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1 I N T R O D U C T I O N

When computers interact with each other, as happens for instance in multi-
agent systems or via the Internet, they typically follow a strict protocol of
message exchanges. Naturally, if a message is somehow damaged during
transmission or is not otherwise according to the predetermined interaction
protocol, the receiving computer will most likely not be able to interpret
it. Moreover, messages received in perfect order will only be interpreted
literally, the receiving computer will not draw inferences about, let us say, the
underlying intentional state of the sending computer.

Human-human interaction is clearly very different in these respects. When
we interact with each other, we do not need to adhere to a strict, fully
specified protocol; when a message is ‘damaged’ (e.g., because an utterance is
ungrammatical, or produced in a very noisy setting), we often are still able to
interpret substantial parts of it; and we are very adapt at drawing inferences
based on the input (for example, about how the sender is feeling), even if the
sender did not explicitly signal this or even explicitly intended for it not to be
perceivable (for example, when lying).

Often, the signals from which such inferences are derived are not explicit
in the verbal part of our messages (i.e., in the words we use), but rather in
the non-verbal part. For example, during a conversation, we can see that
our conversational partners understand what we are saying, based on visual
feedback signals which we may perceive from their facial behavior (like a
nod, for example) and similarly we can indicate that we pay attention to what
they have to say, for instance by the occasional smile. In general, we display a
wide array of non-verbal behavioral cues, sometimes not even consciously
produced, that are somehow indicative of our social attitude, mental and
affective state, personality, or another personal characteristic. In the literature,
short-spanned temporal sequences of such non-verbal cues are also called
social signals (Vinciarelli, Pantic, and Bourlard, 2009; Vinciarelli et al. 2012).

That computers traditionally lack the ability to send or receive social
signals, is a problem when computers and humans start to interact. For many
human-computer interaction applications, ranging from health care robotics
to automatic tutoring systems, it would be beneficial if computers would
be able to understand or express social cues. In this way, computers could
become more empathic when interacting with patients or more adaptive
when interacting with pupils.

It is for these reasons that researchers in recent years have started exploring
the possibilities of automatically producing and interpreting social signals,
and as a result the new field of social signal processing (SSP) emerged,
which tries to channel efforts towards equipping computers with human-like
social sensing abilities; the work by Vinciarelli et al. (2009) provides a recent
survey. SSP is a multi-disciplinary field that primarily combines insights from
psychology, cognitive science, human physiology and computer science. It
is closely related to the field of affective computing (Picard, 1997), which
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2 introduction

studies the automatic processing and simulation of human affect, which is
also often signaled through behavioral cues, such as facial expressions or
tone of voice.

In this thesis we will contribute to SSP by systematically comparing the
performance of two different techniques, known as spatial and spatiotemporal
Gabor filters respectively, on a range of human social signals.

1.1 human social signals

Psychologists have long studied the different kinds of non-verbal cues that
humans produce during interactions (see e.g., Knapp, Hall, and Horgan,
2013, for a survey), with a focus on facial expressions, vocal cues, posture
and manual gestures. Typically, such non-verbal cues can be characterized
as temporal changes in physiological and muscular activity, which take
place during short stretches of time (ranging from milliseconds to minutes),
to distinguish them from behaviors such as politeness, or traits such as
personality, which typically have a much longer time-span.

Non-verbal cues form a “repertoire of non-verbal behaviors” (Ekman and
Friesen, 1969). In their work, Ekman and Friesen have identified five types of
non-verbal behavior. These include illustrators, which are non-verbal actions
that accompany speech, such as eyebrow movements or manual gestures;
regulators, which are signals that help structure an ongoing interaction, such
as eye gaze and head nods, manipulators, which are actions on objects in the
environment (like touching) or on the speaker themselves (like scratching),
and emblems, which are culturally-defined signals, like the waving-hand-next-
to-cheek gesture in the Netherlands (to signal tasty food).

The fifth, and for this thesis most important type of non-verbal behaviors
discussed by Ekman and Friesen are affect displays. These refer to the ex-
pression of emotion, which is primarily signaled through facial expressions
and tone of voice, but may also be discernible from gestures or specific cues
such as laughter or tears. People can deliberately transmit affective cues, for
instance when the sender wants to emphasize a certain feeling to the receiver,
but affective displays are also often produced in a non-conscious manner.

Much research has focused on the display of so-called basic emotions, that
is to say: the set of emotions shared across all cultures in the world, in the
sense that in every culture these emotions are produced and recognized.
Ekman and Friesen (1975) take the set of basic emotions to consist of the
following six emotions: joy, surprise, fear, sadness, anger, and disgust, but
other candidates have been proposed as well, including affective states like
contempt, wonder, and anxiety (Frijda, 1986; Gray, 1982; Izard, 1977; Ortony
and Turner, 1990). It is also worth emphasizing that for human-computer
interaction basic emotions are perhaps less relevant than “social emotions”
(Adolphs, 2002a), such as uncertainty or frustration, which arguably occur
more often in interactions than a basic emotion such as, say, disgust.

Adequately detecting and responding to these kinds of emotions can po-
tentially have a big influence on human-computer interaction. For example, if
computer systems can automatically detect that the user is getting frustrated
with the interaction, they can adapt their interaction style to try and ease this
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frustration. The same applies to “cognitive states” such as disagreement, am-
bivalence and inattention, which like “social emotions” may be signaled using
non-verbal cues, and whose (automatic) detection can potentially improve
human-computer interaction.

In general, the repertoire of non-verbal behaviors is large: many different
kinds of cues can occur, ranging from physical appearance and posture to
facial expressions or vocal cues. Moreover, they often occur in tandem with
verbal cues, yielding one, multi-modal signal. It has been estimated that as
much as 90% of non-verbal behaviors are associated with speech (McNeill,
1996). In addition, even though the non-verbal cues are often produced and
picked up in an unconscious manner, they can have a substantial influence
on how we interpret someone’s words. For example, when someone utters
“God I feel great” with a smile, this is perceived rather different from when
(s)he utters the same sentence with a sad face (Wilting, Krahmer, and Swerts,
2006).

It is interesting to observe that affective states influence a person’s non-
verbal behavior (Coulson, 2004a; Gross, Crane, and Fredrickson, 2007; Pollick,
Paterson, Bruderlin, and Sanford, 2001; Van den Stock, Righart, and De
Gelder, 2007), and hence that by picking up these non-verbal cues, a system
can try to determine the affective state of the user. It is generally assumed
that these cues are “honest”, and hence a reliable and important target for
social signal processing. For example, when a child, interacting with an
automatic tutoring system appears to be bored (based on non-verbal cues
such as yawning and looking away), the system could adapt its strategy by
making learning material more challenging.

Facial Expression Analysis

Of all the different non-verbal behaviors, facial expressions have perhaps
received most scholarly attention. The human face can express a wide range
of signals, that are crucial for interpersonal interaction. Perhaps this is be-
cause the visual outlet of the speech system (the mouth) is located in the face
(and recall that most non-verbal cues are related to speech), but additionally
the face also plays a crucial role in, for example, structuring interactions
(by regulating turn taking via gaze and nodding behavior) and for high-
lighting important information (via eyebrow movements). Additionally, the
face provides relatively stable information about someone’s gender, age and
personality, and more dynamic information about someones emotional state.
As a result, much work in SSP has concentrated on facial analyses.

Vinciarelli et al. (2009) note a distinction between so-called message and
sign judgments. A message judgment is made when trying to determine
what triggers a certain facial expression, while a sign judgment aims to
describe actual facial movement or appearance change. As a message, a
raised eyebrow, for example, can be interpreted as (part of) a surprise display,
but as a sign it is merely described as a raise followed by a lowering of the
eyebrows. Put differently, sign, as opposed to message, judgments aim to
present an objective description of actual facial movements, without further
interpretation.
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One of the best-known systems for sign judgments in facial expressions is
the facial action coding scheme (FACS) (Ekman, Friesen, and Hager, 1978).
FACS describes expressions in terms of underlying muscle movements, de-
constructing them in terms of basic Action Units (AUs). Typically, researchers
manually code facial expressions in terms of their AUs, without interpret-
ing the facial expression as such (i.e., without making message judgments).
Different facial expressions are described as consisting of different AUs. In
this way, for example, a distinction can be made between “insincere”, social
smiles (only involving AUs around the mouth) and “sincere’, Duchenne
smiles, also involving AUs around the eyes (Ekman, Davidson, and Friesen,
1990). Dynamics of expressions are coded by marking the onset, apex and
offset of AUs. In recent years, various researchers have tried to develop auto-
matic FACS coding systems (Cohn, 2010; Cootes, Edwards, and Taylor, 2001;
De la Torre et al. 2015; Littlewort et al. 2011b).

It is worth noting, that other sign judgments systems of facial expres-
sions exist as well. For example, the widely-used Active Appearance Models
(AAMs) (Cootes et al. 2001; Matthews and Baker, 2004), essentially a generic
method to model appearances of non-rigid objects in images, can also be
used to track the location and movement of facial landmarks over time.

When developing SSP techniques for facial expressions (based on FACS,
AAMs, or another technique), researchers typically rely on a number of
standard steps, as we will also do in this thesis. First of all, obviously, record-
ings of people are required. These can be collected under semi-controlled,
experimental settings, but researchers can also rely on existing, spontaneous
fragments that may have been recorded for different purposes. Next, the
persons (and their faces) need to be located in the fragments. For this, various
techniques have been developed, including the Viola-Jones method (Viola
and Jones, 2001). Finally, the social signals of interest in the face need to be
detected. In other words, first the faces are found in the scene, after which
the facial features and their movements are found in the faces (e.g., is there
movement of the mouth or the eyes?). Finally, there may be a subsequent
classification of the detected facial behavior (e.g., is this person talking?, or
sincerely smiling?, to give two examples).

Vinciarelli et al. (2009) note that many approaches to facial expression
recognition work on static, 2D facial feature extraction, see for example
the works of Pantic and Bartlett (2007) and Tian, Kanade, and Cohn (2005).
However, these approaches are limited in at least two respects. First of all, as
noted above, social signals may also be detectable from gestures and body
postures. Indeed, various researchers have started exploring this (Coulson,
2004a; Gross et al. 2007; Pollick et al. 2001; Van den Stock et al. 2007). A
main challenge here is automatically detecting the relevant body parts and
selecting good visual features that represent the body parts. Second, and
especially relevant for the current thesis, human social signals, both facial
expressions as well as gestures and other bodily cues, are not static, but
change over time. Dynamic social signals influence both the sign and the
message.

In this thesis, we will investigate whether automatic SSP techniques can
benefit from explicitly taking dynamic information into account. We will
study this in the context of a well-established technique that has been used
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in SSP and in many other visual tasks, i.e., Gabor filters. In the next section,
we will start with an informal introduction of Gabor filters as a method to
study visual perception, followed by a formal description in terms of Gabor
equations.

1.2 visual perception

As we have discussed above, when we communicate with someone, we per-
ceive their non-verbal social signals, such as gestures and facial expressions,
though vision. So, how does human vision work in the context of non-verbal
communication? The established view is that human vision relies on the in-
terplay of bottom-up and top-down processing (Bar et al. 2006; Itti and Koch,
2001, e.g.,). Bottom-up processing refers to the processing of incoming visual
information. For instance, when we look at our communication partner (and
the surrounding visual scene) rays of light that are reflected on the persons
and objects in the scene enter our eyes and are projected through the lenses
onto the retinal receptors. Subsequently, the visual information is encoded
in neural activity and propagated (via intermediate stations) towards the
back of the brain where the left and right visual cortices are located. In the
visual cortex, the information is processed in a feed-forward way through
multiple cortical stages up to the level where object and scene representations
reside. The problem of visual recognition is under-constrained and can not be
solved by bottom-up information only (Palmer, 1999). The brain deals with
this problem by combining bottom-up processing with top-down processing.
Top-down processing refers to prior knowledge and the generation of ex-
pectations which are generally assumed to work in the direction opposite to
feed-forward processing. Activation of object or scene representations, gives
rise to top-down processing that activates cortical stages downstream.

Visual illusions provide apt illustrations of the complex interplay between
bottom-up and top-down processing. Visual illusions may arise when our
top-down knowledge is biased with respect to the visual information. For
example, our brain “expects” to see convex faces (this is how we normally
see faces), rather than concave ones (which we rarely observe). When we are
presented with a two-dimensional image of a hollow face (Gregory, 1970),
i.e., a concave mask, we still perceive the face as normal (i.e., convex), as
illustrated in Figure 1. The limited experiences with concave faces gives rise
to a situation where top-down processing (the expectation of a convex face)
supersedes the bottom-up information (a concave face).

Another illustration is the puzzle face illusion shown in Figure 2. The
picture contains little bottom-up information (i.e., object contours are deliber-
ately obscured). Therefore, the perceiver has to rely on top-down processing
by generating hypotheses about the depicted object. Initially, these hypothe-
ses may be guided by bottom-up cues. For example, the black and white
regions may suggest that the depicted object is a spotted cow. After prolonged
viewing, the correct hypothesis is generated (a bearded man) and matched
successfully with the contents of the image.

1 Stills taken from https://www.youtube.com/watch?v=G_Qwp2GdB1Mt

https://www.youtube.com/watch?v=G_Qwp2GdB1Mt
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Figure 1: The Hollow Face Illusion1(Gregory, 1970) as an illustration of how top-
down processing supersedes bottom-up information. The left picture
shows the front-side of a mask, that we correctly interpret as a face. The
right picture shows the back-side of the same mask, that we incorrectly
perceive as a convex face, rather than a concave face.

Figure 2: Puzzle face illusion reproduced from Porter (1954). Typically, prolonged
viewing is required to recognize the image.
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Although in the case of illusions we are fooled into perceiving something
different from reality, in most other cases the top-down processing of the
visual information helps us to efficiently understand and respond to the world.
Helmholtz referred to top-down processing as “unconscious inferences” (Von
Helmholtz, 1924).

The challenge when developing a computer vision system for social sig-
nal processing is essentially to simulate the various information processing
components in the human visual system. According to Marr (1982) the visual
system consists of three stages: (i) the primal sketch (e.g., detection of colors,
edges and contours), (ii) the 2 1

2 D sketch (e.g., local surface orientation and
discontinuities), and (iii) 3D models (e.g., object representations that are
isomorphic to their real-world counterparts). In more recent computational
approaches to vision (Li and Allinson, 2008; Szeliski, 2010), the first stage
consists of a global filtering operation, using for example a Gabor filter (Fis-
cher, Šroubek, Perrinet, Redondo, and Cristóbal, 2007) or SIFT descriptor
(Lowe, 1999), followed by a second stage consisting of the aggregation of
(selected) filter responses. The third stage consists of classification by means
of a machine learning algorithm.

In this thesis, we investigate to what extent dynamic information con-
tributes to the performance on social signal processing tasks. In doing so, we
adopt the three-stage computational approach sketched above. Social signals
have static and dynamic components. For instance, a static smile can be rec-
ognized as a joyful expression, whereas the smiling dynamics could facilitate
its social interpretation. Throughout the thesis we will study the contribution
of static and dynamic information to social signal processing. To this end
we will use static and dynamic filters known as spatial and spatiotemporal
Gabor filters, respectively. These filters decompose visual images and video
sequences into building blocks of visual shapes and movements. There exist
many introductions to the theory and application of Gabor filters (Derpanis,
2007; Grigorescu, Petkov, and Kruizinga, 2002; Jain and Farrokhnia, 1991;
MacLennan, 1991; Movellan, 2005), below we summarize the most important
points by relying partly on MacLennan (1991).

1.3 a brief introduction to gabor filters

Gabor filters originate from the work of Dennis Gabor on communication
theory, an area of research that combines elements from information theory
(e.g., signal processing) and mathematics in order to formalize human com-
munication (Gabor, 1946). Before the development of Gabor filters, Fourier
analysis was the method of choice for signal processing and in particular
for signal analysis. Fourier analysis decomposes a signal into its constituent
oscillatory parts. For instance, an auditory signal, such as speech, can be
represented as a time-varying variable representing changes in air pressure.
This representation allows for the exact temporal localization of the auditory
information, i.e., the air pressure at a given time. However, the essence of
auditory signals is in its constituent frequencies. The air pressure at a spe-
cific time conveys little information about the frequency of a signal. Fourier
analysis extracts the frequency, amplitude, and phase from an auditory (or
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∆t

∆t

∆t

Figure 3: Illustration of a signal sampled over time intervals ∆t of increasing length.
Illustration after MacLennan (1991).

any other) signal. For a given time interval ∆t, Fourier analysis decomposes
the signal into its sinusoidal components. This analysis results in describing
the signal as a function of frequencies, their associated amplitudes, and their
phases. The time interval over which the analysis is performed should be
sufficiently large to reliably estimate the presence of sinusoidal components.
Clearly, a time interval consisting of a single discrete sample (∆t = 1) can
not be decomposed into sinusoidal components. To detect the presence of a
sinusoidal component of a certain frequency requires at least two samples
and preferably much more.

Figure 3 illustrates that the time interval ∆t should be sufficiently large to
discover the periodicity of a signal. Assuming that the signal is sinusoidal,
we are able to assess the signal’s periodicity, by, for instance, counting the
number of maximums over the interval yielding the signal’s frequency. The
three rows in Figure 3 show three time intervals of increasing duration.
The top two intervals are too small to capture a full cycle of the sinusoidal
signal. Counting only one maximum, does not reveal the frequency. Only in
the bottom interval two positive maximums can be identified and used to
estimate the frequency f of the signal.

The Uncertainty Relation

There is an inversely proportional relation between the time interval ∆t and
the frequencies that can be determined by counting the maximums of the
sinusoidal signal within the interval.
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∆t

11 2 2 3 3 4 4 5
5
6

f + ∆f f

Figure 4: Distinguishing the frequencies of two signals by counting their maximums
requires a sufficiently large time interval ∆t. Illustration after MacLennan
(1991).

Figure 4 shows a plot with two sinusoidal signals with two different
frequencies, f1 and f2 with f2 = f1 + ∆ f . If we want to tell the two signals
apart by using the maximums localization strategy, we need a ∆t that obeys
the following inequality:

∆t ≥ 1/∆ f (1)

Following this inequality, the interval ∆t must be at least of length 1/∆ f
time samples, in order to tell the two signals apart. The inequality (Equation 1)
can be rewritten as:

∆ f ∆t ≥ 1. (2)

The constant 1 may be smaller or larger depending on the method of
determining the frequency of the signal. What is important is that the product
of ∆ f and ∆t is a constant. Hence, the inequality (Equation 2) implies that
there is a limit to the degree of certainty to which we can simultaneously
measure both frequency and (temporal) location. Improving the temporal
resolution by making ∆t smaller, leads to a less adequate estimation of
the frequency. Improving the frequency resolution can only be achieved by
making ∆t larger. This is analogous to the well-known Uncertainty Relation in
quantum mechanics that applies to all wave-like systems. In fact, showing
that the uncertainty principle also applies to communicative signals is one
of the core contributions of the work of Gabor. In his seminal work Gabor
(1946), he derived a function that provides the best combination of temporal
and frequency resolution; the Gabor function. Filters designed according to
Gabor’s function are called Gabor filters. When applied to a temporal signal,
these filters perform a localized measurement of the signal’s frequency.

Inspired by Gabor’s classic work on one-dimensional signals, other re-
searchers (Daugman, 1985; Heeger, 1987; Petkov and Subramanian, 2007)
extended his ideas to two-dimensional signals, including the visual ones
studied in this thesis.

Formal Description of Gabor Filters

The aforementioned Gabor filters are one-dimensional and are typically asso-
ciated with the analysis of temporal signals and hence referred to as temporal
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t

a

ib

Figure 5: Illustration of the elementary Gabor function (Gaussian-modulated com-
plex exponential) defined in the complex space (a, ib) as a function of time
(t). After MacLennan (1991).

Gabor filters. Two-dimensional Gabor filters are often applied in image analy-
sis and called spatial Gabor filters. Adding the temporal dimension to spatial
Gabor filters leads to (three dimensional) spatiotemporal Gabor filters (SGFs).
In what follows, we provide a formal description of each of these three types
of Gabor filters.

Temporal Gabor filters

The elementary Gabor function can be defined in terms of complex numbers,
consisting of a real number a and an imaginary number ib, where the norm of
the complex number represents the amplitude of the signal and the complex
angle represents the phase of the signal. Figure 5 illustrates the elementary
Gabor function in the three dimensional space spanned by time t, and the
real and imaginary numbers a and ib. The elementary Gabor function is also
referred to as a Gaussian-modulated complex exponential, because a complex
number z can also be written as a complex exponential, i.e. z = a + ib =

r expiθ , where a = r cos θ, b = r sin θ, r =
√

a2 + b2 and θ = arctan b
a .

In the one-dimensional case a Gabor filter is derived from Gabor’s ele-
mentary signal. When the complex sinusoidal function is decomposed into a
real (“even”, ge) and an imaginary (“odd”, go) part this yields the following
equations (Heeger, 1987):
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ge(t) =
1√

2π σ
exp− t2

2σ2 cos(2πωt) (3)

go(t) =
1√

2π σ
exp− t2

2σ2 sin(2πωt) (4)

where ω denotes the center frequency with the highest energy (i.e., filter
response), and σ represents the spread of the Gaussian envelope. Figure 6 is a
visualization of even and odd one-dimensional Gabor filters for four different
values of σ and ω.

−6 −4 −2 0 2 4 6
t

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

g e
(t

)

(a) even filter (σ = 1, ω = 0.5)
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(d) odd filter (σ = 0.5, ω = 0.5)

Figure 6: One-dimensional Gabor filters with different parameters.

Spatial Gabor Filters

With his work on cells in the primary visual cortex Daugman (1985) extended
the one-dimensional Gabor filter to two spatial dimensions x and y. Two-
dimensional Gabor filter responses for even and odd filters are defined as
follows:

ge(x, y) =
1

2πσxσy
exp−1

2

(
x2

σx
+

y2

σy

)
× cos(2πωxx + 2πωyy)

(5)

go(x, y) =
1

2πσxσy
exp−1

2

(
x2

σx
+

y2

σy

)
× sin(2πωxx + 2πωyy),

(6)
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Figure 7: Two-dimensional odd Gabor filter for the parameters values σ = 2, ω = 0.5,
and θ = 45°.

where (ωx, ωy) denote the maximum response center frequencies and (σx, σy)

the spread of the Gaussian envelope in the x and y direction respectively.
To make the filter sensitive to any arbitrary orientation, we can substitute
rotation functions xr and yr for x and y, respectively:

xr =x cos(α)− y sin(α) (7)

yr =− x sin(α) + y cos(α) (8)

where α is the desired orientation. Figure 7 shows an illustration of a two-
dimensional Gabor filter.

Spatiotemporal Gabor Filters

A spatiotemporal Gabor filter extend the spatial Gabor filter with a temporal
component. A formal definition due to Heeger (1987) is as follows:

ge(x, y, t) =
1

(2π)3/2 σxσyσt
exp−1

2

(
x2

σx
+

y2

σy
+

t2

σt

)
× cos(2πωxx + 2πωyy + 2πωtt)

(9)

go(x, y, t) =
1

(2π)3/2 σxσyσt
exp−1

2

(
x2

σx
+

y2

σy
+

t2

σt

)
× sin(2πωxx + 2πωyy + 2πωtt)

(10)

The added variable t denotes time. Analogous to the one- and two-dimensional
cases, σ and ω denote the spread of the Gaussian and the center frequency
for their corresponding axes, respectively. Increasing σ for any axis, results in
filters that are less localized for that axis, in other words the spread over the



1.3 a brief introduction to gabor filters 13

axis is larger. This results in narrower frequency responses measured over
a wider area. Conversely, by decreasing σ we can improve the localization
of the measurement, with the trade-off that the filter becomes less selective
for frequency. With ω we can specify the filter’s center frequency, i.e., the
frequency for which the filter has the highest response. Similarly to the two-
dimensional case, we can substitute rotation functions for x and y given by
Equation 7. This makes the filter steerable to orientation α.

Spatiotemporal Gabor filters provide good models for the functional prop-
erties of cells in the primary visual cortex (Petkov and Subramanian, 2007).
These cells have a sharp tuning to motion with a certain speed and direction.
Based on this biological perspective, an alternative formalization of spatiotem-
poral Gabor filters was proposed by Petkov and Subramanian (2007):2

g(x, y, t, v, θ, φ) =
γ

2πσ2 exp
−

(
(xr + vct)2 + γ2y2

r
)

2σ2

× cos
(

2π

λ
(xr + vt) + φ

)
.

