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1
I N T R O D U C T I O N

This dissertation deals with the multiple imputation (MI; Rubin (1987)) of categorical
data coming from different types of data collection and data analysis designs. In
particular, the use of latent class (LC) models (Lazarsfeld, 1950) for the MI of data
coming from cross-sectional study designs (as it was first proposed by Vermunt,
Van Ginkel, Van der Ark and Sijtsma (2008)) will serve as a starting point to obtain
imputation models that can deal with more complex designs, such as multilevel
(i.e., when multiple individuals are nested within a group) and longitudinal (i.e.,
when multiple observations for each individual are observed across time) designs.

Latent Class models for Multiple Imputation

LC models are known among analysts and methodologists for their substantive use,
in which the estimates provided by the model are used to define latent types (or
profiles, clusters) of units. These profiles differ from each other for some character-
istics, identified by the distribution of the scores on the indicator variables (usually
categorical variables). Within each LC, the joint distribution of these features is
described by a product of locally independent categorical (e.g., Multinomial) distri-
butions by means of the local independence assumption. Local independence makes
the model easily interpretable, and allows to take into account a large number of
indicators for a specific theoretical construct. A graphical representation of the LC
model is given in Figure 1.1, in which X represents the LC variable and the Y’s
represent the J indicators.

However, LC models - which are members of the family of mixture models - can
be used in contexts other than latent groups identification. That is, since mixture
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Figure 1.1: LC model, graphical representation. X: latent class variable; Y’s: indicators (J in
total).

models can correctly pick up unobserved heterogeneity and relevant relationships
in the data if the number of specified LCs is large enough (McLachlan & Peel, 2000),
LC models can be used as a density estimation tool. In density estimation, the
goal is to estimate and describe the joint distribution of the variables present in
a dataset, retrieving all possible associations which tie the variables to each other.
Under this framework, interpretation of the model parameters is of little interest,
and the main focus is on the predictions the model provides by means of these
parameters. Furthermore, models used for density estimation are likely to require
the estimation of a tremendous number of parameters, which would make them
very hard to interpret. Thus, the model parameters are merely a device used to
obtain predictions and/or an overall description of the joint distribution of the data.

Vermunt et al. (2008) exploited this feature of LC models, and proposed them for
application in MI. In MI, the missing data of a dataset are replaced (or imputed,
predicted) M > 1 times by different sets of values, the distribution of which is esti-
mated with the imputation model. In particular, the task of the imputation model
is to provide values sampled from Pr(Dmis|Dobs), that is, the distribution of the
missing data given the observed data. When the missing data mechanism is ignor-
able1, MI can retrieve the correct distribution of the data (for some analysis model
of interest), leading to proper substantive inferences. Furthermore, by obtaining
M different imputations it becomes possible to quantify the uncertainty about the
imputed missing values at the analysis stage. More specifically, substantive analy-
ses are performed on each of the M imputed datasets, where for correct statistical
inferences the results are pooled using Rubin (1987) ’s rules.

LC models require a very easy model specification (the number of LCs), which
makes them flexible and automatic, since relevant associations in the data need not
to be specified a-priori. Concerning the model selection issue, in MI selecting a
model that overfits the data (i.e., a model that capture sample-specific features) is

1 That is, the missing data generating mechanism is independent of the unobserved data and its parameter
is distinct from the ones of the assumed data generating model (Rubin, 1976).
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less problematic than an underfitting model (i.e., a model that ignores important
relations in the data), as remarked by Vermunt et al. (2008). As a consequence,
MI with LC models can be performed by selecting an arbitrarily large number of
classes2, which is similar to fitting a saturated log-linear model to the data, a strat-
egy advocated by Schafer (1997). Unlike log-linear models, however, LC models can
be used to impute datasets with a large number of variables. This is due to both the
local independence assumption described above and the simple model specification
required.

