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Abstract

This paper addresses interactive one-machine sequencing situations in which the costs of process-
ing a job are given by an exponential function of its completion time. The main difference with the
standard linear case is that the gain of switching two neighbors in a queue is time-dependent and
depends on their exact position. We illustrate that finding an optimal order is complicated in general
and we identify specific subclasses, which are tractable from an optimization perspective. More specif-
ically, we show that in these subclasses, all neighbor switches in any path from the initial order to an
optimal order lead to a non-negative gain. Moreover, we derive conditions on the time-dependent
neighbor switching gains in a general interactive sequencing situation to guarantee convexity of the
corresponding cooperative game. These conditions are satisfied within our specific subclasses of ex-
ponential interactive sequencing situations.

Keywords: interactive sequencing situation, initial order, exponential cost function, sequencing games,
convexity
JEL classification: C44, C71

1 Introduction

In an interactive one-machine sequencing situation, several jobs have to be processed on a single ma-
chine. Each job is associated to a player with a specific cost function which is defined in terms of the
completion time, that is, the time this job spends in the system. Furthermore, it is assumed that there
is an initial order on the players that prescribes the rights to be processed by the machine. From an
optimization perspective, the objective is to determine an optimal processing order that minimizes the
total aggregate costs.

In the standard setting, the cost functions are assumed to be linear, specified by linear cost coeffi-
cients. Smith (1956) shows that, in order to minimize the total costs, the players should be processed
in a non-increasing order of their urgency indices. Here, the urgency index is defined as the ratio of
the linear cost coefficient and the processing time.

To obtain reasonable allocations of the total cost savings reached by reordering the players from the
initial order to an optimal order, Curiel, Pederzoli, and Tijs (1989) defined for each standard sequencing
situation an associated transferable utility cooperative game. It was shown that standard sequencing
games allow for coalitionally stable cost allocations and in particular, allow for a coalitionally stable
cost allocation rule, only based on repairs of neighbor misplacements. This Equal Gain Splitting rule
(EGS-rule) is analyzed and characterized by Curiel et al. (1989) and defined by recursively splitting
the corresponding neighbor switching gains equally in every step in a path from the initial order to
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an optimal order that repairs all neighbor misplacements. Moreover, standard sequencing games are
shown to be convex, which provide a definite drive to indeed cooperate.

The analysis of interactive standard sequencing situations has been extended in many directions.
We mention Hamers, Borm, and Tijs (1995) by imposing ready times, Borm, Fiestras-Janeiro, Hamers,
Sánchez, and Voorneveld (2002) by imposing due dates, Rustogi and Strusevich (2012) by studying po-
sitional effects, Lohmann, Borm, and Slikker (2014) by analyzing just-in-time arrivals and Musegaas,
Borm, and Quant (2015) by considering step out-step in sequencing games. Moreover, Grundel, Çiftçi,
Borm, and Hamers (2013), Gerichhausen and Hamers (2009) and Çiftçi, Borm, Hamers, and Slikker
(2013) studied the grouping of players in families or batches. Finally, we mention Klijn and Sánchez
(2006), who studied uncertainty sequencing games.

In this paper, we primarily deal with interactive sequencing situations with exponential cost func-
tions, specified by exponential cost coefficients. This type of cost functions models the fact that players
could have increasing marginal costs, which is a standard modeling choice in several fields, in partic-
ular economics. We will show that finding an optimal order in exponential interactive sequencing
situations, in general, is difficult. Therefore, we will carefully explore the differences between the
standard linear model and the exponential model by investigating the underlying neighbor switch-
ing gains. Contrary to the standard linear model, neighbor switching gains are time-dependent and
depend on the exact position in the queue. Moreover, it is seen that an optimal order can not always
be reached from the initial order by recursively repairing neighbor misplacements such that every
neighbor switching gain is non-negative.

We identify several subclasses that are tractable from an optimization perspective, that is, no dif-
ficulties arise with respect to the above-mentioned features. More specifically, for these subclasses,
there exists a comparison index between the jobs to determine all optimal orders (similar to the Smith
urgency index). These subclasses involve special cases of the exponential cost coefficients and the pro-
cessing times. In particular, two subclasses consist of exponential interactive sequencing situations
with identical exponential cost coefficients and identical processing times, respectively. The third
subclass we study, consists of exponential interactive sequencing situations in which both the cost
coefficients and the processing times can only take two possible values, respectively. This subclass is
referred to as the high-low model.

To analyze allocations of the cost savings, we introduce exponential sequencing games, similar to
the standard sequencing games as considered in Curiel et al. (1989). Again, using the component-
additive structure, exponential sequencing games allow for coalitionally stable allocations. However,
it is seen that convexity, in general, does not hold. Interestingly, convexity of the games correspond-
ing to the specific subclasses of exponential interactive sequencing situations can be established on
the basis of a general result for interactive sequencing situations. This result is obtained by impos-
ing specific conditions on the time-dependent neighbor switching gains of misplacements and non-
misplacements. In particular, these conditions will guarantee that an optimal order for subcoalitions
can be obtained from an optimal order for the grand coalition.

Although the specific subclasses of exponential interactive sequencing situations lead to convex
games and every path from the initial order to an optimal order recursively repairs neighbor mis-
placements, all with non-negative gains, we will see that however no direct extension of the EGS-rule
will always lead to coalitionally stable cost allocations.

The structure of the paper is as follows. Section 2 describes interactive sequencing situations. Sec-
tion 3 contains the analysis of exponential interactive sequencing situations, including the specific
subclasses. Finally, Section 4 focuses on sequencing games and in particular, on the convexity of these
games.

2



2 Interactive sequencing situations

An interactive sequencing situation is represented by a tuple (N, σ0, p, c), where N = {1, 2, . . . , n} is the
set of players that each have a job that needs to be processed on a single machine. The order σ0 is
the initial order which prescribes the initial rights to be processed by the machine. Formally, an order
is described by a bijective function σ : N → {1, 2, . . . , n} in which σ(i) = k means that the job of
player i is in position k. We denote by Π(N) the set of all orders of N. The vector p = (pi)i∈N ∈ RN

++

is the vector that contains the processing times of the jobs of the different players. Finally, the vector
c = (ci)i∈N specifies the cost functions for the players, for all i ∈ N given by ci : [0, ∞) → R, where
t ∈ [0, ∞) represents the number of time units spend in the system. It is assumed that the machine
starts processing at time t = 0 and that all players are present in the system at that time. The set of all
interactive sequencing situations with player set N is denoted by SEQN .

A standard sequencing situation is an interactive sequencing situation (N, σ0, p, c) ∈ SEQN in which
each cost function ci is given by a linear function: ci : [0, ∞) → R, with ci(t) = αit. Here, αi ∈ R++

is referred to as the linear cost coefficient of player i ∈ N. The set of all standard sequencing situations
with player set N is denoted by SSEQN .

Let (N, σ0, p, c) ∈ SEQN be an interactive sequencing situation. The completion time of the job
of player i ∈ N with respect to an order σ ∈ Π(N) is denoted by Ci(σ) and given by Ci(σ) =

∑k∈N : σ(k)≤σ(i) pk. Moreover, the starting time of the job of player i ∈ N with respect to an order
σ ∈ Π(N) is denoted by ti(σ) and given by ti(σ) = ∑k∈N : σ(k)<σ(i) pk. For a given order σ ∈ Π(N),
the total costs of this order are denoted by TC(σ) and are given by

TC(σ) = ∑
i∈N

ci(Ci(σ)).

An order is optimal if the total costs of this order are minimal among all orders. Formally, an optimal
order σ̂ satisfies TC(σ̂) ≤ TC(σ) for all σ ∈ Π(N). Accordingly, the set of misplacements with respect
to an optimal order σ̂ is defined as the set of pairs of players that are ordered differently in the initial
order σ0 and the optimal order σ̂:

MP(σ0, σ̂) = {(i, j) ∈ N × N : σ0(i) < σ0(j) and σ̂(i) > σ̂(j)} .

