
  

 

 

Tilburg University

Advertising as a Reminder

He, Chen; Klein, Tobias

Publication date:
2018

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
He, C., & Klein, T. (2018). Advertising as a Reminder: Evidence from the Dutch State Lottery. (CentER
Discussion Paper; Vol. 2018-019). CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420838999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/0791692c-433c-4e8d-8374-ac46a1269ef7


 

  

  

 
 

 
 

 
 

 
 
 
 
 

     
 

 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 

Advertising as a Reminder: Evidence from 
the Dutch State Lottery 

By Chen He, Tobias Klein 

May, 2018 

TILEC Discussion Paper No. 2018-018 
CentER Discussion Paper No. 2018-019 

ISSN 2213-9532 
ISSN 2213-9419 

http://ssrn.com/abstract=3184756 



Advertising as a reminder: Evidence from the Dutch
State Lottery∗

Chen He and Tobias J. Klein†

May 2018

Abstract

We use high frequency data on TV and radio advertising together with data on online sales
for lottery tickets to measure the short run effects of advertising. We find them to be strong
and to last for up to about 4 hours. They are the bigger the less time there is until the draw.
We develop the argument that this finding is consistent with the idea that advertisements
remind consumers to buy a ticket and that consumers value this. Then, we point out that
in terms of timing the interests of the firm and the consumers are aligned: consumers wish
to be reminded in a way that makes them most likely to consider buying a lottery ticket.
We present direct evidence that this does not only affect the timing of purchases, but leads
to market expansion. Then, we develop a tractable dynamic structural model of consumer
behavior, estimate the parameters of this model and simulate the effects of a number of
counterfactual dynamic advertising strategies. We find that relative to the actual schedule
it would be valued by the consumers and profitable for the firm to spread advertising less
over time and move it to the last days before the draw.

Key words: Dynamic demand, limited attention, reminder advertising, adoption model.
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1 Introduction

In 2016, global advertising spending amounted to 493 billion US dollars.1 Yet, it remains
a challenge to measure the effects of advertising and characterize the underlying mechanism
through which it affects consumer behavior (Lewis and Rao, 2015).

The consensus that has emerged in the literature is that conceptually, firms pursue a combi-
nation of goals when advertising: they either aim at conveying information about the existence,
characteristics and prices of products; or they wish to positively influence the inclination of
consumers who already know about their products to buy them.2 In this paper, we present novel
empirical evidence that is in line with the view that in addition to these well-received ways of
working, advertising can act as a reminder. The underlying idea is that consumers have limited
attention and may therefore value being reminded.

Specifically, we use high frequency data on TV and radio advertising together with online
sales data for lottery tickets to measure the short run effects of advertising. The high frequency
nature of our data allows us to credibly identify advertising effects. The exact timing of ad-
vertisements is beyond the control of the firm and therefore, the thought experiment we can
undertake is to compare sales just before the advertisement was aired to sales right after this.
Our setup is well-suited to study reminder effects, because there are recurrent deadlines within
a year, consumers are well-aware of the product and its characteristics, and there is no other
closely competing product that is offered to them.

We find the short run effects of advertising to be sizable. They last up to about 4 hours
and are the bigger the less time there is until the draw, consistent with our interpretation that
advertisements indeed remind consumers to buy a ticket and that consumers value this. The
underlying idea is that consumers enjoy the benefits of buying a ticket mainly at a later point
in time, on the day of the draw, which is why they prefer to be reminded later and then react
stronger to it. This argument is developed in Section 4.3.

An important related question is whether advertising only leads to purchase acceleration
(individuals buying earlier rather than later) or also to market expansion (more people buying
in total). In order to provide model-free evidence on this, we point out that if advertising has a
short-run effect until the end of the period in which tickets can be bought, then it must be the
case that it also leads to market expansion.3 We find this to be the case.

After presenting this model-free evidence, we point out that in terms of timing the interest
of the firm that is advertising and the consumers are aligned: consumers wish to be reminded
in a way that makes them most likely to consider buying a lottery ticket. The tradeoff they face
is that on the one hand, if the firm allocates all the advertising very late, then it may not reach
certain consumers, for instance because they will not watch TV on these days; on the other
hand, if it spreads advertising expenditures out over time in order to reach more consumers,

1Taken from a report by Letang and Stillman (2016).
2See Bagwell (2007) for an excellent survey on the economics of advertising.
3We would like to thank Martin Peitz for this suggestion.
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then advertising effects may be smaller because consumers do not want to buy too early. This
means that total sales crucially depend on the dynamic advertising strategy and therefore, it
would be valuable to quantify the dependence of sales on counterfactual advertising strategies.

For this, we then develop a tractable structural model of consumer behavior that we estimate.
Our counterfactual simulations suggest that relative to the actual schedule it would be profitable
for the firm and also valued by the consumer if advertising would be shifted towards the last
days before the draw.

Besides, the model is useful to formalize the idea that advertisements act as a reminder. We
think of consumers, at a given point in time, as either buying a ticket for the following draw,
or postponing the decision to do so to a later point in time, with the possibility that they either
forget to buy a ticket or consciously decide not to do so. In each period, there is a considerations
stage. The probability to consider buying a ticket, i.e. to compare the value from buying the
ticket and the value of waiting, depends on an advertising goodwill stock that depreciates over
time. When estimating the model we pay particular attention to the fact that at a given point
in time goodwill stocks will be heterogeneous across ex ante identical consumers, because they
depend on heterogeneous but unobserved viewing behavior.

Our paper relates to several strands of the literature. The overarching theme is that quantify-
ing the effects of advertising and shedding light on the exact mechanism through which it affects
consumer behavior remains challenging, even using large-scale field experiments (Lewis and
Rao, 2015); but novel data sources and innovative empirical designs have allowed researchers
to measure advertising effects in credible ways and also shed additional light on the underlying
mechanism. Overall, given the importance of the advertising industry, there is relatively little
empirical work on the topic in economics.

The idea that advertising may serve as a reminder has appeared in the context of a debate on
the optimal number of times a consumer should be reached. Krugman (1972) argued that con-
sumers need to first understand the nature of the stimulus, then evaluate the personal relevance,
and finally are reminded to buy when they are in a position to do so. So, he concluded that
they should be reached at least three times. The underlying way of thinking about consumers
is related to models of limited attention that, according to Kahneman (1973) and others, may
originate in limits of information processing power and therefore may lead to forgetting. We
add to this by presenting novel empirical evidence that is in line with that view.

Ackerberg (2001, 2003) also focuses on the mechanism by which advertising influences
consumer behavior. His aim is to empirically distinguish between advertisements being ef-
fective because they are informative vis-à-vis them being effective because they increase the
valuation for the brand. He finds mainly support of former. We complement this by presenting
evidence that is in line with the view that advertisements act as a reminder.

Lodish et al. (1995) study the effectiveness of TV advertising and document a combination
of no and positive effects. Hu et al. (2007) find that the effects have increased in later years. We
contribute to this literature by using high frequency data to show that advertising has significant
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effects on online sales and that it leads to market expansion.
A number of recent studies shed light on the relationship between TV advertising and be-

havior online. Joo et al. (2015) find that there is a significant effect of TV advertising on
consumers’ tendency to search online. Lewis and Reiley (2013) study the effects of Super Bowl
advertising on online search behavior. They find that large spikes in search behavior related to
the advertiser or product within 15 seconds following the conclusion of the TV commercial.
Stephens-Davidowitz et al. (2017) exploit a natural experiment and find that advertising has a
positive effect on searches and on the demand for movie tickets on the opening weekend. Du
et al. (2017) characterize how the effects of advertising on online searches depend on advertise-
ment content, media-contextual factors, and brand. Both Liaukonyte et al. (2015) and our paper
complement these papers with evidence from high-frequency advertising and sales (as opposed
to search or low-frequency sales) data.

The model we estimate features an advertising goodwill stock as in the model by Dubé
et al. (2005). They estimate a static model and focus on interesting dynamics on the supply
side. Another difference is that in our model, advertising affects the probability of considering
to buy a ticket at a given point in time and not the flow utility associated with buying. Sovinsky
Goeree (2008) and Draganska and Klapper (2011) estimate static models with a consideration
stage using aggregate level data.

Our model is dynamic and consumers decide at each point in time whether to buy a ticket or
wait. Melnikov (2013) and De Groote and Verboven (2016) estimate similar models. Their re-
spective models do however not feature a consideration stage in which advertising has an effect.
So, our modeling contribution lies in proposing a model in which advertising can naturally be
thought of as acting as a reminder because it affects the probability to consider buying through
an advertising goodwill stock in a dynamic decision context.

The rest of this paper is structured as follows. Section 2 gives a brief overview over the mar-
ket for lottery tickets in the Netherlands. Section 3 describes the data and provides descriptive
statistics. Section 4 shows reduced-form evidence on the effect of advertising on sales. Section
5 develops our model of lottery ticket demand with advertising effects. Section 6 presents the
results. Section 7 performs counterfactual experiments for the supply side, and Section 8 con-
cludes by pointing towards other situations in which our model could be used, including public
policy. The (intended) Online Appendix is attached at the very end. Appendix A provides
details on the structural estimation procedure, Appendix B contains robustness checks for the
structural analysis, and Appendix C contains additional tables and figures.