Chapter 2 reviews the different types of LC-based MI proposed in the literature.
These include MI using the standard LC model (Vermunt et al., 2008), the Divisive
LC model (Van der Palm, Van der Ark & Vermunt, 2014), the Bayesian version
of the LC model and the Dirichlet process mixture of Multinomial distribution (Si
& Reiter, 2013). A detailed description of how these LC models impute missing
data is given, and benefits and drawbacks of the four approaches are discussed.
Furthermore, a comparison of the four LC imputation methods is carried out by
means of an empirical application.

Bayesian Latent Class models for Multiple Imputation

In Chapter 3 the use of Bayesian LC models for MI is investigated in more detail.
As Schafer and Graham (2002) emphasized, Bayesian modeling for MI can directly
lead to proper imputations, without resorting to bootstrap or other computational
techniques (used for instance by Vermunt et al. (2008)). This advantage of Bayesian
modeling is due to the fact that, when performing imputations with a statistical
model, we need to account for two sources of uncertainty:

• uncertainty caused by the missing data Dmis;

• uncertainty caused by the estimation of the imputation model parameter θ.

In particular, Bayesian models enable to embed all the uncertainty about θ in a
single posterior distribution Pr(θ|Dobs), estimated conditioned on the observed data
by means of the well-known Bayes’ theorem:

Pr(θ|Dobs) =
π(θ) f (Dobs|θ)∫

Θ π(θ) f (Dobs|θ)dθ
.

2 Working with a number of LCs larger than what is actually required by the data corresponds to overfit-
ting in mixture modelling.
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Here, π(·) represents a distribution which encloses the prior information we have
about θ, while f (·) is the likelihood function which represents a probability distri-
bution imposed on the observed data, identified by the value of θ.

Once the posterior distribution of the imputation model parameter is obtained,
the imputations can be performed with the posterior predictive distribution of the
missing data, given by

Pr(Dmis|Dobs) =
∫

Θ
f (Dmis|θ)Pr(θ|Dobs)dθ. (1.1)

Equation (1.1) shows clearly how Bayesian modeling takes into account the two
types of uncertainty described above: first, M samples from the posterior Pr(θ|Dobs)

are drawn, and subsequently imputations are performed through f (Dmis|θ(m)), m =

1, ..., M. In order to estimate the Bayesian version of the LC model, a Gibbs sampler
(Geman & Geman, 1984) with Data Augmentation (Tanner & Wong, 1987) configu-
ration is needed (as proposed by Escobar and West (1995)), because we are dealing
with latent variables. Data Augmentation is an algorithm that -at each iteration-
first samples the latent variables for each unit in the dataset, and then updates the
model parameters accordingly.

Bayesian estimation of unknown model parameters requires specification of prior
knowledge about their values by means of the prior distribution π(·). In MI, it
is common to perform imputations from a state of complete ignorance about the
model parameters (most of the times the imputation model and the analysis model
do not match, and imputer and analysts can be different entities), which suggests
to use noninformative (or vague) priors for the imputation model parameters. A
complication when running the Gibbs sampler for estimating LC models with a
large number of classes is given by the fact that the prior distribution of the mixture
weights strongly affects the number of classes allocated during the sampler itera-
tions and, therefore, the quality of the imputations (Rousseau & Mergensen, 2011).
Chapter 3 of the thesis therefore will examine the specification of different prior
distributions for the imputation model parameter by means of a simulation study,
providing useful guidelines about how to set them when performing MI.

Bayesian Multilevel Latent Class models for Multiple Imputation

In social sciences, researchers often have to deal with datasets containing more
complex dependency structures. For instance, it is common to design a sampling
mechanism in which data are collected for individuals (level-1 units) that come
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from different groups (level-2 units); in this case, both level-2 and level-1 units are
sampled and the data are said to be structured in a multilevel or nested form. A
typical example is given by students’ scores observed in different schools. Besides
the associations between the various variables, other kinds of dependencies usually
arise in this context, such as level-1 units coming from the same group that are
correlated with each other (which, in substantive analysis, is usually accounted for
by introducing one or more random effects in the model). Furthermore, variables
can concern units at different levels of the hierarchy, such as measures obtained
at the student-level and at the school-level. The presence of variables at different
levels yields what is referred to as cross-level relationships.

