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Obtaining insights from high-dimensional
data: sparse principal covariates regression
Katrijn Van Deun1* , Elise A. V. Crompvoets1 and Eva Ceulemans2

Abstract

Background: Data analysis methods are usually subdivided in two distinct classes: There are methods for prediction
and there are methods for exploration. In practice, however, there often is a need to learn from the data in both ways.
For example, when predicting the antibody titers a few weeks after vaccination on the basis of genomewide mRNA
transcription rates, also mechanistic insights about the effect of vaccinations on the immune system are sought.
Principal covariates regression (PCovR) is a method that combines both purposes. Yet, it misses insightful
representations of the data as these include all the variables.

Results: Here, we propose a sparse extension of principal covariates regression such that the resulting solutions are
based on an automatically selected subset of the variables. Our method is shown to outperform competing methods
like sparse principal components regression and sparse partial least squares in a simulation study. Furthermore good
performance of the method is illustrated on publicly available data including antibody titers and genomewide
transcription rates for subjects vaccinated against the flu: the selected genes by sparse PCovR are higly enriched for
immune related terms and the method predicts the titers for an independent test sample well. In comparison, no
significantly enriched terms were found for the genes selected by sparse partial least squares and out-of-sample
prediction was worse.

Conclusions: Sparse principal covariates regression is a promising and competitive tool for obtaining insights from
high-dimensional data.

Availability: The source code implementing our proposed method is available from GitHub, together with all scripts
used to extract, pre-process, analyze, and post-process the data: https://github.com/katrijnvandeun/SPCovR.

Keywords: Dimension reduction, Prediction, High-dimensional data, Immunology, Stability selection

Background
Traditionally, data analysis methods are divided in two
classes with different goals: Methods for prediction (or,
supervised learning) and methods for exploration (or,
unsupervised learning). An example of the former is
assessing whether someone is at risk for breast cancer;
in this case the aim is to use currently available infor-
mation to predict an unseen (often future) outcome. On
the other hand, the goal of exploratory methods is to
gain an understanding about the mechanisms that cause
structural variation and covariation in the available infor-
mation. For example, exploration of gene expression data
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5000 LE, Tilburg, The Netherlands
Full list of author information is available at the end of the article

collected over time after addition of serum gave not only
insight in the transcriptional program but also in pro-
cesses related to wound repair [1]. There are many cases,
however, where it is of interest to reach both objectives
and to predict an outcome of interest while simultane-
ously revealing the processes at play. This is for example
the case in the study of [2]: The gene expression response
soon after vaccination and the antibody titers much later
in time were measured with the aim of both predicting
immunogenicity and revealing new mechanistic insights
about vaccines.
To reveal the underlying mechanisms, component or

matrix decomposition based methods can be used. Well
known examples are principal component analysis (PCA)
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and the singular value decomposition [3]. Yet, another
frequent use of such methods is in the context of pre-
diction with many covariates: A popular approach is to
first reduce the covariates to a limited number of compo-
nents and to subsequently use these for prediction. This
is known as principal components regression (PCR, see
[4]). A drawback of this two-step approach is that the
components are constructed with no account of the pre-
diction problem and hence may miss the components
that are relevant in predicting the outcome. This is espe-
cially true when the number of predictor variables is
huge and represents a large diversity of processes, as is
for example the case with genomewide expression data.
Sparse regression approaches like the lasso [5] and elas-
tic net [6], on the other hand, only focus on modeling
the outcome with no account of the structural varia-
tion underlying the covariates. Hence, approaches that
find components that simultaneously reveal the underly-
ing mechanisms and model the outcome of interest are
needed. Partial least squares (PLS; see for example [7]) and
principal covariates regression, PCovR [8], are such meth-
ods. Yet, partial least squares may have a too strong focus
towards prediction [9] while principal covariates regres-
sion can be flexibly tuned to balance between prediction
of the outcome and reduction of the covariates to a few
components.
Apart from implementation issues (meaning that exist-

ing PCovR software can only be used on data with a
modest number of variables), a shortcoming of PCovR is
that the components are based on a linear combination of
all variables. This is undesirable whenworking with a large
set of variables, both from a statistical and an interpreta-
tional point of view. First, the estimators are not consistent
in the p > n case [10], and second, the interpretation
of components based on a high number of variables is
infeasible. Furthermore, components that are based on a
limited set of selected variables better reflect the fact that
many biological processes are governed by a few genes
only. To overcome such issues in partial least squares,
sparse methods have been developed [10, 11]. Likewise
we propose here a sparse and efficient version of princi-
pal covariates regression1. The proposed method offers a
flexible and promising alternative to sparse partial least
squares.
The paper is organized as follows. First we propose the

PCovR method and its sparse extension (SPCovR), and
we discuss its relation to (sparse) PLS. The (compara-
tive) performance of SPCovR is evaluated in a simulation
study and in an application to genomewide expres-
sion data collected for persons vaccinated against the
flu [2]. The implementation of the SPCovR algorithm
is available online (https://github.com/katrijnvandeun/
SPCovR) together with the scripts used for analyzing the
data.

Methods
Sparse principal covariates regression
We will make use of the following notation: matrices
are denoted by bold uppercases, the transpose by the
superscript T , vectors by bold lowercase, and scalars by
lowercase italics. Furthermore, we will use the convention
to indicate the cardinality of a running index by the capi-
tal of the letter used to run the index (e.g., this paper deals
with J variables with j running from 1 to J), see [12].

