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More	and	more	scientific	papers	get	published	in	an	increasing	number	of	journals	
(e.g.,	Adair	&	Vohra,	2003;	Byyny,	2012).	This	information	explosion	makes	it	hard	for	
researchers	and	other	users	of	scientific	knowledge	to	keep	up	with	all	the	papers	that	
are	relevant	for	them.	Hence,	tools	are	needed	to	synthesize	and	summarize	the	
existing	literature	on	a	particular	topic	(e.g.,	Cooper,	Hedges,	&	Valentine,	2009a).	
Meta‐analysis	is	a	tool	that	statistically	combines	effect	sizes	from	independent	
primary	studies	on	the	same	topic	(e.g.,	Borenstein,	Hedges,	Higgins,	&	Rothstein,	
2009;	Cooper,	Hedges,	&	Valentine,	2009b),	and	is	now	seen	as	the	“gold	standard”	for	
synthesizing	and	summarizing	the	results	from	different	primary	studies	(Aguinis,	
Gottfredson,	&	Wright,	2011;	Head,	Holman,	Lanfear,	Kahn,	&	Jennions,	2015).	The	
popularity	of	meta‐analysis	is	also	reflected	in	the	rapid	increase	of	the	relative	
number	of	published	meta‐analyses.	Ioannidis	(2016)	studied	the	publication	rate	of	
papers	that	were	tagged	as	a	meta‐analysis	in	PubMed	and	observed	that	the	
publication	rate	increased	by	2,635%	between	1991	and	2014	whereas	the	
publication	rate	of	all	PubMed‐indexed	items	increased	by	only	153%	in	the	same	
period.		
	 As	for	every	statistical	technique,	confidence	in	the	interpretation	of	the	
results	of	a	meta‐analysis	is	limited	by	the	quality	of	the	data	that	are	analyzed.	The	
term	garbage	in,	garbage	out	is	often	used	to	denote	that	meta‐analyzing	biased	
primary	studies	will	yield	biased	results	of	the	meta‐analysis	as	well	(Borenstein	et	al.,	
2009;	Eysenck,	1978).	Many	researchers	argue	that	the	published	literature	in	many	
fields	is	affected	by	biases	in	the	(reporting	of)	primary	study	results	(e.g.,	C.	J.	
Anderson	et	al.,	2016;	Begley	&	Ioannidis,	2015;	Camerer	et	al.,	2016;	Ioannidis,	2005;	
Maxwell,	Lau,	&	Howard,	2015;	Open	Science	Collaboration,	2015;	Pashler	&	Harris,	
2012).	One	strong	signal	that	the	published	literature	is	biased	is	the	evidence	for	
publication	bias	that	has	been	amassed	in	various	research	fields	(e.g.,	Driessen,	
Hollon,	Bockting,	Cuijpers,	&	Turner,	2015;	Franco,	Malhotra,	&	Simonovits,	2014;	
Franco,	Simonovits,	&	Malhotra,	2016;	Sterling,	Rosenbaum,	&	Weinkam,	1995).	
Publication	bias	refers	to	statistically	nonsignificant	effect	sizes	having	a	lower	
probability	of	getting	published	than	significant	effect	sizes	(Rothstein,	Sutton,	&	
Borenstein,	2005a).	In	its	most	extreme	case,	this	means	that	only	studies	with	
statistically	significant	effect	sizes	get	published	while	studies	with	nonsignificant	
effect	sizes	are	left	unpublished.	Publication	bias	is	seen	as	a	major	threat	to	the	
validity	of	meta‐analyses	(Dickersin	&	Min,	1993;	Easterbrook,	Berlin,	Gopalan,	&	
Matthews,	1991;	Rothstein	et	al.,	2005a).	Publication	bias	might	strengthen	
researcher’s	belief	that	only	statistically	significant	results	are	eligible	for	publication.	
Consequently,	researchers	confronted	with	a	nonsignificant	result	might	decide	not	to	
publish	or	to	engage	in	so‐called	p‐hacking	behaviors	or	opportunistically	use	
researcher	degrees	of	freedom	in	the	analysis	of	data	to	obtain	significant	results.	
Such	ad	hoc	and	data	driven	decisions	in	the	analysis	of	data	violate	the	assumptions	
of	the	statistical	procedures	to	test	hypotheses	(Simmons,	Nelson,	&	Simonsohn,	2011;	
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Wagenmakers,	Wetzels,	Borsboom,	&	van	der	Maas,	2011;	Wicherts	et	al.,	2016);	these	
practices	inflate	the	false	positive	rate	(Type	I	error	rate)	if	the	null	hypothesis	of	a	
zero	effect	is	true	and	inflate	effect	size	estimates	for	genuine	non‐null	effects.	
		 Evidence	of	publication	bias	is	apparent	in	the	unrealistic	high	rate	of	
statistically	significant	results	in	the	literature.	For	example,	approximately	95%	of	
the	tested	hypotheses	was	supported	in	a	random	sample	of	published	papers	in	
psychology	and	psychiatry	(Fanelli,	2010a,	2012).	This	is	not	in	line	with	the	average	
statistical	power	estimated	at	.35	(Bakker,	van	Dijk,	&	Wicherts,	2012)	and	.47	(Cohen,	
1990)	in	psychological	research,	which	would	give	rise	to	less	than	half	of	studies	of	
genuine	effects	being	significant.	This	implies	that	statistically	nonsignificant	effect	
sizes	are	often	not	published.	This,	in	turn,	decreases	the	likelihood	that	these	
nonsignificant	effect	sizes	are	included	in	a	meta‐analysis.		
		 Another	signal	that	the	published	literature	may	be	distorted	are	the	results	
of	three	large‐scale	projects	examining	the	replicability	of	studies	(i.e.,	are	study	
results	the	same	if	a	study	is	conducted	a	second	time)	published	in	the	fields	of	
psychology	(Open	Science	Collaboration,	2015),	economics	(Camerer	et	al.,	2016),	and	
cancer	biology	research	(Begley	&	Ellis,	2012;	Errington	et	al.,	2014).	The	
Reproducibility	Project:	Psychology	replicated	100	studies	that	were	published	in	
major	journals	in	2008.	The	results	of	this	project	revealed	that	97	studies	were	
statistically	significant	in	the	published	original	study,	but	that	only	35	(36.1%)	of	
these	studies	were	also	statistically	significant	in	the	replication.	Furthermore,	the	
effect	size	in	the	published	original	study	was	larger	in	81	(83.5%)	of	the	97	studies	
than	in	their	replication.	In	economics,	18	published	studies	on	experimental	
economics	were	replicated	in	the	Experimental	Economics	Replication	Project.	Sixteen	
of	these	18	published	original	studies	were	statistically	significant,	and	of	these	16	
studies	11	(68.8%)	were	statistically	significant	in	the	replication.	Moreover,	13	of	the	
16	(81.3%)	studies	had	a	larger	effect	in	the	original	study	than	in	the	replication.	The	
Reproducibility	Project:	Cancer	Biology	(Begley	&	Ellis,	2012;	Errington	et	al.,	2014)	
replicated	53	landmark	studies	in	the	field	of	hematology	and	oncology,	and	only	6	
(11.3%)	of	these	studies	were	confirmed	in	the	replication.	The	results	of	these	
projects	raise	doubts	about	the	reliability	of	the	effects	and	their	size	in	the	published	
literature.	
		 Two	parameters	are	usually	of	primary	interest	in	a	meta‐analysis;	the	
average	effect	size	and	the	between‐study	variance	in	primary	studies’	true	effect	size.	
The	average	effect	size	is	a	weighted	average	of	the	primary	studies	included	in	a	
meta‐analysis.	Advantages	of	synthesizing	primary	studies	by	means	of	a	meta‐
analysis	instead	of	evaluating	the	primary	studies	in	isolation	is	that	the	average	effect	
size	is	generally	closer	to	the	true	average	effect	size	and	statistical	power	for	testing	
the	null	hypothesis	of	no	effect	is	larger	in	a	meta‐analysis	(Borenstein	et	al.,	2009).	
The	other	parameter	that	is	of	interest	for	meta‐analysts	is	the	between‐study	
variance	in	primary	studies’	true	effect	sizes.	This	denotes	whether	there	is	one	fixed	



10	|	 I n t r o d u c t i o n 	
	

 

true	effect	size	underlying	all	the	primary	studies	included	in	a	meta‐analysis	
(homogeneous	true	effect	sizes)	or	whether	each	primary	study	has	its	own	true	effect	
size	(heterogeneous	true	effect	sizes)	(Borenstein	et	al.,	2009;	Borenstein,	Hedges,	
Higgins,	&	Rothstein,	2010).	Estimating	the	between‐study	variance	is	of	importance	
(Higgins	&	Thompson,	2002;	Huedo‐Medina,	Sánchez‐Meca,	Marín‐Martínez,	&	
Botella,	2006;	Mittlböck	&	Heinzl,	2006;	Veroniki	et	al.,	2016),	because	it	may	lead	to	
relevant	insights	about	the	consistency	of	the	true	effect	sizes	(Higgins,	Thompson,	&	
Spiegelhalter,	2009).	Research	has	shown	that	heterogeneity	is	often	present	in	meta‐
analyses	(Higgins,	2008;	Kontopantelis,	Springate,	&	Reeves,	2013).	Two	so‐called	
Many	Labs	(Klein	et	al.,	2014;	Klein	et	al.,	2017)	projects	replicated	published	studies	
in	multiple	laboratories	across	the	world.	Even	though	the	studies	were	exactly	
replicated	in	the	laboratories	and	used	the	same	study	protocol,	there	was	still	
heterogeneity	in	true	effect	size	in	8	out	of	16	(50%)	and	13	out	of	28	(46.4%)	of	the	
replicated	studies.		
		 Publication	bias	is	well‐known	to	yield	overestimated	primary	studies’	effect	
sizes	(e.g.,	Ioannidis,	2008b;	Lane	&	Dunlap,	1978),	and	therefore	also	overestimated	
average	effect	size	if	these	studies	are	combined	in	a	meta‐analysis.	Publication	bias	
also	results	in	bias	in	the	estimate	of	the	between‐study	variance	in	primary	studies’	
true	effect	sizes,	but	this	bias	can	be	positive	or	negative	depending	on	characteristics	
of	a	meta‐analysis	(Augusteijn,	van	Aert,	&	van	Assen,	2017;	Jackson,	2006,	2007).	
Hence,	it	is	of	importance	to	develop	methods	that	enable	accurate	estimation	of	the	
average	effect	size	as	well	as	the	between‐study	variance	in	primary	studies’	true	
effect	sizes.	Most	importantly,	meta‐analyses	that	are	biased	do	not	only	hamper	
scientific	progress,	but	are	also	detrimental	for	practice	since	results	of	meta‐analyses	
are	often	used	for	policy	making	(Polanin,	Tanner‐Smith,	&	Hennessy,	2016).	

Outline	of	this	dissertation	

		 The	goals	of	this	dissertation	are	to	develop	new	meta‐analysis	methods	and	
examine	the	statistical	properties	of	existing	methods.	In	Chapter	2,	we	propose	the	p‐
uniform	method	that	is	a	new	meta‐analysis	method	for	homogeneous	effect	sizes	that	
takes	into	account	publication	bias	using	only	the	statistically	significant	primary	
studies'	effect	sizes.	P‐uniform	is	able	to	(i)	test	for	publication	bias,	(ii)	estimate	effect	
size	and	compute	a	confidence	interval	around	this	estimate,	and	(iii)	test	the	null	
hypothesis	of	no	effect.	We	conduct	a	Monte‐Carlo	simulation	study	and	compare	
effect	size	estimation	of	p‐uniform	with	other	meta‐analytic	methods,	namely	the	
trim‐and‐fill	method	that	also	attempts	to	correct	for	publication	bias	(Duval	&	
Tweedie,	2000a,	2000b)	and	fixed‐effect	and	random‐effects	meta‐analysis	that	do	not	
correct	for	publication	bias.	P‐uniform’s	publication	bias	test	is	compared	with	the	test	
of	excess	significance	(Ioannidis	&	Trikalinos,	2007b)	that	was	developed	to	see	
whether	a	set	of	outcomes	shows	an	excess	of	significant	outcomes.		
		 Other	researchers	independently	of	us	developed	the	p‐curve	method	
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(Simonsohn,	Nelson,	&	Simmons,	2014a,	2014b)	that	is	similar	to	p‐uniform.	However,	
this	method	is	not	able	to	compute	a	confidence	interval	for	the	effect	corrected	for	
publication	bias	and	does	not	offer	a	publication	bias	test.	The	goal	of	Chapter	3	is	to	
inform	applied	researchers	about	the	differences	between	p‐uniform	and	p‐curve	and	
provide	recommendations	for	applying	the	methods	in	practice.	To	substantiate	these	
recommendations,	we	assess	the	statistical	properties	of	p‐uniform	and	p‐curve	if	
there	is	heterogeneity	in	primary	studies’	true	effect	sizes.	We	also	show	the	
consequences	of	researchers	using	p‐hacking	in	the	primary	studies	on	estimates	of	p‐
uniform	and	p‐curve,	and	illustrate	how	p‐uniform	and	p‐curve	can	be	applied	by	
analyzing	the	meta‐analysis	of	Rabelo,	Keller,	Pilati,	and	Wicherts	(2015)	on	the	
relationship	between	weight	on	judgement	of	importance.	
		 In	Chapter	4,	we	present	the	results	of	a	pre‐registered	study	examining	the	
presence	of	publication	bias	and	the	overestimation	in	effect	size	caused	by	it	in	meta‐
analyses	published	in	the	fields	of	psychology	and	medicine.	This	is	done	by	first	
creating	a	large‐scale	data	set	of	83	meta‐analyses	published	in	Psychological	Bulletin	
and	499	systematic	reviews	from	the	Cochrane	Database	of	Systematic	Reviews	
representing	data	form	psychology	and	medicine,	respectively.	Subsequently,	we	
create	homogeneous	subsets	of	the	meta‐analyses	in	this	large‐scale	data	set,	because	
publication	bias	methods	do	not	have	good	statistical	properties	if	the	primary	
studies’	true	effect	sizes	are	heterogeneous	(e.g.,	Ioannidis	&	Trikalinos,	2007a,	
2007b;	McShane,	Böckenholt,	&	Hansen,	2016;	Terrin,	Schmid,	Lau,	&	Olkin,	2003).	We	
subsequently	test	for	publication	bias	by	applying	the	rank‐correlation	test	(Begg	&	
Mazumdar,	1994),	Egger’s	test	(Egger,	Smith,	Schneider,	&	Minder,	1997),	the	test	of	
excess	significance	(Ioannidis	&	Trikalinos,	2007b),	and	p‐uniform’s	publication	bias	
test.	Overestimation	in	effect	size	caused	by	publication	bias	and	characteristics	of	
meta‐analyses	that	are	related	to	this	overestimation	are	studied	by	comparing	
estimates	of	p‐uniform	with	estimates	of	traditional	random‐effects	meta‐analysis.	
		 In	Chapter	5,	we	present	p‐uniform*	that	extends	and	improves	p‐uniform	in	
three	important	ways.	First,	p‐uniform*	no	longer	overestimates	the	effect	if	there	is	
heterogeneity	in	primary	studies’	true	effect	sizes.	Second,	the	method	provides	a	
more	efficient	estimator	than	p‐uniform.	Third,	p‐uniform*	enables	estimating	and	
drawing	inferences	for	the	between‐study	variance.	We	compare	the	statistical	
properties	of	p‐uniform*	to	the	selection	model	proposed	by	Hedges	(1992),	because	
selection	model	approaches	are	nowadays	seen	as	the	state‐of‐the‐art	publication	bias	
method	(McShane	et	al.,	2016).	To	compare	the	statistical	properties	of	both	methods,	
we	use	an	analytical	study	revolving	around	meta‐analysis	consisting	of	only	one	
statistically	significant	and	one	nonsignificant	primary	study’s	effect	size	and	run	a	
Monte‐Carlo	simulation	using	conditions	that	are	representative	for	meta‐analyses	in	
practice.	We	also	offer	recommendations	on	how	to	examine	publication	bias	in	a	
meta‐analysis	based	on	the	results	of	our	analyses.	
		 In	Chapters	6	and	7,	we	anticipate	on	a	question	that	emerged	mainly	because	
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of	the	Reproducibility	Project:	Psychology	(Open	Science	Collaboration,	2015),	the	
Experimental	Economics	Replication	Project	(Camerer	et	al.,	2016),	and	
Reproducibility	Project:	Cancer	Biology	(Begley	&	Ellis,	2012;	Errington	et	al.,	2014):	
how	to	statistically	combine	the	effect	size	of	a	published	original	study	with	that	of	a	
replication?	It	is	important	to	realize	that	this	is	not	only	an	issue	in	the	context	of	
these	two	projects	since	many	applied	researchers	also	replicate	a	published	original	
study	as	the	starting	point	for	a	multi‐study	paper	(Neuliep	&	Crandall,	1993).	A	
problem	with	combining	these	two	studies	is	that	the	effect	size	of	the	published	
original	study	is	most	likely	statistically	significant,	as	findings	in	the	literature	
generally	have	been	subject	to	publication	bias	(e.g.,	Fanelli,	2010a,	2012;	Sterling	et	
al.,	1995).	Hence,	the	published	original	study	and	replication	study	effect	size	cannot	
be	combined	using	traditional	meta‐analysis	methods,	because	these	methods	do	not	
take	into	account	the	likely	overestimation	of	effect	size	in	the	published	original	
study.		
		 We	develop	the	hybrid	method	of	meta‐analysis	that	statistically	combines	a	
published	original	study	and	a	replication	by	taking	into	account	the	statistical	
significance	of	the	original	study	in	Chapter	6.	This	method	enables	accurate	
estimation	of	the	effect	size,	computing	a	confidence	interval	for	the	effect	size,	and	
testing	the	null	hypothesis	of	no	effect.	In	Chapter	7,	we	propose	a	meta‐analysis	
method	using	Bayesian	statistics	that	statistically	combines	a	published	original	study	
and	replication.	This	method	called	is	snapshot	hybrid	method	and	computes	the	
posterior	model	probabilities	at	different	snapshots	of	true	effect	size	while	taking	
statistical	significance	of	the	published	original	study	into	account.	That	is,	posterior	
model	probabilities	are	computed	at	snapshots	equal	to	a	zero,	small,	medium,	and	
large	true	effect	size	when	statistically	combining	the	published	original	study	and	
replication.	Hence,	the	snapshot	hybrid	method	provides	insights	into	the	magnitude	
of	effect	size	underlying	the	published	original	study	and	replication.	The	statistical	
properties	of	the	hybrid	method	of	meta‐analysis	and	snapshot	hybrid	method	are	
both	assessed	using	an	analytical	study.	The	hybrid	method	of	meta‐analysis	is	applied	
to	the	data	of	the	Reproducibility	Project:	Psychology	and	the	snapshot	hybrid	method	
is	applied	to	the	data	of	the	Reproducibility	Project:	Psychology	as	well	as	the	
Experimental	Economics	Replication	Project,	examining	the	underlying	true	effect	size	
of	original	studies	and	replications.	We	also	provide	recommendations	for	applying	
these	methods	in	practice.	
		 Chapters	2	to	7	are	about	meta‐analysis	methods	to	correct	for	publication	
bias	or	to	statistically	combine	a	published	original	study	and	replication.	The	last	two	
chapters	are	dedicated	to	estimating	the	between‐study	variance	(Chapter	8)	and	
computing	a	confidence	interval	for	this	parameter	(Chapter	9)	in	random‐effects	
meta‐analyses	where	data	are	assumed	not	to	be	affected	by	publication	bias.	Many	
different	estimators	for	the	between‐study	variance	exist,	but	the	Paule‐Mandel	(Paule	
&	Mandel,	1982)	and	the	restricted	maximum	likelihood	estimator	(Raudenbush,	
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2009)	are	nowadays	commonly	recommended	(Langan,	Higgins,	&	Simmonds,	2016;	
Veroniki	et	al.,	2016).	DerSimonian	and	Kacker	(2007)	developed	two‐step	moment	
based	estimators	of	the	between‐study	variance.	We	extend	these	two‐step	estimators	
to	a	multi‐step	estimator,	and	illustrate	how	the	multi‐step	estimator	can	be	applied	to	
data	of	three	published	meta‐analyses	(i.e.,	Bangert‐Drowns,	Hurley,	&	Wilkinson,	
2004;	Ho	&	Lee,	2012;	Sterne,	Bradburn,	&	Egger,	2001).	
		 Estimates	of	the	between‐study	variance	in	a	random‐effects	meta‐analysis	
are	preferably	reported	together	with	a	confidence	interval	(Chung,	Rabe‐Hesketh,	&	
Choi,	2013;	Kontopantelis	et	al.,	2013;	Sidik	&	Jonkman,	2007)	since	point	estimates	
are	rather	imprecise	especially	if	the	number	of	primary	studies	in	a	meta‐analysis	is	
small	(Higgins	et	al.,	2009;	Ioannidis,	Patsopoulos,	&	Evangelou,	2007;	Kepes,	
McDaniel,	Brannick,	&	Banks,	2013;	Langan	et	al.,	2016).	Veroniki	et	al.	(2016)	
reviewed	the	existing	methods	for	computing	a	confidence	interval	for	the	between‐
study	variance	and	recommended	the	Q‐profile	(Viechtbauer,	2007b)	or	generalized	
Q‐statistic	method	(Jackson,	2013)	for	use.	Both	methods	are	exact	(i.e.,	coverage	
probability	equal	to	1‐α)	if	the	assumptions	underlying	the	random‐effects	meta‐
analysis	hold.	However,	these	assumptions	are	usually	violated	in	practice	(Biggerstaff	
&	Tweedie,	1997;	Hardy	&	Thompson,	1998;	Hoaglin,	2016a,	2016b)	making	the	
confidence	intervals	approximate	rather	than	exact	confidence	intervals.	In	Chapter	9,	
we	examine	the	coverage	probabilities	and	width	of	the	confidence	interval	of	the	Q‐
profile	and	generalized	Q‐statistic	method	in	two	Monte‐Carlo	simulation	studies	with	
conditions	that	are	representative	for	actual	meta‐analyses	but	that	violate	the	
assumptions	that	the	effect	size	measure	follows	a	normal	sampling	distribution	and	
that	the	primary	studies’	sampling	variances	are	known.	Moreover,	we	offer	
recommendations	for	computing	confidence	intervals	for	the	between‐study	variance	
in	practice.	
		 In	the	epilogue,	I	discuss	the	findings	and	their	implications,	and	provide	
recommendations	based	upon	all	findings	presented	in	my	dissertation.	I	also	discuss	
limitations	of	my	work	and	offer	suggestions	for	future	research.	



 

 

				

	 	



 

CHAPTER	2	

	

Meta‐analysis	using	effect	size	distributions	of	
only	statistically	significant	studies	

	
	
	
	

Abstract	
	
Publication	bias	threatens	the	validity	of	meta‐analytic	results	and	leads	to	
overestimation	of	the	effect	size	in	traditional	meta‐analysis.	This	particularly	applies	
to	meta‐analyses	that	feature	small	studies,	which	are	ubiquitous	in	psychology.	Here	
we	develop	a	new	method	for	meta‐analysis	that	deals	with	publication	bias.	This	
method,	p‐uniform,	enables	(a)	testing	of	publication	bias,	(b)	effect	size	estimation,	
and	(c)	testing	of	the	null	hypothesis	of	no	effect.	No	current	method	for	meta‐analysis	
possesses	all	three	qualities.	Application	of	p‐uniform	is	straightforward	because	no	
additional	data	on	missing	studies	are	needed	and	no	sophisticated	assumptions	or	
choices	need	to	be	made	before	applying	it.	Simulations	show	that	p‐uniform	generally	
outperforms	the	trim‐and‐fill	method	and	the	Test	of	Excess	Significance	(TES;	
Ioannidis	&	Trikalinos,	2007b)	if	publication	bias	exists	and	population	effect	size	is	
homogenous	or	heterogeneity	is	slight.	For	illustration,	p‐uniform	and	other	
publication	bias	analyses	are	applied	to	the	meta‐analysis	of	McCall	and	Carriger	
(1993)	examining	the	association	between	infants’	habituation	to	a	stimulus	and	their	
later	cognitive	ability	(IQ).	We	conclude	that	p‐uniform	is	a	valuable	technique	for	
examining	publication	bias	and	estimating	population	effects	in	fixed‐effect	meta‐
analyses,	and	as	sensitivity	analysis	to	draw	inferences	about	publication	bias.		
	
	
	

	

This	chapter	is	published	as	van	Assen,	M.	A.	L.	M.,	van	Aert,	R.	C.	M.,	&	Wicherts,	J.	M.	
(2015).	Meta‐analysis	using	effect	size	distributions	of	only	statistically	significant	
studies.	Psychological	Methods,	20(3),	293‐309.	doi:	10.1037/met0000025
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When	more	studies	are	conducted	on	a	particular	topic	the	need	to	synthesize	the	
results	of	these	studies	grows.	Meta‐analysis	has	become	a	standard	method	to	
synthesize	results;	it	is	the	statistical	synthesis	of	the	data	from	separate	but	similar,	
i.e.	comparable	studies,	leading	to	a	quantitative	summary	of	the	pooled	results	(Last,	
2001).	In	meta‐analysis,	one	effect	size	measure	(e.g.,	Cohen’s	d)	is	commonly	
extracted	from	each	study	together	with	study	characteristics.	These	data	are	used	to	
estimate	a	common	underlying	effect,	and	sometimes	the	effect	and	its	heterogeneity	
are	modeled	as	a	function	of	the	studies’	characteristics.	Applications	of	meta‐analysis	
are	numerous	and	their	number	continuous	to	grow.	For	instance,	according	to	a	
search	in	PsycINFO	(using	the	string	AB	“meta‐analysis”),	the	number	of	peer‐
reviewed	articles	concerning	meta‐analysis	went	up	from	67	in	1985	(0.2%	of	the	
total	number	of	articles)	to	1,265	in	2012	(0.9%	of	the	articles)	(cf.	Kisamore	&	
Brannick,	2008).	The	number	of	citations	of	meta‐analyses	grows	as	well	(Aytug,	
Rothstein,	Zhou,	&	Kern,	2012).	These	trends	suggest	that	meta‐analysis	is	or	is	
becoming	an	influential	methodological	tool	in	psychology	and	related	fields.1	 	
		 One	of	the	greatest	threats	to	the	validity	of	meta‐analytic	results	is	
publication	bias	(Banks,	Kepes,	&	Banks,	2012;	Rothstein	et	al.,	2005a).	We	narrowly	
define	publication	bias	here	as	‘the	selective	publication	of	studies	with	a	statistically	
significant	outcome’,	that	is,	the	overrepresentation	in	the	literature	of	studies	with	a	
significant	outcome	compared	to	studies	with	so‐called	null	results.	The	evidence	of	
publication	bias	is	overwhelming	(e.g.,	van	Assen,	van	Aert,	Nuijten,	&	Wicherts,	
2014).	For	instance,	Kühberger,	Fritz,	and	Scherndl	(2014)	examined	1,000	randomly	
drawn	psychological	studies	in	2007	and	observed	three	times	as	many	outcomes	just	
reaching	significance	than	outcomes	just	failing	significance.	Furthermore,	in	
psychology	about	95%	of	published	articles	contain	statistically	significant	outcomes,	
and	this	percentage	has	been	increasing	over	the	years	(Fanelli,	2012).	Neither	the	
high	percentage	nor	its	increase	can	be	explained	by	the	studies’	statistical	power	
since	power	is	generally	low	(Ellis,	2010)	and	there	is	no	evidence	that	it	has	grown	
over	the	years	(Fanelli,	2012).	Explanations	of	publication	bias	include	researchers’	
reluctance	to	submit	studies	with	non‐significant	results	(Cooper,	DeNeve,	&	Charlton,	
1997;	Coursol	&	Wagner,	1986),	and	lower	appraisal	of	these	studies	by	reviewers	
(Coursol	&	Wagner,	1986;	Mahoney,	1977)	and	editors	(Coursol	&	Wagner,	1986).	
		 We	continue	our	introduction	on	publication	bias	by	first	briefly	considering	
three	harmful	consequences	of	publication	bias.	Then	we	relate	how	often	publication	
bias	is	addressed	in	meta‐analytic	studies.	Thereafter,	we	describe	different	goals	and	
problems	of	current	publication	bias	methods,	and	end	with	the	goals	and	an	overview	

                                                   
1	Aguinis,	Dalton,	Bosco,	Pierce,	and	Dalton	(2010)	conclude	that	meta‐analysis	is	one	of	the	most	influential	
methodological	tools	in	management	and	related	fields	after	observing	that	meta‐analyses	were	cited	three	
times	as	much	as	other	empirical	articles	from	1963	to	2007	in	the	Academy	of	Management	Journal,	one	of	
the	most	influential	management	journals.	
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of	our	study.	
		 Three	harmful	consequences	of	publication	bias	are	that	researchers	may	
exploit	degrees	of	freedom	(df)	in	the	analysis	of	data	(Simmons	et	al.,	2011),	
uncertainty	of	the	existence	of	a	true	effect	underlying	a	published	statistically	
significant	effect,	and	more	generally,	overestimation	of	the	population	effect	(e.g.,	
Asendorpf	et	al.,	2013).	Researcher	df,	or	researchers’	behavior	directed	at	obtaining	
statistically	significant	results	(Simonsohn	et	al.,	2014b),	which	is	also	known	as	p‐
hacking		or		questionable	research	practices	in	the	context	of	null	hypothesis	
significance	testing	(e.g.,	O'Boyle,	Gonzalez‐Mule,	&	Banks,	2017),	results	in	a	higher	
frequency	of	studies	with	false	positives	(Simmons	et	al.,	2011)	and	inflates	genuine	
effects	(Bakker	et	al.,	2012).	Additionally,	even	in	the	absence	of	researcher	df,	
systematic	investigations	demonstrate	that	publication	bias	leads	to	overestimation	of	
effects,	which	can	be	dramatic	if	sample	sizes	are	small	(Bakker	et	al.,	2012;	Francis,	
2012;	Gerber,	Green,	&	Nickerson,	2001;	Kraemer,	Gardner,	Brooks,	&	Yesavage,	
1998).	Consider	extreme	publication	bias,	i.e.,	only	statistically	significant	effects	are	
published,	and	a	population	effect	that	is	of	medium	or	small	size.	A	study’s	published	
effect	size	is	then	hardly	informative	of	the	underlying	population	effect	and	merely	
reflects	sample	size	(Francis,	2012;	Gerber,	et	al.,	2001;	Kraemer,	et	al.,	1998).	
Moreover,	a	replication	of	a	small	study	will	generally	obtain	a	smaller	effect	than	the	
original	study.	For	example,	Gerber,	Green,	and	Nickerson	(2001,	p.388)	show	that	in	
two‐group	studies	with	a	total	sample	size	of	50,	the	probability	is	about	.95	that	the	
observed	effect	in	the	replication	study	is	smaller	than	in	the	original	study.	This	
property	may	at	least	partly	explain	why	many	replication	studies	fail	to	confirm	
results	of	original	studies	(Begley	&	Ellis,	2012;	Prinz,	Schlange,	&	Asadullah,	2011;	
Sarewitz,	2012).	Obviously,	if	individual	published	studies	obtain	biased	effect	size	
estimates,	meta‐analyses	mainly	using	these	individual	studies	will	yield	biased	
estimates	as	well,	and	may	falsely	give	the	impression	of	a	consistent	research	finding	
(Francis,	2012).	
		 Because	of	the	harmful	consequences	of	publication	bias	it	will	not	come	as	a	
surprise	that	meta‐analysis	experts	note	that	publication	bias	analyses	should	be	
included	in	meta‐analytic	studies	(e.g.,	Aytug	et	al.,	2012;	Banks,	Kepes,	&	McDaniel,	
2012;	Field	&	Gillett,	2010;	Sterne,	Gavaghan,	&	Egger,	2000;	Sutton,	2005).	However,	
publication	bias	is	unfortunately	often	not	adequately	addressed	in	meta‐analytic	
studies.	For	example,	reviews	showed	that	publication	bias	was	assessed	in	less	than	
10%	of	meta‐analytic	studies	in	industrial	organization	psychology	studies	(Sutton,	
2005),	less	than	10%	in	management	sciences	(Aguinis	et	al.,	2010),	18%	in	
organizational	sciences	(Aytug,	et	al.,	2012),	56%	in	education	research	(Banks,	Kepes,	
&	Banks,	2012),	31%	in	management	and	industrial/organizational	psychology	
(Banks,	Kepes,	&	McDaniel,	2012),	70%	in	journals	published	by	the	American	
Psychological	Association	and	the	Association	for	Psychological	Science	(Ferguson	&	
Brannick,	2012),	and	33%	in	judgment	and	decision	making	research	(Renkewitz,	
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Fuchs,	&	Fiedler,	2011).	To	conclude,	the	failure	to	address	publication	bias	is	
omnipresent,	although	there	is	considerable	variation	across	disciplines.		
	 Many	tests	of	publication	bias	have	been	developed	over	the	years.	Most	of	
these	tests	address	the	question	whether	any	publication	bias	exists.	A	problem	of	
latter	tests	lies	in	their	limited	power	to	detect	publication	bias,	particularly	if	the	
number	of	studies	in	the	meta‐analysis	is	low	(Borenstein	et	al.,	2009;	Sterne	&	Egger,	
2005).	Because	of	limited	power,	one	may	falsely	conclude	that	no	publication	bias	
exists	in	a	meta‐analysis,	while	the	population	effect	size	is	still	overestimated.	Hence,	
rather	than	tests	of	publication	bias,	more	interesting	questions	would	be	how	much	
bias	there	is,	and	to	what	degree	it	affects	the	conclusions	drawn	from	meta‐analyses	
(Borenstein	et	al.,	2009).	Preferably,	publication	bias	methods	should	yield	an	
accurate	estimate	of	the	population	effect	size	after	taking	publication	bias	into	
account.	Only	a	few	methods	analyzing	publication	bias	generate	such	estimates,	but	
the	general	consensus	is	that	these	methods	should	be	considered	as	sensitivity	
analyses	rather	than	yielding	accurate	estimates	(Duval,	2005;	Duval	&	Tweedie,	
2000b).	In	the	present	article	we	develop	a	new	fixed‐effect	meta‐analysis	method	
that	should,	unlike	existing	methods,	yield	an	accurate	estimate	of	the	population	
effect	size,	even	when	publication	bias	is	extreme.	More	specifically,	the	proposed	
method	allows	for	(a)	testing	of	publication	bias,	(b)	estimating	effect	size,	and	(c)	
testing	of	the	null	hypothesis	of	no	effect.	No	current	meta‐analysis	method	possesses	
all	three	qualities.	
	 We	continue	with	an	overview	of	methods	analyzing	publication	bias.	The	
overview	is	short	for	two	reasons.	First,	other	sources	already	present	similar	
overviews	(e.g.,	Banks,	Kepes,	&	Banks,	2012;	Kepes,	Banks,	&	Oh,	2012;	Rothstein,	
Sutton,	&	Borenstein,	2005b).	And	second,	we	examine	the	performance	of	methods	in	
a	challenging	meta‐analytic	context	in	which	only		two	of	these	methods,	the	trim‐and‐
fill	method	(Duval	&	Tweedie,	2000a,	2000b)	and	the	test	for	excess	significance	(TES;	
Ioannidis	&	Trikalinos,	2007b),	can	be	applied.	Next,	we	explain	our	own	method.	
Subsequently,	we	present	the	results	of	a	simulation	study	to	examine	the	
performance	of	the	new	method	to	test	publication	bias,	estimate	population	effect	
size,	and	test	the	null	hypothesis	of	no	effect.	We	compare	the	performance	of	the	new	
method	with	the	performance	of	traditional	fixed‐effect	meta‐analyses,	the	trim‐and‐
fill	method,	and	TES,	and	apply	all	methods	to	a	meta‐analysis	on	the	relation	between	
infant	habituation	performance	and	later	IQ	(McCall	&	Carriger,	1993).		

2.1		 Methods	for	assessing	publication	bias	

We	briefly	discuss	the	following	methods	for	assessing	publication	bias,	along	
with	their	most	important	properties:	failsafe	N	(Rosenthal,	1979),	funnel	plot	(Light	
&	Pillemer,	1984),	Begg	and	Mazumdar	(1994)	rank	correlation	test,	Egger’s	test	
(Egger	et	al.,	1997),	the	trim‐and‐fill	method	(Duval	&	Tweedie,	2000b),	the	TES,	and	
selection	models	(Hedges	&	Vevea,	2005).	The	oldest	and	most	popular	(e.g.,	Banks,	
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Kepes,	&	McDaniel,	2012;	Ferguson	&	Brannick,	2012)	method	is	failsafe	N	(Rosenthal,	
1979),	which	provides	the	number	of	studies	needed	to	render	a	statistically	
significant	effect	of	a	meta‐analysis	insignificant.	Because	of	its	problematic	
assumptions	and	typically	overly	optimistic	results,	experts	recommend	abandoning	
failsafe	N	(e.g.,	Becker,	2005).			
	 The	funnel	plot	(Light	&	Pillemer,	1984)	typically	displays	studies’	effect	sizes	
on	the	x‐axis	and	their	standard	error	or	their	precision	(the	inverse	of	a	study’s	
standard	error)	on	the	y‐axis	(Sterne	&	Egger,	2001).	Figure	2.1	shows	the	(contour‐
enhanced)	funnel	plot	of	the	meta‐analysis	of	McCall	and	Carriger	(1993;	cf.	Bakker	et	
al.,	2012).	Funnel	plot	asymmetry,	with	a	lower	frequency	of	studies	in	the	lower	
center	of	the	plot	corresponding	to	studies	with	a	small	and	statistically	insignificant	
effect	size	and	a	small	sample	size,	is	interpreted	as	an	indication	of	publication	bias.	
Hence	the	funnel	plot	in	Figure	2.1	indicates	that	publication	bias	may	have	affected	
the	results.	However,	funnel	plots	can	also	be	asymmetric	for	other	reasons	(Sterne,	
Becker,	&	Egger,	2005).	To	overcome	this	interpretation	problem,	(Peters,	Sutton,	
Jones,	Abrams,	&	Rushton,	2008)	developed	the	contour‐enhanced	funnel	plot,	which	
explicitly	links	the	presence	of	studies	in	the	funnel	plot	to	their	statistical	
(in)significance.	The	contour‐enhanced	funnel	plot	in	Figure	2.1	suggests	publication	
bias,	since	the	asymmetry	of	the	plot	is	linked	to	the	statistical	significance	of	the	
studies.	Nonetheless,	funnel	plot	methods	are	subjective,	and	many	errors	are	made	
when	identifying	publication	bias	using	the	funnel	plot	(Terrin	et	al.,	2003).	Even	
experienced	meta‐analysts	only	correctly	identified	52.5%	of	the	cases	in	which	a	
funnel	plot	was	or	was	not	affected	by	publication	bias	(Terrin,	Schmid,	&	Lau,	2005).	
Two	methods,	Begg	and	Mazumdar’s	(1994)	rank	correlation	and	Egger’s	regression	
method	(Egger	et	al.,	1997;	Sterne	&	Egger,	2005),	formally	test	funnel	plot	
asymmetry.	Both	methods	test	the	association	between	studies’	effect	size	and	
corresponding	standard	error,	where	a	significant	(typically	positive)	association	
signals	publication	bias.	Because	these	methods	have	low	statistical	power	
(Borenstein	et	al.,	2009;	Sterne	&	Egger,	2005),	both	tests	are	usually	applied	using	a	
significance	level	of	.10.	Due	to	their	low	power,	their	application	is	only	
recommended	for	meta‐analyses	based	on	at	least	10	(Banks,	Kepes,	&	Banks,	2012;	
Sterne	&	Egger,	2005)	or	even	15	effect	sizes	(Kepes,	et	al.,	2012).	Rothstein	and	
Bushman	(2012)	also	argued	that	the	results	of	both	tests	are	not	meaningful	if	
between‐study	heterogeneity	in	effect	size	is	substantial.	Finally,	a	clear	limitation	of	
both	methods	is	that	they	can	only	be	applied	if	there	is	reasonable	variation	in	
studies’	sample	size,	with	preferably	at	least	a	few	samples	with	medium	or	large	
sample	sizes	(Borenstein,	et	al.,	2009).		
		 The	trim‐and‐fill	method	developed	by	Duval	and	Tweedie	(2000a,	200b)	is	
another	method	for	assessing	publication	bias	on	the	basis	of	the	funnel	plot.	It	entails	
an	iterative	procedure	that	fills	in	missing	studies	that	are	needed	to	restore	funnel	
plot	symmetry,	and	provides	an	estimate	of	both	the	number	of	such	missing	studies		



20	|	 p ‐ u n i f o r m 	
	

 

	
Figure	2.1.	Contour‐enhanced	funnel	plot	of	the	meta‐analysis	of	McCall	and	Carriger	(1993).	
Areas	represent	studies	with	two‐tailed	p‐values	larger	than	.10	(white),	smaller	than	.05	(light	
gray),	smaller	than	.01	(dark	gray),	and	smaller	than	.001	(light	gray	outside	large	triangle).		

and	the	effect	size.	Duval	and	Tweedie	(2000a,	2000b)	developed	three	estimators	(R0,	
L0,	Q0)	for	the	number	of	missing	studies.	Estimators	R0	and	L0	perform	better	than	Q0,	
and	L0	is	more	robust	than	R0	against	the	occurrence	of	a	few	aberrant	studies	(Duval	
and	Tweedie,	2000a,	200b).	L0	is	also	used	in	most	applications	of	the	trim‐and‐fill	
method.	Stated	advantages	of	the	trim‐and‐fill	method	are	that	it	is	relatively	simple	
and	provides	an	estimate	of	the	effect	size	corrected	for	publication	bias.	However,	the	
consensus	is	that	the	method	should	not	be	regarded	as	a	way	of	yielding	a	more	
“valid”	estimate	of	the	overall	effect	size,	but	rather	as	a	sensitivity	analysis	(Duval,	
2005;	Duval	&	Tweedie,	2000b;	Viechtbauer,	2010).	Results	on	the	performance	of	the	
trim‐and‐fill	method	are	mixed;	some	suggest	the	method	is	quite	powerful	and	yields	
close	to	unbiased	effect	size	estimates	(Duval	and	Tweedie,	2000b),	whereas	others	
suggest	it	has	low	power	to	test	the	null	hypothesis	of	no	effect	(Ferguson	and	
Brannick,	2012).	Agreement	exists,	however,	that	the	method	should	not	be	used	
when	population	effect	sizes	are	heterogeneous,	because	then	it	is	likely	to	add	non‐
existing	studies	(Rothstein	&	Bushman,	2012;	Terrin,	et	al.,	2003).	
			 Ioannidis	and	Trikalinos	(2007b)	developed	a	test	for	publication	bias	based	
on	a	comparison	between	the	observed	(O)	and	expected	(E)	number	of	statistically	
significant	studies	in	a	meta‐analysis.	The	expected	number	E	is	calculated	as	the	sum	
of	the	studies’	observed	power,	based	on	the	effect	size	as	estimated	in	the	meta‐
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analysis: )1(
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
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i iE  .	The	test	for	excess	significance	(TES)	for	publication	bias	is	

the	common	χ2‐test,	with	degrees	of	freedom	equal	to	1:	
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If	the	p‐value	of	the	test	statistic	is	significant	at	.10,	the	test	is	interpreted	as	a	signal	
of	publication	bias	for	a	given	meta‐analysis.	However,	a	statistically	significant	test	
outcome	may	also	be	the	result	of	researcher	df	such	as	data	peeking	(Francis,	2012,	
2013).	Any	process	(publication	bias	or	researcher	df)	leading	to	an	abundance	of	
statistically	significant	studies	may	be	picked	up	by	the	TES.	The	TES	has	low	power	
when	only	a	limited	number	of	studies	is	included	in	a	meta‐analysis	(Francis,	2012,	
2013;	Ioannidis	&	Trikalinos,	2007b),	and	has	particularly	low	power	when	
population	effects	are	heterogenous	(Francis,	2013).	Ioannidis	and	Trikalinos	(2007)	
also	recommend	not	using	the	test	if	between‐study	heterogeneity	exists,	but	to	first	
create	homogenous	subgroups	of	effect	sizes	before	applying	the	test.	Finally,	the	TES	
neither	provides	an	answer	to	the	question	whether	the	population	effect	differs	from	
zero,	nor	does	it	provide	a	(corrected)	estimate	of	the	effect.	
	 In	selection	models,	the	probability	of	observing	an	effect	depends	on	its	
value.	Several	versions	of	selection	models	exist	(Hedges	&	Vevea,	2005;	Terrin	et	al.,	
2003).	Some	versions	estimate	both	the	meta‐analytic	effect	and	the	so‐called	weight	
function	representing	the	probabilities	of	observing	an	effect	as	a	function	of	their	
value.	These	versions	are	quite	technical	and	have	typically	been	effective	only	with	
meta‐analyses	containing	relatively	large	numbers	of	studies	(more	than	100)	(Field	&	
Gillett,	2010).	The	requirement	of	at	least	100	studies	severely	limits	the	usefulness	of	
selection	models	to	estimate	effect	size	in	actual	meta‐analyses.	However,	other	
versions	have	been	developed	that	do	not	estimate	the	weight	function	but	allow	the	
user	to	specify	the	weight	function	in	advance	(Vevea	&	Woods,	2005).	Hedges	and	
Vevea	(2005)	argued	that	these	a	priori	specified	selection	models	provide	a	means	
for	sensitivity	analyses.	Terrin	et	al.	(2003)	examined	the	performance	of	a	selection	
model	with	a	step	weight	function	with	one	cut‐point	at	p	=	.05	in	meta‐analyses	of	
either	10	or	25	studies.	Estimation	failed	to	converge	most	of	the	time	when	the	
population	effect	size	was	homogenous	or	when	it	was	heterogeneous	with	10	studies.	
Convergence	was	better	(58‐98%)	for	heterogeneous	effect	sizes	with	25	studies,	and	
the	selection	model	outperformed	the	trim‐and‐fill	method.	When	studies'	population	
effects	are	heterogeneous,	Hedges	and	Vevea	(2005)	recommend	selection	models	as	
sensitivity	analysis,	because	more	simple	methods	such	as	the	trim‐and‐fill	method	
and	the	TES	provide	misleading	results	in	that	case.	However,	Borenstein	et	al.	(2009)	
concluded	that	“selection	models	have	rarely	been	used	in	actual	research	because	
they	are	difficult	to	implement	and	also	because	they	require	the	user	to	make	some	
relatively	sophisticated	assumptions	and	choices”.	Although	it	should	be	noted	that	R	
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routines	are	available	(e.g.,	Vevea	&	Woods,	2005),	it	is	unlikely	that	selection	models	
will	be	used	routinely	in	meta‐analysis	(Hedges	&	Vevea,	2005).	

2.2		 The	p‐uniform	method	

		 P‐uniform	is	a	new	method	for	conducting	meta‐analyses	that	allows	for	
testing	publication	bias	and	estimating	a	fixed	effect	size	under	publication	bias,	or	
that	can	be	used	as	a	sensitivity	analysis	to	address	and	examine	publication	bias	in	
meta‐analyses.	The	method	only	considers	studies	with	a	statistically	significant	
effect,	and	hence	discards	those	with	an	insignificant	effect.	Hedges	(1984)	also	
suggested	a	method	to	estimate	effect	size	using	only	statistically	significant	studies,	
based	on	maximum	likelihood.	And	currently	Simonsohn	et	al.	(2014a)	are	also	
working	on	a	method	to	estimate	effect	size	only	using	statistically	significant	studies.	
		 P‐uniform	makes	two	assumptions.	First,	like	in	other	methods,	the	
population	effect	size	is	taken	to	be	fixed	rather	than	heterogeneous.	Although	the	
assumption	of	a	fixed	effect	will	not	be	tenable	for	all	psychological	meta‐analyses,	
Klein	et	al.	(2014)	their	‘Many	Labs	Replication	Project’	provides	evidence	that	it	holds	
for	lab	studies	on	many	psychological	phenomena;	36	scientific	groups	in	12	different	
countries	directly	replicated	16	effects,	with	no	evidence	of	a	heterogeneous	effect	
size	in	eight	of	16	effects	(50%).	Heterogeneity	may	be	more	common	in	observational	
studies.	Second,	p‐uniform	assumes	that	all	studies	with	statistically	significant	
findings	are	equally	likely	to	be	published	and	included	in	the	meta‐analysis.	The	
second	assumption	is	formalized	as	f(pi)	=	C	for	pi	≤	α,	indicating	that		there	is	no	
association	between	an	effect	size’s	significant	p‐value	and	the	probability	that	the	
study	containing	this	p‐value	will	get	published.	P‐uniform	does	not	make	
assumptions	about	the	magnitude	of	the	publication	probability	(the	value	of	C),	or	the	
probability	that	statistically	insignificant	studies	get	published	(f(pi)	for	pi	>	α).	An	
example	of	a	violation	of	the	second	assumption	is	if	highly	significant	findings,	e.g.,	in	
combination	with	a	large	sample	size,	have	a	higher	probability	of	getting	published	
and	being	included	in	the	meta‐analysis.	A	violation	will	probably	have	minor	
consequences	on	the	performance	of	p‐uniform,	since	most	statistically	significant	
findings	will	get	published.	In	principle,	p‐uniform	allows	α	to	be	specific	for	a	study	
or	researcher,	which	is	relevant	if	studies	or	researchers	vary	in	their	chosen	
significance‐level	(e.g.,	some	use	.01	whereas	others	use	.05)	or	in	the	direction	of	the	
test	(one‐tailed	and	two‐tailed	tests	correspond	to	one‐tailed	significance‐levels	of	α	
and	α/2,	respectively).	
		 The	basic	idea	of	p‐uniform	is	that	the	distribution	of	p‐values	conditional	on	
the	population	effect	size	is	uniform.	This	assumption	is	equivalent	to	the	assumption	
underlying	standard	null	hypothesis	testing,	with	the	important	distinction	that	we	
now	focus	on	the	(conditional)	pμ	–	value	distribution,	which	is	the	p‐value	
distribution	under	the	alternative	hypothesis	that	the	population	effect	size	equals	μ.	
P‐uniform’s	effect	size	estimate	will	equal	the	effect	size	μ	yielding	a	pμ	–value	
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distribution	that	is	fitted	best	by	a	uniform	distribution.	P‐uniform’s	test	of	the	
hypothesis	of	no	effect	is	based	on	the	deviation	of	the	p0	–value	distribution	from	the	
uniform	distribution,	where	the	p0‐value	distribution	corresponds	to	the	distribution	
of	original	p‐values	(i.e.,	corresponding	to	p‐values	of	the	test	of	no	effect,	or	μ=0).	P‐
uniform’s	test	of	publication	bias	is	based	on	the	deviation	of	the p ‐value	distribution	

from	the	uniform	distribution,	where	 	equals	the	effect	size	estimate	of	traditional	
fixed‐effect	meta‐analysis.	
	 	We	will	explain	effect	size	estimation	and	the	two	tests	using	an	artificial	
example.	The	example	is	based	on	testing	the	hypothesis	of	no	effect	(μ=0)	against	the	
alternative	of	a	positive	effect	(μ	>	0)	with	α	=	.05.	However,	p‐uniform	can	estimate	
and	test	any	effect	size	measure.	In	the	example,	eighty	studies	with	sample	size	25	
are	generated	using	a	fixed‐effect	model	with	μ=.33	and	σ=1,	where	all	statistically	
significant	studies	and	25%	of	insignificant	studies	are	published.	If	each	study	tests	
the	hypothesis	of	no	effect	(μ=0)	against	the	alternative	of	a	positive	effect	(μ	>	0)	with	
α	=	.05,	then	each	study	has	a	power	of	.5.	Figure	2.2a	shows	the	distribution	of	
transformed	p‐values	(p0	–value	distribution,	or	the	distribution	of	p‐values		1/)	of	
the	K=40	statistically	significant	studies	of	one	simulation	of	the	traditional	example.	
Traditional	fixed‐effect	meta‐analysis	carried	out	on	all	fifty	published	studies	using	
the	metafor	package	(Viechtbauer,	2010)	yields	a	biased	effect	size	estimate	of	0.43	
(SE	=	.063,	p	<	.001).	
		 Test	of	μ=0.	If	μ=0	then	the	p0	–value	distribution	in	Figure	2.2a	should	be	
close	to	the	uniform	distribution.	Hence,	p‐uniform	tests	the	hypothesis	μ=0	by	testing	
whether	the	observed	p0	–value	distribution	deviates	from	the	uniform	distribution.	
Fisher’s	(1925)	method	has	been	used	before	to	test	deviations	from	the	uniform	
distribution.	Notably,	independently	of	us,	Simonsohn	et	al.	(2014b)	have	applied	
exactly	the	same	test	of	μ=0	as	we	did.	The	first	step	of	Fisher’s	method	is	to	convert	
each	p‐value	into	numbers	in	the	interval	from	0	to	1	by	computing	the	conditional	
probability	of	the	p‐value	given	its	significance	(	=	.05).	The	probability	that	a	p‐value	
is	statistically	significant	is	.05	if	μ=0,	hence	all	p‐values	are	multiplied	by	20	in	the	
first	step.	Applying	Fisher’s	(1925)	method,	if	μ=0	then	the	test	statistic




K

i ipL
1

0 )20ln( 	is	gamma	distributed	with	K	and	1	degrees	of	freedom,	here	

denoted	by	Г(K,1).	If	the	studies’	p‐values	are	generally	small,	as	in	Figure	2.2a,	L0	will	
be	high.	P‐uniform	rejects	μ=0	whenever	the	value	of	L0	is	larger	than	the	95th	
percentile	of	the	gamma	distribution,	denoted	by	Г.95(K,1).	In	the	example	with	K=40,	
Г.95(40,1)	=	50.94.	The	null	hypothesis	is	rejected	since	L0	=	82.26	(p	<	.001);	the	
population	effect	is	larger	than	zero.		
		 Test	of	publication	bias.	The	test	for	publication	bias	by	p‐uniform	amounts	
to	a	one‐tailed	test	of	the	null	hypothesis	μ	=	 ,	i.e.,	whether	the	population	effect	size	



		

 

	

	

Figure	2.2.	P‐value	distribution	for	(a)	μ	=	0,	(b)	μ	=
 
,	and	(c)	μ	=

*
 
	as	a	function	of	the	transform

ed	significant	p‐values	on	the	x‐axis	and	its	
frequency	on	the	y‐axis.	
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equals	the	effect	size	estimate	of	a	traditional	fixed‐effect	meta‐analysis.	The	basic	
idea	is	that	the	null	hypothesis	is	rejected	if	the	 p ‐value	distribution	deviates	from	

the	uniform	distribution.	The	 p ‐value	distribution	is	a	conditional	distribution.	More	

generally,	we	will	assume	a	test	of	μ	=	μ*	for	defining	this	conditional	distribution.	The	

definition	uses	the	sampling	distributions	of	effect	size
*

iM of	all	studies	I,	assuming	μi	

=	μ*.	The	conditional	p‐value	distribution
*

ip is	then	defined	as:	
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CV
iM denotes	the	critical	value	of	

*
iM for	which  )( 0 CV

ii MMp ,	and
i
 denotes	the	

estimated	effect	size	in	study	i.	The	probabilities	in	the	numerator	and	denominator	

are	calculated	under	the	assumption	that	
*

iM is	normally	distributed.	In	words,
*

ip

represents	the	probability	of	observing	effect	
i
 	or	larger,	conditional	on	both	a	

population	effect	μ*	and	a	significant	p‐value	(when	tested	against	the	null	hypothesis	
of	no	effect).	It	is	important	to	note	that	each	study	i	can	be	based	on	a	different	

sample	size	Ni,	and	that
*

ip ’s	dependence	on		μ*	is	stronger	for	larger	Ni.	

		 Figure	2.2b	depicts	the	distribution	of 

ip ,	i.e.,	the p ‐value	distribution.	The	

distribution	is	not	uniform	but	skewed	to	the	left	with	many	high	p‐values,	suggesting	

publication	bias.	The	hypothesis	of	no	publication	bias	is	rejected	if L 	<	Г.05(40,1)	=	

30.2,	with	 


K

i ipL
1

)ln(  
.	Applying	Fisher’s	test	to	the	distribution	of 

ip yields L 	

=	28.11	(p	=	.020),	indeed	suggesting	publication	bias;	the	population	effect	is	smaller	
than	its	value	estimated	by	the	traditional	fixed‐effect	meta‐analysis.	
		 Interval	and	point	estimation	of	 .	The	100(1–	α)%	confidence	interval

**
UL    is	obtained	by

*
LL

=	Г1‐0.5(K,1)	and

*
UL

=	Г0.5(K,1).	That	is,	each	border	of	

the	interval	is	a	value	of	 	for	which	the	null	hypothesis	is	only	just	accepted	in	a	two‐
tailed	test	at	significance	level	α.	The	probability	that	the	null	hypothesis	is	rejected	
that	effect	size	equals	 	is	exactly	.05,	because	(only)	for	 	is	the	p‐value	distribution	
exactly	uniform.	Consequently,	this	proofs	that	the	interval	estimate	of	p‐uniform	is	
unbiased:	95%	of	all	confidence	intervals	contain	 ,	or	the	coverage	probability	of	p‐
uniform	is	exactly	.95.	The	borders	of	the	confidence	interval	are	easily	obtained,	since

*L decreases	monotonically	in	 * .2	The	confidence	interval	in	the	example	is	0.21	
                                                   
2	P‐uniform’s	point	estimates	and	the	bounds	of	its	confidence	interval	are	obtained	by	the	R	CRAN	function	
uniroot.	The	input	of	uniroot	is	a	function	and	an	interval.	It	searches	for	a	value	in	the	interval	for	which	

the	function	equals	zero.	The	functions	were
*
LL 
–Г1‐0.5(K,1),

*L –	K,	
*
UL 
–Г0.5(K,1).		
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	0.43.	P‐uniform’s	point	estimate * equals	the	effect	size	yielding	a
*p ‐value	

distribution	that	is	fitted	best	by	a	uniform	distribution.	The	point	estimate	is	defined	
as	the	value	of * for	which	Lμ	equals	K,	which	is	the	expected	value	of	Г(K,1).	In	the	

example, * =.32.	Figure	2.2c	depicts	the	distribution	of	 32.0
ip .	Note	that	0.32	closely	

corresponds	to	μ	=	.33	used	to	generate	the	studies	in	this	hypothetical	example.	

Alternative	estimators	in	p‐uniform:	1–p.		The	basic	idea	of	p‐uniform	is	
that	the	p‐value	distribution	conditional	on	the	population	effect	size	is	uniform.	
However,	the	distribution	of	some	transformation	of	p‐values	are	then	also	uniform.	
For	instance,	if	p	is	uniformly	distributed,	then	so	is	1–p.	Consequently,	we	can	also	(i)	

test	μ=0,	(ii)	test	publication	bias,	and	(iii)	estimate * ,	using	1–
*

ip rather	than
*

ip .	

The	two	estimators	are	differently	sensitive	to	outliers,	i.e.,	studies	with	extreme	effect	

size	estimates,	where	the	estimator	based	on	
*

ip 	is	very	much	affected	by	outliers,	

whereas	the	other	is	not.	A	very	large	effect	size	will	yield	a	small
*

ip ,	hence	a	large	–

ln(
*

ip ),	resulting	in	a	large	positive	effect	of	that	effect	size	on	estimate	 * .	However,	

one	very	large	effect	size	hardly	affects	 * 	whenever	the	estimator	based	on	1–
*

ip is	

used,	because	then	–ln(1–
*

ip )	approaches	0.	To	conclude,	we	expect	the	estimator	

based	on	1–
*

ip to	be	more	robust	to	outliers	and	a	violation	of	the	homogeneity	

assumption	than	the	estimator	based	on	
*

ip .	Properties	of	both	estimators	are	

examined	in	this	study.		

Characteristics	of	p‐uniform.	P‐uniform	allows	for	testing	the	null	
hypothesis	of	no	effect,	testing	publication	bias,	and	estimating	point	and	interval	
effect	sizes.	Other	methods	do	not	meet	these	three	goals	simultaneously.	The	trim‐
and‐fill	method	also	estimates	effect	size	after	imputing	some	studies	that	may	have	
been	missing,	but	statistical	properties	(e.g.,	bias)	of	that	trim‐and‐fill	estimate	remain	
unclear.	Since	p‐uniform	is	derived	from	solid	statistical	theory,	p‐uniform	yields	
unbiased	interval	estimation	(i.e.,	coverage	probability	equal	to	1–)	if	its	
assumptions	are	met.		
	 One	assumption	of	p‐uniform	is	that	no	questionable	research	practices	were	
used	in	the	studies,	or,	as	(Simonsohn	et	al.,	2014b)	put	it,	“p‐hacking”	did	not	occur.	
P‐hacking	will	typically	result	in	p‐values	just	below	.05	(Simonsohn	et	al.,	2014b).	
Because	p‐values	close	to	.05	provide	evidence	for	a	low	or	even	negative	population	
effect	size	in	p‐uniform,	p‐hacking	will	in	general	result	in	an	underestimation	of	the	
population	effect	size	whenever	p‐uniform	is	applied.	We	consider	this	conservatism	
to	be	a	positive	quality	of	p‐uniform;	it	will	give	estimates	on	the	safe	side,	rather	than	
traditional	meta‐analysis	methods	that	overestimate	population	effect	size	because	of	
p‐hacking.		
	 Another	important	assumption	of	p‐uniform	is	that	the	population	effect	size	
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is	fixed.	Our	simulation	study	of	p‐uniform	includes	a	test	on	the	robustness	of	p‐
uniform	to	a	violation	of	the	homogeneity	assumption.	We	expected	that	both	point	
and	interval	estimation	of	the	effect	size	would	no	longer	be	accurate	in	the	case	of	
between‐study	heterogeneity,	and	that	estimation	would	be	more	biased	whenever	

estimation	is	based	on
*

ip rather	than	1–
*

ip .		Note,	however,	that	the	performance	of	

other	methods	assessing	publication	bias	is	also	negatively	affected	by	between‐study	
heterogeneity	(Moreno,	Sutton,	Ades,	et	al.,	2009;	Peters,	Sutton,	Jones,	Abrams,	&	
Rushton,	2007;	Terrin	et	al.,	2003).	Moreover,	it	is	often	possible	to	select	
homogeneous	subsets	of	studies	on	the	basis	of	methodological	or	substantive	
characteristics,	and	apply	p‐uniform	to	these	subsets.	This	is	also	the	recommended	
approach	for	the	other	methods	for	assessing	publication	bias	whenever	there	is	
heterogeneity	(e.g.,	Ioannidis	&	Trikalinos,	2007b;	Kepes,	Banks,	&	Oh,	2012).		
	 A	final	assumption	of	p‐uniform	is	that	there	is	no	association	between	the	
probability	of	statistically	significant	studies	being	in	the	meta‐analysis	and	their	p‐
value.	This	is	a	weaker	assumption	than	the	(typically	untenable)	assumption	
underlying	traditional	meta‐analysis,	namely	that	all	studies,	statistically	significant	or	
not,	have	an	equal	chance	to	be	included	in	the	meta‐analysis.	Selection	models	either	
make	a	stronger	assumption	than	p‐uniform	on	this	function	for	the	whole	range	of	p‐
values,	or	estimate	the	probability	of	a	study	to	be	selected	in	the	meta‐analysis	as	a	
function	of	its	p‐value.	Estimation	of	particularly	this	function	is	problematic	in	
selection	models,	requiring	a	very	large	number	of	studies	(100	or	more),	and	often	
leading	to	convergence	problems	(Terrin	et	al.,	2003)	and	biased	(Hedges	&	Vevea,	
1996)	or	unrealistic	functions	(Hedges	and	Vevea,	2005).	
	 A	disadvantage	of	p‐uniform	seems	that	it	discards	all	information	from	
statistically	insignificant	studies.	If	there	is	no	publication	bias,	using	information	
from	all	studies	will	certainly	yield	a	more	precise	estimate	of	population	effect	size.	
However,	retrieval	of	unpublished	studies	is	often	hard	and	possibly	biased	(Ferguson	
&	Brannick,	2012),	for	instance	because	such	studies	are	typically	not	even	
documented	properly	(Cooper	et	al.,	1997).	Moreover,	it	is	impossible	(without	study	
or	trial	registers)	to	be	aware	of	how	many	unpublished	studies	there	actually	are.	
However,	it	is	likely	that	the	percentage	of	statistically	insignificant	studies	is	higher	
among	the	unpublished	studies.	To	conclude,	although	meta‐analysts	often	
recommend	researchers	to	search	extensively	for	both	published	and	unpublished	
studies	when	conducting	traditional	meta‐analysis	(e.g.,	Rothstein	&	Bushman,	2012),	
this	search	and	its	outcomes	may	introduce	bias	as	well	(Ferguson	&	Brannick,	2012).	
Most	importantly,	although	omitting	statistically	insignificant	studies	may	seem	rather	
restrictive,	the	majority	of	published	studies	report	statistically	significant	results,	
with	a	prevalence	estimate	of	around	95%	in	psychology	(e.g.,	Fanelli,	2010a,	2012;	
Sterling,	1959;	Sterling	et	al.,	1995).	Hence	not	many	available	studies	need	to	be	
omitted	by	p‐uniform	anyway.	Finally,	statistically	insignificant	studies	must	be	
omitted	in	p‐uniform;	only	by	omission	of	insignificant	studies	will	p‐uniform	yield	
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accurate	estimates.	
	

2.3		 Method	

		 All	methods	for	assessing	publication	bias	work	for	any	effect	size	measure	
(cf.	Borenstein	et	al.,	2009).	For	illustrative	purposes,	we	compare	the	methods	in	the	
most	simple	research	situation.	Effect	sizes	of	studies	were	generated	with	a	fixed	
population	mean	μ	and	standard	deviation	σ	=	1	in	all	conditions,	and	a	right‐tailed	
test	of	the	null	hypothesis	H0:	μ	=	0	was	conducted	in	each	individual	study	with	α	=	
0.05.	The	performance	of	p‐uniform	and	other	techniques	for	assessing	publication	
bias	were	examined	by	means	of	Monte‐Carlo	simulations.	In	these	simulations,	equal	
sample	sizes	of	25	were	imposed	for	each	study	in	the	meta‐analysis.	A	sample	size	of	
25	resembles	the	median	cell	size	of	24	in	both	between‐	and	within‐subjects	designs	
in	experimental	psychology	observed	by	Wetzels	et	al.	(2011).		
		 Due	to	using	equal	sample	sizes,	not	all	available	techniques	for	assessing	
publication	bias	can	be	applied.	Neither	the	rank‐correlation	test,	nor	Egger’s	test	can	
deal	with	equal	sample	sizes	(e.g.,	Ioannidis	&	Trikalinos,	2007a),	and	were	therefore	
excluded	from	the	simulation	study.	The	fixed‐effect	model	was	applied	because	
studies’	effect	sizes	were	generated	from	the	same	population	with	one	fixed	mean.	
The	trim‐and‐fill	method	was	imposed	to	impute	only	studies	in	the	left‐hand	side	of	
the	funnel	plot	because	studies	were	tested	for	being	significantly	larger	than	zero.	
Two‐tailed	tests	(α	=	0.05)	were	conducted	for	testing	the	effect	size	estimates	
obtained	by	the	fixed‐effect	model,	the	trim‐and‐fill	method,	and	p‐uniform.	The	TES	
and	p‐uniform’s	publication	bias	test	were	also	conducted	two‐tailed	with	an	alpha	
level	of	0.05;	a	0.05	significance	level	rather	than	the	more	common	0.10	was	selected	
to	be	consistent	with	the	tests	of	effect	size	and	its	95%‐confidence	interval.		
		 For	each	condition,	p‐uniform	was	applied	and	compared	to	other	existing	
methods	for	three	purposes.	First,	we	evaluated	p‐uniform’s	performance	in	
estimating	the	population’s	effect	size.	P‐uniform’s	effect	size	estimates,	standard	
deviations	of	the	effect	size	estimates,	95%	confidence	intervals,	and	coverage	
probabilities	were	compared	to	estimates	obtained	by	the	traditional	fixed‐effect	
model	and	the	trim‐and‐fill	method.	We	calculated	the	coverage	probability	as	the	
proportion	of	runs	with	μ	in	the	calculated	95%	confidence	interval.	Hence	an	
accurate	method	yields	a	coverage	probability	of	.95	in	all	conditions.	Second,	in	each	
replication	we	tested	whether	the	population	effect	size	is	different	from	0	(H0:	μ	=	0).	
For	this	test,	Type	I	error	rates	and	statistical	power	were	used	to	compare	p‐uniform,	
the	fixed‐effect	model,	and	the	trim‐and‐fill	method.	Third,	we	tested	whether	p‐
uniform	can	detect	the	presence	of	publication	bias	(H0:	μ	= ).	Type	I	error	rates	and	
statistical	power	were	also	used	to	compare	p‐uniform’s	publication	bias	test	with	the	
TES.		
			 Three	parameters	were	varied	in	the	main	simulation	study:	the	number	of	
studies	(K),	the	population	effect	size	μ,	and	the	proportion	of	statistically	non‐
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significant	studies	selected	in	the	meta‐analysis	(pp).	Simultaneous	with	selecting	
values	for	K,	levels	for	statistical	power	were	chosen	in	such	a	way	that	the	expected	
number	of	studies	with	an	observed	mean	significantly	larger	than	zero	was	eight	in	
each	condition.	Recall	that	eight	is	a	very	small	number	of	studies,	since	some	
publication	assessment	methods	such	as	Begg	and	Mazumdar’s	(1994)	rank	
correlation	and	Egger’s	regression	method	are	only	recommended	when	the	number	
of	effect	sizes	is	at	least	10	or	15.	We	particularly	selected	a	small	value	of	K	to	show	
that	p‐uniform	may	work	well	in	meta‐analyses	based	on	a	small	number	of	studies	
that	are	common	in	the	literature.	The	following	values	for	K	and	statistical	power	(1	–	
β)	were	selected:	K	=	160	(1	–	β	=	α	=	0.05);	K	=	40	(1	–	β	=	0.2);	K	=	16	(1	–	β	=	0.5);	
and	K	=	10	(1	–	β	=	0.8).	Six	different	levels	of	publication	bias	were	selected:	pp	=	(0;	
0.025;	0.05;	0.25;	0.5;	and	1),	where	pp	denotes	the	proportion	of	statistically	
insignificant	studies	getting	published.	In	case	of	extreme	publication	bias	pp	=	0),	
meta‐analyses	only	consisted	of	on	average	eight	published	studies.	The	conditions	pp	
=	0.025	and	pp	=	0.05	were	chosen	based	on	the	probability	of	finding	a	statistically	
significant	effect	in	the	literature.3	Proportions	pp	=	0.25	and	pp	=	0.5	were	selected	to	
reflect	situations	with	less	severe	publication	bias.	A	condition	without	publication	
bias	(pp	=	1)	was	also	included	in	order	to	compare	the	performance	of	p‐uniform	to	
the	traditional	fixed‐effect	model.	This	is	the	situation	where	the	traditional	fixed‐
effect	model	yields	an	unbiased	estimate	based	on	all	studies.	For	each	condition	in	
the	simulation	study,	10,000	replications	were	conducted.	
	 We	also	ran	an	additional	simulation	study	to	examine	the	robustness	of	p‐
uniform	to	violations	of	the	homogeneity	assumption.	Four	cells	of	the	design	of	the	
main	simulation	study	were	selected	(K/μ	=	(0;	0.33)		pp	=	(0;	0.25)),	and	
heterogeneity	was	manipulated	using	three	levels	(τ2=	(0.013333;	0.04;	0.12)	in	each	
                                                   
3	Assume	that	the	probability	that	an	effect	truly	exists	(P(H1))	is	0.5.	Ioannidis	(2005)	used	this	value	as	
starting	point	in	his	paper	and	argued	that	this	value	may	be	lower	in	fields	with	less	confirmatory	research.	
Also	assume	that	the	statistical	power	accompanied	with	the	applied	statistical	test	is	0.5	(using	α	=	0.05).	
Statistical	power	is	often	lower	than	the	convention	of	0.8.	Bakker	et	al.	(2012)	even	suggested	that	the	
typical	power	in	psychological	research	is	0.35.	These	findings	suggest	that	assuming	a	statistical	power	of	
0.5	may	even	be	liberal.	The	proportion	of	statistically	significant	studies	in	the	literature	(P(‘H1’|	lit))	can	
then	be	found	after	entering	values	for	p	in	the	following	equation:	

	
where	P(‘H0’)	is	the	proportion	of	statistically	non‐significant	findings	in	the	literature.	For	instance,	the	
proportion	of	statistically	significant	findings	in	the	literature	if	p	=	0.025	is:		
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of	these	four	cells.	Parameter	τ2	represents	the	variance	of	true	study	means.	The	
levels	of	τ2	correspond	to	low	(I2=.25),	moderate	(I2=.50),	and	high	(I2=.75)	
heterogeneity	(Borenstein	et	al.,	2009).	The	main	dependent	variables	in	the	
simulation	were	the	point	and	interval	estimates	of	traditional	meta‐analysis,	the	
trim‐and‐fill	method,	and	p‐uniform.	
		 To	summarize,	the	main	simulation	study	consisted	of	K/μ		pp	=	4		6	=	24	
conditions,	whereas	the	additional	simulation	study	had	K/μ		pp		τ2	=	2		2		3	=	12	
conditions.	Simulations	and	p‐uniform	were	programmed	in	R	(R	Core	Team,	2017).	
The	metafor	package	(Viechtbauer,	2010)	was	used	for	conducting	the	trim‐and‐fill	
method	and	fixed‐effect	(main	simulation)	and	random‐effects	(small	simulation)	
meta‐analyses.	See	the	supplementary	information	for	the	R	code	of	our	simulations	
(https://osf.io/drav5/).	
	
2.4		 Results	
	
2.4.1	 Estimation	of	effects	when	effects	are	homogenous	
		 Convergence	rates	for	the	effect	size	estimates	with	p‐uniform	were	above	

98.9%	and	96.3%	across	conditions	for	the	
*

ip 	and	1–
*

ip 	estimator,	respectively.4	

Table	2.1	shows	average	effect	size	estimates,	standard	errors	or	standard	deviations	
of	the	effect	size	estimates,	confidence	intervals,	and	coverage	probabilities	of	the	
fixed‐effect	model,	the	trim‐and‐fill	method,	and	p‐uniform.	The	performance	of	p‐
uniform	was	only	evaluated	as	a	function	of	the	population	effect	size	μ	because	the	
method	does	not	take	statistically	non‐significant	studies	into	account.	Coverage	
probabilities	of	p‐uniform	were	95%	in	all	conditions	for	both	estimators	(see	last	row	
of	Table	2.1),	so	exactly	equal	to	the	nominal	coverage	rates,	confirming	that	p‐
uniform	performs	very	well	when	its	assumptions	are	satisfied.	Figure	2.3	presents	
the	average	effect	size	estimates	with	the	proportion	of	statistically	non‐significant	
studies	included	in	the	meta‐analysis	(pp)	on	the	x‐axis,	and	on	the	y‐axis	the	
population	effect	size	μ	(horizontal	dotted	lines)	and	the	average	effect	size	estimates	
(	and	 * ).	P‐uniform’s	average	effect	size	estimates	are	indicated	by	an	asterisk	

(estimator
*

ip )	and	a	cross	(estimator	1–
*

ip )	on	the	y‐axis.	P‐uniform’s	average	

effect	size	estimate	( * )	had	a	slight	negative	bias	for	both	estimators,	which	was	

significantly	different	from	zero	in	some	conditions.	That	is,	bias	of	estimator	
*

ip 	for	

μ=0,	μ=0.16,	μ=0.33,	μ=0.5	was	−0.059	(−z	=	5.9,	p	<	.001),	−0.048	(−z	=	4.8,	p	<	.001),	
−0.035	(−z	=	3.5,	p	<	.001),	−0.018	(−z	=	1.8,	p	=	.065),	respectively,	and	of	estimator	

1–
*

ip 	it	was	−0.011	(−z	=	1.1,	p	=	.27),	−0.020	(−z	=	2.0,	p	=	.046),	−0.020	(−z	=	2.0,						
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Figure	2.3.	Average	effect	size	estimates	of	the	fixed‐effect	model,	the	trim‐and‐fill	method,	and	
p‐uniform	as	a	function	of	the	proportion	p	of	non‐significant	studies	included	in	the	meta‐
analysis	and	the	population	effect	size	μ.	Average	effect	size	estimates	are	indicated	by	open	
bullets	(traditional	fixed‐effect	model),	triangles	(trim‐and‐fill),	asterisks	(p‐uniform	estimator	
p),	and	crosses	(p‐uniform	estimator	1–p).	Dotted	black	lines	illustrate	the	population	effect	size	
μ.	Solid	black	lines	refer	to	μ	=	0,	dashed	black	lines	refer	to	μ	=	0.16,	solid	gray	lines	refer	to	μ	=	
0.33,	and	dashed	gray	lines	refer	to	μ	=	0.5.	
	
p	=	.046),	−0.007	(−z	=	0.7,	p	=	.48),	respectively.4	Apparently,	for	the	conditions	in	the	

simulations,	the	estimator	1– *
ip slightly		outperformed	the	estimator	

*
ip .	

		 Average	effect	size	estimates	of	the	fixed‐effect	model	and	the	trim‐and‐fill	
method	are	presented	as	a	function	of	pp	and	population	effect	size	μ	using	lines	in	
Figure	2.3.	Unsurprisingly,	the	fixed‐effect	model	and	the	trim‐and‐fill	method	yielded	
accurate	average	effect	size	estimates	in	cases	of	no	publication	bias	(pp	=	1).	In	
particular,	average	effect	size	estimates	obtained	by	the	fixed‐effect	model	(open	
bullets)	fell	exactly	on	the	dotted	lines	reflecting	the	population	effect	size	μ.	Without	
publication	bias	(pp	=	1),	the	average	effect	size	estimates	of	the	trim‐and‐fill	method	
(triangles	in	Figure	2.3)	slightly	underestimated	the	population	effect	size	μ	(	=	
0.49).	This	underestimation	of	the	average	effect	size	was	caused	by	the	imputation	of	
                                                   
4	z	=	

000,101

  ,	where	μ	is	the	population	value,  is	the	effect	size	estimate, 000,101 	the	standard	

error	of  .	
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studies	while	no	studies	were	missing.	Table	2.2	shows	the	average	number	of	studies	
imputed	by	the	trim‐and‐fill	method	in	each	condition.	The	first	row	of	the	last	column	
indicates	that,	on	average,	nine	studies	were	imputed	when	there	was	no	effect	(μ	=	0)	
and	no	publication	bias	(pp	=	1),	resulting	in	an	underestimated	effect.	The	other	rows	
in	Table	2.2	also	illustrate	the	poor	performance	of	the	trim‐and‐fill	method.	If	the	
proportion	of	statistically	non‐significant	studies	included	in	the	meta‐analysis	(pp)	
decreases,	more	studies	are	omitted	from	the	meta‐analysis	and	the	trim‐and‐fill	
method	should	impute	more	studies.	However,	this	is	not	the	case	because	the	trim‐
and‐fill	method	hardly	ever	imputed	studies	if	there	was	extreme	publication	bias	(cf.	
pp	=	0,	third	column	in	Table	2.2).	
		 In	conditions	with	publication	bias	(pp	<	1),	the	fixed‐effect	model	and	the	
trim‐and‐fill	method	severely	overestimated	effect	sizes.	This	is	shown	in	Figure	2.3:	
As	publication	bias	increased,	the	lines	representing	the	fixed‐effect	model	and	the	
trim‐and‐fill	method	deviated	more	strongly	from	the	population	effect	size	μ.	These	
average	effect	size	estimates	deviated	more	from	the	population	effect	size	μ	when	
there	was	at	the	same	time	no	effect	(μ	=	0)	and	extreme	publication	bias	(pp	=	0),	with
=	0.41	for	both	the	fixed‐effect	model	and	the	trim‐and‐fill	method	(see	the	first	two	
rows	of	the	first	column	in	Table	2.1).	If	there	was	actually	an	effect	in	the	population	
(μ	>	0),	the	overestimation	in	average	effect	sizes	of	both	the	fixed‐effect	model	and	
the	trim‐and‐fill	method	decreased	in	μ.	The	lines	belonging	to	the	fixed‐effect	model	
and	the	trim‐and‐fill	method	for	μ	=	0.5	(dashed	gray	lines	in	Figure	2.3)	diverged	less	
from	its	population	effect	size	μ	than	the	lines	belonging	to	both	methods	for	μ	=	0	
(solid	black	lines).		
	 Coverage	probabilities	of	both	the	fixed‐effect	model	and	the	trim‐and‐fill	
method	were	far	below	the	nominal	95%	rate	for	μ	<	0.5	and	whenever	publication	
bias	was	present	(pp	<	1).	For	conditions	without	an	effect	(μ	=	0)	and	extreme	
publication	bias	(pp	=	0),	coverage	probabilities	were	even	close	to	0	(see	the	first	two	
rows	of	the	first	column	in	Table	2.1).	Coverage	probabilities	became	closer	to	the	
nominal	rate	as	the	effect	increased	and	the	amount	of	publication	bias	decreased.	
However,	the	coverage	probability	was	still	unsatisfactory	in	condition	μ	=	0.33	and	pp	
=	.5	for	the	fixed‐effect	model	(0.88)	and	the	trim‐and‐fill	method	(0.86).	Coverage	
probabilities	of	both	methods	approached	95%	when	μ	=	0.5	and	in	conditions	
without	publication	bias	(pp	=	1).	
		 	 To	conclude,	coverage	probabilities	of	p‐uniform	were	95%	in	all	
conditions,	which	did	not	apply	to	the	fixed‐effect	model	and	the	trim‐and‐fill	method.	
Average	effect	size	estimates	of	p‐uniform	were	accurate,	albeit	slightly	
underestimated.	Average	effect	size	estimates	of	the	fixed‐effect	model	and	the	trim‐
and‐fill	method	substantially	deviated	from	the	population	effect	size	μ	except	for	a	
medium	size	population	effect	(μ	=	0.5)	and	no	publication	bias	(pp	=	1).	At	the	same	
time,	the	standard	deviations	of	p‐uniform's	effect	size	estimates	were	substantially	
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Table	2.1.	Continued	
	

	
	

μ	(K
)	

	
	

	
0	(160)	

0.16	(40)	
0.33	(16)	

0.5	(10)	
	

	
1/2	
		

Fixed‐effect	
m
odel	

0.020	(0.024)	
0.207	(0.044)	

0.383	(0.056)	
0.531	(0.061)	

	
[‐0.023;	0.063]	CP:	.833	

[0.127;	0.288]	CP:	.772	
[0.270;	0.497]	CP:	.859	

[0.400;	0.662]	CP:	.946	

	
T
rim

‐and‐fill	
0.011	(0.032)	

0.196	(0.046)	
0.371	(0.061)	

0.523	(0.065)	

	
[‐0.031;	0.053]	CP:	.791	

[0.117;	0.275]	CP:	.821	
[0.259;	0.482]	CP:	.875	

[0.394;	0.652]	CP:	.937	

	

	1		

Fixed‐effect	
m
odel	

0.000	(0.016)	
0.161	(0.032)	

0.330	(0.050)	
0.500	(0.063)	

	
[‐0.031;0.031]	CP:	.949	

[0.099;	0.223]	CP:	.948	
[0.232;	0.428]	CP:	.952	

[0.376;	0.624]	CP:	.951	

	
T
rim

‐and‐fill	
‐0.020	(0.030)	

0.149	(0.039)	
0.322	(0.053)	

0.492	(0.066)	
	

[‐0.050;	0.011]	CP:	.634	
[0.088;	0.209]	CP:	.869	

[0.225;	0.418]	CP:	.926	
[0.370;	0.615]	CP:	.932	

p‐uniform
	

Estim
ator	p	

‐0.059	(0.224)	
0.112	(0.187)	

0.298	(0.142)	
0.481	(0.103)	

	[‐0.427;	0.313]	CP:	.952	
[‐0.224;	0.418]	CP:	.950	

[0.031;	0.539]	CP:	.951	
[0.282;	0.677]	CP:	.952	

Estim
ator	1–p	

‐0.011	(0.271)	
0.140	(0.240)	

0.313	(0.188)	
0.493	(0.137)	

[‐0.468;	0.367]	CP:	.948	
[‐0.307;	0.459]	CP:	.949	

[‐0.094;	0.564]	CP:	.952	
[‐0.183;	0.686]	CP:	.947	

N
ote.	K

	=	total	num
ber	of	studies,	p

p 	=	proportion	of	non‐significant	studies	included	in	a	m
eta‐analysis,	()	=	average	standard	error	or,	in	case	of	p‐

uniform
,	standard	deviation	of	all	10,000	estim

ates,	[]	=	average	bounds	of	95%
	confidence	interval,	CP	=	coverage	probability.	
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Table	2.2.	Average	number	of	imputed	studies	by	the	trim‐and‐fill	method	based	on	Monte‐
Carlo	simulations	(10,000	replications)	

		 		 pp	

		 		 0	 1/40	 1/20	 1/4	 1/2	 1	

	
μ	(K)	
		

0	(160)	
0.06		
(0.25)	

1.41		
(1.45)	

0.82		
(1.18)	

0.59		
(1.84)	

2.01		
(4.84)	

9.00	
(12.06)	

0.16	(40)	
0.05		
(0.25)	

0.82		
(1.36)	

1.17		
(1.48)	

0.90		
(1.33)	

0.81		
(1.52)	

1.49		
(2.74)	

0.33	(16)	
0.07		
(0.28)	

0.17		
(0.59)	

0.27		
(0.74)	

0.61		
(1.07)	

0.61		
(1.09)	

0.49		
(1.08)	

0.5	(10)	
0.10		
(0.36)	

0.11		
(0.39)	

0.12		
(0.50)	

0.21		
(0.59)	

0.27		
(0.68)	

0.30		
(0.72)	

Note.	Studies	were	imputed	on	the	left‐hand	side	of	the	funnel	plot,	pp	=	proportion	of	non‐
significant	studies	included	in	the	meta‐analysis,	μ	=	the	effect	size	used	for	simulating	data,	(K)	
=	total	number	of	studies,	()	=	standard	deviation.	

larger	than	those	of	the	fixed‐effect	model	and	the	trim‐and‐fill	method.	As	a	
consequence,	average	effect	size	estimates	of	p‐uniform	were	accurate	but	more	
uncertain.	In	contrast,	the	results	of	the	fixed‐effect	model	and	the	trim‐and‐fill	
method	provided	false	certainty.	These	estimates	were	precise	but	highly	inaccurate	if	
the	population	effect	size	μ	was	smaller	than	medium	(μ	<	0.5)	and	publication	bias	
was	present	(pp	<	1).	

2.4.2		 Test	of	an	effect	when	effects	are	homogenous	

In	Table	2.3,	Type	I	error	rates	and	statistical	power	of	the	fixed‐effect	model,	

the	trim‐and‐fill	method,	and	estimator	
*

ip 	of	p‐uniform	are	presented	for	testing	

whether	the	population	effect	size	equals	0.	P‐uniform’s	Type	I	error	rates	were	
exactly	equal	to	the	nominal	rate	in	all	conditions	(see	third	row	of	the	last	column	in	
Table	2.3).	Statistical	power	of	p‐uniform	increased	in	μ	from	0.26	for	μ	=	0.16	to	0.98	
for	μ	=	0.5.	Consequently,	p‐uniform	already	has	very	high	power	to	detect	a	medium	
effect	size	(μ	=	d	=	0.5)	when	only	eight	studies	with	n	=	25	are	statistically	significant.	
		 If	there	was	no	effect	(μ	=	0)	and	no	publication	bias	(pp	=	1),	the	Type	I	error	
rate	of	the	trim‐and‐fill	method	was	lower	than	the	nominal	rate	(α	=	0.035).	This	was	
caused	by	the	imputation	of	studies	while	no	publication	bias	was	present	(see	Table	
2.2).	If	there	was	publication	bias	(pp	<	1)	the	Type	I	error	rates	were	grossly	
overestimated	by	the	fixed‐effect	model	and	the	trim‐and‐fill	method.	The	Type	I	error	
rates	increased	as	publication	bias	became	more	severe.	If	there	was	no	effect	(μ	=	0)	
and	extreme	publication	bias	(pp	=	0),	Type	I	error	rates	of	the	fixed‐effect	model	and	
the	trim‐and‐fill	method	equaled	1	(see	first	two	rows	of	the	first	column	in	Table	2.3)	
meaning	that	both	methods	always	yielded	a	Type	I	error	in	this	condition.	This	Type	I	
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error	rate	was	severely	inflated	due	to	overestimated	average	effect	size	estimates	by	
both	methods	as	explained	in	the	previous	section	(see	also	Table	2.1	and	Figure	2.3).		
		 The	fixed‐effect	model	and	the	trim‐and‐fill	method	were	powerful	in	
detecting	an	effect	when	it	truly	existed	(μ	>	0)	and	no	publication	bias	was	present	
(pp	=	1).	The	levels	of	statistical	power	rapidly	approached	one	for	these	conditions	
(see	last	column	in	Table	2.3).	If	there	was	an	effect	(μ	>	0)	and	publication	bias	was	
present	(pp	<	1),	the	statistical	power	of	the	fixed‐effect	model	and	the	trim‐and‐fill	
method	was	close	to	1	or	equaled	1	in	every	condition.	However,	these	results	reflect	
false	certainty	because	effect	size	estimates	of	both	methods	were	overestimated	due	
to	the	presence	of	publication	bias	(see	previous	section).		
		 To	summarize,	the	accurate	proportion	of	Type	I	errors	was	made	for	testing	
whether	the	population	effect	size	equals	0	based	on	p‐uniform	and	p‐uniform’s	
statistical	power	was	high	to	detect	a	population	effect	of	medium	size	(μ	=	0.5)	with	
only	eight	small	statistically	significant	studies.	The	fixed‐effect	model	and	the	trim‐
and‐fill	method	overestimated	the	effect	size	in	case	of	publication	bias	and	therefore	
yielded	many	Type	I	errors	and	false	certainty	with	respect	to	the	presence	of	
population	effects.	

2.4.3		 Publication	bias	test	when	population	effects	are	homogenous	

		 Table	2.4	shows	Type	I	error	rates	and	statistical	power	of	two	publication	

bias	tests:	estimator	
*

ip 	of	p‐uniform	and	the	TES.	Type	I	error	rates	of	p‐uniform	

were	close	to	5%	in	the	conditions	μ	<	0.5	without	publication	bias	(pp	=	1)	(see	last	
column	in	Table	2.4).	With	μ	=	0.5	and	without	publication	bias	(pp	=	1),	Type	I	error	
rates	obtained	by	p‐uniform	were	lower	than	the	nominal	rate	(α	=	0.012).	P‐uniform	
had	reasonable	statistical	power	when	a	considerable	number	of	studies	had	been	
excluded	from	the	meta‐analysis.	For	example,	statistical	power	of	the	method	was	
0.75	for	μ	=	0.16	and	extreme	publication	bias	(pp	=	0)	(see	fourth	row	of	first	column	
in	Table	2.4).	
		 The	last	column	in	Table	2.4	illustrates	that	in	conditions	without	publication	
bias	(pp	=	1)	the	TES	was	more	conservative	than	p‐uniform.	Type	I	error	rates	of	the	
TES	ranged	from	0.022	for	no	effect	(μ	=	0)	to	0.003	for	μ	=	0.5.	With	one	exception,	
the	TES	was	less	powerful	than	p‐uniform	in	detecting	publication	bias.	This	exception	
was	that	the	TES	had	more	power	if	no	effect	existed	(μ	=	0)	and	at	least	some	
statistically	non‐significant	studies	were	published	(pp	>	0).	P‐uniform	had	more	
statistical	power	to	detect	publication	bias	if	there	was	no	effect	(μ	=	0)	and	extreme	
publication	bias	(pp	=	0),	and	if	an	effect	indeed	existed	(μ	>	0).		
		 The	statistical	power	of	the	TES	and	p‐uniform	was	low	for	the	two	largest	
population	effect	sizes	(μ	=	0.33	and	μ	=	0.5).	For	example,	for	μ	=	0.5	the	statistical	
power	was	not	higher	than	0.03	for	p‐uniform	and	0.001	for	the	TES.	The	statistical	
power	of	p‐uniform	was	low	for	two	reasons.	First,	few	studies	were	statistically	
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significant	(eight	on	average)	resulting	in	a	wide	confidence	interval	for	the	average	
effect	size	estimate.	Second,	few	studies	were	not	statistically	significant	(on	average	
two	for	μ	=	0.5	or	eight	for	μ	=	0.33),	such	that	the	average	effect	size	estimate	based	
on	all	studies	was	close	to	the	average	effect	size	estimate	based	on	only	the	
statistically	significant	studies.	In	conditions	where	only	few	studies	were	omitted	
from	the	meta‐analysis,	which	occurred	when	the	population	effect	size	or	a	study’s	
power	is	high,	publication	bias	was	hard	to	detect.		
		 To	conclude,	both	publication	bias	tests	were	too	conservative,	but	this	
conservatism	was	higher	for	the	TES.	P‐uniform	had	higher	statistical	power	than	the	
TES	when	there	was	an	effect	(μ	>	0).	P‐uniform	was	especially	powerful	compared	to	
the	TES	when	no	or	only	a	limited	amount	of	statistically	non‐significant	studies	were	
included	in	the	meta‐analysis.	This	is	a	common	situation	in	meta‐analytical	reviews,	
particularly	in	psychology	(Fanelli,	2012).	

Table	2.3.	Results	of	Monte‐Carlo	simulations	(10,000	replications)	on	Type	I	error	rates	and	
statistical	power	for	testing	whether	the	effect	size	is	significantly	different	from	zero	

		 		 		 pp	

		 		 		 0	 1/40	 1/20	 1/4	 1/2	 1	

μ	(K)	
		

0		
(160)	

Fixed‐effect	
model	

1.000	 0.985	 0.952	 0.566	 0.249	 0.053	

Trim‐and‐fill	 1.000	 0.978	 0.939	 0.524	 0.208	 0.035	

p‐uniform	(estimator	p)	
	 0.050	

0.16	
(40)	

Fixed‐effect	
model	

1.000	 1.000	 1.000	 0.998	 0.999	 0.999	

Trim‐and‐fill	 1.000	 1.000	 0.999	 0.996	 0.996	 0.990	

p‐uniform	(estimator	p)	
	 0.259	

0.33	
(16)	

Fixed‐effect	
model	

1.000	 1.000	 1.000	 1.000	 1.000	 1.000	

Trim‐and‐fill	 1.000	 1.000	 1.000	 1.000	 1.000	 1.000	

p‐uniform	(estimator	p)	
	 	 	 0.722	

	
0.5		
(10)	
		

Fixed‐effect	
model	

1.000	 1.000	 1.000	 1.000	 1.000	 1.000	

Trim‐and‐fill	 1.000	 1.000	 1.000	 1.000	 1.000	 1.000	

p‐uniform	(estimator	p)		 		 		 0.980	
Note.	pp	=	proportion	of	non‐significant	studies	included	in	a	meta‐analysis,	μ	=	the	effect	size	
for	simulating	data,	(K)	=	total	number	of	studies.	
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Table	2.4.	Results	of	Monte‐Carlo	simulations	(10,000	replications)	on	Type	I	error	rates	and	
statistical	power	for	publication	bias	tests	

	 	 	 pp	

		 		 		 0	 1/40	 1/20	 1/4	 1/2	 1	

μ	(K)	
		

0	(160)	
p‐uniform	(est.	p)	 0.902	 0.519	 0.340	 0.090	 0.063	 0.051	

TES	 0.555	 0.570	 0.644	 0.565	 0.239	 0.022	

0.16	
(40)	

p‐uniform	(est.	p)	 0.748	 0.620	 0.520	 0.184	 0.092	 0.050	

TES	 0.338	 0.245	 0.185	 0.065	 0.029	 0.006	

0.33	
(16)	

p‐uniform	(est.	p)	 0.365	 0.342	 0.319	 0.182	 0.100	 0.043	

TES	 0.074	 0.068	 0.061	 0.023	 0.005	 0.002	

	
0.5	(10)	

p‐uniform	(est.	p)	 0.033	 0.032	 0.031	 0.024	 0.019	 0.012	

TES	 0.001	 0.001	 0.001	 0.001	 0.002	 0.003	

Note.	pp	=	proportion	of	non‐significant	studies	included	in	a	meta‐analysis,	μ	=	the	effect	size	
for	simulating	data,	(K)	=	total	number	of	studies,	TES	=	test	for	excess	significance.		

