

Tilburg University

Prediction for Big Data through Kriging

Kleijnen, J.P.C.; van Beers, W.C.M.

Publication date:
2018

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C., & van Beers, W. C. M. (2018). Prediction for Big Data through Kriging: Small Sequential and
One-Shot Designs. (CentER Discussion Paper; Vol. 2018-022). CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/b0504930-f518-44f7-908c-6a147cef26bd

No. 2018-022

PREDICTION FOR BIG DATA THROUGH KRIGING:
SMALL SEQUENTIAL AND ONE-SHOT DESIGNS

By

Jack P.C. Kleijnen, Wim C.M. van Beers

9 July 2018

ISSN 0924-7815
ISSN 2213-9532

Prediction for Big Data through Kriging: Small
Sequential and One-Shot Designs

Jack P.C. Kleijnen and Wim C.M. van Beers

July 9, 2018

Abstract
Kriging or Gaussian process (GP) modeling is an interpolation method that

assumes the outputs (responses) are more correlated, the closer the inputs (ex-
planatory or independent variables) are. A GP has unknown (hyper)parameters
that must be estimated; the standard estimation method uses the "maximum
likelihood" criterion. However, big data make it hard to compute the estimates
of these GP parameters, and the resulting Kriging predictor and the variance
of this predictor. To solve this problem, some authors select a relatively small
subset from the big set of previously observed "old" data; their method is se-
quential and depends on the variance of the Kriging predictor. The resulting
designs turn out to be "local"; i.e., most design points are concentrated around
the point to be predicted. We develop three alternative one-shot methods that
do not depend on GP parameters: (i) select a small subset such that this sub-
set still covers the original input space—albeit coarser; (ii) select a subset with
relatively many– but not all– combinations close to the new combination that
is to be predicted, and (iii) select a subset with the nearest neighbors (NNs)
of this new combination. To evaluate these designs, we compare their squared
prediction errors in several numerical (Monte Carlo) experiments. These experi-
ments show that our NN design is a viable alternative for the more sophisticated
sequential designs.
Keywords: Kriging; Gaussian process; big data; experimental design; near-

est neighbor
JEL: C0, C1, C9, C15, C44

1 Introduction

Kriging or Gaussian process (GP) modeling is a popular statistical method
for interpolation of input/output (I/O) data; these inputs are also called ex-
planatory or independent variables, and these outputs are also called responses.
Kriging is applied in many scientific disciplines; e.g., operations research / man-
agement science (OR/MS), engineering, machine learning, and geostatistics.
Each discipline uses its own terminology; we use the terminology of OR/MS,

1

especially, simulation. In this publication we assume that the I/O data are
noise-free (as in deterministic simulation or computer experiments), so Kriging
is an exact interpolator; i.e., the Kriging predictions for old input combinations
or "points" are exactly equal to the previously observed outputs for these "old"
combinations. Furthermore, we assume that the goal of Kriging is to predict the
output for a ’"new" point ; other goals (namely, validation, sensitivity analysis,
optimization, and uncertainty analysis) are discussed in Kleijnen (2017).
Note: If the output data have noise (caused by pseudorandom numbers

(PRNs) in discrete-event simulation or by observation error in real-life applica-
tions), then the Kriging predictor is not an exact interpolator. Hasty readers
may skip paragraphs that start with "Note:".
Prediction through Kriging may be applied in real-time on-line decision-

making. Kamiński (2015) observes that Kriging may be applied to simulation
offered as a service over the Internet to end-users; e.g., a complex financial
simulation predicts the output, given an investor’s portfolio allocation decision.
Such simulations can be rather time-consuming, whereas financial analysts pre-
fer fast responses from the Internet; such fast responses can be provided by
Kriging. Fouladinejad et al. (2017) also uses Kriging (besides neural nets) for
a real-time driving simulator.
Big data is everywhere; see Xu et al. (2016). We distinguish between big

data generated by real systems and by simulation models (of real systems, ex-
isting or planned). Big data on real systems are provided by electronic data
capture via sensors etc.; e.g., supermarkets with point-of-sale systems (POSSs)
capture massive data on their many stock keeping units (SKUs). Big data on
simulated systems are collected if the simulation is "inexpensive"; i.e.,the simu-
lation requires "little" computer time to obtain the output of the model– given
the input data– and many input combinations are simulated; e.g., a simulation
of a queueing systems with multiple servers, each with first-in-first-out (FIFO)
priority rule (like a supermarket).
We might think that inexpensive simulations do not need Kriging, because

we can quickly obtain a simulation response for a given input combinations.
However, the queueing example has random output, so for a high traffi c rate
(which is the arrival rate divided by service rate) we need many replications.
(If the simulation is expensive, then we assume that simulation does not create
big data; e.g., a car-crash simulation may take a day to obtain the output for a
given input combination.) Furthermore, we assume that the simulation is run
on a traditional personal computer; i.e., we do not consider parallel computing
architectures; such architectures are considered in Gramacy (2016), Gramacy
et al. (2015), Guhaniyogi and Banerjee (2018), Guinness (2018), Gutiérrez de
Ravé et al. (2014), Morgan et al. (2017), Van Stein et al. (2017), and Xu et al.
(2016).
Note: Big data may also refer to a system (real or simulated) that has many

dimensions. We, however, assume that the number of dimensions has been
made manageable through "factor screening", which implies that we assume
that among the many factors only relatively few factors are really important.
Such screening is discussed in Kleijnen (2015, pp. 135—178) and Woods and

2

Lewis (2016) with its 117 references. Alternative methods for reducing the
dimensionality use "moving least squares" (MLS), "partial least squares" (PLS),
and "principal component analysis" (PCA): see Wang et al. (2011), Bouhlel et
al. (2016, 2017), and Kajero et al. (2017), respectively.
Kriging is applied in many different scientific disciplines, which have their

own terminology and standard mathematical symbols. We follow the terminol-
ogy and symbols used in Kleijnen (2015). We limit our investigation of Kriging
and big data to noise-free output data. We notice that Gramacy (2016) also
allows output that has noise with a small constant "intrinsic" variance; in fu-
ture research we may investigate intrinsic noise with big variances that vary
with the input combinations; also see Section 6. We use a frequentist approach
(instead of a Bayesian approach, which is used in Angelino et al. (2016), Dami-
anou (2015), Guhaniyogi and Banerjee (2018), Gramacy (2016), Nickson et al.
(2015), and Pronzato and Rendas (2017)). An advantage of such a frequentist
approach is that we do not need to specify a prior distribution for the Kriging
(hyper)parameters; we find it hard to specify such a prior distribution. For a
further discussion of frequentist and Bayesian approaches we also refer to Efron
(2015)
There are many sophisticated methods to analyze Kriging models for big

data. Guhaniyogi & Banerjee (2018) states: “There is a burgeoning literature
on approaches for analyzing large spatial datasets”; that article briefly discusses
several approaches, and proposes a new Bayesian approach. We also refer to
Bradley et al. (2016), Chilès and Desassis (2018), Damianou (2015), Guinness
(2018), Meng and Ng (2016), Nickson et al. (2015), Sung et al. (2016), Tzeng
and Huang (2018), and Van Stein et al. (2017). We, however, focus on the
method that is detailed in Gramacy (2016) and Gramacy and Apley (2015),
and compare our methods with Gramacy’s method (Gramacy’s method is also
compared with a new method in Guhaniyogi and Banerjee (2018)). We observe
that two NN variations are used in Gramacy (2016, Section 3.1) and Gramacy
and Apley (2015, Fig. 2, Table 1, SM.1), but these publications use a Bayesian
analysis and are less detailed.
Note: Meng and Ng (2016) models the global trend through so-called induc-

ing points that suffi ciently summarize the observed data points, and smooths
out the local fluctuations around this trend; i.e., this model clusters the observed
data points into groups based on their location and their outputs, where each
group consists of a representative inducing point (usually the centroid of the
group). Our approach is much simpler; e.g., we do not need a support vector
machine (SVM) like Meng and Ng (2016) does or some other method (e.g., a
Voronoi tessellation) to construct local areas; moreover, at the boundaries of
these local regions the resulting Kriging model is discontinuous. Furthermore,
we do not need to select the number of local areas. Finally, we do not use
so-called latent outputs such as the average output within a local area; i.e., we
use actually observed outputs. The induced points are similar to our subset
of n points, explained in the next section. Van Stein et al. (2017) also fits a
local Kriging model to each "cluster" of data; the number of clusters needs to
be prespecified, and the selection of these clusters may use various methods.

3

Bradley et al. (2016) compares seven Kriging variants for spatial data. Sung et
al. (2016) discusses two variants of the method detailed in Gramacy and Apley
(2015); these variants are still much more complicated than our method is. A
recent example of applying inducing points (in a Bayesian framework) is Yuan
et al. (2017). Finally, Wang and Chen (2017) uses “pruning”, which starts with
the big set (of size N) and removes points, whereas other methods start with a
small set and increase that set (until it has size n � N).
We organize the rest of this article as follows. Section 2 summarizes the

basics of Kriging. Section 3 presents a one-shot design for Kriging in big data,
using Latin hypercube sampling (LHS). Section 4 presents numerical experi-
ments. Section 5 replaces LHS by NNs. Section 6 summarizes conclusions and
possible topics for future research. Appendix 1 in the Online Appendix gives a
list of abbreviations and symbols.

2 Kriging: basics

In this article we distinguish between the size of the big I/O dataset– denoted
by N– and the size of a selected subset– denoted by n– where "size" means
the number of input combinations, and the corresponding output. We assume
a scalar or univariate output (so the output is not a vector or a multivariate
random variable). There are k inputs xj (j = 1, ..., k).

The so-called ordinary Kriging (OK) variant is

y(x) = µ+M(x) (1)

where µ is the constant mean E[y(x)] and M(x) is a zero-mean stationary GP,
so its covariances depend only on the distance between the input combinations x
and x′. We call M(x) the extrinsic noise. This model gives the linear predictor
(say) ŷ(x0) for the new input combination x0 = (x0;j) that combines the N old
outputs wN– or briefly w– that are observed at the N old input combinations
of the k inputs xi = (xi;1, ..., xi;k) with i = 1, ..., N (which gives the N × k
matrix X):

ŷ(x0,λ) =
∑N
i=1λiw(xi) = λ

′w. (2)

This ŷ(x) is an exact interpolator ; i.e., if x0 = xi, then ŷ(xi) = w(xi). More-
over, ŷ(x) minimizes the mean squared prediction error (MSPE), so the optimal
weights λ in (2) are

λ′o=[σM (x0)+1
1− 1′Σ−1M σ(x0)

1′Σ−1M 1
]′Σ−1M (3)

assuming that a valid metamodel of the outputs w is a stationary GP with ΣM

= (σi;i′) = (Cov(yi, yi′)) (i, i′ = 1, ..., N) denoting the N ×N matrix with the
covariances between the metamodel’s old outputs yi, and σM (x0) = (σ0;i) =
(Cov(y0, yi)) denoting the N -dimensional vector with the covariances between
the metamodel’s new output y0 and the N old outputs yi. Obviously, ΣM is

4

determined by the old I/O data, whereas σM (x0 varies with x0. Furthermore,
λi decreases with the distance between x0 and xi. The optimal weights λo in
(3) are determined by the Kriging (hyper)parameters ψ = (µ, τ2, θ′)′ where τ2

denotes Var(yi) = σi;i = σ2i = σ2, and θ denotes the k-dimensional vector with
the parameters θj (j = 1, ..., k) of the Gaussian correlation function defined in
(6) that we assume. Obviously, ΣM = τ2R where R = (ρi;i′) denotes the cor-
responding correlation matrix; furthermore, furthermore, ρ(x0) = τ−2σM (x0).
Substitution of λo into (2) gives

ŷ(x0, ψ) = µ+ σM (x0)
′Σ−1M (w−µ1N) (4)

where 1N denotes the N -dimensional vector with all elements equal to 1. Then

MSPE [ŷ(x0, ψ)] = τ2 − σM (x0)′Σ−1M σM (x0) +
[1− 1′NΣ−1M σM (x0)]

