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Chapter 1

Introduction

Parametric regression modeling imposes strong restrictions on the functional form of re-

gression. Even though their statistical properties are well established, the functional forms

assumed in parametric models might be misspecified. Accordingly, many nonparametric

and semiparametric regression models have been developed. In contrast to parametric

modeling, nonparametric methods do not restrict the functional form, while semipara-

metric methods require only relatively weak prior restrictions. On the other hand, this

flexibility can result in less precise estimation of parameters of interest.

Among semiparametric models, we study varying-coefficient models (also referred to as

functional coefficient models) in the time series context (see Fan and Zhang, 2008, and

Park et al., 2015, for an overview) which have the form:

yt = x>t a(zt) + εt, (1.1)

where yt is a response, a(zt) is a vector of continuously differentiable functions of an

observed transition variable zt, xt is a vector of covariates which might contain lagged

responses, and εt is the error term satisfying E[εt|xt, zt] = 0. Model (1.1) can be treated as

a linear model with interaction terms between the covariates xt and transition variable zt,

where zt is allowed to have a flexible form in the interaction term. In my dissertation, we

introduce three new models based on model (1.1), and propose estimation procedures. In

Chapter 2, we study the case that the coefficient functions a(·) are piecewise continuous.

In Chapter 3, we restrict the coefficient functions to a parametric form: a(·) = β1w(·) +

1



Chapter 1. Introduction 2

β2{1 − w(·)}, where w(·) is an unknown smooth function of a scalar variable zt, the so-

called transition function, and β1 and β2 are slope parameters. In Chapter 4, we relax

the zero conditional mean restriction E(εt|xt, zt) = 0 such that the covariates xt and

transition variable zt are allowed to be correlated with the error term εt. Summaries for

each chapter are given below.

Chapter 2 considers a varying-coefficient model, where the coefficient functions a(·) are

allowed to exhibit discontinuities at a finite set of points. We propose an estimation

method builds upon the procedure in Gijbels et al. (2007). Contrary to Gijbels et al.’s

nonparametric model with fixed regressors and independent homoscedastic errors, this

chapter considers functional coefficient models in a random design and time-series context

with serially correlated and heteroscedastic errors. Additionally, we consider two cases for

the conditional variance function E(ε2
t |zt = z): one is continuous in the support of zt; the

other is discontinuous at a finite set of points. The consistency and asymptotic normality

of the two proposed estimators are established in Theorems 2.5, 2.6, 2.9, and 2.10. The

finite-sample performance is studied in a simulation study, showing that accounting for the

discontinuity of the conditional variance is in general necessary for consistent estimation,

but it does not worsen the performance of the estimators if the conditional variance is a

continuous function of zt.

Chapter 3 introduces a new semiparametric model – the semiparametric transition (SETR)

model – that generalizes the models originally studied by Chan and Tong (1986) and Lin

and Teräsvirta (1994) by letting the transition function w(·) to be of an unknown form.

The estimation strategy is based on the iterative least squares. Consistency and the

asymptotic distribution for the slope estimators of β1 and β2 are derived in Theorems 3.3

and 3.6, respectively. Monte Carlo simulations demonstrate that the proposed estimation

of the SETR model provides precise estimates for many types of transition function, while

the above mentioned parametric transition models can exhibit substantial biases.

Finally, Chapter 4 studies a functional coefficient instrumental variable model with en-

dogenous xt and zt. Relying on the conditional mean-independence restriction (4.2), the

functions in a(·) are identified according to Theorem 4.1. We propose a two-stage estima-

tion procedure based upon local polynomial fitting and marginal integration techniques.
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The estimator is shown to be consistent and asymptotically normal under weak depen-

dence conditions in Theorem 4.4. Simulation evidence suggests the proposed estimator

performs equally well as the two-stage estimator of Cai et al. (2006) in the case of an

exogenous zt. And our estimator also works for an endogenous transition variable zt.



Chapter 2

Jump-Preserving Functional

Coefficient Models for Nonlinear

Time Series∗

2.1 Introduction

The varying-coefficient models (VCM) form an important class of semiparametric models

(see Hastie and Tibshirani, 1993; Cai et al., 2000) that assume the marginal effects of

covariates to be an unknown function of an observable index variable. Practically, VCMs

are formulated as linear models with coefficients being general functions of the index

variable. Most existing literature assumes the coefficient functions to be continuous and

smooth. In this chapter, we however allow coefficient functions to contain a finite set of

discontinuities; additionally, discontinuities can be present also in the conditional error

variance. This allows applying the flexible varying-coefficient modeling in parts of eco-

nomics, biomedicine, epidemiology and other areas, where conditional expectations are

known to exhibit jumps. For example, discontinuous coefficient functions are found by

Č́ıžek and Koo (2017b) in the dynamic models of GDP, by Zhao et al. (2017) in the time-

varying capital asset pricing models, or by Bai and Perron (2003) and Zhao et al. (2016)

in the models of inflation. Additionally, estimation of coefficient discontinuities lies at the

∗This chapter is based on Č́ıžek and Koo (2017a), Jump-preserving functional-coefficient models for nonlinear
time series. CentER Discussion Paper 2017-017, Tilburg University.
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core of the regression discontinuity designs (Lee and Lemieux, 2010), and although the

location of the design discontinuity of often assumed, it is important to detect presence

of other discontinuities if they exist. Besides that, Porter and Yu (2015) suggest the

regression discontinuity modeling with an unknown location of the discontinuity point.

To the best of our knowledge, VCMs with discontinuities in coefficient functions have not

been investigated before in heteroskedastic and time series setting. For independent and

identically distributed data, Zhu et al. (2014) and Zhao et al. (2016) suggested methods

for estimation of varying-coefficient models with discontinuities. On the other hand,

there is a vast amount of literature on VCMs when coefficients are smooth continuous

functions. Recent works include Hoover et al. (1998), Wu et al. (1998), and Fan and

Zhang (2000) on longitudinal data analysis, Cai et al. (2000) and Huang and Shen (2004)

on nonlinear time series, and Cai and Li (2008) and Sun et al. (2009) on panel data

analysis. Additionally, hybrids of varying-coefficient models have also been developed:

for example, partial linearly varying-coefficient models where some coefficient functions

are constant (Zhang et al., 2002; Fan and Huang, 2005; Ahmad et al., 2005; Lee and

Mammen, 2016), generalized linear models with varying coefficients (Cai et al., 2000),

and varying-coefficient models in which the varying index is latent and estimated as a

linear combination of several observed variables (Fan et al., 2003).

Although only a few studies on VCMs allow discontinuities in coefficient functions, lit-

erature on nonparametric estimation of discontinuous regression function is extensive.

The classical estimation procedures usually consist of two stages. The locations of dis-

continuities are first estimated and then a conventional nonparametric estimator, which

assumes the underlying function to be continuous, is used within each segment between

two consecutive discontinuities to estimate the regression function itself. Examples of

this approach include Müller (1992), Wu and Chu (1993), Kang et al. (2000), and Gijbels

and Goderniaux (2004).

There are other techniques that do not estimate first the locations of discontinuities

in a nonparametric regression; see, for example Godtliebsen et al. (1997) on nonlinear

Gaussian filtering and Spokoiny (1998) and Polzehl and Spokoiny (2000) on adaptive

weights smoothing. Besides these approaches, Gijbels et al. (2007) recently proposed an

estimation method based on three local linear estimators in the framework of fixed design
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and homoscedastic errors. At each design point z, they considered local linear estimates

using data from the left-, right-, and two-sided neighborhoods of z. The final estimate

of the conditional mean of the response equals one of these three local linear estimates

chosen by comparing the weighted residual mean squared errors of three local linear fits.

This approach was extended to conditional variance estimation by Casas and Gijbels

(2012).

We generalize the estimation procedure by Gijbels et al. (2007) in two directions. First,

we extend Gijbels et al. (2007) estimation method based on a comparison of the weighted

residual mean squared errors to the VCMs, where discontinuities might occur only in

one, few, or all coefficients. Although this has already been done by Zhao et al. (2016) in

the case of independently and identically sampled observations, we analyze this method

in the context of heteroskedastic and dependent data and provide additional asymptotic

results such as the uniform convergence rate of the coefficient estimates. Second, as the

method is shown to work well only if the conditional variance function of the error term

is continuous, we propose an alternative measure of the three local linear fits based on

the local Wald test statistics such that the proposed method is applicable even if the

conditional variance function of the error term contains discontinuities.

This chapter is structured as follows. In Section 2.2, the VCM is introduced and the jump-

preserving estimation procedure is introduced based on Gijbels et al. (2007) and Zhao

et al. (2016). In Section 2.3, we establish the consistency and asymptotic normality of this

estimator. In Section 2.4, an alternative estimator that does not require the continuity of

conditional error variance is proposed and its asymptotic properties are derived. Finally,

the finite sample properties of the two proposed estimators are investigated by means of

a simulation study in Section 2.5. Proofs can be found in Sections 2.8 and 2.9.

2.2 The discontinuous varying-coefficient model

The varying-coefficient regression model takes the following form:

Yi = X>i a(Zi) + εi, i = 1, . . . , n, (2.1)
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where Yi is the response variable, Xi is a p × 1 vector of covariates, Zi is a scalar index

variable, a(·) is a p× 1 vector of unspecified coefficient functions, and εi is an error term

such that E[εi|Xi, Zi] = 0 and E[ε2
i |Xi, Zi] = σ2(Xi, Zi). Note that both Xi and Zi can

contain lagged values of Yi. In this chapter, we consider piecewise-smooth coefficient

functions a(·) that can exhibit a finite set of discontinuities located at points {sq}Qq=1,

where the number Q of jumps, the jump locations sq, and the jump sizes dq of the

coefficient functions are all unknown. Contrary to Zhao et al. (2016), we assume that the

conditional variance σ2(z) = E[σ2(X,Z)|Z = z] is not constant, but it is a continuous

function of z in this section. The case with discontinuous σ2(z) will be investigated later

in Section 2.4.

The semiparametric model (2.1) has been studied by Zhao et al. (2016) for the inde-

pendent and identically distributed data, and in the present setting, it includes many

popular time-series models. When Xi is a constant, the model is reduced to a nonpara-

metric jump-preserving model in Gijbels et al. (2007). If all coefficient functions are

constant, the model becomes a linear (possibly autoregressive) model. If the coefficient

functions have the form: a(·) = β1w(·) + β2{1 − w(·)} with w(·) being an unspecified

scalar function, model (2.1) covers semiparametric transition models such as the one by

Č́ıžek and Koo (2017b), who estimated w(·) by a jump-preserving estimation proposed

in this work. Moreover, model (2.1) includes the threshold autoregressive model and the

smooth transition autoregressive model when w(·) takes a particular parametric form.

To define first the estimator of coefficient functions a(·) analogous to Gijbels et al. (2007)

and Zhao et al. (2016), we let K(c)(·) be a conventional bounded symmetric kernel function

with a compact support [−1, 1] and define K(l)(·) and K(r)(·) to be the corresponding

left-sided and right-sided kernels, respectively, given by

K(l)(v) = K(c)(v) · 1 {v ∈ [−1, 0)} and K(r)(v) = K(c)(v) · 1 {v ∈ [0, 1]} , (2.2)

where 1 {·} denotes the indicator function. Using these kernels, we can define three pairs

of local linear estimators â
(ι)
n (z) and b̂

(ι)
n (z) (ι = c, l, r) of coefficient functions a(·) and its



Chapter 2. Jump-Preserving Functional Coefficient Models 8

derivatives a′(·), respectively, at a fixed point z:

[
â(ι)
n (z), b̂(ι)

n (z)
]

= arg min
a,b

n∑
i=1

{
Yi −X>i [a+ b(Zi − z)]

}2
K

(ι)
h (Zi−z), ι = c, l, r, (2.3)

where K
(ι)
h (·) = h−1

n K(ι)(·/hn), hn > 0 is a bandwidth such that hn → 0 as n → ∞ and

the superscript ι = c, l, r indicates whether the conventional, left-sided, or right-sided

kernel is used. Solving the least-squares minimization problem (2.3) for ι = c, l, r yields

â(ι)
n (z)

b̂
(ι)
n (z)

 =

 n∑
i=1

 Xi

Xi(Zi − z)

 Xi

Xi(Zi − z)

>K(ι)
h (Zi − z)


−1

n∑
i=1

 Xi

Xi(Zi − z)

YiK
(ι)
h (Zi − z). (2.4)

To measure the quality of each local linear fit, Gijbels et al. (2007) and Zhao et al. (2016)

advocate the use of the weighted residual mean squared error (WRMSE):

Ψ(ι)
n (z) =

∑n
i=1 ε̂

(ι)2

n,i K
(ι)
h (Zi − z)∑n

i=1K
(ι)
h (Zi − z)

, ι = c, l, r, (2.5)

where the estimated residual ε̂
(ι)
n,i = Yi − X>i {â

(ι)
n (z) + b̂

(ι)
n (z)(Zi − z)}. WRMSE is an

estimator of conditional error variance σ2(z), which is similar to the one proposed in Fan

and Yao (1998) except that the local constant fitting of ε̂
(ι)2

n,i and same bandwidth hn for

the conditional variance are used here. Although employing a different bandwidth for the

conditional variance would improve the finite sample performance, our aim is to compare

performance of the three local estimates of a(z) rather than providing a good estimate

of σ2(z). To avoid technical complexity in the proofs, the same bandwidth is therefore

applied for the coefficient functions and WRMSE estimates.

The WRMSE introduced in (2.5) can be now used to select the consistent estimator out

of (2.3) and thus to define the jump-preserving estimator of a(z), which will be proved
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consistent if the conditional error variance σ2(z) is continuous (cf. Zhao et al., 2016):

ǎn(z) =



â
(c)
n (z), if diff(z) ≤ un,

â
(l)
n (z), if diff(z) > un and Ψ

(l)
n (z) < Ψ

(r)
n (z),

â
(r)
n (z), if diff(z) > un and Ψ

(l)
n (z) > Ψ

(r)
n (z),

â
(l)
n (z) + â

(r)
n (z)

2
, if diff(z) > un and Ψ

(l)
n (z) = Ψ

(r)
n (z),

(2.6)

where diff(z) = Ψ
(c)
n (z) − min{Ψ(l)

n (z),Ψ
(r)
n (z)} and the auxiliary parameter un > 0 is

tending to zero, un → 0 as n → ∞. The intuition behing this proposal is based on the

fact that the conventional local estimate â
(c)
n (z) should be the most precise one as it uses

all observations in the interval [z − hn, z + hn], but it is consistent only if there are no

discontinuities in (z−hn, z+hn). If a(·) is discontinuous at some point of (z−hn, z+hn),

â
(c)
n (z) is generally inconsistent (and the same can be also true in the case of â

(l)
n (z) or

â
(r)
n (z)), which leads to an increase of the corresponding WRMSE value in (2.5) as we

confirm later in Section 2.3. Consequently, only a consistent estimator will minimize (2.5)

asymptotically and will be thus selected in (2.6). The existence of a consistent estimator

among â
(c)
n (z), â

(l)
n (z), and â

(r)
n (z) can be however assumed as bandwidth hn → 0 as

n→∞ and the interval (z− hn, z + hn) thus contains at most one point of discontinuity

for any z and a sufficiently large n. See Zhao et al. (2016) for more details.

2.3 Asymptotic results

To derive the asymptotic properties of the proposed jump-preserving estimator, the as-

sumptions about the data generating process (2.1) have to be detailed first. Later, the

requirements on the kernel function and bandwidth are specified too.

Let us now define the α-mixing and the assumptions on the model (2.1). Suppose that

F ba is the σ-algebra generated by {ξi; a ≤ i ≤ b}. The α-mixing coefficient of the process

{ξi}∞i=−∞ is defined as

α(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
−∞, B ∈ F∞m }.
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If α(m)→ 0 as m→∞, then the process {ξi}∞i=−∞ is called strong mixing or α-mixing. In

the following assumptions, we additionally denote by f(·, ·) the joint probability density

function of variables Xi and Zi and by fZ(·) the marginal density function of Zi.

Assumption 2.A.

2.A1. The process {Xi, Zi, εi} is strictly stationary and strong mixing with α-mixing

coefficients α(m), m ∈ N, that satisfy α(m) ≤ Cm−γ with 0 < C < ∞ and

γ > (2δ − 2)/(δ − 2) for some δ > 2.

2.A2. There is a compact set D = [s0, sQ+1] such that infz∈D fZ(z) > 0. The derivative of

fZ(·) is bounded and Lipschitz continuous for z ∈ D. The partial derivative of the

joint density function f(·, ·) with respect to Z is bounded and continuous uniformly

on the support of X and D except for the points {sq}Q+1
q=0 , at which the left and

right partial derivatives of f(·, ·) with respect to Z are bounded and left and right

continuous, respectively.

2.A3. Let ϕi represent any element of matrix XiX
>
i , vector Xiεi, or variable ε2

i . For δ

given in Assumption 2.A1,

(i) E|ϕi|δ <∞,

(ii) supz∈D E(|ϕi|δ|Zi = z)fZ(z) <∞,

(iii) for all integers j > 1,

sup
(z1,zj)∈D×D

E(|ϕ1ϕj||Z1 = z1, Zj = zj)fZ1Zj(z1, zj) <∞,

where fZ1Zj(z1, zj) denotes the joint density of (Z1, Zj).

2.A4. The variance matrix Ω(z) = E[XX>|Z = z] is bounded and positive definite

uniformly on D except for the discontinuities {sq}Q+1
q=0 , at which variance matri-

ces Ω−(sq) = limz↑sq E[XX>|Z = z] and Ω+(sq) = limz↓sq E[XX>|Z = z] are

bounded and positive definite.

2.A5. The second-order partial derivatives of a(z) are bounded and Lipschitz continuous

on D except for the discontinuities {sq}Q+1
q=0 , at which a(z) defined to be left and right

continuous has the left and right second-order partial derivatives that are bounded

and left and right Lipschitz continuous, respectively.
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2.A6. The partial derivative of σ2(x, z) with respect to z is bounded and continuous on

D.

Assumptions 2.A1–2.A5 are standard conditions for the VCMs with dependent data (see

e.g. Conditions A.1 and A.2 in Cai et al. (2000) for the local linear estimation in VCMs

and the assumptions in Hansen (2008) for a general nonparametric kernel estimator)

adapted for discontinuities, at which we impose the corresponding conditions for the

left and right limits. Further, Assumption 2.A6 imposes that the conditional variance

σ2(z) = E[σ2(X,Z)|Z = z] is continuous; the case with discontinuous σ2(z) is investigated

in Section 2.4.

The following assumptions about the kernel K, bandwidth hn, auxiliary parameter un,

and mixing exponent γ are also needed to show the asymptotic results for the jump-

preserving estimator ǎn(z). First, standard assumptions on the kernel and bandwidth

are given. After that, assumptions required by Hansen (2008) in the asymptotic analysis

of the local linear regression estimators under dependence are introduced.

Assumption 2.B.

2.B1. The kernel K(c)(·) is a bounded symmetric continuous density function and has a

compact support [−1, 1]. It is chosen so that the following constants are well defined

and finite for j = 0, 1, 2 and ι = c, r, l:

µ
(ι)
j =

∫ 1

−1

vjK(ι)(v)dv, ν
(ι)
j =

∫ 1

−1

vjK(ι)2(v)dv,

c
(ι)
0 =

µ
(ι)
2

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

, and c
(ι)
1 =

−µ(ι)
1

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

. (2.7)

2.B2. The bandwidths hn and un satisfy un → 0, hn → 0, and nhn →∞ as n→∞.

2.B3. Additionally, nh5
n → c̄ ∈ [0,+∞) as n→∞, where c̄ is some non-negative constant.

Assumption 2.C.

2.C1. The functions K(c)
j (u) = ujK(c)(u) are Lipschitz continuous for all j = 0, 1, 2, 3.
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2.C2. For some ς ≥ 1, the strong mixing exponent γ given in Assumption 2.A1 satisfies

γ >
1 + (δ − 1)(2 + 1/ς)

δ − 2
.

2.C3. The bandwidth hn satisfies lnn/(nh3
n) = o(1) and lnn/(nθhn) = o(1), where

θ =
γ − 2− 1

ς
− 1 + γ

δ − 1

γ + 2− 1 + γ

δ − 1

.

Note that the above assumptions impose that the bandwidth sequence hn ∼ n−α for

α ∈ [1/5,min{1/3, θ}), where the upper bound depends on the mixing coefficient γ and

the number of moments δ. For example for the exponentially mixing series, γ = ∞

and θ = 1− (δ − 1)/[ς(δ − 2)] can be made arbitrarily close to 1 for any δ by selecting a

sufficiently large ς. If γ becomes finite and small, δ > 2 will however have to be sufficiently

large to ensure that θ > 1/5.

Before providing the asymptotic properties of the jump-preserving estimator ǎn(z), we

study the behavior of the three local linear estimators (2.3) in the continuous region and

in the neighborhoods of discontinuities. The regions of continuity are defined by

D1n = D
(c)
1n = D \

Q+1⋃
q=0

[sq − hn, sq + hn],

D
(l)
1n = D \

Q+1⋃
q=0

[sq, sq + hn], and D
(r)
1n = D \

Q+1⋃
q=0

[sq − hn, sq].

Theorem 2.1. Under Assumptions 2.A1–2.A6, 2.B, and 2.C, it holds for n→∞ that

sup
z∈D(ι)

1n

∥∥â(ι)
n (z)− a(z)

∥∥ = Op

(√
lnn

nhn

)
, ι = c, l, r.

Theorem 2.2. If Assumptions 2.A1–2.A6 and 2.B are satisfied and a fixed point z ∈ D(ι)
1n

for some n ∈ N and ι = c, l, r, it holds that

√
nhn

[
â(ι)
n (z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ(ι)(z)

)
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as n→∞, where

Φ(ι)(z) =
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

fZ(z)
· Ω−1(z)Θ(z)Ω−1(z), (2.8)

Ω(z) = E[XX>|Z = z], and Θ(z) = E[XX>σ2(X,Z)|Z = z].

Theorem 2.1 establishes the uniform consistency of the three local linear estimators in

their corresponding continuous regions. Theorem 2.2 then specifies the asymptotic distri-

butions of the estimators â
(c)
n (z), â

(l)
n (z), and â

(r)
n (z) in the regions, where a(·) is contin-

uous, left-continuous, and right-continuous around z, respectively. The stated bias term

and asymptotic variance correspond to that derived in the iid case by Zhao et al. (2016) in

their proof of Proposition 2.1. The asymptotic variance has the standard form of the local

least-squares estimator except for the numerator of the fraction in (2.8), which however

reduces to standard c
(ι)2
0 ν

(ι)
0 in the case of the centered estimation.

Since all three local linear estimators are consistent in their corresponding regions of

continuity according to Theorem 2.1, it is easy to see that their corresponding WRMSE

estimates (2.5) consistently converge to the conditional error variance σ2(z).

Theorem 2.3. Let Assumptions 2.A1–2.A6 and 2.B hold. At any point z ∈ D
(ι)
1n for

some n ∈ N and ι = c, l, r, the mean squared error in (2.5) satisfies Ψ
(ι)
n (z)

P→ σ2(z) as

n→∞.

Such a result does not however hold if the point z is close to a jump, that is, to a point

of discontinuity. If a jump is located in the right neighborhood of z, only the left-sided

local linear estimator â
(l)
n (z) is consistent. Similarly, the right-sided estimator â

(r)
n (z) is

the only consistent estimator of a(z) when there is a jump in the left neighborhood of z.

Consequently, the three WRMSE estimates behave differently near a jump point. The

next theorem describes the asymptotic behavior of WRMSE in a neighborhood of a jump

sq when the conditional error variance σ2(z) is continuous in z (cf. Zhao et al., 2016).

Theorem 2.4. Let Assumptions 2.A1–2.A6 and 2.B hold. Then it holds as n→∞ that
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(i) for any z = sq + τhn ∈ D with q = 1, . . . , Q+ 1 and τ ∈ [−1, 0),

Ψ(c)
n (z)

P→ σ2(sq) + d>q C
(c)
τ dq,

Ψ(l)
n (z)

P→ σ2(sq),

Ψ(r)
n (z)

P→ σ2(sq) + d>q C
(r)
τ dq.

(ii) for any z = sq + τhn ∈ D with q = 0, . . . , Q and τ ∈ (0, 1],

Ψ(c)
n (z)

P→ σ2(sq) + d>q C
(c)
τ dq,

Ψ(l)
n (z)

P→ σ2(sq) + d>q C
(l)
τ dq,

Ψ(r)
n (z)

P→ σ2(sq).

In both cases, dq = limz↓sq a(z) − limz↑sq a(z) and C
(ι)
τ , ι = c, l, r, represents a positive

definite matrix defined in Section 2.8, equation (2.40).

The above theorem shows that only the left-sided WRMSE is a consistent estimator

of the conditional error variance σ2(z) if a jump in coefficients a(z) occurs in the right

neighborhood of z, while the other two WRMSE estimates contain strictly positive biases,

which do not vanish asymptotically. Similarly, if a jump is in the left neighborhood of

z, only the right-sided WRMSE leads to a consistent estimator of σ2(z). To sum up,

the smallest WRMSE is – at least asymptotically – Ψ
(l)
n (z) when a jump is in a right

neighborhood of z and it is Ψ
(r)
n (z) when a jump is in a left neighborhood of z. Hence, it

is intuitively clear that the jump-preserving estimator ǎn(z) defined in (2.6) selects the

appropriate local linear estimator at every point z for a sufficiently large n.

Based on this result, we will establish the consistency of ǎn(z) in the continuous region

D1n, in the neighborhoods of discontinuity points D2n, and in the neighborhoods of

discontinuity points excluding small regions around centers and around endpoints D2n,δ.
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These regions are defined as follows:

D2n = D ∩
Q+1⋃
q=0

{[sq − hn, sq) ∪ (sq, sq + hn]} and

D2n,δ = D ∩
Q+1⋃
q=0

{[sq − (1− δ)hn, sq − δhn] ∪ [sq + δhn, sq + (1− δ)hn]} (2.9)

for some δ ∈ (0, 1/2).

Theorem 2.5. If Assumptions 2.A1–2.A6, 2.B, and 2.C are satisfied, it holds for n→∞

and some δ ∈ (0, 1/2) that

(i)

sup
z∈D1n

‖ǎn(z)− a(z)‖ = Op

(√
lnn

nhn

)
,

(ii)

sup
z∈D2n,δ

‖ǎn(z)− a(z)‖ = Op

(√
lnn

nhn

)
, and

(iii) for any z ∈ D2n,

‖ǎn(z)− a(z)‖ = Op

(√
lnn

nhn

)
.

Theorem 2.5 states that the jump-preserving estimator ǎn(z) is uniformly consistent on

D1n and D2n,δ for some δ ∈ (0, 1/2). At a point z ∈ D2n arbitrarily close to a point of

discontinuity, ǎn(z) is only pointwise consistent.

The jump-preserving estimator ǎn(z) selects consistently (i.e., with probability approach-

ing to 1) the appropriate local linear estimator on D excluding the jump points, where

each of these local linear estimators is asymptotically normal at any point z ∈ D\{sq}Q+1
q=0

according to Theorem 2.2. The following theorem can therefore establish the asymptotic

normality of the jump-preserving estimator ǎn(z) at z ∈ D \ {sq}Q+1
q=0 (see also Casas and

Gijbels, 2012; Zhao et al., 2016, Theorems 3.1).
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Theorem 2.6. If Assumptions 2.A1–2.A6, 2.B, and 2.C are satisfied and z ∈ D \

{s0, . . . , sQ+1}, it holds that

√
nhn

[
ǎn(z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ(ι)(z)

)
as n→∞, where Φ(ι)(z) is defined in equation (2.8) and

ι =


c, if z ∈ D1n,

l, if z ∈ D ∩
⋃Q+1
q=0 [sq − hn, sq),

r, if z ∈ D ∩
⋃Q+1
q=0 (sq, sq + hn].

2.4 Discontinuous conditional variance function

In this section, the conditional variance function σ2(z) is also allowed to exhibit discon-

tinuities. For this purpose, we replace Assumption 2.A6 by the following condition.

Assumption A6’. The partial derivative of σ2(x, z) with respect to z is bounded and

continuous on D except for the points of discontinuity {s̃q}Q̃+1
q=0 , at which σ2(x, z) defined

to be left and right continuous has the left and right partial derivatives with respect to z

that are bounded and left and right continuous, respectively.

Given the possibility of discontinuities of the variance functions σ2(z) and σ2(x, z) in

Assumption A6’, the subscripts ‘−’ and ‘+’ will now denote the corresponding left and

right limits of these variance functions. Although the variance discontinuities introduced

in Assumption A6’ do not influence the consistency and convergence rates of the three

local estimators (2.3), they can adversely affect the selection rule (2.6) based on a com-

parison of the three WRMSE estimates. In particular, if σ2(z) exhibits a jump at (or

nearby) sq, the error variances and thus WRMSE estimates are different in the left and

right neighborhoods of the estimation point z. Hence, the limits of Ψ
(c)
n (z), Ψ

(l)
n (z), and

Ψ
(r)
n (z) in Theorem 2.4 contain different variances – error variance to the left of sq, to the

right of sq, or a combination of those – and it is no longer possible to claim that Ψ
(l)
n (z) is

minimal in Theorem 2.4(i) or that Ψ
(r)
n (z) is minimal in Theorem 2.4(ii). In such cases,

the selection method (2.6) fails to detect and preserve jumps. On the other hand, if σ2(z)
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exhibits a jump in the continuity region D1, all local linear estimates are consistent, but

for the reason stated above, the selection method (2.6) can still fail to select the best (con-

ventional) estimate. Thus the consistency is not violated, but the variance of estimates

can increase and the asymptotic distribution in Theorem 2.6 becomes incorrect.

To deal with the discontinuity of σ2(z), we introduce now an alternative jump-preserving

estimator which does not require the continuity of conditional error variance. Let the

left-, right-, and two-sided hn-neighborhood of z be

D(l)
zn = [z − hn, z], D(r)

zn = [z, z + hn], and D(c)
zn = [z − hn, z + hn],

respectively. To motivate an alternative to the selection method (2.6), we first suppose

that sq is in the right neighborhood of z, i.e., sq ∈ D
(r)
zn . In such a case, only the

left-sided local linear estimates â
(l)
n (z) and b̂

(l)
n (z) converge to the true parameter values

a(l)(z) = a(z) and b(l)(z) = a′(z), respectively. (We are again implicitly assuming that

bandwidth hn is so small that there is at most one jump in (z−hn, z+hn) for a sufficiently

large n.) By the Taylor expansion and E[g(Xi)εi|Zi] = E[g(Xi)E[εi|Xi, Zi]|Zi] = 0 for

any bounded non-zero function g(·), we have (under some regularity assumptions)

E[g(Xi){Yi −X>i a(l)(z)}|Zi]

= E
[
g(Xi)X

>
i {a(Zi)− a(l)(z)}|Zi

]
≤ E

[
‖g(Xi)X

>
i ‖|Zi

]
E
[
‖a(Zi)− a(l)(z)‖|Zi

]
= O(Zi − z) = O(hn) = o(1).

for Zi ∈ D(l)
zn. On the other hand, the above result does not hold for the limit values of the

right-sided and two-sided local linear estimators, a(c)(z) and a(r)(z), which are different

from a(z). Thus as long as the coefficient functions a(·) are identified and a(ι)(z) 6= a(z),

ι = c, r, it holds for Zi ∈ D(ι)
zn that E[g(Xi){Yi − X>i a(ι)(z)}|Zi] = E[g(Xi)X

>
i {a(Zi) −

a(ι)(z)}|Zi] 6= o(1) for a general g(·); in particular, it holds for g(Xi) = Xi, and if

E(ZiX
>
i |Zi = z) has the full rank, even for g(Xi) = 1. Analogous claims can be made if

sq is in the left neighborhood of z. Given the focus on time series models, g(Xi) = 1 is

considered for the sake of simplicity.
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Contrary to (2.6), the asymptotic conditional mean independence described above is

a property independent of conditional error variance σ2(z). To select the consistent

estimator out of the three local linear estimators (2.3), we therefore propose to test

locally whether E[ε
(ι)
i |Zi] = 0 for Zi ∈ D(ι)

zn and ι = c, l, r, where ε
(ι)
i = Yi − X>i a(ι)(z):†

rejection of E[ε
(ι)
i |Zi] = 0 indicates that a given local linear estimator is not consistent and

should not be used in a given neighborhood of z. According to Bierens (1982, Theorems 1

and 2), the conditional mean independence E[ε
(ι)
i |Zi] = 0 is equivalent to zero correlation

between ε
(ι)
i and exp (kZi) for all k ∈ R, or alternatively, to zero correlation between

ε
(ι)
i and Zk

i for all k ∈ N ∪ {0}. To design a simple procedure with a good power, we

therefore suggest to test zero correlation between ε
(ι)
i and Zk

i for k = 1, . . . ,m, where m is

a small finite number. Given the specific form of E[ε
(ι)
i |Zi] = E[εi+X>i {a(z)−a(ι)(z)}|Zi]

caused by an unaccounted discontinuity in a(z), the cubic polynomial approximates this

expectation well and m = 3 provides a sufficient power to detect its nonlinearity even in

small intervals (z − hn, z + hn); see Section 2.5.

To test for non-zero correlation of ε
(ι)
i and Zj

i , j = 1, . . . ,m, we propose to regress

the estimated residual ε̃
(ι)
n,i = Yi − X>i â

(ι)
n (z) on ρ

(
Zi−z
hn

)
for Zi ∈ D

(ι)
zn , where ρ(v) =

(1, v, · · · , vm)>. The corresponding ordinary least-squares slope estimates γ̂
(ι)
n (z) will

converge to γ(ι)(z) = 0 under the null hypothesis of E[ε
(ι)
i |Zi] = 0, Zi ∈ D

(ι)
zn , and to

γ(ι)(z) 6= 0 otherwise (for sufficiently large m and n); ι = c, l, r. More specifically, we test

significance of the slope estimates γ̂
(ι)
n (z) that are the minimizers of the following least

square problem:

min
γ

n∑
i=1

{
ε̃

(ι)
n,i − ρ>

(
Zi − z
hn

)
γ

}2

K̃
(ι)
h (Zi − z), (2.10)

where K̃
(ι)
h (·) = h−1

n K̃(ι)(·/hn), K̃(c)(·) is the uniform kernel function on [−1, 1],

K̃(l)(v) = K̃(c)(v) · 1 {v ∈ [−1, 0)} , and K̃(r)(v) = K̃(c)(v) · 1 {v ∈ [0, 1]} .

† A similar result holds also if the local linear approximation, ε
(ι)
i = Yi −X>i {a(z) + b(z)(Zi − z)}, is used.
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Solving the minimization (2.10) leads to estimate γ̂
(ι)
n (z) = S̃

(ι)−1
n (z)T̃

(ι)
n (z), where

S̃(ι)
n (z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z) and

T̃ (ι)
n (z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
K̃

(ι)
h (Zi − z)ε̃

(ι)
n,i.

In order to test the hypothesis γ(ι)(z) = 0, the Wald test statistics is used here, which

forms an alternative measure Ψ̃
(ι)
n (z) to the WRMSE Ψ

(ι)
n (z) introduced in (2.5) and

provides an indication about the dependence between estimated residual and Zi:

Ψ̃(ι)
n (z) =γ̂(ι)>

n (z)

(
S̃

(ι)
n (z)

Ñ
(ι)
n (z)

)
γ̂(ι)>
n (z), (2.11)

where

ê
(ι)
n,i(z) = ε̃

(ι)
n,i − ρ>

(
Zi − z
hn

)
γ̂(ι)
n (z) and

Ñ (ι)
n (z) =

1

n

n∑
i=1

ê
(ι)2

n,i (z)K̃
(ι)
h (Zi − z).

For this quantity (2.11), we derive now theorems analogous to Theorems 2.3 and 2.4 for

the case of the Wald measure Ψ̃
(ι)
n (z) under the following condition.

Assumption 2.D.

2.D1. The uniform kernel K̃(c)(·) has support [−1, 1] and the kernel moment matrix M̃ (ι) =∫ 1

−1
ρ(u)ρ>(u)K̃(ι)(u)du, ι = c, l, r, is positive definite.

2.D2. The number m of powers used in the auxiliary regressions (2.10) is sufficiently large

such that at least one of the slope coefficients γ
(ι)
q,τ , which has its explicit expression

given in equation (2.68), is non-zero for z = sq +τhn, q = 0, . . . , Q+1, for any given

τ ∈ (−1, 0) and ι = c, r and τ ∈ (0, 1) and ι = c, l.

Theorem 2.7. Suppose that Assumptions 2.A1–2.A5, A6’, 2.B, and 2.D hold. At any

z ∈ D(ι)
1n for some n ∈ N and ι = c, l, r, it holds that Ψ̃

(ι)
n (z)

P→ 0 as n→∞.

Theorem 2.8. If Assumptions 2.A1–2.A5, A6’, 2.B, and 2.D are satisfied, the following

results hold as n→∞.
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(i) For any z = sq + τhn ∈ D with q = 1, . . . , Q+ 1 and τ ∈ (−1, 0),

Ψ̃(c)
n (z)

P→ γ(c)>
q,τ C̃(c)

τ γ(c)
q,τ ,

Ψ̃(l)
n (z)

P→ 0,

Ψ̃(r)
n (z)

P→ γ(r)>
q,τ C̃(r)

τ γ(r)
q,τ .

(ii) For any z = sq + τhn ∈ D with q = 0, . . . , Q and τ ∈ (0, 1),

Ψ̃(c)
n (z)

P→ γ(c)>
q,τ C̃(c)

τ γ(c)
q,τ ,

Ψ̃(l)
n (z)

P→ γ(l)>
q,τ C̃

(l)
τ γ

(l)
q,τ ,

Ψ̃(r)
n (z)

P→ 0.

In both cases for ι = c, l, r, C̃
(ι)
τ is a positive definite matrix defined in Section 2.8,

equation (2.71), and the explicit form of γ
(ι)
q,τ is given in Section 2.8, equation (2.68).

Given the above results, we can use the Wald statistics Ψ̃
(ι)
n (z) to again distinguish which

local estimators â
(ι)
n (z) are consistent or inconsistent due to a discontinuity of coefficient

functions, but now without requiring that the conditional variance σ2(z) is continuous.

We thus propose a new jump-preserving estimator ãn(z) of coefficient functions a(z) when

the conditional error variance contains a finite set of discontinuities:

ãn(z) =



â
(c)
n (z), if ˜diff(z) ≤ un,

â
(l)
n (z), if ˜diff(z) > un and Ψ̃

(r)
n (z) > Ψ̃

(l)
n (z),

â
(r)
n (z), if ˜diff(z) > un and Ψ̃

(l)
n (z) > Ψ̃

(r)
n (z),

â
(l)
n (z) + â

(r)
n (z)

2
, if ˜diff(z) > un and Ψ̃

(l)
n (z) = Ψ̃

(r)
n (z),

(2.12)

where the auxiliary parameter un > 0 is again tending to zero with increasing n and

˜diff(z) = Ψ̃
(c)
n (z) − min{Ψ̃(l)

n (z), Ψ̃
(r)
n (z)}. The consistency and asymptotic normality of

the proposed jump-preserving estimator ãn(z) are established in the following theorems.

Theorem 2.9. Under Assumptions 2.A1–2.A5, A6’, 2.B, 2.C, and 2.D, it holds for

n→∞ and some δ ∈ (0, 1/2) that
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(i)

sup
z∈D1n

‖ãn(z)− a(z)‖ = Op

(√
lnn

nhn

)
,

(ii)

sup
z∈D2n,δ

‖ãn(z)− a(z)‖ = Op

(√
lnn

nhn

)
, and

(iii) for any given z ∈ D2n,

‖ãn(z)− a(z)‖Op

(√
lnn

nhn

)
.

Theorem 2.10. If Assumptions 2.A1–2.A5, A6’, 2.B, 2.C, and 2.D are satisfied and a

point z ∈ D \ {s0, . . . , sQ+1}, it holds that

√
nhn

[
ãn(z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ

(ι)
lr (z)

)

as n→∞, where Φ
(ι)
lr (z) = f−1

Z (z)Ω−1(z)
(

Φ
(ι)
l (z) + Φ

(ι)
r (z)

)
Ω−1(z),

Φ
(ι)
l (z) = Θ−(z)

[
c

(ι)2
0 ν

(l)
0 + 2c

(ι)
0 c

(ι)
1 ν

(l)
1 + c

(ι)2
1 ν

(l)
2

]
1(ι ∈ {c, l})

Φ(ι)
r (z) = Θ+(z)

[
c

(ι)2
0 ν

(r)
0 + 2c

(ι)
0 c

(ι)
1 ν

(r)
1 + c

(ι)2
1 ν

(r)
2

]
1(ι ∈ {c, r}),

Ω(z) = E[XX>|Z = z], Θ−(z) = E[XX>σ2
−(X,Z)|Z = z], Θ+(z) = E[XX>σ2

+(X,Z)|Z =

z], and

ι =


c, if z ∈ D1n,

l, if z ∈ D ∩
⋃Q+1
q=0 [sq − hn, sq),

r, if z ∈ D ∩
⋃Q+1
q=0 (sq, sq + hn].

If Θ−(z) = Θ+(z), Φ
(ι)
lr (z) = Φ(ι)(z) defined in Theorem 2.6.
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2.5 Simulations

In this section, we first discuss the selection procedure of the smoothing parameters hn

and un. Next, we examine the finite sample properties of the jump-preserving estimators

ǎn(·) defined in (2.6) and ãn(·) given in (2.12) using two simulated examples.

Among many bandwidth selection procedures for nonparametric models, we opt for the

cross-validation method similarly to Zhao et al. (2016). When covariates Xi and Zi do

not contain any lagged dependent variables, we select the smoothing parameters by the

leave-one-out cross-validation. The selected smoothing parameters ĥn and ûn are thus

determined by

(ĥn, ûn) = arg min
hn,un

n∑
i=1

[
Yi −X>i ån,−i(Zi)

]2
,

where ån,−i(Zi) represents a jump-preserving estimate ǎn(·) or ãn(·) based on all data

except for the ith observation (Yi, Xi, Zi). If covariates Xi and Zi do contain some lagged

dependent variables with the lags up to order m, we suggest to apply the m-block-out

cross-validation technique:

(ĥn, ûn) = arg min
hn,un

n∑
i=1

[
Yi −X>i ån,−mi(Zi)

]2
,

where ån,−mi(Zi) is computed without using observations {Yi+j, Xi+j, Zi+j}mj=−m (see Pat-

ton et al., 2009, for the data-dependent block-size selection).

To observe the estimation precision both in neighborhoods of change points and overall,

we evaluate the performance of the proposed estimators via the global mean absolute

deviation of errors (MADE) and local mean absolute deviation of errors (MADElocal):

MADE =
1

ngrid

ngrid∑
j=1

‖̊an(zj)− a(zj)‖1

and

MADElocal =
1

ngrid

Q∑
q=1

ngrid∑
j=1

‖̊an(zj)− a(zj)‖1 · 1{zj ∈ (sq − 0.1, sq + 0.1)},
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where ån(zj) represents one of the considered estimators, {zj}
ngrid

j=1 are the grid points, and

‖ · ‖1 denotes the absolute value norm.

2.5.1 Experiment 1: Constant conditional variance function

First, we consider an AR(1) process:‡

Xt = a0(Zt) + a1(Zt)Xt−1 + σ(Zt)εt, t = 1, . . . , n, (2.13)

where the variable Zt is drawn independently from the uniform distribution, Zt ∼ U(0, 1),

the errors are independent standard normal, εt ∼ N(0, 1), and the coefficient functions

a0(Zt) = 1.2 cos(Zt)− 1.68 · 1{Zt < 0.5} − 0.66 · 1{Zt ≥ 0.5} and

a1(Zt) = cos(Zt)− 1{Zt < 0.5} − 0.25 · 1{Zt ≥ 0.5}.

