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Abstract
Domain-Specific Languages (DSL’s) offer language-level ab-

stractions that General-Purpose Languages do not offer, thus

speeding up the implementation of the solution of problems

within a specific domain. Developers have the choice of de-

veloping a DSL by building an interpreter/compiler for it,

which is a hard and time-consuming task, or embedding it in

a host language, thus speeding up the development process

but losing several advantages that having a dedicated com-

piler might bring. In this work we present a meta-compiler

called Metacasanova, whose meta-language is based on op-

erational semantics. Then, we propose a language extension

with functors and modules that allows to embed the type

system of a language definition inside the meta-type system

of Metacasanova and improves the performance of manip-

ulating data structures at run-time. Our results show that

Metacasanova dramatically reduces the code lines required

to develop a compiler, and that the running time of the Meta-

program is improved by embedding the host language type

system in the meta-type system with the use of functors in

the meta-language.

CCSConcepts • Software and its engineering→Trans-
lator writing systems and compiler generators;

Keywords meta-compiler, optimization, operational seman-

tics
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1 Introduction
Domain-Specific Languages (DSL’s) are becoming more and

more relevant in software engineering thanks to their ability

to provide abstractions at language level to target specific

problem domains [20, 21]. Notable examples of the use of

DSL’s are (i) game development (UnrealScript, JASS, Status-

quo, NWScript), (ii) Database programming and design (SQL,

LINQ), and (iii) numerical analysis and engineering (MAT-

LAB, Octave). A notable amount of work on DSL’s is made

in the field of game development, as games are complex

and they require, for performance reasons, to implement ab-

stractions that exhibit the behaviours of threads. Indeed the

overhead of threads is too big to be used in games to update

every single entity in it, as their number can approach to the

order of thousands (just think about a shooter game where

the player can shoot with an automatic rifle at a rate of 30

rounds per second).

Two main alternatives have been proposed for the devel-

opment of DSL’s: the (i) Embedding technique, and (ii) the
Interpretation/Compilation technique [16].

The former approach extends an existing programming

language with the additional abstractions of the DSL. This

is the case, for instance, of NWScript, a scripting language

for the Neverwinter Nights game extending the C language,

and LINQ, which offers SQL-like abstractions extending C#.

This technique has the advantage that the infrastructure of

the host language can be widely re-used, thus reducing the

development effort. Moreover, people who are expert on the

host language can become proficient with the DSL extension

in a short time. The disadvantages are that the syntax is

likely to be far from that of the DSL formal syntax, since

https://doi.org/10.1145/3136014.3136015
https://doi.org/10.1145/3136014.3136015
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General-Purpose Languages generally do not offer syntax

extensions, and Domain-specific optimizations are difficult

to achieve [13, 19].

The latter approach requires to develop an interpreter or

compiler for the language. This is the case, for instance, of

UnrealScript, JASS, and SQL. This approach has the advan-

tages of providing a syntax close to the formal definition

of the Domain-specific language, good error reporting, and

domain-specific optimization through code analysis. How-

ever, designing and implementing a compiler for a DSL is a

hard and time-consuming task, since a compiler is a complex

piece of software made of different modules that perform

several translation steps [3]. For this reason this option is

not always considered feasible.

The translation steps performed by a compiler are not part

of the creative aspect of designing the language [4, 8]. There-

fore, they can be automated. The most common automated

part is the Lexing/Parsing phase with Parser generators such

as Yacc. A further effort in fully automating the development

of a compiler has been done by employing Meta-compilers,
that are computer programs that take as input the definition

of a language (usually defined in a meta-language), a pro-
gramwritten in that language and output executable code for

the program. Meta-compilers usually automate not only the

parsing phase, but also the type checking and the semantics

implementation.

In this paper we present Metacasanova, a meta-compiler

whose meta-language is based on operational semantics

[10, 12], which was a project whose goal was easing the

development and extension of the DSL for games Casanova
[1, 2, 11], and a possible extension that aims to improve the

performance of languages built in Metacasanova. In Section

2 we further discuss how developing a compiler leads to

repetitive steps that could be automated and we formulate

the problem statement of this paper; in Section 3 we ex-

plain how the meta-language of Metacasanova is defined

and what its semantics are; in Section 4 we explain how the

meta-compilation process is implemented in Metacasanova

and how the target code is generated; in Section 5 we pro-

pose a further language abstraction for Metacasanova in

order to improve the performance of the generated code; in

Section 6 we evaluate the performance of the code generated

by Metacasanova after re-implementing Casanova [2], a DSL

for game development, and a subset of the C language. We

also evaluate the performance gain given by the presented

code optimization.

2 Repetitive Steps in Compilers
Development

In Section 1 we briefly stated that the process of developing

a compiler includes several steps that are repetitive, i.e. their

behaviour is always the same regardless of the language for

which the compiler is built. In this section we show in which

way this process is repetitive and what the common pattern

is.

2.1 Type Checking
Type systems are generally expressed in the form of logical

rules [7], made of a set of premises, that must be verified in

order to assign to the language construct the type defined

in the conclusion. For example the following rule defines

the typing of an if-then-else statement in a functional

programming language:
1

Γ ⊢ c : bool Γ ⊢ t : τ Γ ⊢ e : τ

Γ ⊢ if c then t else e : τ

In this rule Γ is the environment. The type rule first eval-

uates the premises, which means that if the condition of

the if-then-else has type bool and both then and else
blocks have the same type, then the whole if-then-else
has the type of either blocks.