2.4.4		 Estimation	of	effects	when	population	effects	are	heterogeneous	

Here	we	study	the	performance	of	the	methods	under	violations	of	a	
homogeneous	population	effect.	Convergence	rates	for	the	effect	size	estimates	with	

p‐uniform	were	above	98.3%	and	99.2%	across	conditions	for	the	
*

ip 	and	1–
*

ip 	

estimator,	respectively5.	Table	2.5	shows	average	effect	size	estimates,	standard	
errors	or	standard	deviations	of	the	effect	size	estimates,	and	coverage	probabilities	of	
the	random‐effects	model	(with	the	most	frequently	used	DerSimonian	Laird	
procedure),	the	trim‐and‐fill	method,	and	p‐uniform.	We	compare	the	results	of	the	
three	methods	to	each	other,	but	also	compare	them	to	the	results	of	these	methods	
when	effects	are	homogenous	(Table	2.1).	First,	note	how	introducing	heterogeneity	
increases	the	number	of	significant	studies	from	8	when	effect	size	is	homogenous	or	
μ=.33,	to	32.8	when	heterogeneity	is	high	and	μ=0	(second	row	of	Table	2.5).	
Consequently,	p‐uniform	uses	relatively	more	than	5%	(up	to	about	20%)	of	the	
studies	if	no	effect	exists	and	effects	are	heterogeneous.	
		 From	the	results	of	Table	2.5	and	comparing	its	results	to	those	in	Table	2.1,	it	
follows	that	random‐effects	meta‐analysis	and	the	trim‐and‐fill	method	perform	
worse	as	heterogeneity	increases;	both	bias	increases	and	the	coverage	probability	

                                                   
5	Lack	of	convergence	primarily	occurred	when	there	was	no	effect	(μ	=	0).	Averages	for	the	lower	and	
upper	bound	of	p‐uniform’s	confidence	interval	and	effect	size	estimates	were	computed	after	exclusion	of	
non‐converging	replications.	Coverage	probabilities	were	based	on	all	replications	because	lower	and	upper	
bounds	of	the	confidence	interval	in	case	of	non‐convergence	were	below	‐1	or	above	1.	As	a	result,	if	the	
estimate	of	one	bound	did	not	converge,	the	other	bound’s	estimate	could	always	be	used	to	determine	if	μ	
was	within	the	confidence	interval.	
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decreases	in	heterogeneity.	Moreover,	the	estimate	of	heterogeneity	(τ2)	is	biased	in	
random‐effects	meta‐analysis	as	well;	e.g.,	τ2	is	severely	underestimated	if	only	
statistically	significant	studies	are	published,	whereas	τ2	is	grossly	overestimated	if	
25%	of	the	statistically	insignificant	studies	are	published	(not	shown	in	Table	2.5).	
The	trim‐and‐fill	method	on	average	imputed	less	than	.1	studies	if	only	statistically	
significant	studies	are	published	(also	when	about	130	or	more	studies	were	omitted),	
and	up	to	6.3	studies	when	25%	of	the	statistically	insignificant	studies	are	published	
and	no	effect	exists	(when	on	average	about	95	studies	were	omitted)	(not	shown	in	
Table	2.5).	To	conclude,	the	performance	of	random‐effects	meta‐analysis	and	the	
trim‐and‐fill	method	is	bad	in	case	of	publication	bias	and	worsens	when	
heterogeneity	increases.	
		 Whereas	the	performance	of	p‐uniform	is	excellent	when	effects	are	
homogenous	(Table	2.1),	performance	worsens	when	heterogeneity	increases;	both	
bias	increased	and	the	coverage	probability	decreased	in	heterogeneity	(Table	2.5).	As	

expected,	estimator	1–
*

ip 	is	more	robust	to	heterogeneity	than	estimator
*

ip .	

However,	in	our	opinion	the	performance	of	1–
*

ip is	only	acceptable	when	

heterogeneity	is	low,	with	coverage	probabilities	of	.895	and	.926	and	bias	of	.086	and	
.047	for	μ=0	and	μ=.33,	respectively.	Both	p‐uniform	estimators	outperformed	
traditional	random‐effects	meta‐analysis	and	the	trim‐and‐fill	method	under	
conditions	of	heterogeneity	when	statistically	insignificant	studies	are	not	published	
(pp	=	0),	but	not	when	pp	=	0.25.	This	suggests	that	if	effects	are	heterogeneous,	p‐
uniform	only	outperforms	the	other	methods	when	publication	bias	is	extreme	(with	
pp	close	to	0).	To	conclude,	p‐uniform	is	generally	not	robust	to	heterogeneous	effects,	
only	provides	acceptable	estimates	if	heterogeneity	is	low,	and	outperforms	other	
methods	only	if	publication	bias	is	extreme	under	conditions	of	heterogeneity.	

2.5		 Application	to	meta‐analysis	of	McCall	and	Carriger	(1993)	

McCall	and	Carriger	(1993)	carried	out	a	meta‐analysis	on	studies	examining	the	
association	between	infants’	habituation	to	a	give	stimulus	and	their	later	cognitive	
ability	(IQ).	Their	meta‐analysis	used	12	studies	with	sample	sizes	varying	from	11	to	
96	reporting	a	correlation	between	children’s	habituation	during	their	first	year	of	life	
and	their	IQ	as	measured	between	one	and	eight	years	of	age	(see	also:	Bakker	et	al.,	
2012).	Of	these	12	correlations,	11	were	statistically	significant,	and	one	was	not	(r	=	
.43,	p	=	.052).	Because	there	was	no	indication	of	heterogeneity	in	the	studies’	effect	
sizes	(χ2=	6.74,	p	=	.82,	I2	=	0),	a	fixed‐effect	meta‐analysis	was	performed	on	the	12	
studies.	This	resulted	in	a	Fisher‐transformed	correlation	of	.41	(p	<	.001),	
corresponding	to	an	estimated	correlation	of	.39	(CI	95%:	[.31,	.47]).	
		 	 The	apparent	negative	association	between	effect	size	and	standard	
error	in	the	contour‐enhanced	funnel	plot	(Figure	2.1)	suggests	publication	bias.	This	
is	confirmed	by	both	Begg	and	Mazumdar’s	rank‐correlation	test	(τ	=	0.636,	p	=	.003)	
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and	Egger’s	test	(z	=	2.24,	p	=	.025).	The	TES	also	provides	evidence	for	the	presence	
of	publication	bias	(χ2	=	6.22,	p	=	.013).	The	funnel	plot	after	application	of	the	trim‐
and‐fill	technique	using	statistic	L0	is	presented	in	Figure	2.4.	Six	studies	were	
imputed	to	the	left.	Trim‐and‐fill’s	estimate	of	the	Fisher‐transformed	correlation	was	
.35	(p	<	.001),	corresponding	to	an	estimated	correlation	of	.34	(CI	95%:	.26,	.41).	
Based	on	the	R0	statistic,	nine	studies	were	imputed	reducing	the	Fisher‐transformed	
correlation	to	0.31	(p	<	.001).	The	untransformed	correlation	coefficient	based	on	the	
R0	statistic	became	.30	(CI	95%:	.23,	.37).	Hence,	the	trim‐and‐fill	method	reduced	the	
estimated	correlation	somewhat	for	both	statistics	(from	.39	to	.34	for	L0	and	.30	for	
R0),	but	still	suggested	a	significant	and	medium	correlation.	

		 The
*

ip estimator	of	p‐uniform	was	performed	on	the	11	statistically	

significant	studies.	The	publication	bias	test	indicated	publication	bias	( L 	4.07,	p	=	
.003).6	Its	estimated	Fisher‐transformed	correlation	was	.175,	corresponding	to	an	
estimated	correlation	of	.17	(95%	CI:	‐.027,	.35),	which	did	not	differ	significantly	
from	0	(L0	 	17.35,	p	=	.083,	two‐tailed	test).	To	conclude,	the	effect	size	estimate	
obtained	by	p‐uniform	is	remarkably	lower	than	the	fixed‐effect	estimate,	and	
suggests	that	the	evidence	in	favor	of	a	positive	association	between	infants’	
habituation	and	their	later	cognitive	ability	(IQ)	is	not	conclusive.	

2.6		 Discussion	

Publication	bias	is	a	major	threat	to	meta‐analytical	reviews	(Banks,	Kepes,	&	
McDaniel,	2012;	Rothstein,	et	al.,	2005),	and	is	omnipresent	in	many	fields	of	scientific	
research.	Hence,	publication	bias	analyses	should	be	routinely	included	in	meta‐
analysis	(e.g.,	Borenstein,	et	al.,	2009;	Rothstein,	et	al.,	2005).	Current	techniques	
cannot	provide	accurate	average	effect	size	estimates	and	should	be	interpreted	as	
sensitivity	analyses,	and	tests	for	publication	bias	often	suffer	from	a	lack	of	power	
(e.g.,	Begg	&	Mazumdar,	1994;	Borenstein,	et	al.,	2009;	Sterne,	et	al.,	2000)	or	are	
overly	conservative	(Francis,	2012;	Ioannidis	&	Trikalinos,	2007b).	Due	to	
overestimated	average	effect	sizes	in	case	of	publication	bias,	Type	I	error	rates	of	
statistical	tests	for	testing	whether	the	population	effect	size	is	zero	become	strongly	
inflated.	The	objective	of	this	paper	was	to	introduce	a	new	method	(p‐uniform)	that	
can	(i)	accurately	estimate	average	effect	size	in	case	of	publication	bias;	(ii)	test	
whether	the	population	effect	size	is	zero;	and	(iii)	test	for	publication	bias.	P‐uniform	
is	counterintuitive	for	meta‐analysts	because	the	method	only	takes	the	p‐values	of	
statistically	significant	studies	into	account.	The	basic	idea	of	p‐uniform	is	that	the	
distribution	of	the	statistically	significant	p‐values	conditional	on	the	population	effect	
size	is	uniform.	Our	simulation	study	compared	the	performance	of	p‐uniform	to	the	
TES,	the	fixed‐effect	model,	and	the	trim‐and‐fill	method.	Stringent	conditions	for	

                                                   
6	All	test	statistics	of	p‐uniform	are	compared	to	a	gamma	distribution	with	df1=1	and	df2=11.	
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Figure	2.4.	Funnel	plot	of	the	studies	of	McCall	and	Carriger’s	(1993)	meta‐analysis	after	the	
trim‐and‐fill	method	imputed	six	studies	(open	circles)	based	on	the	L0	statistic.	The	vertical	
line	corresponds	to	trim‐and‐fill’s	effect	size	of	0.352.		
	
examining	the	performance	of	p‐uniform	were	selected,	with	small	numbers	of	studies	
included	in	the	meta‐analysis	and	small	sample	sizes	for	each	individual	study.	
		 Results	of	the	main	simulation	study	on	homogenous	population	effect	sizes	
showed	good	statistical	properties	of	p‐uniform	in	comparison	to	the	trim‐and‐fill	
method,	TES,	and	standard	fixed‐effects	meta‐analysis.	Coverage	probabilities	of	p‐
uniform	were	always	95%,	whereas	p‐uniform’s	slightly	underestimated	the	
population	effect.	Our	results	and	those	of	others	(Moreno,	Sutton,	Ades,	et	al.,	2009;	
Peters	et	al.,	2007;	Terrin	et	al.,	2003)	clearly	show	that	the	fixed‐effect	model	and	the	
trim‐and‐fill	method	cannot	be	trusted	when	there	is	publication	bias.	The	average	
effect	size	estimates	and	coverage	probabilities	of	existing	methods	were	only	
acceptable	in	the	absence	of	publication	bias	(pp	=	1)	or	sufficient	power	in	the	
primary	studies	(.80	for	μ	=	0.5).	For	testing	whether	the	population	effect	is	zero,	the	
Type	I	error	rate	of	p‐uniform	was	exactly	equal	to	the	nominal	rate,	and	p‐uniform’s	
statistical	power	was	high	to	detect	a	population	effect	of	medium	size.	The	fixed‐
effect	model	and	the	trim‐and‐fill	method	yielded	too	many	Type	I	errors	if	
publication	bias	was	present.	Both	p‐uniform	and	the	TES	for	the	presence	of	
publication	bias	were	too	conservative.	However,	p‐uniform’s	publication	bias	test	
outperformed	the	TES	in	most	conditions	of	homogenous	population	effects.	An	
additional	simulation	study	on	heterogeneous	population	effects	revealed	that	both	p‐
uniform	and	other	fixed‐effects	techniques	performed	poorly	under	increasing	
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heterogeneity.	Our	transformed	estimator	1–
*

ip 	was	more	robust	to	heterogeneity	

than	estimator
*

ip ,	but	its	performance	was	only	acceptable	if	heterogeneity	was	low.	

However,	the	transformed	estimator	did	outperform	other	fixed‐effect	techniques	
when	publication	bias	was	extreme.		
		 P‐uniform	did	not	converge	to	an	effect	size	estimate	in	a	small	percentage	of	
the	simulations	(<	2%)	when	no	effect	existed.	The	reason	of	the	non‐convergence	is	
the	small	number	of	studies	in	combination	with	the	distribution	of	p‐values	under	the	
null	hypothesis	of	no	effect;	p‐uniform	sometimes	cannot	estimate	μ	if	all	p‐values	are	
higher	than	.025	and	close	to	.05.	Since	this	is	unlikely	as	K	increases,	the	non‐
convergence	problem	quickly	disappears	if	K	increases.	For	instance,	p‐uniform’s	
convergence	rates	were	all	above	99.9%	if	the	number	of	studies	was	twice	as	large	as	
in	the	conditions	with	homogeneous	population	effects,	with	16	rather	than	8	
expected	statistically	significant	studies.	
		 The	effect	size	estimates	of	both	estimators	p‐uniform	based	on	Fisher’s	
method	(Fisher,	1925)	were	slightly	negatively	biased.	The	negative	bias	is	a	
consequence	of	the	estimate being	a	nonlinear	function	of	p.	We	first	examined	the	
bias	for	estimating on	the	basis	of	one	single	statistically	significant	study.	The	
expected	value	of  turned	out	negative	because	p‐values	close	to	.05	yielded	very	
negative	estimates	of	μ.	The	negative	bias	decreases	in	the	study’s	sample,	with	factor

N ,	and	in	population	effect	size	μ.	Additional	simulations,	with	on	average	twice	as	

many	statistically	significant	studies	in	a	meta‐analysis	(16	instead	of	8),	suggested	
that	the	bias	also	decreases	in	the	number	of	statistically	significant	studies	whenever	
effect	size	is	larger	than	zero,	although	the	bias	did	not	disappear	entirely.	Future	
studies	should	consider	examining	systematically	the	performance	of	other	statistical	

tests	for	uniformity	than	those	based	on	Fisher’s	method	(such	as	p‐uniforms
*

ip and	

1‐
*

ip estimator)	to	assess	whether	this	decreases	bias	in	effect	size	estimates	and	

provide	lower	standard	errors	than	estimates	obtained	with	the	Fisher’s	method.	
Statistical	tests	that	can	be	used	for	this	purpose	are	the	Kolmogorov‐Smirnov	test	
(Massey,	1951),	and	the	Anderson‐Darling	test	(T.	W.	Anderson	&	Darling,	1954).	
		 The	newly	proposed	p‐uniform	method	has	numerous	advantages	over	
existing	techniques	in	examining	and	correcting	for	publication	bias.	First	of	all,	it	is	
the	first	method	that	can	provide	an	effect	size	estimate,	test	whether	the	population	
effect	is	zero,	and	test	for	publication	bias	at	the	same	time.	An	important	second	
advantage	of	p‐uniform	is	that,	even	though	power	may	be	low	for	testing	publication	
bias	in	applications	with	a	small	number	of	studies,	the	average	effect	size	is	
accurately	estimated	by	p‐uniform	when	its	assumptions	are	satisfied.	When	there	is	
publication	bias	and	effects	are	homogenous,	p‐uniform	has	good	statistical	properties	
compared	to	fixed‐effect	meta‐analyses,	the	TES,	and	the	trim‐and‐fill	method.	Our	
study	did	not	compare	p‐uniform’s	performance	to	that	of	Egger’s	and	the	rank	



44	|	p ‐ u n i f o r m 	
	

 

correlation	test.	However,	since	other	studies	(e.g.,	Moreno	et	al.,	2009)	showed	that	
the	latter	two	methods	had	low	power	for	the	conditions	with	eight	studies	examined	
in	our	simulation	study,	it	is	likely	p‐uniform	also	outperforms	them.	Third,	no	
sophisticated	assumptions	or	choices	have	to	be	made	when	applying	p‐uniform.	No	
additional	(unpublished)	data	have	to	be	collected	and	interpretation	of	the	results	is	
straightforward.	Hence,	in	principle,	meta‐analysts	should	be	able	to	easily	apply	p‐
uniform	in	their	research.	We	are	currently	working	on	developing	a	website	that	will	
have	R	programs	enabling	researchers	to	apply	p‐uniform	to	their	research.	Finally,	p‐
uniform	will	provide	conservative	effect	size	estimates	in	case	of	researcher	df,	rather	
than	further	overestimating	effect	size.	
		 We	suggest	a	number	of	recommendations	for	the	practice	of	meta‐analysis.	
First,	since	publication	bias	is	ubiquitous	and	effects	may	be	small	or	non‐existent,	we	
follow	up	on	others	(e.g.,	Aytug,	et	al.,	2012;	Banks,	Kepes,	&	McDaniel,	2012;	Field	&	
Gillett,	2010;	Sterne,	Gavaghan,	&	Egger,	2000;	Sutton,	2005)	by	recommending	the	
application	of	publication	bias	analysis	in	all	meta‐analyses.	We	recommend	applying	
p‐uniform	to	estimate	average	effect	size	and	to	test	for	publication	bias	if	the	
population	effect	is	homogenous,	or	to	apply	p‐uniform	as	a	sensitivity	analysis	to	
address	and	examine	publication	bias	in	meta‐analyses.	Although	the	restriction	to	
homogenous	effects	may	seem	to	restrict	the	potential	usefulness	of	p‐uniform,	
examinations	of	results	of	meta‐analyses	suggest	that	there	is	no	evidence	of	
heterogeneity	in	about	half	of	the	meta‐analyses	in	psychology	based	on	lab	studies	
(Klein	et	al.,	2014),	and	medicine	(Borenstein	et	al.,	2009).	Also,	it	is	often	feasible	to	
select	on	the	basis	of	theoretical	and	methodological	considerations	homogeneous	
subsets	of	studies	that	are	reasonably	expected	to	have	one	underlying	population	
effect.		Another	alternative	may	be	to	apply	selection	models	as	sensitivity	analysis	
whenever	there	is	strong	evidence	for	heterogeneity,	because	other	techniques	
provide	misleading	results	when	effects	are	heterogeneous	(Hedges	&	Vevea,	2005).		
		 Future	studies	should	examine	how	p‐uniform	performs	(compared	to	
selection	models	and	other	existing	methods)	if	its	assumptions	are	violated,	and	how	
p‐uniform	may	be	adapted	to	be	more	robust	to	violations	of	heterogeneity.	While	our	

results	show	that	p‐uniform’s	1‐
*

ip estimator	is	more	robust	than	the
*

ip estimator,	

other	estimators	can	be	developed	that	are	even	more	robust.	Notably,	methods	to	
incorporate	heterogeneity	in	the	estimation	could	be	examined	in	the	future,	e.g.,	by	
specifying	a	distribution	of	effects	sizes	rather	than	one	fixed	effect	size	(as	is	done	in	
selection	models).	P‐uniform’s	performance	also	has	to	be	examined	in	conditions	
where	the	probability	of	publishing	depends	on	the	p‐value	lower	than	0.05.	The	effect	
of	researcher	df	on	p‐uniform’s	performance	also	deserves	attention	in	future	studies.	
Researcher	df	will	lead	to	a	lower	average	effect	size	estimate	obtained	by	p‐uniform	
because	studies	with	p‐values	just	below	.05	are	overrepresented.	Performance	of	p‐
uniform	should	also	be	evaluated	in	less	restrictive	conditions	than	the	selected	
conditions	in	the	present	simulation	studies.	For	instance,	in	theory,	p‐uniform	should	
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perform	just	as	well	when	studies	vary	in	sample	size;	in	conditions	with	studies	
varying	in	sample	size	the	performance	of	p‐uniform	can	then	also	be	compared	to	
Egger’s	test	and	the	rank	correlation	test.	Finally,	following	others	(Banks,	Kepes,	&	
Banks,	2012;	Banks,	Kepes,	&	McDaniel,	2012;	McDaniel,	Rothstein,	&	Whetzel,	2006),	
we	recommend	conducting	publication	bias	analyses	in	both	past	and	future	meta‐
analytic	studies.	Moreover,	following	Banks,	Kepes,	and	Banks	(2012),	we	encourage	
journals	to	publish	re‐evaluations	of	previous	meta‐analytic	reviews	regardless	of	
their	results	to	avoid	‘publication	bias	in	publication	bias	results’.		
			 Publication	bias	can	distort	the	validity	of	meta‐analyses	and	may	lead	to	false	
conclusions	with	far‐reaching	consequences.	Current	meta‐analytic	techniques	
perform	well	in	the	absence	of	publication	bias.	However,	it	cannot	be	assumed	that	
there	is	no	publication	bias	in	a	particular	research	field	because	not	all	file‐drawers	
can	be	opened,	and	relevant	studies	will	be	below	the	radar	of	meta‐analysts.	As	a	
consequence,	traditional	techniques	may	lead	to	unreliable	results	as	this	study	and	
other	studies	have	shown.	P‐uniform	takes	a	different	perspective	on	analyzing	meta‐
analytical	datasets	to	counteract	this	problem.	In	simulations,	p‐uniform	showed	
promising	results	that	were	superior	to	those	from	existing	methods.	The	method	still	
needs	further	development,	but	can	become	the	technique	for	examining	publication	
bias	and	estimating	population	effects	in	meta‐analytic	reviews.



 

 

	 	



 

CHAPTER	3	

	

Conducting	meta‐analyses	based	on	p‐values:	
Reservations	and	recommendations	for	
applying	p‐uniform	and	p‐curve	

	

	

Abstract	

Because	evidence	of	publication	bias	in	psychology	is	overwhelming,	it	is	important	to	
develop	techniques	that	correct	meta‐analytic	estimates	for	publication	bias.	Van	
Assen	et	al.	(2015)	and	Simonsohn	et	al.	(2014a)	developed	p‐uniform	and	p‐curve,	
respectively.	The	methodology	on	which	these	methods	are	based	has	great	promise	
for	providing	accurate	meta‐analytic	estimates	in	the	presence	of	publication	bias.	
However,	we	show	that	in	some	situations	p‐curve	behaves	erratically	while	p‐
uniform	may	yield	implausible	negative	effect	size	estimates.	Moreover,	we	show	that	
(and	explain	why)	p‐curve	and	p‐uniform	overestimate	effect	size	under	moderate	to	
large	heterogeneity,	and	may	yield	unpredictable	bias	when	researchers	employ	p‐
hacking.	We	offer	hands‐on	recommendations	on	applying	and	interpreting	results	of	
meta‐analysis	in	general	and	p‐uniform	and	p‐curve	in	particular.	Both	methods	as	
well	as	traditional	methods	are	applied	to	a	meta‐analysis	on	the	effect	of	weight	on	
judgments	of	importance.	We	offer	guidance	for	applying	p‐uniform	or	p‐curve	using	R	
and	a	user‐friendly	web	application	for	applying	p‐uniform	
(https://rvanaert.shinyapps.io/p‐uniform).	

	

	

	

This	chapter	is	published	as	van	Aert,	R.	C.	M.,	Wicherts,	J.	M.,	&	van	Assen,	M.	A.	L.	M.	
(2016).	Conducting	meta‐analyses	on	p‐values:	Reservations	and	recommendations	
for	applying	p‐uniform	and	p‐curve.	Perspectives	on	Psychological	Science,	11(5),	
713‐729.	doi:10.1177/1745691616650874
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Meta‐analysis	is	the	standard	technique	to	synthesize	effect	sizes	of	several	studies	on	
the	same	phenomenon.	A	well‐known	problem	of	meta‐analysis	is	that	effect	size	can	
be	overestimated	because	of	publication	bias	(e.g.,	Ioannidis,	2008b;	Lane	&	Dunlap,	
1978).	Publication	bias	is	here	defined	as	the	tendency	of	studies	with	statistically	
significant	results	to	be	published	at	a	higher	rate	than	studies	with	results	that	are	
not	statistically	significant.	Because	evidence	of	publication	bias	is	overwhelming	
across	many	scientific	disciplines	(Fanelli,	2012),	it	is	important	to	develop	techniques	
that	correct	the	meta‐analytic	estimate	for	publication	bias	(Moreno,	Sutton,	Ades,	et	
al.,	2009).	Recently,	van	Assen,	van	Aert,	and	Wicherts	(2015)	and	Simonsohn	et	al.	
(2014a)	have	independently	developed	methods	aiming	to	provide	an	accurate	meta‐
analytic	estimate	in	the	presence	of	publication	bias.	Their	methods,	p‐uniform	and	p‐
curve,	respectively,	both	make	use	of	the	distribution	of	statistically	significant	results	
yet	differ	in	implementation.	The	goals	of	this	chapter	are	to	introduce	and	explain	
both	methods	and	their	differences,	to	provide	straightforward	recommendations	for	
applying	meta‐analysis,	and	to	formulate	guidelines	for	applying	and	interpreting	
results	of	p‐uniform	and	p‐curve.			

3.1	 	A	primer	on	p‐uniform	and	p‐curve	

		 Simonsohn	et	al.	(2014b)	described	how	statistically	significant	p‐values	of	
studies	on	an	effect	could	be	used	to	test	this	effect	against	the	null	hypothesis	that	the	
effect	equals	zero.	This	idea	was	not	new;	Fisher	(1925)	already	developed	a	method	
for	testing	the	null	hypothesis	of	no	effect	by	means	of	combining	p‐values.	However,	
the	novelty	of	p‐curve	lies	with	its	use	of	only	the	statistically	significant	p‐values,	
which	are	arguably	not	affected	by	publication	bias.	The	method	was	called	p‐curve	
because	it	analyzed	the	curve	or	distribution	of	p‐values.	The	logic	of	p‐curve	suggests	
that	there	is	no	effect	in	the	studies	in	the	meta‐analysis	if	the	p‐values	are	uniformly	
distributed	(i.e.,	p‐curve	is	flat),	whereas	there	is	an	effect	whenever	the	p‐value	
distribution	or	p‐curve	is	right‐skewed	(Hung,	O'Neill,	Bauer,	&	Köhne,	1997).	
		 A	disadvantage	of	p‐curve	at	that	time	was	that	effect	size	could	not	be	
estimated.	Van	Assen	et	al.	(2015)	developed	another	method	analyzing	statistically	
significant	p‐values,	called	p‐uniform,	which	is	able	to	estimate	the	effect	size	in	a	set	
of	studies.	Van	Assen	et	al.	(2015)	called	their	method	p‐uniform,	because	the	effect	
size	estimate	is	equal	to	the	value	for	which	the	p‐value	distribution	conditional	on	
that	value	is	uniform	(as	we	explain	below).	Besides	estimating	the	effect	size,	p‐
uniform	can	also	estimate	a	confidence	interval	around	the	effect	size	estimate,	
includes	a	test	of	publication	bias,	and,	similar	to	p‐curve	(Simonsohn	et	al.,	2014a),	
tests	the	null	hypothesis	of	no	effect.	Simonsohn	et	al.	(2014a)	later	extended	p‐curve	
to	also	estimate	effect	size.	However,	p‐curve	neither	provides	a	confidence	interval	
nor	a	test	for	publication	bias.	In	the	present	study,	we	will	focus	on	effect	size	
estimation	by	both	p‐curve	and	p‐uniform.	
		 Van	Assen	et	al.	(2015)	and	Simonsohn	et	al.	(2014a)	convincingly	illustrated	
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the	strengths	of	p‐uniform	and	p‐curve	and	the	logic	upon	which	it	is	based	for	
carrying	out	meta‐analysis.	They	showed	that	the	methods	provide	accurate	effect	size	
estimates	in	the	presence	of	publication	bias,	even	when	the	number	of	statistically	
significant	studies	is	small.	Similarly,	both	methods	were	found	to	perform	well	when	
studies	have	the	same	sample	sizes,	when	studies	differ	in	sample	size,	and	in	the	
scenario	where	there	is	(small)	heterogeneity	of	effect	size	(i.e.,	when	the	underlying	
(population)	effect	sizes	actually	differ	between	studies	in	the	meta‐analysis).	
Moreover,	results	of	Simonsohn	et	al.	(2014a)	suggested	that	p‐hacking,	or	the	original	
researcher’s	use	of	strategies	to	achieve	statistical	significance	(Simmons	et	al.,	2011),	
leads	to	an	underestimation	of	effect	size	in	analyses	based	on	p‐curve,	whereas	it	
leads	to	overestimation	of	effect	size	in	traditional	meta‐analysis	(Bakker	et	al.,	2012).	

3.2		 Three	reservations	

		 Although	we	are	convinced	of	the	potential	and	validity	of	the	logic	of	p‐
uniform	and	p‐curve,	we	add	three	important	reservations	to	the	application	of	the	
methods	and	the	general	methodology	in	its	current	state.	More	specifically,	we	first	
demonstrate	that	p‐uniform	and	p‐curve	may	yield	implausible	negative	(p‐uniform)	
or	inaccurate	(p‐curve)	estimates	in	meta‐analyses	with	p‐values	close	to	the	
significance	level	(considered	equal	to	.05	in	the	present	chapter).	Second,	we	explain	
why	and	show	that	p‐hacking	does	not	always	cause	p‐curve’s	and	p‐uniform’s	effect	
sizes	to	be	underestimated	as	was	stated	in	Simonsohn	et	al.	(2014a).	Finally,	we	show	
that,	in	contrast	to	the	results	in	Simonsohn	et	al.	(2014a),	p‐uniform	and	p‐curve	
cannot	deal	with	a	substantial	amount	of	heterogeneity	(i.e.,	there	is	no	single	true	
effect	size	underlying	the	studies	in	the	meta‐analysis,	but	rather	a	distribution	of	true	
effect	sizes).	Based	on	our	explanation	of	the	methods	and	the	reservations,	we	
formulate	recommendations	for	applying	meta‐analysis	in	general	and	interpreting	
results	of	p‐uniform	and	p‐curve	in	particular.	These	hands‐on	recommendations	are	
summarized	in	Table	3.1.	Scientists	who	consider	using	these	methods	have	to	be	
aware	of	conditions	in	which	the	methods	should	not	be	interpreted,	or	interpreted	
with	caution.	
		 In	the	remainder	of	the	paper,	we	illustrate	major	issues	involved	in	applying	
p‐curve	and	p‐uniform	by	considering	a	recent	meta‐analysis	of	studies	on	the	effect	of	
weight	on	judgment	of	importance	(Rabelo	et	al.,	2015).	We	will	briefly	describe	other	
meta‐analysis	methods	using	statistically	significant	effect	sizes,	introduce	the	basic	
idea	underlying	p‐uniform	and	p‐curve,	and	illustrate	the	logic	of	and	computations	in	
of	p‐uniform	and	p‐curve	in	Appendix	A.	The	analyses	that	form	the	basis	of	our	three	
reservations	and	recommendations	are	presented	in	the	next	sections.	Readers	who	
do	not	want	to	delve	into	the	(technical)	details	of	p‐uniform	and	p‐curve	can	skip	
these	sections	and	move	over	to	the	Discussion	and	Conclusion	section,	where	we	
explain	the	recommendations	in	Table	3.1.	R	code	of	all	our	analyses	is	available	at	
https://osf.io/5nk4y/.		
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Table	3.1.	Recommendations	for	meta‐analysis	and	applying	p‐uniform	and	p‐curve	

Recommendations	for	meta‐analysis	and	applying	p‐uniform	and	p‐curve:	

1)	Check	for	evidence	of	p‐hacking	in	the	primary	studies	

	In	case	of	strong	evidence	or	strong	indications	of	p‐hacking,	be	reluctant	with	interpreting	
estimates	of	traditional	meta‐analytic	techniques	and	p‐uniform	and	p‐curve,	because	their	
effect	size	estimates	may	be	biased	in	any	direction	depending	on	the	type	of	p‐hacking.	

2)	Apply	fixed‐effect	and	random‐effects	meta‐analysis,	as	well	as	p‐uniform	or	p‐curve,	and	
report	their	results	conforming	to	the	Meta‐Analysis	Reporting	Standards	(MARS;	American	
Psychological	Association,	2010)	

3)	Check	for	direct	or	indirect	evidence	of	publication	bias	

	In	case	of	evidence	of	publication	bias,	interpret	results	of	p‐uniform	or	p‐curve	rather	than	
of	fixed‐effect	and	random‐effects	meta‐analysis;	in	the	absence	of	such	evidence,	interpret	
results	of	fixed‐effect	and	random‐effects	meta‐analysis	

4)	Set	the	effect	size	estimate	of	p‐uniform	or	p‐curve	equal	to	zero	if	the	average	p‐value	of	the	
statistically	significant	studies	is	larger	than	.025	

5a.)	If		effect	size	is	homogenous	or	heterogeneity	small	to	moderate	(I2	<	0.5),	interpret	the	
estimate	of	p‐uniform	and	p‐curve	as	estimates	of	the	average	population	effect	size;	otherwise	
they	overestimate	average	population	effect	size	and	should	be	interpreted	as	estimates	of	the	
average	true	effect	size	of	only	the	set	of	statistically	significant	studies	
5b)	In	case	of	substantial	heterogeneity	and	if	desired,	create	homogeneous	subgroups	of	
primary	studies	based	on	theoretical	or	methodological	considerations	in	order	to	estimate	
with	p‐uniform	and	p‐curve	the	average	population	effect	size	underlying	the	studies	in	each	
subgroup		

	3.3		 Example	

		 Rabelo	et	al.	(2015)	conducted	a	meta‐analysis	on	the	effect	of	weight	on	
judgments	of	importance.	The	theory	underlying	the	studies	included	in	the	meta‐
analysis	is	that	the	physical	experience	of	weight	(e.g.,	holding	a	heavy	object)	
influences	how	much	importance	people	assign	to	things,	issues,	and	people	
(IJzerman,	Padiotis,	&	Koole,	2013;	Jostmann,	Lakens,	&	Schubert,	2009).	For	instance,	
in	their	second	study,	Jostmann	et	al.	(2009)	found	that	participants	who	held	a	heavy	
clipboard	attributed	more	importance	to	fairness	in	decision‐making	as	opposed	to	
participants	holding	a	light	clipboard.	Table	3.B1	in	the	appendices	provides	the	full	
references,	sample	sizes	( 1

in 	and	
2
in ),	t‐values,	and	p‐values	from	the	25	studies	of	this	

kind	published	in	the	embodiment	literature.	
	 According	to	the	first	recommendation,	we	should	consider	the	presence	of	p‐
hacking	in	the	primary	studies	included	in	the	meta‐analysis.	We	believe	that	the	
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studies	on	the	link	between	weight	and	importance	are	mostly	studies	in	which	the	
specifics	of	the	analysis	are	often	neither	preregistered	nor	clearly	restricted	by	
theory.	Hence,	according	to	Recommendation	1,	we	would	use	caution	in	interpreting	
the	current	results	and	await	new	(preferably	pre‐registered)	studies	in	this	field.		
		 Four	different	meta‐analytic	estimates	of	the	(mean)	effect	size	underlying	
the	weight‐importance	studies	are	presented	in	Table	3.2.	In	line	with	
Recommendation	2,	we	first	fitted	traditional	fixed‐effect	and	random‐effects	meta‐
analysis.	Both	analyses	yielded	the	same	effect	size	estimate	of	0.571	(95%	confidence	
interval:	[0.468;0.673]),	which	is	highly	statistically	significant	(z	=	10.90,	p	<	.001)	
and	suggests	a	medium	to	large	effect	of	the	experience	of	weight	on	how	much	
importance	people	assign	to	things	(see	Table	3.2).	P‐uniform’s	publication	bias	test	
suggested	that	there	is	evidence	for	publication	bias	(z	=	5.058,	p	<	.001),	so	we	should	
interpret	the	results	of	p‐uniform	or	p‐curve	rather	than	the	standard	meta‐analytic	
estimates	(Recommendation	3).	Because	the	average	p‐value	of	the	23	statistically	
significant	studies	equals	.0281,	we	set	the	effect	size	estimate	of	p‐uniform	and	p‐
curve	equal	to	0,	in	line	with	Recommendation	4.	When	not	setting	the	estimate	to	0,	
applying	p‐curve	and	p‐uniform	yields	a	nonsignificant	negative	effect	size	(see	Table	
3.2),	and	p‐uniform’s	95%	confidence	interval	(‐0.676;	0.160)	suggests	that	the	effect	
size	is	small	at	best.		

Table	3.2.	Results	of	p‐uniform,	p‐curve,	fixed‐effect	meta‐analysis	(FE	MA),	and	random‐effects	
meta‐analysis	(RE	MA)	when	applied	to	the	meta‐analysis	reported	in	Rabelo	et	al.	(2015)	of	the	
effect	of	weight	on	the	judgment	of	importance	in	the	moral	domain.	

	 p‐uniform	 p‐curve	 FE	MA	 RE	MA	

Effect	size	estimate	 ‐0.179	 ‐0.172	 0.571	 0.571	

95%	CI	 (‐0.676;0.160)	 ‐	 (0.468;0.673)	 (0.468;0.673)	

Test	of	H0:	δ	=	0	 z=0.959;	p=.831	 χ2(46)=55.833	
p=.848	

z=10.904;	
p<.001	

z=10.904;	
p<.001	

Pub.	bias	test	 z=5.058;	p<.001	 ‐	 	 ‐	

	

		 The	null	hypothesis	of	no	heterogeneity	among	the	included	studies	was	not	
rejected	(Q(24)	=	4.55,	p	=	1,	I2=0),	which	suggests	that	p‐uniform	and	p‐curve	may	
accurately	estimate	the	average	population	effect	size	(Recommendation	5a).	Note	
that	due	to	the	absence	of	heterogeneity,	effect	size	estimates	of	fixed‐effect	and	
random‐effects	meta‐analysis	were	identical.	Although	the	lack	of	heterogeneity	
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suggests	that	the	effects	are	homogeneous,	in	this	particular	instance,	homogeneity	is	
excessive	(with	a	p‐value	of	the	Q‐test	very	close	to	1).	Such	excessive	homogeneity	is	
unlikely	to	occur	under	normal	sampling	conditions	(Ioannidis,	Trikalinos,	&	
Zintzaras,	2006)	and	could	be	caused	by	publication	bias	(Augusteijn	et	al.,	2017),	
possibly	in	combination	with	p‐hacking.	Our	preliminary	conclusion	about	the	effect	of	
physical	experience	of	weight	on	importance	would	be	that	there	is	as	yet	no	evidence	
in	the	literature	for	such	an	effect.	

3.4.		 Other	methods	using	p‐values	for	estimation	

Several	other	methods	were	developed	that	use	p‐values	in	order	to	obtain	an	
effect	size	estimate	corrected	for	publication	bias.	Hedges	(1984)	developed	a	method	
for	correcting	meta‐analytic	effect	sizes	for	publication	bias	that	is	similar	to	p‐
uniform	and	p‐curve.	He	derived	the	maximum	likelihood	estimator	of	effect	size	
under	a	model	with	only	statistically	significant	results	and	studied	the	bias	in	the	
effect	size	estimate.	Although	Hedges	(1984)	discussed	the	application	to	meta‐
analyses,	he	only	examined	the	bias	in	effect	size	of	one	statistically	significant	study.	
Hedges’	method	and	its	performance	is	not	further	examined	in	this	chapter	because	it	
is	currently	not	applied	in	practice.		
		 Other	methods	for	obtaining	effect	size	estimates	corrected	for	publication	
bias	are	selection	models	(Hedges	&	Vevea,	2005).	Selection	models	use	an	effect	size	
model	and	a	weight	function	for	correcting	the	effect	size	estimates	for	publication	
bias.	The	effect	size	model	describes	the	distribution	of	effect	sizes	in	case	all	studies	
get	published.	The	weight	function	yields	probabilities	of	observing	a	particular	study	
given	its	effect	size	or	p‐value.	Studies’	effect	sizes	are	then	weighted	by	these	
probabilities	in	order	to	get	an	effect	size	corrected	for	publication	bias	(for	an	
overview	on	selection	models	see	Hedges	&	Vevea,	2005).	Drawbacks	of	selection	
models	are	that	they	require	a	large	number	of	studies	(i.e.,	more	than	100)	in	order	to	
avoid	non‐convergence	(e.g.,	Field	&	Gillett,	2010;	Hedges	&	Vevea,	2005),	often	yield	
implausible	weight	functions	(Hedges	&	Vevea,	2005),	are	hard	to	implement,	and	
require	sophisticated	assumptions	and	difficult	choices	(Borenstein	et	al.,	2009).	A	
recently	proposed	alternative	for	selection	models	based	on	Bayesian	statistics	
showed	promising	results	and	does	not	suffer	from	convergence	problems	when	the	
number	of	studies	in	the	meta‐analysis	is	small	(Guan	&	Vandekerckhove,	2015).	
However,	a	disadvantage	of	the	latter	method	is	that	it	makes	stronger	assumptions	
on	weight	functions	than	p‐uniform	and	p‐curve.	P‐uniform	and	p‐curve	assume	that	
the	probability	of	publishing	a	finding	is	independent	of	its	p‐value	given	its	statistical	
significance,	whereas	the	models	in	the	method	described	in	Guan	and	
Vandekerckhove	(2015)	assume	specific	weights	of	findings	depending	on	their	p‐
value,	significant	or	not.	Because	both	significant	and	nonsignificant	p‐values	are	
included,	this	Bayesian	method	makes	assumptions	about	the	extent	of	publication	
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bias,	and	its	estimates	are	affected	by	the	extent	of	publication	bias.	For	these	reasons,	
we	also	no	longer	discuss	selection	models	and	their	properties.			

3.5		 Basic	idea	underlying	p‐uniform	and	p‐curve	

		 P‐uniform	and	p‐curve	use	the	distribution	of	only	the	statistically	significant	
p‐values	for	estimating	effect	size,	for	at	least	two	reasons.	First,	collecting	
unpublished	studies	without	the	existence	of	study	(or	trial)	registers	is	often	hard,	
and	these	unpublished	studies	may	provide	biased	information	on	effect	size	just	like	
published	studies	do	(Ferguson	&	Brannick,	2012).	Second,	evidence	for	publication	
bias	is	overwhelming.	For	instance,	researchers	have	estimated	that	at	least	90%	of	
the	published	literature	within	psychology	contains	statistically	significant	results	
(e.g.,	Bakker	et	al.,	2012;	Fanelli,	2012;	Sterling	et	al.,	1995),	yielding	overestimated	
effect	sizes	(e.g.,	Ioannidis,	2008;	Lane	&	Dunlap,	1978).	Because	most	published	
findings	are	statistically	significant,	only	a	relatively	small	number	of	published	but	
statistically	nonsignificant	studies	(on	average	up	to	10%)	need	to	be	omitted	from	
meta‐analyses	by	p‐curve	and	p‐uniform.	
		 Both	p‐uniform	and	p‐curve	are	founded	on	the	statistical	principle	that	the	
distribution	of	p‐values	conditional	on	the	true	effect	size	is	uniform.13	This	same	
statistical	principle	underlies	standard	null	hypothesis	significance	testing,	where	the	
p‐values	are	uniformly	distributed	when	the	true	effect	size	equals	zero.	In	contrast	to	
null	hypothesis	significance	testing,	p‐values	from	p‐uniform	and	p‐curve	are	
computed	conditional	not	only	on	an	effect	size	of	zero	(which	would	yield	a	simple	
transformation	of	the	traditional	p‐values),	but	also	conditional	on	other	effect	sizes	
(in	which	case	the	conditional	p‐value	is	not	a	simple	transformation	of	the	traditional	
p‐value	anymore).	The	effect	size	estimate	of	p‐uniform	and	p‐curve	represents	the	
effect	size	for	which	the	conditional	p‐values	are	uniformly	distributed.14	So	what	both	
procedures	do	is	to	find	an	underlying	effect,	compute	for	each	study	the	(conditional)	
p‐value	given	this	effect,	and	subsequently	check	whether	these	conditional	p‐values	
show	a	flat	(i.e.,	uniform)	distribution,	like	they	should	if	indeed	the	studies	reflect	
that	underlying	effect.	The	assumptions	of	p‐uniform	and	p‐curve	are	that	all	
statistically	significant	studies	have	the	same	probability	of	getting	published	and	
being	included	in	the	meta‐analysis,	and	are	statistically	independent	(i.e.,	they	should	
not	be	based	on	the	same	sample)	(van	Assen	et	al.,	2015).	We	describe	the	logic	

                                                   
13	This	principle	is	one	of	the	most	fundamental	principles	of	probability	and	statistics.	For	instance,	this	
principle	is	applied	when	sampling	from	distributions	using	so‐called	“inverse	transform	sampling”	or	the	
“inverse	CDF	method”	(Gentle,	2004).	In	this	method,	one	starts	sampling	a	random	number	from	a	uniform	
distribution	from	0	to	1.	Next,	the	random	number,	which	is	considered	a	cumulative	percentage	of	the	
distribution,	is	used	to	calculate	the	x‐value	of	the	distribution	that	one	wished	to	sample	in	the	first	place.	
14	The	distribution	of	(conditional)	p‐values	based	on	the	true	effect	size	is	only	uniform	when	the	
assumptions	of	the	underlying	statistical	model	(e.g.	independence,	effect	distribution	are	valid	[Bland,	
2013]).	
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underlying	p‐uniform	and	p‐curve	as	well	as	how	the	conditional	p‐value	and	p‐
uniform’s	and	p‐curve’s	effect	size	estimate	are	computed	in	Appendix	A.	

3.6		 P‐curve	and	p‐uniform	overestimate	effect	size	if	heterogeneity	is	
moderate	to	large	

	 Simonsohn	et	al.	(2014a)	stated	that	p‐curve	provides	accurate	effect	size	
estimates	in	the	presence	of	heterogeneity,	i.e.,	in	cases	where	true	effects	underlying	
the	studies’	observed	effects	differ.	In	a	blog	post	Simonsohn	(2015,	February	9)	
qualified	this	statement	as	follows;	“if	we	apply	p‐curve	to	a	set	of	studies	it	tells	us	
what	effect	we	expect	to	get	if	we	run	those	studies	again”.	In	other	words,	applying	p‐
curve	(and	p‐uniform)	to	a	set	of	studies	yields	an	accurate	estimate	of	the	average	
true	effect	size	of	this	exact	set	of	studies.	We	note,	however,	that	it	may	be	impossible	
to	run	exactly	the	same	studies	again	since	there	will	always	be	differences	in,	for	
instance,	the	participants	included	in	the	studies	and	the	context	in	which	the	studies	
were	conducted.		
	 Because	of	the	importance	of	its	implications	for	the	interpretation	of	p‐
curve’s	estimate,	we	provide	a	simple	example	with	heterogeneous	effect	sizes.	
Assume	that	the	true	effect	size	is	equal	to	either	0	or	1	and	that	both	underlying	
effects	are	equally	likely,	implying	an	average	true	effect	size	µ	=	.5.	Also	assume	that	
both	true	effect	sizes	are	investigated	with	the	same	number	of	studies	with	a	huge	
sample	size,	implying	5%	and	100%	of	studies	with	true	effects	equal	to	0	and	1	are	
statistically	significant,	respectively.	Because	studies’	sample	sizes	are	huge,	the	
observed	effect	sizes	of	statistically	significant	studies	are	equal	to	(a	number	very	
close	to)	0	and	1.	As	a	result,	p‐curve’s	estimate	equals	(0.05×0	+	1×1)/1.05	=	.952,	
which	is	indeed	equal	to	the	average	underlying	true	effect	size	of	all	the	statistically	
significant	studies.	However,	it	is	much	larger	than	the	true	population	average	of	.5.	
Moreover,	traditional	random‐effects	meta‐analysis	will	provide	a	more	accurate	
estimate	of	true	average	effect	size	(i.e.,	less	positively	biased)	than	p‐curve,	even	
under	extreme	publication	bias.	
	 It	is	often	unrealistic	to	assume	homogeneous	true	effect	sizes	underlying	
primary	studies	in	psychological	meta‐analyses	(e.g.,	Borenstein	et	al.,	2009).	
Moreover,	researchers	often	want	to	estimate	the	true	effect	size	in	the	population	
instead	of	the	average	true	effect	size	in	the	studies	included	in	the	meta‐analysis.	
That	is,	meta‐analysts	wish	to	obtain	an	estimate	of	.5,	rather	than	.952	in	our	
example.	The	reason	why	p‐curve	overestimates	effect	size	under	heterogeneity	is	
that	studies	with	an	underlying	true	effect	of	0	have	a	lower	probability	to	be	
statistically	significant,	such	that	these	studies	are	underrepresented	in	the	meta‐
analysis.	In	our	example,	studies	with	large	true	effect	size	are	20	times	more	likely	to	
be	included	in	the	meta‐analysis	than	those	with	a	zero	effect	size.	Finally,	we	note	
that	in	this	simple	example,	we	may	deal	with	the	heterogeneity	rather	easily	if	true	
effect	size	(0	or	1)	is	perfectly	linked	to	an	observed	dichotomous	study	characteristic;	
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applying	p‐curve	or	p‐uniform	to	studies	of	both	groups	(a	so	called	subgroup	analysis	
[e.g.,	Borenstein	et	al.,	2009])	yields	the	correct	estimates	of	0	and	1.	We	therefore	
recommend	applying	these	methods	to	subgroups	of	studies	based	on	the	different	
levels	of	a	moderator	in	order	to	create	more	homogeneous	sets	of	studies	
(Recommendation	5b,	Table	3.1).	However,	in	other	realistic	situations,	the	causes	of	
heterogeneity	are	not	simply	observed,	and	subgroup	analysis	will	not	completely	
solve	the	heterogeneity	problem.		
	 To	illustrate	the	effect	of	heterogeneity	of	effect	sizes	on	the	(over)estimation	
of	effect	size	by	p‐curve	and	p‐uniform,	we	also	ran	a	simulation	study	where	we	
varied	heterogeneity	from	moderate	to	large	under	the	usual	scenario	where	
heterogeneity	is	modeled	continuously	using	a	normal	distribution	of	true	effects,	
which	is	commonly	assumed	in	meta‐analysis	(Raudenbush,	2009).	As	in	Simonsohn	
et	al.	(2014a),	5,000	studies	with	statistically	significant	results	were	generated	on	
which	the	meta‐analysis	was	conducted.	All	studies	had	two	conditions	with	50	cases	
each,	with	population	variance	equal	to	1	in	both	conditions.	Average	population	
effect	size	was	.397,	and	standard	deviations	of	true	effect	size	(denoted	by	τ)	were	0,	
0.2,	0.4,	0.6,	and	1,	roughly	corresponding	to	I2	(i.e.,	ratio	of	heterogeneity	to	total	
variance	[Higgins	&	Thompson,	2002])	values	of	0,	.5	(moderate	heterogeneity),	.8	
(large	heterogeneity),	.9,	and	.96	in	the	population	of	studies.	Table	3.3	provides	the	
estimates	of	p‐curve,	p‐uniform,	fixed‐effect	meta‐analysis,	and	random‐effects	meta‐
analysis	(with	restricted	maximum	likelihood	estimator	for	estimating	the	amount	of	
heterogeneity)	of	all	studies	with	a	statistically	significant	positive	effect.	For	p‐
uniform	we	used	the	Irwin‐Hall	estimator	and	the	so‐called	“1–p”	estimator,	a	variant	
based	on	Fisher’s	method,	because	this	estimator	is	least	affected	by	extreme	effect	
sizes,	and	therefore	provides	better	estimates	in	case	of	heterogeneity	(van	Assen	et	
al.,	2015).	
		 The	first	column	confirms	that	p‐curve	and	p‐uniform	provide	accurate	
estimates	under	homogeneity	(effect	size	estimates	are	close	to	the	true	effect	size	
.397),	whereas	fixed‐effect	and	random‐effects	meta‐analysis	(both	.553)	
overestimate	effect	size.	The	other	columns,	however,	show	that	both	p‐curve	and	p‐
uniform	overestimate	the	mean	population	effect	size	of	.397	for	moderate	to	large	
heterogeneity,	and	that	this	bias	increases	with	larger	heterogeneity.	Note	that	the	
bias	of	fixed‐effect	and	random‐effects	meta‐analysis	also	increases	with	larger	
heterogeneity,	and	exceeds	the	bias	of	p‐curve	and	p‐uniform	in	these	cases.	Although	
p‐uniform’s	“1‐p”	estimator	provides	the	best	estimates,	its	bias	is	still	so	large	that	we	
do	not	recommend	applying	the	methodology	in	its	current	state	to	estimate	the	
average	population	effect	size	in	situations	where	moderate	or	large	heterogeneity	is	
present	or	suspected	(Recommendation	5a,	Table	3.1).	
		 For	illustrative	purposes,	we	show	how	p‐curve	and	p‐uniform	may	still	
diagnose	heterogeneity	by	applying	p‐uniform	to	one	simulated	meta‐analysis	of	20	
studies	with	the	aforementioned	specifications;	mean	population	effect	size	equal	to	
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.397,		and	large	heterogeneity	(τ	=	1;	I2	=	.96).	P‐uniform’s	“1‐p”	estimator	yielded	an	

effect	size	estimate	of	 ̂ 	=	.795.	However,	a	comparison	of	the	expected	conditional	p‐
values	to	the	observed	conditional	p‐values	for	̂ 	=	.795	in	the	probability	or	P‐P	plot	
in	Figure	3.1	clearly	indicated	systematic	misfit.	Specifically,	observed	conditional	p‐
values	should	be	uniformly	distributed,	as	the	expected	conditional	p‐values.	That	is,	
all	dots	should	fall	on	or	close	to	the	diagonal.	But,	assuming	a	fixed	effect	size	of	.795,	
the	observed	conditional	p‐values	were	either	(much)	too	small	(dots	below	the	
diagonal	to	the	left)	or	(much)	too	large	(dots	above	the	diagonal	to	the	right),	
signifying	a	large	effect	size	variance.	In	other	words,	deviations	from	the	diagonal	in	
the	P‐P	plot	may	be	used	to	diagnose	heterogeneity	of	effect	size.		

Table	3.3.	Estimates	of	effect	size	using	p‐curve,	p‐uniform	with	Irwin‐Hall	estimator	(IH),	p‐
uniform	with	“1‐p”	estimator,	fixed‐effect	meta‐analysis	(FE	MA),	and	random‐effects	meta‐
analysis	(RE	MA;	using	restricted	maximum	likelihood	for	estimating	the	amount	of	
heterogeneity)	under	different	levels	of	heterogeneity	(true	effect	.397),	based	on	5,000	studies	
with	statistically	significant	positive	effects.	

	 	=	0,	I2	=	0	 	=	.2,	I2	=	
.5	

	=	.4,	I2	=	
.8	

	=	.6,	I2	=	
.9	

	=	1,	I2	=	
.96	

p‐curve	 .393	 .530	 .703	 .856	 1.094	

p‐uniform	(IH)	 .383	 .535	 .724	 .874	 1.110	

p‐uniform	(“1‐p”)	 .387	 .522	 .679	 .776	 .903	

FE	MA	 .553	 .616	 .738	 .875	 1.104	

RE	MA	 .553	 .616	 .743	 .897	 1.185	

	 	

	 To	conclude,	if	moderate	to	large	heterogeneity	is	present,	then	p‐curve	and	
p‐uniform	will	estimate	the	average	true	effect	underlying	all	significant	studies	in	the	
meta‐analysis.	When	the	main	goal	of	the	meta‐analysis	is	to	estimate	the	average	true	
effect	of	the	whole	population	of	studies	in	the	presence	of	heterogeneity	(I2	≥.5),	we	
do	not	recommend	using	p‐curve	or	p‐uniform,	because	they	then	generally	
overestimate	average	true	effect	size	(Recommendation	5a,	Table	3.1).	As	opposed	to	
mainstream	meta‐analytic	thinking,	Simonsohn	et	al.	(2014a)	argued	that	“the”	
average	true	effect	size	under	heterogeneity	often	does	not	exist,	and	even	that	it	is	
meaningless	since	studies	cannot	be	run	randomly.	However,	we	believe	the	average	
true	effect	size	may	be	meaningfully	interpreted	in	the	presence	of	heterogeneity	in	
some	situations,	and	consider	heterogeneity	to	be	both	realistic	for	psychological	
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studies	(e.g.,	in	50%	of	the	replicated	psychological	studies	in	the	“Many	Labs	
Replication	Project,”	heterogeneity	was	present	[Klein	et	al.,	2014])	and	important	to	
take	into	consideration	when	estimating	average	effect	size.		

3.7		 Sensitivity	to	p‐values	close	to	.05	

		 Statistically	significant	p‐values	that	are	uniformly	distributed	in	the	interval	
(0;	.05)	are	in	line	with	a	zero	true	effect	size.	Interestingly,	a	distribution	of	p‐values	
with	many	p‐values	close	to	.05	(and	say,	an	average	p‐value	above	.025)	are	not	in	
line	with	a	zero	true	effect	size,	but	may	indicate	a	negative	true	effect	size.	We	will	
now	show	that	if	the	majority	of	studies	in	the	meta‐analysis	have	a	p‐value	just	below	
the	significance	criterion	of	.05,	then	p‐uniform	yields	implausible	highly	negative	
effect	size	estimates	and	a	very	wide	confidence	interval.	Similarly,	under	these	
conditions	p‐curve	will	behave	erratically.		
	

	

Figure	3.1.	Probability	or	P‐P	plot	for	a	meta‐analysis	of	20	studies	with	large	heterogeneity.	
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		 To	illustrate	the	consequences	of	many	p‐values	just	below	.05	on	the	
estimates	of	p‐uniform	and	p‐curve,	consider	doing	a	meta‐analysis	on	the	following	
three	observed	effect	sizes	with	two	conditions	having	equal	sample	sizes;	Effect	1	
with	d	=	.963,	t(18)	=	2.154,	p	=	.045	(two‐tailed),	Effect	2	with	d	=	.582,	t(48)	=	2.058,	
p	=	.045,	and	Effect	3	with	d	=	.4,	t(98)	=	2.002,	p	=	.048.	Several	explanations	exist	for	
observing	multiple	p‐values	that	barely	pass	the	significance	criterion	as	in	this	
example.	First,	p‐hacking	such	as	optional	stopping	or	data	peeking	(Hartgerink,	van	
Aert,	Nuijten,	Wicherts,	&	van	Assen,	2015;	Lakens,	2014)	or	the	deletion	of	outliers	to	
achieve	statistical	significance	may	yield	a	preponderance	of	p‐values	just	below	.05	
(Bakker	&	Wicherts,	2014b).	Another	explanation	is	(bad)	luck	when	the	meta‐
analysis	consists	of	a	small	number	of	studies	and	multiple	studies	coincidentally	have	
p‐values	close	to	.05.	The	fixed‐effect	meta‐analytic	estimate	for	these	three	observed	
effect	sizes	is	.506	(p	<.001),	with	a	95%	confidence	interval	excluding	zero	(.199,	
.812).15	
		 Applying	p‐curve	to	this	set	of	studies	yields	an	effect	size	estimate	of	d	=	‐
1.898.	Figure	3.2	displays	the	behavior	of	the	Kolmogorov‐Smirnov	test	statistic	in	p‐
curve	with	dots	as	a	function	of	effect	size.	It	shows	that	the	Kolmogorov‐Smirnov	
statistic	in	p‐curve	does	not	behave	as	it	should	(decrease	to	one	minimum,	and	then	
increase,	and	being	continuous	for	all	effect	sizes).	This	erratic	behavior	is	caused	by	
p‐curve’s	implementation	using	the	t‐distribution	from	the	software	R	(R	Core	Team,	
2017),	because	R	yields	inaccurate	probabilities	for	very	high	t‐values	in	combination	
with	an	extreme	non‐centrality	parameter	(Witkovský,	2013).	This	inaccuracy	may	
cause	conditional	p‐values	to	be	negative	or	undefined	(division	by	zero),	which	yield	
the	discontinuities	in	Figure	3.2.	Therefore,	p‐curve’s	estimate	cannot	be	trusted	for	
this	example.	
		 P‐uniform	differs	in	implementation	from	p‐curve	because	it	uses	the	normal	
distribution	instead	of	the	t‐distribution	for	computing	conditional	p‐values.	The	
studies’	effect	sizes	are	transformed	into	standardized	effect	sizes	(Hedges’	g)	before	
the	effect	size	is	estimated.	Consequently,	extreme	tail	probabilities	can	be	computed,	
and	therefore	p‐uniform	behaves	as	it	should,	as	can	be	seen	from	the	dashed	line	in	
Figure	3.2.	At	the	same	time,	P‐uniform’s	estimate,	also	based	on	the	Kolmogorov‐
Smirnov	statistic	to	ease	comparison	with	p‐curve,	is	‐5.296,	which	is	clearly	peculiar.	
Because	a	confidence‐interval	cannot	be	computed	with	the	Kolmogorov‐Smirnov	

statistic,	we	also	calculated	the	Irwin‐Hall	estimates	with	p‐uniform;	̂ 	=	‐5.484,	95%	
confidence	interval	(‐15.219,	‐1.009).	Although	the	behavior	of	p‐uniform’s	estimator	
is	correct,	its	effect	size	estimate	(<	‐5)	is	unrealistically	low;	the	probability	of	

                                                   
15	If	p‐hacking	and	publication	bias	were	absent	in	these	three	studies,	the	fixed‐effect	meta‐analytic	
estimator	is	unbiased	and	most	efficient.	In	case	publication	bias	was	present	but	none	of	the	three	studies	
involved	p‐hacking,	only	the	estimators	of	p‐uniform	and	p‐curve	would	have	been	accurate.	Estimators	of	
both	fixed‐effect	meta‐analysis	and	p‐uniform	and	p‐curve	are	inaccurate	if	p‐hacking	was	used	in	the	
primary	studies.	
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obtaining	three	positive	statistically	significant	studies	when	δ	=	‐5.484	is	essentially	
zero.	Furthermore,	p‐uniform’s	confidence	interval	is	very	wide.	We	explain	in	the	
supplementary	materials	(https://osf.io/pfmqt/)	why	these	implausible	negative	
estimates	can	be	obtained	and	what	can	be	concluded	from	these	estimates	
		 In	order	to	deal	with	p‐uniform’s	implausibly	negative	estimates	and	p‐
curve’s	erratic	behavior,	we	recommend	setting	the	effect	size	estimate	of	p‐uniform	
and	p‐curve	to	zero	in	meta‐analyses	where	the	mean	of	the	significant	p‐values	of	the	
primary	studies	is	larger	than	.025	(Recommendation	4,	Table	3.1).	The	cutoff	of	.025	
is	natural	for	two	reasons.	First,	if	the	average	p‐value	equals	.025,	p‐uniform	actually	

estimates	̂ =	0.	Second,	higher	average	p‐values	than	.025	would	yield	negative	effect	
size	estimates,	and	testing	is	then	redundant	because	the	p‐value	of	the	test	will	be	
above	.5	and	hence	cannot	be	statistically	significant.	The	true	effect	size	can,	of	
course,	be	below	zero,	but	a	left‐tailed	hypothesis	test	is	then	required	to	examine	
whether	the	effect	is	smaller	than	zero.	

	

Figure	3.2.	Values	for	Kolmogorov‐Smirnov’s	test	statistics	in	p‐curve’s	and	p‐uniform’s	
implementation	for	the	example	with	three	observed	effect	sizes	and	p‐values	close	to	.05.		
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3.8		 P‐hacking	may	cause	bias	in	effect	size	estimates	for	p‐uniform	and	p‐
curve	

	 Simonsohn	et	al.	(2014a)	examined	the	effect	of	p‐hacking	on	p‐curve’s	effect	
size	estimation,	considering	three	different	p‐hacking	strategies;	data‐peeking,	
selectively	reporting	by	using	three	dependent	variables,	and	selectively	excluding	
outliers.	In	data‐peeking	(or	optional	stopping),	observations	are	added	whenever	a	
test	is	not	yet	statistically	significant.	Their	p‐hacking	strategy	with	multiple	
dependent	variables	refers	to	a	practice	where	dependent	variables	are	considered	
one	by	one,	until	one	is	found	for	which	the	test	was	statistically	significant,	which	is	
then	published.	Selectively	excluding	outliers	refers	to	deleting	outliers	whenever	a	
test	is	not	yet	statistically	significant.	From	their	simulations	of	specific	examples	of	
these	three	practices,	they	concluded	that	p‐curve	underestimates	effect	sizes.	
However,	p‐hacking	comprises	a	very	large	number	of	behaviors,	and	Simonsohn	et	al.	
(2014a)	examined	only	three	of	these	behaviors.	We	will	now	show	that	other	types	of	
p‐hacking	will	lead	to	overestimation	of	effect	size	by	p‐curve	and	p‐uniform.		
	 As	Simonsohn	et	al.	(2014a)	explain,	p‐hacking	affects	p‐curve’s	estimate	
through	the	conditional	p‐value	distribution.	For	instance,	data	peeking	and	
selectively	excluding	outliers	lead	to	a	distribution	with	relatively	more	conditional	p‐
values	corresponding	to	just	statistically	significant	results,	which	pulls	p‐curve's	(and	
p‐uniform’s)	estimate	downward,	as	we	have	explained	in	the	foregoing	section.	On	
the	other	hand,	p‐hacking	behaviors	yielding	relatively	more	small	p‐values	will	result	
in	an	overestimation	of	effect	size.	Ulrich	and	Miller	(2015)	and	Bruns	and	Ioannidis	
(2016)	illustrate	that	multiple	p‐hacking	behaviors	may	result	in	relatively	more	small	
p‐values,	which	will	lead	to	overestimation	of	effect	size	by	p‐curve	(and	p‐uniform).		
		 We	examined	the	effect	of	two	types	of	p‐hacking	on	effect	size	estimation	by	
p‐curve	and	p‐uniform.	The	first	behavior	again	involves	selectively	reporting	among	
three	dependent	variables,	but	differs	from	the	procedure	in	Simonsohn	et	al.	(2014a)	
in	one	crucial	aspect;	rather	than	reporting	the	first	significant	p‐value,	the	smallest	of	
three	significant	p‐values	is	reported.	The	second	behavior	involves	a	"multiple	
conditions"	scenario,	where	multiple	experimental	conditions	are	run	and	compared	
to	the	same	control	condition,	and	only	the	comparison	yielding	the	largest	difference	
(and	smallest	p‐value)	is	reported.	We	note	that	a	large	portion		of	surveyed	
psychologists	have	admitted	to	using	at	least	once	selective	reporting	among	different	
dependent	variables	(63.4%)	and	not	reporting	all	experimental	conditions	(27.7%)	
in	their	work	(John,	Loewenstein,	&	Prelec,	2012).	
	 Figure	3.3	presents	the	estimates	of	p‐uniform,	as	well	as	the	true	effect	size	
and	the	effect	size	of	fixed‐effect	meta‐analysis	(see	the	supplementary	materials	
[https://osf.io/pfmqt/]	for	the	details	of	our	simulations).	We	do	not	show	p‐curve’s	
results	because	these	are	almost	indistinguishable	from	p‐uniform’s	results.	Condition	
“First	significant	DV”	and	“Data	peeking”	are	a	replication	of	the	simulations	in	
Simonsohn	et	al.	(2014a),	showing	that	p‐uniform	and	p‐curve	indeed	underestimate	
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effect	size	under	these	conditions.	The	estimate	is	slightly	below	the	true	effect	size	for	
“First	significant	DV”,	and	about	.2	lower	on	the	scale	of	Cohen’s	d	for	"Data	peeking"	
for	all	true	effect	sizes	from	0	(no	effect)	to	.8	(considered	a	large	effect).	Conversely,	
and	as	anticipated,	both	“DV	with	lowest	p‐value”	and	“Multiple	conditions”	
overestimate	effect	size,	and	this	overestimation	increases	for	larger	true	effect	sizes.	
What	should	also	be	mentioned	is	that	p‐uniform	and	p‐curve	did	not	always	
outperform	traditional	fixed‐effect	meta‐analysis	in	the	p‐hacking	scenarios	we	
simulated.	For	instance,	fixed‐effect	meta‐analysis	outperformed	p‐uniform	and	p‐
curve	(i.e.,	presented	less	biased	estimates)	in	the	case	of	"Data	peeking"	(e.g.,	
(Francis,	2013;	van	Aert,	Maassen,	Wicherts,	&	van	Assen,	2016).	We	therefore	
conclude	that	(i)	p‐hacking	may	bias	p‐uniform’s	and	p‐curve’s	estimate	in	any	
direction	depending	on	the	type	of	p‐hacking,	(ii)	p‐uniform’s	and	p‐curve’s	estimate	
are	not	necessarily	better	than	those	of	fixed‐effect	meta‐analysis	when	p‐hacking	
occurs.	Thus,	p‐uniform	and	p‐curve	can	deal	with	publication	bias,	but	(just	like	
traditional	fixed‐effect	and	random‐effects	meta‐analysis)	neither	corrects	for	p‐
hacking	nor	reacts	predictably	to	it.		 	
		 Because	the	validity	of	results	of	both	traditional	meta‐analysis	methods	and	
p‐curve	and	p‐uniform	may	be	lowered	by	p‐hacking,	we	recommend	scrutinizing	
both	data	and	studies	included	in	the	meta‐analysis	before	applying	meta‐analytic	
methods.	Underpowered	primary	studies	(i.e.,	statistical	power	substantially	below	
0.8)	and	a	preponderance	of	p‐values	just	below	.05	are	signals	for	p‐hacking.	Other	
signals	are	unsystematic	deletion	of	outliers	and	reporting	results	of	other	than	
commonly	used	measurement	instruments.	If	there	are	signs	of	p‐hacking,	we	
recommend	applied	researchers	to	be	reluctant	in	interpreting	the	results	of	any	
meta‐analysis	(Recommendation	1,	see	Table	3.1).	

3.9		 Discussion	and	conclusion	

		 Recently,	new	methods	were	developed	aiming	to	provide	an	accurate	meta‐
analytic	estimate	in	the	presence	of	publication	bias	(Simonsohn	et	al.,	2014a;	van	
Assen	et	al.,	2015).	These	methods,	p‐uniform	and	p‐curve,	are	based	on	the	same	
basic	idea	but	differ	in	implementation.	The	methods’	idea	is	selecting	only	the	
statistically	significant	results	and	estimating	the	effect	size	using	the	principle	of	
statistical	theory	that	the	distribution	of	(conditional)	p‐values	based	on	the	true	
effect	size	is	uniform.	Van	Assen	et	al.	(2015)	and	Simonsohn	et	al.	(2014a)	
convincingly	demonstrated	the	power	of	p‐uniform	and	p‐curve	and	the	principles	
upon	which	the	methods	are	based	to	carry	out	meta‐analysis.	In	this	chapter,	we	
explained	the	rationale	and	basics	of	both	methods,	added	three	reservations	
(concerning	heterogeneity,	incredible	estimates,	and	p‐hacking)	to	the	application	of	
both	methods,	and	offered	hands‐on	recommendations	for	researchers.	 	
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Figure	3.3.	Effect	size	estimates	of	p‐uniform	and	fixed‐effect	meta‐analysis	in	case	of	four	types	
of	p‐hacking.	

	 We	explained	that	p‐curve	behaves	erratically	and	yields	inaccurate	estimates	
in	situations	where	multiple	studies	in	a	meta‐analysis	have	p‐values	close	to	.05.	Due	
to	a	different	implementation,	p‐uniform	does	not	suffer	from	this	erratic	behavior,	
but	provides	implausible	negative	estimates.	These	problems	are	solved	by	setting	p‐
uniform’s	and	p‐curve’s	estimate	to	zero	whenever	the	mean	of	statistically	significant	
studies’	p‐values	exceeds	.025,	i.e.,	whenever	p‐uniform’s	estimate	is	lower	than	zero.	
We	also	showed	that	p‐hacking	may	bias	p‐uniform’s	and	p‐curve’s	estimate	in	any	
direction	depending	on	the	particular	type	of	p‐hacking,	and	these	methods’	estimates	
are	not	necessarily	better	than	those	of	fixed‐effect	meta‐analysis	when	p‐hacking	has	
taken	place.	Finally,	we	explained	that	p‐curve	and	p‐uniform	estimate	the	average	
true	effect	underlying	all	significant	studies	in	the	meta‐analysis,	but	overestimate	the	
average	true	effect	of	the	whole	population	of	studies	whenever	moderate	to	large	
heterogeneity	is	present.	
	 On	the	basis	of	these	and	contemporary	insights	we	formulated	the	
recommendations	summarized	in	Table	3.1.	These	recommendations	hold	for	any	
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meta‐analysis	and	extend	the	Meta‐Analysis	Reporting	Standards	(MARS)	as	proposed	
by	the	APA	(American	Psychological	Association,	2010).		
		 First,	we	recommend	researchers	to	be	reluctant	to	interpret	the	results	of	
any	meta‐analytic	technique	if	there	are	indicators	for	p‐hacking	in	the	primary	
studies	(Recommendation	1),	because	p‐hacking	may	bias	the	effect	size	estimates	of	
meta‐analysis	in	any	direction.	Indicators	of	potential	p‐hacking	include	the	
unsystematic	deletion	of	outliers	in	many	primary	studies,	the	usage	and	reporting	of	
multiple	and	different	measures	for	the	same	dependent	variable	across	primary	
studies,	the	common	use	of	small	underpowered	studies,	inconsistencies	between	
sample	size	descriptions	and	degrees	of	freedom	(Bakker	&	Wicherts,	2014a),	and	
grossly	misreported	p‐values	(Nuijten,	Hartgerink,	van	Assen,	Epskamp,	&	Wicherts,	
2015).	P‐hacking	can	be	characteristic	of	a	particular	research	field	(e.g.,	different	
measures	of	dependent	variables	in	a	research	field)	as	well	as	of	a	single	study	or	a	
set	of	studies.	Researchers	can	conduct	a	sensitivity	analysis	by	comparing	the	results	
of	traditional	meta‐analysis	methods	and	p‐uniform	and	p‐curve	with	the	results	of	
these	methods	applied	to	only	the	studies	where	no	p‐hacking	is	suspected,	for	
instance,	because	they	involved	the	use	of	pre‐registered	data	collection	and	analysis	
plans.	Meta‐analysts	will	probably	observe	indicators	for	p‐hacking	(if	these	are	
present)	during	the	literature	search	and	data	extraction	and	do	not	have	to	go	
through	all	the	primary	studies	again	to	gather	information	about	the	potential	
presence	of	p‐hacking.		
		 Second,	we	recommend	applying	fixed‐effect	and	random‐effects	meta‐
analysis	and	p‐uniform	or	p‐curve	(Recommendation	2).	The	selection	of	a	fixed‐effect	
or	random‐effects	meta‐analysis	should	be	based	on	whether	a	researcher	wants	to	
draw	inferences	on	only	the	studies	included	in	the	meta‐analysis	(fixed‐effect)	or	
wants	to	generalize	the	meta‐analytic	results	to	the	whole	population	of	studies	
(random‐effects)	(see	for	a	more	elaborate	discussion	Borenstein	et	al.,	2009;	F.	L.	
Schmidt,	Oh,	&	Hayes,	2009).	Moreover,	the	estimate	of	fixed‐effect	meta‐analysis,	
when	compared	to	the	estimate	of	random‐effects	meta‐analysis,	may	signal	
publication	bias;	publication	bias	generally	results	in	higher	estimates	of	random‐
effects	than	fixed‐effect	meta‐analysis	because	the	studies	with	smaller	sample	sizes	
and	usually	overestimated	effect	sizes	get	less	weight	in	fixed‐effect	meta‐analysis	
(Greenhouse	&	Iyengar,	2009).		
	 Next,	we	recommend	checking	for	direct	and	indirect	evidence	of	publication	
bias	(Recommendation	3).	Direct	evidence	can	be	obtained	using	the	publication	bias	
test	in	p‐uniform.	Previous	research	suggests	p‐uniform’s	test	for	publication	bias	has	
higher	statistical	power	than	traditional	tests	(van	Assen	et	al.,	2015),	which	are	
known	to	have	low	statistical	power	(e.g.,	Borenstein	et	al.,	2009;	Sterne	&	Egger,	
2005).	Moreover,	use	of	the	quite	popular	trim‐and‐fill	method	is	discouraged	because	
it	often	provides	inaccurate	results	(Moreno,	Sutton,	Abrams,	et	al.,	2009;	Simonsohn	
et	al.,	2014a;	Stanley	&	Doucouliagos,	2014;	van	Assen	et	al.,	2015).	However,	for	a	
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small	number	of	studies	in	the	meta‐analysis	or	a	small	amount	of	publication	bias,	p‐
uniform’s	publication	bias	test	will	lack	sufficient	statistical	power.	In	these	cases,	
indirect	evidence	of	publication	bias	may	be	used.	An	example	of	indirect	evidence	is	if	
80%	or	more	of	the	primary	studies’	effect	sizes	are	statistically	significant	when	at	
the	same	time	these	studies’	sample	sizes	imply	a	power	of	.5	or	less	to	detect	a	
medium	effect	size	(e.g.,	see	Francis,	2013).	In	case	of	(direct	or	indirect)	evidence	of	
publication	bias,	we	recommend	that	conclusions	be	based	on	p‐uniform’s	or	p‐curve’s	
results,	rather	than	on	fixed‐effect	and	random‐effects	meta‐analysis,	because	these	
traditional	methods	overestimate	effect	size	in	the	presence	of	publication	bias	(e.g.,	
Bakker	et	al.,	2012;	Ioannidis,	2008b;	Lane	&	Dunlap,	1978;	van	Assen	et	al.,	2015).	
Although	p‐uniform	and	p‐curve	also	provide	accurate	effect	size	estimates	even	in	the	
absence	of	publication	bias	(Simonsohn	et	al.,	2014a;	van	Assen	et	al.,	2015),	we	
recommend	interpreting	fixed‐effect	and	random‐effects	meta‐analysis	in	this	case	
because	these	traditional	methods	yield	more	efficient	and	precise	estimates.	
		 We	recommend	setting	p‐uniform’s	and	p‐curve’s	estimate	to	0	if	the	average	
p‐value	of	statistically	significant	studies	is	larger	than	.025	(Recommendation	4);	an	
average	larger	than	.025	signals	no	evidence	of	an	effect	and/or	the	use	of	p‐hacking	
in	the	set	of	included	studies	(in	which	case,	meta‐analytic	methods’	effect	size	
estimation	may	be	biased	in	any	direction	depending	on	the	type	of	p‐hacking;	see	
Recommendation	1).	Interpreting	p‐uniform’s	and	p‐curve’s	estimate	as	the	average	
population	effect	size	estimate	is	discouraged	when	effect	size	heterogeneity	is	large	
(Recommendation	5a).	In	this	case,	p‐uniform’s	and	p‐curve’s	estimate	reflects	the	
average	true	effect	underlying	all	significant	studies	in	the	meta‐analysis.	The	average	
population	effect	size	is	overestimated	(although	the	addition	of	p‐hacking	could	
complicate	this	pattern	further)	when	there	is	moderate	or	large	heterogeneity	(I2≥.5)	
and	the	average	true	effect	of	the	whole	population	of	studies	is	estimated.	In	order	to	
deal	with	heterogeneous	effect	sizes	and	still	be	able	to	accurately	estimate	the	
average	true	effect	of	the	whole	population	of	studies,	p‐uniform	or	p‐curve	can	be	
applied	to	homogeneous	subgroups	of	primary	studies	which	were	created	based	on	
theoretical	(e.g.,	same	population	of	participants	being	studied)	or	methodological	
considerations	(using	the	same	methodology,	i.e.	study	design	and	measures)	
(Recommendation	5b).	The	implication	of	recommendations	3	and	5	is	that,	currently,	
no	method	provides	accurate	estimates	of	average	population	effect	size	in	the	
presence	of	both	publication	bias	and	heterogeneity.		
		 In	the	example	meta‐analysis	described	earlier,	we	applied	p‐uniform	and	p‐
curve	to	a	set	of	primary	studies	on	the	effect	of	weight	on	judgment	of	importance	
(Rabelo	et	al.,	2015).	Researchers	can	also	easily	apply	p‐uniform	or	p‐curve	to	their	
own	data.	User‐friendly	R	code	for	applying	p‐uniform	can	be	readily	installed.16	
Moreover,	we	developed	a	user‐friendly	web	application	for	researchers	who	are	not	
                                                   
16	Functions	for	applying	p‐uniform	can	be	loaded	in	R	by	means	of	running	the	following	code:	
devtools::install_github("RobbievanAert/puniform");	library(puniform)	
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familiar	with	R	(https://rvanaert.shinyapps.io/p‐uniform).	R	code	for	estimating	
effect	size	with	p‐curve	can	be	found	in	the	supplementary	materials	of	Simonsohn	et	
al.	(2014a).	P‐uniform	has	the	advantage	over	p‐curve	that	it	also	includes	a	
publication	bias	test	and	yields	a	confidence	interval	around	the	effect	size	estimate.	
		 To	conclude,	even	though	both	p‐uniform	and	p‐curve	are	promising	meta‐
analytic	methods,	the	methodology	underlying	them	is	still	under	development,	and	
properties	of	these	methods	still	need	to	be	examined	under	more	stringent	
conditions	(e.g.,	different	forms	of	p‐hacking).	Moreover,	both	methods	need	to	be	
extended	to	allow	estimation	of	other	effect	sizes	such	as	odds	ratios,	which	have	their	
own	idiosyncrasies.	Once	the	current	methodology	is	further	refined,	particularly	by	
enabling	accurate	estimation	in	case	of	heterogeneity,	we	believe	it	has	the	potential	
to	become	the	standard	meta‐analytic	tool	correcting	for	publication	bias.	At	present,	
however,	researchers	should	follow	the	recommendations	provided	in	Table	3.1	to	
avoid	drawing	erroneous	conclusions	from	these	still	developing	methods.	
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3.10		 Appendix	A:	Illustration	of	logic	of	and	computations	in	p‐uniform	and	p‐
curve	

	 P‐curve	and	p‐uniform	employ	the	conditional	p‐values,	that	is,	conditional	on	
the	effect	size	being	statistically	significant.	More	precisely,	the	conditional	p‐value	of	
an	observed	effect	size	refers	to	the	probability	of	observing	this	effect	size	or	larger,	
conditional	on	the	observed	effect	size	being	statistically	significant	and	given	a	
particular	population	(or	“true”)	effect	size.	Statistical	significance	has	to	be	taken	into	
account	because	p‐uniform	and	p‐curve	only	focus	on	the	interval	with	p‐values	
between	0	and	.05	rather	than	the	interval	from	0	to	1.	Figure	3.A1	depicts	how	this	
conditional	p‐value	of	Effect	3	is	computed	for	three	different	candidates	of	the	
underlying	effect	size,	namely	δ=0,	δ=0.5	(i.e.,	the	true	effect	size),	and	δ=0.748	(i.e.,	
estimate	of	fixed‐effect	meta‐analysis).	Figure	3.A1a	reflects	the	conditional	p‐value	
for	δ=0,	which	is	calculated	by	dividing	the	probability	of	observing	an	effect	size	
larger	than	the	observed	Effect	3	(dark	grey	area	in	Figure	3.A1a	to	the	right	of	dobs)	by	
the	probability	of	observing	an	effect	size	larger	than	the	critical	value	(light	and	dark	
grey	area	in	Figure	3.A1a	to	the	right	of	dcv).	For	δ=0,	the	null	hypothesis	being	tested,	
this	boils	down	to	dividing	the	p‐value	(.0257)	by	α=.05,	yielding	a	conditional	p‐value	
denoted	by	q)	for	Effect	3	of	q3=.0257/.05=.507.17	Thus,	for	δ=0	the	conditional	p‐
value	is	simply	20	times	the	traditional	p‐value.	
		 Computation	of	the	conditional	p‐values	under	effects	that	differ	from	zero	
uses	calculations	closely	resembling	the	computation	of	statistical	power	of	a	test.	
Consider	the	conditional	p‐value	of	Effect	3	at	δ=0.5	(Figure	3.A1b).	The	critical	value	
(dcv)	and	the	observed	effect	size	(dobs)	on	the	Cohen’s	d	scale	remain	the	same,	but	the	
distribution	of	true	effect	size	δ	is	now	shifted	to	the	right.	The	numerator	in	
computing	the	conditional	p‐value	expresses	the	probability	that	the	observed	effect	
size	dobs	is	0.641	or	larger	given	δ=0.5	(dark	grey	area	in	Figure	3.A1b	to	the	right	of	
dobs),	which	equals	0.314,	whereas	the	denominator	expresses	the	probability	that	the	
observed	effect	size	is	statistically	significant	given	δ=0.5	(light	and	dark	grey	area	in	
Figure	3.A1b	to	the	right	of	dcv),	which	equals	0.419	(i.e.,	the	traditional	power	of	the	
study	given	its	degrees	of	freedom	and	δ=0.5).	This	yields	a	conditional	p‐value	for	
Effect	3	at	δ=0.5	of	q3=0.314/0.419=0.75.	The	conditional	p‐value	of	Effect	3	at	

                                                   
17	Due	to	transformation	of	dobs	and	dcv	to	z‐values	(see	later	on	in	this	section),	conditional	p‐values	in	p‐
uniform	are	divided	by	a	value	that	is	slightly	larger	than	.05.	Furthermore,	dividing	by	.05	is	only	feasible	if	
all	observed	effect	sizes	are	statistically	significant	in	the	same	direction.	Imagine	a	situation	where	the	
observed	effect	size	of	Effect	1	is	changed	into	d	=	‐0.872,	t(48)	=	‐3.133.	The	two‐tailed	p‐value	of	Effect	1	
remains	.00294,	but	the	observed	effect	size	is	statistically	significant	in	the	opposite	direction	than	Effect	2	
and	3.	P‐uniform	and	p‐curve	use	one‐tailed	p‐values	and	consequently,	effects	with	opposite	sign	will	be	
omitted	when	applying	p‐uniform	or	p‐curve.	If	statistically	significant	effect	sizes	in	a	meta‐analysis	are	
observed	in	both	tails	of	the	distribution,	it	is	advised	to	apply	p‐uniform	and	p‐curve	to	both	the	
statistically	significant	observed	positive	effect	sizes	and	the	statistically	significant	observed	negative	effect	
sizes.	An	example	of	such	an	analysis	is	described	in	Simonsohn	et	al.	(2014a).	
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Figure	3.A1.	Illustration	of	computation	of	conditional	p‐values	for	Effect	3	(q3)	for	three	effect	
sizes:	a.	δ=0;	b.	δ=0.5	(true	effect	size);	c.	δ=0.748	(estimate	of	fixed‐effect	meta‐analysis).	
Critical	value	on	Cohen’s	d	scale	is	denoted	by	dcv	and	observed	effect	size	is	denoted	by	dobs.	

	δ=0.748,	as	displayed	in	Figure	3.A1c,	can	be	computed	in	a	similar	way:	
q3=0.644/0.742=0.868.		
		 The	conditional	p‐values	of	all	three	observed	effect	sizes	in	our	example	
under	the	three	different	true	effect	sizes	are	presented	in	Figure	3.A2.	The	solid	black	
lines	in	the	left	panel	of	Figure	3.A2	shows	the	conditional	p‐values	for	δ=0:		

q1=.00294/.05=.0558	 	 q2=.0110/.05=.213	 q3=.0257/.05=.507.		

The	dashed	grey	lines	in	the	left	panel	illustrate	uniformly	distributed	conditional	p‐
values.	In	case	of	three	studies	these	uniformly	distributed	conditional	p‐values	
should	equal	¼,	½,	and	¾.		Note	that	the	observed	conditional	p‐values,	summing	to	
.0558+.213+.507=.776,	are	lower	than	their	corresponding	expected	uniformly	
distributed	conditional	p‐values,	which	sum	to	¼+½+¾=1.5.	Hence,	we	see	that	the		
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Figure	3.A2.	Observed	conditional	p‐values	(solid	black	lines)	and	conditional	p‐values	under	
uniformity	(dashed	gray	lines)	for	the	example	with	three	observed	effect	sizes.	The	three	
panels	refer	to	the	conditional	p‐values	for	p‐uniform’s	hypothesis	test	of	no	effect	(δ=0),	p‐
uniform’s	effect	size	estimate	(δ=0.5),	and	effect	size	obtained	by	fixed‐effect	meta‐analysis	
(δ=0.748).		 	

conditional	p‐values	under	the	null	hypothesis	(δ=0)	as	given	in	the	left‐hand	side	of	
Figure	3.A2	do	not	fit	a	uniform	distribution.		
		 To	obtain	the	effect	size	estimate	of	p‐uniform,	effect	size	(δ)	has	to	be	shifted	
until	the	sum	of	conditional	p‐values	equals	1.5,	which	is	the	expected	value	of	the	
sum	under	uniformity,	i.e.	given	the	true	effect	size.	Figure	3.A3	shows	the	effect	of	
shifting	δ	on	the	conditional	p‐values	from	‐.5	to	1.5	for	the	three	observed	effect	sizes	
in	our	example.	Each	conditional	p‐value	increases	when	the	true	effect	size	gets	
larger.	For	instance,	the	conditional	p‐value	of	Effect	1	increases	from	.0558	to	.25	
when	the	true	effect	size	is	increased	from	0	to	.5,	and	further	increased	to	.459	if	true	
effect	size	is	increased	to	.748.	As	a	consequence	of	these	increases,	the	sum	of	
conditional	p‐values	also	increases	as	true	effect	size	increases.		
		 The	middle	panel	in	Figure	3.A2	presents	the	conditional	p‐values	in	case	the	
effect	size	is	shifted	to	δ=0.5.	These	conditional	p‐values	are	also	shown	in	Figure	3.A3	
as	the	intersections	of	the	three	curves	with	the	vertical	line	representing	δ=0.5,	and	
equal:	

q1=.25	 	 q2=.50	 	 q3=.75.	

These	conditional	p‐values	exactly	match	(and	studies	were	selected	to	exactly	match)	
the	expected	conditional	p‐values	under	uniformity.	Consequently,	the	sum	of	the	
conditional	p‐values	also	equals	the	sum	of	the	conditional	p‐values	under	uniformity	
(1.5).	This	indicates	that	the	effect	size	estimate	of	p‐uniform	will	be	equal	to	the	true	
effect	size	of	0.5.	
		 The	right	panel	in	Figure	3.A2	and	the	intersections	of	the	studies’	curves	with	
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line	δ=0.748	in	Figure	3.A3	show	the	conditional	p‐values	conditional	on	the	effect	
size	δ=0.748,	which	was	the	estimate	of	traditional	fixed‐effect	meta‐analysis:		

	 	 	 	 q1=.459	q2=.697	q3=.868.		

All	are	higher	than	their	corresponding	expected	conditional	p‐values	under	
uniformity,	and	their	sum	(2.031)	is	larger	than	the	expected	sum	under	uniformity	
(1.5).	These	results	indicate	that	traditional	fixed‐effects	meta‐analysis	overestimated	
the	effect	size.	If	this	occurs,	it	is	not	farfetched	to	suppose	that	publication	bias	exists,	
i.e.	some	nonsignificant	results	are	missing	from	the	set	of	studies	included	in	the	
meta‐analysis.	
		 Table	3.A1	shows	the	results	of	applying	p‐uniform	and	p‐curve	to	the	
example.	The	estimated	effect	size	by	p‐uniform	is	exactly	equal	to	the	true	effect	size	
of	δ	=	0.5.	Other	output	of	p‐uniform	is	the	95%	confidence	interval	(‐0.300;	0.960),	
and	that	both	the	null	hypothesis	of	no	effect	(p	=	.0737)	and	the	hypothesis	of	no	
publication	bias	(p	=	.147)	cannot	be	rejected.18	The	output	of	p‐curve	incorporate	
neither	a	confidence	interval	nor	a	publication	bias	test.	P‐curve’s	estimate	of	.511	is	
slightly	larger	than	the	true	effect	size19,	and	p‐curve’s	result	of	the	test	of	no	effect	is	p	
=	.086.	Why	are	the	results	of	both	methods	different,	if	they	are	based	on	the	same	
logic?	This	is	because	the	methods	differ	in	implementation,	which	we	explain	in	the	
supplementary	materials	(https://osf.io/pfmqt/).	

                                                   
18	P‐uniform’s	confidence	interval	is	obtained	by	means	of	test	inversion	(e.g.,	Casella	&	Berger,	2002),	so	
the	lower	(upper)	bound	of	the	confidence	interval	equals	that	effect	size	for	which	the	sum	of	conditional	
p‐values	is	equal	to	the	2.5th	(97.5th)	percentile	of	the	Irwin‐Hall	distribution.	The	statistical	test	of	the	null	
hypothesis	of	no	effect	of	p‐uniform	examines	whether	the	conditional	p‐values	follow	a	uniform	
distribution	if	δ=0	(van	Assen	et	al.,	2015).			
			 For	the	publication	bias	test	of	p‐uniform,	all	studies	(significant	and	nonsignificant)	in	a	meta‐
analysis	are	used	for	computing	the	effect	size	estimate	based	on	fixed‐effect	meta‐analysis.	Only	the	
statistically	significant	studies	are	then	used	to	examine	whether	the	conditional	p‐values	follow	a	uniform	
distribution	conditional	on	this	fixed‐effect	meta‐analytic	effect	size	estimate.	If	the	statistically	significant	
p‐values	are	not	uniformly	distributed	conditional	on	this	effect	size	estimate,	the	null	hypothesis	of	no	
publication	bias	is	rejected	(van	Assen	et	al.,	2015).	
19	For	illustrative	purposes	we	designed	an	example	where	p‐uniform’s	effect	size	estimate	equals	the	true	
effect	size;	just	as	easily	an	example	can	be	constructed	where	p‐curve’s	estimate	equals	the	true	effect	size.	
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Figure	3.A3.	Conditional	p‐values	as	a	function	of	true	effect	size	(x‐axis)	for	each	of	the	three	
observed	effect	sizes	in	the	example.	Effect	sizes	zero,	true	effect	size,	and	estimated	by	fixed‐
effects	meta‐analysis	are	indicated	by	vertical	lines.	