In this first simulation experiment, the variance function is constant: σ2(Zt) = (0.6)2.

The process (2.13) is evaluated at two sample sizes n = 300 and n = 600, and for each

sample size, 1000 samples are simulated. We estimate the coefficient functions using

local linear fitting on an equispaced grid of points {zj}
ngrid

j=1 with z1 = 0, zngrid
= 1, and

ngrid = 200. All nonparametric estimators employ the Epanechnikov kernel: K(c)(v) =

0.75(1− v2)1{|v| ≤ 1}.

First, the bandwidth hn is set to 0.54n−1/5 for all three local estimators, and un is selected

by cross-validation. Figure 2.1 provides a graphical presentation of the performance of the

two jump-preserving local linear estimators ǎn(z) (selection using WRMSE) and ãn(z)

(selection using the Wald statistics) and the conventional local linear estimator â
(c)
n (z)

for n = 600. Both jump-preserving estimators track the true coefficient functions closely,

while the conventional local linear estimator is inconsistent around the discontinuity z =

0.5 as the confidence intervals of â
(c)
n (z) do not contain the discontinuity. In addition, ǎn(z)

compared to ãn(z) has a wider confidence interval near the boundaries. The procedure

of selecting the left-sided, right-sided, or conventional local estimators proposed for ãn(z)

‡We have also studied the same AR(1) process (2.13) with coefficients that are functions of time t/n. Although
using a linear time trend t/n as Zt might violate Assumption 2.A1, the simulation results are similar to the case
with a uniformly distributed Zt.
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(f) Jump-preserving ãn,1 (Wald)

Figure 2.1: Homoscedastic model with the fixed bandwidth and n = 600: the solid lines
represent the true coefficient functions, the dashed lines are the average varying coefficient
estimates, and the dotted lines are the 95% confidence bands.
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Figure 2.2: Homoscedastic model with the fixed bandwidth: global and local mean absolute
deviations of the estimates. Each plot contains boxplots for (from left to right) the jump-
preserving estimator based on the Wald statistics, the jump-preserving estimator based on
WRMSE, and the conventional estimator.

in Section 2.4 still chooses â
(c)
n (z) around the boundary points and is thus less affected

by the boundaries than ǎn(z).

Due to strong boundary effects in ǎn(z), the 1000 global and local MADE values for each

sample size are computed for z ∈ [0.05, 0.95]. The boxplots are shown in Figure 2.2. The

conventional local linear estimator has higher global and local MADE values compared to

the jump-preserving estimators ǎn(z) and ãn(z), where there is no significant difference

in the MADEs of ǎn(z) and ãn(z). Both jump-preserving estimators thus perform well in

the case of the process with homoscedastic error. When the sample size becomes larger,

all global and local MADEs decrease proportionally for all estimators.
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Figure 2.3: Homoscedastic model with the cross-validated bandwidth and n = 600: the solid
lines represent the true coefficient functions, the dashed lines are the average varying coefficient
estimates, and the dotted lines are the 95% confidence bands.
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Figure 2.4: Homoscedastic model with the cross-validated bandwidth: global and local mean
absolute deviations of the estimates. Each plot contains boxplots for (from left to right) the
jump-preserving estimator based on the Wald statistics, the jump-preserving estimator based
on WRMSE, and the conventional estimator.

Next, we repeat the experiment, but cross-validate both hn and un for each replication;

the results are shown in Figures 2.3 and 2.4. The interpretation of the results is similar as

above. The main difference is that the MADE of the conventional local linear estimator

is smaller than before since the bandwidth selected for â
(c)
n (z) is freely chosen and thus

becomes smaller in an attempt to capture the discontinuity as good as possible, while

decreasing the precision in the continuity region. Nevertheless, the discontinuity is not

included in its confidence interval and its performance is still worse than that of the

proposed jump-preserving estimators.
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2.5.2 Experiment 2: discontinuous conditional variance function

Now we consider the same time-varying AR(1) process as in (2.13), but with a discontin-

uous conditional variance function:

σ2(Zt) = (0.8 · 1{Zt < 0.5}+ 0.6 · 1{Zt ≥ 0.5})2 . (2.14)

The evaluation is performed in the same way as in the previous section. Let us note that

this experiment exhibits only one discontinuity in the variance function, which coincides

with the discontinuity in the coefficient functions. Qualitatively similar results are also

obtained if the variance discontinuity occurs at the points of continuity of the coefficient

functions, see Sections 2.10, where we additionally compare the variance of the estimates

obtained from the simulation and the asymptotic distribution, respectively.

Figure 2.5 provides a graphical presentation of the performance of the convetional esti-

mator â
(c)
n (z), jump-preserving estimator ǎn(z) based on WRMSE, and jump-preserving

estimator ãn(z) based on the Wald statistics with a fixed bandwidth hn = 0.54n−1/5,

whereas the results using the cross-validated bandwidth hu and un are presented in Fig-

ure 2.7. In this case, only the proposed jump-preserving estimators ãn(z) based on the

Wald statistics preserve the discontinuity, whereas â
(c)
n (z) and ǎn(z) are both inconsis-

tent as their confidence intervals do not contain the discontinuity for z’s near the jump

point; note that this is true even for the jump-preserving method based on WRMSE.

The corresponding boxplots with MADE are shown in Figures 2.6 and 2.8. The proposed

estimator ãn(z) based on the Wald statistics has the lowest global and local MADE val-

ues compared to the other jump-preserving estimator ân(z) and to the conventional local

linear estimator ǎn(z). The differences become a bit smaller when we cross-validate both

the bandwidths hn and un (see Figure 2.8). In both cases, the jump-preserving estima-

tor ãn(·) in (2.12) outperforms the existing method ân(·) in (2.6) in the presence of the

discontinuity of conditional variance function, in particular in terms of MADE.
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0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

a_
1

(d) Jump-preserving ǎn,1 (WRMSE)
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Figure 2.5: Heteroskedastic model with the fixed bandwidth: the solid lines represent the
true coefficient functions, the dashed lines are the average varying coefficient estimates, and the
dotted lines are the 95% confidence bands.
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Figure 2.6: Heteroskedastic model with the fixed bandwidth: global and local mean absolute
deviations of the estimates. Each plot contains boxplots for (from left to right) the jump-
preserving estimator based on the Wald statistics, the jump-preserving estimator based on
WRMSE, and the conventional estimator.

2.6 Application

Nonlinearity in the US interest rate function has been documented in several studies,

including Boldea and Hall (2013), who apply the smooth transition autoregressive model

to the monthly US interest rates. Generalizing their model to the varying-coefficient

setting leads to the interest rate model written in the following way:

rt = β0(zt) + β1(zt)rt−1 + β2(zt)rt−2 + β3(zt)πt−1 + β4(zt)yt−1 + εt,
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Figure 2.7: Heteroskedastic model with the cross-validated bandwidth: the solid lines repre-
sent the true coefficient functions, the dashed lines are the average varying coefficient estimates,
and the dotted lines are the 95% confidence bands.



Chapter 2. Jump-Preserving Functional Coefficient Models 32

●

●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●●

●
●

a_wald a_wrmse a_conventional

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

(a) MADE for n = 300

●

●

●

●

a_wald a_wrmse a_conventional

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

(b) MADElocal for n = 300

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●
●●

●

●●

a_wald a_wrmse a_conventional

0.
10

0.
15

0.
20

0.
25

(c) MADE for n = 600

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●
●
●
●

●

●
●

●

●
●●

●

●

●●
●

●

●
●

●

●

●●

●●

●

a_wald a_wrmse a_conventional

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(d) MADElocal for n = 600

Figure 2.8: Heteroskedastic model with the cross-validated bandwidth: global and local mean
absolute deviations of the estimates. Each plot contains boxplots for (from left to right) the
jump-preserving estimator based on the Wald statistics, the jump-preserving estimator based
on WRMSE, and the conventional estimator.

where rt represents the monthly interest rate, πt and yt are the inflation and output gaps,

and the index variable zt = rt−1 − rt−4. Due to the evidence of structural break in 1990

by Boldea and Hall (2013), we will estimate this model only using the data from 1991 till

2010 and compare the results to the smooth transition estimates.

The estimation is performed by the method proposed in Section 2.4 using the Epanech-

nikov kernel and bandwidth equal to 0.33. The bandwidth was limited due to the fact

that the support of the index variable is approximately (−1, 1) and that the transition

prior to 1990 seems to occur around z equal to 0.5 (Boldea and Hall, 2013); there are no
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prior significant results about the point of transition in more recent data. The auxiliary

parameter un in (2.12) was then obtained by the leave-one-out cross-validation.

The estimates for the parameters β0(zt), . . . , β3(zt) are presented in Figures 2.9 and 2.10

(coefficient β4(zt) is not displayed due to its insignificance in the original and present

study). The magnitudes of the coefficients in the left parts of the graphs (z < 0) and

in the right parts of the graphs (z > 0.5) are similar to the regime estimates obtained

in Boldea and Hall (2013). Despite taking some fluctuations of the estimates due to a

relatively small bandwidth into account, there is not a clear support for monotonicity

of the coefficient functions imposed by the smooth transition models. Additionally, the

proposed estimation method detects a jump around 0.4, which is close to Boldea and Hall

(2013)’s findings regarding the location of the regime change. Altogether, the varying

coefficient model provides more flexibility in modelling the interest rates and indicates

the dynamics of the US interest rates changes substantially if their quarterly changes are

0.5 or higher.

2.7 Conclusions

In this paper, we propose estimators for varying-coefficient models with discontinuous

coefficient functions. First, we adapt the local linear estimators of Gijbels et al. (2007)

and Zhao et al. (2016), which select among the left-sided, right-sided, and conventional

local linear estimators by comparing their weighted residual mean squared errors, to the

time series setting. This approach works well when there are no discontinuities in the

conditional error variance. To cope with the discontinuity problem in the conditional

error variance, we propose a different “correctness” measure of the three local linear fits

based on the Wald statistics. In all cases, the asymptotic properties including the uniform

consistency and asymptotic normality are derived for both proposed estimators and their

performance is tested with simulated examples.
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Figure 2.9: The coefficient estimates obtained by the heteroscedasticity-robust jump-
preserving estimator for the US interest rate reaction function. The use of the two-, left-,
and right-sided kernel estimator is indicated by symbols ‘o’, ‘<’, ‘>’, respectively.
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Figure 2.10: The coefficient estimates obtained by the heteroscedasticity-robust jump-
preserving estimator for the US interest rate reaction function. The use of the two-, left-,
and right-sided kernel estimator is indicated by symbols ‘o’, ‘<’, ‘>’, respectively.
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2.8 Appendix: Proofs of the main results

In this section, we prove the theorems presented in Sections 2.3 and 2.4. Auxiliary lemmas

are collected in Section 2.9. Throughout Sections 2.8 and 2.9, we let C be a generic

positive constant, which may take different values at different places, and write M � 0 if

matrix M is positive definite. All limiting expressions including op(·) and Op(·) are taken

for n→∞, unless stated otherwise. The dependence on z of the variables introduced in

Sections 2.8 and 2.9 is kept implicit in order to shorten the length of proofs.

First, we introduce some notation. Denote

S(ι)
n =

S(ι)
n,0 S

(ι)
n,1

S
(ι)
n,1 S

(ι)
n,2

 , T (ι)
n =

T (ι)
n,0

T
(ι)
n,1

 , and F (ι)
n =

F (ι)
n,0

F
(ι)
n,1

 ,

where

S
(ι)
n,j =

1

n

n∑
i=1

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, 3, (2.15)

T
(ι)
n,j =

1

n

n∑
i=1

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)Yi, j = 0, 1, and (2.16)

F
(ι)
n,j =

1

n

n∑
i=1

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1. (2.17)

Using the above notation, the local linear estimators of a(·) and a′(·) in (2.4) can be

written as

β̂(ι)
n =

â(ι)
n (z)

b̂
(ι)
n (z)


=H−1

n

 n∑
i=1

H−1
n

 Xi

Xi(Zi − z)

 Xi

Xi(Zi − z)

>H−1
n K

(ι)
h (Zi − z)


−1

n∑
i=1

H−1
n

 Xi

Xi(Zi − z)

YiK
(ι)
h (Zi − z)

=H−1
n S(ι)−1

n T (ι)
n , (2.18)
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where Hn is a 2p× 2p diagonal matrix with its first p diagonal elements equal to 1’s and

its last p elements equal to hn’s.

Since the coefficient functions a(z) are twice continuously differentiable except for the

discontinuities {sq}Q+1
q=0 (Assumption 2.A5), it follows from the Taylor expansion for Zi ∈

D
(ι)
zn , z ∈ D1n, that

a(Zi) = a(z) + hn

(
Zi − z
hn

)
a′(z) +

h2
n

2

(
Zi − z
hn

)2

a′′(z) + o(Zi − z)2 (2.19)

uniformly in z ∈ D(ι)
1n , which implies

T
(ι)
n,0 − F

(ι)
n,0 =

1

n

n∑
i=1

K
(ι)
h (Zi − z)XiX

>
i a(Zi)

= S
(ι)
n,0a(z) + hnS

(ι)
n,1a

′(z) +
h2
n

2
S

(ι)
n,2a

′′(z) + S
(ι)
n,0 · op(h2

n)

and

T
(ι)
n,1 − F

(ι)
n,1 = S

(ι)
n,1a(z) + hnS

(ι)
n,2a

′(z) +
h2
n

2
S

(ι)
n,3a

′′(z) + S
(ι)
n,1 · op(h2

n).

Consequently for β = [a>(z), a′>(z)]>, it holds that

T (ι)
n − F (ι)

n = S(ι)
n Hnβ +

h2
n

2

S(ι)
n,2

S
(ι)
n,3

 a′′(z) +

S(ι)
n,0

S
(ι)
n,1

 · op(h2
n). (2.20)

Using (2.18), (2.20), and Lemma 2.18(ii), we finally obtain

Hn(β̂(ι)
n − β) =S(ι)−1

n T (ι)
n −Hnβ

=S(ι)−1
n F (ι)

n +
h2
n

2
S(ι)−1
n

S(ι)
n,2

S
(ι)
n,3

 a′′(z) + op(h2
n) (2.21)

uniformly in z ∈ D(ι)
1n .
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Proof of Theorem 2.1.

According to Lemma 2.13, the terms S
(ι)
n,j, S

(ι)−1
n , and F

(ι)
n,j uniformly converge on D

(ι)
1n

to their corresponding expected values at rates (nhn/ lnn)−1/2 + hn and (nhn/ lnn)−1/2,

respectively. It follows from (2.21) and Assumptions 2.A2, 2.A3(ii), and 2.A4 that

sup
z∈D(ι)

1n

∥∥∥Hn(β̂(ι)
n − β)

∥∥∥
≤ sup

z∈D(ι)
1n

∥∥∥S(ι)
n

−1
∥∥∥
 sup
z∈D(ι)

1n

∥∥F (ι)
n

∥∥+ sup
z∈D(ι)

1n

∥∥∥∥∥∥h
2
n

2

S(ι)
n,2

S
(ι)
n,3

∥∥∥∥∥∥
 max

z∈D(ι)
1n

‖a′′(z)‖+ op(h2
n)

≤ C1 ·
sup

z∈D(ι)
1n
‖Ω−1(z)‖

infz∈D fZ(z)

{
1 + Op

(√
lnn

nhn
+ hn

)}

·

[
Op

(√
lnn

nhn

)
+ C2h

2
n

{
sup
z∈D(ι)

1n

‖fZ(z)Ω(z)‖+ Op

(√
lnn

nhn
+ hn

)}]
+ op(h2

n)

≤ C3 ·

{
1 + Op

(√
lnn

nhn
+ hn

)}
·Op

(√
lnn

nhn
+ h2

n + h3
n

)
+ op(h2

n)

= Op

(√
lnn

nhn

)
+ Op(h2

n), ι = c, l, r,

where C1, C2, and C3 represent some positive constants and Ω(z) = E[XX>|Z = z]. As

a result, we have

sup
z∈D(ι)

1n

∥∥â(ι)
n (z)− a(z)

∥∥ = Op

(√
lnn

nhn

)
+ Op(h2

n), ι = c, l, r,

and

sup
z∈D(ι)

1n

∥∥∥b̂(ι)
n (z)− a′(z)

∥∥∥ = Op

(
h−1
n

√
lnn

nhn

)
+ Op(hn), ι = c, l, r.

The claim follows by noting that h2
n = o(

√
lnn/(nhn)) by Assumption 2.B3. �
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Proof of Theorem 2.2.

By the weak convergence results for S
(ι)
n,j and S

(ι)−1
n in Lemmas 2.11(i) and 2.11(ii) and

equation (2.21),

â(ι)
n (z)− a(z) =

[
Ω−1(z)

fZ(z)

(
c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1

)
+
h2
n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
(2.22)

· (1 + op(1)) + op(h2
n),

where c
(ι)
j and µ

(ι)
j are defined in (2.7). The stochastic term in (2.22) can be analyzed in

the following way. Let

U (ι)
n = c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1 =

1

n

n∑
i=1

W
(ι)
i , (2.23)

where

W
(ι)
i = Xi

[
c

(ι)
0 + c

(ι)
1

(
Zi − z
hn

)]
K

(ι)
h (Zi − z0)εi. (2.24)

By applying the central limit theorem for strong mixing process (Fan and Yao, 2003,

Theorem 2.21) under the mixing condition in Assumption 2.A1 and the moment condition

in Assumption 2.A3(i),
√
nhnU

(ι)
n is asymptotically normal with mean 0 (due to the law

of iterated expectation) and variance (by Lemma 2.12)

nhnvar(U (ι)
n ) = fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
+ o(1),

where Θ(z) = E[XX>σ2(X,Z)|Z = z]. As the remaining term in (2.22) is deterministic,

we obtain

√
nhn

[
â(ι)
n (z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
=

Ω−1(z)

fZ(z)

√
nhnU

(ι)
n + op(1),

where the leading term is asymptotically normal with mean 0 and variance Φ(ι)(z) given

in Theorem 2.2. �



Chapter 2. Jump-Preserving Functional Coefficient Models 40

Proof of Theorem 2.3.

It follows from the definition of WRMSE Ψ
(ι)
n (z) in (2.5) that

Ψ(ι)
n (z) =

N
(ι)
n

K
(ι)
n

,

where the denominator

K(ι)
n =

1

n

n∑
i=1

K
(ι)
h (Zi − z) (2.25)

and the numerator N
(ι)
n , which can be decomposed into three terms, is given by

N (ι)
n =

1

n

n∑
i=1

ε̂
(ι)2
n,i K

(ι)
h (Zi − z)

=
1

n

n∑
i=1

[
Yi −X>i {â(ι)

n (z) + b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=
1

n

n∑
i=1

[
εi +X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=
1

n

n∑
i=1

ε2
iK

(ι)
h (Zi − z)

+
2

n

n∑
i=1

εi

[
X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]
K

(ι)
h (Zi − z) (2.26)

+
1

n

n∑
i=1

[
X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=N
(ι)
n,1 +N

(ι)
n,2 +N

(ι)
n,3

with N
(ι)
n,1, N

(ι)
n,2, and N

(ι)
n,3 being the first, second, and third terms in (2.26), respectively.

According to Lemmas 2.11(iv) and 2.11(v), N
(ι)
n,1/K

(ι)
n = σ2(z) + op(1) for z ∈ D

(ι)
1n . It

remains to show N
(ι)
n,2 = op(1) and N

(ι)
n,3 = op(1). By the Taylor expansion of a(Zi) and

the weak convergence results for F
(ι)
n,j, â

(ι)
n (z), and b̂

(ι)
n (z) in Lemmas 2.11(iii), 2.11(vi),
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and 2.11(vii), respectively, we have

N
(ι)
n,2 =

2

n

n∑
i=1

εi
[
X>i {a(z) + a′(z)(Zi − z) + o(Zi − z)}

−X>i {â(ι)
n (z) + b̂(ι)

n (z)(Zi − z)}
]
K

(ι)
h (Zi − z)

=2{a(z)− â(ι)
n (z)}>F (ι)

n,0 + 2hn{a′(z)− b̂(ι)
n (z)}>F (ι)

n,1 + op(hn)

=2op(1) · op(1) + 2hn · op(h−1
n ) · op(1) + op(hn)

=op(1).

Similarly by the Taylor expansion of a(Zi), Lemmas 2.11(i), 2.11(vi), and 2.11(vii), and

the boundedness condition on fZ(z)Ω(z) in Assumption 2.A3(ii), it follows that

N
(ι)
n,3 =

1

n

n∑
i=1

[
X>i {a(z) + a′(z)(Zi − z) + o(Zi − z)}

−X>i {â(ι)
n (z) + b̂(ι)

n (z)(Zi − z)}
]2

K
(ι)
h (Zi − z)

={a(z)− â(ι)
n (z)}>S(ι)

n,0{a(z)− â(ι)
n (z)}

+ 2hn{a(z)− â(ι)
n (z)}>S(ι)

n,1{a′(z)− b̂(ι)
n (z)}

+ h2
n{a′(z)− b̂(ι)

n (z)}>S(ι)
n,2{a′(z)− b̂(ι)

n (z)}+ op(hn)

≤op(1) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(1)

+ 2hn · op(1) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(h−1

n )

+ h2
n · op(h−1

n ) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(h−1

n ) + op(hn)

=op(1).

This completes the proof of Theorem 2.3. �

Before investigating the limiting behavior of the jump-preserving estimator, we introduce

additional notation. For any z = sq + τhn with τ ∈ (−1, 1), we denote random variables

Ś
(ι)
n,j =

1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, (2.27)
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S̀
(ι)
n,j =

1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, (2.28)

F́
(ι)
n,j =

1

n

∑
i:Zi<sq

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1, (2.29)

and

F̀
(ι)
n,j =

1

n

∑
i:Zi≥sq

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1. (2.30)

Further, let

µ́
(ι)
j,τ =

∫ −τ
−1

ujK(ι)(u)du, µ̀
(ι)
j,τ =

∫ 1

−τ
ujK(ι)(u)du, (2.31)

Ω−(sq) = lim
z↑sq

E[XX>|Z = z], Ω+(sq) = lim
z↓sq

E[XX>|Z = z], (2.32)

Ώ
(ι)
−,τ (sq) =

µ́(ι)
0,τΩ−(sq) µ́

(ι)
1,τΩ−(sq)

µ́
(ι)
1,τΩ−(sq) µ́

(ι)
2,τΩ−(sq)

 ,

Ὼ
(ι)
+,τ (sq) =

µ̀(ι)
0,τΩ+(sq) µ̀

(ι)
1,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq) µ̀

(ι)
2,τΩ+(sq)

 ,

a−(sq) = lim
z↑sq

a(z), and a+(sq) = lim
z↓sq

a(z) = a−(sq) + dq.

Without loss of generality, we assume that a(·) is right continuous, i.e., a(sq) = a+(sq) for

q = 0, . . . , Q. By the mean value theorem and boundedness of the (left) partial derivatives

of a(·) (Assumption 2.A5), it holds for Zi ∈ [sq − (1− τ)hn, sq) that

a(Zi) = a−(sq) + O(Zi − sq). (2.33)

Similarly, we have for Zi ∈ (sq, sq + (1 + τ)hn],

a(Zi) = a+(sq) + O(Zi − sq) = a−(sq) + dq + O(Zi − sq). (2.34)



Chapter 2. Jump-Preserving Functional Coefficient Models 43

Using equations (2.33) and (2.34) and the limiting results for F́
(ι)
n,j, F̀

(ι)
n,j, Ś

(ι)
n,j, and S̀

(ι)
n,j in

Lemmas 2.14(i) and 2.14(ii), we have for j = 0, 1,

T
(ι)
n,j =

1

n

n∑
i=1

Xi

[
X>i a(Zi) + εi

](Zi − z
hn

)j
K

(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)a(Zi) + F́

(ι)
n,j

+
1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)a(Zi) + F̀

(ι)
n,j

=
1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z) {a−(sq) + O(Zi − sq)}+ op(1)

+
1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z) {a+(sq) + O(Zi − sq)}+ op(1)

=Ś
(ι)
n,ja−(sq) + S̀

(ι)
n,j {a−(sq) + dq}+ Op(hn) + op(1)

=fZ(sq)
[{
µ́

(ι)
j,τΩ−(sq) + µ̀

(ι)
j,τΩ+(sq)

}
a−(sq) + µ̀

(ι)
j,τΩ+(sq)dq

]
+ op(1).

Hence, by Lemmas 2.14(i), 2.18(ii), and 2.19, the local linear estimator in (2.18) can be

expressed for z = sq + τhn with τ ∈ (−1, 1) as

Hnβ̂
(ι)
n =S(ι)

n

−1
T (ι)
n

=
[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

(1 + op(1))

·

µ́(ι)
0,τΩ−(sq) + µ̀

(ι)
0,τΩ+(sq)

µ́
(ι)
1,τΩ−(sq) + µ̀

(ι)
1,τΩ+(sq)

 a−(sq) +

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)

 dq + op(1)


=

Ip
0p

 a−(sq) +

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

 dq + op(1), (2.35)

where Ip is the p× p identity matrix, 0p is the null matrix of size p× p, andΞ
(ι)
0,τ

Ξ
(ι)
1,τ

 =
[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)

 . (2.36)
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Note that, according to the definition of the right-sided kernel K(r)(·) in (2.2), one has

for τ ∈ (0, 1),

µ́
(r)
j,τ =

∫ −τ
−1

ujK(c)(u)1 {u ≥ 0} du = 0, (2.37)

which implies that Ώ
(r)
−,τ (sq) = 02p andΞ

(r)
0,τ

Ξ
(r)
1,τ

 = Ὼ
(r)−1
+,τ (sq)

µ̀(r)
0,τΩ+(sq)

µ̀
(r)
1,τΩ+(sq)

 =

Ip
0p

 (2.38)

due to Lemma 2.18(ii). Similarly, for τ ∈ (−1, 0) and the left-sided kernel K(l)(·), we

obtain

µ̀
(l)
j,τ = 0, Ξ

(l)
0,τ = 0p, and Ξ

(l)
1,τ = 0p. (2.39)

Proof of Theorem 2.4.

In order to prove Theorem 2.4 for continuous conditional error variance function σ2(z)

(Assumption 2.A6), we analyze the limiting properties of each term of the decomposition

of N
(ι)
n in (2.26). First, by Lemma 2.14(iv), N

(ι)
n,1 = fZ(sq)µ

(ι)
0 σ

2(sq) + op(1). Using

equations (2.33)–(2.35), one obtains

N
(ι)
n,2 =

2

n

n∑
i=1

[
a(Zi)− â(ι)

n (z)− hnb̂(ι)
n (z)

(
Zi − z
hn

)]>
XiεiK

(ι)
h (Zi − z)

=
2

n

∑
i:Zi<sq

a(Zi)− a−(sq)︸ ︷︷ ︸
O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq


>

XiεiK
(ι)
h (Zi − z)

+
2

n

∑
i:Zi≥sq

a(Zi)− a−(sq)︸ ︷︷ ︸
dq+O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq


>

XiεiK
(ι)
h (Zi − z)

+ op(1)

=− 2[Ξ
(ι)
0,τdq]

>F́
(ι)
n,0 − 2[Ξ

(ι)
1,τdq]

>F́
(ι)
n,1 − 2[(Ξ

(ι)
0,τ − Ip)dq]>F̀

(ι)
0 − 2[Ξ

(ι)
1,τdq]

>F̀
(ι)
n,1

+ Op(hn) + op(1).
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Hence, N
(ι)
n,2 = op(1) due to the limiting results for F́

(ι)
n,j and F̀

(ι)
n,j in Lemma 2.14(ii). Again,

it follows from (2.33)–(2.35) that

N
(ι)
n,3 =

1

n

n∑
i=1

[
X>i a(Zi)−X>i

{
â(ι)
n (z) + hnb̂

(ι)
n (z)

(
Zi − z
hn

)}]2

K
(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

X>i
a(Zi)− a−(sq)︸ ︷︷ ︸

O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq




2

K
(ι)
h (Zi − z)

+
1

n

∑
i:Zi≥sq

X>i
a(Zi)− a−(sq)︸ ︷︷ ︸

dq+O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq




2

K
(ι)
h (Zi − z)

+ op(1)

=d>q Ξ
(ι)
0,τ

>
Ś

(ι)
n,0Ξ

(ι)
0,τdq + 2d>q Ξ

(ι)
0,τ

>
Ś

(ι)
n,1Ξ

(ι)
1,τdq + d>q Ξ

(ι)
1,τ

>
Ś

(ι)
n,2Ξ

(ι)
1,τdq

+ d>q [Ξ
(ι)
0,τ − Ip]>S̀

(ι)
n,0[Ξ

(ι)
0,τ − Ip]dq + 2d>q [Ξ

(ι)
0,τ − Ip]>S̀

(ι)
n,1Ξ

(ι)
1,τdq

+ d>q Ξ
(ι)
1,τ

>
S̀

(ι)
n,2Ξ

(ι)
1,τdq + Op(hn) + op(1)

=d>q

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

> Ś(ι)
n,0 Ś

(ι)
n,1

Ś
(ι)
n,1 Ś

(ι)
n,2

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

 dq

+ d>q

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ

> S̀(ι)
n,0 S̀

(ι)
n,1

S̀
(ι)
n,1 S̀

(ι)
n,2

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ

 dq + Op(hn) + op(1).

It follows from the convergence results for Ś
(ι)
n,j and S̀

(ι)
n,j in Lemma 2.14(i) that

N
(ι)
n,3 =fZ(sq)d

>
q


Ξ

(ι)
0,τ

Ξ
(ι)
1,τ

> Ώ
(ι)
−,τ (sq)

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ



+

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ

> Ὼ
(ι)
+,τ (sq)

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ


 dq + op(1)

=fZ(sq)d
>
q µ

(ι)
0 C

(ι)
τ dq + op(1),
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where

C(ι)
τ =

1

µ
(ι)
0

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

> Ώ
(ι)
−,τ (sq)

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


+

1

µ
(ι)
0

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ

> Ὼ
(ι)
+,τ (sq)

Ξ
(ι)
0,τ − Ip
Ξ

(ι)
1,τ .

 . (2.40)

For τ ∈ (0, 1) and ι = c or l, µ́
(ι)
0,τ and µ̀

(ι)
0,τ are nonzero. According to Lemma 2.20, both

matrices Ξ
(ι)
0,τ and Ξ

(ι)
0,τ−Ip have rank p. Hence, [Ξ

(ι)
0,τ Ξ

(ι)
1,τ ]
> and [Ξ

(ι)
0,τ−Ip Ξ

(ι)
1,τ ]
> have the

same rank p, thus full column rank. By the result that Ώ
(ι)
−,τ (sq) and Ὼ

(ι)
+,τ (sq) are positive

definite for τ ∈ (0, 1) and ι = c or l in Lemma 2.19, the property that A+B � 0 for any

A � 0 and B � 0, and the fact that A>BA � 0 if B � 0 and A has full column rank, we

conclude that matrices C
(c)
τ and C

(l)
τ are positive definite for τ ∈ (0, 1).

For τ ∈ (0, 1) and ι = r, it follows from equation (2.37): µ́
(r)
j,τ = 0 that

C(r)
τ =

1

µ
(r)
0

Ξ
(r)
0,τ − Ip
Ξ

(r)
1,τ

> µ̀(r)
0,τΩ+(sq) µ̀

(r)
1,τΩ+(sq)

µ̀
(r)
1,τΩ+(sq) µ̀

(r)
2,τΩ+(sq)

Ξ
(r)
0,τ − Ip
Ξ

(r)
1,τ

 .

Since Ξ
(r)
0,τ = Ip and Ξ

(r)
1,τ = 0p (equation (2.38)), C

(r)
τ is a null matrix for τ ∈ (0, 1).

Similarly, for τ ∈ (−1, 0), we have positive definite matrices C
(c)
τ � 0 and C

(r)
τ � 0 and

the null matrix C
(l)
τ = 0p. Combining the limiting results of N

(ι)
n,1, N

(ι)
n,2, N

(ι)
n,3, and K

(ι)
n

(due to Lemma 2.14(iii)) yields Theorem 2.4. �

Proof of Theorem 2.5.

Following the proof of Theorem 3.2 in Gijbels et al. (2007), we write the jump-preserving

estimator ǎn(z) as

ǎn(z) =â(c)
n (z)1 {An(z)}+ â(l)

n (z)1 {Bn(z)}+ â(r)
n (z)1 {Cn(z)}

+
â

(l)
n (z) + â

(r)
n (z)

2
1 {BCn(z)} ,



Chapter 2. Jump-Preserving Functional Coefficient Models 47

in which An(z), Bn(z), Cn(z), and BCn(z) correspond to the inequalities in (2.6) from

top to bottom, respectively. Apparently, these sets are mutually exclusive, and for any

z ∈ D,

1 {An(z)}+ 1 {Bn(z)}+ 1 {Cn(z)}+ 1 {BCn(z)} = 1. (2.41)

The rest of the proof is separated into three parts, which correspond to the regions D1n,

D2n,δ for some δ ∈ (0, 1/2), and D2n given in equation (2.9).

Part (i)

First, we consider z in the continuous region D1n. According to Theorem 2.1, there exist

a positive integer n(ι) and a positive constant C(ι) > 0 such that for n > n(ι),

sup
z∈D1n

√
nhn
lnn

∥∥â(ι)
n (z)− a(z)

∥∥ ≤ C(ι), ι = c, l, r,

with probability approaching to 1. Take ζ = maxι={c,l,r}C
(ι); for n > maxι={c,l,r} n

(ι), it

follows that

sup
z∈D1n

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D1n

√
nhn
lnn

∥∥â(c)
n (z)− a(z)

∥∥1 {An(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥1 {Bn(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥â(r)
n (z)− a(z)

∥∥1 {Cn(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥∥∥∥ â(l)
n (z) + â

(r)
n (z)

2
− a(z)

∥∥∥∥∥1 {BCn(z)}

≤ζ

with probability approaching to 1, which implies that

sup
z∈D1n

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1).

Part (ii)

Next, we prove the uniform consistency for ǎn(z) in the region D2n,δ for some δ ∈ (0, 1/2),



Chapter 2. Jump-Preserving Functional Coefficient Models 48

which contains neighborhoods of discontinuities excluding any small regions around cen-

ters of sq and around end points sq − hn and sq + hn. For some δ ∈ (0, 1/2), the region

D2n,δ consists of two disjoint sets:

D́2n,δ = D ∩
Q+1⋃
q=0

[sq − (1− δ)hn, sq − δhn]

and

D̀2n,δ = D ∩
Q+1⋃
q=0

[sq + δhn, sq + (1− δ)hn].

Consider the region D́2n,δ and an arbitrarily small number ε > 0. Any given point z in

D́2n,δ satisfies z = sq + τhn with τ ∈ [−1 + δ,−δ] and sq is one of {sq}Q+1
q=0 . According to

Theorem 2.1, for some ζ > 0 and any ε > 0, there exist a positive integer n1 such that

for n > n1,

sup
z∈D́2n,δ

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥ ≤ ζ

with probability larger than 1 − ε. In the following, we show that for any z ∈ D́2n,δ,

there exists another positive integer n3 > 0 such that the difference of ǎn(z) and â
(l)
n (z)

is negligible in probability.

By Theorem 2.4, for any κ > 0 and ε > 0, there exists an integer nκ(κ) such that for

n > nκ(κ),

Ψ(c)
n (z) > d>q C

(c)
τ dq + σ2(sq)− κ,

Ψ(l)
n (z) < σ2(sq) + κ,

Ψ(r)
n (z) > d>q C

(r)
τ dq + σ2(sq)− κ

with probability larger than 1−ε. For τ ∈ [−1+δ,−δ], matrices C
(c)
τ and C

(r)
τ are positive

definite (see the proof of Theorem 2.4). Additionally, the continuity of C
(ι)
τ in τ follows

from the continuity of µ́
(ι)
j,τ and µ̀

(ι)
j,τ as functions of the limits of integration. Given the
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continuity of C
(ι)
τ and thus of d>q C

(ι)
τ dq, we have for any dq 6= 0,

aτ = inf
τ∈[−1+δ,−δ]

min{d>q C(c)
τ dq, d

>
q C

(r)
τ dq}

= min
τ∈[−1+δ,−δ]

min{d>q C(c)
τ dq, d

>
q C

(r)
τ dq} > 0.

Set κ = aτ
4

. For n > n2 = nκ(
aτ
4

), it follows that

Ψ(c)
n (z)−Ψ(l)

n (z) ≥ min{Ψ(c)
n (z),Ψ(r)

n (z)} −Ψ(l)
n (z)

> aτ − 2κ = aτ −
aτ
2

=
aτ
2
> 0,

and hence,

diff(z) = Ψ(c)
n (z)−min{Ψ(l)

n (z),Ψ(r)
n (z)}

= Ψ(c)
n (z)−Ψ(l)

n (z) >
aτ
2
> 0

with probability larger than 1 − ε. Moreover, since un → 0, for any η > 0 there exists

nη(η) > 0 such that, for n > nη(η), we have |un| < η. Setting η = aτ/4, it follows for

n > n3 = max{nη(aτ4 ), n2},

diff(z)− un >
aτ
2
− un >

aτ
2
− aτ

4
=
aτ
4
> 0,

which implies that Conditions An(z), Cn(z), and BCn(z) do not hold, i.e., 1{An(z)} +

1{Cn(z)} + 1{BCn(z)} = 0 with probability larger than 1 − 2ε. Moreover, by equa-

tion (2.41), we can claim with an arbitrarily high probability that only Condition Bn(z)

is satisfied, which means that â
(l)
n (z) is chosen for n > n3 with probability larger than

1− 2ε. Hence when n > n4 = max{n1, n3},

sup
z∈D́2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D́2n,δ

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥ ≤ ζ

with probability larger than 1− 3ε, which implies

sup
z∈D́2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1). (2.42)
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Similarly, for z ∈ D̀2n,δ, one can also show that

sup
z∈D̀2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D̀2n,δ

√
nhn
lnn

∥∥â(r)
n (z)− a(z)

∥∥+ op(1)

= Op(1). (2.43)

Combining (2.42) and (2.43) gives

sup
z∈D2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1).

Part (iii)

For z ∈ D2n \ D2n,δ, we can show the consistency of ǎn(z) analogously to the proof of

Part (ii). Since there is no unique strictly positive lower bound aτ exists, the result is not

uniform with respect to z on D2n \D2n,δ. �

Proof of Theorem 2.6.

We showed in the proof of Theorem 2.5 that the jump-preserving estimator ǎn(z) picks

consistently the correct local estimator for z ∈ D \ {sq}Q+1
q=0 . By Theorem 2.2, each local

linear estimator is asymptotically normal in the regions, where it is selected. Conse-

quently, ǎn(z) is asymptotically normal for z ∈ D \ {sq}Q+1
q=0 with distribution given in

Theorem 2.6. A detailed argument is given in the proof of Theorem 3.1 of Casas and

Gijbels (2012). �

Proof of Theorem 2.7.

Recall that the estimated residual used in Theorems 2.7–2.10 is ε̃
(ι)
n,i = Yi−X>i â

(ι)
n (z) and

the kernel K̃ refers to the uniform kernel. Let us denote

Ñ (ι)
n =

1

n

n∑
i=1

ê
(ι)2
n,i K̃

(ι)
h (Zi − z),

T̃ (ι)
n =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ε̃

(ι)
n,iK̃

(ι)
h (Zi − z),
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T̃
(ι)
n,2 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(Zi)− â(ι)

n (z)}K̃(ι)
h (Zi − z),

S̃(ι)
n =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (2.44)

W̃
(ι)
n,1 =

1

n

n∑
i=1

ε2
i K̃

(ι)
h (Zi − z), (2.45)

W̃
(ι)
n,2 =

1

n

n∑
i=1

XiX
>
i K̃

(ι)
h (Zi − z), (2.46)

W̃
(ι)
n,3 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (2.47)

W̃
(ι)
n,4 =

1

n

n∑
i=1

XiεiK̃
(ι)
h (Zi − z), and (2.48)

W̃
(ι)
n,5 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z), (2.49)

where ρ(u) = (1, u, . . . , um)> and ê
(ι)
n,i = ε̃

(ι)
n,i− ρ>((Zi− z)/hn)γ̂

(ι)
n . Further, we define the

population counterparts of some of the above kernel weighted averages:

f(z) = E[X>|Z = z], µ̃
(ι)
0 =

∫ 1

−1

K̃(u)du, m̃(ι) =

∫ 1

−1

ρ(u)K̃(u)du, and

M̃ (ι) =

∫ 1

−1

ρ(u)ρ>(u)K̃(u)du. (2.50)

With the help of the above notation, we write γ̂
(ι)
n in (2.10) as

γ̂(ι)
n (z) = S̃(ι)−1

n T̃ (ι)
n = S̃(ι)−1

n (W̃
(ι)
n,5 + T̃

(ι)
n,2). (2.51)

By Lemma 2.15(vi), W̃
(ι)
n,5 = op(1). To show T̃

(ι)
n,2 = op(1) by the convergence results for

â
(ι)
n (z) and W̃

(ι)
n,3 in Lemmas 2.11(vi) and 2.15(iv), respectively, the Taylor expansion of

a(Zi) for Zi ∈ [z − hn, z] : z ∈ D(l)
1n, Zi ∈ [z, z + hn] : z ∈ D(r)

1n , or Zi ∈ [z − hn, z + hn] :
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z ∈ D(c)
1n is used along with the boundedness of a′(·) (Assumption 2.A5):

T̃
(ι)
n,2 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(z)− â(ι)

n (z) + O(hn)}K̃(ι)
h (Zi − z)

=W̃
(ι)
n,3[a(z)− â(ι)

n (z) + O(hn)]

=
{
fZ(z)m̃(ι)f(z) + op(1)

}
· op(1) = op(1). (hn → 0)

As T̃
(ι)
n = W̃

(ι)
n,5 + T̃

(ι)
n,2 = op(1) by Lemma 2.15(vi), the convergence result for S̃

(ι)
n in

Lemma 2.15(i) and the invertibility conditions for its population counterparts in As-

sumptions 2.A2 and 2.D1 imply

γ̂(ι)
n =

M̃ (ι)−1

fZ(z)
op(1) = op(1). (2.52)

Further, for Zi ∈ [z− hn, z] : z ∈ D(l)
1n, Zi ∈ [z, z+ hn] : z ∈ D(r)

1n , or Zi ∈ [z− hn, z+ hn] :

z ∈ D(c)
1n , the squared error from the local mth polynomial fitting of ε̃

(ι)
n,i equals

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a(Zi)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a(Zi)− â(ι)

n (z)] + 2εiX
>
i

{
a(Zi)− â(ι)

n (z)
}

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
εi

=ε2
i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a(z) + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a(z) + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a(z) + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi

uniformly in i ∈ N by the Taylor expansion of a(·). To analyze each term of Ψ̃
(ι)
n (z) in

(2.11), let us now look at Ñ
(ι)
n . By Lemma 2.15 and (2.52), we have after substitution
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for ê
(ι)2
n,i

Ñ (ι)
n =

1

n

n∑
i=1

ê
(ι)2
n,i K̃

(ι)
h (Zi − z)

=W̃
(ι)
n,1 + γ̂(ι)>

n S̃(ι)
n γ̂

(ι)
n + [a(z)− â(ι)

n (z)]>W̃
(ι)
n,2[a(z)− â(ι)

n (z)](1 + O(hn))

+
(
−2γ̂(ι)>

n W̃
(ι)
n,3 + 2W̃

(ι)>
n,4

)
[a(z)− â(ι)

n (z)](1 + O(hn))− 2γ̂(ι)>
n W̃n,5

=fZ(z)µ̃
(ι)
0 σ

2(z) + op(1)fZ(z)M̃ (ι)op(1) + op(1)fZ(z)µ̃
(ι)
0 Ω(z)op(1)

− 2op(1)fZ(z)m̃(ι)f(z)op(1) + 2op(1)op(1)− 2op(1)op(1)

=fZ(z)µ̃
(ι)
0 σ

2(z) + op(1). (2.53)

Combining equations (2.52) and (2.53), Lemma 2.15(i), and Assumption 2.D1 finally

yields

Ψ̃(ι)
n (z) =op(1)

M̃ (ι)−1

fZ(z)
(1 + op(1))

(
fZ(z)M̃ (ι) + op(1)

fZ(z)µ̃
(ι)
0 σ

2(z)

)

· M̃
(ι)−1

fZ(z)
(1 + op(1))op(1)

=op(1).