2 The market for lottery tickets in the Netherlands

The market for lottery tickets in the Netherlands is very concentrated, with three organizations
conducting different types of lotteries. First, the Stichting Exploitatie Nederlandse Staatsloterij,
from which we received the data, offers lottery tickets for The Dutch State Lottery (in Dutch:
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Staatsloterij) and the Millions Game (Miljoenenspel). Staatsloterij has a history going back to
the year 1726 and is run by the government. It is by far the biggest of its kind in the Nether-
lands. The second player is the Stichting Exploitatie Nederlandse Staatsloterij. It offers the
Lotto Game (Lottospel), which is comparable but much smaller in size, next to other games
such as Eurojackpot and Scratch Tickets (Krasloten) and sports betting. In 2016, these two or-
ganizations merged. The third player is Nationale Goede Doelen Loterijen offering a ZIP Code
Lottery (Postcodeloterij), whose main purpose it is to donate money to charity. For that reason,
it is not directly comparable to the other two lotteries.4

The lottery run by Staatsloterij is classical. A ticket has a combination of numbers and
Arabic letters and a consumer can choose some of them. The size of the prize depends then
on how many numbers and letters of a ticket match with the ones of the winning combination.
On top of that, there is a jackpot whose size varies over time. For all draws but the very last
one in a year, consumers can choose between a full ticket that costs 15 euros and multiples of
one fifth of a ticket. For the last draw, the price of a ticket is 15 euros and consumers can buy
multiples of one half of a ticket. Winning amounts are then scaled accordingly. The tickets
can be purchased in two ways: they can either be purchased online via the official website of
Staatsloterij, or offline, for example, in a supermarket or a gas station. Most of the sales are
offline, but nevertheless the online business is considered important.

There are 16 draws in a calendar year. 12 of them are regular draws and 4 of them are
special draws. Regular draws take place on the 10th of every month. The dates of 4 additional
special draws vary slightly from year to year. In 2014 (the year for which we have data), the
4 special draws were on April 26 (King’s day in the Netherlands), on June 24, October 1 and
on December 31 (the new year’s eve draw). All draws but the last in a year take place at 8pm
(Central European Time). From 6pm onward, no more tickets can be bought for that draw.

3 Data and descriptive statistics

3.1 Overview

Our data are for 2014 and consist of 3 parts: online transactions, TV and radio advertising, and
jackpot sizes. The transaction data are collected at the minute level. We observe the number of
lottery tickets sold online.5 The advertising data consists of minute-level measurements of gross

4In 2014, Staatsloterij had a turnover of 738 million euros with 579 million euros related to its lottery and
De Lotto of 322 million euros with 144 million euros related to its lottery (https://over.nederlandseloterij.nl/over-
ons/publicaties, accessed May 2018). The turnover of Nationale Goede Doelen Loterijen was 847 million euros in
total with 624 million euros related to its charity ZIP code lottery (https://view.publitas.com/nationale-postcode-
loterij-nv/npl-jaarverslag-2014/page/58-59, accessed February 2016).

5These data have been collected using Google Analytics. In particular, visits to the “exit page” confirming
payment have been recorded. This means that we do not observe what type of ticket a consumer has bought.
Advertising also affects offline sales, and therefore, ideally, we would also like to observe the number of lottery
tickets sold offline. However, offline transactions are not observed in the dataset. At the same time, it generally
takes longer until an offline sale takes place after an individual listens to a radio advertisement or sees a TV
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Figure 1: Cumulative sales for selected draws

Notes: This figure shows cumulative sales for 6 selected regular draws. The respective
jackpot amounts are given in the legend. See Figure 10 in the Online Appendix for the
remaining draws.

rating points (GRP’s), separately for TV and radio advertising. GRP’s measure impressions as
a percentage of the target population at a given point in time. For example, 5 GRP’s in our data
mean that in that minute 5 percent of the target population (in our case the general population)
are exposed to an advertisement. This is a standard measure in the advertising industry.

Besides, we observe the jackpot size for the 12 regular draws in 2014. There is no jackpot
size for the 4 special draws, as more involved rules apply to them. For example, on the drawing
day, every 15 minutes consumers can win an additional 100,000 euros. In the empirical analysis,
we will capture differences across draws in a flexible way.

We are not allowed to report levels of sales and advertising. Therefore, we will only present
relative numbers and (semi-) elasticities in the tables and figures below and some vertical axis
will have no units of measurements. Of course, we will still use these data when conducting the
analysis.
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Figure 2: Advertising and sales during the day
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Notes: This figure shows average GRP’s and sales for different times of the day. To produce
this figure we first aggregate sales at the hourly level and then average over days and draws.
We exclude the respective day of the draw because tickets can only be bought until 6pm on
that day and there is a lot of advertising activity just before this deadline. See Figure 11 for
the pattern on the day of the draw.

3.2 Descriptive evidence

Figure 1 shows cumulative sales for 6 selected regular draws against the time until the draw,
together with the respective jackpot size.6 Some of the draws take place one full month after the
previous draw, while others will take place after less than a month. For example, the draw on
July 10 follows on the one of June 24 and therefore the line for the draw on July 10 is only from
June 24 (6:00 pm) to July 10 (5:59 pm). We do not expect this to have big effects, however,
because most tickets are sold in the week before the draw.7

The figure shows that across draws there is a positive relationship between jackpot size and
sales (that is, cumulative sales on the day of the draw). The draw on July 10 has the largest total
sales of the 6 draws. It also has the largest jackpot size. The second largest sales for the draw
on June 10, which also has the second largest jackpot size. However, in general, it is not true
that larger jackpot size always implies larger total sales.

We further explore differences across draws by regressing the log of the total number of

advertisement. At the minimum, this will be the time it takes between listening to a radio commercial in the car
and buying a ticket in a shop. Therefore, it will be much more challenging to measure advertising effects in offline
data—a challenge we try to overcome with our high frequency online sales data. For the interpretation of our
results below we focus on online sales.

6Patterns for the other draws are similar. See Figure 10 in the Online Appendix for the remaining draws.
7We nevertheless take this into account in our analysis.
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Figure 3: GRP’s at the minute-level for a regular draw
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Notes: This figure shows GRP’s and sales at the minute level, for the regular draw on April
10, 2014. Tickets for the next draw can be bought from 6pm on the day of the previous
draw, which is depicted as 0 days since the previous draw.

tickets sold online on the log of the jackpot size and the total number of days between the
date of the previous and current draw.8 Obviously, we only have 16 observations and jackpot
size only varies among the 12 regular draws. Nevertheless, we find a significant relationship
between jackpot size and sales. We estimate the effect of a 1 percent increase in the jackpot size
to be a 0.4 percent increase in total sales. We find no significant effects of lagged variables on
sales.

Figure 2 shows the pattern of sales and GRP’s across different hours of a day. We average
over all days in 2014 except for the days of the draw. The reason for this is that the time until
which tickets can be bought is 6pm and we observe that a large amount of sales occurs during
the hours before 6pm. At the same time, we observe that sales are unusually low in the first
several hours after 6pm on the day of the draw, as one would expect. So, by excluding those
16 drawing days, we can get a cleaner picture on how sales and GRP’s are distributed over time
during a typical day.

We distinguish between radio and TV advertisements. TV advertisements are concentrated
during evening and night hours, while radio advertisements are more likely to be aired in the
morning and in the afternoon. This clear separation is due to the fact that in the Netherlands TV
advertisements related to gambling must not be aired during the day time, until 7pm.9

8See Table 5 in Appendix C for details.
9We have tried to exploit this regression discontinuity design to produce estimates of advertising effects. How-

ever, it turns out to be difficult to distinguish the discontinuity in the total number of GRP’s from a flexible time
trend. The reason is that number of GRP’s increases in a continuous manner between 7pm and 9pm and did not
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Figure 4: GRP’s at the minute-level for a short time window
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Notes: This figure shows GRP’s and sales at the minute level for a short time window on
April 3, 2014.

Figure 2 shows that GRP’s are positively correlated with sales. During the hours in which
sales are high, GRP’s are also high. However, this does not necessarily mean that advertising
has positive effects, because GRP’s have not been assigned randomly. For instance, it could
be that consumers have more time in the evening and are therefore more likely to buy a lottery
ticket anyway.10

Next, Figure 3 shows GRP’s and sales at the minute level for one regular draw.11 We see that
the firm starts advertising on the 17th day after the last regular draw, while sales only increase
in the last days before the draw. This is already a first indication that advertising effects are low
before those last days.

Finally, Figure 4 zooms in further and shows the pattern for one of the days in Figure 3.
Related to our identification strategy described below, it is interesting to notice that the raw data
presented in Figure 4 already show some evidence of short run sales responses to advertising.
For example, there are some spikes of GRP’s just before 20:50, followed by spikes of sales
several minutes later. In the following section, we investigate this more systematically and
show the dependence of advertising effects on the time until the draw.

sharply jump to a high level right after 7pm.
10This is a well-known challenge for the analysis of advertising effects. Our identification strategy for measuring

the effects of advertising is akin to a regression discontinuity design and described in Section 4 below.
11Figure 12 in the Online Appendix shows GRP’s and sales for the special draw on April 26. Patterns are similar.
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4 Evidence on the effect of advertising

In this section, we empirically characterize the short term effects of advertising how they depend
on the time until the draw.

In general, a challenge for the estimation of advertising effects is that sales and advertising
are recorded at a low frequency, such as a week or a month. For that reason, they may be con-
founded by factors unobserved to the econometrician. This then leads to a positive correlation
between the two even if advertising effects are zero. Consequently, a regression of sales on
the amount of advertising will lead upward-biased estimates of advertising effects even if one
controls for month or week dummies. Here, we overcome this challenge by exploiting the high
frequency nature of our data.

There are two sources of exogenous variation. The first is related to the fact that advertising
buying takes place several weeks in advance. The company specifies, among other things, a
time window that is at least several hours long and a target amount of advertising during that
time window.12 This means that the exact timing of advertising is not controlled by the firm.
The second source of exogenous variation is that for a given time in the future, it is uncertain
how many viewers will be reached, as viewership demand depends on many factors other than
the TV schedule, for instance the weather. This means that the target quantity bought by the
firm is allocated to multiple spots, until the amount of advertising that was actually bought has
been provided (see also Dubé et al., 2005). Consequently, once we control for all factors that
drive advertising buying from an ex ante perspective we can estimate advertising effects by
regressing sales on (lags of) advertising exposure. In practice this amounts to controlling for
draw, days to the draw, and hour-of-day dummies We can also control for these confounding
factors by means of a fixed effect for each time interval around an advertisement. The idea is
then that the variation in advertising within this time window is random.

This identification strategy is akin to the one in a regression discontinuity design: average
sales just before the advertisement can be interpreted as a baseline. The average difference
between actual sales after the advertisement has been aired and those sales can therefore be
interpreted as an estimate of the average effect of the advertisement.