(11)

Where φ is the phase of the filter which determines the symmetry of the
filter. Values of 0 and π correspond to even filters, whereas values of 0.5π

and 1.5π generate odd filters. Here, γ controls the ellipticity of the Gaussian
envelope in the spatial domain. This basically controls the selectivity to the
amplitude of the signal. Parameters v and vc control the speed preferences
of the filters, where v denotes the preferred speed in pixels per frame (PPF),
vc determines whether the Gaussian envelope moves along the x-axis at a
certain speed (vc > 0) or remains stationary (vc = 0). The primary visual
cortex hosts both cells that are selective to the temporal frequency as well
as to the speed of movement. The model of Petkov and Subramanian (2007)
can accommodate both variants, giving rise to velocity tuning (vc 6= 0) and
frequency tuning (vc = 0). We discuss both variants in more detail below.
The λ parameter corresponds to the preferred wavelength of the periodic
part of the filter which corresponds to spatial frequency 1/λ. This value is
determined by the relation with the preferred speed v: λ = λ0

√
1 + v2, where

λ0 is a constant denoting the duration of one cycle. If we keep t at a fixed
value, we can plot the profile of the spatiotemporal filter in the (x, y) plane
at time t. The result is shown in Figure 8 for three subsequent time steps t
where we kept the envelop stationary. From left to right, the images show
the Gaussian-weighted grating moving from the upper right to the lower left.

Two Implementations of Spatiotemporal Gabor Filters

In this thesis, we will experiment with two implementations of the spatiotem-
poral Gabor filters, one due to Heeger (1987) 3 and one due to Petkov and
Subramanian (2007) 4. Heeger was among the first who developed a compu-
tational implementation of the idea of spatiotemporal filters, highlighting the

2 We omitted two terms from Petkov and Subramanian’s equation: a surround inhibition term
and a causality constraining term. Both terms were included in the original work to enhance
the biological plausibility.

3 Our implementation is partly based on the code found here: http://www.bu.edu/vip/files/
pubs/reports/EZLR10-04buece.pdf

4 http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborApp.html

http://www.bu.edu/vip/files/pubs/reports/EZLR10-04buece.pdf
http://www.bu.edu/vip/files/pubs/reports/EZLR10-04buece.pdf
http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborApp.html
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Figure 8: Three (x, y) contour plots for different t.

importance of motion information in visual perception. While Heeger does
not make explicit claims about the biological realism of the method, Petkov
and Subramanian study the spatiotemporal filters as models of dynamic
receptive fields of cells in the primary visual cortex (V1). Both implemen-
tations originate from the same mathematical model of Gabor filters. The
main difference between the implementations is in the choice of parameters
and parameter constraints. Table 1 specifies the main parameters of both
implementations. In our experiments we will explore different values of these
parameters. The left column lists the parameters of Heeger’s implementation,
given by Equation 9 and Equation 10. These are the center frequencies and
standard deviations of the spatial coordinates and temporal coordinate and
parameter θ to control the selectivity to the direction of motion. The right
column lists the parameters of Petkov and Subramanian’s implementation.

Selectivity to spatial frequency is controlled by the λ parameter in the
Petkov and Subramanian’s implementation, which corresponds to the first
two listed parameters in the Heeger implementation, i.e., ωx and ωy. The
Heeger implementation does not have an explicit parameter to tune for a
specific speed, in contrast to Petkov and Subramanian’s v and vc parameters.
Instead, selectivity to a preferred speed is controlled by ωt. Both implementa-
tions use the Gaussian envelope’s standard deviation to control the selectivity
to frequency, however Petkov and Subramanian use one parameter for all
axes, whereas for Heeger they are specified separately. The ellipticity parame-
ter γ for Petkov and Subramanian does not have a counterpart in the Heeger
implementation. This is also the case for phase parameter φ, which deter-
mines the construction of even or odd filters. The Heeger implementation
simply considers the real and the imaginary part of the filter as even and odd
respectively.

Velocity Tuning versus Frequency Tuning

As mentioned above, the human primary visual cortex has two types of cells
that are sensitive to motion, i.e., cells that respond to a certain temporal
frequency of moving contours and cells that respond to a specific velocity
of the moving contour. These cells can be modeled by applying a stationary
envelope to the temporal Gaussian component (i.e., frequency tuned) or by
letting the envelope move along the temporal axis (i.e., velocity tuned). In
the primary visual cortex most neurons are frequency tuned Wu, Bartlett,
and Movellan (2010). Petkov and Subramanian’s implementation is able
to model both types of cells, whereas Heeger’s implementation can only
construct filters that are sensitive to a specific frequency of movement. In
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our experiments we experiment with both types of filters and switch them
between experiments. We will explicitly mention whether we used frequency
tuned or velocity tuned filters. Preliminary results showed little to hardly
any difference in performance between the two types of filters for Petkov
and Subramanian’s implementation when we applied them in a social signal
processing context.

Table 1: List of the different parameters for two implementations of spatiotemporal
Gabor filters.

Heeger Petkov and Subramanian

symbol definition symbol definition

ωx center frequency x-axis λ Spatial wavelength

ωy center frequency y-axis v Preferred speed

ωt center frequency t-axis vc Gaussian’s center

velocity

θ Direction of motion θ Direction of motion

σx Standard deviation σ Gaussian’s standard

deviation

σy Standard deviation γ Spatial aspect ratio

σt Standard deviation φ Phase

Throughout this thesis, we will often use both the Heeger and the Petkov
and Subramanian implementations, to see whether it matters for our applica-
tion — social signal processing — whether the spatiotemporal Gabor filters
are an explicitly biologically inspired (and hence more constrained) model or
not.

1.4 the current thesis

1.4.1 Methodology

In every study in this thesis we follow a comparable deductive research
methodology. In general, we expect that adding temporal information to spa-
tial Gabor filters is beneficial for the performance of automated social signal
processing tasks. We systematically assess this expectation by (1) acquiring
data that display the social signal we are interested in, (2) applying image
processing and analysis techniques to represent the phenomenon in a static
(i.e., spatial Gabor filters) and dynamic (i.e., spatiotemporal Gabor filters)
manner, and (3) evaluating the performance of the two representations by
means of classification experiments. In all of our studies we use video se-
quences of human behavior that were collected in an experimental setup. The
purpose of the work in this thesis is not to obtain state-of-the-art classification
results but to systematically compare spatial Gabor filters to spatiotemporal
Gabor filters.
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We have chosen four areas to investigate our claims, viz., (1) human speech,
(2) question answering, (3) smiling, and (4) human gait. With these areas of
focus we cover a wide range of human non-verbal behavior, both in terms of
how easily they are perceived (“is this person talking?” vs. “how hard was
this question?”) and in terms of physiological scale (from mouth to face to
human body).

1.4.2 Outline

In Chapter 2 we start exploring the benefits of adding spatiotemporal infor-
mation to Gabor filters, by looking at voice activity detection (VAD) based on
facial movements. VAD is the task of detecting human speech in an audio
signal, and most earlier approaches to this problem have typically only looked
at the auditory channel. However, when speakers talk, they also produce
visual cues: they move their lips and often also other parts of their head,
including, for example, their jaws or eyebrows. Visual VAD (VVAD) tries to
detect voice activity based on solely visual cues, which can be helpful, for
instance, in noisy environments. Moreover, it has been argued that visual
speech cues (e.g., the opening of the mouth) often precede the onset of speech,
so that Visual VAD can help for early detection of speech as well. In Chap-
ter 2 we rely on two existing datasets: one is the publicly available CUAVE
dataset (Patterson, Gurbuz, Tufekci, and Gowdy, 2002) in which different
speakers utter digits, while being filmed both frontally and from the side,
the other dataset is the so-called LIVER dataset (Joosten, Postma, Krahmer,
Swerts, and Kim, 2012), in which participants utter a single word (“liver”). As
a result the two datasets differ substantially in the ratio between speech and
non-speech. We systematically compare a standard Gabor filter approach with
a dynamic, spatiotemporal variant (which we call STem-VVAD) relying on
different speeds (based on the implementation of Petkov and Subramanian,
2007 using velocity tuned filters), also including a baseline merely relying on
frame differencing. In addition, we systematically compare the performances
of the methods at different levels of detail: looking only at the mouth region,
at the whole head, and at the entire clip.

Next, in Chapter 3, we move to a more complex non-verbal social signal,
namely detecting learning difficulties based on automatic facial expression
analysis, asking what the benefits of dynamic information is in this particular
task. Being able to automatically detect whether a child considers a task,
like for example an arithmetic problem, easy or difficult to solve, is an
important prerequisite for developing adaptive learning environments. To
study this, we collected our own dataset of children from two age groups
solving easy and hard arithmetic problems using a game-like interface. In this
study, we compared static, spatial Gabor filters and dynamic, spatiotemporal
ones and compared the performances of the implementations of Petkov and
Subramanian (2007) (using velocity tuned filters) and Heeger (1987) (using
frequency tuned filters). In addition, we compared the performances of the
Gabor filter methods with the performance of a method that models the
children’s facial dynamics explicitly: an Active Appearance Model (AAM)
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(Cootes et al. 2001; Matthews and Baker, 2004; Van der Maaten and Hendriks,
2010).

Then, in Chapter 4, we continue our explorations by considering yet an-
other social signal: smiles. It is well-known that people can smile in at
least two different ways, either because they are truly happy (the so-called
Duchenne smile) or as a social response (the non-Duchenne smile) (Nieden-
thal and Mermillod, 2010). Being able to detect “genuine" smiles is important
for automatic emotion recognition systems, but has various practical appli-
cation as well. For example, it can be used by photo camera’s to decide
automatically when a picture is best taken. Various factors play a role when
trying to distinguish “genuine” from “posed” smiles. For example, it has
been suggested that a Duchenne smile is accompanied by a narrowing of the
eyes (Ekman and Friesen, 1976; Niedenthal and Mermillod, 2010), causing
wrinkles to appear at the outside corners of the eyes. More recently, and
particularly relevant for the current thesis, it has been claimed that genuine,
Duchenne smiles can also be detected based on the speed with which they ap-
pear on the face (with Duchenne smiles appearing slower than non-Duchenne
ones) (Krumhuber, Manstead, and Cosker, 2009; Schmidt, Ambadar, Cohn,
and Reed, 2006). In this chapter we study the added value of dynamic, spa-
tiotemporal Gabor filters for smile classification (once again in two different
implementations: Petkov and Subramanian, and Heeger, and both implemen-
tations tuned to the frequency of movement), based on a publicly available
dataset of spontaneous and posed smiles: the UVA-NEMO Smile database
(Dibeklioğlu, Salah, and Gevers, 2015). We once again compare the benefits of
having different speeds in the spatiotemporal Gabor filters. In addition, given
the potential impact of head movements on smile classification, we compare
results for both “raw” (unprocessed) faces and automatically “fixed” ones.

The preceding chapters all look at facial signals, but, of course, it is also
possible to consider the body as a whole, which clearly impacts the size of
the movements to be considered. Therefore, in Chapter 5 we consider a basic,
full-body task, namely gender classification based on a person’s movements
while walking (their gait). Again, this task has potential practical applications:
shops, for example, may want to automatically track the number of male and
female shoppers in particular shop areas. It is well established that humans
are rather good at predicting someone’s gender based on general movement
characteristics, as has been demonstrated, for instance, by means of point-
light displays, in which only the movements of key joints are represented
against an otherwise dark background (Kozlowski and Cutting, 1977). Addi-
tionally, good computational techniques for this task have been developed,
including one based on Gait Energy Images (GEIs), which essentially capture
all movement in a single image (Han and Bhanu, 2006). In this final empirical
chapter we study how Gabor filters fare on this task, once again comparing
static, spatial Gabor filters and dynamic, spatiotemporal ones, with Petkov
and Subramanian’s frequency tuned implementation. For this purpose, we
use the CASIA Gait Dataset B (Yu, Tan, and Tan, 2006), a benchmark for com-
paring gait recognition methods. We compare both Gabor filter methods with
a state-of-the-art GEI-based method, looking both at frontal and sideways
clips of people walking, at different levels of detail: the head as well as the
upper and the lower body.
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Finally, in Chapter 6, we summarize and discuss the findings, asking
whether there are indeed general benefits of using spatiotemporal Gabor
filters over static, spatial ones, and discussing to what extent this depends on
the nature of the task and possibly the specific implementation.



2 V I S UA L VO I C E A C T I V I TY
D E T E C T I O N

2.1 introduction

Human speech comprises two modalities: the auditory and the visual one.
Many researchers have emphasized the close connection between the two
(e.g., McGurk and MacDonald, 1976; Stekelenburg and Vroomen, 2012). A
speaker cannot produce auditory speech without also displaying visual cues
such as lip, head or eyebrow movements, and these may provide additional
information to various applications involving speech, ranging from speech
recognition to speaker identification. For many of these applications it is
important to be able to detect when a person is speaking. Voice Activity
Detection (VAD) is usually defined as a technique that automatically detects
human speech in an auditory signal. Using VAD enables speech processing
techniques to focus on the speech parts in the signal, thereby reducing the
required processing power. This is, for example, applied in digital speech
transmission techniques (e.g., GSM or VoIP), where VAD helps to transmit
speech and not silence segments (Beritelli, Casale, and Cavallaero, 1998; Lee,
Kwon, and Cho, 2005).

Arguably, the straightforward approach to VAD would be to look into
the auditory channel to see when speech starts. This is indeed what various
researchers have done, and what is required for situations in which only the
auditory signal is available (Chang, Kim, and Mitra, 2006; Ghosh, Tsiartas,
and Narayanan, 2011; Ramírez, Segura, Benítez, Torre, and Rubio, 2004; Sohn,
Kim, and Sung, 1999). However, this approach suffers from a number of com-
plications. For instance, when background noise is present it becomes more
difficult to differentiate between noise and speech, because they are entwined
in one signal. Moreover, when multiple speakers are present, recognizing
speech onset also becomes more difficult (because the speech signals are
overlapping). Even though solutions for these problems have been proposed
(e.g, Furui, 1997; Kinnunen and Li, 2010; Reynolds, 2002), various researchers
have argued that taking the visual signal into account (if available) can help
in addressing these issues, e.g. because the presence or absence of lip move-
ments can help in distinguishing noise from speech (Sodoyer, Rivet, Girin,
Schwartz, and Jutten, 2006), and because visual cues can help for speech
segmentation. Moreover, importantly, visual cues such as mouth and head
movements typically precede the actual onset of speech (Wassenhove, Grant,
and Poeppel, 2005), allowing for an earlier detection of speech events, which
in turn may be beneficial for the robustness of speech recognition systems. For
this reason, various researchers have concentrated on Visual Voice Activity
Detection (VVAD).

This chapter is a slightly extended version of Joosten, B., Postma, E., & Krahmer, E. (2015).
Voice activity detection based on facial movement. Journal of Multimodal User Interfaces, 9
183-193.
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Previously proposed VVAD methods mostly relied on lip tracking (Aubrey
et al. 2007; Liu, Wang, and Jackson, 2011; Sodoyer et al. 2009). While these
approaches have been successful, both in detecting voice activity based on
visual cues and in combination with auditory VAD approaches, we know that
there are more visual cues during speech in the face beyond the movement of
the lips (Krahmer and Swerts, 2005). Besides, evidently (extracting features
from) lip tracking is challenging when a speaker turns their head sideways.
In their overview on audiovisual automatic speech recognition, Potamianos,
Neti, Luettin, and Matthews (2012) point out that robust visual features for
speech recognition should be able to handle changing speaker, pose, camera
and environment conditions, and they have identified three types of visual
features that apply to VVAD as well: 1) appearance-based features using pixel
information extracted from a region of interest (typically the mouth region),
2) shape based features derived from tracking or extracting the lips, and 3) a
combination of the aforementioned types of features. Potamianos et al. note
that extensive research comparing these features is still missing.

2.1.1 Related Work

Previous work on VVAD methods can be distinguished into two classes of
models: lip-based approaches and appearance-based approaches. Below, we
review examples of each of these classes.

Lip-Based Approaches

Lip-based approaches employ geometrical models based on the shape of
lips. The geometrical models typically consist of a flexible mesh formed by
landmarks, or connected fiducial points surrounding the lips, flexible active
contours that are automatically fitted to the lip region. In what follows, we
describe three examples of lip-based approaches and the features extracted
to perform VVAD.

Aubrey et al. (2007) employed a geometrical lip model for VVAD that
consisted of landmarks. Given a video sequence of a speaking and silent
person, the task was to distinguish speech from non-speech. Their landmarks
(constituting the lip model) were fitted to the video data of a speaking person
by means of an Active Appearance Model (AAM) (Cootes et al. 2001). For
each frame, the two standard geometric features, i.e., the width and height of
the mouth, were extracted from the positions of the landmarks and submitted
to a Hidden Markov Model.

Using an Active Contour Model (Kass, Witkin, and Terzopoulos, 1988),
also called “snakes”, Liu, Wang, and Jackson (Liu et al. 2011) computed the
two standard geometric features as well an appearance feature, i.e., the mean
pixel values of a rectangular patch aligned with the lip corners and centered
at the center of the mouth. For each frame, these three features form the basis
of their classification vector, which is extended with dynamic features. To
classify a frame as voice or silent, AdaBoost (Freund and Schapire, 1995)
was used, a technique that incrementally builds a (stronger) classifier by
adding a new feature from the classification vector to the previous classifier
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at each consecutive step of the training process. The snake-based VVAD
method was evaluated on a selected YouTube video of a single speaker.

The Sodoyer et al. (2009) study relied on segmented lips, which were
obtained by painting the lips of recorded speakers in order to be able to
extract them from the rest of the face (like in the chroma key technique used
in movies). In their study, they employed the chroma key technique to build a
40 minute long audiovisual corpus of two speakers, each in a separate room,
having a spontaneous conversation. In spontaneous conversation speech
events are generally followed up by silence or non-speech audible events
such as laughing and coughing. Such events are characterized by specific lip
motion (even in silence parts). The aim of the study was to find a relationship
between lip movements during speech and non-speech audible events on the
one hand and silence on the other. The two standard geometrical features
were extracted from the segmented lips of both speakers and used to define a
single dynamic feature based on the sum of their absolute partial derivatives.

Appearance-Based Approaches

Appearance-based VVAD approaches go beyond the lips by taking into con-
sideration the surrounding visual information. We describe three examples of
appearance-based methods, each of which emphasizes another visual feature:
color, texture, and optical flow.

Scott, Jung, Bins, Said, and Kalker (2009) propose a VVAD that relies on a
comparison of the pixel colors of the mouth region and the skin regions just
below the eyes. They defined a mouth openness measure, which corresponds
to the proportion of non-skin pixels in the mouth region. The regions were
extracted with automatic face-detection and facial geometry heuristics. Their
manually annotated VVAD dataset consisted of three videos.

Navarathna, Dean, Sridharan, Fookes, and Lucey (2011) measured tex-
tural patterns in the mouth region using the Discrete Cosine Transform
(DCT). Their dataset consisted of frontal and profile faces of the CUAVE
dataset (Patterson et al. 2002). They classified the DCT coefficients by means
of a Gaussian Mixture Model using speaker-independent models. This was
realized by training and testing on different subsets of groups of speakers.

Tiawongsombat, Jeong, Yun, You, and Oh (2012) measured the optical flow
in the mouth region using the pyramidal Lucas-Kanade algorithm (Bouguet,
2000). They recorded 21 image sequences of 7 speakers to evaluate and
7 individual mouth image sequences to train their method. Classification
was done using a two-layered HMM that considers the states moving and
stationary lips at the lower level and speaking and non-speaking at the higher
level simultaneously.

Evaluation of Existing Approaches

Directly comparing results between the different studies is complex, since
they all vary in certain dimensions, e.g., the datasets used differ in size and
complexity, different evaluation metrics are employed, and generalizability
is often not tested (i.e., evaluations tend to be speaker-dependent). With the
exception of the CUAVE dataset, there are no publicly available datasets
to enable a comparison across different situations and speakers. However,
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in general these methods all perform well in comparison to their specific
task and in a comparable range. Typically, scores between 70 and 90% are
reported.

2.1.2 Current Studies

Since many VVAD studies acknowledge the importance of modeling move-
ment during speech, we choose to explicitly examine movement information
at an early stage, an approach called Early Temporal Integration (Wu et al. 2010),
by designing a VVAD that incorporates features that represent spatiotempo-
ral information. In this chapter, we propose an appearance-based approach
to VVAD, representing images in terms of movement, without explicitly
tracking the lips. Our novel method, which we call STem-VVAD (STem abbre-
viates SpatioTemporal, but also happens to mean “voice” in Dutch) is based
on spatiotemporal Gabor filters (STGF), a type of filter which is sensitive
to movement at a certain direction and speed (Petkov and Subramanian,
2007), as explained in Chapter 1, which have, to the best of the author’s
knowledge, never been applied to VVAD. Intuitively, lip movements during
speech have a specific spatiotemporal signature which may be different from
those associated with non-speech (e.g., couching, laughing). In a similar vein,
the orientation of movements may show different patterns for speech and
non-speech, facilitating VAD.

Spatial Gabor filters (SGF) have been frequently used for automatic vi-
sual tasks, ranging from texture segmentation (Jain and Farrokhnia, 1990) to
coding of facial expressions (e.g., Littlewort et al. 2011b; Lyons, Akamatsu,
Kamachi, and Gyoba, 1998) and automatic speech recognition (Kleinschmidt
and Gelbart, 2002). The use of SGFs in computer vision is inspired by bio-
logical findings on the neural responses of cells in the primary visual cortex
(e.g., Daugman, 1985; Field, 1987; Jones and Palmer, 1987), as the 2D Gabor
function is able to model these responses. This makes them biologically plau-
sible for use in automatic vision systems. Moreover, Lyons et al. (1998) argue
that the use of SGFs for facial expression recognition is also psychologically
plausible, since the properties of the neurons that they are modeled on allow
neurons in the higher visual cortex to be able to distinguish between different
facial expressions.

As explained in Chapter 1, STGFs are the dynamic variants of their spatial
counterparts. Whereas SGFs respond to visual contours or bars of a certain
orientation and thickness, STGFs respond to moving visual contours or
bars. The responses of motion-sensitive cells in primary visual cortex can be
modeled by STGFs and have been shown to be the independent components
of natural image sequences (Hateren and Ruderman, 1998). In this chapter,
we apply Spatiotemperal Gabor filters to Visual VAD, in our STem-VVAD
approach.

To examine the extent to which our approach is successful in detecting
voice activity, we have conducted a series of experiments on two different
datasets, i.e., the CUAVE dataset (Patterson et al. 2002), and our LIVER
dataset (Joosten et al. 2012). The CUAVE dataset contains multiple speakers
uttering digits, with frontal as well as profile recordings, whereas our LIVER
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dataset consists of frontally recorded speakers each with a single speech
event, i.e., the uttering of the Dutch word for “liver". In the CUAVE set,
the ratio between speech and non-speech is approximately balanced, this in
contrast to the LIVER set where the majority of frames is non-speech.

For each dataset we assess the voice activity detection capabilities of our
STem-VVAD method as well as for two reference VVADs: a VVAD based on
frame differencing and a method based on standard, spatial Gabor filters. In
addition, we determine the contribution of various visual speeds to VVAD
performance, to determine if certain speeds of, for instance, lip motion
contribute more to VVAD than others. As a third evaluation, three regions in
the clips are examined, to determine if zooming in on the mouth region leads
to better VVAD performance, or that other dynamic facial characteristics
contribute as well to the performance as suggested by Krahmer and Swerts
(2005).

Since human speech is inextricably connected to the idiosyncratic character-
istics of its speaker (Dellwo, Leemann, and Kolly, 2012) and, moreover, since
the location with respect to the camera varies among the subjects, we will
evaluate STem-VVAD on a speaker-dependent and a speaker-independent
basis. By using these two evaluations we focus on the applicability of STGF
in VVAD (speaker dependent) versus the generalizability of our method
(speaker independent). In the area of speech recognition, systems tailored
towards one specific speaker generally outperform systems that are able to
handle multiple speakers. We therefore expect to see better results with our
speaker-dependent scheme than with our speaker-independent scheme. It
will be interesting to see how this distinction affects our different VVADs.

In the next Sections, we present our own appearance-based method (STem-
VVAD), which is inspired by the biological example of early spatial-temporal
integration in the brain. In addition, to get a better understanding of the
problem, and in view of the complex, difficult to compare pattern of results
in related work, here we systematically compare analyses of the mouth area
with full facial analyses as well as analyses of the entire frame, and we look
at different speeds of movement, both in isolation and combined into one
feature vector. We evaluate the method on two different datasets (including
CUAVE (Patterson et al. 2002)), and look at both speaker-dependent and
speaker-independent models.