�

Proof of Theorem 2.8.

For any z = sq + τhn with τ ∈ (−1, 1), let

´̃S(ι)
n =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (2.54)

`̃S(ι)
n =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (2.55)

´̃W
(ι)
n,1 =

1

n

∑
i:Zi<sq

ε2
i K̃

(ι)
h (Zi − z), `̃W

(ι)
n,1 =

1

n

∑
i:Zi≥sq

ε2
i K̃

(ι)
h (Zi − z), (2.56)

´̃W
(ι)
n,2 =

1

n

∑
i:Zi<sq

XiX
>
i K̃

(ι)
h (Zi − z), `̃W

(ι)
n,2 =

1

n

∑
i:Zi≥sq

XiX
>
i K̃

(ι)
h (Zi − z), (2.57)
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´̃W
(ι)
n,3 =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (2.58)

`̃W
(ι)
n,3 =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (2.59)

´̃W
(ι)
n,4 =

1

n

∑
i:Zi<sq

XiεiK̃
(ι)
h (Zi − z), `̃W

(ι)
n,4 =

1

n

∑
i:Zi≥sq

XiεiK̃
(ι)
h (Zi − z), (2.60)

´̃W
(ι)
n,5 =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z), and (2.61)

`̃W
(ι)
n,5 =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z). (2.62)

Further, we define the population counterparts of the above kernel weighted averages:

f−(sq) = lim
z↑sq

E[X>|Z = z], f+(sq) = lim
z↓sq

E[X>|Z = z] (2.63)

´̃µ
(ι)
0,τ =

∫ −τ
−1

K̃(u)du, `̃µ
(ι)
0,τ =

∫ 1

−τ
K̃(u)du, (2.64)

ḿ(ι)
τ =

∫ −τ
−1

ρ(u)K̃(u)du, m̀(ι)
τ =

∫ 1

−τ
ρ(u)K̃(u)du, (2.65)

Ḿ (ι)
τ =

∫ −τ
−1

ρ(u)ρ>(u)K̃(u)du, and M̀ (ι)
τ =

∫ 1

−τ
ρ(u)ρ>(u)K̃(u)du. (2.66)

Again, we use decomposition T̃
(ι)
n = W̃

(ι)
n,5 + T̃

(ι)
n,2 as in (2.51). By the consistency results

for ´̃W
(ι)
n,5 and `̃W

(ι)
n,5 in Lemma 2.16(vi),

W̃
(ι)
n,5 = ´̃W

(ι)
n,5 + `̃W

(ι)
n,5 = op(1) + op(1).
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By (2.33)–(2.35) and the consistency results for ´̃W
(ι)
n,4 and `̃W

(ι)
n,4 in Lemma 2.16(v), we

obtain

T̃
(ι)
n,2(z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(Zi)− â(ι)

n (z)}K̃(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
X>i [a(Zi)− a−(sq)︸ ︷︷ ︸

O(hn)

−Ξ
(ι)
0,τdq]K̃

(ι)
h (Zi − z)

+
1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
X>i [a(Zi)− a−(sq)︸ ︷︷ ︸

dq+O(hn)

−Ξ
(ι)
0,τdq]K̃

(ι)
h (Zi − z)

=− ´̃W
(ι)
n,4

(
Ξ

(ι)
0,τdq + O(hn)

)
− `̃W

(ι)
n,4

(
(Ξ

(ι)
0,τ − Ip)dq + O(hn)

)
=− fZ(sq)

(
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq + op(1).

Hence, it follows from the consistency results for S̃
(ι)
n = ´̃S

(ι)
n + `̃S

(ι)
n in Lemma 2.16(i) that

γ̂(ι)
n = γ(ι)

q,τ + op(1), (2.67)

where

γ(ι)
q,τ =−

(
Ḿ (ι)

τ + M̀ (ι)
τ

)−1 (
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq

=− M̃ (ι)−1
(
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq. (2.68)

Next, for Zi < sq and |Zi−z| ≤ hn, the squared error ê
(ι)2
n,i equals by the Taylor expansion

of a(·) and the boundedness of its derivatives (Assumption 2.A5)

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a−(sq) + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a−(z) + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a−(sq) + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi
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uniformly in i ∈ N, and by the same argument for Zi ≥ sq and |Zi − z| ≤ hn,

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a−(sq) + dq + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a−(sq) + dq + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a−(sq) + dq + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi

uniformly in i ∈ N. For the term Ñ
(ι)
n of Ψ̃

(ι)
n (z) in (2.11), it now follows after substituting

the above expressions for ê
(ι)2
n,i and using equations (2.33)–(2.35) that

Ñ (ι)
n =

1

n

∑
i:Zi<sq

ê
(ι)2
n,i K̃

(ι)
h (Zi − z) +

1

n

∑
i:Zi≥sq

ê
(ι)2
n,i K̃

(ι)
h (Zi − z)

= ´̃W
(ι)
n,1 + `̃W

(ι)
n,1 +

[
γ̂(ι)>
n S̃(ι)

n γ̂
(ι)
n + d>q Ξ

(ι)>
0,τ

´̃W
(ι)
n,2Ξ

(ι)
0,τdq

+ d>q (Ξ
(ι)
0,τ − Ip)>

`̃W
(ι)
n,2(Ξ

(ι)
0,τ − Ip)dq + 2γ̂(ι)>

n
´̃Wn,3Ξ

(ι)
0,τdq

+ 2γ̂(ι)>
n

`̃Wn,3(Ξ
(ι)
0,τ − Ip)dq − 2d>q Ξ

(ι)>
0,τ

´̃W
(ι)
n,4 − 2d>q (Ξ

(ι)
0,τ − Ip)>

`̃W
(ι)
n,4

]
· (1 + O(hn))− 2γ̂(ι)>

n
´̃Wn,5 − 2γ̂(ι)>

n
`̃Wn,5.

By (2.67) and Lemma 2.16, we thus have

Ñ (ι)
n =fZ(sq)

{
´̃µ

(ι)
0,τσ

2
−(sq) + `̃µ

(ι)
0,τσ

2
+(sq) + σ(ι)2

e,τ (sq)
}

+ op(1), (2.69)

where

σ(ι)2
e,τ (sq) =γ(ι)>

q,τ M̃ (ι)γ(ι)
q,τ + d>q Ξ

(ι)>
0,τ

´̃µ
(ι)
0,τΩ−(sq)Ξ

(ι)
0,τdq

+ d>q (Ξ
(ι)
0,τ − Ip)> `̃µ

(ι)
0,τΩ+(sq)(Ξ

(ι)
0,τ − Ip)dq

+ 2γ(ι)>
q,τ ḿ(ι)

τ f−(sq)Ξ0,τdq + 2γ(ι)>
q,τ m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)dq.

Since the term above can be rewritten as

σ(ι)2
e,τ (sq) =

∫ −τ
−1

∫
(x>Ξ0,τdq + γ(ι)>

q,τ ρ(u))2K̃(u)
f(x, sq)

fZ(sq)
dxdu

+

∫ 1

−τ

∫
(x>[Ξ0,τ − Ip]dq + γ(ι)>

q,τ ρ(u))2K̃(u)
f(x, sq)

fZ(sq)
dxdu, (2.70)
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it is clearly non-negative.

By equations (2.67)–(2.69) and Lemma 2.16(i), we conclude that

Ψ̃(ι)
n (z) =γ(ι)>

q,τ C̃(ι)
τ γ(ι)

q,τ + op(1),

where

C̃(ι)
τ =

(
M̃ (ι)

´̃µ
(ι)
0,τσ

2
−(sq) + `̃µ

(ι)
0,τσ

2
+(sq) + σ

(ι)2
e,τ (sq)

)
. (2.71)

By the positive definiteness of M̃ (ι) (Assumption 2.D1) and non-negative σ
(ι)2
e,τ (sq) from

(2.70), we claim that C̃
(ι)
τ � 0 for any τ ∈ (−1, 1) and ι = c, l, r. According to Assumption

2.D2, some elements of γ
(ι)
q,τ , ι = c, l, are non-zero for τ ∈ (0, 1). Hence, the limits of

Ψ̃
(c)
n (z) and Ψ̃

(l)
n (z) are strictly positive, i.e., γ

(ι)>
q,τ C̃

(ι)
τ γ

(ι)
q,τ > 0 for τ ∈ (0, 1) and ι = c, l.

For τ ∈ (0, 1) and ι = r, we have ´̃µ
(ι)
0,τ = 0 and ḿ

(r)
τ = 0. By the expressions of γ

(ι)
q,τ in

(2.68) and the fact (2.38), Ξ
(r)
0,τ = Ip for τ ∈ (0, 1), we conclude that γ

(r)
q,τ = 0 and hence

γ
(r)>
q,τ C̃

(r)
τ γ

(r)
q,τ = 0. Similarly for τ ∈ (−1, 0), we have γ

(c)>
q,τ C̃

(c)
τ γ

(c)
q,τ � 0, γ

(r)>
q,τ C̃

(r)
τ γ

(r)
q,τ � 0,

and γ
(l)>
q,τ C̃

(l)
τ γ

(l)
q,τ = 0 due to equation (2.39), Ξ

(l)
0,τ = 0p. �

Proof of Theorem 2.9.

Being based on the results of Theorems 2.7 and 2.8, it follows the same steps as in the

proof of Theorem 2.5. �

Proof of Theorem 2.10.

Being based on the results of Theorems 2.7 and 2.8, it follows the same steps as in the

proof of Theorem 2.6. �

2.9 Appendix: Some auxiliary lemmas

Lemma 2.11. Suppose Assumptions 2.A and 2.B hold. For any z ∈ D(ι)
1n and ι = c, l, r,

it holds as n→ +∞ that
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(i) S
(ι)
n,j = µ

(ι)
j fZ(z)Ω(z) + op(1) with j = 0, 1, 2, 3,

(ii) S
(ι)−1
n =

f−1
Z (z)

µ
(ι)
0 µ

(ι)
2 − µ

(ι)2
1

 µ
(ι)
2 −µ(ι)

1

−µ(ι)
1 µ

(ι)
0

⊗ Ω−1(z)(1 + op(1)),

(iii) F
(ι)
n,j = op(1) with j = 0, 1,

(iv) K
(ι)
n = µ

(ι)
0 fZ(z) + op(1),

(v) N
(ι)
n,1 = µ

(ι)
0 fZ(z)σ2(z) + op(1),

(vi) â
(ι)
n (z) = a(z) + op(1),

(vii) b̂
(ι)
n (z) = a′(z) + op(h−1

n ),

where the above objects are defined in (2.15)–(2.17), (2.25), and (2.26).

Proof. By Assumptions 2.A1–2.A3 and 2.B1–2.B2, the conditions for the weak law of

large number for kernel estimators in Hansen (2008) are satisfied. Applying Theorem 1

in Hansen (2008) leads to

S
(ι)
n,j = E[S

(ι)
n,j] + op(1).

After a change of variable (ż = z + vhn) and the Taylor expansion of the density f in

which it partial derivatives with respect to Z are uniformly bounded due to Assumption

2.A2, the expectation of S
(ι)
n,j equals

E[S
(ι)
n,j] =E

[
XiX

>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)

]

=
1

hn

∫ ∫
ẋẋ>

(
ż − z
hn

)j
K(ι)

(
ż − z
hn

)
f(ẋ, ż)dżdẋ

=

∫ ∫
ẋẋ>vjK(ι)(v)f(ẋ, z + vhn)dẋdv

=

∫
vjK(ι)(v)dv · fZ(z) ·

∫
ẋẋ>

f(ẋ, z)

fZ(z)
dẋdv + O(hn)

=µ
(ι)
j fZ(z)Ω(z) + O(hn),

where Ω(z) = E(XX>|Z = z). This concludes part (i). Part (ii) the follows trivially

by part (i), Lemma 2.17(i): µ
(ι)
0 µ

(ι)
2 − µ

(ι)2
1 6= 0, the full rank conditions for Ω(z) in
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Assumption 2.A4, and fZ(z) > 0 in Assumption 2.A2. Similarly to part (i), one can

easily show (iii)–(v). Finally, using (2.21), parts (i)-(iii), and Assumption 2.A5, we have

∥∥∥Hn(β̂(ι)
n − β)

∥∥∥ ≤∥∥S(ι)−1
n F (ι)

n

∥∥+

∥∥∥∥∥∥h
2
n

2
S(ι)−1
n

S(ι)
n,2

S
(ι)
n,3

 a′′(z)

∥∥∥∥∥∥+ o(h2
n)

=

∥∥∥∥Ω−1(z)

fZ(z)

(
c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1

)
(1 + op(1))

∥∥∥∥
+

∥∥∥∥h2
n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)(1 + op(1))

∥∥∥∥+ o(h2
n)

≤op(1) + Op(h2
n) ‖a′′(z)‖+ o(h2

n)

=op(1),

where c
(ι)
0 and c

(ι)
1 are defined in (2.7). This completes the proofs of (vi) and (vii). �

Lemma 2.12. Under Assumptions 2.A and 2.B, it holds as n→ +∞ that

(i) hnvar(W
(ι)
1 )→ fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
,

(ii) hn
∑n−1

j=1 |cov(W
(ι)
1 ,W

(ι)
j+1)| = o(1), and

(iii) nhnvar(U
(ι)
n )→ fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
,

where U
(ι)
n and W

(ι)
i are given in (2.23)–(2.24), Θ(z) = E(XX>σ2(X,Z)|Z = z), and c

(ι)
j

and ν
(ι)
j are defined in equation (2.7).

Under Assumptions 2.A, A6’, and 2.B, the limits in points (i) and (iii) are equal to

fZ(z)Θ−(z)
[
c

(ι)2
0 ν

(l)
0 + 2c

(ι)
0 c

(ι)
1 ν

(l)
1 + c

(ι)2
1 ν

(l)
2

]
1(ι ∈ {c, l})

+ fZ(z)Θ+(z)
[
c

(ι)2
0 ν

(r)
0 + 2c

(ι)
0 c

(ι)
1 ν

(r)
1 + c

(ι)2
1 ν

(r)
2

]
1(ι ∈ {c, r}),

where Θ−(z) = E(XX>σ2
−(X,Z)|Z = z) and Θ+(z) = E(XX>σ2

+(X,Z)|Z = z).
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Proof. By conditioning on (X1, Z1), a change of variables, and the Taylor expansion,

hnvar(W
(ι)
1 ) =hnE

[
X1X

>
1 σ

2(X1, Z1)

{
c

(ι)
0 + c

(ι)
1

(
Z1 − z
hn

)}2

K
(ι)2
h (Z1 − z)

]
=

∫ ∫
xx>σ2(x, z + hnu)

(
c

(ι)2
0 + 2c

(ι)
0 c

(ι)
1 u+ c

(ι)2
1 u2

)
K(ι)2(u)

× f(x, z + hnu)dudx

=fZ(z)Θ(z)
[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
+ O(hn)

due to Assumptions 2.A2, 2.A5, and 2.A6. Since part (iii) follows trivially from (i) and

(ii) by

nhnvar(U (ι)
n ) =

hn
n

var

(
n∑
i=1

W
(ι)
i

)

=hnvar(W
(ι)
1 ) + 2hn

n−1∑
j=1

(
1− j

n

)
cov(W

(ι)
1 ,W

(ι)
j+1),

it remains to prove (ii). To this end, let cn →∞ be a sequence of positive integers such

that cnhn → 0. We write

hn

n−1∑
j=1

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣ =hn

cn∑
j=1

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣+ hn

n−1∑
j=cn

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣
=J1,n + J2,n.

We complete the proof by showing that J1,n = o(1) and J2,n = o(1).

First, for j ≤ cn, by conditioning on Z1 and Zj+1 and Assumption 2.A3(iii), we have,

|cov(W
(ι)
1 ,W

(ι)
j+1)| ≤ C1E

(
|X1X

>
j+1ε1εj+1|K(ι)

h (Z1 − z)K
(ι)
h (Zj+1 − z)

)
≤ C2E

(
|X1X

>
j+1ε1εj+1|

∣∣Z1 = z, Zj+1 = z
)

(fZ1Zj+1
(z, z) + O(hn))

≤ C3,

for positive constants C1, C2, C3, which implies that J1,n ≤ hncnC = o(1) by the choice

of cn. Next, let W
(ι)
j,m be the m-th element of W

(ι)
j . Using Davydov’s inequality (Fan and
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Yao, 2003, Proposition 2.5 with p = q = δ), one has

|cov(W
(ι)
1,l ,W

(ι)
j+1,m)| ≤ Cα1−2/δ(j)

(
E|W (ι)

1,l |
δ
)1/δ (

E|W (ι)
j+1,m|δ

)1/δ

. (2.72)

By conditioning on Z1 and Assumptions 2.A2 and 2.A3(ii),

E|W (ι)
1,l |

δ ≤ C1E[|X1,lε1|δK(ι)δ
h (Z1 − z)]

≤ C2h
1−δ
n {E[|X1,lε1|δ

∣∣Z1 = z](fZ(z) + O(hn))}

≤ C3h
1−δ
n (2.73)

for some C1, C2, C3 > 0. It follows from equations (2.72), (2.73), and Assumption 2.A1

that

J2,n = hn

n−1∑
j=cn+1

|cov(W
(ι)
1 ,W

(ι)
j+1)|

≤ C1hnh
2(1−δ)/δ
n

∞∑
j=cn+1

α1−2/δ(j)

≤ C2h
2/δ−1
n

∞∑
j=cn+1

j−(2−2/δ)

≤ C3h
2/δ−1
n c2/δ−1

n = o(1),

where constants C1, C2, C3 > 0 and the last inequality follows from the fact that

∞∑
j=k+1

j−τ ≤
∫ ∞
k

x−τdx =
k1−τ

τ − 1
.
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Finally, under Assumptions 2.A2, 2.A5, and A6’, conditioning on (X1, Z1), a change of

variables, and the Taylor expansion lead as in the introduction of this proof to

hnvar(W
(ι)
1 ) =hnE

[
X1X

>
1 σ

2(X1, Z1)

{
c

(ι)
0 + c

(ι)
1

(
Z1 − z
hn

)}2

K
(ι)2
h (Z1 − z)

]
=

∫ ∫
xx>σ2(x, z + hnu)

(
c

(ι)2
0 + 2c

(ι)
0 c

(ι)
1 u+ c

(ι)2
1 u2

)
K(ι)2(u)

× f(x, z + hnu)dudx

=fZ(z)Θ−(z)
[
c

(ι)2
0 ν

(l)
0 + 2c

(ι)
0 c

(ι)
1 ν

(l)
1 + c

(ι)2
1 ν

(l)
2

]
1(ι ∈ {c, l}) + O(hn)

+fZ(z)Θ+(z)
[
c

(ι)2
0 ν

(r)
0 + 2c

(ι)
0 c

(ι)
1 ν

(r)
1 + c

(ι)2
1 ν

(r)
2

]
1(ι ∈ {c, r}) + O(hn).

�

Lemma 2.13. Under Assumptions 2.A, 2.B, and 2.C, we have for n → +∞ and ι =

c, l, r,

sup
z∈D(ι)

1n

∥∥∥S(ι)
n,j − µ

(ι)
j fZ(z)Ω(z)

∥∥∥ = Op

(√
lnn

nhn

)
+ O(hn) for j = 0, 1, 2, 3,

sup
z∈D(ι)

1n

∥∥∥F (ι)
n,j

∥∥∥ = Op

(√
lnn

nhn

)
for j = 0, 1,

and

fZ(z)S(ι)
n

−1
=

 µ
(ι)
2 Ω−1(z) −µ(ι)

1 Ω−1(z)

−µ(ι)
1 Ω−1(z) µ

(ι)
0 Ω−1(z)


µ

(ι)
0 µ

(ι)
2 − µ

(ι)2
1

{
1 + Op

(√
lnn

nhn

)
+ O(hn)

}

uniformly for z ∈ D(ι)
1n.

Proof. By Assumptions 2.A, 2.B, and 2.C, the conditions for weak uniform convergence

result for kernel estimators over expanding sets in Hansen (2008) are satisfied. First, we

consider case ι = c, which uses both left and right neighborhoods. For the continuous

region D
(c)
1n =

⋃Q
q=0(sq + hn, sq+1 − hn), we apply Theorem 2 in Hansen (2008) on each
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subregion (sq + hn, sq+1 − hn):

sup
z∈(sq+hn,sq+1−hn)

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥ = Op

(√
lnn

nhn

)
.

Notice the expanding sets considered in Hansen (2008) are allowed to grow to infinity

slowly, as n → ∞, while the subregion (sq + hn, sq+1 − hn) expands to a bounded set

(sq, sq+1). Taking the maximum over all subregions yields

sup
z∈D(c)

1n

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥ ≤(Q+ 1) ·max

q
sup

z∈(sq+hn,sq+1−hn)

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥

=Op

(√
lnn

nhn

)
.

Since E(S
(c)
n,j) = µ

(c)
j fZ(z)Ω(z) + O(hn), which is shown in the proof in Lemma 2.11, we

have

sup
z∈D(c)

1n

∥∥∥S(c)
n,j − µ

(c)
j fZ(z)Ω(z)

∥∥∥ =Op

(√
lnn

nhn

)
+ O(hn).

Although Theorem 2 in Hansen (2008) originally excludes the case of one-sided kernel,

his theorem is still applicable for one-sided kernel by taking ‘one-sided’ covering sets Aj,

which boosts the size of covering by a constant multiplier 2p, instead of ‘two-sided’ Aj in

his proof. Then, by similar argument as for S
(c)
n,j, one can prove the uniform consistency

results for S
(l)
n,j and S

(r)
n,j.

Analogously, we can apply Theorem 2 in Hansen (2008) to F
(ι)
n,j with ι = c, l, r, where the

uniform convergence rates stays equal to Op(
√

lnn/(nhn)) since E(F
(ι)
n,j) = 0. �

Lemma 2.14. Suppose Assumptions 2.A and 2.B hold. For any z = sq + τhn with

τ ∈ (−1, 1) and ι = c, l, r, we have as n→ +∞,

(i) Ś
(ι)
n,j = fZ(sq)Ω−(sq)µ́

(ι)
j,τ + op(1) and S̀

(ι)
n,j = fZ(sq)Ω+(sq)µ̀

(ι)
j,τ + op(1) for j = 0, 1, 2;

(ii) F́
(ι)
n,j = F̀

(ι)
n,j = op(1) for j = 0, 1;

(iii) K
(ι)
n = fZ(sq)µ

(ι)
0 + op(1);
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(iv) further, if the derivative of σ2(x, z) with respect to z is continuous and bounded on

the complete D, N
(ι)
n,1 = fZ(sq)µ

(ι)
0 σ

2(sq) + op(1),

where the above terms are defined in (2.27)–(2.32).

Proof. After a change of variable and the Taylor expansion, we have

E[Ś
(ι)
n,j] =E

[
XiX

>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)

∣∣∣∣Zi < sq

]

=

∫ ∫ −τ
−1

xx>ujK(ι)(u)f(x, sq + (τ + u)hn)dudx

=

∫ −τ
−1

ujK(ι)(u)du · lim
z↑sq

fZ(z)

∫
xx>

f(x, z)

fZ(z)
dx+ O(hn)

=µ́
(ι)
j,τfZ(sq)Ω−(sq) + O(hn)

due to Assumption 2.A2. The convergence of Ś
(ι)
n,j to its expectation follows again by

applying Theorem 1 of Hansen (2008), which is allowed due to Assumptions 2.A and 2.B.

The convergence results for S̀
(ι)
n,j and (ii)–(iv) can be proven in a similar manner. �

Lemma 2.15. Suppose Assumptions 2.A, 2.B, and 2.D1 hold. It holds for n→ +∞ and

ι = c, l, r,

(i) S̃
(ι)
n = fZ(z)M̃ (ι) ⊗ Ω(z) + op(1) and S̃

(ι)−1
n =

M̃ (ι)−1

fZ(z)
(1 + op(1));

(ii) W̃
(ι)
n,1 = fZ(z)µ̃

(ι)
0 σ

2(z) + op(1);

(iii) W̃
(ι)
n,2 = fZ(z)µ̃

(ι)
0 Ω(z) + op(1);

(iv) W̃
(ι)
n,3 = fZ(z)m̃(ι) ⊗ Ω(z) + op(1);

(v) W̃
(ι)
n,4 = op(1);

(vi) W̃
(ι)
n,5 = op(1),

where the above terms are defined in (2.44)–(2.50).
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Proof. This lemma is analogous to Lemma 2.11 and the results follow by direct applica-

tions of Theorem 1 in Hansen (2008). �

Lemma 2.16. Suppose Assumptions 2.A, 2.B, and 2.D1 hold. For any z = sq+τhn with

τ ∈ (−1, 1) and ι = c, l, r, we have as n→ +∞,

(i) ´̃S
(ι)
n = fZ(sq)Ḿ

(ι)
τ + op(1) and `̃S

(ι)
n = fZ(sq)M̀

(ι)
τ + op(1);

(ii) ´̃W
(ι)
n,1 = fZ(sq)´̃µ

(ι)
0,τσ

2
−(sq) + op(1) and `̃W

(ι)
n,1 = fZ(sq)`̃µ

(ι)
0,τσ

2
+(sq) + op(1);

(iii) ´̃W
(ι)
n,2 = fZ(sq)´̃µ

(ι)
0,τΩ−(sq) + op(1) and `̃W

(ι)
n,2 = fZ(sq)`̃µ

(ι)
0,τΩ+(sq) + op(1);

(iv) ´̃W
(ι)
n,3 = fZ(sq)ḿ

(ι)
τ f−(sq) + op(1) and `̃W

(ι)
n,3 = fZ(sq)m̀

(ι)
τ f+(sq) + op(1);

(v) ´̃W
(ι)
n,4 = `̃W

(ι)
n,4 = op(1);

(vi) ´̃W
(ι)
n,5 = `̃Wn,5 = op(1),

where the above terms are defined in (2.54)–(2.66).

Proof. This lemma is similar to Lemma 2.14. The results follow mainly by applying The-

orem 1 in Hansen (2008). �

Lemma 2.17. Under Assumption 2.B1, we have

(i) µ
(ι)
0 µ

(ι)
2 − µ

(ι)2
1 > 0, ι = c, l, r;

(ii)

µ́
(ι)
0,τ µ́

(ι)
2,τ − µ́

(ι)2
1,τ



> 0, if ι = c and τ ∈ (−1, 1),

> 0, if ι = l and τ ∈ (−1, 1),

> 0, if ι = r and τ ∈ (−1, 0),

= 0, if ι = r and τ ∈ [0, 1);



Chapter 2. Jump-Preserving Functional Coefficient Models 66

(iii)

µ̀
(ι)
0,τ µ̀

(ι)
2,τ − µ̀

(ι)2
1,τ



> 0, if ι = c and τ ∈ (−1, 1),

= 0, if ι = l and τ ∈ (−1, 0],

> 0, if ι = l and τ ∈ (0, 1),

> 0, if ι = r and τ ∈ (−1, 1),

Proof. Here, we prove part (ii) only and (i) and (iii) can be shown analogically. Suppose

that U has a density K(ι)(·). We have

var(U |U < −τ) =E[{U − E(U |U < −τ)}2|U < −τ ]

=E(U2|U < −τ)− {E(U |U < −τ)}2

=

∫ −τ
−1

u2 K(ι)(u)∫ −τ
−1

K(ι)(u)du
du−

{∫ −τ
−1

u
K(ι)(u)∫ −τ

−1
K(ι)(u)du

du

}2

=

∫ −τ
−1

u2K(ι)(u)du∫ −τ
−1

K(ι)(u)du
−

{∫ −τ
−1

uK(ι)(u)du∫ −τ
−1

K(ι)(u)du

}2

=
µ́

(ι)
2,τ

µ́
(ι)
0,τ

−
µ́

(ι)2
1,τ

µ́
(ι)2
0,τ

.

By Assumption 2.B1 and definitions of K(r)(·) and K(l)(·) in (2.2),

µ́
(ι)
0,τ µ́

(ι)
2,τ − µ́

(ι)2
1,τ = µ́

(ι)2
0,τ var(U |U < −τ)



> 0, if ι = c and τ ∈ (−1, 1),

> 0, if ι = l and τ ∈ (−1, 1),

> 0, if ι = r and τ ∈ (−1, 0),

= 0, if ι = r and τ ∈ [0, 1).

�

Lemma 2.18. Let X be a symmetric matrix given by

X =

A B>

B C

 .

Then
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(i) X is positive definite if and only if A and the Schur complement of A, C−BA−1B>,

are both positive definite.

(ii)

X−1

A
B

 =

Ip
0p

 ,

where Ip is the p× p identity matrix and 0p is the null matrix of size p× p, if A, B

and C are p× p matrices.

Proof. Part (i) is one of the fundamental results of Schur complement, where the proof

can be found in Zhang (2005, Theorem 1.12). For part (ii), since X−1X = I2p, we have

X−1X

Ip
0p

 = I2p

Ip
0p


⇔ X−1

A B>

B C

Ip
0p

 =

Ip 0p

0p Ip

Ip
0p


⇔ X−1

A
B

 =

Ip
0p

 .

�

Lemma 2.19. Under Assumptions 2.B1 and 2.A4,

(i) the variance matrix

Ώ
(ι)
−,τ (sq) =

µ́(ι)
0,τΩ−(sq) µ́

(ι)
1,τΩ−(sq)

µ́
(ι)
1,τΩ−(sq) µ́

(ι)
2,τΩ−(sq)


is 

positive definite, if ι = c and τ ∈ (−1, 1),

positive definite, if ι = l and τ ∈ (−1, 1),

positive definite, if ι = r and τ ∈ (−1, 0),

a null matrix, if ι = r and τ ∈ [0, 1);
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(ii) the variance matrix

Ὼ
(ι)
+,τ (sq) =

µ̀(ι)
0,τΩ+(sq) µ̀

(ι)
1,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq) µ̀

(ι)
2,τΩ+(sq)


is 

positive definite, if ι = c and τ ∈ (−1, 1),

a null matrix, if ι = l and τ ∈ (−1, 0],

positive definite, if ι = l and τ ∈ (0, 1),

positive definite, if ι = r and τ ∈ (−1, 1);

(iii) for τ ∈ (−1, 1) and ι = c, l, r, the variance matrix Ώ
(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq) is positive

definite.

Proof. By Assumptions 2.B1 and 2.A4, µ́
(ι)
0,τΩ−(sq) is positive definite except for ι = r and

τ ∈ [0, 1) when it equals the null matrix. Also, the Schur complement of µ́
(ι)
0,τΩ−(sq) is

µ́
(ι)
2,τΩ−(sq)− µ́(ι)

1,τΩ−(sq)µ́
(ι)−1
0,τ Ω−1

− (sq)µ́
(ι)
1,τΩ−(sq) =

(
µ́

(ι)
2,τ −

µ́
(ι)2
1,τ

µ́
(ι)
0,τ

)
Ω−(sq),

which is also positive definite by Lemma 2.17 and Assumption 2.A4 except for the case

of ι = r and τ ∈ [0, 1) when it equals the null matrix. After applying Lemma 2.18(i), the

proof of part (i) is complete. Similarly, one can prove (ii). The claim (iii) then follows

immediately from (i) and (ii). �

Lemma 2.20. Under Assumptions 2.B1 and 2.A4, for ι = l, r, c,

(i) rank
(

Ξ
(ι)
0,τ

)
= p, if µ̀

(ι)
0,τ > 0;

(ii) rank
(

Ξ
(ι)
0,τ − Ip

)
= p, if µ́

(ι)
0,τ > 0,

where the matrix Ξ
(ι)
0,τ is defined in (2.36).

Proof. Using Lemma 2.19(iii) and the properties of a positive definite matrix, matrix

Ώ
(ι)
−,τ (sq)+Ὼ

(ι)
+,τ (sq) is non-singular and its inverse is also positive definite. By Lemma 2.19(ii)
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and the fact that AB � 0 if A � 0 and B � 0, the matrix

Ξ(ι)
τ =

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq) � 0

if µ̀
(ι)
0,τ > 0. Since

Ξ
(ι)
0,τ =[Ip 0p]

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq)

Ip
0p


and the property of positive definite matrix that A>BA � 0 if B � 0 and A has full

column rank, we conclude that Ξ
(ι)
0,τ � 0. Hence Ξ

(ι)
0,τ has full rank, i.e., rank

(
Ξ

(ι)
0,τ

)
= p,

which completes the proof of (i).

To show (ii), we write

Ip − Ξ
(ι)
0,τ =[Ip 0p]

{
I2p −

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq)

}Ip
0p


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1 {
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)− Ὼ

(ι)
+,τ (sq)

}Ip
0p


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ώ
(ι)
−,τ (sq)

Ip
0p

 .

By similar arguments as in part (i) and Lemmas 2.19(i) and 2.19(iii), it follows that

Ip − Ξ
(ι)
0,τ � 0. As a result, Ip − Ξ

(ι)
0,τ has the full rank just as matrix Ξ

(ι)
0,τ − Ip. �
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2.10 Appendix: Experiment 2: discontinuous conditional vari-

ance function with multiple jumps

Here we consider the same time-varying AR(1) process as in (2.13), but with a discon-

tinuous conditional variance function:

σ2(Zt) = (1.4− 0.6 · 1{Zt ≥ 0.25} − 0.6 · 1{Zt ≥ 0.75})2 . (2.74)

The evaluation is performed in the same way as in Section 2.5, see Figures 2.12–2.15.

In addition to that, we also compare the standard errors obtained from this simulation

experiment (with fixed bandwidths set again to 0.54n−1/5) and the standard errors implied

by Theorem 2.10 for the estimator proposed in Section 2.4, see Figure 2.11. There is a

relatively close correspondence between the simulated and asymptotic standard errors

once we take into account that the asymptotic distribution obtained in Theorem 2.10

does not apply at the jump points of the coefficient functions and that the simulation

uses a positive bandwidth around 0.15 (contrary to the asymptotic results obtained for

the limiting bandwidth being zero).
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Figure 2.11: Heteroskedastic model with the fixed bandwidth: the standard errors of the
varying-coefficient estimates based on the simulation (solid line) and on the asymptotic distri-
bution (dashed line). Additionally, the asymptotic standard errors of the centered and left/right
kernel estimators are displayed (dotted lines).
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0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

a_
1

(d) Jump-preserving ǎn,1 (WRMSE)
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(f) Jump-preserving ãn,1 (Wald)

Figure 2.12: Heteroskedastic model with the fixed bandwidth: the solid lines represent the
true coefficient functions, the dashed lines are the average varying coefficient estimates, and the
dotted lines are the 95% confidence bands.
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Figure 2.13: Heteroskedastic model with the fixed bandwidth: global and local mean absolute
deviations of the estimates. Each plot contains boxplots for (from left to right) the jump-
preserving estimator based on the Wald statistics, the jump-preserving estimator based on
WRMSE, and the conventional estimator.



Chapter 2. Jump-Preserving Functional Coefficient Models 74

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

a_
0

(a) Conventional ân,0
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Figure 2.14: Heteroskedastic model with the cross-validated bandwidth: the solid lines repre-
sent the true coefficient functions, the dashed lines are the average varying coefficient estimates,
and the dotted lines are the 95% confidence bands.
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Figure 2.15: Heteroskedastic model with the cross-validated bandwidth: global and local
mean absolute deviations of the estimates. Each plot contains boxplots for (from left to right)
the jump-preserving estimator based on the Wald statistics, the jump-preserving estimator
based on WRMSE, and the conventional estimator.



Chapter 3

Semiparametric Transition Models∗

3.1 Introduction

One class of nonlinear time series models that has been widely applied, for example, in

macroeconomics and finance, is the regime-switching model. Among the regime-switching

models, the threshold autoregressive (TAR) model of Tong (1983) is a classical one: it

has been widely studied (see Hansen, 2011, for an overview) and applied (e.g., Potter,

1995; Rothman, 1998). The TAR model however describes only data generating processes

that follow purely one of the two regimes – no gradual transition between the regimes is

allowed – and can be difficult to estimate due to discontinuous regression function.

To overcome these limitations, the smooth transition autoregressive (STAR) model was

first introduced by Chan and Tong (1986) and further developed by Teräsvirta (1994);

see van Dijk et al. (2002) for a survey. The two-regime STAR model is given by

yt = x>t β1 {1− w(zt; θ)}+ x>t β2w(zt; θ) + εt, t = 1, . . . , T, (3.1)

where xt contains lagged values of the response variable yt, zt is an observable continu-

ously distributed transition variable, and w(·; θ) : R 7→ R is a smooth transition function

∗This chapter is based on Č́ıžek and Koo (2017b), Semiparametric transition models. Unpublished
manuscript, Tilburg University.
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known up to a finite-dimensional vector θ of parameters. The TAR model would corre-

spond to w(z; θ) = 1(z > θ) (1(·) denotes the indicator function). Among smooth tran-

sition functions, a popular choice of w(·; θ) is a logistic distribution function Λ(z;µ, s) =

{1 + exp[−s(z − µ)]}−1 with θ = (µ, s)>, which increases smoothly and monotonically

with z. The corresponding logistic STAR (LSTAR) model has been used to model busi-

ness cycle asymmetry, for instance, where the regimes correspond to expansions and reces-

sions (Teräsvirta and Anderson, 1992; Skalin and Teräsvirta, 2002). Another practically

applied transition function is an exponential function G(z;µ, s) = 1 − exp[−s(z − µ)2],

in which the regimes are associated with large and small absolute deviations of z from

µ. This so-called exponential STAR (ESTAR) model has been applied, for example,

to real exchange rate data (Taylor et al., 2001; Sarantis, 1999). Recent extensions of

the two-regime STAR models (3.1) include the multiple-regime STAR models (van Dijk

and Franses, 1999), flexible-coefficient STAR models (Medeiros and Veiga, 2003, 2005),

time-varying STAR models (Lundbergh et al., 2003), STAR models with multivariate zt

(Taylor et al., 2000), vector STAR models (Hubrich and Teräsvirta, 2013), and transition

models with endogenous explanatory variables (Areosa et al., 2011).

In the STAR model (3.1), the transition function w(·; θ) characterized by the parameter θ

is assumed to be a known continuously differentiable function; typically, it is also bounded

between 0 and 1. The assumption that the transition function is smooth and has a

certain parametric form is however hardly justified. Although a misspecified transition

function can lead to inconsistent estimates and wrong inference, it can sometimes serve

as an approximation in practice (Chan and Tong, 1986). The original TAR avoids this

problem by focusing purely on the two regimes, but contrary to STAR, it cannot adapt to

situations with intermediate states that are combinations of the two regimes. Therefore,

we introduce a flexible transition model in which its transition function is of an unknown

form, possibly with a finite set of discontinuities: the semiparametric transition (SETR)

model. The SETR model extends TAR similarly to STAR, but has three main advantages

over the STAR model. First, the risk of model misspecification is substantially reduced

as the transition function is only assumed to be smooth (up a finite set of discontinuities).

Next, even though the estimators of regression coefficients β1 and β2 do not rely on any

parametric form of the transition function w, their rate of convergence is proved to be

the same as in the (S)TAR model. Finally, the estimates of the transition function in



Chapter 3. Semiparametric Transition Models 78

the SETR model can be used to study important features of the transition between the

regimes (e.g., the size and location of a jump or overshooting behavior in the transition

process). Contrary to the parametric STAR models, the identification of the general

SETR model with an unknown form of the transition function requires that the transition

process reaches each regime with a positive probability just like in the TAR models, and

since the transition function is estimated nonparametrically, the transition function can

be estimated only in the range of observed values of transition variable zt.

Although the SETR model nests the TAR and STAR models if the transition functions

in the STAR models reach 0 and 1 with a positive probability,† the SETR model is a

special case of varying-coefficient models studied by Chen and Tsay (1993) and Hastie

and Tibshirani (1993), for instance. The varying-coefficient model has the following form:

E[yt|xt, zt] = x>t m(zt), t = 1, . . . , T, (3.2)

where m(·) : R→ R is an unknown vector function and zt is a scalar index. Recent works

on model (3.2) include Hoover et al. (1998), Wu et al. (1998), and Fan and Zhang (2000)

on longitudinal data analysis and Chen and Tsay (1993), Cai et al. (2000), and Huang

and Shen (2004) on nonlinear time series. Moreover, Zhang et al. (2002), Fan and Huang

(2005), and Ahmad et al. (2005) studied the partial linearly varying-coefficient model in

which some elements of m(·) are constant. Recently, Chen and Hong (2012) designed a

test of the STAR model (3.1) versus the varying-coefficient model (3.2).

In the varying-coefficient models, the vector of coefficient functions m(·) is of interest

and is estimated nonparametrically. Consequently, its estimates cannot reach the rate

of convergence typical for estimates of parametric models such as (S)TAR and require

thus larger data sets for sufficiently precise inference. On the contrary, as the SETR

model applies nonparametric estimation only to the transition function, the estimators of

regression coefficients β1 and β2, which are fixed in each regime, are proved to converge to

their corresponding true values at the same rate as the slope estimates of the parametric

(S)TAR model (3.1).

†In principle, the LSTAR and ESTAR models are excluded from the class of the SETR models as their
transition functions converge to but never reach 0 or 1. See Section 3.2 for details.
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This chapter is organized as follows. In Section 3.2, the model and identification condi-

tions are presented. In Section 3.3, an estimation method of the semiparametric transition

model is proposed. The consistency and asymptotic distribution of the proposed estima-

tors are discussed in Section 3.4. Finally, a simulation study and real-data application

of the SETR estimators are presented in Sections 3.5 and 3.6. All proofs are collected in

Sections 3.8 and 3.9.

Throughout this chapter, the following notation is used. Let ‖x‖ = (x>x)1/2 for any

vector x ∈ Rp and ‖X‖ = tr(X>X)1/2 for any matrix X. For a transition function w(zt)

of the random variable zt with density fz and a given ε > 0, the following (semi)norm is

used: ‖w‖∞,ε,fz = supfz(z)>ε |w(z)|. In addition, let 1(·) denote the indicator function,
P−→

convergence in probability, and
d−→ convergence in distribution.

3.2 The semiparametric transition model

Consider the following two-regime semiparametric transition model (noting that two

regimes are considered only for simplicity and the proposed model and estimation proce-

dure trivially extend to more regimes):

yt = x>t β
0
1 · {1− w0(zt)}+ x>t β

0
2 · w0(zt) + εt, t = 1, . . . , T, (3.3)

where yt is the dependent variable, xt ∈ Rp is a vector of covariates, zt ∈ R is a scalar

transition variable, and εt denotes the error term. The parameters of interest – slopes β0
1

and β0
2 – are the vectors of regression coefficients corresponding to the first and second

regimes, respectively, and w0(·) : R 7→ R is an unknown piecewise-smooth transition func-

tion. When lagged dependent variables are included in the explanatory variables xt, that

is, xt = (1, yt−1, yt−2, . . . , yt−p+1)>, model (3.3) can be referred to as the semiparametric

transition autoregressive model. Here, the transition variable zt can be both exogenous or

endogenous in the sense that it contains lagged dependent variables analogously to STAR

by Teräsvirta (1994). The proposed estimation procedure also extends to a deterministic

transition variable zt such as the linear time trend t/T in Lin and Teräsvirta (1994). The

assumptions and asymptotic analysis presented in this chapter are however designed only
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for a stationary continuous random variable zt and the case zt = t/T is thus excluded

from the asymptotic analysis, although it is empirically tested in simulations.