Formalmodel
The data consist of a block of predictor variables X and a
block of outcome variables Y. We will assume all variables
to be centered and scaled to sum of squares equal to one.
Now, consider the following decomposition of the I × Jx
matrix of covariates X ,

X = XWPT
x + Ex = TPT

x + Ex, (1)

together with the following rule to predict the Jy outcome
variables Y,

Y = XWPT
y + Ey = TPT

y + Ey, (2)

with XW = T the I × R matrix of component scores,
Px the Jx × R matrix of variable loadings, Py the Jy × R
vector of R regression weights, and Ex, Ey the residuals.
Note that we consider the general problem of a multivari-
ate outcome, hence R regression coefficients for each of
the Jy outcome variables. The component scores are often
constrained to be orthogonal : TTT = I with I an iden-
tity matrix of size R × R. Despite this restriction there
still is rotational freedom and the PCovR coefficients are
not uniquely defined. The data model represented in (1)
and (2) is one that summarizes the predictor variables by
means of a few components and uses these as the pre-
dictors of the outcome. Note that the same model also
underlies principal components regression and partial
least squares.

Objective function
Principal covariates regression [8] differs from the former
methods in the objective function used: Minimize over
W,Px,Py

L(W,Px,Py) = (1−α)
‖Y−XWPT

y ‖2
‖Y‖2 + α

‖X − XWPT
x ‖2

‖X‖2
=

∥
∥
∥[w1Y w2X] − XW

[

w1PT
y w2PT

x

]∥
∥
∥

2

=
∥
∥
∥Z − XWPT

∥
∥
∥

2
(3)

such that TTT = I and with 0 ≤ α ≤ 1, w1 =√
1 − α/‖Y‖, w2 = √

α/‖X‖, Z = [w1Y w2X], and P =
[

w1PT
y w2PT

x

]T
. The parameter α is a tuning parameter

giving eithermore weight to the prediction of the outcome
(α close to 0) or to the reconstruction of the predictor
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variables (α close to one). In fact, α = 1 corresponds to
principal components regression while α = 0 corresponds
to ordinary regression. Let R2

X denote the percentage of
variance in X accounted for by T and R2

Y the percentage
of variance in Y. It can be seen then that the criterion is
equivalent to maximizing

αR2
X + (1 − α)R2

Y . (4)

A solution to (3) based on the singular value decompo-
sition of X was proposed by [13]. An efficient implemen-
tation that accounts for large data (either I or J large) can
be found in the online code.
Partial least squares is based on the optimization of the

following criterion [8, 10]

wr = arg max
w

wT
r XTYYTXwr (5)

for r = 1, . . . ,R and such that wT
r wr = 1 for all r =

1, . . . ,R and wT
r XTXwr′ = 0 for r �= r′. Note that this is

equivalent to maximizing

var(Xwr)corr2(Xwr ,Y) (6)

under the restrictions. Criterion (6) is approximately
equal to R2

XR
2
Y and can be compared to criterion (4) to

obtain some intuition about the similarities and differ-
ences between both methods. Given that the PLS and
PCovR criteria are different, it can be expected that the
obtained estimates are different as well. Whereas PLS
cannot be expressed as a special case of PCovR with a
particular value of the tuning parameter α, it has been
shown to be a special case of continuum regression with
the continuum regression parameter set equal to 0.5 [14].
A drawback of the principal covariates regression model

is that the components are based on a linear combination
of all the predictor variables. Having components that are
characterized by a few variables only is easier to interpret
and often a better reflection of biological principles. This
motivates the introduction of a sparseness restriction on
the component weights wjr :

L(W,Px,Py) = (1−α)
‖Y − XWPT

y ‖2
‖Y‖2 +α

‖X−XWPT
x ‖2

‖X‖2
+λ1|W|1 + λ2|W|22 (7)

with |W|1 = ∑

j,r |wjr| the lasso penalty and |W|22 =
∑

j,r w2
jr the ridge penalty. λ1 (λ1 ≥ 0) and λ2 (λ2 ≥ 0)

are tuning parameters for the lasso and ridge penalties
respectively. The effect of the lasso is that it shrinks the
coefficients, some (or many for high λ1) to exactly zero
thus performing variable selection. Note that the lasso
penalty in Eq. (7) is imposed only on the component
weights and not on the loadings Px nor on the regression
weights Py. The penalty implies that some or many of the
component weights will become zero; because the load-
ings and regression weights are not subject to the lasso

penalty, these are not affected by the penalty. The ridge
also introduces shrinkage and is included here for two rea-
sons: To introduce stability in the estimated coefficients
and to allow for more than I non-zero coefficients; this
combination of penalties is known as the elastic net. Both
the lasso and the elastic net are known to over-shrink
the non-zero coefficients [15, 16]. One way to undo the
shrinkage of the non-zero coefficients, is to re-estimate
them using an ordinary least squares approach [17].When
α = 1, the objective function (7) reduces to the sparse
PCA criterion [18] and the resulting estimates can also be
obtained under a sparse principal components regression
approach. When α = 0 and R = 1, the elastic net regres-
sion formulation is obtained [6] and the two problems are
equivalent. Note that the introduction of the sparseness
restriction eliminates the rotational freedom and, under
suitable conditions, has a unique solution.
Similarly, sparse PLS approaches have been proposed

that are based on the same penalties:

arg max
w

wT
r XTYYTXwr + λ1|wr|1 + λ2|wr|22. (8)

This sparse PLS criterion is different from the SPCovR
criterion (7) over the whole range of α. The two methods
can be expected to yield different estimates.