Table	3.A1.	Results	of	p‐uniform	and	p‐curve	when	applied	to	the	artificial	example	based	on	
three	observed	effect	sizes,	with	δ=0.5.	

	 p‐uniform	 p‐curve	

Effect	size	estimate	 0.500	 0.530	

95%	CI	 (‐0.308;0.964)	 ‐	

Test	of	H0:	δ	=	0	 z=‐1.44;	p=.0753	 χ2(6)=1.97;	p=.0772	

Publication	bias	test	 z=1.06;	p=.144	 ‐	
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3.11		 Appendix	B	

Table	3.B1.	Studies	and	corresponding	sample	sizes	(group	1:	 1
in 	and	group	2:	

2
in ),	t‐values	and	

two‐tailed	p‐values	as	included	in	the	meta‐analysis	described	in	Rabelo	et	al.	(2015).		

Study	no.	 Article	and	experiment	 1
in 	

2
in 	 t‐value	 p‐value		

1	 Ackerman	et	al.	(2010),	Exp.	1	 26	 28	 2.016	 0.0489	

2	 Ackerman	et	al.	(2010),	Exp.	2	 21	 22	 1.867	 0.0690	

3	 Chandler	et	al.	(2012),	Exp.	2	 30	 30	 2.554	 0.0133	

4	 Chandler	et	al.	(2012),	Exp.	1	 50	 50	 2.113	 0.0372	

5	 Chandler	et	al.	(2012),	Exp.	3	 50	 50	 2.390	 0.0188	

6	 Hafner	(2013),	Exp.	1	 30	 30	 2.042	 0.0457	

7	 Jostmann	et	al.	(2009),	Exp.	1	 20	 20	 2.245	 0.0307	

8	 Jostmann	et	al.	(2009),	Exp.	2	 22	 28	 2.081	 0.0428	

9	 Jostmann	et	al.	(2009),	Exp.	3	 25	 24	 2.191	 0.0335	

10	 Jostmann	et	al.	(2009),	Exp.	4	 20	 20	 2.294	 0.0274	

11	 Kaspar	&	Krull	(2013)	 45	 45	 3.049	 0.0030	

12	 Kouchaki	et	al.	(2014),	Exp.	1a	 15	 15	 2.020	 0.0531	

13	 Kouchaki	et	al.	(2014),	Exp.	1c	 27	 27	 2.184	 0.0335	

14	 Kouchaki	et	al.	(2014),	Exp.	2	 26	 25	 2.307	 0.0254	

15	 Kouchaki	et	al.	(2014),	Exp.	3	 35	 36	 2.308	 0.0240	

16	 Kaspar	(2013),	Exp.	1	 20	 20	 3.268	 0.0023	

17	 Kaspar	(2013),	Exp.	2	 25.5	 25.5	 2.306	 0.0254	

18	 Kaspar	(2013),	Exp.	3	 31	 31	 2.278	 0.0263	

19	 Kaspar	(2013),	Exp.	4	 48.5	 48.5	 2.053	 0.0429	

20	 Kaspar	(2013),	Exp.	5	 30	 30	 2.452	 0.0172	

21	 Kouchaki	et	al.	(2014),	Exp.	4	 31	 31	 2.139	 0.0365	

22	 Maglio	and	Trope	(2012),	Exp.	2	 18	 18	 2.284	 0.0287	

23	 Zhang	and	Li	(2012),	Exp.	1	 35	 35	 2.382	 0.0200	

24	 Zhang	and	Li	(2012),	Exp.	2	 39	 39	 1.994	 0.0498	

25	 Zhang	and	Li	(2012),	Exp.	4	 40	 40	 2.530	 0.0134	



 

 

	 	



 

CHAPTER	4	

	

Publication	bias	in	meta‐analyses	from	
psychology	and	medicine:	A	meta‐meta‐
analysis	

	

	

Abstract	

Publication	bias	is	a	substantial	problem	for	the	credibility	of	research	in	general	and	
of	meta‐analyses	in	particular,	as	it	yields	overestimated	effects	and	may	suggest	the	
existence	of	non‐existing	effects.	Although	there	is	consensus	that	publication	bias	is	
widespread,	how	strongly	it	affects	different	scientific	literatures	is	currently	less	
well‐known.	We	examined	evidence	of	publication	bias	in	a	large‐scale	data	set	of	83	
meta‐analyses	published	in	Psychological	Bulletin	(representing	meta‐analyses	from	
psychology)	and	499	systematic	reviews	from	the	Cochrane	Database	of	Systematic	
Reviews	(representing	meta‐analyses	from	medicine).	Publication	bias	was	assessed	
on	homogeneous	subsets	of	the	meta‐analyses,	because	publication	bias	methods	do	
not	have	good	statistical	properties	if	the	true	effect	size	is	heterogeneous.	The	rank‐
correlation	test,	Egger’s	test,	the	test	of	excess	significance,	and	p‐uniform’s	
publication	bias	test	yielded	evidence	for	publication	bias	in	approximately	10%	of	
homogeneous	subsets.	Furthermore,	we	found	hardly	any	evidence	of	overestimation	
of	effect	size	because	of	publication	bias,	using	the	p‐uniform	method	or	when	
comparing	the	meta‐analyses’	estimates	with	the	estimates	based	on	their	largest	
studies.	We	therefore	conclude	that	evidence	for	publication	bias	in	the	included	
meta‐analyses	is	weak	at	best.		

	

	

This	chapter	is	submitted	as	van	Aert,	R.	C.	M.,	Wicherts,	J.	M.,	&	van	Assen,	M.	A.	L.	M.	
(2018).	Publication	bias	in	meta‐analyses	from	psychology	and	medicine:	A	meta‐
meta‐analysis	
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Meta‐analysis	is	the	standard	technique	for	synthesizing	different	studies	on	the	same	
topic,	and	is	defined	as	“the	statistical	analysis	of	a	large	collection	of	analysis	results	
from	individual	studies	for	the	purpose	of	integrating	the	findings”	(Glass,	1976,	p.	3).	
One	of	the	greatest	threats	to	the	validity	of	meta‐analytic	results	is	publication	bias,	
meaning	that	the	publication	of	studies	depends	on	the	direction	and	statistical	
significance	of	the	results	(Rothstein	et	al.,	2005a).	Publication	bias	generally	leads	to	
effect	sizes	being	overestimated	and	the	dissemination	of	false‐positive	results	(e.g.,	
Lane	&	Dunlap,	1978;	Nuijten,	van	Assen,	Veldkamp,	&	Wicherts,	2015).	Hence,	
publication	bias	results	in	false	impressions	about	the	magnitude	and	existence	of	an	
effect	(van	Assen	et	al.,	2015)	and	is	considered	one	of	the	key	problems	in	
contemporary	science	(Bouter,	Tijdink,	Axelsen,	Martinson,	&	ter	Riet,	2016).	
		 Evidence	of	publication	bias	exists	in	various	research	fields.	The	social	
sciences	literature	consists	of	approximately	90%	statistically	significant	results	
(Fanelli,	2012;	Sterling	et	al.,	1995),	which	is	not	in	line	with	the	on	average	low	
statistical	power	of	about	50%	or	less	in,	for	instance,	psychology	(Bakker	et	al.,	2012;	
Cohen,	1990).	Franco	et	al.	(2014)	examined	publication	bias	in	studies	that	received	a	
grant	within	the	social	sciences	and	found	that	64.6%	of	the	studies	where	most	or	all	
null	hypotheses	failed	to	be	rejected	was	not	written	up	compared	to	4.4%	of	the	
studies	where	most	or	all	the	null	hypotheses	were	rejected	(cf.	Cooper	et	al.,	1997;	
Coursol	&	Wagner,	1986).	In	a	highly	similar	project	within	the	psychological	
literature,	Franco	et	al.	(2016)	showed	that	70%	of	the	included	outcomes	in	a	study	
were	not	reported,	and	that	this	selective	reporting	depended	on	statistical	
significance	of	the	outcomes.		
		 Compared	to	the	social	sciences,	more	attention	has	been	paid	to	publication	
bias	in	medicine	(Hopewell,	Clarke,	&	Mallet,	2005).	Medicine	has	a	longer	history	in	
registering	clinical	trials	before	conducting	the	research	(e.g.,	Dickersin,	Chan,	
Chalmers,	Sacks,	&	Smith,	1987;	Jones	et	al.,	2013).	As	of	2007,	the	US	Food	and	Drug	
Administration	Act	(FDA)	even	requires	US	researchers	to	make	the	results	of	
different	types	of	clinical	trials	publicly	available	independent	of	whether	the	results	
have	been	published	or	not.	With	registers	like	clinicaltrials.gov,	it	is	easier	for	meta‐
analysts	to	search	for	unpublished	research,	and	to	include	it	in	their	meta‐analysis.	
Furthermore,	it	is	straightforward	to	study	publication	bias	by	comparing	the	
reported	results	in	registers	with	the	reported	results	in	publications.	Studies	
comparing	the	reported	results	in	registers	and	publications	show	that	statistically	
significant	outcomes	are	more	likely	to	be	reported,	and	clinical	trials	with	statistically	
significant	results	have	a	higher	probability	of	getting	published	(Dwan	et	al.,	2008;	
Kirkham	et	al.,	2010).	
		 A	number	of	methods	exist	to	test	for	publication	bias	in	a	meta‐analysis	and	
to	estimate	a	meta‐analytic	effect	size	corrected	for	publication	bias.	However,	
publication	bias	is	often	not	routinely	assessed	in	meta‐analyses	(Aguinis	et	al.,	2010;	
Aytug	et	al.,	2012;	Banks,	Kepes,	&	Banks,	2012)	or	is	often	analyzed	with	suboptimal	
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methods	that	lack	statistical	power	to	detect	it	(Ioannidis	&	Trikalinos,	2007a).	It	has	
been	suggested	to	reexamine	publication	bias	in	published	meta‐analyses	(Banks,	
Kepes,	&	Banks,	2012;	Banks,	Kepes,	&	McDaniel,	2012;	Ioannidis,	2008a)	by	applying	
recently	developed	methods	to	better	understand	the	severity	and	prevalence	of	
publication	bias	in	different	fields.	These	novel	methods	have	better	statistical	
properties	than	existing	publication	bias	tests	and	methods	developed	earlier	to	
correct	effect	sizes	for	publication	bias.	Moreover,	several	authors	have	recommended	
to	not	rely	on	a	single	method	for	examining	publication	bias	in	a	meta‐analysis,	but	
rather	to	use	and	report	a	set	of	different	publication	bias	methods	(Coburn	&	Vevea,	
2015;	Kepes,	Banks,	McDaniel,	&	Whetzel,	2012).	This	so‐called	triangulation	takes	
into	account	that	none	of	the	publication	bias	methods	outperforms	all	the	other	
methods	under	each	and	every	condition;	one	method	can	signal	publication	bias	in	a	
meta‐analysis	whereas	another	one	does	not.	Using	a	set	of	methods	to	assess	the	
prevalence	and	severity	of	publication	bias	may	yield	a	more	balanced	conclusion.	
		 We	set	out	to	answer	three	research	questions	in	this	chapter.	The	first	
research	question	concerned	the	prevalence	of	publication	bias:	“What	is	the	
prevalence	of	publication	bias	in	meta‐analyses	published	on	psychological	and	
medical	topics?”	(1a),	and	“Is	publication	bias	more	prevalent	in	psychology	than	in	
medicine?”	(1b).	Medicine	was	selected	to	be	compared	to	psychology,	because	more	
attention	has	been	paid	to	publication	bias	in	general	(Hopewell	et	al.,	2005)	and	
study	registration	in	particular	(e.g.,	Dickersin	et	al.,	1987;	Jones	et	al.,	2013)	within	
medicine.	We	also	evaluated	the	amount	of	agreement	between	different	publication	
bias	methods.	In	the	second	research	question,	we	examined	whether	effect	size	
estimates	of	traditional	meta‐analysis	and	corrected	for	publication	bias	by	the	p‐
uniform	method	can	be	predicted	by	characteristics	of	a	meta‐analysis:	“What	
characteristics	of	a	meta‐analysis	are	predictors	of	the	estimates	of	traditional	meta‐
analysis	and	p‐uniform?”.	Our	third	research	question	also	consisted	of	two	parts	and	
is	about	overestimation	of	effect	size	caused	by	publication	bias:	“How	much	is	effect	
size	overestimated	by	publication	bias?”	(3a),	and	“What	characteristics	of	a	meta‐
analysis	predict	overestimation?”	(3b).	
		 The	hypotheses	as	well	as	our	planned	analyses	were	preregistered	(see	
https://osf.io/8y5ep/)	meaning	that	hypotheses	and	the	analysis	plan	were	specified	
before	the	data	were	analyzed.	Some	additional	analyses	were	conducted	that	were	
not	included	in	the	pre‐analysis	plan.	We	will	explicate	which	analyses	were	
exploratory	when	describing	these	analyses	and	their	results.	The	chapter	continues	
by	providing	an	overview	of	publication	bias	methods.	Next,	we	describe	the	criteria	
for	a	meta‐analysis	to	be	included	in	our	study.	Then	we	describe	how	the	data	of	
meta‐analyses	were	extracted	and	analyzed,	and	list	our	hypotheses.	Subsequently,	
we	provide	the	results	of	our	analyses	and	conclude	with	a	discussion.		

	



76	|	A 	 m e t a ‐ m e t a ‐ a n a l y s i s 	 	
	

 

4.1		 Publication	bias	methods	

		 Methods	for	examining	publication	bias	can	be	divided	into	two	groups:	
methods	that	assess	or	test	the	presence	of	publication	bias,	and	methods	that	
estimate	effect	sizes	corrected	for	publication	bias.	Methods	that	correct	effect	sizes	
for	publication	bias	usually	also	provide	a	confidence	interval	and	test	the	null	
hypothesis	of	no	effect	corrected	for	publication	bias.	Table	4.1	summarizes	the	
methods	together	with	their	characteristics	and	recommendations	on	when	to	use	
each	method.	The	last	column	of	the	table	lists	whether	the	method	is	included	in	our	
analyses.		

4.1.1		 Assessing	or	testing	publication	bias	

		 The	most	often	used	method	for	assessing	publication	bias	is	fail‐safe	N	
(Banks,	Kepes,	&	McDaniel,	2012;	Ferguson	&	Brannick,	2012).	This	method	estimates	
how	many	effect	sizes	with	a	zero	effect	size	have	to	be	added	to	a	meta‐analysis	for	
changing	a	statistically	significant	summary	effect	size	in	a	meta‐analysis	to	a	
nonsignificant	result	(Rosenthal,	1979).	Applying	the	method	is	discouraged,	because	
it	makes	the	unrealistic	assumption	that	all	nonsignificant	effect	sizes	are	equal	to	
zero,	does	not	take	study	sample	size	into	account,	and	focuses	on	statistical	
significance	and	not	on	the	magnitude	of	an	effect	that	is	of	substantial	importance	
(Becker,	2005;	Borenstein	et	al.,	2009).	
		 Another	popular	method	is	the	funnel	plot	(Light	&	Pillemer,	1984).	In	a	
funnel	plot,	the	effect	size	estimates	of	the	included	studies	in	a	meta‐analysis	are	
presented	on	the	x‐axis	and	some	measure	of	the	effect	sizes’	precision	is	displayed	on	
the	y‐axis.	The	left	panel	in	Figure	4.1	shows	a	funnel	plot	for	a	meta‐analysis	in	the	
systematic	review	by	Jürgens	and	Graudal	(2004)	studying	the	effect	of	sodium	intake	
on	different	health	outcomes.	Solid	circles	in	the	funnel	plot	indicate	studies’	Hedges’	g	
effect	sizes	(y‐axis)	and	their	standard	errors	or	precision	(x‐axis)	included	in	this	
meta‐analysis.	A	funnel	plot	illustrates	whether	small‐study	effects	are	present.	That	
is,	whether	there	is	a	relationship	between	effect	size	and	its	precision.	The	funnel	plot	
should	be	symmetric	and	resemble	an	inverted	funnel	in	the	absence	of	small‐study	
effects,	whereas	a	gap	in	the	funnel	indicates	that	small‐study	effects	exist.	Publication	
bias	is	one	of	the	causes	of	small‐study	effects	(Egger	et	al.,	1997),	but	funnel	plot	
asymmetry	is	often	interpreted	as	evidence	for	publication	bias	in	a	meta‐analysis.	
Small‐study	effects	can	also	be	caused	by,	for	instance,	researchers	basing	their	
sample	size	on	statistical	power	analyses	in	combination	with	heterogeneity	in	true	
effect	size	(see	supplemental	materials	of	Open	Science	Collaboration	[2015]	and	
Hedges	and	Vevea	[2005]).	In	this	case,	larger	true	effect	sizes	are	associated	with	
studies	using	smaller	sample	sizes,	resulting	in	funnel	plot	asymmetry.				
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Figure	4.1.	Funnel	plot	showing	the	relationship	between	the	observed	effect	size	(Hedges’	g;	
solid	circles)	and	its	standard	error	in	a	meta‐analysis	by	Jürgens	and	Graudal	(2004)	on	the	
effect	of	sodium	intake	on	Noradrenaline	(left	panel).	The	funnel	plot	in	the	right	panel	also	
includes	the	Hedges’	g	effect	sizes	that	are	imputed	by	the	trim	and	fill	method	(open	circles).	

		 Evaluating	whether	small‐study	effects	exist	by	eyeballing	a	funnel	plot	is	
rather	subjective	(Terrin	et	al.,	2005).	Hence,	Egger’s	regression	test	(Egger	et	al.,	
1997)	and	the	rank‐correlation	test	(Begg	&	Mazumdar,	1994)	were	developed	to	test	
whether	small‐study	effects	are	present	in	a	meta‐analysis.	Egger’s	regression	test	fits	
a	regression	line	through	the	observed	effect	sizes	in	the	funnel	plot,	and	evidence	for	
small‐study	effects	is	obtained	if	the	slope	of	this	regression	line	is	significantly	
different	from	zero.	The	rank‐correlation	test	computes	the	rank	correlation	
(Kendall’s	τ)	between	the	study’s	effect	sizes	and	their	precision	to	test	for	small‐
study	effects.	Drawback	of	these	funnel	plot	asymmetry	tests	is	that	statistical	power	
to	detect	publication	bias	is	low	especially	if	there	are	few	effect	sizes	in	a	meta‐
analysis	(Begg	&	Mazumdar,	1994;	Sterne	et	al.,	2000).	Hence,	these	methods	are	
recommended	to	be	only	applied	to	meta‐analyses	with	ten	or	more	effect	sizes	
(Sterne	et	al.,	2011).	
		 The	test	of	excess	significance	(TES)	compares	the	number	of	statistically	
significant	effect	sizes	in	a	meta‐analysis	with	the	expected	number	of	statistically	
significant	effect	sizes	(Ioannidis	&	Trikalinos,	2007b).	More	statistically	significant	
results	than	expected	indicate	that	some	effect	sizes	are	(possibly	because	of	
publication	bias)	missing	from	the	meta‐analysis.	Ioannidis	and	Trikalinos	(2007b)	
recommend	to	not	apply	the	method	if	heterogeneity	in	true	effect	size	is	present.	
Moreover,	the	TES	is	known	to	be	conservative	(Francis,	2013;	van	Assen	et	al.,	2015).			
		 Another	more	recently	developed	method	for	examining	publication	bias	is		
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the	p‐uniform	method	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	This	
method	is	based	on	the	statistical	principle	that	the	distribution	of	p‐values	at	the	true	
effect	size	is	uniform.	Since	in	the	presence	of	publication	bias	not	all	statistically	
nonsignificant	effect	sizes	get	published,	p‐uniform	discards	nonsignificant	effect	sizes	
and	computes	p‐values	conditional	on	being	statistically	significant.	These	conditional	
p‐values	should	be	uniformly	distributed	at	the	(fixed‐effect)	meta‐analytic	effect	size	
estimate	based	on	the	significant	and	nonsignificant	effect	sizes,	and	deviations	from	
the	uniform	distribution	signals	publication	bias.	P‐uniform’s	publication	bias	test	was	
compared	to	the	TES	in	a	simulation	study	(van	Assen	et	al.,	2015),	and	statistical	
power	of	p‐uniform	was	in	general	larger	than	the	TES	except	for	conditions	with	a	
true	effect	size	of	zero	in	combination	with	statistically	nonsignificant	studies	
included	in	a	meta‐analysis.	This	simulation	study	also	showed	that	Type	I	error	rate	
of	p‐uniform’s	publication	bias	test	was	too	low	if	the	true	effect	size	was	of	medium	
size.	Limitations	of	p‐uniform’s	publication	bias	test	are	that	it	assumes	that	the	true	
effect	size	is	homogeneous	(which	is	not	very	common,	see	for	instance	Higgins,	2008;	
Ioannidis	et	al.,	2006;	Stanley	&	Doucouliagos,	2014),	and	that	the	method	may	
inefficiently	use	the	available	information	by	discarding	statistically	nonsignificant	
effect	sizes	in	a	meta‐analysis.	

4.1.2		 Correcting	effect	sizes	for	publication	bias	

		 Publication	bias	tests	provide	evidence	about	the	presence	of	publication	bias	
in	a	meta‐analysis.	However,	statistical	power	of	publication	bias	tests	is	often	low	in	
practice	(Moreno,	Sutton,	Ades,	et	al.,	2009),	because	the	number	of	effect	sizes	in	a	
meta‐analysis	is	often	small.	For	instance,	the	median	number	of	effect	sizes	in	meta‐
analyses	published	in	the	Cochrane	Database	of	Systematic	Reviews	was	equal	to	3	
(Rhodes,	Turner,	&	Higgins,	2015;	Turner,	Jackson,	Wei,	Thompson,	&	Higgins,	2015).	
Furthermore,	the	magnitude	of	the	effect	after	correcting	for	publication	bias	is	more	
of	interest	from	an	applied	and	theoretical	perspective.		
		 The	most	popular	method	to	correct	for	publication	bias	in	a	meta‐analysis	is	
trim	and	fill	(Duval	&	Tweedie,	2000a,	2000b).	This	method	corrects	for	funnel	plot	
asymmetry	by	trimming	the	most	extreme	effect	sizes	from	one	side	of	the	funnel	plot	
and	filling	these	effect	sizes	in	the	other	side	of	the	funnel	plot	to	obtain	funnel	plot	
symmetry.	The	corrected	effect	size	estimate	is	obtained	by	computing	the	meta‐
analytic	estimate	based	on	the	observed	and	imputed	effect	sizes.	Trim	and	fill	can	
also	be	used	to	create	a	confidence	interval	and	test	the	null	hypothesis	of	no	effect	
after	adjusting	for	funnel	plot	asymmetry.	The	procedure	of	trim	and	fill	is	illustrated	
in	the	right	panel	of	Figure	4.1.	The	most	extreme	effect	sizes	from	the	right‐hand	side	
of	the	funnel	plot	are	trimmed	and	imputed	in	the	left‐hand	side	of	the	funnel	plot	
(open	circles	in	the	right	panel	of	Figure	4.1).	A	drawback	of	trim	and	fill	that	it	shares	
with	other	methods	based	on	the	funnel	plot,	is	that	it	corrects	for	small‐study	effects	
that	are	not	necessarily	caused	by	publication	bias.	Furthermore,	the	method	cannot	
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accurately	correct	for	publication	bias	when	the	true	effect	size	is	heterogeneous	(e.g.,	
Terrin	et	al.,	2003;	van	Assen	et	al.,	2015).	Simulation	studies	have	shown	that	results	
of	trim	and	fill	also	cannot	be	trusted	because	it	incorrectly	adds	studies	when	none	
are	missing	(Peters	et	al.,	2007;	Rothstein	&	Bushman,	2012;	Terrin	et	al.,	2003).	
Hence,	the	use	of	trim	and	fill	is	discouraged	(Moreno,	Sutton,	Ades,	et	al.,	2009;	
Simonsohn	et	al.,	2014a;	van	Assen	et	al.,	2015).	
		 The	PET‐PEESE	method	(Stanley	&	Doucouliagos,	2014)	is	an	extension	of	
Egger’s	regression	test	to	estimate	an	effect	size	in	a	meta‐analysis	corrected	for	
small‐study	effects.	PET‐PEESE	is	based	on	a	regression	analysis	where	the	observed	
effect	sizes	are	regressed	on	their	standard	errors	by	means	of	a	weighted	least	
squares	regression	with	the	inverse	of	the	effect	sizes’	sampling	variances	as	weights.	
If	the	intercept	is	not	significantly	different	from	zero,	the	estimate	of	the	intercept	is	
interpreted	as	the	effect	size	estimate	corrected	for	publication	bias.	The	estimate	of	
the	intercept	reflects	the	effect	size	estimate	in	a	study	with	a	standard	error	of	zero	
(i.e.,	a	study	with	an	infinite	sample	size).	However,	the	intercept	is	biased	if	the	
intercept	is	significantly	different	from	zero	(Stanley	&	Doucouliagos,	2014).	Hence,	in	
case	the	intercept	is	different	from	zero,	the	intercept	of	another	weighted	least	
squares	regression	analysis	(with	the	inverse	sampling	variances	as	weights)	is	
interpreted	as	the	effect	size	estimate.	Simulation	studies	have	shown	that	PET‐PEESE	
substantially	reduced	the	overestimation	caused	by	small‐study	effects	(Stanley	&	
Doucouliagos,	2014),	yet	also	that	it	is	unlikely	to	provide	reliable	results	when	based	
on	less	than	10	effect	sizes	(Stanley	et	al.,	2017).	
		 The	p‐uniform	method	can	also	be	used	for	estimating	effect	size	(and	a	
confidence	interval)	and	testing	the	null	hypothesis	of	no	effect	corrected	for	
publication	bias.	P‐uniform’s	effect	size	estimate	is	equal	to	the	effect	size	for	which	
the	p‐values	conditional	on	being	statistically	significant	are	uniformly	distributed.	A	
similar	method	that	uses	the	distribution	of	conditional	p‐values	for	estimating	effect	
size	in	the	presence	of	publication	bias	is	p‐curve	(Simonsohn	et	al.,	2014a).	This	
method	is	similar	to	the	p‐uniform	method,	but	differs	in	implementation	(for	a	
description	of	the	difference	between	the	two	methods	see	van	Aert,	Wicherts,	et	al.,	
2016).	A	limitation	of	p‐uniform	and	p‐curve	is	that	effect	sizes	are	overestimated	in	
the	presence	of	heterogeneity	in	true	effect	size	(van	Aert,	Wicherts,	et	al.,	2016).	
Especially	if	the	heterogeneity	in	true	effect	size	is	more	than	moderate	(I2	>	50%;	
more	than	half	of	the	total	variance	in	effect	size	is	caused	by	heterogeneity)	both	
methods	overestimate	the	effect	size,	and	their	results	should	be	interpreted	as	a	
sensitivity	analysis.	Another	limitation	of	both	methods	is	that	they	are	not	efficient	if	
many	nonsignificant	effect	sizes	exist.	Such	results	are	discarded	by	the	methods,	
yielding	imprecise	estimates	and	wide	confidence	intervals	of	p‐uniform	(p‐curve	does	
not	estimate	a	confidence	interval).	Yet,	p‐uniform	and	p‐curve	both	outperformed	
trim	and	fill	in	simulation	studies	(Simonsohn	et	al.,	2014a;	van	Assen	et	al.,	2015).	
		 A	selection	model	approach	(Hedges	&	Vevea,	2005)	can	also	be	used	for	
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estimating	effect	size	corrected	for	publication	bias.	A	selection	model	makes	
assumptions	on	the	distribution	of	effect	sizes	(i.e.,	effect	size	model)	and	the	
mechanism	that	determines	which	studies	are	selected	(for	publication)	and	hence	
observed	(i.e.,	selection	model).	The	effect	size	estimate	(and	confidence	interval)	
corrected	for	publication	bias	is	obtained	by	combining	the	effect	size	and	selection	
model.	Many	different	selection	model	approaches	exist	(e.g.,	Copas,	1999;	Dear	&	
Begg,	1992;	Hedges,	1984,	1992;	Iyengar	&	Greenhouse,	1988a;	Vevea	&	Hedges,	
1995).	Some	approaches	estimate	the	selection	model	(Iyengar	&	Greenhouse,	1988a;	
Vevea	&	Hedges,	1995)	whereas	others	assume	a	known	selection	model	(Vevea	&	
Woods,	2005).	A	recently	proposed	selection	model	approach	(Guan	&	
Vandekerckhove,	2015)	estimates	effect	size	corrected	for	publication	bias	by	using	
Bayesian	model	averaging	over	multiple	selection	models.	Selection	model	
approaches	are	hardly	used	in	practice,	because	they	require	sophisticated	
assumptions	and	choices	(Borenstein	et	al.,	2009)	and	a	large	number	of	effect	sizes	
(more	than	100)	to	avoid	convergence	problems	(Field	&	Gillett,	2010;	Terrin	et	al.,	
2003).	However,	two	recent	simulation	studies	(Carter	et	al.,	2017;	McShane	et	al.,	
2016)	included	the	three‐parameter	selection	model	approach	by	Iyengar	and	
Greenhouse	(Iyengar	&	Greenhouse,	1988a,	1988b)	and	showed	that	convergence	
problems	of	this	approach	were	limited	to	conditions	including	only	10	studies,	or	to	
conditions	with	extreme	publication	bias.			 	
		 Stanley	et	al.	(2010)	proposed	to	correct	for	publication	bias	in	the	effect	size	
estimate	by	computing	the	unweighted	mean	of	the	10%	most	precise	observed	effect	
sizes,	or	the	single	most	precise	study	when	there	are	fewer	than	ten	effect	sizes.	The	
rationale	underlying	only	using	the	10%	most	precise	observed	effect	sizes	is	that	
these	primary	studies’	effect	sizes	are	less	affected	by	publication	bias	than	the	90%	
less	precise	discarded	effect	sizes.	We	propose	to	do	not	combine	the	10%	most	
precise	observed	effect	sizes	with	an	unweighted	mean,	but	with	a	random‐effects	
model	to	take	differences	in	primary	studies’	sampling	variances	and	heterogeneity	in	
true	effect	size	into	account.	A	disadvantage	of	this	method	is	that	it	is	not	efficient,	
leading	to	imprecise	estimates	and	wider	confidence	intervals	than	estimation	based	
on	all	effect	sizes	since	up	to	90%	of	the	data	is	discarded.	Moreover,	bias	in	the	
method’s	estimates	increases	as	a	function	of	the	heterogeneity	in	true	effect	size	
(Stanley	et	al.,	2010).		

4.2		 Methods	

4.2.1		 Data	

		 A	large‐scale	data	set	was	created	with	meta‐analyses	published	between	
2004	and	2014	in	Psychological	Bulletin	and	in	the	Cochrane	Library	to	study	the	
extent	and	prevalence	of	publication	bias	in	psychology	and	medicine.	Psychological	
Bulletin	was	selected	to	represent	meta‐analyses	in	psychology,	because	this	journal	
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publishes	many	meta‐analyses	on	a	variety	of	topics	from	psychology.	Meta‐analyses	
published	in	the	Cochrane	Database	of	Systematic	Reviews	(CDSR)	of	the	Cochrane	
Library	were	used	to	represent	medicine.	This	database	is	a	collection	of	peer‐
reviewed	systematic	reviews	conducted	in	the	field	of	medicine.		
		 A	first	requirement	for	the	inclusion	of	a	meta‐analysis	was	that	either	fixed‐
effect	or	random‐effects	meta‐analysis	had	to	be	used	in	the	meta‐analysis	(i.e.,	no	
other	meta‐analytic	methods	as,	for	instance,	meta‐analytic	structural	equation	
modelling	or	multilevel	meta‐analysis).	Another	requirement	was	that	sufficient	
information	in	the	meta‐analysis	had	to	be	available	to	compute	the	primary	study’s	
standardized	effect	size	and	its	sampling	variance.	The	same	effect	size	measure	(e.g.,	
correlation	and	standardized	mean	difference)	as	in	the	original	meta‐analysis	was	
used	to	compute	the	primary	study’s	effect	size	and	its	sampling	variance.	Formulas	as	
described	in	Borenstein	(2009),	Fleiss	and	Berlin	(2009),	and	Viechtbauer	(2007a)	
were	used	for	computing	the	standardized	effect	sizes	and	their	sampling	variances.	
For	each	included	primary	study,	we	extracted	information	on	effect	size	and	
sampling	variance,	as	well	as	information	on	all	categorical	moderator	variables.	
Based	on	these	moderators,	we	created	homogeneous	subsets	of	effect	sizes.	That	is,	a	
homogeneous	subset	consisted	of	the	effect	sizes	that	had	the	same	scores	on	all	the	
extracted	moderators.	Consequently,	each	meta‐analysis	could	contain	more	than	one	
subset	of	effect	sizes	if	multiple	homogeneous	subsets	were	extracted	based	on	the	
included	moderators.			
		 We	only	included	subsets	with	less	than	moderate	heterogeneity	(I2<50%,	i.e.,	
less	than	half	of	the	total	variance	in	effect	sizes	is	caused	by	residual	heterogeneity	in	
true	effect	size)	(Higgins,	Thompson,	Deeks,	&	Altman,	2003),	because	none	of	the	
publication	bias	methods	has	desirable	statistical	properties	under	extreme	
heterogeneity	in	true	effect	size	(Ioannidis	&	Trikalinos,	2007a,	2007b;	van	Aert,	
Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	Different	effect	size	measures	were	
sometimes	used	within	a	meta‐analysis.	This	may	cause	heterogeneity	in	a	meta‐
analysis,	so	the	type	of	effect	size	measure	was	also	used	for	creating	homogeneous	
subsets.	Publication	bias	tests	have	low	statistical	power	(e.g.,	Begg	&	Mazumdar,	
1994;	Macaskill,	Walter,	&	Irwig,	2001;	van	Assen	et	al.,	2015)	if	the	number	of	effect	
sizes	in	a	meta‐analysis	is	small.	Hence,	another	criterion	for	including	a	subset	in	the	
analyses	was	that	a	subset	should	contain	at	least	five	effect	sizes.		
	 We	searched	within	the	journal	Psychological	Bulletin	for	meta‐analyses	
published	between	2004	and	2014	by	using	the	search	terms	“meta‐analy*”	and	not	
“comment”,	“note”,	“correction”,	and	“reply”	in	the	article’s	title.	This	search	resulted	
in	137	meta‐analyses	that	were	published	between	2004	and	2014	and	that	were	
eligible	for	inclusion.	A	flowchart	is	presented	in	Figure	4.2	describing	the	data	
extraction	for	the	meta‐analyses	published	in	Psychological	Bulletin.	Eighty‐three	
meta‐analyses	met	the	inclusion	criteria	and	could	be	included	since	the	data	were	
available	in	the	paper	or	were	obtained	by	emailing	the	corresponding	author.	Data	of	
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these	meta‐analyses	were	extracted	by	hand	and	resulted	in	9,568	subsets.	Data	from	
a	random	sample	of	10%	of	the	included	meta‐analyses	was	extracted	a	second	time	
by	a	different	researcher	to	verify	the	procedure	of	extracting	data.	Four	additional	
subsets	were	excluded	after	verifying	the	data,	because	these	subsets	were	
heterogeneous	instead	of	homogeneous.	After	excluding	subsets	with	less	than	five	
effect	sizes	and	heterogeneous	subsets,	a	total	number	of	366	subsets	from	83	meta‐
analyses	were	available	for	the	analyses.		
		 Data	of	all	systematic	reviews	in	the	CDSR	are	stored	online	in	a	standardized	
format,	and	data	of	these	reviews	can	therefore	be	extracted	by	an	automated	
procedure.	We	used	the	Cochrane	scraper	developed	by	Springate	and	Kontopantelis	
(2014)	to	automatically	extract	data	from	systematic	reviews.	The	total	number	of	
meta‐analyses	in	the	CDSR	is	larger	than	in	Psychological	Bulletin,	so	we	drew	a	
simple	random	sample	without	replacement	of	systematic	reviews	from	the	CDSR	to	
represent	meta‐analyses	published	in	medicine.	Each	systematic	review	in	the	
database	has	an	identification	number.	We	sampled	identification	numbers,	extracted	
subsets	from	the	sampled	systematic	review,	and	included	a	subset	in	our	study	if	(i)	
I2<50%,	(ii)	the	number	of	effect	sizes	in	a	subset	was	at	least	five,	and	(iii)	the	subset	
was	independent	of	previous	included	subsets	(i.e.,	no	overlap	between	effect	sizes	in	
different	subsets).	We	continued	sampling	systematic	reviews	and	extracting	subsets	
till	the	same	number	of	eligible	subsets	for	inclusion	were	obtained	as	extracted	from	
Psychological	Bulletin	(366).	Data	and/or	descriptions	of	the	data	of	the	meta‐
analyses	are	available	at	https://osf.io/9jqht/.	The	next	section	describes	how	the	
research	questions	were	answered,	and	how	the	variables	were	measured.	

4.3		 Analysis	

		 Prevalence	of	publication	bias.	The	prevalence	of	publication	bias	in	
subsets	from	psychology	and	medicine	was	examined	to	answer	research	question	1	
by	using	the	methods	listed	in	the	last	column	of	Table	4.1.	Egger’s	test	and	the	rank‐
correlation	test	were	used	in	the	analyses	to	test	for	funnel	plot	asymmetry	instead	of	
eyeballing	a	funnel	plot.	P‐uniform’s	publication	bias	test	can	be	applied	to	observed	
effect	sizes	in	a	subset	that	are	either	significantly	smaller	or	larger	than	zero.	Hence,	
p‐uniform	was	applied	to	negative	or	positive	statistically	significant	effect	sizes	in	a	
subset	depending	on	where	the	majority	of	statistically	significant	effect	sizes	was	
observed	(using	a	two‐tailed	hypothesis	test	with	α=.05).	The	estimator	based	on	the	
Irwin‐Hall	distribution	was	used	for	p‐uniform,	because	this	estimator	seems	to	have	
the	best	statistical	properties	and	provides	a	confidence	interval	(van	Aert,	Wicherts,	
et	al.,	2016).	Publication	bias	tests	have	low	statistical	power,	so	we	followed	a	
recommendation	by	Egger	et	al.	(1997)	to	conduct	two‐tailed	hypothesis	tests	with	
α=.1	for	all	methods.	Unintentionally,	one‐tailed	p‐values	of	p‐uniform’s	publication	
bias	test	were	computed	in	the	preregistered	R	code	for	subsets	of	CDSR	instead	of	the	
intended	two‐tailed	p‐values.	Since	two‐tailed	p‐values	were	computed	for	all	the		
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Figure	4.2.	Flowchart	illustrating	the	extraction	procedure	of	data	from	meta‐analyses	
published	in	Psychological	Bulletin	between	2004	and	2014.	
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publication	bias			

Meta‐analyses	
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other	publication	bias	tests	were	computed,	we	corrected	the	pre‐registered	R	code	
such	that	two‐tailed	p‐values	were	also	computed	for	p‐uniform’s	publication	bias		
test.	
		 We	answered	research	question	1a	about	the	prevalence	of	publication	bias	in	
meta‐analyses	published	in	Psychological	Bulletin	and	CDSR	by	counting	how	often	
each	method	rejected	the	null	hypothesis	of	no	publication	bias.	Agreement	among	the	
publication	bias	tests	was	examined	by	computing	Loevinger’s	H	values	(Loevinger,	
1948)	for	each	combination	of	two	methods.	Loevinger’s	H	is	a	statistic	to	quantify	the	
association	between	two	dichotomous	variables	(i.e.,	statistically	significant	or	not).	
The	maximum	value	of	Loevinger	H	is	1	indicating	a	perfect	association	where	the	
minimum	value	depends	on	characteristics	of	the	data.	For	subsets	with	no	
statistically	significant	effect	sizes,	p‐uniform	could	not	be	applied,	so	we	computed	
the	association	between	the	results	of	p‐uniform	and	other	methods	only	for	subsets	
with	statistically	significant	effect	sizes.	
		 We	studied	whether	publication	bias	was	more	prevalent	in	subsets	from	
Psychological	Bulletin	and	CDSR	(research	question	1b)	by	conducting	for	each	
publication	bias	test	a	logistic	regression	with	as	dependent	variable	whether	a	
publication	bias	test	was	statistically	significant	or	not	and	as	predictor	a	dummy	
variable	indicating	whether	a	subset	was	obtained	from	Psychological	Bulletin	or	
CDSR	(reference	category).	The	number	of	effect	sizes	in	a	subset	(or	statistically	
significant	effect	sizes	for	p‐uniform)	was	included	as	control	variable,	because	
statistical	power	of	publication	bias	tests	depends	on	the	number	of	effect	sizes	in	a	
subset	and	the	number	of	effect	sizes	in	subsets	from	meta‐analyses	published	in	
Psychological	Bulletin	and	CDSR	were	expected	to	differ.	We	hypothesized	that	
publication	bias	would	be	more	severe	in	subsets	from	Psychological	Bulletin	than	
CDSR	after	controlling	for	the	number	of	effect	sizes	in	a	subset	(or	number	of	
statistically	significant	effect	sizes	for	p‐uniform).	This	relationship	was	expected	
because	medical	researchers	have	been	longer	aware	of	the	consequences	of	
publication	bias	whereas	broad	awareness	of	publication	bias	recently	originated	in	
psychology.	One‐tailed	hypothesis	tests	with	α=.05	were	used	for	answering	research	
question	1b.	
		 Predicting	effect	size	estimation.	Characteristics	of	subsets	were	used	to	
predict	the	estimates	of	random‐effects	meta‐analysis	and	estimates	of	p‐uniform	in	
research	question	2.	All	effect	sizes	and	their	sampling	variances	were	transformed	to	
Cohen’s	d	to	enable	interpretation	of	the	results	by	using	the	formulas	in	section	12.5	
of	(Borenstein,	2009).	If	Cohen’s	d	and	their	sampling	variances	could	not	be	
computed	based	on	the	available	information,	Hedges’	g	was	used	as	an	
approximation	of	Cohen’s	d	(6.4%	of	all	subsets).		
		 Random‐effects	meta‐analysis	was	used	to	estimate	the	effect	size	rather	than	
fixed‐effect	meta‐analysis.	Random‐effects	meta‐analysis	assumes	that	there	is	no	
single	fixed	true	effect	underlying	each	effect	size	(Raudenbush,	2009),	and	was	
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preferred	over	fixed‐effect	meta‐analysis	because	a	small	amount	of	heterogeneity	in	
true	effect	size	could	be	present	in	the	subsets.	The	Paule‐Mandel	estimator	(Paule	&	
Mandel,	1982)	was	used	in	random‐effects	meta‐analysis	for	estimating	the	amount	of	
between‐study	variance	in	true	effect	size	since	this	estimator	has	the	best	statistical	
properties	in	most	situations	(Langan	et	al.,	2016;	Veroniki	et	al.,	2016).	Effect	sizes	
corrected	for	publication	bias	were	estimated	with	p‐uniform	and	based	on	the	10%	
most	precise	observed	effect	sizes	(see	last	column	of	Table	4.1).	Estimation	based	on	
the	10%	most	precise	observed	effect	sizes	was	included	as	an	exploratory	analysis	to	
examine	whether	estimates	of	p‐uniform	were	in	line	with	another	method	to	correct	
effect	sizes	for	publication	bias.	If	the	number	of	observed	effect	sizes	in	a	subset	was	
smaller	than	ten,	the	most	precise	estimate	was	interpreted	as	estimate	of	the	10%	
most	precise	observed	effect	sizes.	When	applying	p‐uniform,	we	used	the	estimator	
based	on	the	Irwin‐Hall	distribution	and	two‐tailed	hypothesis	tests	in	the	primary	
studies	(with	α=.05).	The	underlying	true	effect	size	in	a	subset	can	be	either	positive	
or	negative.	Hence,	the	dependent	variables	of	these	analyses	were	the	absolute	
values	of	the	estimates	of	random‐effects	meta‐analysis	and	p‐uniform.	
		 Selection	model	approaches	and	PET‐PEESE	methods	were	not	incorporated	
in	the	analyses,	because	the	number	of	effect	sizes	included	in	meta‐analyses	in	
medicine	is	often	too	small	for	these	methods.	Selection	model	approaches	suffer	from	
convergence	problems	when	applied	to	data	with	these	characteristics	(e.g.,	Carter	et	
al.,	2017;	Field	&	Gillett,	2010),	and	PET‐PEESE	is	not	recommended	to	be	used	since	
it	yields	unreliable	results	if	there	are	less	than	10	observed	effect	sizes	(Stanley	et	al.,	
2017).	P‐uniform	was	preferred	over	trim	and	fill	and	p‐curve,	because	applying	trim	
and	fill	is	discouraged	(Moreno,	Sutton,	Ades,	et	al.,	2009;	Simonsohn	et	al.,	2014a;	van	
Assen	et	al.,	2015)	and	because	p‐curve	is	not	able	to	estimate	a	confidence	interval	
around	its	effect	size	estimate.		
	 Two	weighted	least	squares	(WLS)	regressions	were	performed	with	as	
dependent	variables	the	absolute	values	of	the	effect	size	estimates	of	either	random‐
effects	meta‐analysis	or	p‐uniform.	Since	we	meta‐analyzed	the	effect	sizes	estimated	
with	meta‐analysis	methods,	we	refer	to	these	analyses	as	meta‐meta‐regressions.	The	
inverse	of	the	variance	of	a	random‐effects	model	was	selected	as	weight	in	both	
meta‐meta‐regressions,	because	it	is	a	function	of	both	the	sample	size	of	the	primary	
studies	and	the	number	of	effect	sizes	in	a	subset.	P‐uniform	can	only	be	applied	to	
subsets	with	statistically	significant	effect	sizes,	so	the	meta‐meta‐regression	with	the	
effect	size	estimates	of	p‐uniform	as	dependent	variable	was	only	based	on	these	
subsets.		
		 We	included	five	predictors	in	the	meta‐meta	regressions.	The	predictors	and	
the	hypothesized	relationships	are	listed	in	the	first	two	columns	of	Table	4.2.	The	
meta‐meta‐analytic	effect	size	estimate	was	expected	to	be	larger	in	subsets	from	
Psychological	Bulletin,	because	publication	bias	was	expected	to	be	more	severe	in	
psychology	than	medicine.	No	relationship	was	hypothesized	between	the	I2‐statistic	
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and	the	meta‐analytic	effect	size	estimate,	because	heterogeneity	can	be	either	over‐	
or	underestimated	depending	on	the	extent	of	publication	bias	(Augusteijn	et	al.,	
2017;	Jackson,	2006).	Primary	studies’	precision	in	a	subset	was	operationalized	by	
computing	the	harmonic	mean	of	the	primary	studies’	standard	error.	A	negative	
relationship	was	expected	between	primary	studies’	precision	and	the	meta‐analytic	
estimate,	because	less	precise	effect	size	estimates	(i.e.,	larger	standard	errors)	were	
expected	to	be	accompanied	by	more	bias	and	hence	larger	meta‐analytic	effect	size	
estimates.	The	proportion	of	statistically	significant	effect	sizes	in	a	subset	was	
expected	to	have	a	positive	relationship	on	the	meta‐analytic	effect	size	estimate,	
because	effect	sizes	with	the	same	sample	size	that	are	statistically	significant	are	
larger	than	statistically	nonsignificant	effect	sizes.	The	predictor	indicating	the	
number	of	effect	sizes	in	a	subset	was	included	to	control	for	differences	in	the	
number	of	studies	in	a	meta‐analysis,	but	no	effect	was	expected.	

Table	4.2.	Hypotheses	between	predictors	and	effect	size	estimate	based	on	random‐effects	
model,	p‐uniform,	and	overestimation	in	effect	size	when	comparing	estimate	of	the	random‐
effects	model	with	p‐uniform	(Y).	

	 Hypotheses	

Predictor	 Random‐effects	model	 p‐uniform	 Overestimation	(Y)	

Discipline	 Larger	estimates	in	
subsets	from	
Psychological	Bulletin	

No	specific	
expectation	

Overestimation	more	
severe	in	
Psychological	Bulletin	

I2‐statistic	 No	relationship	 Positive	
relationship	

Negative	relationship	

Primary	studies’	
precision	

Negative	relationship	 No	relationship	 Negative	relationship	

Proportion	of	
significant	effect	
sizes	

Positive	relationship	 No	specific	
expectation	

No	specific	
expectation	

	

The	hypotheses	concerning	the	effects	in	the	meta‐meta	regression	on	p‐
uniform’s	estimates	are	presented	in	the	third	column	of	Table	4.2.	No	hypothesis	was	
specified	for	the	effect	of	discipline	since	p‐uniform	is	supposed	to	correct	for	possible	
differences	between	both	disciplines	in	effect	sizes	due	to	publication	bias.	We	
expected	a	positive	relationship	with	the	I2‐statistic,	because	p‐uniform	overestimates	
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the	true	effect	size	in	the	presence	of		heterogeneity	in	true	effect	size	(van	Aert,	
Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	No	specific	relationship	was	predicted	
with	primary	studies’	precision	as	p‐uniform	is	supposed	to	correct	for	publication	
bias.	A	specific	relationship	was	also	not	hypothesized	for	the	effect	of	the	proportion	
of	statistically	significant	effect	sizes	in	a	subset.	Many	statistically	significant	effect	
sizes	in	a	subset	suggest	that	the	studied	effect	size	is	large,	sample	size	of	the	primary	
studies	were	large,	or	there	was	severe	publication	bias	in	combination	with	many	
conducted	(but	not	published)	primary	studies.	These	partly	opposing	effects	might	
cancel	each	other	out	or	yield	a	positive	or	a	negative	relationship.	The	number	of	
effect	sizes	in	a	subset	was	again	included	as	control	variable.	
	 The	effect	size	estimate	of	p‐uniform	can	become	extremely	positive	or	
negative	if	there	are	multiple	p‐values	just	below	the	α‐level	(van	Aert,	Wicherts,	et	al.,	
2016;	van	Assen	et	al.,	2015).	These	outliers	may	affect	the	results	of	the	meta‐meta‐
regression	with	p‐uniform’s	estimate	as	dependent	variable.	Hence,	we	used	quantile	
regression	(Koenker,	2005)	as	a	sensitivity	analysis,	because	this	procedure	is	less	
influenced	by	outliers	in	the	dependent	variable.	In	these	quantile	regressions,	the	
predictors	were	regressed	on	the	median	of	the	estimates	of	p‐uniform.	
		 Overestimation	of	effect	size.		Estimates	of	random‐effects	meta‐analysis	
and	p‐uniform	obtained	for	answering	research	question	2	were	used	to	examine	the	
overestimation	caused	by	publication	bias.	It	is	possible	that	estimates	of	the	meta‐
analysis	and	p‐uniform	have	opposite	signs	(i.e.,	negative	estimate	of	p‐uniform	and	
positive	meta‐analytic	estimate	or	the	other	way	around).	An	effect	size	estimate	of	p‐
uniform	in	the	opposite	direction	than	the	meta‐analytic	estimate	is	often	unrealistic,	
because	this	suggests	that,	for	instance,	a	negative	true	effect	size	results	in	multiple	
positive	observed	effect	sizes.	Effect	size	estimates	in	opposing	directions	by	meta‐
analysis	and	p‐uniform	may	be	caused	by	many	p‐values	just	below	α‐level	(van	Aert,	
Wicherts,	et	al.,	2016).	Hence,	p‐uniform’s	estimate	was	set	equal	to	zero	in	these	
situations.	Setting	p‐uniform’s	estimate	to	zero	when	its	sign	is	opposite	to	that	of	
random‐effects	meta‐analysis	is	in	line	with	the	recommendation	in	van	Aert,	
Wicherts,	et	al.	(2016).	
		 A	new	variable	Y	was	created	to	reflect	the	overestimation	of	random‐effects	
meta‐analysis	when	compared	with	p‐uniform.	If	the	meta‐analytic	estimate	was	
larger	than	zero,	Y=MA‐corrected	where	“MA”	is	the	meta‐analytic	estimate	and	
“corrected”	is	the	estimate	of	p‐uniform.	If	the	meta‐analytic	estimate	was	smaller	
than	zero,	Y=‐MA+corrected.	Variable	Y	was	zero	if	the	estimates	of	p‐uniform	and	
meta‐analysis	were	the	same,	positive	if	p‐uniform’s	effect	size	estimate	was	closer	to	
zero	than	the	meta‐analytic	estimate	(if	they	originally	had	the	same	sign),	and	
negative	if	p‐uniform’s	estimate	was	farther	away	from	zero	than	the	meta‐analytic	
estimate	(if	they	originally	had	the	same	sign).	The	Y	variable	was	computed	for	each	
subset	with	statistically	significant	effect	sizes,	and	we	computed	the	mean	and	
median	of	Y	for	subsets	from	Psychological	Bulletin	and	CDSR	in	order	to	get	an	
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overall	estimate	of	the	amount	of	overestimation	in	effect	size	(research	question	3a).	
		 To	answer	research	question	3b,	we	carried	out	meta‐meta	regressions	on	Y	
with	the	inverse	of	the	variance	of	the	random‐effects	meta‐analytic	estimate	as	
weights.	We	used	the	predictors	that	we	also	included	in	research	question	2.	The	
hypothesized	relationships	are	summarized	in	the	fourth	column	of	Table	4.2.	A	larger	
value	on	Y	was	expected	for	subsets	from	Psychological	Bulletin	than	CDSR,	because	
overestimation	was	expected	to	be	more	severe	in	psychology	than	in	medicine.	We	
hypothesized	a	negative	relation	between	the	I2‐statistic	and	Y,	because	p‐uniform	
overestimates	the	effect	size	in	the	presence	of	heterogeneity	in	true	effect	size	(van	
Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	Primary	studies’	precision	was	
hypothesized	to	be	negatively	related	to	Y,	because	overestimation	of	the	meta‐
analytic	estimate	was	expected	to	decrease	as	a	function	of	primary	studies’	precision.	
We	had	no	specific	expectations	on	the	relationships	between	the	number	of	effect	
sizes	in	a	subset	and	the	proportion	of	statistically	significant	effect	sizes	in	a	subset.	
Although	a	positive	effect	of	this	proportion	on	the	meta‐analytic	effect	size	estimate	
was	expected,	the	effect	of	the	proportion	on	p‐uniform’s	estimate	was	unclear.	We	
included	the	number	of	effect	sizes	in	a	subset	in	the	meta‐meta‐regression	as	a	
control	variable.	
	 Estimates	of	p‐uniform	that	were	in	the	opposite	direction	than	traditional	
meta‐analysis	were	set	equal	to	zero	before	computing	the	Y	variable.	This	may	have	
affected	the	results	of	the	meta‐meta‐regression	since	the	dependent	variable	Y	did	
not	follow	a	normal	distribution.	Hence,	quantile	regression	(Koenker,	2005)	was	
used	as	sensitivity	analysis	with	the	median	of	Y	as	dependent	variable	instead	of	the	
mean	of	Y	in	the	meta‐meta	regression.		

4.4		 Results	

4.4.1		 Descriptive	statistics	

The	total	number	of	included	subsets	was	732	(366	representing	
Psychological	Bulletin	and	366	representing	CDSR).	Table	4.3	shows	descriptive	
results	(number	of	effect	sizes,	primary	study	sample	sizes,	and	positive	and	negative	
meta‐analytic	effect	size	estimates)	of	applying	random‐effects	meta‐analysis,	p‐
uniform,	and	random‐effects	meta‐analysis	based	on	the	10%	most	precise	observed	
effect	sizes.		
		 The	number	of	effect	sizes	in	subsets	was	similar	in	Psychological	Bulletin	and	
CDSR.	The	majority	of	subsets	contained	less	than	10	effect	sizes	(third	quartile	9	for	
Psychological	Bulletin	and	8	for	CDSR)	meaning	that	the	characteristics	of	the	subsets	
were	very	tough	for	publication	bias	methods.	Statistical	power	of	publication	bias	is	
low	in	these	conditions	(Begg	&	Mazumdar,	1994;	Sterne	et	al.,	2000)	and	effect	size	
estimates	corrected	for	publication	bias	are	imprecise	(van	Aert,	Wicherts,	et	al.,	2016;	
van	Assen	et	al.,	2015).	The	number	of	statistically	significant	effect	sizes	in	the		
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Table	4.3.	Median	number	of	effect	sizes	and	median	of	average	sample	size	per	subset	and	
effect	size	estimates	when	the	subsets	were	analyzed	with	random‐effects	meta‐analysis,	p‐
uniform,	and	random‐effects	meta‐analysis	based	on	the	10%	most	precise	effect	sizes.	

	 	 RE	meta‐analysis	 p‐uniform	 10%	most	precise	

Psychological	Bulletin	 	 	

	 Median	(IQR)	number	of	
effect	sizes	

6	(5;9)	 1	(0;4)	 1	(1;1)	

	 Median	(IQR)	sample	
size	

97.8		
(52.4;173.2)	

109	
(56.5;206.2)	

207.3	(100;466)	

Positive	RE	meta‐analysis	estimates:	 	 	

	 Mean,	median,	
[min.;max.],	(SD)	of	
estimates	

0.332,	0.279,	
[0;1.456]		
(0.264)	

‐0.168,	0.372,	[‐
21.584;1.295]	
(2.367)	

0.283,	0.22,	[‐
0.629;1.34]	
(0.289)	

Negative	RE	meta‐analysis	estimates:	 	 	

	 Mean,	median,	
[min.;max.],	(SD)	of	
estimates	

‐0.216,	‐0.123,	[‐
1.057;‐0.002]	
(0.231)	

‐0.041,	‐0.214,	[‐
5.166;13.845]	
(1.84)	

‐0.228,	‐0.204,	[‐
0.972;0.181]	
(0.247)	

CDSR	 	 	

	 Median	(IQR)	number	of	
effect	sizes	

6	(5;8)	 1	(0;2)		 1	(1;1)	

	 Median	(IQR)	sample	
size	

126.6		
(68.3;223.3)	

123.3	
(71.9;283.5)	

207		
(101.2;443)	

Positive	RE	meta‐analysis	estimates:	 	 	

	 Mean,	median,	
[min.;max.],	(SD)	of	
estimates	

0.304,	0.215,	
[0.001;1.833]	
(0.311)	

‐1.049,	0.323,	[‐
60.85;1.771]	
(6.978)	

0.284,	0.201,	[‐
0.709;1.757]	
(0.366)	

Negative	RE	meta‐analysis	estimates:	 	 	

	 Mean,	median,	
[min.;max.],	(SD)	of	
estimates	

‐0.267,	‐0.19,		
[‐1.343;0]	
(0.253)	

1.51,	‐0.239,		
[‐1.581;163.53]	
(15.064)	

‐0.214,	‐0.182,	[‐
1.205;0.644]	
(0.286)	

Note.	RE	meta‐analysis	is	random‐effects	meta‐analysis,	IQR	is	the	interquartile	range,	min.	is	
the	minimum	value,	max.	is	the	maximum	value,	SD	is	the	standard	deviation,	and	CDSR	is	
Cochrane	Database	of	Systematic	Reviews.	
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subsets	based	on	a	two‐tailed	hypothesis	test	with	α=.05	was	also	small	(listed	in	
column	with	results	of	p‐uniform).	The	median	number	of	statistically	significant	
effect	sizes	in	the	subsets	was	1	for	both	Psychological	Bulletin	and	CDSR.	Moreover,	
267	(73%)	of	the	subsets	from	Psychological	Bulletin	and	214	(58.5%)	of	the	subsets	
from	CDSR	contained	at	least	one	statistically	significant	effect	size.	Hence,	p‐uniform	
could	only	be	applied	to	481	(65.7%)	of	the	subsets.	Of	these	subsets	180	(37.4%)	
included	only	one	statistically	significant	effect	size,	so	the	characteristics	of	the	
subsets	were	very	challenging	for	p‐uniform.	The	median	and	interquartile	range	of	
the	10%	most	precise	effect	size	estimates	were	all	equal	to	one,	and	estimates	of	this	
method	were	for	676	(92.3%)	subsets	based	on	only	one	effect	size.	
		 The	median	of	the	average	sample	size	per	subset	was	slightly	larger	for	CDSR	
(126.6)	than	for	Psychological	Bulletin	(97.8).	The	interquartile	range	of	average	
sample	size	within	subsets	from	CDSR	(68.3;	223.3)	was	also	larger	than	for	subsets	
from	Psychological	Bulletin	(52.4;173.2).	Psychological	Bulletin	and	CDSR	showed	
small	differences	in	the	median	and	interquartile	range	of	the	average	sample	size	in	
subsets	from	if	computed	based	on	only	the	statistically	significant	effect	sizes	(p‐
uniform)	or	the	10%	most	precise	effect	size	estimates.	
	 Results	of	estimating	effect	size	in	subsets	with	random‐effects	meta‐analysis,	
p‐uniform,	and	random‐effects	meta‐analysis	based	on	the	10%	most	precise	
observed	effect	sizes	(exploratory	analysis)	are	also	included	in	Table	4.3.	To	increase	
interpretability	of	the	results,	estimates	were	grouped	depending	on	whether	the	
effect	size	estimate	of	random‐effects	meta‐analysis	was	positive	or	negative.	The	
mean	and	median	of	the	effect	size	estimates	of	random‐effects	meta‐analysis	and	
those	based	on	the	10%	most	precise	observed	effect	sizes	were	highly	similar	
(difference	at	most	0.053).	However,	estimates	of	p‐uniform	deviated	from	the	other	
two	methods,	because	p‐uniform’s	estimates	were	in	some	subsets	very	positive	or	
negative	(i.e.,	4	estimates	were	larger	than	10	and	7	estimates	were	smaller	than	‐10)	
due	to	p‐values	of	the	primary	studies’	effect	sizes	close	to	the	α‐level.	Consequently,	
the	standard	deviation	and	range	of	the	estimates	of	p‐uniform	were	larger	than	of	
random‐effects	meta‐analysis	and	based	on	the	10%	most	precise	observed	effect	
sizes.	

4.4.2		 Prevalence	of	publication	bias	

		 Table	4.4	shows	the	results	of	applying	Egger’s	regression	test,	the	rank‐
correlation	test,	p‐uniform’s	publication	bias	test,	and	the	TES	to	examine	the	
prevalence	of	publication	bias	in	the	meta‐analyses.	The	panels	in	Table	4.4	illustrate	
how	often	each	publication	bias	test	was	statistically	significant	(marginal	frequencies	
and	percentages)	and	also	the	agreement	among	the	methods	(joint	frequencies).	
Agreement	among	the	methods	was	quantified	by	means	of	Loevinger’s	H	(bottom‐
right	cell	of	each	panel).		
		 Publication	bias	was	detected	in	at	most	94	subsets	(12.9%)	by	Egger’s		
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Table	4.4.	Results	of	applying	Egger’s	test,	rank‐correlation	test,	p‐uniform’s	publication	bias	
test,	and	test	of	excess	significance	(TES)	to	examine	the	prevalence	of	publication	bias	in	meta‐
analyses	from	Psychological	Bulletin	and	Cochrane	Database	of	Systematic	Reviews.	H	denotes	
Loevinger’s	H	to	describe	the	association	between	two	methods.		
	 	 Rank‐cor.	 	 	 	 p‐uniform	 	

	 	 Not	
sig.	

Sig.	 	 	 	
Not	
sig.	

Sig.	 	

Egger	

Not	
sig.	 600	 35	

635;	
87.1%	

Egger	

Not	
sig.	 354	 34	 388;	

83.3%	

Sig.	 51	 43	
94;	

12.9%	
Sig.	

70	 8	 78;	
16.7%	

	
Total	

651;	
89.3%	

78;	
10.7%	

H	=.485	 	 Total	 424;	
91%	

42;	
9%	

H	=.028	

	 	 	 	 	 	 	 	 	 	

	 	 TES	 	 	 	 p‐uniform	 	

	
	

Not	
sig.	 Sig.	 	 	 	

Not	
sig.	 Sig.	

	

Egger	

Not	
sig.	 609	 29	 638;	

87.2%	 Rank‐
cor.	

Not	
sig.	 377	 34	 411;	

88..2%	

Sig.	
83	 11	 94;	

12.8%	
Sig.	

47	 8	 55;	
11.8%	

	 Total	 692;	
94.5%	

40;	
5.5%	

H	=.168	
	 Total	 424;	

91%	

42;	

9%	
H	=	.082	

	 	 	 	 	 	 	 	 	 	

	 	 TES	 	 	 	 TES	 	

	 	 Not	
sig.	

Sig.	 	 	 	 Not	
sig.	

Sig.	 	

Rank‐
cor.	

Not	
sig.	 620	 31	 651;	

89.3%	 p‐uni‐	
form	

Not	
sig.	 393	 31	

424;	

91%	

Sig.	
69	 9	 78;	

10.7%	
Sig.	

33	 9	
42;	

9%	

	 Total	 689;	
94.5%	

40;	
5.5%	

H=.132	
	 Total	 426;	

91.4%	
40;	
8.6%	

H=.148	

Note.	The	rank‐correlation	could	not	be	applied	to	all	732	subsets,	because	there	was	no	
variation	in	the	observed	effect	sizes	in	three	subsets.	All	these	subsets	were	part	of	the	meta‐
analysis	by	Else‐Quest,	Hyde,	Goldsmith,	and	Van	Hulle	(2006)	who	set	effect	sizes	to	zero	if	the	
effect	size	could	not	have	been	extracted	from	a	primary	study	but	was	reported	as	not	
statistically	significant.		
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regression	test.	The	TES	and	rank‐correlation	test	were	statistically	significant	in	40	
(5.5%)	and	78	(10.7%)	subsets,	respectively.	In	the	subsets	with	at	least	one	
statistically	significant	effect	size,	p‐uniform’s	publication	bias	test	detected	
publication	bias	in	42	subsets	(9%),	which	was	more	than	TES	(40;	8.6%)	and	less	
than	both	the	rank‐correlation	test	(55;	11.8%)	and	Egger’s	regression	test	(78;	
16.7%).	Since	the	estimated	prevalence	values	are	close	to	10%,	which	equals	the	
significance	threshold	of	each	test,	we	conclude	there	is	at	best	weak	evidence	of	
publication	bias	on	the	basis	of	publication	bias	tests.	Associations	among	the	
methods	were	low	(H	<	.168),	except	for	the	association	between	Egger’s	regression	
test	and	the	rank‐correlation	test	(H	=	.485).			 	
		 To	answer	research	question	1b	we	examined	whether	publication	bias	was	
more	prevalent	in	subsets	from	Psychological	Bulletin	than	CDSR.	Publication	bias	
was	detected	in	13.4%	(Egger’s	test),	12.8%	(rank‐correlation	test),	11.4%	(p‐
uniform),	6.6%	(TES)	of	the	subsets	from	Psychological	Bulletin	and	in	12.2%	(Egger’s	
test),	8.5%	(rank‐correlation	test),	5.9%	(p‐uniform),	and	4.4%	(TES)	of	the	subsets	
from	CDSR.	When	testing	for	differences	in	publication	bias	we	controlled	for	the	
number	of	effect	sizes	(or	for	p‐uniform	statistically	significant	effect	sizes)	in	a	meta‐
analysis.	Publication	bias	was	more	prevalent	in	subsets	from	Psychological	Bulletin	if	
the	results	of	p‐uniform	were	used	as	dependent	variable	(odds	ratio=2.226,	z=2.217,	
one‐tailed	p‐value=.014),	but	not	for	Egger’s	regression	test	(odds	ratio=1.024,	
z=0.106,	one‐tailed	p‐value=.458),	rank‐correlation	test	(odds	ratio=1.491,	z=1.613,	
one‐tailed	p‐value=.054),	and	TES	(odds	ratio=1.344,	z=0.871,	one‐tailed	p‐
value=.192).	Tables	with	the	results	of	these	logistic	regression	analyses	are	reported	
in	S1‐4	(https://osf.io/wdjy4/).	Note,	however,	that	if	we	control	for	the	number	of	
tests	performed	(i.e.,	4)	by	means	of	the	Bonferoni	correction	(p	=	.005	<	.05/4	=	
.0125),	the	result	of	p‐uniform	was	no	longer	statistically	significant.	All	in	all,	we	
conclude	that	evidence	of	publication	bias	was	weak	at	best	and	that	no	clear	
difference	in	the	extent	of	publication	bias	existed	between	subsets	from	
Psychological	Bulletin	and	CDSR.		

4.4.3		 Predicting	effect	size	estimation	

	 To	answer	research	question	2,	absolute	values	of	the	effect	size	estimates	of	
random‐effects	meta‐analysis	and	p‐uniform	were	predicted	based	on	characteristics	
of	the	subsets.	One‐tailed	hypothesis	tests	were	used	in	case	of	a	directional	
hypothesis	(see	Table	4.2	for	a	summary	of	our	hypotheses).	Table	4.5	presents	the	
results	of	the	meta‐meta‐regression	on	the	absolute	value	of	the	effect	size	estimates	
of	random‐effect	meta‐analysis.	The	variables	in	the	model	explained	67.6%	of	the	
variance	in	the	estimates	of	random‐effects	meta‐analysis	(R2=0.676;	F(5,726)=303,	p	
<	.001).	The	absolute	value	of	the	meta‐analytic	estimate	was	0.006	larger	for	subsets	
from	Psychological	Bulletin	compared	to	CDSR,	but	this	effect	was	not	statistically	
significant	and	not	in	line	with	our	hypothesis	(t(726)=0.637,	p=.262,	one‐tailed).	The	



C h a p t e r 	 4 	|	96	
	

 

I2‐statistic	had	an	unexpected	negative	association	on	the	absolute	value	of	the	meta‐
analytic	estimate	(B=‐0.001,	t(726)=‐4.601,	p<.001,	two‐tailed).	The	harmonic	mean	
of	the	standard	error	had,	as	expected,	a	positive	effect	(B=1.185,	t(726)=25.514,	
p<.001,	one‐tailed).	As	hypothesized,	a	positive	effect	was	observed	for	the	proportion	
of	statistically	significant	effect	sizes	on	the	absolute	value	of	the	meta‐analytic	
estimate	(B=0.489,	t(726)=34.269,	p<.001,	one‐tailed).		
	
Table	4.5.	Results	of	meta‐meta	regression	on	the	absolute	value	of	the	random‐effects	meta‐
analysis	effect	size	estimate	with	predictors	discipline,	I2‐statistic,	harmonic	mean	of	the	
standard	error	(standard	error),	proportion	of	statistically	significant	effect	sizes	in	a	subset	
(Prop.	sig.	effect	sizes),	and	number	of	effect	sizes	in	a	subset.	

	 B	(SE)	 t‐value	(p‐value)	 95%	CI		

Intercept	 ‐0.144	(0.012)	 ‐11.697	(<.001)	 ‐0.168;‐0.12	

Discipline	 0.006	(0.009)	 0.637	(.262)	 ‐0.012;0.023	

I2‐statistic	 ‐0.001	(0.0003)	 ‐4.601	(<.001)	 ‐0.002;‐0.001	

Standard	error	 1.185	(0.046)	 25.514	(<.001)	 1.094;1.277	

Prop.	sig.	effect	sizes	 0.489	(0.014)	 34.269	(<.001)	 0.461;0.517	

Number	of		effect	
sizes	 ‐0.0004	(0.0003)	 ‐1.408	(.16)	 ‐0.001;0.0002	

Note.	CDSR	is	the	reference	category	for	discipline.	p‐values	for	discipline,	harmonic	mean	of	the	
standard	error,	and	proportion	of	significant	effect	sizes	in	a	subset	are	one‐tailed	whereas	the	
other	p‐values	are	two‐tailed.	CI	=	confidence	interval.	

		 Table	4.6	shows	the	results	of	meta‐meta	regressions	on	the	absolute	value	of	
p‐uniform’s	estimate	as	the	dependent	variable.	The	proportion	explained	variance	in	
p‐uniform’s	estimate	was	R2=.014	(F(5,475)=1.377,	p=.231).	None	of	the	predictors	
was	significant.	Quantile	regression	was	used	as	sensitivity	analysis	to	examine	
whether	the	results	were	distorted	by	extreme	effect	size	estimates	of	p‐uniform	(see	
Table	S5	available	at	https://osf.io/wdjy4/).	The	results	of	the	predictors	discipline	
and	I2‐statistic	were	also	not	statistically	significant	in	the	quantile	regression.	The	
association	of	the	harmonic	mean	of	the	standard	error	was	lower	in	the	quantile	
regression	but	statistically	significant	(B=2.037,	t(475)=3.739,	p<.001,	two‐tailed)	and	
the	predictor	“proportion	of	statistically	significant	effect	sizes”	was	statistically	
significant	(B=0.196,	t(475)=2.353,	p=.019,	two‐tailed).	
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4.4.4		 Overestimation	of	effect	size	
		 Results	indicated	that	the	overestimation	was	less	than	d=0.06	for	subsets	
from	Psychological	Bulletin	(mean=‐0.007,	median=0.019,	standard	deviation	=	0.412)	
and	CDSR	(mean=0.043,	median=0.051,	standard	deviation	=	0.305),	and	that	
differences	between	estimates	of	subsets	from	Psychological	Bulletin	and	CDSR	were	
negligible	(research	question	3a).	Table	4.7	presents	the	results	of	the	meta‐meta	
regression	on	Y.	The	predictors	explained	11.8%	of	the	variance	of	Y	(F(5,475)=12.76,	
p	<	.001).	The	effect	size	in	subsets	from	Psychological	Bulletin	was	not	significantly	
larger	than	from	CDSR	(B=‐0.040,	t(475)=‐1.651,	p=.951,	one‐tailed).	Consistent	with	
the	negative	effect	of	the	I2‐statistic	on	the	absolute	value	of	the	meta‐analytic	
estimate	(Table	4.5),	we	found	a	negative	effect	of	the	I2‐statistic	on	Y	(B=‐0.004,	
t(475)=‐5.338,	p<.001,	one‐tailed).	The	hypothesized	relationship	between	the	
harmonic	mean	of	the	standard	error	and	Y	was	not	statistically	significant	(B=0.172,	
t(475)=1.371,	p=.086,	one‐tailed).	The	proportion	of	statistically	significant	effect	
sizes	in	a	subset	was	positively	associated	with	Y	(B=0.182,	t(475)=4.713,	p<.001,	
two‐tailed).	

Table	4.6.	Results	of	meta‐meta‐regression	on	the	absolute	value	of	p‐uniform’s	effect	size	
estimate	with	predictors	discipline,	I2‐statistic,	harmonic	mean	of	the	standard	error	(standard	
error),	proportion	of	statistically	significant	effect	sizes	in	a	subset	(Prop.	sig.	effect	sizes),	and	
number	of	effect	sizes	in	a	subset.	

	 B	(SE)	 t‐value	(p‐value)	 95%	CI		

Intercept	 0.77	(0.689)	 1.118	(0.264)	 ‐0.584;2.124	

Discipline	 0.001	(0.497)	 0.001	(0.999)	 ‐0.975;0.976	

I2‐statistic	 0.013	(0.014)	 0.939	(0.174)	 ‐0.014;0.039	

Standard	error	 3.767	(2.587)	 1.456	(0.146)	 ‐1.316;8.851	

Prop.	sig.	effect	sizes	 ‐1.287	(0.797)	 ‐1.615	(0.107)	 ‐2.853;0.279	

Number	of		effect	
sizes	 ‐0.02	(0.015)	 ‐1.363	(0.173)	 ‐0.049;0.009	

Note.	CDSR	is	the	reference	category	for	discipline.	p‐value	for	the	I2‐statistic	is	one‐tailed	
whereas	the	other	p‐values	are	two‐tailed.	CI	=	confidence	interval.	

		 The	estimate	of	p‐uniform	was	truncated	to	zero	in	136	subsets	before	
computing	Y	in	order	to	deal	with	unlikely	cases	where	p‐uniform’s	estimate	would	be	
in	the	opposite	direction	than	the	estimate	of	random‐effects	meta‐analysis.	Hence,	
quantile	regression	with	the	median	of	Y	as	dependent	variable	was	conducted	to	
examine	whether	the	results	of	the	meta‐meta‐regression	were	affected	by	this	
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truncation	(see	Table	S6	available	at	https://osf.io/wdjy4/).	The	predictor	discipline	
was	not	statistically	significant	in	the	quantile	regression.	In	contrast	to	the	results	of	
the	meta‐meta‐regression,	the	effects	of	the	I2‐statistic	(B=‐0.0003,	t(475)=‐0.2,	
p=.579,	one‐tailed)	and	proportion	of	statistically	significant	effect	size	in	a	subset	
(B=‐0.002,	t(475)=‐1.53,	p=.127,	two‐tailed)	were	no	longer	statistically	significant,	
whereas	the	predictor	harmonic	mean	of	the	standard	error	was	statistically	
significant	(B=0.279,	t(475)=1.889,	p=.03,	one‐tailed).		

Table	4.7.	Results	of	meta‐meta‐regression	on	the	effect	size	overestimation	in	random‐effects	
meta‐analysis	when	compared	to	p‐uniform	(Y)	and	predictors	discipline,	I2‐statistic,	harmonic	
mean	of	the	standard	error	(standard	error),	proportion	of	statistically	significant	effect	sizes	in	
a	subset	(Prop.	sig.	effect	sizes),	and	number	of	effect	sizes	in	a	subset.	
	 B	(SE)	 t‐value	(p‐value)	 95%	CI		

Intercept	 ‐0.017	(0.033)	 ‐0.517	(.605)	 ‐0.083;0.048	

Discipline	 ‐0.04	(0.024)	 ‐1.651	(.951)	 ‐0.087;0.008	

I2‐statistic	 ‐0.004	(0.001)	 ‐5.338	(<.001)	 ‐0.005;‐0.002	

Standard	error	 0.172	(0.126)	 1.371	(.086)	 ‐0.074;0.419	

Prop.	sig.	effect	sizes	 0.182	(0.039)	 4.713	(<.001)	 0.106;0.258	

Number	of		effect	
sizes	 ‐0.001	(0.001)	 ‐2.064	(.04)	 ‐0.003;‐0.0001	

Note.	CDSR	is	the	reference	category	for	discipline.	p‐values	for	discipline,	the	I2‐statistic,	and	
the	harmonic	mean	of	the	standard	error	are	one‐tailed	whereas	the	other	p‐values	are	two‐
tailed.	CI	=	confidence	interval.	

4.5		 Conclusion	and	discussion	

Publication	bias	is	a	major	threat	to	the	validity	of	meta‐analyses.	It	results	in	
overestimated	effect	sizes	in	primary	studies	which	in	turn	also	bias	the	meta‐analytic	
results	(e.g.,	Lane	&	Dunlap,	1978;	van	Assen	et	al.,	2015).	Evidence	for	publication		
bias	has	been	observed	in	many	research	fields	(e.g.,	Fanelli,	2012;	Franco	et	al.,	2014;	
Franco	et	al.,	2016;	Sterling	et	al.,	1995),	and	different	methods	were	developed	to	
examine	publication	bias	in	a	meta‐analysis	(for	an	overview	see	Rothstein	et	al.,	
2005a).	We	studied	the	prevalence	of	publication	bias	and	the	overestimation	caused	
by	it	in	a	large	number	of	meta‐analyses	published	in	Psychological	Bulletin	and	CDSR	
by	applying	publication	bias	methods	to	homogeneous	subsets	of	these	meta‐analyses.	
Homogeneous	subsets	were	created,	because	publication	bias	methods	have	poor	
statistical	properties	if	the	true	effect	size	is	heterogeneous	(Ioannidis	&	Trikalinos,	
2007a,	2007b;	van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	The	prevalence	
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of	publication	bias	was	studied	by	means	of	Egger’s	test	(Egger	et	al.,	1997),	the	rank‐
correlation	test	(Begg	&	Mazumdar,	1994),	TES	(Ioannidis	&	Trikalinos,	2007b),	and	
p‐uniform’s	publication	bias	test	(van	Assen	et	al.,	2015).	We	used	p‐uniform	and	a	
meta‐analysis	based	on	the	10%	most	precise	effect	size	estimates	of	a	meta‐analysis	
to	estimate	the	effect	size	corrected	for	publication	bias.		
		 The	results	of	this	chapter	are	not	in	line	with	previous	research	showing	that	
publication	bias	is	omnipresent	in	science	(e.g.,	Fanelli,	2012;	Franco	et	al.,	2014;	
Franco	et	al.,	2016;	Sterling	et	al.,	1995).	Only	weak	evidence	for	the	prevalence	of	
publication	bias	was	observed	in	our	large‐scale	data	set.	This	weak	evidence	is	not	
the	result	of	lack	of	statistical	power	of	these	publication	bias	tests,	as	correcting	effect	
size	estimates	for	publication	bias	or	focusing	on	the	effect	size	of	the	largest	
study/studies	in	the	meta‐analysis	also	did	not	result	in	clear	indications	of	
publication	bias	in	our	large‐scale	data	set.	Another	indication	for	the	absence	of	
severe	publication	bias	in	the	studied	meta‐analyses	is	that	many	statistically	
nonsignificant	effect	sizes	were	included	in	the	meta‐analyses.	Only	28.9%	of	the	
observed	effect	sizes	were	statistically	significant	in	the	meta‐analyses	from	
Psychological	Bulletin,	and	18.9%	of	the	observed	effect	sizes	were	statistically	
significant	in	the	meta‐analyses	from	CDSR.	This	is	substantially	lower	than	the	
approximately	90%	statistically	significant	results	in	the	social	sciences	literature	
(Fanelli,	2012;	Sterling	et	al.,	1995)	and	the	nearly	90%	positive	results	that	appear	in	
the	clinical	medicine	literature	(Fanelli,	2010b).	

A	meta‐meta‐regression	on	the	random‐effects	meta‐analytic	estimates	
revealed,	in	line	with	the	hypothesis,	a	negative	association	of	primary	studies’	
precision	with	a	meta‐analytic	estimate.	Since	at	best	only	weak	evidence	for	
publication	bias	was	found,	this	association	was	most	likely	caused	by	differences	in	
sample	sizes	between	research	fields.	For	instance,	if	researchers	use	statistical	power	
analysis	to	determine	the	sample	size	of	their	study	or	if	researchers	in	fields	
characterized	by	lower	effect	sizes	use	larger	sample	sizes	by	habit,	larger	true	effect	
sizes	will	be	associated	with	studies	using	smaller	sample	sizes	(see	supplemental	
materials	of	Open	Science	Collaboration,	2015).		
		 The	same	predictors	used	for	predicting	the	random‐effects	meta‐analytic	
effect	size	estimate	were	also	used	in	a	meta‐meta‐regression	on	p‐uniform’s	estimate.	
None	of	the	predictors	statistically	significantly	predicted	p‐uniform’s	effect	size	
estimate.	This	was	in	line	with	our	hypothesis	on	the	relationship	with	primary	
studies’	precision,	but	in	contrast	to	the	expected	positive	relationship	between	the	I2‐
statistic	and	p‐uniform’s	effect	size	estimate.	The	absence	of	such	a	positive	
relationship	indicates	that	p‐uniform	did	not	overestimate	the	effect	size	in	the	
presence	of	heterogeneity	in	true	effect	size.	The	explained	variance	in	the	meta‐meta‐
regression	with	p‐uniform’s	estimate	as	dependent	variable	(1.4%)	was	substantially	
lower	than	with	the	estimate	of	random‐effects	meta‐analysis	as	dependent	variable	
(67.6%).	This	difference	in	explained	variance	was	mainly	caused	by	the	large	
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variance	in	p‐uniform’s	effect	size	estimates	across	subsets.	The	variance	in	these	
estimates	was	large,	because	estimates	of	p‐uniform	were	sometimes	extremely	
positive	or	negative	caused	by	observed	effect	sizes	with	p‐values	just	below	the	α‐
level.		 	
		 The	different	publication	bias	methods	were	not	always	in	agreement	with	
each	other,	which	is	likely	caused	by	the	absence	of	clear	publication	biases	in	the	
meta‐analytic	subsets.	An	exception	was	the	association	between	the	results	of	Egger’s	
test	and	the	rank‐correlation,	but	this	association	was	expected	since	both	methods	
are	very	similar	in	methodology	(i.e.,	testing	for	publication	bias	by	examining	the	
relationship	between	observed	effect	size	and	some	measure	of	its	precision).	
Substantial	differences	were	also	observed	among	the	two	methods	that	we	used	to	
correct	effect	size	estimates	for	publication	bias	(i.e.,	p‐uniform	and	the	10%	most	
precise	observed	effect	size	estimates).	Effect	size	estimates	based	on	the	10%	most	
precise	observed	effect	sizes	were	close	to	estimates	of	the	random‐effects	meta‐
analysis	whereas	estimates	of	p‐uniform	were	imprecise	and	sometimes	very	different	
from	random‐effects	meta‐analysis	and	the	10%	most	precise	observed	effect	sizes.	
This	suggests	that	p‐uniform	overcorrected	for	publication	bias	because	of	a	small	
number	of	observed	effect	sizes	in	subsets	combined	with	p‐values	of	primary	studies	
being	close	to	the	α‐level.	
		 Publication	bias	could,	however,	have	gone	undetected	due	to	a	variety	of	
reasons.	First,	publication	bias	is	less	of	an	issue	if	the	relationship	of	interest	in	a	
meta‐analysis	was	not	the	main	focus	of	the	primary	studies.	Statistical	significance	of	
the	main	result	in	a	primary	study	probably	determines	whether	a	result	gets	
published,	rather	than	whether	a	secondary	outcome	or	supplementary	result	is	
significant.	For	instance,	a	meta‐analysis	might	be	about	gender	differences	where	
data	is	extracted	from	studies	that	used	gender	only	as	a	control	variable.	Second,	
meta‐analysts	included	many	unpublished	studies	in	their	meta‐analyses,	which	might	
have	decreased	the	severity	and	detectability	of	publication	bias	in	our	selected	meta‐
analyses.	Third,	publication	bias	methods	were	applied	to	subsets	of	primary	studies’	
included	in	the	meta‐analysis	to	create	more	homogeneous	subsets.	Creating	these	
smaller	subsets	was	necessary	because	publication	bias	methods’	statistical	
properties	deteriorate	if	heterogeneity	in	true	effect	size	is	moderate	or	large.	Our	
selection	of	homogeneous	subsets	could	have	let	to	the	exclusion	of	subsets	with	
severe	publication	bias.	Imagine	a	subset	with	a	number	of	statistically	significant	
effect	sizes	that	were	published	in	a	field	with	considerable	publication	bias,	and	a	few	
statistically	nonsignificant	effect	sizes	that	were	obtained	from	unpublished	research.	
The	inclusion	of	the	effect	sizes	from	the	unpublished	research	may	cause	
heterogeneity	in	true	effect	size,	and	therefore	a	subset	with	potentially	severe	
publication	bias	was	excluded	from	our	study.		
			 Although	no	convincing	evidence	for	publication	bias	was	observed	in	our	
study,	we	agree	with	others	(e.g.,	Banks,	Kepes,	&	McDaniel,	2012;	Field	&	Gillett,	
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2010;	Sutton,	2005)	that	publication	bias	should	be	routinely	assessed	in	every	meta‐
analysis.	Moreover,	a	set	of	publication	bias	methods	is	recommended	to	be	applied	
and	reported	in	each	meta‐analysis,	because	each	method	assesses	publication	bias	in	
a	different	way	and	one	method	might	detect	or	correct	for	publication	bias	in	a	meta‐
analysis	whereas	another	method	might	not	(Coburn	&	Vevea,	2015;	Ferguson	&	
Brannick,	2012;	Kepes,	Banks,	McDaniel,	et	al.,	2012).	Future	research	should	focus	on	
developing	publication	bias	methods	that	are	able	to	examine	publication	bias	in	
meta‐analyses	with	a	small	number	of	effect	sizes	and	heterogeneity	in	true	effect	size.	
We	are	currently	working	on	extending	p‐uniform	such	that	it	can	also	deal	with	
heterogeneous	true	effect	size.	Other	promising	developments	are	the	recently	
increased	attention	for	selection	models	(e.g.,	Carter	et	al.,	2017;	Citkowicz	&	Vevea,	
2017;	McShane	et	al.,	2016)	and	the	development	of	a	Bayesian	method	to	correct	for	
publication	bias	(Guan	&	Vandekerckhove,	2015).	Although	meta‐analysts	will	greatly	
benefit	from	improved	methods	to	assess	publication	bias,	attention	should	also	be	
paid	to	registering	studies	to	make	unpublished	research	readily	accessible	(e.g.,	
Dickersin,	2005).	Such	a	register	enables	meta‐analysts	to	also	include	unpublished	
research	in	their	meta‐analysis	and	will	improve	the	validity	of	meta‐analytic	results.