2

1′NΣ−1M 1N
. (5)

Because ŷ(x0, ψ) is unbiased, we obtain MSPE [ŷ(x0, ψ)] = Var[ŷ(x0, ψ)]. Fi-
nally, Var[ŷ(x0, ψ)] = 0 if x0 = xi.
There are several types of correlation functions; see (e.g.) Rasmussen and

Williams (2006, pp. 80—104). In simulation, the most popular function is the
Gaussian correlation function (which is also used in Gramacy 2015):

ρ(h, θ) =
k∏
j=1

exp
(
−θjh2j

)
= exp (−

k∑
j=1

θjh
2
j) with θj ≥ 0 (6)

with distance vector h = (hj) where hj = |xg;j − xg′;j | and g, g′ = 0, 1, ..., N .
The maximum likelihood estimator (MLE) ψ̂ of ψ is the solution of

min
ψ
ln[
∣∣τ2R(θ)∣∣] + (w−µ1N)

′
[τ2R(θ)]−1(w−µ1N) with θ ≥ 0. (7)

where |R| denotes the determinant of R. Solving (7) is a mathematical chal-

lenge; e.g., different solutions ψ̂ may result from different software packages or
from different starting values for the same package; see Erickson et al. (2017).
Big data implies that N is so big that the computation of R−1 and |R| gives

numerical problems. More precisely, these computations require O(N3) matrix
decompositions; see Damianou (2015, p. 20), Gramacy (2016), Nickson et al.
(2015), and Van Stein et al. (2017). Furthermore, the more space-filling (or
clustered) the design is, the higher the condition number of R is; see Lim et al.
(2017). To solve these big-data problems, we shall present several methods in
Section 3.
Note: Because we use specific hardware and software in our experiments

reported in Section 4, we now perform the following preliminary experiments.
We use an Intel R©i5 processor with a CPU speed of 3.30GHz, a memory of
4.00 GB, and Windows 7 Professional, 64-bit. For our GP computations we
use DACE, which uses MATLAB (we use MATLAB’s version 2017b); DACE is

5

detailed in Lophaven et al. (2010). Our preliminary experiments with DACE
show that N between 1,000 and 10,000 lead to an explosive growth of computing
time; N = 9,500 and N = 10,000 cause "out of memory" stops. Details are
available from the authors.
In practice, we simply plug ψ̂ into (4), and get

ŷ(x0, ψ̂) = µ̂+ σ̂M (x0)
′Σ̂−1M (w−µ̂1N). (8)

So the Kriging predictor becomes nonlinear. We also plug-in ψ̂ into (5), to
obtain the plug-in estimator of the predictor variance:

s2[ŷ(x0, ψ̂)] = τ̂2 − σ̂M (x0)′Σ̂−1M σ̂M (x0) +
[1− 1′Σ̂

−1
M σ̂M (x0)]

2

1′Σ̂−1M 1
. (9)

This estimator underestimates the ("true") Kriging variance; see Kleijnen (2015,
pp. 191– 197) and also Chevalier et al. (2014).
This s2[ŷ(x0, ψ̂)] is used in effi cient global optimization (EGO), to guide

the search for the optimal input combination. This s2[ŷ(x0, ψ̂)] is also used–
combined with ŷ(x0, ψ̂) (defined in (8))– to construct the following two-sided
confidence interval (CI) with nominal coverage probability 1− α:

ŷ(x0, ψ̂)− zα/2s[ŷ(x0, ψ̂)] < w(x0) < ŷ(x0, ψ̂) + zα/2s[ŷ(x0, ψ̂)]. (10)

To obtain an actual coverage probability close to the nominal value 1 − α, we
might replace zα/2 by a Student statistic with f degrees of freedom, denoted by
tf . An unsolved problem is the proper choice of f ; we might try f = n - k. The
CI in (10) is related to the Bayesian "predictive distribution", which is used in
Gramacy (2016, p. 3).
Instead of a single new point x0 we may consider a test set with n0 new

points, which defines the (say) n0 × k matrix X0 (we distinguish between the
test set and the "training set", which consists of the old I/O data). Once we
have computed µ̂, τ̂2, and Σ̂−1M from XN and wN , the computations of ŷ and
s2(ŷ) for X0 is fast; see (4) and (9).

OK uses the constant µ = E(y), whereas universal Kriging (UK) uses a trend
(e.g., E(y) = β′x); details on UK are found in Kleijnen (2015, pp. 197—198) and
also in Chen et al. (2016) and Mukhopadhyay et al. (2016).

3 Designs for Kriging with big data

We discuss designs for prediction through Kriging in case of big data. We start
with Gramacy (2016)’s rather sophisticated sequential designs; next we derive
three types of one-shot designs:

1. Gramacy (2016)’s sequential designs (see Section 3.1)

2. LHS designs with uniform input distributions (Section 3.2)

6

3. LHS designs with triangular input distributions (Section 3.3)

4. NN designs (Section 3.5).

We assume that the k inputs are limited to a k-dimensional hypercube
[0, 1]k, as the Kriging literature usually assumes. Our one-shot designs are not
Bayesian. Because our designs do not use iterative searches for subset mem-
bers, we need less computer time than Gramacy (2016)’s sequential designs do.
We expect that our Kriging predictor is less accurate than Gramacy’s Kriging
predictors.

3.1 Gramacy (2016)’s designs

Gramacy (2016) defines local Kriging as the Kriging predictor– and its variance–
that use only a subset with n I/O observations from the full set with N obser-
vations such that this subset is primarily comprised of data close to the new
point x0; see (2). This subset is also called the set of inducing points, and the
resulting metamodel is called the sparse GP ; see Damianou (2015, pp. 20—23),
Gal et al. (2014, p. 3), and Van Stein et al. (2017, p. 5).
The reason for choosing a subset with most data close to x0 is that the

correlation ρ{y(x0), y(xi)} (following from (6)) diminishes quickly as xi moves
away from x0; i.e., y(xi) then has a vanishingly small influence on y(x0). To
obtain good estimates of the correlation parameters θ, it is desirable to have
some spread in the subset. More specifically, Gramacy (2016) starts an itera-
tive search using a small NN set of size n0 (n0 � n), and selects the next point
sequentially– based on the prediction errors that use sequentially (re)estimated
parameters of ψ. These errors are estimated using one of three different ap-
proximations of the Bayesian MSPE of the Kriging predictor for the currently
available data (also see our frequentist s2[ŷ(x0, ψ̂)] in (9)). The last two approx-
imations are simplifications of its predecessor, in order to save computer time
when searching for Zn; so we expect the SPE to increase as the approximation
becomes more simplified. For detailed derivations of these designs we refer to
Gramacy (2016). In our numerical experiments with specific examples we shall
present Gramacy’s specific designs.

3.2 LHS with uniform input distributions

LHS is the most popular design type in Kriging for other goals than prediction.
Actually, McKay et al. (1979) invented LHS– as an alternative for crude Monte
Carlo sampling– for risk analysis or uncertainty analysis through deterministic
simulation models that have (random) uncertain inputs (this analysis estimates
the probability of the output exceeding a given threshold as a function of an
uncertain input xj ; for details see Kleijnen (2015, pp. 218—222)). LHS assumes
that an adequate metamodel is more complicated than a low-order polynomial,
but LHS does not assume a specific metamodel (e.g., a Kriging or a linear

7

regression model). Usually, risk analysis assumes that the k inputs are indepen-
dently distributed (so their joint distribution is the product of the k individual
marginal distributions); we also use this assumption.
In this subsection we detail LHS with uniform distributions (symbol U), so

xj ∼ U(0, 1). In the next subsection we shall detail LHS with non-uniform–
namely, triangular– distributions with their modes at x0;j where x0;j denotes
the jth coordinate of x0 and j = 1, ..., k. For the resulting LHS design we find
the NN in the given big data set. We use LHS to select n points from the given
N points (with n � N) such that we may expect this sample to cover the same
experimental space as the N points do (namely, [0, 1]k).
Note: Kleijnen (2015, p. 198) discusses LHS and alternative space-filling de-

signs; e.g., orthogonal array, uniform, maximum entropy, minimax, maximin, in-
tegrated mean squared prediction error, and “optimal”designs. Kleijnen (2015,
pp. 198—203) gives additional details on LHS. Van Stein et al. (2017) mentions
taking n data points at random. Benková et al. (2015) discusses space-filling
designs that may satisfy various criteria and input constraints (such that the in-
put space is not a k-dimensional cube), including so-called bridge designs. Chen
et al. (2016) shows that "there is substantial variation in prediction accuracy
over equivalent designs".
Whatever the marginal distributions are, LHS with a sample size n defines

n mutually exclusive and exhaustive subintervals (or classes) with equal prob-
ability (namely, 1/n) for xg;j with g = 1, .., n and j = 1, ..., k (so LHS gives
an n× k matrix or table). We denote these subintervals by [lg;j , hg;j]; the stan-
dardization 0 ≤ x ≤ 1 implies l1;j = 0 and hn;j = 1. Altogether, if Fj denotes
the cumulative distribution function (CDF) of xj , then

P (lg;j ≤ xj ≤ hg;j) = Fj(hg;j)− Fj(lg;j) = Fj(
g

n
)− Fj(

g − 1
n

) =
1

n
(11)

where min(g−1)/n = (1 - 1)/n = 0, so Fj((g−1)/n) = Fj(0) = 0 because minxj
= 0; likewise, max(g)/n = n/n = 1, so Fj(g/n) = Fj(1) = 1 because maxj x = 1.
Hence, (11) implies that xj ∼ U(0, 1) requires each interval to have length 1/n.
(however, a triangular distribution with mode x0;j requires subintervals [lg;j ,
hg;j] to be relatively short, compared with the other subintervals; see Section
3.3).
Whatever the marginal distributions are, LHS offers the following two op-

tions:
(i) xj is fixed to the n midpoints (symbol mj) of its n subintervals, so xg;j =

mg;j = (lg;j + hg;j)/2; e.g., if x ∼ U(0, 1), then these midpoints are equispaced
with distance 1/n over the interval [0, 1] so these midpoints are 1/(2n), 3/(2n),
..., 1− 1/(2n) = (2n− 1)/(2n).
(ii) xj is sampled within its subinterval, accounting for Fj .
MATLAB’s function "lhsdesign" implements both options, using a parame-

ter called "’smooth" that can be turned "off" or "on" where "off" produces
points at the midpoints; the default is "on". We think that option (ii) (sam-
pling instead of using midpoints) has the disadvantage that it may give two
values– in two neighboring subintervals– that are very close together, so the

8

two resulting outputs w are close together (assuming a smooth I/O function, as
Kriging does) and give little new information (because these outputs have a high
positive correlation). Moreover, we assume that the correlation function (6) is
anisotropic (i.e., it is the product of k one-dimensional correlation functions);
option (i) (midpoints) ensures n realizations of xj that are "wide apart"– which
we conjecture gives better estimates of the correlation parameters θj . Further-
more, this option never samples x ↓ 0 or x ↑ 1 (x = 0 or x = 1 is impossible
because x is continuous; x = ε or x = 1 - ε is also undesirable); we wish to avoid
these two extreme values because Kriging can use the output near x = 0 only
to predict the output at x > 0 (not at x < 0), so Kriging can use x = 0 only in
one direction; a similar argument holds for x ↑ 1.
Option (i) (with midpoints) implies that xj has a discrete PDF, so (11)

becomes

P (xg;j = mg;j) = Fj(hg;j)− Fj(lg;j) = Fj(
g

n
)− Fj(

g − 1
n

) =
1

n
. (12)

Furthermore, LHS samples without replacement, so the midpointmj;g is sampled
only once (in the sample of size n). We denote the inverse CDF by F−1j , so
y = Fj(x) with 0 ≤ y ≤ 1 implies x = F−1j (y); we notice that U(0, 1) and
T(x0;j) (T(x0;j) will be discussed in section 3.3) imply that Fj is continuous.
Altogether, xj is a permutation of the n values F

−1
j (0.5/n), F−1j (1.5/n), ...,

F−1j (1− 0.5/n).
Because MATLAB allows only a uniform PDF or a normal PDF (via "lh-

snorm", which can give values outside [0, 1]), we program the options (i) and (ii)
for both U(0, 1) and T(x0;j). To implement sampling without replacement for
option (i) (which gives a hypergeometric distribution), we make P (xj;g = mj;g)
= 0 as soon as we have sampled xj;g = mj;g, and for the values that are not
yet sampled we increase P (xj;g = mj;g) to 1/ng where ng denotes the number
of values that remain to be sampled; e.g., if ng = 1, then the only remaining
value is sampled with probability 1.