The structural-break, threshold, and smooth transition models can be thus viewed as

special cases of the SETR model (3.3). For zt = t/T being a time fraction and the

transition function w0 equal to the indicator function 1(zt ≥ tB/T ) for an unknown

break point tB, the SETR model reduces to the structural-break model. Similarly, when

w0(zt; zB) = 1(zt ≥ zB) for a random variable zt and an unknown threshold zB, model

(3.3) becomes the threshold model. Finally, imposing that transition function w0(·) has

a smooth parametric form w0(·; θ) characterized by the parameter θ yields the smooth

transition model (3.1).

In the SETR model, we however consider more general functions w0(·) that belong to

some space W of functions satisfying the following definition.

Definition 3.1. LetW represents the space of functions w : R→ R that are continuous

up to a finite number J of points s1, . . . , sJ ∈ R, uniformly bounded by M > 0 on R,

differentiable (from the right at points s1, . . . , sJ) with derivatives uniformly bounded by

M too, and that are equal to 0 and 1 on given intervals (a1, b1) and (a2, b2), respectively.

The parameters given in the general model (3.3) cannot however be identified unless

additional restrictions are imposed on the explanatory variables, slope parameters, and

the transition function.

Assumption 3.A. Let {xt, zt, εt}∞t=1 be a sequence of strictly stationary random vectors

with the marginal distributions of zt and εt being absolutely continuous such that

3.A1. E[εt|It] = 0 with It = {xt−j, zt−j}∞j=0;

3.A2. the true slope parameters β0 = (β0>
1 , β0>

2 )> ∈ B, where B is a compact subset of

R
2p, are such that the k-th elements of the parameter vectors in each regime satisfy

β0
1k < β0

2k, where k represents the smallest integer such that β0
1k 6= β0

2k;

3.A3. for any δ > 0, the infimum of eigenvalues of E[xtx
>
t |zt ∈ Iz] taken across all intervals

Iz ⊆ R with P (zt ∈ Iz) ≥ δ is strictly positive and E[xtx
>
t |zt ∈ Iz] is continuous

with respect to the bounds of Iz.
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3.A4. Furthermore, the true transition function w0 ∈ W for a function space W that

satisfies Definition 3.1 with intervals (a1, b1) and (a2, b2) such that P (zt ∈ (a1, b1)) >

0 and P (zt ∈ (a2, b2)) > 0.

The first Assumption 3.A is stated for strictly stationary random vectors since model (3.3)

contains general nonlinear functions of the data. In Assumption 3.A1, the error term εt is

conditionally mean independent of the σ-field It generated by the current and past values

of xt and zt so that the conditional mean of response yt is correctly represented by the

regression function in model (3.3). Assumption 3.A2 requires the slope coefficients to be

different in the two regimes: otherwise, it is not possible to distinguish the regimes and

to identify the transition function. The imposed inequality between β0
1 and β0

2 prevents

relabeling of the symbols (β0
1 , β

0
2 , w

0) to (β0
2 , β

0
1 , 1−w0). Further, the full-rank condition

3.A3 is similar to usual assumptions in the threshold and structural-break models for

identification (e.g., Assumption A2 in Bai and Perron, 1998) and it can be seen as a weaker

form of the standard assumption E(xtx
>
t |zt = z) > 0, see for example Assumption 1.7 in

Hansen (2000), which is sufficient for the presented results and reduces to E(xtx
>
t ) > 0 if

xt is independent of zt. The full-rank condition is imposed for any interval Iz with a non-

zero probability of zt ∈ Iz to identify the transition function w0(·) almost everywhere. If

the aim is to identify only the slopes β1 and β2, a substantially weaker assumption has to

hold: two matrices E[xtx
>
t |zt ∈ (a1, b1)] and E[xtx

>
t |zt ∈ (a2, b2)] have to be non-singular,

where the intervals (a1, b1) and (a2, b2) are given in Assumption 3.A4.

Next, Assumption 3.A4 defines the space of functionsW in which the transition function

is searched for. Although we assume differentiability of the functions, which will be neces-

sary later to derive the asymptotic distribution, assuming that functions w are Lipschitz

continuous (within the intervals of continuity) uniformly on W would be sufficient for

identification. Moreover, note that – without the right continuity (or differentiability) of

functions at the points of discontinuity – the identification of w0 would not be possible

at those points.

Finally, Assumption 3.A4 ensures that the system described by model (3.3) is with a

positive probability in the first regime described by β0
1 (when zt ∈ (a1, b1)) and in the

second regime defined by β0
2 (when zt ∈ (a2, b2)). This is essential because the slope
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parameters β1 and β2 are not identifiable by using other values of zt alone due to further

unspecified w(zt). This assumption is satisfied in the TAR and some STAR models,

but although practical difference is likely negligible, it excludes the LSTAR and ESTAR

models as their corresponding transition functions reach 0 or 1 only asymptotically. The

SETR analog of LSTAR would be based on the assumption that w(zt) = 0 if zt < b1,

P (zt ∈ (−∞, b1)) > 0, and w(zt) = 1 if zt > a2, P (zt ∈ (a2,+∞)) > 0. Analogously to

common practice in the structural-break estimation, one could thus set that zt below its

α-th quantile and above its (1−α)-th quantile correspond to the first and second regime,

respectively. Similarly, the SETR analog of ESTAR would hinge on the assumption

that w(zt) = 0 if |zt| < b1, P (zt ∈ (−b1, b1)) > 0, and w(zt) = 1 if |zt| > a2, P (zt ∈

(−∞,−a2) ∪ (a2,+∞)) > 0. As in these two examples, w(z) can be assumed to differ

from 0 or 1, w(z) 6∈ {0, 1}, only on a compact subset of R in most applications.

The main identification result for model (3.3) is stated in the following theorem. Note that

the transition function is identified only up to a set with fz(z) = 0, where fz represents

the density function of zt.

Theorem 3.2. If the process {yt, xt, zt} follows model (3.3) and Assumption 3.A is sat-

isfied, then (β0, w0) are uniquely identified in B×W (up to a set with zero density in the

case of w0): it holds for any δ > 0 and ε > 0 that

inf
‖β−β0‖>δ or ‖w−w0‖∞,ε,fz>δ

E[yt − x>t β1 − x>t (β2 − β1)w(zt)]
2

> E[yt − x>t β0
1 − x>t (β0

2 − β0
1)w0(zt)]

2, (3.4)

where β ∈ B and w ∈ W.

Theorem 3.2 establishes that the slopes and transition function can be found by mini-

mizing the nonlinear least squares criterion, where the population version (3.4) has to

be replaced by its finite-sample equivalent. The joint minimization of this criterion with

respect to β = (β>1 , β
>
2 )> and w is however computationally cumbersome (see Section 3.3

for details). We therefore design an algorithm that requires only linear least squares (LS)

estimation in each step. Let us now introduce the basic notation and concepts for this

algorithm. The key point is to identify the transition function w for a given value of β

and to identify β given some transition function w.



Chapter 3. Semiparametric Transition Models 83

First, given some parameter values β ∈ B ⊂ R2p, the expected squared error (3.4) can

be minimized with respect to w(zt) at any zt = z in the support of zt. The first-order

condition of (3.4) with respect to w(z) at a fixed point z equals

E[(β2 − β1)>xt{yt − x>t β1 − x>t (β2 − β1)w(zt)}|zt = z] = 0.

If E(xtx
>
t |zt = z) > 0 holds, it is possible to directly solve for w(zt) = w(z) at a given β:

w(z, β) =
E[(β2 − β1)>xt(yt − x>t β1)|zt = z]

E[(β2 − β1)>xtx>t (β2 − β1)|zt = z]
. (3.5)

However, Assumption 3.A3 only guarantees E(xtx
>
t |zt ∈ Iz) > 0 for any interval Iz, z ∈ Iz,

with length |Iz| > 0. The first-order condition will be thus used conditionally on zt ∈ Iz,

E[(β2 − β1)>xt{yt − x>t β1 − x>t (β2 − β1)w(zt)}|zt ∈ Iz] = 0, (3.6)

to solve for w(z). Unless the transition function w(zt) is constant on Iz, w(zt) = w(z), the

limit |Iz| → 0 has to be taken though to obtain the value of w(z) (under the assumption

that intervals Iz are chosen so that w(z) is continuous on them; see Section 3.3.2). The

limit of the solution w(z) of (3.6) for a given fixed β at point z can be thus denoted and

expressed as‡

w(z, β) = lim
|IZ |→0

E[(β2 − β1)>xt(yt − x>t β1)|zt ∈ Iz]
E[(β2 − β1)>xtx>t (β2 − β1)|zt ∈ Iz]

. (3.7)

Unless β = β0, function w(z, β) does not have to coincide with w0(z) at z with fz(z) > 0.

On the other hand, given some transition function w ∈ W , the slope parameters β can

be estimated by minimizing the least squares criterion (3.4) with respect to β only. Con-

sidering a fixed function w(·) and using the abbreviated notation ωt = [1−w(zt), w(zt)]
>,

the expected squared error (3.4) can written as E[yt− (ωt⊗xt)>β]2 due to the expression

x>t β1{1−w(zt)}− x>t β2w(zt) = (ωt⊗ xt)>β. The minimizer of E[yt− (ωt⊗ xt)>β]2, that

is, of (3.4) for a given transition function w, can be therefore denoted and expressed as

β(w) = {E[(ωt ⊗ xt)(ωt ⊗ xt)>]}−1E[(ωt ⊗ xt)yt]. (3.8)

‡Note that the finite-sample equivalent of this expression corresponds to a nonparametric local LS estimator
with the support of zt localized to Iz; see Section 3.3.2.



Chapter 3. Semiparametric Transition Models 84

Because of the uniqueness of both partial solutions (3.7) and (3.8), it holds according

to Theorem 3.2 that β0 = β(w0) and ‖w0(z) − w(z, β0)‖∞,ε,fz = 0 for any ε > 0. For

w 6= W 0, β(w) generally differs from β0.

3.3 Estimation

Before discussing the estimation procedure, let β̂T and ŵT (·) denote the unconditional

estimators of β0 and w0(·) that directly minimize the sum of squared residuals (β =

(β>1 , β
>
2 )>) that correspond to the quadratic loss in Theorem 3.2:

min
β,w

T∑
t=1

{
yt − x>t β1 − x>t (β2 − β1)w(zt)

}2
. (3.9)

Similarly, let β̂T (w) and ŵT (·, β) be the conditional estimators of β(w) in (3.8) and

w(·, β) in (3.7) that minimize the sum of squared residuals given a fixed w and a fixed β,

respectively.

Estimating the slope coefficients β and transition function w(·) through direct mini-

mization in (3.9) is intractable in practice. One common strategy in regime-switching

models is concentration (e.g., see Hansen, 2000, for the TAR model and Leybourne et al.,

1998, for the STAR model). Given some fixed β, the SETR model (3.3) can be viewed

as a varying-coefficient model. Applying a nonparametric estimation method from the

varying-coefficient literature (see Fan and Zhang, 2008, for a review) yields the conditional

estimators ŵT (z1, β), . . . , ŵT (zT , β). The 2p regression coefficients are then estimated by

minimizing the following concentrated sum of squared residuals:

β̂T = arg min
β∈R2p

T∑
t=1

{
yt − x>t β1 − x>t (β2 − β1)ŵT (zt, β)

}2
.

This minimization is however computationally rather demanding.

Instead of the concentration approach, we propose the following estimation algorithm.

First, an initial consistent slope estimator β̂
(0)
T can be constructed by using the data

that are purely from the first and second regimes, provided that (sub)intervals of (a1, b1)

and (a2, b2) from Assumption 3.A4 are known. Then the sum of squared residuals with
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a fixed β = β̂
(0)
T can be minimized locally (in neighborhoods of points z1, . . . , zT ) to

obtain an initial estimator ŵ
(0)
T = ŵT (·, β̂(0)

T ) of the transition function outside of intervals

(a1, b1) and (a2, b2), where w is assumed to be 0 and 1, respectively; see Section 3.3.2 for

details. The first step of the algorithm, which is described in Section 3.3.1, is thus to find

(sub)intervals of (a1, b1) and (a2, b2) and to obtain the corresponding estimates β̂
(0)
T and

ŵ
(0)
T .

Next, the initial estimate β̂
(0)
T uses only subsets of data corresponding purely to the first

or the second regime and it is thus inefficient. Given β̂
(0)
T and ŵ

(0)
T , the slope estimates can

however be updated to β̂
(1)
T = β̂T (ŵ

(0)
T ) by minimizing the sum of all squared residuals

given the initial estimates ŵ
(0)
T (zt), t = 1, . . . , T . Similarly, using the slope estimate

β̂
(1)
T , the estimates of the transition function can now be renewed to ŵ

(1)
T = ŵT (·, β̂(1)

T )

at points outside of intervals (a1, b1) and (a2, b2). This procedure can be iterated by

estimating β̂
(k)
T = β̂T (ŵ

(k−1)
T ) and ŵ

(k)
T = ŵT (·, β̂(k)

T ) for k = 2, 3, . . . . , K. In practice,

K = 1 or K = 2 steps are sufficient: in Section 3.4, the asymptotic distribution of β̂
(k)
T is

shown to be asymptotically independent of k ≥ 1.

In the rest of this section, the choice of the initial intervals and slope estimator β̂
(0)
T are

described in Section 3.3.1, the local nonparametric estimation of ŵT (·, β) is discussed in

Section 3.3.2, and finally, the updated LS estimator β̂T (w) is introduced in Section 3.3.3.

The full algorithm is summarized in Section 3.3.4.

3.3.1 Initial estimator of β

By Assumption 3.A4, there are regions within the support of transition variable zt such

that the process (3.3) follows only the first or second regime as w(zt) = 0 or w(zt) = 1,

respectively. If these regions are assumed to be known, consistent initial estimators β̂
(0)
1,T

and β̂
(0)
2,T can be obtained by employing the ordinary LS method for data with values

zt within the regions corresponding to the first and second regimes, respectively. For

example, a researcher can assume the observations with zt < qz(α) and zt > qz(1 − α)

follow purely the first and second regimes, respectively, where qz(α) denotes the αth

quantile of the zt distribution. As such an assumption can be usually be made only for a

rather small α to avoid misspecification, only small fraction of data can be used to obtain
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the initial estimators and they would be very imprecise. To alleviate this problem, we

suggest the following interval-selection scheme, which will be later generalized to the case

without prior knowledge about regions corresponding to each regime.

To improve the quality of the initial estimators β̂
(0)
1,T and β̂

(0)
2,T , consider sufficiently short

intervals (a
(0)
1 , b

(0)
1 ) ⊂ (a1, b1) and (a

(0)
2 , b

(0)
2 ) ⊂ (a2, b2) and construct increasing sequences

of intervals (a
(0)
j , b

(0)
j ) ⊂ (a

(1)
j , b

(1)
j ) ⊂ . . . ⊂ (a

(κ)
j , b

(κ)
j ) for j = 1, 2. For each pair of

intervals (a
(k)
1 , b

(k)
1 ) and (a

(k)
2 , b

(k)
2 ), k = 1, . . . , κ, estimate β̂

(0,k)
1,T and β̂

(0,k)
2,T forming estimate

β̂
(0,k)
T , compute the estimated transition function ŵ

(0,k)
T = ŵT (·, β̂(0,k)

T ) outside of intervals

(a
(k)
1 , b

(k)
1 ) and (a

(k)
2 , b

(k)
2 ) (see Section 3.3.2), and evaluate the sum S2

(k) of squared residuals

(3.9) at β̂
(0,k)
T , ŵ

(0,k)
T . If we do not wish to iterate further (see Section 3.3.4), we define the

final initial estimates by β̂
(0)
1,T = β̂

(0,k̂)
1,T and β̂

(0)
2,T = β̂

(0,k̂)
2,T for k̂ = arg mink=1,...,κ S

2
(k), that is,

the estimates minimizing the unconditional LS criterion. This procedure is proved to be

consistent later in Theorem 3.3 in Section 3.4. Its main practical benefit is that it makes

estimation insensitive to the choice of initial intervals (a
(0)
1 , b

(0)
1 ) and (a

(0)
2 , b

(0)
2 ).

If a researcher assumes that α-fractions of the observations are in the first and second

regimes, respectively, but the locations of the first and second regimes are not known in

advance, one can find those regions by comparing the sums of squared residuals similar to

the method described in the previous paragraph. First, we divide the support of zt into

d2/αe partitions, where each interval contains around the (α/2)-fraction of observations.

We form all feasible combinations from these intervals by setting each pairs of intervals as

candidates of the first and second regimes: {(a(k)
1 , b

(k)
1 ), (a

(l)
2 , b

(l)
2 )} for k, l = 1, . . . , d2/αe

and k < l. For each pair of intervals, we construct a potential initial slope estimate β̂
(0,k)
T ,

estimate the transition function ŵ
(0,k)
T = ŵT (·, β̂(0,k)

T ), and evaluate the sum of squared

residuals S2
(k). The estimate with the lowest sum of squared residuals is defined as the

initial slope estimate, that is, β̂
(0)
T = β̂

(0,k̂)
T for k̂ = arg mink=1 S

2
(k), and the corresponding

pair of intervals is recognized as the first and second regimes.
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3.3.2 Local linear estimator of w(·, β)

Given β = (β>1 , β
>
2 )> with β1 6= β2, the SETR model (3.3) can be reformulated as a

varying-coefficient model with a single covariate and no intercept term:

ỹt = x̃tm(zt) + εt, (3.10)

where ỹt = yt − x>t β1, x̃t = x>t (β2 − β1), m(·) = w(·, β), and x>t β1 was subtracted from

both sides of equation (3.3). Model (3.10) can be now used to estimate m(·) = w(·, β).

If the function m(·) is twice continuously differentiable, a number of estimation methods

in the existing varying-coefficient literature can be used. There are three main approaches

to estimate smooth function m(·): kernel local polynomial smoothing (e.g., Wu et al.,

1998; Fan and Zhang, 1999), polynomial splines (e.g., Huang et al., 2002, 2004), or spline

smoothing (e.g., Hoover et al., 1998). In this chapter, we opt for the local constant

smoothing. The local constant estimator m̂T (z) of m(z) is the minimizer of

min
a∈R

T∑
t=1

[ỹt − x̃t · a]2Kh(zt − z),

where Kh(v) = K(v/hT )/hT , K(v) is a symmetric kernel function, and hT > 0 is the

bandwidth that hT → 0 as T → +∞. Solving the first-order conditions leads to

m̂T (z) =

{
1

T

T∑
t=1

x̃tx̃
>
t Kh(zt − z)

}−1

1

T

T∑
t=1

x̃tỹtKh(zt − z). (3.11)

The local linear estimator can be defined similarly.

Although the local constant or local linear smoothers are sufficient for consistent estima-

tion of the slope parameter β0 even if the transition function contains a finite number of

discontinuities (see Section 3.4), the estimation of transition function w0(·) will possibly

suffer. Unfortunately, there is a rather limited research on the nonparametric estimation

of functions with discontinuities in the context of varying-coefficient models. If the tran-

sition function and thus function m(·) possibly contain discontinuities, we suggest to use

the estimation procedure of Č́ıžek and Koo (2017a). Its short description follows.
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Let the conventional kernel function be K(c)(v) = K(v), where K(v) is a symmetric kernel

with compact support [−1, 1], and the left-sided and right-sided kernels be K(l)(v) =

K(v) · 1(v ∈ (−1, 0)) and K(r)(v) = K(v) · 1(v ∈ [0, 1)), respectively. Using these three

kernels, three local constant estimates of m(z) can be constructed:

â(j)(z) = arg min
a∈R

T∑
t=1

[ỹt − x̃t · a]2K
(j)
h (zt − z), j = l, r, c,

where superscripts l, r, and c indicate whether the left, right, and two-sided neighborhood

of z is used, respectively. The goodness of fit of the three estimates can be measured, for

example, by the weighted residual mean squared error (WRMSE) defined by

WRMSE(j)(z) =

∑T
t=1[ỹt − x̃t · â(j)(z)]2K

(j)
h (zt − z)∑T

t=1K
(j)
h (zt − z)

, j = l, r, c.

Ifm(zt) is continuous around z, all three WRMSEs are consistent estimates of E[ε2
t |zt = z],

while WRMSE(l)(z) and WRMSE(r)(z) are the only consistent estimates of E[ε2
t |zt = z]

for z in the left and right hT -neighborhoods of a point of discontinuity, respectively (cf.

Proposition 2.2 in Gijbels et al., 2007, and Theorem 4 in Č́ıžek and Koo, 2017a). Since

E[ε2
t |zt = z] represents asymptotically the smallest value of WRMSE given model (3.10),

the jump-preserving estimator of function m(·) can be defined by

m̂T (z) =



â(c)(z), if diff(z) ≤ uT ,

â(l)(z), if diff(z) > uT and WRMSE(l)(z) < WRMSE(r)(z),

â(r)(z), if diff(z) > uT and WRMSE(l)(z) > WRMSE(r)(z),

â(l)(z) + â(r)(z)

2
, if diff(z) > uT and WRMSE(l)(z) = WRMSE(r)(z),

(3.12)

where diff(z) = WRMSE(c)(z) − min{WRMSE(l)(z),WRMSE(r)(z)} and the threshold

parameter uT > 0 is such that uT → 0 as T → +∞ (uT can be determined along with hT

by the least-squares cross-validation, see Č́ıžek and Koo, 2017a, Section 5, for details).
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3.3.3 Least squares estimator of β(w)

Given a transition function w, the SETR model (3.3) is linear in the slope β. Hence,

the ordinary LS estimation can be directly applied. Recall that ωt = [1− w(zt), w(zt)]
>.

Similarly to (3.8), the sum of squared residuals T−1
∑T

t=1{yt− (ωt⊗ xt)′β}2 is minimized

with respect to β while w is fixed, which yields the conditional LS estimator

β̂T (w) =

{
1

T

T∑
t=1

(ωt ⊗ xt)(ωt ⊗ xt)>
}−1

1

T

T∑
t=1

(ωt ⊗ xt)yt. (3.13)

3.3.4 The proposed algorithm

The estimation algorithm can be summarized as follows. Given the sets of 2κ intervals

(a
(k)
1 , b

(k)
1 ) and (a

(k)
2 , b

(k)
2 ), k = 1, . . . , κ, from the interval sequences defined in Section

3.3.1,

1. estimate β̂
(0,k)
1,T and β̂

(0,k)
2,T by LS using data points with zt ∈ (a

(k)
1 , b

(k)
1 ) and zt ∈

(a
(k)
2 , b

(k)
2 ), respectively, for all k = 1, . . . , κ

2. given β̂
(0,k)
T = (β̂

(0,k)>
1,T , β̂

(0,k)>
2,T )>, estimate ŵ

(0,k)
T (zt, β̂

(0,k)
T ) by (3.12) at zt 6∈ (a

(k)
1 , b

(k)
1 )∪

(a
(k)
2 , b

(k)
2 ) and set ŵ

(0,k)
T (zt, β̂

(0,k)
T ) = 0 or 1 for zt ∈ (a

(k)
1 , b

(k)
1 ) or zt ∈ (a

(k)
2 , b

(k)
2 ), re-

spectively; t = 1, . . . , T , k = 1, . . . , κ

3. evaluate sums S2
(k) of squared residuals (3.9) at β̂

(0,k)
T , ŵ

(0,k)
T for all k = 1, . . . , κ and

set k̂ = arg mink=1,...,κ S
2
(k), β̂

(0)
T = β̂

(0,k̂)
T , and ŵ

(0)
T = ŵ

(0,k̂)
T

4. given ŵ
(0,k)
T , estimate β̂

(1,k)
1,T (ŵ

(0,k)
T ) and β̂

(1,k)
2,T (ŵ

(0,k)
T ) by LS (3.13) for k = 1, . . . , κ

5. given β̂
(1,k)
T = (β̂

(1,k)>
1,T , β̂

(1,k)>
2,T )>, estimate ŵ

(1,k)
T (zt, β̂

(1,k)
T ) by (3.12) at zt 6∈ (a

(k)
1 , b

(k)
1 )∪

(a
(k)
2 , b

(k)
2 ) and set ŵ

(1,k)
T (zt, β̂

(1,k)
T ) = 0 or 1 for zt ∈ (a

(k)
1 , b

(k)
1 ) or zt ∈ (a

(k)
2 , b

(k)
2 ), re-

spectively; t = 1, . . . , T , k = 1, . . . , κ

6. evaluate sums S
′2
(k) of squared residuals (3.9) at β̂

(1,k)
T , ŵ

(1,k)
T for all k = 1, . . . , κ and

set k̂′ = arg mink=1,...,κ S
′2
(k)

7. define the final estimates by β̂
(1)
T = β̂

(1,k̂′)
T and ŵ

(1)
T = ŵ

(1,k̂′)
T
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Note that step 3 just introduces notation for the estimates after the initial steps 1 and

2 and can thus be omitted and that steps 4 and 5 can be iterated as discussed in the

introduction of Section 3.3.

3.4 Asymptotic properties

In the asymptotic analysis, we consider absolutely regular time series and transition

functions from W constrained to piecewise smooth functions.

First, the definition of an absolutely regular (or β-mixing) process is provided. Consider

a strictly stationary process {xt}∞t=1 and let F lk be the σ-algebra generated by {xt}lt=k.

The β-mixing coefficients are defined by

β(m) = sup
t∈N

E[ sup
A∈F∞t+m

∣∣P (A|F t1)− P (A)
∣∣].

If lim
m→∞

β(m) = 0, the process {xt}∞t=1 is called β-mixing or absolutely regular.

Next, let us define the class of smooth functions Cγ
M(X ) on a bounded set X ⊂ Rd (e.g.,

[sJ−1, sJ ] in Assumption 3.A) following van der Vaart and Wellner (1996, p. 154); see also

Ichimura and Lee (2010). Let γ be the largest integer smaller than γ, and for any vector

k = (k1, . . . , kd) ∈ Nd, let the differential operator Dk = ∂|k|

∂x
k1
1 ...∂x

kd
d

for |k| =
∑d

i=1 ki.

Additionally, define the function norm

‖f‖γ = max
|k|≤γ

sup
x

∣∣Dkf(x)
∣∣+ max

|k|=γ
sup
x 6=x′

∣∣Dkf(x)−Dkf(x′)
∣∣

‖x− x′‖γ−γ
,

where the suprema are taken over all x and x′ in the interior of X . Then Cγ
M(X ) is the

set of all continuous functions f : X 7→ R with ‖f‖γ ≤M .

Using the above notation, the following assumptions are introduced to prove the consis-

tency of the estimators proposed in Section 3.3.

Assumption 3.B. Let the random variables xt, zt, and εt, and random vector vt =

(zt, v2t, v3t)
> with v2t and v3t representing any element of vectors xt and (x>t , εt)

>, respec-

tively, satisfy the following conditions.
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3.B1. The process {xt, zt, εt}Tt=1 is strictly stationary and absolutely regular with β-mixing

coefficients β(m) such that β(m) = o(m−(2+ξ)/ξ) as m→ +∞ for some ξ > 0.

3.B2. The following moments are finite: E
∥∥xtx>t ∥∥2+ξ

< ∞, E ‖εtxt‖2+ξ < ∞, E |zt|2+ξ <

∞, and E |εt|2+ξ <∞, where ξ is given in Assumption 3.B1.

3.B3. Assuming that the support Z of the variable zt is partitioned into bounded and

convex sets Ij with nonempty interiors, Z =
⋃∞
j=1 Ij, the space W of transition

functions contains only piecewise continuous functions such that, after restricting

them to Ij, W|Ij belongs to Cγ
M(Ij) for some γ > 3 and j ∈ N.

3.B4. Finally, let
∑∞, ∞

j=1,k,l=−∞max{λ(I3
jkl), 1} · max I3

jkl · Q[(1+δ)(3+ξ)]−1
(I3
jkl) be finite for

some δ > 0, where the partition of R3 =
⋃∞, ∞
j=1,k,l=−∞ I

3
jkl is defined by I3

jkl =

Ij × [k, k + 1) × [l, l + 1), λ(I3
jkl) denotes the Lebesque measure of I3

jkl, Q(I3
jkl) =

P (vt ∈ I3
jkl), and max I3

jkl = supv=(v1,v2,v3)>∈I3jkl
max{|v1|, |v2|, |v3|}.

If {xt, zt, εt}Tt=1 is a series of independent random vectors, Assumption 3.B1 is auto-

matically fulfilled. Under dependence, the stationarity condition in Assumption 3.B1

excludes time trends and integrated processes. Additionally, the mixing condition in As-

sumption 3.B1 controls the degree of dependence in the process {xt, zt, εt}Tt=1 and is a

standard assumption to guarantee the validity of the stochastic limit theorems. Sufficient

conditions such that the nonlinear autoregressive models (which contain the TAR, STAR,

and the semiparametric transition model for measurable transition functions w) are geo-

metrically ergodic and thus β-mixing under Assumption 3.B1 can be found in Chen and

Tsay (1993) and Meitz and Saikkonen (2010). Specifically, if the support of continuously

distributed innovations εt spans R, mw = infz∈Rw(z), Mw = supz∈Rw(z), and Mj =

max{|β0
1j(1−Mw) + β0

2jMw|, |β0
1j(1−mw) + β0

2jmw|}, j = 1, . . . , p, Theorem 1.1 of Chen

and Tsay (1993) applied to the autoregressive model (3.3) with xt = (yt−1, . . . , yt−p)
> and

zt = yt−d for some p, d ∈ N states the sufficient condition for the geometric ergodicity:

all roots of the characteristic equation zp −M1z
p−1 − . . . −Mpz

0 = 0 have to lie inside

the unit circle. In the most typical case of a transition function w restricted to [0, 1],

Mj = max{|β0
1j|, |β0

2j|}. In the simplest case of p = 1 and w : R → [0, 1], the sufficient

condition is then max{|β0
11|, |β0

21|} < 1.
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Furthermore, Assumption 3.B2 requires that a sufficient number of moments exists. As-

sumption 3.B2 together with Assumption 3.B1 are essential to guarantee the validity

of the law of large numbers (LLN) and the central limit theorem (CLT) for dependent

sequences (e.g., Arcones and Yu, 1994, and Davidson, 1994, Section 24.4). Assump-

tion 3.B3 defines a class of functions such that LLN can be applied uniformly to this

class of functions (cf. van der Vaart and Wellner, 1996, Sections 2.7 and 2.8). The tran-

sition functions have to be piecewise smooth and at least three times differentiable in

the continuity regions. Finally, Assumption 3.B4 is a technical assumption used again

for the uniform LLN and it is also sufficient if it holds with another partitioning than

the given one. It does not restrict variables with a bounded support, which are com-

monly used or imposed by means of trimming in semiparametric literature. For vari-

ables with an infinite support, it requires that the probability of observing large values

are small. To facilitate an easier understanding, consider the univariate equivalent of

Assumption 3.B4:
∑∞

j=1 max{λ(Ij), 1} · max Ij · Q[(1+δ)(3+ξ)]−1
(Ij). As intervals Ij can

be chosen of the maximum length 1 without loss of generality, the sum is bounded by∑∞
j=1 |j + 1| · {Q[(1+δ)(3+ξ)]−1

([j,+∞)) + Q[(1+δ)(3+ξ)]−1
([−∞,−j])}. Considering case of

small ξ > 0 so that (1 + δ)(3 + ξ) < 3.5, this bound is finite if the distribution of random

variable vt has tails decreasing to zero proportionally to or faster than 1/j7, for instance.

This assumption can be further weakened (along with the order of differentiability) if the

error term εt is independent of the transition variable zt.

The following theorem establishes the consistency of the unconditional estimators β̂T and

ŵT . This guarantees that minimizing the LS criterion (3.9) with respect to both β ∈ B

and w ∈ W leads to consistent estimates.

Theorem 3.3. Under Assumptions 3.A and 3.B, it holds as T → +∞ that

β̂T
P→ β0, ‖ŵT − w0‖∞,ε,fz

P−→ 0 for any ε > 0, and E{ŵT (zt)− w0(zt)}2 → 0.

Before deriving the asymptotic properties of the conditional estimators ŵT (z, β̌T ) and

β̂T (w̌T ) and of the proposed algorithm, it is necessary to impose some conditions on the

nonparametric estimator of w(z, β) in the varying-coefficient model (3.10).
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Assumption 3.C. Let ζT > 0 such that ζT → 0 as T → +∞, ZcT be a subset of

the support Z of the transition variable zt excluding all ζT -neighborhoods of discontinu-

ities {sj}Jj=1, ZcT = Z\
⋃J
j=1(sj − ζT , sj + ζT ), and U(β0, δ) = {β ∈ B : ‖β − β0‖ < δ}. It

is assumed that there exist some sequence ζT and δ > 0 such that, for any β ∈ U(β0, δ)

and 0 < δ̃ < δ,

3.C1. P{ŵT (z, β) ∈ W} → 1 as T → +∞;

3.C2. estimator ŵT (z, β) is uniformly bounded on Z ×B and uniformly consistent on ZcT :

supz∈ZcT |ŵT (z, β)− wT (z, β)| P−→ 0 as T → +∞ for any β ∈ U(β0, δ);

3.C3. estimator ŵT (z, β) is stochastically equicontinuous at β0 on ZcT :

supz∈ZcT supβ∈U(β0,δ) supβ̃∈U(β,δ̃)

∣∣∣ŵT (z, β)− ŵT (z, β̃)
∣∣∣ P−→ 0 as T → +∞ and δ̃ → 0;

3.C4. function w(z, β) has a uniformly bounded derivative with respect to β ∈ U(β0, δ)

on ZcT : supz∈ZcT supβ∈U(β0,δ) ‖∂w(z, β)/∂β‖ <∞;

3.C5. the density of zt is bounded on Z.

While Assumptions 3.C4 and 3.C5 are additional regularity conditions, Assumptions 3.C1–

3.C3 are relevant to the properties of the conditional estimator ŵT (z, β) of the tran-

sition function, and for the jump-preserving varying-coefficient estimator suggested in

Section 3.3.2, are therefore verified in Section 3.9. In their general form, Assumptions

3.C1–3.C3 provide conditions for other nonparametric estimators ŵT (z, β) that can be

applied to the univariate varying-coefficient model (3.10), where the response variable

ỹt = yt − x>t β1 and explanatory variable x̃t = x>t (β2 − β1) for some fixed slopes β1 and

β2. First, the estimate ŵT (z, β) is supposed to converge to a function from the function

space W in Assumption 3.C1 as is common in semiparametric literature (e.g., Ichimura

and Lee, 2010). Next, Assumption 3.C2 requires the nonparametric estimator to be uni-

formly consistent. This condition is typically satisfied on compact subsets of R, but can

be extended to R for bounded functions. In the examples discussed in Sections 3.2 and

3.3.1, transition functions are always estimated on a compact set since they are assumed

to be 0 or 1 outside of a sufficiently large compact set and are thus not estimated there.
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Finally, the nonparametric estimator ŵT (·, β) is required to be stochastically equicontin-

uous by Assumption 3.C3 as in Ichimura and Lee (2010), who argue that this restriction

holds for estimators ŵT (z, β) continuously differentiable in β ∈ U(β0, δ).

In the following theorems, the consistency and asymptotic distribution of the estima-

tors proposed in Section 3.3 is derived. The estimation starts with the initial estimate

β̂
(0)
T , which is shown to be consistent if at least one considered pair of intervals satisfies

Assumption 3.A4. Based on a consistent estimator β̌T such as β̂
(0)
T or any subsequent

iterations β̂
(k)
T , the transition function is estimated by ŵT (z, β̌T ), which is proved to be

asymptotically equivalent to the infeasible estimate ŵT (z, β0) based on the true slope β0,

and subsequently, to be a consistent estimator of transition function w(z) = w(z, β0).

Theorem 3.4. Suppose that the algorithm defined in Section 3.3.4 employs intervals

(ak1, b
k
1) and (ak2, b

k
2), k = 1, . . . , κ. If Assumptions 3.A–3.C are satisfied and there is at

least one k∗ ∈ {1, . . . , κ} and a pair of intervals (ak
∗

1 , b
k∗
1 ) ⊆ (a1, b1) and (ak

∗
2 , b

k∗
2 ) ⊆

(a2, b2) satisfying Assumption 3.A4, then it holds as T → +∞

1. the LS estimator β̂
(0,k∗)
T based on the k∗th pair of intervals is consistent, β̂

(0,k∗)
T

P−→ β0;

2. for any β̌T
P−→ β0 such as β̂

(0,k∗)
T , supz∈ZcT

∣∣ŵT (z, β̌T )− ŵT (z, β0)
∣∣ P→ 0,

supz∈ZcT

∣∣ŵT (z, β̌T )− w(z, β0)
∣∣ P→ 0, and E[ŵT (z, β̌T )− w(z, β0)]2 → 0;

3. the initial estimator is consistent, β̂
(0)
T = β̂

(0,k̂)
T

P−→ β0, and for ŵ
(0)
T (zt) = ŵT (zt, β̂

(0)
T ),

supz∈ZcT

∣∣∣ŵ(0)
T (zt)− w(z, β0)

∣∣∣ P→ 0 and E[ŵ
(0)
T (zt)− w(z, β0)]2 → 0.

Theorem 3.4 establishes the consistency of the initial estimators β̂
(0)
T and ŵ

(0)
T . The next

step of the estimation procedure is based on a consistent estimate w̌T of the transition

function such as w̌T = ŵT (·, β̂(0)
T ) or later iterations w̌T = ŵT (·, β̂(k)

T ): based on a transi-

tion function w̌T , the slope parameters can be re-estimated by β̂T (w̌T ). To derive their

consistency and limiting distribution, the matrices entering the asymptotic variance of

the slope estimator are introduced.

Assumption 3.D. Let ω0
t = [1− w0(zt), w

0(zt)]
> and the matrices

Q0 = E[(ω0
t ⊗ xt)(ω0

t ⊗ xt)>] and V 0 = E[ε2
t (ω

0
t ⊗ xt)(ω0

t ⊗ xt)>]
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be finite and positive definite.

Assumption 3.D corresponds to the usual full-rank condition in the least squares theory.

With Assumptions 3.A–3.D, we first claim that the difference between the feasible slope

estimator β̂T (w̌T ) and the infeasible estimator β̂T (w0), based on the true transition func-

tion w0, converges to zero in probability at a rate faster than T−1/2. The consistency of

the iterated estimators β̂
(1)
T and ŵ

(1)
T (see Section 3.3.4) then immediately follows.

Theorem 3.5. If Assumptions 3.A–3.D hold and estimator w̌T satisfies E[w̌T (zt) −

w0(zt)]
2 → 0 as T → +∞, then it holds for T → +∞ that

√
T (β̂T (w̌T )− β̂T (w0))

P−→ 0,

and consequently under the assumptions of Theorem 3.4, β̂
(1)
T = β̂

(1,k̂′)
T

P−→ β0, and for

ŵ
(1)
T (zt) = ŵT (zt, β̂

(1)
T ), supz∈ZcT

∣∣∣ŵ(1)
T (zt)− w(z, β0)

∣∣∣ P→ 0 and E[ŵ
(1)
T (zt)−w(z, β0)]2 → 0.

Finally, the limiting distribution of the infeasible estimator β̂T (w0) (assuming known w0)

is derived in Theorem 3.6, and by Theorem 3.5, this distribution describes asymptotically

also the feasible estimator β̂T (w̌T ).

Theorem 3.6. Under Assumptions 3.A–3.D,
√
T{β̂T (w0) − β0} d−→ N(0, Q0−1

V 0Q0−1
)

as T → +∞. Additionally, if an estimator w̌T satisfies E[w̌T (zt)− w0(zt)]
2 → 0, then it

holds for T → +∞

√
T (β̂T (w̌T )− β0)

d−→ N(0, Q0−1
V 0Q0−1

).

The asymptotic variance of the feasible slope estimator corresponds to the variance of the

linear least-squares estimator of model (3.3) with a known transition w0. In practice, the

asymptotic variance in Theorem 3.6 can be estimated directly by taking the finite sample

equivalents of Q0 and V 0 since a consistent estimate of w0 is obtained as a part of the

estimation procedure. In particular, if the estimation stops after K steps, one can define

ω̂t = [1 − ŵT (zt, β̂
(K)
T ), ŵT (zt, β̂

(K)
T )]> and ε̂t = yt − (ω̂t ⊗ xt)>β̂(K)

T and estimate Q0 and

V 0 by Q̂T = 1
T

∑T
t=1(ω̂t ⊗ xt)(ω̂t ⊗ xt)> and V̂T = 1

T

∑T
t=1 ε̂

2
t (ω̌t ⊗ xt)(ω̌t ⊗ xt)>. Finally,

if inference on the slope estimates needs to be complemented by inference concerning the

transition function estimate ŵT , the results in Č́ıžek and Koo (2017a) can be used.
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3.5 Simulation study

In this section, the performance of the proposed estimator of the semiparametric transi-

tion model is evaluated by Monte Carlo simulations. These simulations provide a compar-

ison with the least squares (LS) estimators of the parametric TAR and LSTAR models.

Four different data generating processes (DGPs) are considered in this section. All these

DGPs are based on the semiparametric transition autoregressive model of order 2:

yt = [β1;0 + β1;1yt−1 + β1;2yt−2]{1− w(zt)}+ [β2;0 + β2;1yt−1 + β2;2yt−2]w(zt) + εt,

where the error term εt ∼ N(0, 1) is independent and identically distributed and the

values of regression coefficients used in the simulation are given by (β1;0, β1;1, β1;2) =

(−0.25, 0.4,−0.6) and (β2;0, β2;1, β2;2) = (0.25,−0.8, 0.2). The functional forms of the

transition function w(zt) and their arguments are listed below (U(0, 1) denotes the uni-

form distribution on interval [0, 1]):

DGP1a w(z) = 1(z > τ) with τ = 0.4 and zt = yt−2;

DGP1b w(z) = 1(z > τ) with τ = 0.4 and zt = t/T , where t = 1, . . . , T ;

DGP2 w(z) = [1 + exp{−ν(z − τ)}]−1 with ν = 2, τ = 0.4, and zt = yt−2;

DGP3 w(z) = 0.5[1− cos{4π(z − 0.1)}]1(z ∈ [0.1, 0.85]) + 1(z > 0.85) and zt ∼ U(0, 1)

is independent and identically distributed;

DGP4 w(z) = (z−1/2 − 1)1(z ∈ [0.2, 0.7]) + 1(z > 0.7) and zt ∼ U(0, 1) is independent

and identically distributed.

The DGP1a is a TAR model, where its transition function is piecewise constant with a

discontinuity at 0.4. Although the case of deterministic transition variable zt is not in the

focus of this chapter, DGP1b replicates DGP1a for the case of zt being a time fraction,

which violates Assumption 3.B1. The DGP2 corresponds to the standard LSTAR model,

where the shape parameter ν = 2 so that the logistic function is flat enough to be

distinguished from the indicator function of DGP1. While DGP1a and DGP2 use the

lagged dependent variable yt−2 in the role of the transition variable, the last two DGP3
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and DGP4 rely on a uniformly distributed transition variable independent of εs and

ys−1, s ≤ t, and moreover, they are not nested in neither the TAR nor LSTAR models.

The transition function in DGP3 is continuous and reaches both regimes two times (see

Figure 3.3), whereas the transition function in DGP4 is discontinuous with two jumps

(see Figure 3.4). In all cases, the order of the baseline autoregressive process is 2 and is

assumed to be known.