When MI is performed on this kind of data with standard single-level imputation
models, some of these relationships are probably lost in the imputed datasets. For
instance, ignoring the nested structure of the data during the imputation stage
is likely to produce too precise inferences for the substantive model parameters,
inflating in this way the occurrence of Type-I errors. Furthermore, with single-
level imputation models all variables would be treated as level-1 variables, thus
disregarding the hierarchy of the sampling design.

To overcome these difficulties, a proper imputation model that accounts for the
nested structure of the data must be used. In Chapter 4 the Bayesian multilevel LC
(BMLC) model is proposed for this purpose. The BMLC model presented here is
the Bayesian configuration of the frequentist non-parametric multilevel LC model
proposed for substantive analysis by Vermunt (2003), in which the clustering oc-
curs for units at both levels of the hierarchy. With such configuration, the model
can take into account not only relevant associations among variables at both levels,
but also within-group dependencies. These are picked up by means of the condi-
tional independence assumption, according to which units at the lower-level become
independent of each other, conditioned on the higher-level LC to which the units’
group belongs. In Chapter 4 a simulation and a real data study are carried out to
investigate the performance of the BMLC model as an imputation model.

Bayesian Latent Markov models for Multiple Imputation

Another common survey design involves collecting data over time for the same sub-
jects, known as longitudinal study design. Analogous to the multilevel case, also in
this scenario the imputation model must be tailored to take into account the specific
types of dependencies that such data collection mechanism entails. These include
auto-correlations and crossed-lagged relationships for the time-varying variables.
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Moreover, time-constant variables are likely to be present in the dataset as well, im-
plying that the imputation model should also be able to account for relationships
between time-varying and time-constant variables.

In Chapter 5, the Bayesian mixture latent Markov (BMLM) model is proposed for
the imputation of longitudinal data. Latent Markov models (Baum, Petrie, Soules
& Weiss, 1970) represent a natural extension of LC models to longitudinal data,
and involve the specification of dynamic latent states (i.e., LC membership that can
vary in time) which follow a first-order Markov chain. Thus, the latent states can
potentially capture the relevant relationships among the variables within each time
point, as well as auto-correlations between adjacent time-points (by the first-order
Markov assumption). Furthermore, the inclusion of a time-constant LC variable
enables to capture dependencies across all time points, as well as enables including
time-constant variables in the imputation model (which, in turn, should also be
imputed, if missing). To evaluate how the BMLM model performs as an imputation
model, two simulation studies and a real-data study were carried out, and their
results are reported in Chapter 5.

The four main chapters of this dissertation can be read independently since they
are written as articles for scientific journals. Because of this, the chapters contain
some overlapping information and moreover notation is sometimes slightly differ-
ent across chapters.
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M U LT I P L E I M P U TAT I O N O F M I S S I N G C AT E G O R I C A L D ATA
U S I N G L AT E N T C L A S S M O D E L S : S TAT E O F T H E A RT

This chapter provides an overview of recent proposals for using latent class models
for the multiple imputation of missing categorical data in large-scale studies. While
latent class (or finite mixture) modeling is mainly known as a clustering tool, it can
also be used for density estimation, i.e., to get a good description of the lower- and
higher-order associations among the variables in a dataset. For multiple imputation,
the latter aspect is essential in order to be able to draw meaningful imputing values
from the conditional distribution of the missing data given the observed data.

We explain the general logic underlying the use of latent class analysis for mul-
tiple imputation. Moreover, we present several variants developed within either a
frequentist or a Bayesian framework, each of which overcomes certain limitations
of the standard implementation. The different approaches are illustrated and com-
pared using a real-data psychological assessment application.