In every interactive sequencing situation, each optimal order can be obtained from the initial order
by recursively switching two consecutive players, i.e., by recursively repairing neighbor misplace-
ments. This is due to a basic result for permutations: every permutation is the product of transposi-
tions, where a transposition is a permutation that only interchanges two elements. Hence, it is possi-
ble to obtain any optimal order from the initial one by recursively interchanging a pair of consecutive
players that are misplaced.

For notational convenience, a sequence of orders (σ0, σ1, σ2, . . . , σm) with σm = σ̂ corresponding to
transpositions (i1, j1), (i2, j2), . . . , (im, jm) is called a path from the initial order σ0 to an optimal order
σ̂ if, for every k ∈ {1, 2, . . . , m}, σk−1(jk) = σk−1(ik) + 1 and σk(ik) = σk−1(jk), σk(jk) = σk−1(ik) and
σk(`) = σk−1(`) for every ` ∈ {1, . . . , n} with ` 6= ik, jk. In other words, a path from the initial order
σ0 to an optimal order σ̂ repairs all misplacements in MP(σ0, σ̂) one by one, by only switching two
misplaced neighbors in each step. Note that m = |MP(σ0, σ̂)|.

In every step of a path from the initial order to an optimal order, the total costs change. Since this
change in total costs is only caused by the pair of consecutive players that are switched in that step, the
change in total costs is called the (neighbor switching) gain of these two players. Formally, the neighbor
switching gain of players i, j ∈ N with i directly in front of player j at time t ∈ [0, ∞) (see also Figure
1) is defined by

gij(t) = ci(t + pi) + cj(t + pi + pj)− ci(t + pi + pj)− cj(t + pj). (1)
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Figure 1: Interchanging players i and j, leading to the neighbor gain gij(t).

Note that the neighbor switching gain can be either positive, negative or zero. Moreover, every
path from the initial order to an optimal order leads to the same total cost savings. That is, for every
path from the initial order to an optimal order, (σ0, σ1, σ2, . . . , σm) with σm = σ̂, corresponding to
transpositions (i1, j1), (i2, j2), . . . , (im, jm), it holds that

TC(σ0)− TC(σ̂) =
m

∑
k=1

gik jk (tik
(σk−1)).

For a standard sequencing situation (N, σ0, p, c) ∈ SSEQN , Smith (1956) showed that the total costs
are minimized if the players are ordered in non-increasing order of their urgency indices, where the
urgency index ui is defined by ui = αi

pi
for all i ∈ N. Consequently, using the urgency index as a

comparison index, there exists an optimal order σ∗ such that

MP(σ0, σ∗) = {(i, j) ∈ N × N : σ0(i) < σ0(j) and ui < uj}. (2)

Note that for this particular optimal order, the number of misplacements (i.e. the number of pairs
of players that are ordered in the initial order in a different way than in the optimal order) is the
smallest with respect to all optimal orders. In that sense, σ∗ is the optimal order that is closest to the
initial order.

Using Equation (1), the neighbor switching gain of players i, j ∈ N at time t ∈ [0, ∞) of a standard
sequencing situation (N, σ0, p, c) ∈ SSEQN becomes independent of the time:

gij(t) = ci(t + pi) + cj(t + pi + pj)− ci(t + pi + pj)− cj(t + pj)

= αit + αi pi + αjt + αj pi + αj pj − αit− αi pi − αi pj − αjt− αj pj

= αj pi − αi pj. (3)

Consequently, the total cost savings are equal to the sum of the neighbor switching gains correspond-
ing to misplacements:

TC(σ0)− TC(σ̂) = ∑
(i,j)∈MP(σ0,σ̂)

(αj pi − αi pj).

For the remainder of this paper, we primarily focus on neighbor switching gains. Due to Smith
(1956), we have the following lemma, which will be the baseline for the corresponding results in the
upcoming sections.

Lemma 2.1. Let (N, σ0, p, c) ∈ SSEQN be a standard sequencing situation. Let i, j ∈ N be two players such
that σ0(i) < σ0(j) and let σ̂ be an optimal order. Then,

1) gij(t) ≥ 0 for all t ∈ [0, ∞), if (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0, ∞), if (i, j) /∈ MP(σ0, σ̂).

Moreover, g′ij(t) = 0 for all t ∈ [0, ∞).

Proof. Note that gij(t) = αj pi − αi pj, according to Equation (3).

1) If (i, j) ∈ MP(σ0, σ̂), then, ui ≤ uj. Hence, αi pj ≤ αj pi and thus gij(t) ≥ 0 for all t ∈ [0, ∞).

2) If (i, j) /∈ MP(σ0, σ̂), then, ui ≥ uj. Hence, αi pj ≥ αj pi and thus gij(t) ≤ 0 for all t ∈ [0, ∞).

Obviously, g′ij(t) = 0 for all t ∈ [0, ∞).
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Summarizing, we stress the following important features for a standard sequencing situation:

• The neighbor switching gains are constant in time and do not depend on the exact position in
the queue;

• An optimal order can be reached from the initial order by consecutively repairing all neigh-
bor misplacements, where the corresponding neighbor switching gains in each step are non-
negative.

3 Exponential sequencing situations

An exponential sequencing situation is represented by an interactive sequencing situation (N, σ0, p, c) ∈
SEQN , where the cost function of player i ∈ N is given by an exponential function, i.e., ci : [0, ∞)→ R,
with ci(t) = eαit and αi ∈ R++ the exponential cost coefficient of player i ∈ N. The set of all exponential
sequencing situations with player set N is denoted by ESEQN .

For an exponential sequencing situation (N, σ0, p, c) ∈ ESEQN , the neighbor switching gain of two
consecutive players i, j ∈ N at time t ∈ [0, ∞) is given by

gij(t) = ci(t + pi) + cj(t + pi + pj)− ci(t + pi + pj)− cj(t + pj)

= eαi(t+pi) + eαj(t+pi+pj) − eαi(t+pj+pi) − eαj(t+pj). (4)

Contrary to the standard sequencing situations, it immediately follows from Equation (4) that the
neighbor switching gains for exponential sequencing situations are time-dependent. Moreover, the
following example shows that it is possible that there are negative neighbor switching gains in every
path from the initial order to an optimal order.

Example 3.1. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation, where N = {1, 2, 3, 4},
σ0 = (1, 2, 3, 4) and the exponential cost coefficients and processing times as specified by the table below.

player 1 player 2 player 3 player 4

αi 1.880 1.904 1.902 1.549
pi 1.205 1.940 1.976 1.357

The total costs for all orders are computed and shown below.

σ TC(σ) σ TC(σ) σ TC(σ)

(1, 2, 3, 4) 40192.0978 (2, 3, 1, 4) 39731.0259 (3, 4, 1, 2) 232608.8238

(1, 2, 4, 3) 225869.7331 (2, 3, 4, 1) 199870.9139 (3, 4, 2, 1) 217726.1909

(1, 3, 2, 4) 40392.5376 (2, 4, 1, 3) 229338.6158 (4, 1, 2, 3) 229805.7814

(1, 3, 4, 2) 228882.7154 (2, 4, 3, 1) 217473.5852 (4, 1, 3, 2) 233055.4929

(1, 4, 2, 3) 229736.6016 (3, 1, 2, 4) 40397.1073 (4, 2, 1, 3) 229673.8692

(1, 4, 3, 2) 232986.3132 (3, 1, 4, 2) 228887.2851 (4, 2, 3, 1) 217808.8386

(2, 1, 3, 4) 40193.6761 (3, 2, 1, 4) 39747.2069 (4, 3, 1, 2) 232965.9098

(2, 1, 4, 3) 225871.3114 (3, 2, 4, 1) 199887.0949 (4, 3, 2, 1) 218083.2769

Note that TC((2, 3, 1, 4)) = 39731.0259 < TC(σ) for all σ ∈ Π(N). So there is a unique optimal order,
σ̂ = (2, 3, 1, 4). Then, MP(σ0, σ̂) = {(1, 2), (1, 3)}. Hence, there is only one path from the initial order to the
optimal order:

(1, 2, 3, 4)→ (2, 1, 3, 4)→ (2, 3, 1, 4),

that is, the path (σ0, σ1, σ2) with σ0 = (1, 2, 3, 4), σ1 = (2, 1, 3, 4) and σ2 = σ̂ = (2, 3, 1, 4) corresponding to
transpositions (1, 2) and (1, 3), respectively. Notice that the neighbor switching gains in the first step of this
path are negative, that is,

g12(0) = TC(σ0)− TC(σ1) = 40192.0978− 40193.6761 < 0.
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In fact, every path from the initial order to any other order (optimal or not) has a negative neighbor switching gain
in the first step: g23(p1) = TC(σ0)− TC((1, 3, 2, 4)) < 0 and g34(p1 + p2) = TC(σ0)− TC((1, 2, 4, 3)) <
0.