2.2 method

The Spatiotemporal Visual Voice Activity Detection (STem-VVAD) method is
based on two stages: (i) the preprocessing stage consisting of spatiotemporal
Gabor filters to determine the energy values at certain speeds, and (ii) the
aggregation and classification stage employing summation and a classifier to
summarize and map the aggregated energy values onto the binary classes
speech and non-speech.
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Preprocessing Stage

The preprocessing stage transforms video sequences with spatiotemporal
Gabor Filters into a so-called energy representation (Heeger, 1987; Petkov
and Subramanian, 2007; Wu et al. 2010). As described in Chapter 1, the
spatiotemporal Gabor filters may be considered to be dynamic templates,
i.e., oriented bars or gratings of a certain thickness that move with a certain
speed and in a certain direction. The transformation of a video sequence
by means of STGFs proceeds by means of convolution, in which each STGF
(dynamic template) is compared with the contents of the video sequence at
all pixel locations and at all frames. The presence of a moving elongated
object in the video that matches the STGF in terms of orientation, thickness,
speed and direction, results in a large “energy value" at the location and
time of the elongated object. A better match results in a larger energy value.
Each STGF results in one energy value for each pixel per frame of the video.
Hence, the result of convolving a video sequence with a single filter, yields an
energy representation that can be interpreted as an “energy video sequence"
in which the pixel values represent energies. Large energy values indicate
the presence of the filter’s template at the spatial and temporal location of
the value.

In order to capture all possible orientations, a suitable range of sizes (spatial
frequencies), and appropriate speeds and directions, a spatiotemporal Gabor
filter bank is used which consists of filters whose parameters (orientation,
spatial frequency, speed and direction) are evenly distributed over the relevant
part of the parameter space. Each of these filters generates an “energy movie"
and hence convolving a video sequence with a filter bank gives rise to
an enormous expansion of the data. Given a video of F frames and N
pixels per frame (PPF), convolution with a filter bank of G filters results in
G × F × N energy values. The number of filters, G, is determined by the
range and number of parameter values selected. In the STem-VVAD method
the direction of movement is always perpendicular to the orientation. Hence,
the number of filters is defined as G = k× d× s, where k is the number of
spatial frequencies, d the number of orientations and s the number of speeds.

Aggregation and Classification Stage

The applied filter bank of G filters (that vary in three dimensions of parameter
space, i.e., spatial frequency, orientation, and speed) result in G energy videos
obtained from the convolution in the preprocessing stage. In what follows,
we refer to a Gabor filter tuned to a specific combination of spatial frequency,
orientation, and speed, as a Gabor feature. Representing the energy value for
Gabor feature g, frame f , and pixel n by Eg( f , n), the aggregated features
Ag( f ) are computed by summing the energy values for feature g for each
frame, which results in, Ag( f ) = ∑N

n=1 Eg( f , n). The aggregation generates
one G-dimensional vector A( f ) per frame, the elements of which signal the
presence of a filter-like visual pattern in the video frame under consideration.
Since the G filters represent different combinations of spatial frequencies,
orientations, and speeds, the summed energy values signal the presence of
moving contours with these frequencies, orientations, and speeds.
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2.3 experimental evaluation

As stated in the introduction, the experimental evaluation of the STem-VVAD
method consist of three parts. First, its performance is evaluated on two video
datasets. Second, it is compared to two reference VVADs: (1) to determine
the contribution of using a sophisticated spatiotemporal filtering method, the
STem-VVAD method’s performance is compared to the simplest method of
change detection called frame differencing, and (2) to assess the contribution
of dynamic information, a comparison is made with a version of the method
in which the speed is set to zero, thereby effectively creating static, spatial
Gabor filters. Third, the VVAD performances obtained for three visual regions
of analysis are compared. These regions are: the entire frame, the face, and
the mouth.

2.3.1 Datasets

As stated in the introduction, the two datasets used to evaluate the VVAD
method are the publicly available CUAVE dataset1 (Patterson et al. 2002) and
our own LIVER dataset2 (Joosten et al. 2012). Both datasets were recorded for
different purposes and have different characteristics.

CUAVE

The CUAVE dataset is an audio-visual speech corpus of more than 7000

utterances. It was created to facilitate multimodal speech recognition research
and consists of video recorded speakers uttering digits. The dataset contains
both individual speaker recordings as well as speaker-pair recordings. We
used the individual speaker recordings only. The set contains 36 different
speaker video recordings (19 male and 17 female) in MPEG-2, 5000 kbps, 44
KHz stereo, 720× 480 pixels, at 29.97 fps. All speech parts are annotated at
millisecond precision. The speakers vary in appearance, skin tones, accents,
glasses, facial hair and therefore represent a diverse sample. Speakers were
recorded under four conditions of which we used the following two: station-
ary frontal view and stationary profile view. In both cases speakers were
successively pronouncing the digits. In these clips, the frontal face videos
have an average length of 52 seconds (sd = 14s.) compared to 24 seconds
(sd = 6s.) for the profile videos.

LIVER

Our LIVER dataset was constructed in the context of a surprise elicitation
experiment (Joosten et al. 2012). This experiment yielded a dataset of 54
video sequences of 28 participants (7 male and 21 female) uttering the Dutch
word for liver (“lever”) in a neutral and in a surprised situation resulting
in two recordings per person. The participants all sit in front of the camera
but are allowed to move their heads and upper body freely. The videos are
in WMV format, 7000 kbps, 48 KHz stereo, 29.97 fps, at 640 by 480 pixels

1 http://www.clemson.edu/ces/speech/cuave.htm
2 The dataset was created by our colleague prof. Swerts, and is available upon request.

http://www.clemson.edu/ces/speech/cuave.htm
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and were automatically annotated for speech using a VAD based solely on
the audio channel. By means of visual inspection we checked the correctness
of annotations. The recordings are cropped at approximately four seconds
(i.e. around 120 frames) and start when the participants are about to speak.
Contrary to in the CUAVE database, where speakers produce speech about
half of the time, speakers in the LIVER dataset produce just one word in a
4 second interval, resulting in a dataset that is unbalanced for speech and
non-speech frames (1053 to 6524, respectively).

2.3.2 Implementation Details

For the preprocessing stage of the STem-VVAD method, we used the STGF
implementation of Petkov and Subramanian (2007)3 with velocity tuned
filters as mentioned in Chapter 1. We created a filter bank of G = 6× 8× 2
filters sensitive to 6 different speeds (v = {0.5, 1, 1.5, 2, 2.5, 3} PPF), 8
orientations (θ = {0, 0.25π, 0.50π, 0.75π, . . . , 1.75π} radians) covering the
range of speeds and orientations in our datasets, and two constant spatial
periods, defined by the parameter λ−1

0 , where λ−1
0 = {1/2, 1/4} (recall the

relation λ = λ0
√

1 + v2). The dimensionality of the resulting STem-VVAD
feature vector for frame f , A( f ), is equal to GSTem−VVAD = 6× 8× 2 = 96.
A separate version with the same parameters, but with v = 0 was used
for comparison. In this version, the dimensionality of feature vector A( f ) is
equal to Gzero−speed = 2× 8 = 16. This is the same dimensionality as the STem-
VVADs where we take only one speed into consideration. We implemented
frame differencing by taking the absolute differences of the pixel intensities
of two consecutive frames and computing their sum, average and standard
deviation, yielding three values per frame.

The video sequences in the datasets were convolved with the STGFs. The
resulting energy values were aggregated as specified in Section 2.2. For the
three regions of analysis, i.e., frame, face, and mouth, the aggregation was
performed over the entire frame, the rectangle enclosing the face, and the
rectangle enclosing the lower half of the face, respectively. The lower half
of the face was defined as the half of the bounding box enclosing the face
region. The face region was detected automatically using the OpenCV imple-
mentation of the Viola-Jones face detector with Local Binary Pattern features
(Liao, Zhu, Lei, Zhang, and Li, 2007). Since we used face detection in each
frame instead of face tracking, we had to deal with false positives and frames
in which the detector failed to find a face. By manually ascertaining that the
face in the first frame of each video sequence was correctly detected by the
face detector, we could automatically remove false positives in subsequent
frames by stipulating that a bounding box’ size and location should not differ
more than a fixed number of pixels, 50 pixels in our setup, from the face
detected in the previous frame. We used a simple heuristic to account for
the missing detections by interpolating between the previous and upcoming
detected face’s bounding boxes. Visual inspection of the detected face regions
throughout the video sequences confirmed that this procedure worked for
almost all videos. Eight video sequences in total (i.e., two in the CUAVE

3 http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborApp.html

http://www.cs.rug.nl/~imaging/spatiotemporal_Gabor_function/GaborApp.html
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frontal condition, one in the CUAVE profile condition, and five in the LIVER
dataset) yielded too little face detections and were excluded from the experi-
ments. This amounts to 5% of the total data, which suggests that any biases
introduced by face detection failures are minimal.

A support vector machine was used to classify each frame as speech or
non-speech using feature vectors of the aggregated values as input. Feature
vectors were classified with a linear Support Vector Machine, for which we
used the LIBLINEAR SVM library (Fan, Chang, Hsieh, Wang, and Lin, 2008).

2.3.3 Evaluation Procedure

The generalization performance is an estimate of how well the VVAD per-
forms on unseen videos. To estimate the generalization performance we used
two validation procedures: 10 fold cross validation for the speaker-dependent
evaluation and Leaving One Speaker Out (LOSO) cross validation for the
speaker-independent evaluation. The LOSO cross validation measures the
performance on speakers not included in the training set. The resulting gener-
alization performances obtained for (1) frame differencing, (2) the zero-speed
version, (3) separate speed versions, and (4) the full-fledged STem-VVAD, are
reported in terms of F1-scores. The F1-score, which originates from Informa-
tion Retrieval, is the harmonic mean of precision and recall (Rijsbergen, 1979).
The use of F1-scores is motivated by the unequal distributions of our two
datasets (i.e., the CUAVE dataset is approximately balanced, while the liver
dataset contains more non-speech frames than speech frames). In contrast to
accuracy, the F1-score is insensitive to the unbalance of the two classes. In
our tables and figures in the next section we also report the F1-score of the
chance classifier, i.e., the classifier that randomly picks between the classes
speech and non-speech. The final F1-score at chance level is the average
F1-score between all folds for the specific evaluation procedure.

2.4 results

Our results are divided over two sections, i.e., speaker-dependent results,
and speaker-independent results. In each section we start by presenting the
results of the frontal-view speakers in both the CUAVE and the LIVER dataset,
followed by the results of the profile-view speakers, obtained only on the
CUAVE dataset.

Speaker-Dependent Results

The upper part of Table 2 summarizes the overall results obtained on the
frontal faces of the CUAVE dataset. Inspection of this table reveals that, as
expected, the best results (for all three detector types, FD, zero-speed and
STem-VVAD) are obtained for the mouth region. Looking closer at the results
for the mouth region, we can see that, importantly, the STem-VVADs out-
perform the two reference methods (FD and zero-speed). Of the six nonzero
speeds examined, the STem-VVAD with 0.5 PPF performs best, with an F1-
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Table 2: Average speaker-dependent F1-scores obtained on all three datasets. The
left part of the table shows the results for the frame differencing (FD) and
the zero-speed (0) version VVADs and the right part of the table lists the F1-
scores for the STem-VVAD method. The columns labeled 0.5− 3 contain the
scores of the associated speeds, the rightmost column labeled All, lists the
result for the full-fledged STem-VVAD in which all speeds are included. The
three rows for each dataset show the results for the three regions of analysis:
frame, face, and mouth. The best scores are printed in bold-face. Chance
level F1-scores for the three datasets are 0.47, 0.23 and 0.49 respectively. All
scores are significantly different from chance level scores as determined by
a two-sample Kolmogorov-Smirnov test at the 1% significance level.
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Speaker Dependent CUAVE Frontal

Figure 9: Boxplots of speaker-dependent F1-scores obtained on the CUAVE frontal
dataset. The boxes correspond to the Mouth results in the upper part of
Table 2. The left part of the Figure shows the distribution for the frame
differencing (FD) and the zero-speed (0) version VVADs and the right part
of the Figure displays box plots of F1-scores for the STem-VVAD method.
The boxes labeled 0.5− 3 represent the F1-scores of the associated speeds,
the rightmost box labeled All, shows the F1-scores for the full-fledged
STem-VVAD in which all speeds are included. The dashed line indicates
performance at chance level.

score of 0.7, which is almost 0.15 above the reference methods. Performance of
the single-speed STem-VVADs decreases slightly with increasing speed. The
best result is obtained for the full-fledged STem-VVAD in which all speeds
are combined: an F1-score of 0.78. This result is comprised of a precision of
0.76 and a recall of 0.79.

Figure 9 visualizes the distributions over speakers of the results for the
mouth region with box-whisker-plots as a function of VVAD. Each plot
visualizes the distribution of the mean F1-scores per speaker. The horizontal
line in the middle of each box represents the median of the data, while the
top and bottom horizontal lines of the box represents the upper and lower
quartile of the data, respectively. The upper whisker depicts the largest data
value which is smaller than the upper quartile plus 1.5× inter-quartile-range
(i.e., absolute difference between upper and lower quartile). The reverse holds
for the lower whisker, i.e., the smallest data value larger than the lower
quartile minus 1.5× inter-quartile-range. Any data larger or smaller than the
upper and lower whisker respectively is considered an outlier and is depicted
by a dot. The spread of the STem-VVADs is considerably smaller than those
of the reference methods, implicating a more robust detection performance
for the STem-VVADs. The positions of the box plots’ medians are in line
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Speaker Dependent LIVER

Figure 10: Boxplots of speaker-dependent F1-scores obtained on the LIVER dataset.
The boxes correspond to the Mouth results in the middle part of Table 2.
For explanation see Figure 9.

with the mean values reported on the last line of the upper part of Table 2,
showing a gradual descent for increasing speeds and a best performance
when combining all speeds.

The results of our VVADs on the LIVER dataset evaluated with ten-fold CV
are summarized in the middle part of Table 2. The overall pattern of results is
similar to those obtained on the CUAVE dataset. The performances improve
with smaller regions, with the best performance obtained for the mouth
region. For the mouth region, the single-speed STem-VVADs outperform the
reference methods (best single-speed performance is obtained for speed 0.5
(0.68). Again, the full-fledged STem-VVAD yields the best overall performance
on all three regions of analysis (0.86 on the mouth region). When we zoom in
on this result, we see that the recall here is higher, i.e., 0.93, than the precision,
which is 0.8.

The corresponding box-whisker plots for the mouth region in Figure 10

show a similar pattern of results as obtained for the CUAVE dataset. The most
striking result is the superior performance obtained for the STem-VVAD.

The lower part of Table 2 shows the speaker-dependent results obtained
on the subset of profile faces in the CUAVE dataset. A comparison with the
results obtained for the frontal faces in the upper part of Table 2, reveals
that the STem-VVAD method can deal with profile faces very well. The
mouth-region results are displayed in Figure 11.
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Table 3: Speaker-independent F1-scores obtained on all three datasets. For explana-
tion, see Table 2. Chance level F1-scores are 0.48, 0.24 and 0.49 respectively.
Light gray values indicate F1-scores which or not significantly different from
the chance level F1-scores as determined by a two-sample Kolmogorov-
Smirnov test at the 1% significance level.
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Figure 11: Boxplots of speaker-dependent F1-scores obtained on the CUAVE profile
dataset. The boxes correspond to the Mouth results in the lower part of
Table 2. For explanation see Figure 9.

Speaker-Independent Results

The upper part of Table 3 gives the results for the CUAVE database with the
Leave One Speaker Out validation method, which tests the generalizability
of our VVAD methods across speakers. Inspection of this table reveals a
similar pattern of results as in the upper part of Table 2, although with
a lower overall performance. In particular, results for the mouth region
are generally better overall than those for the head and the mouth region.
Moreover, the best performing individual method is the STem-VVAD with
speed 0.5 PPF, although the difference with the FD reference VVAD is much
less pronounced than in the ten-fold cross validation results in the upper part
of Table 2. Interestingly to remark here is the performance of the FD reference
method (0.53%) for the entire frame compared to all the other detectors
applied to the same region, since it is the best performing VVAD. Moreover,
this VVAD also has a higher score than it’s equivalent applied to the head
region. In general the FD’s performances here are only slightly below the
best performing VVADs, i.e., the 0.5 PPF and the combined speeds, whereas
the zero-speed’s performance here is considerably less.

Again, we zoomed in on the results for the mouth region and visualized
them using a box-whisker-plot, as depicted in Figure 12. Compared to Fig-
ure 9 the boxes generated from the LOSO experiment are less compressed,
corresponding to a wider spread of the individual results, it does however,
show roughly the same pattern of performance as the previous plot when
comparing them individually.
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Figure 12: Boxplots of speaker-independent F1-scores obtained on the CUAVE
frontal dataset. The boxes correspond to the Mouth results in the up-
per part of Table 3. For explanation see Figure 9.

The middle part of Table 3 shows the speaker-independent results of
our VVADs applied to the LIVER dataset, using a Leave One Speaker Out
CV. The speaker-independent results are clearly inferior to the speaker-
dependent results listed in the middle part of Table 2. Interestingly, simple
frame differencing often outperforms single-speed STem-VVADs. The full-
fledged STem-VVAD shows the best performance at all three regions of
analysis with the best result (0.55) obtained for the mouth region. The box
plots in Figure 13 illustrate the corresponding results for the mouth region.

The lower part of Table 3 lists our VVAD results obtained on the profile
faces of CUAVE dataset. Compared to the lower part of Table 2 the full-
fledged STem-VVADs here do not show a clear prevailing performance.
Although the performance tends to improve when zooming in from frame to
head to mouth, at each level the results for all VVADs are very similar. The
small difference in results is visualized by Figure 14 which contain the results
for the mouth area.

2.5 discussion

In this chapter, we studied whether it is possible to detect voice activity based
on facial movements, which has various potential applications when auditory
voice detection is difficult (e.g., when there is background noise or when
there are multiple speakers). Obviously, movement is an essential ingredient
of visual voice activity detection (VVAD), and hence we studied whether
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Figure 13: Boxplots of speaker-independent F1-scores obtained on the LIVER dataset.
The boxes correspond to the Mouth results in the middle part of Table 3.
For explanation see Figure 9.
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Figure 14: Boxplots of speaker-independent F1-scores obtained on the CUAVE pro-
file dataset. The boxes correspond to the Mouth results in the lower part
of Table 3. For explanation see Figure 9.
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spatiotemporal Gabor filters could be used successfully for this task. Our
set-up was as follows: we compared the performance of spatiotemporal Gabor
filters in our Stem-VVAD approach with two reference methods, namely a
straightforward frame differencing method and a static Gabor filter method
(i.e., zero-speed STem-VVAD), allowing us to capture the added value of both
Spatial and Temporal information. We compared results on two different
datasets (representing two extremes in the speech to silence ratio, which
is low in the LIVER and high in the CUAVE dataset). We looked at both
frontal and profile recorded faces, and compared performance at three levels
of granularity (entire frame, entire face, mouth only). Finally, we evaluated
the performance of the VVADs with both speaker-dependent models (where
each speaker is used both for training and testing) and speaker-independent
models (where we train and test on separate speakers).

The results present a clear picture. In almost all comparisons, the STem-
VVAD (combining all speeds) yields the best performance, outperforming
both the two baseline systems (and the chance performance level), sometimes
by a wide margin.

Our STem-VVAD does not suffer from unbalanced training and test data.
The results obtained from the LIVER dataset appear to be slightly better than
those obtained on the CUAVE dataset for both individual and generic models.
This suggests that the information extracted from this single-speech event
data is informative enough to distinguish between speech and non-speech,
even though the model is trained with an abundance of non-speech frames.
As we pointed out above, the LIVER dataset was originally collected to study
verbal and non-verbal expressions of surprise. It is interesting to point out
that apparently the facial movements associated with speech differ from the
ones associated with surprise, since our STem-VVAD approach picks up on
the former but not the latter.

Given the similar results obtained on the frontal and profile conditions of
the CUAVE dataset we argue that our STem-VVAD is robust to turning faces
(most notably in the speaker-dependent version). STem-VVAD does not rely
on advanced lip models, which makes it potentially well suited for automatic
speech detection in conference systems, where speakers tend to move their
heads freely.

VVAD performance increases when focusing on the mouth; for all three
techniques (FD, zero-speed, STem-VVAD), better results are usually obtained
when taking only the head into account rather than considering the entire
frame, and better results still when zooming in on just the mouth. Even
though it has been argued that information from the upper part of the face
(e.g., eyebrows) can be a useful cue for VVAD, this turned out not to help for
the techniques we studied, perhaps because when considering a larger region
of interest the chance of picking up speech irrelevant movements increase,
and the movement cues that could be informative are more likely to be lost
in the noise.

In addition, the speaker-dependent models (10-fold) perform (substan-
tially) better than the generic models (LOSO), even though all three methods
usually perform better than chance. This is perhaps not surprising because
the speaker-dependent models capture some of the idiosyncratic properties
of each speaker, which is not case for the generic models.
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Perhaps more importantly for our current purposes, we find that adding
temporal information, as we do in the spatiotemporal Gabor filters, does pay
off for VVAD. Zooming in on the mouth (where VVAD works best in our
set-up) the best performing STem-VVAD, which combines different speeds,
outperforms both reference VVADs, in both datasets, both frontal and profile,
and in both individual models as well as for the generic LIVER models.
Although the full-fledged mouth results for the generic CUAVE models are
better than the reference methods, the differences are negligible.

Looking at the experimental data for the mouth region we can see that
our STem-VVAD approach with all speeds could be a valuable addition to
traditional auditory VAD systems, especially in the speaker-dependent case
were a system is trained on an individual speaker basis. Achieving average
F1-scores of 0.78, 0.86 and 0.8, respectively for the three datasets, a reasonable
performance by itself. In the speaker-independent case the average F1-scores
obtained for the mouth region of our full fledged STem-VVAD appear to be
inaccurate enough for useful VVAD applications.

Our current method does not generalize very well, looking at the consider-
able differences between the speaker-dependent and the speaker-independent
results. Apparently, idiosyncratic speech characteristics are prevailing over
general speech patterns, considering the high F1-scores in the speaker de-
pendent case. Another possibility could be the non-linearity of the feature
space, to which we applied a linear SVM. In Wu et al. (2010) the authors
used spatiotemporal Gabor filters to classify facial expressions. Although
they report that using a non-linear SVM instead of a linear SVM yielded
no significant performance increase, they state that their considerably large
feature space (i.e., more than 2.2M per video sequence) generated by the non-
linear spatiotemporal Gabor filter responses might have made their problem
linearly separable. In our case the dimensionality of the feature space was
never greater than 96. Not being able to generalize very well is a disadvan-
tage for practical application where you would want to use these techniques
out-of-the box, for new speakers. It is conceivable that better results for the
generic model can be obtained when more data from more different speakers
become available. In addition, in future work we plan to experiment with
techniques that have the potential to make our STem-VVAD method general-
ize better to unseen speakers. For instance by scaling the mouth’s bounding
box to a fixed size, or by taking the complete (normalized) STGF transformed
mouth area (after dimensionality reduction) as input to a classifier.

2.6 conclusion

In general, we can conclude that STGFs offer a promising method for visual
voice activity detection. In particular, we have shown that adding temporal
information to the widely used spatial Gabor filters yields substantially better
results, than can be obtained with Frame Differencing or “standard” Gabor
filters, since STGFs make better use of the inherent visual dynamics of speech
production.

In the next chapters, we will study whether STGFs also outperform static,
spatial Gabor filters (SGFs) when applied to other social signal processing
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tasks, beginning, in Chapter 3, with assessing how difficult children find a
learning assignment, based on their non-verbal behaviour.





3 L E A R N I N G D I F F I C U LTY
A S S E S S M E N T

3.1 introduction

In a tutoring environment (e.g., classroom or online course) affective states
of students play an important role in learning (Grafsgaard, Wiggins, Boyer,
Wiebe, and Lester, 2013; Kort, Reilly, and Picard, 2001; Lehman, Matthews,
D’Mello, and Person, 2008; Masters, Barden, and Ford, 1979; Meyer and
Turner, 2006). For children it has been established that their positive affective
states stimulate learning whereas negative states inhibit it (Masters et al. 1979;
Meyer and Turner, 2006). Kort et al. (2001) have extended this finding and
suggest a broad range of valencies of affective states that influence learning.
The authors have examined various emotional states, including anxiety-
confidence and frustration-euphoria, that possibly play an important role
in learning. Arguably, identifying and properly acting upon those affective
states distinguishes expert tutors from novice ones. In this chapter, we will
study whether Gabor filters can be used to detect these kinds of affective
states, and whether, as we predict, the dynamic versions (STGFs) will do so
better than their static counterparts (SGFs). Additionally, in this chapter we
will compare Gabor filters with an alternative method, which more explicitly
models the face of the learner.