This chapter is published as Vidotto, D., Vermunt, J.K. & Kaptein, M.C. (2015). Multiple Imputation of
Missing Categorical Data using Latent Class Models: State of the Art. Psychological Test and Assessment
Modeling, vol. 57, 4 pp. 542-576.
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2.1 Introduction

Social and behavioral science researchers often collect data using tests or question-
naires consisting of items which are supposed to measure one or more underlying
constructs. In a psychology assessment study for example, this could be constructs
such as anxiety, extraversion, or neuroticism. A very common problem is that a part
of the respondents fail to answer all questionnaire items (Huisman, 1999), resulting
in incomplete datasets. However, most of the standard statistical techniques can not
deal with the presence of missing data. For example, computation of Cronbach’s
alpha requires that all variables in the scale of interest are observed.

Various methods for dealing with item nonresponse have been proposed (Little
& Rubin, 2002; Schafer & Graham, 2002). Listwise and pairwise deletion, which
simply exclude units with unobserved answers from the analysis, are the most fre-
quently used in psychological research (Schlomer, Bauman & Card, 2010). These
are, however, also the worst methods available (Wilkinson & Task Force on Statisti-
cal Inference, 1999): they result in loss of power and, unless the strong assumption
that data are missing completely at random (MCAR)1 is met, they may lead to severely
biased results. Due to their simplicity and their widespread inclusion as standard
options in statistical software packages, these methods are still the most common
missing data handling techniques (Van Ginkel, 2007).

Methodological research on missing data handling has lead to two alternative ap-
proaches that overcome the problems associated with listwise or pairwise deletion:
maximum likelihood for incomplete data (MLID) and multiple imputation (MI). Under
the assumption that the missing data are missing at random (MAR), the estimates
of the statistical model of interest (from here on also referred to as the substantive
model) resulting from MLID or MI have the desirable properties to be unbiased,
consistent, and asymptotically normal (Roth, 1994; Schafer & Graham, 2002; Alli-
son, 2009; Baraldi & Enders, 2010). MLID involves estimation the parameters of the
substantive model interest by maximizing the incomplete-data likelihood function.
That is, the likelihood function consisting of a part for the units with missing data
and a part for the units with fully observed data. While in MLID the missing data
and the substantive model are the same, in MI (Rubin, 1987) the missing data han-
dling model (or imputation model) and the substantive model(s) of interest can and
will typically be different. Note that unlike single value imputation, MI replaces
each missing value with m > 1 imputed values in order to be able to account for

1 According to Rubin (1976)’s classification, a missing data mechanism is said to be: (a) MCAR, when
the probability of nonresponse in a variable is independent of the variable itself as well as of the other
variables; (b) missing at random (MAR), when the probability of nonresponse in a variable depends
only on the variables observed for the person concerned; (c) missing not at random (MNAR), when the
probability of missingness is related to variables which are unobserved for the person concerned.
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the uncertainty about the missing information. In practice, applying MI yields m
complete datasets, each of which can be analyzed separately using the standard sta-
tistical method of interest, and where the m results should be combined in a specific
manner. For more details on MI, we refer to Rubin (1987), Schafer (1997), and Little
and Rubin (2002).

For continuous variables with missing values, Schafer (1997) proposed using the
multivariate normal MI model, which has been shown to be quite robust to depar-
tures from normality (Graham & Schafer, 1999). Items of psychological assessment
questionnaires, however, are categorical rather than continuous variables. For such
categorical data, Schafer (1997) proposed MI with log-linear models, which can cap-
ture the relevant associations in the joint distribution of a set of categorical variables
and can be used to generate imputation values. However, log-linear models for MI
can only be applied when the number of variables is relatively small, as the number
of cells in the multi-way cross-table that has to be processed increases exponentially
with the number of variables (Vermunt et al., 2008).