Note: If n is even, then F−1j (0.5) equals the median x(n/2);j where a subscript
within parentheses denotes an order statistic (such as the median). If the PDF
of xj is symmetric with mode x0;j , then the mode and median coincide.
Option (ii) (sampling instead of midpoints) is also used in MATLAB’s "lhs-

design" for U(0, 1) (not T(x0)). This option first samples r ∼ U(a, b) with a =
(g − 1)/n and b = g/n where g = 1, .., n; next this option computes

x = F−1j (r) with r ∼ U(g − 1
n

,
g

n
). (13)

Our algorithm 1 is a (pseudo)algorithm for LHS for option (i) (using mid-
points) with n combinations of k inputs, which gives the n×k design matrix XL

(the subscript L stands for LHS) (various algorithms for LHS are referenced in
Kleijnen (2015, p. 200); recent algorithms are detailed in Dong and Nakayama
(2017), and Le Guiban et al. (2017)):

Algorithm 1

9

1. Read n, k, Fj (j = 1, ..., k).

2. Initialize: j = 1.

3. Use Fj to divide the range of xj into n mutually exclusive and exhaustive
intervals of equal probability with midpoint mj;g (g = 1, ..., n), and find
xj = (mj;1,mj;2, ...,mj;n)

′.

4. Randomly permute the n elements of xj , and save the result as column j
of XL .

5. If j < k then j = j + 1 and go to Step 3; else stop.

For option (ii) (sampling instead of midpoints), Step 3 becomes: Use Fj
to divide the range of xj into n mutually exclusive and exhaustive intervals of
equal probability, and apply (13) to find xj = (xj;1, xj;2, ..., xj;n)′.

For both options, however, the random permutations in Step 4– for which
we may use MATLAB’S "randperm"– may give a "bad" XL . To decide on a
"good" XL , our algorithm needs a criterion. We decide to use the maximin
criterion, which maximizes the minimum Euclidean distance between the n k-
dimensional points in [0, 1]k (there are n(n − 1)/2 distances; some distances
may have the same value). This criterion is also the default in MATLAB’s
"lhsdesign". This criterion means that we perform these random permutations
(say) M times, and select the design among the M candidates that maximizes
the minimum distance between any two points x′g and x′g′ with g 6= g′ (g′ =
1, ..., n) and x′g denoting the k-dimensional row vector (xg;1, ..., xg;k). We use
MATLAB’s default M = 5.
Note: Besides M = 5 we also experiment with several M values between 1

and 106, for option (i), U(0, 1), k = 2 and n = 25. We find that M = 106 gives
the maximin value 0.126. M = 5 gives between 0.089 and 0.113 for our XL and
between 0.057 and 0.089 for MATLAB’s X, in six replications.
Note: Humans are excellent pattern recognizers, whereas computers are not.

Consequently, computers may use one or more mathematical criteria, whereas
we may view a plot and decide whether we accept the pattern as space-filling.
However, if k is high, then our pattern recognition becomes questionable.

Note: At the start of this section we assumed that the k standardized in-
puts are limited to [0, 1]k; however, we can easily adapt LHS for a constrained
experimental region. For example, suppose there are k = 2 inputs; namely, x1
= p1 and x2 = p2 such that p1 + p2 = 1. We would then adapt our LHS with n
input combinations, as follows. Select a value for p1 within subinterval n, and
sample p2 within [0, 1 - p1]. Place this p2-value on the tabu list, which is the
list with p2 values that should not be sampled anymore. Next select p1 within
subinterval n − 1, and sample p2 within [0, 1 - p1]. Place this p2-value on the
tabu list. And so on, until we have selected p1 within subinterval 1, and sampled
p2 within [0, 1 - p1].
LHS does not impose a strict mathematical relationship between n and k

(whereas a grid with s subintervals implies n = sk; e.g., a grid with 10 values per

10

Figure 1: Effects of n = 20 versus n = 50 and U(0, 1) versus T(0.2, 0.8) for LHS
with midpoints

input has 10k points). We assume that if n ≥ 10, then we can estimate θj (with
j = 1, ..., k) reasonably accurate, because LHS implies that projection of the n
(k-dimensional) points onto the k individual axes gives n non-collapsing values
per axis. Loeppky et al. (2009) recommends n = 10k for LHS in Kriging aimed
at sensitivity analysis (but our goal is prediction); this recommendation implies
n ≥ 10 if k ≥ 1. Nevertheless, if LHS uses a "small" n (= 10k) and a "large" k,
then LHS covers [0, 1]k sparsely (so there are only a few old points close to the
new point) and the Kriging predictor is inadequate. Gramacy (2016) gives an
example with n = 50 and k = 2, without further discussing the choice of n. We
decide to experiment with several (n, k) combinations; namely, Gramacy’s (n, k)
= (50, 2) and Loeppky et al.’s (n, k) = (20, 2). Figure 1 shows empirical results;
obviously, a higher n gives a denser coverage of the two-dimensional space;
U(0, 1) gives points uniformly distributed over that space, whereas T(0.2, 0.8)
clusters points around the point (0.2, 0.8); the marginal distributions displayed
on the two axes show that these distributions are indeed U(0, 1) and T(0.2, 0.8)
where the modes are indicated by triangles on the two axes of the two lower
panels.

3.3 LHS designs with triangular input distributions

"Big data" implies n� N so we can use 10k < n� N I/O observations for the
Kriging metamodel, which does not give numerical problems when computing
R−1 and |R| (see Section 2). In case we use the Kriging metamodel in a real-
time on-line decision support system (DSS), we may prefer n = 10k to reduce
computer time.
There is much software for LHS. For example, Microsoft’s Excel spreadsheet

software has add-ins that include LHS; see Oracle’s Crystal Ball, Palisade’s
@Risk, and Frontline Systems’Risk Solver. LHS is also available in the MAT-

11

LAB Statistics toolbox, the R package, the Open TURNS software, and Sandia’s
DAKOTA software. We use MATLAB’s "lhsdesign" to verify our own code for
U(0, 1).
Note: U(0, 1) seems attractive if we are not interested in the prediction for

one or more specific points, but in sensitivity analysis over the whole exper-
imental area. Different goals of Kriging (and other types of metamodel) are
discussed in Kleijnen (2017).
Kriging gives an inaccurate predictor ŷ(x0) in case of extrapolation (i.e.,

Kriging is meant for interpolation); see the discussion in Kleijnen (2015, p.
187). As we have already mentioned, our LHS assumes that the k inputs are
independently distributed (so we do not have to select specific non-zero values for
their correlation coeffi cients). Consequently, Algorithm 1 independently samples
n values per input variable. To avoid extrapolation, we require x0 to lie inside
the convex hull of the n points in XL (so x0 should not be a vertex of this hull
or lie outside this hull). Actually we do not test XL , but we test Xn which is
the matrix with the n < N simulated points xi (i = 1, ..., n) that are the unique
NN of XL , as we shall see in Section 3.5. To check this "convex hull" condition,
we can use one of the following two methods.
(i) We may formulate the linear programming (LP) problem

min
ai

n∑
i=1

fiai

a(ixi = x0
n∑
i=1

ai=1

ai ≥ 0 (14)

where we may specify any coeffi cients fi (e.g., fi = 1 or fi = 0), because we
want to know only whether the LP model has a feasible solution. To solve this
problem, we use the MATLAB function "linprog", which may give an "exitflag"
to explain why linprog stopped; if that flag is "-2", then "No feasible point was
found".
(ii) The MATLAB function "convhulln(X)" returns the indices of the points

in X that specify its convex hull (this function is based on Barber et al. (1996)).
We require that x0 is not one of these points:

convhulln(Xn) = convhulln(Xn ∪ x0) (15)

Sub (i) and (ii): If x0 is not within the convex hull of Xn, then we resample
xLHS which gives Xn– until the hull condition is satisfied. Actually, we imple-
ment method (ii), and resample no more than 100 times to avoid unlimited
computation time.

12

Figure 2: LHS with option (i) versus option (ii) for U(0, 1) versus T(0.2, .0.8),
given n = 25

Note: We impose the following condition for our LHS with option (ii) (sam-
pling instead of midpoints):

min
1≤i≤n

xn; i;j < x0;j < max
1≤i≤n

xn; i;j (j = 1, ..., k). (16)

If n is "relatively" small, then option (i) (midpoints) cannot satisfy this condi-
tion; e.g. min1≤i≤n xn; i;j = 1/(2n); e.g., if n = 10, then min1≤i≤n xn; i;j = 1/20
= 0.05, which may be higher than x0;j (likewise, n = 10 gives max1≤i≤n xn; i;j
= 1− 1/(2n) = 0.95, which may be smaller than x0;j). However, if k > 1, then
the condition given in (16) is necessary but not suffi cient.

3.4 LHS with uniform and triangular distributions

In the preceding subsection (especially (11) through (13)) we focused on the
general CDF F (x). Now we consider our two specific PDFs; namely U(0, 1) and
T(x0). The CDF of U(0, 1) is

FU;j(x) = x if 0 ≤ x ≤ 1. (17)

This CDF and (12) imply that option (i) samples U(0, 1) through

xj;g = mg;j if lg;j < xg;j < hg;j (g = 1, .., n)

We display a realization in the upper-left panel of Fig. 2. The CDF in (17) and
the expression in (13) imply that option (ii) samples U(0, 1) through the PRN
r ∼ U(0, 1) and

xj;g = lg;j + r(hg;j − lg;j) if lg;j < xg;j < hg;j (g = 1, .., n)

This gives the upper-right panel of Fig. 2.

13

In risk analysis, LHS often assumes a specific non-uniform distribution for
xj . Inspired by Gramacy (2016) we consider XL with relatively many points
close to the new point (to be predicted) x0; i.e., we replace xj ∼ U(0, 1) by a
continuous PDF with its mode at x0;j (and 0 ≤ x ≤ 1). There are many PDFs
that meet these requirements; see Law (2015, pp. 286—305). For example, beta
distributions satisfy these requirements, provided we select the correct values for
their (two) parameters; moreover, a different combination of these parameters
gives a different variation around the mode; see Law (2015, pp. 295—297). We
use a special case of the beta distributions; namely, a triangular distribution
with its mode at x0; we denote this distribution by T(x0). The CDF of T(x0)
is (see Law (2015, pp. 304—305)):

FT;j(x) =
x2

x0;j
if 0 ≤ x ≤ x0;j (18)

FT;j(x) = 1−
(1− x)2
1− x0;j

if x;0j ≤ x ≤ 1

which implies FT;j(0) = 0, FT;j(1) = 1, and FT;j(x0) = x0;j ,so this CDF has a
kink at x0;j . Combining this equation with (12), option (i) samples

xj;g =

√
x0;j(2g − 1)

2n
with xg ≤ x0;j (g = 1, ..., n) (19)

xj;g = 1−
√
(1− x0;j)[2n− (2g − 1)]

2n
with xj;g ≥ x0;j

This gives the lower-left panel of Fig. 2 if x0;1 = 0.2 and x0;2 = 0.8; triangles
on the axes denote x0;1 and x0;2. Option (ii) samples xj (within the specific
subinterval) via the first line of (18) if hg;j < x0;j . If lg;j > x0;j , then it samples
xj via the second line of (18). If lg;j < x0;j < hg;j , then it first samples the
PRN r ∼ U(0, 1); if r < x0;j , then it samples xj via the first line of (18); if r
> x0;j , then it samples xj via the second line of (18). Altogether, this option
samples

xj;g =
√
x0;jr if either x0;j > hg;j or lg;j < x0;j < hg;j and r < x0;j (20)

xj;g = 1−
√
(1− x0;j)(1− r) if either x0;j < lg;j or lg;j < x0;j < hg;j and r > x0;j .