So what, in general, are cues for students’ affective states? Often, these will
be closely related to their skill level. If students are presented with material
far above their skill level this leads to frustration or anxiety which is counter-
productive to learning, whereas material that is too easy leads to boredom or
disappointment. According to Flow Theory (Csikszentmihalyi, 1990) one of
eight mayor components of an optimal (learning) experience is the balance
between the challenges of the presented problem and the student’s skills
to solve it. Put differently: problems should be just challenging enough.
Meyer and Turner (2006) found evidence for this. They observed students in
classrooms in student teacher situations. Students that were confronted with
challenges that by far exceeded their skills, reported low experiences of flow,
whereas students who were highly involved in challenging tasks reported
more experiences of flow. Therefore, a proper balance between skills and
challenges to get students motivated is essential for their learning process.

Ideally, for course material to be just challenging enough, a tutor would
adapt the challenges presented to the skill level of the individual students. In
(human) teacher-student situations this can be achieved through adjusted or
personalized challenges, however for large groups this can be infeasible. For

This chapter is partly based on Joosten, B., van Amelsvoort, M., Krahmer, E., & Postma,
E. (2011). Thin slices of head movements during problem solving reveal level of difficulty.
Proceedings of the International Conference on Audio-Visual Speech Processing 2011 (AVSP 2011).
Aug 31 – Sep 3, 2011 Volterra, Italy, pp. 87-92. and Amelsvoort, M., Krahmer, E., Joosten, B.,
& Postma, E. (2013). Using non-verbal cues to (automatically) assess children’s performance
difficulties with arithmetic problems. Computers in Human Behavior, 29, 654-664.
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these cases computer-aided learning systems may be provided. Since the 60’s,
computer-aided learning systems have been developed that determine the
level of challenges presented partly based on the student’s past input (Suppes,
1966). For example, when a student appears to be struggling, the system
lowers the level of difficulty of the exercises or simplifies the instructions. The
success of these early computer-aided learning systems was hampered by
their inability to reliably assess the skill levels of students. The reason was that
these systems determined skill level by only analyzing the answers provided
by students. By only taking into account the answers given by students and
neglect their affective states (e.g., boredom, frustration, happiness), these
computer-aided learning systems are bound to fail.

Affective states are important, because, for instance a student can give a
correct answer (e.g., by guessing) and still be insecure about it. In addition,
compared to classical assessments such as written or oral exams, affective state
assessments potentially spot problems earlier by monitoring the student’s
attitude (e.g., bored, frustrated, anxious) towards the material (Rothblum,
Solomon, and Murakami, 1986). Looking inside students’ minds to assess
their affective state is generally not feasible. Potentially, non-verbal cues may
be informative of the underlying affective state of the learner. Therefore,
taking non-verbal cues into consideration could support computer-aided
learning system’s ability to evaluate students. This raises two questions: (1)
which non-verbal cues do learners actually display? And, (2) can we detect
these automatically?

Non-verbal cues associated with learning

As discussed in the general introduction (Chapter 1), non-verbal cues can
be defined as any physically observable human type of behavior that is not
directly derived from the spoken words yet may convey a certain message.
These cues can be either intentional or unintentional and range from hand
or bodily gestures to tone of voice and facial expressions (Knapp et al. 2013).
For instance, they can amplify or emphasize the spoken message (e.g., with
hand gestures and tone of voice) or they can signal a cognitive or emotional
state (such as thinking, curiosity or happiness, using facial expressions or a
certain body pose).

As in all everyday situations non-verbal cues occur in learning situations.
Generally, a distinction can be made between non-verbal cues associated with
affective (e.g., happiness, boredom) states and those associated with cognitive
(e.g., concentration, puzzlement) or physiological (e.g., fatigue or pain) states.

A long line of research has looked into the non-verbal expression of emo-
tion (e.g., Ekman, 1973). Traditionally, much of this work has concentrated on
so-called basic emotions (e.g., Ekman, 1992a; Ekman and Friesen, 1975), some
of which are prima facie relevant in the context of learning (e.g., surprise, be-
cause the learner is confronted with unexpected material, happiness, because
the learner successfully understands material, or sadness, because he or she
does not understand the material). However, it can be argued that other, more
social emotions are at least as relevant (e.g., Adolphs, 2002b). Lehman et al.
(2008) have identified four emotional states that also have (clear) non-verbal
behavior associated with them, occurring significantly in one-on-one learn-
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ing sessions with a human expert tutor: confusion, happiness, anxiousness
and frustration. Other research suggest the presence of boredom, interest,
surprise, curiosity, anger or satisfaction in learning (Craig, Graesser, Sullins,
and Gholson, 2004; Sidney et al. 2005).

Besides affective states, cognitive states may also play a central role. Ex-
amples of cognitive states of relevance to the educational setting are: com-
prehension and contemplation (D’Mello et al. 2008; Hart, 2008; Howell and
Shepperd, 2013). Inferring cognitive states from facial expressions is an active
area of research (El Kaliouby and Robinson, 2005; Gatica-Perez, 2009; Little-
wort, Bartlett, Salamanca, and Reilly, 2011a). An obvious source for these
cues to originate from is the presented material and the student’s level of
knowledge towards it. Novel or complex topics are likely to provoke different
non-verbal cues than well-known or simple ones do. In our earlier work, we
have also found that children’s learning states (i.e., whether they experience
an arithmetic problem as easy or hard) are reflected in their non-verbal be-
havior of the children (Amelsvoort, Joosten, Krahmer, and Postma, 2013).
Moreover, it was found that adult judges are capable of correctly interpreting
this non-verbal behavior. More in particular, it was found that adults are able
to determine above chance whether a child is experiencing learning problems
based on children’s faces and by listening to their voice, both in isolation and
in combination. The visual cues generally were most predictive for partic-
ipants. Pausing information was one of the strongest cues, but even when
clips were presented without pauses, adult judges were able to determine
whether a child found the arithmetic problem easy or difficult, based on just
the answer. For more details, we refer to the paper.

An important channel of non-verbal cues for determining a student’s affec-
tive state is the face. Whether students are easing through or struggling with
a presented problem is often revealed by their facial expressions. Especially
solving difficult problems often yields characteristic facial expressions (Craig,
D’Mello, Witherspoon, and Graesser, 2008). The question is if and how such
cues can be detected automatically.

3.1.1 Related Work

In the computer-aided learning domain several attempts have been made to
incorporate facial expression detection in an automatic system (Banda and
Robinson, 2011; Bosch, Chen, and D’Mello, 2014; D’Mello et al. 2008; Dragon
et al. 2008; Grafsgaard et al. 2013; Kapoor, Burleson, and Picard, 2007; Kapoor
and Picard, 2005; Littlewort et al. 2011a; Whitehill, Bartlett, and Movellan,
2008). In Bosch et al. (2014), Grafsgaard et al. (2013), Littlewort et al. (2011a),
and Whitehill et al. (2008) the researchers used the Computer Expression
Recognition Toolbox (CERT) (Littlewort et al. 2011b). CERT is a tool that au-
tomatically detects specific facial muscle movements, so called Action Units
(AU) as well as head pose information and the basic emotions. AUs are the
building blocks of the Facial Action Coding Scheme (FACS), a taxonomy
to describe all possible facial movement, which we also briefly discussed
in Chapter 1. The approximations of AUs and head pose data are explicit
features pertaining to the physiological state of the face. Banda and Robinson
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(2011) and Dragon et al. (2008) build upon the “mind reading” system devel-
oped by El Kaliouby and Robinson (2005) to infer mental states from facial
expressions. These systems map the occurrence of geometric and appearance
features through a hierarchical model of three layers to a probability for
each one of six mental states (agreeing, concentrating, disagreeing, interested,
thinking and unsure). The AutoTutor system (D’Mello et al. 2008) uses an
array of sensors to detect cognitive states such as boredom, engagement/flow,
confusion and surprise and is based on the IBM BlueEyes system developed
by Kapoor and Picard (2005). By tracking the pupils of the eyes they can also
infer the location of the eyebrows and subsequently measure upper facial
action units using template matching.

Different methods for automatic facial expression detection exist, which
mainly differ in their use of features and expression models. Generally
speaking, we can identify two types of features, i.e., 1) geometrical features,
estimated from the locations of fiducial points in the face, and 2) appearance
features, which use pixel intensity values at a certain region of interest (ROI)
of either the original input image or a (filter) transformed image. Automatic
facial expression detection systems exist which employ one or multiple
instances of the two different feature types (Ashraf et al. 2009; Dibeklioğlu et
al. 2015; Littlewort et al. 2011b). Detecting the expression based on the features
involves choosing the right classifier and determining whether to operate
on static feature information (i.e., geometrical or appearance information
from one frame or image) or also take the dynamical, temporal aspect of the
expression into account.

The choice of feature type and whether or not to use temporal information,
remains an active area of research and often largely depends on the expres-
sion(s) to detect and the available training data. Obviously, when the training
data consists of isolated still images, temporal information as from successive
frames is absent. Nevertheless, recent advances in automatic facial expression
detection have shown to be effective at detecting certain expressions without
using temporal information (Chu, De la Torre, and Cohn, 2013; Littlewort
et al. 2011b). These advances mainly relate to what is being referred to as
message-based expressions (Cohn, 2007), i.e., expressions with a clear inten-
tional message such as the prototypical facial expressions ascribed to the basic
emotions (i.e., joy, surprise, sadness, disgust, fear and anger). Training data
for message-based expression detection is often obtained from posed or acted
facial expressions. Unfortunately for automatic detection, spontaneous expres-
sions, in contrast to their posed ones, often show less intense characteristic
traits and may even differ in configuration and timing altogether (Reisenzein,
Bordgen, Holtbernd, and Matz, 2006; Visser, Krahmer, and Swerts, 2014).
Moreover, facial expressions related to more complex emotional states or
cognitive states may even vary from person to person.

3.1.2 Current Studies

The goal of the current study is to compare the effectiveness of different
automatic methods to track non-verbal cues as an indication of learning
difficulties. Like in the other chapters of this thesis, we will be comparing
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static (SGF) versus dynamic features Gabor filters (STGFs), to see whether
the addition of dynamic information leads to an improvement of the results.
In addition, in this chapter we will also compare the implicit Gabor filter
method, with an explicit alternative method, which tracks specific predefined
locations in the face.

More specifically, the explicit method is based on Active Appearance Mod-
els (AAM) (Cootes et al. 2001; Littlewort et al. 2011b; Matthews and Baker,
2004) that extract geometrical information of fiducial facial landmarks. Obvi-
ously, a single sample of an AAM’s output contains no dynamics, however,
considered over time, the displacements of landmarks represent facial move-
ment. We will refer to this method as our explicit dynamic method, since it
explicitly represents speed (i.e., in pixels per frame). The implicit method,
as said, is based on spatiotemporal Gabor filters (STGF), as discussed in
Chapter 1, and will be compared to SGFs. Responses of spatiotemporal Ga-
bor filters consider pixel intensity changes within a specified window of
frames. In our case the spatiotemporal Gabor filters operate on the pixel
changes in facial regions, so-called appearance features. Since the filters can
be tuned to respond maximally to specific motion, the responses of multiple
individual filters generate a numerical signature of the frame’s dynamics.
The method based on STGF will be considered our implicit dynamic method,
since movement is indirectly assessed through the filter’s responses.

We will evaluate the two facial expression detection methods on the task of
difficulty assessment. This task involves determining whether facial expres-
sions displayed during the answering of questions, as assessed by the two
methods, are indicative for the level of difficulty perceived by the surveyed.

In this study we use data of elementary school children (i.e., second and
fifth grade) that answer arithmetic questions that are either easy or hard, based
on their pre-assessed skill level. This dataset was collected in the context of a
behavioral study (Amelsvoort et al. 2013) in Tilburg. Further details about
the dataset are described in Section 3.3.1.

3.2 method

To measure facial expressions we have introduced two methods, the explicit
method and the implicit method, that employ two different types of features
focusing on specific traits of facial movement. A method in our case is
comprised of three stages: face localization, extraction of dynamic features,
and evaluating their performance with respect to detecting facial expressions
or affective or cognitive states displayed through facial expressions. The
explicit method identifies per frame a set of fiducial landmarks on the face
and evaluates specific geometrical displacements over time so that facial
movement can be derived. The implicit method captures facial dynamics by
measuring the intensities of moving contours at different spatial and temporal
frequencies (i.e., spatial scales) and spatial orientations. Both methods will be
discussed in greater detail in the next two subsections.
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Explicit Method

Our explicit method’s main component is the well-known Active Appearance
Model (AAM, (Cootes et al. 2001; Matthews and Baker, 2004; Van der Maaten
and Hendriks, 2010)), which is a statistical method that is able to learn a set of
predefined landmarks on any instance of a generic object. In our case it is able
to locate a set of fiducial landmarks on frontal faces. By manually specifying
a grid of fiducial facial landmarks on a sufficient number of frames, the
AAM method is able to create a prototypical model of a face that combines
both the geometrical variation in landmark positions and the differences
in appearance of the underlying faces. Figure 15 shows the specification of
the landmark grid superimposed on the face in one of our frames. The dots
(fiducial landmarks) and lines represent the grid. The lines connect dots
belonging to the same facial part (e.g., mouth, nose, eyes, or eyebrows). If
the selected annotated training frames are representative for most of the
facial movement the method learns the correct landmark displacement which
corresponds to the visual changes in the face. This makes it possible to
automatically fit the grid of fiducial facial landmarks on faces in frames that
have not been annotated.

Dynamic Feature

With the AAM applied to all the frames in the data set we have the location
information of a substantial number of facial landmarks at our disposal.
Given these locations over time we can extract numerous motion features
that originated from certain head and facial movements. Our explicit method
focuses on head movement. More specifically, we roughly approximate head
pose in 2D space by computing a center-of-mass feature that changes with
movements of the head. The large dot in the center of the triangle illustrated in
Figure 16 represents our center-of-mass feature, computed using the locations
of the eyes and chin (i.e., corners of the triangle) and the tip of the nose. From
the Cartesian vectors defined by the change of position of our center-of-mass
feature we derive polar coordinates which represent the angle (in the 2D
plane) and magnitude of the head movement.

Implicit Method

Our implicit method relies on Gabor filters to quantify spatial and temporal
changes in the input images. In general, filters applied to images calculate
a new value for each pixel by combining filter coefficients with the values
of the surrounding pixels. The filter coefficients determine what type of
pixel transitions will mostly be affected. In spatial Gabor filters the filter
coefficients are defined by a Gabor function as defined in Section 1.3. Using
the parameters of the Gabor function we can create filters that respond
maximally to pixel transitions at a specific orientation and with a specific
spatial frequency, making them well suited to code facial movements.

Spatial Gabor filters have proven to be quite effective in classifying facial
expressions (Littlewort et al. 2011b). STGFs extend spatial Gabor filters with
the dimension of time, by incorporating the pixel transitions within a given
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Figure 15: Example of a manually annotated landmarks (dots) with the lines con-
necting them representing the grid projected on a single frame in the
data set.

Figure 16: Illustration of our center-of-mass feature. The position of the large dot is
the geometrical center of the fitted landmark positions of the eyes and
the middle of the chin (depicted by the triangle) and the tip of the nose,
approximating their center-of-mass.
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Figure 17: Illustration of two frames in our data set (upper row) and two correspond-
ing spatiotemporal Gabor filter responses (lower row). The left filter was
tuned to respond maximally to upward movement (θ = π/2) at speed
is 1 pixel per frame (PPF) and spatial frequency of 0.35 pixels per cycle
and the right filter is tuned to rightward movement (θ = 0) at a speed of
2 PPF and spatial frequency of 0.22 pixels per cycle. The darkness of a
pixel is proportional to the filter response.

window. Effectively, this means that we can tune filters to respond to moving
contours with a specific direction, speed, and spatial frequency. Figure 17

illustrates the transformation of two pairs of subsequent frames in our data
set using two specific STGFs. The left filter was tuned for upward motion at
the speed of 1 pixel per frame, whereas the right filter responds maximally to
rightward motion at 2 pixels per frame (PPF). Filter responses are represented
by shades of gray. Darker shades represent higher filter responses. Note that
the filters responds to contours that are perpendicular to the direction of
movement that the STGF is tuned to. With a filterbank of STGFs that covers
the range of movements in our data set we “measure” the responses in terms
of movement generated by the facial expressions.

Dynamic Feature

Our implicit method convolves a filter bank of G STGFs on every video
sequence in the data set, resulting in G transformed sequences. Using a face
detection algorithm we determine the location of the head from which we
extract the filters’ responses. For each filter in our filter bank we aggregate
the responses of the identified head region by summation yielding one value
per filter per frame. Each value signals the presence of visual structure
that matches the filter’s properties. For instance, a large value for a vertical
filter tuned to rightward motion indicates the presence of rightward moving
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vertical contours in the facial region. Our data vector preliminary to our final
feature vector thus consists of G × F aggregated STGF values for a given
window of time (where F represents the number of frames). Similar to our
spatial aggregation, we also apply a temporal aggregation of the responses.
Per region of interest we average each spatially aggregated value over the
number of frames in the time window, which results in our final feature vector.
Predicting which type of question was posed amounts to training a support
vector machine on labeled feature vectors.

3.3 experimental evaluation

We evaluated our two aforementioned dynamic facial expression detection
methods, viz., the explicit method, and the implicit method on the task of
difficulty assessment. For this task we used data acquired during an expres-
sion eliciting experiment (Amelsvoort et al. 2013). The next subsection will
give more details about the data collecting procedure and the characteristics
of our data set. Then we will discuss our experimental approach to diffi-
culty assessment, which we based on the notion of thin slices (Ambady and
Rosenthal, 1992) and we will provide relevant implementation details for
both the explicit method as well as the implicit method. Finally, we report the
evaluation procedure we employed to test the effectiveness of both methods.

3.3.1 Dataset

Our dataset consists of video recordings of children in second (group 4 in the
Dutch school system) and fifth grade (group 7) of elementary school. Each
video clip captures a child’s response to an arithmetic problem up until the
given answer. For each child there are two recordings corresponding to two
levels of difficulty of the problem, i.e., easy and difficult (based on level of
skill expected for children of their respective grades), which also comprise
our two labels. By varying the level of difficulty the purpose of the data
acquisition was to elicit different facial expressions in both conditions. Given
the straightforward answers they evoke and the structured ways to determine
what type of arithmetic level a child should have, these problems are well
suited for this expression eliciting task.

During the data collection the children were instructed that they would
participate in the evaluation of a new video brain game, where they would
have to answer arithmetic problems a quickly as possible. In the recording
setup children were presented with a PowerPoint presentation that resembled
a game interface that showed them arithmetic problems. Examples of the
slides are shown in Figure 18. These problems were taken from an official test
in the Dutch School System, one with which problems could be easily mapped
to the easy or hard category, based on the level a particularly child should
have. On the laptop showing the PowerPoint presentation, a camera was
placed that recorded children’s facial expressions to the presented problems.

Consented data were collected from 55 children, resulting in a data set of
110 videos (i.e., one video per category). The set is almost balanced for grade,
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Figure 18: Slides from the game interface (Amelsvoort, Joosten, Krahmer, and
Postma, 2013), extracted from the Nintendo game: Dr Kawashima’s Brain
Training How old is your Brain?

i.e., 27 second grade children (14 boys, 13 girls) and 28 fifth grade children
(15 boys, 13 girls). Videos are recorded with a frame rate of 25 frames per
second with video lengths varying from 37 frames in the shortest clip and
1114 frames in the longest clip. Representative stills are shown in Figure 19.

There are small variations of position and pose of the head between and
within videos. However, with respect to the camera, children tend to look
slightly tilted downwards and a little to the left. Partial facial occlusions
due to glasses and hair occur in some of the clips and there are moderate
variations in illumination since the videos were recorded throughout the day
using a natural light source.

3.3.2 Implementation Details

The human judgment experiment of Amelsvoort et al. (2013) revealed that
pause information (e.g., the duration of pauses) is one of the strongest cues
for difficulty, hence including this cue in an automatic method would be easy
but arguably also somewhat trivial and uninformative. Our goal here is to
see whether automatic detection is also feasible on short fragments. Inspired
by the notion of thin slicing (Ambady & Rosenthal, 1992; Gladwell, 2005),
we decided to restrict our computational analysis to the first second (i.e., 25
frames) of each fragment. The “thin slice paradigm” conjectures that certain
behavior can already be spotted by observing only a small window of time.
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Figure 19: Representative stills from our dataset with varying head poses and facial
expressions. The top row shows children performing easy problems, the
bottom hard ones.



50 learning difficulty assessment

Note also that this approach is helpful for intelligent tutoring systems, because
they would benefit from detecting relevant cues as quickly as possible.

Both facial expression detection methods rely on the correct discovery of a
person’s face in each video frame in order to correctly measure expressions.
For face detection we used the OpenCV implementation of the Viola and Jones
(2001) face detector with Local Binary Pattern features. This detector is very
fast and has a high detection rate. We estimate the locations of faces where
the detector was unsuccessful by interpolation. Unfortunately for three video
sequences reliable face detection was not possible, therefore these sequences
were omitted from the analysis. Next we will describe the experimental setup
for both of the expression detection methods using the face locations as input.

Explicit Method: AAM

Active Appearance Models do not work out of the box. They need at least a
number of representative annotated images to fit the landmark grid to unseen
instances. Although pre-annotated datasets exist, these usually consist of
images of adults. Thus, for AAMs to work on our dataset we had to manually
annotate a substantial representative portion of the frames before we could
apply them to the rest. Per participant, we manually selected at least 8
frames that varied as much as possible in pose and expression and adopted a
landmark location configuration of 66 points inspired by Gross, Matthews,
Cohn, Kanade, and Baker (2010). Specifying the positions of the landmarks
was performed with the publicly available AAM annotation tool developed
by Tim Cootes 1.

Following the annotation phase is the creation of the actual shape and
appearance model that constitute the AAM, for which we used the MATLAB®

implementation provided by Laurens van der Maaten 2 (Van der Maaten and
Hendriks, 2010). With the instantiated AAM the facial landmark grid is fitted
to each frame, including the ones previously annotated.

We extract the center-of-mass feature Figure 16 for each frame in the
thin slice and convert its displacement between consecutive frames to polar
coordinates. We aggregate the coordinates of each slice in a 2D histogram
which divides the angles over 10 bins (ranging from −π tot π radians) and
the magnitudes over 6 bins (ranging from 0 to 6 pixels). One such histogram
per participant is considered our final feature for classification.

Implicit Method: Petkov and Subramanian STGF

Our first implicit method uses the implementation of Petkov and Subrama-
nian (2007) as discussed in Section 1.3 and will henceforth be referenced as
PS-STGF. Their approach allows us to construct velocity tuned STGFs. We
constructed a filter bank of G = 6× 8 filters sensitive to 6 different speeds (v =

{0.5, 1, 1.5, 2, 2.5, 3} PPF), 8 orientations (θ = {0, 0.25π, 0.50π, 0.75π, . . . , 1.75π}
radians), to cover as much as possible the variation in speeds and orientations
of movement present in our dataset. The remaining parameters are set to their
standard values as reported by Petkov and Subramanian (2007). We set the

1 http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_
tools_doc/index.html

2 http://sspnet.eu/2011/03/active-appearance-models/

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html
http://sspnet.eu/2011/03/active-appearance-models/
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parameter for the Gaussian envelope to “moving”, which results in velocity
tuned filters (setting the parameter to “stationary” yields temporal frequency-
tuned filters). The video sequences in the dataset were convolved with the
PS-STGFs. The energy responses of the area enclosed by the bounding box
indicating the location of the face is aggregated as specified in Figure 3.2.
The dimensionality of the resulting PS-STGF feature vector for frame f , A( f ),
is equal to G = 6× 8 = 48. We also construct a static variant (PS-SGF) to
compare the relative contribution of the dynamic filter. For this variant we set
v = 0, i.e., the zero-speed filter responses, which yields an eight-dimensional
feature vector.

Implicit Method: Heeger STGF

The second implicit method we evaluated is frequency-tuned in the temporal
plane, i.e., the envelope of the spatial Gaussian is stationary. This Heeger
method was introduced in Section 1.3 and will be referred to as H-STGF.
Here we opted for a straightforward implementation (Zorn and Lokesh, 2010)
inspired by the work of Heeger (1987), who used the Gabor motion energies
of multiple filters to estimate velocity in image sequences, as explained in
Section 1.3. Each filter is constructed using 6 input variables, viz., 2 spatial
center frequencies (x0, y0) expressed in cycles per pixel, one temporal cen-
ter frequency (t0) expressed in cycles per frame, and 3 standard deviations
(σx, σy, σt) for the Gaussian envelope in each axis (i.e., x,y and t). Table 4 lists
the center frequencies we used that are sensitive to 8 different orientations.
We also varied the spread of the Gaussian envelope in the 2D spatial domain,
by restricting σx = σy = {2, 4, 8, 16} and keeping σt at 1. This resulted in
a spatiotemporal filterbank of G = 8× 4 filters. Also here, we construct a
static counterpart (H-SGF) of the dynamic features, by setting the temporal
Gaussian in the filter’s equation to 1. Since the static variants of two perpen-
dicular oriented directional dynamic filters (e.g., filters sensitive to left and
right movement) are identical, our static feature vector is half the length of
its dynamic counterpart: G = 4× 4.