	
	

 

	



	
	

 

CHAPTER	5	

	

Correcting	for	publication	bias	with	the													
p‐uniform*	method	

	
	
	
	

Abstract	
	

Publication	bias	is	a	major	threat	to	the	validity	of	a	meta‐analysis	resulting	in	
overestimated	effect	sizes	in	a	meta‐analysis.	The	p‐uniform	method	is	a	meta‐
analysis	method	that	corrects	estimates	for	publication	bias,	but	the	method	
overestimates	average	effect	size	in	the	presence	of	heterogeneity	in	true	effect	sizes	
(i.e.,	between‐study	variance).	We	propose	an	extension	and	improvement	of	the	p‐
uniform	method	called	p‐uniform*.	P‐uniform*	improves	upon	p‐uniform	in	three	
important	ways,	as	(i)	it	entails	a	more	efficient	estimator,	(ii)	it	eliminates	the	
overestimation	of	effect	size	in	case	of	between‐study	variance	in	true	effect	sizes,	and	
(iii)	it	enables	estimating	and	testing	for	the	presence	of	the	between‐study	variance	
in	true	effect	sizes.	We	compared	the	statistical	properties	of	p‐uniform*	with	the	
selection	model	approach	of	Hedges	(1992)	as	implemented	in	the	R	package	
“weightr”	and	the	random‐effects	model	in	both	an	analytical	and	a	Monte	Carlo	
simulation	study.	Results	revealed	that	the	statistical	properties	of	p‐uniform*	and	the	
selection	model	approach	were	generally	comparable,	and	that	both	methods	
outperformed	the	random‐effects	model	if	publication	bias	was	present.	However,	the	
methods	did	not	perform	well	when	there	was	extreme	publication	bias	resulting	in	
only	statistically	significant	primary	studies’	effect	sizes	in	a	meta‐analysis,	but	bias	in	
estimates	of	effect	size	and	between‐study	variance	in	true	effect	size	was	generally	
small	if	there	were	10	primary	studies	included	in	a	meta‐analysis.	We	offer	
recommendations	for	correcting	meta‐analyses	for	publication	bias	in	practice,	and		
provide	an	R	package	and	an	easy‐to‐use	web	application	for	applying	p‐uniform*.				
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Independent	effect	sizes	from	multiple	primary	studies	can	be	statistically	combined	
by	means	of	a	meta‐analysis	in	order	to	obtain	a	quantitative	summary	of	the	studied	
relationship.	Meta‐analysis	is	now	seen	as	the	“gold	standard”	for	synthesizing	
evidence	from	multiple	studies	(Aguinis	et	al.,	2011;	Head	et	al.,	2015).	However,	a	
threat	to	the	validity	of	a	meta‐analysis	is	publication	bias	(e.g.,	Borenstein	et	al.,	2009;	
Rothstein	et	al.,	2005a).	Publication	bias	refers	to	situations	where	the	published	
literature	is	not	a	representative	reflection	of	the	population	of	completed	studies	
(Rothstein	et	al.,	2005a).	In	its	most	extreme	case	this	implies	that	studies	with	
statistically	significant	results	get	published	and	studies	with	statistically	
nonsignificant	results	do	not	get	published.	Publication	bias	is	not	only	caused	by	
reviewers	and	editors	who	are	reluctant	to	accept	studies	without	statistically	
significant	results,	but	also	by	researchers	who	do	not	submit	studies	with	
nonsignificant	results	(Cooper	et	al.,	1997;	Coursol	&	Wagner,	1986).	The	
consequences	of	publication	bias	are	severe	and	may	hamper	scientific	progress,	
because	publication	bias	causes	an	increase	in	false	positives	in	the	published	
literature	(van	Assen	et	al.,	2015)	and	often	results	in	overestimated	effect	sizes	in	
primary	studies	and	meta‐analyses	(e.g.,	Kraemer	et	al.,	1998;	Lane	&	Dunlap,	1978).	
		 Evidence	for	publication	bias	has	been	observed	in	multiple	research	fields.	
Fanelli	(2010b,	2012)	studied	how	often	the	authors	declared	to	have	found	support	
for	the	tested	hypothesis	in	a	random	sample	of	published	papers	from	a	variety	of	
research	fields.	In	psychiatry	and	psychology,	95%	of	the	papers	concluded	that	the	
hypothesis	was	supported	which	was	the	largest	percentage	across	all	included	
research	fields.	However,	this	large	percentage	is	not	in	line	with	the	on	average	low	
statistical	power	of	approximately	50%	(or	lower)	in	psychological	research	(Bakker	
et	al.,	2012;	Cohen,	1990).	This	suggests	that	the	published	literature	is	not	
representative	for	the	population	of	completed	studies,	which	may	have	been	caused	
by	publication	bias.	Other	more	direct	evidence	of	publication	bias	in	psychology	was	
found	in	Franco	et	al.	(2016).	These	authors	compared	the	outcomes	that	were	
included	in	grant	applications	for	psychological	experiments	with	the	outcomes	that	
were	reported	in	the	published	paper,	and	concluded	that	70%	of	the	studies	did	not	
report	all	the	outcomes.	Moreover,	the	reported	effect	sizes	in	the	published	papers	
were	twice	as	large	as	the	unreported	effect	sizes	and	were	approximately	three	times	
as	likely	to	be	statistically	significant.	Although	the	evidence	for	publication	bias	in	
multiple	research	fields	is	strong,	we	have	to	emphasize	that	publication	bias	is	not	
ever‐present.	For	instance,	two	recent	large‐scale	studies	did	not	observe	publication	
bias	in	meta‐analyses	about	posttraumatic	stress	disorder	(Niemeyer	et	al.,	2018)	and	
in	meta‐analyses	published	in	psychology	and	medicine	(van	Aert,	Wicherts,	&	van	
Assen,	2018).	
		 Numerous	methods	have	been	developed	to	assess	and	test	for	publication	
bias	in	a	meta‐analysis,	including	fail‐safe	N	(Becker,	2005),	funnel	plot	(Light	&	
Pillemer,	1984),	Egger’s	regression	test	(Egger	et	al.,	1997),	rank‐correlation	test	
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(Begg	&	Mazumdar,	1994),	test	of	excess	significance	(Ioannidis	&	Trikalinos,	2007b),	
p‐uniform’s	publication	bias	test	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	
2015).	Other	methods	were	developed	with	the	aim	to	estimate	the	effect	size	in	a	
meta‐analysis	corrected	for	publication	bias:	trim	and	fill	(Duval	&	Tweedie,	2000a,	
2000b),	PET‐PEESE	(Stanley	&	Doucouliagos,	2014),	p‐uniform	(van	Aert,	Wicherts,	et	
al.,	2016;	van	Assen	et	al.,	2015),	p‐curve	(Simonsohn	et	al.,	2014a),	selection	model	
approaches	(for	an	overview	see	Hedges	&	Vevea,	2005;	Jin,	Zhou,	&	He,	2014;	Sutton,	
Song,	Gilbody,	&	Abrams,	2000),	and	methods	based	on	the	10%	most	precise	effect	
size	estimates	in	a	meta‐analysis	(Stanley	et	al.,	2010).	In	this	chapter,	we	focus	on	
estimating	effect	size	corrected	for	publication	bias,	because	publication	bias	tests	
have	low	statistical	power	especially	if	the	number	of	effect	sizes	in	a	meta‐analysis	is	
small	(Begg	&	Mazumdar,	1994;	Sterne	et	al.,	2000;	van	Assen	et	al.,	2015).	
Furthermore,	we	believe	that	from	the	perspective	of	an	applied	researcher	it	is	more	
relevant	to	know	what	the	effect	size	is	corrected	for	publication	bias	than	to	know	
that	publication	bias	distorted	the	results	of	a	meta‐analysis	without	knowing	the	
consequences	on	effect	size	estimation.	More	specifically,	we	focus	in	this	chapter	on	
selection	model	approaches	to	correct	for	publication	bias,	because	recently	published	
work	suggest	that	these	methods	have	better	statistical	properties	than	other	
methods	(Carter	et	al.,	2017;	McShane	et	al.,	2016),	and	are	even	nowadays	called	the	
state‐of‐the‐art	methods	to	correct	for	publication	bias	(McShane	et	al.,	2016).	
		 Selection	model	approaches	combine	two	models	to	correct	for	publication	
bias:	an	effect	size	model	and	a	selection	model.	The	effect	size	model	is	the	
distribution	of	primary	studies’	effect	sizes	in	the	absence	of	publication	bias	and	the	
selection	model	determines	how	the	effect	size	model	is	affected	by	publication	bias	
(Hedges	&	Vevea,	2005).	The	selection	model	is	actually	a	set	of	weights	that	reflects	
the	likelihood	of	studies	getting	published.	Effect	sizes	that	are	unlikely	to	be	
published	according	to	the	selection	model	get	more	weight	compared	to	effect	sizes	
that	are	more	likely	to	be	published	in	order	to	correct	for	publication	bias.	Several	
types	of	selection	model	approaches	have	been	proposed,	varying	from	approaches	
that	estimate	the	selection	model,	via	those	that	assume	a	specific	selection	model	and	
from	frequentist	to	Bayesian	approaches	(e.g.,	Cleary	&	Casella,	1997;	Copas	&	Shi,	
2000;	Iyengar	&	Greenhouse,	1988a;	Kicinski,	2013;	Vevea	&	Woods,	2005).	
		 Selection	model	approaches	have	hardly	been	used	in	meta‐analyses	(Hunter	
&	Schmidt,	2015),	because	these	methods	require	the	user	to	make	sophisticated	
assumptions	and	choices	(Borenstein	et	al.,	2009),	suffer	from	convergence	problems	
if	the	number	of	effect	sizes	in	a	meta‐analysis	is	less	than	100	(Field	&	Gillett,	2010),	
and	are	often	not	implemented	in	user‐friendly	software	for	applying	these	methods.	
However,	easy‐to‐use	software	has	recently	been	developed	that	can	be	used	for	
applying	several	types	of	selection	model	approaches	(R	packages	“weightr”	(Coburn	
&	Vevea,	2016),	“selectMeta”	(Rufibach,	2015),	and	“metasens”	(Schwarzer,	Carpenter,	
&	Rücker,	2016).	Convergence	problems	also	seem	less	of	a	concern	than	earlier	



106	|	p ‐ u n i f o r m * 	
	

 

stated	since	two	recent	simulation	studies	(i.e.,	Carter	et	al.,	2017;	McShane	et	al.,	
2016)	that	included	the	selection	model	approach	of	Iyengar	and	Greenhouse	(1988a)	
showed	that	convergence	problems	only	arose	in	meta‐analyses	with	(i)	extreme	
publication	bias	or	(ii)	only	ten	studies	included	in	a	meta‐analysis.	However,	
especially	such	meta‐analyses	are	quite	common	in	the	psychological	literature	that	
shows	signs	of	extreme	publication	bias	as	evidenced	by	over	95%	articles	showing	
positive	outcomes	(Fanelli,	2010b).	Moreover,	the	median	number	of	studies	in	meta‐
analyses	in	psychology	equals	12	(van	Erp,	Verhagen,	Grasman,	&	Wagenmakers,	
2017).	In	the	medical	literature,	the	positive	result	rate	is	also	high	at	approximately	
89%	(Fanelli,	2010b),	while	the	median	number	of	studies	in	medical	meta‐analyses	
equals	3	(Rhodes	et	al.,	2015;	Turner	et	al.,	2015).	Hence,	we	also	study	in	this	chapter	
the	statistical	properties	of	selection	model	approaches	for	conditions	that	are	
realistic	for	meta‐analyses	in	practice,	even	though	these	conditions	may	at	the	same	
time	be	challenging	for	applying	these	methods.	
		 Two	recently	developed	methods	to	correct	effect	sizes	for	publication	bias	
are	p‐uniform	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	and	p‐curve	
(Simonsohn	et	al.,	2014a).	P‐uniform	and	p‐curve	are	based	on	the	same	methodology	
but	slightly	differ	in	implementation	(for	a	comparison	of	the	two	methods	see	van	
Aert,	Wicherts,	et	al.,	2016).	These	methods	use	the	statistical	principle	that	the	p‐
values	should	be	uniformly	distributed	at	the	true	effect	size.	Estimation	is	only	based	
on	the	statistically	significant	effect	sizes	and	nonsignificant	effect	sizes	are	discarded.	
For	that	reason,	conditional	probabilities	(i.e.,	p‐values	conditional	on	being	
statistically	significant)	are	evaluated	for	being	uniformly	distributed	instead	of	the	
traditional	p‐values	themselves.	The	effect	size	estimate	of	p‐uniform	and	p‐curve	is	
equal	to	the	effect	size	where	a	statistic,	which	is	used	for	assessing	whether	these	
conditional	p‐values	are	uniformly	distributed,	equals	its	expected	value.		
		 Three	major	drawbacks	of	p‐uniform	and	p‐curve	in	their	current	
implementation	are	that	(i)	the	methods	only	use	statistically	significant	effect	sizes	
which	makes	the	methods	inefficient	(i.e.,	estimates	often	have	large	variance),	(ii)	
effect	size	estimates	are	positively	biased	in	the	presence	of	between‐study	variance	
in	true	effect	size	(Carter	et	al.,	2017;	McShane	et	al.,	2016;	van	Aert,	Wicherts,	et	al.,	
2016),	and	(iii)	they	do	not	estimate	and	test	for	the	presence	of	this	between‐study	
variance.	In	this	chapter,	we	propose	a	revised	method	called	p‐uniform*	that	solves	
all	three	drawbacks:	statistically	nonsignificant	effect	sizes	are	also	included	in	the	
estimation	with	p‐uniform*	(i)	making	it	a	more	efficient	estimator	than	p‐uniform.	
(ii)	eliminating	the	overestimation	of	effect	size	in	case	of	between‐study	variance	in	
true	effect	size,	and	(iii)	enabling	estimation	and	testing	for	the	presence	of	the	
between‐study	variance	in	true	effect	size.	P‐uniform*	can	be	seen	as	a	selection	
model	approach	where	the	selection	model	has	one	cut‐off	at	the	critical	value	
determining	whether	an	effect	size	is	statistically	significant	or	not.	An	advantage	of	p‐
uniform*	over	other	selection	model	approaches	is	that	its	selection	model	does	not	



C h a p t e r 	 5 	|	107	
	

 

have	to	be	estimated	or	assumed	to	be	known.	P‐uniform*	only	assumes	that	the	
probability	that	all	statistically	significant	effect	sizes	get	published	is	the	same	and	
also	that	the	probability	for	publication	of	the	nonsignificant	effect	sizes	is	the	same.	
Hence,	p‐uniform*	makes	fewer	assumptions	than	other	selection	model	approaches.	
		 The	goal	of	this	chapter	is	twofold;	we	introduce	the	new	method	p‐uniform*	
and	examine	the	statistical	properties	of	p‐uniform*	and	the	selection	model	approach	
of	Hedges	(1992)	via	an	analytical	study	and	Monte‐Carlo	simulations.	We	compare	p‐
uniform*	with	the	selection	model	approach	of	Hedges	(1992)	for	four	reasons.	First,	
Hedges’	method	enables	estimation	of	both	the	effect	size	as	well	as	the	between‐
study	variance	in	true	effect.	Second,	this	selection	model	approach	assumes	that	the	
selection	model	is	unknown	and	has	to	be	estimated	which	is	more	realistic	than	other	
methods	(e.g.,	Vevea	&	Woods,	2005)	that	assume	that	the	selection	model	is	known.	
Third,	easy‐to‐use	software	is	available	for	applying	this	method	in	the	R	package	
“weightr”	(Coburn	&	Vevea,	2016)	and	this	method	suffers	less	from	convergence	
problems	than	for	instance	the	selection	model	approach	proposed	by	Copas	and	
colleagues	(Copas,	1999;	Copas	&	Shi,	2000,	2001).	Finally,	statistically	significant	and	
nonsignificant	effect	sizes	can	be	included	in	this	selection	model	approach	whereas	
other	approaches	only	use	the	statistically	significant	effect	sizes	(e.g.,	Hedges,	1984).	
		 The	remainder	of	this	chapter	is	structured	as	follows.	We	continue	with	
explaining	selection	model	approaches	in	general	and	their	development.	
Subsequently,	we	introduce	and	explain	the	extended	and	improved	p‐uniform*	
method.	Then	we	present	the	results	of	the	analytical	study	and	Monte‐Carlo	
simulations	for	examining	the	statistical	properties	of	p‐uniform*	and	the	selection	
model	approach	by	Hedges	(1992).	We	conclude	with	a	discussion	in	the	final	section	
of	this	chapter.	

5.1		 Selection	model	approaches	

		 All	selection	method	approaches	share	the	common	characteristic	that	they	
combine	an	effect	size	model	and	selection	model	to	correct	for	publication	bias.	The	
effect	size	model	is	usually	either	the	fixed‐effect	or	random‐effects	model.	The	
random‐effects	model	assumes	that	k	independent	effect	sizes	estimates,	

iy 	with	i=1,	

…,	k,	are	extracted	from	primary	studies.	The	random‐effects	model	can	be	written	as	

	 iiiy   	 	

where	 	is	the	average	true	effect	size,	 i 	is	a	random	effect	that	denotes	the	

difference	between	 	and	the	ith	primary	study’s	true	effect	size,	and	 i 	is	the	ith	

primary	study’s	sampling	error.	In	the	random‐effects	model,	it	is	commonly	assumed	
that	 ),0(~ 2 Ni

	where	 2 	reflects	the	between‐study	variance	in	true	effects,	and	

),0(~ 2
ii N  	where	 2

i 	is	the	sampling	variance	of	the	ith	primary	study.	The	
i 	and	
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i 	are	assumed	to	be	mutually	independent	of	each	other,	and	
2
i 	is	estimated	in	

practice	and	then	assumed	to	be	known.	If	 02  ,	there	is	no	between‐study	variance	
in	the	true	effect	size,	and	the	random‐effects	model	collapses	to	the	fixed‐effect	
model.	
		 The	selection	model	is	a	non‐negative	weight	function	that	determines	the	
likelihood	that	a	primary	study	gets	published	(Hedges	&	Vevea,	2005).	The	major	
difference	between	the	selection	model	approaches	is	the	weight	functions	that	they	
use.	This	weight	function	can	be	estimated	based	on	the	

iy 	and	its	standard	error	or	

on	the	p‐value	of	the	primary	studies.	Another	option	is	to	assume	that	a	specific	
weight	function	is	known	and	use	this	weight	function	as	selection	model.	We	will	
describe	the	different	weight	functions	in	more	detail	when	we	describe	different	
selection	model	approaches.		
		 The	weight	function,	 ),( iiyw  ,	is	combined	with	the	effect	size	model	to	get	a	

weighted	density	of	
iy ,	

	

 iiiii

iiii

dyyfyw

yfyw

),(),(

),(),(


 	

(1)	

where	 ),( iiyf  	denotes	the	(unweighted)	density	distribution	as	in	the	fixed‐effect	

or	random‐effects	model.	If	 1),( iiyw  	for	all	
iy ,	the	weighted	density	is	the	same	as	

the	density	of	the	effect	size	model	(Hedges	&	Vevea,	2005)	and	estimates	of	the	
selection	model	approach	coincide	with	those	of	the	fixed‐effect	or	random‐effects	
model.	This	weighted	density	can	be	used	to	estimate	parameters	(e.g.,	 ,	 2 ,	and	

parameters	in	the	weight	function)	in	a	selection	model	approach	by	means	of	
maximum	likelihood	estimation.	
		 The	first	selection	model	approach	is	proposed	in	Hedges	(1984).	This	
method	discards	statistically	nonsignificant	effect	sizes	and	assumes	that	all	
significant	effect	sizes	get	published.	Hence,	the	weight	function	of	this	selection	
model	approach	is		

௜ ௜
ଵ ௜ ௜

ଶ ௜ ௜
,	

where	Φ	is	the	cumulative	standard	normal	distribution	function;	one‐tailed	p‐values	
of	primary	studies	smaller	than	 	are	statistically	significant	effect	sizes	and	are	
assigned	a	weight	of	1,	whereas	nonsignificant	effect	sizes	are	assigned	a	weight	of	0.	
This	selection	model	approach	uses	the	fixed‐effect	size	model,	and	therefore	has	only	
one	parameter	( ).		
		 Iyengar	and	Greenhouse	(1988a)	extended	Hedges’	selection	model	approach	
by	also	taking	statistically	nonsignificant	effect	sizes	into	account.	They	also	used	the	
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fixed‐effect	model,	but	suggested	to	extend	their	model	to	a	random‐effects	model	in	
the	rejoinder	of	comments	on	their	paper	(Iyengar	&	Greenhouse,	1988b).	They	
suggested	two	different	selection	models	that,	similar	to	Hedges	(1984),	both	assume	
that	all	statistically	significant	effect	sizes	get	published.	One	selection	model	assumes	
a	constant	probability	of	publication	for	nonsignificant	effect	sizes	

ଵ

ଶ
ିఊ ,	

where	 x 	is	the	observed	t‐value	of	a	primary	study	and	 	is	the	critical	t‐value	
for	a	particular	 ‐level	and	df	degrees	of	freedom	(i.e.,	the	t‐value	that	determines	the	
threshold	of	an	effect	size	being	statistically	significant	or	not).	The	other	selection	
model	assumes	that	the	probability	of	publication	of	a	nonsignificant	effect	size	
increases	as	the	primary	study’s	t‐value	approaches	the	critical	t‐value	

ଵ

ଶ
|௫|ഁ

௧ሺௗ௙,ఈሻഁ
.	

If	 	and	  	are	zero,	there	is	no	publication	bias	and	 1w 	and	
2w 	both	equal	1.	The	

selection	model	approach	by	Iyengar	and	Greenhouse	(1988a)	is	a	two‐parameter	
model	(i.e.,	parameters	are	 	and	either	 	or	 	depending	on	which	selection	model	
is	selected)	whereas	the	selection	model	approach	proposed	in	the	rejoinder	(Iyengar	
&	Greenhouse,	1988b)	is	a	three‐parameter	model	(i.e.,	parameters	are	 ,	 2 ,	and	

either	 	or	 	depending	on	which	selection	model	is	selected).		
		 Hedges	(1992)	generalized	the	original	model	of	Iyengar	and	Greenhouse	
(1988a)	to	the	random‐effects	model.	In	contrast	to	Iyengar	and	Greenhouse	(1988a),	
this	selection	model	approach	does	not	use	a	parametric	selection	model.	These	
approaches	use	a	step	function	based	on	primary	studies’	p‐values	to	create	a	weight	
function.	That	is,	the	steps	create	intervals	of	p‐values,	and	effect	sizes	with	p‐values	
that	fall	into	the	same	interval	get	the	same	weight	in	the	weight	function.	The	
probability	of	publication	for	each	interval	of	p‐values	is	estimated	and	these	
probabilities	are	used	in	the	weight	function.	The	user	of	the	selection	model	
approach	of	Hedges	(1992)	has	to	specify	the	location	of	the	steps	that	determine	the	
intervals	of	the	p‐values	to	estimate	the	probabilities	that	are	used	in	the	weight	
function.	Let	

1ja 	denote	the	left	and	
ja 	the	right	endpoint	of	an	interval	of	p‐values	

where	j	refers	to	the	jth	interval	and	 00 a 		and	 1Ja 	with	J	reflecting	the	total	

number	of	intervals.	The	weight	function	(Hedges,	1992;	Hedges	&	Vevea,	2005)	can	
then	be	written	as	
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௜ ௜

ଵ ௜
ିଵ

ଵ ௜

௝ ௜
ିଵ

௝ ௜ ௜
ିଵ

௝ିଵ

௃ ௜ ௜
ିଵ

௃ିଵ

.	

It	is	common	practice	to	set	
1w 	to	1	in	order	to	get	relative	weights	that	facilitate	the	

interpretation	of	the	weight	function.	For	example,	suppose	that	the	location	of	only	
one	step	is	specified	at	a	p‐value	of	0.05	resulting	in	two	intervals	of	p‐values	(0‐0.05	
and	0.05‐1)	and	two	weights	(

1w 	and	
2w )	are	estimated.	The	weight	corresponding	to	

the	interval	0‐0.05	will	be	set	equal	to	 11 w 	and	if	 5.02 w 	this	is	interpreted	as	

primary	studies	with	p‐values	in	the	interval	between	0.05‐1	being	half	as	likely	to	be	
observed	as	primary	studies	with	p‐values	between	0.05‐1.		
		 Hedges	and	Vevea	(1996)	conducted	a	simulation	study	to	examine	the	
statistical	properties	of	this	selection	model	approach	and	concluded	that	the	weights	
of	the	selection	model	are	often	poorly	estimated,	but	that	the	estimates	of	effect	size	
and	between‐study	variance	were	then	still	quite	accurate.	Furthermore,	they	
assessed	whether	non‐normally	distributed	

i 	bias	the	estimates	of	the	selection	

model	approach	and	concluded	that	the	approach	is	relatively	robust	to	violations	of	
the	normality	assumption.	The	selection	model	approach	by	Hedges	(1992)	was	later	
extended	to	enable	the	inclusion	of	predictor	variables	(see	Vevea	&	Hedges,	1995)	
such	that	the	effect	size	model	is	a	mixed‐effects	model	instead	of	a	random‐effects	
model	(Borenstein	et	al.,	2009).	This	selection	model	approach	of	Hedges	(1992)	is	
implemented	in	the	R	package	“weightr”.	In	order	to	avoid	non‐convergence	of	this	
method,	the	weight	of	an	interval	is	set	equal	to	0.01	in	the	R	package	if	there	are	no	
observations	in	a	particular	interval.	
	 Vevea	and	Woods	(2005)	proposed	not	to	estimate	the	selection	model	as	in	
the	approach	of	Hedges	(1992),	but	rather	to	assume	that	the	selection	model	is	
known.	This	enables	application	of	the	selection	model	approach	of	Hedges	(1992)	in	
meta‐analyses	with	a	small	number	of	primary	studies’	effect	sizes,	because	100	to	
200	primary	studies	have	to	be	included	in	the	meta‐analysis	with	at	least	10	to	15	p‐
values	in	each	interval	of	p‐values	to	accurately	estimate	the	weights	(Hedges	&	
Vevea,	1996,	2005;	Vevea	&	Woods,	2005).	Vevea	and	Woods	(2005)	proposed	four	
different	weight	functions	that	differ	in	the	severity	of	publication	bias	and	also	in	
whether	one	or	two‐tailed	tests	were	conducted	in	the	primary	studies.	A	drawback	of	
the	approach	of	Vevea	and	Woods	is	that	bias	in	the	estimates	of	the	effect	size	and	
between‐study	variance	is	introduced	if	the	weights	are	incorrectly	specified.		
		 Another	selection	model	approach	assumes	that	selection	occurs	through	
both	the	effect	size	and	standard	error	of	primary	studies	(Copas,	1999;	Copas	&	Li,	
1997;	Copas	&	Shi,	2000,	2001).	This	selection	model	approach	makes	use	of	a	
selection	variable	
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where	 a 	and	b 	are	two	parameters	that	are	estimated	and	 i 	is	a	normally	

distributed	random	variable.	Parameters	 a 	and	b 	determine	the	probability	of	
publication	of	an	effects	size	with	 a 	determining	the	minimal	probability	of	a	study	
being	published	and	b 	the	change	in	 a 	if	 i 	increases	or	decreases.	The	weights	of	

each	primary	study’s	effect	size	are	then	determined	based	on	the	correlation	
between	

iz 	and	 iy 	where	a	non‐zero	correlation	indicates	that	publication	bias	

occurred.	The	effect	size	model	of	this	method	is	the	random‐effects	model	or	mixed‐
effects	model	if	predictor	variables	are	included.	This	method	estimates	 ,	 2 ,	and	 a 	

and	b 	in	the	weight	function,	but	it	is	sometimes	not	possible	to	estimate	all	the	
parameters	in	the	model	since	the	weight	function	cannot	always	be	estimated	
(Hedges	&	Vevea,	2005).	However,	parameters	in	the	weight	function	can	also	
assumed	to	be	known	to	avoid	convergence	problems	(Copas,	1999;	Copas	&	Shi,	
2000,	2001).	
		 Several	others	have	developed	selection	model	approaches	based	on	Bayesian	
statistics	(e.g.,	Givens,	Smith,	&	Tweedie,	1997;	Kicinski,	2013;	Larose	&	Dey,	1998;	
Silliman,	1997).	However,	these	approaches	are	considered	to	be	more	complicated	
and	require	more	assumptions	or	choices	of	users	than	previously	discussed	selection	
model	approaches	(Jin	et	al.,	2014;	Sutton	et	al.,	2000).	A	more	recently	proposed	
selection	model	approach	by	Guan	and	Vandekerckhove	(2015)	uses	Bayesian	model	
averaging	to	correct	for	publication	bias.	The	effect	size	model	of	this	method	is	the	
fixed‐effect	model	and	four	different	selection	models	that	differ	in	the	degree	of	
publication	bias	are	considered.	The	effect	size	model	and	the	selection	models	are	
combined	and	subsequently	Bayesian	model	averaging	over	the	four	selection	models	
is	used	to	estimate	 .	Another	recently	proposed	selection	model	approach	is	the	
Bayesian	fill‐in	meta‐analysis	(BALM)	method	(Du,	Liu,	&	Wang,	2017).	This	method	is	
a	Bayesian	implementation	of	the	selection	model	approach	of	Hedges	(1992)	using	
non‐informative	or	weakly	informative	prior	distributions.	Estimates	for	 ,	 2 ,	and	

the	weight	function	are	obtained	using	a	Gibbs	sampling	algorithm.		
		 The	statistical	properties	of	previously	discussed	selection	model	approaches	
have	not	been	directly	compared	in	for	instance	Monte‐Carlo	simulation	studies.	
However,	a	recent	simulation	study	by	McShane	et	al.	(2016)	compared	the	selection	
model	approach	of	Iyengar	and	Greenhouse	(1988b)	with	other	methods	to	estimate	
effect	size	corrected	for	publication	bias	(i.e.,	trim‐and‐fill,	p‐uniform,	p‐curve,	and	
PET‐PEESE).	They	concluded	that	the	selection	model	approach	of	Iyengar	and	
Greenhouse	(1988b)	yields	the	best	performance	and	should	be	preferred	over	the	
other	methods,	but	also	noted	that	the	assumptions	underlying	this	selection	model	
approach	are	idealistic	and	unlikely	to	be	met	in	practice.	Du	et	al.	(2017)	compared	
their	BALM	method	with	trim‐and‐fill,	PET‐PEESE,	p‐uniform,	and	the	selection	model	
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of	Hedges	(1992).	They	concluded	that	BALM	had	better	statistical	properties	than	all	
the	included	methods	except	for	slightly	more	bias	in	the	estimate	of	 	than	the	
selection	model	approach	of	Hedges	(1992).	However,	coverage	probabilities	of	BALM	
were	closer	to	the	nominal	coverage	rate	than	Hedges’	(1992)	selection	model	
approach,	and	the	selection	model	approach	suffered	from	convergence	problems.	
Another	simulation	study	(Terrin	et	al.,	2003)	studied	the	statistical	properties	of	
Hedges’	(1992)	selection	model	approach	and	compared	it	to	trim‐and‐fill.	Although	
this	selection	model	approach	outperformed	trim‐and‐fill,	it	also	often	failed	to	
converge.	Non‐convergence	of	Hedges’	(1992)	approach	happens	when	there	are	no	
p‐values	observed	in	one	of	the	specified	intervals	of	p‐values.	Although	recent	studies	
suggest	better	performance	of	selection	model	approaches,	it	is	currently	unknown	
how	these	methods	perform	in	meta‐analyses	with	a	small	number	of	primary	studies’	
effect	sizes	in	combination	with	extreme	publication	bias.		

5.2		 From	p‐uniform	to	p‐uniform*	

		 We	continue	with	explaining	p‐uniform	and	then	explain	how	we	extended	
the	method	to	p‐uniform*	in	order	to	(i)	make	the	estimator	more	efficient	than	p‐
uniform,	(ii)	eliminate	the	overestimation	of	effect	size	of	p‐uniform	in	case	of	
between‐study	variance	in	true	effect	size,	and	(iii)	enable	estimation	and	testing	for	
the	presence	of	the	between‐study	variance	in	true	effect	size.	Estimation	in	p‐uniform	
was	done	by	method	of	moments	estimation,	but	we	implemented	maximum	
likelihood	estimation	for	p‐uniform*.14		

5.2.1		 P‐uniform	

		 P‐uniform	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	uses	the	
statistical	principle	that	p‐values	are	uniformly	distributed	at	the	true	effect	size.	The	
method	discards	statistically	nonsignificant	effect	sizes	and	only	uses	the	significant	
effect	sizes	to	correct	for	publication	bias.	Assumptions	of	the	method	are	that	a	fixed	
true	effect	underlies	the	primary	studies	included	in	the	meta‐analysis	and	that	all	
primary	studies’	effect	sizes	that	are	statistically	significant	using	a	one‐tailed	test	
have	an	equal	probability	of	getting	published.	Statistical	significance	is	taken	into	
account	‐and	hence	publication	bias	is	corrected‐	by	computing	probabilities	of	
observing	an	effect	size	or	larger	conditional	on	the	effect	size	being	statistically	
significant.	This	can	be	written	as		

                                                   
14	In	the	paper,	based	on	this	chapter	we	will	also	include	the	results	of	method	of	moments	estimators.	
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where	the	numerator	is	the	probability	of	observing	an	effect	size	at	the	true	effect	
size	larger	than	the	effect	size	in	the	ith	primary	study	and	the	denominator	is	the	
probability	of	observing	a	(statistically	significant)	effect	size	(i.e.,	larger	than	the	
critical	value	

cvy ).	If	 0 ,	the	denominator	of	Equation	(2)	is	equal	to	the	 ‐level	

for	a	one‐tailed	test.		
		 P‐uniform	can	also	be	seen	as	a	selection	model	approach	with	the	fixed‐effect	
model	as	effect	size	model,	and	a	selection	model	assuming	equal	weights	for	
statistically	significant	effect	sizes	to	get	published.	Discarding	nonsignificant	effect	
sizes	in	p‐uniform	is	tantamount	to	assuming	a	constant	probability	to	get	published,	
but	without	estimating	and	the	need	to	estimate	this	probability.	P‐uniform	is	closely	
related	to	the	selection	model	approach	proposed	by	Hedges	(1984)	with	two	
differences.	First,	Hedges’	(1984)	approach	uses	two‐tailed	p‐values	instead	of	one‐
tailed	p‐values	in	p‐uniform.	Second,	Hedges’	(1984)	approach	uses	maximum	
likelihood	estimation,	whereas	p‐uniform	uses	method	of	moments	estimation.	
	 P‐uniform’s	effect	size	estimate	is	equal	to	the	value	of	 	where	a	statistic	
that	is	computed	based	on	the	

iq 	that	equals	its	expected	value	assuming	a	uniform	

distribution.	Van	Assen	et	al.	(2015)	proposed	to	use	Fisher’s	test	(Fisher,	1925),	





k

i
iq

1

)ln( ,	to	estimate	the	effect	size	in	p‐uniform.	Since	the	distribution	of	Fisher’s	

test	is	 )1,(k ,	 ̂ 	is	the	value	for	 	where	the	test	statistic	of	the	Fisher’s	test	is	equal	
to	its	expected	value	(i.e.,	k).	A	95%	confidence	interval	for	 	is	computed	by	entering	
different	values	for	 	in	Equation	(2)	(i.e.,	profiling)	until	the	test	statistic	of	the	
Fisher’s	test	is	equal	to	the	2.5th	and	97th	percentile	of	the	gamma	distribution.	This	
confidence	interval	is	exact	(i.e.,	95%	coverage	probability)	if	the	assumptions	of	the	
method	hold.	The	null	hypothesis	of	no	effect	and	the	presence	of	publication	bias	are	
tested	by	examining	whether	the	

iq 	at	 0 	and	at	the	estimate	of	the	fixed‐effect	

model	deviate	from	a	uniform	distribution	using	the	Fisher’s	test	(van	Assen	et	al.,	
2015).	Van	Assen	et	al.	(2015)	compared	p‐uniform	with	the	Fisher’s	test	as	method	
for	estimating	the	effect	size	with	trim‐and‐fill	(Duval	&	Tweedie,	2000a,	2000b)	to	
correct	for	publication	bias	and	concluded	that	p‐uniform	outperformed	trim‐and‐fill	
if	publication	bias	exists	and	between‐study	variance	in	true	effect	size	is	absent	or	
small.	However,	they	also	showed	that	overestimation	of	p‐uniform	increased	as	a	
function	of	the	between‐study	variance	in	true	effect	size,	and	van	Aert	et	al.	(2016)	
showed	that	in	case	of	p‐hacking	(a.k.a.	questionable	research	practices	or	
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opportunistic	use	of	researcher	degrees	of	freedom)	p‐uniform	may	bias	effect	size	
estimation,	where	size	and	sign	of	the	bias	depend	on	the	type	of	p‐hacking.	A	
comparison	of	p‐uniform’s	publication	bias	test	with	the	test	of	excess	significance	
(Ioannidis	&	Trikalinos,	2007b)	revealed	that	p‐uniform’s	publication	bias	test	has	
better	statistical	properties	except	for	situations	with	a	small	amount	of	publication	
bias	in	combination	with	a	zero	true	effect	size.		
		 Another	proposed	method15	for	estimating	the	effect	size	with	p‐uniform	is	
based	on	the	distribution	of	the	sum	of	independently	uniformly	distributed	random	
variables,	which	is	called	the	Irwin‐Hall	distribution	(van	Aert,	Wicherts,	et	al.,	2016).	
The	expected	value	of	the	Irwin‐Hall	distribution	is	0.5k,	so	 ̂ 	is	that	value	of	 	for	

which	 kq
k

i
i 5.0

1




.	An	exact	95%	confidence	interval	is	again	computed	by	profiling	

Equation	(2)	until	


k

i
iq

1

	is	equal	to	the	2.5th	and	97.5th	percentile	of	the	Irwin‐Hall	

distribution.	The	null	hypotheses	of	no	effect	and	no	publication	bias	are	rejected	if	




k

i
iq

1

	is	larger	than	the	critical	value	of	the	Irwin‐Hall	distribution	at	 0 	and	the	

estimate	of	the	fixed‐effect	model,	respectively.	Van	Aert	et	al.	(2016)	recommended	
to	use	the	estimator	based	on	the	Irwin‐Hall	distribution	as	default	estimator,	because	
(i)	summing	

iq 	is	easy	to	understand,	and	(ii)	it	has	the	nice	property	that	 ̂ 	is	equal,	

larger,	smaller	than	zero	if	the	average	of	the	statistically	significant	p‐values	is	equal	
to,	smaller,	larger	than	 	if	one‐tailed	tests	or	 2/ 	if	two‐tailed	tests	were	used	in	
the	primary	studies.	Moreover,	the	estimator	based	on	the	Irwin‐Hall	distribution	is	
less	susceptible	to	outlying	effect	sizes	than	the	estimator	using	the	Fisher’s	test.		
		 McShane	et	al.	(2016)	criticizes	p‐uniform	for	three	reasons:	(i)	p‐uniform	
assumes	a	fixed	true	effect	underlying	all	

iy ,	(ii)	it	discards	statistically	nonsignificant	

effect	sizes,	and	(iii)	p‐uniform	uses	method	of	moments	estimators	instead	of	
maximum	likelihood	estimation.	The	first	critique	is	indeed	a	limitation	of	p‐uniform,	
because	assuming	that	the	true	effect	size	is	fixed	results	in	overestimated	effect	size	if	
this	assumption	is	violated	(Carter	et	al.,	2017;	McShane	et	al.,	2016;	van	Aert,	
Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	Hence,	we	recommended	to	only	
interpret	p‐uniform’s	effect	size	estimate	as	the	estimate	of	the	average	population	
effect	size	when	heterogeneity	is	at	most	moderate	(van	Aert,	Wicherts,	et	al.,	2016).	
Moreover,	methods	that	do	not	assume	that	the	true	effect	size	is	fixed	are	favorable,	

                                                   
15	Effect	sizes	in	p‐uniform	its	current	implementation	can	be	estimated	using	six	different	methods:		
maximum	likelihood,	and	using	the	Irwin‐Hall	distribution,	Fisher’s	test,	the	Kolmogorov‐Smirnov	test,	
Anderson‐Darling	test,	and	a	variant	of	Fisher’s	test,	 




k

i
iq

1

)1ln(
.	All	methods	are	implemented	in	the	R	

package	“puniform”	that	is	available	on	GitHub	(https://github.com/RobbievanAert/puniform).	
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because	heterogeneity	is	often	present	in	meta‐analyses	(e.g.,	Higgins,	2008;	Higgins	
et	al.,	2009;	Klein	et	al.,	2014;	van	Erp	et	al.,	2017).		 	
		 The	second	critique	by	McShane	et	al.	(2016)	relates	to	the	loss	of	efficiency	of	
p‐uniform’s	estimators	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	
because	of	discarding	nonsignificant	effects.	Efficiency	loss	may	be	limited	in	many	
applications,	as	the	vast	majority	of	published	results	in	psychology	are	statistically	
significant	(e.g.,	Fanelli,	2010b;	Fanelli,	2012).	Nevertheless,	as	meta‐analyses	
including	many	nonsignificant	effects	do	occur	(e.g.,	van	Aert,	Wicherts,	&	van	Assen,	
2018)	and	the	potential	efficiency	loss	is	both	particularly	prevalent	and	detrimental	
in	the	important	cases	where	average	true	effect	size	is	(close	to)	zero,	we	generalized	
our	methodology	and	also	include	statistically	nonsignificant	effect	sizes	in	p‐
uniform*.	Simonsohn,	Simmons,	and	Nelson	(2017,	December	20),	however,	argue	
that	nonsignificant	effects	should	not	be	included	in	p‐curve	(and	therefore	also	in	p‐
uniform).	They	argue	that	all	nonsignificant	effects	do	not	have	the	same	probability	
of	getting	published,	and	it	is	hard	to	make	assumptions	about	this	probability.	
However,	we	contend	that	the	benefits	of	including	statistically	nonsignificant	effect	
sizes	(more	efficient	estimator,	less	biased	estimator	if	the	true	effect	size	is	
heterogeneous,	and	enabling	estimation	of	the	between‐study	variance	in	true	effect	
size)	outweigh	the	potential	costs	(possible	bias	in	the	estimator	if	the	assumption	of	
equal	probability	for	publishing	nonsignificant	effect	sizes	is	violated).	
		 The	final	critique	by	McShane	et	al.	(2016)	relates	to	the	optimal	large‐sample	
properties	of	the	maximum	likelihood	estimator	compared	to	method	of	moment	
estimators	(e.g.,	Casella	&	Berger,	2002).	Although	van	Aert,	Wicherts,	et	al.	(2016)	
and	van	Assen	et	al.	(2015)	were	aware	of	these	large‐sample	optimal	properties,	they	
intentionally	selected	method	of	moments	estimators	because	these	yield	exact	
confidence	intervals	even	if	only	one	statistically	significant	effect	size	is	included	in	a	
meta‐analysis.	This	is	in	contrast	with	the	conventional	Wald‐based	confidence	
interval	and	hypothesis	test	that	is	accompanied	by	maximum	likelihood	estimation,	
because	these	are	accompanied	with	the	requirement	that	the	log‐likelihood	around	
the	maximum	likelihood	estimate	is	regular	(Pawitan,	2013).	As	p‐uniform	uses	
conditional	probabilities	(given	statistical	significance)	as	likelihoods	that	are	
truncated,	the	log‐likelihood	is	not	well	approximated	by	the	normal	distribution	for	a	
large	and	relevant	part	of	the	parameter	space	(parameter	values	close	to	0).	Hence,	
Wald‐based	confidence	intervals	and	hypothesis	tests	are	generally	inappropriate.	To	
bypass	problems	of	non‐normally	distributed	log‐likelihoods,	we	implemented	p‐
uniform*	using	maximum	likelihood	estimation	and	computed	confidence	intervals	of	

 	and	 2 	by	inverting	the	likelihood‐ratio	test	and	using	the	likelihood‐ratio	test	for	

testing	the	null	hypothesis	 0 .	These	procedures	do	not	make	use	of	asymptotic	

normality	distributions	as	do	the	Wald‐based	confidence	intervals	(Agresti,	2013;	
Pawitan,	2013)	and	are	therefore	expected	to	have	better	statistical	properties.	
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5.2.2		 P‐uniform*	

		 P‐uniform*	is	a	selection	model	approach	with	the	random‐effect	model	as	
effect	size	model.	The	selection	model	assumes	that	the	probability	of	publishing	a	
statistically	significant	effect	size	as	well	as	a	nonsignificant	effect	size	are	constant,	
but	these	probabilities	may	be	different	from	each	other.	Other	selection	model	
approaches	estimate	the	probabilities	of	publication	for	studies	with	particular	effect	
sizes	and	use	these	probabilities	in	the	weight	function	for	effect	size	estimation.	
However,	these	weight	functions	are	often	poorly	estimated	resulting	in	bias	in	the	
estimates	of	these	selection	model	approaches	(Hedges	&	Vevea,	1996;	Vevea	&	
Woods,	2005).	Hence,	an	advantage	of	p‐uniform*	over	other	selection	model	
approaches	is	that	p‐uniform*	does	not	require	estimating	these	probabilities,	but	
only	treats	the	primary	studies’	effect	sizes	differently	depending	on	whether	they	are	
statistically	significant	or	not.		
		 Maximum	likelihood	estimation	is	used	in	p‐uniform*	where	truncated	
densities	are	being	used	instead	of	the	conditional	probabilities	in	Equation	(2).	

Truncated	densities	( ௜
ெ௅∗)	are	computed	for	both	the	statistically	significant	and	

nonsignificant	effect	sizes	and	are	a	function	of	both	 	and	 2 ,		
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where	 	denotes	the	standard	normal	probability	density	function.	The	likelihood	

function	is	the	product	of	the	 ௜
ெ௅∗	:		
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The	profile	(log‐)likelihood	functions	of	Equation	(3)	can	be	iteratively	optimized	until	

̂ 	and	 2̂ 	do	not	change	anymore	in	consecutive	steps.	Confidence	intervals	for	 	

and	 2 	are	obtained	by		inverting	the	likelihood‐ratio	test	statistic,	and	the	likelihood‐

ratio	test	is	used	to	test	the	null	hypotheses	 0 	and	 02  	(Agresti,	2013;	Pawitan,	

2013).	
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5.3		 Analytical	study			 	

		 We	continue	by	evaluating	the	statistical	properties	of	p‐uniform*	and	the	
selection	model	approach	of	Hedges	(1992)	implemented	in	the	R	package	“weightr”	
(Coburn	&	Vevea,	2016;	henceforth	called	Hedges1992)	by	means	of	an	analytical	
study	when	there	is	only	one	statistically	significant	and	one	nonsignificant	observed	
effect	size.	This	seems	to	be	a	rather	extreme	situation	for	a	meta‐analysis,	but	many	
meta‐analyses	only	contain	a	small	number	of	primary	studies’	effect	sizes	(median	
number	of	primary	studies’	effect	sizes	in	a	meta‐analysis	is	3	in	medicine	(Rhodes	et	
al.,	2015;	Turner	et	al.,	2015).	Moreover,	the	statistical	properties	of	these	methods	
have	never	been	examined	in	such	an	extreme	situation,	provided	useful	insights	in	
the	statistical	properties	of	the	different	methods,	and	enabled	us	to	evaluate	the	
statistical	properties	of	the	methods	without	the	necessity	of	using	Monte‐Carlo	
simulations.		

5.3.1		 Method	

	 We	selected	the	standardized	mean	difference	as	effect	size	measure	for	the	
analytical	study,	but	the	included	methods	can	also	be	applied	with	other	effect	size	
measures.	The	methods	were	applied	to	the	joint	probability	density	function	(pdf)	of	
one	statistically	significant	and	one	nonsignificant	effect	size.	The	pdf	of	the	
statistically	significant	effect	size	based	on	a	one‐tailed	test	with	 05. 	was	
approximated	by	selecting	1,000	equidistant	cumulative	probabilities	given	that	the	
effect	size	had	a	p‐value	smaller	than	 05. .	Hence,	the	cumulative	probabilities	

ranged	from	
001,1

1
  	until	

001,1

000,1
1

 
 	where	 	is	the	statistical	power	of	

the	test	of	no	effect.	For	example,	under	the	null	hypothesis	( 0 )	this	yielded	1,000	

cumulative	probabilities	ranging	from	 95005.0
001,1

05.0
05.01  	until	

99995.0
001,1

05.0000,1
05.01 


 .	These	cumulative	probabilities	were	then	

transformed	to	standardized	mean	differences	using	the	quantile	function	of	the	
normal	distribution	to	approximate	the	pdf	of	the	effect	size.	Similarly,	the	pdf	of	the	
statistically	nonsignificant	effect	sizes	was	approximated	by	selecting	1,000	
equidistant	cumulative	probabilities	with	the	requirement	that	the	p‐value	of	these	
effect	sizes	was	larger	than	 05. ,	which	were	subsequently	transformed	into	
standardized	mean	differences.	
		 The	two	pdfs	were	combined	to	obtain	the	joint	probability	density	
distribution	consisting	of	1,000	x	1,000	=	1,000,000	combinations	of	statistically	
significant	and	nonsignificant	effect	sizes.	Effect	size	was	estimated	for	each	
combination	using	two	methods;	p‐uniform*	and	Hedges1992.		
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		 Two	intervals	for	the	weights	function	of	Hedges1992	were	imposed	with	as	
threshold	 05. .	This	was	realistic	since	the	likelihood	of	publishing	a	primary	study	
is	often	determined	based	on	whether	a	primary	study’s	p‐value	is	smaller	than	

05. .	Moreover,	it	increases	the	comparability	with	p‐uniform*,	because	p‐
uniform*	also	treats	primary	studies’	effect	sizes	differently	depending	on	whether	an	
effect	size	is	statistically	significant	or	not.	The	estimates	of	p‐uniform*	were	obtained	
by	optimizing	the	profile	log‐likelihood	function	for	 	on	the	interval	( ‐4;	 +4)	
and	for	 	on	the	interval	(0;	 +1).		
		 We	evaluated	the	statistical	properties	of	the	different	methods	for	both	 	
and	 	with	respect	to	average,	median,	and	standard	deviation	of	the	estimates,	root	
mean	square	error	(RMSE),	and	coverage	probability	(i.e.,	how	frequent 	or	 	fell	in	
their	respective	confidence	interval	)	and	average	width	of	the	95%	confidence	
intervals	for	 	and	 .16	A	two‐independent	groups	design	was	used	for	the	analytical	
study	with	a	sample	size	of	50	per	group.	Two	values	for	the	true	effect	size	( 0 	

and	0.5)	were	selected,	and	two	values	for	the	square	root	of	the	between‐study	
variance	( 0 	and	0.346)	corresponding	to	I2‐statistics	equal	to	0%	(no	
heterogeneity)	and	75%	(large	between‐study	variance)	(Higgins	et	al.,	2003).	This	
analytical	study	was	programmed	in	R	(R	Core	Team,	2017)	and	the	packages	
“metafor”	(Viechtbauer,	2010)	and	“weightr”	(Coburn	&	Vevea,	2016)	were	used	for	
applying	the	random‐effects	model	and	Hedges1992,	respectively.	R	code	of	the	
analytical	study	is	available	via	https://osf.io/qh7tj/.17	

5.3.2			 Results	

		 Table	5.1	presents	the	results	of	the	average	and	standard	deviation	of	the	
estimates,	root	mean	square	error	(RMSE),	and	coverage	probability	of	the	95%	
confidence	intervals	for	 	and	 .	The	median	of	the	estimates	for	 	and	 	are	not	
reported,	because	these	results	were	highly	comparable	to	the	average	of	the	

                                                   
16	Confidence	intervals	of	the	random‐effects	model	for	  	were	computed	using	the	adjustment	proposed	
by	Hartung	and	Knapp	(Hartung,	1999;	Hartung	&	Knapp,	2001a,	2001b)	and	Sidik	and	Jonkman	(Sidik	&	
Jonkman,	2002),	because	coverage	probability	after	applying	this	adjustment	is	closer	to	the	nominal	
coverage	rate	(IntHout,	Ioannidis,	&	Borm,	2014;	Röver,	Knapp,	&	Friede,	2015;	Wiksten,	Rücker,	&	
Schwarzer,	2016).	Veroniki	et	al.	(2016)	reviewed	existing	methods	to	compute	a	confidence	interval	for	 ଶ	
and	concluded	that	the	Q‐profile	method	(Viechtbauer,	2007b)	and	generalized	Q‐statistic	method	(Jackson,	
2013)	are	the	two	methods	with	the	best	statistical	properties.	We	decided	to	include	the	Q‐profile	method	
in	our	Monte‐Carlo	simulations,	because	this	method	does	not	require	arbitrary	choices	with	respect	to	the	
primary	study’s	weights	as	compared	to	the	generalized	Q‐statistic	method.	
17	In	order	to	verify	whether	approximating	each	marginal	pdf	with	1,000	equidistant	cumulative	
probabilities	was	sufficient,	we	also	conducted	a	Monte‐Carlo	simulation	study	with	the	same	conditions	as	
in	the	analytical	study,	using	10,000	replications	(R	code	https://osf.io/phw7z/).	As	the	results	of	this	
Monte‐Carlo	simulation	study	were	highly	similar	to	those	of	the	analytical	study	we	only	report	the	results	
of	this	simulation	study	in	the	supplemental	materials	(https://osf.io/kyv6b/).	
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estimates	for	both	parameters.	The	average	width	of	the	confidence	intervals	for	 	
and	 	is	also	not	discussed	since	coverage	probability	of	the	methods	often	
substantially	deviated	from	the	nominal	coverage	rate	such	that	interpreting	the	
width	of	the	confidence	intervals	was	inappropriate.	All	the	omitted	results,	however,	
are	reported	in	the	supplemental	materials	(https://osf.io/kyv6b/).	

	Estimating	 	and	its	confidence	interval	P‐uniform*	always	converged	
with	respect	to	estimating	 ,	but	Hedges1992	did	not	converge	in	at	most	194	out	of	
the	1,000,000	combinations	(0.02%)	of	a	statistically	significant	and	nonsignificant	
effect	size	(condition	 5.0 	and	 346.0 ).	The	first	four	columns	of	Table	5.1	

present	the	results	for	estimating	 	and	computing	its	confidence	interval.		Although	
bias	of	p‐uniform*	and	Hedges1992	was	small	(at	most	0.062),	both	methods	
overestimated	 	if	 0 	and	underestimated	 	if	 5.0 .	Estimates	of	p‐uniform*	

and	Hedges1992	were	highly	similar,	but	estimates	of	p‐uniform	were	closest	to	the	
true	effect	size	if	 0 	whereas	Hedges1992	was	slightly	less	biased	if	 5.0 	in	

combination	with	 346.0 .		
		 The	standard	deviation	of	the	estimates	of	p‐uniform*	for	 0 	were	slightly	

larger	than	for	Hedges1992.	This	was	caused	by	some	extremely	negative	estimates	of	
p‐uniform*	when	p‐values	of	the	statistically	significant	effect	size	was	close	to	

05. .	Consequently,	this	also	affected	the	RMSE	of	p‐uniform*	that	was	also	slightly	
larger	than	the	RMSE	of	the	selection	model	approach	if	 0 .	For	other	conditions,	

the	standard	deviation	of	the	estimates	and	the	RMSE	of	both	methods	were	highly	
comparable.		
Coverage	probability	of	the	95%	confidence	interval	for	 	could	always	be	computed	
for	p‐uniform*,	but	not	in	at	most	1.5%	of	the	combinations	for	Hedges1992.	Coverage	
probabilities	of	p‐uniform*	were	acceptable	(.94‐.96)	if	 0 ,	but	too	low	if	 346.0 	
(around	.818).	Similarly,	coverage	probabilities	of	Hedges1992	were	acceptable	for	

5.0 ,	close	to	acceptable	for	 0 	(.971)	if	 0 ,	but	too	low	if	 346.0 	(.84	and	

.81).			
		 Estimating	 	and	its	confidence	interval	An	estimate	of	 	could	always	be	
computed	for	p‐uniform*	whereas	estimation	with	Hedges1992	did	not	converge	in	at	
most	0.03%	of	the	combinations	(condition	 5.0 	and	 346.0 ).	The	last	four	

columns	of	Table	5.1	show	the	results	of	estimating	 	and	computing	a	confidence	
interval	for	 .	Estimates	for	 	and	the	standard	deviation	of	these	estimates	of	p‐
uniform*	and	Hedges1992	were	highly	similar	to	each	other	except	for	 0 	and	

346.0 	(p‐uniform*	0.167	vs.	selection	model	approach	0.185).	Both	methods	
yielded	accurate	estimates	for	 0 ,	but	 	was	severely	underestimated	for	

346.0 .	This	underestimation	was	not	surprising	since	estimating	the	between‐
study	variance	in	true	effect	sizes	based	on	only	two	primary	studies	is	very	
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challenging.	The	RMSEs	for	estimating	 	were	comparable	for	the	two	methods.	
		 Coverage	probabilities	could	not	be	computed	for	the	selection	model	
approach	in	at	most	0.02%	of	combinations	(condition	 5.0 	and	 346.0 ).	

Surprisingly,	results	for	p‐uniform*	and	the	selection	model	approach	were	very	
different.	While	all	their	coverage	probabilities	were	seriously	off,	p‐uniform*’s	
coverage	was	too	high	(≥.995)	because	of	too	wide	confidence	intervals	and	those	of	
the	selection	model	approach	were	too	low	(≤	.55)	because	of	the	bias	in	the	estimates	
and	too	small	confidence	intervals.		
	 Conclusion	The	analytical	study	demonstrates	that	convergence	for	
estimating	 	and	 	and	their	confidence	interval	was	not	a	problem	for	p‐uniform*	
and	hardly	a	problem	for	Hedges1992	in	very	challenging	conditions	with	only	one	
significant	and	one	nonsignificant	effect,	invalidating	the	critique	on	the	selection	
model	approach	that	at	least	100	primary	studies’	effect	sizes	are	required	for	
estimates	to	converge	(Field	&	Gillett,	2010;	Hedges	&	Vevea,	2005;	Vevea	&	Woods,	
2005).	Estimates	of	 	for	both	methods	were	highly	comparable	and	the	bias	was	
small,	but	both	methods	underestimated	 	if	 346.0 	and	provided	highly	
inaccurate	confidence	intervals	for	 	(severe	over‐coverage	for	p‐uniform*	and	
severe	undercoverage	for	Hedges1992).	We	therefore	conclude	that	although	both	
methods	hardly	suffer	from	convergence	problems	and	rather	accurately	estimate	
average	effect	size,	two	studies	are	(unsurprisingly)	not	sufficient	for	estimating	 	
and	its	confidence	interval.	

5.4		 Monte‐Carlo	simulation	study	

As	analytically	approximating	the	statistical	properties	of	the	different	
methods	is	numerically	too	intensive	for	more	than	two	studies,	we	also	conducted	
Monte‐Carlo	simulations.	

5.4.1		 Method	

Standardized	mean	differences	were	again	the	effect	size	measure	of	interest	using	a	
two‐independent	groups	design	with	a	sample	size	of	50	per	group.	First,	a	true	effect	
size	

i 	for	the	ith	primary	study	was	sampled	from	N( , 2 ).	Subsequently,	this	
i 	

was	used	for	generating	an	observed	effect	size	from	N(
i ,
50

2 ).	The	observed	variance	

for	each	group	was	sampled	from	a	 2 ‐distribution	using	
49

2
49df
.	These	observed	

effect	size	and	variances	were	used	for	computing	the	Cohen’s	d	standardized	mean	
difference,	which	were	subsequently	transformed	into	Hedges’	g
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by	multiplying	the	Cohen’s	d	effect	size	with	







 













2

198

2

98

2

98

)98(c 	where	98	refers	to	

the	degrees	of	freedom	(Hedges,	1981).	The	unbiased	estimate	of	the	sampling	
variance	of	Hedges’	g	(see	Equation	26	in	Viechtbauer	[2007a])	was	computed	with	

igc 











2)98(98

298
1

25

1 	where	
ig 	denotes	the	Hedges’	g	effect	size	of	the	ith	primary	

study.		
		 If	the	effect	size	was	statistically	significant	based	on	a	one‐tailed	test	with	

05. ,	the	ith	primary	study	effect	size	was	included	in	the	meta‐analysis.	
Statistically	nonsignificant	effect	sizes	were	included	in	the	meta‐analysis	if	a	
randomly	drawn	number	from	a	uniform	distribution	ranging	from	zero	to	one	was	
smaller	than	 pub1 ,	where	 pub 	represents	the	probability	of	a	statistically	

nonsignificant	effect	size	to	be	included	in	a	meta‐analysis	with	 1pub 	referring	to	

extreme	publication	bias	(only	statistically	significant	studies	get	published).	This	
procedure	for	generating	data	of	primary	studies	was	repeated	until	k	primary	
studies’	effect	sizes	were	included	in	a	meta‐analysis.	
		 The	following	variables	were	varied	in	the	Monte‐Carlo	simulations:	 ,	 ,	k,	
and	 pub .	Three	different	levels	were	selected	for	 	(0;	0.2;	0.5)	reflecting	no,	a	small,	
and	a	medium	effect	(Cohen,	1988).	The	square	root	of	the	between‐study	variance	in	
true	effect	size	( )	was	0,	0.163,	or	0.346	representing	I2‐statistics	equal	to	0%,	40%,	
and	75%	(zero,	small‐medium,	large	[Higgins	&	Thompson,	2002]).	The	number	of	
effect	sizes	in	a	meta‐analysis	(k)	was	equal	to	10,	30,	60,	and	120;	10	and	30	are	close	
to	the	median	(12)	and	mean	(38.7)	number	of	effect	sizes	in	meta‐analyses	in	
psychology	(van	Erp	et	al.,	2017),	respectively,	whereas	we	also	included	60	and	120	
because	previous	research	(Field	&	Gillett,	2010;	Hedges	&	Vevea,	2005;	Vevea	&	
Woods,	2005)	suggests	that	a	large	number	of	effect	sizes	in	a	meta‐analysis	are	
required	in	order	for	selection	model	approaches	to	perform	well.	Four	different	
levels	for	 pub 	were	selected:	0,	0.5,	0.9,	and	1.	Combining	the	different	levels	of	these	

variables	resulted	in	3	x	3	x	4	x	4	=	144	conditions.	For	each	condition	10,000	
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replications	were	conducted.18		
		 P‐uniform*	and	Hedges1992	with	two	intervals	and	the	threshold	at	 05. 	
were	applied	to	each	simulated	meta‐analysis.	The	random‐effects	model	was	also	
included	to	be	able	to	compare	methods	that	correct	for	publication	bias	with	the	
method	that	is	usually	applied	and	does	not	correct	for	publication	bias.	We	used	the	
Paule‐Mandel	estimator	(Paule	&	Mandel,	1982)	to	estimate	the	between‐study	
variance	in	true	effect	size,	because	two	recent	papers	reviewing	existing	estimators	
of	the	between‐study	variance	recommend	this	estimator	(Langan	et	al.,	2016;	
Veroniki	et	al.,	2016).	The	outcome	variables	were	the	average,	median,	and	standard	
deviation	of	the	estimates,	RMSE,	and	coverage	probability	and	average	width	of	the	
95%	confidence	intervals	for	 	and	 .	Moreover,	we	also	studied	the	Type	I	error	
rate	and	statistical	power	for	the	test	of	no	effect	with	 05. .		
		 The	Monte‐Carlo	simulation	study	was	programmed	in	R	(R	Core	Team,	2017)	
and	the	packages	“metafor”	(Viechtbauer,	2010)	and	“weightr”	(Coburn	&	Vevea,	
2016)	were	used	for	the	random‐effects	model	and	the	selection	model	approach,	
respectively.	Similar	to	the	analytic	study,	the	estimates	of	p‐uniform*	were	obtained	
by	optimizing	the	profile	log‐likelihood	function	for	 	on	the	interval	( ‐5;	 +5)	
and	for	 	on	the	interval	(0;	 +2).	Other	R	packages	that	were	used	to	decrease	the	
computing	time	of	the	simulations	were	the	“parallel”	package	(R	Core	Team,	2017)	
for	parallelizing	the	simulations	and	the	“Rcpp”	package	(Eddelbuettel,	2013)	for	
executing	C++	functions.	R	code	of	this	Monte‐Carlo	simulation	study	is	available	via	
https://osf.io/79k3p/.		

5.4.2		 Results	

		 The	medians	of	the	estimates	of	 	and	 	are	not	presented,	because	they	
were	highly	similar	to	their	means.	The	width	of	the	confidence	intervals	are	not	
presented,	because	coverage	probabilities	often	substantially	deviated	from	the	
nominal	coverage	rate,	thereby	decreasing	the	usefulness	of	assessing	the	width	of	
confidence	intervals.	Finally,	we	only	present	the	results	for	k=10	and	60	in	this	
section,	because	these	conditions	already	illustrate	how	the	methods’	performances	

                                                   
18	We	conducted	an	additional	Monte‐Carlo	simulation	study	to	examine	whether	varying	the	primary	
study’s	sample	size	influenced	the	results	(R	code	https://osf.io/ms5kn/).	The	same	variables	were	varied	
in	this	simulation	study	as	in	the	one	described	above	except	for	that	k	was	now	fixed	to	30.	Sample	sizes	of	
these	30	primary	study’s	effect	sizes	were	varied	such	that	the	median	sample	size	per	group	of	the	primary	
studies	included	in	a	meta‐analysis	was	equal	to	50.	That	is,	ten	of	the	30	primary	studies’	effect	sizes	were	
based	on	a	sample	size	of	25	per	group,	eight	on	a	sample	size	of	50	per	group,	six	on	a	sample	size	of	100	
per	group,	four	on	a	sample	size	of	150	per	group,	and	two	on	a	sample	size	of	300	per	group.	These	sample	
sizes	were	chosen	in	such	a	way	that	the	median	sample	size	per	group	of	the	primary	studies	included	in	a	
meta‐analysis	was	50.	We	only	report	the	results	of	this	Monte‐Carlo	simulation	study	in	the	supplemental	
materials	(https://osf.io/kyv6b/),	because	the	results	of	this	simulation	study	were	not	remarkably	
different	from	the	one	with	fixed	sample	size.	
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increase	in	k;	the	condition	k=120	was	omitted	because	the	methods’	performance	in	
that	condition	was	not	remarkably	different	from	that	in	k=60.	All	omitted	results	are	
included	in	the	supplemental	materials	(https://osf.io/kyv6b/).		
	 Average	estimates	of	 	P‐uniform*	and	Hedges1992	did	not	always	
converge	whereas	the	random‐effects	model	always	obtained	an	estimate	of	 .	The	
reason	for	the	non‐convergence	of	p‐uniform*	was	that	the	estimate	of	p‐uniform*	
was	equal	to	one	of	the	boundaries	of	the	parameter	space	(i.e.,	 ‐5	or	 +5).	This	
non‐convergence	was	most	severe	for	the	condition	 0 ,	 0 ,	k=10,	and	 1pub 	

(12.6%).	Hedges1992	failed	to	converge	in	at	most	15.8%	of	the	replications	for	the	
condition 0 ,	 0 ,	k=10,	and	 0pub .	Both	methods’	non‐convergence	rate	was	

close	to	zero	if	both	statistically	significant	and	nonsignificant	primary	studies’	effect	
sizes	were	included	in	a	meta‐analysis.		
		 Figures	5.1	and	5.2	show	the	average	of	the	estimates	of	 	when	 	(columns	
of	the	figures),	 	(rows	of	the	figures),	and	 pub 	(x‐axis	of	the	figures)	were	varied	for	
k=10	and	k=60,	respectively.	All	the	figures	are	centered	at	the	true	effect	size	 	
(dashed	gray	line)	to	facilitate	comparability	of	the	different	subfigures	as	we	varied	
 .	We	first	describe	the	results	of	k=10	and	then	illustrate	how	the	results	change	if	
k=60.			
		 Highlighting	common	issues	with	a	lack	of	correction	or	publication	bias,	the	
random‐effects	model	overestimated	 	under	publication	bias	and	this	
overestimation	decreased	in	 	and	increased	in	 	and	 pub .	Hedges1992	and	p‐
uniform*	were	less	biased	than	the	random‐effects	model	if	 0pub 	with	no	(i.e.,

0pub )	or	negligible	bias	(i.e., 5.0pub ).	For	 9.0pub ,	Hedges1992	provided	

accurate	average	estimates	(maximum	bias	0.056).	For	 9.0pub ,	p‐uniform*	also	

provided	accurate	average	estimates	for	 0 	and	 2.0 ,	but	slightly	

underestimated	 	when	 5.0 	in	combination	with	 346.0 	(bias	=	‐0.07).	

Hedges1992	was	severely	positively	biased	in	case	of	extreme	publication	bias	(i.e.,	
1pub ;	maximum	bias	0.329),	and	this	bias	decreased	in	 .	In	case	of	extreme	

publication	bias,	p‐uniform*	generally	showed	less	severe	bias	than	Hedges1992	
(maximum	bias	‐0.144),	and	tended	to	underestimate	 .		
		 While	bias	in	the	random‐effects	model	was	unaffected	by	increasing	the	
number	of	studies	to	60	(see	Figure	5.2),	bias	of	the	two	other	methods	decreased	
slightly.	Bias	was	negligible	for	 1pub 	with	maximum	bias	equal	to	0.032	and	0.031	

for	p‐uniform*	and	Hedges1992,	respectively.	For	 1pub ,	Hedges1992	still	provided	

strongly	overestimated	estimates	of	 	if	 0 	(bias	at	most	0.301),	whereas	p‐

uniform*	showed	slight	underestimation	(maximum	bias	‐0.110).	Because	these	
biases	for	 1pub 	also	hold	for	k=120,	revealing	systematic	bias,	these	results	suggest	
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that	the	selection	model	approach	should	not	be	used	when	a	meta‐analysis	only	
consists	of	statistically	significant	effect	sizes,	particularly	when	the	true	effect	size	
can	be	expected	to	be	small.		
		 RMSE	for	estimating	 	Figure	5.3	and	4	show	the	RMSE	for	estimating	 	
for	k=10	and	60.	The	RMSE	for	the	random‐effects	model	followed	the	patterns	
observed	for	its	bias;	RMSE	increased	in	publication	bias	and	 ,	and	decreased	in	 .	
For	 0pub 	or	 5.0pub ,	the	random‐effects	model	had	a	lower	RMSE	than	the	two	

other	methods,	because	its	bias	was	zero	( 0pub )	or	small	( 5.0pub )	while	at	the	

same	time	the	standard	deviation	of	its	estimates	was	lower	than	for	the	other	
methods	(see	supplemental	materials	available	at	https://osf.io/kyv6b/).	For	severe	
publication	bias	( 9.0pub ),	RMSE	of	the	other	methods	was	often	smaller	because	

the	contribution	of	the	higher	bias	of	the	random‐effects	model	outweighed	its	higher	
precision.	Comparing	Hedges1992	with	p‐uniform*	shows	a	highly	similar	RMSE	for	

0pub 	and	 5.0pub 	except	for	 0 	where	p‐uniform*	had	a	higher	RMSE.	For	

9.0pub ,	both	methods	have	similar	RMSE	if	 0 ,	but	p‐uniform*	had	a	higher	

RMSE	for	nonzero	true	effect	size.	For	 1pub ,	p‐uniform*	had	a	much	higher	RMSE	

than	Hedges1992,	and	even	higher	than	the	very	biased	random‐effects	model.	The	
differences	between	Hedges1992	and	p‐uniform*	are	not	explained	by	bias	(bias	of	p‐
uniform*	is	generally	smaller),	but	were	caused	by	a	considerably	larger	standard	
deviation	of	the	estimates	of	p‐uniform*	(see	supplemental	materials	available	at	
https://osf.io/kyv6b/).	This	was	a	consequence	of	primary	studies	with	p‐values	close	
to	the	 ‐level	resulting	in	highly	negative	effect	size	estimates	of	p‐uniform*.		
		 As	the	standard	deviation	of	estimates	decreased	in	k,	the	RMSE	decreased	in	
k	for	all	methods	in	all	conditions	(see	Figure	5.4).	Performance	of	the	three	methods	
became	more	similar	for	 0pub 	and	 5.0pub .	As	bias	mainly	determined	the	RMSE	

for	larger	values	of	k,	the	RMSE	of	Hedges1992	(less	bias)	was	generally	smaller	than	
of	the	random‐effects	model	(most	bias).	The	RMSE	of	p‐uniform*	even	exceeded	that	
of	the	random‐effects	model	if	 1pub 	because	of	a	considerably	larger	standard	

deviation	of	the	estimates.	To	conclude,	if	the	severity	of	publication	bias	is	unknown	
it	is	ill‐advised	to	interpret	estimates	of	the	random‐effects	model.	Additionally,	
although	p‐uniform*	is	generally	less	biased	than	the	other	methods	if	true	effect	size	
is	small	and	 1pub ,	its	estimates	are	more	variable	than	of	Hedges1992,	particularly	

for	a	small	number	of	studies.		 	
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	 Coverage	probability	of	confidence	interval	for	 	A	confidence	interval	
for	 	could	always	be	computed	with	the	random‐effects	model,	but	not	with	p‐
uniform*	and	Hedges1992.	Non‐convergence	was	at	most	12.7%	for	p‐uniform*’s	
confidence	interval	(condition	 0 ,	 346.0 ,	k=10, 1pub ),	and	29.3%	for	

Hedges1992	(condition	 0 , 0 ,	k=10,	 1pub ).		

		 Table	5.2	presents	the	coverage	probability	of	the	95%	confidence	interval	for	
 	if	k=10	and	k=60.	Coverage	probabilities	of	the	random‐effects	model	were	equal	to	
0.95	in	the	absence	of	publication	bias	and	decreased	as	a	function	of	 pub 	with	

coverage	probabilities	approaching	0.	P‐uniform*’s	coverage	probabilities	were	close	
to	0.95	for	 5.0pub 	and	 0 ,	and	decreased	as	a	function	of pub 	and	 .	However,	
the	undercoverage	of	p‐uniform*	was	less	severe	than	for	the	random‐effects	model.	
Coverage	probabilities	of	Hedges1992	were	close	to	0.95	in	the	absence	of	publication	
bias,	but	also	decreased	as	a	function	of	 pub 	and	 .	Undercoverage	was,	in	general,	
more	extreme	for	Hedges1992	than	for	p‐uniform*.	
		 If	k	was	increased,	undercoverage	of	the	random‐effects	model	became	more	
severe,	as	detrimental	effects	of	its	bias	were	more	pronounced	for	a	larger	number	of	
studies;	for	k=120,	the	coverage	probability	of	the	random‐effects	model	was	at	most	
0.021	if	 9.0pub .	Coverage	probabilities	of	p‐uniform*	and	Hedges1992	got	closer	to	

the	nominal	coverage	rate	if	k	increased	except	for	 1pub 	where	their	

undercoverage	was	severe.	These	results	confirm	that	estimates	of	the	random‐effects	
model	should	not	be	interpreted	if	publication	bias	is	present,	and	that	performance	of	
p‐uniform*	and	Hedges1992	is	not	acceptable	if	only	statistically	significant	results	
are	present	in	the	meta‐analysis.			
		 Testing	null	hypothesis	of	no	effect	Table	5.3	presents	the	Type	I	error	rate	
and	statistical	power	for	testing	the	null	hypothesis	of	no	effect.	The	first	four	columns	
( 0 )	refer	to	the	Type	I	error	rate	whereas	the	other	columns	illustrate	the	

statistical	power	of	the	methods.	For	k=10,	the	Type	I	error	rate	of	the	random‐effects	
model	was	close	to	0.05	in	the	absence	of	publication	bias,	but	it	increased	as	a	
function	of	 pub 	with	Type	I	error	equal	to	1	for	 1pub .	These	large	Type	I	error		

rates	were	caused	by	the	overestimation	of	effect	size	due	to	publication	bias.	P‐
uniform*	better	controlled	the	Type	I	error	rate	than	the	random‐effects	model	with	
the	Type	I	error	rate	being	close	to	0.05	except	for	conditions	with	extreme	
publication	bias	and	 346.0 .	However,	Type	I	error	rate	of	p‐uniform*	also	
increased	as	a	function	of	 pub ,	which	followed	a	similar	pattern	as	the	bias	for	

estimating	 	(see	Figure	5.1).	Statistical	power	of	p‐uniform*	decreased	as	 pub 	was	
increased,	and	was	at	most	0.702	(for	condition	 1pub ,	 5.0 ,	 0 ).	Type	I	error	

rate	of	Hedges1992	was	larger	than	of	p‐uniform*	if	there	was	extreme	publication
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bias	(at	most	0.867	for	 1pub ,	 0 ,	 346.0 ).	Statistical	power	of	Hedges1992	

was	also	generally	larger	than	of	p‐uniform*	and	increased	as	a	function	of	 pub .	

If	k	was	increased,	the	Type	I	error	rate	of	p‐uniform*	became	closer	to	the			
 ‐level	whereas	the	Type	I	error	rate	of	the	random‐effects	model	for	 9.0pub 	and	

Hedges1992	for	 1pub 	converged	to	1	if	k=120	(see	supplemental	material	available	

at	https://osf.io/kyv6b/).	Statistical	power	of	all	methods	naturally	increased	in	k.	To	
conclude,	while	the	random‐effects	model	only	provided	an	accurate	Type	I	error	rate	
if	no	publication	bias	was	present,	p‐uniform*	better	controlled	the	Type	I	error	rate	
than	the	random‐effects	model	and	Hedges1992	if	publication	bias	was	present.	
Because	of	the	large	Type	I	error	rate	of	Hedges1992	in	conditions	with	extreme	
publication	bias	(e.g.,	only	statistically	significant	effect	sizes),	we	advise	not	to	use	
Hedges1992	when	the	goal	is	the	test	the	null	hypothesis.	Additionally,	p‐uniform*	
had	low	statistical	power	if	only	statistically	significant	effect	sizes	were	present,	and	
is	therefore	also	not	advised	to	be	used	in	these	situations.			
		 Average	estimates	of	 	Estimates	of	 	could	always	be	obtained	with	the	
random‐effects	model,	but	p‐uniform*	and	the	Hedges1992	did	not	always	converge	
with	respect	to	estimating	 .	While	non‐convergence	rates	for	p‐uniform*	were	equal	
to	those	for	estimating	 (i.e.,	at	most	12.6%),	it	was	at	most	15.8%	for	Hedges1992	
(in	condition	 0 ,	 0 ,	k=10,	 0pub ).	Figures	5.5	and	5.6	show	the	average	

estimates	of	 	for	k=10	and	60,	respectively.	For	k=10	and	 0pub ,	the	random‐

effects	model	overestimated	 	if	 0 	(maximum	bias	0.052)	and	underestimated	it	
if	 0 	(maximum	bias	‐0.028).	If	 1pub 	and	 0 ,	the	random‐effects	model	

underestimated	 		for	all	conditions,	because	meta‐analyses	in	this	condition	only	
consisted	of	statistically	significant	observed	

iy 	resulting	in	hardly	any	variability	in	

iy 	and	difficulties	for	estimating	 .	If	 0 ,	there	was	a	small	positive	bias	in	p‐

uniform*	(maximum	bias	0.067)	and	Hedges1992	(maximum	bias	0.05)	for	all	levels	
of	 pub ,	and	this	bias	was	the	largest	for	 1pub 	in	combination	with	 5.0 	(bias	=	

0.067	for	p‐uniform*	and	0.05	for	Hedges1992).	P‐uniform*	and	Hedges1992	
underestimated	 	if	 0 	for	all	levels	of	 pub 	with	p‐uniform*	being	less	negatively	

biased	than	Hedges1992.		 	
		 Increasing	k	resulted	in	less	bias	of	p‐uniform*	and	Hedges1992,	but	did	not	
affect	the	bias	of	the	random‐effects	model.	Bias	of	p‐uniform*	and	Hedges1992	was	
negligible	for	k=30	(maximum	bias	0.058	for	p‐uniform*	and	0.047	for	Hedges1992),	
for	k=60	(maximum	bias	0.053	for	p‐uniform*	and	0.044	for	Hedges1992)	and	for	
k=120	(maximum	bias	0.042	for	p‐uniform*	and	0.039	for	Hedges1992).	Hence,	these	
results	imply	that	either	p‐uniform*	or	the	Hedges1992	should	be	used	for	estimating	
 	instead	of	the	random‐effects	model	in	the	presence	of	publication	bias,	although	a	
substantial	number	of	studies	was	needed	for	accurate	estimation.			 	
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	 RMSE	for	estimating	 	Figures	5.7	and	5.8	present	the	RMSE	for	estimating	
 	of	the	different	methods	for	k=10	and	60,	respectively.	For	k=10,	the	RMSE	of	the	
random‐effects	model	increased	in	 pub 	if	 0 .	If	 0 ,	the	RMSE	was	very	small	for	

1pub ,	but	this	was	because	the	random‐effects	model	severely	underestimated	 	in	
this	condition	(see	Figures	5.5	and	5.6).	P‐uniform*	and	Hedges1992	had	similar	
RMSEs,	except	that	p‐uniform*’s	RMSE	exceeded	that	of	Hedges1992	if	 1pub ;	this	

was	generally	not	caused	by	higher	bias	(see	Figure	5.5	and	6),	but	due	to	higher	
variability	of	p‐uniform*’s	estimates	for	 	(see	supplemental	materials	available	at	
https://osf.io/kyv6b/).			
	 While	the	RMSE	did	not	substantially	decrease	for	the	random‐effects	model	
when	increasing	k	to	60,	it	did	decrease	for	p‐uniform*	and	Hedges1992.	The	RMSEs	
of	p‐uniform*	and	Hedges1992	were	quite	similar,	although	lower	for	Hedges1992	if	

1pub .	The	RMSEs	of	p‐uniform*	and	Hedges’	selection	model	approach	were	both	

considerably	lower	than	that	of	the	random‐effects	model	if	 9.0pub and	 0 .	

These	results	implied	that	the	larger	bias	in	the	random‐effects	model	compared	to	p‐
uniform*	and	Hedges1992	was	compensated	with	the	smaller	standard	deviation	of	
the	estimates	resulting	in	a	lower	RMSE	for	the	random‐effects	model	if	 5.0pub 	and	

0 .			 Coverage	probability	of	confidence	interval	for	 	A	confidence	interval	for
 	could	always	be	computed	with	the	random‐effects	model	but	not	always	with	p‐
uniform*	or	the	selection	model	approach.	Non‐convergence	of	p‐uniform*’s	
confidence	interval	was	the	same	as	for	estimating	 	and	 ,	while	non‐convergence	
of	Hedges1992	was	at	most	15.8%	( 0 ,	 0 ,	k=10,	 0pub ).		

		 Table	5.4	presents	the	coverage	probabilities	of	the	three	methods.	Coverage	
probabilities	of	the	random‐effects	model	were	close	to	0.95	for	 0pub 	but	

decreased	as	a	function	of	 pub .	Undercoverage	of	the	random‐effects	model	was	most	

severe	(0.072)	for	 1pub 	in	combination	with	 0 	and	 0 .	Coverage	

probabilities	of	p‐uniform*	were	close	to	0.95	if	 0pub 	and	 346.0 ,	but	generally	

decreased	as	 pub 	and	 	were	increased.	Undercoverage	was	most	severe	for	 1pub 	

(minimum	coverage	(0.346).	There	was	undercoverage	for	Hedges1992	for	 0pub ,	

(minimum	coverage	(0.346).	There	was	undercoverage	for	Hedges1992	for	 0pub ,	

but	coverage	of	Hedges1992	was,	in	contrast	to	p‐uniform*,	too	high	even	up	to	1	for	
1pub .	

		 Coverage	probabilities	of	the	random‐effects	model	decreased	if	k	was	
increased.	For	k=60,	the	coverage	probability	of	the	random‐effects	model	was	even	
equal	to	zero	for	 1pub 	in	combination	with	 0 	and	 2.0 .	Coverage	

probabilities	of	p‐uniform*	and	Hedges1992	became	closer	to	the	nominal	coverage	
rate	except	for	 1pub .	Hence,	researchers	are	advised	against	interpreting	
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Figure	5.6.	A

verage	of	the	estim
ates	of	

	for	the	random
‐effects	m

odel	(R
E),	p‐uniform

*,	and	H
edges1992	as	a	function	of	

,	
,	and	the	severity	of	

publication	bias	(
pub

)	w
ith	the	num

ber	of	prim
ary	studies’	observed	effect	sizes	(k)	equal	to	60.	



	  

	
Fi
gu
re
	5
.7
.	R
oo
t	m

ea
n	
sq
ua
re
	e
rr
or
	(
R
M
SE
)	
of
	e
st
im
at
in
g	

	w
it
h	
th
e	
ra
nd
om

‐e
ff
ec
ts
	m
od
el
	(
R
E)
,	p
‐u
ni
fo
rm
*,
	a
nd
	H
ed
ge
s1
99
2	
as
	a
	fu
nc
ti
on
	o
f	

,		


,	a
nd
	th
e	
se
ve
ri
ty
	o
f	p
ub
lic
at
io
n	
bi
as
	(
pu
b
)	
w
it
h	
th
e	
nu
m
be
r	
of
	p
ri
m
ar
y	
st
ud
ie
s’
	o
bs
er
ve
d	
ef
fe
ct
	s
iz
es
	(
k)
	e
qu
al
	to
	1
0.
	



		

 

	
Figure	5.8.	R

oot	m
ean	square	error	(R

M
SE)	of	estim

ating	
	w
ith	the	random

‐effects	m
odel	(R

E),	p‐uniform
*,	and	H

edges1992	as	a	function	of	
,		


,	and	the	severity	of	publication	bias	(

pub
)	w

ith	the	num
ber	of	prim

ary	studies’	observed	effect	sizes	(k)	equal	to	60.	
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confidence	intervals	of	p‐uniform*	and	Hedges1992	if	there	they	suspect	extreme	
publication	bias.	
		 Conclusion	None	of	the	methods	outperformed	the	other	methods	for	all	the	
studied	conditions	and	outcome	variables	in	the	Monte‐Carlo	simulation	study.	
However,	some	general	recommendations	can	be	made.	Although	the	random‐effects	
model	had	the	best	statistical	properties	in	the	absence	of	publication	bias,	we	do	
usually	not	know	the	severity	of	publication	bias.	Hence,	we	recommend	to	always	
accompany	traditional	fixed‐effect	or	random‐effects	meta‐analysis	with	either	p‐
uniform*	or	the	selection	model	approach.		
		 P‐uniform*	and	Hedges1992	outperformed	the	random‐effects	model	if	
publication	bias	was	present.	However,	statistical	properties	of	p‐uniform*	and	
Hedges1992	were	not	good	in	case	of	extreme	publication	bias	with	only	statistically	
significant	primary	studies’	effect	sizes	in	a	meta‐analysis.	As	increasing	the	number	of	
studies	to	even	120	did	not	always	improve	the	statistical	properties,	we	recommend	
not	to	put	much	trust	in	the	estimates	of	any	of	the	methods	when	there	is	extreme	
publication	bias	with	a	meta‐analysis	only	consisting	of	statistically	significant	studies.	
		 The	selection	model	approach	and	p‐uniform*	were	highly	comparable	which	
makes	it	impossible	to	recommend	one	method	over	the	other.	However,	some	
recommendations	can	still	be	made	based	on	the	results	of	our	Monte‐Carlo	
simulations.	First,	we	recommend	to	use	p‐uniform*	if	a	researcher’s	main	emphasis	is	
on	estimating	the	average	effect	size	and	between‐study	variance,	as	p‐uniform*	had	
no	systematic	bias	in	estimating	the	average	effect	size	and	hardly	suffers	from	
convergence	problems.	However,	estimates	of	p‐uniform*	can	be	highly	negative,	
which	resulted	in	a	larger	RMSE	than	that	of	Hedges1992	and	sometimes	even	larger	
than	of	the	random‐effects	model.	These	highly	negative	estimates	of	p‐uniform*	were	
caused	by	primary	studies’	p‐values	close	to	the	 ‐level.	Hence,	we	recommend	to	set	
p‐uniform*’s	estimate	of	the	average	effect	size	to	zero	if	this	occurs,	which	is	in	line	
with	our	recommendation	for	p‐uniform	and	p‐curve	(van	Aert,	Wicherts,	et	al.,	2016).	
This	adjustment	is	defensible,	because	it	is	unlikely	that	the	average	effect	size	
estimate	is	(strongly)	negative	if	statistically	significant	positive	primary	studies’	
effect	sizes	are	observed.	Second,	researchers	are	recommended	not	to	interpret	
confidence	intervals	for	 	and	 	of	p‐uniform*	and	the	selection	model	approach	if	
there	is	extreme	publication	bias	with	a	meta‐analysis	consisting	of	only	statistically	
significant	studies,	because	our	results	indicated	that	confidence	intervals	
substantially	deviated	from	the	nominal	coverage	rate	in	these	conditions.	Although	
coverage	probabilities	of	p‐uniform*	and	the	selection	model	approach	were	generally	
closer	to	nominal	coverage	than	the	random‐effects	model	for	 9.0pub ,	coverage	of	

p‐uniform*	and	the	selection	model	approach	was	not	close	to	the	nominal	coverage	
rate,	especially	if	the	between‐study	variance	in	true	effect	sizes	was	large.	
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5.5		 Discussion	
	
		 Publication	bias	distorts	the	results	of	meta‐analyses	yielding	overestimated	
effect	sizes	(e.g.,	Kraemer	et	al.,	1998;	Lane	&	Dunlap,	1978)	and	false	positives	(van	
Assen	et	al.,	2015).	Multiple	methods	were	developed	to	correct	for	publication	bias	in	
a	meta‐analysis,	and	selection	model	approaches	are	seen	as	the	state‐of‐the‐art	
methods	(Carter	et	al.,	2017;	McShane	et	al.,	2016).	The	p‐uniform	method	(van	Aert,	
Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	can	also	be	seen	as	a	selection	model	
approach,	and	we	extended	and	improved	this	method	in	this	chapter.	The	new	
method,	p‐uniform*,	does	not	only	use	statistically	significant	primary	studies’	effect	
sizes	for	estimation	as	is	done	in	p‐uniform,	but	also	uses	the	nonsignificant	effect	
sizes.	Including	the	statistically	nonsignificant	primary	studies’	effect	sizes	results	in	
three	major	improvements	of	p‐uniform*	over	p‐uniform:	(i)	it	makes	p‐uniform*	a	
more	efficient	estimator	than	p‐uniform,	(ii)	overestimation	of	effect	size	by	p‐uniform	
in	case	of	between‐study	variance	in	true	effect	is	eliminated,	and	(iii)	it	enables	
estimation	and	testing	for	the	presence	of	the	between‐study	variance	in	true	effect	
size.	
		 The	aim	of	this	chapter	was	to	introduce	p‐uniform*	and	compare	the	
statistical	properties	of	the	method	with	those	of	the	selection	model	approach	of	
Hedges	(1992)	and	the	random‐effects	model	that	is	commonly	used	but	does	not	
correct	for	publication	bias.	We	assessed	the	statistical	properties	of	the	different	
methods	by	means	of	an	analytical	study	where	a	meta‐analysis	only	consisted	of	one	
statistically	significant	and	one	nonsignificant	primary	study’s	effect	size.	Moreover,	
we	studied	their	relative	performance	under	different	levels	of	publication	bias	using	
a	Monte‐Carlo	simulation	study	where	we	selected	conditions	that	are	representative	
for	meta‐analyses	in	practice.	Statistical	properties	of	the	random‐effects	model	were	
better	than	of	p‐uniform*	and	the	selection	model	approach	of	Hedges	(1992)	if	
publication	bias	did	not	affect	the	probability	of	publishing	a	primary	study.	If	
publication	bias	was	present,	the	random‐effects	model	performed	worse	than	the	
two	other	methods,	confirming	previous	research	showing	that	it	overestimates	effect	
size	(e.g.,	Kraemer	et	al.,	1998;	Lane	&	Dunlap,	1978)	and	yields	unpredictable	bias	in	
estimating	between‐study	variance	when	publication	bias	operates	(Augusteijn	et	al.,	
2017;	Jackson,	2006,	2007).	Statistical	properties	of	p‐uniform*	and	the	selection	
model	approach	of	Hedges	(1992)	were	generally	comparable.	P‐uniform*	showed	
slightly	larger	RMSE	than	the	selection	model	approach,	but	p‐uniform*	suffered	less	
often	from	convergence	problems	when	estimating	the	effect	size	and	between‐study	
variance	and	computing	confidence	intervals.	Moreover,	coverage	probabilities	of	p‐
uniform*	were	closer	to	the	nominal	coverage	rate	than	the	selection	model	approach	
of	Hedges	(1992).	Statistical	properties	of	both	methods	were,	however,	not	good	in	
case	of	extreme	publication	bias	with	only	statistically	significant	primary	studies’	
effect	sizes	in	a	meta‐analysis.	To	conclude,	bias	in	estimates	of	effect	size	and	
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between‐study	variance	was	generally	small	except	for	conditions	with	meta‐analyses	
only	consisting	of	statistically	significant	effect	sizes	due	to	publication	bias.	Bias	was	
small	even	if	only	10	primary	studies	were	included	in	a	meta‐analysis,	but	coverage	
probabilities	of	confidence	intervals	deviated	in	this	condition	from	the	nominal	
coverage	rate	especially	if	the	between‐study	variance	in	true	effect	sizes	was	large.	

The	comparable	statistical	properties	of	p‐uniform*	and	the	selection	model	
approach	were	caused	by	the	similarities	between	the	two	methods.	Both	methods	
use	maximum	likelihood	estimation,	the	random	effects	model	as	effect	size	model,	
and	a	selection	model	with	one	threshold	at	the	 ‐level.	However,	there	are	also	
differences	between	the	two	methods	explaining	why	the	statistical	properties	were	
not	exactly	the	same.	First,	weights	in	the	selection	model	have	to	be	estimated	or	
assumed	to	be	known	in	the	selection	model	approach	by	Hedges	(1992)	which	is	in	
contrast	with	p‐uniform*.	P‐uniform*	only	assumes	that	these	probabilities	are	the	
same	for	the	statistically	significant	and	nonsignificant	primary	studies’	effect	sizes	
and	there	is	no	need	for	estimating	these	probabilities.	Another	difference	is	that	the	
selection	model	approach	relies	on	asymptotic	normality	distributions	for	creating	
Wald‐type	confidence	intervals	around	estimates	of	effect	size	and	between‐study	
variance.	This	is	in	contrast	with	p‐uniform*’s	confidence	intervals,	because	these	are	
computed	by	inverting	the	likelihood‐ratio	tests	which	may	explain	why	the	coverage	
probabilities	of	p‐uniform’s	confidence	intervals	were	closer	to	the	nominal	coverage	
rate	than	of	the	selection	model	approach.	
		 We	provide	recommendations	for	meta‐analysts	in	practice	based	on	the	
results	of	our	analytical	study	and	Monte‐Carlo	simulation	study.	These	
recommendations	are	built	upon	guidelines	for	conducting	meta‐analyses	as	the	Meta‐
Analytic	Reporting	Standards	(MARS;	American	Psychological	Association,	2010),	and	
the	Preferred	Reporting	Items	for	Systematic	Reviews	and	Meta‐analysis	(PRISMA;	
Moher,	Liberati,	Tetzlaff,	Altman,	&	The	Prisma	Group,	2009).	First,	we	recommend	to	
apply	both	the	fixed‐effect	and	random‐effects	meta‐analysis	models	since	differences	
in	estimates	of	the	average	effect	size	may	already	signal	the	presence	of	publication	
bias	(Greenhouse	&	Iyengar,	2009).	The	fixed‐effect	model	weighs	the	primary	studies	
by	the	inverse	of	their	sampling	variance	whereas	the	random‐effects	model	weighs	
primary	studies	by	the	inverse	of	the	sampling	variance	and	the	between‐study	
variance.	Consequently,	the	primary	studies	with	small	sample	sizes	that	are	more	
prone	to	publication	bias	get	more	weight	in	the	random‐effects	than	fixed‐effect	
model.		
		 Second,	we	recommend	to	not	solely	rely	on	the	fixed‐effect	and	random‐
effects	model	if	publication	bias	may	have	affected	the	meta‐analysis,	but	to	
supplement	these	models	by	either	p‐uniform*	or	the	selection	model	approach	of	
Hedges	(1992)	or	by	both	methods.	As	publication	bias	is	most	likely	affecting	many	
meta‐analyses,	supplementing	the	fixed‐effect	or	random‐effects	model	with	methods	
that	correct	for	publication	bias	is	of	utmost	importance	especially	if	there	are	
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indications	for	publication	bias	in	a	meta‐analysis	such	as	many	underpowered	but	
statistically	significant	primary	studies	in	a	meta‐analysis.	Examining	publication	bias	
in	a	meta‐analysis	is	in	agreement	with	the	MARS	and	PRISMA	that	both	recommend	
to	assess	the	risk	and	consequences	of	bias	in	any	meta‐analysis.	We	advise	
researchers	to	use	so‐called	triangulation	where	researchers	do	not	rely	on	one	
particular	publication	bias	method,	but	use	multiple	publication	bias	methods	
(Coburn	&	Vevea,	2015;	Kepes,	Banks,	McDaniel,	et	al.,	2012).	This	is	necessary	
because	research,	including	ours,	has	shown	that	there	is	no	single	publication	bias	
methods	that	outperforms	all	the	other	available	publication	bias	methods.		

Third,	we	cannot	generally	recommend	using	p‐uniform*	over	the	selection	
model	approach	of	Hedges	(1992),	or	the	other	way	around.	P‐uniform*	has	the	
advantage	over	the	selection	model	approach	that	the	method	does	not	require	that	
the	weights	in	the	selection	model	are	estimated	or	assumed	to	be	known.	A	
disadvantage	of	p‐uniform*,	however,	is	that	estimates	of	the	average	effect	size	have	
a	larger	variance	and	may	be	highly	negative	if	many	primary	studies’	p‐values	are	
close	to	the	 ‐level.	Hence,	we	offer	the	same	recommendation	as	for	p‐uniform	and	
p‐curve	(van	Aert	et	al.,	2016)	to	set	the	effect	size	estimate	to	zero	if	it	is	negative	
since	it	is	unlikely	that	the	average	effect	size	estimate	is	(strongly)	negative	if	
statistically	significant	positive	primary	studies’	effect	sizes	are	observed.	An	
additional	advantage	of	the	selection	model	approach	of	Hedges	(1992)	is	its	
flexibility,	because	covariates	can	be	included	(Vevea	&	Hedges,	1995)	and	its	
selection	model	can	be	extended	to	more	than	two	intervals.	P‐uniform*	currently	
does	not	offer	such	extensions.	

Fourth,	we	do	not	recommend	using	either	p‐uniform*	or	the	selection	model	
approach	of	Hedges	(1992)	if	the	meta‐analysis	only	contains	statistically	significant	
effect	sizes	due	to	extreme	publication	bias,	as	our	simulation	study	showed	bad	
performance	for	both	methods	in	that	condition.	If	there	is	no	between‐study	variance	
in	true	effect	sizes,	p‐uniform	can	then	better	be	applied	since	this	method	provides	
estimates	close	to	the	true	effect	size	and	exact	confidence	intervals	in	these	situations	
(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	Moreover,	we	also	suspect	
good	performance	by	p‐uniform*	and	the	selection	model	approach	in	this	condition	
when	all	statistically	significant	effect	sizes	are	accompanied	by	very	small	p‐values	
(say	<	.001),	suggesting	that	these	significant	effects	are	not	caused	by	publication	
bias	but	by	high	power	of	the	original	studies.	This	condition	was	not	examined	in	the	
simulation	study.	
		 P‐uniform*	can	be	easily	applied	by	meta‐analysts	using	the	function	
“puni_star”	in	the	R	package	“puniform”	that	is	available	via	
https://github.com/RobbievanAert/puniform.	Users	can	currently	analyze	primary	
studies	based	on	a	two‐samples	or	one‐sample	t‐test	and	correlation	coefficient	or	can	
supply	the	function	directly	with	standardized	effect	sizes.	Meta‐analysts	who	are	not	
familiar	with	R	can	also	apply	p‐uniform*	to	their	data	via	an	easy‐to‐use	web	
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application	(https://rvanaert.shinyapps.io/p‐uniformstar/).	This	web	application	can	
be	applied	if	the	primary	study’s	effect	size	measure	is	a	one‐sample	mean,	two‐
independent	means	or	correlation	coefficient.	The	selection	model	approach	of	
Hedges	(1992)	can	be	applied	using	the	“weightr”	package	(Coburn	&	Vevea,	2016)	or	
the	web	application	(https://vevealab.shinyapps.io/WeightFunctionModel/).		
		 A	limitation	of	p‐uniform*	and	the	selection	model	approach	of	Hedges	(1992)	
is	that	the	probability	of	publishing	a	statistically	nonsignificant	primary	study’s	effect	
size	is	assumed	to	be	the	same	for	all	nonsignificant	effect	sizes	in	a	meta‐analysis.	
This	assumption	may	be	violated	in	practice	causing	biased	estimates	of	the	methods	
(see	Simonsohn	et	al.,	2017,	December	20	for	a	discussion	about	this	assumption).	To	
counteract	a	violation	of	this	assumption,	the	flexibility	of	the	selection	model	
approach	of	Hedges	(1992)	can	be	used	by	creating	more	than	two	intervals	of	the	
method’s	selection	model.	However,	information	needs	then	to	be	available	to	select	
appropriate	thresholds	for	these	intervals.	A	threshold	at	the	 ‐level	seems	logical	
since	it	determines	statistical	significance,	but	selecting	another	appropriate	threshold	
is	probably	not	as	straightforward	in	practice.	Nevertheless,	future	research	may	
study	to	what	extent	statistical	properties	of	p‐uniform*	and	the	selection	model	
approach	of	Hedges	(1992)	with	one	or	multiple	thresholds	for	the	selection	model	
deteriorate	if	this	assumption	is	violated.	Future	research	may	also	study	the	effect	of	
publication	bias	on	the	meta‐analytic	results	if	covariates	are	included	in	a	meta‐
analysis	model.		