This gives the lower-right panel of Fig. 2.

3.5 Nearest neighbors in a "big data" set

Altogether we apply LHS with either uniform or triangular marginal PDFs to
obtain the n × k design XL . Next we select n points from the N points in
XN that are closest to the n points in XL . We quantify this closeness through
the Euclidean distance (say) d (besides this L2 norm we use the L1 norm hj =

14

Figure 3: Brown’s NN function versus our unique NN function; (blue) circles
are big data, (red) squares are LHS data, and arrows point from LHS points to
selected NN (colors blue and red are displayed only in PDF file)

|xg;j − xg′;j | below (6)). To solve the NN problem, we can choose among several
algorithms; see
https://en.wikipedia.org/wiki/Nearest_neighbor_search (latest update 23

June 2017)
and also Guinness (2018).
Inspired by the MATLAB function "nearestneighbours.m"– developed by

Richard Brown at Massey University in New Zealand– we develop our own
MATLAB function "uniqueneighbor.m" (we use MATLAB throughout our in-
vestigation). Our function ensures that the n points inXL select n unique points
in the big data set with N points. In this function we add the (constant) value
2 to each coordinate xi;j (with 0 ≤ xi;j ≤ 1) once a point xi (with i = 1, ..., n)
is selected. We illustrate the two MATLAB functions through an example with
k = 2, N = 100, and n = 25 where we select the N points through uniform
sampling and the n points through LHS option (ii) with uniform sampling. This
example gives Fig. 3, where the results in the left-hand and right-hand panels
are results of Brown’s function and our function, respectively, and arrows point
from a point in XL– denoted by squares– to a point in XN– denoted by cir-
cles (the PDF file uses the colors red and blue for XL and XN , respectively).
This Figure shows that Brown’s function implies that (for example) (x1, x2) =
(0.23550, 0.93305) in XN is selected by two points in XL , whereas our function
does not.
Unfortunately, our method makes the final n points selected fromXN depend

on the order in which we search the n points within XL ; see Fig. 4, which shows
the results for forward selection (start with i = 1 and increase i until i = n) and
backward selection (start with i = n and decrease i until i =1). This Figure

15

Figure 4: Forward versus backward selection of NN in our unique NN function;
(blue) circles are big data, (red) squares are LHS data, and arrows point from
LHS points to selected NN (colors blue and red are displayed only in PDF file)

shows that different starts give different selections for those points among the
n points that select the same point among the N points when using Brown’s
function; see again Fig. 3 (left-hand panel). Which start gives the "optimal" n
points among the N points is not obvious; i.e., we might estimate the variance
of the Kriging predictor for each set of n points and select the set with minimum
variance. However, in our experiments we limit our search to starting with i =
1.
The triangular distribution gives an Xn with more points close to x0 than

the uniform distribution does; see Figure 5 where x1 and x2 have the modes 0.2
and 0.8, respectively. The question is whether the triangular distribution gives
a "better" Kriging predictor; this question shall be addressed in Section 4.

4 Numerical experiments

To quantify the performance of alternative Kriging methods and designs, the
literature often uses explicit mathematical functions with outputs (dependent
variables) that can be quickly computed; these functions may have complicated
response surfaces with known local minima. For details we refer to Dixon and
Szego (1978), Floudas et al. (1999), Jamil and Yang (2013), Surjanovic and
Bingham (2016), and Van Stein et al. (2017, p.14).
In Section 4.1 we discuss how we quantify the performance of the Kriging

predictor. Next we present experimental results for the following four specific
test functions. In Section 4.2 and Appendix 2 we use the example in Xiong

16

Figure 5: Unique NN for T(0.2, 0.8) versus U(0, 1), given n = 25 and N =100;
(blue) circles are big data, (red) squares are LHS data, and arrows point from
LHS points to selected NN (colors blue and red are displayed only in PDF file)

17

Figure 6: Unique NN for T(0.2, 0.8) versus U(0, 1), given n = 25 and N =100

et al.(2007) with k = 1 input and many local optima; such an example with
a single input makes it easy to plot the results of the experiment. In Section
4.3 and Appendix 3 we give another example with k = 1 input that is inspired
by the M/M/1 model; this model is popular in management science/operations
research (MS/OR); for readers not familiar with the M/M/1 model we define
this model in Appendix 3. In Section 4.4 we give the example in Gramacy
(2016) with k = 2 inputs and a multimodal output function. In Section 4.5 we
give the popular borehole engineering example with k = 8 inputs.

In these examples we compare LHS with either midpoints of subintervals
(option i) or sampling within subintervals (option ii)– see Section 3– and LHS
with either the uniform PDF or triangular PDFs with modes at x0– see Section
3.4– so we have 2 × 2 = 4 experiments with LHS per example. In these four
experiments we select the unique NNs of the n points sampled by LHS. These
n points differ in different macroreplications, except for k = 1 and option (i)
(using either T(x0) or U(0, 1)). To evaluate the performance of Kriging, we
select n0 new points x0;t (t = 1, ..., n0) using LHS with U(0, 1) and option (ii)
(sampling instead of midpoints); we define the n0 × k test matrix X0.
Note: Our artificial examples are explicit mathematical functions that we can

quickly evaluate for a small set of n0 points inX0. In practical "computationally
expensive" simulation models, the computation of the simulation output w(x0)
takes hours or days. Practical applications may also concern real-world data
(instead of simulated data), so w(x0) is available only if x0 ∈ XN . Big data

18

implies that n � N , so we can use N - n points to test the validity of the
Kriging model that we estimated from n points only. (If we had no "big data",
then we might use cross-validation with only n = N points, so we would delete
one point and estimate the Kriging model from n - 1 points, etc.; see Kleijnen
(2015).) We then select n0 points through LHS with uniform PDFs for the k
inputs (no midpoints), and use our NN function (defined in Section 3.5) to select
the n0 unique NN in XN ; obviously, the resulting points in X0 are uniformly
spread over [0, 1]k. In practice, the N points in XN and wN are given, and are
the "true" I/O data. In our experiments we proceed as if we do not know X0

when we select Xn; otherwise we would select X0 = Xn.
A Kriging metamodel treats the simulation model as a black box ; i.e., Kriging

uses only the simulation model’s I/O data (xi, wi) with xi = (xi;1, ..., xi;k)′ and
i = 1, ..., N . If k = 1, then we can present (xi, wi) as a scatterplot, and use
this plot to detect a pattern in the I/O function. If k > 1, then it is harder to
plot the N points; also see the plots in the next subsections.

4.1 Performance measures for experiments

To quantify the performance of Kriging with various designs in our numerical
experiments, we use the MSPE because the Kriging predictor ŷ uses this cri-
terion (as we mentioned above (3)). We might also use the square root of this
MSPE; this monotonic transformation gives the same ranking– but decreases
(increases, respectively) the magnitude of the difference between two MSPEs
if the MSPEs are higher (smaller, respectively) than the value one– and may
be used in a CI for ŷ (also see the CI in (10), which uses s(ŷ), not s2(ŷ). We
point out that MSPE defined in (5) assumes that the Kriging model is a valid
metamodel of the simulation model. We, however, define the prediction error
(PE) in (21) below.
Note: It would be inconsistent to use criteria such as the mean absolute error

E(|ŷ(x0)− w(x0)|), the mean absolute relative error E(
∣∣∣[ŷ(x0, ψ̂)− w(x0)]/w(x0)∣∣∣),

or the coverage probability of the CI defined in (10). These criteria are also dis-
cussed in Kleijnen (2015, p. 120). Coverage is used in Guhaniyogi and Banerjee
(2018, Fig. 2).)
More precisely, we define the prediction error (PE) as

e(x0,Xn) = ŷ(x0,Xn)− w(x0), (21)

where (unlike most publications on Kriging) we explicitly distinguish between
the output ŷ of the estimated metamodel, and the output w of the simulation
model. This PE gives the squared prediction error (SPE) e2(x0,Xn). To de-
crease the effects of the randomness inXn when using LHS, we obtain (say)m>
1 independently and identically distributed (IID) macroreplications (m should
not be confused with mj;g). Macroreplication r gives Xn;r (the subscript r
should not be confused with the PRN r). To estimate our performance measure
E[e2(x0,Xn)], we compute the average SPE (ASPE) of these m macroreplica-

19

tions:

e2(x0,Xn) =

∑m
r=1 e

2(x0,Xn;r)

m
= e2(x0,Xn). (22)

Note: These macroreplications use m non-overlapping PRN streams, while
all other experimental factors remain the same; e.g., XN and n do not change
across macroreplications, while Xn does change as XL changes. To guarantee
statistical independence, we can choose between the following two implemen-
tations: (i) generate m matrixes XL , and store these matrixes; (ii) save the
last PRN of macroreplication r = 1, and start the next macroreplication r
+ 1 with this PRN, etc.; MATLAB enables this option, as Kleijnen and Shi
(2017) explains. Actually we choose implementation (i). We observe that all m
macroreplications give the same result (so no randomness occurs) if k = 1 and
LHS uses the midpoints mj;g for T(x0) or U(0, 1).
To quantify the statistical accuracy of e2(x0,Xn) defined in (22), we compute

its standard error (SE):

SE(x0,Xn)=

√∑m
r=1[e

2(x0,Xn;r)− e2(x0,Xn)]2

(m− 1)m . (23)

Obviously, this SE decreases asm increases. Using e2(x0,Xn) and its SE(x0,Xn)–
defined in (22) and (23), respectively– and the Student t-statistic with m - 1
degrees of freedom denoted by tm−1, we compute the following (1− α) CI:

E[e2(x0,Xn)]∈ e2(x0,Xn)± tm−1;α/2SE(x0,Xn). (24)

We can use this CI to compare the MSPEs for two different design types if one

type has no randomness (as is the case if k = 1 and the design uses midpoints)
or if k ≥ 1 and the design is given (e.g., the design is given by Gramacy (2016)’s
sequential design).
We may compute e2(x0,Xn) for various x0;t. It may then turn out that

e2(x0,Xn) is relatively high if the new point x0 is not surrounded by many old
points. We may compute the overall average of all n0 new points x0;t in X0:

e2(X0,Xn) =

∑n0
t=1 e

2(x0;t,Xn;t)

n0
(25)

where Xn;t is the design with n old points used to estimate the output for the
new point x0;t.

Note: Actually, (25) is the square of the estimated root mean squared pre-
diction error (RMSPE), which Gramacy (2015) uses. However, this RMSPE
changes the measurement unit. Moreover, the SE of RMŜPE is hard to derive.

The SE of e2(X0,Xn) simply follows from (23) and (25):

SE(X0,Xn)=

√∑n0
t=1 SE

2(x0;t,Xn;t)

n20
, (26)

20

Figure 7: Xiong et al. (2007)’s example observed at 10,000 points

provided we do not use common random numbers for the n0 points. Analogously
to (24), we can use this SE(X0,Xn) to compute the following (1 − α) CI for
E(SPE(X0,Xn)):

E(e2(X0,Xn) ∈e2(X0,Xn)± zα/2SE(X0,Xn). (27)

Note: Altogether, macroreplication r gives the LHS design matrix XL;r,
which gives the NN matrix with n� N simulated points Xn;r = (xi;r) with i =
1, ..., n. For this Xn;r we compute the corresponding simulated outputs wr =
(wi;r) with wi;r = f(xi;r) where f denotes the simulation I/O function. Using
these (Xn;r,wr), DACE computes ψ̂r. Using this ψ̂r and (Xn;r,wr), DACE
computes ŷ(x0, ψ̂r); see (8). Using these ŷ(x0, ψ̂r) and w(x0), we (not DACE)
compute SPEr. A different software package may give a different ψ̂r (see Section
2), which gives a different SPE(x0,Xn). We use rather old software; namely,
DACE.

