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1
PREFACE

This thesis is composed of three essays on time-varying parameters and time series

networks where each essay deals with specific aspects thereof. The thesis starts with

proposing a 2SLS based test for a threshold in models with endogenous regressors in

Chapter 2. Then, Chapter 3 proposes, to my best knowledge, the first estimator for the inverse of

the long-run covariance matrix of a linear, potentially heteroskedastic stochastic process. Finally,

the thesis concludes with an empirical analysis on the robustness of financial volatility networks

with respect to the exclusion of central nodes in Chapter 4.

In Chapter 2, entitled Testing for a Threshold in Models with Endogenous Regressors and

co-authored with Otilia Boldea, we propose a testing procedure which allows applied researchers

to assess whether the data was generated from a single threshold model with endogenous regres-

sors or not. For example, such models can arise when modelling output growth or unemployment

rates. To do so, we first outline the class of permissible threshold models and then propose two

2SLS based tests, a sup LR and a sup Wald test. In addition, we derive the asymptotic null

distributions of the two tests and show that they depend on the second moment functionals of

the data and the chosen functional form of the first stage. However, critical values can easily

be simulated via the wild bootstrap. In simulations we found that our tests have empirical size

close to the nominal size. This is in sharp contrast to the existing GMM based test of Caner and

Hansen (2004) which is severly oversized in small samples. We argue that this occurs for two

reasons: First, we theoretically show that estimation via 2SLS can indeed be more efficient than

GMM which can result in more accurate empirical sizes. This gain in efficiency is due to the fact

that the 2SLS approach utilizes the full infomration contained in the first stage. Secondly, based

on our simulation results, we argue heuristically that the wild bootstrap replicates the sample

1



CHAPTER 1. PREFACE

distributions of the 2SLS tests more accurately than those of the GMM test.

Chapter 3, entitled Estimating Sparse Long-Run Precision Matrices for Linear Multivariate

Time Series, proposes the first direct estimator for the inverse of the long-run covariance matrix

of a potentially heteroskedastic, multivariate linear time series under unknown sparsity con-

straints. That is, the econometrician does not know which entries of the inverse are equal to zero

and which not. Such situations naturally arise, for example, when modelling partial correlation

networks based on time series data. The proposed estimator is based on the graphical LASSO of

Friedman et al. (2008). That is, the proposed estimator minimizes the `1-penalized log-likelihood

function of i.i.d. multivariate normal data. At first glance this seems counterintuitive since the

data is neither i.i.d. nor necessarily normal in a time series setting. However, as I argue one can

reinterpret this likelihood function as a special case within the class of Bregman-divergences

so that the aforementioned likelihood function measures the distance between any symmetric

and positive definite matrix and the true long-run covariance matrix of the underlying process.

This interpretation allows me to free the likelihood function from distributional and dependecy

assumptions. Since the true long-run covariance matrix is unknown to the econometrician I

replace it with a suitable pre-estimator. In particular, I use the HAC estimator with the sharp

origin kernel of Phillips et al. (2007). I then show that the resulting adaptive estimator enjoys

the oracle property of Zou (2006). That is, the adaptive estimator identifies the zero and non-zero

entries with probability tending to one and has the same asymptotic distribution as the oracle

estimator. Finally, an extensive Monte Carlo study indicates that the proposed estimator performs

well in samples over a wide variety of settings.

Chapter 4, entitled Robustness of Financial Volatility Networks to the Exclusion of Sys-

temic Nodes, empirically investigates how robust two commonly applied network measures, the

From- and the To-degree, are to the exclusion of central nodes in financial volatility networks.

This question is motivated by the current empirical literature which excludes, presumably due

to convenience, certain nodes such as Lehman Brothers from their analysis. However, Chapter

3 in Kolaczyk (2017) shows, both theoretically and by simulations, that standard measures of

network characteristics are biased in unknown directions when nodes of the network are excluded.

Therefore, this chapter aims to assess to what extend the exclusion of Lehman Brothers, decidedly

an important node in the U.S. financial system, affects the aforementioned network measures

and, thereby, possibly distorts current empirical results and conclusions. To do so, I make use

of the most commonly applied network in the literature, the long-run variance decomposition

network of Diebold and Yilmaz (2014). I estimate this network based on a VAR(1)-representation

of the data, once when Lehman Brothers is excluded and once when Lehman Brothers is included

since this allows me to gauge the effects Lehman Brothers’ stock has on the From- and To-degree

network measures. I find that the To-degree is heavily affected by the exclusion of Lehman

2



Brothers whereas the From-degree seems to be only minorly affected. These results hold on a

firm-specific and aggregated sector level for a sparse and non-sparse VAR-representation of the

data.
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2
TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS

REGRESSORS

This chapter is based on the identically entitled working paper which is co-authored

with Otilia Boldea

Using 2SLS estimation, we propose two tests for a threshold in models with endogenous
regressors: a sup LR test and a sup Wald test. Here, the 2SLS estimation is not
conventional because it uses additional information about the first-stage being linear

or not. Because of this additional information, our tests can be more accurate than the
threshold test in Caner and Hansen (2004) which is based on conventional GMM estimation.

We derive the asymptotic distributions of the two tests for a linear and for a threshold
first stage. In both cases, the distributions are non-pivotal, and we propose obtaining critical
values via a fixed regressor wild bootstrap. Our simulations show that in small samples, the
GMM test of Caner and Hansen (2004) can be severely oversized under heteroskedasticity,
while both the 2SLS tests we propose are much closer to their nominal size. Therefore, we
recommend using both our tests in small samples, to avoid detecting a threshold when there
is none.
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CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
REGRESSORS

2.1 Introduction

Threshold models are widely used in economics to model unemployment, output, growth, bank

profits, asset prices, exchange rates, and interest rates. See Hansen (2011) for a survey of economic

applications.

Pioneered by Howell Tong - see e.g. Tong (1990), threshold models with exogenous regressors

have been widely studied and their asymptotic theory is well known.1 Even though exogeneity

is violated in many economic applications, papers on threshold regression with endogenous

regressors remain relatively scarce. They were pioneered by Caner and Hansen (2004), who show

that when regressors are endogenous but the threshold variable is exogenous, the threshold

parameter can be estimated by minimizing a two stage least squares (2SLS) criterion over values

of the threshold variable encountered in the sample.

In general, the applied researcher needs to decide whether there is a threshold to begin with.

This can be done via testing for an unknown threshold. For example, the government spending

multiplier is often conjectured to be larger in regimes where the nominal interest rate is close

to the zero lower bound - see Eggertsson (2010) and Christiano et al. (2011).2 This conjecture

can be validated by testing whether there is a threshold driven by low interest rates. Another

example is testing whether growth slows down when the debt to GDP ratio is high - see Reinhart

and Rogoff (2010) (tests for this conjecture albeit using exogenous regressors can be found in Lee

et al. (2014) and Hansen (2016) a.o.). Many more examples can be found in Hansen (2011).

In this chapter, we develop 2SLS tests for no threshold against the alternative of one unknown

threshold for models with endogenous regressors. Caner and Hansen (2004) already proposed a

GMM sup Wald test for the same hypothesis. Here, we show that this test is severely oversized in

small, heteroskedastic samples. We propose instead two 2SLS tests (a 2SLS sup LR test and a

2SLS sup Wald test), which we show have superior size properties in finite samples. The superior

size stems from how the 2SLS estimators are constructed. They are not conventional, because

they use additional information about the first stage, while the conventional GMM estimators in

Caner and Hansen (2004) do not use any information about the first stage. With this additional

information, we show that the 2SLS estimators can be more accurate than the conventional

GMM estimators, and that they lead to better sized tests in finite samples.3

The additional information we use is whether there is a threshold in the first stage. We

consider two cases: the first stage is a linear model and the first stage is a threshold model.4 We

1See a.o. Hansen (1996, 1999, 2000) and Gonzalo and Wolf (2005) for inference, Gonzalo and Pitarakis (2002) for
multiple threshold regression and model selection, Caner and Hansen (2001) and Gonzalo and Pitarakis (2006) for
threshold regression with unit roots, Seo and Linton (2007) for smoothed estimators of threshold models, Lee et al.
(2011) for testing for thresholds, and Hansen (2016) for threshold regressions with a kink.

2This can happen because when the monetary policy is less effective, fiscal stimulus can quickly lower real interest
rates by raising inflation, resulting in potentially large multiplier effects.

3These unconventional 2SLS estimators were already proposed in Caner and Hansen (2004), but not for construct-
ing tests for a threshold.

4Caner and Hansen (2004) consider the same cases for estimating the threshold parameter, but not for testing for

6



2.1. INTRODUCTION

compute the 2SLS tests for each case separately, and show that their null asymptotic distributions

depend on the data and on the case considered. Nevertheless, critical values are straightforward

to compute via the wild bootstrap, so these tests are easily implemented in practice. To our

knowledge, this is the first paper to propose and analyze 2SLS tests for a threshold.

We study the properties of both tests via simulation. We generate critical values via a fixed

regressor wild bootstrap that we describe in this paper. We find that the 2SLS sup LR and the

2SLS sup Wald test are either correctly sized or slightly undersized. In contrast, the GMM sup

Wald test is correctly sized under homoskedasticity, but under heteroskedasticity, it is severely

oversized.5 This holds for both linear and threshold first stages. As the sample size grows large,

both our tests approach their nominal sizes, and the GMM test does too, albeit slower than

our tests. Since we find no systematic difference between the two 2SLS tests, we conclude that

both are valuable alternative diagnostics to the GMM test for a threshold, especially under

heteroskedasticity.

The chapter is closely related to two papers in the break-point literature - Hall et al. (2012)

and Boldea et al. (2017). Both papers study the 2SLS sup LR and 2SLS sup Wald tests for a

break, the first one for a linear first stage, the second one for a first stage with a break. The

asymptotic distributions for the break-point tests are pivotal in the first paper and depend on the

break in the first stage in the second paper. In contrast, we find that the asymptotic distributions

of the threshold tests are non-pivotal in both cases, a linear or a threshold first stage. Moreover,

they are very different than the break-point distributions, and we show that they only coincide in

unrealistic threshold models.

The chapter is also related to Magnusson and Mavroeidis (2014), who use information about

break-points in the first stage (and in general break-points in the derivative of the moment

conditions) to improve efficiency of tests for moment conditions. It is also related to Antoine and

Boldea (2017) and Antoine and Boldea (2015): the first uses breaks in the Hessian of the GMM

minimand and the second uses full sample FS information. Both papers focus on more efficient

estimation, while we focus on improved testing.

It should be noted that we allow for endogenous regressors, but not for endogenous threshold

variables. For the latter, see Kourtellos et al. (2015). Also, to account for regressor endogeneity,

we make use of instruments for constructing parametric test statistics for thresholds. As a result,

our tests have nontrivial local power for O(T−1/2) threshold shifts. This is in contrast with Yu

and Phillips (2014), who does not use instruments, but rather local shifts around the threshold to

construct a nonparametric threshold test. As a result, his test covers more general models, at the

cost of losing power in O(T−1/2) neighborhoods.

a threshold. One can distinguish between the two cases by testing for a threshold in the first stage, using currently
available tests such as the OLS sup Wald test in Hansen (1996).

5Note that unlike the Wald test for classical hypotheses, the (heteroskedasticity-robust) sup Wald test for the
null hypothesis for an unknown threshold does not have a pivotal null distribution. That means that correcting for
heteroskedasticity (and therefore using Wald tests instead of LR tests) does not necessarily result in better size
properties for the sup Wald test compared to the sup LR test; this is indeed what we find in the simulations.
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CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
REGRESSORS

This chapter is organized as follows. Section 2.2 introduces the threshold model. Section 2.3

defines the 2SLS and GMM estimators, and theoretically and numerically motivates the use of

2SLS estimators. Section 2.4 defines the new 2SLS test statistics and derives their asymptotic

distributions. Section 2.5 describes the existing GMM test of Caner and Hansen (2004). Section

2.6 describes the fixed regressor wild bootstrap, and illustrates the small sample properties of all

tests via simulations. Section 2.7 concludes. All the proofs are relegated to the Appendix, together

with additional notation.

2.2 Threshold Model

Our framework is a linear model with a possible threshold at γ0:

yt =
(
z>t θ

0
1z + x>1tθ

0
1x

)
1{qt≤γ0} +

(
z>t θ

0
2z + x>1tθ

0
2x

)
1{qt>γ0} +εt

= w>
t θ

0
11{qt≤γ0} +w>

t θ
0
21{qt>γ0} +εt.

Here, yt is the dependent variable, zt is a p1 ×1-vector of endogenous variables and x1t a p2 ×1-

vector of exogenous variables containing the intercept, and wt = (z>t , x>1t)
>. We set p1 + p2 = p.

Also, qt is the exogenous threshold variable (which can be a function of the exogenous regressors)

and 1{A } denotes the indicator function on the set A . Furthermore, for i = 1,2, θ0
iz are p1 ×1-

vectors of slope parameters associated with zt, θ0
ix are p2 ×1-vectors of the slope parameters

associated with x1t and γ0 ∈Γ0 = [γmin,γmax], its compact support.6 The second equation is just a

more compact way of writing the first, with wt = (z>t , x>1t)
> being the augmented regressors, and

θ0
i = (θ0>

iz ,θ0>
ix )> being p×1-vectors of the slope parameters, for i = 1,2.

We assume that zt is endogenous (E[εt]= 0; E[ztεt] 6= 0) and strong instruments xt are available;

these instruments include x1t, the exogenous regressors.

As in Caner and Hansen (2004), we consider two different specifications for the first stage FS:

a linear first stage (LFS), given by

zt =Π0>xt +ut,

and a threshold first stage (TFS) given by

zt =Π0>
1 xt1{qt≤ρ0} +Π0>

2 xt1{qt>ρ0} +ut.

In both specifications for the FS, xt = (x>1t, x>2t)
> is a q×1-vector with q ≥ p, q = p2 + q1; Π0,Π0

1

and Π0
2 are q× p1-matrices of the FS slope parameters; ρ0 ∈ Γ0 is the FS threshold parameter,

possibly different than γ0, with the same support Γ0.

As common in the threshold literature, we assume that εt and ut are martingale differences,

i.e. E[εt|Ft]= 0 and E[ut|Ft]= 0, Ft =σ{qt−s, xt−s,ut−s−1,εt−s−1|s ≥ 0}, and (x>t , z>t )> is measurable

6We can allow for Γ0 = R. However, the end-points of the support of qt, even when infinite, are relevant for
simulating asymptotic p−values. Without further information, the only end-points we observe are those in the sample:
the minimum and maximum value of qt, which we call γmin,γmax; therefore, we fix Γ0 = [γmin,γmax].

8



2.3. 2SLS VERSUS GMM ESTIMATION

with respect to Ft. This assumption implies that the threshold variable qt is exogenous, and so

are the instruments xt.

Next, we write the equations above in matrix form. To do so, stack all observations in the

following T-row matrices:

Xρ

1 = (
x>t 1{qt≤ρ}

)
t=1,...,T Xρ

2 = (
x>t 1{qt>ρ}

)
t=1,...,T

Wγ

1 = (
w>

t 1{qt≤γ}
)
t=1,...,T Wγ

2 = (
w>

t 1{qt>γ}
)
t=1,...,T .

Let Y , X , Z, W , ε and u be the matrices stacking observations t = 1, . . . ,T. Then the LFS is:

(2.1) Z = XΠ0 +u

and the TFS is:

(2.2) Z = Xρ0

1 Π
0
1 + Xρ0

2 Π
0
2 +u.

The equation of interest - which can arise from a structural model and for lack of better terminol-

ogy is called the equation of interest (EI) - is, for a threshold parameter γ0:

(2.3) Y =Wγ0

1 θ0
1 +Wγ0

2 θ0
2 +ε.

If there is no EI threshold, θ0
1 = θ0

2 = θ0, and the EI is Y =Wθ0 +ε.
Note that we allow for the case of a threshold in the first stage without any threshold in the

equation of interest. For example, if the equation of interest is a structural model where inflation

depends endogenously on output, there can be different output regimes that do not affect the

structural parameters of the inflation model over extended periods, as shown empirically in

Antoine and Boldea (2017). Similarly, we allow for the equation of interest to have a threshold

when the first stage has none. For example, if the equation of interest is a monetary policy rule

where interest rates are targeting the endogenous inflation, we may have regime shifts in the

policy rule without the first stage equation for inflation being affected - see Antoine and Boldea

(2015). Even if there is a threshold in both the equation of interest and its first stage, the values

of the threshold need not coincide, for example, because the policy modelled in the first stage

reacts to deteriorating business conditions differently than the real economy modelled in the

second stage or equation of interest.

2.3 2SLS versus GMM estimation

In this section, we motivate the use of 2SLS estimation for constructing test statistics. We are

interested in testing for a EI threshold, the null hypothesis being H0 : θ0
1 = θ0

2 in (2.3). Because γ0

is usually unknown and it is a nuisance parameter under the null hypothesis, a common practice

is to calculate a series of test statistics, each for a given γ ∈ Γ (where Γ⊂ Γ0), and then to take

the supremum over these quantities to obtain a single test statistic for the null of no threshold

9
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against the alternative of one threshold. For example, Hansen (1996) and Caner and Hansen

(2004) construct such tests.

In the presence of endogenous regressor, to test for H0, Caner and Hansen (2004) defines

two-step GMM estimators of θ0
i , (i = 1,2) for each γ. These are conventional in the sense that by

construction, they ignore any information about the FS. Specifically, for each γ ∈Γ, where Γ is a

closed interval in the support Γ0, bounded away from the end-points of this support, and i = 1,2:

θ̂
γ

i,GMM =
(
Wγ>

i Xγ

i Ĥε−1

i,GMM(γ)Xγ>
i Wγ

i

)−1 (
Wγ>

i Xγ

i Ĥε
i,GMM(γ)Xγ>

i Y
)
,

with estimated long-run variances:

Ĥε
1,GMM(γ)= T−1

T∑
t=1

ε̂2
t,GMM xtx>t 1{qt≤γ}, Ĥε

2,GMM(γ)= T−1
T∑

t=1
ε̂2

t,GMM xtx>t 1{qt>γ},

where ε̂t,GMM is the tth element of the T ×1 vector ε̂GMM = y−Wγ

1 θ̃1,GMM(γ)−Wγ

2 θ̃2,GMM(γ), and

θ̃i,GMM(γ) are some preliminary first step GMM estimators of (2.3) for a given γ and i = 1,2.7

If instead, we estimate (2.3) by 2SLS, we have no choice but to take into account the nature

of the FS - linear model or threshold model - otherwise the resulting estimator of θ0
i may be

inconsistent. These two cases - linear or threshold FS - have also been considered in Caner and

Hansen (2004) for 2SLS slope estimators, but with the purpose of defining a consistent estimator

the threshold parameter γ0.

For a linear FS (LFS), let:

(2.4) Ẑ = X Π̂, Ŵ = (
Ẑ, X1

)
,

with X1 = (x>1t)t=1,...,T .

For a threshold FS (TFS), first estimate the threshold parameter ρ as in Caner and Hansen

(2004):

(2.5) ρ̂ = argmin
ρ∈Γ

det
(
û(ρ)>û(ρ)

)
,

where û(ρ) = Z− Xρ

1 Π̂1(ρ)− Xρ

2 Π̂2(ρ) and Π̂1(ρ),Π̂2(ρ) are the OLS estimators of Π0
1,Π0

2 in (2.2)

for a given ρ:

Π̂1(ρ)=
(
Xρ>

1 Xρ

1

)−1
Xρ>

1 Z(2.6)

Π̂2(ρ)=
(
Xρ>

2 Xρ

2

)−1
Xρ>

2 Z.(2.7)

With ρ̂, the TFS slope parameter estimates are Π̂1 = Π̂1(ρ̂), Π̂2 = Π̂2(ρ̂).

Then:

(2.8) Ẑ = Π̂1X ρ̂

1 + Π̂2X ρ̂

2 .

7Note that because W are already partitioned according to 1{qt≤γ}, we have Wγ>
i Y =Wγ>

i Yi .
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2.3. 2SLS VERSUS GMM ESTIMATION

The second-stage of the 2SLS is standard. Construct Ŵ = (
Ẑ, X1

)
, with Ẑ defined in (2.4) for a

LFS and (2.8) for a TFS, and the 2SLS estimators of θ0
1,θ0

2 for a given γ ∈Γ are for i = 1,2.

θ̂
γ

1 =
(
Ŵγ>

1 Ŵγ

1

)−1 (
Ŵγ>

1 Y
)

(2.9)

θ̂
γ

2 =
(
Ŵγ>

2 Ŵγ

2

)−1 (
Ŵγ>

2 Y
)
.(2.10)

Next, we provide two reasons why we advocate the use of 2SLS over GMM when one is

interested in deciding whether a threshold is present in the EI or not. One is theoretical and

provides an argument that the 2SLS estimators for θ
γ

i , i = 1,2, can be more efficient than

GMM under H0 and the second is a heuristic argument based on results from our Monte Carlo

simulations where we find that the bootstrapped distributions of the 2SLS test statistics are a

better fit to the empirical distributions than in case of GMM.

Efficiency Both the 2SLS and the GMM estimators defined here are consistent under standard

assumptions, as shown in Caner and Hansen (2004). But the GMM estimators ignore potentially

valid information about the FS. As a result, the GMM estimators can be less efficient than the

2SLS estimators which, in turn, can distort the empirical sizes of a GMM-based threshold test.

This result is formalized below.

Theorem 2.1 (2SLS versus GMM).
Assume the EI is (2.3) with the TFS (2.2), one endogenous regressor, one instrument and no

exogenous regressors (p = q = p1 = 1), and impose H0: θ0
z = θ0

1z = θ0
2z. Let ρ0 be known and let

Assumptions 2.1–2.4 of Section 2.4.2 hold, with σ2
ε =Var(εt) and σ2 =Var(εt +utθ

0
z ). Then, for a

given γ,

(i) For both i = 1,2,

p
T(θ̂γi −θ0) d→N (0,V∗

A,i(γ)) and
p

T(θ̂γi,GMM −θ0) d→N (0,V∗
i,GMM(γ)),

where V∗
A,i(γ) and V∗

i,GMM(γ) are defined in Lemma 2.B.9 of the Appendix.

(ii) If σ2 ≤σ2
ε , then

{
V∗

i,GMM(γ)≥V∗
A,i(γ) for both i = 1,2 simultaneously

}
.

(iii) If the FS is in fact linear, that is, if Π0
1 =Π0

2, then:

σ2 ≤σ2
ε ⇐⇒

{
V∗

i,GMM(γ)≥V∗
A,i(γ) for both i = 1,2 simultaneously

}
(iv) V∗

i,GMM(ρ0)=V∗
A,i(ρ

0).

Note that Theorem 2.1 is derived under conditional homoskedasticity (imposed in Assumption

2.2) and under independence of qt and xt ( imposed in Assumption 2.3).8

The intuition for the results in Theorem 2.1 is as follows. If the sample {t : qt ≤ γ} is used

for both the FS and the EI to compute 2SLS estimators, and the same sample is used for

8In more general cases, it is much harder to obtain a similar result analytically.

11



CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
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GMM estimators, then both these estimators are conventional. Therefore, the two-step GMM is

asymptotically more efficient than the 2SLS, and asymptotically equivalent in the just-identified

case. This is shown in Theorem 2.1(iv) where we set γ = ρ0. However, when γ 6= ρ0 the 2SLS

estimators are not conventional. For example, if γ≤ ρ0, in computing the 2SLS estimator over

the sample {t : qt ≤ γ}, we use information from the FS over a larger sample {t : qt ≤ ρ0}. Theorem

2.1 (ii) shows that this additional information leads to more efficient estimators if the 2SLS

errors (εt +utθ
0
z ) have smaller variance than the GMM errors εt. This efficiency result also holds

if instead the FS is linear, as shown in Theorem 2.1(iii).

Theorem 2.1 is not just a theoretical result, as shown in the example below.

Example 2.1. Suppose that Π0
1 = 1, Π0

2 = 1.25, ρ0 = 0.25. Let qt
iid∼ N (0,1), xt

iid∼ N (0,1) and[
εt

ut

]
iid∼ N

(
0,

[
1 0.5

0.5 1

])
. Let f i(λ,θ0

z ) = V∗
A,i(γ)−V∗

GMM,i(γ), and γ≤ ρ0 (if γ> ρ0, the first plot

becomes the second and viceversa).

Note that in this case, σ2 −σ2
ε = (θ0

z )(1+θ0
z ). From Theorem 2.1, if θ0

z (1+θ0
z )< 0, f i(λ,θ0

z )< 0

and both 2SLS estimators are more efficient.9 From Example 1, µ0 ≡ E1{qt≤ρ0} = 0.5981. In Figures

2.1 and 2.2 we plot f1(λ,θ0
z ) and f2(λ,θ0

z ) as functions of θ0
z ∈ [−1.5,0.5] and λ= P(qt ≤ γ) ∈ (0,µ0].

The purple areas indicate parameter configurations where 2SLS is more efficient than GMM,

and these are sizable areas of the parameter space.

Figure 2.1: Plot and Contour Plot of f1(·)
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9As shown in the proof of Theorem 2.1, when σ2 >σ2
ε , θ̂γ1 is less efficient than θ̂

γ

1,GMM , but θ̂γ2 can still be more

efficient than θ̂
γ

2,GMM depending on the DGP.
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Figure 2.2: Plot and Contour Plot of f2(·)
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Bootstrap Accuracy The second argument why our 2SLS tests should be preferred over the

GMM test is heuristic in nature and motivated by our findings from the simulation study in

Section 2.6. For the sake of brevity, we consider the LFS case of Section 2.6 for three cases:

homoskedasticity that is known to the researcher, homoskedasticity that is unknown to the

researcher, and heteroskedasticity.10 Figure 2.3 plots the empirical and bootstrapped distributions

of the 2SLS and GMM test statistics for these three cases.

In the first case, we know that the errors are homoskedastic and use this information both for

the bootstrap and for the construction of the test statistics, the bootstrapped distributions closely

matches the empirical distributions, so all three tests are equally well sized.

In the second case, we do not know that the errors are homoskedastic and, therefore, we use

the wild bootstrap and heteroskedasticity-robust test statistics. In this case, the bootstrapped

distribution of the GMM test no longer closely matches the empirical distribution. This is

especially pertinent in the right tail of the distributions, which is associated with the critical

values of the test statistic. In contrast, the bootstrapped distributions continue to closely match

the empirical distributions for the 2SLS tests. Therefore, the 2SLS tests provide the researcher

with more accurate decisions about the presence of a threshold in the EI than the existing GMM

test. Moreover, these results are robust to using different estimators for the heteroskedasticity

robust covariances (known as HCCME0–3) and to using different forms of the wild bootstrap.11

In the third case, we have heteroskdasticity; this did not change the results of the second

10As we will discuss in Section 2.6, when we know that the errors are homoskedastic we replace the wild bootstrap
by the i.i.d. bootstrap where we re-sample the error terms from a (multivariate) normal distribution with mean
zero and variance given by the sample variance of the residuals. Moreover, we adjust all test statistics so that they
incorporate information about homoskedasticity. That is, we replace quantities of the form E[xtx>t ε2t ] by σ2

εE[xtx>t ], etc.
If we do not know that the errors are homoskedastic then we use the wild bootstrap and the heteroskedasticity-robust
test statistics.

11These results are available from the authors upon request.
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case, even when varying the skedastic function and the degree of heteroskedasticity. Finally, the

same applies when we consider the TFS case.12

Tables 2.1 - 2.4 reinforce the results discussed above for both a LFS and a TFS. They show

that the GMM test is severely oversized in small samples; at a nominal size of 5%, the empirical

sizes reach up to 15% for 100 observations; they decrease as the sample size increases, but they

are still around 6−10% for 1000 observations. Since many applications of threshold tests are

macroeconomic applications, where a representative sample is around 500 observations, the size

distortions of the GMM test are worrisome, as they will often lead to favor a threshold model

when the true model is linear. The same tables show that the 2SLS tests are either correctly

sized or slightly undersized, but not oversized. This motivates us to consider the 2SLS tests as

complementary threshold diagnostics.

Figure 2.3: Empirical and bootstrapped distributions of the 2SLS and GMM test statistics.
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2.4 2SLS Tests

2.4.1 Test Statistics

For a LFS, the first test statistic we propose is a sup LR test in the spirit of Davies (1977):

(2.11) sup
γ∈Γ

LR2SLS
T,LFS(γ)= sup

γ∈Γ
SSR0 −SSR1(γ)
SSR1(γ)/(T −2p)

,

where SSR0 and SSR1(γ) are the 2SLS sum of squared residuals under the null and the

alternative hypotheses:

SSR0 = (Y −Ŵ θ̂)>(Y −Ŵ θ̂),

SSR1(γ)= (Y γ

1 −Ŵγ

1 θ̂
γ

1)>(Y γ

1 −Ŵγ

1 θ̂
γ

1)+ (Y γ

2 −Ŵγ

2 θ̂
γ

2)>(Y γ

2 −Ŵγ

2 θ̂
γ

2),

and where θ̂ = (Ŵ>Ŵ)−1Ŵ>Y is the full-sample 2SLS estimator, and Ŵ , θ̂γ1 , θ̂γ2 are defined in

Section 2.3 for a LFS.

A scaled version of this test is known as the sup F test in the break-point literature - see Bai

and Perron (1998) for OLS and Hall et al. (2012) for 2SLS.

We also propose the sup Wald test:

sup
γ∈Γ

W2SLS
T,LFS(γ)= sup

γ∈Γ
T

[
θ̂
γ

1 − θ̂
γ

2
]> V̂−1(γ)

[
θ̂
γ

1 − θ̂
γ

2
]
,(2.12)

where V̂ (γ) is defined in Definition 2.2 of the Appendix, and unlike the 2SLS sup Wald test in

Hall et al. (2012), it takes into account that the 2SLS estimators θ̂γ1 and θ̂γ2 are correlated through

a full-sample first-stage.

For a TFS, the test statistics are calculated exactly as above, but taking into account the TFS

when computing the first stage of the 2SLS estimation, as in (2.8). Therefore, supγ∈ΓW2SLS
T,TFS(γ) is

computed with V̂A(γ) instead of V̂ (γ), and V̂A(γ) is defined in Definition 2.3 of the Appendix.

2.4.2 Assumptions

Define

M1(γ)= E[xtx>t 1{qt≤γ}], M = M(γmax)= E[xtx>t ],and M2(γ)= M−M1(γ)

as the second moment functionals of the instruments xt, where γ ∈ Γ. We impose similar but

slightly stronger assumptions than in Caner and Hansen (2004) below, mainly for clarity of our

proofs.

Assumption 2.1.

1. Let vt = (εt,u>
t )> denote the compound error term. Then

E[vt|Ft]= 0

with Ft =σ{xt−s,vt−s−1, qt−s|s ≥ 0}.
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2. The series (εt,u>
t , x>t , z>t , qt)> is strictly stationary and ergodic with ρ-mixing coefficient

ρ(m)=O (m−A) for some A > a
a−1 and 1< a ≤ 2. Also, for some b > a,

sup
t
E‖xt‖4b

2 <∞, sup
t
E‖vt‖4b

2 <∞,

with ‖ ·‖2 being the Euclidean norm, and inf
γ∈Γ

det M1(γ)> 0.

3. The density of vt is absolutely continuous, bounded and positive everywhere.

4. The threshold variable qt has a continuous pdf f (qt) with sup
t

| f (qt)| <∞.

5. The variance of the compound error term vt is given by

E[vtv>t ]=Σ=
(
σ2
ε Σ>

ε,u

Σε,u Σu

)
,

which is positive definite.

6. Assume Π0 (LFS) or Π0
1,Π0

2 (TFS) are full rank.

2.1.1 is needed for threshold models, and it excludes autocorrelation in the errors. However,

lagged regressors can enter both the EI and the FS. 2.1.2 is standard for time series and is

trivially satisfied for many cross-section models (note that even though we use the time series

notation with index t, our results equally apply to cross section models). However, it precludes

nonstationary processes. 2.1.3 is needed in the TFS case in order to make asymptotic statements

about the FS parameters in the spirit of Chan (1993). 2.1.4 requires the support of qt to be

continuous; if it is discrete, the search over Γ is much easier to perform. 2.1.5 allows conditional

heteroskedastic errors and finally, 2.1.6 says that xt is a strong instrument.

Assumption 2.2.

E[vtv>t |Ft−1]=Σ=
(
Σε Σ>

ε,u

Σε,u Σu

)
.

Assumption 2.2 is a conditional homoskedasticity assumption, which we only use for special

case derivations.

Assumption 2.3. The threshold variable qt and the vector of exogenous variables xt are indepen-

dent. i.e.

qt ⊥ xt ∀t = 1,2, ...,T.

Assumption 2.3 is also quite strong and is only used to relate the results in this paper to those

on break-point tests, not for the main results of the paper. It doesn’t allow the threshold variable

qt to be one of the instrumental variables or exogenous regressors xt, and is quite restrictive.

However, it mimics break-point models, where the threshold is time, or more exactly, a fraction of

the sample size, t/T.
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Assumption 2.4 (Identifiability). If we have a TFS as in (2.2), Π0
1 6=Π0

2.

Assumption 2.4 states that if there is a TFS, the threshold effect is large. It is imposed for

simplicity.

2.4.3 Asymptotic distributions with a LFS

To write the asymptotic distributions, define the “ratios”

Ri(γ)= Mi(γ)M−1, i = 1,2.

Also, let

GP mat,1(γ) and GP mat

as q× (p1 +1)-matrices where all columns are q×1 zero mean Gaussian processes, and the

covariance kernels of GP 1(γ) = vec(GP mat,1(γ)) and GP = vec(GP mat) are given by E[(vtv>t ⊗
xtx>t )1{qt≤γ}] and E[(vtv>t ⊗ xtx>t )]. Let GP mat =GP mat,1(γmax).

Also, let

A0 = [Π0,S>]>

be the augmented matrix of the FS slope parameters, where S = [Ip2 ,0p2×q1], Ip2 is the p2 × p2

identity matrix and 0p2×q1 a p2×q1 null matrix (p2+q1 = q). Hence, x1t = Sxt and wt = A0xt+ ūt,

where ūt = (u>
t ,01×q1)>. Define the matrices

C1(γ)= A0M1(γ)A0>, C = C1(γmax)= A0MA0>, and C2(γ)= C−C1(γ)

and the Gaussian process:

B1(γ)= A0 [
GP mat,1(γ) θ̃0

z −R1(γ)GP mat θ̌
0
z
]

where θ̃0
z = (1,θ0>

z )> and θ̌0
z = (0,θ0>

z )>. Finally, let:

E (γ)= C−1
1 (γ)B1(γ)−C−1

2 (γ)B2(γ)

where B2(γ)=B−B1(γ) with B =B1(γmax). Let

σ2 =σ2
ε +2Σ>

ε,uθ
0
z +θ0>

z Σuθ
0
z .

With this notation, the null distributions for a LFS are stated below.

Theorem 2.2 (Asymptotic Distributions LFS). Let Z be generated by (2.1), Y be generated by

(2.3), and Ẑ be calculated by (2.4). Then under H0 and Assumption 2.1,

(i)

sup
γ∈Γ

LR2SLS
T,LFS(γ)⇒ sup

γ∈Γ
E>(γ)Q−1(γ)E (γ),
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where Q(γ)=σ2C−1
1 (γ) C C−1

2 (γ);

(ii)

sup
γ∈Γ

W2SLS
T,LFS(γ)⇒ sup

γ∈Γ
E>(γ)V−1(γ)E (γ),

where V (γ) is defined in Definition 2.2 in the Appendix, and, in general, V (γ) 6=Q(γ).

In both cases, the suprema taken are over γ ∈ Γ and this deserves some explanation. For

theoretical derivations, it suffices that Γ is a closed interval in the support Γ0 and that it is

bounded away from the end-points of Γ0 = [γmin,γmax]. But in practice, searching over γ includes

calculations over the subsamples {t :1{qt≤γ}} and {t :1{qt>γ}}, which means that the data needs to

be sorted into quantiles of qt. Therefore, in practice, Γ is a set that contains ordered values of

qt encountered in the sample, from a pre-defined lower quantile γ to predefined upper quantile

γ, where γ> γmin and γ< γmax. We refer to these upper and lower quantiles as “cut-offs” in the

simulation section, and in practice they are chosen so that the subsamples {t : γmin ≤ qt ≤ γ} and

{t : γmax ≥ qt ≥ γ} are large enough to produce reliable estimates; example cut-offs are the 15%

and the 85% quantiles of qt.

Both asymptotic distributions depend on second moment functionals of the data and the

parameters in the FS. But critical values can be calculated by the bootstrap described in Section

2.6.

As shown in Corollary 2.B.1 in the Appendix, the asymptotic distributions remain nonpivotal

for both tests even when the errors are conditional homoskedastic. More importantly, because

the 2SLS estimators are not conventional, the sup Wald and sup LR tests are in general NOT

asymptotically equivalent under conditional homoskedasticity. However, they are equivalent in

the just-identified case as shown in Corollary 2.B.1. They are also equivalent in the overidentified

case, when xt and qt are independent, as stated below and proven in the Appendix.

Corollary 2.1 (to Theorem 2.2). Let Z be generated by (2.1), Y be generated by (2.3), and Ẑ be

calculated by (2.4).Then, under H0 and Assumptions 2.1-2.3,

sup
γ∈Γ

LR2SLS
T,LFS(γ)⇒ sup

λ∈Λε

BB>
p (λ)BBp(λ)

λ(1−λ)
, sup

γ∈Γ
W2SLS

T,LFS(γ)⇒ sup
λ∈Λε

BB>
p (λ)BBp(λ)

λ(1−λ)
,

where BBp(λ)=BM p(λ)−λBM p(1), BM p(·) is a p×1-vector of independent standard Brown-

ian motions, λ=Prob(qt ≤ γ), Λε = [ε1,1−ε2], where ε1 =Prob(qt ≤ γ), ε2 =Prob(qt ≤ γ).

The distribution in Corollary 2.1 is identical that of the sup F and sup Wald break-point tests

- see Andrews (1993), Bai and Perron (1998) and Hall et al. (2012) among others. This is due to

similarities between threshold and break point models; a break-point model is a special case of a

threshold model when qt = t/T.13 Critical values for these distributions can be found in Andrews

13Note, however, that the asymptotics for break-point tests cannot be obtained as a special case of our results here
because in general, break-point models are not strictly stationary.
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(1993) and Bai and Perron (1998). However, xt ⊥ qt is a case rarely encountered in practice, and

we do not consider this case in our simulations.