Typing a construct of the language requires to evaluate its

corresponding typing rule. In order to do so, the behaviour

of each typing rule must be implemented in the host lan-

guage in which the compiler is defined. Independently of the

chosen language, the behaviour will always be the following

: (i) evaluate a premise, (ii) if the evaluation of the premise

fails then the construct fails the type check and an error is

returned, (iii) repeat step 1 and 2 until all the premises have

been evaluated, and (iv) assign the type to the construct that

is defined in the rule conclusion.

2.2 Semantics
Semantics define how the language abstractions behave and

can be expressed in different ways, for example with a term-

rewriting system [15] or with the operational semantics [10].

For the scope of this work, we choose to rely on the opera-

tional semantics. The definition of the operational semantics

of a language abstraction is, again, in the form of a logical

rule where the conclusion (which is the final behaviour of the

construct) is achieved if the evaluation of the premises lead

to the desired results. For instance, the operational semantics

of a while loop could be the following:

⟨c⟩ ⇒ true

⟨while c do L ; k⟩ ⇒ ⟨L ; while c do L ; k⟩

⟨c⟩ ⇒ false

⟨while c do L ; k⟩ ⇒ ⟨k⟩

Again, the behaviour of the semantics rule must be en-

coded in the host language in which the compiler is being

developed, but the pattern it follows is always the same. This

1
Note that the type rule of if-then-else in an imperative programming

language is different.
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step, depending on the implementation choice, might also

require to translate this behaviour into an intermediate lan-
guage representation that is more suitable for the subsequent

code generation phase.

2.3 Discussion
The examples above show how the behaviour of the type

checking and semantics rules must be hard-coded in the

language chosen for the compiler implementation, regardless

of the fact that their pattern is constantly repeated in every

rule. This pattern can be captured in a meta-language that is

able to process the type system and operational semantics

definition of the language and produce the code to execute

the behaviour of the rules. In this work we describe the meta-

language for Metacasanova, a meta-compiler that is able to

read a program written in terms of type system/operational

semantics rules defining a programming language, a program

written in that language, and output executable code that

mimics the behaviour of the semantics. Such a language

relieves the programmer fromwriting boiler-plate codewhen

implementing a compiler for a (Domain-Specific) language.

For this reason we formulate the following research question:

Research question 1: To what extent does Metacasanova
ease the development speed of a compiler for a Domain-Specific
Language, in terms of code length compared to the hard-coded
implementation, and how much does the abstraction layer of
the Metacompiler affect the performance of the generated code?

Another problem that arises when using meta-compilers

is the performance decay given by the introduction of their

additional abstraction layer. One of the reasons for this per-

formance decay (see Section 4.3) is that the meta-language

(and thus the meta-type system) is unaware of the type sys-

tem and the memory model of the language implemented

in the meta-compiler. For this reason, checking the types

and accessing the memory requires to dynamically look up

a symbol table defined with the abstractions provided by

the meta-language. The need for performance is for Meta-

casanova important because it is being used to extend the

DSL for games Casanova [1, 2]. Thus, we formulate a second

research question:

Research question 2: In what way can we embed the type
system of the implemented language in Metacasanova in order
to get rid of the dynamic lookups at runtime and what is the
performance gain of this optimization?

We try to answer these two research questions by using

a two-step methodology: (i) we present an architecture for

Metacasanova aimed to automate the process of code genera-

tion, and then (ii) we propose a language extension to embed

the implemented language type system in the meta-type

system of Metacasanova.

2.4 Related Work
RML [17] is a meta-compiler based on operational semantics

that is similar to Metacasanova. Its syntax is very close to

that of ML and it generates C code. A notable effort was

done to optimize the tail calls in the generated code for the

rules, but the problem arisen by Research Question 2 is not

addressed.

Stratego [5] is a meta-compiler based on a transformation

system. A transformation language consists of a series of

constructor calls to construct the terms of the grammar and

functions that specify how to evaluate the terms. Stratego is

not a typed language, so it does not ensure that the terms

and transformation functions are used consistently.

A language extension for Haskell involving template meta-
programming exists [18]. Although a valuable and elegant

approach, using Haskell language extensions is not suitable

for domain-specific languages for games due to the wide use

of monads and monad transformers, which greatly affect the

performance [14], and thunks, which affects the memory

usage. In Section 4 we underline how this project was born

to ease the extension of a domain-specific language for game

development, thus this was not a suitable choice for our

initial goals.

Syntax Macro meta-programming [6] is an approach that

operates during the parsing phase. Macros are used to pro-

duce an abstract syntax tree that is replaced when the macro

is invoked. One notable example of this kind of

meta-programming can be found in the Lisp language family.

Macros guarantee syntactic safety [22], but it is not possible

to define the meta-types of the newly introduced syntactic

elements.