An alternative MI tool is offered by the sequential regression modeling approach,
which includes multiple imputation by chained equation (MICE) (Van Buuren & Oud-
shoorn, 1999). This is an iterative method that involves estimating a series of univari-
ate regression models (e.g., a series of logistic or polytomous regressions in the case
of categorical variables), where missing values are imputed (variable by variable)
based on the current regression estimates for dependent variable concerned. The
idea of MICE is that the sequential draws from the univariate conditional models
are equivalent to or at least a good approximation of draws from the joint distri-
bution of the variables in the imputation model. Despite of being an intuitive and
practical method, also MICE has certain limitations. First, there is no statistical sup-
port that missing data draws converge to the posterior distribution of the missing
data. Second, by default, MICE only includes the main effects in the regression
equations, which risks to not pick up higher-order interactions among the variables.
Furthermore, whereas the method allows including higher-order interactions, this
can be a fairly difficult and time-consuming task when the number of variables in
the imputation model is large (Vermunt et al., 2008).

Vermunt et al. (2008) proposed an imputation model for categorical data based
on a maximum likelihood finite mixture or latent class (LC) model. LC models for
MI seem to overcome various of the difficulties associated with log-linear models
and MICE. LC models can efficiently be estimated also when the number of the
variables is large (Si & Reiter, 2013). Also, with models containing a large enough
number of latent classes, one can pick up both simple associations and complex
higher-order interactions among the variables in the imputation (McLachlan & Peel,
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2000). This makes the model appropriate for datasets coming from large-scale as-
sessment studies, where the number of variables can be large and where association
structures can be complex.

Recently, Van der Palm, Van der Ark and Vermunt (2016b) proposed a variant of
the LC model called the divisive latent class model, which can be used for density es-
timation and MI. Compared to the standard LC model, this approach reduces com-
puting time enormously. Instead of using frequentist maximum likelihood methods,
LC analysis can also be implemented using a Bayesian approach as shown among
others by Diebolt and Robert (1994). An interesting recent development concerns
the use of Bayesian nonparametric methods for MI. More specifically, inspired by
Dunson & Xing’s (2009) mixture of independent normal distribution with Dirichlet pro-
cess prior, Si and Reiter (2013) proposed using a nonparametric finite mixture model
for MI in a Bayesian framework. In a recent work, Akande, Li and Reiter (2017)
evaluated and compared the performance of MICE and DPMM for categorical data
imputation by means of an empirical comparison, highlighting the ability of the
latter to automatically find the relevant associations in the dataset at hand.

The aim of this chapter is to offer a state-of-the-art overview of MI using LC
analysis in which we show similarities and differences and discuss pros and cons of
the recently proposed frequentist and Bayesian approaches. The remainder of the
chapter is structured as follows. In Section 2.2, the basic LC model is introduced and
its use for MI is motivated. Section 2.3 describes the four different LC MI methods
in more detail. Section 2.4 illustrates the use the four types LC MI methods in
a real-data example, and also compares the obtained results with those obtained
with listwise deletion and MICE. Section 2.5 discusses our main findings, gives
recommendations for those who have to deal with missing data, and lists topics for
further research.

2.2 Latent Class models and Multiple Imputation

2.2.1 Latent Class Analysis for Density Estimation

The latent class model (Lazarsfeld, 1950; Goodman, 1974) is a mixture model which
describes the distribution of categorical data. Mixture models are flexible tools that
allow modelling the association structure of a set of variables (their joint density)
using a finite mixture of simpler densities (McLachlan & Peel, 2000). In LC analysis,
each latent class (or mixture component) has its own specific multinomial density,
defining the probability of having a specific response pattern. The estimated overall
density is obtained as a weighted average of the class-specific densities. An impor-
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tant assumption of LC analysis is local independence (Lazarsfeld, 1950), according
to which the scores of different items are independent of each other within latent
classes.