4.2 Xiong et al. (2007): one input and many local extrema

In this example our "big data" set is (xi, wi) with N = 1,000 uniformly dis-
tributed xi; these (xi, wi) are plotted in Fig. 7.This plot looks like a "smooth"
function (displayed in black in the PDF file). Actually, (xi, wi) is computed
through Xiong et al. (2007)’s function (where we use w instead of Xiong et al.’s
y):

w(x) = sin[30(x− 0.9)4]cos[2(x− 0.9)] + x− 0.9
2

with 0 ≤ x ≤ 1. (28)

This function has both global and local extrema, and E[w(x)] with 0 ≤ x ≤ 0.4
is much smaller than E[w(x)] with 0.4 ≤ x ≤ 1.

21

In our experiment we have the following factors (the first three factors are
controlled by the Kriging analysts, whereas the last factor is determined by the
clients of these analysts):

• T(x0) versus U(0, 1): we conjecture that T(x0) performs better (see Sec-
tion 3.4, paragraph 2).

• Midpoints versus sampled points (within each of the n classes); we con-
jecture that midpoints perform better (see the text preceding (12)).

• Number of learning ("old") points; namely, n is either 10k = 10 (see
Loeppky et al. (2009)) or 100; we conjecture that a higher n gives better
performance (to select n specific points, we use LHS).

• n0 locations of x0; we conjecture that an "extreme" x0 performs worse
(because Kriging is a bad extrapolator); we consider a fixed number of
"new" points; namely, n0 = 10. Because Fig. 7 shows more frequent
oscillations when 0 ≤ x ≤ 0.3, we select n0/2 = 5 new points x0 in 0.0 ≤
x ≤ 0.3, so the other 5 points are within 0.3 ≤ x ≤ 1.0.

Table 1 gives the exact values of the average SPE (ASPE) and their SEs
(in parentheses); some values are displayed after multiplying them with 10c–
where c depends on the magnitudes of the results– so it is easier to compare
results across rows (with different x0). Appendix 2 gives Fig.16, which displays
box-and-whisker plots for the estimated SPE if not using midpoints, but sample
points within each of the n classes; we use the MATLAB function "boxplot"
with the default whisker length of at most 1.5 times the interquartile range. We
present the following conclusions.
(i) The bottom line of Table 1 clearly shows that the overall ASPE (defined

in (25)) is minimal for T(x0) with midpoints. We prefer this measure because
the analysts do not know which new points will need to be predicted.
(ii) Table 1 clearly shows that if we use T(x0) with midpoints and 0 ≤ x0 ≤

0.3, then an individual new point x0 gives an e2(x0,Xn) that is relatively high
because the I/O function wiggles in this subarea); if we use U(0, 1) (which does
not depend on x0), then the behavior of e2(x0,Xn) is more irregular.
(iii) Comparing e2(x0,Xn) for n = 10 and n = 100 in Table 1, we conclude

that the analysts should use the highest possible value for n (� N)– given the
computer’s memory size (the required size is of order n2 because of the need to
store the n×n matrixes Σ̂M and Σ̂−1M) and speed (which is of order n3, because
of the need to compute ψ̂, ŷ(x0, ψ̂), and s2(x0, ψ̂)).
(iv) If we use sampled points (instead of midpoints), then the box-and-

whisker plots in Appendix 2 clearly show that the statistical distribution of
e2(x0,Xn) has a long right-hand tail, especially if 0 ≤ x0 ≤ 0.3 (this tail implies
that relatively high e2(x0,Xn) occur, which we expect because the e2(x0,Xn)
is sensitive to outliers).

22

n = 10

x0 T(x0) U(0, 1)
midpoints sampled points midpoints sampled points
×10−3 ×10−3 (×10−3) (×10−3)

0.0579 14.173250 387.259219 (54.259719) 0.002051 0.326645 (67.192776)
0.1197 13.405614 62.247749 (12.012896) 0.000823 0.326670 (81.643325)
0.1675 1.132151 9.712443 (1.841269) 0.014015 0.040278 (7.966081)
0.2178 0.087451 0.156941 (0.031959) 0.051322 0.073233 (10.264948)
0.2590 0.010744 0.139421 (0.018511) 0.002499 0.021036 (2.600499)
0.3183 0.001152 0.078622 (0.019618) 0.009453 0.013668 (2.167676)
0.5274 0.000024 0.000468 (0.000072) 0.000253 0.000971 (0.267078)
0.6182 0.000006 0.000076 (0.000019) 0.000290 0.000721 (0.180870)
0.7397 0.000000 0.000021 (0.000006) 0.000070 0.001750 (0.412430)
0.9045 0.000350 0.000734 (0.000168) 0.020472 0.045283 (11.586822)

Overall 2.8811E-03 45.9596E-03 (5.5604E-03) 0.010125 0.085026 (10.7216E-03)

n = 100

×10−3 ×10−3 (×10−3) (×10−3)
0.0579 0.1217324 0.874386 (0.018490) 0.006790 0.006489 (0.113602)
0.1197 0.1192415 0.405315 (0.012380) 0.000694 0.000633 (0.026817)
0.1675 0.0778101 0.221054 (0.004841) 0.002444 0.002353 (0.042927)
0.2178 0.0045075 0.127653 (0.004020) 0.003927 0.003784 (0.043876)
0.2590 0.0022729 0.127987 (0.004991) 0.001551 0.001321 (0.019813)
0.3183 0.0001789 0.036557 (0.001663) 0.000016 0.000042 (0.002896)
0.5274 0.0000084 0.000060 (0.000007) 0.000253 0.000222 (0.004266)
0.6182 0.0004973 0.002232 (0.000069) 0.000116 0.000108 (0.002508)
0.7397 0.0011572 0.000017 (0.000002) 0.000009 0.000008 (0.000453)
0.9045 0.0000128 0.000311 (0.000015) 0.000020 0.000032 (0.000742)

Overall 0.0327E-03 0.1796E-03 (2.3715E-06) 0.001582 0.001499 (1.3349E-05)

Table 1: Average SPE (ASPE) and its SE in parentheses, for Xiong et al.’s
example

23

Figure 8: M/M/1—inspired example observed at 10,000 points

4.3 "M/M/1": one input and "exploding" output

In Appendix 3 we define the M/M/1 model. The typical output of this model is
the steady-state mean waiting-time. We do not use discrete-event simulation of
this model, because such a simulation requires both a Kriging metamodel that
accounts for the so-called intrinsic noise besides the extrinsic noise M(x) in (1),
and a simulation with a correct choice of the starting state (e.g., the "empty"
state, which has no customers waiting) and ending state (e.g., enough customers
are simulated to reach the steady state). Instead– inspired by the analytical
solution of this model– we define

w(x) =
x

1− x with 0 < x < 1. (29)

As we did for Xiong et al. (2007)’s example, we select N =1,000 and n = 10 old
points. Fig. 8 with (xi, wi) and i = 1, ..., 1,000 shows that w(x) is a monotonic
function; when x exceeds (say) 0.6, then w(x) strongly increases, and when x
approaches 1, then w(x) explodes. Therefore, we select n0/2 new points in the
interval 0.2 < x0 < 0.6 and n0/2 new points in 0.6 < x0 < 0.8.
Table 2 gives average SPE s (ASPEs) and SEs in parentheses; Appendix 3

gives Fig.17 with box-and-whisker plots for these ASPEs if using sampled points.
We present the following conclusions, which closely resemble our conclusions for
the preceding example.
(i) The bottom line of Table 2 clearly shows that the overall ASPE is minimal

for T(x0) with midpoints.
(ii) Table 2 clearly shows that if we use n =10 or n = 100 old points and

T(x0) with midpoints, then the n0 = 10 new points x0;t (t = 1, ..., 10) show
nonmonotonic behavior of ASPE– even though w(x) is a monotonic function.
(iii) Comparing ASPEs for n = 10 and n = 100 clearly shows that the

analysts should use the highest possible value for n (� N) (even though–

24

n = 10

x0 T(x0) U(0, 1)
midpoints sampled points midpoints sampled points
×10−6 ×10−6 (×10−5)

0.2196 0.000129 0.000861 (0.000027) 0.000282 0.049780 (0.027417)
0.3244 0.000058 0.000655 (0.000016) 0.000056 0.003158 (0.002156)
0.4008 0.000141 0.002913 (0.000145) 0.000074 0.063410 (0.060149)
0.4683 0.000090 0.001338 (0.000024) 0.000021 0.019794 (0.014937)
0.5433 0.000009 0.006722 (0.000197) 0.000004 0.172797 (0.116642)
0.6154 0.000801 0.051510 (0.002015) 0.000158 0.008889 (0.003881)
0.6721 0.002392 0.137272 (0.003087) 0.000216 0.146564 (0.121277)
0.7100 0.023656 1.411934 (0.056152) 0.000908 0.019522 (0.009742)
0.7460 0.002326 1.766289 (0.053381) 0.000023 0.265368 (0.163860)
0.7811 0.510245 15.515917 (0.620607) 0.004364 0.740905 (0.559372)

Overall 0.0540E-06 1.8895E-06 (6.2544E-07) 0.000611 0.149019 (0.061055)

n = 100

×10−6 ×10−6 (×10−4)
0.2196 0.000278 0.009585 (0.000026) 0.041164 1.502790 (0.492937)
0.3244 0.001267 0.011808 (0.000062) 0.085950 1.310875 (0.307199)
0.4008 0.001557 0.014305 (0.000048) 0.000096 0.154568 (0.052656)
0.4683 0.011091 0.094452 (0.000348) 0.208198 13.016071 (2.615860)
0.5433 0.000000 0.242660 (0.001222) 1.354021 21.034320 (5.157925)
0.6154 0.000000 1.703808 (0.006742) 1.788633 48.685013 (10.524255)
0.6721 0.000010 7.294086 (0.019636) 0.508395 3.765382 (0.938038)
0.7100 0.000000 16.521462 (0.038523) 3.319421 62.947899 (14.680000)
0.7460 0.000641 21.705865 (0.037815) 0.049484 0.955395 (0.315473)
0.7811 0.003736 150.437159 (0.399877) 5.722450 129.885922 (27.381689)

Overall 0.0019E-06 19.8035E-06 (4.0404E-06) 1.307781 28.325824 (3.332845)

Table 2: Average SPE (ASPE) and its SE in parentheses, for M/M/1-inspired
example

25

Figure 9: Gramacy (2015)’s example observed at 40,401 points

compared with n = 10– n = 100 gives a higher ASPE for the smallest x0–
namely 0.2196).
(iv) If we use sampled points for either T(x0) or U(0, 1), then the box-and-

whisker plots in Appendix 3 clearly show that the distribution of ASPEs may
have a long right-hand tail.