Algorithm
The procedure that we will use to estimate the model
parameters is one which estimates all R components
simultaneously and not -as is often the case in the liter-
ature - one by one. The main benefit is that this gives
control over the constraints that are imposed on the
parameter estimates.More specifically, we offer the choice
to constrain the loadings Px either to be orthogonal or
length restricted (diag

(

PT
x Px

) = 1). The former is the
usual constraint used in sparse PCA approaches [18], the
latter is more flexible and allows for correlated compo-
nent loadings. Note that the length constraint is needed
to avoid trivial solutions where very small component
weights that satisfy the penalty are compensated by very
high loadings. To solve the optimization problem in (7)
under these constraints, we rely on a numerical procedure
and alternate between conditional estimation of W given
fixed values for P and of P given fixed values for W. For
the moment we assume the number of components R and
the value of the tuning parameters α, λ1, and λ2 to be
given; how to tune these meta-parameters is discussed in
the next subsection.
The conditional estimation of the weights W is based

on a coordinate descent procedure and of the loadings
on a restricted least-squares routine; both procedures are
detailed in the Appendix. Using these routines, the loss
is guaranteed to be non-increasing. Furthermore, because
the loss is bounded from below by zero the algorithm con-
verges to a stationary point (for suitable starting values).
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To deal with the problem of local optima, a multistart
procedure can be used. We recommend to use a com-
bination of both a rational and several random starting
configurations. A rational start may be obtained from the
non-sparse principal covariates regression analysis. Note
that often sparse multivariate approaches are initialized
by a rational start only which does not account for the
problem of local optima.

Algorithm 1 SPCovR
Input: Data X and Y, values for the tuning parame-
ters R, λ1, λ2, α, the type of constraint on the loadings,
a maximum number of iterations T, and some small
ε > 0
Initialization

InitializeW withW0
Initialize P with P0 subject to the constraint
Calculate initial loss L0
Set the difference in loss d = 1.
Set the iteration counter t = 1

while t < T or d > ε do
Conditional estimation of Pt conditional uponWt−1
Conditional estimation ofWt conditional upon Pt
Calculate updated loss Lu
d = L0 − Lu
t = t + 1
L0 = Lu

end while

Tuning andmodel selection
The sparse PCovR model is estimated with fixed values
for the weighting parameter α, the number of compo-
nents R, the Lasso tuning parameter λ1, and the ridge
parameter λ2 . The problem that we consider here, is how
to tune these meta-parameters. Cross-validation is fre-
quently recommended in the literature but this requires
data that are rich in the number of observations. In addi-
tion, the computational cost of cross-validation for the
SPCovR model is considerable (because all possible com-
binations of the values for each of the tuning parameters
need to be considered). Furthermore, in the context of
PCovR, simulation studies showed that this is not a supe-
rior model selection strategy compared to strategies that
rely on a stepwise approach [9]. Hence, we propose to use
a stepwise strategy.
First, α is determined using the so-called maximum

likelihood approach [19]:

α = Jx
Jx + Jy

σ 2
εx

σ 2
εy

, (9)

with σ 2
εx and σ 2

εy the variance of the error on the predictor
and outcome variables respectively. In the case of a large

number of predictor variables Jx will dominate the expres-
sion and we can assume that α will be almost - but not
exactly - equal to one without having to estimate the size
of the error variances. It is important to keep α strictly
smaller than one, for example α = .99, and to use PCovR
instead of a PCR approach [19].
Second, we fix the number of components by a so-called

scree test that is based on a visual display of the value of
the loss function (3) against the number of components r
in the model for r = 1, ...,R. In this display, we look for
the point where the plot levels off and select the number
of components just before this point.
Next we tune the ridge penalty. We recommend to set

λ2 equal to a small value to have more emphasis on vari-
able selection by the lasso (for example, 5% of the value of
the lasso). This small value should be sufficient to stabi-
lize the estimates and to encourage grouping of strongly
correlated variables [20].
The final metaparameter to tune is the lasso param-

eter λ1. A straightforward and often used procedure to
find a proper value for λ1 is cross-validation [6]. In the
more recent literature it has been established that cross-
validation results in selecting a superset of the correct
predictors, and thus in false positives (see for example the

Algorithm 2 Stability selection for sparse PCovR
Input: Data X and Y, number of resamples N, frac-
tion of sample size f, R, upper bound on the expected
number of false non-zero coefficients E(V ), probabil-
ity threshold πthr , and interval of Lmax decreasing lasso
values Lint = [λmax . . . λmin]
Calculate qR the upper-bound on the number of non-
zero coefficients to retain
Initialize: Set the initial number of non-zero coeffi-
cients q� = 0, � = λmax, selection probability matrix
�(λ) = 0, and lasso values counter L = 1
while q� ≤ qR and L ≤ Lmax do

for n = 1 to N do
Sample a fraction f of the observations with

replacement
Perform SPCovR on resampled data with λ1 =

Lint [L]
Permute the columns ofW to maximal

agreement
If wjr �= 0 set π

(λ)
jr = π

(λ)
jr + 1

N
end for
π

(Stable)
jr = maxλ∈� π

(λ)
jr

Count q� the number of stable non-zero coefficients
for which π

(Stable)
jr ≥ πthr

L = L + 1
� = [� Lint [L]]

end while
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retrospective paper on the lasso and the included discus-
sions [21]). One proposal to address this issue of falsely
selecting variables, is the use of a stability selection proce-
dure [22] which allows to control the false positive error
rate. Stability selection is a general method that can be
easily applied (in adapted form) with our SPCovR proce-
dure. In brief, it is a resampling based procedure that is
used to determine the status of the coefficients (zero or
non-zero) over a range of values for the tuning parameter
λ1. The original procedure has been proposed for a single
set of variable coefficients. Here, we have R such sets due
to the fact that we estimate the weights of all components
simultaneously. The order of the components between
different solutions may change (permutational freedom of
the components) and this has to be taken into account.
To explain the stability selection procedure, we start

with the for loop in Algorithm 2: Given a fixed value λ1,
N resamples are created by drawing with replacement
a fraction f of the observations (with .50 ≤ f < 1).
The resampled data are subjected to a SPCovR analy-
sis and the resulting N matrices of component weights
W are used as follows: For each coefficient wjr the pro-
portion of occurences for which it is non-zero in the N
resamples is recorded in the probability matrix �(λ). Note
that between samples, permutation of the components
may occur. We account for this by permuting the compo-
nents to maximal agreement in the component scores as
measured by Tucker’s coefficient of congruence; the com-
ponent scorematrix resulting from the SPCovR analysis of
the original (non-resampled) data is used as the reference
for congruence.
Next, we turn to the while loop in which λ1 is decreased

until the condition q� > qR is met with q� the number
of non-zero coefficients over the range of λ1 values con-
sidered so far and qR a value that results from controlling
the expected number of falsely non-zero coefficients V.
From [22] we have that the expected number of non-zero
coefficients q is