For each data-generating process, 1000 samples of sizes T = 200, 400, and 800 are gener-

ated and estimated by the TAR, LSTAR, and the semiparametric transition (SETR) pro-

cedure, where the transition function is estimated by the local-constant estimator (3.11)

of varying-coefficient model (3.10) assuming continuity of w (SETR/C) or by the jump-

preserving local-constant estimator (3.12) described in Section 3.3.2 for piecewise smooth

functions w with jumps (SETR/J). In both cases, the quartic kernel is used and the

bandwidth hT and procedure parameter uT in (3.12) are determined by the least squares

leave-one-out cross-validation. The proposed SETR estimation uses four pairs of initial

estimators (for each of the two regimes), which are based on the data below the αth quan-

tile and above the (1− α)th quantile of the transition variable zt for α = 0.05, 0.10, 0.20,

and 0.40. Furthermore, the estimation involves two iterations: (i) based on the initial

estimates β̂
(0)
T , the transition function ŵ

(0)
T (z) = ŵT (z, β̂

(0)
T ) is estimated; (ii) using ŵ

(0)
T ,

the LS estimate β̂
(1)
T = β̂T (ŵ

(0)
T ) is obtained and then ŵ

(1)
T (z) = ŵT (z, β̂

(1)
T ) is computed

given β̂
(1)
T ; as the initial estimators β̂

(0)
T are typically rather imprecise, the procedure is

repeated again so that (iii) based on the estimates β̂
(1)
T and ŵ

(1)
T , the corresponding esti-

mates of the slope and transition, β̂
(2)
T = β̂T (ŵ

(1)
T ) and ŵ

(2)
T (z) = ŵT (z, β̂

(2)
T ), are estimated

and reported (see Section 3.3 for details). Regarding the TAR and LSTAR models, their

transition location and shape parameters τ and ν are determined by a grid search to

minimize their corresponding sums of squared residuals. All estimates are summarized

by means of their biases and mean squared errors (MSE).

3.5.1 TAR results

The estimation results for the TAR model are summarized in Tables 3.1 and 3.2 for

DGP1a and DGP1b, respectively; sample sizes cover T = 200, 400, and 800. The TAR
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Table 3.1: Biases and MSEs of all estimator for DGP1a and T = 200, 400, and 800.

TAR LSTAR SETR/C SETR/J

T Bias MSE Bias MSE Bias MSE Bias MSE

200 β̂1,0 0.001 0.142 -0.008 0.149 -0.007 0.257 0.016 0.201

β̂1,1 -0.009 0.078 -0.003 0.079 0.041 0.142 0.012 0.133

β̂1,2 -0.004 0.133 -0.006 0.137 0.038 0.189 0.029 0.165

β̂2,0 0.002 0.215 0.018 0.227 0.124 0.399 0.046 0.338

β̂2,1 0.005 0.072 0.000 0.073 -0.010 0.123 0.005 0.128

β̂2,2 -0.004 0.124 -0.010 0.127 -0.052 0.168 -0.023 0.148

400 β̂1,0 -0.004 0.093 -0.009 0.095 -0.024 0.162 0.010 0.115

β̂1,1 -0.005 0.055 -0.002 0.055 0.049 0.110 0.007 0.088

β̂1,2 -0.004 0.091 -0.005 0.091 0.025 0.125 0.016 0.103

β̂2,0 0.008 0.149 0.014 0.150 0.136 0.287 0.029 0.214

β̂2,1 0.005 0.052 0.002 0.052 -0.017 0.090 0.003 0.083

β̂2,2 -0.004 0.083 -0.007 0.084 -0.048 0.118 -0.011 0.097

800 β̂1,0 -0.001 0.066 -0.003 0.066 -0.027 0.110 0.012 0.075

β̂1,1 -0.001 0.038 0.000 0.038 0.045 0.090 -0.001 0.064

β̂1,2 -0.002 0.063 -0.003 0.063 0.017 0.084 0.010 0.068

β̂2,0 -0.003 0.102 -0.000 0.103 0.123 0.224 0.005 0.149

β̂2,1 0.002 0.035 0.001 0.034 -0.020 0.068 0.002 0.058

β̂2,2 -0.001 0.058 -0.001 0.058 -0.042 0.084 -0.002 0.066

and LSTAR estimates provide best and precise estimates as both correspond to the spec-

ified DGP: the grid for the transition shape parameter ν for LSTAR was reaching up to

ν = 1000 and the logistic transition function can thus became numerically identical to

the discontinuous transition of TAR. Regarding the SETR estimation, both SETR/C and

SETR/J provide consistent estimates in the sense that the biases and mean squared errors

(MSE) decrease with an increasing sample size; the MSEs even support the
√
T conver-

gence rate of the semiparametric estimators in that the MSEs at T = 800 are approxi-

mately half of the MSEs at T = 200. It is however noticeable that the SETR/J, which

accounts for the discontinuity of the transition function, exhibits much smaller biases

than the SETR/C. The source of the SETR/C bias is visible on Figure 3.1, where the

average of estimated transition functions is presented along with the corresponding 90%

confidence bands. Whereas SETR/C estimates are significantly biased, SETR/J exhibits
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Table 3.2: Biases and MSE of all estimator for DGP1b and T = 200, 400, and 800.

TAR LSTAR SETR/C SETR/J

T Bias MSE Bias MSE Bias MSE Bias MSE

200 β̂1,0 -0.001 0.116 -0.004 0.117 -0.002 0.129 0.007 0.127

β̂1,1 -0.005 0.077 0.001 0.079 0.000 0.136 -0.026 0.135

β̂1,2 -0.002 0.070 -0.006 0.071 -0.010 0.101 0.006 0.096

β̂2,0 0.003 0.100 0.005 0.101 -0.024 0.103 -0.007 0.102

β̂2,1 -0.009 0.089 -0.012 0.090 0.052 0.127 0.022 0.115

β̂2,2 -0.024 0.091 -0.027 0.092 0.012 0.105 -0.008 0.101

400 β̂1,0 0.000 0.082 -0.002 0.082 -0.006 0.094 0.001 0.092

β̂1,1 -0.004 0.055 -0.001 0.056 0.007 0.100 -0.010 0.095

β̂1,2 0.002 0.050 0.000 0.050 -0.007 0.073 0.003 0.069

β̂2,0 0.007 0.071 0.008 0.071 -0.014 0.070 0.002 0.071

β̂2,1 -0.004 0.065 -0.005 0.065 0.041 0.088 0.013 0.075

β̂2,2 -0.012 0.066 -0.014 0.066 0.015 0.072 -0.004 0.069

800 β̂1,0 -0.001 0.055 -0.002 0.056 -0.006 0.064 -0.001 0.063

β̂1,1 -0.001 0.040 0.001 0.040 0.009 0.072 -0.006 0.072

β̂1,2 0.000 0.036 -0.001 0.036 -0.008 0.053 0.001 0.052

β̂2,0 0.000 0.046 0.001 0.046 -0.017 0.048 -0.002 0.046

β̂2,1 -0.002 0.046 -0.003 0.046 0.031 0.061 0.007 0.050

β̂2,2 -0.007 0.046 -0.007 0.046 0.015 0.051 -0.002 0.048

much smaller bias and its confidence band includes the true transition function.

Contrary to the experiments DGP2–DGP4 presented later, the parametric estimates are

more precise when comparing SETR/J to the parametric TAR and LSTAR estimates: the

overall MSE of SETR (across the full vector of parameters) is approximately 10%–30%

higher depending on the model and sample size. The main difference of the TAR model to

other DGPs is that the TAR threshold parameter estimate converges to its true value at

a rate faster than the regression parameters and thus practically does not influence their

precision even in finite samples; this is not the case of SETR/J with a nonparametrically

estimated transition function. On the other hand, the threshold and transition function

estimates in all other models converge at most at n−1/2 rate and the difference between

parametric and semiparametric estimators will become negligible.
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Figure 3.1: The mean estimates (dashed line) and 5% and 95% quantiles (dotted lines) of the
transition function in DGP1a with T = 400; the solid line depicts the true transition function.
The left and right panels correspond to SETR/C and SETR/J estimates, respectively.
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Figure 3.2: The mean estimates (dashed line) and 5% and 95% quantiles (dotted lines) of the
transition function in DGP2 with T = 400; the solid line depicts the true transition function.
The left and right panels correspond to SETR/C and SETR/J estimates, respectively.

Finally, note that the estimates are overall more precise in the case of DGP1b with the

deterministic transition variable than in the case of DGP1a with the lagged dependent

variable acting as the transition variable.
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Table 3.3: Biases and MSE of all estimator for DGP2 and T = 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

β̂1,0 0.081 0.153 0.027 0.262 0.044 0.265 0.062 0.287

β̂1,1 -0.158 0.179 -0.004 0.118 0.024 0.113 0.021 0.115

β̂1,2 0.013 0.121 0.013 0.171 0.043 0.182 0.053 0.193

β̂2,0 -0.356 0.395 -0.004 0.451 -0.027 0.390 -0.057 0.423

β̂2,1 0.177 0.203 0.009 0.117 0.003 0.105 0.013 0.108

β̂2,2 0.102 0.143 0.007 0.171 0.011 0.162 0.020 0.174

3.5.2 LSTAR results

The estimation results for the LSTAR model are summarized in Tables 3.3, from now

on only for T = 400. The LSTAR model and estimator provide now correct parametric

specification and thus best results in terms of very small bias and MSE. On the other

hand, TAR is misspecified, which manifests itself by relatively large bias of some param-

eter estimates. Further, both SETR/C and SETR/J provide consistent estimates with

relatively small biases and MSEs, which are surprisingly close to those of LSTAR: the

precision of the parametric and semiparametric estimation is on the same level. Since

the transition function is now smooth, SETR/C is more precise than SETR/J, which ac-

counts for the possible discontinuities of the transition function and provides thus slightly

more noisy estimates of the transition function. The difference is not very large though

as can be seen from the transition function estimates on Figure 3.2.

3.5.3 Cosinus function

Another example of a model with a continuous transition function is DGP3 with the

corresponding estimation results in Tables 3.4 and the transition function estimates on

Figure 3.3 (again for T = 400). In this case, both parametric models – TAR and LSTAR

– are misspecified, which leads to substantial biases in both cases. On the other hand,

both SETR/C and SETR/J provide consistent estimates with relatively small biases and
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Table 3.4: Biases and MSE of all estimator for DGP3 and T = 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

β̂1,0 0.130 0.178 0.122 0.177 -0.003 0.095 -0.002 0.096

β̂1,1 -0.307 0.372 -0.282 0.364 0.033 0.124 0.031 0.126

β̂1,2 0.201 0.250 0.185 0.245 -0.023 0.096 -0.022 0.096

β̂2,0 -0.060 0.136 -0.053 0.137 0.008 0.091 0.007 0.092

β̂2,1 0.153 0.247 0.130 0.246 -0.036 0.122 -0.033 0.125

β̂2,2 -0.104 0.175 -0.089 0.176 0.022 0.096 0.020 0.097
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Figure 3.3: The mean estimates (dashed line) and 5% and 95% quantiles (dotted lines) of the
transition function in DGP3 with T = 400; the solid line depicts the true transition function.
The left and right panels correspond to SETR/C and SETR/J estimates, respectively.

the smallest MSEs. Since the transition function is again smooth, SETR/C should be

more precise than SETR/J, but the difference between the two methods seems negligible.

3.5.4 Two-jump function

Finally, we present the results for DGP4, which includes two jumps with a smooth tran-

sition between them, see Figure 3.4. Also in this case, both parametric models, TAR and

LSTAR, are misspecified, which lead to substantial biases – see Table 3.5 for the simu-

lation results (T = 400). The semiparametric transition methods SETR/C and SETR/J
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Figure 3.4: The mean estimates (dashed line) and 5% and 95% quantiles (dotted lines) of the
transition function in DGP4 with T = 400; the solid line depicts the true transition function.
The left and right panels correspond to SETR/C and SETR/J estimates, respectively.

Table 3.5: Biases and MSE of all estimator for DGP4 and T = 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

β̂1,0 0.064 0.158 0.062 0.166 0.005 0.102 0.004 0.105

β̂1,1 -0.162 0.291 -0.158 0.314 0.021 0.132 0.010 0.125

β̂1,2 0.106 0.198 0.103 0.215 -0.013 0.102 -0.006 0.098

β̂2,0 -0.085 0.134 -0.082 0.138 -0.005 0.087 -0.002 0.086

β̂2,1 0.202 0.268 0.196 0.277 -0.017 0.122 -0.012 0.118

β̂2,2 -0.133 0.185 -0.128 0.190 0.010 0.090 0.007 0.088

provide consistent estimates with relatively small biases and the smallest MSEs. Due to

discontinuities of the transition function, SETR/J performs slightly better than SETR/C.

The difference is not very large though as the biases of the transition function estimates

are similar in both cases (see Figure 3.4). The reason behind this seemingly surprising

results, especially in comparison to DGP1a and DGP1b, is the bandwidth choice: the

cross-validation selects for SETR/C a smaller bandwidth in the presence of two breaks

than in the case of a constant function with one break only, which leads to a reasonable

approximation of the discontinuous transition function.

To sum up, the estimation of the semi-parametric transition model performs well in
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all cases. Obviously, the MSEs of the estimates from the semiparametric estimation are

larger than those from the parametric estimations, when the DGPs are correctly specified

in the case of TAR or LSTAR. But the gap is relatively small in the case of TAR and

practically negligible in the case of LSTAR and the semiparametric procedure offers extra

flexibility in modeling the transition function.

3.6 Application to GDP

To demonstrate the use of the proposed semiparametric transition model, we analyze

the quarterly GDP of the USA in years 1948–2007. The GDP (and GNP) series have

been analyzed in the context of threshold autoregression or multiple regime models by

many authors, for example, by Potter (1995) or Tiao and Tsay (1994); see Hansen (2011)

for an overview of this line of research. In particular, we consider the logarithm of the

growth of quaterly GDP in two time periods (similarly to Clements and Krolzig, 1998)

corresponding to the first and last 2/3 of the sample:§ from 1948–1987 and from 1967–

2007 as some authors suspect that the post-war behavior was characterized by a different

dynamic behavior than later at the end of the 20th century.

A suitable autoregressive model was chosen by minimizing the bias-corrected Akaike

information criterion AICC of Hurvich et al. (1998) for autoregressive orders p and lags d

of the transition variable from 1 to 5. In the second period 1967–2007, the selected model

is the same as in other works such as Potter (1995), that is, the employed model is AR(5)

without the third and fourth autoregressive terms (although their omission does not affect

results much) and the transition variable zt is chosen as the second lag of the dependent

variable. The results are however different in the first period 1948–1987, where the AICC

criterion leads to the AR(2) model, and more importantly, the transition between regimes

are best characterized by the fourth lag of the dependent variable (i.e., the GDP growth

one year ago).

The estimation was performed by the algorithm described in Section 3.3, where we assume

that observations with the values of the transition variable below its 5% quantile or above

§The results are not sensitive to the selection of the interval end-points as results are rather similar for time
intervals 1948–198x and 196x–2007.
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Table 3.6: Coefficient estimates for the semiparametric transition model of US GDP in 1948–
1987 and 1967–2007 based on AR(2) and AR(5) without the 3rd and 4th autoregressive terms,
respectively. The standard errors are in brackets.

1948–1987 1967–2007
TAR SETR/J TAR SETR/J

Regime 1
AR(1) -1.139 -0.901 0.736 0.756

(0.441) (0.417) (0.365) (0.380)
AR(2) 0.784 0.530 -2.231 -1.971

(0.506) (0.472) (0.669) (0.757)
AR(5) — — 1.166 1.249

— — (0.518) (0.549)

Regime 2
AR(1) 0.326 0.525 0.238 0.240

(0.078) (0.105) (0.080) (0.083)
AR(2) 0.047 0.010 0.138 0.164

(0.077) (0.106) (0.090) (0.092)
AR(5) — — -0.140 -0.149

— — (0.075) (0.078)

Threshold -1.243 — -0.692 —

its 95% quantile are completely in regime 1 or regime 2. Recall that this constraint is also

imposed on the estimates of the transition function w(zt). The estimation was performed

by the jump-preserving local-constant estimator of Č́ıžek and Koo (2017a), see Section 3.3.

The bandwidth h and the discontinuity-cutoff value uT were chosen by the leave-one-out

cross-validation. Estimation employs the quartic kernel.

The coefficient estimates are reported in Table 3.6 along with the TAR estimates tradi-

tionally used for this kind of analysis and the estimates of the transition function w(zt)

for both periods are in Figure 3.5. Considering first the period 1967–2007, the estimated

transition function approximately attains only values 0 and 1 with one jump between

them at zt ≈ −0.75 and the SETR model thus reduces to the TAR model. This likely

explains the model selection equivalent to the models found previously in the literature

as well as the coefficients of both TAR and SETR estimates being close and exhibiting

commonly known patterns: similarly to Potter (1995), for instance, the AR(1) coefficients

are positive in all regimes, but the AR(2) coefficients are negative in regime 1, which cor-

responds to small values of zt (below threshold in TAR), that is, to recession. In regime
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Figure 3.5: Transition function estimates for the semiparametric transition model of US GDP
based on AR(5): 1948–1987 in the left panel and 1967–2007 in the right panel. The circles
indicate the values of the transition variable observed in the data set.

2, which corresponds to large values of zt (above threshold in TAR), the AR(2) coeffi-

cients are typically close to zero or positive depending on the time period used, which

is the case also in Table 3.6. Apart from the estimates, the standard errors of TAR and

SETR are close to each other as well, where the latter are slightly larger. All standard

errors are large in regime 1 since there are only 8 observations available in that regime

for both estimators. This lack of precision could also led to the substantially negative

AR(2) coefficient in regime 1 for data 1960–2007.

Next, looking at the earlier period 1948–1987, the estimated transition function still

exhibits one jump approximately at zt ≈ −1.25, but above the jump, the transition

function monotonically increases from 0.7 to 1. This indicates the continuum of models

characterizing the GDP growth depending on its past level, where the actual model

always corresponds to a convex combination of the two regimes in Table 3.6. Given this

departure from the standard TAR model, it is not surpising that the model selection

resulted in a different autoregressive order, a different choice transition variable, and

different coefficients than in the previously discussed period. The signs of coefficients

now differ in the case of the AR(1) coefficient, which is negative in recession (regime 1)

and positive otherwise (regime 2). The SETR estimates have a lower magnitude in regime

1 and a larger magnitude of the AR(1) coefficient in regime 2, and given the estimated

transition function, the effective AR(1) coefficient implied by the SETR model ranges
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from 0.08 to 0.52 for the lagged GDP growth zt ∈ (−1.2, 3.0) in contrast to the TAR

model implying the same AR(1) coefficient 0.36 for any zt > −1.2. The standard errors

of both estimators are similar and large in regime 1 again, while being relatively small in

regime 2.

Altogether, these results provide some evidence in favor of the semiparametric transition

model by demonstrating that, for example, TAR might be too restrictive in some sit-

uations, even though a formal rejection of TAR would have to be based on confidence

bands, and due to their likely width, a larger sample size.

3.7 Conclusion

The traditional TAR and STAR models both rely on the parametric form of the transition

function. When the transition function differs from the presumed one, the estimation re-

sults often become biased and inconsistent. As a remedy, we develop the semiparametric

transition (SETR) model that generalizes the two-regime (smooth) transition model by

assuming an unknown transition function. We propose an iterative estimation procedure

for the SETR model which is based on the straightforward application of (local) least

squares. Practically most consistent estimators discussed in the varying-coefficient lit-

erature can be used to estimate the conditional transition function as long as they are

stochastically equicontinuous in its dependent variable and regressors. For the slope es-

timator, the consistency and asymptotic normality are derived in the chapter, while the

nonparametric estimates of the transition function are only shown to be consistent.

The simulation study using different types of transition functions indicates that the slope

estimators from the LS estimation of the parametric TAR and STAR models are sensitive

to the choice of the transition functions. On the other hand, the proposed estimator of the

SETR model performs similarly to the parametric procedures (with a correctly specified

transition function). Hence, the SETR model is a practically applicable alternative in

the parametric settings.

Although there is only a single transition variable and a two-regime case considered, the

SETR model can be extended to a linear combination of several transition variables and



Chapter 3. Semiparametric Transition Models 108

to multiple regimes similarly to the STAR model. Moreover, the asymptotic properties of

the transition function estimator could be further investigated in order to develop tests

for studying various features of the transition function (e.g., overshooting behavior).

3.8 Appendix: Proofs of the main theorems

The proofs of all theorems and related lemmas are collected in this section. Before dis-

cussing the proofs, let dt = (yt, x
>
t , zt)

> represent all observables at time t and g(dt, β, w) ={
yt − x>t β1 − x>t (β2 − β1)w(zt)

}2
denote the squared residual. Additionally, notation

ωt = [1 − w(zt), w(zt)]
> is used to facilitate a shorter notation, where necessary (e.g.,

the squared residual g(dt, β, w) can be written as
{
yt − (ωt ⊗ xt)>β

}2
).

Proof of Theorem 3.2.

Let the smallest eigenvalue of E[xtx
>
t |zt ∈ (a, b)] be λinf(a, b) and

r(dt, β, w) = [yt − x>t β0
1 − x>t (β0

2 − β0
1)w(zt)]− [yt − x>t β1 − x>t (β2 − β1)w(zt)]

= x>t (β1 − β0
1) + x>t ((β2 − β1)w(zt)− (β0

2 − β0
1)w0(zt)).

By E[εt|It] = 0 in Assumption 3.A1, (3.3) implies that the expected squared error

Eg(dt, β, w) = E [εt − r(dt, β, w)]2 = Eg(dt, β
0, w0) + Er2(dt, β, w).

To prove that (β0, w0) is the unique minimum of Eg(dt, β, w) in the sense specified in the

theorem, we show for any δ > 0 and ε > 0

inf
‖β−β0‖>δ,w∈W

Er2(dt, β, w) > 0 (3.14)

and

inf
β∈B,‖w−w0‖∞,ε,fz>δ

Er2(dt, β, w) > 0. (3.15)
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To verify these claims, it is enough to find a set Z∗, P (zt ∈ Z∗) > 0, independent of β

and w such that both inequalities (3.14) and (3.15) hold conditionally upon zt ∈ Z∗.

First, the identification of parameters β0
1 and β0

2 is discussed. By Assumption 3.A4, there

exist intervals (a1, b1) and (a2, b2), P (zt ∈ (aj, bj)) > 0 for j = 1, 2, such that w(zt) = j−1

for zt ∈ (aj, bj) and j = 1, 2 for any considered function w (i.e., also for w0). Due to

Assumption 3.A3, it follows that

E[r2(dt, β, w)|zt ∈ (aj, bj)] = (βj − β0
j )
>E[xtx

>
t |zt ∈ (aj, bj)](βj − β0

j )

≥ λinf(aj, bj)
∥∥βj − β0

j

∥∥2 ≥ 0,

where the last inequality becomes equality if and only if βj = β0
j for j = 1, 2. If ‖β−β0‖ >

δ, inequality (3.14) follows.

Next, as (3.14) implies that the claim of the theorem holds for any w if ‖β − β0‖ > δ

for any arbitrarily small δ > 0, we just have to verify (3.15) for ‖β − β0‖ ≤ δ, assuming

without loss of generality that δ � 1. Let us consider a continuous function w ∈ W such

that ‖w−w0‖∞,ε,fz > δ. The continuity of the zt distribution and the uniformly bounded

derivatives of function w (within W) then imply that there is an interval Iw = (a, b] or

[a, b), b − a > ε1 > 0, such that (i) |w(z) − w0(z)| > δ1 > 0 for any z ∈ Iw, (ii) w(z)

and w0(z) are continuous on Iw, and (iii) P (zt ∈ Iw) > ε2 > 0. (Note that while the

intervals Iw differ across functions w ∈ W such that ‖w − w0‖∞,ε,fz > δ, ε1, ε2, and δ1

can be chosen common to all such functions since εt is absolutely continuous and thus

of bounded variation). Consider now a partition of R =
⋃∞
k=1 Ik consisting of intervals

Ik such that P (zt ∈ Ik) = ε2/2. Then for each w, there exists some k(w) ∈ N such that
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Ik(w) ⊂ Iw and it follows that (for β such that ‖β − β0‖ ≤ δ)

Er2(dt, β, w) =
∞∑
k=1

E[r2(dt, β, w)|zt ∈ Ik] · P (zt ∈ Ik)

≥
∞∑
k=1

E
[
{w(zt)− w0(zt)} · (β0

2 − β0
1)>xtx

>
t (β0

2 − β0
1) · {w(zt)− w0(zt)}

· (1−O(δ)) |zt ∈ Ik] · P (zt ∈ Ik)

≥ δ2
1 · (β0

2 − β0
1)>E[xtx

>
t |zt ∈ Ik(w)](β

0
2 − β0

1) · (1−O(δ)) · P (zt ∈ Ik(w))

≥ δ2
1ε2/2 · inf

k∈N
λinf(Ik) ·

∥∥β0
2 − β0

1

∥∥2 · (1−O(δ)) > 0

by Assumption 3.A2 and 3.A3. Hence, (3.15) follows and the least-squares criterion (3.4)

is minimized at (β0, w) only if ‖w − w0‖∞,ε,fz = 0. �

Lemma 3.7. Under Assumptions 3.A and 3.B, it holds for T → +∞ that

sup
(β,w)∈B×W

∣∣∣∣∣ 1

T

T∑
t=1

g(dt; β, w)− Eg(dt; β, w)

∣∣∣∣∣ P−→ 0.

Proof. Note first that g(dt, β, w) = (yt−x>t β1−x>t (β2−β1)w(zt))
2 = {εi−x>t (β1−β0

1)−

x>t [(β2 − β1)w(zt)− (β0
2 − β0

1)w0(zt)]}2 and thus

g(dt, β, w) ={εt − x>t (β1 − β0
1)}2 − 2εtx

>
t [(β2 − β1)w(zt)− (β0

2 − β0
1)w0(zt)]

+
{

[w(zt)(β2 − β1)− w0(zt)(β
0
2 − β0

1)]>xtx
>
t

×[(β2 − β1)w(zt)− (β0
2 − β0

1)w0(zt)]
}
. (3.16)

Using the triangle inequality and additivity of expectation, we have to show the uniform

law of large numbers holds for each term on the right-hand side of (3.16). Obviously, the

pointwise law of large numbers (for a given β1) holds for

1

T

T∑
t=1

{εt − x>t (β1 − β0
1)}2 =

1

T

T∑
t=1

{ε2
t − 2εtx

>
t (β1 − β0

1) + (β1 − β0
1)>xtx

>
t (β1 − β0

1)}

due to Assumptions 3.B1 and 3.B2 and Example 16.3 and Theorem 20.15 of Davidson

(1994), for instance. It applies also uniformly since terms of {εt−x>t (β1−β0
1)}2 are linear
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and quadratic forms of β1, which is independent of t and belongs to a compact subset of

R
p by Assumption 3.A2 (e.g., T−1

∑T
t=1 2εtx

>
t (β1 − β0

1) = 2(β1 − β0
1) · T−1

∑T
t=1 εtx

>
t ).

Next, we have to prove that the uniform law of large numbers applies to the remaining

terms in (3.16). All these terms contain the functions w and w0 at zt and can be written

as sums of elements with a common form x̃1
t x̃

2
t β̃w̃(zt), where x̃1

t and x̃2
t represent some

individual elements of xt or εt, β̃ represents β1, β2, β
0
1 , β

0
2 or their product, and w̃(zt) stands

for w(zt), w
0(zt), or their product. Consequently, we can define a function f(zt, x̃

1
t , x̃

2
t ) =

x̃1
t x̃

2
t β̃w̃(zt) of three random variables and a class F = {f(zt, x̃

1
t , x̃

2
t ) = x̃1

t x̃
2
t β̃w̃(zt) :

β1 ∈ B, β2 ∈ B, w ∈ W}. By Assumption 3.B3, these functions are piecewise continuous

on the partition of R3 =
⋃∞, ∞
j=1,k,l=−∞ Ij × [k, k + 1) × [l, l + 1). The boundedness of β̃

and w̃(zt) (Assumptions 3.A2 and 3.B3) guarantees that f(zt, x̃
1
t , x̃

2
t ) = x̃1

t x̃
2
t β̃w̃(zt) have

finite (2 + ξ)-th moments uniformly bounded in F . Furthermore, as the functions f ∈ F

belong on each partition of R3 to Cγ
M (Ij × [k, k + 1)× [l, l + 1)) for γ > 3, Assumption

3.B4 and van der Vaart and Wellner (1996, Corollary 2.7.4), applied with V ∈ [3/γ, 1)

and r = 2+ξ, imply that Theorem 5.2 of Dedecker and Louhichi (2002, see also page 146,

point 1) holds for F and F forms thus a Donsker class of functions. By van der Vaart

and Wellner (1996, Corollary 2.3.12), the class F is thus totally bounded and satisfies

the stochastic equicontinuity condition.

Finally, as the pointwise law of large numbers applies to T−1
∑T

t=1 f(zt, x̃
1
t , x̃

2
t ) by David-

son (1994, Theorem 20.15) (see Assumptions 3.B1 and 3.B2, noting that w are measurable

functions), uniform convergence on F follows from Andrews (1992, Theorem 1), which

concludes the proof. �

Proof of Theorem 3.3.

Suppose Assumptions 3.A and 3.B hold. We now show that estimators (β̂T , ŵT ) are

consistent in the sense that β̂T
P−→ β0 and ‖ŵT − w0‖∞,ε,fz → 0. Consider some δ > 0

and a set U(δ) = {(β, w) ∈ B ×W : ‖β − β0‖ > δ or ‖w − w0‖∞,ε,fz > δ}. Further, let

η = inf(β,w)∈U(δ) E[g(dt, β, w)]− E[g(dt, β
0, w0)] > 0 due to Theorem 3.2. By Lemma 3.7,
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there exist for any ε′ > 0 some finite T1 > 0 and T2 > 0 such that for all T > T1

inf
(β,w)∈U(δ)

1

T

T∑
t=1

g(dt, β, w) > inf
(β,w)∈U(δ)

E[g(dt, β, w)]− η/2 = E[g(dt, β
0, w0)] + η/2,

and for all T > T2,

1

T

T∑
t=1

g(dt, β
0, w0) < E[g(dt, β

0, w0)] + η/2

with an arbitrarily high probability 1−ε′. Thereby, T > max {T1, T2} implies P{(β̂T , ŵT ) 6∈

U(δ)} ≥ 1−ε′ and letting δ → 0 completes the proof of β̂T
P−→ β0 and ‖ŵT−w0‖∞,ε,fz → 0

as T → ∞. Since P{fz(zt) ≤ ε} → 0 as ε → 0, it follows that {ŵT (zt) − w0(zt)}2 P→ 0,

and due to uniform boundedness of functions ŵT and w0 (Assumption 3.B3), E{ŵT (zt)−

w0(zt)}2 → 0 as T →∞. �

Proof of Theorem 3.4.

Part 1. By Assumption 3.A4, w(zt) = 0 and thus yt = x>t β
0
1 + εt for zt ∈ (ak

∗
1 , b

k∗
1 ).

Denoting T1T = {t ≤ T : zt ∈ (ak
∗

1 , b
k∗
1 )} and |T1T | its cardinality, the LS estimator β̂

(0,k∗)
1,T

using data point zt ∈ (ak
∗

1 , b
k∗
1 ) thus equals

β̂1 =

(
1

T

∑
t∈T1T

xtx
>
t

)−1(
1

T

∑
t∈T1T

xtyt

)
= β0

1 +

(
1

T

∑
t∈T1T

xtx
>
t

)−1(
1

T

∑
t∈T1T

xtεt

)
.

By Assumption 3.A4, |T1T | → ∞ as T → ∞. As in Lemma 3.7, the pointwise law of

large numbers Davidson (1994, Theorem 20.15) thus applies to each sum in the last two

brackets (see Assumptions 3.B1 and 3.B2). Hence, T−1
∑T

t=1 xtx
>
t 1(zt ∈ (ak

∗
1 , b

k∗
1 ))

P−→

E(xtx
>
t 1(zt ∈ (ak

∗
1 , b

k∗
1 )), which is non-singular by Assumption 3.A3. Similarly, we have

T−1
∑T

t=1 xtε
>
t 1(zt ∈ (ak

∗
1 , b

k∗
1 ))

P−→ 0 by Assumption 3.A1 and hence β̂
(0,k∗)
1,T

P−→ β0
1 as

T → ∞. Analogously, one can show that β̂
(0,k∗)
2,T

P−→ β0
2 , and consequently, it follows

β̂
(0,k∗)
T → β0 as T →∞.
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Part 2. Let Z be the support of zt, ZjT =
⋃J
i=1(si − ζT , si + ζT ), and ZcT = Z \ ZjT . The

first claim is proved in two parts. First, we show that ŵT (z, β̂T ) converges to ŵT (z, β0)

in probability uniformly on ZcT . Second, we argue that P (zt ∈ ZjT )→ 0 as T → +∞.

By the assumption of the theorem, β̌T is consistent, and thus for any δ > 0, P (‖β̌T−β0‖ <

δ)→ 1 as T → +∞. Consequently, we have to show only that the difference |ŵT (z, β)−

ŵT (z, β0)| converges to zero in probability uniformly in a neighborhood ‖β − β0‖ < δ for

some δ > 0.

For z ∈ ZcT and any δ > 0, we have

sup
‖β−β0‖<δ

sup
z∈ZcT

∣∣ŵT (z, β)− ŵT (z, β0)
∣∣ ≤ sup

‖β−β0‖<δ
sup
z∈ZcT
|ŵT (z, β)− w(z, β)| (3.17)

+ sup
z∈ZcT

∣∣ŵT (z, β0)− w(z, β0)
∣∣ (3.18)

+ sup
‖β−β0‖<δ

sup
z∈ZcT

∣∣w(z, β0)− w(z, β)
∣∣ . (3.19)

The three terms on the right hand side will be shown to converge to 0 in probabil-

ity. Consider the first two terms (3.17) and (3.18), where the second term is a special

case of the first one. By applying the generic uniform convergence theorem of Andrews

(1992, Theorem 1), the uniform pointwise consistency and the stochastic equicontinuity

of ŵT (·, β) (Assumptions 3.C2 and 3.C3) together with the compactness of B (Assump-

tion 3.B1) imply that the first two terms (3.17) and (3.18) are asymptotically negligible

in probability.

Regarding the third term (3.19), the mean value theorem can be applied here because

w(z, β) is differentiable in β for any z ∈ ZcT (Assumption 3.C4). Further by Assump-

tion 3.C4, supz∈ZcT sup‖β−β0‖<δ ‖∂w(z, β)/∂β‖ is bounded by some positive constant Kw

uniformly in T . Hence, the mean value theorem implies

sup
||β−β0||<δ

sup
z∈ZcT

∣∣w(z, β0)− w(z, β)
∣∣ < Kwδ.

Combining the results of all three terms and letting δ → 0 leads to

sup
z∈ZcT

∣∣ŵT (z, β̌T )− ŵT (z, β0)
∣∣ P−→ 0 (3.20)
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as T → +∞, which completes the the first part of the proof.

Let us now consider the probability of zt ∈ ZjT . Assuming that the density of zt is

bounded by some constant Kf (Assumption 3.C5), it follows that

P (z ∈ ZjT ) ≤
J∑
j=1

P (z ∈ (sj − ζT , sj + ζT )) ≤ 2JKfζT ,

and since ζT → 0 as T → ∞, P (z ∈ ZjT ) → 0 as T → +∞. Combined with (3.20), this

implies that |ŵT (zt, β̌T ) − ŵT (zt, β
0)| P−→ 0, and because of ŵT being uniformly bounded

on Z × B (Assumption 3.C2), E[ŵT (zt, β̌T )− ŵT (zt, β
0)]2 → 0 as T → +∞.

Next, the remaining two claims about the consistency of ŵT (zt, β̌T ) follow by exactly the

same arguments as above since the decomposition (3.17)–(3.19) becomes now

sup
‖β−β0‖<δ

sup
z∈ZcT

∣∣ŵT (z, β)− wT (z, β0)
∣∣ ≤ sup

‖β−β0‖<δ
sup
z∈ZcT
|ŵT (z, β)− w(z, β)| (3.21)

+ sup
‖β−β0‖<δ

sup
z∈ZcT

∣∣w(z, β0)− w(z, β)
∣∣ . (3.22)

that is, it is equivalent to terms (3.17) and (3.19), leaving (3.18) out.

Part 3. The previous two points imply that, at least for one pair of intervals (ak
∗

1 , b
k∗
1 ) and

(ak
∗

2 , b
k∗
2 ), the initial estimators β̂

(0,k∗)
T and ŵ

(0,k∗)
T are consistent. The criterion S2

(k) for

the selection of the final estimate is defined as the sum of squared residuals. Evaluated

at β̂
(0,k∗)
T and ŵ

(0,k∗)
T , it equals S2

(k∗) = T−1
∑T

t=1 g(dt; β̂
(0,k∗)
T , ŵ

(0,k∗)
T ). It can be further

decomposed as

1

T

T∑
t=1

{
g(dt; β̂

(0,k∗)
T , ŵ

(0,k∗)
T )− Eg(dt; β̂

(0,k∗)
T , ŵ

(0,k∗)
T )

}
(3.23)

+ Eg(dt; β̂
(0,k∗)
T , ŵ

(0,k∗)
T )− Eg(dt; β

0, w0) (3.24)

+ Eg(dt; β
0, w0), (3.25)

where the first term (3.23) converges to 0 in probability by Lemma 3.7. The second

term is asymptotically negligible in probability as T → ∞ too because of the (uniform)

consistency of β̂
(0,k∗)
T and ŵ

(0,k∗)
T : the uniform boundedness of the estimates (Assumptions
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3.A2 and 3.C2) and decomposition

Eg(dt; β̂
(0,k∗)
T , ŵ

(0,k∗)
T )− Eg(dt; β

0, w0)

= E
{
y2
t − 2ytx

>
t [β̂

(0,k∗)
1,T (1− ŵ(0,k∗)

T (zt)) + β̂
(0,k∗)
2,T ŵ

(0,k∗)
T (zt)]

+ [β̂
(0,k∗)
1,T (1− ŵ(0,k∗)

T (zt)) + β̂
(0,k∗)
2,T ŵ

(0,k∗)
T (zt)]

>xtx
>
t

[β̂
(0,k∗)
1,T (1− ŵ(0,k∗)

T (zt)) + β̂
(0,k∗)
2,T ŵ

(0,k∗)
T (zt)]

}
− E

{
y2
t − 2ytx

>
t [β0

1(1− w0(zt)) + β0
2w

0(zt)]

− [β0
1(1− w0(zt)) + β0

2w
0(zt)]

>xtx
>
t [β0

1(1− w0(zt)) + β0
2w

0(zt)]
}

lead to (3.24) being negligible since (using one representative term of the decomposition)

E
∣∣∣2ytx>t β̂(0,k∗)

2,T ŵ
(0,k∗)
T (zt)− 2ytx

>
t β

0
2w

0(zt)
∣∣∣

= E
∣∣∣2ytx>t [β̂

(0,k∗)
2,T − β0

2 ]ŵ
(0,k∗)
T (zt)− 2ytx

>
t β

0
2 [ŵ

(0,k∗)
T (zt)− w0(zt)]

∣∣∣
≤ 2ME|ytx>t [β̂

(0,k∗)
2,T − β0

2 ]|+ 2E|β0>
2 xtyt[ŵ

(0,k∗)
T (zt)− w0(zt)]|

≤ 2M

√
E‖ytxt‖2E‖β̂(0,k∗)

2,T − β0
2‖2 + 2‖β0

2‖
√

E‖ytxt‖2E[ŵ
(0,k∗)
T (zt)− w0(zt)]2

= o(1) + o(1),

as T →∞, where the last inequality employs the Cauchy inequality and the last equality

uses the existence of the second moments (Assumption 3.B1) and the consistency (weak

and in mean) established in points 1 and 2 of this theorem by the boundedness of the

parameters and transition functions. Hence, criterion S2
(k∗) behaves as Eg(dt; β

0, w0) +

op(1) as T →∞ and reaches asymptotically the minimum possible value by Theorem 3.2.

Among k = 1, . . . , κ, there is at least one pair k∗ of intervals leading to consistent esti-

mates β̂
(0,k∗)
T and ŵ

(0,k∗)
T and criterion S2

(k∗) = Eg(dt; β
0, w0)+op(1) as T →∞. It remains

to prove that any other estimator that can be selected in step 3 of the algorithm is also

consistent. If k is an index in 1, . . . , κ such that β̂
(0,k)
T and ŵ

(0,k)
T are selected, β̂

(0)
T = β̂

(0,k)
T

and ŵ
(0)
T = ŵ

(0,k)
T , the corresponding sum of squared errors S2

(k) ≤ S2
(k∗). For the estimator

(β̂
(0)
T , ŵ

(0)
T ), it holds that mink∈1,...,κ S

2
(k) ≤ S2

(k∗), and for any η > 0 and ε > 0, there is a

sufficiently large Tη such that P (mink∈1,...,κ S
2
(k) ≤ S2

(k∗) < Eg(dt; β
0, w0) + η/2) > 1 − ε

for all T > Tη. This property however implies the weak consistency of the estimator
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(β̂
(0)
T , ŵ

(0)
T ) as shown in the proof of Theorem 3.3. �

Lemma 3.8. Under Assumptions 3.A–3.D, Q̌T
P−→ Q0 and Q̂0

T
P−→ Q0 as T → +∞,

where Q̌T = 1
T

∑T
t=1(ω̌t⊗ xt)(ω̌t⊗ xt)>, Q̂0

T = 1
T

∑T
t=1(ω0

t ⊗ xt)(ω0
t ⊗ xt)>, ω0

t and Q0 are

defined in Assumption 3.D, and ω̌t = [1 − w̌T (zt), w̌T (zt)]
> is based on an estimator w̌T

of w0 such that E[w̌T (zt)− w0(zt)]
2 → 0 as T → +∞.

Proof. Suppose Assumptions 3.A–3.D hold. As in Lemma 3.7, it is possible to apply the

law of large numbers (Davidson, 1994, Theorem 20.15) because of the satisfied mixing

conditions (Assumptions 3.B1 and Theorem 14.1 in Davidson, 1994) and existence of

the sufficiently high moments (Assumptions 3.B2 along with Assumption 3.B3 and 3.C2)

allow application of the law of large numbers (Davidson, 1994, Theorem 20.15), which

implies that Q̂0
T

P−→ Q0 as T → ∞. Since Q̌T − Q0 = (Q̌T − Q̂0
T ) + (Q̂0

T − Q0), we just

have to show that Q̌T − Q̂0
T = op(1) as T →∞. For any ε > 0, the Markov and Cauchy-

Schwartz inequalities imply for the klth elements of Q̌T and Q̂0
T , k, l = p + 1, . . . , 2p,

that

P (|Q̌T,kl − Q̂0
T,kl| > ε) = P

(∣∣∣∣∣ 1

T

T∑
t=1

[w̌2
T (zt)− w02

(zt)](xt,kxt,l)

∣∣∣∣∣ > ε

)

≤ 1

ε
E

∣∣∣∣∣ 1

T

T∑
t=1

[w̌2
T (zt)− w02

(zt)](xt,kxt,l)

∣∣∣∣∣ ≤ 1

ε
E
∣∣∣[w̌2

T (zt)− w02
(zt)](xt,kxt,l)

∣∣∣
≤ 1

ε

√
E
∣∣w̌2

T (zt)− w02(zt)
∣∣2 E |xt,kxt,l|2

=
1

ε

√
E |w̌T (zt)− w0(zt)|2 E |w̌T (zt) + w0(zt)|2 E |xt,kxt,l|2

(the argument looks analogously for k = 1, . . . , p or l = 1, . . . , p). While the last two

expectations below the square root are uniformly bounded due to the boundedness of the

transition functions w0 and ŵT (Assumptions 3.A4 and 3.C2) and the existence of the

second moments of xtx
>
t (Assumption 3.B1), the first expectation converges to zero by

the assumption of the lemma: E[w̌T (zt)− w0(zt)]
2 → 0 as T → +∞. As each element of

the matrix difference Q̌T − Q̂0
T is asymptotically negligible in probability, it follows that

Q̌T − Q̂0
T = op(1) and thus Q̌T −Q0

T = op(1) as T → +∞. �
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Proof of Theorem 3.5

Let ω̌t = [1 − w̌T (zt), w̌T (zt)]
> and ω0

t = [1 − w̌0(zt), w̌
0(zt)]

> again. By Lemma 3.8 and

Assumption 3.D, it holds that

√
T{β̂(w̌T )− β̂(w0)}

=

(
1

T

T∑
t=1

(ω̌t ⊗ xt)(ω̌t ⊗ xt)>
)−1(

1√
T

T∑
t=1

(ω̌t ⊗ xt)yt

)

−

(
1

T

T∑
t=1

(ω0
t ⊗ xt)(ω0

t ⊗ xt)>
)−1(

1√
T

T∑
t=1

(ω0
t ⊗ xt)yt

)

=
(
Q0
)−1

(
1√
T

T∑
t=1

{(ω̌t − ω0
t )⊗ xt}yt

)
(1 + op(1)).