Below we use a variety of different specifications that are all variants of this strategy. We
first use data at the minute level to present direct evidence for a selected set of advertisements.
Thereafter, we estimate a distributed lag model at the minute level, controlling for time effects
in a very flexible way. Then, we aggregate the data to the hourly level to verify that estimated
effects are similar. Finally, we provide evidence on the dependence of advertising effects on
the time until the draw. Our key finding is that advertising effects are stronger the later an
advertisement is aired. In Section 6.2 we develop the argument that this finding is in line with
the idea that advertisements act as a reminder.

12It is in principle possible for the firm to buy specific spots. However, Staatsloterij did generally not do so
because the price for those is higher.
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Figure 5: The effect of advertising on sales for big advertisements
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Notes: This figure shows the effect of advertising on sales, relative to average sales in
the hour before the advertisement. Obtained using separate local polynomial regressions
for the time to and since the advertisement was aired, respectively. We used a fourth-order
polynomial and the rule-of-thumb bandwidth. The shaded area depicts pointwise 95 percent
confidence intervals. See text for additional details.

4.1 Direct evidence for big advertisements

In our data, there are a number of relatively small advertisements. This means that there is
often only a short amount of time between advertisements, which means that providing direct
evidence on the effect of advertisements is challenging as advertising effects may overlay each
other. Our first approach to overcome this challenge is to select advertisements with at least
9 GRP and then only keep the ones out of these advertisements for which we do not see an-
other big advertisement in the hour before and after.13 Figure 13 in Appendix C shows which
advertisements were used.

Then, we regress sales divided by the average number of sales in the hour before the ad-
vertisement was aired on time to and since the advertisement, respectively, using two separate
local polynomial regressions.

Figure 5 shows the resulting plot of relative sales against the time to and since the adver-
tisement was aired. Notice that sales are flat in the 60 minutes before the advertisement was
aired, in line with the idea these constitute a baseline that can be extrapolated. The dashed
line denotes average sales before the advertisement was aired. Assuming that this is indeed the

13Results were similar when we only kept advertisements of sizes bigger than 9 GRP. However, this results in
even more selected samples. We also experimented with smaller advertisements but found that effects for those
are not measurable in this direct way.
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baseline against which sales have to be compared after the advertisement was aired we find that
the effect of a big advertisement is an increase in sales that lasts for about 30 minutes. The
effect is fairly immediate and dies out relatively quickly. It is as high as 60 percent after a few
minutes and overall leads to an increase of sales by 17 percent in the hour after it is aired.14

To provide more systematic evidence without selecting advertisements, we next estimate a
distributed lag model, still using minute-level data.

4.2 Evidence from a distributed lag model

A distributed lag model is a model in which we regress sales on lagged amounts of advertising.
We control for draw, time of the day and days until the draw fixed effects. It is important
to control for these time effects in a flexible way, because they would otherwise confound
advertising and sales: there are periods in which sales are naturally higher and during which
the firm also advertises more, for instance in the last days before the draw. This means that we
control for systematic variation in advertising and sales. We would expect an upward bias in our
estimates if we did not control for this variation, because we expect the amount of advertising to
be higher at the times at which sales are high anyway. After controlling for those time effects,
as explained above, we assume that the remaining variation in the amount of advertising is
random, which allows us to give our estimates a causal interpretation.15

Table 1 shows the results when we use the log of one plus sales as the dependent variable.16

Column (1) is for our baseline specification. We find that the effect of advertising increases
until 10 to 14 minutes after the advertisement was aired and then decreases. The main effect is
observed in the first hour, but there are effects thereafter. The maximal effect is an increase in
sales of about 3.7 percent for each additional GRP of advertising, between 10 and 14 minutes
after the advertisement was aired. The total effect of advertising is an increase of sales by about
2 percent of the baseline sales in one hour.17

Moving to column (2) and (3), we find percentage increases in sales to be higher before the
last week. This is measured from a lower baseline: sales are 8.1 times higher in the last week

14Note, however, that this is a highly selected set of very big advertisements. The effect of an “average” adver-
tisement is expected to be much lower. We have been told that an effect of an increase in sales by 1 or 2 percent
for a typical advertisement is already considered big in the industry.

15Note that the empirical strategy we use here is similar, but slightly different from the one we used in Section
4.1 above. The two strategies have in common that we assume that the exact timing of advertising is random
conditional on time effects. In Section 4.1 we control for time effects by dividing by the respective number of
sales before the advertisements were aired. This is akin to an approach with multiplicative fixed effects in levels
or additive fixed effects in logs.

16We have also experimented with the pure level of sales. However, we found that the effect of advertising is
better captured by this specification (in an R2 sense). We use the log of one plus sales because there are hours in
which sales are zero. We will interpret results as being (approximately) percentage changes. This is slightly worse
an approximation as for the case of the pure natural logarithm. To see this denote sales without the advertisement
by sales0

t and with an advertisement by sales1
t . Then, we have that if, say, log(1+ sales1

t )− log(1+ sales0
t ) = 0.4,

then one can calculate that the increase in sales is about 50 percent provided that sales are above 2.
17This can be calculated as the weighted average of the reported coefficients, where the weights are proportional

to the length of the captured time interval.
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Table 1: The effect of advertising on sales

(1) (2) (3) (4)
baseline before last week last week no controls

GRP between 0 and 4 minutes ago 0.0152∗∗∗ 0.00888∗∗∗ 0.00319∗∗ 0.0485∗∗∗

(0.000982) (0.00147) (0.00100) (0.00200)

5 and 9 minutes 0.0350∗∗∗ 0.0343∗∗∗ 0.0193∗∗∗ 0.0677∗∗∗

(0.00101) (0.00176) (0.00103) (0.00195)

10 and 14 minutes 0.0369∗∗∗ 0.0378∗∗∗ 0.0205∗∗∗ 0.0685∗∗∗

(0.000881) (0.00151) (0.000955) (0.00184)

15 and 19 minutes 0.0272∗∗∗ 0.0250∗∗∗ 0.0124∗∗∗ 0.0578∗∗∗

(0.000911) (0.00144) (0.000982) (0.00187)

20 and 24 minutes 0.0224∗∗∗ 0.0176∗∗∗ 0.00926∗∗∗ 0.0517∗∗∗

(0.000908) (0.00140) (0.000924) (0.00185)

25 and 29 minutes 0.0194∗∗∗ 0.0124∗∗∗ 0.00748∗∗∗ 0.0468∗∗∗

(0.000978) (0.00148) (0.00103) (0.00187)

0.5 and 1 hour 0.0152∗∗∗ 0.00992∗∗∗ 0.00217∗∗∗ 0.0375∗∗∗

(0.000394) (0.000579) (0.000441) (0.000719)

1 and 1.5 hours 0.0106∗∗∗ 0.00737∗∗∗ 0.00102∗ 0.0242∗∗∗

(0.000389) (0.000573) (0.000433) (0.000720)

1.5 and 2 hours 0.00830∗∗∗ 0.00469∗∗∗ 0.00117∗∗ 0.0192∗∗∗

(0.000397) (0.000568) (0.000446) (0.000698)

2 and 2.5 hours 0.00214∗∗∗ 0.000657 0.000364 0.00962∗∗∗

(0.000350) (0.000563) (0.000423) (0.000608)

2.5 and 3 hours -0.00178∗∗∗ -0.00330∗∗∗ -0.000181 0.00720∗∗∗

(0.000334) (0.000549) (0.000400) (0.000584)

3 and 3.5 hours -0.00648∗∗∗ -0.00458∗∗∗ 0.000340 0.00411∗∗∗

(0.000312) (0.000519) (0.000387) (0.000527)

3.5 and 4 hours -0.0105∗∗∗ -0.00744∗∗∗ -0.000290 0.00476∗∗∗

(0.000310) (0.000487) (0.000390) (0.000485)

draw dummies Yes Yes Yes No

days to draw dummies Yes Yes Yes No

hour dummies Yes Yes Yes No

Observations 515205 361070 154135 515205
R2 0.624 0.320 0.713 0.192
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table shows the results of regressions of the log of one plus sales on GRP’s of advertising and lags
thereof. Regressions were carried out at the minute level and standard errors are robust to heteroskedasticity.
Regressions separately for TV and radio advertising are shown in Table 6 in Appendix C.
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(see also Figure 1 that shows cumulative sales). Using this, we find that the absolute effect of
advertising in the first hour after the advertisement was aired is about 3.5 times higher in the
last week before the draw. This dependence of advertising effects on the time until the draw is
closely related to advertisements acting as a reminder. In Section 4.3, we will characterize it in
more detail.

Finally, in the last column, we carry out the same regression as in column (1), except that
we do not control for time. As explained before, this should lead to upward-biased estimates
as we then face an endogeneity problem as sales and advertising are jointly determined. And
indeed, coefficient estimates are much higher.

Table 6 in Appendix C shows results from a specification in which we distinguish between
TV and radio advertisements. We find the effects of TV advertising to be stronger, but to die out
faster. Radio advertisements have a longer lasting effect. This could be related to the fact that
it takes time to actually purchase a ticket. When seeing a TV advertisement, an individual may
buy directly using his smart phone, sitting in front of the TV. To the contrary, when listening to
a radio advertisement she could be driving her car or be occupied with something else and buy
the ticket at the next occasion after having finished her ride or her task. Notice that the overall
effects are nevertheless similar in terms of size and therefore we generally don’t distinguish
between TV and radio advertisements in this paper.

We have also estimated similar models using data aggregated to the hourly level. Table 7
in Appendix C shows the results. We find that advertising has a similar effect in the hour in
which it is aired as it has in the following hour: on average, one GRP of advertising leads to
about a 1.2 percent increase in the amount of tickets sold. The effect is about one third of this
two hours after the advertisement was aired and not significantly different from zero (at the 5
percent level) after 3 hours. Comparing Table 1 to Table 7 shows that aggregating the data to
the hourly level does not seem to have a big impact on the effect of advertising that we estimate:
focusing on baseline specification, we find that the effect for the first hour that we estimate in
the minute-level regressions is about 2 percent on average, and about 1 percent in the second
hour. This is important, because it would not be feasible to estimate a structural model at the
minute level.