2.4.4 Asymptotic distributions with a TFS

For this section, we assume that the FS has a threshold ρ0 (TFS). For stating the asymptotic

distributions, similar to A0 in the previous section, we define

(2.13) A0
1 = [Π0

1,S>]> and A0
2 = [Π0

2,S>]>.

Also, let a∧b =min(a,b) for generic scalars a,b, and define the matrices:

(2.14) CA,1(γ)= A0
1M1(γ∧ρ0)A0>

1 + A0
2
[
M1(γ)−M1(γ∧ρ0)

]
A0>

2 ,

and CA,2 = CA −CA,1(γ), where:

CA = CA,1(γmax)= A0
1M1(ρ0)A0>

1 + A0
2M2(ρ0)A0>

2 ,

as well as, in line with Section 2.4.3, the “ratios”

Ri(γ;ρ0)= Mi(γ)M−1
i (ρ0).

The TFS analogs to the LFS processes B1(γ) and E (γ) are defined as:

BA,1(γ)= A0
1
[
GP mat,1(γ∧ρ0)θ̃0

z −R1(γ∧ρ0;ρ0)GP mat,1(ρ0)θ̌0
z
]

+ A0
2
[(

GP mat,1(γ)θ̃0
z −GP mat,1(γ∧ρ0)

)
θ̃0

z
]

− A0
2
[(

R2(γ∧ρ0;ρ0)−R2(γ;ρ0)
)
GP mat,2(ρ0)θ̌0

z
]
.(2.15)

and

(2.16) EA(γ)= C−1
A,1(γ)BA,1(γ)−C−1

A,2(γ)BA,2(γ)

where

BA,2(γ)=BA −BA,1(γ)

with

BA =BA(γmax)= A0
1GP mat,1(ρ0)(θ̃0

z − θ̌0
z )+ A0

2GP mat,2(ρ0)(θ̃0
z − θ̌0

z ).

The more complicated expressions in this case stem from the fact that the relative location of

γ and ρ0 influences the asymptotic distribution of our tests, as Theorem 2.3 shows.

Theorem 2.3 (Asymptotic Distributions TFS). Let Z be generated by (2.2), Y be generated by

(2.3), and Ẑ be calculated by (2.8). Under H0 and Assumptions 2.1 and 2.4,

(i)

sup
γ∈Γ

LR2SLS
T,TFS(γ)⇒ sup

γ∈Γ
E>

A (γ)Q−1
A (γ)EA(γ),

19



CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
REGRESSORS

where QA(γ)=σ2C−1
A,1(γ) CA C−1

A,2(γ);

(ii)

sup
γ∈Γ

W2SLS
T,TFS(γ)⇒ sup

γ∈Γ
E>

A (γ)V−1
A (γ)EA(γ),

where VA(γ) is defined in Definition 2.3 of the Appendix, and in general, VA(γ) 6=QA(γ).

Under conditional homoskedasticity, Corollary 2.B.2 in the Appendix shows that, as for a LFS,

the sup Wald and sup LR tests are not asymptotically equivalent for a TFS, except for the just

identified case p = q.

As in Boldea et al. (2017), in this section, the asymptotic distributions are non-pivotal, and

don’t simplify to the usual break-point distributions expressed in Corollary 2.1. This is not an

issue in practice, because critical values can still be obtained by bootstrap, as we discuss in

Section 2.6.

2.5 GMM test

In contrast to our paper, Caner and Hansen (2004) propose testing for a threshold using a GMM

sup Wald test. To calculate this test, they use the conventional two-step GMM estimators defined

in Section 2.3, with estimated variance-covariances:

V̂i,GMM(γ)=
(
T−1Wγ>

i Xγ

i Ĥε−1

i,GMM(γ)Xγ>
i Wγ

i

)−1
.

The Wald test statistic in Caner and Hansen (2004) for H0 at each γ is:

WGMM
T (γ)= T[θ̂γ1,GMM − θ̂γ2,GMM]>{V̂1,GMM(γ)+ V̂2,GMM(γ)}−1[θ̂γ1,GMM − θ̂γ2,GMM],

and the sup Wald test is sup
γ∈Γ

WGMM
T (γ).

For clarity, we reproduce below the asymptotic distribution of this test, which was already de-

rived in Caner and Hansen (2004). Assume thatH0 holds, and let Vi,GMM(γ)=
[
Ni(γ)Hε−1

i (γ)N>
i (γ)

]−1
,

where Hε
i (γ) is defined in Definition 2.1 of the Appendix. Also, let Ni(γ) = A0>

i Mi(γ), and let

GP 1(γ), be a q×1 zero mean Gaussian process with covariance kernel equal to E[GP 1(γ1)GP
>
1 (γ2)]=

Hε
i (γ1∧γ2). Let GP =GP 1(γmax) and GP 2(γ)=GP −GP 1(γ).14 Then Caner and Hansen (2004)

show:

Theorem 2.4 (Asymptotic distribution sup Wald GMM). Let Z be generated by (2.1) or (2.2), and

Y be generated by (2.3). Under H0 and Assumptions 2.1 and 2.4,

sup
γ∈Γ

WGMM
T (γ)⇒sup

γ∈Γ

[
V1,GMM(γ)N1(γ)Hε−1

1 (γ)GP 1(γ)−V2,GMM(γ)N2(γ)Hε−1

2 (γ)GP 2(γ)
]>

× [
V1,GMM(γ)+V2,GMM(γ)

]−1

×
[
V1,GMM(γ)N1(γ)Hε−1

1 (γ)GP 1(γ)−V2,GMM(γ)N2(γ)Hε−1

2 (γ)GP 2(γ)
]

.
14In Caner and Hansen (2004), GP = limγ→∞GP 1(γ), to account for an unbounded support Γ0; as discussed

before, for all practical purposes, including calculation of critical values, it makes sense to impose Γ0 = [γmin,γmax],
treat γmin,γmax as fixed values, and therefore define GP =GP 1(γmax).
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The proof is in Caner and Hansen (2004). Theorems 2.2-2.4 show that the 2SLS and GMM

tests have different asymptotic distributions in general, but there are two notable exceptions,

both for a LFS. First, under conditional homoskedasticity and just identification, a comparison of

Corollaries 2.B.1 and 2.B.3 in the Appendix shows that the GMM test distribution looks just like

the 2SLS distributions for a LFS, with the difference that the Gaussian processes are generated

by εt rather than (εt +utθ
0
z ). Second, under Assumptions 2.1-2.3 and a LFS, all the distributions

are the same, and identical to the break-point sup F and sup Wald test distributions. This latter

result is stated below and proven in the Appendix.

Corollary 2.2 (Corollary to Theorem 2.4). Let Z be generated by (2.1) and Y be generated by

(2.3). Then, under H0, and Assumptions 2.1-2.3,

sup
γ∈Γ

WGMM
T (γ)⇒ sup

λ∈Λε

BB>
p (λ)BBp(λ)

λ(1−λ)

Note that for a TFS and the same assumptions, the distribution in Corollary 2.2 does not

apply.

2.6 Simulations

In this chapter, we investigate the small sample properties of the 2SLS tests and the GMM test.

We first introduce the wild fixed-regresssor bootstrap.

2.6.1 Bootstrap and DGP

Bootstrap As shown in Section 2.4, the asymptotic distributions of the proposed test statistics

are non-standard and therefore need to be either simulated or bootstrapped.

Simulating the asymptotic distributions involves, for example, simulating the Gaussian

processes E (·) and EA(·) in Theorems 2.2-2.4, while keeping xt, qt fixed. On the other hand, in

simulations, usually Q(γ),V (γ),QA(γ),VA(γ) are replaced with consistent estimators based on the

initial sample, Q̂(γ), V̂ (γ),Q̂A(γ), V̂A(γ), and are kept fixed across simulations. Using similar argu-

ments to Hansen (1996), Theorem 2, one can show that the critical value simulated in this way

converges to the true critical value of the test. However, the randomness of Q̂(γ), V̂ (γ),Q̂A(γ), V̂A(γ)

may affect the critical value approximation in finite samples. Therefore, we propose bootstrapping

the critical values instead.

Below, we describe the fixed regressor wild bootstrap we used for simulating critical

values. We first describe it for the 2SLS test and then for the GMM test.
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Bootstrap for 2SLS tests:

1. based on the original sample, compute the test statistics in Section 2.4, gathered under the

generic name Ĝ:

Ĝ : sup
γ∈Γ

LR2SLS
T,LFS(γ), sup

γ∈Γ
LR2SLS

T,TFS(γ), sup
γ∈Γ

W2SLS
T,LFS(γ), sup

γ∈Γ
LR2SLS

T,TFS(γ)

2. compute the full-sample 2SLS parameter estimates θ̂ = (θ̂>z , θ̂>x )> for a LFS or for a TFS,

using (2.4) or (2.8), and the corresponding residuals for these estimates:

v̂t = (ε̂>t , û>
t )>

3. for each bootstrap sample j, draw a random sample t = 1, . . . ,T for ηt such that15

ηt =
−(

p
5−1)/2 with probability (

p
5+1)/(2

p
5)

(
p

5+1)/2 with probability (
p

5−1)/(2
p

5)
,

and compute the wild bootstrap residuals:

v̂( j)
t = v̂tηt

4. keeping xt, qt fixed, calculate a new bootstrap sample (y( j)
t , z( j)

t )

z( j)
t = Π̂>xt + û( j)

t for a LFS or z( j)
t = Π̂>

1 xt1{qt≤ρ̂} + Π̂>
2 xt1{qt>ρ̂} + û( j)

t for a TFS

y( j)
t = z( j)>

t θ̂z + x>1tθ̂x + ε̂( j)
t

5. using the new sample (y( j)
t , z( j)

t , xt, qt) with fixed regressors xt, qt, recalculate all 2SLS

test statistics, gathered under the generic name Ĝ( j)

Ĝ( j) : sup
γ∈Γ

LR2SLS,( j)
T,LFS (γ), sup

γ∈Γ
LR2SLS,( j)

T,TFS (γ), sup
γ∈Γ

W2SLS,( j)
T,LFS (γ), sup

γ∈Γ
W2SLS,( j)

T,TFS (γ)

6. repeat this procedure for j = 1, . . . , J times

7. the 5% bootstrap critical value for each test statistic is equal to the 95% quantile from the

empirical distribution (Ĝ(1), . . . ,Ĝ(J)), call it Ĝ0.95

8. if Ĝ > Ĝ0.95 we reject, else we don’t reject.

15This distribution for the bootstrap was proposed by Mammen (1993). We also tried the Rademacher-distribution
and a standard normal distribution for bootstrapping the residuals. Results do not change by much when using the
Rademacher distribution and substantially change for the GMM test when using the standard normal distribution.
In particular, this test becomes even more oversized in small samples when using the standard normal distribution.
These results are available from the authors upon request.
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Bootstrap for the GMM test:

1. based on the original sample, compute the GMM test statistic:

Ĝ = sup
γ∈Γ

WGMM
T (γ)

2. compute the full-sample two-step GMM parameter estimates θ̂GMM using the 2SLS esti-

mator θ̂ for a LFS as the first-step GMM estimator; calculate the corresponding residuals:

ε̃t = yt −w>
t θ̂GMM

3. for each bootstrap sample j, draw a random sample t = 1, . . . ,T for ηt such that16

ηt =
−(

p
5−1)/2 with probability (

p
5+1)/(2

p
5)

(
p

5+1)/2 with probability (
p

5−1)/(2
p

5)
,

and compute the wild bootstrap residuals:

ε̃
( j)
t = ε̃tηt

4. keeping zt, xt, qt fixed, calculate a new bootstrap sample y( j)
t

y( j)
t = w>

t θ̂GMM + ε̃( j)
t

5. using the new sample (y( j)
t , zt, xt, qt) with fixed regressors zt, xt, qt, recalculate the GMM

test statistic Ĝ( j)

Ĝ( j) = sup
γ∈Γ

WGMM,( j)
T

6. the 5% bootstrap critical value for each test statistic is equal to the 95% quantile from the

empirical distribution (Ĝ(1), . . . ,Ĝ(J)), call it Ĝ0.95

7. if Ĝ > Ĝ0.95 we reject, else we don’t reject.

Our bootstrap is slightly different than the one suggested in Caner and Hansen (2004) for

the same test statistic. They suggested setting y( j)
i = ε̃tηt, therefore computing a “pseudo-sample"

that ignores the predictable part of yt under H0, which is (w>
t θ

0). Presumably, they do so because

the value of θ0 is irrelevant for the asymptotic distribution of their test statistic. However, θ0

shows up in the asymptotic distribution of our test statistics, and for the sake of comparison, we

16This distribution for the bootstrap was proposed by Mammen (1993). We also tried the Rademacher-distribution
and a standard normal distribution for bootstrapping the residuals. Results do not change by much when using the
Rademacher distribution and substantially change when using the standard normal distribution. This substantial
change is only experienced by the GMM test, which becomes even more oversized in small samples. These results are
available from the authors upon request.
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compute y( j)
t as suggested in Step 5. Computing y( j)

t as we suggested is a proper wild bootstrap.

Compared to Caner and Hansen (2004), it should replicate more closely the sample null behavior

of the test.

As we already mentioned in Section 2.3, we investigate two possibilities in case the er-

rors are homoskedastic, namely, a) we know that they are homoskedastic or b) we do not know

that they are homoskedastic. In case b) we use the wild bootstrap, as explained above, and the

heteroskedasticity robust test statistics, as presented in Sections 2.4 and 2.5. In case a) we make

two adjustments to simulate the size and power properties of the tests:

• First, we replace the above wild bootstrap with the fixed regressor i.i.d. bootstrap. That is,

we replace step 3 in the wild bootstrap such that v̂( j)
t

i.i.d.∼ N (0, Σ̂v) with Σ̂v = T−1 ∑T
t=1 v̂t v̂>t

in case of 2SLS. In case of GMM we replace step 3 in the wild bootstrap such that ε̃( j)
t

i.i.d.∼
N (0, σ̃2

ε ) with σ̃2
ε = T−1 ∑T

t=1 ε̃
2
t .

• Second, we replace second moment functionals which contain vt by their homoskedas-

ticity analogs. For example, we replace the term E[xtx>t ε
2
t1{qt ≤ γ}], which is estimated

by T−1 ∑T
t=1 xtx>t ε̂

2
t1{qt ≤ γ}, by its homoskedasticity analog σ2

εE[xtx>t 1{qt ≤ γ}], which is

estimated by σ̂2
εT−1 ∑T

t=1 xtx>t 1{qt ≤ γ}. We proceed for all other such quantities in the same

way. This yields the simplified variance-covariance terms in Corollaries 2.B.1, 2.B.2 and

2.B.3 in Appendix 2.B and consequently simplified sample test statistics to compute.

Empirical Sizes and Size Adjusted Power To calculate the empirical sizes α̂ for a nominal

significance level α, we repeat the bootstrap procedure MC times, for a certain fixed H0 DGP but

with the original sample redrawn in each simulation draw s = 1, . . . , MC, and set:

(2.17) α̂= 1
MC

MC∑
s=1

1Ĝs>Ĝ0.95,s
,

where the subscript s in Ĝs,Ĝ0.95,s refers to the sth simulated value of Ĝ,Ĝ0.95. The empirical

power is obtained analogously with the DGP under HA:

(2.18) β̂= 1
MC

MC∑
s=1

1Ĝs>Ĝ0.95
.

Setting Ĝ0.95 in (2.18) equal to the 95%-quantile of the empirical distribution of a given test

statistic yields the size adjusted power.17

17Note that the size adjusted power is defined/computed such that the considered test has empirical size exactly
equal to the required nominal size. This is guaranteed under this setting.
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DGP The H0 DGP used in the simulations for calculating empirical sizes is:

yt = θ0
x1
+ ztθ

0
z +εt = w>

t θ
0 +εt(2.19)

zt = (Π0
1,1 +Π0

1,2xt)1{qt≤ρ0} + (Π0
2,1 +Π0

2,2xt)1{qt>ρ0} +ut(2.20)

where xt
iid∼ N (1,1), qt = xt +1, and xt, zt, qt are scalars. We set:

• θ0
z = θ0

x1
= 1.

• Π0
1 = (Π0

1,1,Π0
1,2)> = (1, 1)>.

• Π0
2 = (Π0

2,1,Π0
2,2)> = (1, b)>, where we allow b ∈ {0.5,1,1.5,2,2.5}. Note that b = 1 corresponds

to a LFS, and b 6= 1 to a TFS.

• ρ0 = 1.75.

We consider two cases: homoskedasticity and heteroskedasticity. For homoskedasticity, εt = νt,

and for conditional heteroskedasticity, εt = νt · xt/
p

2 with

(2.21)

(
νt

ut

)
iid∼ N

((
0

0

)
,

(
1 0.5

0.5 1

))
.

We set J = 500 and MC = 1000.

Note that we chose on purpose a DGP where the parameters in the equation of interest are

just-identified rather than over-identified for a LFS. In such a DGP, the GMM estimators are

equal to the conventional 2SLS estimators that use the same sub-sample ({t : qt ≤ γ}, respectively

{t : qt > γ}) to estimate both the first stage and the second stage (the equation of interest).

Therefore, any difference between our LFS tests and the GMM tests should stem from the

additional information of a LFS used in the 2SLS tests.

2.6.2 Size

Known Functional Form of the First Stage In this section, for all simulations we know the

nature of the FS: LFS or TFS, and we take it as given.

In the case of conditional homoskedastic errors, we present results for the two cases of

known and unknown homoskedasticity in Tables 2.1 and 2.2. In the first case of known ho-

moskedasticity, the results show that, in small samples, our tests tend to be slightly undersized

but stay below the nominal level, while the GMM test is correctly sized or slightly oversized. It

seems that the additional FS information does not result in better small sample properties, and

the i.i.d. bootstrap correctly replicates all asymptotic distributions. In large samples of about

T = 1000 all tests are close to their nominal size. However, in the case of unknown homoskedas-

ticity, the pattern is entirely different. That is, both of our tests are close or slightly below the
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nominal size for all considered sample sizes. This is in strong contrast to the GMM test which is

heavily oversized, with empirical sizes of up to 15% for small samples (T = 100) and up to 10.3%

for large samples (T = 1000).

Table 2.1: Empirical sizes for 5% nominal size, a LFS and homoskedastic errors

T LR2SLS
T,LFS(γ) W2SLS

T,LFS(γ) WGMM
T (γ)

Homoskedasticity known

100 4.7% 3.0% 5.2%
250 4.8% 3.7% 4.0%
500 5.7% 5.3% 4.7%

1000 4.8% 4.8% 4.6%

Homoskedasticity unknown

100 4.6% 6.5% 15.0%
250 4.6% 5.9% 11.6%
500 5.1% 5.9% 11.2%

1000 5.5% 5.6% 8.5%

Finally, in case of heteroskedastic errors (Tables 2.3 and 2.4), we observe the same pattern as

in the case of unknown homoskedasticity. In particular, the GMM Wald-test is severely oversized

with empirical sizes of up to 12%. In sharp contrast to this, the 2SLS tests are more adequately

sized, with most empirical sizes ranging from about 4.5% to 5.5%, and with the largest empirical

size equal to 6.3%.

As we saw in Figure 2.3, for a LFS case, these findings are due to the fact that the wild

bootstrap, combined with heteroskedasticity robust test statistics, fails to adequately mimic

the empirical distribution of the GMM test for small sample sizes T. Note that there is no

systematic difference between the two 2SLS tests, and because they can both be bootstrapped

under heteroskedasticity without severe size distortions, we recommend using both.

Unknown Functional Form of the First Stage For a given empirical application, we may

not know whether we have a LFS or a TFS. One way to circumvent this issue while avoiding

pre-testing or model selection in the FS is to find a misspecification robust functional form for

the FS, such as a polynomial approximation. Tables 2.5 and 2.6 presents simulation results

for this approach18. We find that the empirical sizes of the 2SLS tests are in general too large,

18The polynomial approximation was carried out in the following way: First, we simulate the FS as outlined in
Section 2.6.1, for both LFS and TFS cases with heteroskedastic errors. Then, we fit a polynomial as an approximation of
the FS. We choose the polynomial order by minimizing the associated BIC and keep this order fixed when bootstrapping
a given simulated sample. Thus, the polynomial order can vary across simulations. Since a polynomial approximation
of the FS is nothing else than having a LFS but with more instruments, we applied the test statistics for a LFS to
evaluate these “robustified” tests. We did so for both the case that the true DGP has a LFS, and the case that the true
DGP has a TFS. Note that if the true DGP has a LFS, the optimal polynomial order equals 1.
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Table 2.2: Empirical sizes for 5% nominal size, a TFS and homoskedastic errors

T LR2SLS
T,TFS(γ) W2SLS

T,TFS(γ) WGMM
T (γ) LR2SLS

T,TFS(γ) W2SLS
T,TFS(γ) WGMM

T (γ)

Homoskedasticty known

b=0.5 b=1.5

100 2.3% 2.8% 4.7% 1.7% 2.2% 5.2%
250 2.9% 3.0% 5.1% 2.4% 2.2% 4.0%
500 2.7% 2.6% 4.6% 3.8% 3.1% 4.5%

1000 4.2% 4.0% 4.2% 3.3% 3.7% 4.3%

b=2.0 b=2.5

100 2.6% 2.4% 5.2% 3.2% 1.6% 5.5%
250 3.9% 3.1% 4.9% 4.9% 3.6% 5.1%
500 5.2% 4.1% 4.6% 5.3% 4.0% 4.7%

1000 4.5% 4.9% 4.7% 4.8% 5.0% 4.3%

Homoskedasticty unknown

b=0.5 b=1.5

100 2.4% 6.6% 14.8% 1.6% 4.6% 13.3%
250 1.7% 4.5% 12.4% 2.3% 3.9% 9.4%
500 2.9% 4.8% 13.1% 4.2% 5.1% 9.9%

1000 3.9% 4.6% 10.3% 3.5% 4.8% 7.8%

b=2.0 b=2.5

100 2.2% 6.2% 10.9% 2.4% 5.8% 9.7%
250 1.6% 4.1% 8.1% 4.4% 4.9% 7.6%
500 3.1% 4.8% 8.5% 5.4% 6.2% 9.1%

1000 3.9% 4.6% 7.3% 4.7% 5.6% 7.6%

Table 2.3: Empirical sizes for 5% nominal size, a LFS and heteroskedastic errors

T LR2SLS
T,LFS(γ) W2SLS

T,LFS(γ) WGMM
T (γ)

100 5.5% 5.5% 9.8%
250 5.8% 5.0% 9.2%
500 4.8% 5.5% 8.5%

1000 5.2% 5.4% 7.2%

which is not surprising because there is a substantial share of simulations where zt is not well

approximated by a polynomial. The effect of the approximation error reflects more heavily on

the 2SLS Wald test, which needs estimates of second moment functionals for the instruments

interacted with the threshold variable. When these instruments are, for example, powers of xt, we

need to estimate second moment functionals of powers of xt. These estimates become increasingly

inaccurate as the order of the polynomial increases, leading to higher approximation errors for

the 2SLS Wald test than for the 2SLS LR test. Nevertheless, for small samples and a TFS, the

2SLS test is also heavily oversized.
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Table 2.4: Empirical sizes for 5% nominal size, a TFS and heteroskedastic errors

T LR2SLS
T,TFS(γ) W2SLS

T,TFS(γ) WGMM
T (γ) LR2SLS

T (γ) W2SLS
T (γ) WGMM

T (γ)

b = 0.5 b = 1.5

100 5.4% 2.8% 10.5% 4.6% 2.5% 9.1%
250 4.9% 4.4% 10.2% 4.8% 5.1% 8.1%
500 5.2% 3.5% 12.0% 5.5% 4.2% 7.0%

1000 5.6% 4.6% 8.7% 5.2% 4.4% 6.3%

b = 2.0 b = 2.5

100 4.4% 3.7% 8.7% 5.1% 4.3% 8.5%
250 5.6% 6.0% 7.1% 6.2% 6.3% 6.4%
500 5.9% 4.7% 6.9% 5.7% 4.6% 6.9%

1000 6.0% 5.0% 6.3% 6.0% 5.0% 6.2%

Table 2.5: Empirical Sizes for 2SLS Tests with Polynomial FS Approximation – DGP is LFS

T LR2SLS
T,LFS W2SLS

T,LFS

100 5.4% 27.3%
250 6.1% 25.8%
500 5.0% 24.8%
1000 5.2% 24.2%

Table 2.6: Empirical Sizes for 2SLS Tests with Polynomial FS Approximation - DGP is TFS

T LR2SLS
T,LFS(γ) W2SLS

T,LFS(γ) LR2SLS
T,LFS(γ) W2SLS

T (γ)

b = 0.5 b = 1.5

100 25.4% 4.9% 24.9% 5.9%
250 19.8% 6.2% 19.9% 5.3%
500 16.7% 6.2% 15.4% 6.0%
1000 8.9% 9.2% 9.4% 8.3%

b = 2.0 b = 2.5

100 16.7% 6.6% 8.3% 8.1%
250 9.2% 8.1% 4.1% 12.5%
500 4.0% 11.8% 2.3% 30.1%
1000 2.1% 28.4% 0.8% 51.8%

Yet another possibility to robustify the FS estimation is to use a TFS and therefore the TFS

tests regardless of whether the FS is linear or not. This is sensible since the parameter estimates

of a LFS misspecified as a TFS are still consistent, but not efficient. In addition, it is easy to

verify that the asymptotic distributions for the TFS case collapse to those of the LFS case. Table

2.7. presents results for this case. Both of our tests are undersized but still relatively close to

the true nominal size in this scenario, whereas the GMM test, which does not depend on the FS,
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is oversized as discussed in the previous paragraph. Thus, when the researcher does not know

whether the FS is linear or a threshold, we recommend using the TFS 2SLS tests. Again, there is

no noticeable difference in Table 2.7 among the two tests, so we recommend using both.

Table 2.7: Empirical Sizes for both 2SLS Tests with LFS approximated as a TFS

T LR2SLS
T,TFS(γ) W2SLS

T,TFS(γ)

100 3.5% 3.2%
250 2.9% 3.0%
500 3.8% 2.6%
1000 3.7% 3.2%

2.6.3 Power

In this section, we present the size adjusted power of the three tests. We slightly alter the DGP

in (2.19) while leaving everything else equal. In particular we set

(2.22) yt = w>
t θ

0
11{qt≤γ0} +w>

t θ
0
21{qt>γ0} +εt

with θ0
1 = (1, 1)> as before and θ0

2 = (a, c)> with a ∈ {1,2}, c ∈ {1.25,1.5,1.75,2}, and δ= c−1 the

slope threshold size. This allows us to investigate how the power varies with the threshold size,

measured by a−1 and δ. Finally, we set γ0 = 2.25.

We follow Davidson and MacKinnon (1998, Section 6) and plot size-power curves. That is, we plot

all possible sizes between 0 and 1 on the x-axis. The sizes used for size-adjusted powers are true

empirical sizes in the sense that they are computed based on (simulated) empirical critical values

and the empirical distribution function of the test statistics19. On the y-axis we plot the size

adjusted power which is calculated using the empirical critical values. For reasons of brevity we

only plot the cases of a LFS, a TFS with either b = 0.5 or b = 2.5, sample sizes T = 250,1000 and

no change in the EI intercept. Results for the other cases are similar and available upon request.

Figures 2.4 and 2.5 show the result of this exercise when the true errors are homoskedastic.

In particular, Figure 2.4 plots the size adjusted power when it is known that the errors are

homoskedastic and Figure 2.5 when it is unknown. We see that the power of all three tests

increases when either the sample size is fixed and the threshold size increases or the threshold

size is fixed and the sample size increases. Furthermore, for moderate threshold sizes the tests

have very similar power.

If the true errors are indeed heteroskedastic, as is the case in Figure 2.6, then we observe the

same pattern as in the homoskedastic case.
19The empirical critical values are computed under the DGP of Section 2.6.2. Of course, other H0-DGPs are possible

(e.g. averaging over θ0
1 and θ0

2) but it seems natural to take that of Section 2.6.2 for easy comparison.
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Figure 2.4: Size-adjusted power curves - known homoskedasticity
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Figure 2.5: Size-adjusted power curves - unknown homoskedasticity
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Figure 2.6: Size-adjusted power curves - heteroskedasticity
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However, there are is also an interesting difference for small threshold size and/or small

sample size: across most cases, the sup Wald tests outperform the sup LR test. Of course, this

difference vanishes as the sample size and/or the threshold size increases. Moreover, it seems

that the GMM sup Wald test has better power than the 2SLS sup Wald but only in the case of

small samples and small threshold values.

Even though our simulations indicate that the sup Wald tests are better than the 2SLS sup

LR test in terms of power, we know from Caner and Hansen (2004) that under the alternative,

the γ at which the supremum is obtained for the sup LR test is a consistent threshold estimator

whether we have an LFS or a TFS, so it is useful to compute the 2SLS sup LR test as well.

2.7 Conclusion

In this paper, we propose two novel threshold tests for linear models with endogenous regressors,

a sup LR and a sup Wald test. These tests are based on 2SLS estimation and explicitly account

for a possible threshold effect in the FS. We derive the asymptotic distributions of our tests, which

are non-pivotal but whose critical values or p-values can easily be bootstrapped. Our simulation

study shows that both tests behaves well in small samples, and their size and power compare

favorably to an existing GMM based sup Wald test. We therefore recommend using both when

testing for a threshold.

Appendix 2.A Definitions

Definition 2.1 (H and Ĥ matrices).

Hu
1 (γ)= E[xtx>t (u>

t θ
0
z )2
1{qt≤γ}] Hu

2 (γ)= E[xtx>t (u>
t θ

0
z )2
1{qt>γ}]

Hε
1(γ)= E[xtx>t ε

2
t1{qt≤γ}] Hε

2(γ)= E[xtx>t ε
2
t1{qt>γ}]

Hε,u
1 (γ)= E[xtx>t εtu>

t θ
0
z1{qt≤γ}] Hε,u

2 (γ)= E[xtx>t εtu>
t θ

0
z1{qt>γ}]

H1(γ)= Hu
1 (γ)+2Hε,u

1 (γ)+Hu
1 (γ) H2(γ)= Hu

2 (γ)+2Hε,u
2 (γ)+Hu

2 (γ).

Also, let H = H1(γmax)= E[xtx>t (εt +u>
t θ

0
z )2] and Hu = Hu

1 (γmax)= E[xtx>t (u>
t θ

0
z )2].

Their estimators are constructed under H0. Let ẑt and therefore ŵt = (ẑ>t , x>1t)
> be calculated by

(2.4) for a LFS and by (2.8) for a TFS. Let ût = zt − ẑt and ε̂t = yt −w′
tθ̂, where θ̂ = (Ŵ>Ŵ)−1Ŵ>Y ,

the full sample 2SLS estimator, partitioned as θ̂ = (θ̂>z , θ̂>x )>. The sample analogs of all H matrices

above are denoted with a hat accent Ĥ, and replace E with T−1 ∑T
t=1, and εt,ut,θ0

z with ε̂t, ût, θ̂z;

for example, Ĥε
1(γ)= T−1 ∑T

t=1 xtx>t ε̂
2
t1{qt≤γ}.
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Definition 2.2 (V (γ) and V̂ (γ)). We have a LFS as in (2.1). Then:

V (γ)=V1(γ)+V2(γ)−V12(γ)−V>
12(γ)

Vi(γ)= C−1
i (γ)A0

[
Hi(γ)+Ri(γ)HuR>

i (γ)− [Hε,u
i (γ)+Hu

i (γ)]R>
i (γ)

−Ri(γ)[Hε,u
i (γ)+Hu

i (γ)]
]
A0>C−1

i (γ), i = 1,2

V12(γ)=−C−1
1 (γ)A0

[
[Hε,u

1 (γ)+Hu
1 (γ)]R>

2 (γ)+R1(γ)[Hε,u
2 (γ)+Hu

2 (γ)]

−R1(γ)HuR>
2 (γ)

]
A0>C−1

2 (γ).

VA(γ) is constructed by replacing all quantities in the definition of VA(γ) by their sample analogs,

denoted with a hat accent. For example, V̂i(γ) = Ĉ−1
i (γ)Â

[
Ĥi(γ) + R̂i(γ)ĤuR̂>

i (γ) − [Ĥε,u
i (γ) +

Ĥu
i (γ)]R̂>

i (γ)− R̂i(γ)[Ĥε,u
i (γ)+ Ĥu

i (γ)]
]
Â>Ĉ−1

i (γ), with Â = [Π̂,S>]>, Ĉi(γ) = ÂM̂i(γ)Â>, M̂1(γ) =
T−1 ∑T

t=1 xtx>t 1{qt≤γ},

M̂2(γ)= T−1 ∑T
t=1 xtx>t 1{qt>γ}, M̂ = M̂1(γmax), R̂i(γ)= M̂i(γ)M̂−1.

Definition 2.3 (VA(γ) and V̂A(γ)). We have a TFS as in (2.2). Then:

VA(γ)=VA,1(γ)+VA,2(γ)−VA,12(γ)−V>
A,12(γ)

VA,1(γ)= C−1
A,1(γ)A0

1

[
H1(γ)+R1(γ;ρ0)Hu

1 (ρ0)R>
1 (γ;ρ0)− [Hε,u

1 (γ)+Hu
1 (γ)]R>

1 (γ;ρ0)

−R1(γ;ρ0)[Hε,u(γ)+Hu
1 (γ)]

]
A0>

1 C−1
A,1(γ)

VA,2(γ)= C−1
A,2(γ)

[
A0

2 Hε
2(ρ0) A0

2 + A0
1 [Hε

1(ρ0)−Hε
1(γ)+Hu

1 (γ)+R1(γ;ρ0)Hu
1 (ρ0)R>

1 (γ;ρ0)

+R1(γ;ρ0)[Hε,u
1 (ρ0)−Hε,u

1 (γ)−Hu
1 (γ)]

+ [Hε,u
1 (ρ0)−Hε,u

1 (γ)−Hu
1 (γ)]R>

1 (γ;ρ0)] A0>
1

]
C−1

A,2(γ)

VA,12(γ)=−C−1
A,1(γ)A0

1 [Hu
1 (γ)+Hε,u

1 (γ)+R1(γ;ρ0)(Hε,u
1 (ρ0)−Hε,u

1 (γ)−Hu
1 (γ))

− (Hε,u
1 (γ)+Hu

1 (γ))R>
1 (γ;ρ0)

+R1(γ;ρ0)Hu
1 (ρ0)R>

1 (γ;ρ0)] A0>
1 C−1

A,2(γ)

whenever γ≤ ρ0.When γ> ρ0, then

VA,1(γ)= C−1
A,1(γ)

[
A0

1Hε
1(ρ0)A0>

1 + A0
2Hε

2(ρ0)A0>
2 + A0

2[Hu
2 (γ)−Hε

2(γ)]A0>
2

+ A0
2R2(γ;ρ0)Hu

2 (ρ0)R>
2 (γ;ρ0)A0>

2

+ A0
2Hε,u

2 (ρ0)R>
2 (γ;ρ0)A0>

2

+ A0
2R2(γ;ρ0)Hε,u

2 (ρ0)A0>
2

− A0
2[Hε,u

2 (γ)+Hu
2 (γ)]R>

2 (γ;ρ0)A0>
2

− A0
2R2(γ;ρ0)[Hε,u

2 (γ)+Hu
2 (γ)]A0>

2

]
C−1

A,1(γ)
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VA,2(γ)= C−1
A,2(γ)A0

2

[
H2(γ)+R2(γ;ρ0)Hu

2 (ρ0)R>
2 (γ;ρ0)

− [Hε,u
2 (γ)+Hu

2 (γ)]R>
2 (γ;ρ0)

−R2(γ;ρ0)[Hε,u
2 (γ)+Hu

2 (γ)]
]
A0>

2 C−1
A,2(γ)

VA,12(γ)=−C−1
A,1(γ)A0

2

[
[Hε,u

2 (γ)+Hu
2 (γ)]+Hε,u

2 (ρ0)R>
2 (γ;ρ0)

+R2(γ;ρ0)Hu
2 (ρ0)R>

2 (γ;ρ0)

− [Hε,u
2 (γ)+Hu

2 (γ)]R>
2 (γ;ρ0)

−R2(γ;ρ0)[Hε,u
2 (γ)+Hu

2 (γ)]
]
A0>

2 C−1
A,2(γ).

V̂A(γ) is constructed by replacing all quantities in the definition of VA(γ) by their sample analogs,

denoted with a hat accent. For example, ĈA,1 = Â1M̂1(γ∧ρ)Â>
1 + Â2[M̂1(γ)− M̂1(γ∧ρ)]Â>

2 , Â i =
[Π̂i,S>]> and R̂i(γ; ρ̂)= M̂i(γ)M̂−1

i (ρ̂).

Appendix 2.B Proofs

In what follows, we use the symbol K to denote a strictly positive constant. Whenever needed, we

use a subscript to distinguish among different constants.

For any m×1-vector x we denote by ‖x‖2 =
√∑m

i=1 x2
i the Euclidean norm. Moreover, for any real

m×n-matrix X we denote by ‖X‖F =
√

tr(X>X )=
√

tr(X X>) the Frobenius matrix-norm which

is submultiplicative, i.e. for two matrices A ∈Rm×n and B ∈Rn×l it holds that ‖AB‖F ≤ ‖A‖F‖B‖F ,

and is compatible with the Euclidean norm, i.e. for a matrix A ∈ Rm×n and a vector x ∈ Rn×1 it

holds that ‖Ax‖2 ≤ ‖A‖F‖x‖2. Also note that, for two vectors u, v ∈Rn×1 it holds that ‖uv>‖F =√∑
i
∑

j |uiv j|2 =
√∑

i |ui|2 ∑
j |v j|2 =

√∑
i |ui|2

√∑
j |v j|2 = ‖u‖2 · ‖v‖2. Furthermore, we denote by

Im the m×m-identity matrix and by 0m×n an m×n-matrix of zeros.

To simplify notation, we define the following sets T1(γ) = {t : 1{qt≤γ}} and T2(γ) = {: 1{qt>γ}}.