3 Metacasanova Syntax and Semantics
In the previous sectionwe showed that the process of evaluat-

ing typing and semantics rules is always the same, regardless

of the specific language implementation. We have also dis-

cussed how this evaluation must be re-implemented every

time in a hard-coded compiler by using the abstractions pro-

vided by the host language, which leads to verbose code

and the loss of the clarity and simplicity originally encoded

in the type rules and semantics. In this section we define

the requirements of Metacasanova, we informally present,

through an example, how a meta-program works, and we fi-

nally propose the syntax and semantics of its meta-language.

3.1 Requirements of Metacasanova
In order to relieve programmers of manually defining the

behaviour described in Section 2 in the back-end of the com-

piler, we propose the following features for Metacasanova:

• It must be possible to define custom operators (or func-

tions) and data containers. This is needed to define the

syntactic structures of the language we are defining.
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• It must be typed: each syntactic structure can be asso-

ciated to a specific type in order to be able to detect

meaningless terms (such as adding a string to an inte-

ger) and notify the error to the user.

• It must be possible to have polymorphic syntactical

structures. This is useful to define equivalent “roles”

in the language for the same syntactical structure; for

instance we can say that an integer literal is both a

Value and an Arithmetic expression.
• It must natively support the evaluation of semantics

rules, as those shown above.

We can see that these specifications are compatible with

the definition of meta-compiler, as the software takes as

input a language definition written in the meta-language, a

program for that language, and outputs runnable code that

mimics the code that a hard-coded compiler would output.

3.2 General Overview
A Metacasanova program is made of a set of Data and

Function definitions, and a sequence of rules. A data defini-

tion specifies the constructor name of the data type (used to

construct the data type), its field types, and the type name

of the data. Optionally it is possible to specify a priority

for the constructor of the data type. For instance this is the

definition of the sum of two arithmetic expressions

Data Expr -> "+" -> Expr : Expr

Note that Metacasanova allows you to specify any kind of

notation for data types in the language syntax, depending

on the order of definition of the argument types and the

constructor name. In the previous example we used an infix

notation. The equivalent prefix and postfix notations would

be:

Data "+" -> Expr -> Expr : Expr
Data Expr -> Expr -> "+" : Expr

A function definition is similar to a data definition but it also

has a return type. For instance the following is the evaluation

function definition for the arithmetic expression above:

Func "eval" -> Expr : Value

In Metacasanova it is also possible to define polymorphic

data in the following way:

Value is Expr

In this way we are saying that an atomic value is also an

expression and we can pass both a composite expression and

an atomic value to the evaluation function defined above.

Metacasanova also allows to embed C# code
2
into the

language by using double angular brackets. This code can be

used to embed .NET types when defining data or functions,

or to run C# code in the rules. For example in the following

snippets we define a floating point data which encapsulates

2
See Section 4 for the motivation.

a floating point number of .NET to be used for arithmetic

computations:

Data "$f" -> <<float >> : Value

A rule in Metacasanova, as explained above, may contain

a sequence of function calls and clauses. In the following

snippet we have the rule to evaluate the sum of two floating

point numbers:

eval a => $f c
eval b => $f d
<<c + d>> => res
------------------------
eval (a + b) => $f res

Note that if one of the two expressions does not return a

floating point value, then the entire rule evaluation fails.

Also note that we can embed C# code to perform the actual

arithmetic operation. Metacasanova selects a rule by means

of pattern matching (in order of declaration of rules) on the

function arguments. This means that both of the following

rules will be valid candidates to evaluate the sum of two

expressions:

...
---------------
eval expr => res

...
----------------
eval (a + b) => res

Finally the language supports expression bindings with

the following syntax:

x := $f 5

3.3 Formalization
In what follows we assume that the pattern matching of the

function arguments in a rule succeeds, otherwise a rule will

fail to return a result. The informal semantics of the rule

evaluation in Metacasanova is the following:

R1 A rule with no clauses or function calls always returns

a result.

R2 A rule returns a result if all the clauses evaluate to

true and all the function calls in the premise return a

result.

R3 A rule fails if at least one clause evaluates to false or

one of the function calls fails (returning no results).

We will express the semantics, as usual, in the form of logical

rules, where the conclusion is obtained when all the premises

are true. In what follows we consider a set of rules defined in

the Metacasanova language R. Each rule has a set of function

calls F and a set of clauses (boolean expressions) C . We use

the notation f r to express the application of the function f
through the rule r . We will define the semantics by using the

notation ⟨expr ⟩ to mark the evaluation of an expression, for
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example ⟨f r ⟩ means evaluating the application of f through

r . The following is the formal semantics of the rule evaluation

in Metacasanova, based on the informal behaviour defined

above:

R1:

C = ∅

F = ∅

⟨f r ⟩ ⇒ {x}

R2:

∀ci ∈ C , ⟨ci ⟩ ⇒ true
∀fj ∈ F ,∃rk ∈ R | ⟨f rkj ⟩ ⇒ {xrk }

⟨f r ⟩ ⇒ {xr }

R3(a):

∃ci ∈ C | ⟨ci ⟩ ⇒ f alse

⟨f r ⟩ ⇒ ∅

R3(b)

∀rk ∈ R ,∃fj ∈ F | ⟨f rkj ⟩ ⇒ ∅

⟨f r ⟩ ⇒ ∅

R1 says that, when both C and F are empty (we do not

have any clauses or function calls), the rule in Metacasanova

returns a result. R2 says that, if all the clauses inC evaluates

to true and, for all the function calls in F we can find a rule

that returns a result (all the function applications return a

result for at least one rule of the program), then the current

rule returns a result. R3(a) and R3(b) specify when a rule

fails to return a result: this happens when at least one of the

clauses in C evaluates to false, or when one of the function

applications does not return a result for any of the rules

defined in the program.