Example 3.1 shows that finding an optimal order, in general, is complicated. One should allow for
neighbor switches with a negative gain. Thus, bilateral considerations are not sufficient in finding an
optimal order. Additionally, it is seen that, in general, the two important features as discussed at the
end of Section 2 no longer hold if the cost functions are exponential.

3.1 A special case: identical exponential cost coefficients

This section is the first of three sections that describe specific subclasses of exponential sequencing
situations. For this section, it is assumed that the exponential cost coefficients are common for all jobs,
that is, there exists an α ∈ R++ such that all individual exponential cost coefficients αi equal α. For
this special case, the following theorem characterizes an optimal order. It shows that this subclass is
tractable from an optimization perspective.

Theorem 3.2. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N and
all t ∈ [0, ∞), ci(t) = eαt with α ∈ R++. Let σ̂ ∈ Π(N) be an order. Then it holds that σ̂ is optimal if and
only if

pσ̂−1(1) ≤ · · · ≤ pσ̂−1(k−1) ≤ pσ̂−1(k) ≤ pσ̂−1(k+1) ≤ · · · ≤ pσ̂−1(n). (5)

Proof. The proof consists of two parts: we first show the ‘only if’ part. Secondly, we show that any
two orders that satisfy Equation (5) yield the same total costs. Together, this implies that an order is
optimal if and only if it satisfies Equation (5).

For the first claim, assume that σ̂ is optimal and suppose for the sake of contradiction that it does
not satisfy Equation (5). Then there exists an ` ∈ {1, 2, . . . , n− 1} such that pσ̂−1(`) > pσ̂−1(`+1). Denote
i = σ̂−1(`) and j = σ̂−1(`+ 1), such that we have that pi > pj and i and j are consecutive players in
the order σ̂.

Define τ ∈ Π(N) as follows: τ(k) = σ̂(k) for all k ∈ N \ {i, j}, τ(i) = σ̂(j) and τ(j) = σ̂(i). In other
words, τ is the order where players i and j are interchanged. Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαti(σ̂)(eαpi + eα(pi+pj) − eα(pi+pj) − eαpj )

= eαti(σ̂)(eαpi − eαpj ) > 0,

where the inequality follows from the fact that eαt > 0 for all t ∈ [0, ∞) and eαpi − eαpj > 0, since
pi > pj. Moreover, the second equality is due to the fact that Cp(σ̂) = Cp(τ) for all p ∈ N \ {i, j}.
Consequently, TC(σ̂) > TC(τ), contradicting the optimality of σ̂. This proves the first claim.

For the second claim, consider two different orders σ, σ′ ∈ Π(N), σ 6= σ′ satisfying Equation (5).
Since both orders satisfy Equation (5), the only differences can be within a block of players with iden-
tical processing times. For these players (within a certain block) it holds that both the processing times
and the cost coefficients are identical, respectively. Hence, the combined costs of all players in one
block is the same for both orders. Then it follows that TC(σ) = TC(σ′).

In particular, Theorem 3.2 provides a comparison index to determine the set of misplacements
beforehand. This is shown by the following corollary.

Corollary 3.3. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N and
all t ∈ [0, ∞), ci(t) = eαt with α ∈ R++. Then, there exists an optimal order σ∗ ∈ Π(N) such that

MP(σ0, σ∗) = {(i, j) ∈ N × N : σ0(i) < σ0(j) and pi > pj}.
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This comparison index, based on processing times only, provides all pairs of players that needs to
be interchanged in order to reach a particular optimal order σ∗ from the initial order. Similar as in
Equation (2), σ∗ corresponds to the optimal order that is closest to the initial order. Obviously, other
optimal orders can be obtained from σ∗ by interchanging two consecutive players that have identical
comparison indices, i.e. identical processing times. By doing so, the total costs do not change.

Similar to Lemma 2.1, we show that all neighbor switching gains of misplacements are non-negative,
while the neighbor switching gains are non-positive for non-misplacements.

Lemma 3.4. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N and all
t ∈ [0, ∞), ci(t) = eαt with α ∈ R++. Let i, j ∈ N be two players such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N)

be an optimal order. Then,

1) gij(t) ≥ 0 and g′ij(t) ≥ 0 for all t ∈ [0, ∞), if (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 and g′ij(t) ≤ 0 for all t ∈ [0, ∞), if (i, j) /∈ MP(σ0, σ̂).

Proof. Using Equation (4), we have that gij(t) = eαt(eαpi − eαpj ) for all t ∈ [0, ∞).

1) If (i, j) ∈ MP(σ0, σ̂), then, pi ≥ pj. Hence, eαpi − eαpj ≥ 0. Since eαt > 0 for all t ∈ [0, ∞),
gij(t) ≥ 0 for all t ∈ [0, ∞). Similarly, we can conclude that g′ij(t) = αeαt(eαpi − eαpj ) ≥ 0.

2) If (i, j) /∈ MP(σ0, σ̂), then, pi ≤ pj. Hence, eαpi − eαpj ≤ 0 and thus gij(t) ≤ 0 for all t ∈ [0, ∞).
Analogously, it can be readily checked that g′ij(t) = αeαt(eαpi − eαpj ) ≤ 0.

This concludes the proof.

From the first statement of Lemma 3.4, we notice that every step in every path from the initial order
to an optimal order comes with a non-negative neighbor switching gain.

3.2 A special case: identical processing times

This section describes another specific subclass of exponential sequencing situations. Here, it is as-
sumed that the processing times are identical for all jobs, that is, there exists a p ∈ R++ such that
pi = p for all i ∈ N. For this special case, the following theorem shows that this particular subclass is
optimizationally tractable.

Theorem 3.5. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
pi = p with p ∈ R++. Let σ̂ ∈ Π(N) be an order. Then it holds that σ̂ is optimal if and only if

ασ̂−1(1) ≥ · · · ≥ ασ̂−1(k−1) ≥ ασ̂−1(k) ≥ ασ̂−1(k+1) ≥ · · · ≥ ασ̂−1(n). (6)

Proof. Similar to the proof of Theorem 3.2, this proof is also based on two steps. First, we show that any
optimal order should satisfy Equation (6). Secondly, we provide an argument to show that any two
orders that satisfy Equation (6) have equal total costs. Together, this implies that an order is optimal if
and only if Equation (6) is satisfied.

For the first step, assume that σ̂ is optimal and suppose for the sake of contradiction that Equation
(6) is not satisfied. Then there exists an ` ∈ {1, 2, . . . , n − 1} such that ασ̂−1(`) < ασ̂−1(`+1). Denote
i = σ̂−1(`) and j = σ̂−1(`+ 1), such that αi < αj and i and j are consecutive players in the order σ̂.

Define τ ∈ Π(N) as the order where players i and j are interchanged, i.e. τ(k) = σ̂(k) for all
k ∈ N \ {i, j} and τ(i) = σ̂(j) and τ(j) = σ̂(i). Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαi(ti(σ̂)+p) + eαj(ti(σ̂)+2p) − eαi(ti(σ̂)+2p) − eαj(ti(σ̂)+p)

= eαi(ti(σ̂)+p) (1− eαi p) + eαj(ti(σ̂)+p) (eαj p − 1)

> eαi(ti(σ̂)+p) (1− eαi p) + eαi(ti(σ̂)+p) (eαj p − 1)
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> eαi(ti(σ̂)+p) (1− eαi p) + eαi(ti(σ̂)+p) (eαi p − 1)

= 0,

where the first inequality is due to the fact that eαj(ti(σ̂)+p) > eαi(ti(σ̂)+p), since αi < αj, together
with eαj p − 1 > 0. Moreover, the second inequality is due to the fact that eαj p > eαi p together with
eαi(ti(σ̂)+p) > 0. Hence, TC(σ̂) > TC(τ), which is a contradiction.