These sets partition the data according to the decision rules 1{qt≤γ} and 1{qt>γ}, respectively, and

will be convenient to display sums.

Moreover, we define ε̃ = ε+ (Z − Ẑ)θ0
z and s = ε+ uθ0

z . Also, let ūt = vec(u>
t ,01×p2)> denote the

augmented FS error. This way, we can write wt = A0xt + ūt for a LFS. Note that ε̃ can also be

partitioned into regimes, with ε̃
γ

1 = ε
γ

1 + (Z− Ẑ)γ1θ
0
z and ε̃

γ

2 = ε
γ

2 + (Z− Ẑ)γ2θ
0
z .

All convergence results, if not otherwise stated, are uniformly in γ. Moreover,
p−→ denotes conver-

gence in probability and ⇒ denotes weak convergence in the Skorokhod-metric.

Proofs for Section 2.4.3: 2SLS tests and a LFS

To prove Theorem 2.2, we first provide four Lemmata and their proofs.
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Lemma 2.B.1. Suppose Assumption 2.1 holds. Then

T−1/2 vec(Xγ>
1 v)⇒GP 1(γ)

where GP 1(γ) is a zero-mean Gaussian Process with covariance function

CGP (γ1,γ2)= E[GP 1(γ1)GP >
1 (γ2)]= E[(vtv>t ⊗ xtx>t )1{qt≤(γ1∧γ2)}]

PROOF OF LEMMA 2.B.1. Recall that X is a T×q-matrix and v is a T×(1+ p1)-matrix, both

satisfying Assumption 1. Further, let v:,i denote the i-th column of the matrix v. Then, by Hansen

(1996, Theorem 1)

T−1/2Xγ>
1 v:,i ⇒GP i

1(γ)

and therefore

(2.23) T−1/2 vec(Xγ>
1 v)⇒


GP 1

1(γ)
...

GP
1+p1
1 (γ)

 .

By Hansen (1996, Theorem 1), GP i
1(γ) is a zero-mean Gaussian Process with covariance function

(2.24) C i
GP (γ1,γ2)= E[xtx>t v2

i,t1{qt≤(γ1∧γ2)}].

Similarly, it holds that

(2.25) C
i, j
GP

(γ1,γ2)= E[GP i
1(γ1)GP

j>
1 (γ2)]= E[xtx>t vi,tv j,t1{qt≤(γ1∧γ2)}].

Combining (2.24) and (2.25),

(2.26) CGP (γ1,γ2)= E[GP 1(γ1)GP >
1 (γ2)]= E[(vtv>t ⊗ xtx>t )1{qt≤(γ1∧γ2)}].

Results (2.23) and (2.26) complete the proof.

Lemma 2.B.2. Suppose Assumption 2.1 holds. Then

(i) T−1Ŵγ>
1 Ŵγ

1
p−→ A0M1(γ)A0> ≡ C1(γ)

(ii) T−1/2Ŵγ>
1 ε̃

γ

1 ⇒ A0 (
GP mat,1(γ)θ̃0

z −M1(γ)M−1GP mat,1θ̌
0
z
)
.

PROOF OF LEMMA 2.B.2. First, we prove claim (i) and then claim (ii).

Claim (i): The FS predicted values are

(2.27) Ẑ = X Π̂

and

(2.28) T1/2(Π̂−Π0)= (
T−1X>X

)−1 (
T−1/2X>u

)
.
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By Hansen (1996, Theorem 1), it holds uniformly in γ that

(2.29) T−1Xγ>
1 Xγ

1
a.s.−−→ M1(γ), and T−1X>X a.s.−−→ M.

This implies that T−1X>X =Op(1). By Lemma 2.B.1, T−1/2X>u =Op(1). Therefore, T1/2(Π̂−Π0)=
Op(1) and so Π̂−Π0 = op(1). Therefore, uniformly in γ,

(2.30) T−1Ẑγ>
1 Ẑγ

1 = Π̂>
(
T−1Xγ>

1 Xγ

1

)
Π̂

p−→Π0>M1(γ)Π0.

Last, with S the selection matrix such that x1t = xtS, it holds that

(2.31) Ŵγ

1 =
[
Ẑγ

1 Xγ

1,1

]
=

[
Xγ

1 Π̂ Xγ

1,1

]
= Xγ

1

[
Π̂ S

]
= Xγ

1 Â>.

Therefore, by (2.30) and (2.31) and uniformly in γ,

T−1Ŵγ>
1 Ŵγ

1 = Â
(
T−1Xγ>

1 Xγ

1

)
Â> p−→ A0M1(γ)A0> ≡ C1(γ).

Claim (ii): By (2.27) it follows that

(2.32) T−1/2Ẑγ>
1 ε̃

γ

1 = Π̂>( T−1/2Xγ>
1 (εγ1 +uγ1θ

0
z )︸ ︷︷ ︸

=(I)

−T−1/2Xγ>
1 Xγ

1 (Π̂−Π0)θ0
z︸ ︷︷ ︸

=(II)

).

Next, we analyze the limiting behavior of (I) and (II). Recalling that θ̃0
z = (1,θ0>

z )>,

I = T−1/2Xγ>
1 (εγ1 +uγ1θ

0
z )= T−1/2[Xγ>

1 ε
γ

1, Xγ>
1 uγ1]θ̃0

z

and thus, by Lemma 2.B.1, uniformly in γ:

(2.33) T−1/2[Xγ>
1 ε

γ

1, Xγ>
1 uγ1]θ̃0

z ⇒GP mat,1(γ)θ̃0
z .

By (2.28), term (II) in (2.32) satisfies

(2.34) I I = T−1/2Xγ>
1 Xγ

1 (Π̂−Π0)θ0
z =

(
T−1Xγ>

1 Xγ

1

)(
T−1X>X

)−1 (
T−1/2X>uθ0

z

)
.

Recalling that θ̌0
z = (0,θ0>

z )>,

T−1/2X>uθ0
z = T−1/2X>ε ·0+T−1/2X>uθ0

z = T−1/2[X>ε, X>u]θ̌0
z(2.35)

So, by (2.29), (2.34)–(2.35) and Lemma 2.B.1, uniformly in γ,

(2.36) T−1/2Xγ>
1 Xγ

1 (Π̂−Π0)θ0
z ⇒ M1(γ)M−1GP mat,1θ̌

0
z .

Next, because for any a,b =O p(1), Π̂>(a−b)=Π0>(a−b)+ op(1), (2.33) and (2.36) together with

(2.32) yield, uniformly in γ,

(2.37) T−1/2Ẑγ>
1 ε̃

γ

1 ⇒Π0> (
GP mat,1(γ)θ̃0

z −M1(γ)M−1GP mat,1θ̌
0
z
)
.

Last, because Ŵγ>

1 =
[
Ẑγ

1 Xγ

1,1

]
= Xγ

1 Â> (see (2.31)) it immediately follows with (2.37) that,

uniformly in γ,

(2.38) T−1/2Ŵγ>
1 ε̃

γ

1 ⇒B1(γ),

proving claim (ii).

37



CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
REGRESSORS

Lemma 2.B.3. Suppose Assumption 2.1 holds and define θ̂γ = vec(θ̂γ1 , θ̂γ2), and θ̄0 = vec(θ0,θ0).

Then, under H0 and for a fixed γ:

T1/2(θ̂γ− θ̄0)⇒N (0,Σγ)

with

Σγ =
[

V1(γ) V12(γ)

V>
12(γ) V2(γ),

]

where V1(γ),V2(γ) and V12(γ) are defined in Definition 2.2.

PROOF OF LEMMA 2.B.3. First, we define the following quantities

W̄ =
[

Ŵγ

1 0
0 Ŵγ

2

]
, Ȳ =

[
Y γ

1

Y γ

2

]
, θ̂γ =

[
θ̂
γ

1

θ̂
γ

2

]
.

Thus, the 2SLS estimator is given by

θ̂γ = (W̄>W̄)−1W̄>Ȳ = θ̄0 + (W̄>W̄)−1W̄> ¯̃ε.

where

¯̃ε=
[
ε̃
γ

1

ε̃
γ

2

]
=

[
ε
γ

1 + (Z− Ẑ)γ1θ
0
z

ε
γ

2 + (Z− Ẑ)γ2θ
0
z

]
.

By Lemma 2.B.2,

T1/2(θ̂γ− θ̄0)⇒
[

C−1
1 (γ)B1(γ)

C−1
2 (γ)B2(γ)

]
.

Thus, we are left to derive

Σγ =
[

Var[C−1
1 (γ)B1(γ)] Cov[C−1

1 (γ)B1(γ),C−1
2 (γ)B2(γ)]

Cov[C−1
2 (γ)B2(γ),C−1

1 (γ)B1(γ)] Var[C−1
2 (γ)B2(γ)]

]
.

Start with Var[B1(γ)]. Write vtv>t ⊗xtx>t as a short-cut for (vtv>t )⊗ (xtx>t ), and θ̌0>
z ⊗A0M1(γ)M−1
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as a short-cut for θ̌0>
z ⊗ (A0M1(γ)M−1). Then:

Var[B1(γ)]=Var[A0GP mat,1(γ)θ̃0
z − A0M1(γ)M−1GP mat,1θ̌

0
z ]

=Var[(θ̃0>
z ⊗ A0)GP 1(γ)]+Var[(θ̌0>

z ⊗ A0M1(γ)M−1)GP ]

−Cov[(θ̃0>
z ⊗ A0)GP 1(γ), (θ̌0>

z ⊗ A0M1(γ)M−1)GP ]

−Cov[(θ̌0>
z ⊗ A0M1(γ)M−1)GP , (θ̃0>

z ⊗ A0)GP 1(γ)]

= (θ̃0>
z ⊗ A0)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̃0

z ⊗ A0>)

+ (θ̌0>
z ⊗ A0M1(γ)M−1)E[vtv>t ⊗ xtx>t ](θ̌0

z ⊗M−1M1(γ)A0>)

− (θ̃0>
z ⊗ A0)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̌0

z ⊗M−1M1(γ)A0>)

− (θ̌0>
z ⊗ A0M1(γ)M−1)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̃0

z ⊗ A0>)

= A0E[xtx>t (εt +u>
t θ

0
z )2
1{qt≤γ}]A0>

+ A0M1(γ)M−1E[xtx>t (u>
t θ

0
z )2]M−1M1(γ)A0>

− A0E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt≤γ}]M−1M1(γ)A0>

− A0M1(γ)M−1E[xtx>t ](εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt≤γ}]A0>,

which yields the claim for V1(γ), when pre- and post-multiplied by C−1
1 (γ).

Next, we consider Var[B2(γ)]. First, note that

B2(γ)= A0GP mat,1θ̃
0
z − A0GP mat,1θ̌

0
z − A0GP mat,1(γ)+ A0M1(γ)M−1GP mat,1θ̌

0
z

= A0GP mat,2(γ)θ̃0
z − A0M2(γ)M−1GP mat,1θ̌

0
z

By similar arguments as for Var[B1(γ)],

Var[B2(γ)]= A0E[xtx>t (εt +u>
t θ

0
z )2
1{qt>γ}]A0>

+ A0M2(γ)M−1E[xtx>t (u>
t θ

0
z )2]M−1M2(γ)A0>

− A0E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt>γ}]M−1M2(γ)A0>

− A0M2(γ)M−1E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt>γ}]A0>

which yields the claim for V2(γ), when pre- and post-multiplied by C−1
2 (γ).
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Finally, we derive an expression for Cov[B1(γ),B2(γ)]20:

Cov[B1(γ),B2(γ)]=Cov[A0GP mat,1(γ)θ̃0
z − A0M1(γ)M−1GP mat,1θ̌

0
z ,

A0GP mat,2(γ)θ̃0
z − A0M2(γ)M−1GP mat,1θ̌

0
z ]

=−Cov[A0GP mat,1(γ)θ̃0
z , A0M2(γ)M−1GP mat,1θ̌

0
z ]

−Cov[A0M1(γ)M−1GP mat,1θ̌
0
z , A0GP mat,2(γ)θ̃0

z ]

+Cov[A0M1(γ)M−1GP mat,1θ̌
0
z , A0M2(γ)M−1GP mat,1(γ)θ̌0

z ]

=−A0E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt≤γ}]M−1M2(γ)A0>

− A0M1(γ)M−1E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt>γ}]A0>

+ AM1(γ)M−1E[xtx>t (u>
t θ

0
z )2]M−1M2(γ)A0>

which yields the claim for V12(γ) when pre-multiplied by C−1
1 (γ) and post-multiplied by C−1

2 (γ).

Lemma 2.B.4. Suppose Assumption 2.1 holds. Under H0 and uniformly in γ for i = 1,2,

(i) Ĥε
i (γ)

p−→ Hε
i (γ) (ii) Ĥε,u

i (γ)
p−→ Hε,u

i (γ)

(iii) Ĥu
i (γ)

p−→ Hu
i (γ) (iv) Ĥi(γ)

p−→ Hi(γ)

PROOF OF LEMMA 2.B.4. Claim (i): Note that, under H0, ε̂t = yt −w>
t θ̂ and start with

Ĥε
i (γ)= T−1 ∑

Ti(γ)
xtx>t ε̂

2
t

= T−1 ∑
Ti(γ)

xtx>t (yt −w>
t θ̂)2

= T−1 ∑
Ti(γ)

xtx>t [w>
t (θ0 − θ̂)+εt]2

= T−1 ∑
Ti(γ)

xtx>t [w>
t (θ0 − θ̂)]2

︸ ︷︷ ︸
(I)

+2T−1 ∑
Ti(γ)

xtx>t εtw>
t (θ0 − θ̂)︸ ︷︷ ︸

(II)

+T−1 ∑
Ti(γ)

xtx>t ε
2
t︸ ︷︷ ︸

(III)

.

We are left to show the limiting behavior of (I), (II), and (III).

20Note that Cov[GP 1(γ),GP 2(γ)]= E[GP 1(γ)GP >
2 (γ)]= 0.
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‖(I)‖F ≤ T−1 ∑
Ti(γ)

‖xtx>t [w>
t (θ0 − θ̂)]2‖F

≤
(
T−1 ∑

Ti(γ)
‖xt‖2

2‖wt‖2
2

)
‖θ0 − θ̂‖2

2

=
(
T−1 ∑

Ti(γ)
‖xt‖2

2‖A0xt + ūt‖2
2

)
‖θ0 − θ̂‖2

2

≤
(
T−1 ∑

Ti(γ)
‖xt‖2

2

[
‖A0‖F‖xt‖2 +‖ut‖2

]2
)
‖θ0 − θ̂‖2

2

=
(
T−1 ∑

Ti(γ)
‖xt‖4

2‖A0‖2
F +2‖xt‖3

2‖ut‖2‖A0‖F +‖xt‖2
2‖ut‖2

2

)
‖θ0 − θ̂‖2

2

= op(1)(2.39)

where the last equality holds because ‖θ0 − θ̂‖ = op(1) under H0 (follows directly from Lemma

2.B.2 by dropping γ ) and the term in paranthesis is Op(1). To see this latter claim, note that

‖A0‖F =Op(1) by Assumption 2.1 and consider

P

(
T−1 ∑

Ti(γ)
‖xt‖4

2 > K1

)
≤
E

∑
Ti(γ)

‖xt‖4
2

TK1
≤

sup
t
E‖xt‖4

2

K1
,(2.40a)

P

(
T−1 ∑

Ti(γ)
‖xt‖3

2‖ut‖2 > K2

)
≤
E

∑
Ti(γ)

‖xt‖3
2‖ut‖2

TK2
≤

sup
t
E‖xt‖3

2‖ut‖2

K2

≤
sup

t

[
E‖xt‖4

2

]3/4[
E‖ut‖4

2

]1/4

K2

≤
sup

t

[
E‖xt‖4

2

]3/4
sup

t

[
E‖ut‖4

2

]1/4

K2
(2.40b)

and

P

(
T−1 ∑

Ti(γ)
‖xt‖2

2‖ut‖2
2

)
≤
E

∑
Ti(γ)

‖xt‖2
2‖ut‖2

2

TK3
≤

sup
t
E‖xt‖2

2‖ut‖2
2

K3

≤
sup

t

[
E‖xt‖4

2E‖ut‖4
2

]1/2

K3
≤

sup
t

[
E‖xt‖4

2

]1/2
sup

t

[
E‖ut‖4

2

]1/2

K3
.(2.40c)

Now, by Assumption 2.1.2 it follows that all three terms (2.40a)–(2.40c) are Op(1) and therefore,

(2.39) follows.

41



CHAPTER 2. TESTING FOR A THRESHOLD IN MODELS WITH ENDOGENOUS
REGRESSORS

For (II) it follows that

‖(II)‖F ≤ T−1 ∑
Ti(γ)

‖xtx>t w>
t (θ0 − θ̂)εt‖F

≤
(
T−1 ∑

Ti(γ)
‖xt‖2

2‖A0xt + ūt‖2|εt|
)
‖θ0 − θ̂‖2

≤
(
T−1 ∑

Ti(γ)
‖xt‖3

2‖A0‖F |εt|+‖xt‖2
2‖ut‖2|εt|

)
‖θ0 − θ̂‖2

= op(1).(2.41)

To see why this statement holds, consider

P

(
T−1 ∑

Ti(γ)
‖xt‖3

2|εt| > K4

)
≤
E

∑
Ti(γ)

‖xt‖3
2|εt|

TK4
≤

sup
t
E‖xt‖3

2|εt|
K4

≤
sup

t

[
E‖xt‖4

2

]3/4[
E|εt|4

]1/4

K4

≤
sup

t

[
E‖xt‖4

2

]3/4
sup

t

[
E|εt|4

]1/4

K4
(2.42a)

P

(
T−1 ∑

Ti(γ)
‖xt‖2

2‖ut‖2|εt| > K5

)
≤
E

∑
Ti(γ)

‖xt‖2
2‖ut‖2|εt|

TK5
≤

sup
t
E‖xt‖2

2‖utεt‖2

K5

≤
sup

t

[
E‖xt‖4

2

]1/2[
E‖utεt‖2

2

]1/2

K5

≤
sup

t

[
E‖xt‖4

2

]1/2[
E‖ut‖4

2

]1/4[
E|εt|4

]1/4

K5

≤
sup

t

[
E‖xt‖4

2

]1/2
sup

t

[
E‖ut‖4

2

]1/4
sup

t

[
E|εt|4

]1/4

K5
.(2.42b)

Thus, the fact that ‖θ0 − θ̂‖2 = op(1) together with (2.42a) and (2.42b) yield (2.41).

Finally, because (III)
p−→ Hε

1(γ), uniformly in γ, by Hansen (1996, Lemma 1), Claim (i) follows.
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Claim (ii): Under H0 and a LFS it holds that ε̂t = yt −w>
t θ̂ and ût = zt − Π̂>xt. Therefore,

Ĥε,u
i (γ)= T−1 ∑

Ti(γ)
xtx>t ε̂tû>

t θ̂z = T−1 ∑
Ti(γ)

xtx>t [w>
t (θ0 − θ̂)+εt][x>t (Π0 − Π̂)+u>

t ]θ̂z

= T−1 ∑
Ti(γ)

xtx>t x>t A0(θ0 − θ̂)x>t (Π0 − Π̂)θ̂z︸ ︷︷ ︸
(IV)

+T−1 ∑
Ti(γ)

xtx>t x>t A0(θ0 − θ̂)u>
t θ̂z︸ ︷︷ ︸

(V)

+T−1 ∑
Ti(γ)

xtx>t ū>
t (θ0 − θ̂)x>t (Π0 − Π̂)θ̂z︸ ︷︷ ︸

(VI)

+T−1 ∑
Ti(γ)

xtx>t ū>
t (θ0 − θ̂)u>

t θ̂z︸ ︷︷ ︸
(VII)

+T−1 ∑
Ti(γ)

xtx>t εtx>t (Π0 − Π̂)θ̂z︸ ︷︷ ︸
(VIII)

+T−1 ∑
Ti(γ)

xtx>t ε
>
t u>

t θ̂z︸ ︷︷ ︸
(IX)

.(2.43)

Now, it immediately follows, by similar arguments as for Claim (i), that

‖(IV)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖4

2

)
‖A0‖F‖Π0 − Π̂‖F‖θ0 − θ̂‖2‖θ̂z‖2

=Op(1)Op(1)op(1)op(1)Op(1)= op(1)(2.44a)

‖(V)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖3

2‖ut‖2

)
‖A0‖F‖θ0 − θ̂‖2‖θ̂z‖2

=Op(1)Op(1)op(1)Op(1)= op(1)(2.44b)

‖(VI)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖3

2‖ut‖2

)
‖Π0 − Π̂‖F‖θ0 − θ̂‖2‖θ̂z‖2

=Op(1)op(1)op(1)Op(1)= op(1)(2.44c)

‖(VII)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖2

2‖ut‖2
2

)
‖θ0 − θ̂‖2‖θ̂z‖2

=Op(1)op(1)Op(1)= op(1)(2.44d)

‖(VIII)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖3

2|εt|
)
‖Π0 − Π̂‖F‖θ̂z‖2

=Op(1)op(1)Op(1)= op(1).(2.44e)

For the last term in (2.43) it holds, uniformly in γ by Hansen (1996, Lemma 1), that (IX) =
T−1 ∑

Ti(γ)
xtx>t εtu>

t (θ0 + op(1)) = T−1 ∑
Ti(γ)

xtx>t εtu>
t θ

0 + op(1)
p−→ Hε,u

1 (γ). Thus, Claim (ii) follows

together with (2.44a)–(2.44e).
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Claim (iii): As before, ût = zt − Π̂>xt. Then, under H0, it follows that

Ĥu
i (γ)= T−1 ∑

Ti(γ)
xtx>t (û>

t θ̂z)2 = T−1 ∑
Ti(γ)

xtx>t {[x>t (Π0 − Π̂)+u>
t ]θ̂z}2

= T−1 ∑
Ti(γ)

xtx>t [x>t (Π0 − Π̂)θ̂z]2

︸ ︷︷ ︸
(X)

+2T−1 ∑
Ti(γ)

xtx>t x>t (Π0 − Π̂)θ̂zu>
t θ̂z︸ ︷︷ ︸

(XI)

+T−1 ∑
Ti(γ)

xtx>t (u>
t θ̂z)2

︸ ︷︷ ︸
(XII)

(2.45)

Next,

‖(X)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖4

2

)
‖Π0 − Π̂‖2

F‖θ̂z‖2
2 =Op(1)op(1)Op(1)= op(1)(2.46a)

‖(XI)‖F ≤
(
T−1 ∑

Ti(γ)
‖xt‖3

2‖ut‖2

)
‖Π0 − Π̂‖F‖θ̂z‖2

2 =Op(1)op(1)Op(1)= op(1).(2.46b)

For the last term in (2.45) it holds, uniformly in γ by Hansen (1996, Lemma 1), that (X) =
T−1 ∑

Ti(γ)
xtx>t (u>

t θ̂z)2 = T−1 ∑
Ti(γ)

xtx>t (u>
t θ

0
z )2 + op(1)

p−→ Hu(γ). Thus, Claim (iii) follows together

with (2.46a) and (2.46b).

Claim (iv): This claim follows by noting that Ĥi(γ) = Ĥε
i (γ)+2Ĥε,u

i (γ)+ Ĥu
i (γ), using Claims

(i)–(iii) and the continuous mapping theorem.

PROOF OF THEOREM 2.2.

(i) sup LR Test: This proof is done in two parts: part (A) shows that T−1SSR1(γ)
p−→σ2 and

part (B) shows that SSR0 −SSR1(γ)⇒ E>(γ)C2(γ)C−1C1(γ)E (γ).

Part (A). The scaled sum of squared residuals of the restricted model, SSR1(γ), is

T−1SSR1(γ)= T−1[Y γ

1 −Ŵγ

1 θ̂
γ

1]>[Y γ

1 −Ŵγ

1 θ̂
γ

1]

+T−1[Y γ

2 −Ŵγ

2 θ̂
γ

2]>[Y γ

2 −Ŵγ

2 θ̂
γ

2]

= T−1[Ŵγ

1 (θ0 − θ̂γ1)+ ε̃γ1]>[Ŵγ

1 (θ0 − θ̂γ1)+ ε̃γ1]

+T−1[Ŵγ

2 (θ0 − θ̂γ2)+ ε̃γ2]>[Ŵγ

2 (θ0 − θ̂γ2)+ ε̃γ2]

= T−1ε̃>ε̃

+2(T−1ε̃
γ>
1 Ŵγ

1 )(θ0 − θ̂γ1)+ (θ0 − θ̂γ1)>(T−1Ŵγ>
1 Ŵγ

1 )(θ0 − θ̂γ1)

+2(T−1ε̃
γ>
2 Ŵγ

2 )(θ0 − θ̂γ2)+ (θ0 − θ̂γ2)>(T−1Ŵγ>
2 Ŵγ

2 )(θ0 − θ̂γ2).

(2.47)

Next, by Lemma 2.B.2, for i = 1,2, T−1Ŵγ>
i ε̃

γ

i = op(1) and T−1Ŵγ>
i Ŵγ

i = Op(1) uniformly in γ.

This implies that

θ̂
γ

i −θ0 = (T−1Ŵγ>
i Ŵγ

i )−1(Ŵγ>
i ε̃

γ

i )=Op(1)op(1)= op(1)
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and therefore, (2.47) simplifies to

T−1SSR1(γ)= T−1ε̃>ε̃+ op(1)

= T−1s>s+2(T−1s>X )(Π0 − Π̂)θ0
z

+θ0>
z (Π0 − Π̂)X>X (Π0 − Π̂)θ0

z + op(1)(2.48)

where s = ε+u>θ0
z , Π̂−Π0 = op(1) and T−1s>X = op(1) by Lemma 2.B.2, uniformly in γ. Thus,

(2.48) simplifies to

T−1SSR1(γ)= T−1s>s+ op(1)

= T−1ε>ε+2(T−1ε>u)θ0
z +θ0>

z (T−1u>u)θ0
z + op(1)

p−→σ2
ε +2Σ>

ε,uθ
0
z +θ0>

z Σuθ
0
z =σ2

uniformly in γ. This proves part (i).

Part (B). We have that

SSR0 −SSR1(γ)= [Y γ

1 −Ŵγ

1 θ̂]>[Y γ

1 −Ŵγ

1 θ̂]− [Y γ

1 −Ŵγ

1 θ̂
γ

1]>[Y γ

1 −Ŵγ

1 θ̂
γ

1]

+ [Y γ

2 −Ŵγ

2 θ̂]>[Y γ

2 −Ŵγ

2 θ̂]− [Y γ

2 −Ŵγ

2 θ̂
γ

2]>[Y γ

2 −Ŵγ

2 θ̂
γ

2](2.49)

Now, for i = 1,2,

[Y γ

i −Ŵγ

i θ̂]>[Y γ

i −Ŵγ

i θ̂]

−[Y γ

i −Ŵγ

i θ̂
γ

i ]>[Y γ

i −Ŵγ

i θ̂
γ

i ]=Y γ>
i Y γ

i −2θ̂>Ŵγ>
i Y γ

i + θ̂>Ŵγ>
i Ŵγ

i θ̂

−Y γ>
i Y γ

i +2θ̂γ>i Ŵγ

i − θ̂γ>i Ŵγ>
i Ŵγ

i θ̂
γ

i

= [θ̂γi − θ̂]>Ŵγ>
i [2Y γ

i −Ŵγ

i θ̂−Ŵγ

i θ̂
γ

i ]

= T1/2[θ̂γi − θ̂]>
[
2(T−1/2Ŵγ>

i ε̃
γ

i )

−(T−1Ŵγ>
i Ŵγ

i )(T1/2(θ̂−θ0))

−(T−1Ŵγ>
i Ŵγ

i )(T1/2(θ̂γi −θ0))
]

.(2.50)

Next, we show the asymptotic behavior of the terms on the right hand side of (2.50) which then

concludes the proof together with Part (i), (2.49), the continuous mapping theorem and weak

convergence (uniformly in γ). It holds that

(T−1Ŵ>Ŵ)(T1/2(θ̂−θ0))

=T−1/2Ŵ>ε̃

=T−1/2Ŵγ>
1 ε̃

γ

1 +T−1/2Ŵγ>
2 ε̃

γ

2

=(T−1Ŵγ>
1 Ŵγ

1 )(T1/2(θ̂γ1 −θ0))+ (T−1Ŵγ>
2 Ŵγ

2 )(T1/2(θ̂γ2 −θ0))(2.51)

and by Lemma 2.B.2 that, uniformly in γ for i = 1,2,

(2.52) T−1Ŵγ>
i Ŵγ

i
p−→ Ci(γ).
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Define β̂ ≡ T1/2(θ̂− θ0), β̂i ≡ T1/2(θ̂γi − θ0) and D i(γ) ≡ C−1Ci(γ) (i = 1,2). Then, (2.52) can be

restated as

(2.53) β̂= D1(γ)β̂1 +D2(γ)β̂2 + op(1).

Moreover, note that because D1(γ)+D2(γ)= I,

T1/2(θ̂γ1 − θ̂)= β̂1 − β̂= D2(γ)(β̂1 − β̂2)+ op(1)(2.54a)

T1/2(θ̂γ2 − θ̂)= β̂2 − β̂=−D1(γ)(β̂1 − β̂2)+ op(1)(2.54b)

T−1/2Ŵγ>
i ε̃

γ

i = Ci(γ)β̂i + op(1)(2.54c)

by (2.53) and Lemma 2.B.2.

So, using (2.51)–(2.54c), quantity (2.50) can be written, for i = 1, as

(β̂1 − β̂2)>D>
2 (γ)

[
2C1(γ)β̂1 −C1(γ)β̂−C1(γ)β̂1

]+ op(1)

=(β̂1 − β̂2)>D>
2 (γ)C1(γ)(β̂1 − β̂)+ op(1)

=(β̂1 − β̂2)>D>
2 (γ)C1(γ)D2(γ)(β̂1 − β̂2)+ op(1).(2.55)

Similarly, using (2.51)–(2.53) and (2.54b), and(2.54c), quantity (2.50) can be stated, for i = 2, as

(2.56) (β̂1 − β̂2)>D>
1 (γ)C2(γ)D1(γ)(β̂1 − β̂2)+ op(1).

So, using (2.50), (2.55) and (2.56), quantity (2.49) can be restated as

SSR0 −SSR1(γ)= (β̂1 − β̂2)>D>
2 (γ)C1(γ)D2(γ)(β̂1 − β̂2)

+ (β̂1 − β̂2)>D>
1 (γ)C2(γ)D1(γ)(β̂1 − β̂2)+ op(1)

= (β̂1 − β̂2)>
[
(Ip −D>

1 (γ))C1(γ)(Ip −D1(γ))

+D>
1 (γ)(C−C1(γ))D1(γ)

]
(β̂1 − β̂2)+ op(1)

= (β̂1 − β̂2)>
[
C1(γ)−2C1(γ)D1(γ)+D>

1 (γ)C1(γ)D1(γ)

+D>
1 (γ)CD1(γ)−D>

1 (γ)C1(γ)D1(γ)
]
(β̂1 − β̂2)+ op(1)

= (β̂1 − β̂2)>
[
C1(γ)−C1(γ)D1(γ)

]
(β̂1 − β̂2)+ op(1)

= (β̂1 − β̂2)>C2(γ)D1(γ)(β̂1 − β̂2)+ op(1).(2.57)

Last, by Lemma 2.B.2 it holds, uniformly in γ, that

β̂1 − β̂2 = (T−1Ŵγ>
1 Ŵγ

1 )−1(T−1/2Ŵγ>
1 ε̃

γ

1)− (T−1Ŵγ>
2 Ŵγ

2 )−1(T−1/2Ŵγ>
2 ε̃

γ

2)

⇒ C−1
1 (γ)A0B1(γ)−C−1

2 (γ)A0B2(γ)≡ E (γ).(2.58)

So, combining (2.57) and (2.58) yields

SSR0 −SSR1(γ)⇒ E>(γ)C2(γ)D1(γ)E (γ)

which in turn with Part (A), the continuous mapping theorem and weak convergence (uniformly

in γ) proves the claim.
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(ii) sup Wald Test: From Equation (2.50) it follows that

(2.59) T1/2(θ̂γ1 − θ̂
γ

2)⇒ E (γ).

Moreover, from Definition 2.2,

V̂i(γ)= Ĉ−1
i (γ)Â

[
Ĥi(γ)+ R̂i(γ)ĤuR̂>

i (γ)− [Ĥε,u
i (γ)+ Ĥu

i (γ)]R̂>
i (γ)

− R̂i(γ)[Ĥε,u
i (γ)+ Ĥu

i (γ)]
]
Â>Ĉ−1

i (γ)(2.60a)

and

V̂12(γ)= Ĉ−1
1 (γ)Â

[
(Ĥε,u

1 (γ)+ Ĥu
1 (γ))R̂>

2 (γ)− R̂1(γ)(Ĥε,u
2 (γ)+ Ĥu

2 (γ))

+ R̂1(γ)ĤuR̂>
2 (γ))

]
Â>Ĉ−1

2 (γ)(2.60b)

Now, by (2.29) and the continuous mapping theorem it immediately follows, uniformly in γ, that

(2.61) R̂i(γ)= M̂i(γ)M̂−1 =
(
T−1Xγ>

i Xγ

i

)(
T−1X>X

)−1 p−→ Mi(γ)M−1 = Ri(γ).

Moreover, by Lemma 2.B.2 and the continuous mapping theorem it also holds, uniformly in γ,

that

(2.62) Ĉ−1
i (γ)= (T−1Ŵγ>

i Ŵγ

i )−1 =
(
ÂM̂i(γ)Â>

)−1 p−→ C−1
i (γ), and Â = [Π̂, S>]> p−→ A0.

Finally, in Lemma 2.B.4 we derived the limits of Ĥε
i (γ), Ĥu

i (γ) and Ĥε,u
i (γ) concluding the proof

together with (2.59)–(2.62).

Corollary 2.B.1 (to Theorem 2.2). Let Z be generated by (2.1), Y be generated by (2.3), and Ẑ be

calculated by (2.4). Under H0 and Assumptions 2.1-2.2,

(i)

sup
γ∈Γ

LR2SLS
T,LFS(γ)⇒ sup

γ∈Γ
Ẽ>(γ)Q−1(γ)Ẽ (γ)

(ii)

sup
γ∈Γ

W2SLS
T,LFS(γ)⇒ sup

γ∈Γ
Ẽ>(γ)Ṽ−1(γ)Ẽ (γ)

where Ṽ (γ)= Ṽ1(γ)+ Ṽ2(γ)− Ṽ12(γ)− Ṽ>
12(γ),

Ṽi(γ)= C−1
i (γ) A0

[
σ2Iq − (σ2 −σ2

ε )Ri(γ)
]
Mi(γ)A>

0 C−1
i (γ)

Ṽ12(γ)=−C−1
1 (γ)(σ2 −σ2

ε )A0R1(γ)M2(γ)A0>C−1
2 (γ),

and ˜GP mat,1(γ) is a q × (p1 + 1)-matrix where all columns are independent q × 1 zero mean

Gaussian processes with covariance kernel21 M1(γ1 ∧γ2), Σ1/2 is the principal square root of
21Thus, the only difference between the two Gaussian processes G̃P mat,1(γ) and GP mat,1(γ) lies in their covariance

functions.
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Σ, Ẽ (γ) = C−1
1 (γ)B̃1(γ)−C−1

2 (γ)B̃2(γ), and B̃1(γ) = A0[ ˜GP mat,1(γ)Σ1/2θ̃0
z − R1(γ) ˜GP matΣ

1/2θ̌0
z ],

B̃2(γ)= B̃1(γmax)−B̃1(γ).

(iii) If the system is just-identified, i.e. if p = q, then the two test statistics are asymptotically

equivalent with asymptotic distribution given by supγ∈Γ J1(γ), where:

J1(γ)= 1
σ2 (Σ1/2θ̃0

z )>[M−1
1 (γ) ˜GP mat,1(γ)−M−1

2 (γ) ˜GP mat,2(γ)]>

× [M2(γ)M−1M1(γ)]

× [M−1
1 (γ) ˜GP mat,1(γ)−M−1

2 (γ) ˜GP mat,2(γ)]Σ1/2θ̃0
z .

PROOF OF COROLLARY 2.B.1.

(i) sup LR-test: We only need to show E (γ) = Ẽ (γ) under Assumptions 2.1 and 2.2; in

other words, that GP mat,1(γ) = ˜GP mat,1(γ)Σ1/2.22 The covariance kernel of GP 1(γ) is given as

E[GP 1(γ1)GP >
1 (γ2)] = E[(vtv>t ⊗ xtx>t )1{qt≤γ1∧γ2}] by Lemma 2.B.1, using the shortcut notation

vtv>t ⊗ xtx>t = (vtv>t )⊗ (xtx>t ). Under Assumption 2.2 this expression can be simplified to

E[(vtv>t ⊗ xtx>t )1{qt≤γ1∧γ2}]= E
[
E[(vtv>t ⊗ xtx>t )1{qt≤(γ1∧γ2)}|xt, qt]

]
= E[

E[vtv>t |xt, qt]⊗ (xtx>t 1{qt≤(γ1∧γ2)})
]

= E[
Σ⊗ (xtx>t 1{qt≤(γ1∧γ2)})

]
=Σ⊗M1(γ1 ∧γ2).

Next, the principal square root of Σ, i.e. Σ1/2 that satisfies Σ1/2Σ1/2 =Σ, exists since Σ is positive

definite by Assumption 2.1.5. Thus,

E[(vtv>t ⊗ xtx>t )1{qt≤γ1∧γ2}]=Σ⊗M1(γ1 ∧γ2)

= (Σ1/2 ⊗M1(γ1 ∧γ2))(Σ1/2 ⊗ Iq)

= (Σ1/2 ⊗ Iq)(Ip1+1 ⊗M1(γ1 ∧γ2))(Σ1/2 ⊗ Iq).(2.63)

The covariance kernel of (Σ1/2 ⊗ Iq) ˜GP 1(γ)= vec( ˜GP mat,1(γ)Σ1/2) is given by

E[(Σ1/2 ⊗ Iq) ˜GP 1(γ1) ˜GP
>
1 (γ2)(Σ1/2 ⊗ Iq)]= (Σ1/2 ⊗ Iq)E[ ˜GP 1(γ1) ˜GP

>
1 (γ2)](Σ1/2 ⊗ Iq)

= (Σ1/2 ⊗ Iq)(Ip1+1 ⊗M1(γ1 ∧γ2))(Σ1/2 ⊗ Iq)(2.64)

because E[ ˜GP 1(γ1) ˜GP
>
1 (γ2)]= Ip1+1⊗M1(γ1∧γ2) by definition of ˜GP 1(γ). Combining (2.63) and

(2.64) yields the desired result since Gaussian processes are uniquely defined through their mean

and covariance functions.