Table 4: Center frequencies for each of the eight orientations of our Heeger STGFs.
Spatial frequency (ωxandωy) is expressed in cycles per pixel and temporal
frequency (ωt) in cycles per frame (Zorn and Lokesh, 2010).

orientation ωx ωy ωt

↙ 1/4 −1/4 −1/4

↓ 1/4 0 −1/4

↘ 1/4 1/4 −1/4

→ 0 1/4 −1/4

↗ 1/4 −1/4 1/4

↑ 1/4 0 1/4

↖ 1/4 1/4 1/4

← 0 1/4 1/4
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3.3.3 Evaluation Procedure

The comparative evaluation of the implicit and explicit dynamic features
relies on a single classification procedure. Often in visual pattern recognition
experiments the performance greatly depends on some sort of dimensionality
reduction scheme or other feature selection procedure to optimize results. For
most classifiers there are generally various parameters that can be tweaked to
improve results of classification experiments. In this experiment we adopt a
straightforward feature selection procedure that we apply to the data of both
the explicit as well as the implicit methods in order to make a fair comparison
between all methods. Our goal is not to construct an optimized system that
is robust in assessing a person’s perceived level of difficulty.

The optimization scheme we apply is able to sift through the important
features and can learn fairly complex decision boundaries but with only one
model parameter to vary. For our purposes we use the Random Decision
Forest (RDF) classifier in MATLAB® to 1) find the most relevant subset of
features, and 2) to determine the number of trees that yields the highest Out-
Of-Bag Accuracy (OOBA). Our procedure is consists of three steps. In the
first step we grow an RDF with an arbitrarily chosen number of 50 trees, and
all other settings at their default values, except for the parameter OobVarImp,
which is set to ‘on’. This parameter allows us to evaluate afterwards the
importance of each feature for classifying the out-of-bag samples during
the creation of the RDF. Feature importance is determined by observing the
classification error after permuting the values of a specific feature in the
out-of-bag samples. If the error increases the feature is considered relevant
(after all, the original values achieved a better classification). The number of
relevant features varies per method and if the procedure does not find any
informative features we fall back to using all available features. The number
of features selected following this approach typically ranged from 5 to 9
features. In the second step we take a subset of the data using the identified
“important” features from the previous step. Then, we once more construct
an RDF, and let it use up to 500 trees. Again, we use all the default values,
except for OOBPred which is turned on to check the classifier’s performance
on the OOB samples at all intermediate number of trees. Finally, in the third
step we report the OOBA of the model with the number of trees that resulted
in the highest performance. These three steps give rise to optimized models
that may have been overfitted. However, our intention is to find the optimal
model to exploit both STGF variants maximally, in order to establish which
method is the best. Since RDFs rely on random re-sampling of the data,
different partitions of the data give different performance results. To account
for the probabilistic behavior of the classifier, both aforementioned steps are
repeated a hundred times and their results are averaged. The motivation for
describing performance in terms of accuracy is that our dataset is almost
balanced, this in contrast to our datasets in Chapter 2.
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Table 5: Average out-of-bag accuracy scores plus standard deviation for five types
of non-verbal cues assessment methods.

Method Accuracy Standard Deviation

AAM 0.66 0.02

PS-STGF 0.53 0.03

H-STGF 0.56 0.02

PS-SGF 0.49 0.04

H-SGF 0.51 0.04

3.4 results

We start by illustrating the results of the explicit methods. This distinction is
clearly visible in Figure 20, where for each participant the raw coordinates
(i.e., with respect to the coordinates of the frame) of the center-of-mass
features are plotted as a trace for the easy (left) and hard (right) questions
during one second (25 frames), directly following the presentation of the
stimulus. The traces for the easy questions tend to be vertically oriented,
whereas the traces for the hard questions seem to be diagonally oriented.
These traces correspond to vertical and diagonal movements of the head
(nose), respectively. The movements are also apparent in some individual
fragments. Figure 21 provides an illustration by showing the movements of
the same participant in both the easy and hard conditions. The photo’s show
two color-coded frame differences between the first and the last frame of our
thin slice to emphasize the movement. Magenta-colored regions denote the
position of the participant at frame t = 1, whereas the green parts correspond
to the position at frame t = 25. Furthermore, we superimposed the center-
of-mass trajectory for reference. By examining the displacements of the eyes
in the photo’s, we clearly see a vertical (top image) and a diagonal (bottom
image) direction for the easy and hard question respectively. Apparently, this
distinction in movement is also picked up by the RDF classifier which is
summarized in Table 5. The first row in this table indicates a 66% average OOB
classification accuracy for the explicit (AAM) method. The AAM result clearly
illustrate that the explicit method is able to detect behavioral differences in
head movements for easy and hard questions, at least to some extent.

We now turn to a quantitative comparative evaluation of our implicit
methods with the explicit method. Inspection of Table 5 reveals that the
explicit method outperforms all implicit methods, with a 66% accuracy for
the AAM method versus a 56% accuracy for the best achieving implicit
method, H-STGF. Importantly, for both Gabor implementations we find that
whereas the static (SGF) variants perform near chance level, their dynamic
counterparts (STGF) result in a (somewhat) better performance. This suggests
that the more relevant information for the task at hand is in the facial
dynamics.

The results of the comparative evaluation of the different methods is
illustrated in Figure 22. The box-whisker plots depict the distribution of
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Figure 20: Individual trajectories of the center-of-mass feature plotted on a zoomed
in region of the frame for all video clips. Different colors represent
individual participants although multiple participants share the same
color and are therefore merely added as a visual clarification.

the out-of-bag accuracy (OOBA) for an RDF classification experiment that
was repeated a hundred times. We refer to Section 2.4 for an explanation of
the representation of boxes and whiskers. From left to right, the five plots
show the distribution of accuracies for the explicit method (AAM) and the
two dynamic implicit methods (PS-STGF and H-STGF) and the two static
implicit methods (PS-SGF and H-SGF). The dashed line crossing all boxes
corresponds to classification at chance level. Methods for which the box-
whiskers extend below the chance-level line perform on a par with random
guessing (i.e., tossing a coin). From this plot it is apparent that the explicit
dynamic AAM feature outperforms all implicit features based on Gabor
filters, since the whole box-whisker of the AAM extends above all other
box-whiskers. Furthermore, it is noteworthy to mention that only for the
AAM method and the H-STGF method each subject has a higher average
accuracy than chance.

3.5 discussion

The goal of this study was to compare different approaches to detect non-
verbal cues for learning. As in the other chapters, we compare static (SGF)
and dynamic (STGF) Gabor filters for this task. Additionally, we compare the
implicit Gabor method with the explicit AAM method.

These methods differ first and foremost in how explicitly they model move-
ment. The explicit method used AAMs to determine facial landmarks and
subsequently derived an explicit movement feature that represents rigid head
movement. The implicit method is based on S(T)GFs, whose features model
facial movement implicitly, for which we examined two implementations,
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(a) Easy question

(b) Hard question

Figure 21: Composite images of the first and last frame of two thin slices pertaining
to (a) an easy question and (b) a hard question. Superimposed are the
trace plots of our center-of-mass feature for all subsequent frames which
shows the (subtle) difference in movement orientation, i.e., vertical for
easy questions and diagonal for hard questions. The gray overlay rep-
resents the areas where the two frames have the same intensities. The
magenta (first frame) and green (last frame) regions show where they
differ.
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Figure 22: Estimation of the classification performance of difficulty assessment for
five methods methods of movement detection: 1) AAM, 2) PS-STGF, 3)
H-STGF, 4) P-SGF, and 5) H-SGF. The box-whiskers represent the spread
of the out-of-bag accuracy (OOBA) for a repeated (100 times) random
decision forest (RDF) classification experiment with different random
initializations per repetition. For each feature type we chose the number
of trees (i.e., [1, 500]) in the RDF experiment that maximizes the average
accuracy. The diamond in each box represents the averaged classification
accuracy for all samples. The dashed line indicates performance at chance
level.

i.e., 1) the implementation by Petkov and Subramanian (2007), and 2) an
implementation based on Heeger (1987).

Results for the explicit, AAM-based method revealed that head movements
as captured by center-of-mass feature help in distinguishing easy from hard
problems, where easy problems are associated predominantly with vertical
movements and hard problems are more likely to be accompanied by move-
ment in a diagonal direction. It is worth emphasizing that this cue is already
apparent in the first 25 frames, and detecting this cue in such a short fragment
for human judges is presumably rather difficult. This orientation preference
could be in line with the findings of Wells and Petty (1980). In this work, the
researchers studied the effect of vertical (nodding) versus horizontal (shaking)
head movement on processing persuasive messages. They postulated that
bodily movement can either enhance or inhibit specific behavior, depending
on a previous positive or negative association, respectively. In this case, head
nodding is generally associated with agreeing (positive), while head shaking
often means disagreeing (negative). Participants had to listen to either a pro-
attitudinal or a counter-attitudinal spoken message whilst simultaneously
moving their head either vertically or horizontally. One of the outcomes of
the study was that participants who had to perform (incongruent) vertical
head movement in the counter-attitudinal condition found this harder to do
than participants who were instructed to move their heads horizontally. In the
pro-attitudinal condition the reverse effect was observed, thus, suggesting a
preference for congruent head movement with respect to the attitude towards
the message. It can be argued that arithmetic problems do not evoke a strong
opinionated attitudes, however, depending on skill level or level of academic
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risk taking, students might rather answer easy questions than hard questions.
The predominantly vertical head movement displayed by the children when
answering easy questions could be attributed to a “preference” for easier
questions, which could facilitate this movement. Following similar reasoning,
being presented with a harder problem could also steer their movement, in
this case mostly in a diagonal direction.

While the explicit method worked surprisingly well, our two implicit
methods fared considerably less well. Based on our earlier work on visual
speech detection in the previous chapter, where we showed that STGFs
outperformed various other methods, including, most notably, static SGFs,
we expected the implicit method to work well for this task. Also other studies
(Siritanawan, Kotani, and Chen, 2014; Wu et al. 2010) suggested that STGFs
are capable of picking up (subtle) signals, but this could not be confirmed
for our current data set. However, crucially, we did find that the two STGFs
outperformed the corresponding SGFs, indicating that there is a benefit (albeit
a small one) of adding dynamic information for detecting learning difficulties
in our stimuli.

We identify two possible explanations for the poorer performance of the
implicit method, compared to the explicit one. The first possible explanation
is inherent to the averaging over many STGFs as happens in our aggrega-
tion scheme. When averaging filter responses over an area as crude as the
bounding box around a face, subtle changes of task-relevant movements (the
"signal") picked up by one or a few filters, could be smoothed out by the task-
irrelevant movements picked up by the remaining filters (the "noise"). This
limitation could be addressed by abandoning the spatial aggregation or by re-
ducing the spatial extent of aggregation. A second possible explanation could
reside in the vast STGF parameter space. It is well-known that the optimal
configuration of parameters for a given visual task requires empirical studies
Long, Wu, Movellan, and Bartlett (2012). In the most straightforward case
STGFs have three components that can be adjusted, i.e., 1) spatial frequency,
2) orientation, and 3) spatiotemporal frequency. Optimizing the parameter
space for each specific task is often infeasible. In our work we choose to keep
the parameter settings at the suggested values we found in the respective
papers (Heeger, 1987; Petkov and Subramanian, 2007). It may be the case that
our task requires different parameter settings.

In addition, it is important to add that the AAMs require manual prepro-
cessing, while the S(T)GFs do not require this. Certainly when it comes to
the subtle movements under investigation here, it may be that this manual
preprocessing step is essential for good performance results.

In general, our results suggest that it is feasible to automatically assess
learning difficulty based on facial expressions of children, where the best
performance is obtained using an explicit method. Note that these results
are based on thin slices, which suggests that this kind of information can
already be used in early stages. However, in practice, the best and more robust
results are probably obtained by including longer stretches (including pause
information as well as other specific non-verbal cues, such as frowning or lip
puckering) as well auditory information. Finally, with the present feasibility
and state-of-the-art performances in various visual domains, representation
learning using deep neural networks (Goodfellow, Bengio, and Courville,
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2016) with time-varying filters, could help to automatically develop and
configure the best spatiotemporal filter settings through learning.

3.6 conclusion

In this study we set out to compare different methods of measuring non-
verbal cues in the face for assessing learning problems. We compared the
performance of two implicit methods based on Gabor filters, one static (SGF)
and one dynamic (STGF) in two different implementations. In addition, we
compared these to an explicit method, relying on AAMs. We found that the
explicit method clearly outperformed the implicit methods. However, when
comparing the spatial with the spatiotemporal Gabor filters we found that
adding dynamic information did improve the classification accuracy, albeit
with a small margin. In general, we conclude that dynamically assessing facial
cues in the context of answering arithmetic problems is feasible (even within a
very small window of time), however that the movement that clearly sets the
two conditions in our experiments apart is too subtle for our spatiotemporal
Gabor filters to pick up.



4 S M I L E C L A S S I F I C AT I O N

4.1 introduction

In the preceding two chapters, we have looked at two social signal processing
tasks of different complexities — visual voice activity detection (Chapter 2)
and learning problem assessment (Chapter 3) — and compared static, spatial
Gabor filters (SGFs) with their dynamic, spatiotemporal counterparts (STGFs).
We found that STGFs outperformed SGFs in both cases, although only in
the first case (Chapter 2) did we see a substantial improvement of STFGs
over SGFs; in the second case, both SGFs and STGFs were outperformed by
a method based on Active Appearance Models. In this chapter we continue
our study of the added value of STGFs, by considering a new SSP task:
automatically classifying smiles as genuine or not.

It is well established in the literature that people can smile in at least two
different ways, either because of genuine happiness (the so-called Duchenne
smile) or as a social response (the non-Duchenne smile) (Ekman, 1992b;
Johnston, Miles, and Macrae, 2010; Kraut and Johnston, 1979). Even though
the distinction between the two can be subtle, researchers have argued that
the distinction is noticeable in terms of the parts of the face that play a role
(the Duchenne smile is primarily noticeable around the eyes) as well as the
speed of movement – the Duchenne smile apparently takes longer to fully
appear on the face as well as to disappear(Krumhuber et al. 2009; Schmidt et
al. 2006). For these reasons it seems an ideal test case for comparing static
and spatiotemporal Gabor filters, as we will do in this chapter.

In addition, we compare results for the original recordings with those for
variants in which the rigid head movements are automatically controlled
(by means of normalizing the position of the head with respect to the lo-
cation of the eyes), on the assumption that this will make it easier for the
spatiotemporal Gabor filters to detect relevant, non-rigid facial and head
movements. Moreover, we also compare results for the entire face as well as
for movements in more specific facial regions, based on earlier claims that
these allow for better classification of smiles as spontaneous or not.

Posed vs. Spontaneous Smiles

The smile has been argued to be the most complex facial expression be-
cause it can convey a surprisingly wide range of intentions (Niedenthal
and Mermillod, 2010). Morphologically, the smile is primarily a contraction
of the zygomaticus major muscle causing the corners of the lips to move in
an upward direction, the so-called “lip corner puller” (Ekman and Friesen,
1976). The zygomaticus major is controlled by two motor pathways: one that
produces non-voluntary facial expressions, and one that produces deliberate
expressions (Niedenthal and Mermillod, 2010). Extensive research has been
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done to distinguish between the non-voluntary (true) and deliberate (false)
smile. The Duchenne marker is probably the most well-known result of this
research. Named after Guillaume-Benjamin Duchenne it is the contraction
of the orbicularis oculi which causes the characteristic wrinkles around the
eyes when they narrow as well as the uplifting of the cheeks. It was believed
that the presence of the Duchenne marker accompanied by a contraction of
the zygomaticus major indicates a “true” smile (Ekman et al. 1990; Surakka
and Hietanen, 1998). According to this belief, true smiles stem from genuine
happiness, whereas “false” smiles are merely used in social contexts to de-
liberately display a positive expression, without experiencing the positive
mood (Krumhuber et al. 2007; Niedenthal and Mermillod, 2010). In recent
years there has been an increasing interest in the computational analysis
of facial expressions. With advanced image coding and machine learning
algorithms, the statics and dynamics of smiles are analyzed to automatically
recognize different types of smiles (Dibeklioğlu et al. 2015).

4.1.1 Related Work

Recently, a number of studies have emerged on the topic of automatic facial
expression classification (Bettadapura, 2012; Fasel and Luettin, 2003; Lyons
et al. 1998; Pantic and Rothkrantz, 2000; Sariyanidi, Gunes, and Cavallaro,
2015). Where the focus used to be on (static) posed or prototypical expressions
(Cohn and Schmidt, 2004; Du, Tao, and Martinez, 2014; Pantic and Rothkrantz,
2000) more recent work tends to emphasize the role of the facial dynamics of
spontaneous expressions (Cohn and Schmidt, 2004; Dibeklioğlu et al. 2015;
Valstar, Pantic, Ambadar, and Cohn, 2006). The evolution of smile detection
followed a similar path (Cohn and Schmidt, 2004): after an initial period of
research using posed single image smiles, new studies focus on the automatic
recognition of naturally occurring smiles.

Static Smiles

Although the majority of research in automatic posed versus spontaneous
smile detection focuses on temporal patterns of smile dynamics, some work
has been done on static images as well (Liu and Wu, 2012; Nakano, Mitsukura,
Fukumi, and Akamatsu, 2002; Radlak, Radlak, and Smolka, 2018). One of the
earliest works, by Nakano et al. (2002), used Principle Component Analysis
(PCA) to represent images of “true” and “false” smiles. Subsequently, a
neural network trained on angles between individual images and the PCA
represented classes (i.e., true or false smile), classified unseen examples in a
leave-one-out manner. On their private dataset with 25 subjects they achieved
a score of around 90% correct. However, given the limited size and lacking of
formal description of their dataset, the performance is hard to evaluate.

More recently, the work by Radlak et al. 2018 also focused on genuine
smile detection by using only static images. They used smile apexes of the
1240-participants large UvA-NEMO dataset to train a Support Vector Machine
on Local Binary Pattern features collected at different facial configurations
and using two types of face normalizations. Their maximum classification
score was around 65%, where the type of normalization only contributed
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marginally to the performance. Unfortunately, the authors do not mention
the effect of normalization compared to unnormalized images.

While from a theoretical perspective, automatic static smile discrimination
is very interesting, especially with regard to human performance, from a
practical perspective, however, compared to systems that incorporate smile
dynamics, Radlak et al. 2018’s approach performs under par. In what follows
we discuss three aspects of dynamic automatic smile recognition that play a
role in existing research: the measurement of facial dynamics, the localization
of smile cues, and the importance of face registration.

Measuring Facial Dynamics

Smile dynamics, like other facial expressions, can be measured using geomet-
ric features, appearance features or a derivative thereof. The measurement of
facial dynamics generally relies on identifying or detecting fiducial points, or
landmarks in the face, like the corners of the eyes and mouth or the tip of
the nose, that can be referenced across each frame. Geometry-based aspects
of facial movement, such as speed of movement, amplitude of movement,
and duration of movement, are typically calculated from displacements of
automatically tracked facial landmarks. Various studies have combined ge-
ometrical measures and landmarks to classify smiles (Cohn and Schmidt,
2004; Dibeklioğlu et al. 2015; Dibeklioğlu, Salah, and Gevers, 2012; Hoque,
McDuff, and Picard, 2012; Trutoiu, Hodgins, and Cohn, 2013; Valstar, Gunes,
and Pantic, 2007).

Geometrical measures applied to landmark representations suffer from
two main limitations. The first limitation is that when the accuracy of the
landmark tracker drops (e.g., due to illumination changes or out of plane
rotations of the face), the geometrical measures are distorted, which results
in deterioration of the smile detection performance. The second limitation is
that appearance cues such as bulges, frowns and wrinkles are not captured
by geometrical measures of landmark representations. These limitations can
be addressed by using appearance features to detect smiles (Sénéchal, Turcot,
and El Kaliouby, 2013; Wu, Liu, and Zhang, 2014).

Dynamic Smiles

The type of feature that is best suited for automatic smile detection depends
on the specific context. For example, the Duchenne marker (wrinkles around
the eyes) is perhaps best detected with an appearance feature, whereas a
geometry-based approach may be the best choice to measure the amplitude
of the lip corner pull.

As mentioned in the previous section, smiles can be signaled from multiple
visual cues, of which the shape of the mouth is obviously the most prominent
one. In addition, it has been shown that head or shoulder movements (Valstar
et al. 2007), eyelid and cheek movement (Dibeklioğlu et al. 2012; Trutoiu et
al. 2013), and eye blinking (Trutoiu et al. 2013) contribute to distinguishing
posed from spontaneous smiles.

In the study by Wu et al. (2014), the authors used the tracked locations of
five facial landmarks viz., center of eyes, tip of nose, and corner of lips to
divide each face spatially in five blocks. Subsequently they also segmented
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each video clip on the temporal axis using their own interpretation of onset,
apex and offset (i.e., rise, sustain, decay). Applying a dynamic Local Binary
Pattern descriptor to the spatiotemporal segmented blocks achieved a correct
classification rate of 91.4% on the UvA-NEMO dataset. Dibeklioğlu et al.
(2015) used the tracked location of eleven fiducial facial landmarks around
the mouth, eyes and cheeks in their smile classification system. By exploiting
the fixed positions of the eyes they align and normalize each facial landmark
grid for every frame. With the normalized grids they calculate various land-
mark displacements between frames, which correspond to eyelid, lip and
cheek movement. The landmark displacements are used to automatically
segment each recording into the onset, apex and offset phase of the smile
and to calculate descriptive movement features such as duration, maximum
amplitude and mean of the movement. This generated three (i.e., one for
each phase) 25-dimensional vectors of geometrical features for three regions
of the face, i.e., eyes, cheeks and mouth. Their best full-fledged system using
SVM and feature selection scored an 89.8% correct classification rate on the
UvA-NEMO dataset.

Although many of the above studies address the dynamics of smiles, thus
far, no study employed spatiotemporal filters for distinguishing real from
fake smiles. Since static Gabor energy responses have proven to be valuable
features in static smile detection (Whitehill, Littlewort, Fasel, Bartlett, and
Movellan, 2009) and given the importance of dynamic information for smile
classification, we expect that applying spatiotemporal Gabor filters to posed
and spontaneous smile sequences will help distinguish these subtle cases.

Before turning to the current studies, we discuss the potentially important
preprocessing step of face registration.

Face Registration

A detailed analysis of facial expressions may be hampered by rigid move-
ments of the face or head. Normalizing the face (face alignment) has been
argued to be central to the success of smile recognition (Chew et al. 2012).
In almost all research on smile detection a form of face alignment or nor-
malization is applied, but most studies refrain from reporting the effect of
normalization (e.g., by specifying the results obtained with and without nor-
malization) and as a result the precise benefits of this normalization remains
somewhat unclear. Whitehill et al. (2009) stressed the importance of accurate
face registration by comparing the smile detection performance using a fully
automatic alignment scheme and one based on human annotations. Their
system rotated, cropped and scaled all facial images to a fixed size using the
location of the eyes as markers. The fully automatic system used automatic
eye detection to register the faces, whereas humans had to label the locations
of the eyes in the semi-automatic alignment scheme. The loss in performance
of the automatic system compared to the manually aided system ranged
from 5% with a dataset of 100 images to 1.7% using 10, 000 images. A similar
drop in performance was reported by Dibeklioğlu et al. (2012) (1.85%) when
comparing performances of a landmark tracker that was manually initialized
for the first frames against a fully automatic system.
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4.1.2 Current Studies

In the current study we investigate the contribution of adding spatiotemporal
pixel information to the task of posed vs. spontaneous smile classification.

The general methodology for our analyses is similar to the one used in
Chapter 2, where the STemVAD method was introduced. In particular, we
zoom in on the head region and collect Gabor filter responses for the entire
face, as well as for the upper part and the lower part, in line with the
literature described above, which suggests that the distinction between posed
and spontaneous smiles may be visible both in the upper part (around the
eyes) and the lower part (around the lips). Crucially, we will compare static
(spatial) and dynamic (spatiotemporal) Gabor filters, to find out whether the
addition of dynamic information is beneficial for the smile classification, in
line with the findings in Chapter 2 and Chapter 3 that revealed that adding
dynamic information was beneficial for visual speech detection and learning
difficulty assessment, respectively. Similar to the previous chapter, we will
compare two implementations of the spatiotemporal Gabor filter; the method
due to Petkov and Subramanian (2007) used in Chapter 2 (PS-STGF) and the
method due to Heeger (1987) (H-STGF), to see to what extent findings may
differ due to specific implementation details. As said above, face registration
may be an important factor for facial analyses, which is why we compare
results both for the original unaligned recordings and for those were we
apply face registration. Since we have seen in Chapter 2 that combining
different speeds, as expressed in pixels per frame (PPF), may be beneficial for
classification, we will explore these speeds in the current chapter as well.