E(V ) ≤ 1
2πthr − 1

q2

J
or,

q ≤ √

J(2πthr − 1)E(V ). (10)

Note that this is the expression for a single component;
to obtain the upperbound qR for R components we use

qR ≤ R
√

J(2πthr − 1)E(V ). (11)

Hence, by fixing E(V ), e.g. to one, and the probability
threshold πthr = 0.90 [22], an upper bound on the num-
ber of non-zero coefficients is obtained. For a range � of
λ1 values, the non-zero probability is given by �(Stable) =
maxλ∈� �(λ) and the set of non-zero coefficients by those

for which π
(Stable)
jr ≥ πthr . If q� ≤ qR the procedure con-

tinues by extending the range of λ1 values with the next
value. The values of λ1 are taken from the interval � =
[λmax, ..., λmin] with λmin = 1e−4λmax and the remaining
values equally spaced and arranged in decreasing order
between log2(λmax) and log2(λmin); see [23].

Results
To compare the performance of sparse principal covari-
ates regression with competing methods, we make use of
both synthetically created data in a simulation study and
empirical data resulting from a systems biology study on
the flu vaccine.

Simulation study
In a first study on the performance of SPCovR, we make
use of artificially generated data. The main aim is to study
the behavior of SPCovR, also in relation to competing
methods, in function of the strength of the components
in relation to the covariates on the one hand and in rela-
tion to the outcome on the other hand. Therefore, the
following factors were chosen to set up the simulation
experiment based on a model with two components (see
[9] for a similar setup):

1 VAFX: The total proportion of variation accounted
for (VAF) by the components in the block of
covariates with levels 0.01, 0.40, and 0.70.

2 The relative strength of the components in the
variation accounted for in the block of covariates
VAFX: 0.10 versus 0.90 (the second component is
much stronger than the first component; for example
with VAFX = 0.40 the first component accounts for
4 percent of the total variation and the second one
for 36 percent), 0.50 versus 0.50 (equally strong), and
0.90 versus 0.10.

3 VAFY: The total proportion of variation accounted
for by the components in the outcome with levels
0.02, 0.50, and 0.80.

All factors were crossed, resulting in a simulation exper-
iment with 3 × 3 × 3 = 27 conditions. The number
of observations and variables was fixed to I = 100 and
J = 200 respectively, 80% of the component weight coef-
ficients were set equal to zero (this is 320 of the in total
400 coefficients), and the regression weights for the first
and second component were set equal to b1 = 1 and
b2 = −0.02, implying that the first component is much
more associated to the outcome than the second one (for
equally strong components).
We expect SPCR to perform well - in terms of recov-

ering the components - in all conditions where the com-
ponents account for a considerable amount of variation
in the covariates (VAFX = 0.40/0.70) but not when the
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components are submerged in the noise (VAFX = 0.01).
In terms of prediction, SPCR can be expected to per-
form well when the components not only account for
variation in the covariates but also in the outcome; when
VAFY = 0.02 predictive performance can be expected to
be bad for any method, including SPCR. For SPLS, we
expect good performance when the components account
for quite some variation both in the covariates and the out-
come (VAFX= 0.40/0.70 and VAFY= 0.50/0.80) but poor
performance when eiter VAFX or VAFY is low. Lastly, we
expect SPCovR to perform well in terms of recovering the
components when either VAFX or VAFY is considerable
but not when both are low (VAFX = 0.01 and VAFY =
0.02). In terms of prediction, performance of SPCovR will
be bad when VAFY = 0.02.
To generate data under a sparse covariates regres-

sion model with orthogonal loadings, the setup briefly
described here was used. Full details can be found in
the online available implementation: https://github.com/
katrijnvandeun/SPCovR. An initial set of weights W(0)

was obtained by taking the first two right singular vectors
obtained from an I × J matrix X(0) generated by ran-
dom draws from a standard normal distribution. Sparsity
was created by setting 320 values, chosen at random, to
zero. Next, the resulting sparse weight vector was rescaled
according to the relative strength of the components in the
condition considered. These initial component weights
W(0) and the fixed regression weights b1 = 1 and b2 =
−0.02 were used to calculate an initial outcome vector,

y(0) = X(0)W(0)
[

1
−0.02

]

. (12)

Note that the initial matrix X(0) was not generated
under a SPCovR model. To obtain data that perfectly
fit such a model, a principal covariates regression anal-
ysis with fixed zero weights was performed to yield
sparse component weights W and orthogonal loadings P.
Again, the weights were rescaled and a block of covari-
ates XTRUE = X(0)WPT and the outcome yTRUE =
XTRUEW [b1b2]T were calculated on the basis of the scaled
component weights and the loadings resulting from the
SPCovR analysis. These are data with no noise and in a
final step noise was added by sampling from the normal
distribution with mean zero and variance set in corre-
spondence to the level of the proportion of variation
accounted for by the components in the covariates and
the outcome yielding data X and y. For each of the 27
conditions, 20 replicate data sets were generated resulting
in 540 data sets in total. The code used to generate the
data, including the seed used to initialize the pseudo ran-
dom number generator, can be found on GitHub: https://
github.com/katrijnvandeun/SPCovR.
Each dataset was subjected to five analyses: sparse prin-