4.3 The dependence of the effect of advertising on time

So far, we have shown that advertising effects are measurable using our data. We have presented
first evidence pointing towards them being stronger the less time there is until the draw. This
dependence of advertising effects on the time until the draw is related to advertisements acting
as a reminder. We now develop this argument more systematically and then characterize the
relationship between advertising effects and the time until the draw in more detail.

The way we think about consumers is that they are exposed to limits of information process-
ing power and attention, which may lead to forgetting. Once they think about buying a lottery
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Figure 6: Effect of timing

05101520
number of days until draw

Notes: This figure shows the immediate effect of one GRP of advertising on sales by day
until the draw, for the last 21 days. See text for details.

ticket, they weigh the costs of doing so at that point in time against the benefits. Costs here can
be both, monetary and non-monetary, and may also include effort costs. Benefits are delayed,
because the draw will only take place in the future, while costs are immediate. For that reason,
consumers value to be reminded to buy a ticket as late as possible. In addition, when reminded
early and therefore considering to buy a ticket early, they will be more reluctant to do so the
less likely it is that they will consider buying a ticket in the future. After all, they are still able
to buy in the future. This means that they will be more likely to buy, once reminded, when there
is a substantial risk that they will not consider buying a ticket in the future. This in turn means
that advertising effects will be strongest right before the deadline, because that is the last time
at which they can buy a ticket if they have not done so already. Moreover, advertising effects
will tend to decrease in the time until the deadline.

This way of reasoning is fully compatible with the structural model we propose in Section
5. The model can be seen as a formal version of the above argument. We estimate the structural
parameters of this model and then use it to predict sales for alternative counterfactual advertising
strategies. One of the model properties is that advertising effects depend on the time until the
draw (see Figure 6 below).

To characterize the relationship between advertising effects and the time until the draw in
more detail, ideally, we would estimate a different response curve for every day, but this is not
feasible. Therefore, we instead estimate the immediate absolute effect of advertising on ticket
sales and relate it to the number of days that are left until the draw. For this, we aggregate data
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to the hourly level and take first differences to control for patterns in baseline sales. We specify

salest− salest−1 = β0 +β1 · (grpt−grpt−1)+ εt (1)

where salest is the number of tickets sold in hour t and grpt is the number of GRP’s of adver-
tising in t. We set GRP’s to 0 if they are below 3, in order to single out advertisements that
are big enough to have a measurable impact.18 Moreover, guided by the finding in the previous
subsection that the advertising effect lasts for about 4 hours, we drop observations where we
see more than 3 GRP’s of advertising in any of the four hours prior to that, which means that
also grpt−1 = 0 in (1). Thereby, we ensure that advertising effects of previous instances have
died out. Hence, the coefficient β1 that we are estimating is the immediate increase in sales in
response to increasing the GRP’s by one, relative to sales before when there was no advertising.
We run a separate regression for each day until the draw. We also control for draw and day of
the week fixed effects to allow for differences in time trends across those.19

In Figure 6, we plot the estimated effects and the corresponding 95% confidence intervals
against the number of days until the draw.20 Towards the time of the draw, the effects increase,
in line with the idea that advertisements act as a reminder.

We can use this empirical setup to make an additional observation. In general, if advertise-
ments have an effect, then it could either be that consumers are motivated to buy earlier, but
would have bought anyway (purchase acceleration). Or it means that consumers that would
otherwise not have bought decided to buy (market expansion). Usually, it is challenging to em-
pirically tell these apart from one another. To a large extent, this is the case because typically,
consumers always have the possibility to buy a product later. However, in our case, there is a
fixed ending time up to which lottery tickets can be bought. This provides us with the oppor-
tunity to study whether advertising also has an effect until shortly before the draw, which is
what we find. This is direct evidence suggesting that advertising does not only lead to purchase
acceleration but also to market expansion.

To summarize, exploiting the high frequency nature of our data, we have shown that adver-
tising leads to economically sizable direct effects on sales in the order of a 2 percent increase.
The absolute effect of advertising on sales is higher the less time there is until the draw, in line
with the idea that advertisements act as a reminder. Our results also show that advertising does
not only lead to purchase acceleration, but also to market expansion.

18There are many very small advertisements. Those small advertisements will lead to small increases in sales
that we ignore. For that reason, the specification we use here is conservative because the estimated effects are
lower bounds.

19Recall that the dependent variable is the difference in sales over time.
20We have also tried to “zoom in” and show that the effect is there in the very last hours before the draw, but we

only have data for 16 draws, with a limited number of advertisements in the last hours before the draw.
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5 A model of lottery ticket demand

Informed by the model-free evidence, we now spell out our dynamic structural model of ticket
sales. The model is useful to rigorously describe the idea that advertisements act as a re-
minder. Moreover, while the data are informative about short run effects of advertising, in-
ferring medium run effects directly is challenging because the necessary exogenous variation is
typically missing. A model can be used to quantify these effects. Obviously, assumptions have
to be made for this. Related to this, once the structural parameters that allow us to capture both,
short and medium run effects, are estimated, we can predict the total amount of sales for any
counterfactual dynamic advertising strategy. This is not possible without estimating a model,
even if exogenous variation is present.

As pointed out before, our model has elements of the rational adoption models by Melnikov
(2013) and De Groote and Verboven (2016). In an adoption model, consumers decide when
to buy a product. The way taste shocks affect dynamic decision making is modeled as in Rust
(1987). We augment this model by advertising affecting consumer choice through an advertising
goodwill stock that increases the probability that a consumer will consider buying a ticket at a
given point in time.

An important generalization relative to other models with an advertising goodwill stock is
that the advertising goodwill stock differs across consumers. At a given point in time, some of
them are reached—the percentage is known and given by the number of GRP’s—while others
are not. We implement this by simulating whether or not advertising reaches each member
of a number of simulated consumers whom we follow over time. These simulated consumers
therefore have heterogeneous advertising goodwill stocks.21

We now first describe the building blocks of our model. Then we describe how to solve it
and take it to the data. The robustness to making alternative assumptions on the market size and
viewership behavior is assessed in Appendix B.

5.1 General structure

There are N expected discounted utility-maximizing consumers. Choice is independent across
draws. Time t = 1,2, . . . ,T is discrete and finite and measured at the hourly level. T is the hour
of the draw and the last moment at which consumers can buy a ticket. Each individual can buy
at most one ticket.

In every hour, each individual decides whether or not to buy a lottery ticket. If she does, then
she receives a one-off flow of utility and cannot make any decisions anymore.22 Otherwise, she
continues in the next period and has the option of buying a ticket there.

21See Section 5.6 below for details.
22This is isomorphic to a model in which she pays a price today and expects to receive a flow utility in the future,

provided that she cannot make any decisions in the meantime.
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5.2 Consideration

In our model, advertising affects the likelihood that a consumer considers buying a ticket
through an advertising goodwill stock.23 This goodwill stock increases if the individual is
exposed to an advertisement, but from an ex ante perspective it is uncertain for the consumer
whether she will be exposed to an advertisement.

The number of GRP’s in our data are informative about how many consumers are reached
at a given point in time and we use it to simulate a number of goodwill stocks for different
consumers. This is similar to, but also extends the specification of Dubé et al. (2005), where the
goodwill stock is the same for all individuals. In our model, the goodwill stock is not the same
for all consumers, but the probability to see an advertisement in a given period is the same. That
is, consumers are identical ex ante, but we simulate how they differ ex post.

Denote the goodwill stock of individual i at the beginning of period t by git . We will refer
to the goodwill stock after the time at which the individual can be reached by an advertisement
as the augmented goodwill stock. It is denoted by ga

it . The augmented goodwill stock affects
consumer choice and depreciates exponentially over time. Let λ denote the depreciation rate
and assume that the initial goodwill stock is 0. The law of motion for the (augmented) goodwill
stock is

ga
it =

git if i did not see an advertisement in t

git +1 if i saw an advertisement in t

with initial condition
gi0 = 0

and

git+1 = (1−λ ) ·ga
it .

The augmented advertising goodwill stock then affects the probability to consider buying a
ticket. We specify this probability as

Pit(consider) =
1

1+ exp
(
−(γ0 + γ1ga

it)
) .

23Advertising can also have brand building effects across draws. This will be captured by draw fixed effects that
also capture all the other across-draw effects. We will abstract from across-draw advertising effects in our coun-
terfactual simulations because they are not separately identified from all other differences across draws without
making strong assumptions.
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5.3 Purchase decision

In the consideration stage, a consumer decides whether or not to buy a lottery ticket. Buying a
ticket yields flow utility

uit =−p+δ
T−t

ψ +σεi1t ,

where p is the price of the ticket, δ is the hourly discount factor, ψ is the value of holding a ticket
at the time of the draw, and εit is a type 1 extreme value distributed taste shock (recentered, so
that it is mean zero). The coefficient on the price is normalized to be minus 1, which means that
flow utility is measured in terms of money. Specifying flow utility to depend on −p+ δ T−tψ

means that a consumer has a taste for buying the ticket as late as possible because she has to pay
for it immediately but only receives a discounted benefit from this. This feature of our model
is meant to capture the empirical pattern that most sales occur in the last days before the draw
(see Figure 1).

If a consumer chooses not to buy before the last period, she gets the continuation value
δE[Vt+1(ga

it+1)|ga
it ] +σεi0t , where again εi0t is a type 1 extreme value distributed taste shock

and Vt+1(·) is the value function tomorrow that is a function of advertising goodwill stock
tomorrow. The expectation here is taken over whether or not the consumer will consider buying
a ticket, whether she is reached by an advertisement, and future realizations of the taste shocks.
We provide more details below in Section 5.5. If she does not buy in the last period, then the
terminal value is σεi0t .

In our model, as explained above, there is a cost to buying earlier. The benefit is that
consumers won’t forget to buy a ticket later, if they want to do so in principle, as they can’t be
sure to consider doing so in the future. Hence, they may forget.