4.4 Gramacy (2016): two inputs and multimodal output

Following Gramacy (2016), we plot (zi, wi) with zi = (zi;1, zi;2), i = 1, ..., N ,
and N = 40,401 defined by a 201 × 201 grid for (zi;1, zi;2) with increments of
size 0.02; see Fig. 9. Obviously, this plot has many hilltops and fast-moving
changes. Actually, (zi, wi) (i = 1, ..., 40,401) in this plot follow from

w(z1, z2) = −f(z1)f(z2) with − 2 ≤ z1, z2 ≤ 2 and

f(zj) = e−(zj−1)
2

+ e−0.8(zj+1)
2

− 0.05 sin(8(zj + 0.1)) with j = 1, 2. (30)

We observe that zj (j = 1,2) is not standardized; the linear transformation xj

= 0.5 + 0.25zj makes xj standardized such that 0 ≤ xj ≤ 1.
Gramacy (2016) searches for a small design Zn for the new point z0 =

(−1.725, 1.725)′ or x0 = ((0.06875, 0.93125)′, which lies in the upper-left corner
of the standardized experimental area [0.1]2. This search starts with n0 = 6
NNs of this z0. The search uses one of three criteria, which gives three selections
for Zn; the last two criteria are simplifications of its predecessor, in order to save
computer time when searching for Zn; so we expect the RMSPE to increase as
the criterion becomes more simplified. The search is stopped when n = 50. It
turns out that each of these three selections of Zn contains a cluster of points

26

Figure 10: Gramacy (2015) example: Gramacy’s three designs and our NN
design

around z0 plus points along rays from z0; all n points are located in a relatively
small subspace of the space formed by the N point; see Fig. 10 where the plot
in the lower-right corner will be discussed in Section 5.1. This Figure uses Table
4 in Appendix 4, where the first six NNs of this z0 are displayed in the first
six rows. This search stops when n = 50. Three different criteria give three
selections for Zn. It turns out that each of these three selections of Zn contains
a cluster of points around z0 plus points along rays from z0; all n points are
located in a relatively small subspace of the space formed by the N points; also
see Gramacy (2016, Figs. 2 and 8) and Table 4 in Appendix 4, which shows
the order in which the n = 50 points of the three designs are selected. (We
give these exact values, for the sake of reproducible experimentation; also see
Uhrmacher et al. (2016)).
The search for Zn starts with n0 NNs and θ = 0.1. Next it selects the

following point using one of the three criteria. The predictor ŷ(z0) uses the
MLE θ̂ estimated from the I/O data set with n observations. This θ̂ changes
with z0, because changing z0 changes Zn. This change mitigates the stationary
assumption of the Kriging model, so Zn may improve the predictor compared
with ZN . (Chilès and Desassis (2018), Martinez-Cantin (2016), and Pronzato
and Rendas (2017) also discuss this stationarity assumption, albeit in a Bayesian
framework.)
Unlike Gramacy (2016), we select Xn through one-shot LHS (instead of a

sequential design) with T(x0) and midpoints; i.e., given the experimental re-
sults for the preceding two examples we assume that U(0, 1) or sampled points
are inferior. Our Xn does not depend on the specific simulation model that

27

Figure 11: Gramacy’s design #3 and macroreplication 1 of our LHS design with
triangular distributions and midpoints

Figure 12: Boxplots for SPE in LHS design with 100 macroreplications, and in
Gramacy (2015)’s three designs for Gramacy’s two-dimensional example

28

is approximated by a Kriging metamodel (whereas Gramacy’s design is "cus-
tomized"). Fig. 11 displays a plot for Gramacy’s design 3 (specified in Appendix
4 that uses the simplest criterion) and our design in macroreplication 1 (re-
member that k > 1 gives different LHS designs, even if midpoints are used; see
Algorithm 1). Gramacy’s Zn and our Xn enable us to compute the correspond-
ing output w = (wi)

′(i = 1, ..., n), so we can compute the estimated Kriging
hyperparameters ψ̂ and ψ̂r (r = 1, ..., m), respectively. For this computation
we use DACE (remember that different ψ̂ may result from different software
packages or from initializing the same package differently; see the text below
(7)). The SPE of the Kriging predictor for the new point z0 = (−1.725, 1.725)′
or x0 = ((0.06875, 0.93125)′ depends not only on ψ̂ or ψ̂r, but also on the n
old points (Zn or Xn). The resulting SPEs are given in Fig. 12, which displays
box-and-whisker plots. We present the following conclusions.
(i) The sample median SPE(0.5m) of the m = 100 SPEs in our design

is 0.001453, whereas the SPEs of Gramacy design 1, 2, and 3– denoted by
SPEGram– are 0.000005597, 0.000005598, and 0.000005597, so our design clearly
gives a significantly higher SPE; we test this significance through the sign test.
(Compared with the sample mean, the sample median is a more robust estima-
tor of the mean; the ASPE e2(x0,Xn) is 0.01402649 with a SE of 0.00363959,
so e2(X0,Xn) is significantly higher than Gramacy’s SPEs.)
(ii) The boxplot shows that our design may give very high outliers (hence,

e2(X0,Xn) � SPE(0.5m); see (i)).
(iii) Seven of our 100 SPEs (not displayed) are smaller than Gramacy’s SPEs;

e.g., our lowest SPE is 0.00000001 (� 0.000005597).
(iv) In general, an estimated difference (like SPE(0.5m) - SPEGram)) may be

statistically significant, but practically unimportant. However,
√
SPE(0.5m)/

√
SPEGram

is roughly as high as 16 (the square root gives the same measurement unit as
the unit used by ŷ). In practice, we must decide whether we accept such a big
relative increase of the SPE caused by our LHS design.
In the next example, we shall examine whether our conclusions also hold

if there are more inputs (namely, eight instead of two) and more new input
combinations x0 (namely, ten instead of a single– rather extremely located–
combination). Moreover, in Section 5 we shall present a NN design as an alter-
native for our LHS design.

4.5 Borehole: eight inputs

In the real (non-simulated) world, a "borehole" is defined in Wikipedia
(https://en.wikipedia.org/wiki/Borehole)
as "a narrow shaft bored in the ground ... for the extraction of water,

other liquids (such as petroleum) or gases (such as natural gas)". An analytical
model of a borehole is used in many publications on simulation methodology;
e.g., Erickson et al. (2017), Gramacy (2016), Gramacy and Apley (2015), and
Santner et al. (2018. p. 222). This model has the output "water flow rate" w

29

Name of original input z Symbol Unit Range [l, u]

Radius of borehole rw m 0.05, 0.15
Radius of influence r m 100, 50000
Transmissivity of upper aquifer Tu m2/yr 63070, 115600
Potentiometric head of upper aquifer Hu m 990, 1110
Transmissivity of lower aquifer Tl m2/yr 63.1, 116
Potentiometric head of lower aquifer Hl m 700, 820
Length of borehole L m 1120, 1680
Hydraulic conductivity of borehole Kw m/yr 9855, 12045

Table 3: Borehole inputs

(measured in m3/yr) and the k = 8 original inputs– which we denote by the
general symbol zj (with j = 1, ..., 8)– and their ranges [lj , uj] listed in Table
3 (the range of one of these inputs may be changed to create a more nonlinear
and non-additive function, as Xiong et al. (2013) does):

w =
2πTu(Hu −Hl)

ln(r/rw)(1 +
2LTu

ln(r/rw)r2wKw
+ Tu

Tl
)

(31)

This model is coded in R and MATLAB; see
https://www.sfu.ca/~ssurjano/borehole.html
To obtain the standardized inputs 0 ≤ xj ≤ 1, we use Table 3 with lj ≤ zj

≤ hj and apply the linear transformations xj = aj + bjzj with

aj =
1

2
− (uj + lj)/2

(uj − lj)
and bj =

1

uj − lj
,

so zj = (xj − aj)/bj = xj/bj − aj/bj ; i.e., we apply

zj = lj + (uj − lj)xj or xj =
zj − lj
uj − lj

(32)

so xj = 0 implies zj = lj and xj = 1 implies zj = uj .
Whereas Gramacy (2016) uses N = 100,000 and n = 50 or n = 200, we now

use N = 1,000,000 and n = 60– for each of the n0 = 10 new locations x0;t (with
t = 1, ..., n0 = 10). To sequentially select Xn, only one of the three criteria–
namely, the so-called ALC criterion– is used; we can provide interested readers
with the n0 =10 Excel sheets, each with n×k = 60×8 numbers that we received
from Gramacy in personal communication. We use MATLAB’s "lhsdesign" to
sample N = 1,000,000 old combinations, so there is zero probability of a new
combination x0;t coinciding with one of the N = 1,000,000 old combinations (as
we confirmed empirically via MATLAB’s function "intersect").
Note: Gramacy (2016, p. 20) samples N + n0 combinations through LHS

with U(0,1) and random sampling within the subintervals, using R’s function
randomLHS. Unlike MATLAB’s "lhsdesign", R’s "randomLHS" does not try to

30

Figure 13: Borehole example: I/O function with 21 × 21 standardized input
combinations (rw, L) and output w

optimize the design through a criterion such as maximin, so it functions like
"lhsdesign" with M = 1 (instead of the default M = 5; see Section 3.2). Sam-
pling N + n0combinations guarantees that none of these n0 locations coincides
with any of these N locations.
Note: Our N = 1,000,000 combinations are not identical to Gramacy’s N

= 1,000,000 combinations, because these combinations are sampled through
MATLAB’s "lhsdesign" and R’s "randomLHS", respectively. However, the two
resulting sets XN have the same statistical distribution, so we ignore the differ-
ence between these two sampled sets.
Whereas the preceding examples have k = 1 or k = 2 inputs, we now have

k = 8 inputs so it is hard to plot I/O points. Actually we make 3D plots like
Fig. 9; i.e., we plot wi (i = 1,, N) versus two inputs while keeping the other
six inputs constant at the midpoints of their ranges in the experiment; see [l, u]
in Table 3. Santner et al. (2018, Fig 7.10 and Table 7.11) shows that rw is the
most important input, and the three inputs L, Hl, and Hu appear to have ap-
proximately equally important effects (quantified through their estimated main
effects and total sensitivity indices). Therefore we make three plots; namely,
w versus (rw, L), (rw, Hl), and (rw, Hu), respectively. These three plots look
very similar, so we present a single plot; namely, Fig. 13. To generate this plot,
we use a grid of 21× 21 input combinations (rw, L) while keeping the other six
inputs constant (finer grids give very similar plots); the plot uses standardized
input values. These input combinations give outputs w that follow from the
analytical model (31). The plot confirms that rw is the most important input.
Moreover, the plot suggests a monotonic I/O function; i.e., the borehole model
looks complicated, but gives a simpler I/O function than Xiong et al.’s example
in Section 4.2 and Gramacy’s example in 4.4.

31

Figure 14: Boxplots for SPE in n0 = 10 LHS designs with 25 macroreplications,
and SPE in Gramacy (2015)’s n0 = 10 designs for the borehole example

We do not know whether Gramacy’s design for the borehole example with k
= 8 gives a specific pattern that resembles the pattern with rays in Fig. 10 for
the example with k = 2.
To save considerable computer time, we use only m = 25 macroreplications

for each of the n0 = 10 new points for the borehole example (instead of 100,
as we did for the preceding examples; most computer time is needed to search
for the NN among as many as N = 1,000,000 points in the borehole example).
It turns out that m = 25 macroreplications give enough information; i.e., the
signal/noise ratio is strong enough. The five horizontal dots in Fig. 14 display
the SPEs for Gramacy’s n0 =10 designs, and the boxplots show the SPEs in the
m = 25 macroreplications of our design sampled from T(x0;t). We present the
following conclusions.
(i) For six of the ten new points, our design gives much higher SPEs than

Gramacy’s design does; no further statistical analysis is needed.
(ii) For three other new points, our design may give SPEs that are lower than

the SPE of Gramacy’s design for the specific new point. More specifically, for
the second new point, 22 of the 25 macroreplications for our design give smaller
SPEs than Gramacy’s design does. For the third new point, 2 macroreplications
give smaller SPEs. For the fourth new point, 3 macroreplications give smaller
SPEs. Note that for the tenth new point, no macroreplication gives a smaller
SPE.
(iii) The overall ASPE computed from all ten new points is 426.650537 for

LHS with T(x0;t), 2.785240 for Gramacy’s design, and 1.556274 for our NN
design.

32

We conclude that our type of design may give relatively high SPEs, so we
do not recommend this type. Therefore we consider the next type of one-shot
design, as an alternative for Gramacy’s sequential design.

5 One-shot design with n nearest neighbors

As we described above, Gramacy (2016) selects a "small" design matrix Xn,
which specifies n points from the "big" input data matrix XN with n � N .
Furthermore, this selection starts with a "relatively small" subset with n0 < n
unique NNs of x0, and selects the next (n - n0) points sequentially. It turns out
that most points in Xn are close to x0. In the present section we select n unique
NNs of x0 in "one shot", using the MATLAB function "nearestneighbours.m"
(this function selects the same n NNs of the single new combination x0 as our
own MATLAB function "neighbor.m", which we developed for selecting the
n unique NNs of the n > 1 points in XL– see Section 3.5– and takes more
computer time than "nearestneighbours.m" does). Obviously, we do not need
m > 1 macroreplications for our design.