For the second step, notice that the only differences between two orders σ, σ′ ∈ Π(N), σ 6= σ′

satisfying Equation (6) occur within a block of players with identical cost parameters. Hence, all
these players within a certain block have the identical processing times and cost parameters, such that
the combined costs for every block of players is the same for both orders. Consequently, TC(σ) =

TC(σ′).

Analogously to the previous section, Theorem 3.5 provides a comparison index to determine the
set of misplacements.

Corollary 3.6. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
pi = p with p ∈ R++. Then, there exists an optimal order σ∗ ∈ Π(N) such that

MP(σ0, σ∗) = {(i, j) ∈ N × N : σ0(i) < σ0(j) and αi < αj}.

Note again that due to this comparison index, based on the exponential cost coefficients only, it
is possible to determine which pairs of players need to be interchanged in order to reach the specific
optimal order σ∗ from the initial order.

To show that also in this subclass we have that every step in every path from the initial order to an
optimal order comes with a non-negative neighbor switching gain, we provide the following lemma.

Lemma 3.7. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
pi = p with p ∈ R++. Let i, j ∈ N be two players such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal
order. Then,

1) gij(t) ≥ 0 and g′ij(t) ≥ 0 for all t ∈ [0, ∞), if (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 and g′ij(t) ≤ 0 for all t ∈ [0, ∞), if (i, j) /∈ MP(σ0, σ̂).

Proof. Using Equation (4), we have that gij(t) = eαi(t+p)(1− eαi p)− eαj(t+p)(1− eαj p) for all t ∈ [0, ∞).
In order to prove 1), assume that (i, j) ∈ MP(σ0, σ̂). Then, αi ≤ αj and, for all t ∈ [0, ∞),

gij(t) = eαi(t+p)(1− eαi p)− eαj(t+p)(1− eαj p) = eαi(t+p)(1− eαi p) + eαj(t+p)(eαj p − 1)

≥ eαi(t+p)(1− eαi p) + eαi(t+p)(eαj p − 1)

≥ eαi(t+p)(1− eαi p) + eαi(t+p)(eαi p − 1)

= 0,

where the first inequality follows from the fact that αi ≤ αj implies that, for all t ∈ [0, ∞), eαj(t+p) ≥
eαi(t+p) and eαj p − 1 > 0. The second inequality is due to the fact that eαj p ≥ eαi p. Moreover,

g′ij(t) = αieαi(t+p)(1− eαi p)− αjeαj(t+p)(1− eαj p) = αieαi(t+p)(1− eαi p) + αjeαj(t+p)(eαj p − 1)

≥ αieαi(t+p)(1− eαi p) + αieαi(t+p)(eαi p − 1)

= 0,

according to a similar reasoning as before. The proof of 2) can be obtained analogously.

3.3 A special case: the high-low model

Finally, we describe a third subclass of exponential sequencing situations based on both the exponen-
tial cost coefficients and the processing times. We study exponential sequencing situations in which
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each exponential cost coefficient can only take two possible values, either a high value or a low value.
Moreover, also each processing time can only take either a high value or a low value. Consequently,
there are only four possible different types of players: a player can either have a high or a low expo-
nential cost coefficient and either have a high or a low processing time. These four groups are denoted
by GLL, GLH , GHL and GHH . Formally, for an exponential sequencing situation (N, σ0, p, c) ∈ ESEQN

such that, for every player i ∈ N, αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfy-
ing αL < αH and pL < pH :

• GLL =
{

i ∈ N : αi = αL and pi = pL};
• GLH =

{
i ∈ N : αi = αL and pi = pH

}
;

• GHL =
{

i ∈ N : αi = αH and pi = pL};
• GHH =

{
i ∈ N : αi = αH and pi = pH}.

For convenience, for all i ∈ N, Gi denotes the group GLL, GLH , GHL or GHH to which player i
belongs. In addition, we introduce, for any order σ ∈ Π(N), an order relation≺σ on the set of players:
for all i, j ∈ N, i ≺σ j if σ(i) < σ(j). With a slight abuse of notation, we extend this order relation
to be used for groups of players, that is, for any order σ ∈ Π(N) and any two groups of players
G, G′ ∈ {GLL, GLH , GHL, GHH}, G ≺σ G′ if for all i ∈ G and all j ∈ G′ we have that i ≺σ j.

For an exponential sequencing situation in this particular subclass, there are only four types of
players, such that it follows that, if we found an optimal order, we can make other optimal orders by
interchanging players from the same group with each other.

The following theorem shows that any optimal order starts with the players in GHL, i.e. players
having a high exponential cost coefficient and low processing times and ends with GLH , i.e. players
with a low exponential cost coefficient and a high processing time.

Theorem 3.8. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfying αL < αH and pL < pH . Let
σ̂ ∈ Π(N) be an optimal order. Then,

1) GHL ≺σ̂ G for all G ∈ {GLL, GLH , GHH};
2) G ≺σ̂ GLH for all G ∈ {GLL, GHL, GHH}.

Proof. Suppose for the sake of contradiction that σ̂ does not satisfy 1) or 2). Then there are two neigh-
bors that are not ordered according to 1) or 2). That is, there exists an ` ∈ {1, 2, . . . , n− 1} such that for
i = σ̂−1(`) and j = σ̂−1(`+ 1) one of the following five cases is satisfied:

i) i ∈ GLL and j ∈ GHL.

ii) i ∈ GLH and j ∈ GHL;

iii) i ∈ GHH and j ∈ GHL;

iv) i ∈ GLH and j ∈ GLL;

v) i ∈ GLH and j ∈ GHH .

ti(σ̂)

i j

j i. . .

. . .

. . .

. . .σ̂

τ

Figure 2: Interchanging i and j in orders σ̂ and τ.

Define τ ∈ Π(N) such that players i and j are interchanged. That is, τ(i) = σ̂(j), τ(j) = σ̂(i) and
τ(k) = σ̂(k) for all k ∈ N \ {i, j}. Figure 2 is a schematic representation of both orders. Note that it is
also possible that pi = pj. We deal with the above five cases separately.
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i) For the first case, we have that αi = αL, pi = pL, αj = αH and pj = pL. Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαL(ti(σ̂)+pL) + eαH(ti(σ̂)+pL+pL) − eαL(ti(σ̂)+pL+pL) − eαH(ti(σ̂)+pL)

= eαH(ti(σ̂)+pL)(eαH pL − 1)− eαL(ti(σ̂)+pL)(eαL pL − 1)

> 0,

where the last inequality follows from the fact that eαH pL − 1 > eαL pL − 1 > 0 and eαH(ti(σ̂)+pL) >

eαL(ti(σ̂)+pL) > 0, since αH > αL.

ii) Now, we have that αi = αL, pi = pH , αj = αH and pj = pL. Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαL(ti(σ̂)+pH) + eαH(ti(σ̂)+pH+pL) − eαL(ti(σ̂)+pL+pH) − eαH(ti(σ̂)+pL)

> eαL(ti(σ̂)+pH) + eαH(ti(σ̂)+pH+pL) − eαL(ti(σ̂)+pL+pH) − eαH(ti(σ̂)+pH)

= eαH(ti(σ̂)+pH)(eαH pL − 1)− eαL(ti(σ̂)+pH)(eαL pL − 1)

> 0,

where the first inequality follows from the fact that eαH(ti(σ̂)+pL) < eαH(ti(σ̂)+pH), since pL < pH ,
and the last inequality from a similar reasoning as in the first case, now using both αL < αH and
pL < pH .