22We will do this by showing that their covariance functions are the same. Hence, because both processes have
mean zero, equality follows due to the fact that Gaussian processes are uniquely defined through their mean and
covariance functions.
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(ii) sup Wald-test: Conditional homoskedasticity implies that Hε
i (γ)=σ2

εMi(γ), Hu
i (γ)= (θ0>

z Σuθ
0
z ) Mi(γ),

and Hε,u
i (γ)= (Σ>

ε,uθ
0
z ) Mi(γ). Plugging these results into the expression for V (γ) in Definition 2.2

and simplifying yields the asymptotic distribution of the sup-Wald test for the overidentified case.

(iii) To show the asymptotic equivalence for p = q, define ∆σ =σ2 −σ2
ε . Then:

Ṽ (γ)= Ṽ1(γ)+ Ṽ2(γ)− Ṽ12(γ)− Ṽ>
12(γ)

=σ2C−1
1 (γ)−∆σC−1

1 (γ)A0R1(γ)M1(γ)A0>C−1
1 (γ)

+σ2C−1
2 (γ)−∆σC−1

2 (γ)A0R2(γ)M2(γ)A0>C−1
2 (γ)

+∆σC−1
1 (γ)A0R1(γ)M2(γ)A0>C−1

2 (γ)

+∆σC−1
2 (γ)A0R2(γ)M1(γ)A0>C−1

1 (γ)

=σ2(C−1
1 (γ)+C−1

2 (γ))

+∆σC−1
1 (γ)A0R1(γ)[M2(γ)A0>C−1

2 (γ)−M1(γ)A0>C−1
1 (γ)]

+∆σC−1
2 (γ)A0R2(γ)[M1(γ)A0>C−1

1 (γ)−M2(γ)A0>C−1
2 (γ)].(2.65)

In general, A0 ∈Rp×q. Thus, for the just-identified case, i.e. whenever p = q, A0 ∈Rp×p. Moreover,

since Π0 ∈ Rq×p1 , q ≥ p1, is of full (column) rank by Assumption 2.1.6, A0 is also of full rank

and thus, invertible. Denote by A0−1
the inverse of A0. Hence, it follows that (A0Mi(γ)A0>)−1 =

A0>−1
M−1

i (γ)A0−1
. Therefore,

M2(γ)A0>C−1
2 (γ)−M1(γ)A0>C−1

1 (γ)= 0.(2.66)

By equations (2.65)-(2.66), Ṽ (γ)=σ2(C−1
1 (γ)+C−1

2 (γ)). Finally,

Ṽ−1(γ)= (C−1
1 (γ)+C−1

2 (γ))−1

σ2 = C1(γ)C−1C2(γ)
σ2

which yields the asymptotic equivalence of both, sup-LR and sup-Wald tests in the just-identified

case under conditional homoskedasticity.

Note that in this setting, C−1
1 (γ)A0M1(γ)M−1 = (A0>)−1M−1, which implies that:

Ẽ (γ)= C−1
1 (γ)A0[ ˜GP mat,1(γ)Σ1/2θ̃0

z −M1(γ)M−1 ˜GP matΣ
1/2θ̌0

z ]

−C−1
2 (γ)A0[ ˜GP mat,2(γ)Σ1/2θ̃0

z −M2(γ)M−1 ˜GP matΣ
1/2θ̌0

z ]

= C−1
1 (γ)A0 ˜GP mat,1(γ)Σ1/2θ̃0

z −C−1
2 (γ)A0 ˜GP mat,2(γ)Σ1/2θ̃0

z

= (A0>)−1[M−1
1 (γ) ˜GP mat,1(γ)−M−1

2 (γ) ˜GP mat,2(γ)]Σ1/2θ̃0
z .

Also,

C2(γ)C−1C1(γ)= A0M2(γ)A0>(A0>)−1M(A0)−1 A0M2(γ)A0>

= A0M2(γ)M−1M1(γ)A0>.
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Therefore, the asymptotic distribution under conditional homoskedasticity and just-identification

is:

J1(γ)= 1
σ2 (Σ1/2θ̃0

z )>[M−1
1 (γ) ˜GP mat,1(γ)−M−1

2 (γ) ˜GP mat,2(γ)]>

× [M2(γ)M−1M1(γ)]

× [M−1
1 (γ) ˜GP mat,1(γ)−M−1

2 (γ) ˜GP mat,2(γ)]Σ1/2θ̃0
z .

PROOF OF COROLLARY 2.1. First, by Assumption 2.1.4 , Prob(qt ≤ γ) is continuous in γ. We

will replace the sup over the threshold parameter γ by sup over an equivalent value, Prob(qt ≤ γ)=
λ. To see how this works, note first that Γ⊂Γ0. Then, Prob(qt ≤ γmin)= 0 and Prob(qt ≤ γmax)= 1

in the sample. Suppose now, that Γ can be defined in terms of a cut-off value, say the κ-th quantile,

i.e. Γ= [γκ,γ1−κ]. Then equivalently, we have Prob(qt ≤ γ)=λ for all γ ∈Γ where λ is uniformly

distributed on Λκ = (κ;1−κ), i.e λ∼U(Λκ).

Now, by Assumption 2.3, we have that

(2.67) M1(γ1 ∧γ2)= E[xtx>t 1{qt≤γ1∧γ2}]= E[xtx>t ]E[1{qt≤γ1∧γ2}]=min{λ1,λ2}M.

This also implies that

M1(γ)=λM(2.68a)

C1(γ)= A0M1(γ)A0> =λA0MA0> =λC(2.68b)

M2(γ)= (1−λ)M(2.68c)

C2(γ)= A0M2(γ)A0> = (1−λ)A0MA0> = (1−λ)C.(2.68d)

Therefore,

Ṽ12(γ)=−C−1
1 (γ)∆σA0M1(γ)M−1M2(γ)A0>C−1

2 (γ)

=−∆σλ−1C−1λ(1−λ)C(1−λ)−1C−1

=−∆σC−1

Ṽ1(γ)=λ−1C−1[σ2λC−∆σλ2C]λ−1C−1

=σ2λ−1C−1 −∆σC−1

Ṽ2(γ)=σ2(1−λ)−1C−1 −∆σC−1

Ṽ (γ)= Ṽ1(γ)+ Ṽ2(γ)− Ṽ12(γ)− Ṽ>
12(γ)

=σ2λ−1C−1 +σ2(1−λ)−1C−1

=σ2 C−1

λ(1−λ)
,
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implying that

sup
γ∈Γ

W2SLS
T (γ), sup

γ∈Γ
LR2SLS

T (γ)⇒ sup
λ∈Λκ

λ(1−λ)
σ2 Ẽ>(γ)CẼ (γ)

Hence, in this situation, the sup Wald and sup LR-test are asymptotically equivalent, no matter

whether the system is just- or overidentified.

Next, (2.67) implies that – under Assumptions 2.2 and 2.3 – the Gaussian process GP 1(γ) can be

restated as

GP 1(γ)= (Σ1/2 ⊗ Iq) ˜GP 1(γ)= (Σ1/2 ⊗M1/2)BM q(p1+1)(λ)

⇐⇒ GP mat,1(γ)= M1/2BM mat,q(p1+1)(λ)Σ1/2(2.69)

where BM q(p1+1) denotes a q(p1+1)×1 vector of independent Brownian motions on the unit inter-

val, and BM mat,q(p1+1)(λ) is the q× (p1 +1) matrix with vec(BM mat,q(p1+1)(λ))=BM q(p1+1)(λ).

Equation (2.69) in turn implies that B1(γ) can be rewritten as B1(λ). Therefore, we obtain

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ (γ)= [C−1
1 (γ)B1(γ)−C−1

2 (γ)B2(γ)]>

×C2(γ)C−1C1(γ)

× [C−1
1 (γ)B1(γ)−C−1

2 (γ)B2(γ)]

= 1
λ(1−λ)

[C−1B1(λ)−λC−1B1(1)]>

×C[C−1B1(λ)−λC−1B1(1)]

= 1
λ(1−λ)

[C−1/2B1(λ)−λC−1/2B1(1)]>

× [C−1/2B1(λ)−λC−1/2B1(1)].(2.70)

Next, we show that the term C−1/2B1(λ)−λC−1/2B1(1) D= [(Σ1/2θ̃0
z )>⊗Ip][BM p(p1+1)(λ)−λBM p(p1+1)(1)],

where BM p(p1+1)(λ) collects in a vector the first p out of each q block of elements of BM q(p1+1)(λ).

Because of (2.68a) and (2.69) it follows that

B1(λ)= A0[GP mat,1(γ)θ̃0
z −M1(γ)M−1GP mat,1θ̌

0
z ]

= A0M1/2[BM mat,q(p1+1)(λ)Σ1/2θ̃0
z −λBM mat,q(p1+1)(1)Σ1/2θ̌0

z ].

Furthermore, recall that C = A0MA0>. Thus:

C−1/2B1(λ)= (A0MA0>)−1/2 A0M1/2BM mat,q(p1+1)(λ)Σ1/2θ̃0
z

−λ(A0MA0>)−1/2 A0M1/2BM mat,q(p1+1)(1)Σ1/2θ̌0
z .

Note that because (A0MA0>)−1/2(A0MA0>)(A0MA0>)−1/2 is a p×p projection matrix, pre-multiplying

with (A0MA0>)−1/2 A0M1/2 is without loss of generality equal in distribution to selecting the

first p rows of the q rows of BMmat,q(p1+1)(λ) (this can be seen by writing down the eigenvalue
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decomposition of the projection matrix as in Hall et al. (2012), supplemental appendix, page

22-23), yielding

BM mat,p(p1+1)(λ) D= (A0MA0>)−1/2 A0M1/2BM mat,q(p1+1)(λ)

BM mat,p(p1+1)(1) D= (A0MA0>)−1/2 A0M1/2BM mat,q(p1+1)(1),

where BM p(p1+1)(λ) = vec(BM mat,p(p1+1)(λ)). From the last statement, using the fact that for

generic matrices A,B, we have vec(AB)= (B′⊗ I)vec(A),

C−1/2B1(λ) D=BM mat,p(p1+1)(λ)Σ1/2θ̃0
z −λBM mat,p(p1+1)(1)Σ1/2θ̌0

z

λC−1/2B1(1) D=λBM mat,p(p1+1)(1)Σ1/2θ̃0
z −λBM mat,p(p1+1)(1)Σ1/2θ̌0

z

C−1/2B1(λ)−λC−1/2B1(1) D=BM mat,p(p1+1)(λ)Σ1/2θ̃0
z −λBM mat,p(p1+1)(1)Σ1/2θ̃0

z

= [(Σ1/2θ̃0
z )>⊗ Ip] [BM p(p1+1)(λ)−λBM p(p1+1)(1)]

≡ [(Σ1/2θ̃0
z )>⊗ Ip]BBp(p1+1)(λ).(2.71)

Using (2.71),

E>(γ)C2(γ)C−1C1(γ)E (γ)
σ2

D=
{
[(Σ1/2θ̃0

z )>⊗ Ip]BBp(p1+1)(λ)
}> {

[(Σ1/2θ̃0
z )>⊗ Ip]BBp(p1+1)(λ)

}
λ(1−λ)(Σ1/2θ̃0

z )>(Σ1/2θ̃0
z )

=
BB>

p(p1+1)
{
[(Σ1/2θ̃0

z )[(Σ1/2θ̃0
z )>(Σ1/2θ̃0

z )]−1(Σ1/2θ̃0
z )>]⊗ Ip

}
BBp(p1+1)

λ(1−λ)
.

Since F = (Σ1/2θ̃0
z )[(Σ1/2θ̃0

z )>(Σ1/2θ̃0
z )]−1(Σ1/2θ̃0

z )> is a projection matrix, as before, pre-multiplying

with F ⊗ Ip involves, without loss of generality, selecting the first p elements of BBp(p1+1),

yielding BBp(λ). Therefore,

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ (γ)
σ2

D=
BB>

p (λ)BBp(λ)

λ(1−λ)
,

proving the claim.

Proofs for Section 2.4.4: 2SLS tests and a TFS

Lemma 2.B.5. Under Assumption 2.1, T(ρ̂−ρ0) = Op(1), T1/2(Π̂i −Π0
i ) = Op(1), i = 1,2 and it

holds that the distribution is as if ρ0 was known:

T1/2 vec(Π̂i(ρ0)−Π0
i ) D−→N (0,Si),

where S1 = (Ip1⊗M−1
1 (ρ0))E[(utu>

t ⊗xtx>t )1{qt≤ρ0}](Ip1⊗M−1
1 (ρ0)) and S2 = (Ip1⊗M−1

2 (ρ0))E[(utu>
t ⊗

xtx>t )1{qt>ρ0}](Ip1 ⊗M−1
2 (ρ0)).

PROOF OF LEMMA 2.B.5. The results T(ρ̂−ρ0) = Op(1), T1/2(Π̂i −Π0
i ) = Op(1), i = 1,2 di-

rectly follow from Caner and Hansen (2004), Theorems 1 and 2. We will prove the statement for
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T1/2 vec(Π̂1(ρ0)−Π0
1). The proof for T1/2 vec(Π̂2(ρ0)−Π0

2) is similar and omitted for brevity.

By construction

Π̂1(ρ0)= (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 Z)

= (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 Xρ0

1 Π
0
1 + Xρ0>

1 Xρ0

2 Π
0
2 + Xρ0>

1 u)

=Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )

where the last equality holds because Xρ0>
1 Xρ0

2 = 0. Hence,

T1/2 vec(Π̂1(ρ0)−Π0
1)= vec

(
(T−1Xρ0>

1 Xρ0

1 )−1(T−1/2Xρ0>
1 u)

)
= (Ip1 ⊗ (T−1Xρ0>

1 Xρ0

1 )−1)vec(T1/2(Xρ0>
1 uρ

0

1 )).

Next, (T−1Xρ0>
1 Xρ0

1 )−1 p−→ M−1
1 (ρ0) and by Lemma 2.B.1

T1/2 vec(Xρ>
1 uρ1)⇒GP 1(ρ).

Note that GP 1(ρ) is a zero-mean Gaussian process with covariance function CGP (ρ1,ρ2) =
E[(utu>

t ⊗ xtx>t )1{qt≤ρ1∧ρ2}]. Therefore,

T1/2 vec(Π̂1(ρ0)−Π0
1)⇒ (Ip1 ⊗M−1

1 (ρ0))GP 1(ρ0).

Because GP 1(ρ0) denotes the Gaussian process at a particular value ρ0 it follows that GP 1(ρ0)∼
N (0,E[utu>

t ⊗ xtx>t 1{qt≤ρ0}]) and therefore,

T1/2 vec(Π̂1(ρ0)−Π0
1) D−→ (Ip1 ⊗M−1

1 (ρ0))N (0,E[utu>
t ⊗ xtx>t 1{qt≤ρ0}]),

which concludes the proof.

Lemma 2.B.6. Suppose Assumption 2.1 holds. Then, under H0,

T−1Ŵγ>
1 Ŵγ

1
p−→ A0

1M1(γ∧ρ0)A0>
1 + A0

2(M1(γ)−M1(γ∧ρ0))A0>
2 = CA,1(γ)

and

T−1/2Ŵγ>
1 ε̃

γ

1 ⇒ A0
1
[
GP mat,1(γ)θ̃0

z −R1(γ∧ρ0;ρ0)GP mat,1(ρ0)θ̌0
z
]

+ A0
2

[
(GP mat,1(γ)−GP mat,1(γ∧ρ0))θ̃0

z

− (R2(γ∧ρ0;ρ0)−R2(γ;ρ0))GP mat,2(ρ0)θ̌0
z

]
=BA,1(γ)

PROOF OF LEMMA 2.B.6. This proof is done in two parts: First, we show the asymptotic

behavior of T−1Ŵγ>
1 Ŵγ

1 and afterwards the asymptotic behavior of T−1/2Ŵγ>
1 ε̃

γ

1.

Also, it will be helpful during the proofs to consider three cases: Case (a) assumes that γ< ρ0,

Case (b) that γ= ρ0 and Case (c) that γ> ρ0. There are two sub-cases within each case:
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• In case (a) it follows that γ< ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2.B.2 and γ−ρ0 is a fixed

strictly negative number by construction. This implies two sub-cases: (a.1) with γ< ρ̂ ≤ ρ0

and (a.2) with γ< ρ0 < ρ̂.

• In case (b) there are two sub-cases: (b.1) with γ= ρ0 ≤ ρ̂ and (b.2) with ρ̂ < γ= ρ0

• In case (c) it follows that γ> ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2.B.2 and γ−ρ0 is a fixed

strictly positive number by construction. This implies two sub-cases: (c.1) with ρ̂ ≤ ρ0 < γ
and (c.2) with ρ0 < ρ̂ < γ.

Claim (i). Starting with case (a), because γ< ρ̂ for both possible sub-cases, it holds uniformly in

γ that

T−1Ŵγ>
1 Ŵγ

1 = Â1(T−1Xγ>
1 Xγ

1 )Â>
1

= A0
1(T−1Xγ>

1 Xγ

1 )A0>
1 + op(1)

p−→ A0
1M1(γ)A0>

1(2.72)

by Lemma 2.B.2.

In case (b), we first consider sub-case (b.1). Because γ≤ ρ̂, it holds uniformly in γ that

T−1Ŵγ>
1 Ŵγ

1 = Â1(T−1Xγ>
1 Xγ

1 )Â>
1

= A0
1(T−1Xγ>

1 Xγ

1 )A0>
1 + op(1)

p−→ A0
1M1(γ)A0>

1(2.73)

by Lemma 2.B.2. In sub-case (b.2) it follows that

T−1Ŵγ>
1 Ŵγ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 +T−1(Ŵγ>
1 Ŵγ

1 −Ŵ ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T−1X ρ̂>
1 X ρ̂

1 )Â>
1 + Â2(T−1Xρ0>

1 Xρ0

1 −T−1X ρ̂>
1 X ρ̂

1 )Â>
2 ,(2.74)

because ρ̂ < γ= ρ0. By Lemma 2.B.5 we have that ρ̂ = ρ0 +Op(T−1) and therefore,

T−1X ρ̂>
1 X ρ̂

1 = T−1
T∑

t=1
xtx>t 1{qt≤ρ̂}

= T−1
T∑

t=1
xtx>t 1{qt≤ρ0} +T−1

T∑
t=1

xtx>t (1{qt≤ρ̂} −1{qt≤ρ0})

= T−1Xρ0>
1 Xρ0

1 +Op(T−1)

= T−1Xρ0>
1 Xρ0

1 + op(1).(2.75)

So, (2.74), (2.75) and Lemma 2.B.2 imply, uniformly in γ,

(2.76) T−1Ŵγ>
1 Ŵγ

1
p−→ A0

1M1(ρ0)A0>
1 = A0

1M1(γ)A0>
1 .
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Last, we consider case (c). In sub-case (c.1) we have uniformly in γ that

T−1Ŵγ>
1 Ŵγ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 +T−1(Ŵρ0>
1 Ŵρ0

1 −Ŵ ρ̂>
1 Ŵ ρ̂

1 )

+T−1(Ŵγ>
1 Ŵγ

1 −Ŵρ0>
1 Ŵρ0

1 )

= Â1(T−1X ρ̂>
1 X ρ̂

1 )Â>
1 + Â2(T−1Xρ0>

1 Xρ0

1 −T−1X ρ̂>
1 X ρ̂

1 )Â>
2

+ Â2(T−1Xγ>
1 Xγ

1 −T−1Xρ0>
1 Xρ0

1 )Â>
2

p−→ A0
1M1(ρ0)A0>

1 + A0
2(M1(γ)−M1(ρ0))A0>

2(2.77)

by Lemma 2.B.2. In sub-case (c.2) it follows uniformly in γ that

T−1Ŵγ>
1 Ŵγ

1 = T−1Ŵρ0>
1 Ŵρ0

1 +T−1(Ŵ ρ̂>
1 Ŵ ρ̂

1 −Ŵρ0>
1 Ŵρ0

1 )

+T−1(Ŵγ>
1 Ŵγ

1 −Ŵ ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T−1Xρ0>
1 Xρ0

1 )Â>
1 + Â1(T−1X ρ̂>

1 X ρ̂

1 −T−1Xρ0>
1 Xρ0

1 )Â>
1

+ Â2(T−1Xγ>
1 Xγ

1 −T−1X ρ̂>
1 X ρ̂

1 )Â>
2

p−→ A0
1M1(ρ0)A0>

1 + A0
2(M1(γ)−M1(ρ0))A0>

2 .(2.78)

Finally, putting results (2.72), (2.73), (2.76)–(2.78) together yields the claim.

Claim (ii). To show this claim, we present a full proof for case (a). Since cases (b) and (c)

follow similar reasoning we only state the most important intermediate results to conclude the

claim.

Starting with sub-case (a.1) of (a) it holds that

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1(T−1/2Xγ>
1 ε̃

γ

1)

= Â1(T−1/2Xγ>
1 (εγ1 + (Zγ

1 − Ẑγ

1)θ0
z )

= Â1

[
T−1/2Xγ>

1 (εγ1 + (Xγ

1Π
0
1 +uγ1 − Xγ

1 Π̂1)θ0
z )

]
= Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
,(2.79)

By Lemma 2.B.1 it follows that T−1/2Xγ>
1 sγ1 ⇒GP mat,1(γ)θ̃0

z uniformly in γwhere vec(GP mat,1(γ))=
GP 1(γ) with GP 1(γ) as in Lemma 2.B.1 and θ̃0

z = (1,θ0>
z )>. Moreover, uniformly in γ

(T−1Xγ>
1 Xγ

1 )T1/2(Π̂1 −Π0
1)θ0

z = (T−1Xγ>
1 Xγ

1 )(T−1X ρ̂>
1 X ρ̂

1 )−1(T−1/2X ρ̂>
1 uρ̂1)θ0

z

⇒ M1(γ)M−1
1 (ρ0)GP mat,1(ρ0)θ̌0

z

Therefore, (2.79) behaves uniformly in γ as

(2.80) T−1/2Ŵγ>
1 ε̃

γ

1 ⇒ A0
1
[
GP mat,1(γ)θ̃0

z −R1(γ;ρ0)GP mat,1(ρ0)θ̌0
z
]
.

As in sub-case (a.1), for sub-case (a.2) it follows that

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
.(2.81)
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We now have23

Π̂1 −Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )+ op(1)

because

Π̂1 = (X ρ̂>
1 X ρ̂

1 )−1(X ρ̂>
1 Zρ̂

1 )

= (X ρ̂>
1 X ρ̂

1 )−1(Xρ0>
1 Xρ0

1 Π
0
1 + Xρ0>

1 Xρ0

1 Π
0
2 − X ρ̂>

1 X ρ̂

1Π
0
2 + X ρ̂>

1 uρ̂1)

=Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )+ op(1)(2.82)

by Lemma 2.B.5. So, putting (2.81) and (2.82) together yields uniformly in γ that

(2.83) T−1/2Ŵγ>
1 ε̃

γ

1 ⇒ A0
1
[
GP mat,1(γ)θ̃0

z −R1(γ;ρ0)GP mat,1(ρ0)θ̌0
z
]
.

For case (b), sub-case (b.1), it follows, as for sub-case (a.2), uniformly in γ that

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1

[
T−1/2Xγ>

1 sγ1 − (T−1Xγ>
1 Xγ

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
with

Π̂1 −Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )+ op(1).

So, as for sub-case (a.2), uniformly in γ

(2.84) T−1/2Ŵγ>
1 ε̃

γ

1 ⇒ A0
1
[
GP mat,1(γ)θ̃0

z −R1(γ;ρ0)GP mat,1(ρ0)θ̌0
z
]
,

where R1(γ;ρ0)= Iq whenever γ= ρ0.

For sub-case (b.2) it holds uniformly in γ that

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1

[
T−1/2X ρ̂>

1 sρ̂1 − (T−1X ρ̂>
1 X ρ̂

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
+ Â2

[
T−1/2(Xρ0>

1 sρ
0

1 − X ρ̂>
1 sρ̂1)−T−1(Xρ0>

1 Xρ0

1 − X ρ̂>
1 X ρ̂

1 )T1/2(Π̂2 −Π0
2)θ0

z

]
⇒ A0

1
[
GP mat,1(γ)θ̃0

z −GP mat,1(γ)θ̌0
z
]

(2.85)

by Lemmata 2.B.1, 2.B.2 and Equation (2.75).

Last, we show the claim for case (c). In sub-case (c.1) it holds uniformly in γ that

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1

[
T−1/2X ρ̂>

1 sρ̂1 − (T−1X ρ̂>
1 X ρ̂

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
+ Â2

[
T−1/2(Xρ0>

1 sρ
0

1 − X ρ̂>
1 sρ̂1)−T−1(Xρ0>

1 Xρ0

1 − X ρ̂>
1 X ρ̂

1 )T1/2(Π̂2 −Π0
2)θ0

z

]
+ Â2

[
T−1/2(Xγ>

1 sγ1 − Xρ0>
1 sρ

0

1 )−T−1(Xγ>
1 Xγ

1 − Xρ0>
1 Xρ0

1 )T1/2(Π̂2 −Π0
2)θ0

z

]
⇒ A0

1
[
GP mat,1(ρ0)θ̃0

z −GP mat,1(ρ0)θ̌0
z
]

+ A0
2
[
GP mat,1(γ)θ̃0

z −GP mat,1(ρ0)θ̃0
z − (Iq −R2(γ;ρ0))GP mat,2(ρ0)θ̌0

z
]
,(2.86)

23Note that in sub-case (a.1) we could also write Π̂1 −Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ

0

1 )+ op(1). However, the composi-

tion of the op(1)-term is different in both cases, as illustrated in (2.82). E.g. in (2.82) also Xρ0>
1 Xρ0

1 Π0
2 − X ρ̂>

1 X ρ̂
1Π

0
2

is included in the op(1)-term, whereas in (a.1) this term completely vanishes already in samples (rather than only
asymptotically) because of the relative locations of γ, ρ0 and ρ̂.
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where the middle term drops because T−1/2(Xρ0>
1 sρ

0

1 − X ρ̂>
1 sρ̂1)= op(1), T−1(Xρ0>

1 Xρ0

1 − X ρ̂>
1 X ρ̂

1 )=
op(1) and T1/2(Π̂2 −Π0

2)=Op(1) by Lemma 2.B.5.

Last, sub-case (c.2) yields uniformly in γ

T−1/2Ŵγ>
1 ε̃

γ

1 = Â1

[
T−1/2Xρ0>

1 sρ
0

1 − (T−1Xρ0>
1 Xρ0

1 )T1/2(Π̂1 −Π0
1)θ0

z

]
+ Â1

[
T−1/2(X ρ̂>

1 sρ̂1 − Xρ0>
1 sρ

0

1 )−T−1(X ρ̂>
1 X ρ̂

1 − Xρ0>
1 Xρ0

1 )T1/2(Π̂2 −Π0
2)θ0

z

]
+ Â2

[
T−1/2(Xγ>

1 sγ1 − X ρ̂>
1 sρ̂1)−T−1(Xγ>

1 Xγ

1 − X ρ̂>
1 X ρ̂

1 )T1/2(Π̂2 −Π0
2)θ0

z

]
⇒ A0

1
[
GP mat,1(ρ0)θ̃0

z −GP mat,1(ρ0)θ̌0
z
]

+ A0
2
[
GP mat,1(γ)θ̃0

z −GP mat,1(ρ0)θ̃0
z − (Iq −R2(γ;ρ0))GP mat,2(ρ0)θ̌0

z
]
,(2.87)

where the middle term drops because T−1/2(X ρ̂>
1 sρ̂1 − Xρ0>

1 sρ
0

1 )= op(1), T−1(X ρ̂>
1 X ρ̂

1 − Xρ0>
1 Xρ0

1 )=
op(1) and T1/2(Π̂2 −Π0

2)=Op(1) by Lemma 2.B.5.

Finally, putting (2.80), (2.83)–(2.87) together immediately yields the claim.

Lemma 2.B.7. Suppose Assumption 2.1 holds and define θ̂γ = vec(θ̂γ1 , θ̂γ2), and θ̄0 = vec(θ0,θ0).

Then, under H0 and for a fixed γ,

T1/2(θ̂γ− θ̄0)⇒N (0,ΣγA)

with

Σ
γ

A =
[

VA,1(γ) VA,12(γ)

V>
A,12(γ) VA,2(γ)

]

where VA,1(γ),VA,2(γ) and VA,12(γ) are defined in Definition 2.3.

PROOF OF LEMMA 2.B.7. First, we define the following quantities

W̄ =
[

Ŵγ

1 0
0 Ŵγ

2

]
, Ȳ =

[
Y γ

1

Y γ

2

]
, θ̂γ =

[
θ̂
γ

1

θ̂
γ

2

]
.

With this notation, the 2SLS estimator is

θ̂γ = (W̄>W̄)−1W̄>Ȳ

= θ̄0 + (W̄>W̄)−1W̄> ¯̃ε

where:

¯̃ε=
[
ε̃
γ

1

ε̃
γ

2

]
=

[
ε
γ

1 + (Z− Ẑ)γ1θ
0
z

ε
γ

2 + (Z− Ẑ)γ2θ
0
z

]
.

Hence, by Lemma 2.B.6 it immediately follows that

T1/2(θ̂γ− θ̄0)⇒
[

C−1
A,1(γ)BA,1(γ)

C−1
A,2(γ)BA,2(γ)

]
∼N (0,ΣγA).
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for fixed γ. Thus, we are left to derive ΣγA. Start with VA,1(γ):

Var[BA,1(γ)]=Var[A0
1GP mat,1(γ)θ̃0

z − A0
1M1(γ)M−1

1 (ρ0)GP mat,1(ρ0)θ̌0
z ]

=Var[(θ̃0>
z ⊗ A0

1)GP 1(γ)]+Var[(θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP 1(ρ0)]

−Cov[(θ̃0>
z ⊗ A0

1)GP 1(γ), (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP 1(ρ0)]

−Cov[(θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP 1(ρ0), (θ̃0>

z ⊗ A0
1)GP 1(γ)]

= (θ̃0>
z ⊗ A0

1)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̃0
z ⊗ A0>

1 )

+ (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])E[(vtv>t ⊗ xtx>t )1{qt≤ρ0}](θ̌

0
z ⊗ [M−1

1 (ρ0)M1(γ)A0>
1 ])

− (θ̃0>
z ⊗ A0

1)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̌0
z ⊗ [M−1

1 (ρ0)M1(γ)A0>
1 ])

− (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̃0

z ⊗ A0>
1 )

= A0
1E[xtx>t (εt +u>

t θ
0
z )2
1{qt≤γ}]A0>

1

+ A0
1M1(γ)M−1

1 (ρ0)E[xtx>t (u>
t θ

0
z )2
1{qt≤ρ0}]M

−1
1 (ρ0)M1(γ)A0>

1

− A0
1E[xtx>t (εtu>

t θ
0
z +θ0>

z utu>
t θ

0
z )1{qt≤γ}]M−1

1 (ρ0)M1(γ)A0>
1

− A0
1M1(γ)M−1

1 (ρ0)E[xtx>t (εtu>
t θ

0
z +θ0>

z utu>
t θ

0
z )1{qt≤γ}]A0>

1

= A0
1 [H1(γ)+R1(γ;ρ0)Hu

1 (ρ0)R>
1 (γ;ρ0)−R1(γ;ρ0)(Hε,u

1 (γ)+Hu
1 (γ))

− (Hε,u
1 (γ)+Hu

1 (γ))R>
1 (γ;ρ0)] A0>

1(2.88)

which yields the claim for γ≤ ρ0 when pre- and post-multiplied with C−1
A,1(γ).

Next, we consider Var[BA,2(γ)]. First, note that

Var[BA,2(γ)]=Var[BA]+Var[BA,1(γ)]−Cov[BA,BA,1(γ)]−Cov[BA,1(γ),BA](2.89)

where Var[BA,1(γ)] was already derived in Equation (2.88), and BA =BA(γmax)= A0
1GP mat,1(ρ0)e1+

A0
2GP mat,2(ρ0)e1 was defined right before Theorem 2.3 and e1 = θ̃0

z − θ̌0
z = (1,0, . . . ,0)>. Because

Var[BA]=Var[A0
1GP mat,1(ρ0)e1]+Var[A0

2GP mat,2(ρ0)e1](2.90)

where we used the fact that Cov[GP 1(ρ0),GP 2(ρ0)]= E[GP 1(ρ0)GP >
2 (ρ0)]= E[GP 1(ρ0)GP >

1 ]−
E[GP 1(ρ0)GP >

1 (ρ0)]= 0. Equation (2.90) thus reads as

Var[BA]= (e>1 ⊗ A0
1)E[(vtv>t ⊗ xtx>t )1{qt≤ρ0}](e1 ⊗ A0>

1 )

+ (e>1 ⊗ A0
2)E[(vtv>t ⊗ xtx>t )1{qt>ρ0}](e1 ⊗ A0>

2 )

= A0
1E[xtx>t ε

2
t1{qt≤ρ0}]A

0>
1 + A0

2E[xtx>t ε
2
t1{qt>ρ0}]A

0>
2

= A0
1Hε

1(ρ0)A0>
1 + A0

2Hε
2(ρ0)A0>

2 .(2.91)

58



2.B. PROOFS

From (2.89), we still need to derive Cov[BA,BA,1(γ)]:

Cov[BA,BA,1(γ)]=Cov[A0
1GP mat,1(ρ0)e1 + A0

2GP mat,2(ρ0)e1,

A0
1GP mat,1(γ)θ̃0

z − A0
1M1(γ)M−1

1 (ρ0)GP mat,1(ρ0)θ̌0
z ]

=Cov[A0
1GP mat,1(ρ0)e1, A0

1GP mat,1(γ)θ̃0
z ]

−Cov[A0
1GP mat,1(ρ0)e1, A0

1M1(γ)M−1
1 (ρ0)GP mat,1(ρ0)θ̌0

z ](2.92)

where the last equality holds since γ≤ ρ0 implies that Cov[GP 1(γ),GP 2(ρ0)]=
Cov[GP 1(ρ0),GP 2(ρ0)]= 0. Thus, Equation (2.92) can then be stated as

Cov[BA,BA,1(γ)]= (e>1 ⊗ A0
1)E[(vtv>t ⊗ xtx>t )1{qt≤γ}](θ̃0

z ⊗ A0>
1 )

− (e>1 ⊗ A0
1)E[(vtv>t ⊗ xtx>t )1{qt≤ρ0}](θ̌

0
z ⊗M−1

1 (ρ0)M1(γ)A0>
1 )

= A0
1E[xtx>t (ε2

t +εtu>
t θ

0
z )1{qt≤γ}]A0>

1

− A0
1E[xtx>t (εtu>

t θ
0
z )1{qt≤ρ0}]M

−1
1 (ρ0)M1(γ)A0>

1

= A0
1 [Hε

1(γ)+Hε,u
1 (γ)−Hε,u

1 (ρ0)R>
1 (γ;ρ0)] A0>

1 .(2.93)

Note that Cov[BA,1(γ),BA]=Cov[BA,BA,1(γ)]>. Hence, putting (2.88), (2.89), (2.91) and (2.93)

together yields

Var[BA,2(γ)]= A0
1Hε

1(ρ0)A0>
1 + A0

2Hε
2(ρ0)A0>

2

+ A0
1 [H1(γ)+R1(γ;ρ0)Hu

1 (ρ0)R>
1 (γ;ρ0)−R1(γ;ρ0)(Hε,u

1 (γ)+Hu
1 (γ))

− (Hε,u
1 (γ)+Hu

1 (γ))R>
1 (γ;ρ0)] A0>

1

− A0
1 [Hε

1(γ)+Hε,u
1 (γ)−Hε,u

1 (ρ0)R>
1 (γ;ρ0)] A0>

1

− A0
1 [Hε

1(γ)+Hε,u
1 (γ)−R1(γ;ρ0)Hε,u

1 (ρ0)] A0>
1

= A0
2 Hε

2(ρ0) A0>
2

+ A0
1 [Hε

1(ρ0)+H1(γ)−2Hε,u
1 (γ)−2Hε

1(γ)

+R1(γ;ρ0)Hu
1 (ρ0)R>

1 (γ;ρ0)

+R1(γ;ρ0)[−Hε,u
1 (γ)−Hu

1 (γ)+Hε,u
1 (ρ0)]

+ [−Hε,u
1 (γ)−Hu

1 (γ)+Hε,u
1 (ρ0)]R>

1 (γ;ρ0)] A0>
1

= A0
2 Hε

2(ρ0) A0>
2

+ A0
1 [Hε

1(ρ0)−Hε
1(γ)+Hu

1 (γ)

+R1(γ;ρ0)Hu
1 (ρ0)R>

1 (γ;ρ0)

+R1(γ;ρ0)[Hε,u
1 (ρ0)−Hε,u

1 (γ)−Hu
1 (γ)]

+ [Hε,u
1 (ρ0)−Hε,u

1 (γ)−Hu
1 (γ)]R>

1 (γ;ρ0)] A0>
1 .