5.1 Gramacy (2016)’s example revisited

We return to Gramacy (2016)’s example with N = 40,401 and n = 50, for one
specific new input combination; namely, x0 = (0.06875, 0.93125)′ (which lies
in the upper-left corner of the area of interest [0.1]2); see again Section 4.4.
Fig. 10 displays Gramacy’s three designs and our design. Gramacy’s designs
start with n0 = 6 NN, and sequentially add combinations that turn out to be
either NNs or combinations close to the four rays (see again Section 4.4); by
definition, our design selects only NNs. Note that in this Figure the x-axis and
the y-axis extend only from 0.00 to 0.20 (not 1.00) and from 0.80 (not 0.00) to
1.00, respectively (because x0 = (0.06875, 0.93125)′).
Note: After we have selected our NN design, we– like Gramacy– use OK

with the Gaussian correlation function to predict he output for a new input
combination.
These four designs give the following SPEs for Gramacy’s three designs and

our design: 2.5246×10−15, 2.6565×10−14, 2.6535×10−15, and 5.8423×10−13;
i.e., these SPEs turn out to be virtually zero. These SPEs are so small because
w0 = -0.372451 and ŷ0 = -0.372451 for the three Gramacy’s designs and -
0.372450 for our design.

5.2 The borehole example revisited

We return to the borehole example in Section 4.5, which uses N = 1,000,000
and only one of Gramacy (2016)’s designs with n = 60 for ten new locations
in the input space with k = 8 dimensions. Fig. 15 displays the SPEs for Gra-
macy’s design and our design with the same n (= 60). This Figure shows that

33

Figure 15: SPEs for ten new input combinations, for Gramacy’s design and our
NN design, in the borehole example

our design gives smaller SPEs for six of the ten new points; the Figure clearly
shows this result for the first six new points, while for the last four new points
the exact values of Gramacy’s design versus our design are 0.2283 versus 0.0439,
0.0385 versus 0.0005, 0.0385 versus 1.8076, 0.0014 versus 0.9979. The overall
ASPE (of the ten new points) are 2.7852 versus 1.5563. (The SPEs for our LHS
with triangular distributions are much higher, so we do not display these SPEs
in the Figure.) We conjecture that our one-shot NN design performs relatively
well because Gramacy’s customized design requires the specification of a Krig-
ing metamodel (e.g., an OK model with Gaussian correlation function) plus the
estimation of the Kriging hyperparameters (e.g., ψ = (µ, τ2, θ′)′) to sequentially
select new points after the initial (small) set of n0 (< n) NN points. (Our ex-
planation is inspired by the popular conjecture that OK performs relatively well
because UK requires the estimation of additional parameters in the polynomial
for the mean; see again the references at the end of Section 2.)

6 Conclusions and future research

Kriging for prediction in big data with N observations is problematic because
Kriging requires the estimation of its (hyper)parameters and the resulting Krig-
ing predictor and Kriging variance. To solve this problem, Gramacy (2016)
selects a small subset of size n from the N previously observed "old" data.
This subset is selected sequentially, using the sequentially re-estimated Kriging
variance. The resulting designs turn out to be "local"; i.e., most design points
are concentrated around the "new" point to be predicted. We develop three
alternative one-shot methods that do not depend on the Kriging model and its

34

parameters: (i) use LHS with uniform marginal input distributions to select a
small subset such that this subset still covers the original input space—albeit
coarser; (ii) use LHS with triangular input distributions to select a subset with
relatively many– but not all– combinations close to the new combination that
is to be predicted, and (iii) select a subset with the NNs of the new combination.
To evaluate these designs, we compare their SPEs in several numerical experi-
ments. These experiments show that our NN design is a viable alternative for
Gramacy (2016)’s more sophisticated sequential design. .
Expensive simulation implies that the number of observations N is relatively

small compared to big data situations. Consequently, in expensive simulations
we try to find the smalles tN that still gives statistically accurate results. In
big data, however, N is such that we must select a subset of size n (� N).
In practice, the simulation analysts should use the highest possible value for
n– given the computer’s memory size and speed.
In future research we may investigate Kriging and big data, for random

output. This randomness may result from measurement error in the output
data of a real (non-simulated) system with big data. This error is modeled
through the so-called nugget effect; see Kleijnen (2015, pp. 206– 207). The
nugget effect in Kriging metamodels of deterministic simulation models is also
discussed in Chen et al. (2016), Mukhopadhyay et al. (2016), and Peng and
Wu (2014).
Random output also results in random simulation, such as discrete-event

simulation and agent-based simulation. Deterministic simulation also gives ran-
dom output if the values of the inputs (parameters) are uncertain so the input
values are sampled from a prior input distribution: so-called "uncertainty prop-
agation".
Random simulation has so-called "intrinsic" variances that may vary with

the input combinations (in machine learning, intrinsic variances turn the out-
puts into "latent" variables). Intrinsic variances may be analyzed through ei-
ther "stochastic Kriging" or "hetGP"; see Meng and Ng (2016) and Binois et
al. (2015) respectively. Constant intrinsic variances are discussed in Damianou
(2015) and Nickson et al. (2015). Correlated intrinsic noise is created by com-
mon random numbers, and deserves attention too; see Kleijnen (2017).

References

Angelino, E., M.J. Johnson, and R.P. Adams (2016), Patterns of scalable
Bayesian inference. arXiv preprint arXiv:1602.05221, 2016
Barber, C.B., D.P. Dobkin, and H. Huhdanpaa (1996), The Quickhull algo-

rithm for convex hulls. ACM Transactions on Mathematical Software, 22, no.
4, pp. 469—483
Benková, E., R. Harman, and W.G. Müller (2015), Privacy sets for con-

strained space-filling. arXiv :1510.05284
Binois, M., R.B. Gramacy and M. Ludkovskiz (2016), Practical heteroskedas-

tic Gaussian process modeling for large simulation experiments. ArXiv, 17 Nov
2016

35

Bouhlel, M.A., N. Bartoli, A. Otsmane, and J. Morlier (2016), Improving
Kriging surrogates of high-dimensional design models by partial least squares
dimension reduction. Structural and Multidisciplinary Optimization, 53, no. 5,
pp. 935—952
Bouhlel, M.A., N. Bartoli, R.G. Regis, A. Otsmane, and J. Morlier (2017),

Effi cient global optimization for high-dimensional constrained problems by using
the Kriging models combined with the partial least squares method. Optimiza-
tion Engineering, in press
Bradley, J.R., N. Cressie, and T. Shi (2016). A comparison of spatial pre-

dictors when datasets could be very large. Statistics Surveys, 10, pp. 100—131
Chen, H., J.L. Loeppky, J. Sacks, and W.J. Welch (2016), Analysis methods

for computer experiments: how to assess and what counts? Statistical Science,
31, no. 1, pp. 40-60
Chevalier, C., X. Emery, and D. Ginsbourger (2014), Fast update of condi-

tional simulation ensembles. <hal-00984515>
Chilès, J.-P. and N Desassis (2018), Fifty years of Kriging. Handbook of

Mathematical Geosciences; fifty years of IAMG, edited by B. S. Daya Sagar, Q.
Cheng, and F. Agterberg, Springer, pp. 589—612
Damianou, A. (2015), Deep Gaussian Processes and Variational Propagation

of Uncertainty. Doctor of Philosophy dissertation, Department of Neuroscience,
University of Sheffi eld, U.K. (https://arxiv.org/abs/1510.07965)
Dixon, L.C.W. and G.P. Szego (1978), The global optimisation problem: an

introduction. In: Towards global optimisation, volume 2, eds. Dixon, L.C.W.
and G.P. Szego, North-Holland, New York, pp. 1-15
Dong, H. and M.K. Nakayama (2017), Quantile estimation with Latin hy-

percube sampling. Operations Research, 65, no. 6, pp. 1678—1695
Efron, B. (2015), Frequentist accuracy of Bayesian estimates. Royal Statis-

tical Society, Series B, 77, no. 3, pp. 617-646
Erickson, C.B., B.E. Ankenman, S.M. Sanchez (2017), Comparison of Gaussian

process modeling software. European Journal of Operational Research, accepted
Floudas, C.A. et al. (1999), Handbook of Test Problems in Local and Global

Optimization. Dordrecht, The Netherlands: Kluwer Academic Publishers
Fouladinejad, N., N. Fouladinejad, M.K.A. Jalil, and J.M. Taib (2017),

Decomposition-assisted computational technique based on surrogate modeling
for real-time simulations. Complexity, https://doi.org/10.1155/2017/1686230
Gal, Y., M. van der Wilk, and C.E. Rasmussen (2014), Distributed varia-

tional inference in sparse Gaussian process regression and latent variable models.
arXiv :1402.1389v2 [stat.ML] 29 Sep 2014
Gramacy, R.B. (2016), laGP: large-scale spatial modeling via local approx-

imate Gaussian processes in R. Journal of Statistical Software, 72, no. 1, pp.
1—46
Gramacy, R. B. and D. W. Apley (2015), Local Gaussian process approxima-

tion for large computer experiments. Journal of Computational and Graphical
Statistics, 24, no. 2, pp. 561—578
Gramacy, R. B., G. A., Gray, S.L. Digabel, H.K.H. Lee, P. Ranjan, G.

Wells, and S.M. Wild (2015), Modeling an augmented Lagrangian for improved

36

blackbox constrained optimization. Technometrics, 61, pp. 1-38
Guhaniyogi, R. and S. Banerjee (2018), Meta-Kriging: scalable Bayesian

modeling and inference for massive spatial datasets. Technometrics, DOI: 10.1080/00401706.2018.1437474
Guinness, J. (2018), Permutation and grouping methods for sharpening

Gaussian process approximations. Technometrics, DOI: 10.1080/00401706.2018.1437476
Gutiérrez de Ravé, E., F.J. Jiménez-Hornero, A.B. Ariza-Villaverde, and

J.M. Gómez-López (2014), Using general-purpose computing on graphics process-
ing units (GPGPU) to accelerate the ordinary kriging algorithm. Computers &
Geosciences, 64, pp. 1—6
Jamil, M., & Yang, X.-S. (2013). A literature survey of benchmark func-

tions for global optimisation problems. International Journal of Mathematical
Modelling and Numerical Optimisation, 4(2), 150—194
Kajero, O.T. , T. Chen, Y. Yao, Y-C. Chuan, D.S.H. Wong (2017), Meta-

modelling in chemical process system engineering. Journal of the Taiwan Insti-
tute of Chemical Engineers, 73, pp. 135—145
Kamiński, B. (2015), A method for updating of stochastic Kriging meta-

models. European Journal of Operational Research, 247, no. 3, pp. 859—866
Kleijnen, J.P.C. (2017), Design and analysis of simulation experiments: tu-

torial. Invited chapter for Advances in Modeling and Simulation: Seminal Re-
search from 50 Years of Winter Simulation Conferences, edited by A. Tolk, J.
Fowler, G. Shao, and E. Yücesan, Springer, pp. 135-158
Kleijnen, J.P.C. (2015), Design and analysis of simulation experiments; sec-

ond edition. Springer
Kleijnen, J. P. C. and W. Shi (2017). Sequential probability ratio tests:

conservative and robust. CentER Discussion Paper; Vol. 2017-001, Tilburg:
CentER, Center for Economic Research
Law, A.M. (2015), Simulation modeling and analysis, 5th edition. McGraw-

Hill, Boston
Le Guiban, K., A. Rimmel, M-A. Weisser, and J. Tomasik (2017), The

first approximation algorithm for the maximin Latin hypercube design problem.
Operations Research, in press
Lim, C.Y., C-H. Chen, W-Y. Wu (2017), Numerical instability of calculating

inverse of spatial covariance matrices. Statistics and Probability Letters, 129,
pp.182—188
Loeppky, J.L., J. Sacks, and W. Welch (2009) Choosing the sample size of a

computer experiment: a practical guide. Technometrics, 51, no. 4, pp. 366—376
Lophaven, S.N., H.B. Nielsen, and J. Sondergaard (2002) DACE: a Matlab

Kriging toolbox, version 2.0. IMM Technical University of Denmark, Kongens,
Lyngby
McKay, M.D., R.J. Beckman, and W.J. Conover (1979) A comparison of

three methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 21, no. 2, pp. 239—245 (reprinted in
Technometrics, 42, no. 1, 2000, pp. 55—61)
Martinez-Cantin, R. (2016), Funneled Bayesian optimization for design, tun-

ing and control of autonomous systems. arXiv:1610.00366v1 [cs.AI] 2 Oct 2016

37

Meng, Q. and S.H. Ng (2016), Combined Global and local method for sto-
chastic simulation optimization with an AGLGP model. Proceedings of the
2016 Winter Simulation Conference, edited by T. M. K. Roeder, P. I. Frazier,
R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, pp. 827-838
Morgan, B.L., H.C. Schramm, J.R. Smith, T.W. Lucas, M.L. McDonald, P.J.