iii) In this case, we have that αi = αH , pi = pH , αj = αH and pj = pL. Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαH(ti(σ̂)+pH) + eαH(ti(σ̂)+pH+pL) − eαH(ti(σ̂)+pH+pL) − eαH(ti(σ̂)+pL)

= eαH(ti(σ̂)+pH) − eαH(ti(σ̂)+pL)

> 0,

where the inequality is ensured by pL < pH .

iv) Here, αi = αL, pi = pH , αj = αL and pj = pL. Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαL(ti(σ̂)+pH) + eαL(ti(σ̂)+pH+pL) − eαL(ti(σ̂)+pL+pH) − eαL(ti(σ̂)+pL)

= eαL(ti(σ̂)+pH) − eαL(ti(σ̂)+pL)

> 0,

since pL < pH .

v) In the last case, we have that αi = αL, pi = pH , αj = αH and pj = pH . Then,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαL(ti(σ̂)+pH) + eαH(ti(σ̂)+pH+pH) − eαL(ti(σ̂)+pH+pH) − eαH(ti(σ̂)+pH)
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= eαH(ti(σ̂)+pH)(eαH pH − 1)− eαL(ti(σ̂)+pH)(eαL pH − 1)

> 0,

according to a similar reasoning as in the first two cases.

In all cases, TC(σ̂)− TC(τ) > 0, contradicting the fact that σ̂ is an optimal order.

The following example shows that ordering the players in GLL and GHH optimally is complicated
in general. In particular, it shows that these players need not be ordered in groups.

Example 3.9. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation, where N = {1, 2, 3, 4, 5},
σ0 = (1, 2, 3, 4, 5) and, for all i ∈ N, αi ∈ {αL, αH} with αL = 1.748 and αH = 1.781 and pi ∈ {pL, pH}
with pL = 0.342 and pH = 0.368. The processing times and the exponential cost coefficients of the players are
specified by the following table:

player 1 player 2 player 3 player 4 player 5

αi αH αH αL αL αL

pi pL pH pH pL pL

Note that GLL = {4, 5}, GLH = {3}, GHL = {1} and GHH = {2}. According to Theorem 3.8, player 1 is
the first player and player 3 the last player in any optimal order. That leaves only six orders, for which the total
costs are computed and shown below.

σ TC(σ)

(1, 2, 4, 5, 3) 44.8630

(1, 2, 5, 4, 3) 44.8630

(1, 4, 2, 5, 3) 44.8495

(1, 4, 5, 2, 3) 44.8862

(1, 5, 2, 4, 3) 44.8495

(1, 5, 4, 2, 3) 44.8862

Consequently, it is easily seen that both (1, 4, 2, 5, 3) and (1, 5, 2, 4, 3) are optimal. Note that the players in GLL

are not ordered as a group in both optimal orders.

The following theorem provides a condition on the four high-low parameters for which the corre-
sponding exponential sequencing situation is tractable from an optimization perspective.

Theorem 3.10. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfying αL < αH and pL < pH . Let
σ̂ ∈ Π(N) be an optimal order. If it holds that

eαH pH − eαL pL ≤ eαH(pL+pH) − eαL(pL+pH), (7)

then GHH ≺σ̂ GLL.

Proof. Assume that αL, αH , pL, pH satisfy Equation (7) and suppose for the sake of contradiction that
GHH 6≺σ̂ GLL. According to Theorem 3.8, the players from the group GHL are all in the beginning of
σ̂ and the players from the group GLH at the end of σ̂. Therefore, there exists an ` ∈ {1, 2, . . . , n− 1}
such that for i = σ̂−1(`) and j = σ̂−1(`+ 1) it holds that i ∈ GLL and j ∈ GHH . Then, αi = αL, pi =

pL, αj = αH and pj = pH . Similar as in the proof of Theorem 3.8, define τ ∈ Π(N) such that players
i and j are interchanged, i.e. τ(i) = σ̂(j), τ(j) = σ̂(i) and τ(k) = σ̂(k) for all k ∈ N \ {i, j} (see also
Figure 2). Consequently,

TC(σ̂)− TC(τ) = ∑
p∈N

eαpCp(σ̂) − ∑
p∈N

eαpCp(τ)

= eαiCi(σ̂) + eαjCj(σ̂) − eαiCi(τ) − eαjCj(τ)

= eαL(ti(σ̂)+pL) + eαH(ti(σ̂)+pL+pH) − eαL(ti(σ̂)+pL+pH) − eαH(ti(σ̂)+pH)
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= eαLti(σ̂)
(

eαL pL − eαL(pL+pH)
)
+ eαH ti(σ̂)

(
eαH(pL+pH) − eαH pH

)
> eαLti(σ̂)

(
eαL pL − eαH pH + eαH(pL+pH) − eαL(pL+pH)

)
≥ 0,

where the first inequality follows from the fact that eαH ti(σ̂) > eαLti(σ̂), since αH > αL. The second
inequality follows from the fact that eαLti(σ̂) > 0, by definition, and eαL pL − eαH pH + eαH(pL+pH) −
eαL(pL+pH) ≥ 0, by assumption.

Subsequently, TC(τ) < TC(σ̂), which yields a contradiction.

Note that, if αL
pL
≤ αH

pH
, then Equation (7) is satisfied. Interestingly, combining Theorem 3.8 and

Theorem 3.10 leads to a characterization of an optimal order for an exponential sequencing situation
within the high-low model with the high-low parameters satisfying Equation (7). An optimal order σ̂

should order players from the same group consecutively and order the four groups in the following
way:

GHL ≺σ̂ GHH ≺σ̂ GLL ≺σ̂ GLH .

This leads to a comparison index based on the exponential cost coefficients and processing times only,
which is shown by the following corollary.

Corollary 3.11. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfying αL < αH and pL < pH . If it holds
that

eαH pH − eαL pL ≤ eαH(pL+pH) − eαL(pL+pH), (8)

then there exists an optimal order σ∗ ∈ Π(N) such that

MP(σ0, σ∗) =
{
(i, j) ∈ N × N : σ0(i) < σ0(j) and either i ∈ GLH , j ∈ GHL ∪ GHH ∪ GLL

or i ∈ GLL, j ∈ GHL ∪ GHH

or i ∈ GHH , j ∈ GHL

}
.

Consequently, the pairs of players that need to be interchanged in order to reach an optimal order
from the initial order can be determined beforehand.

Similar as Lemma 3.4 and Lemma 3.7, we have that every step in every path from the initial order
to an optimal order comes with a non-negative neighbor switching gain for all exponential sequencing
situations within the high-low model such that the corresponding parameters satisfy Equation (7).

Lemma 3.12. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that, for all i ∈ N,
αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfying αL < αH and pL < pH . Let
i, j ∈ N be two players such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal order. If it holds that

eαH pH − eαL pL ≤ eαH(pL+pH) − eαL(pL+pH), (9)

then,

1) gij(t) ≥ 0 and g′ij(t) ≥ 0 for all t ∈ [0, ∞), if (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 and g′ij(t) ≤ 0 for all t ∈ [0, ∞), if (i, j) /∈ MP(σ0, σ̂).

Proof. According to Equation (4), the neighbor switching gain of players i and j is, for all t ∈ [0, ∞)

given by
gij(t) = eαi(t+pi) + eαj(t+pi+pj) − eαi(t+pj+pi) − eαj(t+pj).

First, remark that both players i and j could be in the same group, i.e. Gi = Gj. In that case, gij(t) = 0
and g′ij(t) = 0 for all t ∈ [0, ∞), since αi = αj and pi = pj. Secondly, assume that players i and j are not
in the same group. We only prove 2), since the proof of 1) can be obtained analogously and follows
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the same reasoning as in the proofs of Theorems 3.8 and 3.10. If (i, j) /∈ MP(σ0, σ̂), then one of the
following six cases holds:

i) i ∈ GHL and j ∈ GHH ;

ii) i ∈ GHL and j ∈ GLL;

iii) i ∈ GHL and j ∈ GLH ;

iv) i ∈ GHH and j ∈ GLL;

v) i ∈ GHH and j ∈ GLH ;

vi) i ∈ GLL and j ∈ GLH .