Another	limitation	of	the	methods	is	that	their	results	will	be	distorted	if	p‐
hacking	(a.k.a.	questionable	research	practices	or	researcher	degrees	of	freedom,	see	
Simmons	et	al.,	2011;	Wicherts	et	al.,	2016)	are	used	in	the	primary	studies	that	are	
included	in	a	meta‐analysis,	but	this	limitation	applies	to	any	meta‐analysis	method.	A	
limitation	that	only	applies	to	the	selection	model	of	Hedges	(1992)	is	that	it	is	not	
supposed	to	converge	according	to	the	underlying	statistical	theory	if	there	are	no	
primary	studies’	p‐values	observed	in	each	interval	of	the	selection	model.	Weights	of	
these	intervals	cannot	be	computed	causing	the	non‐convergence	of	the	method.	This	
non‐convergence	is	circumvented	in	the	R	package	“weightr”	(Coburn	&	Vevea,	2016)	
used	in	our	study	by	fixing	weights	to	0.01	if	these	cannot	be	estimated.	Although	
previous	research	has	shown	that	the	weights	are	often	poorly	estimated	and	that	the	
selection	model	approach	is	quite	robust	to	misestimated	weights	(Hedges	&	Vevea,	
1996),	future	research	may	scrutinize	the	effects	of	fixing	weights	and	whether	these	
weights	are	better	fixed	to	another	value	than	0.01.	The	value	.01	seems	
unrealistically	small,	implying	that	99%	of	the	statistically	nonsignificant	effect	sizes	
end	up	in	the	file	drawer.	Additionally,	this	weight	may	be	estimated	by	other	
evidence	in	the	field	of	the	meta‐analysis.	

As	our	study	did	not	address	the	performance	of	tests	of	publication	bias,	we	
also	recommend	further	research	on	developing	and	examining	publication	bias	tests.	
Multiple	tests	for	publication	bias	are	currently	used;	rank‐correlation	test		(Begg	&	
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Mazumdar,	1994),	Egger’s	test	(Egger	et	al.,	1997),	p‐uniform’s	publication	bias	test	
(van	Assen	et	al.,	2015),	and	the	test	of	excess	significance	(Ioannidis	&	Trikalinos,	
2007b).	A	publication	bias	test	was	also	proposed	in	Hedges	(1992)	based	on	the	
selection	model	approach,	and	a	publication	bias	test	in	the	framework	of	p‐uniform*	
can	also	be	developed.	Future	research	may	study	the	statistical	properties	of	these	
publication	bias	tests.	Future	research	may	also	consider	to	implement	p‐uniform*	in	
a	Bayesian	framework.	This	Bayesian	version	of	p‐uniform*	can	then	together	with	p‐
uniform*	and	the	selection	model	approach	of	Hedges	(1992)	be	compared	with	other	
selection	model	approaches	that	were	developed	in	a	Bayesian	framework.	Two	
recently	developed	Bayesian	methods	that	deserve	attention	in	the	future	research	
are	the	BALM	method	(Du	et	al.,	2017)	and	the	Bayesian	model	averaging	method	
proposed	by	Guan	and	Vandekerckhove	(2015).		

To	conclude,	scientific	progress	can	best	be	achieved	by	using	meta‐analysis	
(Cumming,	2008),	but	this	progress	is	hampered	by	publication	bias	causing	false	
positive	(Bakker	et	al.,	2012;	van	Assen	et	al.,	2015)	and	overestimated	(e.g.,	Kraemer	
et	al.,	1998;	Lane	&	Dunlap,	1978)	effect	sizes.	Hence,	there	is	a	need	for	methods	that	
can	accurately	estimate	the	effect	size	and	between‐study	variance	in	a	meta‐analysis	
in	the	presence	of	publication	bias.	In	line	with	others	(e.g.,	Borenstein	et	al.,	2009;	
Rothstein	et	al.,	2005a),	we	recommend	to	routinely	assess	the	impact	and	presence	of	
publication	bias	in	each	meta‐analysis,	and	not	apply	a	single	publication	bias	method	
but	to	use	triangulation	(Coburn	&	Vevea,	2015;	Kepes,	Banks,	McDaniel,	et	al.,	2012).	
The	p‐uniform*	method	is	an	extension	and	substantial	improvement	over	p‐uniform	
and	showed	promising	results	in	an	analytical	study	and	Monte‐Carlo	simulations.	P‐
uniform*	can	easily	be	applied	by	meta‐analysts	via	R	or	the	web	application	
(https://rvanaert.shinyapps.io/p‐uniformstar/).				



 

 
 

	

 

	



 

 

 

	 	



 

 
 

CHAPTER	6	

	

Examining	reproducibility	in	psychology:	A	
hybrid	method	for	combining	a	statistically	
significant	original	study	and	a	replication	

	

Abstract	

The	unrealistic	high	rate	of	positive	results	within	psychology	increased	the	attention	
for	replication	research.	Researchers	who	conduct	a	replication	and	want	to	
statistically	combine	the	results	of	their	replication	with	a	statistically	significant	
original	study	encounter	problems	when	using	traditional	meta‐analysis	techniques.	
The	original	study’s	effect	size	is	most	probably	overestimated	because	of	it	being	
statistically	significant	and	this	bias	is	not	taken	into	consideration	in	traditional	
meta‐analysis.	We	developed	a	hybrid	method	that	does	take	statistical	significance	of	
the	original	study	into	account	and	enables	(a)	accurate	effect	size	estimation,	(b)	
estimation	of	a	confidence	interval,	and	(c)	testing	of	the	null	hypothesis	of	no	effect.	
We	analytically	approximate	the	performance	of	the	hybrid	method	and	describe	its	
good	statistical	properties.	Applying	the	hybrid	method	to	the	data	of	the	
Reproducibility	Project	Psychology	(Open	Science	Collaboration,	2015)	demonstrated	
that	the	conclusions	based	on	the	hybrid	method	are	often	in	line	with	those	of	the	
replication,	suggesting	that	many	published	psychological	studies	have	smaller	effect	
sizes	than	reported	in	the	original	study	and	that	some	effects	may	be	even	absent.	We	
offer	hands‐on	guidelines	for	how	to	statistically	combine	an	original	study	and	
replication,	and	developed	a	web‐based	application	
(https://rvanaert.shinyapps.io/hybrid)	for	applying	the	hybrid	method.	

	

	

This	chapter	is	published	as	van	Aert,	R.	C.	M.,	&	van	Assen,	M.	A.	L.	M.	(2017).	
Examining	reproducibility	in	psychology:	A	hybrid	method	for	combining	a	
statistically	significant	original	study	and	a	replication.	Behavior	Research	Methods.	
doi:10.3758/s13428‐017‐0967‐6
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	There	is	increased	attention	for	replication	research	in	psychology	mainly	due	to	the	
unrealistic	high	rate	of	positive	results	within	the	published	psychological	literature.	
Approximately	95%	of	the	published	psychological	research	contain	statistically	
significant	results	in	the	predicted	direction	(Fanelli,	2012;	Sterling	et	al.,	1995).	This	
is	not	in	line	with	the	average	amount	of	statistical	power	which	has	been	estimated	at	
.35	(Bakker	et	al.,	2012)	and	.47	(Cohen,	1990)	in	psychological	research	and	.21	in	
neuroscience	(Button	et	al.,	2013),	and	indicates	that	statistically	nonsignificant	
results	do	often	not	get	published.	This	suppression	of	statistically	nonsignificant	
results	from	being	published	is	called	publication	bias	(Rothstein	et	al.,	2005a).	
Publication	bias	causes	the	population	effect	size	to	be	overestimated	(e.g.,	Lane	&	
Dunlap,	1978;	van	Assen	et	al.,	2015),	and	raises	the	question	whether	a	particular	
effect	reported	in	the	literature	actually	exists.	Other	research	fields	also	show	an	
excess	of	positive	results	(e.g.,	Ioannidis,	2011;	Kavvoura	et	al.,	2008;	Renkewitz	et	al.,	
2011;	Tsilidis,	Papatheodorou,	Evangelou,	&	Ioannidis,	2012),	so	publication	bias	and	
overestimation	of	effect	size	by	published	research	is	not	only	an	issue	within	
psychology.	
		 Replication	research	can	help	to	identify	whether	a	particular	effect	in	the	
literature	is	probably	a	false	positive	(Murayama,	Pekrun,	&	Fiedler,	2014),	and	to	
increase	accuracy	and	precision	of	effect	size	estimation.	The	Open	Science	
Collaboration	carried	out	a	large‐scale	replication	study	to	examine	the	
reproducibility	of	psychological	research	(Open	Science	Collaboration,	2015).	In	this	
so‐called	Reproducibility	Project	Psychology	(RPP),	articles	were	sampled	from	the	
2008	issues	of	three	prominent	and	high‐impact	psychology	journals	and	a	key	effect	
of	each	article	was	replicated	according	to	a	structured	protocol.	The	results	of	the	
replications	were	not	in	line	with	the	results	of	the	original	studies	for	the	majority	of	
replicated	effects.	For	instance,	97%	of	the	original	studies	reported	a	statistically	
significant	effect	for	a	key	hypothesis,	whereas	only	36%	of	the	replicated	effects	were	
statistically	significant	(Open	Science	Collaboration,	2015).	Moreover,	the	average	
effect	size	of	replication	studies	was	substantially	smaller	(r	=	0.197)	compared	to	
those	of	original	studies	(r	=	0.403).	Hence,	the	results	of	the	RPP	confirm	both	the	
excess	of	significant	findings	and	overestimation	of	published	effects	within	
psychology.	
		 The	larger	effect	size	estimates	in	the	original	studies	compared	to	their	
replications	can	be	explained	by	the	expected	value	of	a	statistically	significant	
original	study	being	larger	than	the	true	mean	(i.e.,	overestimation).	The	observed	
effect	size	of	a	replication,	which	has	not	(yet)	been	subjected	to	selection	for	
statistical	significance,	will	usually	be	smaller.	This	statistical	principle	of	an	extreme	
score	on	a	variable	(in	this	case	a	statistically	significant	effect	size)	being	followed	by	
a	score	closer	to	the	true	mean	is	also	known	as	regression	to	the	mean	(e.g.,	Straits	&	
Singleton,	2011).	Regression	to	the	mean	occurs	if	simultaneously	(i)	selection	occurs	
on	the	first	measure	(in	our	case,	only	statistically	significant	effects),	and	(ii)	both	of	
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the	measures	are	subject	to	error	(in	our	case,	sampling	error).	
		 It	is	crucial	to	realize	that	the	expected	value	of	statistically	significant	
observed	effects	of	the	original	studies	will	be	larger	than	the	true	effect	size	
irrespective	of	the	presence	of	publication	bias.	That	is,	conditional	on	being	statistically	
significant,	the	expected	value	of	the	original	effect	size	will	be	larger	than	the	true	
effect	size.	The	distribution	of	the	statistically	significant	original	effect	size	is	actually	
a	truncated	distribution	at	the	critical	value,	and	these	effect	sizes	are	larger	than	the	
nonsignificant	observed	effects.	Hence,	the	truncated	distribution	of	statistically	
significant	effects	has	a	larger	expected	value	than	the	true	effect	size.	Publication	bias	
only	determines	how	often	statistically	nonsignificant	effects	get	published,	and	
therefore	it	does	not	influence	the	expected	value	of	the	statistically	significant	effects.	
Consequently,	statistical	analyses	based	on	an	effect	that	was	selected	for	replication	
because	of	its	significance	should	correct	for	the	overestimation	in	effect	size	
irrespective	of	the	presence	of	publication	bias.	
	 Estimating	effect	size	and	determining	whether	an	effect	does	truly	exist	
based	on	an	original	published	study	and	a	replication	is	important.	This	is	not	only	
relevant	for	projects	such	as	the	RPP.	Because	replicating	published	research	is	often	
the	starting	point	for	new	research	where	the	replication	is	the	first	study	of	a	multi‐
study	paper	(Neuliep	&	Crandall,	1993),	it	is	also	relevant	for	researchers	who	carry	
out	a	replication	and	want	to	aggregate	the	results	of	the	original	study	and	their	
replication.	Cumming	(2012)	emphasized	that	combining	two	studies	by	means	of	a	
meta‐analysis	has	added	value	over	interpreting	two	studies	in	isolation.	Moreover,	
researchers	in	the	field	of	psychology	also	started	to	use	meta‐analysis	to	combine	the	
studies	within	a	single	paper	with	what	is	called	an	internal	meta‐analysis	(Ueno,	
Fastrich,	&	Murayama,	2016).	Additionally,	the	proportion	of	published	replication	
studies	will	increase	in	the	near	future	due	to	the	widespread	attention	for	
replicability	of	psychological	research	nowadays.	Finally,	we	must	note	that	the	
estimate	of	Makel,	Plucker,	and	Hegarty	(2012)	of	1%	of	published	studies	in	
psychology	being	replications	is	a	gross	underestimation.	They	searched	for	the	word	
“replication”	and	variants	thereof	in	psychological	articles.	However,	researchers	do	
not	label	studies	as	replications	to	increase	the	likelihood	of	publication	(Neuliep	&	
Crandall,	1993),	even	though	many	of	them	carry	out	a	replication	before	starting	
their	own	variation	of	the	study.		To	conclude,	making	sense	of	and	combining	the	
results	of	original	study	and	replication	is	a	common	and	important	problem.				 	
		 The	main	difficulty	with	combining	an	original	study	and	a	replication	is	how	
to	aggregate	a	likely	overestimated	effect	size	in	the	published	original	study	with	the	
unpublished	and	probably	unbiased	replication.	For	instance,	what	should	a	
researcher	conclude	when	the	original	study	is	statistically	significant	and	the	
replication	is	not?	This	situation	often	arises,	e.g.,	of	the	100	effects	examined	in	the	
RPP,	in	62%	of	the	cases	the	original	study	was	statistically	significant	while	the	
replication	was	not.	To	examine	the	main	problem	in	more	detail,	consider	the	
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following	hypothetical	situation.	Both	the	original	study	and	replication	consist	of	two	
independent	groups	of	equal	size,	with	the	total	sample	size	in	the	replication	being	
twice	as	large	as	in	the	original	study	(80	vs.	160).		The	researcher	may	encounter	the	
following	standardized	effect	sizes	(Hedges’	g)19,	t‐values,	and	two‐tailed	p‐values:	g	=	
0.490;	t(78)	=	2.211;	p	=	.03	for	the	original	study	and	g	=	0.164;	t(158)	=	1.040;	p	=	.3	
for	the	replication.	A	logical	next	step	for	interpreting	these	results	would	be	to	
combine	the	observed	effect	sizes	of	both	the	original	study	and	replication	by	means	
of	a	fixed‐effect	meta‐analysis.	The	results	of	such	a	meta‐analysis	suggest	that	there	is	
indeed	an	effect	in	the	population	after	combining	the	studies	with	meta‐analytic	

effect	size	estimate	̂ 	=	0.270;	z	=	2.081;	p	=	.0375	(two‐tailed).	However,	the	
researcher	may	not	be	convinced	that	the	effect	really	exists	and	does	not	know	how	
to	proceed	since	the	original	study	is	probably	biased	and	the	meta‐analysis	does	not	
take	this	bias	into	account.	
		 The	aim	of	this	chapter	is	threefold.	First,	we	will	develop	a	method	(i.e.,	the	
hybrid	method	of	meta‐analysis,	hybrid	for	short)	that	combines	a	statistically	
significant	original	study	and	replication	and	does	correct	for	the	likely	
overestimation	in	the	original	study’s	effect	size	estimate.	The	hybrid	method	yields	
(a)	an	accurate	estimate	of	the	underlying	population	effect	based	on	the	original	
study	and	the	replication,	(b)	a	confidence	interval	around	this	effect	size	estimate,	
and	(c)	a	test	of	the	null	hypothesis	of	no	effect	for	the	combination	of	the	original	
study	and	replication.	Second,	we	will	apply	the	hybrid	method	and	also	traditional	
meta‐analysis	methods	to	the	data	of	the	RPP	to	examine	the	reproducibility	of	
psychological	research.	Third,	to	assist	practical	researchers	in	assessing	effect	size	
using	an	original	and	replication	study,	we	formulate	guidelines	on	which	method	to	
use	under	what	conditions,	and	explain	a	newly	developed	web‐based	application	for	
estimation	based	on	these	methods.	
		 The	remainder	of	this	chapter	is	structured	as	follows.	We	explain	traditional	
meta‐analysis	and	propose	the	new	hybrid	method	for	combining	an	original	study	
and	a	replication	while	taking	into	account	statistical	significance	of	the	original	
study’s	effect.	We	adopt	a	combination	of	the	frameworks	of	Fisher	and	Neyman‐
Pearson	that	is	nowadays	commonly	used	in	practice	to	develop	and	examine	our	
procedures	for	testing	and	estimating	effect	size.	Next,	we	analytically	approximate	
the	performance	of	meta‐analysis	and	the	hybrid	method	in	a	situation	where	an	
original	study	and	its	replication	are	combined.	The	performance	of	meta‐analysis	and	
the	hybrid	method	are	compared	to	each	other,	and	to	estimation	using	only	the	

                                                   
19	Hedges’	g	is	an	effect	size	measure	for	a	two‐independent	groups	design	that	corrects	for	the	small	

positive	bias	in	Cohen’s	d	by	multiplying	the	Cohen’s	d	effect	sizes	with	correction	factor	 14

3
1




df
J

,	
where	df	refers	to	the	degrees	of	freedom	(Hedges,	1981).	Note	that	different	estimators	for	the	effect	size	
in	a	two‐independent	groups	design	exist,	and	that	Hedges’	g	and	Cohen’s	d	are	just	two	of	these	estimators	
(for	other	estimators	see	Viechtbauer	[2007a]	and	Hedges	[1981]).	
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replication.	Based	on	the	performance	of	the	methods,	we	formulate	guidelines	on	
which	method	to	use	under	what	conditions.	Subsequently,	we	describe	the	RPP	and	
apply	meta‐analysis	and	the	hybrid	method	to	these	data.	This	chapter	concludes	with	
a	discussion	and	an	illustration	of	a	web‐based	application	
(https://rvanaert.shinyapps.io/hybrid)	allowing	straightforward	application	of	the	
hybrid	method	to	researchers’	applications.	

6.1		 Methods	for	estimating	effect	size	

	 The	statistical	technique	for	estimating	effect	size	based	on	multiple	studies	is	
meta‐analysis	(Borenstein	et	al.,	2009).	The	advantage	of	meta‐analysis	over	
interpreting	the	studies	in	isolation	is	that	the	effect	size	estimate	in	a	meta‐analysis	is	
more	precise.	Two	meta‐analysis	methods	are	often	used:	fixed‐effect	meta‐analysis	
and	random‐effects	meta‐analysis.	Fixed‐effect	meta‐analysis	assumes	that	there	is	
one	common	population	effect	size	underlying	the	studies	in	the	meta‐analysis	while	
random‐effects	meta‐analysis	assumes	that	each	study	has	its	own	population	effect	
size.	The	studies’	population	effect	sizes	in	random‐effects	meta‐analysis	are	assumed	
to	be	a	random	sample	from	a	normal	distribution	of	population	effect	sizes	and	one	of	
the	aims	of	random‐effects	meta‐analysis	is	to	estimate	the	mean	of	this	distribution	
(e.g.,	Borenstein	et	al.,	2009).		
	 Fixed‐effect	rather	than	random‐effects	meta‐analysis	is	the	recommended	
method	to	aggregate	the	findings	of	an	original	study	and	an	exact	or	direct	
replication,	assuming	both	studies	assess	the	same	underlying	population	effect.	Note	
also	that	statistically	combining	two	studies	by	means	of	random‐effects	meta‐
analysis	is	practically	infeasible	since	the	amount	of	heterogeneity	among	a	small	
number	of	studies	cannot	be	accurately	estimated	(e.g.,	Borenstein	et	al.,	2010;	
IntHout	et	al.,	2014).	After	discussing	fixed‐effect	meta‐analysis,	we	introduce	the	
hybrid	method	as	an	alternative	meta‐analysis	method	that	takes	into	account	the	
statistical	significance	of	the	original	study.			

6.1.1		 Fixed‐effect	meta‐analysis	

	 Before	the	average	effect	size	with	a	meta‐analysis	can	be	computed,	studies’	
effect	sizes	and	sampling	variances	have	to	be	transformed	to	one	common	effect	size	
measure	(see	Borenstein,	2009;	Fleiss	&	Berlin,	2009).	The	true	effect	size	(θ)	is	
estimated	in	each	study	with	sampling	error	(εi).	This	model	can	be	written	as	

,iiy   	

where	yi		reflects	the	effect	size	in	the	ith	study	and	it	is	assumed	that	the	εi	is	normally	
and	independently	distributed,	εi	~	N(0, 2

i )	with	 2
i 	being	the	sampling	variance	in	

the	population	for	each	study.	These	sampling	variances	are	assumed	to	be	known	in	
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meta‐analysis.	
		 The	average	effect	size	is	computed	by	weighting	each	yi	with	the	reciprocal	of	

the	estimated	sampling	variance	(
2ˆ
1

i
iw 
 ).	For	k	studies	in	a	meta‐analysis,	the	

weighted	average	effect	size	estimate	(̂ )	is	computed	by	
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.	A	95%	confidence	interval	around	̂ 	can	be	obtained	by	


 ˆ96.1ˆ v 	with	1.96	being	the	97.5th	percentile	of	the	normal	distribution	and	a	z‐

test	can	be	used	to	test	H0:	θ	=	0,	





ˆ

ˆ

v
z  .	Applying	fixed‐effect	meta‐analysis	to	the	

example	as	presented	in	the	introduction,	we	first	have	to	compute	the	sampling	
variance	of	the	Hedges’	g	effect	size	estimates	for	the	original	study	and	replication.	
An	unbiased	estimator	of	the	variance	of	y	is	computed	by		
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 	where	n1	and	n2	are	the	sample	sizes	for	group	1	

and	2	(Viechtbauer,	2007).	This	yields	weights	19.390	and	39.863	for	the	original	
study	and	replication,	respectively.	Computing	the	fixed‐effect	meta‐analytic	estimate	
(Equation	1)	with	yi	being	the	Hedges’	g	observed	effect	size	estimates	gives	

270.0
863.39390.19

164.0863.39490.0390.19ˆ 



 	

with	corresponding	variance	is 017.0
)863.39390.19(

1
ˆ 





v .	The	95%	confidence	

interval	of	the	fixed‐effect	meta‐analytic	estimate	ranges	from	0.016	to	0.525,	and	the	
null	hypothesis	of	no	effect	is	rejected	(z	=	2.081,	two‐tailed	p‐value	=	0.0375).	Note	
that	the	t‐distribution	was	used	as	reference	distribution	for	testing	the	original	study	
and	replication	individually	whereas	a	normal	distribution	was	used	in	the	fixed‐effect	
meta‐analysis.	The	use	of	a	normal	distribution	as	reference	distribution	in	fixed‐
effect	meta‐analysis	is	a	consequence	of	the	common	assumptions	in	meta‐analysis	of	
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known	sampling	variances	and	normal	sampling	distributions	of	effect	size	
(Raudenbush,	2009).		

6.1.2		 Hybrid	Method	

		 Like	fixed‐effect	meta‐analysis,	the	hybrid	method	estimates	the	common	
effect	size	of	an	original	study	and	replication.	By	taking	into	account	that	the	original	
study	is	statistically	significant,	the	proposed	hybrid	method	corrects	for	the	likely	
overestimation	in	the	effect	size	of	the	original	study.	The	hybrid	method	is	based	on	
the	statistical	principle	that	the	distribution	of	p‐values	at	the	true	effect	size	is	
uniform.	A	special	case	of	this	statistical	principle	is	that	the	p‐values	are	uniformly	
distributed	under	the	null	hypothesis	(e.g.,	Hung	et	al.,	1997).	This	principle	is	also	
underlying	the	recently	developed	meta‐analytic	techniques	p‐uniform	(van	Aert,	
Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	and	p‐curve	(Simonsohn	et	al.,	2014a,	
2014b).	These	methods	discard	statistically	nonsignificant	effect	sizes,	and	only	use	
the	statistically	significant	effect	sizes	in	a	meta‐analysis	to	examine	publication	bias.	
P‐uniform	and	p‐curve	correct	for	publication	bias	by	computing	probabilities	of	
observing	a	study’s	effect	size	conditional	on	the	effect	size	being	statistically	
significant.	The	effect	size	estimate	of	p‐uniform	and	p‐curve	equals	that	effect	size	for	
which	the	distribution	of	these	conditional	probabilities	is	best	approximated	by	a	
uniform	distribution.	Both	methods	yield	accurate	effect	size	estimates	in	the	
presence	of	publication	bias	if	heterogeneity	in	true	effect	size	is	at	most	moderate	
(Simonsohn	et	al.,	2014a;	van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015).	In	
contrast	to	p‐uniform	and	p‐curve,	which	assume	that	all	included	studies	are	
statistically	significant,	only	the	original	study	is	assumed	to	be	statistically	significant	
in	the	hybrid	method.	This	assumption	hardly	restricts	the	applicability	of	the	hybrid	
method	since	approximately	95%	of	the	published	psychological	research	contains	
statistically	significant	results	(Fanelli,	2012;	Sterling	et	al.,	1995).	
		 In	order	to	deal	with	bias	in	the	original	study,	its	p‐value	is	transformed	by	
computing	the	probability	of	observing	the	effect	size	or	larger	conditional	on	the	
effect	size	being	statistically	significant	and	at	the	population	effect	size	(θ).20	This	can	
be	written	as	
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 	 (2)	

where	the	numerator	refers	to	the	probability	of	observing	a	larger	effect	size	than	in	
the	original	study	(

Oy )	at	effect	size	θ,	and	the	denominator	denotes	the	probability	of	

                                                   
20	Without	loss	of	generality	we	assume	the	original	study’s	effect	size	is	positive.	If	the	original	effect	size	is	
negative,	the	direction	of	the	original	study,	the	replication,	and	the	resulting	combined	estimated	effect	size	
should	be	reversed	to	obtain	the	required	results.	
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observing	an	effect	size	larger	than	its	critical	value	( CV
Oy )	at	effect	size	θ.	Note	that	 CV

Oy 	

is	independent	of	θ.	The	conditional	probability	qO	at	true	effect	size	θ	is	uniform	
whenever	yO	is	larger	than	 CV

Oy .	These	conditional	probabilities	are	also	used	in	p‐

uniform	for	estimation	and	testing	for	an	effect	while	correcting	for	publication	bias	
(van	Aert	et	al.,	2016;	van	Assen	et	al.,	2015).	The	replication	is	not	assumed	to	be	
statistically	significant,	so	we	compute	the	probability	of	observing	a	larger	effect	size	
than	in	the	replication	(qR)	at	effect	size	θ		

	 );( RR yyPq  	 (3)	

with	the	observed	effect	size	of	the	replication	denoted	by	yR.	Both	qO	and	qR	are	
calculated	under	the	assumption	that	the	sampling	distributions	of	yO	and	yR	are	
normally	distributed,	which	is	the	common	assumption	in	meta‐analysis	
(Raudenbush,	2009).		
		 Testing	of	H0:	θ	=	0	and	estimation	is	based	on	the	principle	that	each	
(conditional)	probability	is	uniformly	distributed	at	the	true	value	θ.	Different	
methods	exist	for	testing	whether	a	distribution	deviates	from	a	uniform	distribution.	
The	hybrid	method	uses	the	distribution	of	the	sum	of	independently	uniformly	
distributed	random	variables	(i.e.,	the	Irwin‐Hall	distribution)21,	x	=	qO	+	qR,	because	
this	method	is	intuitive,	showed	good	statistical	properties	in	the	context	of	p‐uniform,	
and	can	also	be	used	for	estimating	a	confidence	interval	(van	Aert	et	al.,	2016).	The	
probability	density	function	of	the	Irwin‐Hall	distribution	for	x	based	on	two	studies	is	

)(xf 	

and	its	cumulative	distribution	function	is	

	
)(xF

ଵ

ଶ
ଶ

ଵ

ଶ
ଶ

.	 (4)	

Two‐tailed	p‐values	of	the	hybrid	method	can	be	obtained	with	G(x),	

	 )(xG
ଶ

ଶ .	 (5)	

                                                   
21	Estimation	was	based	on	the	Irwin‐Hall	distribution	instead	of	maximum	likelihood.	The	distribution	of	
the	likelihood	is	typically	highly	skewed	if	true	effect	size	is	close	to	zero	and	sample	size	of	the	original	
study	is	small	(as	is	currently	common	in	psychology),	making	the	asymptotic	standard	errors	of	maximum	
likelihood	inaccurate.	The	probability	density	function	and	the	cumulative	distribution	function	of	the	
Irwin‐Hall	distribution	are	available	in	the	software	Mathematica	(Wolfram	Research	Inc.,	2015).	
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		 The	null	hypothesis	H0:	θ	=	0	is	rejected	if	F(x	|	θ	=	0)	≤	.05	in	case	of	a	one‐
tailed	test,	and	G(x	|θ	=	0)	≤	.05	in	case	of	a	two‐tailed	test.	The	2.5th	and	5th	percentiles	
of	the	Irwin‐Hall	distribution	are	0.224	and	0.316,	respectively.	Effect	size	θ	is	

estimated	as	F(x	|	θ	=̂ )	=	.5,	or	equivalently,	that	value	of	θ	for	which	x	=	1.	The	95%	
confidence	interval	of	θ,	(

HL  ˆ,ˆ ),	is	calculated	as	F(x	|	θ	=	
L̂ )	=	.975	and		

F(x	|	θ	=	
H̂ )	=	.025.	

		 We	will	now	apply	the	hybrid	method	to	the	example	presented	in	the	
introduction.	The	effect	size	measure	of	the	example	in	the	introduction	is	Hedges’	g,	
but	the	hybrid	method	can	also	be	applied	to	an	original	study	and	replication	where	
another	effect	size	measure	(e.g.,	correlation	coefficient)	is	computed.	Figure	6.1	

illustrates	the	computation	of	qO	and	qR	for	θ	=	0	(Figure	6.1a.)	and	for	θ	=	̂ 	(Figure	
6.1b.)	based	on	the	example	presented	in	the	introduction.	The	steepest	distribution	
in	both	panels	refers	to	the	effect	size	distribution	of	the	replication,	which	has	the	
largest	sample	size.	The	conditional	probability	qO	for	θ	=	0	(Figure	6.1a)	equals	the	
area	larger	than	 CV

Oy 	(intermediate	gray	color)	divided	by	the	area	larger	than	yO	(dark	

gray):	 6.0
025.0

015.0
Oq .	The	probability	qR	equals	the	one‐tailed	p‐value	(0.3/2	=	0.15)	

and	is	indicated	by	the	light	gray	area.22	Summing	these	two	probabilities	gives	x	=	
0.75,	which	is	lower	than	the	expected	value	of	the	Irwin‐Hall	distribution	suggesting	
that	effect	size	exceeds	0.	The	null	hypothesis	of	no	effect	is	not	rejected,	with	a	two‐
tailed	p‐value	equal	to	.558	as	calculated	by	Equation	(5).	Shifting	θ	to	hybrid’s	

estimate	̂ 	=	0.103	yields	x	=1,	as	depicted	in	Figure	6.1b,	with	qO	=	0.655	and	qR	=	
0.345.	Estimates	of	the	lower	and	upper	bound	of	a	95%	confidence	interval	can	also	

be	obtained	by	shifting	̂ 	till	x	equals	the	2.5th	and	97.5th	percentile	for	the	lower	and	
upper	bound	of	the	confidence	interval.	The	confidence	interval	of	the	hybrid	method	
for	the	example	ranges	from	

L̂ 	=	‐1.109	to	
H̂ 	=	0.428.		 	

		 	

                                                   
22	The	probabilities	qO	and	qR	are	not	exactly	equal	to	0.6	and	0.15	due	to	transforming	the	effect	sizes	from	
Cohen’s	d	to	Hedges’	g.	The	conditional	probabilities	based	on	the	transformed	effect	sizes	are	

596.0
0261.0

0156.0
Oq

and	qR	=	0.151.	Transforming	the	effect	sizes	from	Cohen’s	d	to	Hedges’	g	may	bias	
effect	size	estimates	of	the	hybrid	method.	We	studied	to	what	extent	qO	and	qR	are	influenced	by	this	
transformation	of	effect	size.	This	distributions	of	qO	and	qR	based	on	the	transformed	effect	sizes	were	
analytically	approximated	by	means	of	numerical	integration	(see	supplementary	material	available	at	
https://osf.io/9e3qd/	for	more	information	and	the	results),	and	these	distributions	should	closely	follow	a	
uniform	distribution	according	to	the	theory	underlying	the	hybrid	method.	Results	show	that	distributions	
of	qO	and	qR	after	the	transformation	are	accurate	approximations	of	uniform	distributions.	Hence,	the	
transformation	from	Cohen’s	d	to	Hedges’	g	will	hardly	bias	the	estimates	of	the	hybrid	method.	
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Figure	6.1.	Effect	size	distributions	of	the	original	study	and	replication	for	the	example	
presented	in	the	introduction.	Panels	(a)	and	(b)	refer	to	the	effect	size	distributions	for	θ	=	0	

and	θ	=	̂ =	0.103.	yO	and	yR	denote	the	observed	effect	sizes	in	the	original	study	and	replication,	
and	 CV

Oy 	denotes	the	critical	value	of	the	original	study	based	on	a	two‐tailed	hypothesis	test	of	

H0:	θ	=	0	with	α	=	.05.	The	shaded	regions	refer	to	probabilities	larger	than	yR,	yO,	and	 CV
Oy .	The	

(conditional)	probabilities	of	the	original	study	and	replication	are	indicated	by	qO	and	qR,	and	
its	sum	by	x.	

		 The	results	of	applying	fixed‐effect	meta‐analysis	and	the	hybrid	method	to	
the	example	are	summarized	in	Table	6.1.	The	original	study	suggests	that	the	effect	
size	is	medium	and	statistically	significant	different	from	zero	(first	row),	but	the	
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effect	size	in	the	replication	is	small	at	best	and	not	statistically	significant	(second	
row).	Fixed‐effect	meta‐analysis	(third	row)	is	usually	seen	as	the	best	estimator	of	
the	effect	size	in	the	population	and	suggests	that	the	effect	size	is	small	to	medium	
(0.270)	and	statistically	significant	(p	=	.0375).	However,	the	hybrid’s	estimate	is	
small	(0.103)	and	not	statistically	significant	(p	=	0.558)	(fourth	row).	Hybrid’s	
estimate	is	lower	than	the	estimate	of	fixed‐effect	meta‐analysis	because	it	corrects	for	
the	first	study	being	statistically	significant.	Hybrid’s	estimate	is	even	lower	than	the	
estimate	of	the	replication	because,	when	taking	the	significance	of	the	original	study	
into	account,	the	original	study	suggest	a	zero	or	even	negative	effect,	which	pulls	the	
estimate	to	zero.	

Table	6.1.	Effect	size	estimate	(Hedges’	g),	95%	confidence	interval	(CI),	and	two‐tailed	p‐value	
of	the	original	study	and	replication	in	the	hypothetical	situation	and	results	of	fixed‐effect	
meta‐analysis	and	the	hybrid,	hybrid0,	and	hybridR	method	when	applied	to	the	hypothetical	
situation.		

Method	 ̂ 	(95%	CI)	[p‐value]	

Original	study	(yO)	 0.490	(.044;	.935)	[.0311]	

Replication	(yR)	 0.164	(‐.147;	.474)	[.302]	

Fixed‐effect	meta‐analysis	 0.270	(.016;	.525)	[.0375]	

Hybrid	 0.103	(‐1.109;	.428)	[.558]	

Hybrid0	 0.103	(‐1.109;	.429)	[.558]	

HybridR	 0.164	(‐.147;	.474)	[.302]	

	
	
	 Van	Aert	et	al.	(2016)	showed	that	not	only	the	lower	bound	of	a	95%	
confidence	interval,	but	also	the	estimated	effect	sizes	by	p‐uniform	can	become	
highly	negative	if	the	effect	size	is	estimated	based	on	a	single	study	and	its	p‐value	is	
close	to	the	alpha	level.23	The	effect	size	estimates	can	be	highly	negative	because	
conditional	probabilities	like	qO	are	not	sensitive	to	changes	in	θ	when	the	
(unconditional)	p‐value	is	close	to	alpha.	Applying	p‐uniform	to	a	single	study	where	a	
one‐tailed	test	is	conducted	with	α=.05	yields	an	effect	size	estimate	of	p‐uniform	
equal	to	zero	if	the	p‐value	is	.025,	a	positive	estimate	if	the	p‐value	is	smaller	than	
.025,	a	negative	estimate	if	the	p‐value	is	larger	than	.025,	and	a	highly	negative	

                                                   
23	In	case	of	a	two‐tailed	hypothesis	test,	the	alpha	level	has	to	be	divided	by	2	because	it	is	assumed	that	all	
observed	effect	sizes	are	statistically	significant	in	the	same	direction.	
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estimate	if	the	p‐value	is	close	to	.05.	Van	Aert	et	al.	(2016)	recommended	to	set	the	
effect	size	estimate	equal	to	zero	if	the	mean	of	the	primary	studies’	p‐values	is	larger	
than	half	the	alpha	level,	because	p‐uniform’s	effect	size	estimate	will	then	be	below	
zero.	Setting	the	effect	size	to	0	is	analogous	to	testing	a	one‐tailed	null	hypothesis	
where	the	observed	effect	size	is	in	the	opposite	direction	than	expected.	Computing	a	
test	statistic	and	p‐value	is	redundant	in	such	a	situation	because	the	test	statistic	will	
be	negative	and	the	one‐tailed	p‐value	will	be	above	.5.	
		 The	hybrid	method	can	also	yield	highly	negative	effect	size	estimates	
because,	like	p‐uniform,	it	uses	a	conditional	probability	for	the	original	study’s	effect	
size.	In	line	with	the	proposal	in	van	Aert	et	al.	(2016),	we	developed	two	alternative	
hybrid	methods,	hybrid0	and	hybridR,	to	avoid	highly	negative	estimates.	The	hybrid0	
method	is	a	direct	application	of	the	p‐uniform	method	as	recommended	in	van	Aert	
et	al.	(2016),	which	recommends	setting	the	effect	size	estimate	to	0	if	the	studies’	
combined	evidence	points	to	a	negative	effect.	Applied	to	the	hybrid0	method,	this	
translates	to	setting	the	effect	size	equal	to	0	if	x	>	1	under	the	null	hypothesis,	and	
equal	to	that	of	hybrid	otherwise.	Consequently,	hybrid0	will,	in	contrast	to	hybrid,	
never	yield	an	effect	size	estimate	which	is	below	zero.	Applied	to	the	example,	
hybrid0	equals	hybrid’s	estimate	because	x	=	0.75	under	the	null	hypothesis.		
		 The	other	alternative	hybrid	method,	hybridR	(R	in	hybridR	refers	to	
replication),	addresses	the	problem	of	highly	negative	estimates	in	a	different	way.	
The	estimate	of	hybridR	is	equal	to	hybrid’s	estimate	if	the	original	study’s	two‐tailed	
p‐value	is	smaller	than	.025	and	is	equal	to	the	effect	size	estimate	of	the	replication	if	
the	original	study’s	two‐tailed	p‐value	is	larger	than	.025.	A	two‐tailed	p‐value	of	.025	
in	the	original	study	is	used	because	this	results	in	a	negative	effect	size	estimate,	
which	is	not	in	line	with	both	the	theoretical	expectation	as	well	as	the	observed	effect	
size	in	the	original	study.	Hence,	if	the	original	study’s	just	statistically	significant	
effect	size	(i.e.,	.025	<	p	<	.05)	points	to	a	negative	effect,	evidence	of	the	original	study	
is	discarded	and	only	the	results	of	the	replication	are	interpreted.	The	estimate	of	
hybridR	(and	also	of	hybrid)	is	not	restricted	to	be	in	the	same	direction	as	the	original	
study	as	is	the	case	for	hybrid0.	The	results	of	applying	hybridR	to	the	example	are	
presented	in	the	last	row	of	Table	6.1.	HybridR	only	uses	the	observed	effect	size	in	the	
replication	because	the	p‐value	in	the	original	study,	.03,	exceeds	.025,	and	hence	
yields	the	same	results	as	the	replication	study	as	reported	in	the	second	row.	
		 Since	all	discussed	methods	may	yield	different	results	it	is	important	to	
examine	their	statistical	properties.	The	next	section	describes	the	performance	of	the	
methods	evaluated	using	an	analytical	approximation	of	these	methods’	results.	
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6.2		 Performance	of	estimation	methods:	Analytical	comparison	

6.2.1		 Method	

		 We	used	the	correlation	coefficient	as	effect	size	measure	because	our	
application	discussed	later,	the	RPP,	also	used	correlations.	However,	all	methods	can	
also	deal	with	other	effect	size	measures	as	for	instance	standardized	mean	
differences.	We	analytically	compared	the	performance	of	five	methods;	fixed‐effect	
meta‐analysis,	estimation	using	only	the	replication	(maximum	likelihood),	and	the	
hybrid,	hybrid0,	and	hybridR	method.		
	 We	evaluated	the	methods’	statistical	properties	by	using	a	procedure	
analogous	to	the	procedure	described	in	van	Aert	and	van	Assen	(2017).	The	methods	
were	applied	to	the	joint	probability	density	function	(pdf)	of	statistically	significant	
original	effect	size	and	replication	effect	size.	This	joint	pdf	was	a	combination	of	the	
marginal	pdfs	of	the	statistically	significant	original	effect	size	and	the	replication	
effect	size,	and	was	approximated	by	using	numerical	integration.	Both	marginal	pdfs	
depended	on	the	true	effect	size	and	the	sample	size	in	the	original	study	and	
replication.	The	marginal	pdf	of	statistically	significant	original	effect	sizes	was	
approximated	by	first	creating	1,000	evenly	distributed	cumulative	probabilities	or	
percentiles	 O

iP 	of	this	distribution	given	true	effect	size	and	sample	size	in	the	original	

study,	with	 O
iP 	=	

001,1

)(
1

 

i .	Here,	π	denotes	the	power	of	the	null	hypothesis	test	

of	no	effect,	i.e.	the	probability	that	effect	size	exceeds	the	critical	value.	We	used	the	
Fisher‐z	test,	with	α=.025	corresponding	to	common	practice	in	psychological	
research	where	two‐tailed	hypothesis	tests	are	conducted	and	only	results	in	the	
predicted	direction	get	published.	For	instance,	if	the	null	hypothesis	is	true	the	
cumulative	probabilities	 O

iP 	are	evenly	distributed	and	range	from	

975025.0
001,1

)025.1(
025.01 


 	to	 999975.0

001,1

)025.000,1(
025.01 


 .	Finally,	the	

1,000	 O
iP 	values	were	converted	by	using	a	normal	distribution	to	the	corresponding	

1,000	(statistically	significant)	Fisher‐transformed	correlation	coefficients.		
		 The	marginal	pdf	of	the	replication	was	approximated	by	selecting	another	
1,000	equally	spaced	cumulative	probabilities	given	true	effect	size	and	sample	size	of	

the	replication	with	 R
iP 	=	

001,1

i .	These	cumulative	probabilities	range	from	

000999001.0
001,1

1
 	to	 999001.0

001,1

000,1
 ,	and	were	subsequently	also	transformed	to	

Fisher‐transformed	correlation	coefficients	by	using	a	normal	distribution.	The	joint	
pdf	was	obtained	by	multiplying	the	two	statistically	independent	marginal	pdfs,	and	
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yielded	1,000×1,000=1,000,000	different	combinations	of	statistically	significant	
original	effect	size	and	replication	effect	size.	The	methods	were	applied	to	each	of	the	
combination	of	effect	sizes	in	the	original	study	and	replication.	For	presenting	the	
results,	Fisher‐transformed	correlations	were	transformed	to	correlations.24		
		 Statistical	properties	of	the	different	methods	were	evaluated	based	on	
average	effect	size	estimate,	median	effect	size	estimate,	standard	deviation	of	effect	
size	estimate,	root	mean	square	error	(RMSE),	coverage	probability	(i.e.,	the	
proportion	describing	how	often	the	true	effect	size	falls	inside	the	confidence	
interval),	and	statistical	power	and	alpha	for	testing	the	null	hypothesis	of	no	effect.	
Population	effect	size	(ρ)	and	sample	size	in	the	original	study	(NO)	and	replication	
(NR)	were	varied.	Values	for	ρ	were	chosen	to	reflect	no	(0),	small	(0.1),	medium	(0.3),	
and	a	large	(0.5)	true	effect	as	specified	by	Cohen	(1988).	Representative	sample	sizes	
within	psychology	were	used	for	the	computations	by	selecting	the	first	quartile,	
median,	and	third	quartile	of	the	original	study’s	sample	size	in	the	RPP:	31,	55,	and	
96.	These	sample	sizes	were	used	for	the	original	study	and	replication.	A	sample	size	
of	783	was	also	included	for	the	replication	to	reflect	a	recommended	practice	where	
the	sample	size	is	determined	with	a	power	analysis	to	detect	a	small	true	effect	with	a	
statistical	power	of	0.8.	The	computations	were	conducted	in	R,	using	the	parallel	
package	for	parallel	computing	(R	Core	Team,	2017).	The	root‐finding	bisection	
method	(Adams	&	Essex,	2013)	was	used	to	estimate	the	effect	size	and	the	
confidence	interval	of	the	hybrid	method.	R	code	of	the	analyses	is	available	via	
https://osf.io/tzsgw/.	

6.2.2		 Results	

		 A	consequence	of	analyzing	Fisher‐transformed	correlations	instead	of	
correlations	is	that	the	estimator	of	true	effect	size	becomes	slightly	underestimated.	
However,	this	underestimation	is	negligible	under	the	selected	conditions	for	sample	

                                                   
24	The	variance	of	1,000	equally	spaced	probabilities	(.08325),	which	were	used	to	generate	the	observed	
effect	sizes	in	the	replication,	was	not	exactly	equal	to	the	variance	in	the	population	(.08333).	In	order	to	
examine	whether	this	smaller	variance	would	bias	the	effect	size	estimates	of	the	methods,	we	also	
computed	the	effect	size	estimates	for	5,000	equally	spaced	probabilities	for	both	the	original	study	and	
replication	(i.e.,	based	on	25	instead	of	1	million	points).	These	effect	size	estimates	were	almost	equal	to	
the	estimates	based	on	1,000	equally	spaced	probabilities	(i.e.,	difference	less	than	.0002).	Therefore,	we	
continued	using	1,000	equally	spaced	probabilities	for	both	marginal	densities	in	our	analyses.	
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size	and	true	effect	size.25	The	results	of	using	only	the	replication	data	are	the	
reference	because	the	expected	value	of	the	replication’s	effect	size	is	equal	to	the	
population	effect	size	if	no	p‐hacking	or	questionable	research	practices	have	been	
used.	Both	fixed‐effect	meta‐analysis	and	the	hybrid	methods	also	use	the	data	of	the	
original	study.	In	describing	the	results,	we	will	focus	on	answering	the	question	
under	which	conditions	these	methods	will	improve	upon	estimation	and	testing	
using	only	the	replication	data.	
Mean	and	median	of	effect	size	estimate		 Table	6.2	shows	the	methods’	
expected	values	as	a	function	of	the	population	effect	size	(ρ)	and	sample	sizes	in	the	
original	study	(NO)	and	replication	(NR).	Expected	values	of	the	methods’	estimators	at	
NR=783	are	presented	in	Table	6.A1	because	their	bias	is	very	small	in	those	
conditions.	We	also	present	the	median	effect	size	estimate	(Figure	6.226)	since	the	
expected	value	of	the	hybrid	method	is	negative	because	hybrid’s	estimate	becomes	
highly	negative	if	the	conditional	probability	is	close	to	one	(in	other	words,	the	
probability	distribution	of	hybrid’s	estimate	is	skewed	to	the	left).	Note	that	the	
median	effect	size	estimates	of	the	replication,	hybrid,	and	hybrid0	are	all	exactly	
equal	to	each	other	and	therefore	coincide	in	Figure	6.2.			 	
		 The	expected	values	based	on	the	replication	are	exactly	equal	to	the	
population	effect	size	for	ρ	=	0,	but	are	slightly	smaller	than	the	true	value	for	larger	
population	effect	sizes.	This	underestimation	is	caused	by	transforming	the	Fisher‐z‐
values	to	correlation	coefficients.27	The	median	estimate	of	the	replication	is	exactly	
equal	to	the	population	effect	size	in	all	conditions	(solid	lines	with	filled	bullets	in	
Figure	6.2).	Fixed‐effect	meta‐analysis	generally	yields	too	high	estimates	when	there	
is	no	or	a	small	effect	in	the	population,	particularly	if	sample	sizes	are	small	(bias	
equal	to	0.215	and	0.168	for	no	and	small	effect).	However,	its	bias	is	small	for	a	very	
large	sample	size	of	the	replication	(at	most	.026	for	zero	true	effect	size,	and	NO=96	
and	NR=783,	see	Table	6.A1).	Bias	decreases	in	population	effect	size	and	sample	size,	

                                                   
25	We	examined	the	underestimation	caused	by	transforming	the	correlations	to	Fisher‐transformed	
correlations	by	computing	the	expected	value	and	variance	of	the	exact	probability	density	distribution	of	
the	correlation	(Hotelling,	1953)	and	the	probability	density	distribution	of	the	correlation	that	is	obtained	
by	applying	the	Fisher‐transformation.	This	procedure	for	computing	the	expected	value	and	variance	is	
analogous	to	the	one	described	in	Schulze	(2004,	pp.	119‐123).	Of	the	conditions	for	sample	size	and	true	
effect	size	(ρ)	included	in	our	study,	bias	in	expected	value	and	variance	is	largest	for	a	sample	size	of	31	
and	true	effect	size	of	ρ=0.5.	For	this	condition,	the	expected	value	and	variance	of	the	exact	probability	
density	distribution	are	0.494	and	0.0260,	respectively,	and	0.487	and	0.0200	for	the	probability	density	
distribution	after	applying	the	Fisher‐transformation.	In	other	conditions,	bias	was	less	than	0.004	and	
0.002	for	the	expected	value	and	variance,	respectively.	
26	A	line	for	each	method	was	drawn	through	the	points	in	Figures	2‐5	to	improve	their	interpretability.	The	
lines	do	not	reflect	extrapolated	estimates	of	the	performance	of	the	different	methods	for	true	effect	sizes	
that	were	not	included	in	our	analytical	approximation.	
27	Observed	effect	sizes	were	first	transformed	from	Fisher‐z‐values	to	correlation	coefficients	before	the	
average	effect	size	was	calculated.	This	caused	a	slight	underestimation	in	the	effect	size	estimate	based	on	
the	replication	study.	
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and	is	.037	or	smaller	if	the	population	effect	size	is	at	least	medium	and	both	sample	
sizes	are	at	least	55.		 	
		 The	estimator	of	the	hybrid	method	has	slight	negative	bias	compared	to	the	
replication	(never	more	than	‐0.021,	Table	6.2)	caused	by	the	highly	negative	
estimates	if	x	is	close	to	2	under	the	null	hypothesis.	However,	its	median	(dashed	
lines	with	filled	squares	in	Figure	6.2)	is	exactly	equal	to	the	population	effect	size.	
Hybrid0,	which	was	developed	to	correct	for	the	negative	bias	of	hybrid’s	estimator,	
overcorrects	and	yields	overestimated	effect	size	for	ρ	=	0,	with	bias	equal	to	0.072	
and	0.04	for	small	and	large	sample	sizes,	respectively.	The	positive	bias	of	hybrid0’s	
estimator	is	small	for	small	effect	size	(at	most	.027,	for	small	sample	sizes),	whereas	
there	is	a	small	negative	bias	for	medium	and	large	effect	size.	Hybrid0’s	median	
estimate	is	exactly	equal	to	the	population	effect	size	(dashed	lines	with	asterisks	in	
Figure	6.2).	Results	of	estimator	hybridR	parallel	those	of	hybrid0,	but	with	less	
positive	bias	for	no	effect	(0.049	and	0.027	for	small	and	large	sample	sizes,	
respectively),	more	bias	for	small	effect	size	(at	most	.043)	and	medium	effect	size	(at	
most	.023).	The	median	estimate	of	hybridR	slightly	exceeds	population	effect	size	
(dashed	lines	with	triangles	in	Figure	6.2)	because	the	data	of	the	original	study	are	
omitted	only	if	they	indicate	a	negative	effect.	
		 To	conclude,	the	negative	bias	of	the	hybrid’s	estimator	is	small,	whereas	the	
estimators	of	hybridR	and	hybrid0	overcorrect	this	bias	for	no	and	small	population	
effect	size.	The	fixed‐effect	meta‐analytic	estimator	yields	severely	overestimated	
effect	sizes	for	no	and	small	population	effect	size,	but	yields	approximately	accurate	
estimates	for	large	effect	size.	Bias	of	all	methods	decreases	if	sample	sizes	increase	
and	all	methods	yield	accurate	effect	size	estimates	for	large	population	effect	size.	
Precision		 Table	6.2	also	presents	the	standard	deviation	of	the	effect	size	
estimates	reflecting	the	precision	of	these	estimates.	Standard	deviations	of	the	effect	
size	estimates	for	NR	=	783	are	presented	in	Table	6.A1,	and	are	substantially	smaller	
than	the	standard	deviations	of	the	other	conditions	for	NR.	The	fixed‐effect	meta‐
analytic	estimator	yields	the	most	precise	estimates.	Precision	of	hybrid’s	estimator	
increases	relative	to	the	precision	of	the	replication’s	estimator	in	population	effect	
size	and	the	ratio	of	original	to	replication	sample	size.	For	zero	and	small	population	
effect	size,	the	estimator	of	hybrid	has	lower	precision	than	the	replication’s	estimator	
if	the	replication	sample	size	is	equal	or	lower	than	the	original	sample	size.	For	
medium	and	large	population	effect	size,	the	estimator	of	hybrid	generally	has	higher	
precision,	except	when	the	sample	size	in	the	original	study	is	much	smaller	than	
replication’s	sample	size.	Estimators	of	Hybrid0	and	hybridR	have	higher	precision	
than	hybrid’s	estimator	because	they	deal	with	possible	strongly	negative	estimates	of	
hybrid,	with	hybrid0‘s	estimator	in	general	being	most	precise	for	zero	and	small	
population	effect	size,	and	the	estimator	of	hybridR	being	most	precise	for	medium
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Table	6.2.	Continued	
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Figure	6.2.	M
edian	effect	size	estim

ate	of	the	estim
ators	of	fixed‐effect	m

eta‐analysis	(solid	line	w
ith	open	bullets),	replication	study	(solid	line	w

ith	
filled	bullets)	and	hybrid	(dashed	line	w

ith	filled	squares),	hybrid
0	(dashed	line	w

ith	asterisks),	and	hybrid
R	m

ethod	(dashed	line	w
ith	filled	

triangles)	as	a	function	of	population	effect	size	ρ	and	sam
ple	size	of	the	original	study	(N

O )	and	replication	(N
R ).	M

edian	effect	size	estim
ates	of	the	

replication	study,	hybrid,	and	hybrid
0	are	exactly	equal	to	the	population	effect	size	and	therefore	coincide.	
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and	large	population	effect	size.	They	also	have	higher	precision	compared	to	the	
estimator	of	the	replication,	but	not	when	replication’s	sample	size	is	larger	than	the	
sample	size	of	the	original	study	and	at	the	same	time	the	effect	size	is	medium	or	
large	in	the	population	(hybrid0;	NO	=	31/55	and	NR	=	96)	or	zero	(hybridR;	NO	=	31	
and	NR	=	96).		
RMSE	 	The	RMSE	combines	two	important	statistical	properties	of	an	estimator:	bias	
and	precision.	A	slightly	biased	and	very	precise	estimator	is	often	preferred	over	an	
unbiased	but	very	imprecise	estimator.	The	RMSE	is	an	indicator	of	this	trade‐off	
between	bias	and	precision	and	is	displayed	in	Figure	6.3.	Compared	to	the	
replication’s	estimator,	the	RMSE	of	the	fixed‐effect	meta‐analytic	estimator	is	higher	
for	no	effect	in	the	population	and	smaller	for	medium	and	large	effect	size.	For	small	
population	effect	size,	RMSE	of	the	estimators	of	the	replication	and	fixed‐effect	meta‐
analysis	are	roughly	the	same	for	equal	sample	sizes	while	RMSE	of	the	replication’s	
estimator	was	higher	for	NO	>	NR	and	lower	for	NO	<	NR.	Comparing	the	estimators	of	
hybrid	to	the	replication	for	equal	sample	sizes	of	both	studies,	hybrid’s	RMSE	is	
higher	for	zero	and	small	population	effect	size,	but	lower	for	medium	and	large	
population	effect	size.	However,	performance	of	hybrid’s	estimator	relative	to	the	
estimator	of	the	replication	depends	on	sample	sizes,	and	increases	in	ratio	NO/NR.	
RMSE	of	the	estimators	of	hybrid0	and	hybridR	are	always	lower	than	that	of	hybrid’s	
estimator.	They	are	also	lower	than	RMSE	of	the	replication,	except	for	NO	=	31	and	NR	
=	96	and	at	the	same	time	zero	or	small	population	effect	size	(hybridR),	and	medium	
or	large	population	effect	size	(hybrid0).	RMSE	of	the	estimators	of	hybrid0	and	
hybridR	are	lower	than	of	the	fixed‐effect	meta‐analytic	estimator	for	zero	or	small	
population	effect	size,	and	higher	for	medium	or	large	population	effect	size.	For	NR	=	
783,	RMSE	of	all	estimators	were	close	to	each	other	(see	figures	in	last	column	of	
Figure	6.3).	
Statistical	properties	of	the	test	of	no	effect		 Figure	6.4	presents	Type	I	error	and	
statistical	power	of	all	methods’	testing	procedures.	The	Type	I	error	rate	is	exactly	
.025	for	the	replication,	hybrid,	and	hybrid0	method.	Type	I	error	rate	is	slightly	too	
high	for	hybridR	(.037	in	all	conditions)	and	substantially	too	high	for	fixed‐effect	
meta‐analysis	(increases	in	NO/NR,	up	to	0.551	for	NO	=	96	and	NR	=	31).	Concerning	
statistical	power,	fixed‐effect	meta‐analysis	has	by	far	the	highest	power	because	of	its	
overestimation	in	combination	with	high	precision.	With	respect	to	statistical	power	
of	the	other	methods,	we	first	consider	the	cases	with	equal	sample	sizes	of	both	
studies.	Here,	hybridR	has	highest	statistical	power,	followed	by	the	replication.	
Hybrid	and	hybrid0	have	about	equal	statistical	power	compared	to	the	replication	for	
zero	and	small	population	effect	size,	but	lower	statistical	power	for	medium	and	
large	population	effect	size.	For	NO>NR,	all	hybrid	methods	have	higher	power	than	the	
replication.	For	NO<NR	and	NR<783,	hybridR	has	higher	statistical	power	than	the	
replication	for	zero	or	small	population	effect	size,	but	lower	statistical	power	for	
medium	or	large	population	effect	size;	hybrid	and	hybrid0	have	lower	statistical	



		

 

	

Figure	6.3.	R
oot	m

ean	square	error	(R
M
SE)	of	the	estim

ators	of	fixed‐effect	m
eta‐analysis	(solid	line	w

ith	open	bullets),	replication	study	(solid	line	
w
ith	filled	bullets)	and	hybrid	(dashed	line	w

ith	filled	squares),	hybrid
0	(dashed	line	w

ith	asterisks),	and	hybrid
R	m

ethod	(dashed	line	w
ith	filled	

triangles)	as	a	function	of	population	effect	size	ρ	and	sam
ple	size	of	the	original	study	(N

O )	and	replication	(N
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power	than	the	replication	in	this	case.	Statistical	power	of	the	replication	is	0.8	for	
ρ=0.1	and	NR=783	because	sample	size	was	determined	to	obtain	a	power	of	0.8	in	this	
condition	and	1	for	ρ>0.1	and	NR=783.		
		 Coverage	is	presented	in	Figure	6.5.28	The	replication	and	hybrid	yield	
coverage	probabilities	exactly	equal	to	95%	in	all	conditions.	Coverage	probabilities	of	
fixed‐effect	meta‐analysis	are	substantially	too	low	for	ρ	=	0	and	ρ	=	0.1	due	to	the	
overestimation	in	average	effect	size;	generally,	its	coverage	improves	in	effect	size	
and	ratio	NR/NO.	Coverage	probabilities	of	hybrid0	and	hybridR	are	close	to	.95	in	all	
conditions.	
Guidelines	for	applying	methods	 Using	the	methods’	statistical	properties	we	
attempted	to	answer	the	essential	question	which	method	to	use,	under	what	
conditions.	Answering	this	question	is	difficult	because	an	important	condition,	
population	effect	size,	is	unknown	and	in	fact	has	to	be	estimated	and	tested.	We	will	
present	guidelines	(Table	6.3)	that	take	this	uncertainty	into	account.	Each	guideline	
is	founded	on	and	explained	by	using	the	previously	described	results.	
		 The	hybrid	method	and	its	variants	have	good	statistical	properties	when	
testing	the	hypothesis	of	no	effect,	i.e.,	both	Type	I	error	and	coverage	are	equal	or	
close	to	.025	and	95%,	respectively.	Although	the	methods	show	similar	performance,	
we	recommend	using	hybridR	over	the	hybrid	and	hybrid0	method.	HybridR’s	
estimator	has	small	positive	bias,	but	this	bias	is	less	than	hybrid0’s	estimator	if	the	
population	effect	size	is	zero.	Moreover,	hybridR’s	estimator	has	lower	RMSE	than	
hybrid,	and	has	higher	power	than	the	testing	procedures	of	hybrid	and	hybrid0.	
Hence,	in	the	guidelines	below	we	consider	when	to	use	only	the	replication,	fixed‐
effect	meta‐analysis,	and	hybridR.	
	 If	the	magnitude	of	the	effect	size	in	the	population	is	uncertain,	fixed‐effect	
meta‐analysis	has	to	be	discarded	because	it	generally	yields	highly	overestimated	
effect	size	and	a	too	high	Type	I	error	rate	when	the	population	effect	size	is	zero	or	
small	(Guideline	1,	Table	6.3).	If	the	replication’s	sample	size	is	larger	than	the	original	
study,	we	recommend	using	only	the	replication	(Guideline	1a)	because	then	the	
replication	outperforms	hybridR	with	respect	to	power	and	provides	accurate	
estimates.	Additionally,	the	RMSE	of	the	replication	relative	to	hybridR	gets	more	
favorable	for	increasing	NR/NO.		
	 In	case	of	uncertainty	about	the	magnitude	of	the	population	effect	size	and	
the	sample	size	in	the	replication	is	smaller	than	in	the	original	study,	we	recommend	
using	hybridR	(Guideline	1b)	because	the	estimator	of	hybridR		

	

                                                   
28	The	hybrid0	method	was	omitted	from	Figure	6.5	illustrating	the	coverage	probabilities	because	the	
average	effect	size	estimate	was	set	to	zero	if	the	p‐value	of	the	original	study	was	larger	than	.0125.	This	
made	the	confidence	interval	meaningless	since	the	average	effect	size	estimate	could	not	be	included	in	the	
confidence	interval.	



		

 

	

Figure	6.4.	T
ype	I	error	rate	and	statistical	pow

er	of	the	testing	procedures	of	fixed‐effect	m
eta‐analysis	(solid	line	w

ith	open	bullets),	replication	
study	(solid	line	w

ith	filled	bullets)	and	hybrid	(dashed	line	w
ith	filled	squares),	hybrid

0	(dashed	line	w
ith	asterisks),	and	hybrid

R	m
ethod	(dashed	

line	w
ith	filled	triangles)	as	a	function	of	population	effect	size	ρ	and	sam

ple	size	of	the	original	study	(N
O )	and	replication	(N

R ).	
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Table	6.3.	Guidelines	for	applying	which	method	to	use	when	statistically	combining	an	original	
study	and	replication	

(1a)	When	uncertain	about	population	effect	size	and	sample	size	in	the	replication	is	
larger	than	in	the	original	study	(NR	>	NO),	use	only	the	replication	data.	

(1b)	When	uncertain	about	population	effect	size	and	the	sample	size	in	the	
replication	is	equal	or	smaller	than	in	the	original	study	(NR	≤	NO),	use	hybridR.	

(2)	When	suspecting	zero	or	small	population	effect	size,	use	hybridR	

(3)	When	suspecting	medium	or	larger	population	effect	size,	use	fixed‐effect	meta‐
analysis.	

	

outperforms	the	replication’s	estimator	with	respect	to	RMSE	and	the	testing	
procedure	of	hybridR	yields	larger	statistical	power	than	the	procedure	of	the	
replication.	For	this	situation,	including	the	original	data	is	beneficial	since	it	contains	
sufficient	information	to	improve	estimation	of	effect	size	compared	to	using	only	the	
replication	data.	A	drawback	of	using	the	hybridR	method	is	that	its	Type	I	error	rate	is	
slightly	too	high	(.037	vs.	.025),	but	a	slightly	smaller	alpha	level	can	be	selected	to	
decrease	the	probability	of	falsely	concluding	that	an	effect	exists.	If	information	on	
the	population	effect	size	is	known	based	on	previous	research,	it	is	valuable	to	
include	this	information	in	the	analysis	(akin	to	using	an	informative	prior	
distribution	in	Bayesian	analyses).	If	the	population	effect	size	is	suspected	to	be	zero	
or	small	we	also	recommend	using	hybridR	(Guideline	2),	because	its	estimator	then	
has	lower	RMSE	and	only	a	small	positive	bias,	and	its	testing	procedure	has	higher	
statistical	power	than	the	replication.	Fixed‐effect	meta‐analysis	should	be	abandoned	
in	this	case	because	its	estimator	overestimates	zero	and	small	population	effects.	
		 Fixed‐effect	meta‐analysis	is	recommended	if	a	medium	or	larger	population	
effect	size	is	expected	(Guideline	3).	Bias	of	the	fixed‐effect	meta‐analytic	estimator	is	
minor	in	this	case,	but	its	RMSE	is	smaller	and	the	testing	procedure	has	larger	
statistical	power	than	of	any	other	method.	An	important	qualification	of	this	
guideline	is	the	sample	size	of	the	original	study	because	bias	is	a	decreasing	function	
of	NO.	If	NO	is	small,	statistical	power	of	the	original	study’s	testing	procedure	is	small	
when	population	effect	size	is	medium,	and	consequently	the	original’s	effect	size	
estimate	is	generally	too	high.	Hence,	to	be	on	the	safe	side,	if	expecting	a	medium	
population	effect	size	in	combination	with	a	small	sample	size	in	the	original	study,	
one	can	also	decide	to	use	only	the	replication	data	(if	NR	>	NO)	or	hybridR	(if	NR	≤	NO).	
When	expecting	a	large	population	effect	size	and	the	main	focus	is	not	only	on	effect	
size	estimation	but	also	on	testing,	fixed‐effect	meta‐analysis	is	the	optimal	choice.	



C h a p t e r 	 6 	|	177	
	

 
 

However,	if	the	ultimate	goal	of	the	analysis	is	to	get	an	unbiased	estimate	of	the	effect	
size	only	the	replication	data	should	be	used	for	the	analysis.	The	replication	is	not	
published	and	its	effect	size	estimate	is	therefore	not	affected	by	publication	bias.	Of	
course,	the	replication	only	provides	an	unbiased	estimate	if	the	research	is	well	
conducted,	and	for	instance	no	questionable	research	practices	were	used.		

6.3		 Reproducibility	Project	Psychology	(RPP)	

		 The	RPP	was	initiated	to	examine	the	reproducibility	of	psychological	
research	(Open	Science	Collaboration,	2015).	Articles	from	three	high‐impact	
psychology	journals	(Journal	of	Experimental	Psychology:	Learning,	Memory,	and	
Cognition	[JEP:	LMC],	Journal	of	Personality	and	Social	Psychology	[JPSP],	and	
Psychological	Science	[PSCI])	published	in	2008	were	selected	to	be	replicated.	The	
key	effect	of	each	article’s	last	study	was	replicated	according	to	a	structured	protocol,	
with	authors	of	the	original	study	being	contacted	for	study	materials	and	reviewing	
the	planned	study	protocol	and	analysis	plan	to	ensure	the	quality	of	the	replication.	
		 A	total	of	100	studies	were	replicated	in	the	RPP.	One	requirement	for	
inclusion	in	our	analysis	was	that	the	correlation	coefficient	and	its	standard	error	
could	be	computed	for	both	the	original	study	and	replication.	This	was	not	possible	
for	27	study‐pairs.29	Moreover,	transforming	the	effect	sizes	to	correlation	coefficients	
may	have	biased	the	estimates	of	the	hybrid	method	since	qO	and	qR	may	not	exactly	
be	uniformly	distributed	at	the	true	effect	size	due	to	the	transformation.	We	
examined	the	influence	of	transforming	effect	sizes	to	correlation	coefficients	on	the	
distributions	of	qO	and	qR,	and	concluded	that	the	transformation	of	effect	size	will	
hardly	bias	the	effect	size	estimates	of	the	hybrid	method	(see	supplemental	materials	
available	at	https://osf.io/9e3qd/).		
		 Another	requirement	for	including	a	study‐pair	in	the	analysis	was	that	the	
original	study	had	to	be	statistically	significant,	which	was	not	the	case	for	six	studies.	
Hence,	fixed‐effect	meta‐analysis	and	the	hybrid	methods	could	be	applied	on	67	
study‐pairs.	The	effect	sizes	of	these	study‐pairs	and	the	results	of	applying	fixed‐
effect	meta‐analysis	and	the	hybrid	methods	are	available	in	Table	6.B1	in	the	
Appendix.	For	completeness,	we	present	the	results	of	all	three	hybrid	methods.	The	
results	in	Table	6.B1	show	that	hybrid0	sets	the	effect	size	to	zero	in	11	study‐pairs	
(16.4%),	i.e.	where	hybrid’s	effect	size	is	negative,	and	hybridR	also	yielded	11	studies	
with	results	different	from	hybrid	(16.4%);	in	five	studies	(7.5%)	all	three	hybrid	
variants	yielded	different	estimates.	
		 Table	6.4	summarizes	the	results	on	effect	size	estimates	of	replications,	
fixed‐effect	meta‐analysis,	and	the	hybrid	methods.	For	each	method,	the	mean	and	

                                                   
29	If	test	statistics	of	the	original	study	or	replication	were,	for	instance,	F(df1	>1,df2)	or	χ2,	the	standard	
error	of	the	correlation	coefficient	using	Fisher	transformation	could	not	be	computed	and	fixed‐effect	
meta‐analysis	and	the	hybrid	methods	could	not	be	applied	to	these	study‐pairs.	
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standard	deviation	of	the	estimates	and	the	percentage	of	statistically	significant	
results	(i.e.,	p	<	.05)	are	presented.	The	columns	in	Table	6.4	refer	to	the	overall	
results	or	results	grouped	per	journal.	Since	PSCI	is	a	multi‐disciplinary	journal,	
original	studies	published	in	PSCI	were	classified	as	belonging	to	cognitive	or	social	
psychology	as	in	Open	Science	Collaboration	(2015).	
		 The	estimator	of	fixed‐effect	meta‐analysis	yielded	the	largest	average	effect	
size	estimate	(0.322)	and	the	highest	proportion	of	statistically	significant	results	
(70.1%).	We	learned	from	the	previous	section	to	distrust	these	high	numbers	when	
being	uncertain	about	true	effect	size,	particularly	in	combination	with	a	small	sample	
size	in	the	original	study.	The	estimator	of	the	replication	yielded	on	average	the	
lowest	effect	size	estimates	(0.199),	with	only	34.3%	of	the	cases	where	the	null	
hypothesis	was	rejected.	The	estimators	of	the	hybrid	variants	yielded	a	higher	
average	estimate	(0.250‐0.268),	with	an	equal	(hybridR)	or	lower	proportion	of	
rejecting	the	null	hypothesis	of	no	effect	(hybrid	and	hybrid0).	The	lower	proportion	
of	rejections	of	the	null	hypothesis	by	the	hybrid	methods	is	not	only	caused	by	the	
generally	lower	effect	size	estimates,	but	also	by	the	much	higher	uncertainty	in	these	
estimates.	The	methods’	uncertainty,	expressed	by	the	average	width	of	confidence	
intervals,	was:	0.328	(fixed‐effect	meta‐analysis),	0.483	(replication),	0.648	(hybrid),	
0.615	(hybrid0),	0.539	(hybridR).	The	higher	uncertainty	of	the	hybrid	methods	than	
the	replication	demonstrates	that	controlling	for	the	significance	of	the	original	study	
may	come	at	high	costs	(i.e.	an	increase	in	uncertainty	relative	to	estimation	by	the	
replication	only),	particularly	when	the	ratio	of	the	replication’s	to	the	original’s	
sample	size	gets	larger.	
		 If	we	apply	our	guidelines	to	the	data	of	the	RPP	and	suppose	that	we	are	
uncertain	about	the	population	effect	size	(Guidelines	1a	and	1b	in	Table	6.3),	only	the	
replication	data	is	interpreted	43	times	because	NR	>	NO	and	hybridR	is	24	times	
applied	(NO	≥	NR).	The	average	effect	size	estimate	of	the	replication’s	estimator	with	
NR	>	NO	is	lower	than	of	the	fixed‐effect	meta‐analytic	estimator	(0.184	vs.	0.266),	and	
the	number	of	statistically	significant	pooled	effect	sizes	is	also	lower	(34.9%	vs.	
55.8%).	The	average	effect	size	estimate	of	hybridR’s	estimator	applied	to	the	subset	of	
24	studies	with	NO	≥	NR	is	also	lower	than	that	of	the	fixed‐effect	meta‐analytic	
estimator	(0.375	vs.	0.421),	and	the	same	holds	for	the	number	of	statistically	
significant	results	(54.2%	vs.	95.8%).	
		 The	results	per	journal	showed	higher	effect	size	estimates	and	more	
rejections	of	the	null	hypothesis	of	no	effect	for	cognitive	psychology	(JEP:	LMC	and	
PSCI:	cog.)	than	social	psychology	(JPSP	and	PSCI:	soc.),	independent	of	the	method.	
The	estimator	of	fixed‐effect	meta‐analysis	yielded	higher	estimates	and	the	null	
hypothesis	was	more	often	rejected	compared	to	the	other	methods.	Estimates	of	the	
replication	were	always	lower	than	of	the	hybrid	methods.	The	number	of	statistically	
significant	results	of	hybrid	and	hybrid0	were	equal	or	lower	than	of	the	replication,	
whereas	the	number	of	statistically	significant	results	of	hybridR	was	equal	or	higher	
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Table	6.4.	Summary	results	of	effect	size	estimates	and	percentage	of	times	the	null	hypothesis	
of	no	effect	was	rejected	of	fixed‐effect	meta‐analysis	(FE),	replication,	hybrid,	hybridR,	and	
hybrid0	method	to	67	studies	of	the	Reproducibility	Project	Psychology.		

	 Overall	 JEP:	LMC	 JPSP	 PSCI:	cog.	 PSCI:	soc.	

Number	of	study‐pairs	 67	 20	 18	 13	 16	

Mean	(SD)	

FE	 0.322	
(.229)	

0.416	
(.205)	

0.133	
(.083)	

0.464	
(.221)	

0.300	
(.241)	

Replication	 0.199	
(.280)	

0.291	
(.264)	

0.026	
(.097)	

0.289	
(.365)	

0.206	
(.292)	

Hybrid	 0.250	
(.263)	

0.327	
(.287)	

0.071	
(.087)	

0.388	
(.260)	

0.245	
(.275)	

Hybrid0	 0.266	
(.242)	

0.353	
(.237)	

0.080	
(.075)	

0.400	
(.236)	

0.257	
(.259)	

HybridR	 0.268	
(.254)	

0.368	
(.241)	

0.083	
(.093)	

0.394	
(.272)	

0.247	
(.271)	

%Significant	
results	(i.e.,	
p‐value	<	
.05)	

FE	 70.1%	 90%	 44.4%	 92.3%	 56.2%	

Replication	 34.3%	 50%	 11.1%	 46.2%	 31.2%	

Hybrid	 28.4%	 45%	 11.1%	 30.8%	 25%	

Hybrid0	 28.4%	 45%	 11.1%	 30.8%	 25%	

HybridR	 34.3%	 55%	 16.7%	 38.5%	 25%	

Note.	%	Significance	was	based	on	two‐tailed	p‐values;	JEP:	LMC	=	Journal	of	Experimental	
Psychology:	Learning,	Memory,	and	Cognition;	JPSP	=	Journal	of	Personality	and	Social	
Psychology;	PSCI:	cog.	=	Psychological	Science	cognitive	psychology;	PSCI:	soc.	=	Psychological	
Science	social	psychology	

than	of	hybrid	and	hybrid0.	Particularly	striking	is	the	low	number	of	statistically	
significant	results	for	JPSP:	16.7%	(hybridR)	or	11.1%	(replication,	hybrid,	and	
hybrid0).	
	 We	also	computed	a	measure	of	association	to	examine	how	often	the	
methods	yielded	the	same	conclusions	with	respect	to	the	test	of	no	effect	for	all	
study‐pairs	together	and	grouped	per	journal.	Since	this	resulted	in	a	dichotomous	
variable,	we	used	Loevinger’s	H	(Loevinger,	1948)	as	the	measure	of	association.	
Table	6.5	shows	Loevinger’s	H	of	the	replication	with	each	other	method	for	all	67	
study‐pairs.	Associations	between	fixed‐effect	meta‐analysis,	hybrid,	hybrid0,	and		
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Table	6.5.	Loevinger’s	H	across	all	67	studies	of	all	methods’	results	of	hypothesis	testing.	

	 FE	 Hybrid	 Hybrid0	 HybridR	

Replication	 1	 0.519	 0.519	 0.603	

FE	 	 1	 1	 1	

Hybrid	 	 	 1	 1	

Hybrid0	 	 	 	 1	

HybridR	 	 	 	 	

Note.	JEP:	LMC	=	Journal	of	Experimental	Psychology:	Learning,	Memory,	and	Cognition;	JPSP	=	
Journal	of	Personality	and	Social	Psychology;	PSCI:	cog.	=	Psychological	Science	cognitive	
psychology;	PSCI:	soc.	=	Psychological	Science	social	psychology	

	
hybridR	were	perfect	(H	=	1),	implying	that	a	hybrid	method	only	rejected	the	null	
hypothesis	if	fixed‐effect	meta‐analysis	did	as	well.	Associations	of	the	replication	with	
hybrid,	hybrid0,	and	hybridR	were	0.519,	0.519,	and	0.603,	respectively.		
		 To	conclude,	when	correcting	for	the	statistical	significance	of	the	original	
study,	estimators	of	the	hybrid	methods	on	average	provided	smaller	effect	size	
estimates	than	the	fixed‐effect	meta‐analytic	estimator.	Uncertainty	of	the	hybrid	
estimators	(width	of	the	confidence	interval)	was	invariably	larger	than	that	of	fixed‐
effect	meta‐analytic	estimator,	which	together	with	its	lower	estimates	explain	the	
hybrids’	lower	proportion	of	rejection	of	the	null	hypothesis	of	no	effect.	If	a	hybrid	
method	rejected	the	null	hypothesis,	this	hypothesis	was	also	rejected	by	fixed‐effect	
meta‐analysis,	but	not	the	other	way	around.	This	suggests	that	the	testing	procedures	
of	the	hybrid	methods	are	primarily	more	conservative	than	the	testing	procedure	of	
fixed‐effect	meta‐analysis.	Compared	to	the	replication,	the	hybrid	methods’	
estimators	on	average	provided	somewhat	larger	effect	sizes,	but	higher	uncertainty	
and	a	similar	percentage	reflecting	how	often	the	null	hypothesis	of	no	effect	was	
rejected.	The	results	of	the	hybrid	methods	were	more	in	line	with	those	of	only	the	
replication	than	fixed‐effect	meta‐analysis	or	only	the	original	study.	

6.4		 Discussion	

	 One	of	the	pillars	of	science	is	replication;	does	a	finding	withstand	replication	
in	similar	circumstances,	or	can	the	results	of	a	study	generalized	across	different	
settings	and	people,	and	do	the	results	persist	over	time?	According	to	Popper	
(1959/2005),	replications	are	the	only	way	to	convince	ourselves	that	an	effect	really	
exists	and	is	not	a	false	positive.	The	replication	issue	is	particularly	relevant	in	
psychology,	which	shows	an	unrealistically	high	rate	of	positive	findings	(e.g.,	Fanelli,	
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2012;	Sterling	et	al.,	1995).	The	RPP	(Open	Science	Collaboration,	2015)	replicated	
100	studies	in	psychology	and	confirmed	these	unrealistic	findings;	less	than	40%	of	
original	findings	were	statistically	significant.	This	chapter	examined	several	methods	
for	estimating	and	testing	effect	size	combining	a	statistically	significant	effect	size	of	
the	original	study	and	effect	size	of	a	replication.	By	approximating	analytically	the	
joint	probability	density	function	of	original	study	and	replication	effect	size	we	show	
that	the	estimator	of	fixed‐effect	meta‐analysis	yields	overestimated	effect	size,	
particularly	if	the	population	effect	size	is	zero	or	small,	and	yields	a	too	high	Type	I	
error	rate.	We	developed	a	new	method,	called	hybrid,	which	takes	into	account	that	
the	expected	value	of	the	statistically	significant	original	study	is	larger	than	the	
population	effect	size,	and	enables	point	and	interval	estimation,	and	hypothesis	
testing.	The	statistical	properties	of	hybrid	and	two	variants	of	hybrid	are	examined	
and	compared	to	fixed‐effect	meta‐analysis	and	to	using	only	replication	data.	On	the	
basis	of	this	comparison,	we	formulated	guidelines	for	when	to	use	which	method	to	
estimate	effect	size.	All	methods	were	also	applied	to	the	data	of	the	RPP.	
		 The	hybrid	method	is	based	on	the	statistical	principle	that	the	distribution	of	
p‐values	at	the	population	effect	size	has	to	be	uniform.	Since	positive	findings	are	
overrepresented	in	the	literature,	the	method	computes	probabilities	at	the	
population	effects	size	for	both	the	original	study	and	replication	where	likely	
overestimation	of	the	original	study	is	taken	into	account.	The	hybrid	method	showed	
good	statistical	properties	(i.e.,	Type	I	error	rate	equal	to	alpha	level,	coverage	
probabilities	matching	the	nominal	level,	and	median	effect	size	estimate	equal	to	the	
population	effect	size)	when	its	performance	was	analytically	approximated.	
However,	hybrid’s	estimator	is	slightly	negatively	biased	if	the	mean	of	the	
(conditional)	probabilities	was	close	to	1.	This	negative	bias	was	also	observed	in	
another	meta‐analytic	method	(p‐uniform)	using	conditional	probabilities.	To	correct	
for	this	bias,	we	developed	two	alternative	methods	(hybrid0	and	hybridR)	that	do	not	
suffer	from	these	highly	negative	estimates	and	have	the	same	desirable	statistical	
properties	as	the	hybrid	method.	We	recommend	using	the	hybridR	method	among	the	
three	hybrid	variants	because	its	estimator	is	least	biased,	its	RMSE	is	lower	than	
hybrid’s	estimator,	and	hybridR’s	testing	procedure	has	the	most	statistical	power.	
		 We	formulated	guidelines	(see	Table	6.3)	to	help	researchers	select	the	most	
appropriate	method	when	combining	an	original	study	and	replication.	The	first	two	
guidelines	suppose	that	a	researcher	does	not	have	knowledge	about	the	magnitude	of	
the	population	effect	size.	In	this	case,	we	advise	to	use	only	the	replication	data	if	the	
original	study’s	sample	size	is	smaller	than	of	the	replication	and	to	use	the	hybridR	
method	if	the	sample	size	in	the	original	study	is	larger	or	equal	to	the	sample	size	of	
the	replication.	The	hybridR	method	is	also	recommended	to	be	used	if	the	effect	size	
in	the	population	is	expected	to	be	either	absent	or	small.	Fixed‐effect	meta‐analysis	
has	the	best	statistical	properties	and	is	advised	to	be	used	if	the	expected	population	
effect	size	is	medium	or	large.	To	prevent	researchers	selecting	a	method	based	on	its	
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results	(‘p‐hacking’),	we	recommend	selecting	the	method	using	our	guidelines	before	
analyzing	the	data.	
	 Applying	the	hybrid	methods	to	studies	of	RPP	largely	confirmed	the	results	
of	only	the	replication	study	as	reported	by	the	Open	Science	Collaboration	(2015).	
Average	effect	size	and	proportion	of	statistically	significant	effects	was	considerably	
larger	for	fixed‐effect	meta‐analysis	than	for	the	other	methods,	providing	indirect	
evidence	of	overestimation	by	fixed‐effect	meta‐analysis.	The	results	suggest	that	
many	findings	published	in	the	three	included	psychology	journals	have	smaller	effect	
sizes	than	reported	and	that	some	effects	may	even	be	absent.	In	addition,	uncertainty	
of	the	estimates	of	the	hybrid	methods	was	generally	high,	meaning	that	discarding	
the	original	studies	generally	made	effect	size	estimates	more	precise.	We	draw	two	
general	conclusions	from	our	re‐analysis	of	the	RPP.	First,	estimates	of	only	the	
replication	and	the	hybrid	methods	are	generally	more	accurate	than	both	the	original	
study	and	fixed‐effect	meta‐analysis	which	tend	to	overestimate	because	of	
publication	bias.	Second,	most	estimates	of	the	replication	and	the	hybrid	methods	
were	too	uncertain	to	draw	strong	conclusions	on	the	magnitude	of	the	effect	size,	i.e.	
sample	sizes	were	too	small	to	provide	precise	estimates.	These	two	conclusions	are	
in	line	with	a	Bayesian	re‐analysis	of	the	RPP	(Etz	&	Vandekerckhove,	2016).	
		 The	effect	size	estimates	of	the	hybrid	methods	can	also	be	used	to	estimate	
the	power	of	the	original	study,	based	on	hybrid’s	effect	size	estimate.	This	alternative	
calculation	of	so‐called	‘observed	power’	has	the	advantage	that	it	is	based	on	
evidence	of	both	the	original	study	and	the	replication.	The	observed	power	of	the	
original	study	may	be	interpreted	as	an	index	of	the	statistical	quality	of	the	original	
study,	with	values	of	.8	or	higher	signaling	good	quality	(Cohen,	1990).	However,	we	
recommend	caution	in	interpreting	this	alternative	observed	value,	because	it	is	
imprecise	particularly	when	both	studies’	sample	sizes	is	low.	To	work	out	an	example	
of	this	approach	we	applied	it	to	the	example	in	the	introduction	and	Table	6.1.	
Following	our	guidelines	in	Table	6.3,	we	use	the	replication’s	effect	size	estimate	
equal	to	d=0.164	in	combination	with	the	original	sample	size	equal	to	80	for	our	
power	analysis.	Entering	these	numbers	in	G*Power	3.1.9.2	(Faul,	Erdfelder,	Lang,	&	
Buchner,	2007)	yields	a	power	equal	to	.18	of	a	one‐tailed	t‐test	(α=.05),	suggesting	
that	the	original	study	had	low	statistical	quality.			
		 We	developed	R	code30	and	a	web‐based	application	that	enables	researchers	
to	apply	the	hybrid	methods,	as	well	as	fixed‐effect	meta‐analysis,	to	their	own	data	
(https://rvanaert.shinyapps.io/hybrid).	While	the	hybrid	methods	can	in	principle	be	
applied	to	any	effect	size	measure,	the	software	can	currently	be	applied	to	three	
different	effect	size	measures:	one‐sample	mean,	two‐independent	means,	and	
correlation	coefficients.	For	the	effect	size	measures	one‐sample	mean	and	two‐

                                                   
30	An	R	function	(called	hybrid)	for	applying	the	different	hybrid	methods	is	included	in	the	“puniform”	
package	and	can	be	installed	by	running	the	following	code:	
devtools::install_github(“RobbievanAert/puniform”)	
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independent	means,	Hedges’	g	effect	sizes	and	their	sampling	variances	are	computed	
by	the	software	before	the	methods	are	applied.	This	is	the	same	procedure	as	
illustrated	when	we	applied	the	hybrid	method	to	the	example	in	the	introduction.	If	
correlation	coefficients	are	used	as	effect	size	measure	(as	was	the	case	in	the	
application	to	the	RPP	data),	the	software	first	transforms	the	correlation	coefficients	
to	Fisher	transformed	correlation	coefficients	and	computes	the	corresponding	
sampling	variances.	The	Fisher	transformed	correlation	coefficients	and	their	
sampling	variances	are	then	used	for	applying	the	methods,	where	the	output	
provides	the	back‐transformed	correlation	coefficients.	Figure	6.6	shows	a	screenshot	
of	the	application	after	it	was	applied	to	the	example	presented	in	the	introduction.	
Data	for	one‐sample	mean	and	two‐independent	means	can	be	entered	via	either	
group	means,	sample	sizes,	and	standard	deviations	or	t‐values	and	sample	sizes.	
Users	should	also	specify	the	alpha	level	and	the	direction	of	the	hypothesis	test	which	
was	used	in	the	primary	studies.	The	right‐hand	side	of	the	web	application	presents	
the	results	(estimate,	test	statistic	[t‐value,	z‐value,	or	x],	two‐tailed	p‐value,	and	
confidence	interval)	of	the	hybrid,	hybrid0,	hybridR,	fixed‐effect	meta‐analysis,	and	the	
replication.	The	application	includes	a	link	to	a	short	manual	on	how	to	use	the	
application.		 	
		 The	hybrid	methods	assume	researchers	select	statistically	significant	
original	findings	to	replicate.	The	expected	value	of	a	statistically	significant	finding	
exceeds	the	population	effect	size,	irrespective	of	publication	bias,	and	the	hybrid	
method	corrects	for	this	overestimation.	A	critical	question	is	how	to	estimate	effect	
size	if	a	researcher	wants	to	replicate	a	statistically	significant	original	study,	but	this	
study	was	not	selected	because	of	its	significance.	How	to	proceed	in	this	case	does	
depend	on	the	existence	of	publication	bias.	If	no	publication	bias	exists	in	the	study’s	
field,	fixed‐effect	meta‐analysis	is	the	optimal	method	to	combine	an	original	study	
and	replication	assuming	that	both	estimate	the	same	underlying	true	effect	size.	
However,	if	strong	publication	bias	exists,	as	seems	to	be	the	case	in	psychology,	the	
literature	rather	than	the	researcher	has	already	mainly	selected	the	statistically	
significant	findings.	Thus,	even	though	researchers	did	not	select	a	study	to	replicate	
based	on	it	being	statistically	significant,	we	recommend	applying	the	presented	
guidelines	(Table	6.3)	because	the	literature	mainly	presents	significant	and	
overestimated	effect	size	estimates.	
		 Another	assumption	of	the	hybrid	methods	is	that	a	common	effect	(i.e.,	fixed	
effect)	is	underlying	the	original	study	and	replication.	This	assumption	can	be	
violated	if	there	are	substantial	discrepancies	between	the	original	study	and	
replication.	These	discrepancies	may	be	caused	by	differences	in	methodology	that	are	
used	in	both	studies	(Gilbert,	King,	Pettigrew,	&	Wilson,	2016)	discrepancies	may	also	
be	caused	by	findings	that	can	only	be	replicated	under	specific	conditions	and	that	do	
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Figure	6.6.	Screenshot	of	the	web‐based	application	showing	the	results	of	applying	the	hybrid	
variants,	fixed‐effect	meta‐analysis,	and	the	replication	to	the	exemplary	data	presented	in	the	
introduction.	



C h a p t e r 	 6 	|	185	
	

 
 

not	generalize	to	different	settings,	subjects,	or	do	not	persist	over	time	(Amir	&	
Sharon,	1990;	Henrich,	Heine,	&	Norenzayan,	2010;	Klein	et	al.,	2014;	S.	Schmidt,	
2009).	Although	the	assumption	of	homogeneity	in	effect	sizes	can	be	tested	in	a	meta‐
analysis,	it	is	difficult	to	draw	reliable	inferences	in	case	of	only	two	studies.	The	Q‐test	
which	is	used	for	testing	homogeneity	lacks	statistical	power	if	the	number	of	studies	
in	a	meta‐analysis	is	small	(e.g.,	Borenstein	et	al.,	2009;	Jackson,	2006).		
		 We	will	extend	the	hybrid	methods	such	that	they	can	include	more	than	one	
original	study	and	one	replication.	These	extended	hybrid	methods	can	be	applied	if,	
for	instance,	a	researcher	replicates	a	finding	on	which	multiple	original	studies	or	a	
meta‐analysis	has	already	been	published.	These	variants	would	use	only	the	
statistically	significant	findings	of	the	original	studies	or	meta‐analysis,	as	does	p‐
uniform	(van	Aert	et	al.,	2016;	van	Assen	et	al.,	2015),	and	combine	these	with	the	
replication	finding(s)	to	estimate	common	effect	size.		
		 An	important	implication	of	our	analysis	is	that	it	may	be	optimal	to	discard	
information	of	the	original	study	when	estimating	effect	size.	This	is	the	case	when	
being	uncertain	about	population	effect	size	and	sample	size	in	the	replication	is	
larger	than	in	the	original	study,	a	situation	that	occurs	very	frequently.	For	instance,	
the	sample	size	of	70	out	of	100	replications	in	RPP	is	larger	in	the	replication	than	in	
the	original	study.	This	implication	may	be	generalized	when	multiple	original	studies	
and	one	replication	are	combined.	Fixed‐effect	meta‐analyses	overestimate	
particularly	if	they	incorporate	more	original	studies	with	a	relatively	small	sample	
size,	and	accuracy	of	estimation	is	better	served	by	one	or	few	large	studies	(Button	et	
al.,	2013;	Gerber	et	al.,	2001;	Kraemer	et	al.,	1998;	Nuijten,	Hartgerink,	et	al.,	2015).	
We	contend	that	extended	hybrid	methods,	although	they	can	correct	for	probable	
overestimation	by	original	studies	in	the	meta‐analysis,	their	accuracy	and	precision	is	
better	served	by	more	replication	studies.	Discarding	all	original	studies	and	
estimation	by	only	one	or	a	few	large	replication	studies	may	even	be	the	optimal	
choice	(Nuijten	et	al.,	2015).	Omitting	biased	original	studies	from	a	meta‐analysis	is	
not	a	research	waste	since	the	effect	size	estimate	will	become	more	accurate.	
		 The	present	study	has	several	limitations	and	offer	opportunities	for	future	
research.	First,	at	present	the	hybrid	method	only	allows	for	estimation	based	on	one	
original	and	one	replication	study.	We	plan	to	extend	the	hybrid	to	incorporate	
multiple	original	and	replication	studies,	and	to	examine	its	performance	as	a	function	
of	true	effect	size,	publication	bias,	and	the	number	of	studies	and	their	sample	sizes.	
Second,	p‐hacking	or	questionable	research	practices	distort	the	distribution	of	p‐
values	and	therefore	also	of	conditional	probabilities	(Bruns	&	Ioannidis,	2016;	
Simonsohn	et	al.,	2014a;	Ulrich	&	Miller,	2015;	van	Aert	et	al.,	2016;	van	Assen	et	al.,	
2015),	which	will	bias	effect	size	estimates	of	the	hybrid	methods.	However,	note	that	
results	of	traditional	meta‐analytic	methods	are	also	distorted	by	p‐hacking.	Future	
research	may	examine	to	what	extent	the	results	of	the	hybrid	methods	become	
biased	due	to	p‐hacking.	A	third	limitation	is	that	the	performance	of	hybrid	methods	
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relative	to	other	methods	is	dependent	on	the	strength	of	the	population	effect,	which	
is	the	object	of	the	research.	The	guidelines	we	propose	in	Table	6.3	acknowledge	this	
fact	by	advising	the	researcher	what	to	do	if	the	magnitude	of	the	population	effect	
size	is	uncertain.	We	must	note,	however,	that	the	guidelines	are	formulated	in	the	
context	of	sample	sizes	presently	used	in	psychological	research.	The	guidelines	lose	
their	practical	relevance	if	the	sample	size	of	the	original	study	and	replication	allow	
for	accurate	effect	size	estimation	in	both	studies.	For	instance,	if	original	and	
replication	sample	sizes	are	2,000	and	2,050,	respectively,	it	would	be	naive	to	discard	
the	original	study	and	only	use	the	replication	for	interpretation	(Guideline	1a,	Table	
6.3).	In	that	case,	fixed‐effect	meta‐analysis	is	the	recommended	method,	because	
overestimation	due	to	publication	bias	is	very	small	at	worst.	
		 The	unrealistic	high	rate	of	statistically	significant	results	in	the	published	
psychological	literature	suggests	that	the	literature	is	distorted	with	false	positive	
results	and	overestimated	effect	sizes.	Replication	research	and	statistically	
combining	these	replications	with	the	published	research	via	meta‐analytic	
techniques	can	be	used	to	gather	insight	into	the	existence	of	effects.	However,	
traditional	meta‐analytic	techniques	generally	yield	overestimated	effect	sizes.	We	
developed	hybrid	meta‐analytic	methods	and	demonstrate	their	good	statistical	
properties.	We	propose	guidelines	for	conducting	meta‐analysis	by	combining	the	
original	study	and	replication,	and	provide	a	web‐application	
(https://rvanaert.shinyapps.io/hybrid)	that	estimates	and	tests	effect	size	of	all	
methods	described	in	this	chapter.	Applying	the	hybrid	methods	and	our	guidelines	
for	meta‐analyzing	an	original	study	and	replication	will	give	better	insight	into	
psychological	phenomena	by	accurately	estimating	effect	size.		
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6.5		 Appendix	A	

Table	6.A1.	Effect	size	estimate	and	standard	deviation	of	this	estimate	in	brackets	for	the	
estimators	of	fixed‐effect	meta‐analysis,	replication	study	and	hybrid,	hybrid0,	and	hybridR	
method	as	a	function	of	population	effect	size	ρ	and	sample	size	of	the	original	study	(NO).	The	
sample	size	of	the	replication	(NR)	is	783.	