5.4 Expectations

In our model, expectations about future advertising play an important role, as advertising re-
minds consumers to buy a ticket by increasing the probability that a consumer will consider
doing so. The scalar state variable ga

it summarizes all relevant information on consumer i’s ad-
vertising exposure in the past. In addition, the value function in Section 5.3 is indexed by t

because the consumer problem is a finite horizon one and because the probabilities to see ad-
vertisements in the future change over time. If, for example, the consumer knows that there is a
large probability that she will see an advertisement tomorrow (or shortly before the draw), then
she may be more likely to delay her purchase to tomorrow because she will likely be reminded
to buy a ticket.

There are two ways in which we could proceed regarding these expectations when solving
and structurally estimating the model. We could either solve a game between the consumers and
the firm and then use the implied beliefs. This, however, may not be promising because there
could be multiple equilibria, and it may be hard to solve that game in the first place. Moreover,
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we would have to do this within every iteration of our estimation procedure, which would be
computationally challenging (if not infeasible). And most importantly, we would have to make
the strong assumption that the advertising strategy of the firm that we observe was actually
optimal. Instead, we estimate this probability from our GRP data. The specification we use for
this is

grpt/100 = x′tβ + εt , (2)

where xt includes a constant term and a full set of hour, day, and draw dummies. The fitted
value is then the probability to see an advertisement in t, which we denote by Pt . Figure (14) in
Appendix C shows this probability together with the ones we use in our counterfactual experi-
ments (discussed below). We take the these expectations {Pt}T

t=1 about advertising activities as
known.

5.5 Solving the model

We now describe how we solve the model for given values of the parameters, which we then
vary in the outer loop of our estimation procedure. Recall that one time unit is equal to one
hour. Also, observe that the time of the day does not enter the model directly. Instead, we count
the time between midnight and 7am as 1 hour. This choice is guided by Figure 2 where one can
see there are little sales during those hours.24

The state variables are time, whether or not a consumer has already bought a ticket, and the
advertising goodwill stock ga

it . The first two state variables are discrete, while the advertising
goodwill stock is non-negative real-valued. The time horizon is finite. We solve this model
recursively on a grid for the advertising stock, using interpolation to compute continuation
values. We use an equally spaced grid with G = 2000 grid points. Denote the set of grid points
by G . We use the same grid points in each time period.

The structure of the adoption model simplifies the computation considerably, as individuals
can buy at most once and the value to buying consists only of the flow utility. The main task is
to compute the value to not buying, for every t and on the grid for the advertising stock. Another
simplifying factor is that individuals will either see an advertisement in the next hour or not, with
a known probability. This means that we can write down an expression for the corresponding
expectation over this event and don’t have to use simulation or numerical integration. The
assumption that the taste shocks are distributed type 1 extreme value allows us to also find an

24One could in principle model the flow utility to depend on the time of the day and also on the day of the week.
However, this would come at the cost of substantially increasing the computational burden. In the estimation
procedure (described in more detail in Appendix A below), we solve the model each time we evaluate the objective
function. However, it is unlikely that we will suffer from the same omitted variables bias as we would when
estimating a distributed lag model as in Section 4.2 without controlling for hour of day effects. The reason for this
is that the model structure imposes a lot of smoothness in the sense that sales in adjacent hours are predicted to be
very similar to one another. Most of the time there are no advertisements and therefore parameters capturing the
evolution of baseline sales net of hour-of-day and day-of-the-week effects will not be biased. Given this advertising
effects will also be unbiased.
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analytic expression for the value to not buying in period t, given the value function in t +1, as
in Rust (1987). For that reason, we can solve the model relatively fast and on a grid with many
grid points.

We solve the model recursively. For each time period t and grid point g̃a
it ∈ G , we calculate

the expected value function in the next period, E [maxVit+1| g̃a
it ]; the value when considering to

buy in the current period, V c
it (g̃

a
it); and the value in the current period Vit(g̃a

it). Next, we provide
more details.

First consider the case in which an individual has not bought before the last period t = T

and the goodwill stock takes on the value g̃a
it ∈ G on the grid. Then, the value to not buying is

0 because there is no future period. The value when considering in the last period is

V c
iT = σ · log

[
exp
(

δ ·0
σ

)
+ exp

(
−p+ψ

σ

)]
,

where δ · 0 is the discounted value of not buying, which is zero because the individual cannot
buy in the future, and −p+ψ is the mean utility associated with buying. From this it follows
that the value in the last period is

ViT (g̃a
iT ) = PiT (consider) ·V c

iT +(1−PiT (consider)) ·δ ·0,

where, again, δ ·0 is the value associated with not buying.
Now turn to the case in which an individual has not bought before t = T −1, the second to

last period. The expected value function in the next period, E [maxVit+1| g̃a
it ], is

E
[

maxViT | g̃a
iT−1

]
= PT ·ViT (g̃a+

iT )+(1−PT ) ·ViT (g̃a−
iT ).

Here, the expectation is taken over the advertising goodwill stock and the taste shocks. The
goodwill stock g̃a

iT−1 either changes to g̃a+
iT when the individual sees an advertisement in T ,

which will be the case with probability PT , or it changes to g̃a−
iT if not, with probability 1−PT

(see also Section 5.2). The two values ViT (g̃a+
iT ) and ViT (g̃a−

iT ) are obtained using interpolation.
From this, we get that the value when considering in the second to last period is

V c
iT−1(g̃

a
iT−1) = σ · log

[
exp

(
δ ·ET−1

[
maxViT | g̃a

iT−1
]

σ

)
+ exp

(
−p+δψ

σ

)]

and the value function is

ViT−1(g̃a
iT−1) = PiT−1(consider) ·V c

iT−1 +(1−PiT−1(consider)) ·δ ·E
[

maxViT | g̃a
iT−1

]
.

We proceed in a similar manner for the remaining time periods up to t = 1. This results in
values Vit(g̃a

it) for all t and all g̃a
it ∈ G . From those, we can calculate the probability of buying
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given consideration as

Pit(buy|consider) =
exp
(
−p+δ T−tψ

σ

)
exp
(
−p+δ T−tψ

σ

)
+ exp

(
δ ·Et[maxVit+1|g̃a

it]
σ

)
and the unconditional probability of buying as

Pit(buy) = Pit(consider) ·Pit(buy|consider).

5.6 Empirical implementation

In the first stage, we estimate the probability Pt to see an advertisement at any given point in
time, as described in Section 5.3 above. In the second stage, we take these probabilities as given
and estimate the parameters of the structural model. There is an inner and an outer loop. In the
inner loop, we simulate consumer choice for given values of the parameters and compute the
value of a method of simulated moment (MSM) objective function. In the outer loop we then
estimate the parameters. The moments we use are related to sales at a given point in time given
the advertising activity before that, and the evolution of cumulative sales.

We assume the market size for Dutch online lottery tickets market is 250,000 and we sim-
ulate choices of 1,000 consumers.25 Thus each simulated consumer represents 250 real con-
sumers. This is again a trade-off between computational burden and how realistic the model is.
To implement this, we take aggregate sales and divide them by 250. The thought experiment
that underlies our approach is that we match simulated sales to the expectation thereof, across
250,000 actual consumers, which is given by our data.

In our aggregate data, we only observe that a consumer has bought a ticket, but not which
ticket. We assume that the price of the tickets bought is 3 euros. The key assumption we make
here is that everybody buys the same ticket.26

In our estimation procedure we pay particular attention to the fact that different consumers
have different advertising stocks at a given point in time, as it is random whether or not they
are exposed to advertisements in the periods before that. Tentatively, there will be dynamic
selection in the short run, because those consumers with higher advertising goodwill stocks will

25This is considerably more than the maximum number of tickets that was sold in each month in our data.
We experimented with different market sizes and found that results of the counterfactual simulations are not very
sensitive to it. In Section B we also present results when we assume that the market size is twice as high.

263 euros is the price for the smallest ticket one can buy. See Section 2 for details. See also footnote 5. Assuming
a different price will only re-scale the parameters, but will not change the results of counterfactual experiments. To
see this, suppose we double the price and double at the same time Ψ and σ . Then, it follows from the expressions
above that V c

iT , ViT (g̃a
iT ) and E

[
maxViT | g̃a

iT−1
]

will double. Consequently, V c
iT−1(g̃

a
iT−1) and ViT−1(g̃a

iT−1) will
double. But importantly, Pit(buy|consider) and Pit(buy) will stay exactly the same. This shows that both models
are observationally equivalent. Consequently, simulated sales under counterfactual advertising strategies will be
the same. This means that given that we assume that everybody buys the same ticket, setting the price to a particular
value is a normalization.
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be more likely to buy, so that those with lower advertising goodwill stocks remain. Our strategy
allows and controls for that. For an example, think of 250,000 individuals who may in principle
buy a ticket (the market size we assume). Suppose that there are 3 GRP’s of advertising in a
given hour and that there have not been any advertisements before that. Then, in expectation,
7,500 individuals will be reached. Now suppose that there are 4 GRP’s of advertising in the
hour after this. This reaches in total 10,000 individuals. Some of those individuals were among
the 7,500 who have already seen an advertisement before and some of those will not. We
assume that it is independent over time who is reached and therefore 300 individuals will see
both advertisements.

After solving the model and simulating advertising goodwill stocks, we follow the simulated
consumers with heterogeneous advertising goodwill stocks, at which we evaluate the value
functions that we have already solved for, and then combine them with random draws uit from
the standard uniform distribution for each consumer at each point in time to generate simulated
choices. To be precise, we calculate the probability of buying at the simulated goodwill stock
g̃a

it for all time periods and compare them to uit . If Pit(buy) ≥ uit , then the simulated choice
d̂it is one and otherwise zero. A consumer can buy at most one ticket and therefore we set
this variable to zero after a consumer has bought for the first time. Aggregating gives simulated
aggregate demand, which we match to (rescaled, as described above) actual aggregated demand.
Further details are provided in Appendix A.