cipal components regression (SPCR), sparse partial least

squares (SPLS), and three SPCovR analyses with differ-
ent values of α, namely 0.01, 0.50, and 0.99. For the SPCR
analysis, we used the elasticnet R package that implements
the sparse PCA approach in [18]. The elasticnet R pack-
age uses a least angle regression (LARS) [17] procedure
and hence allows to find a solution with a defined number
of zeros for each of the components. We set this number
equal to the exact number of zero coefficients occuring in
W. For the SPLS analysis, the R package RGCCAwas used
that allows to (approximately) set the total number of zero
coefficients over the components; the analyses options
were set to result in (approximately) 320 zero coefficients.
For the SPCovR analyses, we used stability selection with
the upperbound on the number of non-zero coefficients
q set equal to 80. Hence all analyses were tuned such
that they had exactly or approximately the same number
of zeroes as present in the true underlying component
weight matrix. This makes the interpretation of the resuls
easier in the sense that performance of the methods is not
dependent upon proper tuning of the sparseness penalty.
In the comparison of the methods, we will consider their
performance in recovering the underlying components
and how well they predict a new set of test data (generated
under the samemodel, this is with the sameW, regression
weights, and the same error level for the covariates and
outcome).
The results with respect to the recovery of the com-

ponents is shown in Fig. 1. These boxplots display the
Tucker congruence between the true componentscores
T = XTRUEW and those obtained from the analyses T̂ =
XŴ. Tucker congruence, φ, is defined as [24],

φ = vec(T)Tvec
(

T̂
)

√
(

vec(T)Tvec(T)
) (

vec
(

T̂
)Tvec

(

T̂
))

(13)

this is the cosine of the angle between the vectors vec(T)

and vec(T̂) with higher values indicating more similarity
between the components. Values over 0.95 indicate that
the components can be considered equal while values in
the range [0.85− 0.94] correspond to a fair similarity [24].
In Fig. 1 the Tucker congruence of the 20 replicate data
sets is shown for the 27 conditions and the three meth-
ods (SPCovR with α = 0.99, SPCR, and SPLS). For each
combination of the variation accounted for in the covari-
ates and in the outcome (e.g., VAFX = 0.01 and VAFY
= 0.02 at the left of the left panel), three boxplots are
shown for the three methods. These are the three lev-
els of the relative strength factor with the boxplots at
the left referring to the conditions where the first com-
ponent is weaker than the second one, the boxplots in
the middle referring to the conditions where they are
equally strong, and boxplots at the right to the conditions
where the second component is stronger than the first

https://github.com/katrijnvandeun/SPCovR
https://github.com/katrijnvandeun/SPCovR
https://github.com/katrijnvandeun/SPCovR
https://github.com/katrijnvandeun/SPCovR
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Fig. 1 Tucker congruence for the simulated data

one. SPCovR outperforms the two other methods in all
conditions, followed by SPCR which outperforms SPLS in
most conditions. Only when the variance accounted for
by the components in the block of covariates (the con-
ditions VAFX = 0.01) is very low while it is high in the
outcome variable (VAFY = 0.50/0.80), SPLS outperforms
SPCR by taking advantage of the information included in
the outcome. SPCovR, in all conditions, takes advantage
of putting some weight on modeling the outcome in the
construction of the components.
To assess the predictive performance of the methods,

the squared prediction error (PRESS) was calculated on
test data as follows,

PRESS =
∑

i
(

yi − ŷi
)2

∑
y2i

(14)

where ŷi was obtained with one of the three considered
models and we normalized with respect to the total vari-
ation in the observed scores. The lower the PRESS, the
better the model performs in terms of prediction. Figure 2
displays the PRESS values for the 27 conditions for each
of the three methods. Clearly, as could be expected, when

the outcome is submerged in the noise (VAFY = 0.02)
all methods perform badly (PRESS ≥ 1). Another striking
feature is that SPLS has the largest prediction error in all
conditions. When it comes to the relative predictive per-
formance of SPCovR and SPCR in the conditions where
the components account for the variation in the out-
come (VAFY = 0.50/0.80), the methods seem to perform
equally well. Only in the conditions where the compo-
nents account for almost no variation in the covariates
(VAFX = 0.01) but a lot of variation in Y (VAFY = 0.80
and equal strength of the components or more strength
of the predictive component) SPCovR outperforms
SPCR.
SPCovR was run with three levels of the weighting

parameter α: namely α = 0.01, α = 0.50, and α =
0.99. For both performance measures and in all condi-
tions, SPCovR with α = .99 yields the best results. Hence,
it seems that little weight should be given to fitting the
outcome in order to obtain good results in terms both
of recovering the components and prediction of the out-
come. Note that giving no weight at all to the outcome in
modeling the components, this is a SPCR analysis, leads

Fig. 2 Prediction error for the simulated data
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to worse recovery in general. For prediction, on the other
hand, the gain of using SPCovR is limited to a few condi-
tions and, when the noise in the covariates is considerable,
SPCovR is prone to overfitting while SPCR is not.

Systems biology study of the flu vaccine
We will illustrate SPCovR and compare with SPLS using
data that result from a systems biology study on vaccina-
tion against influenza [2]. The general aim of this study
was to predict vaccine efficacy with micro-array gene
expression data obtained soon after vaccination and to
gain insight in the underlying biological mechanisms. First
we will give a general description of the data and how
these were pre-processed, then we wil discuss the SPCovR
and SPLS analyses and results.
The authors made data for two seasons, 2007 and 2008,

publicly available on the NCBI Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) with accession num-
bers GSE29614 and GSE29617. For both seasons, a
micro-array analysis was performed on the genomewide
expression in peripheral blood mononuclear cells col-
lected just before and 3 days after vaccination for all
participants (26 in 2008 and 9 in 2007). Two different array
platforms for measuring gene expression were used but
the first 54,675 of 54,715 probe sets of the 2008 season
are shared with the 2007 season. Hence, we can use the
2007 data as an independent test sample. Note that the
choice for taking the 2007 data as the test set is motivated
by the extremely small sample size. The RMA algorithm
(Robust Multichip Average; see Irrizary et al. 2003) was
used to pre-process the CEL-files. The data collected just