Before discussing the implications of using a LC model as a tool for density
estimation, let us first briefly introduce its mathematical form with the aid of a
small example. Let yij be the score of the i-th person on the j-th categorical item
belonging to a n × J data-matrix Y (i = 1, ..., n, j = 1, ..., J), yi the J-dimensional
vector with all scores of person i, and xi a discrete (unobserved) latent variable with
K categories. In the LC model, the joint density P(yi;π) has the following form:

P(yi;π) =
K

∑
k=1

P(xi = k;πx)P(yi|xi = k;πy)

=
K

∑
k=1

P(xi = k;πx)
J

∏
j=1

P(yij|xi = k;πyj). (2.1)

The LC model parameters π can be partitioned into two sets: the latent class
proportions (πx) and class-specific item response probabilities (πy), where the latter
contains a separate set of parameters for each item (πyj ). The fact that we are dealing
with a mixture distribution can be seen from the fact that the overall density is
obtained as a weighted sum of the K class-specific multinomial densities P(yi|xi =

k;πy), where the latent proportions serve as weights. Moreover, in (2.1) the local
independence assumption becomes visible in the product over the J independent
multinomial distributions (conditional on the k-th latent class).

By setting the number of latent classes large enough, LC models can capture the
first, second, and higher-order moments of the J response variables (McLachlan &
Peel, 2000), that is, univariate margins, bivariate associations, and higher-order in-
teractions when dealing with categorical variables (Vermunt et al., 2008). Moreover,
because of the local independence assumption, it is possible to obtain estimates of
the model parameters also when J is very large.

A quantity of interest when using LC models is the units’ posterior class member-
ship probabilities, i.e., the probability that a unit belongs to the k-th class given the
observed data pattern yi. It can be defined through the Bayes’ theorem as follows:

P(xi = k|yi;π) =
P(xi = k;πx)P(yi|xi = k;πy)

P(yi;π)
.

As an example, suppose we have a data-matrix Y for J = 5 binary variables,
where the first 3 observations have the observed patterns presented in Figure 2.1a.
Suppose furthermore that we specified a 2-class model (K = 2) and obtained the
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(a)

(b)

Figure 2.1: (a) Example of observed data-matrix Y for J = 5 dichotomous items and observed patterns yi for
i = {1, 2, 3}.
(b) Example of 2-class LC model parameters: latent probabilities πx (on the top) and conditional
probabilities πyj (in the body of the table).

parameter estimates reported in Figure 2.1b. Looking at Figures 2.1a and 2.1b, it
seems that the first observation is more likely to belong to class 1 and the second
more likely to belong to class 2. Indeed, for the first observation the class 1 poste-
rior probability P(x1 = 1|y1;π) equals 0.997, whereas for the second observation
the class 2 posterior probability P(x2 = 2|y2;π) equals 0.999. The third unit has
posteriors P(x3 = 1|y3;π) = 0.86 and P(x3 = 2|y3;π) = 0.14.

2.2.2 Multiple Imputation using LC Models

In a standard LC analysis, the aim is to find a meaningful clustering with a not too
large number of well interpretable clusters. In contrast, when used for imputation
purposes, the LC model is “just” a device for the estimation of P(yi;π). In other
words, in MI, LC models do not need to identify meaningful clusters, but instead
should yield an as good as possible description for the joint density of the vari-
ables in the imputation model. This means that issues which are problematic in a
standard LC analysis, such as nonidentifiability, parameter redundancy, overfitting,
and boundary parameters, are less of an issue in a MI context. The main thing
that counts is whether P(yi;π) is approximated well enough in order to be able to
generate as good as possible imputations based on P(yi,mis|yi,obs).