In the following section we describe how the code generation

process works, namely how the Data types of Metacasanova

are mapped in the target language, and how the rule evalua-

tion is implemented.

4 Code Generation
In Section 3 we defined the syntax and semantics of Meta-

casanova. In this section we explain how the abstractions

of the language are compiled into the generated code. We

chose C# as target language because the development of

Metacasanova started with the idea of expanding the DSL

for game development Casanova with further functionali-

ties. Casanova hard-coded compiler generates C# code as

well because it is compatible with game engines such as

Unity3D and Monogame. At the same time, C# grants de-

cent performance without having to manually manage the

memory such as for lower-level languages like C/C++. Code

generation in different target languages is possible but still

an ongoing project (see Section 7).

4.1 Data Structures Code Generation
The type of each data structure is generated as an interface in

C#. Each data structure defined in Metacasanova is mapped

to a class in C# that implements such interface. The class

contains as many fields as the number of arguments the

data structure contains. Each field is given an automatic

name argC where C is the index of the argument in the data

structure definition. The data structure symbols used in the

definition might be pre-processed and replaced in order to

avoid illegal characters in the C# class definition. The class

contains an additional field that stores the original name of

the data structure before the replacement is performed, used

for its “pretty print”. For example the data structure

Data "$i" -> int : Value

will be generated as

public interface Value { }

public class __opDollari : Value
{

public string __name = "$i";
public int __arg0;

public override string ToString ()
{

return "(" + __name + " " + __arg0 + ")";
}

}

4.2 Code Generation for Rules
Each rule contains a set of premises that in general call

different functions to produce a result, and a conclusion that

contains the function evaluated by the current rule and the

result it produces. The code generation for the rules follows

the steps below:

1. Generate a data structure for each function defined in

the meta-program.

2. For each function f extract all the rules whose conclu-

sion contains f .
3. Create a switch statement with a case for each rule

that is able to execute the function (the function is in

its conclusion).

4. In the case block of each rule, define the local variables

defined in the rule.

5. Apply pattern matching to the arguments of the func-

tion contained in the conclusion of the rule. If it fails,

jump immediately to the next case (rule).

6. Store the values passed to the function call into the

appropriate local variables.

7. Run each premise by instantiating the class for the

function used by it and copying the values into the

input arguments.

8. Check if the premise outputs a result and, in the case of

an explicit data structure argument, check the pattern
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matching. If the premise result is empty or the pattern

matching fails for all the possible executions of the

premise then jump to the next case.

9. Generate the result for the current rule execution.

Inwhat follows, we use as an example the code generation for

the following rule (which computes the sum of two integer

expressions in a programming language):

eval a -> $i c
eval b -> $i d
<< c + d >> -> e
----------------
eval (a + b) -> $i e

From now on we will refer to an argument as explicit
data argument when its structure appears explicitly in the

conclusion or in one of the premises, as in the case of a + b
in the example above.

4.2.1 Data Structure for the Function
As first step the meta-compiler generates a class for each

function defined in the meta-program. This class contains

one field for each argument the function accepts. It also

contains a field to store the possible result of its evaluation.

This field is a struct generated by themeta-compiler defined

as follows:

public struct __MetaCnvResult <T> { public T Value
; public bool HasValue; }

The result contains a boolean to mark if the rule actually

returned a result or failed, and a value which contains the

result in case of success.

For example, the function

Func eval -> Expr : Value

will be generated as

public class eval
{

public Expr __arg0;
public __MetaCnvResult <Value > __res;
...

}

4.2.2 Rule Execution
The class defines a method Run that performs the actual code

execution. The meta-compiler retrieves all the rules whose

conclusion contains a call to the current function, which

define all the possible ways the function can be evaluated

with. It then creates a switch structure where each case
represents each rule that might execute that function. The

result of the rule is also initialized here (the struct will

contain a default value and the boolean flag will be set to

false). Each case defines a set of local variables, that are

the variables used within the scope of that rule.

4.2.3 Local Variables Definitions and Pattern
Matching of the Conclusion

At the beginning of each case, the meta-compiler defines the

local variables initialized with their respective default values.

It also generates then the code necessary for the pattern-

matching of the conclusion arguments. Since variables al-

ways pass the pattern-matching, the code is generated only

for arguments explicitly defining a data structure (see the

examples about arithmetic operators in Section 3) and liter-

als. If the pattern matching fails then the execution jumps to

the next case (rule). For instance, the code for the following

conclusion

...
-------------
eval (a + b) -> $i e

is generated as follows

case 0:
{

Expr a = default(Expr);
Expr b = default(Expr);
int c = default(int);
int d = default(int);
int e = default(int);
if (!( __arg0 is __opPlus)) goto case 1;
...