	 	 NR=783	

	 ρ	 NO=31	 NO=55	 NO=96	

FE	

0	 0.015	(0.034)	 0.02	(0.033)	 0.026	(0.032)	

0.1	 0.112	(0.034)	 0.115	(0.033)	 0.116	(0.032)	

0.3	 0.306	(0.031)	 0.305	(0.031)	 0.302	(0.03)	

0.5	 0.501	(0.026)	 0.5	(0.026)	 0.5	(0.025)	

Replication	

0	 0	(0.036)	 0	(0.036)	 0	(0.036)	

0.1	 0.1	(0.035)	 0.1	(0.035)	 0.1	(0.035)	

0.3	 0.3	(0.032)	 0.3	(0.032)	 0.3	(0.032)	

0.5	 0.5	(0.027)	 0.5	(0.027)	 0.5	(0.027)	

Hybrid	

0	 ‐0.001	(0.047)	 ‐0.001	(0.046)	 ‐0.001	(0.045)	

0.1	 0.099	(0.047)	 0.099	(0.045)	 0.099	(0.044)	

0.3	 0.299	(0.042)	 0.299	(0.04)	 0.299	(0.036)	

0.5	 0.499	(0.033)	 0.499	(0.031)	 0.499	(0.028)	

Hybrid0	

0	 0.019	(0.027)	 0.018	(0.026)	 0.018	(0.025)	

0.1	 0.099	(0.046)	 0.099	(0.044)	 0.099	(0.043)	

0.3	 0.299	(0.042)	 0.299	(0.04)	 0.299	(0.036)	

0.5	 0.499	(0.033)	 0.499	(0.031)	 0.499	(0.028)	

HybridR	

0	 0.013	(0.039)	 0.013	(0.039)	 0.012	(0.038)	

0.1	 0.112	(0.038)	 0.112	(0.038)	 0.111	(0.036)	

0.3	 0.309	(0.035)	 0.306	(0.034)	 0.303	(0.033)	

0.5	 0.503	(0.03)	 0.5	(0.03)	 0.499	(0.028)	
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Table	6.B
1.	D

ata	of	the	R
eproducibility	Project:	Psychology	and	results	of	applying	fixed‐effect	m

eta‐analysis	and	the	hybrid,	hybrid
0,	and	hybrid

R	
m
ethod	to	these	data.	T

he	first	colum
n	lists	the	article	from

	w
hich	a	key	effect	w

as	replicated.	T
he	next	tw

o	colum
ns	show

	the	correlation	
coefficient	(r

o 	and	r
r ),	sam

ple	size	(N
O 	and	N

R ),	and	p‐value	from
	the	original	study	and	replication,	respectively.	T

he	final	three	colum
ns	present	the	

average	effect	size	estim
ate,	95%

	confidence	interval	(CI),	and	p‐value	of	fixed‐effect	m
eta‐analysis	(FE	M

A
)	and	the	hybrid	and	hybrid

R	m
ethod.	 0	

behind	the	estim
ates	of	the	hybrid	m

ethod	indicates	that	the	hybrid
0	m

ethod	w
ould	set	the	average	effect	size	estim

ate	to	zero.	

Study	
r
o 	(N

O )	[p‐value]	
r
r 	(N

R )	[p‐value]	
	

FE	M
A
	(95%

	CI)		
[p‐value]	

H
ybrid	(95%

	CI)	
[p‐value]	

H
ybrid

R	(95%
	CI)	

[p‐value]	

D
odson,	D

arragh,	and	
W
illiam

s	(2008)	
0.561	(39)	
[<	.001]	

‐0.111	(33)	
[.543]	

0.287	(0.055;0.491)	
[.016]	

0.232	(‐0.245;0.641)	
[.535]	

0.232	(‐0.245;0.641)	
[.535]	

G
anor‐Stern	and	T

zelgov	
(2008)	

0.699	(30)	
[<	.001]	

0.781	(31)	
[<	.001]	

0.743	(0.6;0.84)		
[<	.001]	

0.743	(0.599;0.838)	
[<	.001]	

0.743	(0.599;0.838)		
[<	.001]	

M
irm

an	and	M
agnuson	

(2008)	
0.672	(23)	
[<	.001]	

0.466	(31)	
[.007]	

0.561	(0.338;0.725)	
[<	.001]	

0.558	(0.318;0.755)	
[<	.001]	

0.558	(0.318;0.755)	
[<	.001]	

J.	R
.	Schm

idt	and	B
esner	

(2008)	
0.195	(96)	
[.028]	

0.247	(243)	
[<	.001]	

0.233	(0.129;0.331)	
[<	.001]	

0.19	(‐0.373;0.304)	
[.321]	

0.247	(0.125;0.361)	
[<	.001]	

O
berauer	(2008)	

0.56	(33)	
[.001]	

0.402	(21)	
[.071]	

0.505	(0.266;0.685)	
[<	.001]	

0.482	(0.204;0.666)	
[.002]	

0.482	(0.204;0.666)	
[.002]	

Sahakyan,	D
elaney,	and	

W
aldum

	(2008)	
0.224	(96)	
[.028]	

0.019	(108)	
[.842]	

0.117	(‐0.022;0.251)	
[.099]	

0.004	(‐0.397;0.198)	
[.96]	

0.019	(‐0.17;0.208)	
[.842]	

B
assok,	Pedigo,	and	
O
skarsson	(2008)	

0.364	(154)	
[<	.001]	

0.284	(50)	
[.045]	

0.345	(0.217;0.462) 	
[<	.001]	

0.335	(0.175;0.444)	
[.001]	

0.335	(0.175;0.444)	
[.001]	
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Study	
r
o 	(N

O )	[p‐value]	
r
r 	(N

R )	[p‐value]	
	

FE	M
A
	(95%

	CI)		
[p‐value]	

H
ybrid	(95%

	CI)	
[p‐value]	

H
ybrid

R	(95%
	CI)	

[p‐value]	

Centerbar,	Schnall,	Clore,	
and	G

arvin	(2008)	
0.206	(133)	

[.017]	
0.094	(113)	

[.323]	
0.155	(0.03;0.275)	

[.015]	
0.092	(‐0.114;0.242)	

[.258]	
0.092	(‐0.114;0.242)	

[.258]	

A
m
odio,	D

evine,	and	
H
arm

on‐Jones	(2008)	
0.377	(33)	

[.03]	
0.077	(75)	
[.514]	

0.169	(‐0.023;0.35)	
[.084]	

0.04	(‐0.707;0.3)		
[.728]	

0.077	(‐0.153;0.298)	
[.514]	

van	D
ijk,	van	K

leef,	Steinel,	
and	van	B

eest	(2008)	
0.379	(101)	
[<	.001]	

‐0.042	(40)	
[.798]	

0.271	(0.109;0.419)	
[.001]	

0.211	(‐0.166;0.442)	
[.363]	

0.211	(‐0.166;0.442)	
[.363]	

Lem
ay	and	Clark	(2008)	

0.167	(184)	
[.023]	

0.037	(280)	
[.541]	

0.089	(‐0.003;0.179)	
[.057]	

0.033	(‐0.183;0.163)	
[.536]	

0.033	(‐0.183;0.163)	
[.536]	

Ersner‐H
ershfield,	M

ikels,	
Sullivan,	and	Carstensen	
(2008)	

0.22	(110)	
[.021]	

‐0.005	(222)		
[.944]	

0.07	(‐0.038;0.177)	
[.205]	

0.008	(‐0.188;0.215)	
[.894]	

0.008	(‐0.188;0.215)	
[.894]	

Correll	(2008)	
0.274	(70)	
[.021]	

0.074	(147)	
[.375]	

0.139	(0.005;0.268)	
[.042]	

0.072	(‐0.244;0.27)	
[.378]	

0.072	(‐0.244;0.27)	
[.378]	

Exline,	B
aum

eister,	Zell,	
K
raft,	and	W

itvliet	(2008)	
0.432	(43)	
[.003]	

0.012	(133)	
[.894]	

0.117	(‐0.033;0.262)	
[.125]	

0.111	(‐0.07;0.508)	
[.266]	

0.111	(‐0.07;0.508)	
[.266]	

R
isen	and	G

ilovich	(2008)	
0.186	(118)	

[.044]	
0.003	(224)	

[.964]	
0.066	(‐0.041;0.172)	
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[<	.001]	
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[.079]	
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[.079]	
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or,	M
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Sackett	(2008)	
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[<	.001]	
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V
ul	and	Pashler	(2008)	

0.288	(174)	
[<	.001]	
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[.661] 0	
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Study	
r
o 	(N

O )	[p‐value]	
r
r 	(N

R )	[p‐value]	
	

FE	M
A
	(95%

	CI)		
[p‐value]	

H
ybrid	(95%

	CI)	
[p‐value]	

H
ybrid

R	(95%
	CI)	

[p‐value]	

Forti	and	H
um

phreys	
(2008)	

0.723	(15)	
[.002]	

0.208	(20)	
[.385]	

0.463	(0.136;0.699)	
[.007]	

0.424	(0;0.804)		
[.0501]	

0.424	(0;0.804)		
[.0501]	

Schnall,	B
enton,	and	

H
arvey	(2008)	

0.4	(43)	
[.007]	

0.003	(126)	
[.975]	

0.106	(‐0.047;0.254)	
[.176]	

0.078	(‐0.1;0.463)	
[.403]	

0.078	(‐0.1;0.463)	
[.403]	

Palm
er	and	G

hose	(2008)	
0.86	(9)	
[.002]	

0.12	(9)	
[.768]	

0.608	(0.139;0.854)	
[.014]	

0.516	(‐0.211;0.917)	
[.172]	

0.516	(‐0.211;0.917)	
[.172]	

H
eine,	B

uchtel,	and	
N
orenzayan	(2008)	

0.43	(70)	
[<	.001]	

0.11	(16)	
[.69]	

0.383	(0.182;0.553)	
[<	.001]	

0.327	(‐0.101;0.517)	
[.122]	

0.327	(‐0.101;0.517)	
[.122]	

M
oeller,	R

obinson,	and	
Zabelina	(2008)	

0.31	(53)	
[.023]	

‐0.034	(72)	
[.778]	

0.114	(‐0.065;0.286)	
[.21]	

‐0.019	(‐0.354;	
0.287)	[.847] 0	

‐0.019	(‐0.354;	
0.287)	[.847]	

G
oschke	and	D

reisbach	
(2008)	

0.375	(40)	
[.017]	

0.411	(95)	
[<	.001]	

0.401	(0.247;0.535)	
[<	.001]	

0.358	(‐0.16;0.504)	
[.11]	

0.358	(‐0.16;0.504)	
[.11]	

Lobue	and	D
eLoache	

(2008)	
0.483	(46)	
[.001]	

0.178	(46)	
[.239]	

0.34	(0.141;0.512)	
[.001]	

0.317	(0.055;0.564)	
[.017]	

0.317	(0.055;0.564)	
[.017]	

Estes,	V
erges,	and	

B
arsalou	(2008)	

0.595	(19)	
[.006]	

0.254	(23)	
[.245]	

0.421	(0.122;0.65)	
[.007]	

0.348	(‐0.017;0.678)	
[.06]	

0.348	(‐0.017;0.678)	
[.06]	

N
ote.	P‐values	for	the	original	study	(second	colum

n)	and	replication	(third	colum
n)	w

ere	tw
o‐tailed	except	for	the	studies	by	B

eam
an	et	al.	(2008),	

Schm
idt	and	B

esner	(2008),	M
cCrea	(2008),	and	H

ajcak	and	Foti	(2008).	T
hese	studies	reported	one‐tailed	p‐values.	P‐values	for	fixed‐effect	m

eta‐
analysis	(FE	M

A
),	the	hybrid	and	hybrid

R	m
ethod	w

ere	tw
o‐tailed.



 

 
 



 

 

	 	



 

 

CHAPTER	7	

	

Bayesian	evaluation	of	effect	size	after	
replicating	an	original	study	

	

Abstract	

The	vast	majority	of	published	results	in	the	literature	is	statistically	significant,	which	
raises	concerns	about	their	reliability.	The	Reproducibility	Project	Psychology	(RPP)	
and	Experimental	Economics	Replication	Project	(EE‐RP)	both	replicated	a	large	
number	of	published	studies	in	psychology	and	economics.	The	original	study	and	
replication	were	statistically	significant	in	36.1%	in	RPP	and	68.8%	in	EE‐RP	
suggesting	many	null	effects	among	the	replicated	studies.	However,	evidence	in	favor	
of	the	null	hypothesis	cannot	be	examined	with	null	hypothesis	significance	testing.	
We	developed	a	Bayesian	meta‐analysis	method	called	snapshot	hybrid	that	is	easy	to	
use	and	understand	and	quantifies	the	amount	of	evidence	in	favor	of	a	zero,	small,	
medium	and	large	effect.	The	method	computes	posterior	model	probabilities	for	a	
zero,	small,	medium,	and	large	effect	and	adjusts	for	publication	bias	by	taking	into	
account	that	the	original	study	is	statistically	significant.	We	first	analytically	
approximate	the	methods	performance,	and	demonstrate	the	necessity	to	control	for	
the	original	study’s	significance	to	enable	the	accumulation	of	evidence	for	a	true	zero	
effect.	Then	we	applied	the	method	to	the	data	of	RPP	and	EE‐RP,	showing	that	the	
underlying	effect	sizes	of	the	included	studies	in	EE‐RP	are	generally	larger	than	in	
RPP,	but	that	the	sample	sizes	of	especially	the	included	studies	in	RPP	are	often	too	
small	to	draw	definite	conclusions	about	the	true	effect	size.	We	also	illustrate	how	
snapshot	hybrid	can	be	used	to	determine	the	required	sample	size	of	the	replication	
akin	to	power	analysis	in	null	hypothesis	significance	testing	and	present	an	easy	to	
use	web	application	(https://rvanaert.shinyapps.io/snapshot/)	and	R	code	for	
applying	the	method.	

	

This	chapter	is	published	as	van	Aert,	R.	C.	M.,	&	van	Assen,	M.	A.	L.	M.	(2017).	
Bayesian	evaluation	of	effect	size	after	replicating	an	original	study.	PLoS	ONE,	12(4),	
e0175302.	doi:10.1371/journal.pone.0175302
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Most	findings	published	in	the	literature	are	statistically	significant	(Fanelli,	2010a,	
2012;	Sterling	et	al.,	1995)	and	are	subsequently	interpreted	as	nonzero	findings.	
However,	when	replicating	these	original	published	studies	in	conditions	as	similar	as	
possible	to	the	original	studies	(so‐called	direct	replications),	replications	generally	
provide	lower	estimates	of	the	effect	size	that	often	are	not	statistically	significant	and	
are	interpreted	as	suggesting	a	null	effect.	For	instance,	in	medicine	findings	of	only	6	
out	of	53	(11.3%)	landmark	studies	on	the	field	of	hematology	and	oncology	were	
confirmed	in	replication	studies	(Begley	&	Ellis,	2012).	In	psychology,	the	
Reproducibility	Project	Psychology	(RPP;	Open	Science	Collaboration,	2015)	
replicated	100	studies	published	in	major	journals	in	2008.	Of	the	97	original	findings	
reported	as	statistically	significant,	only	35	(36.1%)	had	a	statistically	significant	
effect	in	the	replication,	and	81	of	97	(83.5%)	findings	were	stronger	in	the	original	
study.	In	economics,	the	Experimental	Economics	Replication	Project	(EE‐RP;	Camerer	
et	al.,	2016)	replicated	18	studies	published	in	high‐impact	journals.	Of	16	findings	
that	were	statistically	significant	in	the	original	study,	11	(68.8%)	were	statistically	
significant	in	the	replication,	and	13	of	16	(81.3%)	had	a	stronger	effect	in	the	original	
study.	
	 Interpreting	the	results	of	the	replicability	projects	as	providing	evidence	of	
many	true	null	effects	among	the	originally	published	studies	has	received	criticism	
(e.g.,	Gilbert	et	al.,	2016;	Maxwell	et	al.,	2015).	For	instance,	Maxwell	et	al.	(2015)	
argue	that,	although	the	replication	in	RPP	generally	had	higher	statistical	power	than	
the	original	study,	the	power	of	the	replication	was	still	too	low	to	consider	as	
evidence	in	favor	of	the	null	hypothesis.	Consequently,	the	statistically	nonsignificant	
findings	of	many	replications	are	also	consistent	with	a	true	nonzero,	albeit	small	
effect.		
		 Many	researchers	adhere	to	null	hypothesis	significance	testing	(NHST)	when	
evaluating	the	results	of	replications,	and	conclude	based	on	a	nonsignificant	
replication	that	the	original	study	does	not	replicate	(S.	F.	Anderson	&	Maxwell,	2016).	
However,	such	a	vote	counting	procedure	has	been	largely	criticized	in	the	context	of	a	
meta‐analysis	(e.g.,	Borenstein	et	al.,	2009)	and	comes	along	with	three	fundamental	
problems.	First,	one	cannot	obtain	evidence	in	favor	of	the	null	hypothesis	of	a	true	
zero	effect	with	NHST	(e.g.,	Wagenmakers,	2007).	Second,	NHST	does	not	tell	us	the	
size	of	the	effect.	Third,	not	all	available	information	about	the	underlying	effect	is	
used	in	NHST	because	evidence	obtained	in	the	original	study	is	ignored.	What	we	
need	are	methods	providing	evidence	on	the	common	true	effect	underlying	both	the	
original	study	and	replications.		
		 The	method	that	immediately	comes	to	mind	when	the	goal	is	to	estimate	
effect	size	based	on	several	studies	is	meta‐analysis.	Two	different	traditional	meta‐
analytic	models	can	generally	be	distinguished:	fixed‐effect	and	random‐effects	model.	
Fixed‐effect	meta‐analysis	assumes	that	one	common	true	effect	underlies	all	
observed	effect	sizes,	whereas	random‐effects	meta‐analysis	assumes	observed	effect	
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sizes	arise	from	a	(normal)	distribution	of	true	effect	sizes	(Borenstein	et	al.,	2010).	
When	one	study	is	a	direct	replication	of	another,	fixed‐effect	rather	than	random‐
effects	meta‐analysis	seems	to	be	the	most	appropriate	method	because	the	two	
studies	are	very	similar.	A	small	amount	of	heterogeneity	in	true	effect	size,	however,	
may	be	possible	since	there	could	be	minor	discrepancies	in	for	instance	the	studied	
population	or	experimental	design	as	was	sometimes	the	case	in	RPP.	Publication	bias	
is	universally	recognized	as	a	major	threat	to	the	validity	of	meta‐analyses,	leading	to	
overestimation	of	effect	size	(e.g.,	Ioannidis,	2008b;	Lane	&	Dunlap,	1978;	van	Assen	et	
al.,	2015).	Publication	bias	is	the	suppression	of	statistically	nonsignificant	results	
from	being	published	(Rothstein	et	al.,	2005a).	Evidence	of	publication	bias	and	as	a	
consequence	overestimation	of	effect	size	is	omnipresent	(e.g.,	Fanelli,	2010a;	Fanelli,	
2012;	Lane	&	Dunlap,	1978;	Sterling	et	al.,	1995),	and	is	also	obvious	from	the	
aforementioned	results	of	the	replicability	projects;	almost	all	original	findings	were	
statistically	significant	whereas	the	replication	findings	were	not,	and	the	large	
majority	of	original	effect	size	estimates	was	larger	than	those	in	the	replication.	
Hence,	traditional	meta‐analysis	will	be	biased	as	well	and	will	not	suffice.	A	meta‐
analysis	method	is	needed	that	takes	into	account	the	statistical	significance	of	the	
original	study,	thereby	adjusting	for	publication	bias.		
	 This	chapter	develops	and	applies	a	Bayesian	meta‐analytic	method,	called	
snapshot	hybrid,	to	evaluate	the	effect	size	underlying	an	original	study	and	
replication.	A	requirement	for	applying	the	method	is	that	the	effect	size	of	the	
original	study	is	statistically	significant.	This	requirement	hardly	restricts	the	
applicability	of	the	proposed	method	since	the	vast	majority	of	published	studies	
contain	statistically	significant	results	(Fanelli,	2010a,	2012;	Sterling	et	al.,	1995)	and	
replications	are	often	conducted	when	statistical	significance	is	observed.		
		 The	snapshot	hybrid	has	many	desirable	properties.	First,	the	method	has	few	
assumptions.	It	assumes	both	studies	estimate	the	same	true	effect	size	and	the	effect	
size	in	the	original	study	and	replication	is	normally	distributed.	The	second	desirable	
property	is	that,	as	opposed	to	fixed‐effect	meta‐analysis,	our	method	adjusts	for	
publication	bias	when	evaluating	the	underlying	true	effect	size	by	taking	into	account	
statistical	significance	of	the	original	study.	Third,	it	provides	a	very	simple	
interpretation	of	the	magnitude	of	the	true	effect	size.	Its	main	output	is	the	posterior	
model	probability	of	a	zero,	small,	medium,	and	large	effect	(i.e.,	probability	of	a	model	
after	updating	the	prior	model	probability	with	the	likelihood	of	the	data).	
Consequently,	as	opposed	to	NHST,	it	also	quantifies	the	evidence	in	favor	of	the	null	
hypothesis,	relative	to	a	small,	medium,	and	large	hypothesized	effect.	One	high	
posterior	model	probability	suggests	certainty	about	the	magnitude	of	the	true	effect,	
whereas	several	substantial	nonzero	posterior	model	probabilities	indicate	that	the	
magnitude	of	the	effect	is	rather	uncertain.	Fourth,	the	method	has	great	flexibility	in	
dealing	with	different	prior	information.	Although	the	method’s	default	prior	model	
probabilities	are	equal	(i.e.,	zero,	small,	medium	and	large	effect	are	equally	likely),	
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using	a	simple	formula	one	can	recalculate	the	posterior	model	probabilities	for	other	
prior	model	probabilities,	without	having	to	run	the	analysis	again.		
	 The	goal	of	this	chapter	is	fourfold.	First,	we	explain	snapshot	hybrid	and	
examine	its	statistical	properties.	Second,	we	apply	the	method	to	the	data	of	RPP	and	
EE‐RP	to	examine	evidence	in	favor	of	zero,	small,	medium,	and	large	true	effects.	
Particularly,	we	verify	if	interpreting	the	statistically	nonsignificant	findings	of	
replication	studies	in	psychology	as	evidence	for	null	effects	is	appropriate.	Third,	we	
describe,	analogous	to	conducting	a	power	analysis	for	determining	the	sample	size	in	
a	frequentist	framework,	how	the	proposed	method	can	be	used	to	compute	the	
required	sample	size	for	the	replication	in	order	to	get	a	predefined	posterior	model	
probability	of	the	true	effect	size	being	zero,	small,	medium,	or	large.	This	goal	
acknowledges	that	our	method	is	not	only	relevant	for	evaluating	and	interpreting	
replicability	of	effects.	Replicating	other’s	research	is	often	the	starting	point	for	new	
research,	where	the	replication	is	the	first	study	of	a	multi‐study	paper	(Neuliep	&	
Crandall,	1993).	Fourth,	we	present	a	web	application	and	R	code	allowing	users	to	
evaluate	the	common	effect	size	of	an	original	study	and	replication	using	snapshot	
hybrid.	
	 The	next	section	provides	a	hypothetical	example	of	an	original	study	and	
replication	by	Maxwell	et	al.	(2015)	and	illustrates	the	problem	of	evaluating	the	
studies’	underlying	true	effect	size.	The	subsequent	section	explains	snapshot	hybrid,	
and	is	illustrated	by	applying	it	to	the	example	of	Maxwell	et	al.	(2015).	Then,	the	
statistical	properties	of	our	method	are	examined	analytically.	Subsequently,	the	
method	was	applied	to	the	results	of	RPP	and	EE‐RP.	How	the	required	sample	size	of	
the	replication	can	be	determined	with	the	proposed	method	in	order	to	achieve	a	
predefined	posterior	model	probability	for	a	hypothesized	effect	size	(zero,	small,	
medium,	or	large)	is	discussed	next.	Then,	the	computer	program	is	described	to	
determine	this	required	sample	size,	followed	by	a	conclusion	and	discussion	section.		

7.1		 Methods	related	to	snapshot	hybrid	

		 The	proposed	snapshot	hybrid	method	is	related	to	several	other	methods.	
The	meta‐analysis	methods	p‐uniform	(van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	
al.,	2015)	and	p‐curve	(Simonsohn	et	al.,	2014a)	also	take	statistical	significance	of	
studies’	effect	sizes	into	account	in	order	to	correct	the	meta‐analytic	effect	size	
estimate	for	publication	bias.	The	effect	size	estimate	of	p‐uniform	and	p‐curve	is	
equal	to	the	effect	size	where	the	statistically	significant	p‐values	conditional	on	being	
statistically	significant	are	uniformly	distributed.	Both	methods	have	been	shown	to	
provide	accurate	estimates	of	the	underlying	true	effect	size	in	case	of	publication	
bias,	but	only	if	the	amount	of	heterogeneity	in	studies’	true	effect	size	is	modest	
(McShane	et	al.,	2016;	Simonsohn	et	al.,	2014a;	van	Aert,	Wicherts,	et	al.,	2016;	van	
Assen	et	al.,	2015).	We	also	wrote	a	paper	where	we	use	frequentist	statistics	to	
evaluate	the	common	effect	size	underlying	an	original	study	and	a	replication,	taking	
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into	account	the	statistical	significance	of	the	original	study	(van	Aert	&	van	Assen,	
2016).	This	method	estimates	effect	size,	provides	a	confidence	interval,	and	enables	
testing	of	the	common	effect.	Advantages	of	the	Bayesian	method	presented	here	are	
that	interpretation	of	its	results	is	more	straightforward,	and	evidence	in	favor	of	the	
null	hypothesis	is	quantified.		
		 Another	related	paper	is	a	Bayesian	re‐analysis	of	the	results	of	RPP	(Etz	&	
Vandekerckhove,	2016).	In	this	chapter,	Bayes	factors	were	computed	for	each	
original	study	and	replication	separately,	comparing	the	null	hypothesis	of	no	effect	
with	an	alternative	hypothesis	suggesting	that	the	effect	is	nonzero.	For	the	original	
studies,	publication	bias	was	taken	into	account	when	computing	Bayes	factors	by	
using	Bayesian	model	averaging	over	four	different	publication	bias	models.	The	most	
important	differences	of	our	Bayesian	method	and	their	re‐analyses,	which	we	
interpret	as	advantages	of	our	methodology,	are:	(i)	they	do	not	evaluate	the	
underlying	effect	size,	but	test	hypotheses	for	original	study	and	replication	
separately,	(ii)	they	make	strong(er)	assumptions	on	publication	bias,	using	Bayesian	
model	averaging	over	four	different	models	of	publication	bias,	(iii)	their	methodology	
lacks	flexibility	with	dealing	with	different	prior	information	(i.e.	another	prior	
requires	rerunning	the	analysis),	and	(iv)	they	did	not	provide	software	to	run	the	
analysis.	Both	Etz	and	Vandekerckhove	(2016)	and	van	Aert	and	van	Assen	(2016)	
conclude	that	for	many	RPP	findings	no	strong	conclusions	can	be	drawn	on	the	
magnitude	of	the	underlying	true	effect	size.	

7.2		 Example	by	Maxwell	et	al.	(2015)	

		 We	will	illustrate	snapshot	hybrid	using	a	hypothetical	example	provided	by	
Maxwell	et	al.	(2015)	with	a	statistically	significant	original	study	and	nonsignificant	
replication.	They	use	their	example	to	illustrate	that	so‐called	failures	to	replicate	in	
psychology	may	be	the	result	of	low	statistical	power	in	single	replication	studies.	This	
example	was	selected	because	it	reflects	a	common	situation	in	practice.	For	instance,	
62%	of	the	100	replicated	studies	in	RPP	(Open	Science	Collaboration,	2015)	and	39%	
of	the	18	replicated	studies	in	EE‐RP	(Camerer	et	al.,	2016)	did	not	have	a	statistically	
significant	effect,	as	opposed	to	the	effect	in	the	original	study.	Hence,	researchers	
often	face	the	question	what	to	conclude	with	respect	to	the	magnitude	of	the	true	
effect	size	based	on	a	statistically	significant	original	effect	and	a	nonsignificant	
replication	effect.	Does	an	effect	exist?	And	if	an	effect	exists,	how	large	is	it?		
		 The	example	employs	a	balanced	two‐independent	groups	design.	The	
original	study,	with	40	participants	per	group,	resulted	in	Cohen’s	d=0.5	and	
t(78)=2.24	(two‐tailed	p‐value=.028),	which	is	a	statistically	significant	effect	if	tested	
with	α=.05.	A	power	analysis	was	used	by	Maxwell	et	al.	(2015)	to	determine	the	
required	sample	size	in	the	replication	to	achieve	a	statistical	power	of	.9	using	a	two‐
tailed	test,	with	an	expected	effect	size	equal	to	the	effect	size	observed	in	the	original	
study.	The	power	analysis	revealed	that	86	participants	per	group	were	required.	The	
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observed	effect	size	in	the	replication	was	Cohen’s	d=0.23	with	t(170)=1.50	(two‐
tailed	p‐value=.135),	which	is	not	statistically	significant	if	tested	with	α=.05.		
	 In	our	analyses,	like	in	RPP	and	EE‐RP,	we	transform	effect	sizes	to	
correlation	coefficients.	Correlation	coefficients	are	bounded	between	‐1	and	1,	and	
easy	to	interpret.	Transforming	original	and	replication	effect	sizes	to	correlations	

using	
4


d

d
ro 	(e.g.,	Borenstein	et	al.,	2009,	p.	48)	yields	ro	=	0.243	and	rr	=	0.114	

for	original	and	replication	effect	size,	respectively.	Testing	individual	correlations	as	
well	as	combining	correlations	in	a	meta‐analysis	is	often	done	using	Fisher‐
transformed	correlation	coefficients	(Borenstein	et	al.,	2009)	since	these	follow	a	
normal	distribution	with	variance	 )3(1 N 	with	N	being	the	total	sample	size	(Fisher,	

1921).	The	Fisher‐transformed	correlations	(θ)	are	
o̂ =0.247	and	

r̂ =	0.115	with	

standard	errors	.114	and	.0769,	respectively.	Statistically	combining	the	two	effects	by	

means	of	fixed‐effect	meta‐analysis	yields	̂ =0.156	with	standard	error	0.0638,	which	
is	statistically	significant	(two‐tailed	p=.0142),	suggesting	a	positive	effect.	
Transforming	the	results	of	the	meta‐analysis	to	correlation	coefficients	yields	the	
effect	size	estimate	of	0.155	(95%	confidence	interval;	0.031	to	0.274).	Although	
fixed‐effect	meta‐analysis	suggests	a	positive	effect	size,	it	should	be	interpreted	with	
caution	because	of	the	generally	overestimated	effect	size	in	the	original	study	due	to	
publication	bias.		

7.3		 Snapshot	Bayesian	hybrid	meta‐analysis	

	 The	snapshot	Bayesian	hybrid	meta‐analysis	method,	snapshot	hybrid	for	
short,	is	a	meta‐analysis	method	because	it	combines	both	the	original	and	replication	
effect	size	to	evaluate	the	common	true	effect	size.	It	is	a	hybrid	method	because	it	
only	takes	the	statistical	significance	of	the	original	study	into	account,	whereas	it	
considers	evidence	of	the	replication	study	as	unbiased.	The	method	is	Bayesian	
because	it	yields	posterior	model	probabilities	of	the	common	true	effect	size.	Finally,	
it	is	called	snapshot	because	only	four	snapshots	or	slices	of	the	posterior	distribution	
of	effect	size	are	considered,	i.e.	snapshots/slices	at	hypothesized	effect	sizes	equal	to	
zero	(ρ=0),	and	small	(ρ=0.1),	medium	(ρ=0.3),	and	large	(ρ=0.5)	correlations	(Cohen,	
1988).	We	selected	these	four	hypothesized	effect	sizes,	because	applied	researchers	
are	used	to	this	categorization	of	effect	size.	Moreover,	point	hypotheses	enable	
recalculating	the	posterior	model	probabilities	for	other	than	uniform	encompassing	
prior	distributions	(i.e.,	prior	model	probabilities	derived	from	other	prior	
distributions	than	a	uniform	distribution	that	results	in	equal	probabilities	for	the	
hypothesized	effect	sizes)	as	we	will	show	later.		
	 Two	assumptions	are	underlying	snapshot	hybrid.	First,	the	same	effect	(i.e.,	
fixed	effect)	has	to	be	underlying	the	original	study	and	replication.	This	assumption	
seems	to	be	reasonable	if	the	replication	is	exact	although	small	amounts	of	
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heterogeneity	may	arise	if	there	are	minor	discrepancies	in	studied	population	or	
experimental	design.	Exact	replications	are	often	conducted	as	the	first	study	of	a	
multi‐study	paper	(Neuliep	&	Crandall,	1993).	Second,	effect	size	in	the	original	study	
and	replication	are	assumed	to	be	normally	distributed,	which	is	a	common	
assumption	in	meta‐analysis	(Raudenbush,	2009).	Furthermore,	the	original	study	is	
required	to	be	statistically	significant.	This	requirement	hardly	restricts	the	range	of	
application	of	the	method	because	most	studies	in	the	social	sciences	contain	
statistically	significant	results,	particularly	in	psychology	with	percentages	of	about	
95%	(e.g.,	Fanelli,	2012;	Sterling	et	al.,	1995)	or	even	97%,	as	in	the	RPP	(Open	
Science	Collaboration,	2015)	and	also	89%	in	the	EE‐RP.	Note	that,	even	if	publication	
bias	was	absent	in	science,	snapshot	hybrid	should	be	used	if	a	researcher	chooses	to	
replicate	an	original	study	because	of	its	statistical	significance.	It	is	precisely	this	
selection	that	biases	methods	that	do	not	correct	for	statistical	significance,	similar	to	
how	selecting	only	ill	people	for	treatment	or	high	scoring	individuals	on	an	aptitude	
test	results	in	regression	to	the	mean	when	re‐tested.	
	 The	snapshot	hybrid	consists	of	three	steps.	First,	the	likelihood	of	the	effect	
sizes	of	the	original	study	and	replication	is	calculated	conditional	on	four	
hypothesized	effect	sizes	(zero,	small,	medium,	and	large).	Second,	the	posterior	
model	probabilities	of	these	four	effect	sizes	are	calculated	using	the	likelihoods	of	
step	1	and	assuming	equal	prior	model	probabilities.	Equal	prior	model	probabilities	
are	selected	by	default,	because	this	refers	to	an	uninformative	prior	distribution	for	
the	encompassing	model.	Third,	when	desired,	the	posterior	model	probabilities	can	
be	recalculated	for	other	than	equal	prior	model	probabilities.	We	will	explain	and	
illustrate	each	step	by	applying	the	method	to	the	example	of	Maxwell	et	al.	(2015).	
	 In	the	first	step,	the	combined	likelihood	of	the	effect	size	of	the	original	study	

(
o̂ )	and	replication	(

r̂ )	for	each	hypothesized	effect	size	(θ)	is	obtained	by	

multiplying	the	densities	of	the	observed	effect	sizes:	
	 )|ˆ()|ˆ()|ˆ,ˆ()(  rrooro fffL  	 (1)	

Note	that	densities	and	likelihood	are	based	on	Fisher‐transformed	correlations	and	
hypothesized	effect	sizes.	Figure	7.1a	shows	the	probability	density	functions	and	

densities	of	the	observed	effect	size	of	the	replication	(
r̂ =	.115).	The	four	density	

functions	follow	a	normal	distribution	with	means	θ0	=	0	(red	distribution),	θS	=0.1	
(blue	distribution),	θM	=0.31	(yellow	distribution),	θL	=0.549	(green	distribution),	and	

standard	deviation	
r̂ =	.0769.	The	densities	or	heights	at	

r̂ =	.115	(see	vertical	

dashed	line)	are	1.705,	5.096,	0.210,	0,	for	a	zero,	small,	medium,	large	true	effect,	
respectively.		

Figure	7.1b	shows	the	four	density	functions	and	densities	of	the	observed	

effect	size	in	the	original	study	(
o̂ =.247).	Colors	red,	blue,	yellow,	and	green	refer	
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again	to	distributions	of	a	zero	(θ0),	small	(θS),	medium	(θM),	and	large	(θL)	
hypothesized	effect,	respectively.	The	density	functions	take	statistical	significance	of	

the	original	finding	into	account	by	computing	the	density	of	
o̂ 	conditional	on	the	

study	being	statistically	significant,	i.e.	by	truncating	the	densities	at	the	critical	value	
of	the	Fisher‐transformed	correlation	(

cv ).	A	two‐tailed	test	with	α=.05	is	assumed	

reflecting	common	practice	in	social	science	research	where	two‐tailed	tests	are	
conducted	and	only	the	results	in	one	direction	get	published.	The	truncated	densities	
are	calculated	as	

	

௢ ௢

௢

௢

௖௩

௢

	 (2)	

with	ϕ	and	Φ	being	the	standard	normal	density	and	cumulative	distribution	function,	
respectively.	The	denominator	of	(2)	also	represents	the	power	of	the	test	of	no	effect	
if	the	hypothesized	effect	size	is	equal	to	θ.	Note	how	the	conditional	density	fo	in	
Figure	7.1b	of	a	just	significant	correlation	increases	when	the	hypothesized	
correlation	decreases;	the	conditional	density	fo	is	virtually	identical	to	the	
unconditional	density	for	large	hypothesized	effect	size	(because	statistical	power	is	
close	to	1),	whereas	the	conditional	density	is	40	times	larger	(i.e.,	1/(α/2))	than	the	

unconditional	density	function	for	θ	=0.	The	densities	at	
o̂ =.247	are	13.252,	10.852,	

3.894,	0.105	for	a	zero,	small,	medium,	large	hypothesized	effect,	respectively.	Note	
that	after	taking	the	statistical	significance	of	the	original	finding	into	account,	the	
density	is	highest	for	θ0	and	θS	and	substantially	lower	for	θM,	and	θL.	Hence,	it	is	less	

likely	that	
o̂ stems	from	a	population	with	a	medium	or	large	effect	size	than	from	a	

population	with	no	effect	or	a	small	effect	size.	The	first	row	of	Table	7.1	presents	the	
likelihoods	of	the	observed	effect	sizes	as	a	function	of	hypothesized	effect	size,	after	
multiplying	the	studies’	densities	with	Equation	(1).	The	likelihood	is	largest	for	a	
small	hypothesized	effect	in	comparison	with	no,	medium,	and	large	hypothesized	
effect,	suggesting	that	there	is	most	probably	a	small	true	effect	underlying	the	
original	study	and	replication.			
		 Posterior	model	probabilities	of	one	snapshot	(ρS)	relative	to	the	others	are	
calculated	with	the	snapshot	hybrid	(second	row	and	last	three	rows)	and	without	
correcting	for	statistical	significance	(snapshot	naïve,	third	row).	For	snapshot	hybrid,	
posterior	model	probabilities	are	calculated	for	four	different	sets	of	prior	model	
probabilities;	equal	prior	model	probabilities	(i.e.,	uniform	encompassing	model),	
prior	model	probabilities	where	the	hypothesized	zero	effect	gets	a	weight	(p0)	2	or	6	
times	higher	than	the	other	hypothesized	effects,	and	prior	model	probabilities	when	
a	normal	distribution	with	mean	and	variance	equal	to	0	and	1	is	the	encompassing	
model,	respectively.	
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Figure	7.1.	Probability	density	functions	of	the	replication	(panel	a)	and	transformed	original	
effect	size	when	statistical	significance	is	taken	into	account	(panel	b).	The	four	hypothesized	
effect	sizes	(zero,	small,	medium,	and	large)	are	denoted	by	θ=0	(0,	red	distribution),	θ=0.1	(S,	
blue	distribution),	θ=0.31	(M,	yellow	distribution),	and	θ=0.549	(L,	green	distribution).	The	
dashed	vertical	line	refers	to	the	observed	effect	sizes	in	the	hypothetical	example	of	Maxwell	et	
al.	(2015)	for	the	replication	(panel	a)	and	original	study	(panel	b).	The	dots	on	the	vertical	
dashed	line	refer	to	densities	for	no,	small,	medium,	and	large	effect	in	the	population.		

	 In	the	second	step,	the	posterior	model	probability	πx	of	each	model	with	
hypothesized	effect	size	x	is	calculated	using		
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where	x	refers	to	either	a	zero	(θ0),	small	(θS),	medium	(θM),	or	large	(θL)	
hypothesized	effect	size.	This	posterior	model	probability	is	a	relative	probability	
because	it	quantifies	the	amount	of	evidence	for	a	model	with	a	particular	
hypothesized	effect	size	relative	to	the	other	included	models.	Since	all	likelihoods	are	
weighed	equally,	implicitly	equal	prior	model	probabilities	are	assumed	in	Equation	
(3).	The	second	row	of	Table	7.1	(method	‘snapshot	hybrid’,	uniform	prior)	presents	
the	four	posterior	model	probabilities	of	snapshot	hybrid	for	the	example.	The	
posterior	model	probabilities	indicate	that	after	observing	correlations	ro	=	0.243	and	
rr	=	0.114,	the	evidence	in	favor	of	the	null	hypothesis	slightly	increased	from	.25	to	
.287,	increased	a	lot	(from	.25	to	.703)	in	favor	of	a	small	hypothesized	effect	size,	and	
decreased	a	lot	for	a	medium	and	large	hypothesized	effect	size.		
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Table	7.1.	Likelihoods	and	posterior	model	probabilities	for	zero,	small,	medium,	and	large	
hypothesized	correlations	for	the	example	of	Maxwell	et	al.	(2015).		

	 Prior	 Method	 Zero	

(ρS=0)	

Small	

(ρS=0.1)	

Medium	

(ρS=0.3)	

Large	

(ρS=0.5)	

Likelihood	 	 	 22.594	 55.304	 0.819	 0	

	

Posterior	
model	

probabilities	

Uniform	
Snapshot	hybrid	 .287	 .703	 .010	 0	

Snapshot	naïve	 .063	 .866	 .071	 0	

p0	=	2	 Snapshot	hybrid	 .446	 .546	 .008	 0	

p0	=	6	 Snapshot	hybrid	 .707	 .289	 .004	 0	

N(0,1)	 Snapshot	hybrid	 .288	 .702	 .010	 0	

	

For	the	sake	of	comparison,	we	also	calculated	the	posterior	model	probabilities	using	
a	method	we	call	snapshot	naïve	because	it	incorrectly	does	not	take	the	statistical	
significance	of	the	original	finding	into	account	(i.e.,	without	truncating	the	density	at	

cv ).	Its	results	are	presented	in	the	third	row	of	Table	7.1	(method	‘snapshot	naïve’,	

uniform	encompassing	prior	distribution).	These	uncorrected	posterior	model	
probabilities	provide	stronger	evidence	in	favor	of	a	small	effect	relative	to	a	zero,	
medium,	and	large	effect,	although	posterior	model	probabilities	for	both	a	zero	and	
medium	hypothesized	effect	are	still	larger	than	zero	(.06).	Comparing	the	results	of	
applying	snapshot	hybrid	to	those	of	snapshot	naïve	to	the	example	shows	that	
snapshot	hybrid	assigns	larger	posterior	model	probabilities	to	zero	hypothesized	
effect	size	than	snapshot	naïve.	This	always	holds.	More	generally,	the	snapshot	naïve	
first‐order	stochastically	dominates	snapshot	hybrid,	i.e.,	snapshot	naïve’s	cumulative	
posterior	model	probabilities	exceed	those	of	snapshot	hybrid.		The	evaluation	of	
snapshot	hybrid	may	even	suggest	that	the	true	effect	size	is	smaller	than	the	
estimates	of	both	the	original	study	and	replication.	The	latter	typically	occurs	when	
the	original	effect	size	is	just	statistically	significant	(i.e.,	has	a	p‐value	just	below	.05)	
and	the	replication	effect	size	has	the	same	sign	as	the	original	effect.		
	 Finally,	in	the	third	step	the	posterior	model	probabilities	of	a	hypothesized	
effect	size	relative	to	the	other	hypothesized	effect	sizes	may	be	recalculated	using	
other	than	equal	model	probabilities.	The	posterior	model	probability	 *

x 	for	

hypothesized	effect	size	x	can	be	recalculated	using	
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with	prior	model	probabilities	or	weights	p,	and	posterior	model	probabilities	π	
calculated	with	Equation	(3)	assuming	equal	uniform	prior	probabilities.	Note	that	 *

x

=
x for	equal	prior	model	probabilities.	The	values	of	px,	with	x	referring	to	no	(0),	

small	(S),	medium	(M),	or	large	hypothesized	effect	(L),	can	simply	be	derived	from	
the	prior	density	function	of	the	researcher.		
		 Simple	and	conservative	prior	model	probabilities	are	to	assign,	for	instance,	
a	two	or	even	six	times	higher	prior	model	probability	to	a	zero	hypothesized	effect	
than	to	any	of	the	other	hypothesized	effects.	Note	that	other	prior	model	
probabilities	can	also	be	used,	and	that	these	probabilities	can	also	be	specified	for	
other	hypothesized	effect	sizes	than	zero.	Substituting	p0	=	2	and	p0	=	6	(and	pS,	pM,	
and	pL	all	equal	to	1)	and	the	posterior	model	probabilities	presented	in	row	“uniform	
snapshot	hybrid”	of	Table	7.1,	yields	the	recalculated	posterior	model	probabilities	
presented	in	the	two	subsequent	rows	of	Table	7.1.	Naturally,	more	conservative	prior	
model	probabilities	yield	stronger	evidence	in	favor	of	a	hypothesized	zero	effect,	with	
posterior	model	probabilities	increasing	from	.287	(uniform	prior)	to	.707	(p0	=	6).	
		 The	posterior	model	probabilities	can	also	be	recalculated	when	a	continuous	
prior	is	specified	for	the	encompassing	model,	for	instance	a	normal	distribution	with	
mean	and	variance	equal	to	0	and	1,	respectively,	denoted	by	N(0,1)	in	Table	7.1.	This	
normal	prior	yields	prior	model	probabilities	at	θ=0,	θ=0.1,	θ=0.31,	θ=0.549	of	
p0=0.263,	pS=0.261,	pM=0.250,	pL=0.226,	which	are	close	to	the	equal	prior	model	
probabilities.	This	yields	the	recalculated	posterior	model	probabilities	in	the	last	row	
of	Table	7.1,	again	showing	that	assigning	higher	prior	model	probability	to	a	
hypothesized	zero	effect	results	in	stronger	evidence	in	favor	of	the	null	hypothesis.	
To	sum	up,	the	posterior	model	probabilities	can	be	recalculated	without	doing	the	
Bayesian	analysis	again,	by	applying	Equation	(4)	using	other	prior	model	
probabilities.	Second,	the	example	demonstrates	that	the	prior	model	probabilities	
can	have	substantial	effects	on	the	posterior	model	probabilities,	particularly	if	there	
is	no	(very)	strong	evidence	for	a	hypothesized	effect	size.		

7.4		 Analytical	evaluation	of	statistical	properties	

		 We	evaluated	the	statistical	properties	of	snapshot	hybrid	by	comparing	it	to	
snapshot	naïve.	This	comparison	demonstrates	that	effect	size	evaluation	often	
suggests	larger	effect	sizes	than	the	true	effect	size	if	statistical	significance	of	the	
original	study	is	not	taken	into	account.	Statistical	properties	of	the	methods	were	
evaluated	with	the	correlation	coefficient	as	the	effect	size	measure	of	interest.	
However,	both	methods	can	also	be	applied	to	other	effect	size	measures	(e.g.,	
standardized	mean	differences).	
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7.4.1		 Method	

We	analytically	approximated	the	statistical	properties	of	both	snapshot	
hybrid	and	snapshot	naïve	using	numerical	integration	of	the	joint	probability	density	
function	(pdf)	of	the	statistical	significant	original	effect	size	and	effect	size	in	the	
replication.	This	joint	pdf	is	a	function	of	the	true	effect	size	and	both	effect	sizes’	
standard	error.	The	joint	pdf	of	the	statistically	significant	observed	original	effect	size	
and	the	effect	size	of	the	replication	was	approximated	by	creating	an	equally	spaced	
grid	of	5,000	x	5,000	values.	The	pdf	of	the	statistically	significant	observed	original	
effect	sizes	was	approximated	by	first	selecting	5,000	equally	spaced	cumulative	
probabilities	given	that	the	effects	sizes	that	accompanied	these	probabilities	were	
statistically	significant.	A	one‐tailed	Fisher‐z	test	with	α=.025	was	used	to	determine	
the	critical	value	for	observing	a	statistically	significant	effect	size	in	the	original	study	
because	this	corresponds	to	a	common	practice	in	social	science	research	where	two‐
tailed	hypothesis	tests	are	conducted	and	only	the	results	in	the	predicted	direction	
are	reported.	For	instance,	under	the	null	hypothesis	this	means	that	the	cumulative	

probabilities	range	from	 975005.
001,5

)025.1(
025.01 


 	to	

999995.
001,5

)025.000,5(
025.01 


 .	All	these	cumulative	probabilities	were	then	

transformed	to	Fisher‐transformed	correlation	coefficients	given	a	true	effect	size	and	
standard	error	to	approximate	the	pdf	of	the	original	effect	size.	The	pdf	of	the	
replication’s	observed	effect	size	given	a	true	effect	size	and	standard	error	was	
created	in	a	similar	way	as	the	pdf	of	the	original	study’s	observed	effect	size,	but	
there	was	no	requirement	for	the	effect	size	in	the	replication	to	be	statistically	
significant.	Hence,	5,000	equally	spaced	cumulative	probabilities	ranging	from	

00019996.
001,5

1
 	to	 9998.

001,5

000,5
 	were	selected	and	the	pdf	of	the	observed	effect	

size	in	the	replication	was	obtained	by	transforming	these	probabilities	to	Fisher‐
transformed	correlation	coefficients.	Combining	the	marginal	pdfs	of	the	observed	
effect	size	in	the	original	study	and	replication	resulted	in	an	approximation	of	the	
joint	pdf	consisting	of	25,000,000	different	combinations	of	effect	sizes	that	was	used	
for	evaluating	the	statistical	properties	of	snapshot	hybrid	and	snapshot	naïve.	Both	
methods	were	applied	to	each	combination	of	effect	size	in	the	original	study	and	
replication.	
		 In	order	to	examine	the	performance	of	the	methods	under	different	
conditions,	joint	pdfs	were	created	by	varying	two	factors:	total	sample	size	for	the	
original	study	and	replication	(N)	and	true	effect	size	(ρ).	Six	different	sample	sizes	
were	selected	(N	=	31;	55;	96;	300;	1,000;	10,000)	and	were	imposed	to	be	equal	in	
the	original	study	and	replication.	Sample	sizes	of	31,	55,	and	96	refer	to	the	first	
quartile,	medium,	and	third	quartile	of	the	observed	sample	sizes	of	the	original	study	
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in	RPP	(Open	Science	Collaboration,	2015).	Larger	sample	sizes	were	also	included	for	
two	reasons.	First,	large	sample	sizes	enable	us	to	examine	large	sample	properties	of	
our	method,	such	as	convergence	of	the	methods	to	the	correct	hypothesized	effect	
size.	Second,	bias	of	snapshot	naïve	can	be	examined	with	large	sample	sizes,	because	
bias	is	expected	to	disappear	for	very	large	sample	size	whenever	true	effect	size	
exceeds	zero.	For	the	true	effect	size,	we	selected	ρ=0	(no	effect),	0.1	(small	effect),	0.3	
(medium	effect),	0.5	(large	effect),	which	correspond	to	the	methods’	snapshots	or	
hypothesized	effect	sizes.	Our	analysis	used	equal	prior	model	probabilities,	assigning	
probabilities	of	.25	to	each	hypothesized	effect	size.		 	
		 Posterior	model	probabilities	of	snapshot	hybrid	and	snapshot	naïve	at	the	
four	hypothesized	effect	sizes	were	computed	using	Equation	(3)	for	each	of	the	
25,000,000	different	combinations	of	effect	sizes.	Performances	of	both	methods	was	
then	evaluated	with	respect	to	three	outcomes.	The	first	outcome	was	the	expected	
value	of	the	posterior	model	probability	for	each	hypothesized	effect	size.	Second,	we	
calculated	the	proportion	that	the	posterior	model	probability	of	a	particular	
hypothesized	effect	size	relative	to	the	other	hypothesized	effect	sizes	was	larger	than	
.25,	which	amounts	to	the	probability	that	evidence	in	favor	of	the	true	hypothesis	
increases	after	observing	the	data.	The	third	outcome	was	the	proportion	that	the	
posterior	model	probability	of	a	particular	hypothesized	effect	size	relative	to	the	
other	hypothesized	effect	sizes	was	larger	than	.75.	This	proportion	corresponds	to	a	
Bayes	Factor	of	3	when	comparing	a	particular	hypothesized	effect	size	to	the	other	
hypothesized	effect	sizes.	Since	a	Bayes	Factor	exceeding	3	is	interpreted	as	positive	
evidence	(e.g.,	Kass	&	Raftery,	1995),	we	interpret	posterior	model	probabilities	of	.75	
or	more	as	positive	evidence	in	favor	of	that	hypothesized	effect	size.	Note	that	
selecting	a	posterior	model	probability	of	0.75	(and	Bayes	Factor	of	3)	is	a	subjective	
choice,	and	that	selecting	other	posterior	model	probabilities	(and	Bayes	Factors)	for	
the	analyses	was	also	possible.	In	our	analyses,	we	expect	all	three	outcomes	to	
increase	in	sample	size	for	snapshot	hybrid,	but	not	always	for	the	biased	snapshot	
naïve	method.		
		 Computations	were	conducted	in	the	statistical	software	R	and	the	parallel	
package	was	used	for	parallelizing	the	computations	(R	Core	Team,	2017).	Computer	
code	for	the	computations	is	available	at	https://osf.io/xrn8k/.	

7.4.2		 Results	on	statistical	properties	

Expected	value	of	the	posterior	model	probability	 Table	7.2	presents	the	
expected	values	of	the	posterior	model	probabilities	of	snapshot	hybrid	and	snapshot	
naïve	for	four	different	snapshots	(ρS).	The	posterior	model	probabilities	are	
presented	for	different	sample	sizes	(N)	and	true	effect	sizes	(ρ).	Results	for	sample	
sizes	per	group	equal	to	10,000	are	not	shown	since	expected	posterior	model	
probabilities	of	both	methods	are	always	equal	to	1	for	the	correct	snapshot	and	to	0	
for	the	incorrect	snapshot.	The	bold	values	in	the	columns	for	snapshot	hybrid	and	
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snapshot	naïve	indicate	the	posterior	model	probability	for	that	particular	snapshot	
that	matches	the	true	effect	size.	Hence,	the	bold	values	in	these	columns	should	be	
higher	than	the	posterior	model	probabilities	for	the	other	snapshots.	The	final	
column	shows	the	expected	value	of	the	estimate	of	traditional	fixed‐effect	meta‐
analysis.	
		 Expected	values	of	the	posterior	model	probabilities	of	snapshot	hybrid	at	the	
correct	snapshot	(e.g.,	ρS=0	if	ρ=0	and	ρS=0.1	if	ρ=0.1)	increase	as	the	sample	size	
increases,	as	they	should	(bold	values	in	first	four	columns	in	Table	7.2).	Expected	
values	of	the	posterior	model	probabilities	are	close	to	.75	for	ρ=0,	ρ=0.1,	and	ρ=0.3	at	
ni=300,	and	at	N=55	for	ρ=0.5.	Snapshot	hybrid	has	difficulties	distinguishing	whether	
an	effect	is	absent	(ρ=0)	or	small	(ρ=0.1)	for	N	<	1,000	because	the	expected	values	of	
the	posterior	model	probabilities	at	ρS=0	and	ρS=0.1	are	close	to	each	other	for	both	
effect	sizes.	Even	if	N=1,000,	the	expected	value	of	the	posterior	model	probability	of	
ρ=0	at	snapshot	ρS=0.1	is	.052	and	the	same	holds	for	the	expected	value	of	the	
posterior	model	probability	of	ρ=0.1	at	snapshot	ρS=0.		
	 The	expected	values	of	the	posterior	model	probability	of	snapshot	naïve	also	
increase	as	the	sample	size	increases	(bold	values	in	columns	seven	to	ten	in	Table	
7.2).	However,	the	performance	of	snapshot	naïve	is	worse	than	of	snapshot	hybrid	
for	ρ=0	for	all	N,	and	for	ρ=0.1	at	N=31	and	55.	Most	important	is	that	if	ρ=0	the	
expected	posterior	model	probability	of	snapshot	naïve	suggests	a	small	effect	(ρ=0.1)	
up	to	N	≤	300	(i.e.,	600	observations	in	original	study	and	replication	combined).	
Evidence	in	favor	of	a	small	true	effect	size	is	even	increasing	in	sample	size	until	
N=300,	where	the	expected	value	of	the	posterior	model	probability	of	incorrect	
snapshot	ρ=0.1	is	.662	and	larger	than	the	.338	for	the	correct	snapshot	of	zero	true	
effect	size.	Even	when	N	=	1,000,	evidence	in	favor	of	a	small	effect	hardly	diminished;	
the	expected	posterior	model	probability	(.242)	is	only	little	lower	than	.25.	The	
performance	of	snapshot	naïve	is	better	than	snapshot	hybrid’s	performance	for	ρ=0.1	
at	N≥96,	and	for	medium	and	large	true	effect	size,	i.e.,	expected	posterior	model	
probabilities	at	the	correct	snapshot	are	highest	for	snapshot	naïve.	Note,	however,	
that	for	a	medium	true	effect	size	evidence	in	favor	of	a	strong	effect	(ρS	=	0.5)	also	
increases	for	small	sample	size	(N	=	31;	expected	posterior	model	probability	
increases	from	.25	to	.417).	All	these	results	can	be	explained	by	two	related	
consequences	of	correcting	for	the	statistical	significance	of	the	original	study.	
	 The	first	consequence	is	that	not	correcting	for	statistical	significance	of	the	
original	study	leads	to	overestimation	of	effect	size.	The	last	column	of	Table	7.2	
presents	the	expected	value	of	fixed‐effect	meta‐analysis,	and	consequently,	its	bias.	
The	bias	decreases	both	in	true	effect	size	and	sample	size,	and	is	most	severe	for	ρ=0	
and	N=31	(0.215).	Bias	results	in	a	higher	expected	value	of	the	posterior	model	
probability	of	’incorrect’	snapshots	(ρS≠ρ)	for	snapshot	naïve.	The	fact	that	snapshot	
naïve	performs	relatively	worse	for	a	true	small	effect	than	for	a	medium	and	strong	
true	effect	is	thus	because	overestimation	is	worse	for	lower	true	effect	size,	
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particularly	for	small	N.	
		 The	second	consequence	is	that	snapshot	hybrid	assigns	a	relatively	higher	
‘weight’	to	the	likelihood	of	the	original	effect	under	a	zero	true	effect,	compared	to	
snapshot	naïve.	This	is	because,	in	contrast	to	snapshot	naïve,	the	replication’s	
likelihood	is	multiplied	by	the	reciprocal	of	statistical	power	(which	is	the	‘weight’)	
under	snapshot	hybrid	(see	Equation	(2)	and	Figure	7.1),	and	statistical	power	
increases	in	true	effect	size.	In	the	extreme	case,	for	very	large	sample	size	(e.g.,	N	>	
10,000),	the	only	difference	between	snapshot	hybrid	and	snapshot	naïve	is	that	the	
likelihood	of	the	original	effect	under	a	zero	hypothesized	effect	is	multiplied	by	40	
under	snapshot	hybrid,	because	the	likelihoods	at	other	snapshots	are	multiplied	by	1	
under	snapshot	hybrid	(statistical	power	then	equals	1	at	these	snapshots).	The	
relatively	higher	weight	assigned	to	the	likelihood	of	the	original	study’s	effect	under	
the	hypothesized	zero	effect	explains	why	snapshot	hybrid	performs	better	than	
snapshot	naïve	if	ρ=0,	for	all	values	of	N.	This	relatively	higher	weight	translates	into	
higher	posterior	model	probabilities	for	ρS=0	under	snapshot	hybrid	than	snapshot	
naïve.	These	higher	posterior	model	probabilities	for	ρS=0	under	snapshot	hybrid	also	
explain	why	snapshot	naïve	outperforms	snapshot	hybrid	for	nonzero	true	effect	size	
in	combination	with	large	sample	size.	For	nonzero	true	effect	size	and	small	sample	
size,	however,	snapshot	hybrid	outperforms	snapshot	naïve	because	then	the	adverse	
effect	of	overestimation	in	snapshot	naïve	is	stronger	than	the	higher	weight	of	
(incorrect)	snapshot	ρS=0	in	snapshot	hybrid.	
		 To	sum	up,	sample	sizes	of	300	for	the	original	study	and	replication	are	
needed	to	obtain	expected	posterior	model	probabilities	with	snapshot	hybrid	close	to	
.75	or	higher	for	a	true	effect	size	of	ρ=0,	ρ=0.1,	and	ρ=0.3,	whereas	a	sample	size	of	55	
for	the	original	study	and	replication	is	sufficient	for	ρ=0.5.	Hence,	small	sample	sizes	
(sample	size	of	about	50	per	study)	are	sufficient	to	make	correct	decisions	if	true	
effect	size	is	large,	whereas	for	zero	or	small	true	effect	size	large	sample	sizes	are	
required	(sample	size	of	at	least	300	up	to	1,000	per	study).	Not	taking	the	statistical	
significance	of	the	original	study	into	account	results	in	worse	performance	of	
snapshot	naïve	when	true	effect	size	is	zero	or	small,	or	when	sample	sizes	are	small.	
Snapshot	naïve	outperforms	snapshot	hybrid,	i.e.	gives	higher	expected	posterior	
model	probabilities	for	the	correct	snapshot	as	well	as	lower	ones	for	all	incorrect	
snapshots	whenever	ρ=0.1	and	N≥1,000,	ρ=0.3	and	N≥300,	and	ρ=0.5	and	N≥31.	
However,	snapshot	naïve	is	biased	as	a	result	of	not	taking	the	statistical	significance	
of	the	original	study	into	account.	Its	better	performance	is	a	consequence	of	its	bias,	
just	as	the	high	statistical	power	of	the	fixed‐effect	meta‐analysis	for	small	true	effect	
size	is	a	consequence	of	its	overestimation	of	effect	size.	Hence,	we	advise	to	use	
snapshot	hybrid	rather	than	snapshot	naïve.	However,	if	a	researcher	is	certain	that	
the	true	effect	size	is,	for	instance,	large,	snapshot	naïve	may	be	used	since	this	
method	outperforms	snapshot	hybrid	in	most	conditions.		



 

 

Table	7.2.	Expected	values	of	the	posterior	m
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eta‐analysis	
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Probability	of	posterior	model	probability	larger	than	.25	(π>.25)	and	.75	
(π>.75)			 Table	7.3	shows	the	probability	of	how	often	the	posterior	model	
probability	is	larger	than	.25	(π>.25),	i.e.	how	often	the	posterior	model	probability	is	
larger	than	the	prior	model	probability.	The	probability	of	π>.25	of	snapshot	hybrid	at	
the	correct	snapshot	is	at	least	.776	and	approaches	one	if	the	sample	sizes	increases		
(bold	values	in	the	third	to	sixth	columns	of	Table	7.3).	The	same	pattern	is	observed	
for	snapshot	naïve,	but	the	probabilities	π>.25	at	the	correct	snapshot	are	smaller	for	
snapshot	naïve	than	snapshot	hybrid	if	ρ=0,	and	ρ=0.1	and	N<300,	and	higher	for	
ρ=0.3	and	ρ=0.5.	The	lowest	probability	of	π>.25	at	the	correct	snapshot	of	snapshot	
naïve	is	0.274	for	ρ=0	and	N=31.	However,	both	methods’	probabilities	of	π>.25	at	the	
incorrect	snapshot	are	also	substantial	and	sometimes	even	larger	for	the	incorrect	
than	for	the	correct	snapshot.	For	ρ=0	and	N=31,	the	probability	of	π>.25	of	snapshot	
hybrid	is	higher	for	the	incorrect	snapshot	at	ρS=0.1	than	the	correct	snapshot	(ρS=0).	
The	same	holds	for	snapshot	naïve	at	N	≤300	if	ρ=0,	and	at	N<96	if	ρ=0.1.	If	the	
probability	of	π>.25	is	largest	for	the	correct	snapshot,	the	probability	of	π>.25	at	one	
of	the	incorrect	snapshots	can	still	be	substantial.	For	instance,	if	ρ=0	or	ρ=0.1	and	
N=300,	using	snapshot	hybrid	the	probability	π>.25	is	0.36	for	an	incorrect	snapshot	
(ρS=0.1	or	ρS=0,	respectively).	The	probability	of	π>.25	of	snapshot	naïve	is	0.321	for	
ρ=0	and	N=1,000	at	the	incorrect	snapshot	ρS=0.1,	and	0.495	for	ρ=0.1	and	N=	96	at	
ρS=0.3.	Probabilities	of	π>.25	at	incorrect	snapshots	also	occur	for	large	true	effect	
sizes	in	combination	with	small	sample	sizes.	To	conclude,	a	posterior	model	
probability	larger	than	.25	should	not	be	interpreted	as	evidence	in	favor	of	that	effect	
size,	but	should	be	interpreted	in	combination	with	posterior	model	probabilities	for	
the	other	hypothesized	effect	sizes.	
		 Table	7.4	illustrates	the	probability	of	how	often	the	posterior	model	
probability	is	larger	than	.75	(π>.75),	when	evidence	can	be	interpreted	as	evidence	in	
favor	of	that	true	effect.	Hence,	the	probabilities	of	π>.75	can	be	interpreted	as	how	
often	the	methods	yield	the	correct	conclusion	with	respect	to	the	magnitude	of	the	
true	effect	size	akin	to	statistical	power	in	null	hypothesis	significance	testing.	Table	
7.4	also	shows	how	often	inconclusive	results	(columns	named	“Inconcl.”)	were	
obtained,	indicating	that	none	of	the	posterior	model	probabilities	were	larger	than	
.75.	Focusing	first	on	the	results	of	snapshot	hybrid	(columns	three	to	seven),	the	
probability	of	making	the	wrong	decision	never	exceeds	0.065.	However,	the	
probability	of	obtaining	inconclusive	results	is	large	for	N≤96	when	ρ=0	(≥	.706)	or	
ρ=0.1	(≥	.9).	The	probability	of	making	the	correct	decision	is	at	least	0.8	(akin	to	a	
power	of	0.8)	for	a	sample	size	in	between	300	and	1,000	when	ρ=0	or	ρ=0.1,	between	
96	and	300	when	ρ=0.3,	and	between	55	and	96	when	ρ=0.5.	
		 The	probability	of	making	a	false	decision	using	snapshot	naïve	(last	five	
columns)	can	be	substantial	for	true	effect	sizes	zero	to	medium.	When	ρ=0,	the	
probability	of	making	the	false	decision	that	the	true	effect	size	is	of	small	magnitude	
is	larger	than	the	probability	of	drawing	the	correct	conclusion	for	N≤300.	The	
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probability	of	making	false	decisions	are	0.263	for	ρ=0.1	at	N=55,	and	0.157	for	ρ=0.3	
at	N=31.	The	probability	of	observing	inconclusive	results	with	snapshot	naïve	was	
large	for	N≤96	when	ρ=0	(≥	.628)	or	ρ=0.1	(≥	.547).The	probability	of	making	a	
correct	decision	does	not	exceed	0.8	when	ρ=0	for	N≤1,000,	and	exceeds	0.8	when	
ρ=0.1	and	sample	size	between	96	and	300,	and	ρ=0.3	and	ρ=0.5	in	combination	with	
sample	size	between	55	and	96.		 	
		 To	conclude,	when	true	effect	size	is	zero	or	small,	very	large	sample	sizes	are	
required	to	make	correct	decisions	and	snapshot	hybrid	should	be	used	to	take	the	
statistical	significance	of	the	original	study	into	account;	using	snapshot	naïve	likely	
results	in	wrong	conclusions	when	sample	size	is	smaller	than	300.	When	true	effect	
size	is	medium	or	large,	smaller	sample	sizes	are	sufficient	to	make	correct	decisions.	
Snapshot	naïve	yields	both	higher	probabilities	of	making	correct	decisions	and	lower	
probabilities	of	making	incorrect	decisions	when	ρ=0.1	and	N=1,000,	ρ=0.3	and	
N≥300,	ρ=0.5	and	N≥96.		

7.4.3		 Conclusions		

The	probability	of	making	the	correct	decision	with	snapshot	hybrid,	based	on	
posterior	model	probabilities	larger	than	.75,	is	at	least	0.8	(akin	to	a	power	of	0.8)	for	
a	sample	size	in	between	300	and	1,000	when	ρ=0	or	ρ=0.1,	between	96	and	300	
when	ρ=0.3,	and	between	55	and	96	when	ρ=0.5.	The	probability	of	making	a	false	
decision	using	snapshot	naïve	can	be	substantial	for	true	effect	sizes	zero	(even	for	
samples	sizes	of	300	per	group	in	both	studies)	to	medium.	Whereas	snapshot	hybrid	
outperforms	snapshot	naïve	if	there	is	no	or	a	small	true	effect,	snapshot	naïve	
generally	outperformed	snapshot	hybrid	for	medium	and	large	true	effect	sizes.	
Importantly,	the	results	of	both	methods	also	illustrate	that	it	is	hard	to	obtain	
conclusive	results	about	the	magnitude	of	the	true	effect	size	in	situations	with	sample	
sizes	that	are	illustrative	for	current	research	practice.	In	the	penultimate	section	of	
this	chapter,	we	use	snapshot	hybrid	to	derive	the	sample	size	of	the	replication	to	
obtain	evidence	of	a	true	effect,	akin	to	power	analysis.		

	



 

 

Table	7.3.	Probability	of	posterior	m
odel	probability	larger	than	.25	of	snapshot	hybrid	and	snapshot	naïve.	
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Table	7.4.	Probability	of	posterior	m
odel	probability	larger	than	.75	of	snapshot	hybrid	and	snapshot	naïve.		
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7.5		 Replicability	projects	

		 The	Reproducibility	Project	Psychology	(RPP;	Open	Science	Collaboration,	
2015)	and	the	Experimental	Economics	Replication	Project	(EE‐RP;	Camerer	et	al.,	
2016)	are	two	projects	that	studied	the	replicability	of	psychological	and	economic	
experimental	research	by	replicating	published	research.	Articles	for	inclusion	in	RPP	
were	selected	from	three	high	impact	psychological	journals	(Journal	of	Experimental	
Psychology:	Learning,	Memory,	and	Cognition,	Journal	of	Personality	and	Social	
Psychology,	and	Psychological	Science)	published	in	2008.	EE‐RP	included	all	articles	
with	a	between‐subject	experimental	design	published	in	the	American	Economic	
Review	and	the	Quarterly	Journal	of	Economics	between	2011	and	2014.	The	most	
important	finding	from	these	articles	was	selected	for	both	projects	to	be	replicated	
and	the	replication	was	conducted	according	to	a	predefined	analysis	plan	in	order	to	
ensure	that	the	replication	was	as	close	as	possible	to	the	original	study.	
		 RPP	contained	100	studies	that	were	replicated.	A	requirement	for	applying	
snapshot	hybrid	is	that	the	original	study	has	to	be	statistically	significant.	Three	
observed	effect	sizes	were	reported	as	not	being	statistically	significant	in	the	original	
studies	of	RPP.	However,	of	the	remaining	97	original	effect	sizes	reported	as	
statistically	significant,	recalculation	of	their	p‐values	revealed	that	four	were	actually	
not	statistically	significant	either,	but	slightly	larger	than	.05	(Open	Science	
Collaboration,	2015);	these	were	excluded	as	well.	The	remaining	93	study‐pairs	
included	26	study‐pairs	that	had	to	be	excluded	because	the	correlation	coefficient	
and	standard	error	could	not	be	computed	for	these	study‐pairs.	This	was,	for	
instance,	the	case	for	F(df1	>1,df2)	or	χ2.		Hence,	the	snapshot	hybrid	and	snapshot	
naïve	were	applied	to	67	study‐pairs.	EE‐RP	included	18	study‐pairs.	The	effect	size	
measure	of	the	study‐pairs	included	in	EE‐RP	was	also	the	correlation	coefficient.	Only	
two	studies	had	to	be	excluded	because	the	original	study	was	not	statistically	
significant.	Hence,	the	snapshot	hybrid	and	snapshot	naïve	were	applied	to	16	study‐
pairs	of	the	EE‐RP.	Information	on	effect	sizes	and	sample	sizes	of	the	study‐pairs	and	
the	results	of	the	snapshot	hybrid	and	snapshot	naïve	are	reported	in	Table	S1	
(https://osf.io/u5gzh/)	for	EE‐RP	and	Table	S2	(https://osf.io/6zpu4/)	for	RPP.	
		 Table	7.5	lists	the	posterior	model	probabilities	averaged	over	all	the	study‐
pairs	of	the	snapshot	hybrid	and	snapshot	naïve.	The	difference	between	the	average	
posterior	model	probabilities	of	snapshot	hybrid	and	snapshot	naïve	was	largest	for	
the	study‐pairs	in	RPP	at	ρS=0	(0.293	vs.	0.126).	Average	posterior	model	probabilities	
of	both	the	snapshot	hybrid	and	snapshot	naïve	based	on	the	study‐pairs	in	EE‐RP	
were	larger	at	ρS=0.3	and	ρS=0.5	than	the	study‐pairs	in	RPP,	whereas	this	was	the	
other	way	around	at	ρS=0	and	ρS=0.1.	
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Table	7.5.	Average	posterior	model	probabilities	for	the	study‐pairs	in	EE‐RP	and	RPP	for	
snapshot	hybrid	and	snapshot	naïve	at	four	different	snapshots	(ρS=0;	0.1;	0.3;	0.5).	

	 	 ρS	

	 	 0	 0.1	 0.3	 0.5	

Snapshot	
Hybrid	

EE‐RP	 0.084	 0.137	 0.34	 0.44	

RPP	 0.293	 0.234	 0.217	 0.256	

Snapshot	Naïve	
EE‐RP	 0.03	 0.165	 0.361	 0.444	

RPP	 0.126	 0.285	 0.267	 0.321	

	

		 Table	7.6	shows	the	proportions	of	how	often	the	posterior	model	probability	
was	larger	than	.25	for	the	snapshot	hybrid	and	snapshot	naïve.	Seven	different	
categories	were	used	because	the	posterior	model	probability	could	be	larger	than	.25	
for	two	snapshots.	A	study‐pair	was	assigned	to	one	of	the	categories	belonging	to	
snapshots	ρS=0,	0.1,	0.3,	and	0.5	if	the	posterior	model	probability	of	only	one	of	these	
snapshots	was	larger	than	.25.	If	the	posterior	model	probability	of	a	study‐pair	was,	
for	instance,	0.4	of	snapshot	ρS=0	and	0.5	of	snapshot	ρS=0.1,	the	study‐pair	was	
assigned	to	category	0‐0.1.	The	proportion	of	study‐pairs	in	the	categories	ρS=0	and	0‐
0.1	was	larger	for	snapshot	hybrid	than	snapshot	naïve.	On	the	contrary,	snapshot	
naïve	resulted	in	a	higher	proportion	of	study‐pairs	in	the	categories	ρS=0.3,	0.3‐0.5	
and	0.5	than	snapshot	hybrid.	The	large	proportions	for	the	categories	including	two	
snapshots	(e.g.,	0‐0.1)	indicated	that	drawing	definite	conclusions	about	the	
magnitude	of	the	effect	size	was	often	impossible.	Comparing	the	results	between	EE‐
RP	and	RPP	shows	that	the	proportion	of	study‐pairs	in	the	categories	ρS=0	and	0‐0.1	
was	larger	for	RPP	than	EE‐RP.	The	proportion	of	study‐pairs	in	the	categories	ρS=0.3,	
0.3‐0.5,	and	0.5	was	larger	for	EE‐RP	than	RPP.		
		 Table	7.7	presents	the	proportions	of	how	often	the	posterior	model	
probability	was	larger	than	.75	for	the	snapshot	hybrid	and	snapshot	naïve	for	
snapshots	ρS=0,	0.1,	0.3,	and	0.5.	None	of	the	posterior	model	probabilities	at	the	
different	snapshots	was	larger	than	.75	for	snapshot	hybrid	in	18.8%	and	62.7%	of	the	
study‐pairs	in	EE‐RP	and	RPP	(last	column	of	Table	7.7,	respectively.	For	snapshot	
naïve,	no	posterior	model	probability	was	larger	than	.75	in	6.3%	of	the	study‐pairs	in	
EE‐RP	and	52.2%	of	the	study‐pairs	in	RPP.	Hence	for	most	of	the	effects	studied	in	
the	RPP,	no	decisions	can	be	made	on	the	magnitude	of	the	true	effect	size,	whereas	
for	EE‐RP	decisions	can	be	made	in	the	majority	of	effects	studied.		
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Table	7.6.	Proportions	of	how	often	the	posterior	model	probability	is	larger	than	.25	for	the	
study‐pairs	in	EE‐RP	and	RPP	for	snapshot	hybrid	and	snapshot	naïve	at	seven	different	
snapshots	(ρS=0;	0‐0.1;	0.1;	0.1‐0.3;	0.3;	0.3‐0.5;	0.5).	

	 	 ρS	

	 	 0	 0‐0.1	 0.1	 0.1‐0.3	 0.3	 0.3‐0.5	 0.5	

Snapshot	
Hybrid	

EE‐RP	 0	 0.125	 0.062	 0.062	 0.312	 0	 0.438	

RPP	 0.134	 0.284	 0.045	 0.119	 0.06	 0.164	 0.194	

Snapshot	
Naïve	

EE‐RP	 0	 0.062	 0.125	 0	 0.375	 0	 0.438	

RPP	 0.015	 0.194	 0.149	 0.06	 0.164	 0.179	 0.239	

	

	 For	the	EE‐RP,	no	evidence	in	favor	of	a	zero	true	effect	was	obtained,	
whereas	the	majority	of	effects	examined	showed	evidence	in	favor	of	a	medium	
(31.2%	for	snapshot	hybrid	and	37.5%	for	snapshot	naïve)	or	large	true	effect	(43.8%	
for	both	snapshot	hybrid	and	snapshot	naïve).	In	RPP,	evidence	in	favor	of	the	null	
hypothesis	was	obtained	for	13.4%	of	the	effects	examined	according	to	snapshot	
hybrid.	This	number	is	much	lower	than	the	percentage	of	statistically	nonsignificant	
replications	in	RPP	(73.1%).	A	small	percentage	of	study‐pairs	obtained	evidence	in	
favor	of	a	large	true	effect	(16.4%‐23.9%).		

Table	7.7.	Proportions	of	how	often	the	posterior	model	probability	is	larger	than	.75	for	the	
study‐pairs	in	EE‐RP	and	RPP	for	snapshot	hybrid	and	snapshot	naïve	at	four	different	
snapshots	(ρS=0;	0.1;	0.3;	0.5)	and	how	often	none	of	the	posterior	model	probabilities	is	larger	
than	.75	(Inconclusive	results,	final	column).	

	 	 ρS	 	

	 	 0	 0.1	 0.3	 0.5	 Inconcl.	

Snapshot	
Hybrid	

EE‐RP	 0	 0.062	 0.312	 0.438	 0.188	

RPP	 0.134	 0.030	 0.045	 0.164	 0.627	

Snapshot	
Naïve	

EE‐RP	 0	 0.125	 0.375	 0.438	 0.062	

RPP	 0.015	 0.119	 0.104	 0.239	 0.522	
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		 The	studies	in	RPP	can	be	divided	into	social	and	cognitive	psychology	
studies.	The	proportions	of	how	often	the	posterior	model	probability	was	larger	than	
.75	for	social	psychology	and	cognitive	psychology	is	presented	in	Table	7.8.	
According	to	snapshot	hybrid,	the	true	effect	size	was	more	often	zero	in	studies	in	
social	psychology	than	in	cognitive	psychology	(23.5%	vs.	3.0%),	whereas	it	was	more	
often	large	in	cognitive	psychology	than	in	social	psychology	(21.2%	vs	11.8%).	For	
approximately	half	of	the	study‐pairs	in	both	fields,	none	of	the	posterior	model	
probabilities	of	snapshot	hybrid	and	snapshot	naïve	was	larger	than	.75	(final	column	
of	Table	7.8).	

Table	7.8.	Proportions	of	how	often	the	posterior	model	probability	is	larger	than	.75	for	the	
study‐pairs	in	RPP	grouped	by	social	and	cognitive	psychological	studies	for	snapshot	hybrid	
and	snapshot	naïve	at	four	different	snapshots	(ρS=0;	0.1;	0.3;	0.5)	and	how	often	none	of	the	
posterior	model	probabilities	is	larger	than	.75	(Inconclusive	results,	final	column).	

	 	 ρS	 	

	 	 0	 0.1	 0.3	 0.5	 Inconcl.	

Snapshot	
Hybrid	

Social	 0.235	 0.059	 0	 0.118	 0.588	

Cognitive	 0.030	 0	 0.091	 0.212	 0.667	

Snapshot	
Naïve	

Social	 0.029	 0.176	 0.059	 0.118	 0.618	

Cognitive	 0	 0.061	 0.152	 0.364	 0.424	

	

7.6		 Determining	sample	size	of	replication	with	snapshot	hybrid	

		 Snapshot	hybrid	can	also	be	used	for	computing	the	required	sample	size	
where	P(πx≥a)=b	with	a	being	the	desired	posterior	model	probability	and	b	the	
desired	probability	for	a	correct	decision	(i.e.,	desired	probability	of	observing	a	
posterior	model	probability	larger	than	a).	Computing	the	required	sample	size	with	
snapshot	hybrid	is	akin	to	computing	the	required	sample	size	with	a	power	analysis	
in	null	hypothesis	significance	testing.	A	value	for	a	is	0.75	that	corresponds	to	a	Bayes	
Factor	of	3	(Kass	&	Raftery,	1995)	and	b	equal	to	0.8	reflecting	80%	statistical	power.	
Note	that	any	other	desired	values	for	a	and	b	can	be	chosen.	We	do	not	compute	the	
required	sample	size	with	snapshot	naïve	because	it	falsely	does	not	take	the	
significance	of	the	original	study	into	account	and	is	unsuitable	for	ρ=0.	
		 For	computing	the	required	sample	size	of	the	replication,	we	need	
information	on	the	effect	size	or	test	statistic	and	sample	size(s)	of	the	original	study	
and	the	expected	true	effect	size	in	the	population.	The	four	different	hypothesized	
effect	sizes	or	snapshots	(zero,	small,	medium,	large)	are	used	as	before.	P(πx≥a)	for	
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the	hypothesized	effect	size	is	calculated	using	numerical	integration.	The	required	
sample	size	of	the	replication	can	be	obtained	by	optimizing	the	sample	size	until	b	is	
obtained.	The	required	sample	size	of	the	replication	is	also	computed	when	the	
original	study	is	ignored.	A	researcher	may	opt	to	ignore	information	of	the	original	
study	if	he	or	she	believes	that	the	original	study	does	not	estimate	the	same	true	
effect	or	has	other	reasons	to	discard	this	information.	
		 The	procedure	for	determining	the	sample	size	of	the	replication	is	
programmed	in	R	and	requires	as	input	the	observed	effect	size	and	sample	size	of	the	
original	study,	α‐level,	desired	posterior	model	probability	(a),	and	desired	
probability	(b).	Users	can	also	specify	(besides	specifying	the	α‐level,	a,	and	b)	the	two	
group	means,	standard	deviations,	and	sample	sizes	or	a	t‐value	and	sample	sizes	in	
order	to	compute	the	required	sample	size	in	case	of	a	two‐independent	groups	
design.	The	output	is	a	4×2	table	with	for	each	hypothesized	effect	size	the	required	
total	replication	sample	size	when	the	original	effect	size	is	included	or	excluded.	An	
easy	to	use	web	application	is	available	to	compute	the	required	sample	size	for	
researchers	who	are	not	familiar	with	R	(https://rvanaert.shinyapps.io/snapshot/).	
		 Determining	the	sample	size	of	the	replication	with	snapshot	hybrid	for	the	
example	by	Maxwell	et	al.	(2015)	with	ro	=	.243	and	N=80	resulted	in	the	sample	sizes	
presented	in	Table	7.9	for	each	hypothesized	effect	size,	using	a=0.75	and	b=0.8.	
Higher	sample	sizes	are	needed	for	zero	and	small	hypothesized	effect	size	than	for	
medium	and	strong	hypothesized	effect	size.	When	ignoring	the	original	study,	less	
observations	are	needed	for	nonzero	hypothesized	effect	sizes	than	after	
incorporating	the	original	study.	The	reason	is	that,	after	taking	the	statistical	
significance	of	the	original	effect	into	account,	the	original	effect	provides	evidence	in	
favor	of	a	zero	true	effect.	This	is	also	the	reason	that	more	observations	are	needed	
for	a	zero	hypothesized	effect	size	when	the	original	study	is	ignored	(N=645)	relative	
to	incorporating	it	(N=587).	We	note	that	Maxwell	et	al.	(2015)	conducted	a	power	
analysis	based	on	the	results	of	the	original	study	to	compute	the	required	sample	size	
in	the	replication	and	ended	up	with	a	sample	size	of	172.	The	explanation	for	their	
low	required	sample	size	is	that	they	likely	overestimate	effect	size	with	the	original	
study	by	not	taking	its	statistical	significance	into	account.	Sample	size	of	the	
replication	obtained	with	snapshot	hybrid	may	also	be	larger	than	the	sample	size	
obtained	with	a	power	analysis,	because	four	different	hypothesized	effect	sizes	are	
examined	with	snapshot	hybrid	instead	of	one	in	a	usual	power	analysis.	However,	
this	will	only	have	a	minor	influence	since	the	posterior	model	probability	for	at	least	
two	out	of	four	effect	sizes	will	be	small	if	the	sample	size	is	large.	
		 Finally,	we	emphasize	that	snapshot	hybrid	is	sensitive	to	the	observed	effect	
size	in	the	original	study.	An	observed	effect	size	in	the	original	study	close	to	a	
hypothesized	effect	size	results	in	a	smaller	required	sample	size	for	the	replication	
than	if	the	observed	effect	size	substantially	deviates	from	the	hypothesized	effect	
size.	Our	web	application	can	be	used	to	examine	the	sensitivity	of	the	required	
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sample	size	to	the	results	of	the	original	study.	This	provides	information	on	how	
much	evidence	there	is	for	a	particular	hypothesized	effect	size	in	the	original	study	
after	taking	into	account	statistical	significance	in	this	study.	The	first	column	is	
affected	by	the	statistics	of	the	original	study,	whereas	the	last	is	not	because	it	
ignores	the	original	study.	For	instance,	if	Maxwell	et	al.	(2015)	had	postulated	ro	=	
.243	and	N=800,	the	required	sample	size	for	the	replication	by	taking	into	account	
the	information	of	the	original	study	is	3,691,	561,	a	sample	size	of	less	than	4,	and	
1,521	for	ρ=0;	0.1;	0.3;	0.5,	respectively.	The	reason	that	only	very	few	observations	
are	required	for	medium	hypothesized	effect	size	and	very	large	sample	size	for	zero	
and	large	hypothesized	effect	size	is	that	the	original	study	provides	strong	evidence	
of	a	close	to	medium	true	effect	size.		

Table	7.9.	Required	sample	size	computed	with	snapshot	hybrid	based	on	characteristics	of	the	
original	study	as	described	in	Maxwell	et	al.	(2015);	ro	=	.243	and	N=80.		

	 With	original	study	 Without	original	study	

ρS=0	 587	 645	

ρS=0.1	 709	 664	

ρS	=0.3	 223	 215	

ρS	=0.5	 284	 116	

	

		 Sample	size	was	computed	with	snapshot	hybrid	for	a	desired	posterior	
model	probability	of	a=0.75	and	the	desired	probability	of	observing	a	posterior	
model	probability	larger	than	a	was	b=0.8.	The	hypothesized	effect	size	was	equal	to	
ρS=0	(no	effect),	0.1	(small),	0.3	(medium),	and	0.5	(large).	The	penultimate	column	
refers	to	the	required	sample	size	where	information	of	the	original	study	is	included	
and	the	last	column	where	this	information	is	excluded.		