We prove that gij(t) < 0 for all t ∈ [0, ∞) for the above six cases separately.

i) In the first case, we have that αi = αH , pi = pL, αj = αH and pj = pH . Then, for all t ∈ [0, ∞),

gij(t) = eαH(t+pL) + eαH(t+pL+pH) − eαH(t+pH+pL) − eαH(t+pH)

= eαH(t+pL) − eαH(t+pH)

= eαH t(eαH pL − eαH pH )

< 0,

where the inequality follows from the fact that eαH t > 0 and eαH pL − eαH pH < 0 (since pL < pH).
With regard to the derivative, we have that, for all t ∈ [0, ∞),

g′ij(t) = αHeαH(t+pL) + αHeαH(t+pL+pH) − αHeαH(t+pH+pL) − αHeαH(t+pH)

= αHeαH(t+pL) − eαH(t+pH)

= αHeαH t(eαH pL − eαH pH )

< 0,

according to a similar reasoning as above.

ii) Secondly, αi = αH , pi = pL, αj = αL and pj = pL. Then, for all t ∈ [0, ∞),

gij(t) = eαH(t+pL) + eαL(t+pL+pL) − eαH(t+pL+pL) − eαL(t+pL)

= eαH(t+pL)(1− eαH pL ) + eαL(t+pL)(eαL pL − 1)

< eαH(t+pL)(1− eαH pL ) + eαH(t+pL)(eαL pL − 1)

= eαH(t+pL)(eαL pL − eαH pL )

< 0,

where the first inequality follows from αL < αH and eαL pL − 1 > 0 and the second inequality
follows from αL pL < αH pL. In a similar way,

g′ij(t) = αHeαH(t+pL) + αLeαL(t+pL+pL) − αHeαH(t+pL+pL) − αLeαL(t+pL)

= αHeαH(t+pL)(1− eαH pL ) + αLeαL(t+pL)(eαL pL − 1)

< αHeαH(t+pL)(1− eαH pL ) + αHeαH(t+pL)(eαL pL − 1)

= αHeαH(t+pL)(eαL pL − eαH pL )

< 0.

iii) In this case, αi = αH , pi = pL, αj = αL and pj = pH . Then, for all t ∈ [0, ∞),

gij(t) = eαH(t+pL) + eαL(t+pL+pH) − eαH(t+pH+pL) − eαL(t+pH)

< eαH(t+pH) + eαL(t+pL+pH) − eαH(t+pH+pL) − eαL(t+pH)

= eαH(t+pH)(1− eαH pL ) + eαL(t+pH)(eαL pL − 1)
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< eαH(t+pH)(1− eαH pL ) + eαH(t+pH)(eαL pL − 1)

= eαH(t+pH)(eαL pL − eαH pL )

< 0,

using the fact that pL < pH in the first inequality, αL < αH together with eαL pL − 1 > 0 in the
second inequality and finally, αL pL < αH pL in the last one. Similarly, g′ij(t) < 0 for all t ∈ [0, ∞).

iv) Here, αi = αH , pi = pH , αj = αL and pj = pL. Then, for all t ∈ [0, ∞),

gij(t) = eαH(t+pH) + eαL(t+pH+pL) − eαH(t+pL+pH) − eαL(t+pL)

= eαH t(eαH pH − eαH(pL+pH)) + eαLt(eαL(pL+pH) − eαL pL )

< eαH t(eαH pH − eαH(pL+pH)) + eαH t(eαL(pL+pH) − eαL pL )

= eαH t(eαH pH − eαH(pL+pH) + eαL(pL+pH) − eαL pL )

≤ 0,

where we used αL < αH and eαL(pL+pH) − eαL pL > 0 for the strict inequality and the assumption
of Equation (9) for the last inequality. Similarly, g′ij(t) < 0 for all t ∈ [0, ∞).

v) For the fifth case, αi = αH , pi = pH , αj = αL and pj = pH . Then, for all t ∈ [0, ∞),

gij(t) = eαH(t+pH) + eαL(t+pH+pH) − eαH(t+pH+pH) − eαL(t+pH)

= eαH(t+pH)(1− eαH pH ) + eαL(t+pH)(eαL pH − 1)

< eαH(t+pH)(eαL pH − eαH pH )

< 0,

using αL < αH twice. Similarly, g′ij(t) < 0 for all t ∈ [0, ∞).

vi) Finally, αi = αL, pi = pL, αj = αL and pj = pH . Then, for all t ∈ [0, ∞),

gij(t) = eαL(t+pL) + eαL(t+pL+pH) − eαL(t+pH+pL) − eαL(t+pH)

= eαL(t+pL) − eαL(t+pH)

= eαLt(eαL pL − eαL pH )

< 0,

using pL < pH . Similarly, g′ij(t) < 0 for all t ∈ [0, ∞).

Together, this proves 2).

4 Sequencing games

This section analyzes interactive sequencing situations from a game-theoretic perspective. A TU-game
is a pair (N, v), where N is the set of players and v is the characteristic function, that is, a map from 2N to
R, satisfying that v(∅) = 0. In general, for all S ∈ 2N , v(S) is the worth of the coalition, representing
the joint pay-off obtained in case of cooperation by players in S.

A TU-game (N, v) is superadditive if v(S ∪ T) ≥ v(S) + v(T) for every pair of coalitions S, T ∈ 2N

with S ∩ T = ∅. Moreover, a game (N, v) is convex if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for every pair
S, T ∈ 2N .

Let (N, σ0, c, p) ∈ SEQN be an interactive sequencing situation. The associated sequencing game is
defined as a game (N, v), where v(S) corresponds to the maximal cost savings the coalition can achieve
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by admissible rearrangements with respect to σ0. Formally, for all S ∈ 2N \ {∅},

v(S) = max
σ∈A(σ0,S)

{
∑
i∈S

ci(Ci(σ0))−∑
i∈S

ci(Ci(σ))

}
,

where A(σ0, S) is defined in the standard way as the set of admissible orders for S with respect to
σ0 ∈ Π(N). An order σ ∈ Π(N) is admissible for a coalition S ∈ 2N \ {∅} with respect to σ0 ∈ Π(N) if,
for all i ∈ N \ S, {k ∈ N : σ(k) < σ(i)} = {k ∈ N : σ0(k) < σ0(i)}.

Moreover, an order σ̂S ∈ Π(N) is optimal for S if TC(σ̂S) ≤ TC(σ) for all σ ∈ A(σ0, S), that is, the
admissible order for S which minimizes the total costs. Note that, for the coalition N, this reduces to
the definition of an optimal order, since A(σ0, N) = Π(N).

A coalition S ∈ 2N \ {∅} is called connected with respect to an order σ ∈ Π(N) if for all i, j ∈ S and
k ∈ N such that σ(i) < σ(k) < σ(j), it holds that k ∈ S. Moreover, for any S ∈ 2N \∅ and σ ∈ Π(N), a
component of S with respect to σ is a maximally connected subset of S with respect to σ. Let S|σ denote
the set of all components of a coalition S ∈ 2N \∅ and an order σ ∈ Π(N). We introduce the following
types of connected coalitions:

(i, j]σ = {k ∈ N : σ(i) < σ(k) ≤ σ(j)};
[i, j)σ = {k ∈ N : σ(i) ≤ σ(k) < σ(j)};
(i, j)σ = {k ∈ N : σ(i) < σ(k) < σ(j)};
[i, j]σ = {k ∈ N : σ(i) ≤ σ(k) ≤ σ(j)},

where i, j ∈ N are two players such that σ(i) < σ(j), for an order σ ∈ Π(N).
Finally, Curiel, Potters, Prasad, Tijs, and Veltman (1993) introduced the class of σ0-component addi-

tive games. Given an order σ0 ∈ Π(N), a game (N, v) is called a σ0-component additive game if the
following three conditions hold:

1) v({i}) = 0, for all i ∈ N;

2) (N, v) is superadditive;

3) v(S) = ∑
T∈S|σ0

v(T) for all S ∈ 2N \ {∅}.