before vaccination were considered as the baseline and
subtracted from the data at Day 3. For each variable
(probeset), the difference scores were centered and scaled
to sum-of-squares equal to one. These scaled difference
scores form the set of predictor scores X in the SPCovR
and sparse PLS analyses.
To assess the efficacy of the vaccine, three types of

plasma hemagglutination inhibition (HAI) antibody titers
were assessed just before and 28 days after vaccination.
As described by [2] vaccine efficacy was measured by sub-
tracting the log-transformed antibody titers at baseline
from the log-transformed antibody titers 28 days later and
taking the maximum of these three baseline-corrected
outcomes (to reduce the influence of subjects who started
with high antibody concentrations due to previous infec-
tion). These maximal change scores were centered, result-
ing in the scores used as the outcome variable y in the
SPCovR and sparse PLS analyses.
We start with a principal component analysis of the

gene expression data. The variance accounted for by each
component is displayed in Fig. 3. We see that the first
two components stand out and this will be the number
of components that we will use in the PCovR and PLS
analyses. To appreciate the flexibility of the weighting
of R2

X versus R2
Y in PCovR, we first consider the non-

sparse analyses. The fit measures for the two components
resulting from PCovR (with 100 equally spaced values for
α = .01, .02, . . . , .99) are compared to those resulting
from the PLS analysis using the RGCCA R package [11]:
Fig. 4 displays the variance accounted for by the compo-
nents in the block of predictor variables as well as the

Fig. 3 Variance accounted for bye ach PCA component in the predictor data

https://www.ncbi.nlm.nih.gov/geo/
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Fig. 4 Fit measures obtained for principal covariates regression and
partial least square

squared correlation between observed and modeled out-
come scores for the two seasons. As could be expected,
the variance accounted for in the block of predictor vari-
ables is highest for PCovR with high values of α. Because
these solutions with high values for α give little weight
to explaining the variance in the outcome, low R2

y values
for the 2008 data are observed. PLS, on the other hand,
seems to behave as the other extreme with values simi-
lar to those observed for α → 0. When it comes to the
use of the components obtained for the 2008 season to
predict the outcome in the 2007 season, better results are
obtained with the PCovR components obtained with α

close to one, this is giving more importance to explain-
ing the variance in the predictor data than in the outcome
variable.
Next we turn to the analyses with imposed sparse-

ness on the component weights. The metaparameters of
the SPCovR model were set using the proposed stepwise
model selection procedure. Hence, based on Fig. 3 amodel
with two components was selected, α was set to a value
close to one (α = .99), and the ridge penalty was set
equal to .05λ1. In the stability selection procedure, we
used N = 500 resamples, the threshold π was set equal to
0.90 and E(V ) = 1. This results in qR = 416. We compare
with the sparse PLS results from two R packages, RGCCA
[11] and spls [10] also using R = 2 components and tuned
such that approximately 416 non-zero component weights
were obtained in order to have similar sparseness of the
sparse PCovR and sparse PLS solutions. spls [10] uses a
univariate soft thresholding approach, this is λ2 → ∞.
The SGCCA function in RGCCA [11] was used with the
default option for tuning the ridge penalty.

The fit of the solutions to the observed data is sum-
marized in Table 1. The first column shows the vari-
ance accounted for by the components in the block of
covariates. The SPCovR components account for 19% of
the variance while this is much less for the sparse PLS
approach as implemented in SGCCA. For the spls pack-
age, we could not include such a measure of fit because
this package reports fit values only with respect to the out-
come variable. On the other hand, the fit of the modeled
outcome for the 2008 flu season, which was used to derive
the model parameters, is almost perfect for the sparse
PLS solutions and low for the sparse PCovR solution. Yet,
the predicted antibody titers for the 2007 data, using the
estimated component and regression weights of the 2008
analysis, have the highest correlation with the observed
antibody titers when the estimates resulting from SPCovR
are used (r(ŷ2007, y2007)2 = 0.79 compared to 0.55 and
0.53 for spls and SGCCA respectively).
The percentage of variance accounted for by each of

the individual components can be found in Table 2.
From these numbers it appears that the first SPCovR
component contributes almost exclusively to the vari-
ance accounted for in the transcriptomics data while
the second component contributes both to the variance
accounted for in the transcriptomics data and in the anti-
body titers. Hence, the first SPCovR component is impor-
tant for reconstructing the transcription rates in the gene
expression data while the second SPCovR component is
important both for fitting the transcriptomics data and
for predicting the antibody titers. The sparse PLS compo-
nents resulting from the SGCCA analysis are both focused
more towards predicting the antibody titers, the first
SGCCA component having the strongest contribution.
Another criterion that is important when comparing the

different solutions is related to the interpretation of the
solution: Do thecomponents reflect a common biological
theme that gives insight into the mechanisms that underly
vaccines? To answer this question, a functional annota-
tion based on the strength of association of the genes
with the components can be performed. The SPCovR and
SGCCA results contain such information in two ways,
namely in the component weights and in the loadings. The

Table 1 Fit of modeled to observed data for three methods:
SPCovR, spls, and SGCCA

Method VAF r(ŷ, y)2 r(ŷ2007, y2007)2

SPCovR 0.19 0.42 0.79

spls 0.99 0.55

SGCCA 0.11 1 0.53

Displayed are the variance accounted for by the components in the block of
covariates and the squared correlation between the modeled and observed
outcome for the 2008 and 2007 season. The model was constructed using the 2008
data
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Table 2 Percentage of variance accounted for in the block of
covariates (VAFX) and in the outcome

