL = 1
∑

R∈2N\{∅}
∆v(R)uSRL

and wvN =
∑

R∈2N\{∅}
∆v(R)uL[SRL ].

1This relation even holds if (N,L) is cycle-complete, i.e. if each cycle in (N,L) induces a complete
subgraph.
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Corollary 9.4.5
Let v ∈ CSN,L be a communication situation and let i ∈ N be a player. If (N,L) is
cycle-free, then

µi(v) = 1
∑

R∈2N\{∅}:i∈SRL

1
|SRL |

∆v(R)

and πi(v) =
∑

R∈2N\{∅}

|L[SRL ] ∩ Li|
2|L[SRL ]| ∆v(R).

(9.11)

Example 9.5
Let N = {1, 2, 3, 4}, let L =

{
{1, 2}, {2, 3}, {2, 4}

}
, and consider the cycle-free graph

(N,L). This is illustrated as follows.

1 2 3

4

Consider the communication situation v ∈ CSN,L given by

v = 2u{1,2} + 3u{1,3} − 3u{1,2,3} + 5u{1,3,4} + 7u{1,2,3,4}.

By Corollary 9.4.4,

wvL = 2u{1,2} + 3u{1,2,3} − 3u{1,2,3} + 5u{1,2,3,4} + 7u{1,2,3,4}
= 2u{1,2} + 12u{1,2,3,4}

and
wvN = 2u{{1,2}} + 3u{{1,2},{2,3}} − 3u{{1,2},{2,3}} + 5u{{1,2},{2,3},{2,4}} + 7u{{1,2},{2,3},{2,4}}

= 2u{{1,2}} + 12u{{1,2},{2,3},{2,4}}.

By Corollary 9.4.5,

µ(v) = (1 + 3, 1 + 3, 3, 3) = (4, 4, 3, 3)
and π(v) = (1 + 2, 1 + 6, 2, 2) = (3, 7, 2, 2).

4

The uniqueness relation in cycle-free communication networks not only holds for
the Myerson value and the position value, but also for other network control values
with a specific type of network control structure. In particular, for the network
control structure G̃ ∈ NCSN,L given by G̃(Z) =

(
Z ∩ N [Z ∩ L], Z ∩ L[Z ∩ N ]

)
for

all Z ∈ 2N∪L, in which each node and each link only controls itself. Then MR
G̃

=
{N [T ] ∪ T | T ∈ LRN} for any R ∈ 2N for which |R| ≥ 2. If (N,L) is cycle-free,
MR

G̃
= {SRL ∪ L[SRL ]} and wuR

G̃
= uSRL∪L[SRL ] for any R ∈ 2N for which |R| ≥ 2.
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Example 9.6
Let N = {1, 2, 3}, let L =

{
{1, 2}, {2, 3}

}
, and consider the cycle-free graph (N,L)

as in Example 9.2. Then S
{1,3}
L = N ,

w
u{1,3}

G̃
= uN∪L, and φG̃(u{1,3}) =

( 3
10 ,

4
10 ,

3
10

)
.

Note that φG̃(u{1,3}) = 3
5µ(u{1,3}) + 2

5π(u{1,3}). 4

The value φG̃ was introduced by Borm, Van den Nouweland, and Tijs (1994). In
Example 9.6, we observe that the value φG̃ is a specific convex combination of the
Myerson value µ and the position value π. This holds for any communication situation
with an underlying unanimity game and a cycle-free communication network.

Theorem 9.4.6
Let R ∈ 2N be such that |R| ≥ 2. If (N,L) is cycle-free, then

φG̃(uR) = |SRL |
2|SRL | − 1µ(uR) + |SRL | − 1

2|SRL | − 1π(uR).