The classification of posed versus spontaneous smiles is a more subtle task
than visual speech detection, where it was shown that zooming in on relevant
facial areas (i.e., the mouth) was beneficial to the classification performance.
Therefore, in this Chapter, we will perform an additional analysis that inspects
appearance changes in the face at an even finer level of detail, i.e., at the level
of individual facial landmarks. For a small region around each landmark we
will collect Gabor filter responses and evaluate the classification performance
with these landmark-based filters. Again, the crucial question is whether
spatiotemporal Gabor filters outperform static ones, which we will explore
for both the PS-STGF and H-STGF method.

4.2 method

In this section we will briefly discuss our method to quantify facial movement.
We will first describe how we measure facial movement. Subsequently, we
describe the classification approach.

Measuring Facial Movement with Spatiotemporal Pixel Information

In an almost identical manner as in Chapter 3 we measure facial movement
by representing sequences of facial images as a set of STGF transforma-
tions. As explained in Chapter 2 and Chapter 3 we can tune an STGF to
respond maximally to specific motion (i.e., speed and direction) allowing
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us to construct a bank of filters that covers the variability of movements
in the video sequences. In the single image case an SGF operates on each
pixel, transforming it to the sum of the multiplication between its neighbors
and the filter values, a procedure called convolution. Value transitions in the
filter are reflected in the residual image after convolution, i.e., a filter can be
constructed to respond maximally to specific contour changes. In the case
of an STGF, a cubic 3D block of filter values slides over the spatiotemporal
image cube defined by the two spatial axes (x and y) and the time axis (t).
The result of this spatiotemporal convolution is analogous to the spatial case,
except for the incorporation of temporal variations. The values in each filter
are calculated using the Gabor functions described in Chapter 1. Similar
to Chapter 3, we employ two implementations of STGF, i.e., Petkov and
Subramanian’s STGF implementation (PS-STGF) and the Heeger inspired im-
plementation (H-STGF) in order to assess implementation dependent effects.
Since PS-STGF were modeled to properly reflect the responses of human
vision cells, they impose a strict relation on the Gabor function’s parameters
which was discussed in Section 1.3, whereas H-STGF poses no relation on
the parameters of the Gabor function. In both cases the length of the filter
block in the third dimension corresponds to the temporal window covered by
the filter, which is related to the preferred speed the filter is tuned to (i.e., the
size of the temporal window is inversely proportional to the speed the filter
is tuned to). By carefully constructing the filters, we can tune their preference
for specific temporal contour changes. In our case we construct filter banks
where each row in the bank represents a different direction of movement and
each column corresponds to a preferred speed in PPF. The combined filters
largely cover the distribution of temporal contour changes present in facial
image sequences.

Classifying facial movement

Similar to the approach described in Chapter 2 and Chapter 3 aggregation of
filter responses constitutes the classification vector. The output of a filter g
applied to frame f results in an energy image represented as Eg( f ) with an
equal number of pixels as the original frame. Each pixel value n in the energy
image denoted by Eg( f , n), is a reflection of the filter’s specific characteristics,
with respect to spatial frequency, speed and orientation, present in the original
frame. Summing N pixels in a region of interest in a frame generates the
aggregated feature which is computed as follows Ag( froi) = ∑N

n=1 Eg( froi, n).
The final G-dimensional (frequencies × speeds × orientations) aggregated
feature vector A( froi) is computed by applying all the filters in the filter bank
to the frame and summing the responses.

4.3 experimental evaluation

We applied PS-STGFs and H-STGFs on the binary task of posed vs. sponta-
neous smile classification. In our experiments we used the UvA-NEMO Smile
Database (Dibeklioğlu et al. 2012). In the next subsections we will discuss
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Figure 23: Deliberate and spontaneous example of UvA-NEMO data set.

the characteristics of this dataset, report relevant implementation details for
PS-STGF and H-STGF based methods for measuring facial movement and
provide information about our evaluation procedure .

4.3.1 Dataset

The UvA-NEMO Smile Database (Dibeklioğlu et al. 2012) was developed
to study the facial dynamics of smiles. The database consists of multiple
fragments per speaker with an equal number of spontaneous and posed
smiles. Figure 23 shows two frames taken from a deliberate and a spontaneous
sequence, respectively, of the same participant. Total number of fragments
in the data set is 1240 (597 spontaneous and 643 posed), collected from 400
subjects (185 female and 215 male) ranging from 8 to 76 years of age. The
fragments start and end with a (near) neutral expression and on average last
3.9 seconds (σ = 1.8). Frames are RGB recorded in 1920× 1080 pixels at 50
frames per second using a Panasonic HDC-HS700 3MOS camcorder under
similar illumination conditions.

The smile elicitation procedure was straightforward. Posed smiles were
collected by asking subjects to perform an enjoyment smile, in some cases
after being shown a proper example. Spontaneous smiles were evoked by
showing a funny video compilation. The resulting video clips of the subjects
were segmented by two trained annotators to contain only genuine smiles.

We use the same information about the phases of the smiles, i.e., onset,
apex and offset, as used by Dibeklioğlu et al. (2012) and cordially provided
by the authors. In their work the authors use the distance of the corners of
the mouth with respect to the center of the mouth to estimate the different
phases. The longest constant increase of distance corresponds to the onset
phase and, in a similar vein, the longest decrease indicates the offset phase.
The frames between onset and offset are marked as apex.

4.3.2 Implementation Details

We conducted our smile classification experiments on two variants of the
data, i.e., the original recorded stimuli, and stimuli where we fixed the head
in the middle of each frame using the position of the eyes to normalize the
rigid head motion. The frames in the first instance are resized by a factor of 4
to 480× 270 pixels which reduces the necessary computational resources in
the feature extraction step. By reducing the absolute number of pixels, we
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effectively reduce the number of filtering operations and memory required
to store the responses. The frames in the second instance are subjected to a
more elaborate preprocessing scheme. In order to remove rigid head motion
we align any frame to its antecedent frame and re-center the frame around
the position of the eyes. By aligning each subsequent head with its previous
location we greatly eliminate movement caused by translating and rotating
of the head. We use the Enhanced Correlation Coefficient (ECC) algorithm
(Evangelidis and Psarakis, 2008) to compute transformation parameters in
order to register the heads. The algorithm finds an affine warp that minimizes
the residual image of the transformed frame and template frame. We initialize
the alignment by scaling and rotating the first frame using the interocular
distance and the straight line connecting the inside of the eyes, respectively.
From the initialized frame the head is cropped and scaled to result in an
128× 128 pixel frame. We choose these dimensions because certain filtering
operations are most efficient on images whose dimensions are a power of
two (i.e., 2n) and 128 pixels was the closest to the average of all bounding
box sizes of the face detections. Due to (non-rigid) movement of the face an
accumulating error can cause the face to gradually move away from its initial
position. To account for the so-called drift effect when aligning sequences we
also determine the alignment values of the current frame to the first frame. By
restricting the translation in the x-y-plane to be the average of the proposed
translation with respect to the previous frame and the translation with respect
to the initial frame the final adjusted frame can only deviate from the first
frame by a small margin, thereby fixating the head over the entire sequence.

Implementation Petkov and Subramanian STGF

For our biologically inspired STGF implementation we rely, like in the previ-
ous chapters, on the implementation of Petkov and Subramanian. In a similar
vein to the work in Chapter 2 and Chapter 3, we constructed a filterbank
with 48 filters varying over 8 orientations and 6 speeds. The speeds we used
are v = {0.5, 1, 1.5, 2, 2.5, 3} PPF for each of the θ = {0, 0.25π, 0.50π, 0.75π,
. . . , 1.75π} radians orientations. By setting v = 0 we construct the static
counter part of the dynamic filters, i.e, PS-SGFs.

Implementation Heeger STGF

The second, Heeger-inspired implementation, follows a similar approach as
in Chapter 3. We constructed a 3D Gabor filter bank of G = 8× 4 filters
sensitive to 8 directions of movement, i.e., 2 vertical 2 horizontal, and 4
diagonal directions, and 4 different values for the spatial Gaussian’s envelope
width, i.e.,

√
2, 2, 2

√
2, and 4 with spatial and temporal frequencies set to

1/4 cycles/pixel and a temporal Gaussian envelope width of 1. In a similar
vein we constructed a stationary filter bank, containing half of the number of
filters of its dynamic counter part, since direction of movement is undefined
for stationary filters. The resulting filter bank has G = 4× 4 filters, with
4 orientations, i.e. vertical, horizontal and 2 diagonals and using the same
spatial Gaussian widths as for the spatiotemporal Gabor filter bank. We
compute the static variant by removing the temporal Gaussian factor (i.e.,
setting it to 1).
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Also here, we construct a static counterpart (H-SGF) of the dynamic fea-
tures, by setting the temporal Gaussian in the filter’s equation to 1.

Facial Analyses

Our analyses follow a similar approach as the analyses in Chapter 2. Filter
responses within the region of interest are aggregated by summing all values,
this yields one value per filter per region. We compare the classification
results for the entire face, upper part and lower part using the filter responses
calculated from the original frames as well as from the face-aligned frames.
Since the H-STGF is tuned to one specific preferred velocity of movement,
we also select one preferred speed for PS-STGF, i.e., 1 PPF, when we compare
both implementations on the whole head and its subparts. For each frame
and for all three facial regions, this yields a 8 (filters) ×3 (phases) dimensional
feature vector for Petkov and Subramanian’s implementation (for both the
dynamic and static variants), a 32 (filters) ×3 (phases) dimensional feature
vector for H-STGF, and a 16 (filters) ×3 (phases) dimensional feature vector
for H-SGF. For each phase, the activation per filter is computed by averaging
the scores of all frames within the phase. Since the data set is approximately
balanced we report the correct classification rate as our performance measure.

We extend the aforementioned analysis by zooming in on the face and
compare results at the level of facial fiducial landmarks. With Intraface
(Xiong and De la Torre, 2013) we are able to determine the location of 49
facial landmarks. We decided to include all landmarks in the experiment
(and not just, say, the eye and mouth corners). In each frame we measure and
sum the filterbank responses of a 5× 5 pixel ROI centered at the locations.
For each phase, the activation per filter is computed by averaging the scores
of all frames within the phase. This adds a factor of 49 (landmarks) to the
dimensionality of the above described feature vectors.

Our last comparison evaluates the effect of STGFs tuned to different speeds.
For the sake of simplicity, we evaluate PS-STGF on the original frames only,
using each of the speeds from 0 PPF (i.e., static filters) to 3 PPF individually
and one with all dynamic filters combined. This comparison will be applied
to all granularities from the whole head to the individual landmarks.

To facilitate our analyses we developed a response viewer, which allows
one to quickly inspect the filter responses for the various settings as illustrated
by Figure 24. In this example, we inspected responses around the right corner
of the mouth as visualized by the red star on the image of the frame panel
and selected in the third list panel (i.e., “Punt 32”, point 32). More specifically,
we looked at the responses of the PS-STGF with upward orientation (first list
panel) and speed 1 PPF (second list panel). In the lower part of the viewer
we plot the responses over time and indicate the current response with a
similar red star as in the frame panel. The three colors green, blue and red
correspond to onset, apex and offset of the smile, respectively.

Similar to our analyses in Chapter 2, we also compare the performances
of banks of STGFs that are tuned to one specific preferred speed in eight
orientations. Our comparison includes the classification scores of the zero-
speed filterbank, six individual single speed filterbanks (ranging from 05 to 3
PPf), and the combined-speeds filterbank.
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Figure 24: Example of our filter response viewer.

4.3.3 Evaluation procedure

We followed a straightforward 10-fold classification procedure based on the
folds proposed by Dibeklioğlu et al. (2012). In contrast to Dibeklioğlu et
al. (2012), we do not optimize our classifier’s parameters and therefore do
not perform a nested cross validation inner loop. We did, however, apply
Principal Component Analysis (PCA) to reduce the dimensionality of the
feature vectors when we classified at the level of fiducial landmarks. Our
resulting transformation matrix should account for at least 99% of the variance
of the training fold. Feature vectors were made unit length and were fed to a
linear Support Vector Machine as implemented by the LIBLINEAR library
(Fan et al. 2008).

4.4 results

We present our results in three separate sections, i.e., results obtained from
different facial parts, from facial landmarks, and from comparing different
speeds on all granularities. In the first two sections we present results for
both Petkov and Subramanian’s and Heeger’s implementation, whereas in
the last section we only present the results of Petkov and Subramanian’s
implementation for the sake of simplicity.

Facial parts

Table 6 displays the results from the first experiment, comparing two imple-
mentations (Petkov and Subramian, and Heeger) of both STGFs and SGFs
applied to the original and aligned data for the entire face, the upper part
and the lower part. First and most importantly, examination of this table
shows that for all but one cases the STGFs outperform the corresponding
SGFs. The overall best result (with an averaged correct classification rate of
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Table 6: Correct classification rates (%) of STGFs and SGFs applied to the original
frames and to the aligned faces. Performance is evaluated on the whole
head, the upper part of the head and the lower part.

Method Modality Head Upper part Lower part

PS-STGF Original 70.2 ± 4.9 66.9 ± 4.9 72.8 ± 4.2

Aligned 68.2± 3.6 64.1± 2.7 69.2± 2.5

PS-SGF Original 57.5± 3.5 55.5± 3.9 58.1± 3.3

Aligned 56.2± 3.1 55.5± 2.7 53.8± 2.8

H-STGF Original 65.4± 3.3 62.6± 3.3 68.4± 4.7

Aligned 54.0± 2.3 53.2± 2.2 53.7± 3.0

H-SGF Original 53.5± 3.9 55.2± 4.5 53.3± 2.9

Aligned 53.9± 2.9 53.4± 2.9 53.6± 2.8

72.8%) is obtained with PS-STGF on the lower part of the face on the original
recordings.

Looking closer at the results, various interesting observations can be made.
First, for all STGFs, better results are obtained when applied to the lower part
of the face then when applied to the upper part of the face. This is in contrast
to the findings of Dibeklioğlu, Salah, and Gevers, who found the region of
the eyes to be the most informative for distinguishing between posed and
spontaneous smiles using their method. Interestingly, although sometimes
marginally, the results on the whole head are better than when applied only
to the upper part, suggesting that it is indeed, at least for our method, the
lower part of the face which is most important for classifying smiles as posed
or spontaneous.

Second, PS-STGF achieves the highest results overall on all granularities
when applied to the original sequences. In fact, and perhaps surprisingly, the
results show that for all cases Petkov and Subramanian’s implementation
outperforms Heeger’s equivalent.

The third and final observation is that when comparing the performance
between the original (unaligned) and the face-aligned frames reveals that
normalizing the rigid head motion generally leads to a drop in performance.
Most notably, in the case of dynamic filters (which, as we have seen, per-
form best) normalizing head movement almost always leads to a drop in
performance, which can amount to close to fifteen percentage points (as in
the H-STGF case).

Facial Landmarks

When looking at the entire face, its upper and lower part, our analyses
convincingly show that using STGFs is beneficial. However, it has been
argued that it is important to look at specific facial landmarks for classifying
smiles as spontaneous or posed. It is therefore conceivable that when we
would zoom in on such landmarks, the benefits of STGFs disappear. To
examine this closer, we have also applied the two implementations of the
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Table 7: Correct classification rates (%) of STGFs and SGFs applied to the original
frames and to the aligned faces. Filter responses are extracted from small
regions around facial landmarks.

Method Original Aligned

PS-STGF 77.4 ± 4.3 76.5± 3.5

PS-SGF 73.1± 2.5 71.0± 4.5

H-STGF 72.2± 4.6 69.1± 3.4

H-SGF 65.4± 5.1 65.1± 5.1

Gabor filters (again at one dimension of velocity) to small regions around
facial landmarks. Table 7 summarizes the result of our second experiment.

The most important observation that can be made when inspecting this
table is that, again, STGFs systematically outperform their corresponding
SGFs, although the differences are less pronounced than in the first experi-
ment. The best result overall is obtained with PS-STGF on the original frames
(with a correct classification rate of 77.4%). Zooming in on the results reveals
that Petkov and Subramanian’s implementation again outperforms Heeger’s
version in all cases. Furthermore, it can be observed that performance on
the original frames is better than on the face-aligned frames, although the
differences are often small. Comparing the results with Table 6 shows that the
classification rate increases when zooming in on the level of facial landmarks.
The effect is most notable for the SGFs, where the increase varies from ten to
fifteen percentage points.

Comparing Different Speeds

Table 8: Correct classification rates (%) of PS-STGFs and PS-SGFs applied to the
original frames. Performances are compared for various speeds and on all
granularities.

Speed Head Upper part Lower part Points

0 57.5± 3.5 55.5± 3.9 58.1± 3.3 73.1± 2.5

0.5 68.0± 6.1 66.4± 5.7 71.1± 6.3 76.6± 4.0

1 70.2± 4.9 66.9± 4.9 72.8± 4.2 77.4± 4.3

1.5 69.3± 4.2 65.8± 4.6 72.9 ± 4.4 78.1± 3.4

2 68.6± 4.4 64.2± 4.3 71.6± 4.9 79.3 ± 2.7

2.5 67.7± 3.9 63.1± 4.1 70.7± 4.8 77.5± 3.4

3 66.6± 4.9 63.0± 3.7 70.4± 4.5 76.4± 3.8

all 71.0 ± 4.1 67.7 ± 4.5 71.9± 4.5 78.0± 2.8

So far, we have only looked at STGFs with a one dimensional velocity com-
ponent, and compared these to their static Gabor counter parts. However, in
our earlier work (Joosten, Postma, and Krahmer, 2015, see Chapter 1), we have
shown that the comparison of different speeds can have substantial effects.
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In Joosten et al. (2015) speed 1 PPF (as we have used in the above experi-
ments for Petkov and Subramanian’s implementation) did not systematically
yield the best scores. In fact, these were obtained by combining different
speeds. Therefore, in our last analyses, we explore the value of looking at
different speeds for smile classification. For the sake of simplicity, we only
do this for Petkov and Subramanian’s implementation. In addition, given
the consistently lower scores for head-aligned stimuli, we only look at the
unaligned (original) stimuli. The analysis is performed on all granularities,
i.e., the whole face and its subparts and the facial landmarks.

Table 8 lists the results of our final experiment. Columns two to four report
the scores for the different speeds, looking at the entire head, the lower
part of the face and the upper part, respectively. Inspection of this three
columns reveals a very consistent pattern: the lowest scores are obtained for
the static Gabor filters (speed 0 PPF). This pattern is also reflected in Figure 25,
Figure 26 and Figure 27, where we present the spread of the accuracies of
the different classification folds (head, upper and lower, respectively) in box-
whisker plots. Next, looking at dynamic filters with speeds ranging from 0.5
to 3 PPF, we see that they all outperform the static Gabor filter, with a small
upward and then downward trend, such that an increase in speed preference
seems to result in a somewhat lower accuracy score. This is also reflected
in Table 8, where we see that speed 1, 1, and 1.5 are the optimal speeds
for the whole face, the upper part and the lower part respectively. As in
Chapter 2 with the study on visual speech detection, best results are obtained
by combining all (non-zero) speeds for the whole face and its upper part.
Interestingly, this is not the case for the lower part of the face (where 1.5 PPF
yields the highest accuracy). The best performance is once again obtained
by looking at the lower part of the face (72.9%), although the differences are
small.

The fifth column in Table 8 presents the same analysis, applied to facial
landmarks, and essentially reveals the same picture. First, the lowest score is
obtained with the SGF. Second, of the individual speeds of the landmarks,
which all perform better than any other granularity-speed combination, the 2
PPF one yields the best results. This speed also seems to be a peak in perfor-
mance, both lower and higher speeds seem to deteriorate the performance,
clearly depicted in Figure 28. Although all individual speeds and the combi-
nation of speeds have better accuracies than the static variant, the differences
as less pronounced. And finally, third, the best results are obtained with the
filters tuned to speed 2 PPF, which also yields the overall best result of all the
classification methods we have described, with an accuracy of 79.3%, which
is again in contrast to Chapter 2 and Chapter 3.

4.5 discussion

In this chapter, we asked whether including dynamic information in Gabor
filters is beneficial for classifying smiles as spontaneously happy (Duchenne)
or posed, social ones (non-Duchenne). The previous two chapters suggest that
adding dynamic information is indeed beneficial, although the added value
of STGFs over SGFs was much larger for visual speech detection (Chapter 2)
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Figure 25: Boxplots of smile classification accuracy scores obtained during cross
validation on the UvA-NEMO smile dataset. The boxes correspond to the
Head results in the second column of Table 8. The x-axis labels correspond
to the distribution of scores for each individual speed starting with the
zero-speed (0) static version, or SGF and followed by the distribution of
accuracy scores of the 0.5− 3 speed STGFs. The rightmost box labeled All,
shows the accuracy scores for the full-fledged STGF in which all speeds
are included.
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Figure 26: Boxplots of smile classification accuracy scores obtained during cross
validation on the UvA-NEMO smile dataset. The boxes correspond to
the Upper part results in the third column of Table 8. The x-axis labels
correspond to the static SGF (0) the individual speeds (0.5− 3) and the
combination of speeds (All).
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Figure 27: Boxplots of smile classification accuracy scores obtained during cross
validation on the UvA-NEMO smile dataset. The boxes correspond to
the Lower part results in the fourth column of Table 8. The x-axis labels
correspond to the static SGF (0) the individual speeds (0.5− 3) and the
combination of speeds (All).
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Figure 28: Boxplots of smile classification accuracy scores obtained during cross
validation on the UvA-NEMO smile dataset. The boxes correspond to the
Points results in the fifth column of Table 8. The x-axis labels correspond
to the static SGF (0) the individual speeds (0.5− 3) and the combination
of speeds (All).
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than for classifying difficult assessments (Chapter 3). Smile classification is a
good example of a subtle social signal processing task, in the sense that one
might think that human judges would find smile classification harder than,
for example, visual speech detection. Hence it is interesting to ask, as we did
in this chapter, whether dynamic filters are helpful for this more subtle task
as well.

Based on a database of posed and spontaneous smiles, the UvA-NEMO
smile database, we set-up a number of classification experiments, systemat-
ically comparing SGFs and STGFs. As in Chapter 3, we used two different
implementations of the STGFs, one due to (Petkov and Subramanian, 2007),
PS-STGF, and one to (Heeger, 1987), H-STGF. We applied both methods to
the original stimuli as well as their head-aligned, face-registered counterparts,
based on the reasoning that rigid head movements might make it harder for
the Gabor filters to pick up the “meaningful” movement cues. In addition, we
looked at the entire face as well as at the upper and lower part in isolation. Fi-
nally, we conducted a separate study where we looked for movement around
specific facial landmarks, because the study of Girard, Cohn, and Torre (2014)
has argued that extracting appearance information around fiducial points on
the face is beneficial for the task of smile intensity classification.

First and foremost, in all our comparisons, we found that dynamic, STGFs
outperformed their static, SGF counterparts. This holds true for all granu-
larities that we looked at: the whole face, the upper and lower part of the
face, and the facial landmarks. Hence, just as in the previous chapters we
found a benefit of dynamic filters over static ones, which in some cases was
substantial.

We found that Petkov and Subramanian’s implementation always per-
formed better than the one due to Heeger, in some cases with considerable
differences in the resulting scores. The speed of 1 PPF seems to result in
slightly higher scores for the face and its upper part than the other speeds,
whereas speed 1.5 and 2 PPF result in the highest performance for the lower
part of the face and the facial landmarks, respectively. The combination of all
speeds only results in a higher score for the face and its upper part.

Interestingly, fixing the rigid head motion had a detrimental effect, con-
trary to our initial expectations. With hindsight, we think that there are a
number of possible reasons for this. First of all, it might be that rigid head
movements actually are a relevant factor for smile classification (think of
moving shoulders in a ha-ha manner during spontaneous laughter), so that
removing them hampers classification. Alternatively, it is conceivable that
the alignment procedure used to fix the heads might have created movement
artifacts (e.g., when two consecutive frames did not align properly causing a
small visual perturbation) that were picked up by the Gabor filters. In general,
whether eliminating rigid head-movement is a good idea or not for this kind
of classification thus warrants future research.

When looking at the results for the face and its subparts, we can say in
general that classification for the lower face part is better than for the upper
face part. Earlier work, including Dibeklioğlu et al. (2015), has suggested
that cues in the upper part of face (e.g., eye blinks or wrinkles around
the eye) are important for the classification of smile as spontaneous or not.
However, our results did not provide evidence of this. Our best result, 78.2%
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classification accuracy, was obtained by zooming in on movements around
49 facial landmarks, using Petkov and Subramanian’s STGF tuned to 2 PPF
and applied to the original, non-fixed recordings.