6 Results

6.1 Parameter estimates and fit

In this section, we present our estimation results and assess the fit of the model. Table 2
shows the estimated parameters. The effect of advertising on sales depreciates quickly, at an
hourly rate of about 33.4 percent. The baseline probability of considering is estimated to be
1/(1+ exp(−γ0)) ≈ 0.39. This means that 39 percent of the consumers will consider buying
a ticket in the absence of advertising. The effect of the goodwill stock on flow utility (γ1)

is estimated to be 1.637, which means that a one unit increase in the goodwill stock from
zero to one, driven by seeing an advertisement, will increase the probability of considering to
1/(1+ exp(−(γ0 + γ1))) ≈ 0.77 . One hour later, the goodwill stock is 1−0.334 = 0.666 and
the probability to consider buying is 0.66 if no advertisement reaches the consumer. Yet another
hour later it is 0.444 and the probability to consider is 0.57. If the consumer is instead reached
by another advertisement in the hour after she was first reached, then the augmented goodwill
stock becomes 1.666 and the probability to consider buying is 0.91 in the second period. And
when she is reached again one hour later, it is 0.95. This form of concavity in the goodwill
stock is the reason why consumers prefer it when advertisements are spread over time. Then
the expected number of periods in which they consider buying is maximized.
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Table 2: Parameter estimates

parameter estimate ste.
depreciation rate goodwill stock (λ ) 0.334 0.197
effect of goodwill stock on probability of considering (γ1) 1.637 0.731
intercept of goodwill stock on probability of considering (γ0) -0.430 0.329
hourly discount factor (δ ) 0.994 0.000
multiplying factor taste shock (σ ) 0.318 0.010
value to having a ticket on the day of the draw

10 January, 2014 1.477 0.056
10 February, 2014 1.669 0.039
10 March, 2014 1.493 0.053
10 April, 2014 1.448 0.067
26 April, 2014 (King’s Day) 1.906 0.052
10 May, 2014 1.620 0.046
10 June, 2014 1.711 0.049
24 June, 2014 (Orange draw) 1.728 0.046
10 July, 2014 1.887 0.058
10 August, 2014 1.410 0.060
10 September, 2014 1.644 0.053
1 October, 2014 (special 1 October draw) 1.608 0.048
10 October, 2014 1.541 0.057
10 November, 2014 1.510 0.051
10 December, 2014 1.749 0.045
31 December, 2014 (New year’s eve draw) 2.336 0.066

Notes: Structural estimates. Obtained using the method of simulated moments. See Section 5.6
and Appendix A for details on the estimation procedure. The probability to consider buying is
specified as Pit(consider) = 1/(1+ exp(−(γ0 + γ1ga

it))).
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Figure 7: Model fit
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Notes: This figure shows actual cumulative sales and cumulative sales predicted by our structural
model using the estimated parameters reported in Table 2.

The hourly discount factor is estimated to be 0.994. This means that one month before a
draw, the value consumers attach to a ticket is only 3.9% of the value on the day of the draw.
For that reason, consumers will value buying tickets late and being reminded at later points in
time. Together with the desire to spread advertisements over time this gives rise to an interesting
tradeoff that we explore further in our counterfactual experiments.

The estimated standard deviation of the taste shock is 0.318 ·
√

π2/6≈ 0.41 euros (
√

π2/6
is the standard deviation of a type 1 extreme value random variable). Finally, the 16 estimates
of the draw fixed effects are in line with expectations and positively related to the size of the
jackpot, mirroring the pattern in Figure 1.27

Figure 7 shows the model fit. Arguably, with only a few parameters, the model fits the
overall patterns in the data relatively well.

27Observe that they are smaller than the price, 3 euros. This is expected because only a relatively small fraction
of individuals actually buys a ticket, driven by favorable draws of the taste shocks. For that reason, the value to
holding a ticket is higher than the mean utility for those who buy a ticket.
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Figure 8: Dependence of predicted effect of advertising on timing
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Notes: This figure shows how the predicted absolute increase in sales that is due to seeing an
advertisement depends on the time until the draw. Obtained from our structural model using the
estimated parameters reported in Table 2.

6.2 The dependence of advertising effects on time

A key quantity the model predicts is the immediate effect of advertising on sales and how this
effect depends on the time until the draw. Figure 8 shows, for our structural estimates, how the
probability of buying a ticket, if the individual has not done so yet, changes when she is exposed
to an advertisement. There are three lines for three different time periods, just before the draw
and 1 and 2 days before that. As one can see, the closer the time of the advertisement is to the
deadline, the more effective is the advertisement—in line with the model-free evidence that we
have presented in Section 4. The figure shows that our model can generate this effect.

7 Counterfactual experiments

Having estimated the model, we turn to the supply side. We do not have access to data on the
profitability of an additional sold ticket, and also not on the cost of one GRP. It is, however, not
unreasonable to assume as an approximation that the price of one GRP does not vary over time.
Therefore, it is meaningful to study whether a given (monetary) budget could be allocated better
over time, by asking the question whether it is possible to sell more tickets when one allocates
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the same number of GRP’s in a different way.
In the following, we use the model to generate counterfactual predictions about the total

number of tickets sold. We consider 8 alternative strategies and compare the number of tickets
sold to the simulated one for the original GRP schedule in the data. The first alternative strategy
is to remove all advertising. In the second, we allocate all advertising to the last two days before
the draw and distribute it equally over all hours on those two days. In the third, we spread
all advertisements equally in the last 4 days before the draw. Then, there are three pulsing
strategies. Studying the effect of those is interesting, as the model is non-linear in advertising
exposure and its history, and therefore reacts to such patterns (Dubé et al., 2005). In the first
pulsing strategy, the firm advertises in the last hour before the draw, but not in the second to last
hour, again in the third to last hour, and so on, for the last 4 days. The amount of advertising,
when the firm does so, is always the same. The second pulsing strategy proceeds similarly, but
in blocks of two hours. The third pulsing strategy always allocates twice the amount in one
hour and then pauses for three, and also lasts for 4 days. The last two counterfactual strategies
take, respectively, the schedule as it is in the third week and move it to the fourth week, and vice

versa.
When simulating the impact of those strategies, we distinguish between two cases. In the

first case, we assume that expectations individuals have about the likelihood to be reminded
in the future, by seeing an advertisement, remain unchanged (and in line with what we have
used to estimate the model) even though we change the advertising strategy. The second case
is one in which consumers’ expectations are rational in the sense that they reflect the changes
advertising strategy (we assumed this when we estimated the model). Making this distinction is
interesting because it allows us to quantify the relative importance of changes in expectations.
One can think of this as a second order effect, with the first order effect being the change in the
actual advertising strategy.

Table 3 shows the result. We first focus on the last column, for rational expectations. Not
advertising at all leads to 94% of the original sales. Generally, allocating advertising to later
points in time increases sales. Doing the opposite leads to a decrease in sales. Moving it all
to the last two days before the draw has the biggest effect, but may be infeasible in practice.
Shifting advertising from the third week before draw to the fourth week may be feasible and
leads to an increase of sales by 3 percent. The most successful pulsing strategy is the one with
blocks of one hour.

Figure 9 shows the underlying dynamics. We plot the difference between the cumulative
sales for a given strategy and the baseline strategy. As an illustration, consider the strategy of
shifting all the GRP’s from the fourth week to the third week. As expected, sales increase in the
third week and decrease in the fourth week. Overall, fewer tickets are sold, which is reflected
in the lower end point.

The results also show that expectations of consumers matter, but are quantitatively not
of first-order importance. Qualitatively, when expectations are rational, then effects become
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Table 3: Effect of various advertising strategies

expectations
strategy unchanged rational
data (reference point) 100% 100%
no advertising at all 94% 94%
all advertising in the last 2 days before the draw 109% 108%
spreading advertisements equally in the last 4 days before the draw 105% 104%
pulsing strategy in the last 4 days before draw (1 hour blocks) 105% 104%
pulsing strategy in the last 4 days before draw (2 hour blocks) 104% 103%
pulsing strategy in the last 4 days before draw (1 hour double, 3 hour none) 104% 103%
shift advertising from third week before draw to fourth week 103% 103%
shift advertising from fourth week before draw to third week 95% 95%

Notes: This table shows the effect of using alternative dynamic advertising strategies for the February draw.
See text for a description of these strategies. In the column labeled “unchanged” consumer expectations are
consistent with the advertising data we used to estimate the model and not with the changed advertising
strategy. In the last column, we adjust expectations to reflect the change in the policy. Simulations are
based on the parameter estimates reported in Table 2.

smaller. The intuition for this is that when consumers wrongly expect advertising activity to be
lower at later points in time, then they already buy earlier and therefore the effect of changing
the advertising strategy is bigger because they are reminded more often than they expected.
Conversely, when there is no advertising anymore while consumers still expect to be reminded
by it, then sales are lower. The same holds true when we shift advertising from the fourth to the
third week.

To summarize, the results show that shifting advertising to later points in time leads to higher
sales. Given the model structure and the fixed GRP budget, this is desirable for both, consumers
and the firm.

8 Summary and concluding remarks

This paper uses high frequency advertising and sales data to measure the short run effects of
advertising. The thought experiment we undertake for this is akin to a regression discontinuity
design: we compare sales just before the advertisements are aired to sales thereafter. We find
short-term advertising effects to be sizable and to last for about 4 hours. Besides, we make use of
the fact that there is a given purchase cycle with a fixed deadline until which consumers can buy
a ticket. Exploiting this we find that advertising does not only lead to purchase acceleration,
but also to market expansion. Furthermore, advertising effects depend on the time until that
deadline. The later the firm advertises, the higher the short term effect on sales. We develop the
argument that this is novel evidence in favor of the view that advertising reminds consumers to
consider buying a ticket. We then spell out a structural adoption model that can generate this
dependence. We estimate the parameters of this model and simulate the effects of counterfactual
dynamic advertising strategies on sales. Based on this we conclude that it is indeed likely that
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Figure 9: Effect of different advertising strategies
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Notes: This figures shows the difference between the cumulative number of tickets sold at each point in
time for a counterfactual advertising strategy and the cumulative number of tickets sold given the actual
advertising schedule for the February draw. Consumer expectations are consistent with the respective
actual or changed GRP schedule (column “rational” in Table 3). Based on parameter estimates reported
in Table 2.

starting from the actual advertising schedule in the data and shifting advertising to later points
in time has positive effects on sales.