Note that every sequencing game is a σ0-component additive game. In what follows, if (N, σ0, p, c) ∈
SSEQN , the associated game (N, v) is called a standard sequencing game and if (N, σ0, p, c) ∈ ESEQN ,
the associated game is called an exponential sequencing game. In particular, standard sequencing games
and exponential sequencing games are σ0-component additive games.

4.1 Convexity of exponential sequencing games

In this section, we study the convexity of the sequencing games that arise from exponential sequencing
situations. First, Example 4.1 illustrates that exponential sequencing games need not be convex in
general.

Example 4.1. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation, where N = {1, 2, 3},
σ0 = (1, 2, 3), and the exponential cost coefficients and processing times as specified by the table below.

player 1 player 2 player 3

αi 1.65 1.6 1.65
pi 2 1 2

The total costs for all orders are computed and shown below.
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σ TC(σ)

(1, 2, 3) 3976.2489

(1, 3, 2) 3743.1658

(2, 1, 3) 3973.7538

(2, 3, 1) 3973.7538

(3, 1, 2) 3743.1658

(3, 2, 1) 3976.2489

Both (1, 3, 2) and (3, 1, 2) are optimal orders. To compute the associated exponential sequencing game
(N, v), note that TC((1, 2, 3))− TC((2, 1, 3)) = 2.4951 and TC((1, 2, 3))− TC((1, 3, 2)) = 233.0831. This
exponential sequencing game is shown below.

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 0 2.4951 0 233.0831 233.0831

This exponential sequencing game (N, v) is not convex, since

v(N) + v({2}) = 233.0831 < 2.4951 + 233.0831 = v({1, 2}) + v({2, 3}).

Interestingly, for the three subclasses of exponential sequencing situations as discussed in Sections
3.1, 3.2 and 3.3, we show that the associated exponential sequencing games are convex. This is shown
by imposing conditions on the time-dependent neighbor switching gains of misplacements and non-
misplacements in a general interactive sequencing situation to establish convexity of the associated
sequencing game.

Let (N, σ0, p, c) ∈ SEQN be a (general) interactive sequencing situation and let σ ∈ Π(N) be an
order. We say that σ induces an order σS ∈ Π(N) for a given S ∈ 2N \ {∅} if σS ∈ A(σ0, S) and

{k ∈ S : σ(k) < σ(i)} = {k ∈ S : σS(k) < σS(i)} for all i ∈ S. This means that players outside S are
in the same positions as in the initial order, while players inside S are ordered within the components
of S according to σ.

Lemma 4.2 below ensures, by imposing a condition on the time-dependent neighbor switching
gains of misplacements and non-misplacements, that we can deduct optimal orders for coalitions from
an optimal order for the grand coalition.

Lemma 4.2. Let (N, σ0, p, c) ∈ SEQN be an interactive sequencing situation and let σ̂ ∈ Π(N) be an optimal
order. If, for all t ∈ [0, ∞),

1) gij(t) ≥ 0 for all (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 for all (i, j) /∈ MP(σ0, σ̂),

then, for every S ∈ 2N \ {∅}, the induced order σ̂S is optimal for S.

Proof. Assume that, for all t ∈ [0, ∞), gij(t) ≥ 0 for all (i, j) ∈ MP(σ0, σ̂) and gij(t) ≤ 0 for all (i, j) /∈
MP(σ0, σ̂). Let S ∈ 2N \ {∅}. First, σ̂ induces the order σ̂S. Then, there exists a path (σ0, . . . , σ̂S, . . . , σ̂)

from σ0 to σ̂ corresponding to the misplacements MP(σ0, σ̂) such that σ̂S is on this path. This implies
that the first part of this path, from σ0 to σ̂S, only consists of admissible orders for S with respect to σ0.
In order to prove that σ̂S is optimal for S, let σ′S ∈ A(σ0, S). We will prove that TC(σ̂S) ≤ TC(σ′S).

If σ′S is on the path (σ0, . . . , σ̂S, . . . , σ̂), then σ′S is on the first part of this path, i.e. the part from
σ0 to σ̂S, since σ′S ∈ A(σ0, S). Then we can go from σ′S to σ̂S along this path, that is, by repairing
specific misplacements of MP(σ0, σ̂). This implies that TC(σ′S) ≥ TC(σ̂S), since gij(t) ≥ 0 for all
(i, j) ∈ MP(σ0, σ̂).

If σ′S is not on the path (σ0, . . . , σ̂S, . . . , σ̂), then consider a path from σ̂S to σ′S. Note that every step
in this path corresponds to a non-misplacement, i.e. (i, j) /∈ MP(σ0, σ̂) for every transposition (i, j),
because the path starts in σ̂S and can never redo a repair of a misplacement. Hence, TC(σ̂S) ≤ TC(σ′S),
since gij(t) ≤ 0 for all (i, j) /∈ MP(σ0, σ̂).

Together, we have that TC(σ̂S) ≤ TC(σ′S) for all σ′S ∈ A(σ0, S). Hence, σ̂S is optimal for S.
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In addition to the two conditions of Lemma 4.2, if we add an extra condition on the first deriva-
tive of the time-dependent neighbor switching gains of misplacements, then we can show that any
sequencing game is convex. The proof of this main result is based on a result of Borm et al. (2002),
which is stated below.

Proposition 4.3. Let σ0 ∈ Π(N) be an order and let (N, v) be a σ0-component additive game. Then, (N, v) is
convex if and only if for all i, j ∈ N with σ0(i) < σ0(j),

v([i, j]σ0 )− v([i, j)σ0 )− v((i, j]σ0 ) + v((i, j)σ0 ) ≥ 0.

Finally, we need some extra notation regarding the neighbor switching gains. Extending the defini-
tion as stated in Equation (1), the consecutively neighbor switching gains of player i ∈ N and a group
J ⊆ N at time t ∈ [0, ∞) with player i directly in front of the group J = {j1, . . . , jm} as represented in
Figure 3, is defined by

gi J(t) = gij1 (t) + gij2 (t + pj1 ) + gij3 (t + pj1 + pj2 ) + . . . + gijm (t + pj1 + . . . + pjm−1 ).

t

i

i

J

J

j1 j2 jm

j1 j2 jm. . .

. . .. . .

. . .

. . .

. . .

Figure 3: Interchanging player i with a group of players J, leading to the gain gi J(t).

Theorem 4.4. Let (N, σ0, p, c) ∈ SEQN be a sequencing situation and let σ̂ be an optimal order. If, for all
t ∈ [0, ∞),

1) gij(t) ≥ 0 for all (i, j) ∈ MP(σ0, σ̂);

2) gij(t) ≤ 0 for all (i, j) /∈ MP(σ0, σ̂);

3) g′ij(t) ≥ 0 for all (i, j) ∈ MP(σ0, σ̂),

then, the associated sequencing game (N, v) is convex.

Proof. Let (N, v) be the associated sequencing game to (N, σ0, p, α). Using Proposition 4.3, it suffices
to check that v([i, j]σ0 ) − v((i, j]σ0 ) ≥ v([i, j)σ0 ) − v((i, j)σ0 ) for all i, j ∈ N with σ0(i) < σ0(j). For
convenience, we leave out the subscript σ0 in the notation for the connected coalitions.

ti(σ0)

σ0 ji . . .. . . . . .

Figure 4: Players i, j ∈ N in the initial order σ0.

Let i, j ∈ N such that σ0(i) < σ0(j) (see also Figure 4). Moreover, let σ̂ ∈ Π(N) be an optimal order.
According to Lemma 4.2, the induced orders σ̂[i,j], σ̂(i,j], σ̂[i,j) and σ̂(i,j) are optimal for [i, j], (i, j], [i, j)
and (i, j), respectively. We distinguish two cases: either σ̂(i) < σ̂(j) or σ̂(i) > σ̂(j).