}

Note that an explicit data argument, such in the example

above, might contain other nested explicit data arguments,

so the pattern-matching is recursively performed on the data

structure arguments themselves.

4.2.4 Copying the Input Values Into the Local
Variables

When each function is called by a premise, the local values

are stored into the class fields of the function defined in Sec-

tion 4.2.1. These values must be copied to the local variables

defined in the case block representing the rule. Particular

care must be taken when one argument is an explicit data.

In that case, we must copy, one by one, the content of the

data into the local variables bound in the pattern matching.

For example, in the rule above, we must separately copy the

content of the first and second parameter of the explicit data

argument into the local variables a and b. The generated

code for this step, applied to the example above, will be:

__opPlus __tmp0 = (__opPlus)__arg0;
a = __tmp0.__arg0;
b = __tmp0.__arg1;

Note that the type conversion from the polymorphic type

Expr into opPlus is now safe because we have already

checked during the pattern matching that we actually have

opPlus.
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4.2.5 Generation of Premises
Before evaluating each premise, we must instantiate the class

for the function that they are invoking. The input arguments

of the function call must be copied into the fields of the

instantiated object. If one of the arguments is an explicit data

argument, then it must be instantiated and its arguments

should be initialized, and then the whole data argument must

be assigned to the respective function field. After this step, it

is possible to invoke the Run method of the function to start

its execution. The first premise of the example above then

becomes (the generation of the second is analogous):

eval a -> $i c

eval __tmp1 = new eval();
__tmp1.__arg0 = a;
__tmp1.Run();

4.2.6 Checking the Premise Result
After the execution of the function called by a premise, we

must check if a rule was able to correctly evaluate it. In order

to do so, we must check that the result field of the function

object contains a value, and if not the rule fails and we jump

to the next case (rule), which is performed in the following

way:

if (!( __tmp1.__res.HasValue)) goto case 1;

If the premise was successfully evaluated by one rule, then

we must check the structure of the result, which leads to the

following three situations: (i) the result is bound to a variable,
(ii) the result is constrained to be a literal, and (iii) the result
is an explicit data argument. In the first case, as already

explained above, the pattern matching always succeeds, so

no check is needed. In the second case, it is enough to check

the value of the literal. In the last case, all the arguments of

the data argument must be checked to see if they match the

expected result. In general this process is recursive, as the

arguments could be themselves other explicit data arguments.

If the result passes the check, then the result is copied into

the local variables, in a fashion similar to the one performed

for the function premise. For instance, for the premise

eval a -> $i c

the meta-compiler generates the following code to check the

result

if (!( __tmp1.__res.Value is __opDollari)) goto
case 1;

__MetaCnvResult <Value > __tmp2 = __tmp1.__res;
__opDollari __tmp3 = (__opDollari)__tmp2.Value;
c = __tmp3.__arg0;

4.2.7 Generation of the Result
When all premises correctly output the expected result, the

rule can output the final result. In order to do that, the gen-

erated code must copy the right part of the conclusion (the

result) into the res variable of the function class. If the right

part of the conclusion is, again, an explicit data argument,

then the data object must first be instantiated and then copied

into the result. For example the result of the rule above is

generated as follows:

res = c + d;
__opDollari __tmp7 = new __opDollari ();
__tmp7.__arg0 = res;
__res.HasValue = true;
__res.Value = __tmp7;
break;

After this step, the rule evaluation successfully returns a

result.

This implementation choice is due to the fact that we

plan to support partial function applications, thus, when a

function is partially applied, there is the need to store the

values of the arguments that were partially given. This could

still be implemented with static methods and lambdas in C#,

but not all programming languages natively support lambda

abstractions, so we chose to have a set-up that allows us to

change the target language without dramatically altering

the logic of code generation.

4.3 Discussion
Metacasanova has been evaluated in [9] by re-building the

DSL for game development Casanova [1, 2]. Even though

the size of the code required to implement the language has

been drastically reduced (almost 1/5 shorter), performance

dropped dramatically. We identified a main problem caus-

ing the performance decay that, if solved, will improve the

performance of the generated code.

In order to encode a symbol table in the meta-compiler in

the current implementation (used for example to store the

variables defined in the local scope of a control structure or

to model a class/record data structure), we are left with two

options: (i) define a custom data structure made of a list of

pairs, containing the field/variable name as a string and its

value, in the following way

Data "table" -> List[Tuple[string , Value]] :
SymbolTable

or (ii) use a dictionary data structure coming from .NET,

such as ImmutableDictionary, which was the implemen-

tation choice for Casanova. In both cases, the behaviour of

the language implemented in Metacasanova will be that of a

dynamic language, because whenever the value of a variable

or class field must be read, the evaluation rule must look up

the symbol table at run time to retrieve the value, whose

complexity will be O(n) with the list implementation and

O(logn) with the dictionary implementation. This issue is
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caused by the fact that, in the current state of Metacasanova,

the meta-type system is unaware of the type system of the

language that is being implemented in the meta-compiler.

This is not a problem limited to Metacasanova but to all

meta-compilers having a meta-type system that does not

allow embedding of the host language type system. In the

next section we propose an extension to Metacasanova to

overcome this problem by embedding the type system of

the implemented language in the meta-type system of Meta-

casanova and inlining the code to access the appropriate

variable at compile time.