Further, let ωwt = [1−w(zt), w(zt)]
> for any w ∈ W and ek = (0, . . . , 0, 1, 0, . . . , 0)> be the

kth standard basis vector in R2p. Considering the class of functions Fk = {f(xt, yt, zt) =

e>k (ωwt ⊗xt)·yt for any k = 1, . . . , 2p, we have verified in Lemma 3.7 after substituting for yt

from (3.3) that each class Fk is Donsker and satisfies thus the stochastic equicontinuity

condition. Additionally, P (ω̌t ∈ W) → 1 and E(ω̌t − ω0
t )

2 → 0 as T → +∞ by the

assumptions of the theorem. Hence, it holds with probability arbitrarily close to 1 that∥∥∥∥∥ 1√
T

T∑
t=1

{(ω̌t − ω0
t )⊗ xt}yt

∥∥∥∥∥ ≤ sup
w∈W,E[w(zt)−w0(zt)]2<δ

∥∥∥∥∥ 1√
T

T∑
t=1

{(ωwt − ω0
t )⊗ xt}yt

∥∥∥∥∥ ,
where the right-hand side is negligible in probability as T → +∞ and δ → 0 due to the

stochastic equicontinuity of the classes of functions Fk corresponding to the elements of

vectors {(ωwt − ω0
t )⊗ xt}yt. Consequently,

√
T{β̂(w̌T )− β̂(w0)} = op(1).

The remaining results of the theorem follow directly from Theorem 3.4: as β̂
(0,k∗)
T and

ŵ
(0,k∗)
T = ŵT (·, β̂(0,k∗)

T ) are consistent in probability and in mean, respectively, the first
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claim of this theorem implies that β̂
(1,k∗)
T = β̂T (ŵ

(0,k∗)
T ) = β̂T (w0) + op(T−1/2). Since

β̂T (w0)− β0 =

( 1

T

T∑
t=1

(ω0
t ⊗ xt)(ω0

t ⊗ xt)>
)−1(

1

T

T∑
t=1

(ω0
t ⊗ xt)yt

)
− β0


=

(
1

T

T∑
t=1

(ω0
t ⊗ xt)(ω0

t ⊗ xt)>
)−1(

1

T

T∑
t=1

(ω0
t ⊗ xt)εt

)
(3.26)

and T−1
∑T

t=1(ω0
t ⊗ xt)(ω0

t ⊗ xt)> → Q0 by Lemma 3.8, where Q0 is a positive definite

matrix (Assumption 3.D), the consistency of β̂
(1,k∗)
T follows from the law of large numbers

verified for sequence {(ω0
t ⊗xt)εt} in the proof of Lemma 3.7 and Assumption 3.A1 imply-

ing E[(ω0
t ⊗ xt)εt] = 0. Hence, the part 2 of Theorem 3.4 can be applied for β̌T = β̂

(1,k∗)
T

and the proof of the part 3 of Theorem 3.4 can be repeated step by step for the iterated

estimators β̂
(1,k∗)
T and ŵ

(1,k∗)
T = ŵT (·, β̂(1,k∗)

T ) to obtain the claims of this theorem. �

Proof of Theorem 3.6

Using ω0
t = [1− w0(zt), w

0(zt)]
> again and multiplying (3.26) by

√
T , it holds that

√
T (β̂T (w0)− β0) =

(
1

T

T∑
t=1

(ω0
t ⊗ xt)(ω0

t ⊗ xt)>
)−1(

1√
T

T∑
t=1

(ω0
t ⊗ xt)εt

)
. (3.27)

First, T−1
∑T

t=1(ω0
t ⊗ xt)(ω0

t ⊗ xt)> → Q0 in probability by Lemma 3.8, where Q0 is a

positive definite matrix (Assumption 3.D) and is thus non-singular. Hence, the first term

in (3.27) converges to Q0−1
in probability.

Regarding to the second term in (3.27), we can apply the central limit theorem for mixing

sequences (Davidson, 1994, Corollary 24.7) as the sequence {xt, zt, εt} is absolutely regular

of size −(2 + ξ)/ξ (Assumption 3.B1) with zero mean (Assumption 3.A1), w0 ∈ W is

measurable, and due to boundedness of w0, (ω0
t ⊗ xt)εt has finite (2 + ξ)th moments

(Assumption 3.B2). Consequently,

1√
T

T∑
t=1

(ω0
t ⊗ xt)εt

d−→ N(0, V 0)
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in distribution, where V 0 is defined in Assumption 3.D.

Combining the two results, it follows that
√
T (β̂T (w0) − β0)

d−→ N(0, Q0−1
V 0Q0−1

) as

T → +∞. Additionally, if an estimator w̌T satisfies E[w̌T (zt) − w0(zt)]
2 → 0, Theorem

3.5 implies
√
T{β̂(w̌T ) − β̂(w0)} = op(1) as T → ∞, and hence, it holds for T → +∞

that

√
T (β̂T (w̌T )− β0)

d−→ N(0, Q0−1
V 0Q0−1

). �

3.9 Appendix: Verification of Assumptions 3.C

In this section, assumptions for the nonparametric jump-preserving estimator proposed

in Section 3.3.2 are introduced that are sufficient for the piecewise smooth estimates (As-

sumption 3.C1), their uniform consistency (Assumption 3.C2), and stochastic equicon-

tinuity (Assumption 3.C3); only the uniform boundedness of the estimated transition

function is not explicitly discussed as it can be trivially imposed during estimation. As

discussed in Sections 3.2 and 3.4, we verify these properties on a compact subset D of the

support Z of zt since the transition function has to be estimated only outside of intervals

(a1, b1) and (a2, b2), that is, only on a compact subset of R in practically all applications.

The sufficient assumptions introduced below characterize the properties of the marginal

distribution of zt, conditional moments, and the bandwidth and kernel function of the

nonparametric estimator; these assumptions cover both the local constant and local linear

estimators. The assumptions stem from Č́ıžek and Koo (2017a), and in most cases,

directly correspond to the assumptions of Hansen (2008); see Č́ıžek and Koo (2017a)

for their detailed discussion. Compared to the assumptions in the main part of the

paper, this leads to a slightly stronger mixing assumption as well as the identification

Assumption 3.A3 strengthened to more usual E(xtx
>
t |zt) > 0 so that the existing results

of Hansen (2008) can be applied.

Assumption 3.E.

3.E1. The mixing coefficients satisfy β(m) = O(m−γ) as m → ∞, where γ > (1 + (1 +

ξ)(2 + 1/ς))/ξ for some ς ≥ 1.
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3.E2. Random variable zt is continuously distributed with density fz, and on the compact

set D ⊆ Z, infz∈D fz(z) > 0. The derivative of fz is bounded and Lipschitz con-

tinuous for z ∈ D. Additionally, the partial derivative of the joint density function

f of (xt, zt) with respect to zt is bounded and continuous uniformly on its support

except for the points {sq}Jq=1, at which the left or right partial derivatives of f with

respect to Z are bounded and left or right continuous, respectively.

3.E3. Let ϕt represent any element of matrix xtx
>
t , vector xtεt, or variable ε2

t , and for any

t, let us assume that

sup
z∈D

E(|ϕt|2+ξ|zt = z)fz(z) <∞, sup
z∈D

E(ϕt∂ ln f(xt, zt)/∂z|zt = z) <∞, and

sup
(z′,z′′)∈D×D

E(|ϕ1ϕt||z1 = z′, zt = z′′)f1t(z
′, z′′) <∞,

where f1t(z
′, z′′) denotes the joint density of (z1, zt).

3.E4. The variance matrix Ω(z) = E[xtx
>
t |zt = z] is bounded and positive definite uni-

formly on D except for the discontinuities {sq}Jq=1, at which variance matrices

Ω−(sq) = limz↑sq E[xtx
>
t |zt = z] and Ω+(sq) = limz↓sq E[xtx

>
t |zt = z] are bounded

and positive definite.

3.E5. The kernel K(c)(·) is a bounded three times differentiable symmetric continuous

density function and has a compact support [−1, 1]. It is chosen so that functions

K(c)
j (u) = ujK(c)(u) and the first three derivatives of K(c)(u) are Lipschitz contin-

uous for all j = 0, 1, 2, 3 and the following constants are well defined and finite for

j = 0, 1, 2 and ι = c, r, l:

µ
(ι)
j =

∫ 1

−1

vjK(ι)(v)dv, ν
(ι)
j =

∫ 1

−1

vjK(ι)2(v)dv,

c
(ι)
0 =

µ
(ι)
2

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

, and c
(ι)
1 =

−µ(ι)
1

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

. (3.28)

3.E6. The bandwidths hT and uT satisfy uT → 0, hT → 0, and ThT → ∞ as T → ∞ as

well as Th5
T → c̄ ∈ [0,+∞) as T → ∞, where c̄ ≥ 0 is some constant. Moreover,
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the bandwidth hT satisfies lnT/(Th3
T ) = o(1) and lnT/(T θhT ) = o(1), where

θ =

γ − 2− 1

ς
− 1 + γ

1 + ξ

γ + 2− 1 + γ

1 + ξ

.

Along with Assumptions 3.A and 3.B, the above stated Assumptions 3.E cover all relevant

assumptions used in Č́ıžek and Koo (2017a) and Hansen (2008); for the simplicity of

notation, the symbol ZcT refers now to the intersection of set ZcT defined in Assumption 3.C

with set D in Assumption 3.E2 if Z itself is not compact. Now, considering the varying-

coefficient model (3.10) for some β ∈ U(β0, δ) and small δ > 0,

ỹt = x̃tm(zt) + εt = x̃tw(zt, β) + εt,

the uniform consistency (Assumption 3.C2) of the local constant estimator m̂T (z) defined

in (3.12) in zt ∈ ZcT is verified in Theorem 5 in Č́ıžek and Koo (2017a), see also the

proof of (3.32) below, and the (asymptotic) piecewise differentiability of the estimated

transition functions follows directly from Assumption 3.E5 and Theorem 4 in Č́ıžek and

Koo (2017a).

Therefore, only the stochastic equicontinuity of m̂T (z; β) in β ∈ U(β0, δ) on ZcT (As-

sumption 3.C3) remains to be verified, where the dependence of m̂T (z; β) on β is made

explicit and stems from ỹt, x̃t being functions of β and the true regression function is also

denoted m(z) = w(z; β) from now on to highlight its dependence of β. Considering only

sequences ζT > hT , the corresponding left, right, and centered estimators in (3.12) are

equal for ι = l, r, c to

â
(ι)
T (z; β) =

{
1

T

T∑
t=1

x̃tx̃
>
t K

(ι)
h (zt − z)

}−1

1

T

T∑
t=1

x̃tỹtK
(ι)
h (zt − z), (3.29)

where ỹt = yt − x>t β1, x̃t = x>t (β2 − β1), and β = (β>1 , β
>
2 )>, see (3.12). As we consider

only β ∈ U(β0, δ) and ‖β − β̃‖ < δ, Assumption 3.A2 implies that δ > 0 can be so small

that infβ∈U(β0,2δ) ‖β1 − β2‖ > 0, that is, β1 6= β2 for any β and β̃ considered.
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Now, let

S(ι)
n (z; β) = T−1

T∑
t=1

(β2 − β1)>xtx
>
t (β2 − β1)K

(ι)
h (zt − z) and

T (ι)
n (z; β) = T−1

T∑
t=1

(β2 − β1)>xt(yt − x>t β1)K
(ι)
h (zt − z).

Then â
(ι)
T (z; β) = S

(ι)
n

−1
(z; β)T

(ι)
n (z; β). By Lemma 3 in Č́ıžek and Koo (2017a), it follows

for T →∞ that

sup
z∈ZcT ,β∈U(β0,2δ)

∥∥∥S(ι)
n (z; β)− (β2 − β1)>µ

(ι)
0 fz(z)Ω(z)(β2 − β1)

∥∥∥
= sup

z∈ZcT ,β∈U(β0,2δ)

∥∥∥∥∥(β2 − β1)>

{
T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z)− µ(ι)

0 fz(z)Ω(z)

}
(β2 − β1)

∥∥∥∥∥
≤ sup

β∈U(β0,2δ)

‖β2 − β1‖2 sup
z∈ZcT

∥∥∥∥∥T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z)− µ(ι)

0 fz(z)Ω(z)

∥∥∥∥∥ P−→ 0.

A similar argument can be used for T
(ι)
n (z; β) after substituting yt − x>t β1 = x>t (β2 −

β1)w(zt; β) + εt from model (3.10). Specifically under Assumption 3.E, w(z; β) = E[(β2−

β1)>xt(yt − x>t β1)|zt = z]/E[(β2 − β1)>xtx
>
t (β2 − β1)|zt = z] defined in (3.5) can be

rewritten in the following form: w(z; β) = (β2 − β1)>{E[xtyt|zt = z] − E[xtx
>
t |zt =

z]β1}/(β2 − β1)>E[xtx
>
t |zt = z](β2 − β1). For β ∈ U(β0, 2δ) and z ∈ ZcT , w(z; β) is

therefore differentiable in z by Assumption 3.E2 and 3.A1 and w(z; β) and its derivative

are uniformly bounded in z and β by Assumption 3.E3 (see page 125 for more details).

The mean value theorem thus implies w(zt; β) = w(z; β) + o(1), T → ∞, uniformly in

z ∈ ZcT , |zt − z| ≤ hT < ζT , and β ∈ U(β0, 2δ) (see Assumption 3.E5). We can therefore
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write

T (ι)
n (z; β) = T−1

T∑
t=1

(β2 − β1)>xt(yt − x>t β1)K
(ι)
h (zt − z)

= T−1

T∑
t=1

(β2 − β1)>xt{w(zt; β)x>t (β2 − β1) + εt}K(ι)
h (zt − z)

= (β2 − β1)> · T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z) · (β2 − β1)w(z; β)(1 + o(1))

(3.30)

+ (β2 − β1)> · T−1

T∑
t=1

xtεtK
(ι)
h (zt − z), (3.31)

where we substituted for yt−x>t β1 from (3.10). The second term (3.31) is asymptotically

negligible by Č́ıžek and Koo (2017a, Lemma 3) uniformly in z ∈ ZcT . The same lemma

also implies for the first term (3.30) (without the o(1) term) that for T →∞

sup
z∈ZcT ,β∈U(β0,2δ)

∥∥∥∥∥(β2 − β1)> · T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z) · (β2 − β1)w(z; β)

−(β2 − β1)>µ
(ι)
0 fz(z)Ω(z)(β2 − β1)w(z; β)

∥∥∥
= sup

z∈ZcT ,β∈U(β0,2δ)

∥∥∥∥∥(β2 − β1)>

{
T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z)− µ(ι)

0 fz(z)Ω(z)

}
·(β2 − β1)w(z; β)‖

≤ sup
z∈ZcT ,β∈U(β0,2δ)

‖β2 − β1‖2 |w(z; β)|

∥∥∥∥∥T−1

T∑
t=1

xtx
>
t K

(ι)
h (zt − z)− µ(ι)

0 fz(z)Ω(z)

∥∥∥∥∥ P−→ 0

due to the boundedness of the parameter space and w(z; β).

Subsequently, estimator â
(ι)
T (z; β) = [S

(ι)
n (z; β)]−1T

(ι)
n (z; β) converges to [µ

(ι)
0 fz(z)Ω(z)]−1

µ
(ι)
0 fz(z)Ω(z)w(z; β) = w(z; β) uniformly in β ∈ U(β0, 2δ) and z ∈ ZcT . Since the uniform

limits of S
(ι)
n (z; β), T

(ι)
n (z; β), and â

(ι)
T (z; β) are independent of ι = c, l, r, it follows as in

the proof of Theorem 5 in Č́ıžek and Koo (2017a) for T →∞ that

sup
z∈ZcT ,β∈U(β0,2δ)

|m̂T (z; β)− w(z; β)| P−→ 0. (3.32)

Given this uniform convergence result, the stochastic equicontinuity Assumption 3.C3
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can be verified by proving the uniform continuity of w(z; β) = (β2 − β1)>{E[xtyt|zt =

z]− E[xtx
>
t |zt = z]β1}/(β2 − β1)>E[xtx

>
t |zt = z](β2 − β1) in β since for β ∈ U(β0, δ) and

‖β̃ − β‖ < δ̃ < δ

|m̂T (z; β)− m̂T (z; β̃)| ≤ |m̂T (z; β)−w(z; β)|+ |m̂T (z; β̃)−w(z; β̃)|+ |w(z; β)−w(z; β̃)|.

Hence, it remains us to verify for δ̃ → 0 that

sup
z∈ZcT ,β∈U(β0,δ),β̃∈U(β0,δ̃)

|w(z; β)− w(z; β̃)| → 0. (3.33)

Difference |w(z; β)− w(z; β̃)| can be rewritten as∣∣∣∣(β2 − β1)>{E[xtyt|zt = z]− E[xtx
>
t |zt = z]β1}

(β2 − β1)>E[xtx>t |zt = z](β2 − β1)

− (β̃2 − β̃1)>{E[xtyt|zt = z]− E[xtx
>
t |zt = z]β̃1}

(β̃2 − β̃1)>E[xtx>t |zt = z](β̃2 − β̃1)

∣∣∣∣∣
and ∣∣∣∣∣(β2 − β1)>{E[xtyt|zt = z]− E[xtx

>
t |zt = z]β1}(β̃2 − β̃1)>E[xtx

>
t |zt = z](β̃2 − β̃1)

(β2 − β1)>E[xtx>t |zt = z](β2 − β1)(β̃2 − β1)>E[xtx>t |zt = z](β̃2 − β̃1)

− (β2 − β1)>E[xtx
>
t |zt = z](β2 − β1)(β̃2 − β̃1)>{E[xtyt|zt = z]− E[xtx

>
t |zt = z]β̃1}

(β2 − β1)>E[xtx>t |zt = z](β2 − β1)(β̃2 − β1)>E[xtx>t |zt = z](β̃2 − β̃1)

∣∣∣∣∣ .
Given that the nominator is a quadratic function of β and β̃ on a bounded set, we only

have prove that (i) the conditional expectations are uniformly continuous in z and (ii) the

nominator is uniformly bounded and the denominator is uniformly bounded away from

zero. The latter point follows directly from the compactness of the parameter space,

infβ∈U(β0,2δ) ‖β1 − β2‖ > 0 stated earlier, and Assumption 3.E4. The first point, the

uniform continuity of the expectations E[xtyt|zt = z] and E[xtx
>
t |zt = z] in z ∈ ZcT ,
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follows from Assumption 3.E2 because for example the first derivative

∂E[xtx
>
t |zt = z]

∂z
=

∂

∂z

∫ ∫
xx>

f(x, z)

f(z)
dx

=

∫ ∫
xx>

f(z)∂f(x, z)/∂z − f(x, z)∂f(z)/∂z

f 2(z)
dx

=

∫ ∫
xx>

[
f(x, z)∂ ln f(x, z)/∂z

f(z)
− f(x, z)∂ ln f(z)/∂z

f(z)

]
dx

= O(1)E[xtx
>
t

∂ ln f(x, z)

∂z
|zt = z] + O(1)E[xtx

>
t |zt = z]

is uniformly bounded on ZcT due to its compactness and Assumption 3.E3. Hence, (3.33)

is verified and the stochastic equicontinuity condition follows by (3.32) as mentioned

above.



Chapter 4

Functional Coefficient Models with

Endogenous Variables

4.1 Introduction

Instrumental variable (IV) models provide a useful framework which correctly accounts for

endogeneity and identifies causal relationships among several economic variables. Para-

metric IV models are sometimes too restrictive due to their tight functional forms and

their misspecification of can lead to inconsistent estimates and wrong inference. To relax

such a restriction, nonparametric IV models were introduced by Newey and Powell (2003)

and further developed by Newey et al. (1999), Hall and Horowitz (2005), and Blundell

et al. (2007). Similarly to ordinary nonparametric models, nonparametric IV models suf-

fer from the ‘curse of dimensionality’ problem as the number of regressors is large. To

alleviate this problem, semiparametric IV models were developed (see e.g., Ai and Chen,

2003; Park, 2003; Cai et al., 2006).

Among the semiparametric IV models, we consider a functional coefficient IV model which

is linear in endogenous structural regressors with their coefficients given by unknown func-

tions of some observed transition variables. The functional coefficient IV models were first

introduced by Cai et al. (2006) who assumed the transition variables to be exogenous so

that the ill-posed inverse problem in a general nonparametric IV framework is avoided.

They proposed a two-stage estimation procedure. First, the expectations of endogenous

126
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regressors conditional on a set of instrumental variables are estimated nonparametrically.

Second, a local linear regression of the response variable on the estimated conditional

expectations of the regressors is performed. Later, Cai and Xiong (2012) and Cai et al.

(2017) studied a partially varying-coefficient IV model with both constant and functional

coefficients and developed estimation procedures, which achieve the
√
n-convergence rate

of the estimates of the constant coefficients. Recently, Su and Hoshino (2015) considered

a sieve-based quantile regression estimation of functional coefficient IV models and estab-

lished uniform consistency and asymptotic normality of the nonparametric estimators.

The above mentioned functional coefficient IV literature relies on the assumption that

the transition variables are exogenous. In this chapter, we therefore consider a model

similar to Cai et al. (2006)’s model, but now with endogenous transition variables and

weakly dependent observations. In such a case, the ill-posed inverse problem will still be

present if using the orthogonality condition in Cai et al. (2006, equation (1)). To resolve

such a problem, we employ an alternative orthogonality condition similarly to Newey

et al. (1999) and Su and Ullah (2008) for nonparametric IV models (see the orthogonality

condition (4.2) and its discussion in Section 4.2).

The rest of the chapter is structured as follows. The model and the identification results

are presented in Section 4.2. In Section 4.3, we propose a two-stage estimation procedure,

and in Section 4.4, establish asymptotic normality of the proposed estimator. Section 4.5

provides a simulation study to investigate its finite sample properties and compare them

to Cai et al. (2006)’s two-stage estimation. Then, an empirical example is provided for

studying the marginal return to schooling. Proofs of the main theorems and related

lemmas are collected in Sections 4.7 and 4.8.
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4.2 Model specification and identification

We consider a partially linear functional coefficient model of the following form:
Y =

d1∑
l=0

al(X2)X1l +
r1∑
l=1

γlZ1l + ε = X>1 a(X2) + Z>1 γ + ε,

X = Π(Z) + U, X = (X11, . . . , X1d1 , X
>
2 )>, Z = (Z>1 , Z

>
2 )>,

E(U |Z) = 0,

(4.1)

where Y is a dependent variable, X10 ≡ 1, X1 = (X10, X11, . . . , X1d1)
> is a (d1 + 1) × 1

vector of covariates, X2 is a d2×1 vector of transition variables, a(·) = (a0(·), . . . , ad1(·))>

is a (d1 +1)×1 vector of unknown coefficient functions, Z1 is an r1×1 vector of exogenous

random variables, γ = (γ1, . . . , γr1)
> is an r1 × 1 vector of constant coefficients, Z2 is an

r2 × 1 vector of instrumental variables, Π(·) = (Π1(·), . . . ,Πd(·))> is a d × 1 vector of

functions of an r × 1 vector Z, d = d1 + d2 and r = r1 + r2, ε and U are disturbances,

and > denotes transpose of a matrix or vector. In this chapter, both variables X1 and

X2 are allowed to be endogenous. We further impose X2 to be a scalar variable, d2 = 1,

although the proposed estimation procedure in Section 4.3 can be readily extended to

multiple transition variables.

Model (4.1) includes many popular IV models. When X2 is exogenous, but not X1, the

model is reduced to (partially linear) functional coefficient IV models studied by Cai

et al. (2006), Cai and Xiong (2012), and Su et al. (2013). If X1 is further a binary

endogenous variable, model (4.1) becomes the nonparametric IV model considered in

Das (2005). Caner and Hansen (2004) studied a threshold IV model, where a(·) is a

parametric threshold function of an exogenous transition variable and X1 is endogenous.

Recently, a smooth transition IV model, which assumes a(·) to be a logistic function,

with both endogenous variables X1 and X2 was analyzed by Areosa et al. (2011).

Model (4.1) is different from the ordinary functional coefficient model in the sense that

E(Y |X,Z1) 6= X>1 a(X2) + Z>1 γ when E(ε|X,Z1) 6= 0. Accordingly, the coefficient func-

tions {al(·)}d1l=0 cannot be consistently estimated by projecting Y on X>1 a(X2) and Z>1 γ.
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To retrieve the coefficient functions, we impose the following conditional mean indepen-

dence restriction:

E(ε|U,Z) = E(ε|U), (4.2)

which is also used in some nonparametric IV literature (e.g., Newey et al., 1999; Su and

Ullah, 2008; Han, 2014). Model (4.1) under (4.2) implies that for λ(U) = E(ε|U),

E(Y |X,Z, U) = X>1 a(X2) + Z>1 γ + E(ε|X,Z, U)

= X>1 a(X2) + Z>1 γ + E(ε|Π(Z) + U,Z, U)

= X>1 a(X2) + Z>1 γ + E(ε|U,Z)

= X>1 a(X2) + Z>1 γ + λ(U)

= X>1 b(X2, U) + Z>1 γ, (4.3)

where b(x2, u) = [a0(x2) + λ(u), a1(x2), · · · , ad1(x2)]> is identical to the nonparametric

component a(x2) from an ordinary functional coefficient model except that its first ele-

ment is replaced by a sum of functions a0(x2) and λ(u). The above equation indicates

that a(·) could be retrieved from a local polynomial fitting of Y on X, Z1, and U . Since

variable U is not observable, we suggest a two-stage estimation procedure. In the first

stage, the predicted residual U is obtained by regressing X on Z. In the second stage,

a(x2) is estimated by regressing Y on X, Z1, and the predicted residual U locally around

x2. The estimation procedure is discussed in details in Section 4.3.

Notice that the orthogonality condition (4.2) requires that E(ε|U,Z) depends on U only,

which is different from the orthogonality condition E(ε|Z) = 0 commonly imposed on the

functional coefficient IV literature, like Cai et al. (2006), Cai and Li (2008), and Cai and

Xiong (2012). It is more general than requiring ε and U are independent of Z. If U is

independent of Z and E(ε) = 0, then E[ε|Z] = E[E[ε|Z,U ]|Z] = E[E[ε|U ]|Z] = E(ε) = 0.

If no additional restrictions assumed, neither functional coefficient IV models is more

general than the other.

A typical application of model (4.1) under (4.2) is a demand model. For example, Y

can be the purchased quantities of apples by a household, X1 the price of apples, X2 the
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household expenditure on fruits, Z1 the household income, Z2 the age of family head.

The unobserved residuals ε and U include demand shocks and individual preferences.

Endogeneity comes from expenditure on fruits being a variable affecting the price elas-

ticity. The condition E[ε|U,Z] = E[ε|U ] means that the average unexplained variation

of the expenditure on apples depends on variation of age only through the unexplained

variation of the expenditure on fruits.

If the residual U can be recovered from X−Π(Z), the identification of a(·) in model (4.1)

with the orthogonality condition (4.2) is equivalent to the identification under equa-

tion (4.3). The following theorem provides a sufficient condition for identification of a(·),

which is similar to the rank condition for identification in a linear structural equation

with endogenous covariates.

Theorem 4.1. Suppose that the variables X, Z, and U have compact supports and

continuously differentiable distribution functions and let Π+(Z) = E((Z>1 , X
>)>|Z) =

(E(Z>1 |Z),Π>(Z))>. If the functions a(·), λ(·), and Π(·) are differentiable for all x2, u,

and z, respectively, and with probability one, rank(∂Π+(z)/∂z>)> = r1 + d1 + 1 for all z

on its support, then {al(·)}d1l=1 and γ are identified, and a0(·) and λ(·) are identified up to

additive constants. If we further assume E(ε) = 0, then a0(·) and λ(·) are also identified.

Theorem 4.1 requires that the number of instrumental variables in Z2 is at least as

large as the number of the nonconstant variables in X1 and X2. It is similar to the

identification conditions in the nonparametric simultaneous equations models (Newey

et al., 1999, Theorem 2.3) and for Cai et al.’s functional coefficient IV model (Cai et al.,

2006, Theorem 1).

4.3 Estimation

In this section, we propose a two-stage estimator of the coefficient function al(·), l =

0, . . . , d1, in model (4.1) under the conditional mean independence restriction (4.2) and

the identification condition E(ε) = 0 based upon local polynomial fitting and marginal

integration techniques.
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Let us first suppose that U is observable. Then model (4.3) becomes a special case of the

semiparametric additive coefficient model in Xue and Yang (2006). It is clear that the

functions bl(·, ·), l = 0, . . . , d1, in (4.3) can be estimated consistently by a local polynomial

fitting of an ordinary varying-coefficient model. Under the identification condition E(ε) =

E(λ(U)) = 0, the coefficient function al(x2) is a partial mean of bl(x2, U), al(x2) =

E[bl(x2, U)], for any fixed point x2 and l = 0, . . . d1. Following Xue and Yang (2006), we

employ the marginal integration method to estimate al(x2):

ãl(x2) =
1

n

n∑
i=1

b̃l(x2, Ui), (4.4)

where b̃l(·, ·) is some consistent estimator of bl(·, ·).

Since U is unobservable, a two-stage estimation procedure is proposed. In the first step,

we estimate Πm(Zi) nonparametrically for m = 1, . . . , d and i = 1, . . . , n. Denoting the es-

timates Π̂(Zi) = [Π̂1(Zi), . . . , Π̂d(Zi)]
>, we can estimate the residuals Ûi = (Û1i, . . . , Ûdi)

>

by Ûmi = Xmi−Π̂m(Zi). In the second step, we estimate the coefficient function bl(x2, Ui)

for i = 1, . . . , n using the estimated residuals Ûi in place of the unobservable Ui and re-

cover al(x2) using equation (4.4).

To obtain the first stage estimates Π̂m(Zi) for m = 1, . . . , d and i = 1, . . . , n, we apply the

local p1th-order polynomial fitting and leave-one-out techniques. Assuming that Πm(·)

has Lipschitz continuous p1 partial derivatives, Πm(·) can be approximated locally at Zi

by a p1th degree polynomial. For Zk in a neighborhood of Zi,

Πm(Zk) ≈
∑

0≤|q|≤p1

1

q!
DqΠm(Zi)(Zk − Zi)q,

where

q = (q1, . . . , qr)
>, q! =

r∏
j=1

qj!, |q| =
r∑
j=1

qj, zq =
r∏
j=1

z
qj
j ,

∑
0≤|q|≤p1

=

p1∑
j=0

j∑
q1=0

· · ·
j∑

qr=0

q1+···+qr=j

, and DqΠm(z) =
∂|q|Πm(z)

∂zq11 · · · ∂z
qr
r
.
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Following the first stage estimation procedure in Cai et al. (2006), we leave out the ith ob-

servation and use all other observations to estimate Πm(Zi). The advantage of using the

leave-one-out technique is eliminating the dependence between the functions {Π̂m(Zi)}dm=1

and the ith observation (Yi, Xi, Zi), which might complicate the second-stage estimation.

Given the data set {Xmk, Zk}k=1,...,n,k 6=i, we consider the local polynomial estimator min-

imizing the following weighted sum of squared residuals:

1

nhr1

n∑
k=1,k 6=i

K1

(
Zk − Zi
h1

)Xmk −
∑

0≤|q|≤p1

θ(m)
q (Zk − Zi)q

2

,

where K1(·) is a kernel function on Rr and h1 = h1(n) > 0 is a scalar bandwidth. The

local leave-one-out estimator of Πm(Zi) is defined as Π̂m(Zi) = θ̂
(m)
0 , where {θ̂(m)

q }0≤|q|≤p1

minimizes the above weighted sum of squared residuals.

Following the notation of Masry (1996), let Nj = (j+r−1)!/(j!(r−1)!) be the number of

distinct r-tuples q with |q| = j. Arrange the Nj r-tuples as a sequence in a lexicographical

order (with highest priority to last position so that (0, . . . , 0, j) is the first element in the

sequence and (j, 0, . . . , 0) is the last element) and denote φ−1
j this one-to-one map. Let

ρ1(v) = [1, ρ>1,1(v), . . . , ρ>1,p1(v)]> in which ρ1,j(v) is a Nj×1 subvector with its lth element

given by [ρ1,j(v)]l = vφj(l). Then the estimator of Πm(Zi) can be expressed as

Π̂m(Zi) = e>1 S̄
−1
n (Zi)T̄n(Zi), (4.5)

where e1 = (1, 0, . . . , 0)>,

S̄n(Zi) =
1

nhr1

n∑
k=1,k 6=i

K1

(
Zk − Zi
h1

)
ρ1

(
Zk − Zi
h1

)
ρ>1

(
Zk − Zi
h1

)
,

and

T̄n(Zi) =
1

nhr1

n∑
k=1,k 6=i

K1

(
Zk − Zi
h1

)
ρ1

(
Zk − Zi
h1

)
Xmk.

Given the estimate Π̂m(Zi) in (4.5), one can obtain the estimated residuals Umi by Ûmi =

Xmi − Π̂m(Zi) for m = 1, . . . , d and i = 1, . . . , n.
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Moving to the second stage, we derive first an infeasible estimator of al(x2), assuming

{Uj}nj=1 are observed, by combining the local polynomial fitting and marginal integra-

tion (4.4). Given {Uj}nj=1 and assuming the coefficient function al(·) has Lipschitz con-

tinuous (p2 + 1)th derivatives, we can approximate the coefficient function al(·) locally at

a fixed point x2. By the Taylor expansion for X2j in a neighborhood of x2, we have

al(X2j) ≈
p2∑
q=0

∂qal(x2)

∂xq2
(X2j − x2)q.

Combined with the local-constant approximation of λ(·), the regression function in (4.3)

can therefore be estimated by minimizing the following locally weighted sum of squared

residuals:

1

nghd2

n∑
j=1

[
Yj −

d1∑
l=0

{
p2∑
q=0

θlq(X2j − x2)q

}
X1lj − Z1

>
j ϑ

]2

× L
(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
, (4.6)

where L(·) is a univariate kernel function, K2(·) is a d-variate kernel function of order

q2, and g = g(n) > 0 and h2 = h2(n) > 0 are scalar bandwidths for simplicity. Let

{{θ̃lq}p2q=0}d1l=0 and ϑ̃ be the minimizers of equation (4.6). The local estimator of bl(x2, Ui)

is then given by b̃l(x2, Ui) = θ̃l0. After denoting vectors ρ2(v) = (1, v, . . . , vp2)> and

Xj =

ρ2

(
X2j−x2

g

)
⊗X1j

Z1j

 , (4.7)

the estimator of bl(x2, Ui) can be written as

b̃l(x2, Ui) = e>l+1S̃
−1
n (x2, Ui)T̃n(x2, Ui),

where el is a (p2 + 1)d1 × 1 vector with all entries 0 except the lth element being 1,

S̃n(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
XjX>j ,
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and

T̃n(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
XjYj.

Finally, for any given fixed point x2, we construct the marginal integration estimator of

al(x2), l = 1, . . . , d1, according to equation (4.4):

ãl(x2) =
1

n

n∑
i=1

b̃l(x2, Ui) =
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)T̃n(x2, Ui). (4.8)

In the above estimation procedure, we fit a local constant for λ(U) instead of a higher

order local polynomial for two reasons. First, the computation for a local constant fitting

is less cumbersome when the dimension of U is large. Second, the approximation bias

of the proposed estimator due to the local fitting for λ(U) can be negligible by taking a

small bandwidth h2 and a higher order kernel K2(·).

Note that the constant coefficients γl, l = 1, . . . , r1, can be treated as functions of x2 and

u, i.e. {γl(x2, u)}r1l=1. The minimizer ϑ̃ from the objective function (4.6) is an estimator

of γ(x2, Ui), γ̃n(x2, Ui) = ϑ̃, which uses only data points in the neighborhood of x2 and

Ui and ignore the fact that the functions {γl(x2, Ui)}r1l=1 are actually constant. Again,

by employing the marginal integration technique, a more efficient estimator for γ that

employs all all data points can be obtained:

γ̃ =
1

n

n∑
i=1

γ̃n(X2i, Ui). (4.9)

Note though that deriving its asymptotic properties is beyond the scope of this work.

More details on such an estimating procedure for constant coefficients can be found in

Zhang et al. (2002) and Cai and Xiong (2012).

Since the residual series {Uj}nj=1 is unobserved, the above estimators ãl(x2) and γ̃ are

both infeasible. The following feasible estimators of al(x2) and γ follow after substituting

{Uj}nj=1 by the estimated residual series {Ûj}nj=1 in the infeasible estimators (4.8) and
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(4.9):

âl(x2) =
1

n

n∑
i=1

e>l+1Ŝ
−1
n (x2, Ûi)T̂n(x2, Ûi) (4.10)

and

γ̂ =
1

n

n∑
i=1

γ̂n(X2i, Ûi),

where Ŝn(x2, Ûi), T̂n(x2, Ûi), and γ̂n(X2i, Ûi) are defined analogously to S̃n(x2, Ui), T̃n(x2, Ui),

and γ̃n(X2i, Ui), respectively, but with the series {Ûj}nj=1 in place of {Uj}nj=1.

4.4 Distribution theory

4.4.1 Asymptotic properties and assumptions

Let F ba be the σ-algebra generated by {ξi; a ≤ i ≤ b}. The α-mixing coefficient of the

process {ξi}∞i=−∞ is defined as

α(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
−∞, B ∈ F∞m }.

If α(m)→ 0 as m→∞, the process {ξi}∞i=−∞ is called strong mixing or α-mixing.

First, we make the following assumptions to derive the asymptotic results of the infeasible

estimator ãl(x2) defined in (4.8).

Assumption 4.A. Let vectors W = (X>1 , Z
>
1 )> and V = (X2, U

>)> and random variable

ε = Y −X>1 a(X2)− Z>1 γ − λ(U).

4.A1. The kernels K2(·) and L(·) are bounded symmetric functions with compact supports

[−1, 1]d and [−1, 1], respectively, where the functions K2,j(·) = (·)jK2(·) for all

j ∈ [0, 2p2 + 1] and L(·) are Lipschitz continuous,
∫
K2(v)dv =

∫
L(v)dv = 1, and

p2 is given in condition 4.A2. Furthermore, K2(·) is a d-variate function of order q2,

that is,
∫
K2(v)vl11 · · · v

ld
d dv = 0, for 1 ≤ l1 + · · ·+ ld ≤ q2 − 1.
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4.A2. The (p2 + 1)th partial derivatives of a(·) and the q2th partial derivatives of λ(·) are

uniformly bounded and Lipschitz continuous.

4.A3. The process {X1i, X2i, Z1i, Ui, εi}ni=1 is strictly stationary and strong mixing with

α-mixing coefficients α(m),m ∈ N, that satisfy α(m) ≤ C2m
−s2 , where C2 < ∞,

and for some δ2 > 0 and η2 > 0,

s2 >

1 + (1 + δ2)

{
2 + d+

d+ 1

η2

}
δ2

.

4.A4. The variables X1, X2, Z1, and U have compact supports DX1 , DX2 , DZ1 , and DU ,

respectively. The joint probability density function f(·, ·, ·, ·) of (X1, X2, Z1, U) has

bounded partial derivatives with respect to U and X2 uniformly on DX1 , DX2 , DZ1 ,

and DU . The marginal densities fX2U(·, ·) of X2 and U , fU(·) of U , and fX2(·) of

X2 are uniformly bounded and infx2∈DX2
,u∈DU fX2U(x2, u) > 0. The q2th partial

derivatives of the marginal density fU are bounded and continuous.

4.A5. The partial derivative of the conditional variance E(ε2|X1 = x1, X2 = x2, Z1 =

z1, U = u) = σ2
ε (x1, x2, z1, u) with respect to X2 is bounded and continuous uni-

formly on DX1 , DX2 , DZ1 , and DU .

4.A6. Let ω represent 1 or any element of matrix WW>, vector Wε, and variable ε2. It

has to satisfy the following moment conditions:

(i) E|ω|2+δ2 <∞,

(ii) sup
v∈DX2

×DU
E(|ω|2+δ2|V = v)fX2U(v) <∞

(iii) for all j ∈ N,

sup
(v0,vj)∈(DX2

×DU )2
E(|ω0ωj||V0 = v0, Vj = vj)fV0Vj(v0, vj) <∞,

where fV0Vj(v0, vj) denote the joint density of V0 and Vj.

4.A7. The covariance matrix E(WW>|X2 = x2, U = u) is uniformly bounded. The in-

fimum of eigenvalues of E(WW>|X2 = x2, U = u) is strictly positive uniformly

in x2 ∈ DX2 and u ∈ DU . Additionally, the moment matrix of the kernel L(·),

M2 =
∫
ρ2(v)ρ>2 (v)L(v)dv, is nonsingular.
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4.A8. The bandwidths g = g(n)→ 0 and h2 = h2(n)→ 0 as n→∞ satisfy that

(i) ngh2q2
2 → 0,

(ii) ngδ2/(2+δ2)h
2d(1+δ2)/(2+δ2)
2 →∞,

(iii) ng2p2+3 → c̄ ∈ [0,+∞), and

(iv) nθ2ghd2/ lnn→∞, where

θ2 =

s2 − 2− d− d+ 1

η2

− 1 + s2

1 + δ2

s2 + 2− d− 1 + s2

1 + δ2

.

Assumptions 4.A1–4.A8 are similar to those imposed on the additive coefficient model by

Xue and Yang (2006). One noteworthy difference is that Xue and Yang (2006) assumed

a β-mixing process to apply Lemma 2 of Yoshihara (1976). We relax this to an α-mixing

process by applying Lemma 1.2 of Sun and Chiang (1997) and Lemma C.2 of Gao and

King (2004). Another difference is that instead of assuming the mixing coefficients to

have geometric decay and Cramer’s moment condition as it in Xue and Yang (2006),

we provide a trade-off among the mixing decay rate, moment and bandwidth conditions

in Assumptions 4.A3, 4.A6, 4.A8(ii), and 4.A8(iv). Since we employ a local constant

fitting for λ(U), Assumptions 4.A2 and 4.A4 require λ(·) and the marginal density fU

to have a certain degree of smoothness. Additionally, Assumption 4.A8(i) requires the

bandwidth g = g(n) to be chosen in a way such that the bias from the local constant fitting

for λ(U) becomes negligible. Assumption 4.A8(iii) determines the optimal convergence

rate in Theorem 4.2 which establishes the asymptotic normality result for the infeasible

estimator of al(·).

Combining Assumptions 4.A3 and 4.A8(iv), we get θ2 ∈ (0, 1]. Assumption 4.A8(iv) is

a strengthening of the condition nghd2 → ∞. If variables X1 and Z1 are both bounded,

we can take δ2 =∞. Then, Assumption 4.A8(iv) simplifies to

s2 > 2 + d+
d+ 1

η2

and θ2 =
s2 − 2− d+ (d+ 1)/η2

s2 + 2− d
.

If η2 = ∞, this further reduces to s2 > 2 + d and θ2 = (s2 − 2 − d)/(s2 + 2 − d),

where θ2 becomes smaller as s2 − d decreases. In other words, if the decay rate of the
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mixing coefficients is small or the dimension of (X1, X2) is high, the convergence rates for

bandwidths g and h2 are required to be small. If the mixing coefficients have geometric

decay (s2 = ∞), then θ2 = 1 and Assumption 4.A8(iv) is equivalent to nghd2 → ∞ for

all η2 > 0 and d. Given this, we provide later in equation (4.14) a feasible range of the

convergence rate for bandwidth h2 such that g achieves the optimal rate O(n1/(2p2+1))

and Assumptions 4.A8(i)–(iv) are satisfied. See Section 4.4.3 for details.