Pre- and post-multiplication with C−1
A,2(γ) then yields the claim when γ≤ ρ0. Finally, we derive

an expression for:

Cov[BA,1(γ),BA,2(γ)]=Cov[BA,1(γ),BA]−Cov[BA,1(γ),BA,1(γ)].
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Using results (2.93) and (2.88) immediately yields:

Cov(BA,1(γ),BA,2(γ))=Cov(BA,1(γ),BA)−Cov(BA,1(γ),BA,1(γ))

= A0
1

[
Hε

1(γ)+Hε,u
1 (γ)−R1(γ;ρ0)Hε,u

1 (γ)
]
A0>

1

− A0
1

[
H1(γ)+R1(γ;ρ0)Hu

1 (ρ0)R>
1 (γ;ρ0)−R1(γ;ρ0)[Hε,u

1 (γ)+Hu
1 (γ)]

− [Hε,u
1 (γ)+Hu

1 (γ)]R>
1 (γ;ρ0)]

]
A0>

1

= A0
1

[
Hε

1(γ)+Hε,u
1 (γ)−H1(γ)−R1(γ;ρ0)[Hε,u

1 (ρ0)−Hε,u
1 (γ)−Hu

1 (γ)]

−R1(γ;ρ0)[Hu
1 (ρ0)R>

1 (γ;ρ0)+ [Hε,u
1 (γ)+Hu

1 (γ)]R>
1 (γ;ρ0)]

]
A0>

1

= A0
1

[
−Hε,u

1 (γ)−Hu
1 (γ)−R1(γ;ρ0)[Hε,u

1 (ρ0)−Hε,u
1 (γ)−Hu

1 (γ)]

−R1(γ;ρ0)[Hu
1 (ρ0)R>

1 (γ;ρ0)+ [Hε,u
1 (γ)+Hu

1 (γ)]R>
1 (γ;ρ0)]

]
A0>

1

=−A0
1

[
Hε,u

1 (γ)+Hu
1 (γ)+R1(γ;ρ0)[Hε,u

1 (ρ0)−Hε,u
1 (γ)−Hu

1 (γ)]

+R1(γ;ρ0)[Hu
1 (ρ0)R>

1 (γ;ρ0)− [Hε,u
1 (γ)+Hu

1 (γ)]R>
1 (γ;ρ0)]

]
A0>

1

Pre-, respectively post-multiplication with C−1
A,1(γ), respectively C−1

A,2(γ) yields the claim for

Cov(θ̂γ1 , θ̂γ2) when γ≤ ρ0.

The case γ> ρ0 is derived in a similar fashion and thus omitted for brevity.

Lemma 2.B.8. Suppose Assumption 2.1 holds. Then, under H0 and uniformly in γ and for i = 1,2,

(i) Ĥε
i (γ)

p−→ Hε
i (γ) (ii) Ĥε,u

i (γ)
p−→ Hε,u

i (γ)

(iii) Ĥu
i (γ)

p−→ Hu
i (γ) (iv) Ĥi(γ)

p−→ Hi(γ)

PROOF OF LEMMA 2.B.8. Claim (i): Let Ã be the one of the two matrices A0
1 and A0

2 with

larger Frobenius-norm. Then

‖wt‖2 = ‖A0
1xt1{qt≤ρ0} + A0

2xt1{qt>ρ0} + ūt‖2

≤ ‖A0
1‖F‖xt‖21{qt≤ρ0} +‖A0

2‖F‖xt‖21{qt>ρ0} +‖ut‖2

≤ ‖Ã‖F‖xt‖2 +‖ut‖2

Using this expression along the lines of the proof of Lemma 2.B.4 then yields the claim.

To show Claims (ii)–(iv), we consider the three cases, and their sub-cases, of Lemma 2.B.6

again.

Claim (ii): Case a: In both sub-cases we obtain

T−1 ∑
T1(γ)

xtx>t (ε̂tû>
t θ̂z)= T−1 ∑

T1(γ)
xtx>t (ε̂t[(Π0

1 − Π̂1)>xt +ut]>θ̂z)

p−→ Hε,u
1 (γ)
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where convergence follows along the same lines as in the proof of Lemma 2.B.4.

Case b: In sub-case b.1 it holds, as for Case a, that

T−1 ∑
T1(γ)

xtx>t (ε̂tû>
t θ̂z)= T−1 ∑

T1(γ)
xtx>t ([ε̂t(Π0

1 − Π̂1)>xt +ut]>θ̂z)

p−→ Hε,u
1 (γ).

In sub-case b.2 it follows that

T−1 ∑
T1(γ)

xtx>t (ε̂tû>
t θ̂z)= T−1 ∑

T1(ρ̂)
xtx>t (ε̂tû>

t θ̂z)+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (ε̂tû>
t θ̂z)

= T−1 ∑
T1(ρ̂)

xtx>t (ε̂t[(Π0
1 − Π̂1)>xt +ut]>θ̂z)

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (ε̂t[(Π0
1 − Π̂2)>xt +ut]>θ̂z)

p−→ Hε,u
1 (γ),

where the second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0

implying T1(ρ0)\T1(ρ̂)
p−→;.

Case c: In sub-case c.1 it holds that

T−1 ∑
T1(γ)

xtx>t (ε̂tû>
t θ̂z)= T−1 ∑

T1(ρ̂)
xtx>t (ε̂tû>

t θ̂z)+T−1 ∑
T1(ρ0)\T1(ρ̂)

xtx>t (ε̂tû>
t θ̂z)

+T−1 ∑
T1(γ)\T1(ρ0)

xtx>t (ε̂tû>
t θ̂z)

= T−1 ∑
T1(ρ̂)

xtx>t (ε̂t[(Π0
1 − Π̂1)>xt +ut]>θ̂z)

+T−1 ∑
T1(ρ0)\T1(ρ̂)

xtx>t (ε̂t[(Π0
1 − Π̂2)>xt +ut]>θ̂z)

+T−1 ∑
T1(γ)\T1(ρ0)

xtx>t (ε̂t[(Π0
2 − Π̂2)>xt +ut]>θ̂z)

p−→ Hε,u
1 (ρ0)+Hε,u

1 (γ)−Hε,u
1 (ρ0)= Hε,u

1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma 2.B.4.

The second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0 implying

T1(ρ0)\T1(ρ̂)
p−→; (this notation means that the number of elements in the set T1(ρ0)\T1(ρ̂) is

negligible in the limit as T →∞).
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For sub-case c.2 it holds that

T−1 ∑
T1(γ)

xtx>t (ε̂tû>
t θ̂z)= T−1 ∑

T1(ρ0)
xtx>t (ε̂tû>

t θ̂z)+T−1 ∑
T1(ρ̂)\T1(ρ0)

xtx>t (ε̂tû>
t θ̂z)

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (ε̂tû>
t θ̂z)

= T−1 ∑
T1(ρ0)

xtx>t (ε̂t[(Π0
1 − Π̂1)>xt +ut]>θ̂z)

+T−1 ∑
T1(ρ̂)\T1(ρ0)

xtx>t (ε̂t[(Π0
2 − Π̂1)>xt +ut]>θ̂z)

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (ε̂t[(Π0
2 − Π̂2)>xt +ut]>θ̂z)

p−→ Hε,u
1 (ρ0)+Hε,u

1 (γ)−Hε,u
1 (ρ0)= Hε,u

1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma 2.B.4.

The second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0 implying

T1(ρ0)\T1(ρ̂)
p−→;.

Claim (iii): Case a: In both sub-cases we obtain

T−1 ∑
T1(γ)

xtx>t (û>
t θ̂z)2 = T−1 ∑

T1(γ)
xtx>t ([(Π0

1 − Π̂1)>xt +ut]>θ̂z)2

p−→ Hu
1 (γ)

where convergence follows along the same lines as in the proof of Lemma 2.B.4.

Case b: In sub-case b.1 it also holds, as before, that

T−1 ∑
T1(γ)

xtx>t (û>
t θ̂z)2 = T−1 ∑

T1(γ)
xtx>t ([(Π0

1 − Π̂1)>xt +ut]>θ̂z)2

p−→ Hu
1 (γ).

In sub-case b.2 it follows that

T−1 ∑
T1(γ)

xtx>t (û>
t θ̂z)2 = T−1 ∑

T1(ρ̂)
xtx>t (û>

t θ̂z)2 +T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (û>
t θ̂z)2

= T−1 ∑
T1(ρ̂)

xtx>t ([(Π0
1 − Π̂1)>xt +ut]>θ̂z)2

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t ([(Π0
1 − Π̂2)>xt +ut]>θ̂z)2

p−→ Hu
1 (γ),

where the second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0

implying T1(ρ0)\T1(ρ̂)
p−→;.
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Case c: In sub-case c.1 it holds that

T−1 ∑
T1(γ)

xtx>t (û>
t θ̂z)2 = T−1 ∑

T1(ρ̂)
xtx>t (û>

t θ̂z)2 +T−1 ∑
T1(ρ0)\T1(ρ̂)

xtx>t (û>
t θ̂z)2

+T−1 ∑
T1(γ)\T1(ρ0)

xtx>t (û>
t θ̂z)2

= T−1 ∑
T1(ρ̂)

xtx>t ([(Π0
1 − Π̂1)>xt +ut]>θ̂z)2

+T−1 ∑
T1(ρ0)\T1(ρ̂)

xtx>t ([(Π0
1 − Π̂2)>xt +ut]>θ̂z)2

+T−1 ∑
T1(γ)\T1(ρ0)

xtx>t ([(Π0
2 − Π̂2)>xt +ut]>θ̂z)2

p−→ Hu
1 (ρ0)+Hu

1 (γ)−Hu
1 (ρ0)= Hu

1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma 2.B.4.

The second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0 implying

T1(ρ0)\T1(ρ̂)
p−→;.

For sub-case c.2 it holds that

T−1 ∑
T1(γ)

xtx>t (û>
t θ̂z)2 = T−1 ∑

T1(ρ0)
xtx>t (û>

t θ̂z)2 +T−1 ∑
T1(ρ̂)\T1(ρ0)

xtx>t (û>
t θ̂z)2

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t (û>
t θ̂z)2

= T−1 ∑
T1(ρ0)

xtx>t ([(Π0
1 − Π̂1)>xt +ut]>θ̂z)2

+T−1 ∑
T1(ρ̂)\T1(ρ0)

xtx>t ([(Π0
2 − Π̂1)>xt +ut]>θ̂z)2

+T−1 ∑
T1(γ)\T1(ρ̂)

xtx>t ([(Π0
2 − Π̂2)>xt +ut]>θ̂z)2

p−→ Hu
1 (ρ0)+Hu

1 (γ)−Hu
1 (ρ0)= Hu

1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma 2.B.4.

The second term converges to 0 in probability since the sum is of order Op(1) and ρ̂
p−→ ρ0 implying

T1(ρ0)\T1(ρ̂)
p−→;.

Claim (iv): As in Lemma 2.B.4.

For i = 2, the proof follows similar steps and omitted for brevity.

PROOF OF THEOREM 2.3.
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(i) sup LR Test: The proof of this result follows the same arguments as in the LFS case. For

brevity, we will only display the major differences to the LFS case. As in the LFS case, we split

the proof into two parts: in part (i) we will show that T−1SSR1(γ)
p−→ σ2 and in part (ii) that

SSR0 −SSR1(γ)⇒ E>
A (γ)CA,2(γ)C−1

A CA,1(γ)E (γ).

Part (i). As in the LFS proof (cf. equation (2.48)) it holds uniformly in γ that

T−1SSR1(γ)= T−1[Y γ

1 −Ŵγ

1 θ̂
γ

1]>[Y γ

1 −Ŵγ

1 θ̂
γ

1]

+T−1[Y γ

2 −Ŵγ

2 θ̂
γ

2]>[Y γ

2 −Ŵγ

2 θ̂
γ

2]

= T−1[Ŵγ

1 (θ0 − θ̂γ1)+ ε̃γ1]>[Ŵγ

1 (θ0 − θ̂γ1)+ ε̃γ1]

+T−1[Ŵγ

2 (θ0 − θ̂γ2)+ ε̃γ2]>[Ŵγ

2 (θ0 − θ̂γ2)+ ε̃γ2]

= T−1ε̃>ε̃

+2(T−1ε̃
γ

1Ŵγ

1 )(θ0 − θ̂γ1)+ (θ0 − θ̂γ1)>(T−1Ŵγ>
1 Ŵγ

1 )(θ0 − θ̂γ1)

+2(T−1ε̃
γ

2Ŵγ

2 )(θ0 − θ̂γ2)+ (θ0 − θ̂γ2)>(T−1Ŵγ>
2 Ŵγ

2 )(θ0 − θ̂γ2)

= T−1ε̃>ε̃+ op(1),(2.94)

where the last equality holds because, for i = 1,2, T−1Ŵγ>
i ε̃

γ

i = op(1), T−1Ŵγ>
i Ŵγ

i = Op(1) and

θ0 − θ̂γi = (T−1Ŵγ>
i Ŵγ

i )−1(T−1Ŵγ>
i ε̃

γ

i )=Op(1)op(1)= op(1) uniformly in γ by Lemma 2.B.3.

Next, rewrite (2.94) as

T−1SSR1(γ)= T−1ε̃
ρ0>
1 ε̃

ρ0

1 +T−1ε̃
ρ0>
2 ε̃

ρ0

2 + op(1).(2.95)

By construction

ε̃
ρ0

1 = ερ0

1 + (Zρ0

1 − Ẑρ0

1 )θ0
z

and thus

ε̃
ρ0

1 =
sρ

0

1 + Xρ0

1 (Π0
1 − Π̂1) if ρ0 ≤ ρ̂

sρ
0

1 + Xρ0

1 (Π0
1 − Π̂1)+ op(1) if ρ0 > ρ̂

where sρ
0

1 = ερ0

1 +uρ
0

1 θ0
z . It can be shown that:

T−1ε̃
ρ0>
1 ε̃

ρ0

1 = T−1sρ
0>

1 sρ
0

1 +2(T−1sρ
0>

1 Xρ0

1 )(Π0
1 − Π̂1)

+ (Π0
1 − Π̂1)>(T−1Xρ0>

1 Xρ0

1 )(Π0
1 − Π̂1)

= T−1sρ
0>

1 sρ
0

1 + op(1)

because T−1sρ
0>

1 Xρ0

1 = op(1) and T−1Xρ0>
1 Xρ0

1 =Op(1) and Π0
1 − Π̂1 = op(1) by Lemma 2.B.3.

Similarly, we obtain

T−1ε̃
ρ0>
2 ε̃

ρ0

2 = T−1sρ
0>

2 sρ
0

2 + op(1).

Therefore, (2.95) reads as

T−1SSR1(γ)= T−1sρ
0>

1 sρ
0

1 +T−1sρ
0>

2 sρ
0

2 + op(1)

= T−1s>s+ op(1)
p−→σ2

ε +2Σ>
ε,uθ

0
z +θ0>

z Σuθ
0
z ≡σ2,
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uniformly in γ, proving part (i).

Part (ii). For this part, derivations remain as in the LFS case (up to equation (2.43)). Utilizing

Lemma 2.B.4, expressions (2.52) and (2.53) in the LFS proof become

T−1Ŵγ>
i Ŵγ

i
p−→ CA,i(γ)

and

β̂= DA,1(γ)β̂1 +DA,2(γ)β̂2 + op(1)

by Lemma 2.B.3 with DA,1(γ) ≡ C−1
A CA,1(γ) and therefore, DA,2(γ) = C−1

A CA,2(γ) = Ip −DA,1(γ).

Consequently, equations (2.52)–(2.54a) in the LFS proof are adjusted in this fashion as well. The

following derivations then remain the same.

Last, equation (2.58) from the LFS case now reads as 24

β̂1 − β̂2 = C−1
A,1(γ)BA,1(γ)−C−1

A,2(γ)BA,2(γ)≡ EA(γ).

Thus, as in the LFS case, it follows that

SSR0 −SSR1(γ)= (β̂1 − β̂2)>CA,2(γ)DA,1(γ)(β̂1 − β̂2)+ op(1)

⇒ E>
A (γ)CA,2(γ)DA,1(γ)EA(γ)

uniformly in γ. Together with Part (i), (a.s.) continuity of the process EA(γ), the continuous

mapping theorem and weak convergence (uniformly in γ) it then follows that

sup
γ∈Γ

SSR0 −SSR1(γ)
SSR1(γ)/T

⇒ sup
γ∈Γ

E>
A (γ)CA,2(γ)C−1

A CA,1(γ)EA(γ)

σ2

proving the claim of the theorem.

(ii) sup Wald Test:

PROOF. The proof follows the exact same arguments as the proof of Theorem 2.2 by replacing

the LFS quantities with the according TFS quantities.

To write down Corollary 2.B.2 to Theorem 2.3 below, which derives the asymptotic distribu-

tions of the 2SLS tests under conditional homoskedasticity, we define the Gaussian processes

ẼA(γ)= C−1
A,1(γ)B̃A,1(γ)−C−1

A,2(γ)B̃A,2(γ)

and

B̃A,1(γ)= A0
1

[
˜GP mat,1(γ∧ρ0)Σ1/2θ̃0

z −R1(γ∧ρ0;ρ0) ˜GP mat,1(ρ0)Σ1/2θ̌0
z

]
+ A0

2

[
˜GP mat,1(γ)Σ1/2θ̃0

z − ˜GP mat,1(γ∧ρ0)Σ1/2θ̃0
z

]
− A0

2

[
(R2(γ∧ρ0;ρ0)−R2(γ;ρ0)) ˜GP mat,2(ρ0)Σ1/2θ̌0

z

]
B̃A,2(γ)= B̃A(γmax)−B̃A,1(γ),

24 A0 is replaced with A0
i , i = 1,2, absorbed in the definition of BA,1(γ).
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and ˜GP mat,1(γ) is a q× (p1 +1) matrix where all columns are independent q×1 zero mean

Gaussian processes with covariance kernel M1(γ).25 Then we have:

Corollary 2.B.2 (to Theorem 2.3). Let Z be generated by (2.2), Y be generated by (2.3), and Ẑ be

calculated by (2.8).Then, under H0, and Assumptions 2.1, 2.2 and 2.4,

(i)

sup
γ∈Γ

LR2SLS
T,TFS(γ)⇒ sup

γ∈Γ
Ẽ>

A (γ)Q−1
A (γ)ẼA(γ),

(ii)

sup
γ∈Γ

W2SLS
T,TFS(γ)⇒ sup

γ∈Γ
Ẽ>

A (γ)Ṽ−1
A (γ)ẼA(γ).

where ṼA(γ)= ṼA,1(γ)+ ṼA,2(γ)− ṼA,12(γ)− Ṽ>
A,12(γ) and:

ṼA,1(γ)= C−1
A,1(γ)

[
σ2CA,1(γ)− (σ2 −σ2

ε )A0
1R1(γ;ρ0)M1(γ)A0>

1

]
C−1

A,1(γ)

ṼA,2(γ)= C−1
A,2(γ)

[
σ2
εCA,2(γ)+ (σ2 −σ2

ε )(CA,1(γ)− A0
1R1(γ;ρ0)M1(γ)A0>

1 )
]
C−1

A,2(γ)

ṼA,12(γ)=−(σ2 −σ2
ε )C−1

A,1(γ)
[
CA,1(γ)− A0

1R1(γ;ρ0)M1(γ)A0>
1

]
C−1

A,2(γ)

whenever γ≤ ρ0. If γ> ρ0, then

ṼA,1(γ)= C−1
A,1(γ)

[
σ2
εCA,1(γ)+ (σ2 −σ2

ε )(CA,2(γ)− A0
2R2(γ;ρ0)M2(γ)A0>

2 )
]
C−1

A,1(γ)

ṼA,2(γ)= C−1
A,2(γ)

[
σ2CA,2(γ)− (σ2 −σ2

ε )A0
2R2(γ;ρ0)M2(γ)A0>

2

]
C−1

A,2(γ)

ṼA,12(γ)=−(σ2 −σ2
ε )C−1

A,1(γ)
[
CA,2(γ)− A0

2R2(γ;ρ0)M2(γ)A0>
2

]
C−1

A,2(γ)

Moreover, if the system is just-identified, i.e. if p = q, then the two test statistics are asymptotically

equivalent with asymptotic distribution given by

sup
γ∈Γ

Ẽ>
A

(γ)C2(γ)C−1C1(γ)ẼA (γ)

σ2 .

PROOF OF COROLLARY 2.B.2: The proof follows the exact same arguments as the proof of

Corollary 2.B.1. Note that when p = q, ẼA (γ) does not simplify to Ẽ (γ) from the LFS, because ρ0

does not disappear from the definition of ẼA (γ).

Proofs for Section 2.5: GMM tests

Corollary 2.B.3 (to Theorem 2.4). Let Z be generated by (2.1) and Y be generated by (2.3).Then,

under H0, Assumptions 2.1, 2.2 and p = q,

sup
γ∈Γ

WGMM
T (γ)⇒ sup

γ∈Γ
J2(γ),

25Thus, the only difference between the two Gaussian processes ˜GP mat,1(γ) and GP mat,1(γ) lies again in their
covariance functions.
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where

J2(γ)=
[
M−1

1 (γ) ˜GP
(r1)
mat,1(γ)−M−1

2 (γ) ˜GP
(r1)
mat,2(γ)

]>
× [M1(γ)M−1M2(γ)]

×
[
M−1

1 (γ) ˜GP
(r1)
mat,1(γ)−M−1

2 (γ) ˜GP
(r1)
mat,2(γ)

]
and ˜GP

(r1)
mat,i is the first row of the q× (p1 +1) matrix ˜GP

(r2)
mat,1 defined in Corollary A2.B.1.

PROOF OF COROLLARY 2.B.3. We have Hε
i (γ)=σ2

εMi(γ), Ni(γ)= A0Mi(γ), Vi,GMM =σ2
ε (A0Mi A0>)−1 =

(A0>)−1M−1
i (γ)(A0)−1. The rest follows by plugging these into Theorem 2.4.

PROOF OF COROLLARY 2.2. As for Corollary 2.1, we can equivalently write Prob(qt ≤ γ)=λ
for all γ ∈Γ where λ is uniformly distributed on Λκ = (κ;1−κ), i.e λ∼U(Λκ).

Now, by Assumption 2.3, we have that

Hε
1(γ)=λHε, Hε

2(γ)= (1−λ)Hε(2.96)

N1(γ)=λN, N2(γ)= (1−λ)N

VGMM,1(γ)=λ−1
[
NHε−1

N>
]−1

VGMM,2(γ)= (1−λ)−1
[
NHε−1

N>
]−1

VGMM,1(γ)+VGMM,2(γ)=
[
NHε−1

N>
]−1

λ(1−λ)
(2.97)

VGMM,1(γ)N1(γ)Hε−1

1 (γ)=λ−1
[
NHε−1

N>
]−1

NHε−1

VGMM,2(γ)N2(γ)Hε−1

2 (γ)= (1−λ)−1
[
NHε−1

N>
]−1

NHε−1

Moreover, (2.96) implies that –under Assumptions 2.2 and 2.3– the Gaussian process GP 1(γ) can

be restated as

GP 1(γ)= Hε1/2
BM (λ)

GP = Hε1/2
BM (1)

where BM (·) is a q×1-vector of independent Brownian motions on the unit interval.

Thus, the term VGMM,1(γ)N1(γ)Hε−1

1 (γ)GP 1(γ)−VGMM,2(γ)N2(γ)Hε−1

2 (γ)GP 2(γ) can be restated

in terms of λ: as

VGMM,1(γ)N1(γ)Hε−1

1 (γ)GP 1(γ)−VGMM,2(γ)N2(γ)Hε−1

2 (γ)GP 2(γ)(2.98)

λ−1
[
NHε−1

N>
]−1

NHε−1/2
BM (λ)− (1−λ)−1

[
NHε−1

N>
]−1

NHε−1/2
(BM (1)−BM (λ)).

Because
[
NHε−1

N>
]−1

NHε−1/2
is half of a projection matrix, by similar arguments as for the

proof of Corollary 2.1, we obtain the desired result.
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Proofs for Section 3: 2SLS versus GMM estimators

Note: these proofs are provided for simplicity here rather at the beginning of the Appendix because

they use results from the proofs above.

Lemma 2.B.9. Suppose Assumptions 2.1–2.4 hold and that p = q = 1. Define as in Theorem 2.1,

λ= Prob(qt ≤ γ), µ0 = Prob(qt ≤ ρ0), α= (µ0 −λ)/(1−λ), β=µ0/λ, and let E(x2
t )= m. Then, under

H0:

V∗
1,GMM(γ)=


σ2
ε

λm Π02
1

if γ≤ ρ0

σ2
ε

λm [βΠ0
1+(1−β)Π0

2]2 if γ> ρ0

V∗
2,GMM(γ)=


σ2
ε

(1−λ)m [αΠ0
1+(1−α)Π0

2]2 if γ≤ ρ0

σ2
ε

(1−λ)m Π02
2

if γ> ρ0.

Moreover,

V∗
A,1(γ)=


σ2
ε

λm Π02
1

+ σ2−σ2
ε

λm Π02
1

(
1− λ

µ0

))
if γ≤ ρ0

σ2
ε

λm [βΠ02
1 +(1−β)Π02

2 ]
+ Π02

2 (1−λ)(σ2−σ2
ε )

λ2m [βΠ02
1 +(1−β)Π02

2 ]2

(
1− 1−λ

1−µ0

)
if γ> ρ0

V∗
A,2(γ)=


σ2
ε

(1−λ)m [αΠ02
1 +(1−α)Π02

2 ]
+ Π02

1 λ(σ2−σ2
ε )

(1−λ)2m [αΠ02
1 +(1−α)Π02

2 ]2

(
1− λ

µ0

)
if γ≤ ρ0

σ2
ε

(1−λ)m Π02
2

+ σ2−σ2
ε

(1−λ)m Π02
2

(
1− 1−λ

1−µ0

)
if γ> ρ0

PROOF OF LEMMA 2.B.9. First, we show the claim for the GMM case and afterwards for

the 2SLS case.

GMM Variances: Let γ≤ ρ0. Then, if Assumptions 2.1–2.4 hold, it follows that Hε
1(γ)= E[x2

t ε
2
t1{qt≤γ}]

= E[1{qt≤γ}]·E[x2
t ]σ2

ε =λσ2
εm, Hε

1(γ)(γ)= E[x2
t ε

2
t1{qt>γ}]= (1−λ)σ2

εm, N1(γ)= E[xtzt1{qt≤γ}]= E[x2
tΠ

0
11{qt≤γ}]=

λΠ0
1m, and N2(γ)= E[xtzt1{qt>γ}]= E[x2

tΠ
0
1(1{qt≤ρ0}−1{qt≤γ})]+E[x2

tΠ
0
21{qt>ρ0}]= (µ0−λ)Π0

1m+ (1−
µ0)Π0

2m. Plugging these results into the expressions for Vi,GMM(γ) defined just before Theorem

2.4 directly yields the claim. The case γ> ρ0 is omitted for brevity but follows similar arguments.

2SLS Variances: Let γ≤ ρ0. Then, if Assumptions 2.1–2.4 hold, it follows that M1(γ)= E[x2
t1{qt≤γ})]=

λm, CA,1(γ)=λΠ02

1 m, and also that Ψ1(γ)≡ E[vtv>t x2
t1{qt≤γ}]=λmΣ. Hence, (θ̃0>

z ⊗ A0
1)Ψ1(γ)(θ̃0

z ⊗
A0>

1 )=λΠ02

1 mθ̃0>
z Σθ̃0

z =λΠ02

1 mσ2, for example. Similar derivations apply for all the other quanti-
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ties in VA,1(γ) defined in Definition 2.3. Thus, it follows that

VA,1(γ)= 1

λ2Π04

1 m2

[
λΠ02

1 mθ̃0>
z Σθ̃0

z +
λ2

µ0Π
02

1 mθ̌0>
z Σθ̌0

z −2
λ2

µ0Π
02

1 mθ̃0>
z Σθ̌0

z

]
= 1

Π02

1 m

[ θ̃0>
z Σθ̃0

z

λ
+ θ̌0>

z Σθ̌0
z

µ0 −2
θ̃0>

z Σθ̌0
z

µ0

]

= 1

Π02

1 m

[µ0σ2
ε +2µ0θ0

zσε,u +µ0θ02

z σ
2
u +λθ02

z σ
2
u −2λθ0

zσε,u −2λθ02

z σ
2
u

λµ0

]
= 1

Π02

1 m

[
σ2
ε

λ
+θ0

z (σ2 −σ2
ε )

( 1
λ
− 1
µ0

)]
=V∗

A,1(γ),

where σ2 −σ2
ε = 2σε,uθ0

z +σ2
u(θ0

z )2, and σε,u =Σε,u, σ2
u =Σu, proving the claim for V∗

A,1(γ).

Next, we derive the desired result for V∗
A,2(γ). By the same arguments as above it immediately

follows that

VA,2(γ)= 1

[(µ0 −λ)Π02

1 + (1−µ0)Π0
2]2m2

×
[
µ0Π02

1 Me>1Σe1 + (1−µ0)Π02

2 Me>1Σe1 +λΠ02

1 mθ̃0>
z Σθ̃0

z

+ λ2

µ0Π
02

1 mθ̌0>
z Σθ̌0

z −2
λ2

µ0Π
02

1 mθ̃0>
z Σθ̌0

z −2
λ2

µ0Π
02

1 Me>1Σθ̃
0
z

+2λΠ02

1 Me>1Σθ̌
0
z

]

= 1

[(µ0 −λ)Π02

1 + (1−µ0)Π0
2]2m

×
[
(1−µ0)Π02

2 σ
2
ε +µ0Π02

1 σ
2
ε +λΠ02

1 σ
2
ε +2λΠ02

1 θ
0
zσε,u +λΠ02

1 θ
02

z σ
2
u

+ λ2

µ0Π
02

1 θ
02

z σ
2
u −2

λ2

µ0Π
02

1 θ
0
zσε,u −2

λ2

µ0Π
02

1 θ
02

z σ
2
u −2λΠ02

1 σ
2
ε −2λΠ02

1 θ
0
zσε,u

+2λΠ02

1 θ
0
zσε,u

]
= σ2

ε

[(µ0 −λ)Π02

1 + (1−µ0)Π0
2]m

+
Π02

1 λ(1− λ
µ0 )θ0

z (2σε,u +θ0
zσ

2
u)

[(µ0 −λ)A02

1 + (1−µ0)A0
2]2m

=V∗
A,2(γ)

proving the claim for V∗
A,2(γ). By a symmetry argument the claim follows for γ> ρ0.

PROOF OF THEOREM 2.1. Part (i): Limiting distributions. This follows from Caner and

Hansen (2004) and Lemma 2.B.9 for GMM and Lemma 2.B.7 and Lemma 2.B.9 for 2SLS.

Part (ii): Variance comparisons for TFS. We only analyze the case γ≤ ρ0; by symmetry,

the claim for γ> ρ0 follows. From Lemma 2.B.9 it follows that:

V∗
1,GMM(γ)−V∗

A,1(γ)=− 1

λΠ02

1 m

[
(σ2 −σ2

ε )
(
1− λ

µ0

)]
.
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Hence,

V∗
1,GMM(γ)≥V∗

A,1(γ) ⇐⇒ σ2 ≤σ2
ε .

For the second subsample,

V∗
2,GMM(γ)= σ2

ε

(1−λ)m [αΠ0
1 + (1−α)Π0

2]2

V∗
A,2(γ)= σ2

ε

(1−λ)m [αΠ02

1 + (1−α)Π02

2 ]
+

Π02

1 λ(1− λ
µ0 )(σ2 −σ2

ε )

(1−λ)2m [αΠ02

1 + (1−α)Π02

2 ]2
.

From this,

V∗
2,GMM(γ)−V∗

A,2(γ)≥ 0

⇐⇒ σ2
ε

(1−λ)m [αΠ0
1 + (1−α)Π0

2]2
− σ2

ε

(1−λ)m [αΠ02

1 + (1−α)Π02

2 ]

−
Π02

1 λ(1− λ
µ0 )(σ2 −σ2

ε )

(1−λ)2m [αΠ02

1 + (1−α)Π02

2 ]2
≥ 0.

Since [αΠ0
1 + (1−α)Π0

2]2 − [αΠ02

1 + (1−α)Π02

2 ]=−α(1−α)(Π0
1 −Π0

2)2 ≤ 0,

σ2
ε

(1−λ)m [αΠ0
1 + (1−α)Π0

2]2
≥ σ2

ε

(1−λ)m [αΠ02

1 + (1−α)Π02

2 ]
,

implying that a sufficient condition for V∗
2,GMM(γ)−V∗

A,2(γ)≥ 0 is σ2 ≤σ2
ε , the same condition that

is necessary and sufficient for V∗
1,GMM(γ)−V∗

A,1(γ)≥ 0.

Part (iii). Variance comparisons for LFS. Here, Π0
1 =Π0

2 = π0, and because there is no

threshold in the FS, without loss of generality we let ρ0 = γmax ⇐⇒ µ0 = 1, and we calculate the

variances from γ≤ ρ0 = γmax. Plugging these into the results of part (ii), we have:

V∗
1,GMM(γ)−V∗

A,1(γ)=− (1−λ)(σ2 −σ2
ε )

λπ02 m
≥ 0 ⇐⇒ σ2 ≤σ2

ε

V∗
2,GMM(γ)−V∗

A,2(γ)= σ2
ε

(1−λ)m π02 −
σ2
ε

(1−λ)m π02 −
λ(σ2 −σ2

ε )
(1−λ)m π02

=− λ(σ2 −σ2
ε )

(1−λ)m π02 ≥ 0 ⇐⇒ σ2 ≤σ2
ε .

Part (iv). We obtain the claim by plugging in γ= ρ0 into the variance expressions of Lemma

2.B.9.
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3
ESTIMATING SPARSE LONG-RUN PRECISION MATRICES FOR

LINEAR MULTIVARIATE TIME SERIES

This chapter is based on the identically entitled working paper

This chapter proposes a novel estimator for the sparse inverse of the long-run covariance
matrix (also known as long-run precision matrix) of a multivariate linear time series.
The proposed estimator minimizes the `1-penalized log-likelihood function of an i.i.d.

mean-zero normal random vector. This is possible by reinterpreting the likelihood as a special
case of the Bregman-divergence which measures the distance between any positive definite
and symmetric matrix and the true long-run covariance matrix of the time series.

I show that the resulting LASSO-type estimator is Tb/2-consistent with 0< b < 2
3 under

the maintained assumption that the dimension of the multivariate linear process is fixed,
a result due to the choice of the sharp origin kernel of Phillips et al. (2007). Moreover, it
is shown that the adaptive LASSO-type estimator enjoys the oracle property of Zou (2006).
That is, the adaptive LASSO estimator chooses the non-zero entries correctly with probability
tending to one and the estimates for these entries have the same distribution as the oracle
estimator. An extensive Monte Carlo study indicates that the estimator performs reasonably
well in a variety of settings, although it tends to underestimate the degree of sparsity.

71



CHAPTER 3. ESTIMATING SPARSE LONG-RUN PRECISION MATRICES FOR LINEAR
MULTIVARIATE TIME SERIES

3.1 Introduction

Covariance matrices Σ of a random vector yt = (y1,t, ..., yN,t)> ∈ RN , t = 1, ...,T and N is fixed

as T tends to infinity, and their inverses C = Σ−1, also called precision matrices, constitute

one of the cornerstones in statistical analysis and econometric applications can be found in

estimation (by generalized method of moments), hypotheses testing (Wald tests), linear and

quadratic discriminant analysis, and network modeling, to mention a few. Moreover, outside

statistics, these quantities are utilized in a wide range of applications such as portfolio selection

(inter alia Ledoit and Wolf, 2003; Talih, 2003), wireless communication (inter alia Li et al., 2003)

and genome analysis (inter alia Li and Gui, 2006; Segal et al., 2005). One common feature in

these applications is that some entries in C can be equal to zero, indicating that the i-th and

j-th coordinates, yi,t and yj,t, of yt are conditionally uncorrelated.1 I shall call such precision

matrices sparse as to indicate that they contain entries equal to zero. For example, in case of

portfolio choice problems this would imply that the returns of assets i and j do not directly affect

each other. Such problems, where the zero entries in C need to be determined are also called

covariance selection problems, a terminology dating back to Dempster (1972) who first considered

such problems for i.i.d. normal data. However, in many economic and econometric applications,

such as portfolio choice, the i.i.d. assumption on the data yt is violated and, therefore, needs

to be relaxed. Moreover, it is often the case that the objects of interest are not the short-run

covariance and precision matrices Σ= E[yty>
t ] and C=Σ−1 of a zero mean random vector yt but

rather the long-run counterparts ΣLR =∑
h∈ZΓ(h), Γ(h)= E[yt+hy>

t ] for all h ∈Z, and CLR =Σ−1
LR

if existing. The goal of this chapter is estimation of such long-run precision matrices CLR under

the constraint that some entries are equal to zero but the econometrician does not know which. In

particular, I propose an estimator for such long-run precision matrices generated from potentially

conditionally heteroskedastic linear time series.

Even though the focus of this chapter is on long-run precision matrix estimation for lin-

ear time series, it is instructive to first outline some recent developments on estimation of C in

the i.i.d. case. This is due to the fact that in principal, as I will show, the same methodology,

albeit with a different motivation and scope, can be employed when considering the estimation of

the long-run counterpart CLR .

As shown in Lauritzen (1996), there is a close connection between estimation of sparse C
and estimation of partial correlation networks (PCNs). In particular, if one views the coordinates

of yt as nodes in a network, then a connection between nodes i and j exists if and only if yi,t

and yj,t are partially uncorrelated. This statement is equivalent to saying that a connection

between these nodes exists if and only if the (i, j)-th entry ci, j, i 6= j, of C does not equal zero.

Based on this interpretation, Meinshausen and Bühlmann (2006) propose an estimator for C
based on neighborhood selection. That is, for a given coordinate i of yt their approach aims to

1If yt is multivariate normal, then they also are conditionally independent.
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consistently identify the subset of all remaining nodes which gives an optimal prediction of the

value of node i. If this is done for all nodes, Meinshausen and Bühlmann (2006) then show that

C can consistently be constructed from these N individual regression results. However, this

approach is essentially a two step procedure where first the appropriate model is selected and

afterwards Ĉ is constructed. As shown in Breiman (1996) such methods are usually unstable in

the sense that small changes in the available data can alter the estimated outcomes to a large

degree and are, therefore, undesirable in practice. To remedy this issue, Yuan and Lin (2007)

and Friedman et al. (2008) propose alternative LASSO-type estimators based on normal i.i.d.

data. Their approaches aim to simultaneously do the model selection and the estimation based on

the `1-penalized multivariate log-likelihood function for mean zero i.i.d. normal random vectors.

By doing so, they obtain direct estimators for a potentially sparse C. Based on these initial

proposals, the literature on estimating potentially sparse precision matrices for i.i.d. random

vectors extended in different directions, cf. Banerjee et al. (2008), Fan et al. (2009), Lam and Fan

(2009), Cai et al. (2011), Ravikumar et al. (2011), Cai et al. (2012), Banerjee and Ghosal (2013),

Cai et al. (2014), Cai et al. (2016) and the references therein. For example, these authors relax

the normality assumption on the data, refine existing theoretical results or consider different

penalty terms. The interested reader is referred to these articles or the recent survey of Fan et al.