5 Compile-time Inlining with Functors
In Section 3 and Section 4 we presented the semantics of

Metacasanova and we showed how the meta-compiler gen-

erates the code necessary to represent the elements of the

language and the evaluation of the rules expressed in terms

of operational semantics. In Section 4.3 we highlighted the

problem of performance degradation, due to the additional

abstraction layer of the meta-compiler, and identified a pos-

sible cause in how the language manages the memory rep-

resentation. For now, the memory can only be expressed

with a dynamic symbol table that must be looked up at

run-time in order to retrieve the value of a variable or of a

class/record field. In this section we propose an extension

to Metacasanova with parametric Modules and Functors that
will allow to inline the access to record fields at compile time

and to embed an arbitrary type system into the meta-type

system of Metacasanova. Note that in this scope, we use the

term functor with the same meaning used in the scope of

the language CamL, i.e. a function that takes some types as

input and returns a type. In order to provide additional clar-

ity to the explanation, we introduce, in the next section, an

example that we use as reference across the whole section.

Moreover, note that we introduce the symbol => that denotes
that an evaluation happens at compile-time rather than at

runtime.

5.1 Case Study
Assume that we want to represent a physical body with a

Position and a Velocity in a 2D space. This can be defined

as a data structure containing two fields for its physical

properties (the example below is written in F#).

type PhysicalBody = {
Position : Vector2
Velocity : Vector2

}

In the current state of the Metacompiler, a language that

wants to support such a data structure, as stated in Section

4, should define it either with a list of pairs (f ield,value) or
with a dictionary from .NET.

Data "Record" -> List[Tuple[string , Value]] :
Record

Accessing the values of the fields requires to iterate through

this list (or dictionary) and find the field we want to read,

with two evaluation rules such as

field = name
-------------
getField ((field ,value) :: fields) name

-> value

field <> name
getField fields name -> v
-------------
getField ((field ,value) :: fields) name -> v

This could be done immediately by inlining the getter (or
setter) for that field directly in the program.

In what follows we add a system of modules and functors

to Metacasanova, we explain how the meta-compiler gen-

erates the code for them, and we show how to use them to

improve the performance of the example above.

5.2 Using Modules and Functors in Metacasanova
A module definition in Metacasanova is parametric with

respect to types, in the sense that a module definition might

contain some type parameters, and can be instantiated by

passing the specific types to use. A module can contain the

definition of data structures, functions, or functors.

Module "Record" : Record {
Functor "RecordType" : * }

The symbol * reads kind and means that the functor might

return any type. Indeed the type of a record (or class) in a

programming language can be “customized” and depends

on its specific definition, thus it is not possible to know it

beforehand.

We the define two modules for the getter and setter of a
field of a record. In this example, we use type parameters in

the module definitions.

Module "Getter" => (name : string) => (r : Record
) {

Functor "GetType" : *
Func "get" -> (r.RecordType) : GetType }

Module "Setter" => (name : string) => (r : Record
) {

Functor "SetType" : *
Func "set" -> (r.RecordType) -> SetType : (r.

RecordType) }

These two modules respectively define a functor to retrieve

the type of the record field, and a function to get or set its

value. Note that in the function definitions get and set we
are calling the functor of the Record module to generate the

appropriate type for the signature. This is allowed, since the

result of a functor is indeed a type.

A recordmeta-type (i.e. its representation atmeta-language

level) is recursively defined as a sequence of pairs (f ield, type),
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whose termination is given by EmptyField. We thus define

the following functors:

Functor "EmptyRecord" : Record
Functor "RecordField" => string => * => Record :

Record

The first functor defines the end point of a record, which is

simply a record without fields. The second functor defines

a field as the pair mentioned above followed by other field

definitions.

Moreover, we must define two functors that are able to

dynamically build the getter and setter for the field.

Functor "GetField" => string => Record : Getter
Functor "SetField" => string => Record : Setter

The behaviour of a functor is expressed, as for normal

functions, through a rule in the meta-program. A rule that

evaluates a functor returns an instantiation of a module or a

type. Note that, inside a module instantiation, it is possible

to define and implement functions other than those in the

module definition, i.e. the module instantiation must imple-

ment at least all the functors and functions of the definition.

For instance, the following is the type rule instantiating the

module for EmptyRecord:

-------------------
EmptyRecord => Record {

Func "cons" : unit

------------------
RecordType => unit

------------------
cons -> ()

}

The function cons defines a constructor for the record, which,
in the case of an empty record, returns nothing. The module

instantiation for a record field evaluates as well RecordType,
and has a different definition and evaluation of the function

cons (because it is constructed in a different way):

------------------
RecordField name type r = Record {

Func "cons" -> type -> r.RecordType :
RecordType

---------------------------------------
RecordType => Tuple[type ,r.RecordType]

-------------------
cons x xs -> (x,xs)}

Note that the return type of cons is to be intended as calling
RecordType of the current module, so as it were

this.RecordType. The getter of a field must be able to

lookup the record data structure in search of the field and

generate a function to get the value from it. For this reason,

the functor instantiates two separate modules, depending on

the name of the field that we are currently examining.