Define the covariance matrix

S(x2, u) =

SXX(x2, u) SXZ(x2, u)

SZX(x2, u) SZZ(x2, u)

 ,

where

SXX(x2, u) =

{∫
ρ2(v)ρ>2 (v)L(v)dv

}
⊗ E[X1X

>
1 |X2 = x2, U = u],

SXZ(x2, u) = S>ZX(x2, u) =

{∫
ρ2(v)L(v)dv

}
⊗ E[X1Z

>
1 |X2 = x2, U = u],

SZZ(x2, u) = E[Z1Z
>
1 |X2 = x2, U = u].

Theorem 4.2. Suppose that (4.3) holds and E(λ(U)) = E(ε) = 0. Under Assumptions

4.A1–4.A8, it holds for l = 0, . . . , d1 and any fixed point x2 ∈ DX2 that, as n→∞,

√
ng{ãl(x2)− al(x2)− gp2+1ηl(x2)} d−→ N{0, σ2

l (x2)},

where

σ2
l (x2) = fX2(x2)E

[
f 2
U(U)

f 2
X2U

(x2, U)
σ2
ε (X1, x2, Z1, U)

∫
L2
l (v, x2, U,X1, Z1) dv

]
(4.11)

and

ηl(x2) =

∫
vp2+1E[Ll(v, x2, U,X1, Z1)X>1 ]dv

a(p2+1)(x2)

(p2 + 1)!
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with

Ll(v, x2, U,X1, Z1) = e>l+1S
−1(x2, U)

ρ2(v)⊗X1

Z1

L(v).

The expression of the asymptotic variance in (4.11) suggests a direct estimator by esti-

mating fX2 , fU , fX2U , σ2
ε , and L2

l via local polynomial smoothing. Detail discussion of the

estimation for σ2
l (x2) is provided in Section 4.4.2. Next, we list the assumptions required

to prove that the difference between the infeasible estimator ã(·) in (4.8) and the feasible

two-stage estimator â(·) in (4.10) is asymptotically negligible.

Assumption 4.B.

4.B1. The r-variate kernel K1(·) is bounded symmetric function with
∫
K1(v)dv = 1 and

has compact support [−1, 1]r. The functions K1,q(v) = vqK1(v) for all q with

0 ≤ |q| ≤ 2p1 + 1 are Lipschitz continuous, where p1 is defined in condition 4.B2.

Further, the kernel K2(·) from the second stage has bounded second order derivative

K2(·).

4.B2. The (p1 + 1)th partial derivatives of the function Πm(·) are uniformly bounded and

Lipschitz continuous for m = 1, . . . , d.

4.B3. The process {Xi, Z1i, Z2i}ni=1 is strictly stationary and strong mixing with α-mixing

coefficients α(m),m ∈ N, that satisfy α(m) ≤ C1m
−s1 , where C1 < ∞ and s1

satisfies for some δ1 > 0 and η1 > 0

s1 >

1 + (1 + δ1)

{
1 + r +

r

η1

}
δ1

.

4.B4. The vector of variables Z = (Z>1 , Z
>
2 )> has a compact support DZ . The marginal

density fZ(·) of Z is uniformly continuous and bounded such that infz∈DZ fZ(z) > 0.

4.B5. Let $ represent any element of vector U . It has to satisfy the following moment

conditions:

(i) E|$|2+δ1 <∞,
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(ii) sup
z∈DZ

E(|$|2+δ1 |Z = z)fZ(z) <∞,

(iii) for all i ∈ N,

sup
(z0,zi)∈D2

Z

E(|$0$i||Z0 = z0, Zj = zi)fZ0Zj(z0, zi) <∞,

where fZ0Zi(z0, zi) denotes the joint density of (Z0, Zi).

4.B6. The matrix M1 =
∫
ρ1(v)ρ>1 (v)K1(v)dv is nonsingular.

4.B7. The bandwidths g = g(n) → 0, h2 = h2(n) → 0, and h1 = h1(n) → 0 as n → ∞

satisfy that

(i) nθ1hr1/ lnn→∞, where

θ1 =

s1 − 1− r − r

η1

− 1 + s1

1 + δ1

s1 + 3− r − 1 + s1

1 + δ1

,

(ii) ngh
2(p1+1)
1 → 0, ng

2δ
2+δ
−1h

2rδ
2+δ

1 h
2dδ
2+δ

+2

2 →∞, ng
2

2+δh
2r
2+δ

1 h
2d
2+δ

2 →∞, and

(iii) ng−1h2r
1 h

4
2/(lnn)2 →∞, ngh

4(p1+1)
1 /h4

2 → 0,

where δ = max{δ1, δ2} with δ1 and δ2 given in Assumptions 4.B3 and 4.A3, respec-

tively.

Assumptions 4.B1–4.B5 and 4.B7(i) are commonly imposed in literature on the local

polynomial estimation to establish uniform rate of convergence; see for example Masry

(1996) and Hansen (2008). Assumptions 4.B7(ii)–4.B7(iii) are similar to those imposed

on the estimation of nonparametric simultaneous equations models in Su and Ullah

(2008, Assumption A5). Assumption 4.B7(ii) requires that the estimation bias from the

first stage nonparametric estimation should be op(1/
√
ng). According to Masry (1996),

max1≤k≤n ‖Π̂(Zk) − Π(Zk)‖ = Op(v1n + hp1+1
1 ), where ‖ · ‖ is the Euclidean norm and

v1n =
√

lnn/(nhr1). These approximation errors due to the use of the estimated residual

series {Ûi}ni=1 are accounted for in Assumption 4.B7(iii): (h−1
2 (v1n+hp1+1

1 ))2 = o(1/
√
ng),

where the appearance of h−1
2 comes from the use of the Taylor expansion. Note that As-

sumption 4.B7(iii) also implies that h−1
2 (v1n + hp1+1

1 ) = o(1). Section 4.4.3 provides an
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example for bandwidth sequences g, h2 and h1 which satisfies Assumptions 4.A8 and

4.B7.

Theorem 4.3. Suppose that model (4.1) is satisfied with the orthogonality condition (4.2)

and the identification condition E(ε) = 0. If Assumptions 4.A1–4.A8 and 4.B1–4.B7 hold,

then for l = 0, . . . , d1 and any x2 ∈ DX2

√
ng{âl(x2)− ãl(x2)} P−→ 0

as n→∞.

Following directly from Theorem 4.2 and 4.3, we finally establish the asymptotic distri-

bution of the proposed two-stage estimator â(x2) in the following theorem.

Theorem 4.4. Suppose that (4.1) and (4.2) hold and E(ε) = 0. Under Assumptions

4.A1–4.A8 and 4.B1–4.B7, it holds for l = 0, . . . , d1 and any fixed point x2 ∈ DX2 that

as n→∞

√
ng{âl(x2)− al(x2)− gp2+1ηl(x2)} d−→ N{0, σ2

l (x2)}.

4.4.2 Covariance matrix estimation

Rearranging the terms in (4.11), the asymptotic variance σ2
l (x2) is the (l+ 1)-th diagonal

element of the following covariance matrix

E

(
fX2(x2)f 2

U(U)

fX2U(x2, U)
· S

−1(x2, U)

fX2U(x2, U)
fX2U(x2, U)Ω(x2, U)

S−1(x2, U)

fX2U(x2, U)

)
, (4.12)

where

Ω(x2, u) =

ΩXX(x2, u) ΩXZ(x2, u)

ΩZX(x2, u) SZZ(x2, u)

 ,

ΩXX(x2, u) =

{∫
ρ2(v)ρ>2 (v)L2(v)dv

}
⊗ E[X1X

>
1 ε

2|X2 = x2, U = u],

ΩXZ(x2, u) = Ω>ZX(x2, u) =

{∫
ρ2(v)L2(v)dv

}
⊗ E[X1Z

>
1 ε

2|X2 = x2, U = u].
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Using the above expression, we construct a estimator of σ2
l (x2):

σ̂2
l (x2) =

[
1

n

n∑
i=1

ω̂n(x2, Ûi)Ŝ
−1
n (x2, Ûi)Ω̂n(x2, Ûi)Ŝ

−1
n (x2, Ûi)

]
(l+1,l+1)

, (4.13)

where

ω̂n(x2, Ûi) =

[
n−1g−1

∑n
j=1K

(
X2j−x2

g

)] [
n−1h−d2

∑n
j=1 L

(
Ûj−Ûi
h2

)]2

n−1g−1h−d2

∑n
j=1K

(
X2j−x2

g

)
L
(
Ûj−Ûi
h2

) ,

Ω̂n(x2, Ûi) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
XjX>j ε̂2j ,

ε̂j = Yj −X>j Ŝ−1
n (X2j, Ûj)T̂n(X2j, Ûj),

and Ŝ−1
n (x2, Ûi) is defined in (4.10), which is a consistent estimator of fX2U(x2, Ûi)S(x2, Ûi)

by Lemma 4.15. Similar to the proof of consistency for Ŝn(x2, Ûi), Ω̂n(x2, u) can be shown

to be a consistent estimator of fX2U(x2, u)Ω(x2, u). Since every term in equation (4.13)

are consistent estimators of its corresponding term in (4.12), consistency of the variance

estimator σ̂2
l (x2) can be proven easily.

4.4.3 Discussion

The proposed estimator âl(·) is consistent with a convergence rate depending only on

the sample size n and the bandwidth g = g(n) for well-chosen first- and second-stage

bandwidth sequences h1 = h1(n) and h2 = h2(n). Like some other kernel-based multi-

stage nonparametric procedures (e.g. Xiao et al., 2003; Su and Ullah, 2008), our first

stage nonparametric estimation does not have any impact on the asymptotic variance of

our final stage estimators. However, such an observation does not hold in general. The

asymptotic variance of the two-stage estimator in Cai et al. (2006) does depend on the

variation of the estimated reduced form in the first stage and the covariation between the

first and second stage.



Chapter 4. Functional Coefficient Models with Endogenous Variables 143

According to Theorem 4.4, the asymptotically optimal bandwidth of g, denoted by gopt,

minimizes the total asymptotic mean integrated squared error (AMISE) of {âl(x2)}d1l=0:

d1∑
l=0

AMISE(âl) = g2(p2+1)

d1∑
l=0

∫
η2
l (x2)dx2 +

1

ng

d1∑
l=0

∫
σ2
l (x2)dx2.

The optimal bandwidth gopt is found to be

gopt =

{ ∑d1
l=0

∫
σ2
l (x2)dx2

2n(p2 + 1)
∑d1

l=0

∫
η2
l (x2)dx2

}1/(2p2+3)

.

If we select g that achieves its optimal rate of convergence, Assumption 4.A8 implies that

we should choose the other second stage bandwidth h2 such that h2 ∝ n−α
∗
, where

α
¯
∗ ≡ p2 + 1

q2

< α∗γ∗ <
2p2 + 3 + (p2 + 1)δ

d(1 + δ)
≡ ᾱ∗ (4.14)

and γ∗ = 2p2 + 3. Further, by Assumption 4.B7, the first stage bandwidth should be

chosen such that h1 ∝ n−β
∗

with

β
¯

∗ ≡ max

{
p2 + 1

p1 + 1
,
p2 + 1 + 2α∗γ∗

2(p1 + 1)

}
< β∗γ∗ <

p2 + 2− 2α∗γ∗

r
≡ β̄∗. (4.15)

For example, when p2 = 1, equations (4.14) and (4.15) become

2

5q2

< α∗ <
5 + 2δ

5d(1 + δ)
and max

{
2

5(p1 + 1)
,

1 + 5α∗

5(p1 + 1)

}
< β∗ <

3− 10α∗

5r
.

From the above inequality, the convergence rates for bandwidths h1 and h2 are required

to be small when d and r are large. The existences of α∗ and β∗ are ensured if

2(1 + δ)

5 + 2δ
<
q2

d
and

max {2, 1 + 5α∗}
3− 10α∗

<
p1 + 1

r
.

The orders of kernel K2 and first-stage local fitting should be sufficiently large for high

dimensional (X1, X2) and (Z1, Z2), respectively. If X1 and Z1 are both bounded, take

δ = ∞, α∗ exists if the order of kernel K2 is larger than the number of non-constant

variables in X1 and X2, i.e. d < q2.
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4.4.4 Bandwidth selection

The nature of the multi-stage estimation complicates bandwidth selection in a semipara-

metric model. We propose an ad hoc bandwidth selection method for i.i.d observations,

similar to that discussed in Cai et al. (2006). First, we apply the leave-one-out least

squares cross-validation on the first stage fitting to select the bandwidth ĥCV
1 . Since ĥCV

1

might have a different rate of convergence from what we desire, we set the data-driven

choice of h1 equal to ĥ1 = ĥCV
1 n1/(2p1+2+r)−(α

¯
∗+ᾱ∗)/(2γ∗), where α

¯
∗, ᾱ∗ and γ∗ are defined

in (4.14). Additionally, we take the bandwidth for the nonparametric estimated residuals

to be ĥ2 = ĥCV
1 n1/(2p1+2+r)−(β

¯

∗+β̄∗)/(2γ∗) with β
¯

∗ and β̄∗ given in (4.15). Once we obtain

ĥ1 and ĥ2, we can keep their values fixed and select the remaining bandwidth g via the

least squares cross-validation in the second stage:

g̃ = arg min
g

n∑
i=1

[
Yi − b̃0,−i(X2i, Ui)−

d1∑
l=1

ãl,−i(X2i)X1li −
r1∑
l=1

γ̃l,−iZ1l
>
i

]2

,

where ãl,−i(·), γ̃l,−i, and b̃0,−i(·, ·) are the estimates ãl(·), γ̃l, and b̃0(·, ·) based on all data

except of the ith observation. After obtaining g̃, we can adjust the data-driven choice of

h2 to be h̃2 = g̃n1/γ∗−(β
¯

∗+β̄∗)/(2γ∗).

The above mentioned bandwidth selection method requires the use of leave-one-out cross-

validation based on i.i.d observations. For weak dependent observations, where regressors

do not contain lag dependent variables, leave-one-out cross-validation can still be used.

When regressors contain lagged dependent variables, we suggest the modified multi-fold

cross-validation method discussed in Cai et al. (2000) be used.

4.5 Simulation and empirical studies

In this section, some simulated examples are used to investigate the finite sample prop-

erties of the proposed two-stage estimator. It is compared with the ordinary local linear

estimator that ignores the endogeneity issue and the two-stage estimator from Cai et al.

(2006), which allows for endogenous regressors in X1, but not in the transition variable

X2. A real data example is provided in Section 4.5.3.
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We evaluate the performance of all these estimators in terms of the mean absolute devi-

ation error (MADE):

MADEl =
1

ngrid

ngrid∑
k=1

|ãl(x2k)− al(x2k)|,

where x2k (k = 1, . . . , ngrid) are the grid points. For each example, evaluation is based on

500 samples of sizes n = 200, 400, and 800.

In all examples, we employ local fifth degree polynomial fittings (p1 = 5) in the first stage

and a local linear fitting (p2 = 1) in the second stage for the proposed estimator. We use

the second-order Epanechnikov kernel K(v) = 0.75(1−v2)I(|v| ≤ 1) and its product form

as a multivariate kernel with bandwidth sequences: h1(n) = 2n−1/14, h2(n) = 2n−5/24,

and g(n) = 2n−1/5σX2 , where σX2 is the standard derivation of variable X2 (the variables

Z and Û are standardized to have the unit variance). These bandwidths are chosen such

that inequalities (4.14) and (4.15) are satisfied. The same g(n) is used as the bandwidth

for the ordinary local linear estimator and the estimator of Cai et al. (2006) in the second

stage. Since Cai et al. (2006) employed local linear fittings in the first stage and required

the first stage bandwidth to be h1(n) = o(g(n)), we take h1(n) = 2n−2/9 in that case

instead.

4.5.1 Example 1: iid observations

First, we consider a functional coefficient IV model (Cai et al., 2006, Example 2): Y = g0(Z1) + g1(Z1)X1 + ε,

X1 = 2 sin(Z1 + Z2) + U,

where the coefficient functions are defined as

g0(z1) = cos(z1) and g1(z1) = (1 + 0.1z1) exp{−(0.5z1 − 1.5)2},



Chapter 4. Functional Coefficient Models with Endogenous Variables 146

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−><−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−>
<− g0 −> <− g1 −> <− g0 −> <− g1 −> <− g0 −> <− g1 −>

(a)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−><−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−>
<− g0 −> <− g1 −> <− g0 −> <− g1 −> <− g0 −> <− g1 −>

(b)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

<−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−><−−− n = 100 −−−> <−−− n = 250 −−−> <−−− n = 500 −−−>
<− g0 −> <− g1 −> <− g0 −> <− g1 −> <− g0 −> <− g1 −>

(c)

Figure 4.1: Simulation results for Example 1. Displayed in (a), (b) and (c) are boxplots of
the 500 MADE values of the proposed estimator, Cai et al. (2006)’s estimator, and the ordinary
local linear estimator, respectively.

Z1 and Z2 are independently generated from a uniform distribution U [2, 8], and the errors

ε and U are jointly generated from a bivariate normal distribution: ε

U

 ∼ N

0,

 1 0.7

0.7 1

 .

It is clear that ε and U are independent of Z1 and Z2. Consequently, E(ε|Z1, Z2) = 0,

E(ε|U,Z1, Z2) = E(ε|U) = 0.7U , and E(ε) = 0. This implies that the identification

conditions of the proposed estimator and of Cai et al. (2006) are both satisfied.

For each sample size, Figure 4.1 depicts boxplots of the 500 MADE values of the proposed

two-stage estimators in Figure 4.1(a), the two-stage estimator of Cai et al. (2006) in Figure
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4.1(b), and the ordinary local linear estimator in Figure 4.1(c), respectively. Although

it seems that the ordinary local linear estimator for g0(·) is not biased in Figure 4.1(c),

the MADE values of the ordinary local linear estimator of g1(·) converge to a positive

constant as the sample size increases. This confirms that ignoring endogeneity leads

to an inconsistent result. On the contrary, we observe that the MADE values of both

two-stage estimators for g0(·) and g1(·) do converge to zero in Figure 4.1(a) and 4.1(b).

Furthermore, the MADE values of our estimator are more or less the same as values of

Cai et al.’s estimator, which suggests that our estimator performs almost equally well as

Cai et al.’s estimator. For comparison, Figure 4.2 displays the plots of three estimates for

g0(·) and g1(·) from a typical sample for each sample size. The typical sample is selected

such that its total MADE value equals to the median in the 500 replications.

4.5.2 Example 2: weakly dependent observations

In the second example, we generate weakly dependent data according to
Yt = cos(X2t)X1t + εt,

X1t = cos(0.5Z1t + 0.6Z2t) + U1t,

X2t = Z2t + sin(0.2Z2t) + U2t,

where the errors εt, U1t, and U2t, and the instruments Z1t and Z2t are generated as

εt = 0.5ωt + 0.3ν1t, U1t = 1.8ωt + 0.6ν2t, U2t = 0.5ωt + 0.2ν3t,

Z1t = 0.7Z1t−1 + ν4t, and Z2t = 1 + 0.5Z2t−1 + ν5t.

Here, ωt, ν1t, ν2t, ν3t, ν4t, and ν5t are independent normal random variables with zero

mean and unit variance. It is easy to see that the above design satisfies the identification

conditions of Theorem 4.1: E(εt|U1t, U2t, Z1t, Z2t) = E(ε|U1t, U2t) and E(εt) = 0. Since

the errors U2t and εt are correlated, the transition variable X2t is endogenous, which

violates the conditions in Cai et al. (2006). A study of weak instruments is provided in

Section 4.9, where we investigate how the performance of our proposed estimator changes

under different correlations between X2 and Z2.
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Figure 4.2: Simulation results for Example 1. Figures (a), (c) and (e) give the plots of the true
coefficient functions g0(·) (in solid line), the proposed estimator (dashed line), the estimator in
Cai et al. (2006) (dashed-dotted line), and the ordinary local linear estimator (dotted line) for
n = 100, 250 and 500, respectively. Figures (b), (d) and (f) give the plots the three estimators
of the coefficient function g1(·) for n = 100, 250 and 500, respectively.
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Figure 4.3: Simulation results for Example 2. Displayed in (a), (b) and (c) are boxplots of
the 500 MADE values of the proposed estimator, Cai et al. (2006)’s estimator, and the ordinary
local linear estimator, respectively.

Figure 4.3 presents boxplots of the 500 MADE values for each sample size. In Figure

4.3(a), the MADE values of the proposed two-stage estimator shrink toward zero as sam-

ple size increases. This phenomenon does not hold for the ordinary local linear estimation

and two-stage estimation from Cai et al. (2006). In Figure 4.3(c), the MADE values of

the ordinary local linear estimator are almost constant, and in Figure 4.3(b), the MADE

values of Cai et al.’s estimator are at least twice as large as those of the proposed estima-

tor and converge to a positive constant. The same conclusions can be drawn by using the

plots of three estimates from a typical sample for each sample size in Figure 4.4. The pro-

posed estimates closely track the true coefficient function and the biases become smaller

as the sample size expands. On the other hand, the ordinary local linear estimates always

overestimate the true coefficient function, whereas Cai et al.’s estimates underestimate



Chapter 4. Functional Coefficient Models with Endogenous Variables 150

0 1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

aciv
ordinary
cdxw

(a)

0 1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

aciv
ordinary
cdxw

(b)

0 1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

aciv
ordinary
cdxw

(c)

Figure 4.4: Simulation results for Example 2. Figures (a), (b) and (c) give the plots of the
true coefficient functions (in solid line), the proposed estimator (dashed line), the estimator in
Cai et al. (2006) (dashed-dotted line), and the ordinary local linear estimator (dotted line) for
n = 100, 250 and 500, respectively.

the first one-third of the domain. These biases do not vanish as the sample size increases.

4.5.3 Example 3: real data example

In this example, we analyze the return to schooling using the wage and education data

for a sample of men in 1976 from the same data set used by Card (1993). The level of

education in a wage equation is endogenous if a good proxy for the individual ability

is not available. To deal with the endogeneity problem of education, we considered the

following IV model, which allows the marginal returns of schooling to vary with different
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Figure 4.5: Estimation results for Example 3. Figures (a) and (b) give the plots of the
proposed estimator (in solid dashed line) and the ordinary local linear estimator (dashed line)
for a0(·) and a1(·), respectively.

levels of working experience:

Y = a0(X2) + a1(X2)X1 + ε,

(X1, X2) = Π(Z1, Z2) + U,

where Y is the logarithm of hourly wage, X1 is years of schooling, and X2 is years of

potential work experience, instrumental variables Z1 and Z2 are measures of age and

father’s educational attainment, respectively. The potential work experience defined as

X2 = Z1 − X1 − 6, which is also endogenous. The objects of interests are the marginal

return to work experience and schooling, a0(·) and a1(·).

Figures 4.5(a) and (b) show the plots of our proposed IV estimator (the solid line) and

the ordinary local linear estimator without correcting endogeneity (the dashed line) of the

coefficient functions a0(·) and a1(·). The bandwidths are set to g = 5 and h2 = σ̂Û for the

final stage regression, and h1 = (σ̂Z1 , σ̂Z2) for the fist stage regression, where σ̂X denotes

the sample standard deviation of variable X. The plots suggest that the ordinary local

linear estimators of a0(·) and a1(·) are positive and almost constant when the working

experience is in the range of 4 to 15 years. In contrast, our proposed IV estimators

suggest nonlinearities in a0(·) and a1(·). Figure 4.5(a) indicates that the marginal return
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to working experience is positive and diminishing at the beginning and then expanding

after 12 years of working experience is reached. On the other hand, Figure 4.5(b) suggests

that while the marginal returns to education are positive, these returns are first increasing

in experience and then decreasing after a threshold of 12 years of working experience.

4.6 Conclusion

This chapter studies a nonparametric simultaneous equations model under a functional

coefficient representation for the regression function. Using the conditional mean in-

dependence restriction (4.2), the ill-posed inverse problem of nonparametric structural

models is resolved, which allows the coefficients to be unknown functions of endogenous

transitions variables. We propose a two-stage estimation procedure based on the lo-

cal polynomial fitting and marginal integration techniques and establish its asymptotic

properties. Simulation evidence suggests our estimator perform equally well as Cai et al.

(2006)’s two-stage estimator in the case of an exogenous transition variable, while it ex-

hibits reasonably good performance when the transition variable is endogenous. Future

research should include optimal selection of bandwidths and allow the regressors to be a

mixture of continuous and discrete variables.

4.7 Appendix: Technical lemmas

Lemma 4.5. (Sun and Chiang, 1997, Lemma 1.2) Let {ξi} be a d-dimensional strong

mixing process with the mixing coefficient α(i). For any integer p > 1 and integers

(i1, . . . , ip) such that 1 ≤ i1 < i2 < . . . < ip, let ϕ be a Borel function defined on Rpd such

that ∫
|ϕ(v1, . . . , vp)|1+θdF (1)(v1, . . . , vj)dF

(2)(vj+1, . . . , vp) ≤M1

for some θ > 0 and M1 > 0, where F (1) = Fi1,...,ij and F (2) = Fij+1,...,ip are the distribution

functions of (ξi1 , . . . , ξij) and (ξij+1
, . . . , ξip), respectively. Let F denote the distribution
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function of (ξi1 , . . . , ξip). Then∣∣∣∣∫ ϕ(v1, . . . , vp)dF (v1, . . . , vp)−
∫
ϕ(v1, . . . , vp)dF

(1)(v1, . . . , vj)dF
(2)(vj+1, . . . , vp)

∣∣∣∣
≤ 4M

1/(1+θ)
1 α(ij+1 − ij)θ/(1+θ).

Lemma 4.6. (Gao and King, 2004, Lemma C.2(ii)) Let φ(·, ·) be a symmetric Borel

function defined on Rd × Rd. Let the strictly stationary process {ξi} be defined as in

Lemma 4.5. Assume that for any fixed v ∈ Rd, E[φ(ξ1, v)] = 0. Then

E

{ ∑
1≤i<j≤n

φ(ξi, ξj)

}2

≤ Cn2M
1/(1+θ)
2 ,

where θ > 0 is a fixed constant, C > 0 is a constant independent of n and the function

φ, F (ξi) denote the distribution function of ξi, and

M2 = max
1≤i<j≤n

max

{
E|φ(ξi, ξj)|2(1+θ),

∫
φ(ξi, ξj)

2(1+θ)dF (ξi)dF (ξj)

}
.

Lemma 4.7. (Gao and King, 2004, Lemma C.2(i)) Let ψ(·, ·, ·) be a symmetric Borel

function defined on Rd ×Rd ×Rd. Let the strictly stationary process {ξi}ni=1 be defined

as in Lemma 4.5. Assume that for any fixed v, v∗ ∈ Rd, E[ψ(ξ1, v, v
∗)] = 0. Then

E

{ ∑
1≤i<j<k≤n

ψ(ξi, ξj, ξk)

}2

≤ Cn3M
1/(1+θ)
3 ,

where 0 < θ < 1 is a small constant, C > 0 is a constant independent of n and the

function ψ, M3 = max{M31,M32,M33}, and

M31 = max
1≤i<j≤n

max

{
E|ψ(ξ1, ξi, ξj)|2(1+θ),

∫
ψ(ξ1, ξi, ξj)

2(1+θ)dF (ξ1)dF (ξi)dF (ξj)

}
,

M32 = max
1≤i<j≤n

∫
ψ(ξ1, ξi, ξj)

2(1+θ)dF (ξj)dF (ξ1, ξi),

M33 = max
1≤i<j≤n

∫
ψ(ξ1, ξi, ξj)

2(1+θ)dF (ξ1)dF (ξi, ξj).
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4.8 Appendix: Proof of the theorems

Proof of Theorem 4.1

Let x
¯1 = (x11, . . . , x1d1)

> and a
¯
(x2) = [a1(x2), . . . , ad1(x2)]>. Suppose that there exists

another set of parameters ȧ(x2) = [ȧ0(x2), ȧ
¯
>(x2)]>, γ̇ and λ̇(u) satisfying equation (4.3)

for every x2 and u on their compact supports. Defining δ1(x2) = a0(x2)− ȧ0(x2), δ2(x2) =

a
¯
(x2)− ȧ

¯
(x2), δ3 = γ − γ̇, and δ4(u) = λ(u)− λ̇(u), we have on the whole support

0 = δ1(x2) + x
¯
>
1 δ2(x2) + z>1 δ3 + δ4(u)

= δ1(Π2(z) + u2) + {Π1(z) + u1}>δ2(Π2(z) + u2) + z>1 δ3 + δ4(u), (4.16)

where [Π>1 (z),Π>2 (z)]> = Π(z) denotes the parts of Π(z) corresponding to X1 and X2,

respectively, and (u>1 , u2)> = u, by using the fact that (x
¯
>
1 , x2)> = Π(z) + u.

Let D, D1, and D2 denote the partial derivatives with respect to z, z1, and z2, respectively;

for example, DΠ(z) is the Jacobian matrix of Π(z). By the continuous differentiability

assumptions for Π(·), a(·), and λ(·), we differentiate the identity (4.16) with respect to

z1, z2, and u, respectively:

0 = D1Π>(z)

 δ2(x2)

Dδ1(x2) +Dδ>2 (x2)x
¯1

+ δ3, (4.17)

0 = D2Π>(z)

 δ2(x2)

Dδ1(x2) +Dδ>2 (x2)x
¯1

 , (4.18)

0 =

 δ2(x2)

Dδ1(x2) +Dδ>2 (x2)x
¯1

+Dδ4(u). (4.19)

By the full rank condition for D2Π>(z2) given in the statement of the theorem, it follows

from equation (4.18) that δ2(x2) = 0, and thereby Dδ2(x2) = 0 and Dδ1(x2) = 0. By

equations (4.17) and (4.19) and full rank DΠ>+, we have δ3 = 0 and Dδ4(u) = 0. As

δ2(x2) = 0, δ3 = 0, and the partial derivatives of δ1(x2) and δ4(u) are zero, it follows

from (4.16) that δ1(x2) = c and δ4(u) = −c for some constant c. If we further assume
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E(ε) = Eλ(U) = 0, we have Eδ4(u) = 0 and hence c = 0. This completes the proof of

Theorem 4.1. �

Proof of Theorem 4.2

By the continuous differentiability condition for the coefficient function al(·) (Assump-

tion 4.A2) and the (p2 + 1)th order Taylor expansion for X2j in a neighborhood of x2

such that |X2j − x2| ≤ g, we have

Yj =X>j β(x2) +
gp2+1

(p2 + 1)!

(
X2j − x2

g

)p2+1

X>1ja
(p2+1)(x2)

+ λ(Uj) + εj + o(gp2+1), (4.20)

in which Xj is defined in (4.7), β(x2) = [a>(x2), ga′>(x2), . . . , (p2!)−1gp2a(p2)>(x2), γ>]>,

a(q)(x2) is a vector consisting of the qth-order derivatives of al(x2), and the residual

εj = εj − λ(Uj). Substituting equation (4.20) into the definition of ãl(x2) in (4.8) gives

the following decomposition:

ãl(x2) =
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)T̃n(x2, Ui)

=
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)

1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
XjYj

=
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)

1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
Xj{εj

+
gp2+1

(p2 + 1)!

(
X2j − x2

g

)p2+1

X>1ja
(p2+1)(x2) + [λ(Uj)− λ(Ui)]

+ X>j e1︸ ︷︷ ︸
=1

λ(Ui) + X>j β(x2) + X>j e1︸ ︷︷ ︸
=1

o(gp2+1)}

=
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)[T̃n,1(x2, Ui) + T̃n,2(x2, Ui) + T̃n,3(x2, Ui)]

+ e>l+1e1Rn + e>l+1β(x2) + e>l+1e1op(gp2+1)

=
1

n

n∑
i=1

e>l+1S̃
−1
n (x2, Ui)

¯̃Tn(x2, Ui) + e>l+1e1Rn + al(x2) + op(gp2+1), (4.21)
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where Rn = 1
n

∑n
i=1 λ(Ui),

¯̃Tn(x2, Ui) = T̃n,1(x2, Ui) + T̃n,2(x2, Ui) + T̃n,3(x2, Ui),

T̃n,1(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
Xjεj, (4.22)

T̃n,2(x2, Ui) =
gp2+1

(p2 + 1)!nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
Xj

×
(
X2j − x2

g

)p2+1

X>1ja
(p2+1)(x2) (4.23)

and

T̃n,3(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Uj − Ui
h2

)
Xj[λ(Uj)− λ(Ui)].

To facilitate the notation, we define an operator

Φ(A,B) =
1

n

n∑
i=1

e>l+1AB

and a covariance matrix – the population counterpart of S̃n(x2, u) –

S(x2, u) =

SXX(x2, u) SXZ(x2, u)

SZX(x2, u) SZZ(x2, u)

 ,

where ρ2(v) = (1, v, . . . , vp2)>,

SXX(x2, u) =

{∫
ρ2(v)ρ>2 (v)L(v)dv

}
⊗ E[X1X

>
1 |X2 = x2, U = u],

SXZ(x2, u) = S>ZX(x2, u) =

{∫
ρ2(v)L(v)dv

}
⊗ E[X1Z

>
1 |X2 = x2, U = u],

and

SZZ(x2, u) = E[Z1Z
>
1 |X2 = x2, U = u].
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Since A−1
1 − A−1

2 = A−1
1 (A2 − A1)A−1

2 for nonsingular matrices A1 and A2, we have

S̃−1
n (x2, u) =

S−1(x2, u)

fX2U(x2, u)
− Q̃n(x2, u), (4.24)

where

Q̃n(x2, u) = S̃−1
n (x2, u)

[
S̃n(x2, u)− fX2U(x2, u)S(x2, u)

] S−1(x2, u)

fX2U(x2, u)
.

Here we require S̃−1
n (x2, u) to be invertible, which is shown in Lemma 4.12 for a sufficiently

large n under the non-zero marginal density fX2U(x2, u) condition in Assumption 4.A4

and the rank condition for S(x2, u) in Assumption 4.A7. It follows from equations (4.21)

and (4.24) that

ãl(x2)− al(x2) =
1

n

n∑
i=1

e>l+1

{
S−1(x2, Ui)

fX2U(x2, Ui)
− Q̃n(x2, Ui)

}
¯̃Tn(x2, Ui) + e>l+1e1Rn

+ o(gp2+1)

=
3∑
c=1

{Pc(x2)−Rc(x2)}+ e>l+1e1Rn + o(gp2+1),

where for c = 1, 2, 3,

Pc(x2) = Φ

(
S−1(x2, Ui)

fX2U(x2, Ui)
, T̃n,c(x2, Ui)

)
and Rc(x2) = Φ(Q̃n(x2, Ui), T̃n,c(x2, Ui)).

We complete the proof of Theorem 4.2 by investigating the asymptotic properties of the

terms Rn, Pc(x2) and Rc(x2) for c = 1, 2, 3, in Lemmas 4.8–4.12. �

Lemma 4.8. Suppose Assumptions 4.A4, 4.A7, and 4.A8 hold. We have for n → ∞

and v ∈ [−1, 1]d that

S−1(x2, u+ h2v) =
fX2U(x2, u+ h2v)

fX2U(x2, u)
S−1(x2, u)(1 + o(1)).
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Proof. By the Taylor expansion of the joint density f , one has

SXZ(x2, u+ h2v) =

∫
ρ2(v̇)L(v̇)dv̇ ⊗ E[X1Z

>
1 |X2 = x2, U = u+ h2v]

=

∫
ρ2(v̇)L(v̇)dv̇ ⊗

∫
X1Z

>
1

f(X1, x2, Z1, u+ h2v)

fX2U(x2, u+ h2v)
dX1dZ1

=
fX2U(x2, u)

fX2U(x2, u+ h2v)

∫
ρ2(v̇)L(v̇)dv̇

⊗
∫
X1Z

>
1

f(X1, x2, Z1, u)

fX2U(x2, u)
dX1dZ1 + O(h2v)

=
fX2U(x2, u)

fX2U(x2, u+ h2v)
SXZ(x2, u) + O(h2v),

where the third equality follows from the (lower) boundedness conditions for fX2U(x2, u),

the partial derivatives of the joint density f with respect to U , and E[X1Z
>
1 |X2 = x2, U =

u] in Assumptions 4.A4 and 4.A7. Similarly, one can also show that

SXX(x2, u+ h2v) =
fX2U(x2, u)

fX2U(x2, u+ h2v)
SXX(x2, u) + O(h2v)

and

SZZ(x2, u+ h2v) =
fX2U(x2, Uj)

fX2U(x2, u+ h2v)
SZZ(x2, u) + O(h2v).

Consequently, by the invertiblity of fX2U(x2, u) and S(x2, u) in Assumptions 4.A4 and 4.A7,

and the fact that h2 = h2(n)→ 0 as n→∞ in 4.A8, we have for v ∈ [−1, 1]d,

S−1(x2, Uj + h2v) =
fX2U(x2, Uj + h2v)

fX2U(x2, Uj)
S−1(x2, Uj)(1 + o(1)).

�

Lemma 4.9. Under Assumptions 4.A2, 4.A3, and 4.A8, we have as n→∞,

√
ngRn = Op(g1/2) = op(1).

Proof. Applying the central limit theorem for strongly mixing process (Fan and Yao, 2003,

Theorem 2.21) under the identification condition Eλ(U) = 0, the mixing condition for U
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in Assumption 4.A3, and the boundedness assumption on λ(·) in 4.A2, we have

√
ng

1

n

n∑
i=1

λ(Ui) =
√
ngOp(n−1/2) = Op(g1/2) = op(1),

where the last equality follows from the fact that g = g(n) → 0 as n → +∞ (Assump-

tion 4.A8). �

Lemma 4.10. Under Assumptions 4.A1–4.A8, for n →∞, l = 0, . . . , d1, and any fixed

point x2 ∈ DX2,

(i)
√
ngP1(x2)

d−→ N{0, σ2
l (x2)},

(ii) P2(x2) = gp2+1ηl(x2) + op(gp2+1), and

(iii) P3(x2) = Op(hq22 ) = op(n−1/2g−1/2),

where

σ2
l (x2) = fX2(x2)E

[
f 2
U(U)

f 2
X2U

(x2, U)
σ2
ε (X1, x2, Z1, U)

∫
L2
l (v, x2, U,X1, Z1) dv

]
and

ηl(x2) =

∫
vp2+1E[Ll(v, x2, U,X1, Z1)X>1 ]dv

a(p2+1)(x2)

(p2 + 1)!

with

σ2
ε (x1, x2, z1, u) = E[ε2|X1 = x1, X2 = x2, Z1 = z1, U = u]

and

Ll(v, x2, U,X1, Z1) = e>l+1S
−1(x2, U)

ρ2(v)⊗X1

Z1

L(v).
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Proof. To show part (i), let ξi = (X1
>
i , X2i, Z1

>
i , U

>
i , εj)

> and

φ0(ξi, ξj) =
1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
K2

(
Uj − Ui
h2

)
εj.

Define φ̄0(ξi, ξj) = φ0(ξi, ξj)−Ei[φ0(ξi, ξj)] and φ̄(ξi, ξj) = {φ̄0(ξi, ξj)+ φ̄0(ξj, ξi)}/2, where

Ei denotes the expectation with respect to ξi. By construction, φ̄(ξi, ξj) is symmetric and

Ei[φ̄0(ξi, ξj)] = Ei[φ̄(ξi, ξj)] = 0.

Using the definitions of T̃n,1(x2, Ui) and Xj in (4.22) and (4.7), respectively, we have

P1(x2) =Φ

(
S−1(x2, Ui)

fX2U(x2, Ui)
, T̃n,1(x2, Ui)

)

=
1

n2ghd2

n∑
i=1

n∑
j=1

e>l+1S
−1(x2, Ui)

fX2U(x2, Ui)
L

(
X2j − x2

g

)ρ2

(
X2j−x2

g

)
⊗X1j

Z1j


×K2

(
Uj − Ui
h2

)
εj

=
1

n2ghd2

n∑
i=1

n∑
j=1

1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
K2

(
Uj − Ui
h2

)
εj

With the help of the notations φ0, φ̄0, and φ̄,

P1(x2) =
1

n2ghd2

n∑
i=1

n∑
j=1

φ0(ξi, ξj)

=
1

n2ghd2

n∑
i=1

n∑
j=1

{Ei[φ0(ξi, ξj)] + φ̄0(ξi, ξj)}

=
1

n2ghd2

n∑
i=1

n∑
j=1

Ei[φ0(ξi, ξj)] +
1

n2ghd2

n∑
i=1

φ̄0(ξi, ξi) +
2

n2ghd2

∑
1≤i<j≤n

φ̄(ξi, ξj)

=P1a + P1b + P1c, (4.25)

where P1a, P1b, and P1c denote the first, second, and last terms in the second last equality,

respectively.



Chapter 4. Functional Coefficient Models with Endogenous Variables 161

For the term P1a, by a change of variables (u̇ = Uj + h2v), we have

P1a =
1

n2ghd2

n∑
i=1

n∑
j=1

∫
fU(u̇)

fX2U(x2, u̇)
Ll
(
X2j − x2

g
, x2, u̇, X1j, Z1j

)
K2

(
Uj − u̇
h2

)
εjdu̇

=
1

nghd2

n∑
j=1

∫
fU(u̇)

fX2U(x2, u̇)
Ll
(
X2j − x2

g
, x2, u̇, X1j, Z1j

)
K2

(
Uj − u̇
h2

)
εjdu̇

=
1

ng

n∑
j=1

∫
fU(Uj + h2v)

fX2U(x2, Uj + h2v)
Ll
(
X2j − x2

g
, x2, Uj + h2v,X1j, Z1j

)
K2(v)εjdv.

According to Lemma 4.8 and its proof, the Taylor expansion of S−1(x2, Uj + h2), the

q2th order Taylor expansion of the marginal density fU , and the bounded continuous

differentiability condition for fU (Assumption 4.A4),

P1a =
1

ng

n∑
j=1

∫
fU(Uj + vh2)

fX2U(x2, Uj)
Ll
(
X2j − x2

g
, x2, Uj, X1j, Z1j

)
(1 + o(1))εjK2(v)dv

=
1

ng

n∑
j=1

fU(Uj)

fX2U(x2, Uj)
Ll
(
X2j − x2

g
, x2, Uj, X1j, Z1j

)
εj + Op(hq22 )

=
1

ng

n∑
j=1

fU(Uj)

fX2U(x2, Uj)
Ll
(
X2j − x2

g
, x2, Uj, X1j, Z1j

)
εj + op(n−1/2g−1/2).

The Op-term in the second equality follows from that the convergence result for the term

1
ng

∑
j XjεjL

(
X2j−x2

g

)
= Op(1) by Theorem 1 in Hansen (2008) (under Assumptions 4.A1,

4.A3, 4.A4, and 4.A6), the property of the q2th order kernel K2 in 4.A1, the boundedness

conditions for fU in 4.A4, and the existence of the inverse of fX2U and S(x2, u) in 4.A4

and 4.A7. The last equality is due to Assumption 4.A8(i) on convergence rate of h2.

By applying the central limit theorem for strong mixing process (Fan and Yao, 2003,

Theorem 2.21) under Assumptions 4.A3–4.A7 and the first order Taylor expansion of

density f and conditional variance σ2
ε with their differentiability conditions in 4.A4–4.A5,

√
ngP1a is asymptotically normal with mean 0 (due to the law of iterated expectation)
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and variance

1

g

∫
f 2
U(u̇)

f 2
X2U

(x2, u̇)
L2
l

(
ẋ2 − x2

g
, x2, u̇, ẋ1, ż1

)
σ2
ε (ẋ, ż1, u̇)f(ẋ, ż1, u̇)dẋdż1du̇

= fX2(x2)

∫
f 2
U(u̇)

f 2
X2U

(x2, u̇)
L2
l (v, x2, u̇, ẋ1, ż1)σ2

ε (ẋ1, x2 + gv, ż1, u̇)

× f(ẋ1, x2 + gv, ż1, u̇)

fX2(x2)
dẋ1dvdż1du̇

= fX2(x2)

∫
f 2
U(u̇)

f 2
X2U

(x2, u̇)
σ2
ε (ẋ1, x2, ż1, u̇)

∫
L2
l (v, x2, u̇, ẋ1, ż1) dv

× f(ẋ1, ż1, u̇|x2)dẋ1dż1du̇+ O(g)

= fX2(x2)E

[
f 2
U(U)

f 2
X2U

(x2, U)
σ2
ε (X1, x2, Z1, U)

∫
L2
l (v, x2, U,X1, Z1) dv

]
+ O(g)

= σ2
l (x2) + o(1).