2.2 Latent Class models and Multiple Imputation 13

Specifically, Vermunt et al. (2008) motivate that when a LC model is used as
a tool for estimating densities rather than clustering, some differences arise: (a)
there is no need to interpret either the parameter estimates or the latent clusters
of the latent class imputation model, (b) capturing some sample specific variability
(namely overfitting the data) is not problematic in this context, because the aim
is to reproduce a sample even with its specific fluctuation, while ignoring certain
structures of the data (underfitting) can cause important associations between the
variables to be ignored, (c) unidentifiability is not an issue either, inasmuch the
quantity of interest P(yi;π) is uniquely defined even when the values of π are not,
and (d) obtaining a local maximum of the log-likelihood function, instead of a global
maximum, is also not a problem since the former may provide a representation of
P(yi;π) that is approximately as good as the one provided by latter.

Once the LC model has been estimated using an incomplete dataset, it is possible
to perform MI by randomly drawing m imputations for each nonresponse from the
posterior distribution of the missing values given the observed data and the model
parameters. To make this clearer, let us return to the small example introduced
in the previous section. Suppose now we also have missing values as shown in
Figure 2.2, and that under this new scenario the resulting LC 2-class model is again
the one with the parameter values presented in Figure 2.1b. With yi,obs we denote
the observed part of the response pattern for person i, while the unknown part,
marked with “?", is denoted by yi,mis. LC model parameter (π) estimation and
inference can be achieved with only the observed information, yi,obs. As shown
among others by Vermunt et al. (2008), the probability P(yi,mis|xi = k;πy) cancels
from the (incomplete data) log-likelihood function that is maximized, which implies
that each subject contributes only to the parameters for the variables which are
observed.2

Once the model has been estimated, the aim of MI is to generate an imputation for
each “?" in the dataset by sampling from P(yi,mis|yi,obs;π). This requires two draws:
the first assigns a class to each unit using the posterior membership probabilities
given yi,obs. Unit 1, for instance, has now a probability equal to P(x1 = 1|y1,obs;π) =
0.98 to belong to class 1 and P(x1 = 2|y1,obs;π) = 0.02 to belong to class 2. Once
the class membership has been established, “?" in item j is replaced by drawing
from the conditional multinomial distribution of j-th item in that class. If, in the
previous step, the first unit was allocated to the first class, then the missing value of
Item 4 will be replaced by the value 1 with probability 0.9 and by the value 2 with

2 In Vermunt et al. (2008) and Van der Palm et al. (2014) the procedure is given for maximum likelihood
methods. For the Bayesian framework, Appendix B.1 shows how the model can be estimated conditional
on yi,obs only.
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Figure 2.2: Example of data-matrix Y for J = 5 dichotomous items and i = {1, 2, 3}, with both observed and
missing data (the latter marked by “?").

probability 0.1. The uncertainty about the imputations is accounted for by repeating
this procedure m > 1 times for each unit with at least one missing value.

LC models can also be implemented within a Bayesian framework, which in-
volves specifying prior distributions for the class proportions and the class-specific
response probabilities. Two kinds of priors can be applied: a Dirichlet distribution
or a Dirichlet Process prior. The Dirichlet distribution, used as prior for the multino-
mial conditional distributions or for the multinomial latent distribution of standard
Bayesian LC models, is suited for modelling multivariate quantities that lie in the
interval (0,1) and that sum to 1.3 In the Dirichlet process approach, on the other
hand, the number of latent classes becomes uncertain, and a baseline distribution is
used as prior expectation density. A concentration parameter (α) rules the concen-
tration of the prior for xi around the baseline density: when α is large, the prior of
xi is highly concentrated around the expected baseline (the latent classes will tend
to have equal sizes), while for small α there is a larger departure from the baseline
(few classes will have most of the probability mass) (Congdon, 2006).