Listing 1. Module instantiations for getters

//Rule 1
name = fieldName
thisRecord := RecordField name type r
-----------------
GetField fieldName (RecordField name type r) =>

Getter fieldName thisRecord {

----------------
GetType => type

---------------
get (x,xs) -> x}

//Rule 2
name <> fieldName
thisRecord := RecordField name type r
------------------
GetField fieldName (RecordField name type r) =>

Getter fieldName thisRecord{
Functor "GetAnotherField" : Getter

---------------
GetAnotherField => GetField fieldName r

GetAnotherField => g
---------------
GetType => g.GetType

GetAnotherField => getter
getter.get xs -> v
-------------------
get (x,xs) -> v }

Analogously, the setter of a field instantiates two separate

modules whether the current field is the one we want to set

or not. This can bee seen in Listing 2

5.3 Functor Result Inlining
If a premise or a conclusion contains a call to a functor, this

call is evaluated at compile time, rather than at runtime.Meta-

casanova has been extended with an interpreter which is

able to evaluate the result of the functor calls. The behaviour

of the interpreter follows the same logic explained when

presenting the code generation steps in Section 4, thus here

we do not present the details for brevity. When a rule out-

puts the instantiation of the module, the generated code will

contain only rules of the modules whose conclusion contains

a function (i.e. functions that output values, not functors). In

this way the generated code will contain a different version

of those functions depending on the instantiation parameters

of the module.

We now show how to use the implementation of the

records given in Section 5.2 for the physical body presented

as a case study. The definition of the record type for the

physical body is done through a functor (Listing 3).
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Listing 2. Module instantiations for setters

name = fieldName
thisRecord := RecordField name type r
----------
SetField fieldName (RecordField name type r) =>

Setter fieldName thisRecord{

-----------------
SetType => type

-------------------
set (x,xs) v -> (v,xs)}

name <> fieldName
thisRecord := RecordField name type r
------------
SetField fieldName (RecordField name type r) =>

Setter fieldName thisRecord{
Functor "SetAnotherField" : Setter

-------------------------
SetAnotherField => SetField fieldName r

SetAnotherField => s
----------------------------
SetType => s.SetType

SetAnotherField => setter
setter.set xs v -> xs '
----------------------------------
set (x,xs) v -> (x,xs ') }

Listing 3. Functor for physical body
Functor "PhysicalBodyType" : Record

EmptyRecord => empty
RecordField "Velocity" Vector2 empty => velocity
RecordField "Position" Vector2 velocity => body
--------------------------
PhysicalBodyType => body

The rule in Listing 3 is evaluated at compile time by the

interpreter that generates one module for each field of the

PhysicalBody, containing the constructor. For example, for

the field Velocity the interpreter will generate3

Func "cons" -> Vector2 -> unit : Tuple[Vector2 ,
unit]

------------------------
cons x xs -> (x,xs)

This because the functor will call the evaluation rule for

RecordFieldwith the argument (Recordfield "Velocity"
Vector2 (EmptyRecord)). This rule generates the function
cons by evaluating the result of the functors

EmptyRecord.RecordType and RecordField.RecordType,
which respectively produce unit and Tuple[Vector2,unit].

3
Note that here we give a high-level representation of the generated rules

that are actually directly generated as C# code.

Instantiating a physical body will just require to build a

function that returns the type of the physical body, which is

obtained by calling the functor PhysicalBodyType.

Func "PhysicalBody" : PhysicalBodyType.RecordType

-----------------------
PhysicalBody -> PhysicalBodyType.cons(( Vector2.

Zero ,( Vector2.Zero ,())))

Defining the setter and getter of a field, requires to use the

functor GetField to generate the appropriate getter func-

tion. After the module has been correctly generated, we can

use the getter for the field. For example, in order to get the

position field, we use the following function.

Func "getPos" : Vector2

GetField "Position" PhysicalBodyType => getter
getter.get PhysicalBody -> p
-------------------------------
getPos -> p

The result of the premise GetField will be evaluated at

compile time through the code in Listing 1 and will instan-

tiate a module containing the following function definition

and rule.

Func "get" -> Tuple[Vector2 ,Tuple[Vector2 ,unit]]
: Vector2

-------------------------
get (x,xs) -> x

Note that the second premise of getPos will immediately

call the get generated in this step. The case of setPos is

analogous except the setter takes an additional argument.

Reading Velocity analogously uses a functor call to gen-

erate a getter:

Func "getVel" : Vector2

GetField "Velocity" PhysicalBodyType => getter
getter.get PhysicalBody -> p
-------------------------------
getVel -> p

This time the functor will generate two different functions in

two separate modules. The first time the record is processed,

Rule 2 in Listing 1 will be activated (because the first field

in the Record is Position). This rule will instantiate an

additional module when evaluating the functor call in its

premise, which in turn is able to get the Velocity field. The

rule for get in the first module will contain in its premise a

call to get of the second module (Listing 4).

We want to point out that this optimization has been

presented on the specific case of records, but can be gen-

eralized for any situations where you would use a symbol

table. Indeed any symbol table can be expressed with the

representation above as a sequence of pair where the first
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item is the value of the current variable, and the second item

is the continuation of the symbol table.