The context of our study is the sale of lottery tickets for an upcoming draw. This con-
text is particularly helpful for obtaining model-free evidence on the effects of advertising and
structural estimates for the key model parameters, but advertisements can of course remind con-
sumers also in other contexts. Examples include the purchase of durable goods and the adoption
of technologies, in particular when there are natural deadlines such as Christmas or the end of
the year, or deadlines set by the government. For instance, De Groote and Verboven (2016)
study the adoption of solar panels. There is a deadline until which households have to buy in
order to still be eligible for a tax subsidy. Our model could be used in such a situation to study
how dynamic pricing and advertising strategies interact in a competitive environment, or which
advertising strategy by the government complementing the subsidy scheme could be most ef-
fective. Other deadlines set by the government concern the decision of households to enroll into
a savings plan or to change health insurance. Our model can be used to design an advertising
strategy that most effectively reminds individuals to do so. One could also generalize it to study
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the supply side interactions between firms to shed light on the question whether the possibil-
ity to remind consumers leads to increased competition and lower prices. Finally, our model
could be extended to study the effects of present-bias and how they could most effectively be
counteracted using information campaigns.

In the context of these examples one can imagine that advertisements that act as a reminder
may be beneficial for consumers, for instance because they help individuals to do what they
actually want to do or because they lead to increased competition through higher levels of
awareness and consideration. This would be very much in line with Stigler’s (1961) original
point that the possibility to provide information by means of advertisements can lead to welfare
improvements. His argument was based on the idea that consumers have limited information
about the existence of products, their characteristics, or prices. We have presented novel evi-
dence in line with the idea that advertisements can also help consumers who suffer from limited
attention and forgetting.
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Online Appendix



A Details on the econometric implementation

In Section 5.6, we have given an overview over the estimation procedure. In this section, we
provide further details.

A.1 Empirical setup

The data contain information on ticket sales and advertising activities for 16 draws. Since we
collapse these data during the night, every day in the model has 18 hours. The starting period
is 00:00-00:59 on Jan 1 and the last period is 17:00-17:59 on Dec 31. Thus, the total number of
periods is τ = 6,564 (τ is not to be confused with T , which we have defined in the context of
our model). We divide them up into sub-periods, one for each draw. We account for the fact that
they differ with respect to the total number of hours (T in the model) and the value to holding
a ticket (ψ in the model), and of course with respect to the realized advertising activity.1 The
ticket price is constant over time and across draws.

A.2 Method of simulated moments

The set of structural parameters that do not change across draws is {λ ,σ ,δ ,γ}. In addition, we
estimate 16 values ψ1, . . . ,ψ16 to holding a ticket at the time of the draw. Thus the full set of
structural parameters to be estimated is θ ≡ {λ ,σ ,δ ,γ,ψ1, . . . ,ψ16}.

Recall that we only have access to aggregate data. Let ût(θ)≡ qt − q̃t(θ) be the difference
between actual aggregate demand qt in the data, divided by 250, and the model prediction
q̃t(θ) as described in Section 5.6. In Section A.3 below we will specify a set of moments
E[m(zt , ût(θ))] = 0, where zt is a vector of exogenous variables constructed from the data so
that the left hand side is a column vector and the right hand side is a vector of zeros and the
expectation is taken over hours. The (technical) condition for identification is that they hold if,
and only if, we evaluate the function m at the true parameters θ (see for instance Newey and
McFadden, 1994).

Let m̄(θ̃) be the average of m(zt , ût(θ)), over time in hours across all draws (thus over τ

time periods), evaluated at any candidate parameter vector θ̃ . The MSM estimator is

θ̂ = argmin
θ̃

m̄(θ̃)′Wm̄(θ̃),

where W is a positive definite weighting matrix.
Under the assumption mentioned above, θ̂ is consistent. An estimator of the variance-

covariance matrix is given by (Newey and McFadden, 1994)

1This means that T and ψ need to indexed by the draw, because they differ across draws. For the ease of the
exposition, in Section 5, we have described the model only for one draw. Within each draw, t runs from 1 to the
draw-specific T .
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v̂ar(θ̂) =
1
τ
(A′WA)−1 B(A′WA)−1,

where

A =
∂ m̄(θ̂)

∂ θ̂ ′

and

B = A′W (m(θ̂)− m̄(θ̂))(m(θ̂)− m̄(θ̂))′WA.

A.3 Moments and weighting matrix

zt contains 3 sets of exogenous variables: a full set of dummy variables for the number of
days until the draw, the number of GRP’s in t, t−1, t−2, and t−3, and variables calculating
cumulative sales up to point t. This means that we attempt to pick the parameters so that the
model captures well the evolution of sales over time and the reaction to advertisements.

Specifically, we stack all ût(θ) into a vector û(θ) of dimension τ × 1 and define a τ ×M

matrix of exogenous variables Z = (1,Z1,Z2,Z3), where 1 is a vector of ones, Z1 contains times
until draw dummies in the columns, Z2 contains GRP’s and lags thereof in the columns, and Z3

is a matrix with indicators such that it takes cumulative sales at the daily level, separately for
each draw. Specifically, Z3 is block-diagonal with sub-matrices Z3,r on the diagonal (r indexing
draws). Each column of these sub-matrices is for one day and contain a set of ones on top and
zeros in the bottom, such that the cumulative prediction error is calculated on a daily level when
we multiply Z′3 with ût(θ).

After eliminating linearly dependent columns, Z has M = 376 columns, meaning that we
have 376 exogenous variables.2 Using this, we calculate

m̄(θ̃) =
1
τ

Z′û(θ̃).

We choose the weighting matrix W to be

W = (Z′Z/τ)−1.

A.4 Smoothing

When using a simulation-based procedure to estimate a discrete choice model, one common
challenge is that the simulated choice probabilities (if one use simulated maximum likelihood),
or, in our case, simulated demand, is not a smooth function in the parameters. This is due to the

2Z1 originally has 30 columns. Z2 contains GRP’s and 3 lags thereof, so it has 4 columns. Z3 has 365 columns.
Most columns in Z1 are linear combinations of columns in Z3. After dropping those, Z1 has 7 columns left. Thus,
we have in total 1+7+4+364 = 376 columns.
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fact that in discrete choice models individuals are assumed to either choose to buy or not at a
given point in time. Consequently, for each simulated consumer, small changes in parameters
will either have no effect on his decision (which stays at 0 or 1), or change his decision from 0
to 1. Such non-smoothness can lead to problems with the usual methods for finding an optimum
of the objective function because of flat spots.

In principle, this could be addressed by increasing the number of simulated consumers. But
it is not possible to fully overcome it, as the number of simulated consumers will stay finite.
Therefore, as an alternative, we use a smoothed accept-reject simulator to make the demand
function fully smooth in the parameters. We use this very conservatively, however, and only to
avoid that the estimator gets stuck on a flat spot.

Following McFadden (1989), the simulator that we choose has the logit form. Instead of
generating choices for individual i in t that are either 0 or 1, we generate smoothed choices

S̃it = 1−
exp
(

uit−P̃it(g̃a
t )

s

)
1+ exp

(
uit−P̃it(g̃a

it)
s

) ,
where P̃it(g̃a

t ) is the simulated probability to buy given considering, uit is a random draw from
the standard uniform distribution and s is the smoothing parameter. The higher s the more
smoothing there is. In our case, it is sufficient to use very little smoothing. We specify s =

0.00015.3

B Robustness

In this appendix, we assess how robust our results are to assuming a different market size (Ap-
pendix B.1) and to allowing for serial correlation in viewership behavior (Appendix B.2).

B.1 Assumption on market size

We first assess the robustness to making alternative assumptions about the market size. For this,
we re-estimate the model assuming a market size of 500,000. We expect this to mainly affect
the our parameter estimates related to the baseline probability of considering to buy a ticket and
for the value to holding a ticket.

3We have experimented with different values of s and the result is not sensitive to the choice of s for values of
s around 0.00015.
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Table 4: Robustness checks: parameter estimates when we double the market size and allow for serially correlated viewership

baseline double generalized
parameter specification ste. market size ste. model ste.
one minus depreciation rate goodwill stock (λ ) 0.334 0.197 0.404 0.097 0.193 0.006
effect of goodwill stock on probability of considering (γ1) 1.637 0.731 2.041 0.199 2.085 0.362
intercept of stock on probability of considering (γ0) -0.430 0.329 -2.270 0.118 -1.086 0.007
hourly discount factor (δ ) 0.994 0.000 0.999 0.000 0.994 0.000
multiplying factor taste shock (σ ) 0.318 0.010 0.109 0.024 0.339 0.006
value to having a ticket on the day of the draw

10 January, 2014 1.477 0.056 2.513 0.119 1.496 0.046
10 February, 2014 1.669 0.039 2.575 0.106 1.638 0.053
10 March, 2014 1.493 0.053 2.507 0.121 1.505 0.054
10 April, 2014 1.448 0.067 2.490 0.125 1.489 0.058
26 April, 2014 (King’s Day) 1.906 0.052 2.650 0.088 2.040 0.039
10 May, 2014 1.620 0.046 2.542 0.112 1.609 0.052
10 June, 2014 1.711 0.049 2.556 0.110 1.762 0.040
24 June, 2014 (Orange draw) 1.728 0.046 2.597 0.101 1.789 0.033
10 July, 2014 1.887 0.058 2.614 0.099 1.914 0.046
10 August, 2014 1.410 0.060 2.496 0.123 1.388 0.060
10 September, 2014 1.644 0.053 2.559 0.109 1.656 0.047
1 October, 2014 (special 1 October draw) 1.608 0.048 2.604 0.099 1.666 0.040
10 October, 2014 1.541 0.057 2.513 0.120 1.574 0.046
10 November, 2014 1.510 0.051 2.504 0.121 1.593 0.051
10 December, 2014 1.749 0.045 2.576 0.106 1.824 0.037
31 December, 2014 (New year’s eve draw) 2.336 0.066 2.857 0.045 2.421 0.031

Notes: Structural estimates. See Section 5.6 and Appendix A for details on the estimation procedure. Estimates for the baseline specification are
repeated in the first column (see Table 2). The second set of parameter estimates was obtained under the assumption that the market size is 500,000
instead of 250,000. The third set of estimates is for the generalized model with serially correlated viewership behavior described in Appendix B.2.
The probability to consider buying is specified as Pit(consider) = 1/(1+ exp(−(γ0 + γ1ga

it))).
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Table 4 shows that the probability to consider buying a ticket is estimated to be lower, while
the value to holding a ticket is estimated to be higher. In combination, this produces choice
probabilities that are roughly half as big as for our baseline model with a market size that is
half as big. In addition, the estimate of the hourly discount factor is higher and the estimated
standard deviation of the taste shock is lower. The parameters that are least affected are the
depreciation rate of the advertising goodwill stock and the coefficient on the goodwill stock that
measures by how much it influences the probability of considering. In fact, the percentage point
increase in that probability when we change the goodwill stock from zero to one is very similar
across those two specifications.