Sánchez, S.M. Sanchez, and S.C. Upton (2017), Improving U.S. Navy campaign
analyses with big data. Interfaces, in press
Mukhopadhyay, T., S Chakraborty, S Dey, S Adhikari, and R. Chowdhury

(2016), A critical assessment of Kriging model variants for high-fidelity uncer-
tainty quantification in dynamics of composite shells. Archives of Computa-
tional Methods in Engineering, pp. 1—24
Nickson, T., T. Gunter, C. Lloyd, M.A. Osborne, and S. Roberts (2015),

Blitzkriging: Kronecker-structured stochastic Gaussian processes. arXiv:1510.07965v2
[stat.ML] 31 Oct 2015
Peng, C-Y. and C.F.J. Wu (2014), On the choice of nugget in Kriging mod-

eling for deterministic computer experiments. Journal of Computational and
Graphical Statistics, 23, no. 1, pp. 151—168
Pronzato, L. and M-J. Rendas (2017), Bayesian local Kriging. Technomet-

rics, in press
Rasmussen, C. and Williams, C. (2006). Gaussian processes for machine

learning. MIT Press, Cambridge, Massachusetts
Santner, T.J., B.J. Williams, and W.I. Notz (2018), The design and analysis

of computer experiments; second revised edition. Springer, New York
Sung, C-L., R. B. Gramacy, and B. Haaland (2016), Potentially predictive

variance reducing sub-sample locations in local Gaussian process regression.
ArXiv e-prints
Surjanovic, S. and D. Bingham (2016), Virtual library of simulation experi-

ments: test functions and datasets. http://www.sfu.ca/~ssurjano
Tzeng, S. and H-C. Huang (2018), Resolution adaptive fixed rank kriging.

Technometrics, 60, no. 2, pp. 198—208
Uhrmacher, A., S. Brailsford, J. Liu , M. Rabe, and A. Tolk (2016), Panel

- Reproducible Research in Discrete Event Simulation - A Must or Rather a
Maybe? Proceedings of the 2016 Winter Simulation Conference, T. M. K.
Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick,
eds., pp. 1301—1315
Van Stein, B., H. Wang, W. Kowalczyk, M. Emmerich, and T. Bäck (2017),

Cluster-based Kriging approximation algorithms for complexity reduction. arXiv :1702.01313v1
[cs.LG] 4 Feb 2017
Wang, H., L. Tang, and G.Y. Li (2011), Adaptive MLS-HDMR metamodel-

ing techniques for high dimensional problems. Expert Systems with Applications,
38, no. 11, pp. 14117—14126
Wang, W. and X. Chen (2017), An adaptive two-stage dual metamodeling

approach for stochastic simulation experiments. Grado Department of Indus-
trial and Systems Engineering, Virginia Tech, Blacksburg
Woods, D.C. and S.M. Lewis (2016), Design of experiments for screening.

Handbook of uncertainty quantification, Springer (preprint: arXiv:1510.05248)

38

Xiong, S., P.Z. Qian, and C.J. Wu (2013). Sequential design and analysis of
high-accuracy and low-accuracy computer codes. Technometrics, 55, no. 1, pp.
37—46
Xiong, Y., W. Chen, D. Apley, and X. Ding. 2007. A non-stationary

covariance-based kriging method for metamodelling in engineering design. Inter-
national Journal for Numerical Methods in Engineering, 71, no. 6, pp. 733—756
Xu, J., E. Huang, L. Hsieh, L.H. Lee, Q-S. Jia, and C-H. Chen (2016),

Simulation optimization in the era of Industrial 4.0 and the Industrial Internet.
Journal of Simulation, 10, pp. 310—320
Yuan, J., V. Nian, B. Su, and Q. Meng (2017), A simultaneous calibration

and parameter ranking method for building energy models. Applied Energy,
206, pp. 657—666

Acknowledgement 2 Robert Gramacy (Virginia Tech) shared his 50 combi-
nations of two inputs in the three designs for his example (which we reproduce
in Appendix 4), and he provided us with 60 combinations of the eight inputs for
each of the ten new combinations to be predicted for the borehole example. Ivo
Couckuyt (University of Gent, Belgium) referred us to Damianou (2015) and
Nickson et al. (2015). Tom Santner (Ohio State University) suggested to make
three plots for the borehole example, as explained in the text. Dick den Hertog
(Tilburg University) suggested the linear programming solution for our convex
hull problem.

Appendix 1: Abbreviations and major mathematical symbols
Abbreviations:
ASPE: average squared prediction error
MSPE: mean squared prediction error
PDF: probability density function
PE: prediction error
SPE: squared prediction error
Symbols:
We list Latin symbols before Greek symbols, and lower-case symbols before

upper-case symbols
F (x): cumulative density function of x
m: number of macroreplications
n:
x: random (simulation) observation (output, response)

α: complement of nominal coverage probability
µ: mean (expected value)
σ2: variance
Σ: covariance matrix

39

Figure 16: Box-and-whisker plots for SPEs in Xiong et al. (2007)’s example

Appendix 2: Xiong et al. (2007)’s example: box-and-whisker plots
for estimated SPEs
Fig.16 displays box-and-whisker plots for the estimated SPEs in our exper-

iment with Xiong et al. (2007)’s example; there are plots for n = 10 and n
=100 old points, for n0 = 10 new points x0;t with t = 1, ..., 10, and for T(x0)
with sampled points, and U(0, 1) with sampled points (obviously, midpoints
for T(x0) or U(0, 1) implies that all m macroreplications give the same result).
To make these plots, we use the standard MATLAB function called "boxplot",
which creates a plot for each x0;t; we point out that x0;t is not equispaced (see
column 1 of Table 1).
Appendix 3: M/M/1-inspired example
The M/M/1 model itself is a Markov chain resulting from mutually inde-

pendent exponential interarrival times (say) athat are independent of mutually
independent exponential service times s, and has one server; implicit assump-
tions are that there is unlimited room for waiting customers, and that customers
are served in first-in-first-out (FIFO) order. This model has k= 1 input; namely,
the traffi c rate ρdefined as the mean arrival rate λdivided by the mean service
rate µ. The steady state can be reached only if ρ< 1. We let at+1 denote
the interarrival time between customers tand t + 1, and st the service time of
customer t. We assume that the output of interest is w, the waiting time of a

40

Figure 17: Box-and-whisker plots for SPEs in M/M/1-inspired example

customer. We estimate E(w)through the average w=
∑T
t=1 wt/nwhere Tdenotes

the number of customers of the simulation run. Furthermore, we assume that
the simulation starts in the "empty" state so w1= 0.The dynamics of a single-
server system are specified by the so-called Lindley recurrence formula wt+1=
max(0, wt + st − at+1). Mathematical analysis gives the mean steady-state
waiting-time:

E(wt | t ↑ ∞) =
λ

µ(µ− λ) =
1

µ

ρ

(1− ρ) ,

so if we select the time unit such that µ= 1, then E(wt|t ↑ ∞)= ρ/(1 − ρ). In
our M/M/1-inspired example we replace ρby x, and E(wt|t ↑ ∞)by w.
Fig.17 displays box-and-whisker plots for the M/M/1-inspired example; these

plots closely resemble the plots for Xiong et al. (2007)’s example, which are dis-
played in the immediately preceding appendix.

Appendix 4: Gramacy (2016)’s example: three sequential designs
Table 4 gives the exact values of the n = 50 input combinations (zi;1, zi;2)for

the three designs derived in Gramacy (2016).

41

Design 1 Design 2 Design 3
i zi;1 zi;2 zi;1 zi;2 zi;1 zi;2
1 -1.72 1.72 -1.72 1.72 -1.72 1.72
2 -1.74 1.72 -1.74 1.72 -1.74 1.72
3 -1.72 1.74 -1.72 1.74 -1.72 1.74
4 -1.74 1.74 -1.74 1.74 -1.74 1.74
5 -1.72 1.7 -1.72 1.7 -1.72 1.7
6 -1.7 1.72 -1.7 1.72 -1.7 1.72
7 -1.64 1.64 -1.64 1.64 -1.8 1.6
8 -1.82 1.62 -1.82 1.62 -1.74 1.7
9 -1.74 1.7 -1.74 1.7 -1.7 1.74
10 -1.7 1.74 -1.7 1.74 -1.66 1.66
11 -1.62 1.82 -1.62 1.82 -1.7 1.7
12 -1.7 1.76 -1.7 1.76 -1.72 1.76
13 -1.76 1.7 -1.76 1.7 -1.8 1.88
14 -1.86 1.86 -1.86 1.84 -1.76 1.74
15 -1.74 1.76 -1.76 1.74 -1.84 1.7
16 -1.7 1.7 -1.7 1.7 -1.92 1.58
17 -1.76 1.72 -1.72 1.76 -1.66 1.82
18 -1.88 1.52 -1.76 1.72 -1.76 1.72
19 -1.72 1.76 -1.88 1.52 -1.76 1.7
20 -1.9 1.9 -1.92 1.9 -1.72 1.68
21 -1.68 1.7 -1.7 1.68 -1.7 1.76
22 -1.76 1.74 -1.68 1.74 -1.74 1.76
23 -1.72 1.68 -1.74 1.76 -1.74 1.68
24 -1.68 1.72 -1.72 1.68 -1.7 1.68
25 -1.74 1.68 -1.78 1.72 -1.68 1.7
26 -1.76 1.76 -1.68 1.72 -1.68 1.74
27 -1.5 1.92 -1.5 1.92 -1.82 1.82
28 -1.68 1.74 -1.74 1.68 -1.72 1.78
29 -1.5 1.48 -1.76 1.76 -1.88 1.52
30 -1.7 1.68 -1.68 1.76 -1.92 1.92
31 -1.78 1.72 -1.5 1.5 -1.76 1.76
32 -1.72 1.78 -1.6 1.6 -1.76 1.68
33 -1.62 1.62 -1.68 1.7 -1.74 1.78
34 -1.76 1.68 -1.46 1.46 -1.62 1.8
35 -1.68 1.76 -1.78 1.74 -1.6 2
36 -1.48 1.44 -1.72 1.78 -1.68 1.72
37 -1.68 1.68 -1.76 1.68 -1.68 1.76
38 -1.78 1.74 -1.68 1.68 -1.66 1.86
39 -1.74 1.78 -1.84 1.84 -1.7 1.78
40 -1.84 1.84 -1.74 1.78 -1.72 1.66
41 -1.6 1.6 -1.78 1.76 -1.78 1.72
42 -1.62 1.84 -1.82 1.6 -1.78 1.7
43 -1.42 1.96 -1.62 1.84 -1.78 1.76
44 -1.7 1.78 -1.72 1.66 -1.86 1.92
45 -1.84 1.58 -1.42 1.96 -1.74 1.66
46 -1.78 1.7 -1.7 1.78 -1.34 1.82
47 -1.72 1.66 -1.66 1.72 -1.6 1.68
48 -1.66 1.72 -1.62 1.62 -1.78 1.74
49 -1.76 1.78 -1.78 1.7 -1.66 1.72
50 -1.6 1.84 -1.7 1.66 -1.66 1.74

Table 4: Gramacy (2015)’s three designs, each with 50 combinations of 2 inputs

42