The corresponding covariances across observations are not present since their sum can be

shown to be negligible in probability similar to Lemma 2(ii) in Č́ıžek and Koo (2017a)

under Assumptions 4.A3–4.A7 (see also Cai et al., 2000, Lemma A.1(b)).

For the term P1b, according to the law of iterated expectation, we obtain EP1b = 0. By

the mixing condition in Assumption 4.A3 and Lemma 4.5 (with θ = δ2/2),

var(P1b) =
1

n4g2h2d
2

n∑
i=1

n∑
j=1

E[φ̄0(ξi, ξi)φ̄0(ξj, ξj)]

=
1

n3g2h2d
2

E[φ̄0(ξi, ξi)
2] +

1

n4g2h2d
2

n−1∑
τ=1

n∑
i=1

E[φ̄0(ξi, ξi)φ̄0(ξi−τ , ξi−τ )]

≤ Cn−3g−2h−2d
2 g + Cn−3g−2h−2d

2 g4/(2+δ2)

n−1∑
τ=1

(1− τ/n)αδ2/(2+δ2)(τ)

= O(n−3g−1h−2d
2 + n−3g−2δ2/(2+δ2)h−2d

2 )

= o(n−1g−1). (by Assumption 4.A8(ii))

As a result, P1b = op(n−1/2g−1/2) by Chebyshev’s inequality. In order to use Lemma 4.5

above, we require E|φ̄0(ξi, ξi)|2+δ2 <∞, which is ensured by the compact supports of the

kernels L and K2 in Assumption 4.A1, which implies
∥∥ρ2

{
(X2j − x2)/g

}∥∥
∞ ≤ 1, the

existence of S−1(x2, u) due to Assumption 4.A7, the boundedness of the variables X1 and
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Z1 and the densities fX2U in Assumption 4.A4, and the moment conditions for X1ε and

Z1ε in Assumption 4.A6.

For the term P1c, by Lemma 4.5 (with θ = δ2/2) under Assumptions 4.A3–4.A7 (such

that the conditions in Lemma 4.5 are satisfied),

|EP1c| =

∣∣∣∣∣ 2

n2ghd2

n−1∑
τ=1

n∑
i=1

Eφ̄(ξi, ξi−τ )

∣∣∣∣∣
≤ Cn−1g−1h−d2 (ghd2)2/(2+δ2)

n−1∑
τ=1

(1− τ/n)αδ2/(2+δ2)(τ)

= O(n−1g−δ2/(2+δ2)h
−dδ2/(2+δ2)
2 )

= o(n−1/2g−1/2). (by Assumption 4.A8(ii))

It follows from Lemma 4.6 (with θ = δ2/2) under Assumptions 4.A3–4.A7 that

E(P 2
1c) ≤ Cn−2g−2h−2d

2 (ghd2)2/(2+δ2)

= O(n−2g−2(1+δ2)/(2+δ2)h
−2d(1+δ2)/(2+δ2)
2 )

= o(n−1g−1). (by Assumption 4.A8(ii))

Hence, P1c = op(n−1/2g−1/2) by Chebyshev’s inequality. This concludes part (i).

To prove part (ii), similar to the decomposition of P1(x2) in (4.25), we split P2(x2) into

three terms – P2a, P2b, and P2c, where the leading term P2a is

P2a =
gp2+1

(p2 + 1)!nghd2

n∑
j=1

∫
fU(u̇)

fX2U(x2, u̇)
Ll
(
X2j − x2

g
, x2, u̇, X1j, Z1j

)
K2

(
Uj − u̇
h2

)

×
(
X2j − x2

g

)p2+1

X>1jdu̇a
(p2+1)(x2)

=
gp2+1

(p2 + 1)!ghd2

∫ ∫
f (̊x, z̊1, ů)fU(u̇)

fX2U(x2, u̇)
Ll
(
x̊2 − x2

g
, x2, u̇, x̊1, z̊1

)
K2

(
ů− u̇
h2

)
×
(
x̊2 − x2

g

)p2+1

x̊>1 dx̊dz̊1důdu̇a(p2+1)(x2){1 + op(1)}

by applying the law of large number for strong mixing process in Theorem 2.20 of Fan

and Yao (2003) under Assumptions 4.A1–4.A4 and 4.A6–4.A7.
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By a change of variables x̊2 = x2+gv̊ and ů = u̇+h2v̇ and the first-order Taylor expansion

of the joint density f , we have

P2a =
gp2+1

(p2 + 1)!

∫ ∫
f (̊x1, x2 + gv̊, z̊1, u̇+ h2v̇)fU(u̇)

fX2U(x2, u̇)
Ll(̊v, x2, u̇, x̊1, z̊1)K2(v̇)

× v̊p2+1x̊>1 dx̊1d̊vdz̊1dv̇du̇a(p2+1)(x2){1 + op(1)}

=
gp2+1

(p2 + 1)!

∫ ∫
f (̊x1, x2, z̊1, u̇)fU(u̇)

fX2U(x2, u̇)
Ll(̊v, x2, u̇, x̊1, z̊1)K2(v̇)

× v̊p2+1x̊>1 dx̊1d̊vdz̊1dv̇du̇a(p2+1)(x2){1 + op(1) + O(g + h2)}

=
gp2+1

(p2 + 1)!

∫ {∫
f (̊x1, z̊1|x2, u̇)Ll(̊v, x2, u̇, x̊1, z̊1)̊vp2+1x̊>1 d̊vdx̊1dz̊1

}
× fU(u̇)du̇a(p2+1)(x2){1 + op(1) + O(g + h2)}

=
gp2+1

(p2 + 1)!

∫
v̊p2+1E[Ll(̊v, x2, U,X1, Z1)X>1 ]d̊va(p2+1)(x2){1 + op(1) + O(g + h)}

=gp2+1ηl(x2) + op(gp2+1) + gp2+1O(g + h2)

=gp2+1ηl(x2) + op(gp2+1).

The O-term in the second equality is due to the uniformly boundedness condition on the

partial derivatives of the joint density f with respect to X2 and U in Assumption 4.A4.

The op- and O-terms in the second last equality follow from the existence of ηl(x2), which

is implied by the compact support, v̊ ∈ [−1, 1], of the kernel L in Assumption 4.A1, the

existence of S−1(x2, u) due to Assumption 4.A7, the boundedness of the variables X1 and

Z1 and the densities fU , fX2U , and f in Assumption 4.A4, and the existence of a(p2+1)(·)

by Assumption 4.A2.

Analogously to the proof of P1b = op(n−1/2g−1/2) and P1c = op(n−1/2g−1/2), one can show

that P2b and P2c are op(n−1/2g−1/2) for n→∞ as well.
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For part (iii), by the law of large number in Fan and Yao (2003, Theorem 2.20) under

Assumptions 4.A1–4.A4 and 4.A6–4.A7, the leading term of P3(x2) is given by

P3a =
1

nghd2

n∑
j=1

∫
fU(u̇)

fX2U(x2, u̇)
Ll
(
X2j − x2

g
, x2, u̇, X1j, Z1j

)
K2

(
Uj − u̇
h2

)
× [λ(Uj)− λ(u̇)]du̇

=
1

ghd2

∫ ∫
f (̊x, z̊1, ů)fU(u̇)

fX2U(x2, u̇)
Ll
(
x̊2 − x2

g
, x2, u̇, x̊1, z̊1

)
K2

(
ů− u̇
h2

)
× [λ(̊u)− λ(u̇)]dx̊dz̊1důdu̇{1 + op(1)},

which, after a change of variables x̊2 = x2 + gv̊ and ů = u̇+ h2v̇, becomes

P3a =

∫ ∫
f (̊x1, x2 + gv̊, z̊1, u̇+ h2v̇)fU(u̇)

fX2U(x2, u̇)
Ll(̊v, x2, u̇, x̊1, z̊1)K2(v̇)

× [λ(u̇+ h2v̇)− λ(u̇)]dx̊1d̊vdz̊1dv̇du̇{1 + op(1)}

=Op(hq22 ) = op(n−1/2g−1/2) (by Assumption 4.A8(i))

by the Taylor expansion to q2th degree of the coefficient function λ, which has bounded

continuous q2th partial derivatives, and to the first degree of the joint density f , where

its partial derivatives with respect to X2 and U are uniformly bounded. �

Lemma 4.11. Under Assumptions 4.A1, 4.A3–4.A7, and 4.A8(iv), we have as n→ +∞,

sup
x2∈DX2

,u∈DU

∥∥∥S̃n(x2, u)− fX2U(x2, u)S(x2, u)
∥∥∥ = Op(v2n),

where v2n =
√

lnn/(nghd2) + g + h2.

Proof. Using the definition of Xj in equation (4.7), we write S̃n(x2, u) into several parti-

tioned block matrices:

S̃n(x2, u) =

S̃XX,n(x2, u) S̃XZ,n(x2, u)

S̃ZX,n(x2, u) S̃ZZ,n(x2, u)

 ,
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where ρ2(v) = (1, v, . . . , vp2)>,

S̃XX,n(x2, u) =
1

nghd2

n∑
j=1

ρ2

(
X2j − x2

g

)
ρ>2

(
X2j − x2

g

)
⊗X1jX1

>
j

× L
(
X2j − x2

g

)
K2

(
Uj − u
h2

)
,

S̃XZ,n(x2, u) =S̃>ZX,n(x2, u)

=
1

nghd2

n∑
j=1

ρ2

(
X2j − x2

g

)
⊗X1jZ1

>
j L

(
X2j − x2

g

)
K2

(
Uj − u
h2

)
,

and

S̃ZZ,n(x2, u) =
1

nghd2

n∑
j=1

Z1jZ1
>
j L

(
X2j − x2

g

)
K2

(
Uj − u
h2

)
.

By Assumptions 4.A1, 4.A3–4.A7, and 4.A8(iv), the conditions of Theorem 2 in Hansen

(2008) are satisfied. Applying the uniform consistency result for a general kernel average

in Hansen (2008, Theorem 2) yields

sup
x2∈DX2

,u∈DU

∥∥∥S̃XZ,n(x2, u)− ES̃XZ,n(x2, u)
∥∥∥ = Op

(√
lnn

nghd2

)
. (4.26)

The expectation of S̃XZ,n(x2, u) is

ES̃XZ,n(x2, u)

=
1

ghd2
E

[
ρ2

(
X2j − x2

g

)
⊗
(
X1jZ1

>
j

)
L

(
X2j − x2

g

)
K2

(
Uj − u
h2

)]
=

1

ghd2

∫
ρ2

(
X2j − x2

g

)
⊗
∫
X1jZ1

>
j f(X1j, X2j, Z1j, Uj)dX1jdZ1j

× L
(
X2j − x2

g

)
K2

(
Uj − u
h2

)
dUjdX2j.
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By a change of variables and the first-order Taylor expansion of f , we have

ES̃XZ,n(x2, u)

=

∫
ρ2(v̇)⊗

∫
X1jZ1

>
j f(X1j, x2 + gv̇, Z1j, u+ h2u̇)dX1jdZ1j

× L(v̇)K2(u̇)dv̇du̇

= fX2U(x2, u)

∫
K2(u̇)du̇

∫
ρ2(v̇)L(v̇)dv̇

⊗
∫
X1jZ1

>
j

f(X1j, x2, Z1j, u)

fX2U(x2, u)
dX1jdZ1j + O(g + h2)

= fX2U(x2, u)

∫
ρ2(v̇) L(v̇)dv̇ ⊗ E

[
X1jZ1

>
j |X2 = x2, U = u

]
+ O(g + h2). (4.27)

The O-term in the second equality follows from the boundedness of the variables X1 and

Z1, the marginal density fX2U , and the partial derivatives of f with respect to X2 and

U in Assumption 4.A4. Combining (4.26) and (4.27) yields the consistency result for

S̃XZ,n(x2, u):

sup
x2∈DX2

,u∈DU

∥∥∥∥S̃XZ,n(x2, u)− fX2U(x2, u)

∫
ρ2(v̇)(v̇)dv̇ ⊗ SXZ(x2, u)

∥∥∥∥
= Op(v2n).

The consistency results for S̃XX,n(x2, u) and S̃ZZ,n(x2, u) can be proved in a similar way. �

Lemma 4.12. Under Assumptions 4.A1–4.A8, as n→∞,

(i) S̃−1
n (x2, u) = f−1

X2U
(x2, u)S−1(x2, u)(1 + op(1)) uniformly in x2 ∈ DX2 and u ∈ DU ,

(ii) R1(x2) +R2(x2) +R3(x2) = op(n−1/2g−1/2).

Proof. By Lemma 4.11 and Assumption 4.A8(iv),

sup
x2∈DX2

,u∈DU

∥∥∥S̃n(x2, u)− fX2U(x2, u)S(x2, u)
∥∥∥ = Op(v2n) = op(1),
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and by the invertiblity of fX2U and S(x2, u) in Assumptions 4.A4 and 4.A7, respectively,

S̃−1
n (x2, u) = f−1

X2U
(x2, u)S−1(x2, u)(1 + op(1)) as n → ∞. Together with the asymptotic

results for Pc(x2), c = 1, 2, 3, in Lemma 4.10, we have

|R1(x2) +R2(x2) +R3(x2)|

≤
3∑
c=1

∣∣∣∣Φ(S̃−1
n (x2, u)

[
S̃n(x2, u)− fX2U(x2, u)S(x2, u)

] S−1(x2, u)

fX2U(x2, u)
, T̃n,c(x2, Ui)

)∣∣∣∣
≤

3∑
c=1

∣∣∣∣Φ( S−1(x2, u)

fX2U(x2, u)
, T̃n,c(x2, Ui)

)∣∣∣∣ · sup
x2∈DX2

,u∈DU

∥∥∥S̃n(x2, u)− fX2U(x2, u)S(x2, u)
∥∥∥

× sup
x2∈DX2

,u∈DU

∥∥∥S̃−1
n (x2, u)

∥∥∥
≤

3∑
c=1

|Pc(x2)| · sup
x2∈DX2

,u∈DU

∥∥∥S̃n(x2, u)− fX2U(x2, u)S(x2, u)
∥∥∥

× sup
x2∈DX2

,u∈DU

∥∥∥S̃−1
n (x2, u)

∥∥∥
= Op(n−1/2g−1/2) · op(1) ·Op(1) = op(n−1/2g−1/2).

�

Proof of Theorem 4.3

Before proving Theorem 4.3, we first derive the uniform convergence rate for the first

stage estimator Π̂m(·) for m = 1, . . . , d, which will be used in several places later. From

the definition of Π̂m(Zj) in (4.5),

Π̂m(Zj) = e>1 S̄
−1
n (Zj)T̄n(Zj)

= e>1 S̄
−1
n (Zj)

1

nhr1

n∑
k 6=j

K1

(
Zk − Zj
h1

)
ρ1

(
Zk − Zj
h1

)
Xmk,
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where e1 = (1, 0, . . . , 0)>. Since

e>1 S̄
−1
n (Zj)

nhr1

n∑
k 6=j

K1

(
Zk − Zj
h1

)
ρ1

(
Zk − Zj
h1

)
ρ>1

(
Zk − Zj
h1

)
el

= e>1 S̄
−1
n (Zj)S̄n(Zj)el = e>1 el =

1, if l=1,

0, otherwise,

we have the following discrete moment conditions:

e>1 S̄
−1
n (Zj)

nhr1

n∑
k 6=j

K1

(
Zk − Zj
h1

)
ρ1

(
Zk − Zj
h1

)(
Zk − Zj
h1

)q

=

1, if |q| = 0,

0, if 1 ≤ |q| ≤ p1.
(4.28)

From the above discrete moment conditions with |q| = 0,

Π̂m(Zj)− Πm(Zj)

=
e>1 S̄

−1
n (Zj)

nhr1

n∑
k 6=j

K1

(
Zk − Zj
h1

)
ρ1

(
Zk − Zj
h1

)
{Xmk − Πm(Zj)}

=
e>1 S̄

−1
n (Zj)

nhr1

n∑
k 6=j

K1

(
Zk − Zj
h1

)
ρ1

(
Zk − Zj
h1

)
{Πm(Zk)− Πm(Zj) + Umk}.

(4.29)

By the p1th order Taylor expansion of Πm for Zk in a h1-neighborhood of Zj and the

Lipschitz continuity of the p1th partial derivatives of Πm (Assumption 4.B2),

Πm(Zk)− Πm(Zj) =
∑

1≤|q|≤p1

hq1
q!

(DqΠm)(Zj)

(
Zk − Zj
h1

)q

+ O(hp1+1
1 ). (4.30)

Using equations (4.28) with |q| = 0 and with |q| ∈ [1, p1], (4.29), and (4.30), we have

Π̂m(Zj)− Πm(Zj)

=
e>1 S̄

−1
n (Zj)

nhr1

n∑
k 6=j

ρ1

(
Zk − Zj
h1

)
K1

(
Zk − Zj
h1

)[
Umk + O(hp1+1

1 )
]

= e>1 S̄
−1
n (Zj)T̄1,n(Zj) + Op(hp1+1

1 ), (4.31)
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where

T̄1,n(Zj) =
1

nhr1

n∑
k 6=j

ρ1

(
Zk − Zj
h1

)
K1

(
Zk − Zj
h1

)
Umk.

�

Lemma 4.13. Under Assumptions 4.B1, 4.B3–4.B6 and 4.B7(i), as n→∞,

(i) sup
z∈DZ

∥∥S̄n(z)− fZ(z)M1

∥∥ = Op(
√

lnn/(nhr1) + h2),

(ii) S̄−1
n (z) = f−1

Z (z)M−1
1 (1 + op(1)) uniformly in z ∈ DZ, and

(iii) sup
z∈DZ

∥∥T̄1,n(z)
∥∥ = Op(

√
lnn/(nhr1)),

where M1 =
∫
ρ1(v)ρ>1 (v)K1(v)dv.

Proof. This lemma is analogous to Lemmas 4.11 and 4.12(i), and the results follow by ap-

plication of Hansen (2008) Theorem 2 under Assumptions 4.B1, 4.B3–4.B6, and 4.B7(i).

�

By the invertiblity of fZ and M1 given in Assumptions 4.B4 and 4.B6, respectively,

equation (4.31), and Lemma 4.13, one obtains the uniform convergence rate for the local

polynomial estimator of Πm(·):

∣∣∣Π̂m(Zj)− Πm(Zj)
∣∣∣

≤ e>1 sup
z∈DZ

∥∥S̄−1
n (z)

∥∥ sup
z∈DZ

∥∥T̄n,1(z)
∥∥+ Op(hp1+1

1 )

=
e>1 M

−1
1 (1 + op(1))

infz∈DZ fZ(z)
Op(v1n) + Op(hp1+1

1 )

= Op(v1n + hp1+1
1 ) (4.32)

uniformly in Zj ∈ DZ , where v1n =
√

lnn/(nhr1).

Next, similar to the proof of Theorem 4.2, we are going to split âl(x2)− ã(x2) into several

terms and then investigate their asymptotic behaviors separately. To this end, using the
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identity that A−1
1 − A−1

2 = A−1
1 (A2 − A1)A−1

2 yields

S̃−1
n (x2, Ui) =Ŝ−1

n (x2, Ûi)− Q̂n(x2, Ûi), (4.33)

where

Ŝn(x2, Ûi) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
XjX>j ,

which is shown to be invertible in Lemma 4.16 for a sufficiently large n, and

Q̂n(x2, Ûi) = Ŝ−1
n (x2, Ûi)[S̃n(x2, Ui)− Ŝn(x2, Ûi)]S̃

−1
n (x2, Ui).

By equations (4.21) and (4.33),

ãl(x2) =
1

n

n∑
i=1

e>l+1

[
Ŝ−1
n (x2, Ûi)− Q̂n(x2, Ûi)

]
¯̃Tn(x2, Ui) + e>l+1e1Rn

+ al(x2) + op(gp2+1)

=
1

n

n∑
i=1

e>l+1Ŝ
−1
n (x2, Ûi)

¯̃Tn(x2, Ui)−R0(x2) + e>l+1e1Rn + al(x2)

+ op(gp2+1) (4.34)

in which R0(x2) = Φ(Q̂n(x2, Ûi),
¯̃Tn(x2, Ui)). Similarly to equation (4.21), one can show

that

âl(x2) =
1

n

n∑
i=1

e>l+1Ŝ
−1
n (x2, Ûi)

1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
Xj{εj

+
gp2+1

(p2 + 1)!

(
X2j − x2

g

)p2+1

X>1ja
(p2+1)(x2) + [λ(Uj)− λ(Ui)]

+ X>j e1︸ ︷︷ ︸
=1

λ(Ui) + X>j β(x2) + X>j e1︸ ︷︷ ︸
=1

o(gp2+1)}

=
1

n

n∑
i=1

e>l+1Ŝ
−1
n (x2, Ûi)

¯̂
Tn(x2, Ûi) + e>l+1e1Rn + al(x2) + op(gp2+1), (4.35)
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where

T̂n,1(x2, Ûi) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
Xjεj,

T̂n,2(x2, Ûi) =
gp2+1

(p2 + 1)!nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
Xj

×
(
X2j − x2

g

)p2+1

X>1ja
(p2+1)(x2),

and

T̂n,3(x2, Ûi) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K2

(
Ûj − Ûi
h2

)
Xj[λ(Uj)− λ(Ui)].

Note that λ(·) within T̂n,3(x2, Ûi) is a function of the latent Uj and Uj instead of the

estimated Ûj and Ûj. Besides, Rn in equation (4.35) is the same Rn as in equation (4.34).

Again by the fact that A−1
1 − A−1

2 = A−1
1 (A2 − A1)A−1

2 , one obtains

Ŝ−1
n (x2, Ûi) =

S−1(x2, Ui)

fX2U(x2, Ui)
−Qn(x2, Ûi), (4.36)

where

Qn(x2, Ûi) = Ŝ−1
n (x2, Ûi)

[
Ŝn(x2, Ûi)− fX2U(x2, Ui)S(x2, Ui)

] S−1(x2, Ui)

fX2U(x2, Ui)
.

It follows from (4.34), (4.35), and (4.36) that

âl(x2)− ãl(x2) =
1

n

n∑
i=1

e>l Ŝ
−1
n (x2, Ûi)[

¯̂
Tn(x2, Ûi)− ¯̃Tn(x2, Ui)] +R0(x2) + o(gp2+1)

=
3∑
c=1

{Pc(x2)−Rc(x2)}+R0(x2) + o(gp2+1),

where for c = 1, 2, 3,

Pc(x2) = Φ

{
S−1(x2, Ui)

fX2U(x2, Ui)
, T̂n,c(x2, Ûi)− T̃n,c(x2, Ui)

}
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and

Rc(x2) = Φ{Qn(x2, Ui), T̂n,c(x2, Ûi)− T̃n,c(x2, Ui)}.

We complete the proof of Theorem 4.3 by showing the terms R0(x2), Pc(x2), and Rc(x2),

for c = 1, 2, 3, are all op(n−1/2g−1/2) in Lemmas 4.14–4.18. �

First, we define variables

K∗n(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K∗
(
Uj − Ui
h2

)
,

T ∗n,1(x2, Ui) =
1

nghd2

n∑
j=1

L

(
X2j − x2

g

)
K ′2

(
Uj − Ui
h2

)
Xjεj,

and the population counterpart for T ∗n,1(x2, Ui)

T ∗(x2, Ui) =

∫ ρ2(u)K ′2(u)du⊗ E[X1ε|X2 = x2, U = Ui]

E[Z1ε|X2 = x2, U = Ui]

 ,

where K ′2 is the derivative of the kernel K2, and K∗ is a d-variate product kernel such

that

K∗(u) =
1

4.1

(
1 {‖u‖∞ ≤ 2}+ 1 {‖u‖∞ ∈ (2, 2.1]}

d∏
m=1

{1− 10(|um| − 2)}

)
.

Lemma 4.14. Under Assumptions 4.A1, 4.A3–4.A4, 4.A6, 4.A8(iv), and 4.B1, we have

as n→∞,

(i) sup
x2∈DX2

,u∈DU
|K∗n(x2, u)− fX2U(x2, u)| = Op(v2n),

(ii) sup
x2∈DX2

,u∈DU

∥∥T ∗n,1(x2, u)− T ∗(x2, u)fX2U(x2, u)
∥∥ = Op

(√
lnn/(nghd2)

)
,

where v2n =
√

lnn/(nghd2) + g + h2.

Proof. Clearly, the kernel K∗ is bounded and Lipschitz continuous. Together with As-

sumptions 4.A1, 4.A3–4.A4, 4.A6(iii) (with ω = 1), and 4.A8(iv), the conditions in

Hansen (2008) Theorem 6 are satisfied. By the uniform convergence result for kernel
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density estimator (Hansen, 2008, Theorem 6), we completes the proof of (i). Part (ii)

is similar to Lemma 4.11, and the convergence result follows by application of Hansen

(2008) Theorem 2 under Assumptions 4.A1, 4.A3–4.A4, 4.A6, and 4.A8(iv), the contin-

uously differentiability condition on K ′ (Assumption 4.B1). �

Lemma 4.15. If Assumptions 4.A1–4.A8 and 4.B1–4.B7 are satisfied, then as n→∞,

(i) sup
x2∈DX2

,Ui∈DU

∥∥∥Ŝn(x2, Ûi)− S̃n(x2, Ui)
∥∥∥ = op(1) and

(ii) sup
x2∈DX2

,Ui∈DU

∥∥∥Ŝn(x2, Ûi)− fX2U(x2, Ui)S(x2, Ui)
∥∥∥ = op(1).

Proof. Applying the mean value theorem to the kernel K2, in which its partial derivatives

are bounded under Assumption 4.B1, we have

∥∥∥Ŝn(x2, Ûi)− S̃n(x2, Ui)
∥∥∥

≤ 1

nghd2

n∑
j=1

∥∥XjX>j ∥∥L(X2j − x2

g

) ∣∣∣∣∣K2

(
Ûj − Ûi
h2

)
−K2

(
Uj − Ui
h2

)∣∣∣∣∣
≤ 1

nghd2

n∑
j=1

∥∥XjX>j ∥∥L(X2j − x2

g

)
K∗
(
Uj − Ui
h2

)
×max

v
|K ′2(v)| · h−1

2 ·max
i,j
‖(Ûj − Uj)− (Ûi − Ui)‖

≤ max
j

∥∥XjX>j ∥∥K∗n(x2, Ui) max
v
|K ′2(v)| · h−1

2 max
i,j
‖(Ûj − Uj)− (Ûi − Ui)‖

uniformly in x2 ∈ DX2 and Ui ∈ DU . Since the variables X1, X2, and Z1 are bounded

under Assumption 4.A4, maxi
∥∥XjX>j ∥∥ < ∞. By the uniform convergence result for

Π̂m(z) in (4.32),

max
1≤j≤n

‖Ûj − Uj‖ ≤ d max
1≤m≤d

max
1≤j≤n

|Π̂m(Zj)− Πm(Zj)| = Op(v1n + hp1+1
1 ),
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where v1n =
√

lnn/(nhr1). Together with the convergence result forK∗n(x2, u) by Lemma 4.14(i)

and the bounded density fX2U (Assumption 4.A4), we complete the proof of (i):

sup
x2∈DX2

,Ui∈DU

∥∥∥Ŝn(x2, Ûi)− S̃n(x2, Ui)
∥∥∥

≤ C sup
x2∈DX2

,u∈DU
|fX2U(x2, u)| (1 + op(1)) · h−1

2 (v1n + hp1+1
1 )

= Op(h−1
2 (v1n + hp1+1

1 )) = op(1) (by Assumption 4.B7(iii)) (4.37)

for some C > 0. Combining (4.37) with Lemma 4.11 gives the result in part (ii). �

Lemma 4.16. Under Assumptions 4.A1–4.A8 and 4.B1–4.B7, as n→∞,

(i) Ŝ−1
n (x2, Ui) = f−1

X2U
(x2, Ui)S

−1(x2, Ui)(1 + op(1)) uniformly in x2 ∈ DX2, Ui ∈ DU ,

(ii) R0(x2) = op(n−1/2g−1/2).

Proof. By Lemma 4.15 and Assumption 4.A8(iv),

sup
x2∈DX2

,u∈DU

∥∥∥Ŝn(x2, u)− fX2U(x2, u)S(x2, u)
∥∥∥ = Op(

√
lnn/(nghd2) + g+ h2) = op(1).

Then, part (i) follows from the invertiblity of fX2U and S(x2, u) in Assumptions 4.A4 and

4.A7, respectively. To show (ii), we write

|R0(x2)| =
∣∣∣Φ(Q̂n(x2, Ûi),

¯̃Tn(x2, Ui))
∣∣∣

=

∣∣∣∣∣e>l+1

n

n∑
i=1

Ŝ−1
n (x2, Ûi)[S̃n(x2, Ui)− Ŝn(x2, Ûi)]S̃

−1
n (x2, Ui)

¯̃Tn(x2, Ui)

∣∣∣∣∣
≤e>l+1 sup

x2∈DX2
,Ui∈DU

∥∥∥Ŝ−1
n (x2, Ûi)

∥∥∥ sup
x2∈DX2

,Ui∈DU

∥∥∥S̃n(x2, Ui)− Ŝn(x2, Ûi)
∥∥∥

×

∣∣∣∣∣ 1n
n∑
i=1

S̃−1
n (x2, Ui)

¯̃Tn(x2, Ui)

∣∣∣∣∣ .
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By part(i), Lemma 4.15, and Assumptions 4.A4 and 4.A7,

|R0(x2)| ≤e>l+1

supx2∈DX2
,Ui∈DU

∥∥∥S−1
n (x2, Ûi)

∥∥∥ (1 + op(1))

infx2∈DX2
,Ui∈DU fX2U(x2, Ui)

op(1)

×

∣∣∣∣∣ 1n
n∑
i=1

S̃−1
n (x2, Ui)

¯̃Tn(x2, Ui)

∣∣∣∣∣
=e>l+1Op(1)op(1)

∣∣∣∣∣ 1n
n∑
i=1

S̃−1
n (x2, Ui)

¯̃Tn(x2, Ui)

∣∣∣∣∣ .
The claim (ii) now follows from the asymptotic normality result in Theorem 4.2:

|R0(x2)| ≤e>l+1Op(1)op(1)Op(n−1/2g−1/2) = op(n−1/2g−1/2).

�

Lemma 4.17. Under Assumptions 4.A1–4.A8 and 4.B1–4.B7, for n→∞ and c = 1, 2, 3,

Pc(x2) = op(n−1/2g−1/2).

Proof. Here we only consider the case of the term P1(x2) as P2(x2) and P3(x2) can be

proven in a similar manner. By the first-order Taylor expansion of the kernel K2 under

Assumption 4.B1, the conditions for the convergence rates of the bandwidths in 4.B7(iii),

and (4.32)

K2

(
Ûj − Ûi
h2

)
−K2

(
Uj − Ui
h2

)

= K ′>2

(
Uj − Ui
h2

)[
Ûj − Uj
h2

− Ûi − Ui
h2

]
+ Op(h−1

2 v1n + h−1
2 hp1+1

1 )2

=
1

h2

K ′>2

(
Uj − Ui
h2

)
[Π̂(Zi)− Π(Zi)− Π̂(Zj) + Π(Zj)] + op(n−1/2g−1/2). (4.38)



Chapter 4. Functional Coefficient Models with Endogenous Variables 177

By equation (4.31), the convergence results for S̄−1
n (z) and T̄n,1(z) in Lemma 4.13, and

the invertiblity of fZ and M1 in Assumptions 4.B3 and 4.B6,

Π̂m(Zj)− Πm(Zj)

= e>1 S̄
−1
n (Zj)T̄n,1(Zj) + Op(hp1+1

1 )

=
e>1 M

−1
1

fZ(Zj)

1

nhr1

∑
k 6=j

ρ1

(
Zk − Zj
h1

)
K1

(
Zk − Zj
h1

)
Umk

+
e>1 M

−1
1 op(1)

fZ(Zj)
Op(v1n) + Op(hp1+1

1 )

=
e>1 M

−1
1

fZ(Zj)

1

nhr1

∑
k 6=j

ρ1

(
Zk − Zj
h1

)
K1

(
Zk − Zj
h1

)
Umk + Op(v1n + hp1+1

1 ),

which implies that

Π̂(Zi)− Π(Zi)− Π̂(Zj) + Π(Zj)

=
e>1 M

−1
1

nhr1

∑
k 6=j 6=i

ρ1

(
Zk−Zi
h1

)
fZ(Zi)

K1

(
Zk − Zi
h1

)
−
ρ1

(
Zk−Zj
h1

)
fZ(Zj)

K1

(
Zk − Zj
h1

)Uk
+ op(h2 · n−1/2g−1/2) (4.39)

by Assumption 4.B7(iii). Combining equations (4.38) and (4.39) yields

P1(x2) =
e>l+1

n

n∑
i=1

S−1(x2, Ui)

fX2U(x2, Ui)

[
T̂n,1(x2, Ûi)− T̃n,1(x2, Ui)

]
=

e>l+1

n2ghd2

n∑
i=1

S−1(x2, Ui)

fX2U(x2, Ui)

n∑
j=1

L

(
X2j − x2

g

)[
K2

(
Ûj − Ûi
h2

)

− K2

(
Uj − Ui
h2

)]
Xjεj

=P(1)
1 − P

(2)
1 + op(n−1/2g−1/2) (4.40)
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where Ll is defined in Lemma 4.10,

P(1)
n,1 =

1

n3ghd+1
2 hr1

∑
k 6=i 6=j

n∑
i=1

n∑
j=1

1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
εj

×K ′2
(
Uj − Ui
h2

)>
Uk
e>1 M

−1
1 ρ1

(
Zk−Zi
h1

)
fZ(Zi)

K1

(
Zk − Zi
h1

)
,

and

P(2)
n,1 =

1

n3ghd+1
2 hr1

∑
k 6=i 6=j

n∑
i=1

n∑
j=1

1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
εj

×K ′2
(
Uj − Ui
h2

)>
Uk
e>1 M

−1
1 ρ1

(
Zk−Zj
h1

)
fZ(Zj)

K1

(
Zk − Zj
h1

)
.

The op-term in equation (4.40) follows from equations the convergence result for T ∗n,1(x2, u)

in Lemma 4.14. We also write the sum over k in the terms P(1)
n,1 and P(2)

n,1 without i = j,

since the corresponding summands in are canceled out for i = j. We complete the proof

for P1(x2) by showing P(1)
n,1 = op(n−1/2g−1/2) and P(2)

n,1 = op(n−1/2g−1/2).

To show P(1)
n,1 = op(n−1/2g−1/2), we first let ζj = (Yi, X

>
i , Z

>
i , U

>
i )> and

ψ0(ζk, ζi, ζj) =
1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
εjK

′>
2

(
Uj − Ui
h2

)
Uk

×
e>1 M

−1
1 ρ1

(
Zk−Zi
h1

)
fZ(Zi)

K1

(
Zk − Zi
h1

)
.

Define ψ̄0(ζk, ζi, ζj) = ψ0(ζk, ζi, ζj)− Ek[ψ0(ζk, ζi, ζj)] and

ψ̄(ζk, ζi, ζj) =
1

6

{
ψ̄0(ζi, ζj, ζk) + ψ̄0(ζi, ζk, ζj) + ψ̄0(ζj, ζi, ζk)

+ψ̄0(ζj, ζk, ζi) + ψ̄0(ζk, ζi, ζj) + ψ̄0(ζk, ζj, ζi)
}
,
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where Ek denotes expectation with respect to ζk only. By construction, ψ̄(·, ·, ·) is sym-

metric and Ekψ̄(ζk, ζi, ζj) = 0. Using the above notation, we have

P(1)
n,1 =

1

n3ghd+1
2 hr1

∑
k 6=i 6=j

n∑
i=1

n∑
j=1

ψ0(ζk, ζi, ζj)

=
1

n3ghd+1
2 hr1

∑
k 6=i 6=j

n∑
i=1

n∑
j=1

Ek[ψ0(ζk, ζi, ζj)] +
6

n3ghd+1
2 hr1

∑
1≤k<i<j≤n

ψ̄(ζk, ζi, ζj)

= P(1)
n,1a + P(1)

n,1b,

where

P(1)
n,1a =

1

n2ghd+1
2 hr1

n∑
i=1

n∑
j=1

Ek[ψ0(ζk, ζi, ζj)]

and

P(1)
n,1b =

6

n3ghd+1
2 hr1

∑
1≤k<i<j≤n

ψ̄(ζk, ζi, ζj).

For the term P(1)
n,1a,

P(1)
n,1a =

1

n2ghd+1
2 hr1

n∑
j=1

n∑
i=1

1

fX2U(x2, Ui)
Ll
(
X2j − x2

g
, x2, Ui, X1j, Z1j

)
εj

×K ′>2
(
Uj − Ui
h2

)
e>1 M

−1
1

fZ(Zi)
Ek

[
ρ1

(
Zk − Zi
h1

)
Ek (Uk|Zk)K1

(
Zk − Zi
h1

)]
=0

by the law of iterated expectation. By applying Lemma 4.5 (with θ = δ/2) under the

mixing condition for ζi in Assumptions 4.A3 and 4.B3, it holds for k < i < j and

δ = max{δ1, δ2} that

|Eψ̄0(ζi, ζj, ζk)| =|E{ψ0(ζi, ζj, ζk)− Ekψ0(ζi, ζj, ζk)}|

=|Eψ0(ζi, ζj, ζk)− EijEkψ0(ζi, ζj, ζk)|

≤C(ghd2h
r
1)2/(2+δ)αδ/(2+δ)(i− k),

where Eij refers to expectation with respect to both ζi and ζj. To apply Lemma 4.5
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above, we require EijEk|ψ0(ζi, ζj, ζk)|2+δ to be bounded, which is ensured by the compact

supports of the bounded kernels K1, L, and the derivative of K2 in Assumptions 4.A1

and 4.B1, the existence of S−1(x2, u) and M−1 due to Assumptions 4.A7 and 4.B6, the

boundedness of ζi and density fX2U by Assumptions 4.A4 and 4.B4, and the moment

conditions for X1ε and Z1ε in Assumption 4.A6. Similarly, we can show that |Eψ̄0(·, ·, ·)| ≤

C(ghd2h
r
1)2/(2+δ)αδ/(2+δ)(i − k) holds for different order of inputs ζi, ζj, and ζk and δ =

max{δ1, δ2}. Consequently, we obtain |Eψ̄(ζk, ζi, ζj)| ≤ C(ghd2h
r
1)2/(2+δ)αδ/(2+δ)(i− k) and

for δ = max{δ1, δ2},

|EP(1)
n,1b| =

6

n3ghd+1
2 hr1

∑
1≤k<i<j≤n

|Eψ̄(ζk, ζi, ζj)|

≤Cn−3g−1h−d−1
2 h−r1 (ghd2h

r
1)2/(2+δ)

∑
1≤k<i<j≤n

αδ/(2+δ)(i− k)

=Cn−3g−1h−d−1
2 h−r1 (ghd2h

r
1)2/(2+δ)

n−2∑
τ=1

n∑
l=τ+2

(n+ 1− l) · αδ/(2+δ)(τ)

≤Cn−1g−δ/(2+δ)h
−dδ/(2+δ)−1
2 h

−rδ/(2+δ)
1

×
n−2∑
τ=1

(1− τ/n)(1− τ/n− 1/n)αδ/(2+δ)(τ)

=O(n−1g−δ/(2+δ)h
−dδ/(2+δ)−1
2 h

−rδ/(2+δ)
1 )

=o(n−1/2g−1/2). (by Assumption 4.B7(ii))

According to Lemma 4.7 (with θ = δ/2) under Assumptions 4.A1–4.A7 and 4.B1–4.B6,

E(P(1)
n,1b)

2 ≤ Cn−3g−2h−2r
1 h−2d−2

2 (ghr1h
d
2)2/(2+δ)

= O(n−3g−2(1+δ)/(2+δ)h
−2r(1+δ)/(2+δ)
1 h

−2d(1+δ)/(2+δ)−2
2 )

= o(n−1g−1). (by Assumption 4.B7(ii))

Therefore, P(1)
n,1 = op(n−1/2g−1/2) by Chebyshev’s inequality. One can also show that

P(2)
n,1 = op(n−1/2g−1/2) in a similar way. This completes the proof for the result P1(x2) =

op(n−1/2g−1/2). �
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Lemma 4.18. Under Assumptions 4.A1–4.A8 and 4.B1–4.B7, for n→∞ and x2 ∈ DX2,

R1(x2) +R2(x2) +R3(x2) = op(n−1/2g−1/2).

Proof. Similarly to the proof of Lemma 4.12, by the invertibility of fX2U and S(x2, u) in

Assumptions 4.A4 and 4.A7 and the convergence results for Ŝn(x2, u), Ŝ−1
n (x2, u), and

Pc(x2) in Lemmas 4.15, 4.16, and 4.17, respectively, for c = 1, 2, 3, we can write

Rc(x2) =Φ

{
Ŝ−1
n (x2, Ûi)

[
Ŝn(x2, Ûi)− fX2U(x2, Ui)S(x2, Ui)

] S−1(x2, Ui)

fX2U(x2, Ui)
,

T̂n,c(x2, Ûi)− T̃n,c(x2, Ui)
}

=Op(1)op(1) Φ

{
S−1(x2, Ui)

fX2U(x2, Ui)
, T̂n,c(x2, Ûi)− T̃n,c(x2, Ui)

}
︸ ︷︷ ︸

=Pc(x2)

=Op(1)op(1)op(n−1/2g−1/2) = op(n−1/2g−1/2).

�

4.9 Appendix: Example 2: weak instruments

In this example, we investigate how the performance of our proposed estimator changes

for weak instruments. We consider the same weakly dependent process as in Example 2

in Section 4.5.2, except the generating process for X2t is replaced by

X2t = 1.25l · {Z2t + sin(0.2 · Z2t)}+ 5(1− l)U2t,

for l = {0, 0.2, 0.4, 0.6, 0.8}. Figure 4.6 demonstrates how the correlations between en-

dogenous variable and exogenous variables change for different values of l. The corre-

lations between X2 and Z1 across 500 replications more or less remain in the range of

(−0.2, 0.2) for different l’s, but the median correlation between X2 and Z2 decreases from

0.9 to 0 as l becomes smaller. In other words, Z2 is a weaker instrument for smaller l.

Simulation results are summarized in Figures 4.7(a) and (b). Figure 4.7(b) displays the

plots of our proposed estimates for the coefficient function g0 from a sample such that
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Figure 4.6: Correlations for l = {0, 0.2, 0.4, 0.6, 0.8}. Figures (a) and (b) give the boxplots of
the correlations between endogenous variable X2 and exogenous variables Z1 and Z2, respec-
tively.

l=0.8 l=0.6 l=0.4 l=0.2 l=0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

(a)

0 1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

g0

l=0.8
l=0.4
l=0

(b)

Figure 4.7: Simulation results for Example 4. Figure (a) shows the mean squared errors for
different values of l. Figure (b) provides the plots of the estimates for l = 0, 0.4, 0.8.

its correlation between X2 and Z2 equals to the median in the 500 replications. In figure

4.7(b), the estimates for different values of l are closed. However, the mean squared errors

for smaller l is larger in Figure 4.7(a), which indicates our proposed IV estimate perform

worse for weaker instruments.
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