The purpose of this study was to compare static and dynamic Gabor filters,
and not to achieve state-of-the-art results per se. When comparing the best
performance obtained by our STGFs (78.2%), with that of the state-of-the-art
method of (Dibeklioğlu et al. 2015) (87.1% and 89.8% without and with fea-
ture selection, respectively), we see a considerable difference in favor of the
latter. This difference may be explained by the fact that (Dibeklioğlu et al.
2015) employed specific geometrical features that measure displacement and
speed for landmarks located at the mouth, cheek and eye regions. Apparently,
such explicit features outperform our implicit STGF features. The fact that
Dibeklioğlu et al. (2015) found an improved performance for the eye region,
whereas we did not, may be explained by their use of explicit features and
the fact that we average over the entire upper part of the face. Furthermore,
research by Wu, Liu, Zhang, and Gao (2017) suggests that reducing the di-
mensionality of image descriptor results (like STGF responses) using various
schemes such as linear coding, temporal pooling and (whitened) PCA, greatly
improve classification results by transforming the large image patches to a
compact representation that retains the salient appearance aspects.

Still, it is important to state that our results were obtained without any
additional optimization (e.g., feature selection, ensemble methods). Despite
this, our system outperforms comparable systems proposed by Cohn and
Schmidt (2004), Dibeklioğlu, Valenti, Salah, and Gevers (2010) and Pfister, Li,
Zhao, and Pietikäinen (2011) on the UvA-NEMO dataset. This shows that by
using local dynamic information, STGFs are quite capable of distinguishing
between posed and spontaneous smiles.

Turning back to the main objective of this study, our results support the
notion that dynamic information is more informative for smile detection than
static information.

4.6 conclusion

We conclude that STGFs outperform their static counterparts on the task
of smile detection. Hence, future research could benefit from incorporating
STGFs in their feature set.

So far, in this thesis, we have looked facial social signals of different levels
of complexity and subtleness. In the final experiment, Chapter 5, we study
whether STGFs are also beneficial for tasks at a larger scale: the full body.





5 G A I T- B A S E D G E N D E R D E T E C T I O N

5.1 introduction

Throughout this thesis we have looked at the performance of static and dy-
namic Gabor filters in the classification of visual communicative behavior.
We started, in Chapter 2, with the detection of visual speech, which intu-
itively is a clear cue occurring in a specific area of interest (mainly around
the mouth), and we found that dynamic Gabor filters (STGFs) consistently
outperformed static ones (SGFs). In Chapter 3 we asked whether it is possible
to automatically assess how a child perceives an exercise (i.e., as easy or hard)
based on facial expressions. This is much more subtle (even though human
participants can do this above chance) and moreover, it is not a priori clear
where in the face the cues (if any) were present. Here the dynamic Gabor
filter approach fared less well, and the best results were obtained using an
explicit facial modeling approach using AAMs. Nevertheless, despite the
relatively poor performance compared to the AAM, we did find STGFs to
perform somewhat better than their SGFs variants. Then, in Chapter 4, we
turned to the classification of smiles as posed or spontaneous, which arguably
is also a rather subtle cue, but which is known to occur in specific area’s of
interest (most notable around the mouth and the eyes). Again: the dynamic
Gabor filters yielded better classification results than the static ones.

So, at the moment it seems that dynamic Gabor filters are indeed beneficial,
and work better than their static counterparts, albeit most notably for move-
ments that have a specific temporal signature and occur at specific locations.
Of course, we have only looked at movements on a relatively small scale
(the face and its parts), and we do not know whether there are benefits for
dynamic Gabor filters for movements on a larger scale. This will be addressed
in the current chapter, where we will look at full body movement.

In recent years, there has been an increased attention to full-body non-
verbal cues (Bouma et al. 2016; Coulson, 2004b; Wallbott, 1998). In the field
of emotional expressions, for instance, there is a growing awareness that
emotional states are not only expressed using facial cues, but also using the
rest of the body. A person that is scared will not only produce a fearful face,
but may in addition run for cover, and as a result, other people may be able
to recognize this emotional state based on such body movements as well
(Gelder, 2006). In fact, more recent work even suggests that the body can be
more revealing about someone’s emotional state than the face (Van den Stock
et al. 2007). In a study of tennis players who either won or lost a point,
Aviezer, Trope, and Todorov (2012) showed that the valence of the response
(positive or negative) could hardly be detected from the tennis player’s faces,
but judges were substantially better at determining this based on the player’s
bodies.

77
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In this chapter, we zoom in on a more basic full-body classification task,
namely gender detection based on the characteristics of a person’s walk,
their gait (Hu, Wang, Zhang, and Wang, 2010; Ng, Tay, and Goi, 2012; Yu,
Tan, Huang, Jia, and Wu, 2009). This kind of classification task has various
potential applications, including, for example, intelligent visual surveillance
and customer statistics. Stores may, for instance, want to know how many
male or female customers visit specific parts of a shop, which could potentially
inform marketing and shop design.

It has been known for some time that humans are good at recognizing
gender based on general movement characteristics. This has been studied,
for example, using so-called point-light displays (Kozlowski and Cutting,
1977), in which movement is captured using a limited number of moving
dots (typically associated with key joints). Based on such minimal movement
representations, people are capable of guessing a person’s gender well above
chance. For example, Pollick, Kay, Heim, and Stringer (2005) were interested
in estimating human efficiency in determining gender based on biological
motion. To this end they performed a meta-analysis of 21 studies in which
human accuracy for gender detection based on point-light motion was esti-
mated. Their meta-analysis estimated that humans are 66% of the time correct
in deciding whether the participant was male or female. Human performance
increases to 71% correct for frontal or oblique point-light displays.

Of course, based on richer visual representations it might become easier to
determine someones gender based on their gait. Yu et al. (2009) presented
participants with human silhouette sequences (white against a black back-
ground) generated from the sideways recordings of the CASIA Gait Database
(to which we will return below), due to (Yu et al. 2006; Zheng, Zhang, Huang,
He, and Tan, 2011). Participants either saw the upper part of the body, or the
lower part, or both (whole body), and were asked to determine the gender.
Their results revealed that participants could do this reasonably well for the
lower part of the body (with an accuracy of nearly 68%), while the results
for the upper body and the whole body were substantially higher, and very
close to each other (94% and 95%, respectively). This shows that gender
classification based on gait is feasible for humans, and that the upper part of
the body appears to be a more useful cue (at least when looking at walkers
from the side) than the lower part. Interestingly, Yu et al. (2009, p. 1906)
suggest that when it comes to gender classification from sideways silhouettes
“humans are more sensitive to static body shape information than to dynamic
information", based on surveys the participants took. In these surveys, they
ranked dynamic information (such as movement of the arms and legs) as
the lowest informational cue to distinguish gender. In this chapter, we ask
whether dynamic information may not be helpful for gender detection after
all, by (once again) comparing the performance of static and dynamic Gabor
filters.

5.1.1 Related Work

We consider gait-based gender detection as a more abstract form of gait
detection: the task of identifying a person based on their gait. After all, by
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identifying a person, their gender is implicitly detected as well. The majority
of relevant related work involves gait detection, instead of gait-based gender
detection. Therefore, we will consider both gait detection and gait-based
gender detection research in this section. The computational methods to
gender classification or person identification based on gait that have been
proposed, generally use one of two approaches, either relying on explicit
models or not.

Early approaches to automatic gait classification tend to rely on the skeleton
structure of the human body as a model for human motion processing. For
example, Niyogi and Adelson (1994) rely on “spatiotemporal snakes" to find
the contours of a walking person, after which a simple stick model of the
human body is applied. They were able to classify 15 to 21 persons correctly
(depending on some parameters) out of 26 sequences (i.e., up to 81% correct
with a chance level of 20%). More recent work has extended this in various
directions. Yoo, Nixon, and Harris (2002) focus on hip and knee angles, which
are used for an extended 2D stick figure, while Bhanu and Han (2002) propose
a 3D kinematic approach, which is used to retrieve human gait signatures.
Yoo, Nixon, and Harris report a 100% correct classification rate albeit on a set
of three participants with two walking sequences each and Yoo, Nixon, and
Harris report a 77% correct classification rate on a 30-sequence test set. While
these approaches have generally yielded reasonably good results, their results
are strongly dependent on the quality of the extracted human contours (Han
and Bhanu, 2006), which may be difficult in noisy situations.

To counter this limitation, people have started working on “model-free
approaches" (Han and Bhanu, 2006), which do not rely on structural modeling
of the full, moving human body but instead focus on the shape and velocity
of movements as features for gait-based gender classification (e.g., He and
Debrunner, 2000; Little and Boyd, 1998; Shutler, Nixon, and Harris, 2000

One of the most popular model-free approaches for human gait detection
is the Gait Energy Image (GEI) representation by Han and Bhanu (2006).
Essentially, the GEI represents human motion in a single image, capturing
temporal information. The approach starts by extracting the walker from
the background in the video recording, which is transformed to a black and
white (binary) silhouette image. Subsequent images are size, position, and
viewpoint normalized, to make sure that all images of the same walker are
of the same size, at the same location, and at the same viewpoint, making
it possible to align them. The GEI is now computed by simply taking the
average pixel value of the aligned images, where black pixels indicates
locations where the human body has not appeared and pixels with more
intensity are associated with positions where it has appeared more frequently
(see Figure 29). In other words, grey areas represent parts of the body where
most movement during walking has occurred, and the claim is that this
is beneficial for gender classification. This is indeed what Han and Bhanu
show: by extracting features from the GEI representations and using these for
learning, they achieve very good classification results, even up to 99% in a
74-participant dataset. Performances decrease when the differences between
conditions in the training and test set increase. However, in the toughest
cases, their rank 5 classifier still manages to get around 60% of the sequences
classified correctly. In general, since the GEI representation is an average of
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Figure 29: Examples GEI images extracted from a female (first two) and a male
participant both from sideways as well as frontal recordings.

multiple binary silhouettes, it is less sensitive to noise in individual silhouette
images or to other silhouette errors.

Various researchers have extended the GEI approach. For example, Kusakun-
niran, Wu, Li, and Zhang (2009) generalize the approach to multiple views.

The main limitation of the GEI approach is that it requires a specific
manner of recording movements. In order to maintain size, position, and
viewpoint, the camera has to move alongside the walker (as is the case
in video recordings of sports(wo)men like skaters or runners). Instead of a
moving camera, it is also possible to have multiple camera’s along the walking
route that take snapshots of the walker in front of the camera. Alternatively,
the walkers could walk on a treadmill so that the camera can be fixed to a
single position, but this is not very helpful for practical applications.

Despite this limitation, the GEI approach is a popular method for gait-based
human analysis, due to its simplicity and elegance, although it is not the only
one. Tao, Li, Wu, and Maybank (2007), for example, propose to use spatial
Gabor filters like the ones discussed in Section 1.3, given that these have
proven to be successful for image understanding and object recognition. They
rely on different Gabor filters, either summing over scales, or over directions,
or both, and the outcomes of the filters are subjected to a new general tensor
discriminant analysis method developed by the authors. They report a 60.6%
average correct recognition rate on the task of person identification using
their best method with a database of 122 persons. Crucially for our current
purposes, all Gabor filters they use are static ones, and do not take movement
information into account. This is addressed in the current chapter.

5.1.2 Current Studies

In this chapter, as in previous ones, we compare STGFs with their SGF coun-
terparts, to see how beneficial STGFs are for gait-based gender classification.
These two variants of Gabor filters will be compared to the GEI representa-
tions proposed by Tao et al. (2007). These three different methods are applied
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to recordings from the CASIA Gait dataset, which is one of the standard
benchmarks for gait analysis. In our experiments, we concentrate on the
frontal and sideways recordings of both male and female walkers. In our first
analysis, we compare the overall performance of the three methods (STGF,
SGF and GEI). Next, we zoom in on the performance for different body parts,
inspired by earlier work (discussed above in Yu et al. (2009)) showing that
human judges are better capable of gait-based gender detection from the
upper half of the body than from the lower half. To be able to compare the
contribution of different body parts across viewing conditions we distinguish
between lower body, upper body, and head, and again contrast the perfor-
mance of the three methods. Finally, as in earlier chapters, we will explore
which speeds in the dynamic Gabor approach yield the best results for both
the sideways and the frontal recordings.

5.2 method

In this section, we will give a short description of our method to deter-
mine gender from human gait. We will first describe how we measure gait
movement and end with a section on its classification.

Quantifying Human Gait with Spatiotemporal Pixel Information

We adopt a similar approach that we used in the previous chapters for mea-
suring facial movement to quantify gait-based motion, i.e., gait sequences are
transformed into a sets of STGF “energy movies,” where each transformed
sequence corresponds to a filter that was tuned to give a maximum response
in the presence of contours moving at a certain speed and in a certain direc-
tion, as was explained in Chapter 2, Chapter 3 and Chapter 4. To capture all
motions present in the sequences, we construct a filter bank of STGFs using
different parameters for each filter. Filters operate on each pixel in each frame
of a sequence, by considering its spatiotemporal context, i.e., its neighboring
pixels, and calculate a response, i.e., the convolution operation. When the
context of this pixel is a contour moving with a speed and direction that
corresponds to the motion that the filter was tuned to, it gives a maximum
response. The further the movement of the contour deviates from the pre-
ferred movement of the filter, the further its response decreases. Different
from the previous two chapters, we only use Petkov and Subramanian’s
implementation of Gabor functions to calculate the filter values, since we
found in these chapters that the differences between the two implementations
were relatively small.

Classifying Human GAIT

Our method convolves a filter bank with a video sequence, yielding G trans-
formed sequences. The body’s silhouette is used as a mask to crop and align
the responses in each frame. For each of the G sequences the ROI is averaged
by the number of frames, resulting in a W × H response image per filter,
where W and H correspond to the width and height of the ROI, respectively.
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Feature vectors for classification are the concatenation of the response images
per filter. Detecting gait-based gender consists of applying an SVM to a set of
labeled training examples.

5.3 experimental evaluation

In this method section, we discuss the dataset, the experimental procedure,
the feature construction, the classification and the evaluation.

5.3.1 Dataset

The CASIA Gait Dataset B (Yu et al. 2006) was collected by the Chinese
Academy of Science, to create a benchmark set to compare gait recognition
methods and to evaluate their performance under varying walking conditions.
To this end they recorded participants while walking along a straight path of
about 2 to 3 gait cycles in length. Figure 30 illustrates a side view of the path
with several snapshots of a participant superimposed. Giving the participants’
different step sizes and cadences, each clip contains 2 to 3 gait cycles. A gait
cycle starts with two feet next to each other right before the leg starts to
move forward to the open position (half a step). Then follows movement
from the second leg from the back to start position and ending in the open
position again (second leg in front and one full step). The cycle ends when
the initial leg is back in the closed position (half step again). Eleven cameras
were positioned in a semi-circle directed at the middle of the path. Their
viewing angles ranged from 0 degrees (frontal view) up to 180 degrees (rear
view) in steps of 18 degrees. Each participant was asked to walk the straight
path ten times. In six of these walks, participants wore normal clothes, during
two of the walks they carried a bag, and during the remaining two they wore
a coat.

The full dataset consists of 124 (31 female and 93 male) participants with
ages ranging from 20 to 30 years old who are almost all Asian (with the
exception of 1 European participant). The clips are recorded at 25 fps with a
frame size of 320× 240 pixels. In our experiments we used the data from 62
participants, all 31 female participants and 31 randomly selected male partici-
pants. We will be evaluating the difference in performance between static and
dynamic Gabor filters using clips obtained in the normal clothing condition
for both the 0° (frontal) view as well as the 90° (sideway) view. Besides video
clips the CASIA set also contains precalculated silhouette images for most
of the corresponding frames. These binary images, obtained by background
subtraction and thresholding, show the outline of the participant in white
and the rest of the frame in black. These will be helpful for determining the
features of the respective methods, as we discuss next.

5.3.2 Implementation Details

To construct the STGF, SGF and GEI images, we rely on the (binary) silhouette
images supplied with the dataset. Obviously, they are used to construct the
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Figure 30: Example of a gait cycle recorded sideways (90° view). Starting and ending
with the legs in the closed position and opening them in between.

Figure 31: Example of a gait cycle frontally recorded (0° view). Starting and ending
with the legs in the closed position and opening them in between.
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original GEI benchmark images. Furthermore, we use the images as a mask to
extract the corresponding regions of STGF and SGF responses. The silhouette
images in the dataset were extracted using the method described in the
work of Wang, Tan, Ning, and Hu (2003). In short, the method follows a
standard background foreground segmentation approach, where the binary
residual image after background subtraction is enhanced by dilation, erosion
connected component analysis, which are morphological operations that
either add or remove pixels based on its surrounding pixels, resulting, in
this case, in a person’s silhouette. Unfortunately, for some sequences the
silhouette images are missing, are not completely connected or show strange
artifacts. These cases were left out of our experimental set.

For determining the gait cycles we adopted the method proposed by Han
and Bhanu (2004) and modified it slightly. In particular, for each silhouette
image of the sideway view we sum all the individual pixels obtaining the
participant’s size of the silhouette area (Size of Silhouette Area: SSA) per
frame. Plotting the SSA as a function of frame (i.e., time) gives a curve with
a negative peak when the legs are at the closed position (since the two legs
largely overlap resulting in a smaller SSA) and positive plateaus when the
legs are open (larger SSA). By finding the negative peaks, we determine the
start and end of each gait cycle.

Our method differs from Han and Bhanu (2004)’s method in the way
the negative and positive peaks are found. There are many different peak
finding algorithms. Han and Bhanu (2004) opted for a maximum entropy
spectrum estimation, whereas we used the zero-crossings of the smoothed
first-derivative to locate the peaks. The choice of peak finding method does
not hinge the results.

Our cycle detection procedure finds 740 individual cycles in the 90° con-
dition for all the remaining sequences of the 62 selected participants. Note
that the total number of actual cycles in de video clips ranges from 744 (i.e.,
62 participants × 6 normal condition sequences × 2 cycles per sequence) to
1116 (62× 6× 3). Figure 30 shows five stages of a gait cycle superimposed on
one frame for the sideway view. Since for some frames the silhouette images
are missing, we only consider the cycles in the 0° condition that have at least
90% of the corresponding silhouette images available. This results in 613
individual cycles in the frontal view condition. An example of a gait cycle
recorded from a 0° view is shown in Figure 31.

Feature Construction

We first describe our construction of the GEI feature, i.e., our alignment
and normalization scheme. This will be followed up by the description of
our Gabor feature, which takes the silhouette images that the GEI feature is
comprised of and uses them as a mask to extract the same human shape in
the original frame.

As mentioned in Section 5.1.2 we construct GEI features for sideways and
frontal recordings. We use the subject’s head to align the binary images
in the sideways view, because its size and shape hardly change during
the sequence. For each silhouette image we fix the head and allow for a
substantial margin to the left and right to make sure we enclose all leg
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movements. We then normalize the extracted region to 90× 134 pixels for
width and height respectively, which corresponds to the average width and
height of all sideways silhouette images in the dataset.

Our alignment scheme in the frontal view follows a slightly different
approach. We observed that while walking some participants move their
upper body from left to right. As a consequence of this movement the head is
not always centered in the vertical plane with respect to the center of mass of
the body. Instead of using the head to align the silhouettes, we simply take
the bounding box enclosing the maximum width and height of the positive
area of the binary image (recall that pixels of binary images are either 0 or 1)
and resize that region to the mean width and height of the frontal silhouette
images (i.e., 41× 130 pixels). Figure 29 shows GEI examples for both female
and male participants in the sideways as well as in the frontal condition.

Our dynamic Gabor filter feature construction adopts the same approach as
we used in the previous chapters. First we construct a filter bank of 56 filters,
i.e., filters sensitive to 8 different directions and 7 variations in speed. The
first speed preference is set to 0 pixels per frame (PPF), which we consider as
the static Gabor filter response. Like in the previous chapters we range the
other speeds from 0.5 to 3 PPF, which constitute our dynamic responses. We
convolve the filter bank with the original RGB recorded frontal and sideways
gait sequences, and average the responses yielding 56 corresponding Gabor
images per gait cycle. In order to stay close to the original GEI method where
only the silhouette pixels contribute to the residual image, we remove filter
responses generated from the static background by setting an empirically
determined threshold of 0.5 (Gabor convolutions yield continuous values)
to filter out the noise. Filter responses below the threshold are set to 0. We
then extract the same region from the Gabor response image as we calculated
for the silhouette alignment schemes, and apply the same transformations
to normalize the patch to its respective average width and height (i.e., for
sideways or frontal view). This procedure allows us to compare our Gabor
features to the GEI features fairly. The resulting images (i.e., STGF, SGF and
GEI) are the inputs to the classification scheme described next.

5.3.3 Evaluation Procedure

Inspired by Yu et al. (2009), we apply 31−fold cross validation to determine
the informativeness of the different features. For each participant we used
four recordings of the normal condition with each recording containing 2
to 3 gait cycles. One fold comprises all gait cycles of one male and one
female example. In each fold we hold out one male and one female example
and train a linear support vector machine with the remaining examples.
Performance of the trained SVM is evaluated by testing with the previously
unselected male and female participants and is expressed by the correct
classification rate, which is determined by the correctness of the predictions
of each separate cycle. In other words, we classify a cycle as pertaining to a
male or female, instead of classifying one sequence with (possibly) multiple
gait cycles. Furthermore, as we did in the previous chapters, we examine
the performance of the features on different granularities. Besides taking the
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Figure 32: Silhouette images and their corresponding partitioning in head, upper
body and lower body.

Table 9: Correct gender classification rates (%±SD) of spatiotemporal GF (STGF),
spatial GF (SGF), and GEI, applied to frontal and sideway views of recorded
participants.

View STGF SGF GEI

Sideway 96.5± 12.5 96.0± 10.9 95.84± 13.0

Frontal 95.0± 13.1 94.1± 13.8 94.6± 12.7

whole body into account we also look at the partitions depicted in Figure 32,
i.e., head, upper body and lower body. The final level of comparison is at
the level of individual speeds of the dynamic Gabor responses. Like we did
in the previous chapters we construct individual SVM models that take as
input the Gabor responses from filters sensitive to one speed. By looking at
the performance of the individual models we can see if certain speeds are
more informative to gender classification than others.

5.4 results

Table 9 summarizes the main result, comparing three different methods
(spatiotemporal Gabor filters, spatial Gabor filters, and the GEI baseline),
for both frontal and sideways recordings. The first thing to note is that the
GEI baseline already scores very high, as expected based on the earlier work
discussed above. The results we obtained with this method are highly similar
to the earlier reported results on this dataset with the same method (Yu et al.
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Table 10: Correct classification rates (%±SD) of spatial GFs (SGF), spatiotemporal
GFs (STGF), and GEI applied to sideway en frontal view recorded par-
ticipants. Performance is evaluated on three levels of granularity, i.e., the
head, upper body, and lower body for both sideways as frontal recordings.

View ROI STGF SGF GEI

Sideway Head 97.3± 9.7 94.38± 13.9 97.2± 9.9

Upper 95.2± 13.4 93.37± 13.2 92.7± 16.0

Lower 89.1± 19.1 92.5± 13.0 86.7± 19.5

Frontal Head 94.4± 12.3 91.7± 15.2 86.3± 20.3

Upper 87.5± 18.7 86.8± 19.1 82.8± 21.3

Lower 93.2± 14.7 93.7± 13.1 85.3± 20.4

2009). The SGF method scores very similar to the GEI method (slightly higher
for the sideway recordings and slightly lower for the frontal recordings).
Interestingly, the STGF yield the best results in both cases (although the SDs
are high), with an increase in correct classification rates of around 1%, even
though the GEI and static GF scores are already very high.

Comparing Different Body Parts

Next, we zoom in on the contribution of different body parts. The results of
gender classification using specific parts are displayed in Table 10. Again, all
three methods generally perform very well and the differences between them
are small (and the SDs are high). Importantly, the results of the STGFs are
typically better than the static ones, except for the classifications based on the
lower part of the body. Here, for both views, the SGFs outperform their STGF
counterparts. This is interesting in light of the earlier cited comment from Yu
et al. (2009) about lower body gait-based gender classification, which stated
that participants had indicated to find static body shape more informative
than dynamic information. In the automatic case dynamic information does
seem to benefit the performance.

Comparing Different Speeds

In previous chapters, we have seen that usually the best results are obtained
when combining different speeds in the Dynamic Gabor Filter approach,
and this is what we have reported so far in this chapter. However, it is
interesting to compare the performances of different speeds for this task
as well. Table 11 summarizes the scores of the filters for the individual
speeds plus the combination of all speeds applied to the sideways and frontal
recordings for each granularity. Inspection of the table reveals that, for both
conditions on the whole frame the combination of all speeds performs best
as well as for the upper part granularity in the sideways condition and the
for the head granularity in the frontal condition. In the other cases a single
speed performs best, although for every case in the table the differences are
very small.
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Table 11: Correct gender classification rates (%±SD) of STGFs with different speeds
(Sp) applied to the head, upper part, lower part and whole frame granu-
larity for both viewing conditions. The view (V) is sideways (S) or frontal
(F).