7.7		 Conclusion	and	discussion	

		 The	high	number	of	statistical	significant	findings	in	the	literature	(e.g.,	
Fanelli,	2010a;	Fanelli,	2012;	Sterling	et	al.,	1995)	does	not	match	the	average	low	
statistical	power	(Bakker	et	al.,	2012;	Button	et	al.,	2013;	Cohen,	1990),	and	raises	
concerns	about	the	reliability	of	published	findings.	Several	projects	recently	
systematically	replicated	published	studies	in	medicine	(Begley	&	Ellis,	2012),	
psychology	(RPP;	Open	Science	Collaboration,	2015),	and	economics	(EE‐RP;	Camerer	
et	al.,	2016)	to	examine	their	replicability.	Characteristic	of	all	these	projects	is	that	
most	effects	were	originally	statistically	significant,	but	not	significant	in	the	
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replication.	Problems	with	traditional	methods	to	analyze	these	results	are	that	(1)	
NHST	is	not	informative	for	the	magnitude	of	the	true	effect	size,	(2)	no	evidence	can	
be	obtained	for	a	true	zero	effect,	and	(3)	they	do	not	take	into	account	the	statistical	
significance	of	the	original	study.	To	solve	these	problems,	we	developed	a	method	
(snapshot	Bayesian	hybrid	meta‐analysis	method,	snapshot	hybrid	for	short)	that	
computes	the	posterior	model	probability	for	a	set	of	effect	sizes	(no,	small,	medium,	
and	large	effect)	by	statistically	combining	the	original	study	and	replication,	while	at	
the	same	time	taking	the	statistical	significance	of	the	original	study	into	account.	
Desirable	properties	of	snapshot	hybrid	are	its	few	assumptions,	its	straightforward	
interpretation	as	the	probability	that	the	true	effect	size	is	zero,	small,	medium	or	
large,	and	the	ease	with	which	posterior	model	probabilities	can	be	recalculated	using	
different	sets	of	prior	model	probabilities.		
		 Researchers	can	apply	snapshot	hybrid	with	the	R	function	“snapshot”	in	the	
“puniform”	package	(package	can	be	installed	with	the	following	R	code	
devtools::install_github(“RobbievanAert/puniform”).	The	“req_ni_r”	function	which	is	
also	in	the	“puniform”	package	can	be	used	for	computing	the	required	sample	size	of	
the	replication	to	achieve	a	certain	posterior	model	probability	for	hypothesized	effect	
sizes	equal	to	zero,	small,	medium,	and	large,	akin	to	power	analysis.	Researchers	not	
familiar	with	R	can	use	the	web	application	
(https://rvanaert.shinyapps.io/snapshot/)	for	applying	snapshot	hybrid	and	
computing	the	required	sample	size	of	the	replication.	
		 We	examined	the	performances	of	snapshot	hybrid	and	a	method	that	does	
not	take	into	account	that	the	original	study	is	statistically	significant	(snapshot	
naïve).	Our	analysis	shows	that	snapshot	naïve	hardly	ever	can	provide	evidence	in	
favor	of	a	true	zero	effect;	even	if	both	original	and	replication	effect	have	a	sample	
size	of	1,000,	the	expected	posterior	model	probability	in	favor	of	a	small	effect	is	
close	to	the	prior	model	probability	of	.25.	Hence,	we	recommend	not	using	any	
method	that	does	not	take	into	account	statistical	significance	of	the	original	study	
(including	fixed‐effect	meta‐analysis)	when	the	goal	is	examining	if	a	nonzero	true	
effect	size	exists.	Snapshot	naïve	outperformed	snapshot	hybrid	for	medium	true	
effect	size	and	sample	sizes	of	300	per	study,	and	for	large	true	effect	size	and	sample	
sizes	of	31.	Thus,	we	only	recommend	using	methods	that	do	not	correct	for	statistical	
significance	in	the	original	study	when	true	effect	size	is	strongly	suspected	to	be	
large,	or	medium	in	combination	with	large	sample	sizes	(>	300)	of	both	the	original	
study	and	the	replication.	
	 By	taking	the	statistical	significance	of	the	original	effect	into	account	
snapshot	hybrid	yields	accurate	evaluations	of	not	only	zero	true	effect	size,	but	larger	
true	effect	size	as	well.	The	probability	of	making	the	correct	decision	with	snapshot	
hybrid,	based	on	posterior	probabilities	larger	than	.75,	is	at	least	0.8	(akin	to	a	power	
of	0.8)	for	sample	sizes	in	between	300	and	1,000	when	ρ=0	or	ρ=0.1,	between	96	and	
300	when	ρ=0.3,	and	between	55	and	96	when	ρ=0.5.	Due	to	its	accurate	evaluations,	
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particularly	if	true	effect	size	is	zero,	we	recommend	using	snapshot	hybrid	when	
evaluating	effect	size	based	on	a	statistically	significant	original	study	and	a	
replication.	Importantly,	our	results	also	confirm	previous	research	(e.g.,	Etz	&	
Vandekerckhove,	2016;	Maxwell	et	al.,	2015)	that	it	is	hard	to	obtain	conclusive	
results	about	the	magnitude	of	the	true	effect	size	in	situations	with	sample	sizes	that	
are	illustrative	for	current	research	practice.	
		 Several	conclusions	can	be	drawn	from	the	application	of	snapshot	hybrid	to	
the	data	of	RPP	and	EE‐RP.	First,	in	the	majority	of	study‐pairs	in	RPP	no	evidence	was	
found	for	any	of	the	true	effects,	as	opposed	to	in	EE‐RP	where	evidence	was	found	for	
one	true	effect	size	considering	a	zero,	small,	medium,	or	large	true	effect	size	in	about	
80%	of	the	study‐pairs.	This	shows	that	sample	sizes	of	the	original	study	and	
replication	in	RPP	were	generally	often	not	large	enough	to	draw	definite	conclusions	
about	the	magnitude	of	the	true	effect	size	(e.g,	Etz	&	Vandekerckhove,	2016;	Maxwell	
et	al.,	2015).	Second,	true	effect	size	was	generally	higher	in	EE‐RP	than	in	RPP.	
However,	evidence	in	favor	of	the	null	hypothesis	was	found	for	only	13.4%	of	the	
study‐pairs	in	RPP,	as	opposed	to	the	much	higher	percentage	of	statistically	
nonsignificant	replications	in	RPP	(73.1%).	This	is	in	line	with	the	argumentation	of	
Maxwell	et	al.	(2015),	who	argue	that	sample	sizes	of	the	replications	in	RPP	are	
generally	too	small	to	draw	conclusions	on	the	absence	of	a	true	effect.	Finally,	within	
RPP	true	effect	size	was	generally	lower	for	study‐pairs	in	social	than	cognitive	
psychology.	
		 Our	study	and	snapshot	hybrid	have	several	limitations.	First,	we	analytically	
evaluated	the	statistical	properties	of	the	snapshot	hybrid	and	snapshot	naïve	by	
assuming	equal	sample	sizes	of	the	original	study	and	replication.	Most	often	their	
sample	sizes	are	somewhat	different,	with	the	replication	generally	having	larger	
sample	size	than	the	original	study.	Hence,	our	results	on	statistical	properties	should	
be	considered	as	illustrations	of	the	effect	of	sample	size	on	the	performance	of	both	
snapshot	naïve	and	snapshot	hybrid.	Note	that	our	web	application	can	be	used	to	
examine	what	the	effect	is	of	different	sample	sizes	of	the	original	study	when	
calculating	the	required	replication	sample	size.	
		 A	limitation	of	snapshot	hybrid	seems	to	be	the	requirement	that	the	original	
study	is	statistically	significant.	However,	most	studies	in	the	social	sciences	contain	
statistically	significant	results;	about	95%	of	the	studies	in	psychology	contain	
significant	results	(e.g.,	Fanelli,	2012;	Sterling	et	al.,	1995)	and	97%	and	89%	of	the	
original	findings	in	RPP	(Open	Science	Collaboration,	2015)	and	EE‐RP	(Camerer	et	al.,	
2016)	were	statistically	significant.	Another	apparent	limitation	of	snapshot	hybrid	is	
that	it	assumes	that	the	same	true	effect	is	underlying	the	original	study	and	
replication.	However,	an	exact	replication	is	highly	similar	to	an	original	study	and	no	
or	a	small	amount	of	heterogeneity	in	true	effect	size	may	be	expected.	Furthermore,	
two	studies	are	not	sufficient	to	estimate	the	amount	of	heterogeneity	(e.g.,	Borenstein	
et	al.,	2010;	IntHout	et	al.,	2014).	
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		 Our	current	implementation	of	snapshot	hybrid	assumes	discrete	values	of	
hypothesized	effect	size,	rather	than	distributions	of	hypothesized	effect	size	as	in	
continuous	Bayesian	analyses.	A	disadvantage	of	using	discrete	values	is	that	if	the	
true	effect	size	is	in	between	these	values,	the	results	of	our	analysis	on	statistical	
properties	do	no	longer	apply.	That	is,	higher	samples	sizes	are	needed	to	obtain	
evidence	in	favor	of	the	discrete	value	closest	to	the	actual	true	effect	size.	Other	
hypothesized	effect	sizes	can	be	used	as	a	sort	of	sensitivity	analysis	to	examine	
whether	the	true	effect	size	is	in	between	the	originally	proposed	hypothesized	effect	
sizes.	For	example,	if	the	true	effect	size	is	ρ=0.2	and	thus	between	ρ=0.1	and	ρ=0.3,	
the	highest	posterior	model	probability	will	be	observed	for	ρ=0.2	when	hypothesized	
effect	sizes	ρ=0,	ρ=0.1,	ρ=0.2,	and	ρ=0.3	are	chosen.	Snapshot	hybrid	could	also	be	
implemented	using	intervals	of	hypothesized	effect	size,	say	0,	0‐0.1,	0.1‐0.3,	0.3‐0.5,	>	
0.5,	while	keeping	all	of	its	desirable	properties	except	for	one:	The	posterior	model	
probabilities	can	no	longer	be	easily	updated	using	Equation	(4)	when	assuming	other	
than	equal	prior	model	probabilities.	However,	we	chose	for	discrete	hypothesized	
effect	size	values	in	the	current	implementation	of	snapshot	hybrid	because	we	
believe	most	researchers	think	in	terms	of	zero,	small,	medium,	and	large	effect	size,	
and	wish	to	carry	out	power	analyses	assuming	these	effect	sizes	as	in	our	web	
application.		
		 Another	limitation	of	snapshot	hybrid	in	its	current	implementation	is	that	it	
can	only	deal	with	one	(statistically	significant)	original	study	and	one	replication.	
Including	more	than	one	original	study	or	replication	will	usually	yield	more	
divergence	in	the	posterior	model	probabilities	of	the	set	of	effect	sizes	and	enable	
researchers	to	draw	more	reliable	conclusions.	We	will	extend	the	current	snapshot	
hybrid	method	such	that	it	can	deal	with	multiple	original	studies	and	replications	in	
the	future.	A	final	limitation	is	that	the	results	of	snapshot	hybrid	will	be	biased	in	case	
of	questionable	research	practices	or	p‐hacking	in	the	original	study.	Questionable	
research	practices	bias	the	p‐values	(e.g.,	Bruns	&	Ioannidis,	2016;	Simonsohn	et	al.,	
2014a;	Ulrich	&	Miller,	2015;	van	Aert,	Wicherts,	et	al.,	2016;	van	Assen	et	al.,	2015)	
and	therefore	also	the	truncated	density	of	the	original	study.	The	extent	to	which	the	
results	of	snapshot	hybrid	becomes	biased	due	to	questionable	research	practices	may	
be	subject	for	further	study.	We	note,	however,	that	no	existing	method	can	deal	with	
questionable	research	practices.		
		 To	conclude,	the	unrealistic	high	rate	of	statistically	significant	findings	in	the	
published	literature	and	the	results	of	RPP	and	EE‐RP	suggest	that	the	literature	is	
distorted	with	false	positive	findings	and	too	high	effect	size	estimates.	We	propose	
and	recommend	snapshot	hybrid	for	evaluating	the	magnitude	of	the	true	effect	size	
underlying	an	original	study	and	replication	that	computes	the	posterior	model	
probability	for	a	zero,	small,	medium,	and	large	hypothesized	effect.	The	method	has	
the	advantage	over	other	existing	methods,	because	it	is	the	first	method	that	adjusts	
for	publication	bias	by	taking	statistical	significance	of	the	original	study	into	account.	
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Moreover,	the	method	can	also	be	used	for	determining	the	sample	size	in	the	
replication	akin	to	power	analysis	in	NHST.	The	snapshot	hybrid	method	is	easy	to	
understand	and	to	apply	and	provides	useful	insights	in	evaluating	an	original	study	
and	replication.



 

 

	 	



 

 

CHAPTER	8	

	

Multi‐step	estimators	of	the	between‐study	
variance:	The	relationship	with	the	Paule‐
Mandel	estimator	

	
	

Abstract	

A	wide	variety	of	estimators	of	the	between‐study	variance	are	available	in	random‐
effects	meta‐analysis.	Many,	but	not	all,	of	these	estimators	are	based	on	the	method	
of	moments.	The	DerSimonian‐Laird	estimator	is	widely	used	in	applications,	but	the	
Paule‐Mandel	estimator	is	an	alternative	that	is	now	recommended.	Recently,	
DerSimonian	and	Kacker	have	developed	two‐step	moment	based	estimators	of	the	
between‐study	variance.	We	extend	these	two‐step	estimators	so	that	multiple	(more	
than	two)	steps	are	used.	We	establish	the	surprising	result	that	the	multi‐step	
estimator	tends	towards	the	Paule‐Mandel	estimator	as	the	number	of	steps	becomes	
large.	Hence,	the	iterative	scheme	underlying	our	new	multi‐step	estimator	provides	a	
hitherto	unknown	relationship	between	two‐step	estimators	and	Paule‐Mandel	
estimator.	Our	analysis	suggests	that	two‐step	estimators	are	not	necessarily	distinct	
estimators	in	their	own	right,	instead	they	are	quantities	that	are	closely	related	to	the	
usual	iterative	scheme	that	is	used	to	calculate	the	Paule‐Mandel	estimate.	The	
relationship	that	we	establish	between	the	multi‐step	and	Paule‐Mandel	estimator	is	
another	justification	for	the	use	of	the	latter	estimator.	Two‐step	and	multi‐step	
estimators	are	perhaps	best	conceptualized	as	approximate	Paule‐Mandel	estimators.	

	

	

This	chapter	is	published	as	van	Aert,	R.	C.	M.,	&	Jackson,	D.	(2018).	Multi‐step	
estimators	of	the	between‐study	variance:	The	relationship	with	the	Paule‐Mandel	
estimator.	Statistics	in	Medicine.	doi:	doi:10.1002/sim.7665
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8.1		 Introduction	

		 Meta‐analysis	statistically	combines	effect	size	estimates	from	different	
studies	in	order	to	calculate	a	quantitative	summary	of	the	evidence	base.	Two	
important	outcomes	from	a	meta‐analysis	are	the	estimates	of	the	overall	effect	size	
and	the	between‐study	variance	(the	variance	of	the	studies’	true	effect	sizes).	
Between‐study	heterogeneity	refers	to	the	possibility	that	there	is	more	variation	in	
the	studies’	observed	effect	sizes	than	what	would	be	expected	by	sampling	variability	
alone	(DerSimonian	&	Laird,	1986;	Higgins	&	Thompson,	2002),	and	is	often	present	
in	meta‐analyses	(Higgins,	2008;	Higgins	et	al.,	2009;	Kontopantelis	et	al.,	2013).	
Characteristics	of	the	included	studies	(e.g.,	differences	between	populations	from	
which	participants	were	sampled	or	treatments	across	studies)	can	be	incorporated	as	
moderators	in	meta‐regressions	to	explore	and	explain	the	between‐study	
heterogeneity	(Borenstein	et	al.,	2009;	Thompson	&	Sharp,	1999;	van	Houwelingen,	
Arends,	&	Stijnen,	2002).	However,	random‐effects	meta‐analyses	are	often	used	to	
account	for,	but	not	explain,	between‐study	heterogeneity.	
		 A	wide	variety	of	estimators	are	available	for	the	between‐study	variance.	
Two	recent	papers	(Langan	et	al.,	2016;	Veroniki	et	al.,	2016)	review	existing	research	
on	these	estimators	and	recommended	either	the	Paule‐Mandel	(PM)	estimator	(Paule	
&	Mandel,	1982)	or	the	restricted	maximum	likelihood	(REML)	estimator	
(Raudenbush,	2009).	However,	the	DerSimonian‐Laird	(DL)	estimator	is	most	often	
used	in	practice	(Jackson,	Bowden,	&	Baker,	2010;	Kontopantelis	et	al.,	2013;	Wiksten	
et	al.,	2016).	The	popularity	of	the	DL	estimator	is	due	to	its	simplicity,	because	it	is	
calculated	from	an	easily	computed	non‐iterative	method,	and	also	because	it	is	
already	familiar	to	applied	meta‐analysts.	In	this	chapter,	we	focus	on	estimators	that	
are	motivated	by	the	method	of	moments,	which	includes	the	DL	and	PM	estimators,	
but	not	REML.		
			 In	particular,	we	use	the	general	method	of	moments	estimator	(i.e.,	with	an	
arbitrary	set	of	weights	for	the	effect	sizes)	proposed	by	DerSimonian	and	Kacker	
(2007)	to	develop	a	new	multi‐step	DL	estimator.	This	idea	extends	the	two‐step	DL	
(DL2)	estimator	which	was	also	proposed	by	DerSimonian	and	Kacker	(2007).	The	
usual	(one‐step)	DL	estimator	uses	the	inverse	of	the	studies’	within‐study	sampling	
variances	as	weights	to	estimate	the	between‐study	variance.	In	the	two	step‐
estimation	procedure,	the	estimate	of	the	usual	DL	estimator	is	calculated	in	the	first	
step	and	this	estimate	is	then	included	in	the	weights	of	the	second	step.	Full	details	of	
the	DL2	estimator	are	provided	in	section	8.3.	The	statistical	properties	of	the	DL2	
estimator	are	largely	unknown,	because	the	method	has	rarely	been	topic	of	further	
study.	Bhaumik	et	al.	(2012)	studied	the	statistical	properties	of	the	DL2	estimator	and	
concluded	that	for	rare	events	both	the	DL2	and	PM	estimators	are	negatively	biased.	
It	was	our	initial	intuition	that	allowing	the	number	of	steps	to	tend	to	infinity	in	our	
new	multi‐step	estimator	would	define	a	new	type	of	estimator.	However,	working	
empirically	to	begin	with	and	then	mathematically,	we	will	demonstrate	that	the	PM	
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estimator	is	obtained	if	the	number	of	steps	tends	towards	infinity.	Hence,	we	will	
instead	establish	the	relationship	between	the	two‐step	estimators	and	PM	estimator	
which	is	another	justification	for	the	use	of	the	Paule‐Mandel	estimator.		
		 The	rest	of	this	chapter	is	set	out	as	follows.	We	continue	with	describing	the	
random‐effects	model	for	meta‐analysis	in	section	8.2.	In	section	8.3,	we	describe	
three	existing	moments	based	estimators,	DL,	DL2,	and	PM.	Our	new	multi‐step	
estimator	is	introduced	in	section	8.4.	Subsequently,	we	apply	these	estimators	to	
three	contrasting	examples	in	section	8.5	where	we	empirically	show	that	the	multi‐
step	estimator	tends	towards	the	PM	estimator	as	the	number	of	steps	becomes	large,	
where	this	convergence	occurs	quickly	in	practice.	Section	6	contains	mathematics	
that	formally	establishes	the	relationship	between	the	multi‐step	estimators	and	PM	
estimator.	We	explore	the	use	of	meta‐regression	models	in	section	8.7,	and	we	
conclude	with	a	short	discussion	in	section	8.8.	

8.2		 The	random‐effects	model	

		 The	random‐effects	model	assumes	that	the	effect	size	estimates	 ௜,	i=1,	...,	n,	
are	extracted	from	separate	studies.	This	model	can	be	written	as	

	 ௜ ௜ ௜	 (1)	

where	 	is	the	average	true	effect	size,	 ௜	is	a	random	effect	indicating	the	difference	
between	the	 th	study’s	true	effect	size	and	 ,	and	 ௜	is	the	 th	study’s	sampling	error.	
It	is	commonly	assumed	that	 ௜

ଶ 	where	 ଶ	is	the	between‐study	variance	
and	 ௜ ௜

ଶ ,	where	 ௜
ଶ	is	the	within‐study	sampling	variance	of	the	 th	study.	

Furthermore,	all	 ௜	and	 ௜	are	assumed	to	be	mutually	independent.	The	within‐study	
sampling	variances	 ௜

ଶ	are	usually	estimated	in	practice,	and	then	assumed	to	be	

known	in	the	analysis.	We	will	emphasize	that	the	 ௜
ଶ	are	estimated	by	writing	 ௜

ଶ	as	
their	estimates.	
		 The	parameter	 	is	usually	of	primary	interest.	The	usual	method	for	making	
inferences	about	 	initially	estimates	 ଶ	and	then	treats	the	resulting	estimate	as	fixed	
and	known	(Biggerstaff	&	Tweedie,	1997;	Veroniki	et	al.,	2016).	Hence,	the	

conventional	weights	in	the	random‐effects	model,	 ௜
ଶ ଶ ,	are	treated	as	fixed	

and	known	and	the	usual	inferential	procedure	for	 	is	straightforward	(Borenstein	et	

al.,	2009).	However,	the	estimate	of	the	between‐study	variance,	 ଶ,	is	our	primary	
interest	here	with	moment	based	estimators	as	our	focus.	

8.3		 Moment	based	methods	for	estimating	the	between‐study	variance	

		 Most	of	the	moment	based	estimators	for	 ଶ	are	a	special	case	of	a	general	
method	of	moments	estimator	(DerSimonian	&	Kacker,	2007).	To	derive	this	general	
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estimation	method,	DerSimonian	and	Kacker	(2007)	propose	methodology	for	
estimating	 ଶ	using	an	arbitrary	set	of	weights	 ௜,	i=1,	...,	n,	where	all	 ௜	are	fixed	
positive	constants.	To	estimate	 ଶ,	DerSimonian	and	Kacker	(2007)	propose	equating	

௜
௡
௜ୀଵ ௜

ଶ,	where	 ௜
௡
௜ୀଵ ௜ ௜

௡
௜ୀଵ ,	to	its	expected	value.	As	explained	by	

DerSimonian	and	Kacker	(2007),	this	results	in	the	estimating	equation	

	
ெெ
ଶ ௜

௡
௜ୀଵ ௜

ଶ
௜

௡
௜ୀଵ ௜

ଶ
௜
ଶ௡

௜ୀଵ ௜
ଶ

௜
௡
௜ୀଵ

௜
௡
௜ୀଵ ௜

ଶ௡
௜ୀଵ ௜

௡
௜ୀଵ

	 (2)	

where	negative	estimates	 ெெ
ଶ 	from	equation	(2)	are	truncated	to	zero	(because	 ଶ

).	An	often	overlooked	point	is	that	the	calculation	of	the	expectation	of	 ௜
௡
௜ୀଵ ௜

ଶ,	that	gives	rise	to	the	estimating	equation	(2),	ignores	the	uncertainty	in	the	 ௜
ଶ	

and	has	taken	 ௜
ଶ

௜
ଶ.	Although	when	presenting	equation	(2),	we	have	emphasized	

that	the	estimates	 ௜
ଶ	are	used	in	the	calculation,	this	does	not	clearly	convey	the	fact	

that	the	estimation	does	not	take	their	uncertainty	into	account.	Kulinskaya	and	
Dollinger	(2015)	and	Hoaglin	(2016a)	criticize	moment	based	methods	for	this	type	of	

reason,	because	ignoring	uncertainty	in	 ௜
ଶ	may	cause	bias	in	the	estimate	of	 ଶ	

especially	if	the	sample	size	of	the	studies	is	small.	By	ignoring	the	uncertainty	in	the	

within‐study	variances	we	have	that	 ெெ
ଶ 	is	unbiased	before	truncation	to	zero,	but	a	

positive	bias	in	the	estimator	is	introduced	by	the	truncation	(Rukhin,	2013;	
Viechtbauer,	2005).	

8.3.1		 The	DerSimonian‐Laird	estimator	

		 The	DL	estimator	(DerSimonian	&	Laird,	1986),	 ஽௅
ଶ ,	is	obtained	by	taking	 ௜

௜
ଶ	in	equation	(2).	We	then	have	 ௜

௡
௜ୀଵ ௜

ଶ
௜
ଶ௡

௜ୀଵ ௜
ଶ

௜
௡
௜ୀଵ ,	so	that	

equation	(2)	simplifies	when	using	this	standard	set	of	weights.	Negative	estimates	

are	again	truncated	to	zero.	Uncertainty	in	 ௜
ଶ	is,	as	in	equation	(2),	neglected	by	

treating	the	weights	 ௜ ௜
ଶ	as	fixed	constants.	This	may	result	in	bias	when	

estimating	 ଶ	using	the	DL	estimator	especially	if	sample	sizes	of	the	studies	is	small	
(Hoaglin,	2016a;	Kulinskaya	&	Dollinger,	2015).	

8.3.2		 The	two‐step	DerSimonian‐Laird	estimator	

		 DerSimonian	and	Kacker	(2007)	propose	an	alternative	estimator	that	is	an	

extension	of	the	DL	estimator.	The	usual	DL	estimate	 ஽௅
ଶ ,	described	in	the	previous	

section,	is	calculated	in	the	first	step.	The	two‐step	DL	(DL2)	estimator	adds	a	second	

step	by	incorporating	 ஽௅
ଶ 	into	the	weights,	and	computes	 ஽௅మ

ଶ 	using	estimating	

equation	(2)	with	 ௜ ௜
ଶ

஽௅
ଶ .	
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		 To	describe	the	two‐step	DerSimonian‐Laird	estimator	more	explicitly,	and	
also	to	define	the	PM	and	multi‐step	DL	estimators	below,	it	is	convenient	to	define	
the	quantity	

	
ீாே

ଶ ௜
ଶ ଶ

௜
ଶ ଶ

௡

௜ୀଵ

	 (3)	

where	 ଶ
௜

௡
௜ୀଵ ௜

ଶ ଶ ௡
௜ୀଵ ௜

ଶ ଶ .	Then	 ீாே 	is	the	usual	 	
statistic	used	in	meta‐analysis	(Cochran,	1954;	Hoaglin,	2016b).	From	equation	(2)	

with	 ௜ ௜
ଶ

஽௅
ଶ ,	we	have	

஽௅మ
ଶ ீாே ஽௅

ଶ
௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅
ଶ

௡
௜ୀଵ ௜

ଶ
஽௅
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅
ଶ 	 (4)	

where	we	again	truncate	negative	estimates	to	zero.	The	weights	 ௜ ௜
ଶ

஽௅
ଶ 	

are	intuitively	appealing,	because	we	then	weight	by	estimates	of	the	studies’	total	
precisions	which	are	also	the	standard	weights	when	making	inferences	about	 	in	the	
random‐effects	model	(Borenstein	et	al.,	2009;	Shadish	&	Haddock,	2009).	Using	these	

weights	raises	further	statistical	issues,	because	they	are	now	functions	of	both	the	 ௜
ଶ	

and	the	estimated	between‐study	variance	 ஽௅
ଶ .	There	is	statistical	error	in	both	of	

these	estimated	variance	components,	and	so	treating	the	weights	 ௜ ௜
ଶ

஽௅
ଶ 	

as	fixed	constants	continues	to	have	the	potential	to	have	unfortunate	implications	for	
the	estimation.	
		 It	is	possible	to	use	other	estimators	in	the	first	step,	and	DerSimonian	and	
Kacker	(DerSimonian	&	Kacker,	2007)	also	propose	using	the	Cochran	ANOVA	
estimator	(Cochran,	1954;	Hedges,	1983)	that	is	based	on	an	unweighted	sum	of	
squares	for	this	purpose.	However,	the	DL	estimator	is	so	common	in	application	that	
we	only	explore	the	use	of	two‐step	and	multi‐step	estimators	that	use	this	particular	
estimator.	Nonetheless,	our	main	results	will	apply	regardless	of	the	type	of	estimator	
used	in	the	first	step	as	we	will	explain	below.	Hence,	generalisability	of	our	results	is	
not	restricted	by	using	the	DL	estimator	in	the	first	step,	but	the	results	also	apply	if,	
for	instance,	the	Cochran	ANOVA	estimator	is	used	in	the	first	step.	

8.3.3		 The	Paule‐Mandel	estimator	

		 Another	moment	based	estimator	for	 ଶ	is	the	Paule‐Mandel	(PM)	estimator	
(Paule	&	Mandel,	1982).	This	estimation	method	exploits	the	fact	that	 ீாே

ଶ

௡ିଵ
ଶ ,	so	that	 ௉ெ

ଶ 	is	obtained	by	matching	 ீாே
ଶ 	to	its	expected	value.	Hence,	 ௉ெ

ଶ 	is	
the	solution	to	
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	 ீாே ௉ெ
ଶ 	 (5)	

For	any	given	dataset,	 ீாே
ଶ 	is	a	monotonically	decreasing	continuous	function	of	

ଶ.	As	a	consequence,	equation	(5)	always	provides	a	unique	estimate	if	 ீாே

	(DerSimonian	&	Kacker,	2007;	Knapp,	Biggerstaff,	&	Hartung,	2006;	
Viechtbauer,	2007b;	Viechtbauer,	López‐López,	Sánchez‐Meca,	&	Marín‐Martínez,	
2015).	If	 ீாே 	then	no	positive	solution	to	the	estimating	equation	(5)	

exists,	and	we	take	 ௉ெ
ଶ .	The	estimating	equation	(5)	is	non‐linear	and	so	must	be	

solved	numerically,	but	this	is	straightforward	in	practice.	An	empirical	Bayes	
estimator	for	estimating	 ଶ	(Berkey,	Hoaglin,	Mosteller,	&	Colditz,	1995;	Morris,	1983)	
was	developed	independently,	but	this	has	subsequently	been	shown	to	be	equivalent	
to	the	PM	estimator	(Veroniki	et	al.,	2016;	Viechtbauer	et	al.,	2015).	
		 Unlike	the	DL	and	DL2	estimator	and	other	moment	based	estimators,	the	PM	
estimator	does	not	directly	use	estimating	equation	(2).	This	is	because	the	general	
method	of	moments	treats	the	weights	 ௜	as	fixed	(and	therefore	known)	constants,	

but	the	PM	estimator	uses	weights	 ௜
ଶ ଶ 	that	are	explicitly	unknown	(because	

ଶ	is	unknown).	The	PM	estimator	is	motivated	using	the	method	of	moments,	but	
otherwise	there	is	no	direct	connection	between	the	PM	estimator	and	other	moment	
based	estimators.	We	introduce	our	new	multi‐step	estimator	in	the	next	section,	and	
we	will	illustrate	the	relationship	between	the	PM	and	the	two‐step	estimator.	

8.4		 The	multi‐step	DerSimonian‐Laird	estimator	

		 In	this	section,	we	develop	the	multi‐step	DL	estimator	as	a	natural	extension	
of	the	DL2	estimator.	From	equation	(4),	we	have	that	the	DL2	estimator	is	simply	the	
estimate	from	the	more	general	estimating	equation	(2)	where	the	weights	are	 ௜

௜
ଶ

஽௅
ଶ .	The	key	observation	is	that	the	two‐step	estimator	uses	weights	that	are	

the	reciprocal	of	the	estimated	total	study	variances,	where	the	between‐study	
variance	is	estimated	using	the	usual	DL	estimator.	A	natural	way	to	extend	this	
estimator	to	define	a	three‐step	estimator	is	to	use	weights	that	are	reciprocal	of	the	
estimated	total	study	variances,	where	the	between‐study	variance	is	estimated	using	

the	DL2	estimator.	Hence,	we	define	 ஽௅య
ଶ 	to	be	

஽௅య
ଶ ீாே ஽௅మ

ଶ
௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅మ
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅మ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅మ
ଶ

௡
௜ୀଵ ௜

ଶ
஽௅మ
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅మ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅మ
ଶ 	

where	as	before	we	truncate	negative	estimates	to	zero.	We	can	then	define	a	four‐

step	estimator	in	a	similar	way,	using	equation	(2)	with	weights	 ௜ ௜
ଶ

஽௅య
ଶ ,	

and	then	a	five‐step	estimator	using	weights	 ௜ ௜
ଶ

஽௅ర
ଶ ,	and	so	on.	In	general,	

we	define	the	 th	step	DL	estimator	as	
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஽௅ೖశభ
ଶ ீாே ஽௅ೖ

ଶ
௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௡
௜ୀଵ ௜

ଶ
஽௅ೖ
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ 	 (6)	

for	 ,	where	 ஽௅భ
ଶ 	is	defined	to	be	the	usual	DL	estimator	 ஽௅

ଶ .	As	usual,	we	truncate	

the	resulting	estimate	from	equation	(6)	to	zero	if	the	solution	is	negative.	Written	
explicitly	in	terms	of	this	truncation,	the	 th	step	DL	estimator	is	

஽௅ೖశభ
ଶ ீாே ஽௅ೖ

ଶ

௡
௜ୀଵ ௜

ଶ
஽௅ೖ
ଶ ௡

௜ୀଵ ௜
ଶ
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ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
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௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௡
௜ୀଵ ௜

ଶ
஽௅ೖ
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ 	

(7)	

In	practice,	we	compute	 ஽௅ೖ
ଶ 	recursively	by	first	computing	 ஽௅

ଶ ,	then	 ஽௅మ
ଶ ,	then	 ஽௅య

ଶ 	

and	so	on	until	we	reach	the	required	value	of	 .	However,	all	of	these	estimators	are	

available	in	closed	form	and	so	it	is	in	principle	also	possible	to	write	 ஽௅ೖ
ଶ 	in	this	way.	

Assuming	that	the	limit	exists,	we	define	
௞→ஶ ஽௅ೖ

ଶ
஽௅ಮ
ଶ .	We	will	see	below	that,	

whenever	convergence	occurs,	 ஽௅ಮ
ଶ

௉ெ
ଶ ,	so	that	instead	of	defining	a	new	

estimator	we	establish	the	relationship	between	existing	estimates	by	taking	this	
limit.	

8.5		 Examples	

		 In	this	section,	we	apply	the	DL,	PM,	DL2,	and	multi‐step	DL	estimator	to	three	
contrasting	examples.	Having	illustrated	our	main	findings	empirically	using	these	
examples,	we	will	demonstrate	them	mathematically	in	section	8.6.	

8.5.1		 Characteristics	of	the	three	examples	

		 Our	first	example	is	a	meta‐analysis	by	Bangert‐Drowns	et	al.	(2004)	studying	
the	effect	of	school‐based	writing‐to‐learn	interventions	on	academic	achievement.	
This	meta‐analysis	consists	of	48	estimated	standardized	mean	differences	(i.e.,	
Hedges’	g).	The	second	example	is	obtained	from	Sterne	et	al.	(2001),	and	is	a	meta‐
analysis	on	the	effectiveness	of	intravenous	magnesium	in	acute	myocardial	
infarction.	This	meta‐analysis	consists	of	sixteen	estimated	log	odds	ratios.	The	third	
example	is	a	meta‐analysis	on	the	efficacy	of	two	treatments	for	post‐traumatic	stress	
disorder	(Ho	&	Lee,	2012).	This	meta‐analysis	consists	of	ten	standardized	mean	
differences.	The	metafor	package	(Viechtbauer,	2010)	was	used	to	calculate	the	DL	
and	PM	estimators,	and	we	used	our	own	bespoke	code	to	recursively	calculate	the	
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multi‐step	DLk	estimator.	R	code	for	applying	these	estimators	to	the	examples	is	
available	via	https://osf.io/paqzm/.		

8.5.2		 Results	

		 Table	8.1	shows	the	DL,	DL2,	 ௞	and	PM	estimates	of	 ଶ	for	all	three	
examples.	For	each	example,	we	calculated	the	multi‐step	DL	estimator	until	the	
th	step	DL	estimator	was	the	same	as	the	 th	step	estimator	up	to	4	decimal	places.	

Convergence	was	taken	to	have	been	reached	at	this	point,	so	that	any	further	steps	
would	result	in	the	same	estimate	to	this	level	of	numerical	accuracy.	From	Table	8.1,	
we	can	see	that	this	convergence	was	reached	in	6,	10	and	4	steps,	for	examples	one,	
two	and	three,	respectively.	Furthermore,	we	can	see	that	in	each	case	the	DL2	
estimate	is	closer	to	the	PM	estimate	than	the	DL	estimate,	and	that	the	DLk	estimate	
converges	to	the	PM	estimate.	The	way	in	which	this	convergence	occurred	was	
different	for	each	example.	For	the	first	example	obtained	from	Bangert‐Drowns	et	al.	
(2004),	the	DL	estimate	was	notably	less	than	the	PM	estimate.	Then	the	DL2	estimate	
took	a	large	step	towards	the	PM	estimator,	and	after	this	convergence	was	quickly	
reached.	For	the	second	example	obtained	from	Sterne	et	al.	(2001),	the	DL	estimate	
was	notably	greater	than	the	PM	estimate	and	once	again	the	DL2	estimate	took	a	large	
step	towards	the	PM	estimator	(and	in	fact	’overshot’	this).	Convergence	of	the	multi‐
step	DL	estimator	was	reasonably	fast	although	the	sequence	produced	by	the	DLk	
estimates	was	not	monotone	until	 .	For	the	third	example	obtained	from	Ho	and	
Lee	(2012),	the	DL	and	PM	estimators	are	similar	and	convergence	was	very	quickly	
reached.	

8.5.3		 Conclusions	

		 Although	the	way	in	which	the	multi‐step	DL	estimator	converged	to	the	PM	
estimator	was	different	in	each	case,	all	three	examples	illustrated	the	surprising	

finding	that	
௞→ஶ ஽௅ೖ

ଶ
஽௅ಮ
ଶ

௉ெ
ଶ .	A	large	number	of	simulations	(see	

https://osf.io/dpuzs/	for	R	code)	using	 ௜ ௜
ଶ	and	 ௜ ௜

ଶ ଶ ,	where	 ଶ	is	
either	the	DL	estimate	or	the	Cochran	ANOVA	estimate,	as	study	weights	in	the	first	
step	confirmed	that	multi‐step	estimators	converge	to	the	PM	estimator.	Hence,	this	
indicates	that	convergence	was	not	only	a	property	of	the	selected	data	sets,	and	that	
convergence	also	occurred	if	the	DL	estimator	was	not	used	in	the	first	step.	Our	
findings	are	in	agreement	with	the	observation	by	DerSimonian	and	Kacker	(2007)	
that	two‐step	estimators	better	approximate	the	method	of	Paule	and	Mandel,	and	the	
conclusion	by	Bhaumik	et	al.	(2012)	that	performance	of	the	DL2	and	PM	estimator	are	
similar.	This	is	because	we	have	observed	that	DL2	is	the	second	step	in	an	iterative	

scheme	that	takes	us	from	 ஽௅
ଶ 	to	 ௉ெ

ଶ .		 	
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Table	8.1.	The	DerSimonian‐Laird	(DL),	two‐step	DerSimonian‐Laird	(DL2),	multi‐step	
DerSimonian‐Laird	DLk	(where	k	refers	to	the	kth	step)	and	Paule‐Mandel	(PM)	estimates	for	
the	three	example	data	sets.	

Estimate	 Bangert‐Drowns	et	al.	(2004)	 Sterne	et	al.	(2001)	 Ho	and	Lee	(2012)	

DL	 0.0455	 0.2239	 0.0076	

DL2	 0.0652	 0.1587	 0.0078	

DL3	 0.0684	 0.1841	 0.0079	

DL4	 0.0688	 0.1736	 0.0079	

DL5	 0.0689	 0.1778	 	

DL6	 0.0689	 0.1761	 	

DL7	 	 0.1768	 	

DL8	 	 0.1765	 	

DL9	 	 0.1766	 	

DL10	 	 0.1766	 	

PM	 0.0689	 0.1766	 0.0079	

8.6		 Proving	(when	convergence	occurs)	that	the	multi‐step	estimator	
converges	to	the	Paule‐Mandel	estimator	

		 As	explained	above,	in	addition	to	our	three	examples,	many	simulated	
datasets	have	shown	that	multi‐step	estimators	converge	to	the	PM	estimator.	In	this	
section,	we	provide	mathematical	proofs	to	formally	establish	this	limit.	We	will	
explain	why	it	is	not	necessary	that	the	DL	estimator	is	used	in	the	first	step,	so	that	
our	findings	apply	to	multi‐step	estimators	regardless	of	the	nature	of	the	estimation	
used	in	the	first	step.	

8.6.1		 Lemma:	Agreement	with	respect	to	truncation	to	zero	of	the	
DerSimonian‐Laird	and	Paule‐Mandel	estimators	

	We	start	by	proving	the	Lemma	that	the	DL	and	the	PM	estimators	always	
agree	in	the	sense	that,	for	any	given	dataset,	they	are	either	both	zero	(if	 ீாே

)	or	both	positive	(if	 ீாே .	It	is	conceptually	appealing	that	
these	two	estimators	agree	in	this	way,	and	this	is	easily	proved,	but	we	do	not	think	
that	this	result	has	been	stated	previously.	
		 Proof:	If	 ீாே ,	where	 ீாே

ଶ 	is	defined	in	equation	(3),	then	
the	PM	estimator	is	truncated	to	zero	as	explained	in	section	8.3.3.	Furthermore,	the	
first	term	in	the	numerator	of	equation	(2)	is	also	 ீாே 	when	the	DL	weights	of	

௜ ௜
ଶ	are	used.	As	noted	in	section	8.3.1,	we	then	also	have	 ௜

௡
௜ୀଵ ௜

ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

௜
௡
௜ୀଵ 	in	the	numerator	of	equation	(2).	Hence,	the	DL	
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estimator	is	also	truncated	to	zero	if	 ீாே .	If	 ீாே 	then,	
immediately	from	their	estimating	equations,	both	the	DL	and	PM	estimators	are	zero.	
Finally,	if	 ீாே 	then	no	truncation	for	either	estimator	is	required,	so	
that	the	DL	and	PM	estimators	are	both	positive.	

8.6.2		 Proving	that	if	convergence	of	the	multi‐step	estimator	occurs	then	it	is	
to	the	Paule‐Mandel	estimate	

		 Having	established	our	Lemma,	we	will	prove	that	the	estimate	of	the	multi‐
step	estimator	equals	the	PM	estimate	if	convergence	occurs.	We	will	prove	this	first	
for	cases	where	the	convergence	is	to	a	positive	estimate	and	then	to	an	estimate	of	
zero.	
	The	case	where	the	estimate	converged	to	is	positive		Assume	that	convergence	

occurs	and	the	resulting	estimate	is	positive,	so	that	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ .	We	

substitute	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ	into	equation	(6),	where	this	equation	correctly	

describes	the	iteration	from	DLk	to	DLk+1	(because	the	estimate	is	positive	and	no	

truncation	is	necessary).	Then	solving	the	resulting	equation	for	 ீாே
ଶ 	results	in	

	
ீாே

ଶ ௜
ଶ ଶ

௜
ଶ ଶ

௡

௜ୀଵ

௡
௜ୀଵ ௜

ଶ ଶ
௜
ଶ ଶ ଶ

௡
௜ୀଵ ௜

ଶ ଶ 	 	

which	from	equation	(5)	means	that	 ଶ
௉ெ
ଶ .	

	The	case	where	the	estimate	converged	to	is	zero			 Assume	that	convergence	

occurs	and	the	resulting	estimate	is	either	zero	or	truncated	to	zero,	so	that	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ .	If	we	substitute	 ஽௅ೖశభ

ଶ
஽௅ೖ
ଶ ଶ 	into	equation	(7),	the	term	in	

square	brackets	of	(7)	simplifies	to	 	and	this	equation	becomes	

	 ீாே 	 (8)	

where	 ௡
௜ୀଵ ௜

ଶ ௡
௜ୀଵ ௜

ସ ௡
௜ୀଵ ௜

ଶ .	Equation	(8)	is	satisfied	only	if	

ீாே ,	from	which	the	Lemma	in	section	8.6.1	implies	that	both	the	

DL	and	PM	estimators	are	zero	(which	is	also	the	assumed	value	of	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ

ଶ).	Hence,	if	the	convergence	of	the	multi‐step	estimator	is	to	zero	then	the	PM	

estimate	is	also	zero,	so	that	 ଶ
௉ெ
ଶ .		

Failure	of	convergence	of	the	multi‐step	estimator			 Although	we	have	observed	
convergence	of	the	multi‐step	estimators	in	thousands	of	simulated	datasets	(see	
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https://osf.io/dpuzs/),	it	is	possible	to	create	examples	where	the	multi‐step	
estimator	does	not	converge.	As	a	concrete	example	of	non‐convergence,	imagine	a	
meta‐analysis	with	four	effect	sizes	 ଵ ,	 ଶ ,	 ଷ ,	and	 ସ ,	

with	corresponding	 ଵ
ଶ

ଶ
ଶ 	and	 ଷ

ଶ
ସ
ଶ .	The	DL	estimate	is	 ஽௅

ଶ

.	Using	this	 ஽௅
ଶ 	in	estimating	equation	(4)	gives	 ஽௅మ

ଶ .	Hence	 ஽௅య
ଶ 	is	then	the	

usual	DL	estimator	and,	instead	of	achieving	convergence,	the	multi‐step	estimator	

oscillates	between	0.016	and	0,	and	does	not	converge	to	 ௉ெ
ଶ .	The	

difficulties	for	achieving	convergence	in	this	example	would	appear	to	be	due	to	the	
fact	that	the	DL	and	PM	estimates	differ	so	substantially,	and	also	because	the	within‐
study	variances	are	of	different	magnitudes	(so	that	 ீாே

ଶ 	is	sensitive	to	the	value	
of	 ଶ	when	this	is	small).	This	example	is	a	counterexample	to	the	conjecture	that	the	
multi‐step	estimator	always	converges	to	the	PM	estimator.	
Conclusions	 	Regardless	of	whether	or	not	the	convergence	of	the	multi‐step	
estimator	is	to	a	positive	estimate,	we	have	proved	that	if	convergence	occurs	then	
this	is	to	the	PM	estimate.	Simulating	thousands	of	meta‐analyses	(see	
https://osf.io/dpuzs/)	did	not	reveal	the	convergence	problems	suggesting	that	these	
problems	only	occur	in	rare	cases	such	as	the	artificial	one	described	above.	We	
conclude	that	that,	in	practice,	multi‐step	estimators	converge	to	the	PM	estimate	and	
also	that	they	cannot	converge	to	anything	other	than	the	PM	estimate.	
		 Although	the	finding	that	multi‐step	estimators	may	not	converge	reduces	the	
utility	of	our	analysis,	our	analytical	results	are	more	general	than	might	be	supposed,	
because	it	is	not	limited	to	using	the	DL	estimator	in	the	first	step.	All	that	is	necessary	
for	our	results	is	that	subsequent	steps	weight	by	the	reciprocal	of	the	estimated	total	
study	variances	where	the	estimated	between‐study	variance	is	the	estimate	at	the	
previous	step.	Hence,	our	work	establishes	a	link	between	multi‐step	estimators	per	se	
and	the	PM	estimator	rather	than	between	just	the	DLk	and	PM	estimators.	

8.6.3		 The	relationship	with	an	established	Newton‐Raphson	method	for	
calculating	the	Paule‐Mandel	estimate	

		 DerSimonian	and	Kacker	(2007)	propose	a	Newton‐Raphson	algorithm	for	

calculating	the	PM	estimate	(see	their	Appendix	A).	This	algorithm	sets	 ௉ெ
ଶ 	to	zero	if	

ீாே .	If	 ீாே ,	then	 ௉ெ
ଶ 	and	an	initial	value	for	the	

algorithm	must	be	chosen.	Then	the	Newton‐Raphson	algorithm	takes	 ௞ାଵ
ଶ

௞
ଶ

ேோ
ଶ ,	where	

	
ேோ
ଶ ீாே ௞

ଶ

௜
ଶ

௞
ଶ ଶ

௡
௜ୀଵ ௜ ௞

ଶ ଶ
	 (9)	
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where	 ௞
ଶ

௜
௡
௜ୀଵ ௜

ଶ
௞
ଶ ௡

௜ୀଵ ௜
ଶ

௞
ଶ .	Negative	estimates	are	

truncated	to	zero	and	the	algorithm	keeps	iterating	until	convergence	is	reached.	
Jackson,	Turner,	Rhodes,	and	Viechtbauer	(2014)	explain	how	to	generalize	this	
Newton‐Raphson	procedure	so	that	it	can	be	applied	to	meta‐regression	models.	

		 We	can	also	calculate	the	corresponding	 ଶ	when	using	equation	(6)	in	the	

iterative	scheme	that	produces	our	multi‐step	estimators	as	 ଶ
஽௅ೖశభ
ଶ

஽௅ೖ
ଶ .	

From	equation	(6)	this	is	

ଶ ீாே ஽௅ೖ
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௜
ଶ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ

௡
௜ୀଵ ௜

ଶ
஽௅ೖ
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ஽௅ೖ

ଶ 	

Putting	the	right‐hand	side	of	the	numerator	over	a	common	denominator	results	in	

	
ଶ ீாே ஽௅ೖ

ଶ

௡
௜ୀଵ ௜

ଶ
஽௅ೖ
ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ ଶ ௡

௜ୀଵ ௜
ଶ

஽௅ೖ
ଶ 	 (10)	

Equation	(10)	also	illustrates	why	the	multi‐step	estimator	converges	to	the	PM	
estimator	in	practice.	This	is	because	the	multi‐step	estimator	converges	if	and	only	if	

ଶ ,	so	that	 ீாே ஽௅ೖ
ଶ 	and	 ஽௅ೖ

ଶ
௉ெ
ଶ .	If	instead	the	PM	estimate	

has	not	been	converged	to,	equation	(10)	shows	that	the	estimator	takes	a	step	in	the	

direction	of	the	PM	estimate	in	the	 th	step,	because	if	 ீாே ஽௅ೖ
ଶ 	then	

ଶ 	and	if	 ீாே ஽௅ೖ
ଶ 	then	 ଶ .	

		 Comparing	equations	(9)	and	(10),	we	can	also	see	that	the	iterative	scheme	
for	the	multi‐step	estimator	is	closely	related	to	the	established	Newton‐Raphson	

method	for	calculating	 ௉ெ
ଶ .	In	the	Appendix,	we	show	that	the	expectation	of	the	

denominator	of	equation	(9)	under	the	model	 ௜ ௜
ଶ

௞
ଶ 	and	where	the	 ௜	are	

independent	(where	we	suppress	the	distinction	between	 ௞
ଶ	and	 ஽௅ೖ

ଶ ),	is	equal	to	the	

denominator	of	equation	(10).	This	is	reminiscent	of	the	relationship	between	Fisher’s	
scoring	and	Newton‐Raphson	methods	in	maximum	likelihood	estimation.	This	is	
because	Fisher’s	scoring	algorithm	solves	the	likelihood	based	estimating	equation	by	
replacing	the	observed	information	in	the	denominator	in	a	Newton‐Raphson	
procedure	by	its	expectation	(the	expected	information).	This	observation	provides	us	
with	intuition	into	why	multi‐step	estimators	tend	towards	the	PM	estimator	as	the	
number	of	steps	becomes	large.	

8.7		 The	random‐effects	meta‐regression	model	

		 For	ease	of	exposition,	we	have	presented	our	main	results	for	random‐effects	
meta‐analyses,	but	these	are	readily	extended	to	meta‐regression	models	where	study	
level	covariate	effects	are	included	in	the	model.	In	order	to	establish	that	our	results	
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generalise	in	this	way,	we	consider	meta‐regression	models	with	an	arbitrary	number	
of	covariates	in	this	section.	All	of	the	results	in	this	section	simplify	to	those	shown	
previously.	
		 The	random‐effects	meta‐regression	model	is	an	extension	of	model	(1),	
where	we	assume	that	

௜ ௜ ௜ ௜	

where	 ௜	is	the	 	row	vector	of	covariates	associated	with	this	study	and	 	is	the	
	column	vector	of	regression	parameters	of	interest.	Unless	an	intercept	free	

regression	is	required,	the	first	‘covariate’	in	each	study	is	taken	to	be	one	to	include	
the	intercept.	A	matrix	formulation	of	this	standard	model	is	

	 ଶ 	 (11)	

where	 	is	a	column	vector	containing	the	 ௜,	 	is	the	 	design	matrix	(sometimes	

referred	to	as	the	model	matrix)	whose	 th	row	is	 ௜,	 ௜
ଶ 	and	 	is	the	 	

identity	matrix.	The	parameter	 ଶ	in	model	(11)	is	called	the	residual	between‐study	
variance	and	describes	the	heterogeneity	in	the	effect	size	estimates	that	is	not	
explained	by	the	covariates.	

8.7.1		 The	general	method	of	moments	for	meta‐regression	

		 Jackson	et	al.	(2014)	generalise	the	general	method	of	moments	(equation	2)	
to	the	meta‐regression	setting.	They	define	 ௜ ,	a	diagonal	matrix	containing	
the	weights,	and	 ௧ ିଵ ௧ .	They	also	define	the	 ௔	statistic	

௔
௧ 	

Jackson	et	al.	(2014)	use	the	subscript	 	to	emphasise	that	the	weights	 ௜	are	used,	
and	so	use	the	notation	 ௔	for	this	quadratic	form.	This	 ௔	statistic	reduces	to	the	the	
quadratic	form	in	the	numerator	of	equation	(2)	in	the	meta‐analysis	setting.	Jackson	
et	al.	(2014)	show	that	the	meta‐regression	version	of	the	generalised	method	of	
moments	in	equation	(2)	is	

	
ெெ
ଶ ௔ 	 (12)	

where	tr 	denotes	the	trace	of	a	matrix	and	 .	As	in	the	meta‐analysis	

setting,	we	truncate	 ெெ
ଶ 	when	the	solution	to	equation	(12)	is	negative.	
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8.7.2		 Paule‐Mandel	and	DerSimonian‐Laird	estimators	for	meta‐regression	

The	Paule‐Mandel	estimator		 The	PM	type	estimator	in	the	meta‐regression	

setting	proposed	by	Jackson	et	al.	(2014)	uses	weights	 ௜ ௜
ଶ ଶ 	when	

computing	the	 ௔	statistic.	We	denote	the	resulting	 ௔	statistic	using	the	notation	

ீாே
ଶ 	in	order	to	emphasise	the	dependence	of	the	weights	on	the	unknown	

parameter	 ଶ.	This	is	a	direct	generalisation	of	 ீாே
ଶ 	in	equation	(3).	Since	

ீாே
ଶ 	follows	a	 ଶ‐distribution	with	 	degrees	of	freedom,	the	PM	estimator	is	

obtained	by	solving	

	 ீாே ௉ெ
ଶ 	 (13)	

If	 ீாே 	then,	because	for	any	given	dataset	 ீாே
ଶ 	is	a	monotonically	

decreasing	continuous	function	in	 ଶ,	there	is	no	solution	to	this	equation	and	we	take	

௉ெ
ଶ 	(Jackson	et	al.,	2014).	Following	similar	arguments	as	in	the	meta‐analysis	

case,	if	 ீாே 	then	 ௉ெ
ଶ 	and	if	 ீாே 	then	 ௉ெ

ଶ .		

The	DerSimonian	and	Laird	estimator		The	standard	weights	of	 ௜ ௜
ଶ	produce	

a	DL	type	estimator	of	 ଶ	when	using	equation	(12),	so	that	this	estimator	is	just	a	
special	case	of	the	general	method	of	moments.	We	then	have	 ିଵ	so	that	
ିଵ ିଵ ௧ ିଵ ିଵ ௧ ିଵ.	Hence	with	these	weights	the	numerator	of	equation	
(12)	becomes	 ீாே ீாே

ଵ/ଶ ଵ/ଶ ,	where	this	final	equality	
is	because	 ,	where	 	and	 	are	square	matrices	of	the	same	size,	and	
because	 ଵ/ଶ ଵ/ଶ .	We	can	then	further	simplify	this	expression	by	taking	

ଵ/ଶ ଵ/ଶ .	This	identity	is	because	 ଵ/ଶ ଵ/ଶ

ିଵ/ଶ ௧ ିଵ ିଵ ௧ ିଵ/ଶ ,	where	 	and	 ିଵ/ଶ ௧ ିଵ ିଵ ௧ ିଵ/ଶ

.	This	final	equality	follows	from	the	observation	that	the	hat	matrix	corresponding	
to	a	design	matrix	 	is	given	by	 ௧ ିଵ ௧,	where	 ௧ ିଵ ௧ ௧ ௧ ିଵ .	
For	an	identifiable	regression	 ௧ ௧ ିଵ	is	a	 	identity	matrix,	which	results	in	
the	well	known	result	that	the	trace	of	the	hat	matrix	is	 .	Then	we	simply	observe	
that	 ିଵ/ଶ ௧ ିଵ ିଵ ௧ ିଵ/ଶ	is	the	hat	matrix	corresponding	to	the	design	matrix	
ିଵ/ଶ ,	so	that	its	trace	is	also	 .	The	numerator	of	equation	(12)	therefore	simplifies	

to	 ீாே 	for	the	DL	estimator.	

8.7.3		 Multi‐step	estimators	for	meta‐regression	

		 We	can	motivate	multi‐step	estimators	of	 ଶ	for	meta‐regression	in	exactly	
the	same	way	as	in	meta‐analysis.	For	example,	using	the	DL	estimator	we	first	

calculate	 ஽௅
ଶ 	using	equation	(12)	and	weights	of	 ௜ ௜

ଶ,	truncating	the	estimate	to	

zero	if	the	solution	is	negative.	We	can	then	calculate	 ஽௅మ
ଶ 	using	equation	(12)	and	

weights	of	 ௜ ௜
ଶ

஽௅
ଶ ,	from	which	we	can	then	calculate	 ஽௅య

ଶ 	and	so	on.	In	
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general,	we	calculate	 ஽௅ೖశభ
ଶ 	using	equation	(12)	with	weights	of	 ௜ ௜

ଶ
஽௅ೖ
ଶ .	

Any	negative	solutions	are	truncated	to	zero.	This	process	generalises	the	multi‐step	
estimators	for	meta‐analysis	described	in	section	8.4.		

		 Let	 ఛොವಽೖ
మ ஽௅ೖ

ଶ ିଵ	denote	the	diagonal	matrix	containing	the	weights	

when	computing	the	 th	step	DL	estimator,	for	 .	Let	 ఛොವಽೖ
మ 	denote	the	

corresponding	matrix	 	computed	using	 ఛොವಽೖ
మ .	From	equation	(12)	we	can	then	write	

	

஽௅ೖశభ
ଶ

ீாே ஽௅ೖ
ଶ

ఛොವಽೖ
మ

ఛොವಽೖ
మ

	 (14)	

for	 ,	where	we	truncate	the	resulting	estimate	to	zero	if	the	solution	is	negative.	
Equation	(14)	is	a	direct	generalisation	of	equation	(6)	for	meta‐regression.	Written	
explicitly	in	terms	of	the	truncation,	the	 th	step	estimator	is	

	

஽௅ೖశభ
ଶ

ீாே ஽௅ೖ
ଶ

ఛොವಽೖ
మ

ఛොವಽೖ
మ

	 (15)	

and	equation	(15)	is	a	direct	generalisation	of	equation	(7).	

8.7.4		 Lemma:	Agreement	with	respect	to	truncation	to	zero	of	the	
DerSimonian‐Laird	and	Paule‐Mandel	estimators	

		 In	this	section,	we	generalise	the	Lemma	for	the	univariate	meta‐analysis	to	
the	meta‐regression	model.	As	explained	above,	the	PM	estimator	is	positive	if	and	
only	if	 ீாே .	As	also	explained	above,	the	numerator	of	equation	(12)	

simplifies	to	 ீாே 	when	using	the	DL	estimator	( ௜ ௜
ଶ).	Hence,	the	

DL	estimator	is	also	positive	if	and	only	if	 ீாே .	If	instead	 ீாே 	
then	both	the	DL	and	PM	estimators	are	zero.	We	therefore	have	established	that	the	
type	of	weak	agreement	described	in	section	8.6.1	also	applies	in	the	meta‐regression	
setting.	

8.7.5		 Proving	that	if	convergence	occurs	then	it	is	to	the	Paule‐Mandel	
estimate	

The	case	where	the	estimate	converged	to	is	positive			Assume	that	convergence	

occurs	and	the	resulting	estimate	is	positive,	so	that	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ .	We	

substitute	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ	into	equation	(14),	where	this	equation	correctly	
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describes	the	iteration	from	DLk	to	DLk+1	(because	the	estimate	is	positive	and	no	

truncation	is	necessary).	Then	solving	the	resulting	equation	for	 ீாே
ଶ 	results	in	

ீாே
ଶ

ఛොమ
ଶ 	

where	the	final	equality	follows	from	an	argument	involving	a	hat	matrix	that	is	very	

similar	to	the	one	made	in	section	8.7.2.	Equation	(13)	implies	that	 ଶ
௉ெ
ଶ .		

The	case	where	the	estimate	converged	to	is	zero			 Assume	that	convergence	

occurs	and	the	resulting	estimate	is	either	zero	or	truncated	to	zero,	so	that	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ .	If	we	substitute	 ஽௅ೖశభ

ଶ
஽௅ೖ
ଶ ଶ 	into	equation	(15)	then	this	

equation	becomes	

	 ீாே 	 	

where	 ଴ .	Equation	(8)	is	satisfied	only	if	 ீாே ,	from	
which	the	Lemma	in	section	8.7.4	implies	that	both	the	DL	and	PM	estimators	are	zero	

(which	is	also	the	assumed	value	of	 ஽௅ೖశభ
ଶ

஽௅ೖ
ଶ ଶ).	Hence,	if	the	convergence	of	

the	multi‐step	estimator	is	to	zero	then	the	PM	estimate	is	also	zero,	so	that	 ଶ ௉ெ
ଶ .	

We	have	therefore	established	that	multi‐step	estimates	also	converge	to	the	PM	
estimator	in	meta‐regression	models.		

8.8		 Discussion	

		 Two‐step	estimators	have	recently	been	presented	as	estimators	of	the	
between‐study	variance.	We	have	extended	these	two‐step	estimators	to	a	multi‐step	
estimator	and	show	by	means	of	empirical	examples,	simulations,	and	also	analytically	
that	the	multi‐step	estimator	converges	to	the	PM	estimator	if	the	number	of	steps	is	
sufficiently	large.	This	convergence	occurs	quickly	in	practice.	Although	examples	can	
be	produced	where	the	multi‐step	estimator	does	not	converge,	we	have	shown	that	
the	PM	estimator	is	obtained	in	the	limit	when	convergence	is	obtained,	and	that	
convergence	problems	seldom	occur	in	practice.	Hence,	our	analysis	suggests	that	the	
two‐step	estimators	are	better	conceptualized	as	part	of	the	usual	iterative	scheme	
that	is	used	to	calculate	estimates	using	the	PM	estimator.	Our	findings	also	clarify	
why	previous	work	(Bhaumik	et	al.,	2012;	DerSimonian	&	Kacker,	2007)	observed	
that	the	DL2	estimator	was	closer	to	the	PM	estimator	than	the	DL	estimator.	We	
therefore	suggest	that	the	two‐step	estimators,	as	well	as	the	proposed	multi‐step	
estimator,	are	not	seen	as	truly	distinct	estimators	but	as	steps	in	an	iterative	
procedure	that	results	in	the	PM	estimator.	
		 Now	that	REML	and	the	PM	estimator	are	computationally	feasible	and	
established	in	standard	software,	we	align	ourselves	with	those	who	argue	that	these	
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estimators	should	be	preferred	over	the	DL	estimator	(Langan	et	al.,	2016;	Veroniki	et	
al.,	2016).	The	case	for	REML	becoming	the	default	estimation	method	is	now	strong.	
However,	the	PM	estimator	is	a	viable	alternative	that	is	currently	the	best	estimator	
that	uses	the	method	of	moments.	An	advantage	of	the	PM	estimator	compared	to	
REML	is	that,	in	a	small	proportion	of	meta‐analyses,	REML	suffers	from	convergence	
problems	(Kontopantelis	et	al.,	2013).	A	byproduct	of	our	work	is	the	development	of	
a	new	iterative	scheme	that	can	be	used	to	calculate	the	PM	estimator.	
		 Our	work	is	a	good	example	of	scientists	exploring	an	issue	of	interest	with	
the	expectation	of	discovering	something	new	and	then	making	new,	but	
unanticipated,	discoveries.	However,	discovering	the	link	between	the	multi‐step	and	
PM	estimator	is	in	some	respects	even	more	satisfying	than	inventing	a	new	class	of	
estimators	of	the	between‐study	variance.	We	have	already	explained	that	the	PM	
estimator	has	been	found	to	be	equivalent	to	the	empirical	Bayes	estimator,	and	our	
results	provide	another	justification	for	the	use	of	the	PM	estimator.	This	estimator	
would	therefore	seem	to	have	a	very	wide	variety	of	justifications	and	connections	
with	other	approaches	which	suggests	that	it	has	a	useful	role	in	both	methodological	
and	applied	work.	
		 We	have	considered	the	random‐effects	models	for	meta‐analysis	and	meta‐
regression.	Both	of	these	models	assume	that	the	outcome	data	are	independent.	More	
sophisticated	models	that	allow	for	correlated	data	include	multivariate	meta‐analysis	
(Jackson,	Riley,	&	White,	2011)	and	network	meta‐analysis	(Salanti,	2012).	Jackson,	
Veroniki,	Law,	Tricco,	and	Baker	(2017)	have	already	developed	PM	estimators	for	
network	meta‐analysis,	but	our	connection	between	multi‐step	and	PM	estimators	
provides	an	alternative	possibility	for	motivating	them.	There	is	currently	no	PM	
estimator	for	the	between‐study	covariance	matrix	in	multivariate	meta‐analysis,	but	
two	extensions	of	the	DL	estimator	have	been	proposed	(Jackson,	White,	&	Riley,	
2013;	Jackson,	White,	&	Thompson,	2010).	Generalising	one	or	both	of	these	
estimators	to	allow	an	arbitrary	set	of	weights,	and	so	develop	a	general	method	of	
moments	estimator,	could	then	motivate	the	development	of	multi‐step	estimators	in	
the	context	of	multivariate	meta‐analysis.	When	convergence	is	reached	as	the	
number	of	steps	becomes	large,	PM	estimators	of	the	between‐study	covariance	
matrix	could	then	be	defined	in	this	limit.	However,	considerable	methodological	
development	is	needed	to	extend	our	work	to	the	network	and	multivariate	meta‐
analysis	settings,	because	this	would	first	require	the	development	of	a	generalised	
method	of	moments	for	correlated	outcome	data.	We	therefore	leave	this	as	a	
tantalising	possibility	for	further	work.	However,	enthusiasm	for	this	idea	is	likely	to	
be	mitigated	by	the	finding	that	the	multi‐step	estimator	does	not	always	converge.	
Matters	will	become	more	complicated	in	the	multivariate	setting	and	some	
convention	for	defining	a	PM	estimator	in	this	way	when	convergence	is	not	obtained	
would	be	needed.		
		 To	summarize,	we	have	extended	the	two‐step	estimator	so	that	multiple	
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steps	can	be	used,	and	reproduced	the	PM	estimator	in	the	limit	when	the	number	of	
steps	are	sufficiently	large.	The	PM	estimator	therefore	has	another	justification	as	a	
result	of	its	relationship	with	the	proposed	multi‐step	estimator.	We	suggest	that	the	
meta‐analysis	community	should	no	longer	consider	the	two‐step	and	multi‐step	
estimators	to	be	truly	distinct	estimators,	but	should	instead	regard	these	type	of	
estimators	as	approximate	PM	estimators.	
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8.9		 Appendix	

In	this	Appendix,	we	prove	that	
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The	second	term	in	equation	(17)	is	
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The	third	term	in	equation	(17)	is	
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where	 ௜ ௜ ௜ ௜ ௜ ௜ ௜ ௜ 	so	that	the	third	term	is	
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The	summation	of	equations	(18),	(19)	and	(20),	recalling	that	 ௜ ௜
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ଶ ,	gives	

the	required	expectation.



 

 

	

	
	 	



 

 

	 	



 

 

CHAPTER	9	

	

Statistical	properties	of	methods	based	on	the	
Q‐statistic	for	constructing	a	confidence	
interval	for	the	between‐study	variance	in	
meta‐analysis	

	

	
Abstract	

The	effect	sizes	of	studies	included	in	a	meta‐analysis	do	often	not	share	a	common	
true	effect	size	due	to	differences	in	for	instance	the	design	of	the	studies.	Estimates	of	
this	so‐called	between‐study	variance	are	usually	imprecise.	Hence,	reporting	a	
confidence	interval	together	with	a	point	estimate	of	the	amount	of	between‐study	
variance	facilitates	interpretation	of	the	meta‐analytic	results.	Two	methods	that	are	
recommended	to	be	used	for	creating	such	a	confidence	interval	are	the	Q‐profile	and	
generalized	Q‐statistic	method	that	both	make	use	of	the	Q‐statistic.	These	methods	
are	exact	if	the	assumptions	underlying	the	random‐effects	model	hold,	but	these	
assumptions	are	usually	violated	in	practice	such	that	confidence	intervals	of	the	
methods	are	approximate	rather	than	exact	confidence	intervals.	We	illustrate	by	
means	of	two	Monte‐Carlo	simulation	studies	that	coverage	probabilities	of	both	
methods	can	be	substantially	below	the	nominal	coverage	rate	in	situations	that	are	
representative	for	meta‐analyses	in	practice.	We	also	show	that	these	too	low	
coverage	probabilities	are	caused	by	violations	of	the	assumptions	of	the	random‐
effects	model	(i.e.,	normal	sampling	distributions	of	the	effect	size	measure	and	
known	sampling	variances),	and	are	especially	prevalent	if	the	sample	sizes	in	the	
primary	studies	are	small.	

	
	
	
	
This	chapter	is	submitted	as	van	Aert,	R.	C.	M.,	van	Assen,	M.	A.	L.	M.,	&	Viechtbauer,	W.	
(2017).	Statistical	properties	of	methods	based	on	the	Q‐statistic	for	constructing	a	
confidence	interval	for	the	between‐study	variance	in	meta‐analysis.
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Meta‐analysis	refers	to	a	set	of	statistical	techniques	for	combining	the	estimates	of	
similar	studies	providing	commensurable	evidence	about	some	phenomenon	of	
interest	(e.g.,	the	effectiveness	of	a	treatment,	the	size	of	a	group	difference,	or	the	
strength	of	the	association	between	two	variables).	By	combining	the	evidence,	we	
aim	to	increase	statistical	power	to	find	effects	or	relationships	that	individual	studies	
may	fail	to	detect.	Moreover,	by	examining	the	variability	in	the	estimates,	we	can	
draw	more	generalizable	conclusions	about	the	consistency	of	the	effect	or	
relationship	over	multiple	studies	and/or	examine	the	degree	to	which	effects	or	
relationships	vary	and	under	what	conditions.	
		 If	the	included	studies	in	a	meta‐analysis	share	the	same	common	true	effect	
size,	any	differences	between	the	studies’	effect	size	estimates	are	in	theory	only	
caused	by	sampling	variability.	However,	the	true	effect	sizes	can	also	vary	and	
sampling	variability	alone	can	then	not	explain	the	differences	in	effect	size	estimates.	
The	effect	sizes	are	then	said	to	be	heterogeneous.	Such	between‐study	variance	may	
be	due	to	systematic	differences	between	the	studies	(e.g.,	differences	in	the	sample	
characteristics	or	differences	in	the	length	or	dose	of	a	treatment).	If	information	on	
how	the	studies	differ	is	available,	it	may	be	possible	to	account	for	the	between‐study	
variance	by	incorporating	this	information	in	the	model	with	a	meta‐regression	
analysis	(Borenstein	et	al.,	2009).	
		 The	Q‐test	(Cochran,	1954)	is	commonly	used	to	test	the	null	hypothesis	of	no	
between‐study	variance.	A	drawback	of	the	Q‐test	is	that	the	test	can	have	low	
statistical	power	if	a	small	number	of	studies	are	included	and	can	have	very	high	
power	if	a	large	number	of	studies	are	included	even	if	the	amount	of	variability	in	the	
true	effects	is	negligible	(Hardy	&	Thompson,	1998;	Higgins	et	al.,	2003;	Viechtbauer,	
2007c).	These	undesirable	statistical	properties	of	the	Q‐test	call	attention	to	the	
importance	for	estimating	the	amount	of	between‐study	variance.	The	amount	of	
between‐study	variance	as	well	as	the	average	effect	size	of	the	set	of	studies	can	be	
estimated	by	means	of	a	random‐effects	model.	Estimating	the	between‐study	
variance	is	equally	important	as	estimating	the	average	effect	size	because	it	indicates	
the	amount	of	consistency	among	the	effects	(Higgins	et	al.,	2009).	However,	estimates	
of	the	between‐study	variance	are	rather	imprecise	if	the	number	of	studies	in	a	meta‐
analysis	is	small	(Chung	et	al.,	2013;	Kontopantelis	et	al.,	2013;	Sidik	&	Jonkman,	
2007).	Hence,	reporting	a	confidence	interval	(CI)	around	the	estimate	is	highly	
desirable	and	improves	interpretability	(Higgins	et	al.,	2009;	Ioannidis	et	al.,	2007;	
Kepes	et	al.,	2013;	Langan	et	al.,	2016).	
		 Numerous	methods	for	constructing	a	CI	around	the	estimate	of	the	between‐
study	variance	have	been	proposed,	including	the	profile	likelihood	method(Hardy	&	
Thompson,	1996),	Wald‐type	methods	(Biggerstaff	&	Tweedie,	1997),	bootstrapping	
(Switzer,	Paese,	&	Drasgow,	1992;	Turner,	Omar,	Yang,	Goldstein,	&	Thompson,	2000),	
a	method	by	Sidik	and	Jonkman	based	on	weighted	least	squares	estimation	(Sidik	&	
Jonkman,	2005),	the	Q‐profile	method	(Viechtbauer,	2007b),	two	different	methods	
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that	approximate	the	distribution	of	the	test	statistic	of	the	Q‐test	(Biggerstaff	&	
Jackson,	2008;	Biggerstaff	&	Tweedie,	1997;	Jackson,	2013),	and	also	Bayesian	
methods	to	estimate	a	corresponding	credible	interval	(Smith,	Spiegelhalter,	&	
Thomas,	1995).	Since	the	method	proposed	by	Biggerstaff	and	Jackson	(2008)	is	a	
special	case	of	the	method	described	by	Jackson	(2013),	we	will	refer	to	this	method	
as	the	generalized	Q‐statistic	method	(GENQ	method	for	short).	A	recent	review	of	the	
aforementioned	methods	(Veroniki	et	al.,	2016)	recommended	to	use	the	Q‐profile	
method	if	the	between‐study	variance	is	large	and	the	GENQ	method	if	the	between‐
study	variance	is	small.	
		 The	Q‐profile	and	GENQ	method	make	use	of	the	distribution	of	the	test	
statistic	of	the	Q‐test	to	compute	a	CI.	If	the	assumptions	underlying	the	random‐
effects	model	hold,	the	null	distribution	of	the	Q‐statistic	is	 2 	with	the	number	of	

studies	minus	one	as	the	degrees	of	freedom	(Cochran,	1954).	However,	violations	of	
these	assumptions	are	likely	to	occur	in	practice.	For	instance,	an	assumption	of	the	
random‐effects	model	is	that	the	sampling	distribution	of	each	study’s	effect	size	is	
normally	distributed.	This	assumption	is	violated	in	most	meta‐analyses	because	the	
sampling	distribution	of	most	effect	size	measures	is	only	asymptotically	normal	(i.e.,	
approximates	a	normal	distribution	as	the	primary	study’s	sample	size	gets	large)	
(Hardy	&	Thompson,	1998;	Hoaglin,	2016a,	2016b).	Another	assumption	is	that	the	
sampling	variances	are	known	whereas	they	are	usually	estimated	and	then	simply	
assumed	to	be	known	(Biggerstaff	&	Tweedie,	1997;	Raudenbush,	2009).	These	
assumptions	become	more	acceptable	if	the	primary	studies’	sample	sizes	increase,	
because	the	sampling	distributions	are	then	better	approximated	by	normal	
distributions	and	the	primary	studies’	observed	sampling	variances	are	closer	to	the	
true	sampling	variances.	Nevertheless,	violations	of	the	assumptions	of	the	random‐
effects	model	will	result	in	a	Q‐statistic	that	does	not	exactly	follow	a	 2 	distribution	

under	the	null	hypothesis.	Hence,	the	Q‐profile	and	GENQ	method	may	not	yield	exact	
CIs	(i.e.,	coverage	probability	equal	to	1‐α)	if	these	assumptions	do	not	hold.	
		 The	aim	of	this	chapter	is	to	study	the	performance	of	the	Q‐profile	and	GENQ	
method	under	conditions	that	are	representative	for	meta‐analyses	in	practice.	We	
selected	the	log	odds	ratio	as	the	effect	size	measure	in	our	analyses,	because	it	is	
often	used	in	medical	research.	Note	that	the	above	discussed	assumptions	of	normal	
sampling	distributions	and	known	sampling	variances	are	violated	if	the	log	odds	ratio	
is	the	effect	size	measure,	and	that	these	violations	can	be	substantial	particularly	if	
the	primary	studies’	sample	sizes	are	small.	The	statistical	properties	of	the	Q‐profile	
method	have	already	been	examined	under	conditions	that	are	representative	for	
meta‐analyses	in	practice	where	the	assumptions	of	the	random‐effects	model	are	
violated	(Viechtbauer,	2007b).	However,	statistical	properties	of	the	GENQ	method	
have	only	been	studied	under	conditions	where	all	assumptions	of	the	random‐effects	
model	hold	(Jackson,	2013;	Jackson,	Bowden,	&	Baker,	2015).	This	chapter	is	therefore	
the	first	that	compares	the	statistical	properties	of	the	Q‐profile	and	GENQ	method	
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when	the	assumptions	of	the	random‐effects	model	do	not	hold	in	combination	with	
conditions	that	are	representative	for	meta‐analysis	in	practice.	
		 This	chapter	continues	by	briefly	outlining	the	random‐effects	model	and	the	
Q‐test.	Subsequently,	the	Q‐profile	and	GENQ	method	are	described.	Next,	we	describe	
the	Monte‐Carlo	simulation	study	that	we	use	to	examine	the	statistical	properties	of	
the	two	methods	and	present	their	results.	This	chapter	ends	with	a	conclusion	and	
discussion	section	with	recommendations	for	when	to	use	the	Q‐profile	and	GENQ	
method.	

9.1		 The	random‐effects	model	and	Q‐test	

Assume	that	i	=	1,	2,	…	k	independent	effect	sizes	have	been	derived	from	a	set	
of	studies.	Each	study’s	observed	effect	size	(Yi)	is	assumed	to	be	an	unbiased	estimate	
of	the	study	specific	true	effect	size	(

i ).	However,	Yi	is	not	equal	to	 i 	due	to	

sampling	error	(
i ).	This	can	be	written	as	

	
iiiY   ,	 	

where	 ),0(~ 2
ii N  	with	 2

i 	denoting	the	true	sampling	variance	in	the	ith	study.	All	

i 	are	assumed	to	be	independent	of	each	other	and	each	
2
i 	is	estimated	in	practice	

and	then	assumed	to	be	known.	Hence,	we	will	write	 2ˆ i 	to	refer	to	the	estimated	

sampling	variances.	Each	
i 	consists	of	an	average	true	effect	( )	and	the	random	

effect	 ),0(~ 2Nui 	that	denotes	the	difference	between	
i 	and	 (Raudenbush,	

2009).	Hence,	the	random‐effects	model	can	be	written	as	

	
iii uY   ,	 	

where	it	is	assumed	that	the	
iu 	are	independent	of	each	other	and	 iu 	is	independent	

of	
i .	The	random‐effects	model	reduces	to	the	common‐	or	fixed‐effects	model	if	

02  .		

		 Several	hypothesis	tests	for	testing	H0:	 02  	have	been	proposed	
(Viechtbauer,	2007c),	of	which	the	Q‐test	is	most	often	used	(Hoaglin,	2016b).	The	Q‐
statistic	is	computed	with	
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where	̂ 	is	given	by	
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with	 2ˆ/1 iiw  .	Under	the	null	hypothesis,	Q 	follows	a	 2 distribution	with	k	–	1	

degrees	of	freedom	if	the	primary	studies’	sample	sizes	are	large	(Cochran,	1954).	

9.2		 Q‐profile	method	

The	Q‐profile	method	generalizes	the	Q‐statistic	in	Equation	1	to	a	random‐
effects	model	by	incorporating	 2 ,	so	that	
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with	 ̂ 	given	by	Equation	2	with	 )ˆ/(1 22
iiw   .	This	generalized	version	of	the	Q‐

statistic	also	follows	a	 2 	distribution	with	k	–	1	degrees	of	freedom	(Viechtbauer,	

2007b)	and	is	a	function	of	 2 .	Hence,	a	CI	for	 2 	can	be	obtained	by	means	of	test	

inversion	(Casella	&	Berger,	2002).	If	 2
025.0;1k 	and	 2

975.0;1k 	are	the	2.5th	and	97.5th	

percentiles	of	a	 2 	distribution	with	k	–	1	degrees	of	freedom,	the	95%	CI	( 22 ˆ;ˆ UBLB  )	is	

equal	to	the	two	values	for	 2 	where	

	 ))ˆ(;)ˆ(( 2
025.0;1

222
975.0;1

22
  kUBkLB QQ  .	 	

The	method	is	called	Q‐profile	because	different	values	for	 2 	are	entered	in	
Equation	3	(i.e.,	profiling)	until	the	generalized	Q‐statistic	equals	the	critical	values	of	
the	 2 	distribution.	If	 2

975.0;1
2 )0(  kQ  ,	the	lower	bound	of	the	CI	is	in	principle	

negative	but	outside	of	the	parameter	space	and	hence	truncated	to	zero	(Viechtbauer,	
2007b).	If	 2

025.0;1
2 )0(  kQ  ,	the	estimate	of	the	upper	bound	is	also	negative,	and	

the	CI	is	set	equal	to	the	null	set.	Under	the	assumptions	of	the	random‐effects	model	
(i.e.,	unbiased	observed	effect	size	estimates,	normal	sampling	distributions,	known	
sampling	variances,	and	uncorrelated	sampling	errors	and	random	effects),	the	Q‐
profile	method	yields	exact	CIs.	Viechtbauer	(2007a)	showed	by	means	of	a	simulation	
study	with	log	odds	ratios	as	effect	size	measure	(which	do	not	fulfill	the	model	
assumptions	exactly)	that	the	Q‐profile	method	still	yields	accurate	coverage	
probabilities	for	the	majority	of	the	conditions	included	in	the	simulations.	One	
exception	was	that	undercoverage	occurred	when	meta‐analyzing	a	large	number	of	
studies	with	small	sample	sizes.	
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9.3		 Generalized	Q‐statistic	method	

The	generalized	Q‐statistic	(GENQ)	method	(Biggerstaff	&	Jackson,	2008;	
Jackson,	2013)	constructs	a	CI	for	 2 	based	on	the	exact	distribution	of	the	Q‐statistic	
under	the	assumptions	of	the	random‐effects	model.	This	method	uses	the	generalized	
form	of	the	Q‐statistic	as	described	by	DerSimonian	and	Kacker	(2007)	where	the	
weights	are	no	longer	 2ˆ/1 iiw  ,	but	could	be	any	set	of	positive	constants	denoted	by	

ia .	The	exact	distribution	of	the	Q‐statistic	( aQ )	was	derived	by	Biggerstaff	and	

Jackson	(2008,	p.	6095)	and	Jackson	(2013,	p.	222).	The	distribution	of	
aQ 	is	the	

weighted	sum	(weighted	by	 0i 	where	
i 	are	the	eigenvalues	of	a	matrix	that	is	a	

function	of	
ia ,	

2ˆ i ,	and	 2 )	of	mutually	independent	 2 ‐distributed	random	variables	

with	one	degree	of	freedom	each,	so	that	

	




k

i
ii

d

aQ
1

2 ).1( 	 (4)	

	 Jackson	(2013)	proved	that	the	cumulative	distribution	function	of	
aQ 	is	a	

continuous	and	decreasing	function	in	 2 .	The	cumulative	distribution	function	of	a	

positive	linear	combination	of	 2 ‐distributed	random	variables	can	be	obtained	by	

Farebrother’s	algorithm	(Farebrother,	1984).	The	lower	and	upper	bound	of	the	95%	
CI	( 22 ˆ;ˆ UBLB  )	can	then	be	obtained	again	by	test	inversion	(Casella	&	Berger,	2002),	

that	is,	given	the	observed	value	
aq 	of	

aQ ,	we	find	those	two	values	of	 2 	for	which	

	 ).975.0)ˆ;(;025.0)ˆ;(( 2222  UBaaLBaa qQPqQP  	 	

The	upper	and	lower	bounds	of	the	CI	can	also	be	negative.	If	the	estimate	of	the	lower	
bound	is	negative,	it	is	recommended	to	truncate	the	estimate	to	zero.	In	case	the	
lower	and	upper	bounds	are	both	negative,	the	CI	is	set	equal	to	the	null	set.	The	GENQ	
method	yields	exact	CIs	if	the	assumptions	underlying	the	random‐effects	model	(i.e.,	
unbiased	observed	effect	size	estimates,	normal	sampling	distributions,	known	
sampling	variances,	and	uncorrelated	standard	errors	and	random	effects)	are	
fulfilled.	

Different	values	for	
ia 	can	be	selected	for	weighting	the	observed	effect	sizes.	

If	 2ˆ/1 iia  ,	the	results	of	the	methods	by	Biggerstaff	and	Jackson	(2008)	and	Jackson	

(2013)	are	equivalent.	Other	suggestions	for	
ia 	are	an	unweighted	analysis	with	 ia 	

equal	to	a	constant,	 )ˆˆ/(1 22
i  ,	and	 5.022 )ˆˆ/(1 i  (Jackson,	2013;	Jackson	et	al.,	

2014).	Note	that,	even	when	all	model	assumptions	are	fulfilled,	the	CIs	are	no	longer	
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exact	if	the	last	two	weights	are	used,	because	the	weights	are	then	a	function	of	a	
random	variable	(since	 2 	has	to	be	estimated).	

9.4		 Monte‐Carlo	simulation	study	1	

The	Q‐profile	and	GENQ	method	both	yield	exact	CIs	under	the	assumptions	
of	the	random‐effects	model.	However,	these	assumptions	usually	do	not	hold	in	
practice,	but	become	more	acceptable	if	the	primary	studies’	sample	sizes	increase.	
Hence,	the	generalized	Q‐statistics	that	are	used	for	constructing	the	CIs	with	the	Q‐
profile	and	GENQ	method	only	approximate	a	 2 	distribution	if	the	primary	studies’	

sample	sizes	are	large	(Cochran,	1954),	and	therefore	the	CIs	are	really	just	
approximations	in	practice	instead	of	exact	CIs.	We	will	study	the	statistical	properties	
of	the	CIs	obtained	with	the	Q‐profile	and	GENQ	method	by	means	of	two	Monte‐Carlo	
simulation	studies	with	the	log	odds	ratio	as	effect	size	measure	whose	sampling	
distribution	is	only	well‐approximated	by	a	normal	distribution	for	large	sample	sizes	
in	the	primary	studies.	
		 Data	in	both	simulation	studies	were	generated	by	first	drawing	the	true	log	
odds	ratios,	

i 	for	i=1,	…,	k,	from	 ),( 2N ,	with	 	denoting	the	mean	of	the	

distribution	of	the	studies’	true	effect	sizes	and	 2 	the	variance	of	this	distribution.	
Based	on	the	sampled	

i ,	k	2x2	frequency	tables	were	simulated	by	first	generating	

the	number	of	cases	with	the	outcome	of	interest	in	the	control	group	( C
ix ).	A	value	

for	 C
ix 	was	sampled	from	a	binomial	distribution	with	 C

in 	being	the	sample	size	of	the	

control	group	and	probability	 C
i 	for	the	outcome	of	interest	in	the	control	group.	A	

study’s	true	log	odds	ratio	(
i )	and	 C

i 	were	used	for	computing	the	probability	of	the	

outcome	of	interest	in	the	experimental	group	with	

)]exp(1/[)exp( i
C
i

C
ii

C
i

E
i   .	The	number	of	cases	with	the	outcome	of	

interest	in	the	experimental	group,	 E
ix ,	was	sampled	from	a	binomial	( E

in , E
i )	

distribution	with	 E
in 	being	the	total	number	of	cases	in	the	experimental	group.	

Before	computing	the	observed	log	odds	ratio	and	corresponding	sampling	variance	
for	each	study,	0.5	was	added	to	each	cell	of	the	frequency	tables	to	decrease	bias	in	
the	estimator	of	the	log	odds	ratio	(Walter	&	Cook,	1991).	Furthermore,	this	
adjustment	allows	calculation	of	the	log	odds	ratio	and	its	sampling	variance	in	case	of	
zero	cells.	Therefore,	the	observed	log	odds	ratio	was	computed	with	






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
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and	its	observed	sampling	variance	with	
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The	Yi	and	 2ˆ i 	values	were	used	as	input	for	the	Q‐profile	and	GENQ	method.	Two	

different	weights	were	used	for	applying	the	GENQ	method,	 2ˆ/1 iia  	and	
iia ̂/1 	

These	two	weights	were	selected	because	the	GENQ	method	yields	exact	CIs	for	these	
two	weights	if	the	assumptions	underlying	the	random‐effects	model	hold.	

Values	for	the	true	effect	size	( )	in	the	first	simulation	study	were	0,	0.25,	
0.5,	0.75,	and	1.	The	amount	of	between‐study	heterogeneity	( )	was	varied	between	
0	and	0.5	with	steps	equal	to	0.1,	and	three	fixed	values	for	 C

i 	were	selected:	0.1,	0.3,	

and	0.5.	For	the	condition	with	large	heterogeneity	( 5.0 )	and	 0 ,	the	95%	

prediction	interval	for	
i 	ranges	from	‐0.980	to	0.980,	corresponding	to	odds	ratios	of	

2.66	in	favor	of	the	control	group	to	2.66	in	favor	of	the	experimental	group.	The	total	
number	of	observed	effect	sizes	in	a	meta‐analysis	(k)	was	5,	10,	20,	40,	and	160.	
Values	for	k	are	in	line	with	previous	Monte‐Carlo	simulation	studies	(Jackson,	2013;	
Viechtbauer,	2007b)	that	examined	the	statistical	properties	of	the	Q‐profile	and	
GENQ	method.	We	also	included	the	condition	k=160	to	examine	the	statistical	
properties	of	the	methods	for	a	very	large	number	of	studies.	The	sample	size	in	the	
control	and	experimental	group	in	each	study	was	set	equal	to	each	other,	but	sample	
sizes	were	allowed	to	differ	across	the	studies	within	a	meta‐analysis.	Sample	sizes	
per	group	(30,	50,	100,	150,	and	300)	were	replicated	k/5	times	in	each	meta‐analysis	
in	order	to	hold	the	average	sample	size	of	the	studies	constant	across	conditions.	
		 The	outcome	variables	in	our	simulation	study	were	the	coverage	probability	
(how	often	is	 2 	in	the	CI	of	the	Q‐profile	and	GENQ	method),	the	average	width	of	the	
CI,	the	standard	deviation	of	the	width	of	the	CI	over	all	replications,	and	the	number	
of	times	the	width	of	a	particular	method’s	CI	was	larger	than	the	width	of	the	other	
methods.	The	simulations	were	programmed	in	R	(R	Core	Team,	2017)	with	10,000	
replications	per	condition.	The	“parallel”	package	(R	Core	Team,	2017)	was	used	to	
parallelize	the	computations	and	the	“metafor”	package(Viechtbauer,	2010)	was	used	
for	applying	the	Q‐profile	and	GENQ	method.	R	code	of	this	simulation	study	is	
available	via:	https://osf.io/3x5rg/.	

9.4.1		 Results	Monte‐Carlo	simulation	study	1	

We	only	present	the	results	for	 0 ,	k	=	(5,	10,	40,	160),	and	 )5.0,1.0(C
i ,	

because	these	conditions	are	illustrative	for	the	performance	of	the	methods.	Results	
were	hardly	affected	by	the	selected	values	of	 ,	whereas	results	for	 3.0C

i 	were	

in	between	the	two	other	conditions	of	 C
i .	Results	of	all	other	conditions	are	
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available	via	https://osf.io/qjv5x/.	We	will	refer	to	the	two	different	weights	used	for	
the	GENQ	method	as	‘variance	weights’	for	 2ˆ/1 iia  	and	‘standard	error	weights’	for	

iia ̂/1 .	Figure	9.1	shows	the	coverage	probabilities	of	these	two	methods	and	the	

Q‐profile	method	as	a	function	of	true	heterogeneity	 .	The	solid	lines	refer	to	
coverage	probabilities	for	 5.0C

i 	and	the	dashed	lines	to	the	coverage	probabilities	

for	 1.0C
i .	Coverage	probabilities	of	the	Q‐profile	method	are	indicated	with	

triangles,	the	GENQ	method	with	variance	weights	with	plus	signs,	and	the	GENQ	
method	with	standard	error	weights	with	crosses.	Note	that	we	concluded	that	 	was	
not	included	in	the	CI	if	a	CI	was	equal	to	the	null	set.	Hence,	coverage	probabilities	of	
the	methods	equal	to	0.95	indicate	nominal	coverage	for	all	conditions.	