(2016) for more details about such methods for i.i.d. random vectors.

If one is, as is the case in this chapter, interested or in need of such direct estimators

when the data yt originate from a time series setting, then the available methods are scarce. In

particular, to my best knowledge, Chen et al. (2013) is the only work proposing a direct estimator

for potentially sparse C in a time series setting. However, as in the i.i.d. case, these authors

only consider estimation of the short-run precision matrix C and do not pursue an estimator

for the long-run counterpart CLR . Thereby, they neglect the autocorrelation part present in the

data. This renders their approach inapplicable in cases where the long-run precision matrix is

needed. One, and to my best knowledge the only, possible way at the moment to remedy this issue

is the recent proposal of Barigozzi and Brownlees (2017). In particular, these authors utilize a

VAR(p)-parametrization of the underlying multivariate process and use the analytic expression

of the long-run precision matrix for estimation. However, the same critique as for Meinshausen

and Bühlmann (2006) applies in this setting. That is, their approach is a two stage procedure

where first an appropriate VAR(p)-model needs to be selected and the long-run precision matrix

is computed afterwards. Moreover, due to the construction of their algorithm a computationally

costly two-dimensional grid search needs to be performed to obtain the two optimal regularization

parameters.2 Moreover, rather than estimating N(N +1)/2 distinct covariance elements, this

parametric framework requires estimation of pN2 (for the p N ×N-parameter matrices) plus

N(N +1)/2 parameters (for the precision matrix of the white noise errors).

2One regularization parameter is for the set of VAR-parameters and the second for the precision matrix of the
resulting residuals.
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In this chapter, I propose a novel non-parametric estimation procedure for the long-run

precision matrix CLR of a linear time series yt that overcomes these computational and econo-

metric challenges when the dimension of the process N is fixed. The proposed estimator adapts

the graphical LASSO of Friedman et al. (2008) to dependent data by considering a penalized

Bregman-divergence based on the negative log-determinant of a symmetric positive definite

matrix. This specific choice for the Bregman-divergence yields the same objective function as

given by the likelihood function based on multivariate i.i.d. zero-mean normal data, akin to

Gaussian QMLE. The only difference to the i.i.d. case lies in the fact that the sample covariance

matrix is replaced by an estimator for the long-run covariance. In particular, I make use of the

HAC-estimator proposed in Phillips et al. (2007) which makes use of the sharp origin kernel

rather than the usual kernels such as the Quadratic Spectral, the Parzen or the Bartlett kernels.

Under the standard assumptions for consistent estimation of the long-run covariance matrices of

Phillips et al. (2007), I show that the obtained LASSO-type estimator is Tb/2-consistent, 0< b < 2
3 ,

and provide its asymptotic distribution. Moreover, I show that the resulting adaptive LASSO-type

estimator enjoys the oracle property of Zou (2006). That is, the adaptive LASSO-type estimator is

able to distinguish between the true zero and non-zero entries in CLR with probability tending to

one as the sample size increases and the asymptotic distribution of the estimates of the non-zero

elements is the same as the asymptotic distribution of the oracle estimator, the estimator for

which it is known a priori which elements of CLR are zero and which not. Finally, I show in an

extensive Monte Carlo study that the proposed estimator performs reasonably well in samples.

Moreover, during the simulations, I found that pre-whitening the data is highly recommended.

If one does not pre-whiten the data, the bandwidth parameter determined in the same data

dependent fashion as in Andrews (1991) and Newey and West (1994), is highly inaccurate in

finite samples leading to highly inaccurate estimators of CLR . Finally, in the Monte Carlo study I

also found that the proposed LASSO-type estimators tend to underpenalize in small samples. In

particular, all non-zero parameters are detected correctly but parameters with true values equal

to zero are estimated to be non-zero. Nevertheless, the proposed estimators are to my knowledge

the first estimators that can detect sparsity of the long-run precision matrix. Moreover, I show

that they outperform in terms of Frobenius the naïve estimator, which is obtained by inverting

the long-run covariance estimator and does not provide any help in detecting the true sparsity

structure of the long-run precision matrix.

The remainder of this chapter is organized as follows: Section 3.2 motivates and outlines the

proposed estimator and Section 3.3 states asymptotic results. Section 3.4 provides an extensive

Monte Carlo study and Section 3.5 concludes. Proofs are deferred to Appendix A and Tables to

Appendix B. Note that in the remainder of this chapter I drop the LR-subscript from CLR and

ΣLR for notational convenience. Thus, all covariance and precision matrices showing up from
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this point onwards should be understood as long-run versions, unless stated otherwise.

Throughout this chapter I denote matrices by bold capital letters, vectors by bold lower case

letters and scalars by lower case letters. For a N × N-matrix M I denote its Frobenius norm

by ‖M‖F = (
∑

i
∑

j m2
i, j)

1/2 where mi, j denotes the (i, j)-th entry of M and for a N ×1-vector v its

Euclidean norm by ‖v‖2 = (
∑

i v2
i )1/2. Moreover, I denote positive definiteness of a matrix M by

MÂ 0. The first derivative or gradient of a function f (∗) is denoted by ∇ f (∗) where ∗ is a generic

argument which, depending on the context, can either be a scalar, a vector or a matrix and a set

is generally depicted by calligraphic capital letter S and its complement denoted by S {. Finally,

N denotes the natural numbers without 0.

3.2 Methodology

3.2.1 Preliminaries

Networks based on Time Series Data As mentioned in the Introduction, the proposed

estimator can be used to estimate (weighted) undirected networks based on time series data.

However, before I outline how this goal can be achieved I need to briefly introduce the necessary

notions on networks and how they can be related to statistical quantities and random data. Based

on this knowledge I will then continue to construct an estimator for the problem at hand.

For the purpose of this chapter it suffices to consider undirected networks. An undirected

network or graph G is defined as the tuple G = (V ,E ) where V = {1,2, ..., N}, N ∈N, denotes the

set of nodes or vertices (individuals, firms or stock returns to give some examples) and E ⊆ V ×V

denotes the edge set (connections between nodes). The edge set E can also be represented by

use of an adjacency matrix A. In case of undirected networks we have that A is symmetric with

the diagonal elements being equal to one and the off-diagonal entries having non-zero value

ai, j = a j,i if and only if there is an edge between nodes i and j. If it holds that ai, j = 1 for all i 6= j

then G is called an unweighted undirected network. In contrast, the network is called weighted

undirected if at least two distinct non-zero entries ai, j and ai′, j′ of the adjacency matrix satisfy

ai, j 6= ai′, j′ and ai, j denotes the weight of the edge between nodes i and j. Note that ai, j = 1 is

still a possibility. Figure 3.1 illustrates such networks.

Now, one might be interested in the characteristics of the network and these can be derived

from the adjacency matrix A. However, in practice it is not always guaranteed that E or A,

which describe the network structure entirely, are known. In such cases, one of them needs to be

estimated from random data. For this chapter I follow the vast statistical literature on network

analysis and consider partial correlation networks (PCNs). To illustrate the idea, consider the

zero-mean i.i.d. random vector yt = (y1,t, ..., yN,t)> with existing covariance matrix Σ. Then, in a

PCN an edge between nodes i and j exists if and only if the partial correlation coefficient ρ(i, j)

between i and j is unequal to zero. Note that nodes i and j in the PCN are represented by the

i-th and j-th coordinates of y. Now, it is known that ρ(i, j) is proportional to ci, j, cf. Lauritzen
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Figure 3.1: Examples of Undirected Networks

The left figure shows an unweighted undirected and the right figure a weighted undirected network as
indicated by the weights ai, j next to each edge. Note that in case of an unweighted network no weights are
displayed in the figure since they do not provide further information. Nodes are labelled with numerals

and lines correspond to edges.
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(1996), where C=Σ−1 denotes the precision matrix of y. In particular

(3.1) ρ(i, j)= ci, jpci,i c j, j

Thus, in a PCN an edge between nodes i and j exists if and only if ci, j 6= 0 and Equation (3.1)

implies that the structure of the PCN can entirely be determined from an estimate of C. Finally,

note that for unweighted PCNs we have that ai, j = a j,i = 1 if ci, j = c j,i 6= 0 and in case of a

weighted PCN that ai, j = a j,i = ρ(i, j). As a consequence for PCNs it holds that E = S { where

S ≡ {(i, j) : ci, j = 0} denotes the index set of all zero entries in C.

In case of time series data a PCN can similarly be defined. To make this idea formal,

throughout this chapter I assume that yt ∈ RN , t = 1...,T, is a zero-mean N ×1 dimensional

linear stochastic process - see Section 3.3 for a precise definition of a linear stochastic process and

the Assumptions I impose on this process. I denote by Σ the long-run covariance matrix of yt, i.e.

Σ=∑
h∈ZΓ(h) where Γ(h)= E[yt+hy>

t ]. The PCN of interest in this case is based on C=Σ−1 the

long-run precision matrix of yt. For example, if yt are asset returns C can be thought of as the

return-network in the long-run equilibrium which describes which assets’ stock prices directly

influence each other and, for example, how quickly shocks spread through the system. The latter

is possible since in a network with a larger number of edges each node can be reached in shorter

time since more direct paths from one node to another are present.

Why not estimating Σ and inverting Σ̂? Based on the discussion above one might be

tempted to estimate C by inverting a conventional estimator for Σ in order to obtain the network

structure.3 However, this is not advisable and I will highlight the major reason for that by means
3By either using the inverse of the sample covariance for i.i.d. data or the inverse of a HAC estimator for time

series data.
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of the following example, inspired by El Karoui (2008):

Assume that the underlying PCN is a star-network consisting of 5 nodes, V ∗ = {1,2,3,4,5}. In

such a network one of the nodes, w.l.o.g. node 1, is connected to all other nodes and these edges

are the only edges within the network, i.e. E ∗ = {(1, i) : i = 2,3,4,5}∪ {(i,1) : i = 2,3,4,5}. Moreover,

I assume that G∗ = (V ∗,E ∗) is weighted with edge weights equal to 0.4 for all edges. This network

is illustrated in Figure 3.2.

Figure 3.2: Star-Network G∗
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The associated precision and covariance matrices, based on the star-network G∗, are given by4

(3.2) C=



1 0.4 0.4 0.4 0.4

0.4 1 0 0 0

0.4 0 1 0 0

0.4 0 0 1 0

0.4 0 0 0 1

 ,

respectively

(3.3) Σ=
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Now, if Σ would be known a priori there is no problem with directly inverting it, as it will yield

the correct sparsity structure S . If, however, Σ is unknown it needs to be estimated and in this

case the sparsity structure S of C is completely or partially removed by the estimation error

4Note that the for i, j ≥ 2 the non-zero off-diagonal elements of C must satisfy c1, j = ci,1 < 1p
N−1

to ensure positive
definiteness of C.
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present in Σ̂. To see why, I consider the following possible realization of an estimator Σ̂ for Σ5

(3.4) Σ̂=



3.16 −1.16 −1.55 −0.93 −0.82

−1.16 1.53 0.74 0.85 0.67

−1.55 0.74 1.67 0.43 0.32

−0.93 0.85 0.43 1.63 0.45

−0.82 0.67 0.32 0.45 1.24

 .

Inverting the realized estimator Σ̂ yields

(3.5) Ĉ=



0.73 0.10 0.55 0.15 0.23

0.10 1.28 −0.29 −0.42 −0.40

0.55 −0.29 1.17 0.10 0.18

0.15 −0.42 0.10 0.90 −0.02

0.23 −0.40 0.18 −0.02 1.13

 .

As it can be seen, the entire sparsity structure of C is lost after inverting a realized estimator

for Σ in samples since Ŝ =; 6=S . Thus, if one is interested in uncovering the underlying long-run

network structure of the linear process yt one is well advised to use a direct estimator for C.

Proposing such an estimator is precisely the goal of this chapter.

3.2.2 A Bregman-Divergence based Objective Function

To estimate C under some sparsity constraints I propose a direct estimator for C based on

the Bregman-divergence, cf. Bregman (1967) and also Ravikumar et al. (2011) for a similar

application to i.i.d. random vectors. The basic idea behind this approach is to match an estimator

Ĉ of the long-run precision matrix C to the long-run covariance matrix Σ so that they are as close

as possible. The Bregman-divergence is a suitable measure for that task because it yields convex

objective functions which can readily be minimized. For the purpose of this chapter I restrict the

analysis to a special case, the log-determinant divergence measure.

Formally, let b : M → R be a continuously differentiable, real valued and strictly convex

function defined on the closed convex set M = {M ∈RN,N : M=M>, MÂ 0}, the set of all symmetric

and positive definite real-valued N×N-matrices. For two points P,Q ∈M the Bregman-divergence

is then defined as

(3.6) Db(P,Q)= b(P)−b(Q)−〈∇b(Q),P−Q〉
5For this example, in order to obtain, Σ̂ I perturbed Σ by adding a random variable with a uniform distribution on

[−0.5,0.5] to each element on the upper triangle of Σ. The new entries are then mirrored onto the lower triangle. For
ease of exposition I rounded after the second digits. Inversion of Σ̂ is done after rounding the entries of Σ̂. The final
entries in Ĉ are then rounded again after the second digit. This rounding does not take away the main message that
by estimating and inverting Σ one loses the sparsity structure of C.
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where 〈·, ·〉 denotes the Frobenius inner product and ∇b(∗) the gradient of b(∗). As mentioned

earlier, the function b(∗) is chosen such that

(3.7) b(M)=
− logdet(M) if M ∈M

∞ otherwise

with ∇b(M)=−M−1 (see Section A.4.1 in Boyd and Vandenberghe, 2004) and it is easy to verify

that this choice for b(∗) satisfies the aforementioned criteria of continuous differentiability, strict

convexity and being real valued, cf. Boyd and Vandenberghe (2004).

Next, consider the Bregman-divergence with b(∗) as given in (3.7) between the two matrices

Ψ and C=Σ−1. Then, due to symmetry of C, we have that

(3.8) Db(Ψ,C)=− logdet(Ψ)+ logdet(C)+ tr(ΨΣ−IN )

since 〈∇b(C),Ψ−C〉 = tr(−C−1>
(Ψ−C))=−tr(ΣΨ−IN ).

Since Db(Ψ,C) ≥ 0 with equality if and only if Ψ= C, a natural estimator for C is given by

minimizing

(3.9) − logdet(Ψ)+ tr(ΨΣ).

w.r.t.Ψ ∈M . Next, since Σ is unknown in practice it needs to be replaced with a suitable estimator

Σ̂. Note that I will provide a suitable estimator in Section 3.2.4 and assumptions on it in Section

3.3 below. For now, given a suitable estimator Σ̂ for Σ an estimator Ĉ for C is given by

(3.10) Ĉ= Σ̂−1 = argmin
Ψ=Ψ>,ΨÂ0

− logdet(Ψ)+ tr(ΨΣ̂).

The reader might quickly notice that the objective function in (3.9) coincides with the likeli-

hood function for multivariate i.i.d. Gaussian random vectors and wonder why I formulated it in

terms of the Bregman-divergence instead. There are several reasons for this. First, I consider

non i.i.d. data which are also allowed to be non-Gaussian. Therefore, it seems odd to me to

motivate the choice in a specific i.i.d. Gaussian setting. Second, estimation of long-run precision,

respectively covariance matrices is usually not formulated in a parametric likelihood setting but

rather in a non-parametric fashion, see the vast literature on HAC estimation. In fact, by using

the Bregman-divergence I can reformulate the i.i.d. Gaussian likelihood as a distance measure

between two matrices and, therefore, obtain a natural objective function which is free of any

distributional and dependency assumptions on the underlying data. This provides a more flexible

and intuitive way for deriving an estimator for the long-run precision matrix under a variety of

settings.

Moreover, given the generality of the Bregman-divergence an estimator for the long-run pre-

cision matrix can be constructed by using different functional forms for b(∗) in the hope that the

resulting estimator enjoys, for example, faster convergence rates. An example for such a different
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form of the Bregman-divergence is the Euclidean distance ‖vec(P)−vec(Q)‖2
2, which is implied by

setting b(M)= ‖vec(M)‖2
2. This is not readily possible if the estimator is motivated from the i.i.d.

Gaussian likelihood perspective. Therefore, the formulation in terms of the Bregman-divergence

also provides interesting directions for future research.

3.2.3 Two LASSO-type Estimators

From (3.10) it is apparent that Ĉ= Σ̂−1 minimizes the chosen Bregman-divergence. However, as

detailed in Section 3.2.1 above this is not a desirable estimator since the sparsity structure S of

C is lost in finite samples. To rectify this issue I penalize (3.9) by an `1-penalty on the off-diagonal

elements ψi, j, i 6= j, of Ψ since it is known that such a penalty enforces sparsity, if present.6 That

is, after imposing an `1-penalty on ψi, j, i 6= j, I obtain the following objective function

(3.11) qL
λ (Ψ)=− logdet(Ψ)+ tr(ΨΣ̂)+λT

∑
i 6= j

|ψi, j|

A closer inspection reveals that the obtained objective function in (3.11) coincides with the

graphical LASSO of Friedman et al. (2008). However, they developed the graphical LASSO

estimate the sparse precision matrix for i.i.d. zero mean normal random vectors. Thus, by use

of an appropriate function b(∗) for the Bregman-divergence, estimating the long-run precision

matrix under sparsity constraints poses a similar problem as estimating that of i.i.d. multivariate

normal random vectors. This has the advantage that existing efficient algorithms to solve

(3.12) ĈL = argmin
Ψ=Ψ>,ΨÂ0

qL
λ (Ψ)

can be utilized. These considerations further motivated the particular function choice for the

Bregman-divergence.

It is well known that LASSO-type estimators do not always consistently identify the true set

of the paramters with value equal to 0, cf. Zou (2006). To circumvent this issue, I follow Zou (2006)

and consider an adaptive LASSO-type estimator where the penalty term in (3.11) is augmented

by a data dependent weight for each off-diagonal element of the precision matrix. In particular, I

consider the adaptive LASSO-type objective function

(3.13) qaL
λ (Ψ)=− logdet(Ψ)+ tr(ΨΣ̂)+λT

∑
i 6= j

|ψi, j|
|c̃i, j|

where C̃= (c̃i, j) denotes a pre-estimator for C. Note that I will provide conditions which C̃ needs

to satisfy in Section 3.3 below. Finally, the adaptive LASSO-type estimator is given by

(3.14) ĈaL = argmin
Ψ=Ψ>,ΨÂ0

qaL
λ (Ψ).

6Note that other appropriate penalties could be chosen at this stage. However, as it will become clear the `1-
penalty enables me to use efficient existing algorithms and it is not clear to what extend other penalties might improve
the estimation results.
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3.2.4 Choice of Pre-estimator for the Long-Run Covariance

As outlined in Sections 3.2.2 and 3.2.3, we are in dire need of an estimator for Σ in order to

determine either the LASSO-type estimator (3.12) or the adaptive LASSO-type estimator (3.14).

Throughout this chapter I make use of a particular HAC-estimator for long-run covariance

matrices

(3.15) Σ̂= T−1
T∑

t=1

T∑
s=1

kρ
( |t− s|

T

)
yty>

s

where

(3.16) kρ(x)=
(1−|x|)ρ, |x| ≤ 1

0 |x| > 1

denotes the sharp origin kernel of Phillips et al. (2007). Note that in (3.15) the bandwidth for the

kernel is set equal to the sample size rather than being, as usual, data dependent. This choice

usually leads to inconsistent estimates for the long-run covariance matrix. However, in this

particular case, the power parameter ρ in (3.16) takes the role of the bandwidth. As highlighted

in Section 3.3, ρ is constructed such that it will grow along the sample size and the appropriate

growth rates are given in the respective asymptotic results. Thus, as ρ grows, the sharp origin

kernel kρ(x) gives lower weight to higher order autocorrelations and, thereby, restores consistency

of the estimator for Σ, cf. Phillips et al. (2007) for more details. The reason why I choose the sharp

origin kernel in (3.16) is that the proofs of the asymptotic results of the proposed LASSO-type

estimators rely on the availability of an asymptotically normal pre-estimator Σ̂ for the long-run

covariance Σ and, as far as I am aware, this is the only setting for which asymptotic normality of

Σ̂ has been shown in the literature. Finally, proving such a statement for HAC-estimators with

different kernels is outside of the scope of this study.

3.3 Asymptotic Properties

In order to be able to state asymptotic results about the proposed estimator some technical

assumptions on the linear process yt, the sharp origin kernel kρ(x) and the power parameter ρ

need to be introduced.

On the linear process yt, I impose the same assumptions as Phillips et al. (2007). These are

outlined below.

Assumption 3.1. (i) The process yt is zero-mean, fourth order stationary (i.e. its first, second,

third and fourth moments are invariant to time shifts) and linear

yt =
∞∑

m=0
Bmεt−m
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with
∞∑

m=0
m1+δ‖Bm‖F <∞, for some δ> 0.

where {Bm ∈RN×N } is a sequence of parameter matrices.

(ii) The errors εt satisfy

εt
i.i.d.∼ (0,Σε) and E‖εt‖4

2 <∞

(iii) Moreover, the process yt from (i) satisfies the functional central limit theorem

T−1/2
bTrc∑
τ=1

yτ⇒ΛBN (r), r ∈ [0;1]

where ΛΛ> =Σ and BN (r) is an N-dimensional vector of independent standard Brownian

motions.

On the power parameter ρ the following assumption, which is similar to the bandwidth

expansion conditions found in the HAC-literature, is imposed.

Assumption 3.2. The power parameter ρ satisfies

1
ρ
+ ρ lnT

T
→ 0 as T →∞.

Assumption 1 is standard in the literature on HAC estimation. Part (i) restricts the parameter

matrices of the linear process yt and part (ii) specifies permissible innovations εt. In particular,

part (ii) allows for conditional heteroskedastic linear processes. Together with Assumption 2,

Phillips et al. (2007) verify their Theorem 3, which is stated below as Theorem 1 for completeness.

This theorem is crucial to the results of this paper since the asymptotic results for the proposed

LASSO-type estimators require that the estimator for Σ is asymptotically normal.

Theorem 3.1 (Phillips et al. (2007)). Suppose that Assumptions 1 and 2 hold and that ρ = aTb →
∞ for some a > 0 and 0< b < 2

3 . Then

p
ρ(vecΣ̂−vecΣ) D−→N (0, (IN2 +KN,N )(Σ⊗Σ))

where KN,N is a N2 × N2-commutation matrix that transforms vec(W) into vec(W>) and IN2

denotes the N2 ×N2 identity-matrix. That is, KN,N =∑N
i=1

∑N
j=1 eie>

j ⊗e je>
i where ei is the N ×1-

vector with i-th entry equal to one 1 and all other entries equal to zero, cf. Magnus and Neudecker

(1979).

Based on Assumptions 1 and 2, and Theorem 1 the asymptotic distribution of the LASSO-type

estimator can be derived. Proposition 1 below states the result formally.
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Theorem 3.2 (LASSO-type Estimator). Suppose Assumptions 1 and 2 hold, and that ρ = aTb →
∞ for some a > 0 and 0< b < 2

3 . If pρλT →λ0 ≥ 0 as T →∞, the LASSO-type estimator defined in

(3.12) satisfies
p
ρ(ĈL −C) D−→ argmin

U=U>
∆L

q (U)

where

∆L
q (U)= tr(UΣUΣ)+ tr(UN)

+λ0
∑
i 6= j

(ui, j sgn(ci, j)1{ci, j 6= 0}+|ui, j|1{ci, j = 0})

and N is a symmetric random N ×N-matrix such that vec(N)∼N (0, (IN2 +KN,N )(Σ⊗Σ))

Thus, the convergence rate of the LASSO-type estimator is Tb/2, 0< b < 2
3 . Note that this is

the same rate of convergence as for Σ̂ when the sharp origin kernel is used.

For the adaptive LASSO-type estimator, I derive the following result stated below.

Theorem 3.3 (Adaptive LASSO-type Estimator). Let ĈaL be as defined in (3.14). Moreover, let C̃
be a p

ρ-consistent pre-estimator for C, ρλT →∞, pρλT → 0 and ρ = aTb →∞ for some a > 0 and

0< b < 2
3 . Then

(i) ĈaL consistently determines the index set of all zero entries in C, S = {(i, j) : ci, j = 0}, i.e.

Prob(Ŝ =S )→ 1

(ii) the non-zero elements of ĈaL have the same limiting distribution as the oracle estimator, Ĉo,

for which S is known. That is

p
ρ(Ĉo −C) D−→ argmin

U=U>,ui, j=0∀ (i, j)∈S

tr(UΣUΣ)+ tr(UN).

In other words, Theorem 3.3 states that the adaptive LASSO-type estimator has the so-

called oracle property of Zou (2006). That is, it identifies the sparsity structure S correctly

with probability tending to one as the sample size grows, and provides an estimator for the

non-zero elements of C with the same asymptotic distribution as the oracle estimator for which

the true sparsity structure S is known. In light of statement (i) in Theorem 3.3, the use of

the adaptive LASSO-type estimator is recommended when one is interested in recovering the

sparsity structure of C. This is further supported by the results from the Monte Carlo study in

the next section.
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3.4 Monte Carlo Simulation

In this section, an extensive Monte Carlo study is carried out to assess the small sample prop-

erties of the previously introduced estimators. The general simulation set up is as follows: The

dimensions of the long-run precision matrices are such that N ∈ {10,20} is allowed and the sample

sizes are set such that T ∈ {500,1000,2000,3000,4000,5000} with a separate burn-in-sample

of 1000 observations, and, finally, 1000 Monte Carlo repetitions are carried out. Moreover, two

classes of data generating processes (DGPs) are considered: a) vector autoregressive processes

and b) vector moving average processes, since their long-run precision matrices have simple

analytical solutions so that simulating data and assessing results obtained from these processes

is straightforward. In addition, such processes are commonly used in empirical work. Finally,

within each class two DGPs with specific long-run precision matrix structure are chosen. That is,

in one case the long-run precision matrix is tridiagonal (representing a chain network) and in the

second case its sparsity structure derives from the adjacency matrix of an Erdös-Rényi random

graph. The latter is introduced in order to have a more realistic sparsity structure than the

simple tridiagonal structure and is commonly used as a benchmark to evaluate the performance

of precision matrix estimators. This allows to me to investigate whether the specific non-random

tridiagonal structure affects the estimation results. More details are given below.

3.4.1 Data Generating Processes

In order to generate the long-run precision matrices, vector moving average (VMA) and autore-

gressive (VAR) processes are considered. This choice also allows to assess how different temporal

dependence structures in the data affect the proposed estimator in small samples.

Vector Moving Average The first class of data generating processes (DGPs) considered is the

class of vector moving average processes of order one:

(3.17) yt = εt +Bεt−1, εt
i.i.d.∼ N (0,IN )

where B ∈ RN×N and the innovations’ unconditional covariance matrix Σε is set to the N ×N

identity matrix for simplicity. The long-run covariance and precision matrices are then given by

(3.18) Σ= (I+B)(I+B)> ≡ B̃B̃> and C= (B̃−1)>B̃−1.

Vector Autoregressive Process The second class of considered DGPs is a vector autoregres-

sion of order one:

(3.19) yt =Ayt−1 +εt, εt
i.i.d.∼ N (0,IN )

where A ∈RN×N and the innovations’ unconditional covariance matrix Σε is again set to IN for

simplicity. The long-run covariance and precision matrices are then given by

(3.20) Σ= [(I−A)>(I−A)]−1 ≡ [Ã>Ã]−1 and C= Ã>Ã
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From expressions (3.18) and (3.20), it can easily be seen that the structure of C can be

controlled by the model parameters A, respectively B and the next two paragraphs briefly outline

how this is done for this Monte Carlo study.

Tridiagonal Precision Matrices In order to guarantee that C is tridiagonal, Σ is generated

such that its (i, j)-th element is given by σi j = exp(−a|si−s j|), where a > 0 and s1 < s2 < ...< sN . In

particular, I set a = 0.75, si − si−1
i.i.d∼ U(0.5,1) for i = 2,3, ..., N and s1 ∼U(0.5,1). Next, according

to (3.18), B̃ can be computed by means of the Cholesky-decomposition of Σ and, afterwards, the

model parameters are obtained as B= B̃−I, in case of a VMA(1)-process.

For the VAR(1)-process the model parameters A are obtained from setting A= I− Ã where

Ã is the solution to the Cholesky decomposition of C, cf. Equation (3.20). Using the parameters

obtained in such a way, data is then generated according to (3.17), respectively, (3.19).

Erdös-Rényi Precision Matrices The second class of precision matrices is derived from an

Erdös-Rényi random graph. In particular, to keep comparability with the tridiagonal precision

matrices, the number of edges is fixed to 3N −2 and edges are drawn uniformly randomly from

the set of possible edges. In this way, the number of zero and non-zero elements in C is constant

over all trials for a given spatial dimension N. Once the sparsity structure of C is determined,

values to the non-zero entries are assigned based on the following rule: First, all off-diagonal

non-zero elements are drawn from a uniform distribution on the interval [0.3;0.8]. Half of these

entries are then chosen at random and multiplied by -1. Afterwards, in order to guarantee that C
(and, hence, Σ) is positive definite the diagonal element in row i is set such that it equals the

sum of the absolute values in row i plus 0.001. This makes C diagonally dominant and together

with symmetry ensures positive definiteness, cf. Horn and Johnson (2013, Theorem 6.1.10).

Conditional Heteroskedasticity In addition to the four DGPs defined in the previous four

paragraphs I also consider cases in which the DGPs feature conditional heteroskedasticity. In

particular, I augment the above four DGPs such that their innovation terms follow an indepen-

dent ARCH(1)-structure. That is, each coordinate’s innovation term is an ARCH(1)-process and

all these ARCH(1)-processes are independent of one another. In addition, I chose the ARCH-

parameter such that the unconditional variance of the innovations equals 1 and the same long-run

precision matrices as above are obtained

εi,t = zi,tσεi ,t(3.21)

zi,t
i.i.d.∼ N (0,1), zi,t ⊥ z j,t∀i 6= j(3.22)

σ2
εi ,t = 0.5+0.5ε2

i,t−1(3.23)
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Table 3.1 summarizes the different DGPs7.

Table 3.1: Summary of the different DGPs

DGP1 DGP2 DGP3 DGP4

class VMA VAR VMA VAR
lag length 1 1 1 1
structure C tridiagonal tridiagonal Erdös-Rényi Erdös-Rényi
#S { 3N-2 3N-2 3N-2 3N-2
Σε IN IN IN IN
Heterosk. No No No No
T 500, 1000, 2000, 3000, 4000, 5000
N 10, 20

DGP5 DGP6 DGP7 DGP8

class VMA VAR VMA VAR
lag length 1 1 1 1
structure C tridiagonal tridiagonal Erdös-Rényi Erdös-Rényi
#S { 3N-2 3N-2 3N-2 3N-2
Σε IN IN IN IN
Heterosk. Yes Yes Yes Yes
T 500, 1000, 2000, 3000, 4000, 5000
N 10, 20

3.4.2 Choice of Auxiliary Quantities

This section briefly outlines how the tuning parameter λ and the pre-estimator for Σ, respectively

C in case of the adaptive LASSO are chosen.

Regularization Parameter λ The regularization parameter λ is usually unknown and, there-

fore, must be chosen from the data. Since the data is dependent and this dependence structure

matters for the long-run covariance matrix, and therefore also for the long-run precision matrix,

classic cross-validation is not feasible. A cross-validation like criterion such as the one proposed

in Bickel and Levina (2008) adapted to a time series setting is computationally too demanding.

Therefore, I opt to follow a different, commonly applied approach and choose the regularization

parameter by minimizing an appropriate BIC criterion, generally given by

(3.24) BIC(λ)=− lndet(Ĉλ)+ tr(ĈλΣ̂)+ ln(T)
T

DoFλ

7Since there is no guarantee that the above procedures yield stationary processes, I checked separately that each
simulated process is in fact stationary.
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where DoFλ denotes the degrees of freedom with which the likelihood function is penalized in the

BIC-criterion. An inspection of the graphical LASSO algorithm yields that the correct degrees of

freedom correction for the BIC is given by the non-sparsity:

(3.25) DoFλ =
∑
i, j
1{(Ĉλ)i j 6= 0}.

That is, each non-zero parameter is estimated separately and, therefore, must be penalized

individually.

Pre-Estimator for the Long-Run Covariance Matrix The pre-estimator for the long-run

covariance is given in Equation (3.15) and the kernel of choice in Equation (3.16). As mentioned in

Sections 3.2.4 and 3.3, the power parameter ρ tends to infinity as the sample size grows, thereby

taking over the role of the bandwidth parameter in conventional HAC-estimation. Therefore, ρ

preferably needs to be chosen in a data dependent manner. I will follow the suggestion of Phillips

et al. (2007) and Newey and West (1994). That is, the optimal power parameter ρ̂ minimizes the

asymptotic mean square error of Σ̂. For more details I refer to Phillips et al. (2007).

Pre-Estimator for the Adaptive LASSO Weights As mentioned in Section 3.2.3, the adap-

tive LASSO-type estimator needs a Tb/2-consistent, 0 < b < 2
3 , pre-estimator to construct the

weighted penalty terms. In principle Σ̂−1 would do the job, as can bee seen from Theorem 3.1.

Instead of using this pre-estimator, however, I opt for using the LASSO-type estimator ĈL as

pre-estimator which is also a valid choice by Theorem 3.2. The rationale behind this choice is

that the LASSO-type estimator already penalizes some of the entries in Ĉ and this is information

which can be used to further improve the adaptive LASSO-type estimator.

Pre-Whitening Finally, while running the simulations, I found that the data dependent power

parameter ρ̂, chosen on the original series yt, does not provide a good estimate for the true

power parameter ρ. For example, this way of choosing the power parameter translates into

decreasing estimation accuracy as the sample sizes increases.8 Pre-whitening the data, however,

remedied this issue. Pre-whitening is done as suggested in Andrews and Monahan (1992). That

is, first I fitted a VAR(1)-model to the original time series yt. After this has been done, I obtained

the residuals and applied the long-run covariance estimator given in (3.15) and (3.16) to those

residual series. Afterwards, the data is recolored to obtain the final pre-estimator Σ̂, see Andrews

and Monahan (1992) for more details.

3.4.3 Computational Information

This section briefly summarizes how λ̂ is determined and, afterwards, how knowledge about the

DGP-class, respectively the sparsity structure is included in the simulations, for comparison with

8These results are not reported for brevity but available from the author upon request.
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the methods proposed in this paper.

Solving the Graphical LASSO In order to solve problem (3.12), respectively (3.14) the graph-

ical LASSO algorithm of Friedman et al. (2008) is used. As already mentioned in Section 4.2

the regularization parameter λ is unknown and, therefore, is determined as the minimizer of

the BIC criterion (3.24) based on a grid of possible values for λ9. There is no advice available in

the literature on how to determine this grid in practice. Moreover, Theorems 3.2 and 3.3 only

specify that the optimal λ satisfies aTb/2λT → 0 and aTbλT →∞, a > 0 and 0< b < 2
3 , which also

does not provide much information on the choice of λT . Therefore, I propose the below described

iterated search over a grid of possible values for λ.

In order to avoid spending too much computation time on parts of the grid which are far from

the BIC solution for λ the first grid is set up relatively coarse to initially narrow down possible

values for λ. Based on the optimal penalization parameter found on this initial grid, I construct

a second grid to find the final, optimal solution for λ and, thus, for C. This procedure can be

summarized as follows:

1. Set the end points of the initial grid Λ(1) as Λ(1)
min ← mini, j |σ̃i, j|, and Λ(1)

max ← maxi, j |σ̃i, j|
where σ̃i, j denotes the (i, j)-th entry of Σ̂−1.

2. Set Λ(1) ← ln(seq(from= exp(Λ(1)
min), to= exp(Λ(1)

max), length= 100)) where seq(s, e,#λ) gener-

ates a sequence from s to e with #λ points.

3. Set λ̂(1) =Λ(1)
k∗ ← argminλBIC(λ) where k∗ denotes the position of λ̂(1) in Λ(1)

4. Set λ̂(1)
−1 ←Λ(1)

k∗−1 and λ̂(1)
+1 ←Λ(1)

k∗+1

5. Update the end points of the grid as Λ(2)
min ← λ̂(1)

−1 and Λ(2)
max ← λ̂(1)

+1

6. Repeat 2 and 3 to find the final λ̂(2).

The idea behind this approach is as follows: If there exists an unique minimizer of the BIC in

(3.24)10 then the procedure must find a point on the first grid that is closest to the minimizer in

the sense of having a small associated BIC value. Since the minimizer is usually assumed to be

unique it then also follows, that it must lie in the interval spanned by the two neighboring points

of this initially found grid-point. Thus, a second step is applied to further narrow down the true

minimizer of the BIC.

In Figure 3.3 below I plot the Monte Carlo averages of the penalization parameter λ ob-

tained by the above procedure. These plots illustrate that the values of λ are in line with the

9The choice of λ crucially affects the results, and more research is needed to uncover the best choice of λ.
10Note that the LASSO literature rarely talks about the existence of an unique BIC minimizing value for λ which

satisfies the theoretical requirements. The BIC, or any other criterion for this matter, is usually applied because it
works well in simulations.
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Figure 3.3: Monte Carlo Means of λ̂T for the adaptive LASSO
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requirements of Theorem 3.3. That is, for all 8 DGPs λ̂T decreases as the sample size increases

so that
√
ρ̂λ̂T →λ0 ≥ 0 and ρ̂λ̂T →∞ are possible.

Vector Moving Average In case of a VMA(q)-process, knowledge about the DGP can be

incorporated into the estimation procedure via the pre-estimator for the long-run covariance

matrix Σ̂ since it holds that

(3.26) Σ=
q∑

h=−q
Γ(h).