Proof. Assume that (N,L) is cycle-free and let i ∈ N . If i /∈ SRL , then l /∈ L[SRL ] for
all l ∈ Li, so φG̃i (uR) = µi(uR) = πi(uR) = 0 and the statement follows. Suppose that
i ∈ SRL . By Corollary 9.4.5 and |L[SRL ]| = |SRL | − 1,

φG̃i (uR) = Φi(wuR
G̃

) + 1
2
∑
l∈Li

Φe(wuR
G̃

)

(9.4)=
∑

Z∈2N∪L:i∈Z

1
|Z|

∆w
uR

G̃ (Z) + 1
2
∑
l∈Li

∑
Z∈2N∪L:l∈Z

1
|Z|

∆w
uR

G̃ (Z)

= 1
|SRL ∪ L[SRL ]| + |L[SRL ] ∩ Li|

2|SRL ∪ L[SRL ]|

= 1
2|SRL | − 1 + |L[SRL ] ∩ Li|

4|SRL | − 2

= |SRL |
2|SRL | − 1

(
1
|SRL |

)
+ |SRL | − 1

2|SRL | − 1

(
|L[SRL ] ∩ Li|

2|L[SRL ]|

)
(9.11)= |SRL |

2|SRL | − 1µi(uR) + |SRL | − 1
2|SRL | − 1πi(uR).

The value φG̃ is not necessarily a convex combination of the values µ and π in
communication situations for which the underlying game is not a unanimity game or
the underlying communication network is not cycle-free.
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Example 9.7
Let N = {1, 2, 3, 4}, let L =

{
{1, 2}, {1, 3}, {2, 4}, {3, 4}

}
, and consider the graph

(N,L) as in Example 9.1. Then

w
u{1,2,3}
L = u{1,2,3},

w
u{1,2,3}
N = u{{1,2}{1,3}} + u{{1,2},{2,4},{3,4}} + u{{1,3},{2,4},{3,4}} − 2uL,

and w
u{1,2,3}

G̃
= u{1,2,3,{1,2}{1,3}} + uN∪{{1,2},{2,4},{3,4}} + uN∪{{1,3},{2,4},{3,4}} − 2uN∪L.

This means that

µ(u{1,2,3}) =
(1

3 ,
1
3 ,

1
3 , 0

)
,

π(u{1,2,3}) =
( 4

12 ,
3
12 ,

3
12 ,

2
12

)
,

and φG̃(u{1,2,3}) =
(23

70 ,
21
70 ,

21
70 ,

5
70

)
.

Note that φG̃(u{1,2,3}) is not a convex combination of µ(u{1,2,3}) and π(u{1,2,3}). 4

In general, a network control value is not necessarily a convex combination of the
Myerson value and the position value, even if the underlying game is a unanimity
game and the underlying communication network is cycle-free.

9.5 Future extensions
We conclude this chapter with two examples of possible extensions of the decompo-
sition theory to more general communication networks: undirected multigraphs and
hypergraphs. Hypergraph communication structures were introduced by Myerson
(1980) and further studied by Van den Nouweland, Borm, and Tijs (1992). For con-
venience, we restrict ourselves to an outline of the link game and the corresponding
position value in these examples.

Example 9.8
Let {1, 2, 3} be the set of nodes and let {a, b, c, d} be the set of links of the multigraph
illustrated as follows.

1 2 3a
b

c

d

Consider the communication structure with underlying game u{1,3}. The collection
of coalitions of links which induce a minimal {1, 3}-connecting link-induced subgraph
is given by

{
{b, c}, {b, d}

}
. The corresponding link game can be written as u{b,c} +

u{b,d}−u{b,c,d}. The position value of this communication structure is given by (2
6 ,

3
6 ,

1
6).
4
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Example 9.9
Let {1, 2, 3, 4} be the set of nodes and let

{
{1, 2}, {2, 3}, {2, 3, 4}

}
be the set of

(hyper)links of the hypergraph illustrated as follows.

1 2 3

4

Consider the communication structure with underlying game u{1,3}. The collection of
coalitions of links which induce a minimal {1, 3}-connecting link-induced subgraph is
given by

{{
{1, 2}, {2, 3}

}
,
{
{1, 2}, {2, 3, 4}

}}
. The corresponding link game can be

written as u{{1,2},{2,3}} + u{{1,2},{2,3,4}} − u{{1,2},{2,3},{2,3,4}}. The position value of this
communication structure is given by (12

36 ,
17
36 ,

5
36 ,

2
36). 4

Future research could formalize these or other extensions to more general com-
munication structures (cf. Bilbao (2000)). Moreover, one could aim to axiomatically
characterize the class of network control values or a specific network control value for
communication situations.
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