	

Figure	9.1.	Coverage	probabilities	of	the	Q‐profile	method,	GENQ	method	with	variance	weights	

( 2ˆ/1 iia  ),	and	GENQ	method	with	standard	error	weights	(
iia ̂/1 ).	The	probability	of	

the	outcome	of	interest	in	the	control	group	is	denoted	by	 C
i ,	the	number	of	primary	studies	in	

a	meta‐analysis	with	k,	and	the	amount	of	between‐study	heterogeneity	with	 .	
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For	all	values	of	k,	coverage	probabilities	of	the	Q‐profile	and	GENQ	methods	
for	 5.0C

i 	were	equal	or	close	to	0.95.	However,	coverage	of	the	methods	for	

1.0C
i 	and	k=5	or	10	was	slightly	too	large	especially	for	τ=0.	Since	coverage	

probabilities	decreased	when	k	was	increased,	coverage	probabilities	were	reasonably	
close	to	the	nominal	coverage	rate	for	k=40	and	 1.0C

i ,	but	severe	undercoverage	

was	observed	for	k=160.	
		 	The	lowest	coverage	probability	for	all	methods	was	obtained	in	the	
condition	k=160,	 1.0C

i ,	and	 5.0 ;	for	Q‐profile	0.807,	GENQ	with	variance	

weights	0.779,	and	GENQ	with	standard	error	weights	0.845.	For	this	condition,	the	
undercoverage	was	fully	explained	by	the	upper	bounds	of	the	CIs	being	smaller	than	
 	suggesting	that	the	generalized	Q‐statistic	was	too	low.	This	also	explains	why	the	
undercoverage	for	 1.0C

i 	and	k=160	was	least	severe	for	the	GENQ	method	with	

standard	error	weights.	Large	(both	positive	and	negative)	effect	sizes	go	together	
with	unequally	distributed	cases	in	the	2x2	frequency	table	and	thus	large	sampling	
variances.	Equation	3	shows	that	effect	sizes	that	deviate	substantially	from	 ̂ 	have	
only	a	minimal	contribution	to	the	generalized	Q‐statistic	because	of	their	large	
sampling	variance.	If	standard	error	weights	are	used	instead	of	variance	weights,	
more	extreme	effect	sizes	contribute	more	to	the	generalized	Q‐statistic	resulting	in	
larger	values	for	this	statistic.	Hence,	undercoverage	was	less	severe	for	the	GENQ	
method	with	standard	error	weights	than	with	variance	weights.	
		 Table	9.1	presents	the	average	and	the	standard	deviation	of	the	width	of	a	
method’s	CI	over	all	replications.	Bold	values	indicate	the	method	with	the	smallest	
average	width	of	the	CI	within	a	particular	condition.	As	expected,	the	average	width	
of	the	CIs	decreased	as	a	function	of	k.	Coverage	probabilities	of	the	methods	were	in	
general	close	to	the	nominal	coverage	rate	for	 5.0C

i ,	so	the	method	with	the	

smallest	CI	is	preferred	in	this	condition.	The	CI	of	the	GENQ	method	with	variance	
weights	was	the	smallest	for	the	majority	of	the	conditions.	With	the	exception	of	one	
condition	(i.e.,	k	=	20	and	 4.0 ),	the	average	width	of	the	CI	for	 5.0C

i 	of	the	Q‐

profile	method	was	larger	than	of	the	GENQ	methods.	However,	the	difference	
between	the	method	with	the	smallest	and	largest	average	width	of	a	CI	was	at	most	
0.1	for	 1.0 	and	at	most	0.05	for	 1.0 .	
		 The	standard	deviations	of	the	width	of	the	methods’	CIs	over	all	replications	
were	similar	for	 5.0C

i 	and	k	<	160;	the	method	with	the	highest	standard	

deviation	never	had	a	standard	deviation	that	was	more	than	twice	as	large	as	the	
standard	deviation	of	the	method	with	the	smallest	standard	deviation.	The	width	of	
the	CIs	obtained	with	the	GENQ	method	with	variance	weights	was	in	at	most	92.6%	
and	99.2%	of	the	conditions	smaller	than	that	of	the	Q‐profile	and	GENQ	method	with	
standard	error	weights	whereas	the	width	of	the	CIs	obtained	with	the	Q‐profile	
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.1
38
)	

0.
79
8	
(0
.1
65
)	

G
EN

Q
	(
SE
)	

0.
43
4	
(0
.1
55
)	

0.
46
2	
(0
.1
56
)	

0.
54
7	
(0
.1
53
)	

0.
63
5	
(0
.1
35
)	

0
.7
1
	(
0
.1
1
9
)	

0
.7
7
9
	(
0
.1
2
7
)	

	

k	
=	
40
	

Q
‐p
ro
fil
e	

0.
22
1	
(0
.0
75
)	

0.
25
1	
(0
.0
68
)	

0.
28
4	
(0
.0
41
)	

0.
28
3	
(0
.0
3)
	

0.
29
9	
(0
.0
3)
	

0.
32
7	
(0
.0
34
)	

G
EN

Q
	(
va
ri
an
ce
)	

0
.1
9
9
	(
0
.0
5
9
)	

0
.2
3
	(
0
.0
5
4
)	

0
.2
6
6
	(
0
.0
2
8
)	

0
.2
6
9
	(
0
.0
1
5
)	

0
.2
9
4
	(
0
.0
2
6
)	

0.
33
2	
(0
.0
35
)	

G
EN

Q
	(
SE
)	

0.
22
7	
(0
.0
68
)	

0.
25
4	
(0
.0
64
)	

0.
29
9	
(0
.0
41
)	

0.
29
5	
(0
.0
23
)	

0.
29
5	
(0
.0
15
)	

0
.3
1
9
	(
0
.0
2
4
)	

	

k	
=	
16
0	

Q
‐p
ro
fil
e	

0.
13
	(
0.
04
)	

0.
16
1	
(0
.0
28
)	

0.
13
7	
(0
.0
12
)	

0.
13
3	
(0
.0
07
)	

0.
14
3	
(0
.0
07
)	

0.
15
7	
(0
.0
08
)	

G
EN

Q
	(
va
ri
an
ce
)	

0
.1
2
2
	(
0
.0
3
4
)	

0
.1
5
2
	(
0
.0
2
4
)	

0
.1
2
6
	(
0
.0
1
1
)	

0
.1
2
5
	(
0
.0
0
3
)	

0.
14
	(
0.
00
6)
	

0.
15
9	
(0
.0
09
)	

G
EN

Q
	(
SE
)	

0.
14
5	
(0
.0
41
)	

0.
17
4	
(0
.0
32
)	

0.
15
8	
(0
.0
24
)	

0.
13
4	
(0
.0
03
)	

0
.1
3
9
	(
0
.0
0
4
)	

0
.1
5
2
	(
0
.0
0
6
)	



 

 

	Table	9.1	Continued	

	
	

1.
0


Ci


	

	
	

=0	
=0.1	

=0.2	
=0.3	

=0.4	
=0.5	

k	=	5	

Q
‐profile	

1.399	(0.712)	
1.412	(0.714)	

1.488	(0.728)	
1.587	(0.751)	

1.732	(0.759)	
1.889	(0.793)	

G
EN

Q
	(variance)	

1
.2
0
1
	(0
.5
)	

1
.2
3
3
	(0
.5
1
8
)	

1
.3
1
5
	(0
.5
3
7
)	

1
.4
4
9
	(0
.5
8
9
)	

1
.6
1
4
	(0
.6
2
7
)	

1
.7
9
1
	(0
.6
8
2
)	

G
EN

Q
	(SE)	

1.276	(0.559)	
1.297	(0.569)	

1.372	(0.581)	
1.486	(0.618)	

1.639	(0.641)	
1.807	(0.682)	

	

k	=	20	

Q
‐profile	

0.734	(0.311)	
0.76	(0.314)	

0.814	(0.317)	
0.899	(0.316)	

0.981	(0.306)	
1.067	(0.306)	

G
EN

Q
	(variance)	

0
.6
2
6
	(0
.2
2
3
)	

0
.6
5
5
	(0
.2
3
)	

0
.7
1
8
	(0
.2
3
9
)	

0
.8
1
4
	(0
.2
4
7
)	

0
.9
1
2
	(0
.2
4
3
)	

1
.0
0
5
	(0
.2
4
1
)	

G
EN

Q
	(SE)	

0.696	(0.256)	
0.722	(0.259)	

0.774	(0.264)	
0.862	(0.272)	

0.955	(0.266)	
1.051	(0.262)	

	

k	=	40	

Q
‐profile	

0.317	(0.113)	
0.337	(0.114)	

0.395	(0.11)	
0.455	(0.087)	

0.474	(0.065)	
0.477	(0.055)	

G
EN

Q
	(variance)	

0
.2
8
9
	(0
.0
9
4
)	

0
.3
1
	(0
.0
9
6
)	

0
.3
7
	(0
.0
9
3
)	

0
.4
2
9
	(0
.0
6
9
)	

0
.4
4
7
	(0
.0
4
2
)	

0
.4
4
8
	(0
.0
2
8
)	

G
EN

Q
	(SE)	

0.348	(0.111)	
0.365	(0.111)	

0.417	(0.109)	
0.485	(0.094)	

0.526	(0.071)	
0.525	(0.053)	

	

k	=	160	

Q
‐profile	

0.159	(0.06)	
0.184	(0.063)	

0.249	(0.05)	
0.256	(0.032)	

0.224	(0.016)	
0.221	(0.012)	

G
EN

Q
	(variance)	

0
.1
5
3
	(0
.0
5
6
)	

0
.1
7
8
	(0
.0
5
8
)	

0
.2
4
3
	(0
.0
4
6
)	

0
.2
4
5
	(0
.0
3
4
)	

0
.2
0
8
	(0
.0
1
3
)	

0
.2
0
5
	(0
.0
0
5
)	

G
EN

Q
	(SE)	

0.199	(0.067)	
0.22	(0.067)	

0.279	(0.059)	
0.321	(0.042)	

0.271	(0.039)	
0.237	(0.012)	
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method	was	in	at	most	59.3%	and	90%	of	the	conditions	smaller	than	that	of	the	
GENQ	method	with	variance	and	standard	error	weights,	respectively.	To	summarize	
the	results	for	 5.0C

i ,	the	GENQ	method	with	variance	weights	outperformed	the	

other	two	methods	for	 3.0 in	the	majority	of	the	conditions,	and	the	GENQ	method	
with	standard	error	weights	had	the	best	statistical	properties	if	 3.0 	in	the	
majority	of	the	conditions.	
		 Results	for	 1.0C

i 	are	also	presented	in	Table	9.1,	but	can	hardly	be	

interpreted.	Coverage	probabilities	for	these	conditions	often	substantially	deviated	
from	the	nominal	coverage	rate.	Hence,	drawing	conclusions	based	on	the	width	of	a	
CI	is	not	informative.	Noteworthy	though	is	that	the	GENQ	method	with	variance	
weights	always	yielded	smaller	CIs	than	the	Q‐profile	and	GENQ	method	with	
standard	error	weights.	Based	on	the	results	for	 1.0C

i ,	we	conclude	that	the	GENQ	

method	with	standard	error	weights	performs	best,	because	its	undercoverage	is	
considerably	less	than	that	of	the	other	two	methods.	
		 We	created	heat	maps	to	gain	further	insight	into	whether	there	is	a	specific	
set	of	conditions	for	k,	 ,	 C

i ,	 E
in ,	and	 C

in 	for	which	the	coverage	probability	

substantially	diverges	from	the	nominal	coverage	rate.	For	these	conditions,	
researchers	should	be	reluctant	in	applying	these	methods	and	interpreting	their	
results.	The	heat	maps	show	the	coverage	probabilities	for	different	values	of	k	(5,	10,	
20,	40,	80,	and	160)	and	 C

i 	ranging	from	0.01	to	0.5	at	a	fixed	sample	size	of	30	in	

both	groups	(i.e.,	 30 C
i

E
i nn ).	We	also	created	heat	maps	in	the	same	conditions	but	

with	 E
in 	and	 C

in 	both	being	equal	to	either	15,	30,	80,	160,	320,	or	800	while	fixing	k	

to	20.	The	heat	maps	were	created	for	each	of	the	three	methods	for	 0 	and	 5.0
.	The	procedure	for	creating	the	heat	maps	as	well	as	the	heat	maps	themselves	are	
available	via	https://osf.io/e35qc/.			
		 The	heat	maps	confirmed	the	results	presented	in	Figure	9.1	that	 	only	had	
a	small	effect	on	the	coverage	probabilities	of	the	methods.	Coverage	probabilities	
decreased	if	 C

i 	decreased,	and	if	undercoverage	was	present	for	a	combination	of	 C
i 	

and	sample	size,	then	this	undercoverage	became	more	severe	as	k	increased.	
Furthermore,	coverage	probabilities	also	decreased	if	the	sample	size	decreased,	
because	the	sampling	variances	were	then	less	accurately	estimated.	The	maximum	
coverage	probability	was	equal	to	0.97,	so	no	severe	overcoverage	was	observed.	
Specifically,	coverage	probabilities	of	all	three	methods	were	acceptable	(i.e.,	>	0.9)	at	
a	fixed	sample	size	of	30	in	both	groups	when	k	=	5	or	10	and	 05.0C

i ,	k	=	20	and	

1.0C
i ,	k	=	40	or	80	and	 2.0C

i ,	and	k	=	160	and	 35.0C
i .	If	k	was	fixed	to	20,	

coverage	probabilities	were	acceptable	for	 E
in 	=	 C

in 	=	15	and	 2.0C
i ,	 E

in 	=	 C
in 	=	30	

and	 1.0C
i ,	and	 E

in 	=	 C
in 	=	80	and	 05.0C

i .	The	finding	that	coverage	
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probabilities	deviate	from	the	nominal	coverage	rate	for	low	values	of	 C
i 	and	not	for	

C
i 	close	to	0.5	hints	at	a	systematic	bias	that	is	caused	by	violated	assumptions	of	the	

random‐effects	model	in	case	of	rare	events	in	the	primary	studies.	This	bias	will	be	
examined	in	simulation	study	2.	

9.5	Monte‐	Carlo	simulation	study	2	

Simulation	study	1	showed	that	coverage	probabilities	of	both	the	Q‐profile	
and	GENQ	methods	can	substantially	deviate	from	the	nominal	coverage	rate.	The	goal	
of	simulation	study	2	was	to	examine	the	cause	of	under‐	and	overcoverage	by	the	
methods	that	was	apparent	for	 1.0C

i ,	but	not	for	 5.0C
i .	

		 The	Q‐profile	and	GENQ	methods	with	the	specified	weights	are	exact	if	the	
assumptions	underlying	the	random‐effects	model	hold,	so	deviations	from	the	
nominal	coverage	rate	in	simulation	study	1	were	caused	by	violations	of	assumptions	
of	the	random‐effects	model.	One	of	the	assumptions	that	is	violated	is	that	the	
primary	studies’	sampling	variances	are	not	known	but	estimated,	which	particularly	
affects	the	methods’	coverage	if	the	studies’	sample	sizes	are	small.	Hence,	we	set	out	
to	compare	the	methods’	coverage	rates	and	the	distribution	of	the	generalized	Q‐
statistic	used	by	the	Q‐profile	method	when	the	sampling	variances	are	estimated	as	
in	simulation	study	1	(denoted	by	 2̂ )	and	when	the	true	variances	are	used.	

		 In	order	to	compute	the	true	variances,	we	first	created	all	possible	2x2	
frequency	tables	based	on	 C

in 	and	 E
in 	given	a	particular	value	for	 C

i 	and	 E
i .	For	

example,	this	yields	31х31=961	possible	frequency	tables	if	the	sample	size	in	both	
groups	was	equal	to	30.	A	selection	of	these	961	frequency	tables	is	presented	in	Table	
9.2	(first	four	columns).	The	probability	of	observing	a	particular	frequency	table	
(fifth	column)	was	computed	by	multiplying	 ),;( EEE nxB  	with	 ),;( CCC nxB  	where	

B	refers	to	the	probability	mass	function	of	the	binomial	distribution.	Log	odds	ratios	
(last	column)	were	computed	for	each	frequency	table	after	adding	0.5	to	each	cell	to	
reduce	bias	in	the	estimator	of	the	log	odds	ratios(Walter	&	Cook,	1991)	and	to	make	
computation	of	the	log	odds	ratio	possible	in	all	tables,	even	those	with	zero	cells.	We	
used	the	probability	of	observing	a	frequency	table	and	the	log	odds	ratio	for	each	
frequency	table	for	computing	the	expected	value	of	the	log	odds	ratio	( ][YE )	and	the	

true	sampling	variance	( ][][ 22 YEYET  ).	We	expect	that	the	methods’	coverage	

probabilities	computed	with	 2
T 	will	be	closer	than	the	nominal	coverage	rate	than	

with	 2̂ ,	because	instead	of	using	estimated	sampling	variances,	the	true	variances	

are	used.	Differences	between	 2̂ 	and	 2
T 	are	especially	prevalent	if	one	of	the	cells	in	

the	observed	frequency	table	is	equal	to	0.		
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Table	9.2.	Selection	of	all	possible	2x2	frequency	tables,	probabilities	of	observing	a	table	

),;(),;( CCCEEE nxBnxB   	with	B	denoting	the	probability	mass	function	of	the	binomial	

distribution,	and	log	odds	ratios	(Y)	if	the	sample	size	in	the	experimental	and	control	group	

equals	30.	Cell	frequencies	are	denoted	by	 Ex ,	 EE xn  ,	 Cx ,	and	 CC xn  .	

Ex 	 EE xn  	 Cx 	 CC xn  	 ),;(),;( CCCEEE nxBnxB   	 Y	

0	 30	 0	 30	 ),30;0(),30;0( CE BB   	 0	

1	 29	 0	 30	 ),30;0(),30;1( CE BB   	 1.132	

2	 28	 0	 30	 ),30;0(),30;2( CE BB   	 1.677	

3	 27	 0	 30	 ),30;0(),30;3( CE BB   	 2.049	

4	 26	 0	 30	 ),30;0(),30;4( CE BB   	 2.338	

⁞	 ⁞	 ⁞	 ⁞	 ⁞	 ⁞	

0	 30	 1	 29	 ),30;1(),30;0( CE BB   	 ‐1.132	

⁞	 ⁞	 ⁞	 ⁞	 ⁞	 ⁞	

30	 0	 30	 0	 ),30;30(),30;30( CE BB   	 0	

	

The	computation	time	of	 2
T 	was	large,	and	therefore	we	could	not	include	the	same	

conditions	as	in	simulation	study	1.	One	value	for	the	true	effect	size	was	selected	(

0 ),	 C
i 	was	0.1	or	0.5,	and	k	was	set	equal	to	5,	40,	or	160.	The	sample	size	of	all	

studies	was	set	equal	to	30,	because	the	methods’	coverage	probabilities	were	
expected	to	deviate	the	most	from	the	nominal	coverage	rate	in	this	condition	with	the	
smallest	study	sample	sizes.	The	amount	of	between‐study	heterogeneity	( )	was,	as	
in	simulation	study	1,	varied	from	0	to	0.5	in	steps	of	0.1.	This	simulation	study	was	
also	programmed	in	R	(R	Core	Team,	2017)	and	the	packages	“parallel”	(R	Core	Team,	
2017)	and	“metafor”	(Viechtbauer,	2010)	were	used.	A	total	number	of	3,000	
replications	per	condition	were	used.	R	code	of	simulation	study	2	is	available	via:	
https://osf.io/xba4y/.	
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9.5.2		 Results	Monte‐Carlo	simulation	study	2	

Figure	9.2	shows	the	coverage	probabilities	of	the	Q‐profile	and	GENQ	
methods	when	using	estimator	 2̂ 	and	when	using	the	true	variances	 2

T .	Similar	to	

Figure	9.1,	triangles	refer	to	the	Q‐profile	method,	plus	signs	to	the	GENQ	method	with	
variance	weights,	and	crosses	to	the	GENQ	method	with	standard	error	weights.	The	
estimator	of	the	sampling	variance	that	was	also	used	in	simulation	study	1	( 2̂ )	is	

indicated	with	solid	black	lines,	while	 2
T 	is	indicated	with	dashed	gray	lines.	Note	

that	the	results	of	both	simulation	studies	cannot	directly	be	compared	because	a	
sample	size	of	30	for	each	primary	study	was	used	in	simulation	study	2	instead	of	
different	sample	sizes	as	in	simulation	study	1.	
		 	 In	general,	coverage	probabilities	were	closer	to	the	nominal	
coverage	rate	if	 1.0C

i 	and	 2
T 	was	used.	This	can	be	seen	in	the	top	left	panel	of	

Figure	9.2	(k=5;	 1.0C
i )	where	coverage	probabilities	were	closer	to	the	nominal	

coverage	rate	(although	slightly	too	low)	when	 2
T 	was	used	instead	of	 2̂ .	If	 5.0C

i 	

(second	row	of	panels	in	Figure	9.2),	no	severe	undercoverage	was	observed	for	the	
three	methods	when	using	 2̂ 	or	 2

T 	since	all	coverage	probabilities	were	larger	than	

0.9.	Simulation	study	1	showed	that	coverage	probabilities	most	notably	diverged	
from	the	nominal	coverage	rate	when	k=160	and	 1.0C

i .	This	is	also	apparent	here;	

coverage	probabilities	based	on	 2̂ 	are	below	0.8	for	each	value	of	 	and	therefore	

not	visible	in	the	figure.	Coverage	probabilities	of	the	Q‐profile	and	GENQ	method	with	
variance	weights	were	not	above	0.268,	and	coverage	probabilities	of	the	GENQ	
method	with	standard	error	weights	were	not	above	0.662.	However,	although	
coverage	probabilities	substantially	improved	when	using	 2

T 	(e.g.,	for	 5.0 	Q‐

profile:	0.212	vs.	0.918,	GENQ	with	variance	weights:	0.108	vs.	0.917,	and	GENQ	with	
standard	error	weights:	0.470	vs.	0.917),	coverage	probabilities	still	deviated	from	the	
nominal	coverage	rate.	To	conclude,	using	true	sampling	variances	rather	than	
estimated	sampling	variances	considerably	improved	the	coverage	probability	of	the	
Q‐profile	and	GENQ	methods,	but	did	not	always	provide	nominal	CIs.	It	follows	that	
these	deficiencies	must	be	caused	by	two	other	assumptions	of	the	random‐effects	
model	that	were	violated	in	our	simulation	study;	normal	sampling	distributions	of	
the	effect	sizes	and	uncorrelated	random	effects	and	sampling	errors.	
		 To	increase	our	understanding	of	how	violating	the	assumption	of	known	
sampling	variances	as	well	as	violations	of	other	assumptions	underlying	the	random‐
effects	model	affect	the	generalized	Q‐statistic,	we	computed	the	generalized	Q‐
statistic	as	described	in	Equation	3	based	on	 2̂ 	and	 2

T 	and	examined	how	well	its	

probability	density	function	(pdf)	was	approximated	by	a	 2 	distribution	with	k‐1	
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degrees	of	freedom.	Since	the	generalized	Q‐statistic	follows	a	 2 	distribution	if	the	

assumptions	of	the	random‐effects	model	hold	and	these	assumptions	become	less	
objectionable	for	larger	sample	sizes	in	the	primary	studies,	we	also	computed	the	pdf	
with	 2̂ 	if	there	were	10	times	more	cases	in	the	control	and	experimental	group	(300	

instead	of	30).	Three	different	conditions	were	selected,	representing	coverage	
probabilities	of	the	methods	equal	to	the	nominal	coverage	rate	(k=5,	 5.0C

i ,				

0 ),	overcoverage	(k=5,	 C
ip =0.1,	τ=0),	and	undercoverage	(k=160,	 1.0C

i ,	

5.0 ).	Pdfs	were	created	based	on	5,000	generated	generalized	Q‐statistics	and	R	
code	for	creating	these	pdfs	is	available	via	https://osf.io/bdhn8/.	We	focus	in	this	
section	on		the	approximation	of	the	generalized	Q‐statistic	by	the	 2 	distribution	in	

the	Q‐profile	method,	because	
aQ 	as	used	by	the	GENQ	methods	depends	on	the	

weights	
i 	(see	Equation	4),	and	therefore	does	not	follow	a	single	reference	

distribution.	However,	because	coverage	probabilities	of	the	GENQ	method	with	
variance	weights	and	the	Q‐profile	method	were	comparable,	we	expect	similar	
deviations	of	the	weighted	 2 	distribution	for	the	GENQ	method	as	the	deviations	we	

find	for	Q‐profile	method.	
		 Figure	9.3	shows	the	pdfs	of	the	generalized	Q‐statistic	when	the	coverage	
probability	was	close	to	the	nominal	coverage	rate	(left	panel;	k=5,	 5.0C

i ,	 0 ),	

when	coverage	was	too	large	(middle	panel;	k=5,	 1.0C
i ,	 0 ),	and	when	coverage	

was	too	low	(right	panel;	k=160,	 1.0C
i ,	 5.0 ).	The	pdf	of	the	generalized	Q‐

statistic	when	the	sampling	variance	is	computed	with	 2̂ 	is	illustrated	with	a	solid	

black	line	and	 2
T 	with	a	dashed	gray	line.	The	bold	gray	line	corresponds	to	a	 2 	

distribution	with	k‐1	degrees	of	freedom,	which	in	theory	should	be	the	distribution	
that	is	approximated	by	the	other	pdfs.	Starting	with	the	left	panel	(close	to	accurate	
coverage;	k=5,	 5.0C

i ,	 0 ),	the	mean	of	the	generalized	Q‐statistics	was	indeed	

close	to	the	mean	(4)	of	the	 2 	distribution	(3.86	for	 2̂ ,	3.96	for	 2
T ).	However,	the	

variance	(4x2=8)	was	somewhat	different	for	 2̂ 	(6.73),	but	not	for	 2
T 	(7.69).	As	

expected,	the	pdf	was	closely	approximated	by	the	 2 	distribution	if	the	primary	

studies’	sample	size	was	equal	to	300	and	 2̂ 	was	used	to	estimate	the	sampling	

variance	(mean	4.01	and	variance	8.20).	These	results	suggest	that	the	sampling	
variance	was	accurately	estimated	with	 2̂ 	for	k=5,	 5.0C

i ,	and	 0 ,	and	that	the	

sample	size	of	30	was	sufficiently	large	for	this	condition	to	approximate	the	pdf	of	the	
generalized	Q‐statistic	with	a	 2 	distribution.	

		 The	pdfs	of	the	generalized	Q‐statistic	for	the	condition	with	overcoverage	
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(k=5,	 1.0C
i ,	 0 )	are	presented	in	the	middle	panel	of	Figure	9.3.	The	pdf	of	the	

generalized	Q‐statistic	based	on	 2
T 	was	closer	to	the	 2 	distribution	than	based	on	

2̂ .	Especially	the	variance	of	the	generalized	Q‐statistic	based	on	 2̂ 	was	too	low	

(mean	3.07	<	4,	and	variance	3.27	<	8)	whereas	the	mean	and	variance	of	the	
generalized	Q‐statistics	were	3.97	and	9.87	for	 2

T 	.	The	approximation	was	again	best	

for	sample	sizes	equal	to	300	(dotted	black	line;	mean	of	generalized	Q‐statistics	3.90	
and	variance	7.41).	Here,	the	coverage	probability	of	the	Q‐profile	method	(0.952)	also	
approached	the	nominal	coverage	rate.	These	results	indicate	that	a	sample	size	of	30	
was	not	sufficiently	large	to	accurately	approximate	the	 2 	distribution	with	 2̂ 	

when	k=5,	 1.0C
i ,	and	 0 .	However,	this	approximation	improved	if	 2

T 	was	used	

for	computing	the	sampling	variance	or	the	sample	size	was	equal	to	300.	
Overcoverage	of	the	methods	for	k=5,	 1.0C

i ,	 0 	and	sample	sizes	equal	to	30	

can	be	explained	by	the	distribution	of	the	generalized	Q‐statistic.	Since	the	
distribution	of	the	generalized	Q‐statistic	is	to	the	left	of	the	 2 	distribution	and	its	

variance	is	smaller	than	that	of	the	 2 	distribution,	the	CIs	will	too	often	include		

0 .	
		 For	the	condition	with	too	low	coverage	probability	(right	panel;	k=160,	

1.0C
i ,	 5.0 ),	the	pdf	of	the	generalized	Q‐statistic	based	on	estimator	 2̂ 	with	a	

sample	size	of	30	per	group	(solid	black	line)	deviated	from	the	pdf	of	the	 2 	statistic.	

The	mean	(117.10)	and	variance	(124.12)	of	the	generalized	Q‐statistics	were	both	
substantially	lower	than	those	of	a	 2 	distribution	with	159	degrees	of	freedom	

(mean	159	and	variance	318).	Using	 2ˆT 	resulted	in	a	pdf	markedly	closer	to	the	pdf	of	

the	 2 	statistic.	However,	the	generalized	Q‐statistics	computed	with	 2
T 	(dashed	

gray	line;	mean	156.40	and	variance	384.30)	still	deviated	from	those	of	the	 2 	

distribution.	Again,	increasing	the	primary	studies’	sample	size	to	300	yielded	a	pdf	of	
the	generalized	Q‐statistic	that	was	better	approximated	by	the	 2 	distribution	

(dotted	black	line;	mean	153.90,	variance	288.81).	For	this	condition,	the	coverage	
probability	of	the	Q‐profile	method	(0.945)	was	also	close	to	the	nominal	coverage	
rate.	These	results	suggest	that	for	k=160,	 1.0C

i ,	and	 5.0 	a	sample	size	of	30	

was	too	small	to	accurately	approximate	the	 2 	distribution	even	if	the	true	sampling	

variances	were	used	( 2
T ).	

		 Using	the	pdf	of	the	generalized	Q‐statistic,	we	can	now	explain	the	
undercoverage	of	the	Q‐profile	method.	Because	the	distribution	of	the	Q‐statistic	is	to	
the	left	of	the	 2 	distribution,	the	lower	and	upper	bounds	of	the	CI	around	 	have	to	

be	obtained	by	decreasing	 2 	in	Equation	3	till	the	2.5th	and	97.5th	percentiles	of	this	
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2 	distribution	are	reached.	Consequently,	the	CIs	of	the	Q‐profile	method	have	too	

low	lower	and	upper	bounds,	with	 	often	being	larger	than	the	upper	bound.	This	
was	also	apparent	in	the	results	of	simulation	study	1	in	the	condition	k=160,	

1.0C
i ,	and	 5.0 ,	because	the	lower	bound	was	never	lower	than	 	and	the	

undercoverage	was	fully	explained	by	the	upper	bound	being	often	smaller	than	 .	

9.6		 Conclusion	and	discussion	

Between‐study	variance	is	often	present	in	a	meta‐analysis	(Higgins,	2008;	Higgins	et	
al.,	2009;	Kontopantelis	et	al.,	2013;	van	Erp	et	al.,	2017).	The	amount	of	between‐
study	variance	can	be	estimated,	but	estimates	are	usually	rather	imprecise	(Chung	et	
al.,	2013;	Sidik	&	Jonkman,	2007).	An	estimate	of	the	amount	of	between‐study	
variance	can	be	surrounded	by	a	CI	to	illustrate	its	imprecision.	Two	recommended	
methods	(Veroniki	et	al.,	2016)	to	compute	such	a	CI	are	the	Q‐profile	(Viechtbauer,	
2007b)	and	GENQ	method	(Biggerstaff	&	Jackson,	2008;	Jackson,	2013).	Both	methods	
yield	exact	CIs	under	the	assumptions	of	the	random‐effects	model	(i.e.,	unbiased	
observed	effect	size	estimates,	normal	sampling	distributions	of	the	effect	sizes,	
known	sampling	variances,	and	uncorrelated	sampling	errors	and	random	effects).	
However,	these	assumptions	are	most	likely	violated	in	practice	(Biggerstaff	&	
Tweedie,	1997;	Hoaglin,	2016a,	2016b)	such	that	CIs	of	the	Q‐profile	and	GENQ	
method	are	approximations	rather	than	exact	CIs.	The	goal	of	this	chapter	was	to	
study	the	performance	of	both	methods	under	situations	that	are	representative	for	
research	in	practice	where	the	assumptions	underlying	the	random‐effects	model	are	
violated.	
		 Results	of	two	Monte‐Carlo	simulation	studies	revealed	that	coverage	
probabilities	of	both	methods	can	be	substantially	below	the	nominal	coverage	rate	if	
model	assumptions	are	violated.	Coverage	probabilities	of	both	methods	were	
especially	too	low	if	both	the	sample	sizes	of	the	primary	studies	and	the	probability	
of	the	outcome	of	interest	were	low	in	combination	with	a	large	number	of	studies	in	a	
meta‐analysis.	This	result	is	in	line	with	Viechtbauer	(Viechtbauer,	2007b)	who	also	
showed	that	the	coverage	probability	of	the	Q‐profile	method	was	too	low	if	the	
number	of	studies	was	large	in	a	meta‐analysis	in	combination	with	large	between‐
study	heterogeneity.	Coverage	probabilities	of	the	Q‐profile	method	and	the	GENQ	
method	with	variance	weights	were	comparable	in	our	simulation	studies.	If	coverage	
of	the	Q‐profile	and	GENQ	method	with	variance	weights	was	close	to	the	nominal	
rate,	coverage	probability	of	the	GENQ	method	with	standard	error	weights	deviated	
more	from	the	nominal	rate	than	the	other	two	methods.	However,	the	GENQ	method	
with	standard	error	weights	yielded	better	coverage	probabilities	than	the	Q‐profile	
and	GENQ	method	with	variance	weights	if	the	coverage	probability	of	the	Q‐profile	
and	GENQ	method	with	variance	weights	was	substantially	too	low.	This	was	caused
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by	the	difference	in	weights,	because	more	extreme	observed	log	odds	ratios	(with	
larger	sampling	variances/standard	errors)	have	a	larger	influence	on	the	exact	
distribution	of	the	Q‐statistic	if	standard	error	weights	are	used	instead	of	variance	
weights.	However,	coverage	probabilities	of	the	methods	substantially	deviated	from	
the	nominal	coverage	rate	if	the	probability	of	the	outcome	of	interest	was	low.		
		 Our	second	simulation	study	showed	that	the	mean	and	variance	of	the	
sampling	distribution	of	the	generalized	Q‐statistic	may	be	too	small	in	comparison	to	
a	 2 	distribution	with	k‐1	degrees	of	freedom	if	the	probability	of	the	outcome	of	

interest	was	low	and	sample	sizes	were	small.	Consequently,	the	coverage	probability	
of	the	Q‐profile	method	is	too	small	in	these	conditions	even	if	the	true	sampling	
variances	instead	of	estimated	sampling	variances	are	used.	This	deviation	from	the	
nominal	coverage	rate	is	caused	by	low	frequencies	in	some	of	the	cells	of	the	
observed	frequency	tables.	Specific	methods	have	been	developed	that	perform	better	
in	such	cases	with	sparse	data	by	analyzing	dichotomous	data	by	means	of	generalized	
linear	mixed‐effects	models.	The	sampling	distributions	in	these	methods	are	no	
longer	assumed	to	be	normal;	instead,	the	exact	likelihood	based	on	binomial,	Poisson,	
or	hypergeometric	distributions	is	used	(Stijnen,	Hamza,	&	Ozdemir,	2010).	This	
approach	is	especially	beneficial	in	case	of	a	low	probability	of	the	outcome	of	interest,	
because	no	corrections	(e.g.,	adding	0.5	to	each	cell)	are	required	to	deal	with	zero	
cells.	However,	future	research	is	still	needed	to	determine	under	which	conditions	
the	generalized	linear	mixed‐effects	models	have	better	statistical	properties	for	
constructing	CIs	for	 2 	than	the	Q‐profile	and	GENQ	method.	
	 A	CI	around	the	estimate	of	the	between‐study	variance	can	also	be	used	for	
computing	a	CI	around	the	I2	statistic	(i.e.,	proportion	of	the	total	variance	in	a	meta‐
analysis	caused	by	the	between‐study	variance)	(Higgins	&	Thompson,	2002).	Hence,	
the	results	presented	in	this	chapter	also	apply	to	CIs	around	the	I2	statistic	if	
constructed	with	the	Q‐profile	or	GENQ	method.	An	advantage	of	quantifying	
between‐study	heterogeneity	with	the	I2	statistic	is	that	it	enables	comparisons	across	
meta‐analyses	(Higgins	&	Thompson,	2002;	Higgins	et	al.,	2003).	CIs	around	the	
estimate	of	between‐study	variance	and	the	I2	statistic	can	also	be	used	for	testing	the	
null	hypothesis	of	homogeneous	effect	sizes	in	a	meta‐analysis.	Software	for	applying	
the	Q‐profile	and	GENQ	method	for	estimating	a	CI	around	the	estimate	of	the	
between‐study	variance	and	the	I2	statistic	are	readily	available	in	the	R	package	
“metafor”	(Viechtbauer,	2010).	
		 	The	commonly	used	Q‐test	(Cochran,	1954)	for	testing	the	null	hypothesis	of	
homogeneous	effect	sizes	in	a	meta‐analysis	is	also	based	on	the	assumptions	of	the	
random‐effects	model.	The	Q‐statistic	follows	a	 2 	distribution	if	the	assumptions	

underlying	the	random‐effects	model	hold.	Hence,	inferences	drawn	by	using	the	Q‐
test	will	also	be	affected	by	violations	of	these	assumptions	as	is	the	case	for	the	Q‐
profile	and	GENQ	method,	but	the	assumptions	become	more	acceptable	if	the	
primary	studies’	sample	size	increase.	Similar	to	our	results	with	respect	to	the	
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generalized	Q‐statistic,	Kulinskaya	and	Dollinger	(2015)	showed	that	the	mean	and	
variance	of	the	distribution	of	the	Q‐statistic	are	too	low	when	log	odds	ratios	are	used	
as	effect	size	measure	and	the	sample	size	is	not	sufficiently	large.	They	propose	to	
approximate	the	distribution	of	the	Q‐statistic	by	means	of	a	gamma	distribution	and	
developed	a	new	test	for	homogeneity	based	on	this	approximation.	Future	research	
may	study	whether	the	statistical	properties	of	the	Q‐profile	method	improve	if	the	
distribution	of	the	generalized	Q‐statistic	is	approximated	by	a	gamma	distribution	
instead	of	a	 2 	distribution.	

		 Future	research	may	also	examine	to	what	extent	incorporating	an	estimate	
of	the	between‐study	variance	in	the	weights	of	the	GENQ	method	affects	its	CIs	if	the	
assumptions	underlying	the	random‐effects	model	do	not	hold.	Using	variance	
weights	where	an	estimate	of	the	between‐study	variance	is	also	included	
corresponds	to	the	standard	weights	that	are	commonly	used	in	the	random‐effects	
model.	However,	the	GENQ	method	is	no	longer	exact	if	such	an	estimate	is	
incorporated.	Jackson	(2013)	already	studied	the	statistical	properties	of	the	GENQ	
method	when	incorporating	an	estimate	of	the	between‐study	variance	in	the	weights,	
but	only	when	the	assumptions	of	the	random‐effects	model	hold;	he	concluded	that	
the	coverage	probability	only	slightly	deviated	from	the	nominal	coverage	rate	under	
these	conditions.	
		 One	limitations	of	this	chapter	is	that	we	only	focus	on	one	particular	effect	
size	measure	(log	odds	ratio)	in	our	simulation	studies.	Future	research	may	therefore	
examine	whether	the	statistical	properties	of	the	Q‐profile	and	GENQ	method	depend	
on	the	effect	size	measure,	because	differences	in	estimates	of	the	between‐study	
variance	can	also	be	attributed	to	the	effect	size	measure	(Deeks,	2002;	Engels,	
Schmid,	Terrin,	Olkin,	&	Lau,	2000;	Friedrich,	Adhikari,	&	Beyene,	2011).	Deviations	
from	the	nominal	coverage	rate	of	the	methods	is	expected	to	be	less	severe	for	effect	
size	measures	whose	sampling	distribution	more	closely	follows	a	normal	
distribution.	
		 To	conclude,	between‐study	heterogeneity	is	common	in	meta‐analyses	
(Engels	et	al.,	2000;	Rhodes	et	al.,	2015),	and	assessing	heterogeneity	is	a	crucial	issue	
(Huedo‐Medina	et	al.,	2006).	We	recommend	in	line	with	others	(Higgins	et	al.,	2009;	
Ioannidis	et	al.,	2007;	Kepes	et	al.,	2013;	Langan	et	al.,	2016)	to	include	a	CI	around	
the	estimate	of	between‐study	variance	computed	with	the	Q‐profile	or	GENQ	method	
in	every	meta‐analysis.	This	illustrates	imprecision	in	the	estimate	of	the	between‐
study	variance	and	facilitates	interpretation	of	the	meta‐analysis.	Previous	research	
has	shown	that	the	Q‐profile	and	GENQ	method	have	the	best	statistical	properties,	
but	the	methods’	coverage	probabilities	deviate	from	the	nominal	coverage	rate	if	the	
probability	of	the	outcome	of	interest	is	small.	Hence,	methods	specifically	developed	
for	those	situations	should	be	considered	to	be	used	instead	of	the	Q‐profile	or	GENQ	
method.
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This	dissertation	focused	on	two	issues	that	are	crucial	when	conducting	a	meta‐
analysis:	publication	bias	and	heterogeneity	in	primary	studies’	true	effect	sizes.	
Publication	bias	is	seen	as	one	of	the	biggest	threats	to	the	validity	of	a	meta‐analysis	
(Dickersin	&	Min,	1993;	Easterbrook	et	al.,	1991;	Rothstein	et	al.,	2005a)	generally	
resulting	in	overestimated	effect	sizes	(e.g.,	Ioannidis,	2008b;	Lane	&	Dunlap,	1978)	
and	false	positive	results	in	the	literature	(e.g.,	Bakker	et	al.,	2012;	Fanelli,	2010b,	
2012).	There	has	been	widespread	attention	for	publication	bias	in	a	multitude	of	
research	fields	(e.g.,	Driessen	et	al.,	2015;	Franco	et	al.,	2014;	Franco	et	al.,	2016;	
Sterling	et	al.,	1995)	and	multiple	methods	have	been	developed	to	test	for	publication	
bias	and	correct	effect	size	estimation	in	a	meta‐analysis	for	publication	bias	(for	an	
overview	see	Rothstein	et	al.,	2005b).	The	unrealistic	high	prevalence	of	statistically	
significant	results	in	the	published	literature	(Fanelli,	2010b,	2012)	that	is	probably	
caused	by	publication	bias	(but	probably	also	by	for	instance	p‐hacking	[Simmons	et	
al.,	2011])	also	motivated	researchers	to	replicate	published	studies.	This	resulted	in	
several	large	groups	of	researchers	of	different	disciplines	verifying	whether	
landmark	studies	of	a	research	field	could	be	confirmed	in	a	replication	(Begley	&	
Ellis,	2012;	Camerer	et	al.,	2016;	Errington	et	al.,	2014;	Open	Science	Collaboration,	
2015).	
		 The	other	prominent	issue	we	focused	on	is	heterogeneity	in	primary	studies’	
true	effect	sizes.	This	between‐study	variance	in	true	effect	size	is	often	present	in	
meta‐analyses	(Higgins,	2008;	Kontopantelis	et	al.,	2013).	Examining	between‐study	
variance	may	lead	to	relevant	insights	about	the	(in)consistency	of	the	true	effect	size	
underlying	primary	studies’	observed	effect	sizes	(Higgins	et	al.,	2009).	An	essential	
aspect	in	meta‐analysis	is	accurately	estimating	this	between‐study	variance	in	true	
effect	sizes,	which	is	also	signified	by	the	many	different	estimators	for	the	between‐
study	variance	that	have	been	developed	(for	an	overview	see	Veroniki	et	al.	[2016]	
and	Langan	et	al.	[2016]).	Unfortunately,	estimates	of	the	between‐study	variance	are	
usually	imprecise	(Chung	et	al.,	2013;	Sidik	&	Jonkman,	2007),	and	these	estimates	are	
therefore	recommended	to	be	reported	together	with	a	confidence	interval	(Ioannidis	
et	al.,	2007;	Kepes	et	al.,	2013;	Langan	et	al.,	2016).	Similarly,	many	different	methods	
to	compute	confidence	intervals	for	the	between‐study	variance	in	true	effect	size	
exist	as	well	(for	an	overview	see	Veroniki	et	al.,	2016).	
		 We	first	discuss	the	results	of	the	chapters	related	to	publication	bias	
(Chapters	2‐7)	and	then	those	related	to	heterogeneity	in	true	effect	size.	The	key	
findings	and	recommendations	of	this	dissertation	are	also	listed	in	Table	10.1.	These	
recommendations	are	built	upon	guidelines	for	conducting	meta‐analyses	as	the	
PRISMA	(Moher	et	al.,	2009)	and	MARS	(American	Psychological	Association,	2010,	
Appendix)	and	are	based	on	the	results	of	the	chapters	in	this	dissertation	for	
conducting	meta‐analyses,	assessing	publication	bias,	and	meta‐analyzing	an	original	
study	and	replication.	Subsequently,	I	propose	how	the	ideal	system	of	science	should	
look	like	such	that	the	effects	of	publication	bias	and	other	biases	are	minimized.	Next,	
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I	suggest	directions	for	future	research	and	my	dissertation	ends	with	a	general	
conclusion	about	the	topics	discussed	in	this	dissertation.	
	
Table	10.1.	Key	findings	and	recommendations	of	this	dissertation.	

1. A	meta‐analysis	should	always	be	accompanied	with	publication	bias	methods	to	
get	insight	in	the	risk	and	severity	of	publication	bias	(Chapters	2‐5,	10).	
	

2. The	trim‐and‐fill	method	should	not	be	used	to	correct	for	publication	bias,	because	
the	method	does	not	adequately	correct	for	the	overestimation	caused	by	
publication	bias	and	is	outperformed	by	other	methods	(Chapter	2).	
	

3. P‐uniform	accurately	estimates	effect	size	if	between‐study	variance	in	true	effect	
sizes	is	absent	(Chapter	2	and	Chapter	3).	
	

4. P‐hacking	in	primary	studies	causes	an	unpredictable	bias	in	their	effect	size	
estimates,	so	researchers	are	advised	to	be	reluctant	in	interpreting	estimates	of	
meta‐analyses	if	strong	indications	of	p‐hacking	are	present	in	many	primary	
studies	(Chapter	3).	
	

5. Hardly	any	evidence	for	publication	bias	was	observed	in	a	large‐scale	dataset	of	83	
meta‐analysis	published	in	Psychological	Bulletin	(71.1%	of	effect	sizes	was	
nonsignificant)	and	499	systematic	reviews	from	the	Cochrane	Database	of	
Systematic	Reviews	(81.1%	of	effect	sizes	was	nonsignificant)	(Chapter	4).	
	

6. Because	p‐uniform*	and	the	selection	model	approach	proposed	by	Hedges	(1992)		
as	implemented	in	the	“weightr”	package	generally	have	good	statistical	properties,	
even	if	there	are	only	10	primary	studies	included	in	the	meta‐analysis,	we	
generally	recommend	applying	both	methods	to	estimate	effect	size	and	between‐
study	variance	in	true	effect	sizes	(Chapter	5,	but	see	key	finding	7).		
	

7. P‐uniform*	and	the	selection	model	approach	proposed	by	Hedges	(1992)	are	both	
not	recommended	to	be	used	if	there	are	only	statistically	significant	results	in	a	
meta‐analysis.	In	that	situation,	p‐uniform	is	recommended	to	be	used	but	only	in	
the	absence	of	heterogeneity	in	true	effect	sizes	(Chapters	2‐3,	5).	
	

8. Meta‐analysts	should	use	multiple	publication	bias	methods	(i.e.,	triangulation)	and	
report	all	their	results,	because	no	publication	bias	method	performs	best	in	all	
conditions	(Chapters	4‐5,	10).	
	

9. Selecting	a	statistically	significant	effect	size	for	replication	is	tantamount	to	the	
well‐known	“regression	towards	the	mean	problem”;	the	expected	value	of	the	
statistically	significant	effect	size	exceeds	the	true	effect	size	(Chapters	6‐7).		
	

10. When	statistically	combining	a	published	original	study	and	replication,	the	
statistical	significance	of	the	original	study	should	be	taken	into	account	when	
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estimating	the	common	underlying	true	effect	size	to	correct	for	the	likely	
overestimation	by	the	original	study	(see	key	finding	9;	Chapters	6‐7).	
	

11. Computing	the	required	sample	size	for	a	replication	with	the	snapshot	hybrid	
method	while	ignoring	the	information	of	the	original	study	indicates	that	sample	
sizes	of	about	650	participants	are	needed	to	have	a	probability	of	0.8	for	observing	
a	posterior	model	probability	larger	than	0.75	for	a	zero	or	small	true	effect	size	
(Chapter	7).	
	

12. Sample	sizes	in	experimental	economics	and	especially	psychology	are	often	too	
small	to	draw	definite	conclusions	about	the	magnitude	of	effect	size	underlying	
one	original	study	and	replication	(Chapters	6‐7).	
	

13. The	multi‐step	estimator	for	estimating	the	between‐study	variance	in	a	meta‐
analysis	is	an	alternative	justification	for	the	use	of	the	nowadays	recommended	
Paule‐Mandel	estimator	(Chapter	8).	
	

14. Coverage	probabilities	of	confidence	intervals	for	the	between‐study	variance	in	a	
meta‐analysis	can	be	substantially	below	the	nominal	coverage	rate	if	the	log	odds	
ratio	is	used	as	effect	size	measure	and	the	probability	of	the	outcome	of	interest	is	
low	(Chapter	9).	
	

15. The	Q‐profile	and	generalized	Q‐statistic	method	are	recommended	to	be	used	for	
computing	a	confidence	interval	around	the	between‐study	variance	in	a	meta‐
analysis	when	the	effect	size	measure	is	the	log	odds	ratio,	but	generalized	linear	
mixed‐effects	models	are	advised	to	be	used	if	the	probability	of	the	outcome	of	
interest	is	low	(Chapter	9).	
	

16. Science	in	which	all	studies	get	published	(including	their	materials,	code,	and	
data),	where	studies	are	pre‐registered	according	to	strict	rules,	and	articles	are	
reviewed	with	the	consistency	between	pre‐registration	and	article	in	mind,	has	the	
potential	to	eliminate	most	biases	in	science	(Chapter	10).	
	

17. The	R	package	“puniform”	and	easy‐to‐use	web	applications	were	developed	to	
apply	the	p‐uniform,	p‐uniform*,	hybrid	method	of	meta‐analysis,	snapshot	hybrid	
method,	and	to	compute	the	required	sample	size	for	a	replication	with	the	
snapshot	hybrid	method	(Chapters	3,	5‐7).	

	

10.1		 Publication	bias	

		 In	Chapter	2,	we	introduced	a	new	meta‐analysis	method,	p‐uniform,	that	
deals	with	publication	bias	and	is	able	to	(i)	test	for	publication	bias,	(ii)	estimate	
effect	size	and	compute	a	confidence	interval,	and	(iii)	test	the	null	hypothesis	of	no	
effect.	P‐uniform	only	uses	the	statistically	significant	primary	studies’	effect	sizes	in	a	
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meta‐analysis	and	evaluates	whether	the	p‐values	of	these	effect	sizes	conditional	on	
being	statistically	significant	are	uniformly	distributed	at	a	particular	effect	size.	For	
the	effect	size	estimate	of	p‐uniform,	this	means	that	the	estimate	is	equal	to	the	effect	
size	for	which	a	test	statistic	for	assessing	uniformity	based	on	these	conditional	p‐
values	equals	its	expected	value.	P‐uniform	was	implemented	using	Fisher’s	(1925)	
method	to	assess	uniformity	of	the	conditional	p‐values,	and	a	variant	of	Fisher’s	
method	that	is	less	susceptible	to	outlying	p‐values.		
		 We	conducted	Monte‐Carlo	simulations	to	compare	the	statistical	properties	
of	p‐uniform	with	respect	to	effect	size	estimation	with	the	trim‐and‐fill	method	
(Duval	&	Tweedie,	2000a,	2000b),	and	the	fixed‐effect	and	random‐effects	model	that	
do	not	correct	for	publication	bias.	Additionally,	p‐uniform’s	publication	bias	test	was	
compared	in	the	simulations	with	the	test	of	excess	significance	(Ioannidis	&	
Trikalinos,	2007b).	The	results	of	these	simulations	showed	that	estimates	of	the	
fixed‐effect	and	random‐effects	model	were	accurate	and	their	confidence	intervals	
close	to	the	nominal	coverage	rate	in	the	absence	of	publication	bias.	However,	
statistical	properties	of	the	methods	rapidly	deteriorated	as	publication	bias	increased	
(key	finding	1).	Estimates	of	trim‐and‐fill	were	also	severely	biased	if	publication	bias	
was	present.	This	confirmed	previous	research	that	already	concluded	that	trim‐and‐
fill	should	not	be	used	to	correct	for	publication	bias,	because	it	was	systematically	
outperformed	by	other	methods	(key	finding	2;	Moreno,	Sutton,	Ades,	et	al.,	2009;	
Simonsohn	et	al.,	2014a;	Terrin	et	al.,	2003).	P‐uniform’s	effect	size	estimates	were	
accurate,	and	coverage	probabilities	of	its	confidence	interval	were	close	to	the	
nominal	coverage	rate	if	the	primary	studies’	true	effect	sizes	were	homogeneous	(key	
finding	3).	However,	the	method	overestimated	effect	size	if	there	was	between‐study	
variance	in	the	true	effect	sizes,	and	this	overestimation	increased	as	a	function	of	this	
between‐study	variance	in	true	effect	sizes.	Statistical	power	of	p‐uniform’s	
publication	bias	test	was	low,	but	generally	larger	than	the	power	of	the	test	of	excess	
significance.		
		 In	Chapter	3,	effect	size	estimation	with	p‐uniform	was	compared	to	p‐curve	
(Simonsohn	et	al.,	2014a,	2014b),	which	is	a	highly	similar	method	based	on	the	same	
methodology	as	p‐uniform.	In	Chapter	2,	we	used	the	Fisher’s	method	for	estimation,	
but	we	decided	to	use	the	Irwin‐Hall	estimator	in	Chapter	3.	P‐uniform’s	effect	size	
estimate	is	in	that	case	equal	to	the	effect	size	for	which	the	sum	of	the	conditional	p‐
values	equals	the	expected	value	of	the	Irwin‐Hall	distribution.	Advantages	of	the	
Irwin‐Hall	estimator	over	Fisher’s	method	are	that	summing	the	conditional	p‐values	
is	intuitive	and	that	p‐uniform’s	estimate	using	the	Irwin‐Hall	distribution	is	smaller,	
equal,	larger	than	zero	if	the	average	of	the	included	statistically	significant	p‐values	in	
a	meta‐analysis	is	larger,	equal,	smaller	than	0.025,	respectively.	
		 We	examined	the	limitations	of	p‐uniform	and	p‐curve	by	assessing	bias	in	the	
methods’	estimates	caused	by	p‐hacking	and	overestimation	of	effect	size	if	the	
between‐study	variance	was	moderate	to	large.	The	effects	of	three	different	types	of	
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p‐hacking	(i.e.,	data	peeking	and	collecting	data	for	multiple	conditions	or	dependent	
variables	while	not	reporting	all	the	results)	were	studied,	and	the	results	
demonstrated	that	p‐hacking	caused	a	rather	unpredictable	bias	in	p‐uniform	and	p‐
curve	depending	on	the	type	of	p‐hacking	(key	finding	4).	Based	on	our	results	with	
respect	to	estimating	the	effect	size	in	the	presence	of	between‐study	variance,	we	
argued	that	p‐uniform	and	p‐curve	did	not	accurately	estimate	the	effect	size	if	the	
between‐study	variance	in	primary	studies’	true	effect	sizes	was	larger	than	moderate.	
This	is	in	contrast	with	what	the	developers	of	p‐curve	have	repeatedly	stated	
(Simmons,	Nelson,	&	Simonsohn,	2018,	January	8;	Simonsohn,	2015,	February	9;	
Simonsohn	et	al.,	2014a).	This	disagreement	boils	down	to	a	difference	in	the	
interpretation	of	the	parameter	that	p‐uniform	and	p‐curve	intend	to	estimate.	
Simonsohn	and	colleagues	argue	that	p‐uniform	and	p‐curve	intend	to	estimate	the	
average	true	effect	size	underlying	those	studies	yielding	statistically	significant	effect	
sizes.	That	is,	the	methods	answer	the	question	what	effect	size	will	be	obtained	if	we	
run	exactly	the	same	studies	as	those	that	yielded	statistically	significant	results.	We	
agree	with	Simonsohn	et	al.	that	p‐uniform	and	p‐curve	provide	an	accurate	answer	to	
that	question	(i.e.,	an	accurate	estimate	of	the	average	true	effect	size	underlying	all	
statistically	significant	primary	studies).	However,	we	believe	that	estimating	the	true	
effect	size	of	all	primary	studies	(and	not	only	those	that	gave	statistically	significant	
results)	is	of	primary	interest	for	applied	researchers.	This	is	actually	the	parameter	
that	is	estimated	in	the	random‐effects	model	(Borenstein	et	al.,	2010).	This	
parameter	that	we	intend	to	estimate	becomes	upwardly	biased	as	a	function	of	the	
between‐study	variance.	
		 In	Chapter	4,	we	conducted	a	pre‐registered	study	on	the	presence	of	
publication	bias	and	the	possible	overestimation	caused	by	it	in	a	large‐scale	data	set	
consisting	of	83	meta‐analyses	and	499	systematic	reviews	published	in	the	fields	of	
psychology	and	medicine,	respectively.	Data	of	all	meta‐analyses	published	in	
Psychological	Bulletin	between	2004	and	2014	that	met	the	inclusion	criteria	were	
extracted	to	represent	meta‐analyses	from	the	field	of	psychology.	Systematic	reviews	
published	in	the	Cochrane	Database	of	Systematic	Reviews	between	2004	and	2014	
that	met	the	inclusion	criteria	were	sampled	and	data	were	extracted	to	represent	
meta‐analyses	from	the	field	of	medicine.	The	data	of	83	meta‐analyses	representing	
research	in	psychology	and	499	systematic	reviews	representing	research	in	medicine	
were	combined	to	create	a	large‐scale	data	set.	Before	applying	publication	bias	
methods	to	this	data	set,	we	created	homogeneous	subsets	per	meta‐analysis,	because	
at	the	time	of	this	study	it	was	commonly	believed	that	publication	bias	methods	do	
not	have	good	statistical	properties	in	the	presence	of	heterogeneity	in	primary	
studies’	true	effect	sizes	(e.g.,	Ioannidis	&	Trikalinos,	2007a;	Ioannidis	&	Trikalinos,	
2007b;	McShane	et	al.,	2016;	Terrin	et	al.,	2003).	As	a	consequence,	the	majority	of	
homogeneous	subsets	contained	fewer	than	10	primary	studies’	effect	sizes,	which	are	
tough	conditions	for	publication	bias	methods	(e.g.,	Begg	&	Mazumdar,	1994;	Sterne	et	
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al.,	2011).	
		 Surprisingly,	the	results	of	Chapter	4	did	not	reveal	evidence	for	the	presence	
of	publication	bias	in	the	large‐scale	data	set;	publication	bias	tests	were	not	more	
often	statistically	significant	than	expected	by	chance	and	p‐uniform’s	estimates	
hardly	suggested	overestimation	caused	by	publication	bias.	Moreover,	71.1%	of	the	
primary	studies’	effect	sizes	representing	the	field	of	psychology	and	81.1%	
representing	the	field	of	medicine	were	not	statistically	significant	(key	finding	5).	
These	results	are	in	sharp	contrast	with,	for	instance,	research	showing	that	95%	of	
the	published	research	in	psychology	and	psychiatry	yields	statistically	significant	
results	(Fanelli,	2010b,	2012).	We	observed	that	only	28.9%	and	18.9%	of	the	primary	
studies’	effect	sizes	included	in	our	large‐scale	data	set	were	statistically	significant	in	
the	meta‐analyses	published	in	the	fields	of	psychology	and	medicine,	respectively.	A	
likely	reason	why	publication	bias	was	not	observed	in	the	large‐scale	data	set	is	that	
meta‐analyses	studied	relationships	that	were	not	the	primary	outcome	for	the	
majority	of	the	primary	studies.	Publication	bias	most	likely	only	influences	
publication	of	the	outcome	of	a	primary	study	that	is	of	main	interest,	and	secondary	
outcomes	may	remain	relatively	unaffected	by	publication	bias.	
		 We	presented	p‐uniform*,	which	is	an	extension	and	major	improvement	of	p‐
uniform,	in	Chapter	5.	P‐uniform*	(i)	does	not	overestimate	the	effect	size	in	the	
presence	of	between‐study	variance	in	true	effect	size,	(ii)	is	a	more	efficient	estimator	
than	p‐uniform,	and	(iii)	enables	testing	and	drawing	inferences	for	the	average	true	
effect	size	as	well	as	the	between‐study	variance.	We	compared	the	statistical	
properties	of	p‐uniform*	with	the	selection	model	approach	proposed	by	Hedges	
(1992)	implemented	in	the	“weightr”	package	(Coburn	&	Vevea,	2016)	in	an	analytical	
study	with	a	meta‐analysis	only	consisting	of	one	statistically	significant	primary	
study’s	effect	size	and	one	nonsignificant	effect	size.	Our	analytical	study	revealed	that	
p‐uniform*	and	the	selection	model	approach	of	Hedges	(1992)	did	not	suffer	from	
severe	convergence	problems	in	case	of	a	small	number	of	primary	studies	in	a	meta‐
analysis,	in	contrast	to	what	had	been	argued	before	(Field	&	Gillett,	2010;	Terrin	et	
al.,	2003).	Hence,	both	p‐uniform*	and	the	selection	model	approach	proposed	by	
Hedges	(1992)	can	already	be	applied	to	meta‐analyses	with	a	very	small	number	of	
studies,	provided	that	these	meta‐analyses	contain	both	statistically	significant	and	
nonsignificant	effect	sizes.		
		 To	examine	the	statistical	properties	of	both	methods	we	also	conducted	a	
Monte	Carlo	simulation	study	with	conditions	that	were	representative	for	meta‐
analyses	in	practice.	Performance	of	the	random‐effects	model	was	good	if	publication	
bias	was	absent,	but	its	estimates	were	severely	biased	in	case	of	extreme	publication	
bias	with	only	statistically	significant	primary	studies’	effect	sizes	in	a	meta‐analysis.	If	
the	number	of	primary	studies	increased	and	the	true	effect	size	was	zero,	the	test	of	
no	effect	of	the	random‐effects	model	always	incorrectly	concluded	that	the	true	effect	
size	was	larger	than	zero.	This	simulation	study	showed	that	the	performance	of	p‐
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uniform*	was	generally	comparable	to	the	selection	model	approach	proposed	by	
Hedges	(1992),	yet	superior	to	the	performance	of	the	random‐effects	model	under	
publication	bias	(key	finding	6).	P‐uniform*	is	preferred	over	the	selection	model	
approach	if	the	main	goal	of	a	researcher	is	to	estimate	the	average	effect	size	and	
between‐study	variance,	because	the	selection	model	approach	had	a	systematic	bias	
in	estimating	the	average	effect	size	and	suffered	more	from	convergence	problems	
than	p‐uniform*.	However,	estimates	of	p‐uniform*	were,	in	general,	more	variable	
than	estimates	of	the	selection	model	approach	proposed	by	Hedges	(1992),	and	
estimates	of	p‐uniform*	may	be	unrealistically	highly	negative	if	primary	studies’	p‐
values	are	close	to	the	 ‐level.	The	simulations	also	revealed	that	statistical	properties	
of	p‐uniform*	and	the	selection	model	approach	were	both	insufficient	in	cases	with	
extreme	publication	bias	resulting	in	meta‐analyses	with	only	included	statistically	
significant	primary	studies’	effect	sizes	(key	finding	7).	These	results	also	imply	that	
no	publication	bias	method	performs	best	in	all	possible	conditions.	Hence,	we	
recommend	in	line	with	others	(Coburn	&	Vevea,	2015;	Kepes,	Banks,	McDaniel,	et	al.,	
2012)	to	use	triangulation	(key	finding	8).	That	is,	use	multiple	publication	bias	
methods	in	a	meta‐analysis	and	report	all	their	results.		
		 In	Chapter	6,	we	proposed	a	method	(hybrid	method	of	meta‐analysis)	to	
meta‐analyze	a	statistically	significant	published	original	study	and	replication.	The	
idea	is	that	the	original	study	is	most	likely	statistically	significant,	because	studies	
with	statistically	significant	results	are	usually	the	ones	that	get	published	due	to	
publication	bias	and/or	are	subsequently	targeted	for	replication.	Selecting	a	
statistically	significant	effect	size	for	replication	is	tantamount	to	the	well‐known	
“regression	towards	the	mean	problem”;	the	expected	value	of	the	statistically	
significant	effect	size	exceeds	the	true	effect	size	(key	finding	9).	In	other	words,	this	
selection	of	statistically	significant	effect	sizes	introduces	positive	bias	in	the	effect	
size	of	the	original	study,	which	is	not	necessarily	caused	by	publication	bias.	Due	to	
the	positive	bias,	it	is	important	that	this	statistical	significance	in	the	original	study	is	
taken	into	account,	and	this	is	exactly	what	the	hybrid	method	of	meta‐analysis	does.	
The	hybrid	method	enables	(i)	estimating	effect	size,	(ii)	computing	a	confidence	
interval	for	the	effect	size,	and	(iii)	testing	the	null	hypothesis	of	no	effect	while	
combining	a	statistically	significant	original	study	and	replication.	The	replication	is	
assumed	to	be	unbiased,	so	statistical	significance	is	only	taken	into	account	in	the	
original	study.	We	implemented	three	variants	of	the	hybrid	method;	the	basic	variant	
(hybrid),	and	two	variants	(hybrid0	and	hybridR)	that	avoid	unrealistically	highly	
negative	estimates	of	the	basic	variant	arising	from	original	effect	sizes	with	a	p‐value	
close	to	the	α‐level.	Hybrid0	sets	the	effect	size	equal	to	0	if	the	hybrid	method	of	
meta‐analysis	yields	a	negative	estimate	while	hybridR	discards	the	original	effect	size	
if	it	suggests	a	negative	effect	size	using	p‐uniform	using	the	estimator	based	on	the	
Irwin‐Hall	distribution.	We	implemented	all	methods	using	the	Irwin‐Hall	distribution	
as	estimator,	and	compared	their	performance	to	each	other	and	to	fixed‐effect	meta‐



C h a p t e r 	 1 0 	|	285	
	

 

analysis	in	an	analytical	study.	The	results	illustrated	that	it	is	inappropriate	not	to	
take	statistical	significance	in	the	original	study	into	account	using	the	fixed‐effect	
model,	because	it	yields	overestimated	effect	sizes	and	too	large	Type	I	errors	(key	
finding	10).		
		 We	applied	the	three	variants	of	the	hybrid	method	of	meta‐analysis	as	well	
as	the	fixed‐effect	model	to	original	studies	and	replications	included	in	the	
Reproducibility	Project:	Psychology	(Open	Science	Collaboration,	2015).	The	
percentage	of	pairs	original	studies	and	replications	where	the	null	hypothesis	of	no	
effect	was	rejected	was	lower	for	the	three	variants	of	the	hybrid	method	of	meta‐
analysis	(hybrid	28.4%,	hybrid0	28.4%,	hybridR	34.3%)	than	fixed‐effect	meta‐analysis	
(70.1%)	and	equal	or	lower	than	only	considering	the	replication	(34.3%).	Estimates	
of	the	three	variants	of	the	hybrid	method	of	meta‐analysis	were	smaller	than	fixed‐
effect	meta‐analysis	but	slightly	larger	than	only	considering	the	replication.	Hence,	
the	smaller	percentage	of	pairs	of	original	studies	and	replications	for	hybrid	and	
hybrid0	where	the	null	hypothesis	was	rejected	was	caused	by	more	uncertainty	in	the	
estimates	of	these	methods.	Nevertheless,	estimates	of	the	three	variants	of	the	hybrid	
method	of	meta‐analysis	were	usually	too	imprecise	(i.e.,	large	standard	error)	to	
draw	definite	conclusion	about	the	existence	of	an	effect,	which	is	in	line	with	a	
Bayesian	reanalysis	of	the	data	of	the	Reproducibility	Project:	Psychology	(Etz	&	
Vandekerckhove,	2016).	
		 Another	method	for	evaluating	an	original	study	and	replication	was	
developed	in	Chapter	7.	This	snapshot	hybrid	method	again	takes	statistical	
significance	in	the	original	study	into	account,	and	uses	Bayesian	analysis	to	compute	
posterior	model	probabilities	at	different	snapshots	of	effect	sizes	(e.g.,	a	zero,	small,	
medium,	and	large	effect	size),	thereby	quantifying	the	magnitude	of	the	effect	size	
underlying	an	original	study	and	replication.	Furthermore,	we	illustrated	how	the	
snapshot	hybrid	method	can	be	used	for	computing	the	required	sample	size	for	a	
replication	using	the	observed	effect	size	in	the	original	study	but	also	taking	into	
account	its	statistical	significance.	This	procedure	is	analogous	to	power	analysis	in	
null	hypothesis	testing,	and	resembles	a	frequentist	method	proposed	by	S.	F.	
Anderson,	Kelley,	and	Maxwell	(2017)	to	conduct	a	power	analysis	while	taking	
publication	bias	and	uncertainty	in	effect	size	estimates	into	account.	Interestingly,	
computing	the	required	sample	size	for	a	replication	with	the	snapshot	hybrid	method	
for	a	nonzero	expected	true	effect	size	may	result	in	a	larger	required	sample	size	than	
when	the	original	study	was	ignored.	This	occurs	if	the	original	study	has	a	p‐value	
close	to	the	 ‐level,	which	is	in	line	with	a	negative	true	effect	size	(see	Chapters	2	and	
3).	Computing	the	required	sample	size	for	a	replication	with	the	snapshot	hybrid	
method	while	ignoring	the	information	of	the	original	study	indicates	that	sample	
sizes	of	about	650	participants	are	needed	to	have	a	probability	of	0.8	for	observing	a	
posterior	model	probability	larger	than	0.75	for	a	zero	or	small	true	effect	size	(key	
finding	11).	
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	 Applying	the	snapshot	hybrid	method	to	the	Reproducibility	Project:	
Psychology	(Open	Science	Collaboration,	2015)	confirmed	the	findings	of	Chapter	6	
and	Etz	and	Vandekerckhove	(2016)	that	it	often	was	difficult	to	draw	strong	
conclusions	with	respect	to	the	underlying	true	effect	size	based	on	the	original	study	
and	replication	because	of	their	relatively	small	sample	sizes	(key	finding	12).	That	is,	
strong	conclusions	(i.e.,	posterior	model	probability	of	at	least	0.75	for	a	true	effect	
size)	could	not	be	drawn	with	respect	to	62.7%	of	the	pairs	of	original	studies	with	the	
snapshot	hybrid	method.	The	snapshot	hybrid	method	was	also	applied	to	the	
Experimental	Economics	Replication	Project	(Camerer	et	al.,	2016)	and,	in	contrast	
with	the	Reproducibility	Project:	Psychology,	strong	conclusions	could	not	be	drawn	
for	only	18.8%	of	the	pairs	of	original	study	and	replication	Comparing	the	results	of	
the	Reproducibility	Project:	Psychology	and	the	Experimental	Economics	Replication	
Project	also	revealed	that	studied	effect	sizes	were	generally	larger	in	the	original	
studies	and	replications	in	the	Experimental	Economics	Replication	Project.	However,	
the	effect	sizes	in	the	original	study	were	also	likely	overestimated	since	the	observed	
effect	size	in	the	original	study	was	larger	than	in	the	replication	in	81.3%	of	the	
replicated	effects.	

10.2		 Estimating	heterogeneity	in	meta‐analysis	

	 In	Chapter	8,	we	proposed	a	new	multi‐step	estimator	for	estimating	the	
between‐study	variance	in	a	meta‐analysis.	This	multi‐step	estimator	is	a	natural	
extension	of	the	two‐step	estimators	as	suggested	by	DerSimonian	and	Kacker	(2007).	
We	proved	that,	if	the	multi‐step	estimator	converges,	it	converges	to	the	Paule‐
Mandel	estimator	(Paule	&	Mandel,	1982)	if	the	number	of	steps	of	the	multi‐step	
estimator	is	large.	We	also	show	that	this	proof	holds	for	the	random‐effects	meta‐
regression	model	where	covariates	are	included	in	the	model	to	explain	the	between‐
study	variance.	The	established	relationship	between	the	multi‐step	estimator	and	
Paule‐Mandel	estimator	is	important	since	it	provides	an	alternative	justification	for	
the	Paule‐Mandel	estimator	(key	finding	13)	that	is	nowadays	one	of	the	recommend	
methods	for	estimating	the	between‐study	variance	in	primary	studies’	true	effect	
sizes	(Langan	et	al.,	2016;	Veroniki	et	al.,	2016).	We	illustrated	the	multi‐step	
estimator	using	three	example	data	sets	of	meta‐analyses	and	showed	that	for	each	
example	the	multi‐step	and	Paule‐Mandel	estimate	were	equal	to	each	other.	
		 Estimates	of	the	between‐study	variance	are	usually	imprecise	(Chung	et	al.,	
2013;	Kontopantelis	et	al.,	2013;	Sidik	&	Jonkman,	2007)	making	it	desirable	to	report	
a	confidence	interval	for	the	between‐study	variance.	In	Chapter	9,	we	studied	the	
statistical	properties	of	the	Q‐profile	and	generalized	Q‐statistic	method	that	are	
recommended	methods	for	computing	such	a	confidence	interval	(Langan	et	al.,	2016;	
Veroniki	et	al.,	2016).	These	methods	are	exact	if	the	assumptions	underlying	the	
random‐effects	model	hold,	but	these	assumptions	are	usually	violated	in	practice	
(Biggerstaff	&	Tweedie,	1997;	Hardy	&	Thompson,	1998;	Hoaglin,	2016a,	2016b).	For	
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example,	the	primary	studies’	sampling	variances	are	usually	not	known	whereas	this	
is	an	assumption	of	the	random‐effects	model.	Statistical	properties	of	the	Q‐profile	
and	generalized	Q‐statistic	method	were	examined	in	two	Monte‐Carlo	simulation	
studies	with	log	odds	ratios	as	effect	size	measure.	In	the	first	simulation	study,	we	
assessed	the	methods’	coverage	probabilities	and	the	width	of	the	confidence	
intervals	for	conditions	that	were	representative	for	meta‐analyses	in	practice.	
Coverage	probabilities	of	both	methods	were	substantially	below	the	nominal	
coverage	rate	if	the	assumptions	of	the	random‐effects	model	were	violated	especially	
if	the	probability	of	the	outcome	of	interest	was	low	(key	finding	14).	In	the	second	
simulation	study,	the	true	sampling	variances	of	the	primary	studies	were	computed	
in	order	to	examine	whether	this	would	affect	the	performance	of	the	Q‐profile	and	
generalized	Q‐statistic	method.	Using	the	true	sampling	variances	instead	of	estimated	
sampling	variances	in	simulations	improved	the	coverage	probabilities	of	the	
methods,	but	coverage	still	deviated	from	the	nominal	coverage	rate	if	the	probability	
of	the	outcome	of	interest	was	low.	This	was	caused	by	the	distribution	of	generalized	
Q‐statistics,	which	was	not	well	approximated	by	a	 2 	distribution	if	the	primary	

studies’	sample	sizes	were	small.	Hence,	we	advise	meta‐analysts	to	be	careful	with	
interpreting	these	confidence	intervals	if	the	effect	size	measure	is	the	log	odds	ratio	
and	the	probability	of	the	outcome	of	interest	is	low.	We	recommend	to	use	general	
linear	mixed‐effects	models	(for	an	overview	see	Jackson,	Law,	Stijnen,	Viechtbauer,	&	
White,	2018),	because	these	methods	have	better	statistical	probabilities	if	log	odds	
ratio	is	the	effect	size	measure	and	the	probability	of	the	outcome	of	interest	is	low	
(key	finding	15).	

10.3		 The	ideal	system	of	science	

		 The	problem	of	publication	bias	would	be	absent	in	an	ideal	system	of	science	
where	all	studies	are	published	(or	become	at	least	publicly	accessible)	regardless	of	
their	statistical	significance.	A	step	in	this	direction	can	be	set	by	fully	disclosing	all	
the	results,	data,	and	research	materials	of	a	study	either	in	a	paper	or	in	its	
supplements,	or	if	a	study	is	not	deemed	suitable	for	publication,	in	an	online	
repository	(e.g.,	Open	Science	Framework,	http://osf.io).	This	makes	the	scientific	
system	as	a	whole	more	effective	(van	Assen	et	al.,	2014),	without	bias,	and	enables	
more	precisely	estimating	the	between‐study	variance	in	true	effect	size	in	a	meta‐
analysis.	However,	this	only	holds	if	studies	are	properly	conducted,	analyzed,	and	
reported	(i.e.,	no	p‐hacking).	Fully	disclosing	the	data	and	research	materials	also	
enables	other	researchers	to	reproduce	results,	thereby	increasing	the	trust	in	
research	findings.	
		 Another	step	in	the	right	direction	focusing	on	preventing	p‐hacking	is	by	
requiring	researchers	to	pre‐register	all	studies	such	that	all	steps	that	are	planned	in	
the	design,	conduct,	analysis,	and	reporting	of	studies	are	specified	before	the	
researcher	collects	the	data	(e.g.,	Asendorpf	et	al.,	2013;	de	Groot,	1956/2014;	Nosek	



288	|	E p i l o g u e 	
	

 

et	al.,	2015;	Wagenmakers,	Wetzels,	Borsboom,	van	der	Maas,	&	Kievit,	2012;	
Wicherts	et	al.,	2016).	To	prevent	p‐hacking,	pre‐registrations	should	be	specific,	
precise,	and	exhaustive	(Wicherts	et	al.,	2016).	For	instance,	researchers	can	include	
computer	code	for	all	planned	statistical	analyses	in	their	pre‐registration.	Including	
computer	code	for	analyses	is	specific	(these	analyses	will	be	conducted),		precise	
(with	these	options),	and	exhaustive	(no	other	planned	analyses	are	carried	out).	
Unfortunately,	current	systems	of	pre‐registrations	are	not	so	strict,	thereby	leaving	
ample	room	for	researcher	degrees	of	freedom	(Veldkamp	et	al.,	2017).	Being	specific,	
precise,	and	exhaustive	in	a	pre‐registration	is	strenuous,	as	it	is	very	difficult	to	
foresee	all	the	issues	that	may	arise	during	data	collection.	This	is	also	what	we	
experienced	when	pre‐registering	the	analysis	plan	for	Chapter	4.	However,	I	believe	
that	it	is	possible	for	researchers,	especially	if	they	are	using	common	experimental	
designs	(i.e.,	factorial	designs),	to	learn	how	to	effectively	pre‐register	their	studies	
(being	specific,	precise,	and	exhaustive).	This	is	a	necessary	and	essential	step	to	
create	an	unbiased	scientific	system.	Finally,	I	note	that	this	does	not	imply	that	all	
analyses	reported	in	a	paper	should	be	planned.	Deviations	from	a	preregistration	are	
possible	as	long	as	this	is	fully	disclosed	in	a	paper.	It	is	then	up	to	the	editor,	
reviewers,	and	the	scientific	community	to	evaluate	whether	such	a	deviation	is	
acceptable	or	not.	Additionally,	researchers	should,	of	course,	also	be	able	to	conduct	
“exploratory”	studies	(studies	without	planned	analyses),	but	researchers	should	
clearly	distinguish	between	planned/confirmatory	and	exploratory	analyses	in	their	
research.	 	
		 Previous	research	comparing	articles	with	their	pre‐registered	plans	revealed	
many	differences	and	inconsistencies	(Chan,	2008;	Chan	&	Altman,	2005;	Chan,	
Hróbjartsson,	Haahr,	Gøtzsche,	&	Altman,	2004;	Chan,	Hróbjartsson,	Jørgensen,	
Gøtzsche,	&	Altman,	2008;	Goldacre,	2016).	This	implies	that	pre‐registration	of	
planned	analyses	is	not	sufficient,	and	that	reviewing	should	enforce	the	consistency	
of	a	paper	with	its	pre‐registration.	This	could	be	done	by	using	registered	reports	
(Chambers,	2013)	where	pre‐registrations	are	peer‐reviewed	and	researchers	can	
adjust	their	pre‐registration	according	to	the	comments	made	by	the	reviewers	and	
editors.	If	reviewers	and	editors	accept	the	pre‐registration,	the	researchers	can	
actually	conduct	the	research,	and	it	will	be	published	irrespective	of	the	results,	
provided	that	the	researchers	follow	the	pre‐registration.	Hence,	these	registered	
reports	make	it	impossible	for	researchers	to	deviate	from	their	preregistration,	
thereby	tackling	both	the	issues	of	p‐hacking	and	publication	bias.	
	 Science	in	which	all	studies	get	published	(including	their	materials,	code,	and	
data),	where	studies	are	pre‐registered	according	to	strict	rules,	and	articles	are	
reviewed	with	the	consistency	between	pre‐registration	and	article	in	mind,	has	the	
potential	to	eliminate	most	biases	in	science	(key	finding	16).	Ideally,	this	setup	is	
accompanied	by	a	larger	focus	in	research	on	finding	determinants	or	potential	
moderators	of	effects.	Currently	the	fundamental	problem	of	science	is	that	a	majority	
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of	the	published	research	is	not	replicable,	as	many	original	effects	in	psychology,	
economics,	biology	and	medicine	do	not	hold	or	hold	to	a	lesser	extent	in	other	
contexts.	This	paradoxical	state	of	affairs	can	be	addressed	while	planning	the	
research,	for	instance	by	large‐scale	collaborations	examining	a	research	question	
using	the	same	or	similar	methods	in	many	labs	simultaneously.	Some	of	these	Many‐
Lab	projects	(Ebersole	et	al.,	2016;	Klein	et	al.,	2014;	Klein	et	al.,	2017)	are	already	
conducted	and	meta‐analyses	methods	are	required	to	estimate	the	average	effect	size	
and	between‐study	variance	and	test	whether	there	are	differences	across	labs.	I	hope	
to	see	many	of	these	projects	in	the	near	future,	because	these	projects	provide	
relevant	insights	into	the	generalizability	of	a	phenomenon.	
		 Unfortunately,	the	described	ideal	system	of	science	is	not	(yet)	implemented.	
Hence,	my	hope	is	that	the	increased	use	of	the	promising	methods	that	were	
developed	and	examined	in	this	dissertation	to	correct	for	publication	bias	and	
statistically	combine	an	original	study	and	replication	will	help	science	moving	
forward.	We	have	developed	easy‐to‐use	software	for	researchers	that	want	to	apply	
p‐uniform,	p‐uniform*,	the	hybrid	meta‐analysis	method,	and	snapshot	hybrid	method	
(key	finding	17).	R	functions	are	available	in	the	R	package	“puniform”	that	is	
available	on	GitHub	(https://github.com/RobbievanAert/puniform),	and	we	have	
developed	web	applications	for	researchers	that	are	not	familiar	with	R:	p‐uniform	
(https://rvanaert.shinyapps.io/p‐uniform/),	p‐uniform*	
(https://rvanaert.shinyapps.io/p‐uniformstar/),	the	hybrid	meta‐analysis	method	
(https://rvanaert.shinyapps.io/hybrid/),	and	snapshot	method	
(https://rvanaert.shinyapps.io/snapshot/).	

10.4		 Future	research	

		 A	relevant	option	for	future	research	is	to	develop	estimators	and	confidence	
intervals	for	the	between‐study	variance	that	deals	with	the	fact	that	the	Q‐statistic	is	
not	well	approximated	by	a	 2 	distribution	if	the	primary	studies’	sample	sizes	are	

small	as	in	most	current	applied	research	(Chapter	9).	Kulinskaya	and	colleagues	
(Kulinskaya	&	Dollinger,	2015;	Kulinskaya,	Dollinger,	&	Bjørkestøl,	2011a,	2011b)	
obtained	similar	results	as	we	did	and	showed	that	the	distribution	of	the	Q‐statistic	
can	be	better	approximated	with	the	general	gamma	distribution	for	effect	size	
measures	log	odds	ratio,	risk	difference,	and	standardized	mean	differences	(Cohen’s	
d).	Estimators	of	the	between‐study	variance	may	be	less	biased	and	corresponding	
confidence	intervals	could	be	closer	to	the	nominal	coverage	rate	if	a	gamma	
distribution	is	used	to	approximate	the	distribution	of	the	Q‐statistic	rather	than	a	 2 	

distribution.	
		 More	research	is	also	needed	on	the	statistical	properties	of	publication	bias	
methods.	Many	publication	bias	methods	have	been	developed,	but	there	is	not	
enough	insight	into	what	the	most	appropriate	method	is	in	different	conditions.	For	
instance,	research	on	the	statistical	properties	of	PET‐PEESE	showed	that	the	method	
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has	good	statistical	properties	for	meta‐analyses	that	are	typical	for	the	field	of	
economics	(Stanley	&	Doucouliagos,	2014),	but	the	statistical	properties	of	the	
method	deteriorate	for	meta‐analysis	that	are	typical	for	the	field	of	psychology	
(Carter	et	al.,	2017;	Stanley,	2017)	due	to	the	low	variability	in	primary	studies’	
sample	sizes.	More	research	is	also	needed	on	whether	bias	is	introduced	in	p‐
uniform*	and	the	selection	model	approach	proposed	by	Hedges	(1992)	if	the	
probability	of	publishing	a	statistically	nonsignificant	primary	study’s	effect	size	
depends	on	its	effect	size	or	p‐value.	P‐uniform*	and	also	the	selection	model	
approach	assume	that	this	probability	is	the	same	for	each	statistically	nonsignificant	
primary	study’s	effect	size.	However,	this	assumption	may	be	violated	in	practice	(see	
Simonsohn	et	al.,	2017,	December	20	for	a	discussion	about	this	assumption).	The	
selection	model	approach	proposed	by	Hedges	(1992)	enables	specifying	more	than	
two	intervals	making	the	method	more	robust	to	a	violation	of	this	assumption.			
		 Moreover,	the	effect	of	p‐hacking	on	publication	bias	methods	was	not	widely	
studied	whereas	results	in	Chapter	2	provided	ample	evidence	that	at	least	p‐uniform,	
p‐curve,	and	also	the	fixed‐effect	model	are	biased	by	different	types	of	p‐hacking.	
Future	research	may	also	consider	studying	publication	bias	in	existing	meta‐analyses	
with	methods	that	have	been	developed	in	recent	years.	Publication	bias	methods	
were	often	not	applied	in	these	meta‐analyses	(Aguinis	et	al.,	2010;	Aytug	et	al.,	2012;	
Banks,	Kepes,	&	Banks,	2012)	or	suboptimal	methods	were	used	(Ioannidis,	2008a;	
Ioannidis	&	Trikalinos,	2007a).	Hence,	reanalyzing	data	analogous	as	we	did	in	
Chapter	4	with,	for	instance,	p‐uniform*,	the	selection	model	approach	of	Hedges	
(1992),	or	other	methods	(e.g.,	PET‐PEESE	[Stanley	&	Doucouliagos,	2014]	and	
Bayesian	methods	proposed	by	Guan	and	Vandekerckhove	[2015]	and	Du	et	al.	
[2017])	will	likely	yield	relevant	insights.	
		 As	a	reviewer	of	multiple	manuscripts	that	conducted	a	meta‐analysis,	I	have	
often	encountered	the	desire	of	researchers	to	include	dependent	primary	studies’	
effect	sizes	in	a	meta‐analysis.	However,	including	dependent	effect	sizes	in	the	same	
meta‐analysis	violates	the	assumption	of	independence	(Borenstein	et	al.,	2009)	and	
using	the	fixed‐effect	or	random‐effects	model	is	no	longer	suitable.	Multivariate	
meta‐analysis	models	(e.g.,	Jackson	et	al.,	2011;	Mavridis	&	Salanti,	2013)	can	be	used	
to	take	the	dependence	of	the	primary	studies’	effect	sizes	into	account,	but	no	
publication	bias	methods	exist	for	these	models.	Future	research	may	focus	on	to	the	
consequences	of	publication	bias	in	a	multivariate	meta‐analysis	as	well	as	
considering	developing	publication	bias	methods	with	good	statistical	properties	for	
these	models.	
		 Some	psychology	journals	(e.g.,	Psychological	Science,	Lindsay,	2017)	
encourage	authors	to	share	data,	which	may	offer	interesting	directions	for	future	
research.	Meta‐analyses	based	on	primary	studies’	effect	sizes	can	be	replaced	by	so‐
called	individual	participant	data	(or	individual	patient	data,	IPD)	meta‐analysis	
(Borenstein	et	al.,	2009;	Higgins	&	Green,	2011)	if	the	data	of	primary	studies	
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becomes	available.	The	raw	data	of	the	primary	studies	is	analyzed	rather	than	the	
aggregated	data	in	an	individual	participant	data	meta‐analysis.	This	approach	has	
become	more	popular	in	the	field	of	medical	research	(Riley,	Lambert,	&	Abo‐Zaid,	
2010)	and	has,	for	instance,	the	advantage	over	meta‐analyzing	aggregated	primary	
studies’	data	that	researchers	can	also	examine	the	effect	of	moderating	variables	at	
the	participant	level	(for	an	overview	of	advantages	see	Stewart	&	Tierney,	2002).	
However,	publishing	primary	studies’	data	or	sharing	data	(Wicherts,	Borsboom,	Kats,	
&	Molenaar,	2006)	is	not	(yet)	the	norm	within	psychology	research,	so	it	may	take	
time	before	large‐scale	individual	participant	data	meta‐analyses	can	be	conducted	in	
psychology.	
		 Another	opportunity	for	future	research	is	extending	the	hybrid	and	snapshot	
methods	such	that	they	can	handle	multiple	published	statistically	significant	original	
studies	and	replications.	The	original	studies	and	replications	can	then	be	combined	in	
the	extended	versions	of	the	hybrid	and	snapshot	method,	where	the	replications	are	
considered	as	unbiased	replications	by	the	methods.	This	will	yield	a	more	efficient	
estimator	of	the	hybrid	method	and	better	inferences	for	both	the	hybrid	and	
snapshot	method.	This	extension	is	straightforward	by	combining	on	the	one	hand	the	
methodology	developed	for	p‐uniform*	(Chapter	5)	and	on	the	other	hand	the	hybrid	
method	of	meta‐analysis	or	the	snapshot	hybrid	(Chapter	6	and	Chapter	7).	Another	
possible	extension	is	developing	Bayesian	alternatives	of	methods	that	were	proposed	
in	this	dissertation.	In	collaboration	with	Hilde	Augusteijn,	Quentin	Gronau,	Eric‐Jan	
Wagenmakers,	and	Marcel	van	Assen,	I	already	started	to	work	on	developing	a	
Bayesian	alternative	of	p‐uniform,	but	this	is	also	possible	for	p‐uniform*	and	the	
hybrid	method	of	meta‐analysis.	Moreover,	future	research	may	also	consider	
implementing	maximum	likelihood	estimation	for	the	hybrid	method	of	meta‐analysis	
instead	of	the	estimator	based	on	the	Irwin‐Hall	distribution.	

10.5		 General	conclusion	

		 Meta‐analysis	has	become	more	and	more	popular	the	last	couple	of	decades.	
Its	increasing	popularity	is	partially	due	to	the	information	explosion	with	respect	to	
the	number	of	papers	published.	Other	reasons	are	the	relevant	insights	and	
potentially	important	implications	for	practice	that	a	meta‐analysis	may	reveal.	
However,	meta‐analysis	is	not	a	magic	tool	that	always	leads	to	conclusions	that	are	
both	precise	and	valid.	The	quality	of	the	results	of	a	meta‐analysis	are	highly	
dependent	on	the	quantity	and	quality	of	the	included	primary	studies.	I	hope	to	have	
increased	awareness	for	the	shortcomings	of	meta‐analysis,	and	that	the	statistical	
methods	developed	in	this	dissertation	will	be	used	in	the	future	to	both	improve	the	
quality	of	meta‐analyses	and	advance	research	on	meta‐analysis.
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caught	my	attention	for	this	topic.	We	started	our	collaboration	five	years	ago	as	part	
of	an	internship	of	my	Research	Master’s	studies.	Although	the	project	we	initially	
started	with	is	a	very	long‐lasting	project,	I	am	still	enjoying	it	and	learned	a	lot	from	
our	collaboration.	I	would	also	like	to	thank	you	for	bringing	me	in	contact	with	Dan	
that	gave	me	the	opportunity	to	visit	him	for	three	months	in	Cambridge.	Dan,	thank	
you	for	the	time	you	invested	(and	are	still	investing)	in	our	research	projects.	I	have	
never	met	a	person	who	is	as	thorough	as	you	are	with	respect	to	conducting	research.	
This	is	a	very	good	characteristic	for	a	scientist!	I	would	also	like	to	thank	all	the	
others	at	the	MRC	Biostatistics	Unit	and	especially	the	PhD	students	for	involving	me	
in	the	group	and	activities.	
		 Ook	wil	ik	graag	Prof.	Wim	Van	Den	Noortgate,	Prof.	Eric‐Jan	Wagenmakers,	
Prof.	Pim	Cuijpers,	Dr.	Elise	Dusseldorp	en	Dr.	Marjan	Bakker	bedanken	voor	het	
zitting	nemen	in	de	promotiecommissie	en	de	moeite	nemen	om	hiervoor	af	te	reizen	
naar	Tilburg.	
		 Mandy,	bedankt	dat	je	me	wilde	helpen	bij	het	design	van	mijn	proefschrift.	
Door	jouw	hulp	ziet	het	er	mooi	en	professioneel	uit!	
		 Het	werken	aan	mijn	proefschrift	was	zeker	niet	zo	leuk	geweest	zonder	de	
mooie	onderzoeksgroep	die	we	hebben.	De	groep	begon	vrij	klein	en	bestond	uit	Jelte,	
Marcel,	Coosje,	Michèle	toen	Paulette	en	ik	erbij	kwamen,	maar	is	nu	flink	uitgebreid	
met	Chris,	Marjan,	Hilde,	Andrea,	Esther,	Olmo,	Amir	en	Leonie.	In	onze	meetings	(met	
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koekjes)	komen	we	vaak	niet	toe	aan	het	bespreken	van	de	papers	die	op	de	planning	
staan,	maar	dit	maakt	deze	meetings	des	te	belangrijker.	Ook	wil	ik	jullie	bedanken	
voor	de	feedback	die	jullie	gegeven	hebben	op	verschillende	papers	die	nu	
hoofdstukken	in	mijn	proefschrift	zijn	geworden.		
		 De	prettige	werksfeer	bij	het	MTO‐departement	heeft	ook	zeker	bijgedragen	
bij	het	succesvol	afronden	van	mijn	proefschrift.	Als	eerste	wil	ik	mijn	(voormalige)	
kamergenoten	bedanken:	Fetene,	Lianne,	Chris,	Niek	en	Paul.	Chris,	ik	wil	jou	in	het	
bijzonder	ook	bedanken	voor	de	velen	hamburgers	die	we	samen	gegeten	hebben	en	
de	kamers	die	we	gedeeld	hebben	bij	het	bezoeken	van	een	congres	of	cursus.	Zoals	de	
meesten	wellicht	zullen	weten	ben	ik	niet	de	persoon	die	heel	graag	naar	congressen	
gaat.	Gelukkig	ging	er	vaak	een	grote	groep	collega’s	naar	hetzelfde	congres	wat	het	
uiteindelijk	toch	nog	een	leuke	ervaring	maakte.	Ook	wil	ik	(zonder	namen	te	noemen	
en	het	risico	te	lopen	mensen	te	vergeten)	alle	collega’s	bedanken	voor	de	leuke	
gesprekken	tijdens	de	lunch.	Daarnaast	wil	ik	ook	Marcel,	Joris,	Paulette,	Sara,	Guy	en	
Luc	bedanken	voor	de	prettige	samenwerking	bij	het	geven	van	onderwijs.	Guy,	jou	
wil	ik	in	het	bijzonder	bedanken	voor	je	hulp	en	advies	bij	het	maken	van	
opdrachten/tentamens	en	het	voorbereiden	en	geven	van	een	aantal	hoorcolleges.	Ik	
heb	hier	erg	veel	van	geleerd	wat	zeker	van	pas	gaat	komen	in	de	toekomst.	Bij	het	
bedanken	van	collega’s	mogen	ook	zeker	onze	(voormalige)	secretaresses	Marieke,	
Liesbeth	en	Anne‐Marie	niet	ontbreken.	Jullie	waren	altijd	in	staat	om	bijvoorbeeld	
mijn	vragen	te	beantwoorden	over	onderwerpen	als	formulieren	en	het	boeken	van	
tickets/hotels.		
		 Tijdens	de	afgelopen	vier	jaar	en	vijf	maanden	heb	ik	ook	met	veel	plezier	
deelgenomen	aan	verschillende	sportieve	activiteiten.	Dit	waren	de	meest	
uiteenlopende	sporten	namelijk	van	paintboksen	tot	het	rennen	van	de	Tilburg	Ten	
Miles	en	van	het	Vroege	Vogels	tennistoernooi	tot	een	beach	soccer	toernooi.	Ik	wil	
graag	alle	collega’s	bedanken	die	meegedaan	hebben	met	deze	activiteiten.	Ook	wil	ik	
me	nogmaals	verontschuldigen	voor	alle	collega’s	die	hier	niet	op	zitten	te	wachten,	
maar	wel	telkens	door	mij	benaderd	werden	om	deel	te	nemen.	Verder	wil	ik	alle	
mensen	bedanken	die	regelmatig	deelnemen	aan	de	tennistrainingen	op	woensdag‐	
en	vrijdagmiddag.	In	het	bijzonder	wil	ik	Michael	bedanken	voor	de	verschillende	
tennistoernooien	waar	we	soms	succesvol	en	soms	minder	succesvol	aan	
deelgenomen	hebben	de	afgelopen	jaren.	
		 Ik	wil	ook	graag	Daphne,	Esther	en	Jeannette	bedanken	waarmee	ik	samen	
heb	gestudeerd	tijdens	mijn	bacheloropleiding	Personeelwetenschappen	en	nog	
steeds	contact	mee	heb.	Ook	al	zeggen	jullie	dat	mijn	werk	eigenlijk	verspilling	van	
belastinggeld	is	en	is	steevast	de	vraag	als	we	elkaar	zien	welke	snoepreisjes	ik	nu	
weer	heb	gemaakt	of	van	plan	ben	te	maken,	het	blijft	toch	altijd	leuk	als	we	weer	gaan	
kamperen,	er	een	landendiner	is	of	we	een	andere	activiteit	ondernemen.	
		 Cindy	en	Niek	bedankt	dat	jullie	mijn	paranimfen	willen	zijn.	Cindy,	ik	
waardeer	je	doorzettingsvermogen	om	te	bereiken	wat	je	graag	wilt	bereiken	in	het	
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leven	en	vind	het	fijn	dat	jij	mijn	oudere	(maar	kleinere)	zus	bent.	Niek,	ik	vind	het	erg	
gezellig	dat	wij	nu	samen	met	Chris	en	Paul	een	kantoor	delen.	Ik	kan	je	humor	erg	
waarderen	en	ook	je	enthousiasme	om	deel	te	nemen	aan	hardloopwedstrijden	(ook	
al	realiseer	jij	je	soms	dat	het	na	het	maken	van	een	trainingsschema	toch	wat	krap	
wordt).	
		 Ook	wil	ik	graag	Kees,	Betsie,	Karlijn	en	Pepijn	bedanken	voor	de	gastvrijheid	
voor	al	meer	dan	10	jaar.	Ik	waardeer	het	erg	als	we	langskomen	en	bordspellen	
spelen	ook	al	is	er	soms	wat	kritiek	op	mijn	speelwijze	;‐).	
		 Aan	mijn	moeder	heb	ik	wellicht	het	meeste	te	danken	en	dan	niet	alleen	de	
afgelopen	vier	jaar	en	vijf	maanden,	maar	de	afgelopen	28	jaar.	Mamma,	ik	vind	het	
erg	knap	dat	je	mij	en	ook	Cindy	voor	het	grootste	gedeelte	alleen	hebt	opgevoed	en	
ons	vooral	hebt	gestimuleerd	om	de	dingen	te	doen	die	we	leuk	vonden.	Ik	denk	dat	
we	allebei	uiteindelijk	goed	terecht	gekomen	zijn!	Pappa,	Marleen,	Ramon	en	Shanti,	
het	is	goed	dat	we	weer	wat	frequenter	contact	hebben.	
		 Tenslotte	wil	ik	de	belangrijkste	persoon	in	mijn	leven	bedanken.	Lieve	Karin,	
niet	alleen	de	afgelopen	4	jaar	en	5	maanden	heb	jij	me	ontzettend	veel	geluk	
gebracht,	maar	ook	geholpen	om	te	relativeren	over	hoe	(on)belangrijk	werk	wel	niet	
is.	Ik	denk	dat	we	alle	problemen	kunnen	overwinnen,	omdat	we	een	erg	goed	team	
zijn	samen.	Ook	al	lijkt	het	soms	dat	we	het	over	de	meeste	dingen	oneens	zijn,	in	
werkelijkheid	denk	ik	dat	we	het	toch	over	meer	zaken	eens	dan	oneens	zijn.	Ik	hoop	
dat	we	nog	velen	jaren	samen	gelukkig	en	gezond	door	kunnen	brengen.	
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