V Sp Head Upper part Lower part Frame

S 0.5 97.2± 9.8 94.4± 14.1 86.1± 20.2 95.6± 13.0

1 97.6± 9.1 95.1± 14.0 87.2± 20.3 95.6± 13.0

1.5 97.0± 10.3 94.4± 14.7 88.3± 19.5 95.8± 12.8

2 97.0± 10.6 94.8± 13.9 89.2± 18.9 96.3± 12.5

2.5 96.9± 10.4 94.7± 13.9 90.5± 17.3 95.9± 12.8

3 96.6± 10.6 94.9± 13.2 90.5± 17.3 95.9± 12.8

all 97.3± 9.7 95.2± 13.4 89.1± 19.1 96.5± 12.5

F 0.5 91.5± 14.6 88.1± 18.7 92.9± 14.1 93.8± 13.8

1 92.0± 13.1 86.1± 20.3 93.1± 15.6 93.0± 14.5

1.5 93.1± 11.8 85.5± 20.9 93.2± 14.2 92.5± 15.6

2 92.7± 11.8 84.2± 22.1 91.1± 15.6 92.1± 17.7

2.5 92.2± 12.9 84.4± 22.6 90.6± 15.4 92.4± 18.6

3 90.7± 15.3 87.7± 19.7 90.8± 14.6 92.9± 16.8

all 94.4± 12.3 87.5± 18.7 93.2± 14.7 95.0± 13.1

5.5 discussion

Automatically detecting the gender of walkers based on their gait is a popular
task, which has received considerable scholarly attention in recent years. It
is generally acknowledged that men and women display a different tempo-
ral gait patterns. Therefore, in this chapter, we examined whether adding
temporal information from spatiotemporal Gabor filters to the widely used
appearance based method GEI, can improve classification results even further.
Gait-based gender classification is also an interesting addition to the three
social signals that we have studied so far in this thesis (visual speech, smiles
and children’s facial reactions to arithmetic questions), because human gait
is arguably the largest, most prominent moving signal of them all. Moreover
it is conveyed at the largest scale we have looked at so far, namely the whole
body. For these reasons we were curious to explore the performance of our
dynamic filters on this well defined task.

Methodically we compared the GEI method to the static and dynamic
Gabor methods described in this chapter, using the publicly available CASIA
Gait Dataset (Yu et al. 2006), that has been used in many automatic GAIT de-
tection experiments. In our first experiment we compared the three methods
on the frontal and sideways recorded participants in the dataset, where we
looked at the whole body and used every filter’s response in the classifier to
see if adding dynamic information can improve the already impressive GEI
accuracy. Second, we zoomed in on the contribution of different body parts
to the performance, since we conjectured that the for instance the temporal
pattern displayed by the legs when walking differs in speed and amplitude
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from the arm and shoulder movement. Finally, we isolated the individual
dynamic Gabor responses per speed and evaluated their performance on all
body parts.

It is important to note that the results of the GEI baseline method applied
to the whole body are already close to ceiling with respect to performance
(after all, a classifier can obviously not reach an accuracy above 100% correct).
It is well-known that improving scores that are so close to ceiling is hard.
When looking at the whole clip, the GEI method yielded scores of 95.8%
correct classifications for sideways recordings and 94.6% for frontal recordings.
The scores for the spatial Gabor filters were comparable, but those for the
spatiotemporal Gabor filters were systematically highest (96.5% for sideways
and 95.0% for frontal recordings respectively). Even though this is only a
relatively small increase and standard deviations are high, it does suggest that
adding the dynamic information does systematically improve performance.

Importantly, this same pattern is revealed when specific regions of interest
(head, upper part and lower part) are considered, where the dynamic Gabor
filters again systematically outperform the high GEI-baseline, and (with the
exception of the lower body) also the static Gabor filters. This suggests that
adding dynamic information is indeed beneficial. Yu et al. (2009) discuss ear-
lier gait-based gender classification studies on the CASIA database, showing
that these studies have achieved accuracy scores between 85% and 95%, with
their own approach (on 31 males and 31 females) yielding the best results
(96.0%). This shows that our dynamic Gabor filters produce results that are
at least as good as the state-of-the-art.

We also looked at the effects of different speeds, and found – in contrast
to previous chapters but similar to Chapter 4 – that combining all speeds
does not always yield the best result. It is interesting to observe that the
differences in performance between the different speeds themselves are
mostly small. This suggests that there is no single speed that is characteristic
of gait movements, which might be due to the large scale at which movements
occur. After all, during one gait cycle, the feet display more movement than
the upper leg, say, which might influence scores for different speeds. Figure 33

displays examples of correct and incorrect classifications of a male, a female
and two sequences of the same male but different from the first one.

5.6 conclusion

In this chapter, we explored whether dynamic spatiotemporal Gabor filters
(STGFs) are better at classifying full body cues than static, spatial Gabor
filters (SGFs). For this, we zoomed in on the task of gender detection based
on gait, using a Chinese benchmark gait dataset (CASIA). We compared the
performance of our Gabor filters with a state-of-the-art method relying on
GEI features, representing human motion during walking in a single image,
capturing temporal information as shades of gray. Even though the method
relying on the GEI feature already performed very well, we did find that
the Gabor filter method yielded higher correct gender classification rates,
both for frontal and for sideways recordings, although improvements were
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Figure 33: Examples of lower part GEI (first column) and Gabor images with dif-
ferent speeds (from the second column until the last and ranging from
0.5 to 3 PPS) extracted from a male (participant 90), a female (participant
60) and twice the same male (participant 24) from sideways recordings.
The “X" and check mark sign indicate a misclassification or a correct
classification respectively. Classification was performed on the lower part
granularity.

relatively small and standard deviations were high. Crucially, however, we
found that STGFs generally outperformed SGFs.



6 G E N E R A L D I S C U S S I O N A N D
C O N C LU S I O N

6.1 discussion

This dissertation investigated to what extent Social Signal Processing (SSP)
tasks benefit from taking dynamic information into account, by systematically
comparing the contributions of both static and dynamic information to
various SSP tasks. More precisely, we used spatial Gabor filters (SGF) and
spatiotemporal Gabor filters (STGF) that are able to break down visual signals
into structures of visual shape and movement. Despite the importance of
Gabor filter methods in SSP, the benefits of STGFs for these tasks received
little scholarly attention so far. In fact, to the best of our knowledge, only
one previous study has compared dynamic versus static Gabor filters on
automatic facial action unit detection (Wu et al. 2010). Their result showed
an improvement of dynamic filters over static ones for the classification of
facial action units. However, whether a similar benefit can be observed for
other social signals remained an open question, and was the central research
question of this thesis.

6.1.1 Summary of the Findings

We started our explorations in Chapter 2 with visual voice activity detection
(VVAD): the task of determining — based on visual information only —
whether someone is speaking or not, which can be helpful for applications
ranging from speaker identification in multi-party discourse to audio detec-
tion in noisy environments. We relied on two different datasets, with different
ratios between speech and non-speech: one is the publicly available CUAVE
dataset (Patterson et al. 2002) with speakers uttering digits while being filmed
both from the front and from the side (relatively much speech), and the other
is the LIVER dataset (Joosten et al. 2012), in which participants utter a single
word (“liver”, hence relatively little speech). We systematically compared
dynamic, STGFs (an approach which we dubbed STem-VVAD) with their
static, SGF counterparts, relying on the implementation of Petkov and Subra-
manian (2007), looking at the performance of filters at different speeds and
applied to different levels of detail: zooming in on the mouth-region, the face
or the whole clip. We found that the best results were obtained by STGFs (of
all speeds combined) applied to the mouth region, which revealed a clear
improvement over the SGFs applied to the same region. Even though these
results are promising, the generalizability over different speakers was not
optimal, suggesting that it is important to include speaker-characteristics for
visual speech detection.

Visual voice activity detection is, of course, a very basic task (albeit one
that was somewhat more difficult than we originally anticipated). Would
STGFs also be beneficial for more subtle social signals, that are not inherently
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tied to a specific location in the face, such as the mouth? This was addressed
in Chapter 3, where we looked at detecting learning difficulties of children
based on facial expression analyses. Being able to detect whether or not young
learners experience problems with, say, arithmetic assignments is important
for, for example, the development of adaptive tutoring applications. For this
study we relied on a dataset of children from two age groups, both solving
easy and more difficult arithmetic problems, which we collected especially
for this purpose. In this chapter, we again compared a dynamic approach,
STGFs, with a static variant, SGFs, this time comparing the performance of
two implementations, one due to Petkov and Subramanian (2007) and one to
Heeger (1987). We also included a more explicit approach in our evaluation,
which was based on a model of children’s faces using Active Appearance
Models (AAMs) (Cootes et al. 2001; Matthews and Baker, 2004; Van der
Maaten and Hendriks, 2010). Our results revealed that, for this particular
task, the explicit method based on AAMs clearly outperformed all Gabor
approaches. More directly relevant for the topic of this thesis, however, we
did find that the STGFs (in both implementations) outperformed the SGFs,
although the relative improvement was relatively small.

The results of Chapter 3 suggest that when a social signal is very subtle
and not associated with a specific facial area, detecting this signal is hard
(although, as noted, STGFs still did somewhat better than SGFs). In Chapter 4

we therefore looked at a signal that is both more subtle than visual voice
activity detection, but more localized than learning problem assessment: the
classification of smiles as either genuine or not. Being able to distinguish
smiles that are caused by genuine happiness (Duchenne smile) from merely
social (non-Duchenne) smiles is helpful for automatic emotion recognition
systems, but has practical application as well, including for example, the
ongoing development of digital photo camera’s that automatically decide
when a portrait picture would be optimally taken. It has been argued that the
speed with which a smile appears on the face (with Duchenne smiles being
slower) is a potentially important cue (Krumhuber et al. 2009; Schmidt et al.
2006). Therefore it offers an excellent opportunity to study the added value of
dynamic information in STGFs for smile classification (again using both the
aforementioned implementations), which we did based on the UvA-NEMO
Smile database of spontaneous and posed smiles (Dibeklioğlu et al. 2015).
Since head movements might have a profound effect on smile classification,
we compared results for both ‘raw’ (unprocessed) faces and automatically
‘fixed’ ones. We found, once again, a benefit of dynamic filters; both STGF
implementations clearly outperformed the corresponding SGFs, on every
granularity and for both aligned and unaligned faces. Interestingly and
somewhat unexpectedly, fixing the faces resulted in a drop in performance.

Finally, in Chapter 5 we moved beyond facial signals, and studied the
impact of Gabor filters on full body movements. In particular, we looked at
an arguably basic, full-body task: gender classification based on a person’s
gait, which has potential practical applications, for example, for shops which
want to automatically track the number of male and female shoppers inside.
It has been shown that general bodily movement characteristics are helpful
for this (Kozlowski and Cutting, 1977). In the final experimental study of
this thesis we studied how Gabor filters perform on this task, comparing
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STGFs and SGFs. We used the CASIA Gait Dataset B (Yu et al. 2006), which is
often used for comparing gait recognition methods, and also included a state-
of-the-art GEI-based system for the sake of comparison. We applied these
systems both to frontal and sideways clips of people walking, at different
levels of detail: the head as well as the upper and the lower body. We found
that the results for the GEI-method were already rather good, but we did
observe that the Gabor filter methods lead to even better gender classification
rates, for both frontal and sideways recordings. Most importantly, we found,
once again, that STGFs generally outperformed SGFs.

6.1.2 Discussion

Because the results of all individual studies were already discussed in the
separate chapters, here we will concentrate on the main discussion points of
this thesis.

The Added Value of Dynamic Information

The central question in this thesis was: does adding dynamic information to
Gabor filters benefit the automatic analysis of human social signals? So, does
it? Does adding dynamic information to a Gabor filter improve classification
results? In all chapters we found that dynamic, STGFs outperform their static
counterpart SGFs, suggesting that movement information indeed is beneficial.
Importantly, however, the benefits of STGFs over SGFs differed between the
various signals, ranging from a rather modest improvement, in the case of
learning difficulty assessments (Chapter 3) to substantial, for instance in the
case of visual voice activity detection (Chapter 2).

In general, it seems that especially for clear movements, in a specific
location, STGFs performed substantially better than SGFs, but less so for
movements that are not clearly located in one or more specific places (most
notably in the case of children solving arithmetic problems, Chapter 3). This
makes sense: the filters are applied at local regions, so if movements can
not be pinpointed to a particular location dynamic Gabor filters are less
likely to pick them up. Because of the global nature of the head movement,
many different filters will be activated, thereby causing the relevant signal
to disappear in the general noise. Interestingly, in Chapter 3 we saw that
Gabor filters (both static and dynamic ones) were outperformed by the AAM
method, the success of which can be attributed to the rigid movement of the
head, instead of local facial muscle movement.

The Impact of Different Speeds

Throughout this thesis, we have systematically compared the performance of
STGFs at different speeds. In many cases, the best performance was obtained
by combining information from all speeds (with smiles, Chapter 4, as a
notable exception), but it is interesting to also ask which individual speed
performs best for which task.

It is likely that different social signals are associated with different “signa-
ture” speeds. For example, intuitively, movements of the mouth may differ in
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size and speed from movements of, let us say, the eyelids, and this becomes
even more evident when comparing facial gestures with full-body gestures
(as in Chapter 5).

Still, in general, we found that differences between speeds were often subtle.
For most of our experiments, filters tuned to low speeds (i.e., 0.5 pixels per
frame) gave the best individual results. The most notable exception was
found in Chapter 5 for gait based gender classification. When we zoomed
in on the legs in the sideway condition, we found that the higher speeds
lead to better results than the lower speeds. The movement of the legs in this
condition probably represented the largest displacement in pixels per frame
displayed of all video sequences in this dissertation. In general, we did find
that combining different speeds usually lead to the best performance, which
is presumably due to the fact that different speeds code for partially different
information.

Comparing Implementations

We experimented with two different implementations of dynamic Gabor
filters, one due to Petkov and Subramanian (Petkov and Subramanian, 2007)
and one due to Heeger (Heeger, 1987). While the first has studied STGFs
in the context of modeling cells in the primary visual cortex, the second ap-
plied them in the context of estimating image velocity. Due to the biological
plausibility of the first implementation, it differs in choice of parameters and
in their relations from the second one, although both based on the same
mathematical principles of Gabor filters. Moreover, Petkov and Subrama-
nian’s implementation is able to construct both velocity tuned filters and
frequency tuned filters, whereas the Heeger implementation only allows for
the construction of frequency tuned filters. In general, where both approaches
were applied to the same data (Chapter 3 and Chapter 4) we found little
differences in performance, suggesting that the specific implementation (and
whether it is biologically inspired or not) did not so much matter, at least for
these tasks.

Future Research: (Deep) Learning of Feature Representations

In this thesis, we studied the benefits of STGFs for various SSP tasks, ranging
from subtle to more obvious signals, and we found that these benefits differed
somewhat for different signals. To be able to better predict for which kind of
task adding dynamic information is beneficial, it would be helpful to look
at a broader range of tasks. This applies especially to subtle signals, such as
for instance stress detection (Koldijk, 2016), which is clearly important for a
range of applications such as stress-related absenteeism reduction programs
or simulators that train emergency response personnel and monitor their
stress levels, even though there is no single cue that is clearly associated
with stress. At the other extreme, it would be interesting to look at full body
expressions in more detail. In this thesis we looked at gait-based gender
detection, but it would be interesting to also look at bodily signals that
are more clearly socially relevant, such as full body emotional expressions
(Gelder, 2006) and manual co-speech gestures (McNeill, 1996).
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More technically, it would be interesting to get a better understanding of
what the contributions are of individual features for classification. In our
experiments we employed a method that aggregates Gabor features over areas
of interest. It might be worthwhile to examine different feature constructions
(e.g., only using the maximum filter response) and explore the optimal setting
for different scenarios, an approach sometimes referred to as a bag-of-features
approach.

A general limitation of the approach described in this thesis is that the
filters in the STGF filterbank have been manually constructed. As a result,
it is conceivable that we may have missed certain combinations of values in
the frequency domain that would have given better results than the ones we
manually selected. An alternative would be to automatically learn optimal
filters based on input data, which has the advantage that the statistical
representations of the domain are learned. It would be interesting to see
which performance increase (if any) this would yield.

One way to do this would be to make use of the recent developments in
the field of deep learning. For example, one could explore the use of deep
learning for generating shape and appearance features (Jaiswal and Valstar,
2016), which has yielded promising results relevant to this thesis (Egede,
Valstar, and Martinez, 2017). An interesting use case would be to apply these
models to learn the optimal combination and configuration of filters.

While the use of deep learning techniques for social signal processing is
currently increasingly popular, they have also two disadvantages which we
briefly mention here. One is that deep learning is difficult to understand,
in the sense that deep learning models still mostly operate as a black box.
Additionally, for good performance they require very large sets of training
examples, which are not always readily available for the signals studied in
this thesis.

In this thesis we wanted to investigate in a systematic manner what the
added value of temporal information is to Gabor filters in the context of
social signal processing. The goal was not per se to achieve state-of-the-art
results, and indeed various solutions exist which perform better than our
approaches (typically involving deep learning techniques). In fact, it will be
very interesting to see what effects these techniques for learning features and
filters will have on performance, and we hope to address this in future work.

6.2 conclusion

In this thesis, we set out to examine whether adding temporal information
to spatial Gabor filters leads to better predictive performances of automatic
systems in the context of social signal processing. Based on the experiments
performed in this thesis, we conclude that this is indeed often the case.

This is especially true when salient movements are explicitly present in
specific facial or bodily areas. In those cases, adding temporal information
generally lead to better predictive results. Comparable or even better results
might be obtainable with methods zooming in on a narrow region, for
example a facial landmark, or by explicitly tracking fiducial points, but this
comes at the price of adding manual annotations or using point-light displays
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while the Gabor filter method does not require such additional efforts. When
movements were very subtle or not specifically associated with specific facial
parts (most notable in our study of learning difficulty assessment) we found
the Gabor filter method to perform less well, although here too the dynamic,
STGF method outperformed the static, SGF method.

Additionally, based on our studies we can conclude that combining infor-
mation of different filters, tuned to various speeds, generally leads to better
performance than using filters with one specific speed preference. In general,
the social signals we studied did not seem to be associated with a specific
“signature” speed. We found little or no performance differences between the
two different implementations of STGFs we used.

Taking everything together, we can conclude that when one wants to use
Gabor filters for the automatic analysis of social signals, it is better to use
spatiotemporal Gabor filters rather than the more common spatial filters.
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S U M M A RY

Human communication is often comprised of more than just the spoken
words. We can use a wide array of so-called social signals, short-spanned tem-
poral sequences of non-verbal cues, that tells the receiver something about our
attitude, mental state or other personal characteristics. Computers naturally
lack these skills, however in some situations, human computer interaction
would greatly benefit if they were able to interpret these signals automatically.
Efforts towards equipping computers with “social skills" are channeled in the
emerging field called Social Signal Processing (SSP) (Vinciarelli et al. 2009).

This dissertation took a systematic approach to examine if adding dynamic
information to various Social Signal Processing tasks leads to an increase in
performance, by evaluating the performance of each task using both static
and dynamic information. In order to generate both types of information
we used spatial Gabor filters (SGF) and spatiotemporal Gabor filters (STGF)
to decompose visual signals in terms of shape and movement. Even though
Gabor filters are widely used in SSP, the contribution of STGFs for these
tasks has been little studied as of yet. In four experiments, exploring different
social signals we sat out to investigate whether STGFs improve detection
performance compared to SGFs.

The first signal we explored was visual speech, in the context of visual
voice activity detection (VVAD) which is the task of determining whether
a person is speaking or not, using only visual cues and not the auditory
signal. VVAD has many applications ranging from speaker identification in
multi-party discourse to audio detection in noisy environments. We relied on
two different datasets, with different ratios between speech and non-speech:
one is the publicly available CUAVE dataset (Patterson et al. 2002) with
speakers uttering digits while being filmed both from the front and from the
side (relatively much speech), and the other is the LIVER dataset (Joosten et
al. 2012), in which participants utter a single word (“liver”, hence relatively
little speech). We systematically compared dynamic, STGFs (an approach
which we dubbed STem-VVAD) with their static, SGF counterparts, relying
on the implementation of Petkov and Subramanian (2007), looking at the
performance of filters at different speeds and applied to different levels of
detail: zooming in on the mouth-region, the face or the whole clip. We found
that the best results were obtained by STGFs (of all speeds combined) applied
to the mouth region, which revealed a clear improvement over the SGFs
applied to the same region. Even though these results are promising, the
generalizability over different speakers was not optimal, suggesting that it is
important to include speaker-characteristics for visual speech detection.

Visual voice activity detection is, of course, a very basic task (albeit one that
was somewhat more difficult than we originally anticipated). Would STGFs
also be beneficial for more subtle social signals, that are not inherently tied to
a specific location in the face, such as the mouth? This was addressed in our
second study, where we looked at detecting learning difficulties of children

111



112 summary

based on facial expression analyses. Being able to detect whether or not young
learners experience problems with, say, arithmetic assignments is important
for, for example, the development of adaptive tutoring applications. For this
study we relied on a dataset of children from two age groups, both solving
easy and more difficult arithmetic problems, which we collected especially
for this purpose. In this chapter, we again compared a dynamic approach,
STGFs, with a static variant, SGFs, this time comparing the performance of
two implementations, one due to Petkov and Subramanian (2007) and one to
Heeger (1987). We also included a more explicit approach in our evaluation,
which was based on a model of children’s faces using Active Appearance
Models (AAMs) (Cootes et al. 2001; Matthews and Baker, 2004; Van der
Maaten and Hendriks, 2010). Our results revealed that, for this particular
task, the explicit method based on AAMs clearly outperformed all Gabor
approaches. More directly relevant for the topic of this thesis, however, we
did find that the STGFs (in both implementations) outperformed the SGFs,
although the relative improvement was relatively small.

The results of our second study suggest that when a social signal is very
subtle and not associated with a specific facial area, detecting this signal is
hard (although, as noted, STGFs still did somewhat better than SGFs). In our
third we therefore looked at a signal that is both more subtle than visual
voice activity detection, but more localized than learning problem assessment:
the classification of smiles as either genuine or not. Being able to distinguish
smiles that are caused by genuine happiness (Duchenne smile) from merely
social (non-Duchenne) smiles is helpful for automatic emotion recognition
systems, but has practical application as well, including for example, the
ongoing development of digital photo camera’s that automatically decide
when a portrait picture would be optimally taken. It has been argued that the
speed with which a smile appears on the face (with Duchenne smiles being
slower) is a potentially important cue (Krumhuber et al. 2009; Schmidt et al.
2006). Therefore it offers an excellent opportunity to study the added value of
dynamic information in STGFs for smile classification (again using both the
aforementioned implementations), which we did based on the UvA-NEMO
Smile database of spontaneous and posed smiles (Dibeklioğlu et al. 2015).
Since head movements might have a profound effect on smile classification,
we compared results for both ‘raw’ (unprocessed) faces and automatically
‘fixed’ ones. We found, once again, a benefit of dynamic filters; both STGF
implementations clearly outperformed the corresponding SGFs, on every
granularity and for both aligned and unaligned faces. Interestingly and
somewhat unexpectedly, fixing the faces resulted in a drop in performance.

Finally, in our fourth we moved beyond facial signals, and studied the
impact of Gabor filters on full body movements. In particular, we looked at an
arguably basic, full-body task: gender classification based on a person’s gait,
which has potential practical applications, for example, for shops which want
to automatically track the number of male and female shoppers inside. It has
been shown that general bodily movement characteristics are helpful for this
(Kozlowski and Cutting, 1977). In the final experimental study of this thesis
we studied how Gabor filters perform on this task, comparing STGFs and
SGFs. We used the CASIA Gait Dataset B (Yu et al. 2006), which is often used
for comparing gait recognition methods, and also included a state-of-the-art
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GEI-based system for the sake of comparison. We applied these systems both
to frontal and sideways clips of people walking, at different levels of detail:
the head as well as the upper and the lower body. We found that the results
for the GEI-method were already rather good, but we did observe that the
Gabor filter methods lead to even better gender classification rates, for both
frontal and sideways recordings. Most importantly, we found, once again,
that STGFs generally outperformed SGFs.

Based on the results of this thesis we can conclude that adding temporal
information to spatial Gabor filters often improves the predictive quality of
automated systems for social signal detection, especially in the cases where
the informative visual cues are explicitly present in the facial or bodily areas.
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