(

r(y, ŷ)2
)

by each of the
SPCovR and SGCCA components

Component 1 Component 2

SPCOVR VAFX 0.10 0.08

r(y, ŷ)2 0.01 0.40

SGCCA VAFX 0.07 0.04

r(y, ŷ)2 0.79 0.20

component weights reflect those genes (probesets) that
have the strongest contribution to the component scores.
Because of the sparseness restriction, only few of them
are non-zero. The loadings, on the other hand, reflect the
strength of association between the expression values of
a particular gene and the component scores. Whereas the
component weights measure the unique contribution of a
gene on top of the other genes, the loadings measure the
strength of association without taking the other genes into
account (this is comparable to the interpretation of partial
versus univariate correlations); see also [25].
First, we performed a functional annotation of genes

associated to the probesets with non-zero component
weights using the publicly available annotation tool
of PANTHER [26]. A list containing the official gene
symbols for the probesets with a non-zero compo-
nent weight, together with the value of these weights
on the two SPCovR and SGCCA components can be
found online: https://github.com/katrijnvandeun/SPCovR
We performed the functional analysis of these gene lists
using the statistical test of over-representation in PAN-
THER. This means that, for each functional class, the
number of genes belonging to that class and present in
our list of selected genes was compared to the num-
ber of genes for that class in the whole genome. A
test of overrepresentation was conducted for each class.
An overview of significantly overrepresented functional
classes is given in Table 3: Bonferonni correction for
multiple testing was used and only classes signficant at

the 0.05 level are reported. The first SPCovR compo-
nent was significantly enriched for rRNAmethylation; the
second component was significantly enriched for leuko-
cyte activation (and also for its parents, cell activation
and immune system process), immune effector process,
and negative regulation of metabolic process. Clearly, the
second component reflects biological processes thar are
important in establishing immunity. This is also the com-
ponent explaining most of the variance in the outcome
and having the highest regression weight: py2 = 0.02 com-
pared to py1 = 0.004. Notably, the gene encoding for
Calcium/calmodulin-dependent kinase IV (Camk4) was
included as an active predictor in the set. This gene was
singled out in the original study of [2] and further val-
idated as an important player in the regulation of the
antibody response using knockout experiments. Also, the
BACH2 (Transcription regulator protein BACH2) gene,
which is a known transcription factor necessary for immu-
nity against influenza A virus [27], was included with
a very high weight on this component. No significantly
over-represented terms were found for the genes under-
lying the non-zero component weights for the two sparse
PLS components obtained with SGCCA. In fact, there
was very little overlap in the genes selected by SPLS and
SGCCA.Except for one probeset, shared non-zero weights
were obtained only between the second SPCovR com-
ponent and the two SGCCA components. Remarkably,
the first SGCCA component is a subset of the second
SGCCA component. In the list of non-zero weights (avail-
able from https://github.com/katrijnvandeun/SPCovR) it
can be seen that only 32 probesets have non-zero
weights both for SPCovR and SGCCA, corresponding
to 19 unique gene symbols. Relatively high weights in
both analyses were obtained for SMUG1 (Single-strand-
selective monofunctional uracil-DNA glycosylase 1) which
has a role in antibody gene diversification and PPP1R11
(Protein phosphatase 1 regulatory inhibitor subunit 11)
known to effect NF-κB activity [28]. Also for the genes
associated to the selected probesets by the sparse PLS

Table 3 Significantly enriched gene ontology classes

Biological process Nr of genes found Nr of genes expected +/− P-value

rRNA methylation 5 .21 + 2.03E − 02

Cellular macromolecule metabolic process 89 58.65 + 1.68E − 02

Nucleic acid metabolic process 60 34.14 + 2.84E − 02

Cellular component organization or biogenesis 75 47.15 + 3.86E − 02

Gene expression 57 31.88 + 3.30E − 02

Leukocyte activation 18 4.59 + 6.11E − 03

Cell activation 20 5.36 + 2.88E − 04

Immune system process 31 13.13 + 2.79E − 02

Immune effector process 19 5.25 + 9.41E − 03

Negative regulation of metabolic process 32 14.16 + 4.59E − 02

https://github.com/katrijnvandeun/SPCovR
https://github.com/katrijnvandeun/SPCovR
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analysis performed with the spls package [10], no terms
were found.
Second, we performed an enrichment analysis based on

the loadings. The loadings reflect the strenght of associ-
ation of a gene with the component with higher loadings
indicating that the gene is more important for the pro-
cess at play. Both PANTHER and GSEA [29] accept as
input lists of genes together with a value that indicates
the importance of the gene2. Output resulting from the
enrichment analyses can be found online (https://github.
com/katrijnvandeun/SPCovR), here we summarize the
main results. A first result of interest is that the same kind
of processes are recovered from the enrichment analy-
ses of the loadings as obtained previously when looking
for over-represented classes in the gene lists with non-
zero component weights. Also here, the annotation of
the loadings obtained with SPCovR shows evidence of
immune related processes while such evidence is weak
for the SGCCA loadings. Notably, some immune related
gene ontology terms are found in the enrichment analy-
ses of the SGCCA loadings. In fact, overall more terms
are recovered from the enrichment analyses of the load-
ings. This could be expected given the small number of
genes involved in the lists obtained from the non-zero
component weights.
Taken together, the results suggest that SPCovR, by

putting more emphasis on accounting for the structural
variation in the gene expression data when building the
prediction model, catches the processes that are impor-
tant in establishing the immune response to the vaccine.
This pays off in the sense that a more stable prediction
model is obtained that has better generalizability (and
thus better prediction for the held out sample).

Discussion
Often a large amount of variables is measured with a dou-
ble goal: Predicting an outcome of interest and obtaining
insight in the mechanisms that relate the predicting vari-
ables to the outcome. In the high-dimensional setting this
comes along with a variable selection problem. Principal
covariates regression is a promising tool to reach this dou-
ble goal; we extended this tool to the high-dimensional
setting by introducing a sparse version of the PCovR
model and offerering a flexible and efficient estimation
procedure.
In this paper we showed through simulation that sparse

PCovR can outperform sparse PLS as it allows to put
less emphasis on modeling the outcome: By putting more
weight on accounting for the variation in the covariates,
more insight in the processes that underly the data may
be obtained and this, in turn, results in better out-of-
sample prediction. The benefit of this was illustrated for
publicly available data: clearly a meaningful annotation
of the selected genes was obtained with SPCovR while

no enriched terms were found for the genes selected
by sparse PLS. At the same time, the SPCovR analysis
resulted in a much better out-of-sample prediction.