B.2 A model with serially correlated viewership

So far, we have assumed that the probability that a consumer i is reached in t by an advertisement
is given by the number of GRPs. Implicitly, this assumes that reaching a consumer in t is
independent of reaching the same consumer in another period t ′, for instance t− 1. This can
only be the case if viewership behavior is not serially correlated.

While this is likely violated at the minute level, it may be a reasonable approximation at
the hourly level at which we estimate our model. We have no data to directly quantify how
likely it is that the same consumer is reached when there are advertisements in two consecutive
hours. Therefore, we assess whether this assumption substantially affects our estimates and the
main conclusions we draw from them by extending our model to allow for serial correlation in
viewership behavior.

In this extended version of the model, there are two states for each consumer: watching
TV or listening to the radio and not watching TV or listening to the radio. When estimating the
model we proceed in two steps. We first simulate, for each individual, whether they are watching
TV or are listening to the radio in a given time period. Then we impose that advertising can
only reach those consumers who are actually watching TV or are listening to the radio. At the
same time, we assume that consumer expectations are still reasonably approximated by (2). The
reason for this is that modeling consumer expectations would involve introducing an additional
state variable.4

Formally, let state k = 1 be the state of not watching or listening and state k = 2 the one of
watching TV or is listening to the radio. Specify a 2-by-2 Markov transition matrix

Π =

[
0.8 0.2
0.4 0.6

]
.

This means that if an individual is watching TV or is listening to the radio at time t, then there
will be 40% chance that she will stop watching and 60% chance that she will continue watching

4We do not expect this to have a big effect on our parameter estimates. In Table (3), we have seen that expec-
tations have a relatively small effect on predictions under counterfactual advertising schedules.
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in period t +1. From this we compute the implied 2-by-1 vector P∞ of stationary probabilities.
Then, we use P∞ to simulate individual viewership demand in the first period and Π to simulate
paths in subsequent periods.

Note that here, we treat the transition probabilities as known. We could estimate them if we
had data at the consumer level.

Table 4 shows the estimation result for this more general model. Now, the same pattern in
the data needs to be rationalized by a model in which viewership demand is serially correlated.
The results show that this can be achieved by a lower depreciation rate of the goodwill stock
and a higher effect of the goodwill stock on the probability of buying a ticket. The remaining
parameters are almost not affected.

C Additional tables and figures

Table 5: Differences across draws

(1) (2) (3) (4)
all draws regular draws special draws all draws

log jackpot size 0.366∗ 0.366∗∗∗ 0.509∗

(0.178) (0.106) (0.251)

special draw 1.509∗∗∗ 2.107∗∗

(0.492) (0.633)

log number of days 0.182 0.153 0.805 0.408
(0.174) (0.106) (1.657) (0.558)

log jackpot size previous draw -0.245
(0.297)

special draw in previous draw -0.107
(0.969)

log number GRP previous draw 0.954
(0.583)

Observations 16 12 4 15
R2 0.562 0.605 0.106 0.727
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the results of a regression of the log of total sales on the total number of days on
which tickets could be bought and the jackpot size if the draw was regular. In column (1) and (4) we pool
across regular and special draws and set the log of the jackpot size to zero for the latter. One observation
is one draw. There are only 15 observations for the last specification because we lack data on the previous
draw for the first one that is in our data.
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Table 6: Effect of TV and radio advertising

(1)
TV and radio

TV GRP between 0 and 4 minutes ago 0.0133∗∗∗

(0.00118)

5 and 9 minutes 0.0415∗∗∗

(0.00140)

10 and 14 minutes 0.0453∗∗∗

(0.00123)

15 and 19 minutes 0.0308∗∗∗

(0.00120)

20 and 24 minutes 0.0206∗∗∗

(0.00108)

25 and 29 minutes 0.0144∗∗∗

(0.00113)

0.5 and 1 hour 0.0116∗∗∗

(0.000446)

1 and 1.5 hours 0.00819∗∗∗

(0.000462)

1.5 and 2 hours 0.00412∗∗∗

(0.000436)

2 and 2.5 hours -0.000105
(0.000408)

2.5 and 3 hours -0.00567∗∗∗

(0.000392)

3 and 3.5 hours -0.0112∗∗∗

(0.000374)

3.5 and 4 hours -0.0190∗∗∗

(0.000396)

radio GRP between 0 and 4 minutes ago 0.00102
(0.00143)

5 and 9 minutes 0.00544∗∗∗
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(0.00146)

10 and 14 minutes 0.00617∗∗∗

(0.00147)

15 and 19 minutes 0.00474∗∗

(0.00146)

20 and 24 minutes 0.00818∗∗∗

(0.00145)

25 and 29 minutes 0.00981∗∗∗

(0.00143)

0.5 and 1 hour 0.00881∗∗∗

(0.000650)

1 and 1.5 hours 0.0116∗∗∗

(0.000652)

1.5 and 2 hours 0.0149∗∗∗

(0.000661)

2 and 2.5 hours 0.0133∗∗∗

(0.000655)

2.5 and 3 hours 0.0106∗∗∗

(0.000651)

3 and 3.5 hours 0.0110∗∗∗

(0.000632)

3.5 and 4 hours 0.00883∗∗∗

(0.000646)

draw dummies Yes

days to draw dummies Yes

hour dummies Yes

Observations 515205
R2 0.632

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table shows the results of a regression of the log of one plus sales on GRP’s of advertising,
separately for TV and radio advertising, and lags thereof. Table 1 shows effects when we pool TV and
radio advertising together. Regressions were carried out at the minute level and standard errors are robust to
heteroskedasticity.
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Table 7: Evidence from a distributed lag model at the hourly level

(1) (2) (3) (4) (5)
baseline TV and radio before last week last week no controls

GRP current hour 0.0120∗∗∗ 0.0110∗∗∗ 0.00406∗ 0.0779∗∗∗

(0.00145) (0.00238) (0.00163) (0.00536)

GRP 1 hour lagged 0.0120∗∗∗ 0.0121∗∗∗ 0.00529∗∗∗ 0.0431∗∗∗

(0.00133) (0.00245) (0.00156) (0.00533)

GRP 2 hours lagged 0.00428∗∗ 0.00457 0.000309 0.0277∗∗∗

(0.00134) (0.00235) (0.00147) (0.00677)

GRP 3 hours lagged 0.00412∗ 0.00369 -0.000451 0.0545∗∗∗

(0.00168) (0.00306) (0.00200) (0.00654)

GRP TV current hour 0.0128∗∗∗

(0.00185)

GRP TV 1 hour lagged 0.0133∗∗∗

(0.00168)

GRP TV 2 hours lagged 0.00329∗

(0.00163)

GRP TV 3 hours lagged 0.00154
(0.00246)

GRP radio current hour 0.00758∗∗∗

(0.00214)

GRP 1 hour lagged 0.00838∗∗∗

(0.00218)

GRP 2 hours lagged 0.00775∗∗

(0.00239)

GRP 3 hours lagged 0.00802∗∗

(0.00246)

draw dummies Yes Yes Yes Yes No

days to draw dummies Yes Yes Yes Yes No

hour dummies Yes Yes Yes Yes No

Observations 7662 7662 5406 2256 7662
R2 0.917 0.917 0.858 0.942 0.263
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table shows the results of regressions of the log of one plus sales on GRP’s of advertising and
lags thereof. In column (2) we distinguish between TV and radio advertising. Regressions were carried out
at the hourly level and standard errors are robust to heteroskedasticity.
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Figure 10: Cumulative sales for remaining draws

Notes: Figure 1 shows cumulative sales for 6 selected regular draws. This figure shows
them for the remaining draws.
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Figure 11: Advertising and sales during the day of the draw
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Notes: This figure shows average GRP’s and sales for different times of the day. To
produce this figure we first aggregate sales at the hourly level and then average over
draws. On the day of the draw tickets for this draw can only be bought until 6pm. See
Figure 2 for the pattern on the remaining days.
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Figure 12: GRP’s at the minute-level for a special draw
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Notes: Figure 3 shows GRP’s and sales for the draw on April 10, 2014. This figure
shows GRP’s and sales at the minute level for the special draw on April 26, 2014
(King’s Day). The last regular draw took place on April 10, 2014. Tickets for the next
draw can be bought from 6pm on the day of the previous draw, which is depicted as 0
days since the previous draw.

A12



Figure 13: Advertisements that were used to construct Figure 5
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Notes: This figure shows which advertisements were used in the sample for Figure 5. It
shows a dot for each advertisement with at least 9 GRP, with the number of GRP’s plotted
against time. The diamonds are the advertisements that were used.
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Figure 14: Expectations
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Notes: Figure shows the expected probability to see an advertisement, from the individual perspective.
Obtained from regression of GRP’s on hours of a day dummies, days until draw dummies for the draw
in February.
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