Thus, a VMA(1)-DGP implies that the long-run covariance matrix consists of only the short-run

covariance and the autocovariance at lag order one. Thus, rather than using the HAC pre-

estimator, the pre-estimator can directly be based on a simplified expression for the long-run

covariance matrix

(3.27) Σ̂= 1
T

T∑
t=1

yty>
t + 1

2T

T−1∑
t=1

yt+1y>
t +

(
1

2T

T−1∑
t=1

yt+1y>
t

)>
where the factor 0.5 in the last two summands is introduced to guarantee that the resulting

estimator is positive definite11.
11So, it coincides with the Bartlett kernel with known lag length q = 1
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Vector Autoregression In case of a VAR(1)-process, knowledge about the the DGP can be

incorporated by recalling that the long-run precision matrix is given by

(3.28) Ĉ= (
IN − Â

)>
Σ̂

−1
ε

(
IN − Â

)
.

That is, the long-run precision matrix can be estimated by estimating A and Σ−1
ε , for which

reliable methods exists. Either, one can estimate A and Σ−1
ε separately by first applying an

adaptive LASSO equation-by-equation to the VAR(1)-process to obtain Â, obtaining the residuals

and then applying, e.g. the graphical LASSO on the residuals to obtain Σ̂−1
ε . Moreover, Barigozzi

and Brownlees (2017) propose to estimate A and Σ−1
ε jointly in their nets-algorithm. For the

Monte Carlo study I opt for the first approach since the nets-algorithm involves a computationally

costly two-dimensional grid search and it is not clear how performance is improved by estimating

the quantities of interest jointly. Finally, one should note that it is not entirely clear a priori

whether this procedure indeed improves the resulting estimator for C over the proposed method

since estimation errors (especially in the sparsity structure) in both Â and Σ̂−1
ε can contaminate

the final estimator due to the multiplicative structure in (3.28) and, thereby, could worsen the

results.

Estimation of the Long-Run Precision Matrix when the Sparsity Pattern is Known
In this case the sparsity pattern is known, but not the DGP-class. This information can be

incorporated in the proposed estimation scheme in the following way. First, the pre-estimator

which is parsed to the objective functions (3.11) and (3.13) is the above HAC estimator with the

sharp origin kernel. Since the sparsity pattern is known, that is the index set S is known, a

differential penalty can be applied. That is, for all pairs of indices (i∗, j∗) ∈S a penalty of infinity

is applied, thereby forcing the associated estimated values ĉi∗, j∗ to be zero. On the other hand

for all indices (i∗, j∗) ∈S { the penalty parameter is set to 0 and thus, none of these entries is

penalized.

3.4.4 Results

The performance of the proposed estimator is evaluated according to three criteria. First, the

Frobenius-norm of the difference between the estimator and the true long-run precision matrix

is computed, thereby measuring the overall closeness of the estimator and the true quantity of

interest. Second, the Type I error rate (defined as the number of entries in the long-run precision

matrix which are estimated to be zero but are non-zero in reality divided by the true amount

of true non-zero elements), committed during estimation, is computed. Third, the Type I I error

rates (defined as the number of entries in the precision matrix which are estimated to be non-zero

but are zero in reality divided by the amount of true zero entries) is determined. The latter two

criteria allow assessment of the covariance selection, that is the capability of differentiating

between true zero and non-zero entries, properties of the proposed estimators. Ideally, the Type I
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and I I error rates are as close to zero as possible.

Moreover, in order to assess how having prior information about either the DGP-class or the

sparsity structure of the true long-run precision matrix affects the estimators, the following three

scenarios are considered: Firstly, the long-run precision matrix is estimated by being completely

agnostic about both the underlying DGP-class and the sparsity structure. Thus, this scenario

constitutes the most common case empirical researchers tackle. The second scenario assumes

that the underlying DGP-class is known (i.e. whether the data is generated by either a VMA(1)-

or a VAR(1)-process) but not the sparsity structure of the long-run precision matrix. Lastly, the

third scenario assumes that the sparsity structure is known, but not the underlying DGP-class

(obviously, for this case no Type I and I I errors are reported). While discussing the results, I will

refer to the latter case as the oracle estimator since S is known.

Below, the results of this Monte Carlo study are discussed. While doing so, I always combine

the two DGPs which are in the same column in Table 3.1. That is, both considered DGPs only

vary in one aspect, namely whether their error terms are conditionally homo- or heteroskedastic.

The results are reported in Appendix B. The tables display averages of the respective quantities

over 1000 Monte Carlo repetitions. Standard errors over these repetitions are presented in

parentheses.

DGP1 and DGP5 The results for these two VMA(1) process with a tridiagonal precision matrix

can be found in Tables B.1–B.3. In terms of the norm difference it can be seen that it decreases in

all cases when the sample size increases. Moreover, the oracle estimator performs best with lowest

norm differences overall. Plainly inverting Σ̂ performs as well as both LASSO-type estimators

and knowing the DGP-class performs worst. Moreover, the norm differences are larger when the

dimension of C is larger. However, this comes at no surprise since more parameters need to be

estimated.

In terms of Type I error rates we observe that all of them are virtually equal to zero, except

for the case where it is known that the data follows a VMA(1)-process. However, even in this case

they quickly converge to (almost) zero.

In terms of Type I I error rates the most striking result is probably that they increase with

the sample size when the DGP-class is known. The proposed LASSO-type estimators behave

differently. In particular, the plain LASSO estimator provides almost no penalization with a

stable Type I I error rate of about 95%. The adaptive LASSO estimator performs much better

but still allows for a Type I I error rate of about 40% for T = 500 which decreases as the sample

size increases. However, another possible explanation is that in the case of a known VMA(1)

DGP-class the LASSO-type estimators tend to underpenalize.

Finally, there are no essential differences between the conditionally homoskedastic and

heteroskedastic cases.

91



CHAPTER 3. ESTIMATING SPARSE LONG-RUN PRECISION MATRICES FOR LINEAR
MULTIVARIATE TIME SERIES

DGP2 and DGP6 In case of a VAR(1)-process with tridiagonal long-run precision matrix it can

again be observed that the norm differences decrease as the sample size increases, no matter

which dimenson of C or types of error terms are considered, see Table B.4. In this case, however,

when one knows the VAR(1) DGP-class one obtains the smallest error, followed by the infeasible

oracle estimator. Finally, the adaptive LASSO-type estimator ranks third, followed by the LASSO

and the inverse long-run covariance estimator. Note that the differences between the leading

three estimators become less pronounced when the data is conditionally heteroskedastic.

In terms of Type I error rates we again observe that they all are virtually zero in all cases,

see Table B.5. The Type I I error rates, in contrast, can be quite substantial, see Table B.6. In

particular, the LASSO-type estimator performs worst with error rates of about 90% and they

seem to be non-decreasing in the sample size. The adaptive LASSO-type estimator is the second

best with error rates decreasing to about 12% for T = 5000. Finally, the parametric estimator

provides the lowest error rates which decrease from about 5% to almost 0% as the sample size

increases.

Again, differences between the conditionally homo- and heteroskedasticity cases are relatively

small. Finally, the results in this case can again be explained by underpenalization during the

proposed estimation procedures.

DGP3 and DGP7 The results for the VMA(1)-case can be found in Tables B.7–B.9. The pat-

terns do not change much compared to the VMA(1) case with a tridiagonal long-run covariance

matrix. As before, the norm differences decrease as the sample size increases and the oracle

estimator performs best, followed by the two LASSO-type estimators and inverse long-run sample

covariance. The case where the VMA(1) DGP-class is known comes in last.

For the Type I error rates we observe the already familiar pattern. For all estimators this

criterion equals virtually zero. The Type I I error rates are again relatively large, but still accept-

able for the adaptive LASSO-type estimator, especially in light of the apparent underpenalization.

Note that for this estimator the error rate stays stable over the sample size. For the LASSO-type

estimators this result can also be explained by how the data is pre-whitened. As mentioned in

Section 4.2 I opted to pre-whiten by using a VAR(1) approximation. However, the fact that a

VMA(1)-process has a VAR(∞)-representation suggests that a higher order VAR-process in the

pre-whitening stage can yield better results in this case. Finally, it does not seem to matter for

the results whether the errors are homo- or heteroskedastic.

DGP4 and DGP8 The last two cases are a VAR(1)-process with an Erdös-Rényi type long-run

precision matrix. The results can be found in Tables B.10–B.12. Again, the norm differences

decrease as the sample size increases. The best performing estimator is again the case where the

DGP-class is known, followed by the oracle and adaptive LASSO-type estimator. Again, in the

case of conditionally heteroskedastic errors the adaptive LASSO-type estimator is loser to the

two leading estimators with respect to norm differences.
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Regarding the Type I error rates, they are again virtually equal to zero for all cases. The Type

I I error rates also follow the same pattern as for DGP2 and DGP6. That is, they decrease with

the sample size increasing and are lowest for the estimator for which the DGP-class is known,

followed by the adaptive LASSO-type estimator.

Summarizing the results of this Monte Carlo study, it seems that it does not matter for

the proposed estimators whether the process is conditionally homo- or heteroskedastic. In addi-

tion, the adaptive LASSO-type estimator performs well compared to the naïve estimator Σ̂−1 in

cases where there is no knowledge about the DGP or the sparsity structure. In case where it is

known that the true DGP is a VAR-process, it seems that a parametric estimator is favorable

over the proposed non-parametric estimators. However, the same cannot be said when the DGP

is in the VMA-class. Thus, one intends to use the highly recommended pre-whitening step, it

could favorable to determine the VAR-order in a data dependent way, for example via the BIC, to

be more robust against possible Type I I errors. Finally, the tendency to underpenalize can be

tackled by examining more closely the choice of λ̂ through additional simulations.

3.5 Conclusion

In this chapter I propose a novel estimator for sparse long-run precision matrices for possibly

conditionally heteroskedastic linear time series. Under standard assumptions I show that both

LASSO-type estimator are Tb/2-consistent with 0 < b < 2
3 , and that the adaptive LASSO-type

estimator has the oracle property of Zou (2006), where the convergence rate of Tb/2 derives from

the choice of the sharp origin kernel for the pre-estimator of the long-run covariance of the time

series. Finally, I assess the small sample performance of the proposed estimator by means of

an extensive Monte Carlo study and find that it performs fairly well in small samples with a

tendency to underpenalize, but almost never sets elements to zero that are non-zero in reality.

For future research, extensions to other, commonly used kernels, such as the Quadratic

Spectral kernel might be of interest since they are expected to provide faster convergence rates.

Moreover, different penalties, such as SCAD and MCP, or different Bregman-divergences are

also a valuable choice to further improve the proposed estimator. Finally, given the ever growing

availability of data, an extension to a high-dimensional setting where N is allowed to grow might

also be of future interest.

Appendix 3.A Mathematical Proofs

The proofs of Propositions 1 and 2 closely follow those of Yuan and Lin (2007). These authors

proof a similar result to that in Proposition 1 for the LASSO-type estimator and results similar to
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that of Proposition 2 for a non-negative Garrote-type estimator12 based on i.i.d. normal random

vectors.

PROOF OF THEOREM 3.2. LetΨ=C+ Up
ρ

where U=U> and define ∆L
q,T (U)= qL

λ
(Ψ)−qL

λ
(C).

Then,

∆L
q,T (U)=− log

∣∣∣∣C+ Up
ρ

∣∣∣∣+ tr
[(

C+ Up
ρ

)
Σ̂

]
+λT

∑
i 6= j

∣∣∣∣ui, jp
ρ
+ ci, j

∣∣∣∣
+ log |C|− tr(CΣ̂)−λT

∑
i 6= j

|ci, j|.(3.29)

Let µi(M) denote the i-th largest eigenvalue of a symmetric matrix M and notice that

log
∣∣∣∣C+ Up

ρ

∣∣∣∣− log |C| = log
∣∣∣∣IN + Σ

1/2UΣ1/2

p
ρ

∣∣∣∣
=

N∑
i=1

(1+µi(Σ1/2UΣ1/2)/
p
ρ)

=
N∑

i=1

µi(Σ1/2UΣ1/2)p
ρ

− µ2
i (Σ1/2UΣ1/2)

ρ
+ o(ρ−1)

= tr(Σ1/2UΣ1/2)p
ρ

− tr(Σ1/2UΣUΣ1/2)
ρ

+ o(ρ−1)

= tr(UΣ)p
ρ

− tr(UΣUΣ)
ρ

+ o(ρ−1)(3.30)

and that

tr
[(

C+ Up
ρ

)
Σ̂

]
− tr(CΣ̂)= tr

(
UΣp
ρ

)
+ tr

(
U(Σ̂−Σ)p

ρ

)
.(3.31)

Moreover, for sufficiently large p
ρ it holds that

λT
∑
i 6= j

∣∣∣∣ui, jp
ρ
+ ci, j

∣∣∣∣−λT
∑
i 6= j

|ci, j|

= λTp
ρ

∑
i 6= j

(
ui, j sgn(ci, j)1{ci, j 6= 0}+|ui, j|1{ci, j = 0}

)
.(3.32)

Combining (3.30)–(3.32) with (3.29) directly yields

ρ∆L
q,T (U)= tr(UΣUΣ)+ tr

(
Up

ρ(Σ̂−Σ)
)
+ o(1)

+p
ρλT

∑
i 6= j

(
ui, j sgn(ci, j)1{ci, j 6= 0}+|ui, j|1{ci, j = 0}

)
.(3.33)

12The difference between the adaptive LASSO-type and the non-negative Garrote-type estimator lies in the penalty
term. In particular, the non-negative Garrote-type penalty is given by λT

∑
i 6= jψi, j /c̃i, j subject to ψi, j /c̃i, j ≥ 0 whereas

the adaptive LASSO-type penalty is given by λT
∑

i 6= j |ψi, j |/|c̃i, j |.

94



3.A. MATHEMATICAL PROOFS

By Theorem 1, pρ(Σ̂−Σ) converges in distribution to a multivariate zero-mean normal ran-

dom matrix N with covariance matrix as provided in Theorem 1. Moreover, λT
p
ρ→ λ0 ≥ 0 by

assumption. Therefore,

ρ∆L
q,T (U) D−→ tr(UΣUΣ)+ tr

(
UN

)
+λ0

∑
i 6= j

(
ui, j sgn(ci, j)1{ci, j 6= 0}+|ui, j|1{ci, j = 0}

)
≡∆L

q (U).(3.34)

Finally, ρ∆L
q,T (U) and ∆L

q (U) in (3.34) are both convex functions and the latter has a unique

minimum.13 Therefore, it follows that

(3.35) argmin
U=U>

ρ∆q,T (U)=p
ρ(Ĉ−C) D−→ argmin

U=U>
∆L

q (U)

concluding the proof.

PROOF OF THEOREM 3.3. As in the Proof of Theorem 3.2, one can show that

ρ∆aL
q,T (U)= tr(UΣUΣ)+ tr

(
Up

ρ(Σ̂−Σ)
)
+ o(1)

+p
ρλT

∑
i 6= j

p
ρ

(∣∣∣∣ci, j +
ui, jp
ρ

∣∣∣∣−|ci, j|
)
/|c̃i, j|.(3.36)

Now, there are two cases to consider: a) ci, j 6= 0 and b) ci, j = 0. In case a) it holds that |c̃i, j|−1 p−→
|ci, j|−1, pρ

(
|ci, j +ui, j/

p
ρ|− |ci, j|

)
→ ui, j sgn(ci, j) and p

ρλT → 0 by assumption. So, by Slutksy’s

Theorem the penalty term in (3.36) converges to 0 for all (i, j) ∈S {.

On the other hand, in case b) it holds that pρ
(
|ci, j +ui, j/

p
ρ|− |ci, j|

)
= |ui, j| and p

ρλT |c̃i, j|−1 =
ρλT

|pρ c̃i, j | where p
ρ c̃i, j =Op(1). Therefore, Equation (3.36) can be rewritten as

ρ∆aL
q,T (U)= tr(UΣUΣ)+ tr

(
Up

ρ(Σ̂−Σ)
)
+ρλT

∑
(i, j)∈S

|ui, j|
|pρ c̃i, j|

+ o(1).(3.37)

Since ρλT → ∞ by Assumption, it must be true that the minimizer of ρ∆aL
q,T (U) is such that

ui, j = 0 whenever (i, j) ∈S with probability tending to one. Otherwise ρ∆q,T (U) would diverge to

infinity and this is in contradiction with Theorem 3.2.

The limiting distribution of ĈaL is easily dervied by noting that the pseudo ML estimator,

Ĉo, based on the true sparsity structure C is such that

(3.38)
p
ρ(Ĉo −C) D−→ argmin

U=U>,ui, j=0∀∈S

tr(UΣUΣ)+ tr
(
UN

)
.

13Note that tr(UΣUΣ) is a term which is quadratic in U and tr(UN) is linear in U. Thus, (3.34) constitute a
parabola defined on the space of all symmetric matrices U.
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Appendix 3.B Tables

Table 3.2: VMA(1) with Tridiagonal Precision Matrix – Norm Differences

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

Σ̂
−1 2.42 2.33 2.23 2.16 2.11 2.06

(0.16) (0.12) (0.09) (0.08) (0.07) (0.07)
ĈL 2.43 2.35 2.24 2.17 2.11 2.07

(0.16) (0.12) (0.10) (0.08) (0.07) (0.07)
ĈaL 2.44 2.34 2.24 2.16 2.11 2.06

(0.18) (0.13) (0.10) (0.08) (0.07) (0.07)
Ĉo 1.77 1.72 1.64 1.58 1.53 1.49

(0.19) (0.14) (0.11) (0.09) (0.08) (0.07)
ĈC 4.53 4.36 3.86 3.5 3.36 3.27

(0.10) (0.19) (0.28) (0.17) (0.09) (0.07)

N
=

20

Σ̂
−1 4.60 4.40 4.20 4.07 3.96 3.87

(0.16) (0.12) (0.10) (0.08) (0.08) (0.07)
ĈL 4.60 4.42 4.22 4.09 3.99 3.90

(0.17) (0.12) (0.10) (0.08) (0.08) (0.07)
ĈaL 4.57 4.41 4.22 4.09 3.98 3.89

(0.22) (0.13) (0.11) (0.09) (0.08) (0.07)
Ĉo 3.52 3.41 3.23 3.11 3.01 2.92

(0.21) (0.15) (0.12) (0.09) (0.09) (0.08)
ĈC 7.79 7.54 6.77 6.23 5.65 5.48

(0.07) (0.18) (0.15) (0.41) (0.15) (0.08)

Conditional Heteroskedastic Errors

N
=

10

Σ̂
−1 2.45 2.33 2.23 2.16 2.10 2.05

(0.22) (0.19) (0.15) (0.14) (0.12) (0.11)
ĈL 2.46 2.34 2.24 2.16 2.11 2.06

(0.22) (0.19) (0.15) (0.14) (0.12) (0.11)
ĈaL 2.46 2.34 2.23 2.16 2.10 2.05

(0.26) (0.2) (0.15) (0.14) (0.12) (0.12)
Ĉo 1.78 1.71 1.63 1.57 1.52 1.48

(0.31) (0.25) (0.19) (0.17) (0.15) (0.14)
ĈC 4.46 4.23 3.75 3.46 3.33 3.24

(0.20) (0.30) (0.32) (0.19) (0.13) (0.12)

N
=

20

Σ̂
−1 4.62 4.38 4.18 4.05 3.94 3.86

(0.22) (0.19) (0.15) (0.14) (0.13) (0.13)
ĈL 4.60 4.39 4.21 4.07 3.97 3.88

(0.23) (0.19) (0.15) (0.14) (0.13) (0.13)
ĈaL 4.55 4.38 4.20 4.07 3.96 3.88

(0.26) (0.2) (0.16) (0.15) (0.13) (0.13)

Continued on next page
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Table 3.2 – continued from previous page

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Ĉo 3.47 3.36 3.21 3.09 2.99 2.91
(0.33) (0.26) (0.19) (0.18) (0.16) (0.15)

ĈC 7.70 7.38 6.66 5.97 5.60 5.45
(0.16) (0.27) (0.35) (0.41) (0.16) (0.14)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 Σ̂
−1 denotes the inverse of the long-run covariance estimator, ĈL the LASSO, ĈaL the

adaptive LASSO, Ĉo the oracle and ĈC the known DGP-class estimator

Table 3.3: VMA(1) with Tridiagonal Precision Matrix – Type 1 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.43 0.23 0.02 0.00 0.00 0.00
(0.09) (0.17) (0.04) (0.01) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.45 0.23 0.02 0.01 0.00 0.00
(0.05) (0.11) (0.02) (0.01) (0.00) (0.00)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.38 0.16 0.02 0.00 0.00 0.00
(0.13) (0.15) (0.03) (0.01) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.41 0.17 0.02 0.00 0.00 0.00
(0.08) (0.11) (0.02) (0.01) (0.00) (0.00)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VMA(1)-process.

3 This table reports the error rates as fractions between committed Type I errors and the
amount of true entries unequal to zero on the lower triangle of the matrix.
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Table 3.4: VMA(1) with Tridiagonal Precision Matrix – Type 2 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.92 0.93 0.95 0.96 0.96 0.96
(0.05) (0.04) (0.04) (0.03) (0.03) (0.03)

ĈaL 0.46 0.46 0.52 0.54 0.53 0.52
(0.11) (0.10) (0.10) (0.08) (0.07) (0.07)

ĈC 0.00 0.02 0.15 0.25 0.26 0.26
(0.02) (0.07) (0.16) (0.10) (0.07) (0.07)

N
=

20

Σ̂
−1 0.93 0.93 0.92 0.91 0.90 0.89

(0.05) (0.02) (0.02) (0.02) (0.02) (0.03)
ĈaL 0.44 0.37 0.31 0.28 0.28 0.28

(0.07) (0.04) (0.03) (0.03) (0.04) (0.04)
ĈC 0.00 0.00 0.01 0.10 0.20 0.19

(0.00) (0.00) (0.03) (0.12) (0.04) (0.03)

Conditional Heteroskedastic Errors

N
=

10

Σ̂
−1 0.92 0.93 0.95 0.96 0.96 0.96

(0.05) (0.04) (0.04) (0.03) (0.03) (0.03)
ĈaL 0.46 0.47 0.52 0.53 0.52 0.52

(0.12) (0.10) (0.10) (0.08) (0.07) (0.07)
ĈC 0.01 0.05 0.17 0.25 0.26 0.26

(0.06) (0.12) (0.15) (0.10) (0.08) (0.07)

N
=

20

Σ̂
−1 0.92 0.92 0.91 0.90 0.89 0.90

(0.04) (0.02) (0.02) (0.02) (0.03) (0.04)
ĈaL 0.40 0.35 0.29 0.27 0.27 0.29

(0.06) (0.04) (0.04) (0.04) (0.04) (0.05)
ĈC 0.00 0.00 0.04 0.16 0.20 0.18

(0.00) (0.00) (0.09) (0.10) (0.04) (0.03)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VMA(1)-process.

3 This table reports the error rates as fractions between committed Type I I errors and the
amount of true entries equal to zero on the lower triangle of the matrix.
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Table 3.5: VAR(1) with Tridiagonal Precision Matrix – Norm Differences

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

Σ̂
−1 1.27 0.91 0.68 0.59 0.53 0.49

(0.17) (0.12) (0.08) (0.07) (0.06) (0.06)
ĈL 1.16 0.87 0.66 0.56 0.51 0.47

(0.17) (0.11) (0.09) (0.07) (0.07) (0.06)
ĈaL 0.94 0.69 0.51 0.43 0.39 0.36

(0.17) (0.12) (0.09) (0.08) (0.07) (0.07)
Ĉo 0.72 0.55 0.42 0.36 0.33 0.30

(0.15) (0.12) (0.08) (0.08) (0.07) (0.06)
ĈC 0.52 0.36 0.25 0.20 0.18 0.16

(0.11) (0.08) (0.06) (0.04) (0.04) (0.03)

N
=

20

Σ̂
−1 3.07 2.30 1.84 1.63 1.50 1.40

(0.24) (0.17) (0.12) (0.11) (0.10) (0.10)
ĈL 2.59 2.08 1.75 1.55 1.42 1.32

(0.23) (0.19) (0.12) (0.11) (0.10) (0.10)
ĈaL 1.98 1.61 1.34 1.17 1.06 0.97

(0.23) (0.18) (0.14) (0.13) (0.12) (0.11)
Ĉo 1.37 1.09 0.90 0.81 0.74 0.69

(0.20) (0.15) (0.12) (0.11) (0.10) (0.10)
ĈC 0.76 0.51 0.36 0.29 0.25 0.23

(0.12) (0.08) (0.06) (0.05) (0.04) (0.04)

Conditional Heteroskedastic Errors

N
=

10

Σ̂
−1 1.67 1.21 0.88 0.74 0.67 0.62

(0.28) (0.20) (0.15) (0.14) (0.13) (0.13)
ĈL 1.56 1.15 0.85 0.71 0.65 0.59

(0.27) (0.21) (0.15) (0.14) (0.13) (0.14)
ĈaL 1.35 0.99 0.73 0.61 0.55 0.51

(0.28) (0.22) (0.17) (0.16) (0.14) (0.15)
Ĉo 1.22 0.92 0.69 0.58 0.52 0.48

(0.29) (0.23) (0.17) (0.16) (0.14) (0.14)
ĈC 1.08 0.79 0.57 0.48 0.42 0.38

(0.26) (0.21) (0.15) (0.14) (0.12) (0.13)

N
=

20

Σ̂
−1 3.54 2.60 2.03 1.78 1.62 1.52

(0.34) (0.22) (0.17) (0.15) (0.14) (0.14)
ĈL 3.15 2.42 1.92 1.69 1.53 1.44

(0.37) (0.22) (0.17) (0.16) (0.15) (0.15)
ĈaL 2.53 1.95 1.53 1.33 1.19 1.12

(0.35) (0.25) (0.21) (0.20) (0.18) (0.18)
Ĉo 1.96 1.51 1.20 1.06 0.95 0.89

(0.33) (0.27) (0.22) (0.21) (0.18) (0.18)
ĈC 1.66 1.20 0.88 0.72 0.63 0.57

(0.29) (0.24) (0.18) (0.16) (0.13) (0.14)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 Σ̂
−1 denotes the inverse of the long-run covariance estimator, ĈL the LASSO, ĈaL the

adaptive LASSO, Ĉo the oracle and ĈC the known DGP-class estimator
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Table 3.6: VAR(1) with Tridiagonal Precision Matrix – Type 1 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VAR(1)-process.

3 This table reports the error rates as fractions between committed Type I I errors and the
amount of true entries unequal to zero on the lower triangle of the matrix.
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Table 3.7: VAR(1) with Tridiagonal Precision Matrix – Type 2 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.89 0.91 0.91 0.90 0.89 0.89
(0.07) (0.05) (0.05) (0.05) (0.06) (0.06)

ĈaL 0.33 0.32 0.24 0.18 0.15 0.13
(0.15) (0.13) (0.11) (0.09) (0.09) (0.08)

ĈC 0.04 0.02 0.01 0.00 0.00 0.00
(0.05) (0.04) (0.03) (0.01) (0.01) (0.00)

N
=

20

ĈL 0.86 0.89 0.94 0.94 0.93 0.93
(0.04) (0.05) (0.02) (0.02) (0.02) (0.02)

ĈaL 0.27 0.29 0.36 0.31 0.27 0.24
(0.08) (0.13) (0.06) (0.05) (0.05) (0.05)

ĈC 0.02 0.01 0.00 0 0.00 0.00
(0.02) (0.01) (0.01) (0.00) (0.00) (0.00)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.90 0.91 0.90 0.89 0.89 0.88
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

ĈaL 0.37 0.31 0.23 0.17 0.15 0.12
(0.14) (0.13) (0.11) (0.09) (0.09) (0.08)

ĈC 0.05 0.03 0.01 0.00 0.00 0.00
(0.06) (0.04) (0.03) (0.02) (0.01) (0.01)

N
=

20

ĈL 0.90 0.92 0.93 0.93 0.93 0.92
(0.05) (0.04) (0.02) (0.02) (0.02) (0.02)

ĈaL 0.37 0.36 0.34 0.29 0.26 0.24
(0.12) (0.11) (0.06) (0.06) (0.05) (0.05)

ĈC 0.02 0.01 0.00 0.00 0.00 0.00
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VAR(1)-process.

3 This table reports the error rates as fractions between committed Type I I errors and the
amount of true entries equal to zero on the lower triangle of the matrix.
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Table 3.8: VMA(1) with Erdös-Rényi Precision Matrix – Norm Differences

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

Σ̂
−1 1.32 1.13 0.99 0.92 0.86 0.83

(0.16) (0.13) (0.10) (0.09) (0.08) (0.08)
ĈL 1.33 1.14 0.99 0.92 0.86 0.83

(0.16) (0.13) (0.10) (0.09) (0.08) (0.08)
ĈaL 1.31 1.11 0.96 0.88 0.82 0.79

(0.20) (0.15) (0.11) (0.10) (0.09) (0.09)
Ĉo 0.91 0.78 0.68 0.62 0.58 0.56

(0.17) (0.13) (0.10) (0.09) (0.08) (0.08)
ĈC 3.07 2.48 1.92 1.75 1.66 1.59

(0.34) (0.37) (0.20) (0.11) (0.09) (0.10)

N
=

20

Σ̂
−1 2.33 1.96 1.69 1.56 1.46 1.40

(0.15) (0.12) (0.10) (0.09) (0.09) (0.08)
ĈL 2.36 1.96 1.69 1.56 1.47 1.41

(0.18) (0.14) (0.10) (0.09) (0.09) (0.08)
ĈaL 2.39 1.84 1.54 1.42 1.33 1.28

(0.53) (0.26) (0.12) (0.10) (0.10) (0.09)
Ĉo 1.31 1.13 0.97 0.89 0.82 0.79

(0.17) (0.14) (0.11) (0.09) (0.09) (0.08)
ĈC 4.01 3.25 2.46 2.04 1.89 1.80

(0.43) (0.36) (0.38) (0.18) (0.12) (0.11)

Conditional Heteroskedastic Errors

N
=

10

Σ̂
−1 1.43 1.21 1.05 0.95 0.89 0.85

(0.24) (0.21) (0.19) (0.16) (0.15) (0.14)
ĈL 1.43 1.21 1.05 0.96 0.90 0.85

(0.25) (0.21) (0.19) (0.16) (0.15) (0.14)
ĈaL 1.39 1.18 1.01 0.92 0.86 0.81

(0.30) (0.23) (0.20) (0.17) (0.16) (0.15)
Ĉo 1.01 0.87 0.74 0.67 0.62 0.59

(0.26) (0.23) (0.19) (0.17) (0.16) (0.15)
ĈC 2.93 2.41 1.94 1.76 1.65 1.58

(0.47) (0.45) (0.29) (0.19) (0.18) (0.17)

N
=

20

Σ̂
−1 2.49 2.04 1.74 1.59 1.49 1.42

(0.20) (0.16) (0.15) (0.13) (0.12) (0.11)
ĈL 2.46 2.03 1.73 1.59 1.49 1.42

(0.21) (0.17) (0.15) (0.13) (0.12) (0.11)
ĈaL 2.35 1.87 1.58 1.44 1.36 1.30

(0.48) (0.26) (0.18) (0.15) (0.13) (0.12)
Ĉo 1.43 1.22 1.04 0.93 0.86 0.82

(0.25) (0.21) (0.19) (0.16) (0.14) (0.13)
ĈC 3.81 3.12 2.38 2.04 1.89 1.80

(0.58) (0.47) (0.41) (0.31) (0.19) (0.17)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 Σ̂
−1 denotes the inverse of the long-run covariance estimator, ĈL the LASSO, ĈaL the

adaptive LASSO, Ĉo the oracle and ĈC the known DGP-class estimator
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Table 3.9: VMA(1) with Erdös-Rényi Precision Matrix Precision Matrix – Type 1 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.13 0.04 0.00 0.00 0.00 0.00
(0.09) (0.03) (0.01) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.03 0.00 0.00 0.00 0.00 0.00
(0.04) (0.01) (0.00) (0.00) (0.00) (0.00)

ĈC 0.09 0.05 0.01 0.00 0.00 0.00
(0.03) (0.03) (0.02) (0.00) (0.00) (0.00)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.11 0.03 0.00 0.00 0.00 0.00
(0.09) (0.04) (0.02) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.02 0.00 0.00 0.00 0.00 0.00
(0.03) (0.01) (0.00) (0.00) (0.00) (0.00)

ĈC 0.08 0.04 0.01 0.00 0.00 0.00
(0.04) (0.03) (0.02) (0.00) (0.00) (0.00)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VMA(1)-process.

3 This table reports the error rates as fractions between committed Type I errors and the
amount of true entries unequal to zero on the lower triangle of the matrix.

103



CHAPTER 3. ESTIMATING SPARSE LONG-RUN PRECISION MATRICES FOR LINEAR
MULTIVARIATE TIME SERIES

Table 3.10: VMA(1) with Erdös-Rényi Precision Matrix – Type 2 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.96 0.97 0.98 0.98 0.98 0.98
(0.04) (0.03) (0.02) (0.02) (0.02) (0.02)

ĈaL 0.52 0.50 0.52 0.48 0.46 0.43
(0.15) (0.16) (0.12) (0.11) (0.11) (0.11)

ĈC 0.04 0.16 0.29 0.27 0.26 0.27
(0.11) (0.20) (0.12) (0.09) (0.09) (0.11)

N
=

20

ĈL 0.86 0.95 0.96 0.96 0.96 0.97
(0.17) (0.08) (0.01) (0.02) (0.02) (0.02)

ĈaL 0.37 0.43 0.38 0.35 0.35 0.41
(0.24) (0.10) (0.05) (0.07) (0.10) (0.12)

ĈC 0.03 0.05 0.20 0.27 0.23 0.21
(0.05) (0.08) (0.16) (0.06) (0.04) (0.04)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.97 0.97 0.98 0.98 0.98 0.98
(0.04) (0.03) (0.02) (0.02) (0.02) (0.02)

ĈaL 0.53 0.51 0.51 0.47 0.45 0.43
(0.15) (0.15) (0.12) (0.11) (0.11) (0.11)

ĈC 0.08 0.18 0.28 0.27 0.27 0.28
(0.16) (0.19) (0.13) (0.10) (0.11) (0.11)

N
=

20

ĈL 0.90 0.95 0.96 0.96 0.96 0.97
(0.14) (0.06) (0.02) (0.02) (0.02) (0.02)

ĈaL 0.42 0.43 0.37 0.35 0.37 0.42
(0.19) (0.09) (0.06) (0.09) (0.12) (0.12)

ĈC 0.06 0.10 0.23 0.26 0.23 0.21
(0.12) (0.15) (0.14) (0.06) (0.04) (0.04)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VMA(1)-process.

3 This table reports the error rates as fractions between committed Type I I errors and the
amount of true entries equal to zero on the lower triangle of the matrix.
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Table 3.11: VAR(1) with Erdös-Rényi Precision Matrix Structure – Norm Differences

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

Σ̂
−1 0.90 0.66 0.51 0.45 0.42 0.40

(0.12) (0.08) (0.07) (0.06) (0.06) (0.05)
ĈL 0.88 0.66 0.51 0.45 0.42 0.40

(0.11) (0.09) (0.07) (0.06) (0.06) (0.06)
ĈaL 0.79 0.60 0.46 0.41 0.38 0.36

(0.12) (0.10) (0.08) (0.07) (0.06) (0.06)
Ĉo 0.59 0.47 0.38 0.35 0.33 0.31

(0.12) (0.10) (0.08) (0.07) (0.07) (0.06)
ĈC 0.52 0.36 0.26 0.21 0.18 0.16

(0.10) (0.07) (0.05) (0.04) (0.04) (0.04)

N
=

20

Σ̂
−1 1.93 1.30 0.95 0.81 0.73 0.68

(0.17) (0.10) (0.07) (0.05) (0.05) (0.04)
ĈL 1.69 1.16 0.87 0.77 0.71 0.67

(0.14) (0.08) (0.07) (0.06) (0.05) (0.04)
ĈaL 1.17 0.83 0.65 0.59 0.54 0.5

(0.13) (0.09) (0.07) (0.06) (0.05) (0.05)
Ĉo 0.86 0.67 0.54 0.48 0.45 0.43

(0.13) (0.09) (0.07) (0.06) (0.05) (0.05)
ĈC 0.88 0.62 0.43 0.35 0.30 0.27

(0.11) (0.07) (0.05) (0.04) (0.03) (0.03)

Conditional Heteroskedastic Errors

N
=

10

Σ̂
−1 1.14 0.83 0.63 0.54 0.49 0.46

(0.19) (0.14) (0.13) (0.11) (0.10) (0.10)
ĈL 1.12 0.82 0.62 0.54 0.49 0.46

(0.19) (0.14) (0.13) (0.11) (0.10) (0.11)
ĈaL 1.00 0.74 0.56 0.48 0.44 0.42

(0.20) (0.17) (0.15) (0.12) (0.12) (0.12)
Ĉo 0.82 0.63 0.49 0.43 0.40 0.37

(0.20) (0.17) (0.15) (0.12) (0.12) (0.12)
ĈC 0.85 0.62 0.45 0.37 0.33 0.30

(0.21) (0.16) (0.13) (0.10) (0.10) (0.10)

N
=

20

Σ̂
−1 2.33 1.57 1.12 0.95 0.85 0.79

(0.28) (0.17) (0.12) (0.11) (0.09) (0.09)
ĈL 2.06 1.42 1.05 0.92 0.82 0.77

(0.27) (0.18) (0.13) (0.11) (0.09) (0.09)
ĈaL 1.52 1.08 0.83 0.72 0.65 0.61

(0.26) (0.20) (0.15) (0.12) (0.11) (0.11)
Ĉo 1.17 0.90 0.69 0.60 0.55 0.52

(0.22) (0.18) (0.14) (0.12) (0.10) (0.10)
ĈC 1.36 0.98 0.71 0.58 0.51 0.46

(0.23) (0.19) (0.14) (0.12) (0.10) (0.10)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 Σ̂
−1 denotes the inverse of the long-run covariance estimator, ĈL the LASSO, ĈaL the

adaptive LASSO, Ĉo the oracle and ĈC the known DGP-class estimator
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Table 3.12: VAR(1) with Erdös-Rényi Precision Matrix – Type 1 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N
=

20

ĈL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈaL 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ĈC 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VAR(1)-process.