Listing 4. Getter rule for velocity
//Code for module1
Func "get" -> Tuple[Vector2 ,Tuple[Vector2 ,unit]]

: Vector2

module2.get xs -> v
-------------------------
get (x,xs) -> v

//Code for module2 generated by evaluating the
functor in the premise of Rule 2

Func "get" -> Tuple[Vector2 ,unit] : Vector2

------------------
get (x,xs) -> x

6 Evaluation
An extensive evaluation of Casanova implemented in Meta-

casanova, which we omit for brevity, can be found in [9].

The implementation of Casanova operational semantics in

Metacasanova is almost 5 times shorter than the correspond-

ing F# implementation in the hard-coded compiler. In addi-

tion to Casanova, we have implemented a subset of the C

language called C--. This language supports if-then-else,
while-loop, and for statements, as well as local scoping

of variables. The total length of the language definition in

Metacasanova is 353 lines of code. The corresponding C#

code to implement the operational semantics of the language

is 3123 lines, thus the code reduction with Metacasanova is

roughly 8.84 times. For comparison, in Table 2 it is possible to

see the code length to implement three different statements,

both in Metacasanova and C#. We tested C-- against Python

by computing the average running time to compute the fac-

torial of a number. The choice of Python is due to the fact

that both Casanova and C-- exhibits behaviours of dynamic

languages, as explained in Section 4.3. C-- results to be 50

times slower than Python. This result is worse than what

we obtained when evaluating Casanova, because in order

to emulate the interruptible rule mechanism of Casanova in

Python you must rely on coroutines that are slower than a

program containing simple statements. Moreover, we tested

the performance improvement of the optimization using

Functors to represent records against the standard one using

dynamic symbol tables. The test was run using records with

a number of fields ranging from 1 to 10 and updating from

10000 to 1000000 instances of such records. In Table 1, which

for brevity shows only the result for 1000000 instances, we

can see that the optimization using Functors leads to a per-

formance increase on average of about 11 times, with peaks

of almost 30 times. The gain increases with the number of

fields, thus Functors are particularly effective for records

with high number of fields. Figure 1 shows a chart of the

Table 1. Running time with the functor optimization and

the dynamic table with 1000000 records.

FIELDS Functors (ms) Dynamic Table (ms) Gain
1 9.47E-04 7.29E-04 0.77

2 9.51E-04 1.78E-03 1.87

3 9.50E-04 3.33E-03 3.51

4 9.60E-04 5.43E-03 5.66

5 9.65E-04 8.03E-03 8.32

6 9.71E-04 1.11E-02 11.44

7 9.75E-04 1.47E-02 15.12

8 9.82E-04 1.89E-02 19.28

9 9.92E-04 2.37E-02 23.86

10 1.00E-03 2.87E-02 28.62

Average gain 11.84

Table 2. Code length implementation of C-- and run-time

performance

Statement Metacasanova C#
if-then-else 4 103

while 7 73

For 11 81

C-- Python
1.26ms 2.36 · 10−2ms

overall performance of the two techniques (the data points

are taken from Table 1). The horizontal axis contains the

amount of fields per record, while the vertical axis contains

the number of records that are being updated. We can see

that the performance of the dynamic table degrades consid-

erably when increasing the number of fields, and that the

higher the amount of records is, the steeper the curve is.

On the other hand, the performance of the implementation

with Functors is almost constant, regardless of the amount

of fields or records that are being updated. Moreover, note

that the performance of the dynamic table is improved by

the fact that we are using a dictionary implemented in .NET,

which can access the entries in O(logn). If the symbol table

were represented as a meta-data structure in the language

the performance would be even worse, since it would have to

be encoded as a list of pairs with the field name and its value,

and its manipulation would be affected by the evaluation

rules that should implement this behaviour. Furthermore,

the dynamic lookup should be done also to ensure that the

types of the record fields are used consistently (for example

to prevent that a record is constructed with incompatible val-

ues for its fields), while using the functors in Metacasanova

embeds the type system of the language in the meta-type

system, whose type safety is checked at compile-time rather

than at runtime, and this contributes to further increase the

performance.
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7 Conclusion
In this work we presented the architecture of a Metacom-

piler called Metacasanova, whose meta-language is based on

the operational semantics. In Section 2 we discussed how

it is possible to capture repetitive patterns in designing a

compiler for DSL through a meta-compiler. We presented the

meta-compiler Metacasanova and its meta-language. Meta-

casanova has been evaluated by re-implementing the DSL

for games Casanova, and by implementing a subset of the C

language, called C --. Our results show that implementing

the language semantics in Metacasanova is up to 8 times

shorter than with a hard-coded compiler. The additional ab-

straction layer of the meta-compiler leads to a performance

decay that, in the case of C--, makes the language 50 times

slower than Python, and in the case of Casanova on the same

order but still 3 times slower. We identified the problem in

the fact that the meta-language is unaware of the type sys-

tem and memory model of the implemented language, thus

all type checks and field lookups must be done dynamically

at runtime adding the overhead of a dynamic lookup table.

We have proposed a language extension based on Modules
and Functors that allows the meta-language to embed the

type system of the implemented language in the meta-type

system, and to inline the lookups directly into the generated

code. This optimization leads to a performance improvement

factor of 11, which peaks to 30 in presence of many updates

and data structures with many fields.
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