In the first case, σ̂(i) < σ̂(j), player i appears before player j in the optimal order. Figure 5 provides
a schematic overview of the order of the relevant players. Since player i is before player j in the optimal
order, i is also before j in the induced order for [i, j]. The top two orders in Figure 5 show that only the
players of I , defined by

I = {` ∈ (i, j)σ0 : (i, `) ∈ MP(σ0, σ̂)},
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ti(σ0)

ti(σ0)

σ̂(i,j) ji I . . .. . . . . .

σ̂[i,j) jiI . . .. . . . . .

σ̂(i,j] ji I . . .. . . . . .

σ̂[i,j] jiI . . .. . . . . .

Figure 5: Schematic overview of the first case.

have to switch with player i. Note that this switch of i with the group of players I is the only difference
between the induced optimal order σ̂(i,j] and σ̂[i,j]. Moreover, this is also the only difference between
the bottom two orders in Figure 5. Hence,

v([i, j])− v((i, j]) = giI (ti(σ0))

= v([i, j))− v((i, j)).

ti(σ0)

ti(σ0)

σ̂(i,j) ji J I. . . . . .

σ̂[i,j) i jJ I. . . . . .

σ̂(i,j] i J Ij. . . . . .

σ̂[i,j] ijJ I. . . . . .

Figure 6: Schematic overview of the second case.

In the second case, σ̂(i) > σ̂(j), player j appears before player i in the optimal order. Figure 6
provides a schematic overview of the order of the relevant players. The top two orders show that, in
order to reach σ̂[i,j] from σ̂(i,j], player i has to switch with the group J , with player j and with the group
I , where J and I are defined by

J = {k ∈ (i, j)σ0 : (j, k) ∈ MP(σ0, σ̂)}

and
I = {` ∈ (i, j)σ0 : (i, `) ∈ MP(σ0, σ̂)} \ J .

Hence,

v([i, j])− v((i, j]) = giJ (ti(σ0)) + gij(ti(σ0) + ∑
k∈J

pk) + giI (ti(σ0) + ∑
k∈J

pk + pj).

Furthermore, the bottom two orders show that the differences between σ̂(i,j) and σ̂[i,j) are the switches
between i and the groups J and I . Hence,

v([i, j))− v((i, j)) = giJ (ti(σ0)) + giI (ti(σ0) + ∑
k∈J

pk).
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Since σ0(i) < σ0(j) and σ̂(i) > σ̂(j), we have that (i, j) ∈ MP(σ0, σ̂), which implies that

gij(ti(σ0) + ∑
k∈J

pk) ≥ 0,

due to condition 1). Moreover,

giI (ti(σ0) + ∑
k∈J

pk + pj) ≥ giI (ti(σ0) + ∑
k∈J

pk),

due to condition 3). Together, this implies that

v([i, j])− v((i, j]) ≥ v([i, j))− v((i, j)),

which finalizes the proof.

Theorem 4.4 proves the convexity of any sequencing game associated to an interactive sequencing
situation where the neighbor switching gains of misplacements are non-negative and non-decreasing
and the gains of non-misplacements are non-positive. In particular, Theorem 4.4 can be used to prove
convexity of sequencing games associated to particular subclasses of interactive sequencing situations.
For example, it is known that any standard sequencing game is convex. This can now also be seen from
Theorem 4.4, since the neighbor switching gains of misplacements are non-negative and constant,
while the gains of non-misplacements are non-positive, according to Lemma 2.1.

Moreover, we can use Lemma 3.4, Lemma 3.7 and Lemma 3.12 to show that for the three subclasses
of exponential sequencing situations as considered in Sections 3.1, 3.2 and 3.3, the three conditions of
Theorem 4.4 are satisfied. Hence, the associated exponential sequencing games are convex.

Corollary 4.5. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that one of the follow-
ing three cases holds:

i) for all i ∈ N and all t ∈ [0, ∞), ci(t) = eαt with α ∈ R++;

ii) for all i ∈ N, pi = p with p ∈ R++;

iii) for all i ∈ N, αi ∈ {αL, αH} and pi ∈ {pL, pH} with αL, αH , pL, pH ∈ R++ satisfying αL < αH ,
pL < pH and

eαH pH − eαL pL ≤ eαH(pL+pH) − eαL(pL+pH).

Then, the associated exponential sequencing game (N, v) is convex.

4.2 A path-based allocation rule

For standard sequencing situations, Curiel et al. (1989) introduced and analyzed the Equal Gain Split-
ting rule (EGS-rule). The EGS-rule is defined by recursively splitting the corresponding neighbor
switching gains equally in every step in a path from the initial order to the optimal order that is closest
to the initial order that repairs all neighbor misplacements. The EGS-rule thus assigns the cost savings
obtained by a neighbor switch only to the two players that are involved and the assignment is made
equally. Since the neighbor switching gains are constant in time for standard sequencing situations,
all paths from the initial order to an optimal order lead to the same cost allocation. Interestingly, the
EGS-rule will provide a coalitionally stable cost allocation for any standard sequencing game.

In this section, we show that no direct extension of the EGS-rule to the class of exponential sequenc-
ing situations can always lead to coalitionally stable cost allocations for any exponential sequencing
game. In fact, this does not even hold for the convex cases like provided in Sections 3.1, 3.2 and 3.3,
where it holds that every step in every path from the initial order to the optimal order that is closest to
the initial one comes with a non-negative neighbor switching gain. On each such path, one can follow
the idea of the EGS-rule. This however could lead to different cost allocations per path. A natural way
to deal with this, is to average among all cost allocations per path.
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Example 4.6. Let (N, σ0, p, c) ∈ ESEQN be an exponential sequencing situation, where N = {1, 2, 3},
σ0 = (1, 2, 3), and the exponential cost coefficients and processing times are specified in the table below.

player 1 player 2 player 3

αi 1 1 1
pi 1.5 1.45 1

The total costs for all orders are computed and shown below.

σ TC(σ)

(1, 2, 3) 75.5230

(1, 3, 2) 68.5995

(2, 1, 3) 75.3044

(2, 3, 1) 67.7868

(3, 1, 2) 66.8361

(3, 2, 1) 66.2420

Obviously, σ̂ = (3, 2, 1) is the optimal order and MP(σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}. Hence, there are two
paths from the initial order to the optimal order:

(1, 2, 3)→ (2, 1, 3)→ (2, 3, 1)→ (3, 2, 1),

and
(1, 2, 3)→ (1, 3, 2)→ (3, 1, 2)→ (3, 2, 1).

Figure 7 provides a schematic overview of the two paths from the initial order to the optimal order with the
corresponding total costs and neighbor switching gains.

σ0 = (1, 2, 3)

TC(σ0) = 75.5230

(1, 2) (2, 3)

σ1 = (2, 1, 3)

TC(σ1) = 75.3044

σ′
1 = (1, 3, 2)

TC(σ′
1) = 68.5995

(1, 3) (1, 3)

σ2 = (2, 3, 1)

TC(σ2) = 67.7868

σ′
2 = (3, 1, 2)

TC(σ′
2) = 66.8361

(2, 3) (1, 2)

σ̂ = (3, 2, 1)

TC(σ̂) = 66.2420

Figure 7: Schematic overview of the two paths.

Dividing the neighbor switching gains in every step equally among the two involved neighbors, the left-side
path of Figure 7 results in the path-EGS cost allocation vector

(3.8681, 0.8817, 4.5312),

since g12(t1(σ0)) = 0.2186, g13(t1(σ1)) = 7.5176 and g23(t2(σ2)) = 1.5448, while the right-side path of
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Figure 7 results in the path-EGS allocation vector

(1.1788, 3.7588, 4.3434),

since g23(t2(σ0)) = 6.9235, g13(t1(σ
′
1)) = 1.7634 and g12(t1(σ

′
2)) = 0.5941. Averaging we get the EGS

allocation vector
(2.5234, 2.3203, 4.4373).

Since,
v({2, 3}) = TC((1, 2, 3))− TC((1, 3, 2)) = 75.5230− 68.5995 = 6.9235,

the EGS cost allocation vector is not coalitionally stable, because

2.3203 + 4.4373 = 6.7576 < 6.9235 = v({2, 3}).
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