3 This table reports the error rates as fractions between committed Type I errors and the
amount of true entries unequal to zero on the lower triangle of the matrix.
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Table 3.13: VAR(1) with Erdös-Rényi Precision Matrix – Type 2 Error Rates

T = 500 T = 1000 T = 2000 T = 3000 T = 4000 T = 5000

Conditional Homoskedastic Errors

N
=

10

ĈL 0.95 0.97 0.97 0.97 0.97 0.96
(0.04) (0.03) (0.02) (0.03) (0.03) (0.03)

ĈaL 0.45 0.44 0.38 0.31 0.26 0.23
(0.15) (0.15) (0.10) (0.10) (0.09) (0.09)

ĈC 0.13 0.11 0.11 0.10 0.10 0.09
(0.06) (0.05) (0.04) (0.03) (0.03) (0.03)

N
=

20

ĈL 0.94 0.93 0.92 0.95 0.97 0.97
(0.02) (0.02) (0.03) (0.04) (0.02) (0.01)

ĈaL 0.41 0.31 0.25 0.30 0.35 0.32
(0.05) (0.05) (0.09) (0.12) (0.06) (0.04)

ĈC 0.22 0.22 0.23 0.24 0.24 0.25
(0.05) (0.04) (0.03) (0.03) (0.03) (0.03)

Conditional Heteroskedastic Errors

N
=

10

ĈL 0.96 0.97 0.97 0.97 0.96 0.96
(0.04) (0.03) (0.03) (0.02) (0.03) (0.03)

ĈaL 0.48 0.44 0.37 0.31 0.26 0.23
(0.15) (0.14) (0.11) (0.1) (0.09) (0.09)

ĈC 0.14 0.12 0.11 0.10 0.10 0.10
(0.07) (0.05) (0.04) (0.03) (0.03) (0.03)

N
=

20

ĈL 0.94 0.94 0.94 0.96 0.97 0.97
(0.02) (0.03) (0.03) (0.03) (0.02) (0.01)

ĈaL 0.41 0.33 0.31 0.34 0.34 0.32
(0.08) (0.09) (0.12) (0.10) (0.06) (0.05)

ĈC 0.22 0.23 0.24 0.24 0.25 0.25
(0.05) (0.04) (0.04) (0.03) (0.03) (0.03)

1 Monte Carlo standard errors are presented in parantheses below the Monte Carlo means
of the criterion.

2 ĈL denotes the LASSO, ĈaL the adaptive LASSO and ĈC the known DGP-class estimator
when it is known that the data is generated by a VAR(1)-process.

3 This table reports the error rates as fractions between committed Type I I errors and the
amount of true entries equal to zero on the lower triangle of the matrix.
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4
ROBUSTNESS OF FINANCIAL VOLATILITY NETWORKS TO THE

EXCLUSION OF SYSTEMIC NODES

This chapter is based on the identically entitled working paper

In recent years, network analysis has become and increasingly popular tool to analyse
large panels of time series. In particular, there is an evergrowing literature which
utilizes network analysis to gauge systemicness of firms and sectors in financial markets,

especially during the Financial Crisis of 2007–2010. A common feature in this literature is that
Lehman Brothers is excluded from the sampled data due to its bankruptcy in mid-September
2008. However, it is well known that omitting central nodes in the analysis of networks
induces bias in network measures. Using this as a starting point, I empirically assess how
the exclusion of Lehman Brothers’ stock from the sample affects estimation outcomes for
volatility networks by estimating the widely applied long-run variance decomposition network
of Diebold and Yilmaz (2014) based on a commonly used panel of 101 major U.S. firms’ stock
price volatilities where I explicitly in- and exclude Lehman Brothers. This allows me to
gauge the effects Lehman Brothers’ stock has on the commonly used From- and To-degree
network measures. I find that the To-degree is heavily affected by the exclusion of Lehman
Brothers whereas the From-degree seems to be only minorly affected. These results hold on a
firm-specific and aggregated sector level for a sparse and non-sparse VAR-representation of
the data.
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CHAPTER 4. ROBUSTNESS OF FINANCIAL VOLATILITY NETWORKS TO THE EXCLUSION
OF SYSTEMIC NODES

4.1 Introduction

Arbitrage pricing theory and capital asset pricing models suggest that volatility, like returns, are

governed by a systematic and an idiosyncratic part. The systematic part is assumed to be directly

quantifiable by common, observed factors (such as the market return in the classic capital asset

pricing model), whereas the idiosyncratic part is unobserved. Moreover, classic financial theory

suggests that the systematic part is non-diversifiable. That is, it has to be taken as given and one

can not protect oneself against it. In contrast, the idiosyncratic part is commonly assumed to be

perfectly diversifiable as more and more assets are considered, cf. Chamberlain and Rothschild

(1983). In particular, it is argued that different assets offset their idiosyncratic risks. However,

recent studies suggest that the idiosyncratic part is not diversifiable (see, inter alia, Gabaix,

2011; Acemoglu et al., 2012) and, therefore, even if an increasing number of assets is considered,

the idiosyncratic part is non-negligible. Thus, if the idiosyncratic part is assumed to be perfectly

diversifiable, the true risk propagation mechanism is neglected. In addition, the actual risk in

the financial system is erroneously assessed, which can have severe economic consequences. For

example, market regulations would not target the actual risk and, as a consequence, are not able

to mitigate the effects of a crisis.

To better gauge the risk transmission channels in large financial systems, network1 analysis

has become a widely applied tool to measure the inherent idiosyncratic risk, cf. the pioneering

work of Diebold and Yilmaz (2009, 2011, 2012, 2014). These authors analyze the idiosyncratic

risk of return and volatility series by constructing a network based on the Wold-representation of

the underlying data. In particular, the network is constructed based on the variance decomposi-

tion scheme of Pesaran and Shin (1998). Inspired by this work, Billio et al. (2012) investigate

idiosyncratic risk in the finance and insurance sector in monthly return series of hedge funds,

banks, brokers and insurance companies. Moreover, Demirer et al. (2015) analyze idiosyncratic

risk in global bank networks and Bostanci and Yilmaz (2015) analyze idiosyncratic risk in global

sovereign credit risk networks. More recently, Barigozzi and Brownlees (2017) proposed a method-

ology for quantifying the idiosyncratic risk in high dimensional financial series based on the

Generalized Dynamic Factor Model (GDFM) of Forni et al. (2015, 2017).

However, all of this work considers sub-samples of the true underlying financial networks.

In particular, usually 100 U.S. stocks with the majority taken from the S&P 100 are sampled.

Moreover, while assessing systemic risk during the Financial Crisis of 2007–2010, these stud-

ies drop Lehman Brothers from their sample, presumably because Lehman Brothers filed for

bankruptcy on September, 15th 2008 and the stock stopped being traded two days later. But doing

so implies a major problem to the analysis of financial networks and networks in general. In

particular, Kolaczyk (2017, Chapter 3) provides simulation results and theoretical considerations

1A network consists of nodes (e.g. firms) and edges (connections amongst the nodes). Thus, edges can be seen as
transmission channels and nodes with many edges can be regarded as important roles in transmitting the idiosyncratic
risk
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which show that omitting nodes while sampling a network induces a bias on the estimates of

basic network measures such as the overall and the node specific degrees. Moreover, it is also

shown that the implied biases depend on a multitude of factors, for example the topology of the

network, the sampling scheme and the chosen measure itself. Based on this, this study looks into

the effects of Lehman Brothers’ omission from the sample has on results currently put forward in

the empirical literature on financial networks.

Following Diebold and Yilmaz (2014), this work is based on volatility series rather than

return series. This is due to the fact that volatilities are sensitive to crisis periods and that

volatilities are often regarded as a tracking device for investor fear. Thus, volatilities are a

suitable candidate to track and quantify risk transmission channels. I consider a panel of daily

stock prices of 100 U.S. firms plus those of Lehman Brothers, which is observed from 01.01.2007

up to and including 17.09.2008, and I compute for these stock prices their latent volatility series

with the range measure of Parkinson (1980). That is, the volatility of a firm’s stock is calculated

as a scaled difference between the highest and lowest log-price of the asset on any given day

in the sample. Following Barigozzi and Brownlees (2017), the systematic part is then, similar

to the classic capital asset pricing model, approximated by a linear function of the market and

SPDR sector volatilities.2,3 Thus, the idiosyncratic risk is represented by the residual series of

these regressions and is the main object of interest for the analysis. In order to quantify the

idiosyncratic risk and its transmission channels, the Long Run Variance Decomposition Network

(LVDN) of Diebold and Yilmaz (2014) is used. The LVDN is based on the forecast error variation

of variable i due to shocks to variable j. Thus, the network is completely defined by a VMA(∞)

representation of the panel of residual series.

I find that omitting Lehman Brothers from the sample does not alter the qualitative prop-

erties of the network. In particular, the financial sector is still the most influential sector in

the network. However, quantitative results change to some extend. In particular, the results

suggest that the From- and To-degrees associated with firms in the financial sector tend to be

underestimated whereas the effects of non-financial firms tend to be overestimated. The first

finding is most likely due to the fact an important financial institution is deleted from the sample

and the latter due to the fact that non-financial firms pick up some of the connections originally

originating from Lehman Brothers.

The remainder of this chapter is structured as follows. Section 4.2 introduces basic terminology

used in the analysis of networks and introduces the LVDN based on the VMA(∞)-representation

of a second-order stationary stochastic process. Section 4.3 outlines a simple approach to model

volatility LVDNs and Section 4.4 describes the estimation approach. Section 4.5 discusses the

empirical findings and Section 4.6 concludes.

2Market and sector volatilities are also computed by the high-low range measure of Parkinson (1980). Moreover,
each firm is assigned to one of the nine SPDR sectors (the Real Estate sector is excluded due to data availability).

3Note that Barigozzi and Brownlees (2017) use the GDFM to first estimate volatilities and subsequently apply
the GDFM again to extract the observed systematic factors. For simplicity, I stick to the usual measure of volatility
described above.
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4.2 The Long-Run Variance Decomposition Network

Networks based on Time Series Data For the purpose of this chapter it suffices to consider

directed networks. A directed network or graph G is defined as the tuple G = (V ,E ) where

V = {1,2, ..., N}, N ∈N, denotes the set of nodes or vertices (individuals, firms or stock returns to

give some examples) and E ⊆ V ×V denotes the edge set (connections between nodes). The edge

set E can also be represented by use of an adjacency matrix A. In case of directed networks A
is not symmetric, the diagonal elements are equal to one and the off-diagonal entries having

non-zero value ai, j if and only if there is an edge from node j and i. If it holds that ai, j = 1 for

all i 6= j then G is called an unweighted directed network. In contrast, the network is called

weighted directed if at least two distinct non-zero entries ai, j and ai′, j′ of the adjacency matrix

satisfy ai, j 6= ai′, j′ and ai, j denotes the weight of the edge from node j and i. Note that ai, j = 1 is

still a possibility and that it can be that ai, j 6= 0 and a j,i = 0 or ai, j 6= 0 and a j,i 6= 0 with ai, j 6= a j,i.

Figure 4.1 illustrates such networks.

Figure 4.1: Examples of Directed Networks

The left figure shows an unweighted directed and the right figure a weighted directed network as
indicated by the weights ai, j next to each edge. In case where connections go from node i to node j and

vice versa, both weights are depicted. Note that in case of an unweighted network no weights are
displayed in the figure since they do not provide further information. Nodes are labelled with numerals

and lines correspond to edges.
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For a given network G , one might be interested in identifying important nodes or the average

connectedness, i.e. average amount of (weighted) edges per node in the network. A basic, yet

important measure to answer such questions is the degree of a node i which measures the amount

of edges attached to it. Obviously, for an undirected network there are two such measures: a) the

From-degree (or In-degree) summing all (weighted) edges ending in node i and b) the To-degree

(or Out-degree) summing all (weighted) edges leaving node i. That is, the From-degree measures

how strongly node i is directly influenced by all other nodes in the network and the To-degree

measures how strongly other nodes in the network are directly influenced by node i. Finally,

the Total-degree measures the average amount of (weighted) edges per node in the network by
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averaging either over all From- or all To-degrees4. A network is said to be more connected than

another if its Total-degree is larger. Note that these concepts are measures of systemic risk as in

Diebold and Yilmaz (2014) and Barigozzi and Hallin (2017) amongst others, and their definition

will be formalized in the next section after the particular network - LVDN - is introduced in the

section below.

4.2.1 Construction of the LVDN

In order to measure interconnectedness within economic systems such as financial markets,

Diebold and Yilmaz (2014) propose the usage of the LVDN which is based on the second-order

stationary VMA(∞)-representation of a random process yt,

(4.1) yt =
∞∑

l=0
Θlηt−l , ηt ∼ w.n.(0,Ση),

which summarizes all aspects of connectedness. In particular, Ση and Θ0 contain all contempora-

neous effects, and {Θ1,Θ2, ...} all dynamic aspects of connectedness.

Based on (4.1), Diebold and Yilmaz (2014) propose to compute the adjacency matrix of the

LVDN based on the generalized variance decomposition of Pesaran and Shin (1998),

(4.2) dH
i, j =

σ̃η, j j
H−1∑
h=0

(e>
i ΘhΣηe j)2

H−1∑
h=0

(e>
i ΘhΣηΘ

>
h ei)

,

where ei is a N ×1-vector with 1 on the i–th entry, and zeros everywhere else, H is the forecast

horizon and σ̃η, j j denotes the ( j, j)-th entry of Σ−1
η . Since the innovations in (4.1) are not neces-

sarily orthogonal, sums of forecast error variance contributions do not necessarily sum to one,

making direct interpretation of the entries difficult. To circumvent this, the adjacency matrix of

the LVDN, WH , has (i, j)-th entry

(4.3) wH
i, j = 100

dH
i, j∑N

j=1 dH
i, j

where the scaling by 100 is used to express percentages. Note that in practice the LVDN depends

on the forecast horizon H and there is no reason why the LVDN should be the same for different

H. Equation (4.3) also implies that the LVDN is a weighted, directed network.

Since I use the LVDN to identify important nodes and sectors, appropriate measures need to

be defined in order identify such nodes. For that, I will make use of the commonly applied To-

and the From-degree. Formally, these two measures are defined as

(4.4) δTo
j =

N∑
i=1
i 6= j

wH
i, j, j = 1, ..., N and δFrom

i =
N∑

j=1
j 6=i

wH
i, j, i = 1, ..., N.

4Of course, both averages are equal since any edge leaving one node (and, therefore, contributing to the To-degree
of this node) must end at another node (and, therefore, contributing to the From-degree of this second node).
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Note that a node with a high To-degree influences other nodes to a high degree, whereas a

node with a high From-degree is influenced by other nodes to a high degree. A node for which

both, the in- and out-degree are large, is greatly influenced by other nodes and also greatly

influences other nodes as well. This naturally leads to the following definition of systemic nodes.

Definition 4.1. A node i in the LVDN, defined by the adjacency matrix WH with (i, j)-th entry

given by (4.3), is said to be systemic if its From- or To-degrees are relatively large compared to the

same degrees of the other nodes.

Based on this definition, I will call a node systemic when either of its two degree measures is

large relative to the degree measures of the other nodes. Moreover, one note about this definition

is of order. Of course, the term large has different meaning to each individual researcher. However,

under this definition it still prevails that the nodes with the highest From- and To-degrees are

central to the system in spreading and attracting shocks quicker than other nodes since there

are more/stronger connections associated with that node. Also worth mentioning at this point

is that Brownlees and Mesters (2017) recently proposed a different measure for systemicness

of a node based on whether the node is granular or not. However, this approach is not pursued

in this study since most current work on volatility networks uses the notion of systemicness in

Definition 4.1.

4.3 A Factor Approach for Volatility

Since this chapter focuses on identifying systemic nodes in the financial market and how such

results might change under inclusion/exclusion of nodes, the systematic risk exposure needs to

be extracted before the systemic risk can be assessed. Following Barigozzi and Brownlees (2017),

I approximate the systematic part by the market, respectively sector volatilities. Based on this, I

model the log-volatility, denoted by lnσ2
i,t, of stock i on day t as

(4.5) lnσ2
i,t =αi +βi lnσ2

m,t +γi lnσ2
si ,t +εi,t, i ∈ {1, ..., N}, t ∈ {1, ...,T}

where σ2
m,t and σ2

si ,t denote the volatility of the S&P500 index, respectively the volatility of the

SPDR sectoral index of the S&P5005 to which firm i belongs. Consequently, the systemic risk,

associated with the financial market, is captured by the error-terms εi,t, which will be the subject

of the forthcoming analysis.

Computing the (partial) autocorrelation function of the residual series {ε̂i,t : i = 1, ..., N, t =
1, ...,T} indicates that there is still autocorrelation present. Therefore, I approximate the residual

series by a stationary VAR(1)-process6. which directly links to the VMA(∞)-representation needed

5The SPDR sectors are: Materials (XLB), Utilities (XLU), Energy (XLE), Industrials (XLI), Technology (XLK),
Consumer Staples (XLP), Health Care (XLV), Financials (XLF) and Consumer Discretionary (XLY).

6As will become apparent in Section 5, my samples consists of 431 observations. Thus, fitting higher order
VAR-processes is unreliable in such small samples.
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for constructing the LVDN. Denote εt = (ε1,t, ....,εN,t)> and let B be a N ×N-matrix satisfying

det(IN −Bz) 6= 0 for any z ∈C such that |z| ≤ 1. The residual series is then approximated by

(4.6) εt =Bεt−1 +ut, t = 1, ...T

where ut is assumed to be a white-noise error term with full rank covariance matrix Σu, which is

not necessarily diagonal in general. After netting out the market and sector volatilities, most

interdependencies among the entries in ε̂t are expected to vanish. Therefore, I assume that

max j
∑N

i=11{(B)i, j 6= 0}= o(N), maxi
∑N

j=11{(B)i, j 6= 0}= o(N) and max j
∑N

i=11{(Σ−1
u )i, j 6= 0}= o(N).

Hence, estimating (4.6) by some regularization technique, like the adaptive LASSO, is appropriate

to enforce this (unknown) sparsity structure.

Since (4.6) is assumed to be a second order stationary VAR(1)-model, it possesses a VMA(∞)-

representation as in (4.1) and, consequently, the adjacency matrix of a LVDN can be computed

as described in (4.2) by inverting the VAR(1)-processes. Hence, based on this representation the

subsequent analysis will be carried out.

4.4 Estimation

4.4.1 Measuring Volatility via Realized Range and Extraction of the
Residual Series

Since the aim of this chapter is to estimate volatility networks and volatility is an unobserved

quantity, it needs to be estimated. To do so, I follow Diebold and Yilmaz (2015) and Barigozzi

and Brownlees (2017) and utilize the high-low range volatility measure of Parkinson (1980) to

quantify firm i’s stock price volatility on day t,

(4.7) σ̂2
i,t =

(lnHi,t − lnL i,t)2

4ln2
,

where Hi,t, respectively L i,t denotes the highest, respectively lowest price of firm i’s stock on day

t7. Note that Parkinson (1980) derives this volatility measure under the assumption that the

stock-price of firm i follows a geometric Brownian motion.

Even though the above high-low volatility measure is simple in its nature and more advanced

measures have been proposed in the literature (see, inter alia, Andersen et al., 2003; Barndorff-

Nielsen et al., 2008, 2011), several studies show that it performs well in terms of small bias and

variance (see, inter alia, Bali and Weinbaum, 2005; Martens and van Dijk, 2007; Brownlees and

Gallo, 2010).

Moreover, note that this volatility measure does not distinguish between the diffusion and

the jump part of volatility. This is due to the following reasons. First, the scope of the present

study is to assess how the exclusion of central nodes affects currently available results. To be

7Of course, this approach is also used to compute the market and sector volatilities.
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able to compare the results to the literature, I follow Diebold and Yilmaz (2015) and Barigozzi

and Brownlees (2017) and use the above. Second, if one is interested in central nodes and sectors

only, then disentangling them is not necessary since only the overall volatility of each firm is of

interest. If, however, one wants to see which part of the volatility matters most, then one is well

advised trying to disentangle them.

Finally, (4.5) is estimated by least squares and the residual series ε̂t is obtained in the usual

way.

4.4.2 Estimation of the LVDN

In line with the literature, I estimate the VAR(1)-process in (4.6) by OLS and use the sample

covariance, T−1 ∑
t ûtû>

t , which is based on the least squares residuals of (4.6) as an estimator

for the covariance matrix Σu of the errors ut in (4.6). However, given the dimensionality and the

number of observations in the used sample these estimates can be unreliable. To circumvent this

issue I will also consider a sparse representation of the VAR(1)-process in (4.6). In particular, I

estimate Equation (4.6) by minimizing the penalized quadratic loss

(4.8) min
A

T∑
t=1

‖ε̂t −Bε̂t−1‖2
F +λB

N∑
i=1

N∑
j=1

|bi j|
|b̃i j|

, t = 1, ...T

where λB ≥ 0 is the penalization parameter and b̃i j a pre-estimator (an initial LASSO estimator

in this case) for the (i, j)-th entry of B. The above minimization problem is solved via the adaptive

LASSO of Zou (2006). I choose the adaptive LASSO over the classic LASSO of Tibshirani (1996)

because it is able to perform consistent model selection, cf. Zou (2006). Furthermore, I choose the

penalization parameter by minimizing the BIC over a grid of possible values. Note that I also

carry out the analysis when B is assumed to not be sparse for comparison reasons.

Lastly, an estimator for Σu is needed. Given the VAR-parameters, obtained in the previous

step, the residuals ût can be computed as ût = ε̂t−ε̂t−1B̂ for t = 1, ..,T and their inverse covariance

matrix is inferred via the space-algorithm of Peng et al. (2009). This algorithm estimates N

single regressions by means of LASSO from which the partial correlations, ρ i, j, between ûi and

û j are computed and afterwards their inverse covariance matrix. This is possible due to the fact

that the (i, j)-th entry of the inverse covariance matrix is proportional, in a known fashion, to the

partial correlation between ûi and û j:

(4.9) ρ̂ i, j =− σ̃û,i j√
σ̃û,iiσ̃û, j j

,

see Lauritzen (1996). Here, σ̃û,i j denotes the (i, j)-th entry of Σ̂−1
û . Note that the space-algorithm

provides estimates for ρ i, j and σ̃û,i j, i, j = 1, ..., N.
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4.5 Empirical Analysis

In this section, empirical results will be presented. Before doing so, I will briefly discuss the data

set used for this empirical study.

4.5.1 Data Description

The data in this empirical study consists of 101 U.S. stocks taken from the S&P500 index (a list

of the included series and their tickers can be found in Table 4.5). The majority of these stocks

are listed in the S&P100.8 The data is sampled on a daily frequency from January, 1st 2007 up

to and including September, 17th, 2008, resulting in 431 observations over time for each series

and was downloaded from Yahoo-Finance and from the Wharton Research Data Base in case of

Lehman Brothers. Note that September, 17th, 2008 is the last day on which prices for Lehman

Brothers are observed after the company filed for bankruptcy.

Two remarks about the used data set are of order at this point. First, I explicitly include

Lehman Brothers. The inclusion of Lehman Brothers is crucial since all current studies on

volatility networks exclude it, thereby missing a probably important node in their data set.

As mentioned in the Introduction, exclusion of nodes induces sampling error in the network

estimates and, consequently, in the network To- and From-degree measures. Thus, this allows

me to gauge to what extend the currently prevailing results in the empirical volatility network

might be contaminated by omission of key nodes. Second, and closely connected to this issue is

the fact that I, as the majority of the current literature (see, inter alia, Barigozzi and Brownlees,

2017; Brownlees and Mesters, 2017; Barigozzi and Brownlees, 2017, and references therein),

consider such a data set. One can argue that only using these 101 stocks one still misses 399

stocks to obtain the full S&P500. Therefore, one still has the problem of biased network measures.

However, the S&P100’s market capitalization makes up about 50% of the market capitalization in

the U.S. equity market. Therefore, it seems plausible to argue that the remaining firms, which are

left out from the data set, play a minor role and that their bias effect on the estimated network

does not alter the results by too much.

4.5.2 Results

In this Section, results will be presented. First, I am going to discuss how the omission of Lehman

Brothers’ stock affects individual network measures and, afterwards, how aggregate measures

such as From- and To-degrees of firms aggregated in sectors are affected. Note that throughout

this section I set the forecast horizon to H = 10.9

8Note that due to the way the S&P100 is constructed. In fact firms can enter and leave the S&P100 on a regular
basis since a panel of experts decides which firms are listed. Therefore, not all of the firms in the considered data set
were permanent constituents of the S&P100. However, 90 of the considered firms were permanent constituents of the
S&P100 during the sampling period.

9H = 10 is chosen since the current Basel accord requires a 10-day value at risk assessment. Moreover, given the
construction of the LVDN, it can be expected that exclusion of Lehman Brothers from the sample does not alter the
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Effect of Lehman Brothers on Firm-Specific Network Measures The results for the

sample including Lehman Brothers are presented in Table 4.1. Table 4.2 displays results for the

same sample exluding Lehman Brothers. First, we can note that in both cases when Lehman

Table 4.1: 10 Largest Network Measures for
Firms, including Lehman Brothers

To-Degree From-Degree

Non-Sparse VAR

Ticker Sector Degree Ticker Sector Degree

SPG XLF 58.84 GS XLF 9.72
LEH XLF 54.36 GE XLI 9.69
AIG XLF 45.33 MS XLF 9.40
C XLF 42.69 MSFT XLK 9.35
MS XLF 26.30 ABT XLV 9.32
NEM XLB 17.03 BK XLF 9.20
DVN XLE 13.18 NOV XLE 9.19
COF XLF 11.84 HPQ XLK 9.18
GS XLF 11.10 COP XLE 9.06
PG XLP 11.06 MDT XLV 9.00

Sparse VAR

Ticker Sector Degree Ticker Sector Degree

LEH XLF 36.87 GS XLF 9.58
SPG XLF 30.28 MS XLF 9.33
AIG XLF 28.68 GE XLI 9.19
C XLF 28.06 ABT XLV 8.65
MS XLF 14.70 HPQ XLK 8.60
GE XLI 11.09 MSFT XLK 8.51
DVN XLE 10.24 NEM XLB 8.47
LMT XLI 8.99 AIG XLF 8.45
COF XLF 8.73 NOV XLE 8.29
GS XLF 8.57 AEP XLU 8.25

1 Sector abbreviations are: Materials (XLB), Energy (XLE),
Financials (XLF), Industrials (XLI), Technology (XLK),
Consumer Staples (XLP), Utilities (XLU), Health Care
(XLV) and Consumer Discretionaries (XLY).

2 The firm tickers can be found in Table 4.5 in Appendix
4.A.

Table 4.2: 10 Largest Network Measures for
Firms, excluding Lehman Brothers

To-Degree From-Degree

Non-Sparse VAR

Ticker Sector Degree Ticker Sector Degree

SPG XLF 54.44 GS XLF 9.72
AIG XLF 45.21 GE XLI 9.59
C XLF 40.00 MSFT XLK 9.34
MS XLF 28.75 MS XLF 9.32
NEM XLB 18.25 ABT XLV 9.22
DVN XLE 14.55 NOV XLE 9.20
COF XLF 14.11 BK XLF 9.15
GE XLI 13.78 HPQ XLK 9.15
PG XLP 12.03 COP XLE 9.06
ABT XLV 11.42 MDT XLV 8.96

Sparse VAR

Ticker Sector Degree Ticker Sector Degree

AIG XLF 36.99 GE XLI 9.25
MS XLF 23.74 GS XLF 9.20
SPG XLF 22.27 MS XLF 8.94
C XLF 16.70 MSFT XLK 8.74
COF XLF 10.34 NEM XLB 8.60
USB XLF 10.12 HPQ XLK 8.52
GS XLF 9.94 ABT XLV 8.46
ABT XLV 9.94 NOV XLE 8.20
GE XLI 9.69 AEP XLU 8.11
LMT XLI 9.29 AIG XLF 8.10

1 Sector abbreviations are: Materials (XLB), Energy (XLE),
Financials (XLF), Industrials (XLI), Technology (XLK),
Consumer Staples (XLP), Utilities (XLU), Health Care
(XLV) and Consumer Discretionaries (XLY)

2 The firm tickers can be found in Table 4.5 in Appendix
4.A.

Brothers is omitted or not the financial sector plays a dominant role in propagating shocks since

in either case the top 10 From-degrees are filled with financial firms. In terms of attracting shocks,

the picture is somewhat different since the top 10 firms come from a variety of sectors with no

clear pattern. However, the financial sector still has the most firms in the top 10 To-degrees. Note

that the top 25 firms with the highest From-degrees all have a From-degree measure of 8.5 or

higher and include several financial firms. Moreover, Lehman Brothers plays a major role in

distributing shock through the network by being ranked in the top 2 most “To-connected” firms.

A closer look at the top 10 firms of the To-degree in the sample from which Lehman Brothers

is excluded reveals that the majority of firms stays in the top 10 for both the sparse and the

effects for other forecast horizons H.
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non-sparse VAR setting. However, their ranking shuffles. Moreover, General Electric (GE) and

Abbott Laboratories enter the top 10 in both VAR settings once Lehman Brothers is excluded.

In case of the non-sparse VAR setting Goldman Sachs (GS) leaves the top 10 and for the sparse

VAR-setting, Devon Newport (DVN) leaves and USB enters the top 10. Thus, there is some

movement in the top 10 due to the exclusion of Lehman Brothers from the sample.

Focusing now on the actual To-degrees themselves one quickly notices that they change by a

large margin after the deletion of Lehman Brothers from the sample. All financial firms which

stay within the top 10 have larger changes in their To-degrees than non-financial firms. Moreover,

the changes are by far larger in case of the sparse VAR-setting. For example, Citigroup’s To-degree

decreases by about 11 percentage points in case of a sparse VAR but only by about 2.7 percentage

points in case of a non-sparse VAR-setting. These findings suggest that the exclusion of Lehman

Brothers from the data has substantial effects on the estimated To-degrees, irrespective of the

used VAR-setting and the changes are most striking for financial firms. This is most likely due

to the fact that these firms pick up effects which are originally attributed to Lehman Brothers.

Finally, there is no clear direction in which the changes occurr since both increases and decreases

can be observed.

When the From-degrees are considered, the picture changes. In particular, the composition

of the top 10 firms remains the same, only the ordering of the firms changes. The actual From-

degrees themselves change by less than 0.1 percentage point in case of a non-sparse VAR. For

the sparse VAR setting, however, there some larger changes but still not as pronounced as for

the To-degrees. In particular, the financial firms’ From-degrees change at most by 0.5 percentage

points and the non-financial firms’ degrees by less than 0.1 percentage points with the exception

of American Electric Power (AEP). Thus, it seems that the exclusion of Lehman Brothers does

not affect the From-degrees as much as the To-degrees. But given the fact that the From-degree

of Lehman Brothers is relatively small (they are not in the top 10) there is also not much which

can carry over after exclusion.

Effect of Lehman Brothers on Sector Measures In this Section I consider the nine SPDR

sectors and their associated degree measures. Similar to the From- and To-degrees for individual

nodes we can also compute From- and To-degrees on a sector level. That is, we collect all nodes

which belong to the same SPDR sectors and take the average of their From- and To-degrees,

respectively. The results for this exercise can be found in Tables 4.3 for the data set which includes

Lehman Brothers and in Table 4.4 for the data set excluding Lehman Brothers.

Starting with the To-degree measure of the nine sectors, one can see that the financial sector

clearly dominates the other sectors by having a To-degree two to three times as large as the

second ranked sector. Moreover, we can observe that the the To-degree decreases by about 2

percentage points in case of a non-sparse VAR specification and by about 1 percentage point for

the sparse VAR specification. For all other sectors the To-degree changes by at most 1 percentage

point. In particular, the materials and the health care sectors have both similar changes. All

119



CHAPTER 4. ROBUSTNESS OF FINANCIAL VOLATILITY NETWORKS TO THE EXCLUSION
OF SYSTEMIC NODES

other sectors’ To-degrees change by even less than 0.5 percentage points. However, even these

small changes shuffle the sector orderings after Lehman Brothers got deleted. Concluding,

Table 4.3: SPDR Sectors ranked
by degree measures, Lehman
Brothers included

To-Degree From-Degree

Non-Sparse VAR

Sector Degree Sector Degree

XLF 20.28 XLF 8.52
XLI 6.53 XLV 8.21
XLB 6.47 XLU 8.10
XLV 6.33 XLE 8.06
XLE 5.88 XLB 8.01
XLU 5.76 XLK 7.89
XLK 5.33 XLI 7.80
XLP 4.93 XLP 7.48
XLY 4.76 XLY 6.97

Sparse VAR

Sector Degree Sector Degree

XLF 13.77 XLF 7.49
XLI 5.70 XLU 6.80
XLU 5.30 XLE 6.56
XLB 5.05 XLV 6.24
XLK 4.88 XLB 6.21
XLE 4.88 XLI 6.17
XLY 4.54 XLK 6.03
XLV 4.33 XLY 5.05
XLP 4.13 XLP 4.84

1 Sector abbreviations are: Materials
(XLB), Energy (XLE), Financials (XLF),
Industrials (XLI), Technology (XLK),
Consumer Staples (XLP), Utilities
(XLU), Health Care (XLV) and Con-
sumer Discretionaries (XLY)

Table 4.4: SPDR Sectors ranked
by degree measures, Lehman
Brothers excluded

To-Degree From-Degree

Non-Sparse VAR

Sector Degree Sector Degree

XLF 18.05 XLF 8.45
XLB 7.49 XLV 8.14
XLV 7.17 XLU 8.10
XLI 6.92 XLE 8.02
XLE 6.11 XLB 7.95
XLU 5.97 XLK 7.89
XLK 5.72 XLI 7.80
XLP 5.27 XLP 7.43
XLY 5.12 XLY 6.93

Sparse VAR

Sector Degree Sector Degree

XLF 12.56 XLF 7.53
XLI 6.18 XLU 6.75
XLB 5.81 XLE 6.47
XLU 5.55 XLV 6.45
XLV 5.33 XLB 6.36
XLY 4.82 XLK 6.23
XLK 4.79 XLI 6.23
XLP 4.75 XLY 5.15
XLE 4.69 XLP 4.88

1 Sector abbreviations are: Materials
(XLB), Energy (XLE), Financials (XLF),
Industrials (XLI), Technology (XLK),
Consumer Staples (XLP), Utilities
(XLU), Health Care (XLV) and Con-
sumer Discretionaries (XLY)

these findings suggest that results on financial networks reported in the current literature are

trustworthy in a qualitative sense. That is, in agreement with intuition the financial sector

plays the key role in propagating and attracting shocks in the U.S. financial system. However,

quantitative statements about their effects might be in err given my findings. In particular, the

above results suggest that reported findings might be biased downwards for the financial sector

and upwards for the remaining sectors.
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4.6 Conclusions

In this chapter I investigated to what extend the omission of Lehman Brothers from a sample

of 101 U.S. firms’ stock price volatilities affects results in the widely applied LVDN based on

a VAR(1) representation of the data. I find that the central role of the financial sector and its

constituents remains unaltered when Lehman Brothers is deleted from the sample. However,

I also find that the estimated To-degree measure can change to a large extend. For example,

Citigroup’s To-degree decreases by about eleven percentage points after Lehman Brothers is

excluded from the sample. Moreover, the results suggest that the From-degree measures are

less affected by the exclusion of Lehman Brothers. Nevertheless, they do indeed change as well.

Thus, the exclusion of important firms, such as Lehman Brothers, from the analysis can yield

misleading findings in empirical studies, both on a firm-specific and on an aggregated sector-level.

Appendix 4.A Tables

Table 4.5: Data Description

Ticker Company Name Ticker Company Name

XLB XLU

DD Du Pont AEP American Electric Power
DOW Dow Chemicals EXC Exelon
FCX Freeport-McMoran IDA IdaCorp.
MON Monsanto MGEE MGE Energy
MLM Martin Marietta Materials PNW Pinnacle West Capital Corp.
NEM Newmont Mining Corp. SO Southern Company
SEE Sealed Air Corp. WR Westar Energy
VMC Vulcan Materials Company XEL Xcel Energy

XLI XLK

BA Boeing Company AAPL Apple
CAT Caterpillar ACN Accenture plc
EMR Emerson Electric CSCO Cisco Systems
FDX FedEx EBAY eBay
GD General Dynamics EMC EMC
GE General Electric HPQ Hewlett-Packard
HON Honeywell Intl. IBM IBM
LMT Lockheed Martin INTC Intel
MMM 3M Company MSFT Microsoft
NSC Norfolk Southern ORCL Oracle
RTN Raytheon QCOM QUALCOMM
UNP Union Pacific TXN Texas Instruments
UPS United Parcel Service T AT&T

Continued on next page

121



CHAPTER 4. ROBUSTNESS OF FINANCIAL VOLATILITY NETWORKS TO THE EXCLUSION
OF SYSTEMIC NODES

Table 4.5 – continued from previous page

Ticker Company Name Ticker Company Name

UTX United technologies VZ Verizon

XLE XLP

APA Apache CL Colgate-Palmolive
APC Anadarko Petroleum COST Costco
COP ConocoPhillips CVS CVS Caremark
CVX Chevron KO The Coca Cola Company
DVN Devon Energy MDLZ Mondelez International
HAL Halliburton MO Altria
NOV National Oilwell Varco Pep PepsiCo
OXY Occidental Petroleum PG Procter & Gamble
SLB Schlumberger Ltd. WMT Wal-Mart Stores
XOM Exxon Mobile – –

XLY XLV

AMZN Amazon.com ABT Abbott Laboratories
CMCSA Comcast AMGN Amgen
DIS Walt Disney BAX Baxter International
F Ford Motor BMY Bristol-Myers Squibb
FOXA Twenty-First Century Fox GILD Gilead Sciences
HD Home Depot JNJ Johnson & Johnson
LOW Lowes LLY Lilly (Eli) & Co.
MCD McDonalds MDT Medtronic
NKE Nike MRK Merck & Co.
SBUX Starbucks PFE Pfizer
TGT Target UNH United Health
TWX Time Warner – –

XLF

AIG AIG JPM JPMorgan Chase
ALL Allstate LEH Lehman Brothers
AXP American Express Co. MET MetLife
BAC Bank of America MS Morgan Stanley
BK Bank of New York SPG Simon Property
C Citigroup USB U.S. Bankcorp.
COF Capital One Financial WFC Wells Fargo
GS Goldman Sachs

1 The sector abbreviations are: Materials (XLB), Energy (XLE), Financials (XLF), Industri-

als (XLI), Technology (XLK), Consumer Staples (XLP), Utilities (XLU), Health Care (XLV)

and Consumer Discretionary (XLY)
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