Endnotes
1 [30] proposed a so-called sparse principal compo-

nents regression method that in fact is a sparse covariates
regression method. As this method, implemented in the
spcr R package, gave an out-of-memory failure on the
illustrative example we do not consider it further.

2 The reason to also consider GSEA and not only PAN-
THER is that the latter only allowed to use a very limited
set of gene ontology terms in the enrichment analysis,
unlike in the overrepresentation analysis.

Appendix
Derivation of an algorithm for sparse PCovR
Here we will discuss the estimation of the loadings and
component weights in the alternating procedure pre-
sented in Algorithm 1.

Conditional estimation of the loadings
Given the component weights, the problem that needs to
be solved is to minimize

L(Px,Py) = ∥
∥Z − XWPT∥

∥2 + λ1|W|1 + λ2|W|22
= ∥

∥Z − TPT∥
∥2 + k1, (15)

such that diag
(

PTP
) = 1 (oblique case) or

(

PTP
) = I

(orthogonal case) and with k = λ1|W|1 + λ2|W|22 a
constant.
This optimization problem can be solved in an iterative

procedure that updates each of the loading vectors pr in
turn:

∥
∥Z − TPT∥

∥2 + k1 = ∥
∥

⎛

⎝Z −
∑

r �=r∗
trpTr − tr∗pTr∗

⎞

⎠
∥
∥2 + k1

= ∥
∥Qr∗ − tr∗pTr∗

∥
∥2 + k1

= trQT
r∗Qr∗ − 2trQT

r∗tr∗pTr∗
+tr∗pTr∗pr∗tTr∗ + k1

= (trQT
r∗Qr∗ + tTr∗tr∗ + k1)

−2trQT
r∗tr∗pTr∗.

(16)

Hence the problem of optimizing each of the pr∗ in turn
is equivalent to maximizing trQT

r∗tr∗pTr∗. The solution to
this problem is

p+
r∗ = QT

r∗tr∗
tTr∗Qr∗QT

r∗tr∗
. (17)

The solution to the orthogonal case is given by P =
VUT withU andV from the singular value decomposition

https://github.com/katrijnvandeun/SPCovR
https://github.com/katrijnvandeun/SPCovR
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ofTTZ. When the number of variables is much larger than
the number of observations a more efficient procedure is
to calculate the eigen-value decomposition of the R × R
matrix TTZZTT and to use the resulting eigenvectors and
eigenvalues to obtain VUT (see the implementation for
details).

Conditional estimation of the component weights
Given the loadings, we need to solve the following prob-
lem: Minimize with respect toW

L(W) = ∥
∥Z − XWPT∥

∥2 + λ1|W|1 + λ2|W|22
= ∥

∥vec(Z) − vec
(

XWPT
) ∥

∥2

+λ1|vec(W)|1 + λ2|vec(W)|22
= ‖vec(Z) − (P ⊗ X)vec(W)‖2

+λ1|vec(W)|1 + λ2|vec(W)|22 (18)

The latter expression can be rewritten as follows:
L(W) =

∑

i,j

(

zij − (pj ⊗ xi)vec(W)
)2

+ λ1|vec(W)|1 + λ2|vec(W)|22
=

∑

i,j

(

zij −
∑

r
pjr

∑

j
xijwjr

)2

+ λ1
∑

j,r
|wjr| + λ2

∑

j,r
(w)2jr .

(19)

This is an elastic net regression problem with outcome
scores zij modeled on the basis of RJ variables. To solve
the optimization problem, we rely on a coordinate descent
procedure [20]: each of the wjr is updated in turn while
keeping the remaining coefficients fixed. Hence, rewriting
the loss function with isolation of one specific coefficient
wj∗r∗, we obtain

∑

i,j

⎛

⎝zij −
∑

r
pjr

∑

j
xijwjr

⎞

⎠

2

+λ1
∑

j,r
|wjr| + λ2

∑

j,r
(w)2jr

=
∑

i,j

⎛

⎝

⎛

⎝zij −
∑

r �=r∗
pjr

∑

j
xijwjr

⎞

⎠ − pjr∗xij∗wj∗r∗

⎞

⎠

2

+λ1
∑

j �=j∗,r �=r∗
|wjr| + λ1|wj∗r∗|

+λ2
∑

j �=j∗,r �=r∗
(w)2jr + λ2w2

j∗r∗

=
∑

i,j

(

rij − pjr∗xij∗wj∗r∗
)2

+k2 + λ1|wj∗r∗| + λ2w2
j∗r∗.

(20)

This is a univariate elastic net regression problem with
the following solution

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w+
j∗r∗ =

∑

i,j rijpjr∗xij∗−λ1/2
λ2+∑

i x2ij∗
,

if 0 <
∑

i,j rijpjr∗xij∗ < λ1/2

w+
j∗r∗ =

∑

i,j rijpjr∗xij∗+λ1/2
λ2+∑

i x2ij∗
,

if − λ1/2 <
∑

i,j rijpjr∗xij∗ < 0

w+
j∗r∗ = 0, otherwise.

(21)

The procedure may seem slow given the loop over
RJ coefficients and the involvement of large matrices in
the computations. We accounted for these computational
issues in our implementation by rewriting the expressions
in (21) and making use of the properties of P. A further
speed up may be obtained by warm restarts and active
set learning, this is cycling over the non-zero coefficients
only. Further improvement over the GLMnet procedure
[20] was obtained by accounting for its dependence on the
order of the variables as described in [31].
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