In a frequentist setting, maximum likelihood (ML) estimation is typically per-
formed using an EM algorithm (Dempster, Laird & Rubin, 1977), whereas in a
Bayesian framework, MCMC algorithms such as the Gibbs sampler are used (Geman
& Geman, 1984; Gelfand & Smith, 1990). In mixture models, the Gibbs sampler
iterations contain a Data Augmentation step in which units are allocated to latent
classes. The Data Augmentation (DA) algorithm (Tanner & Wong, 1987) can be seen
as a Bayesian version of the EM algorithm, which can be used for the estimation of
Bayesian LC models. DA is particularly suitable also for MI computation as it also
involves imputing the missing data given the current state of the model parameter
as one of the steps. Tanner and Wong (1987) showed that under certain conditions,
the algorithm converges to the true posterior distribution of the unknown quanti-
ties of interest. The m imputations are obtained by drawing m imputed scores from

3 For the mathematical formulation of the Dirichlet distribution, see the Appendix A.1.
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the posterior distribution of the missing values. A description of both the Gibbs
sampler and the DA algorithm is provided in Appendix A.2.

2.3 Four Different Implementations of Latent Class Multiple Impu-
tation

In this section we present four different implementations of LC models for MI: the
Maximum Likelihood LC model (MLLC), the standard Bayesian LC model (BLC),
the Divisive LC model (DLC), and the Dirichlet Process Mixture of Multinomial
distributions (DPMM). These four models share the characteristics of the LC model
mentioned in the previous section, which make that each of them can serve an
excellent tool for the MI of large datasets containing categorical variables.

These four types of LC models, however, also differ in a number of respects. First,
they differ in the way in which they deal with the uncertainty about the model
parameters. Note that taking into account this uncertainty during the imputation
is a requirement for valid inference with a multiple imputed data set. The two
frequentist models (MLLC and DLC) resort either on a nonparametric bootstrap
or on different draws of class membership and missing scores, whereas the two
Bayesian methods (BLC and DPMM) automatically embed parameter uncertainty
by sampling the parameters from their posterior distribution.

Second, the four methods differ in the way they select the number of classes K.
While the standard implementation of the LC model (MLLC and BLC) requires
estimating and testing a series of models with different numbers of classes using
some fit measure (e.g., the AIC), in DLC and DPMM the number of classes is deter-
mined in an automatic manner. In DPMM the number of latent classes is treated
as a model parameter, while for the other three types of models K is fixed though
unknown.

Lastly, the four methods differ in terms of computational efficiency. Note that
the main factors affecting computation time are the sample size n, the number of
classes K, and the number of variables J. While MLLC and BLC require estimat-
ing models with different numbers of classes to determine the required number of
classes, DLC and DPMM have the advantage that a good fitting model is obtained
in a single estimation run. For this reason, MLLC and BLC turn out to be the com-
putationally most demanding methods, while DLC and DPMM are less demanding.
In the remainder of this section, we provide a more detailed description of the four
approaches.
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2.3.1 Fixed K, Frequentist: the Maximum Likelihood LC Model

The MLLC approach uses a nonparametric bootstrap4 in order to take into account
the uncertainty about the imputation model parameter estimates, which is a require-
ment for valid post-imputation inference. Specifically, imputation using MLLC pro-
ceeds as follows: first, m nonparametric bootstrap samples Y∗l (l = 1, ..., m) of size n
are obtained from the original dataset Y; second, the LC model is estimated for each
Y∗l , providing m different sets of parameters πl ; third, the original dataset is dupli-
cated m times and for the l-th dataset the set of parameters πl is used to impute the
missing values from P(yi,mis|yi,obs;πl).

To describe the joint distribution of the data as accurately as possible, K is selected
based on penalized likelihood statistics, such as the AIC (Akaike Information Crite-
rion) or the BIC (Bayesian Information Criterion) index. In MI, the AIC criterion is
preferable over BIC since it yields a larger number of classes; nevertheless, an even
higher K than the one indicated by the AIC index may be used, since, as already
noticed, the risk of overfitting in the MI context is less problematic than the risk of
underfitting.

Though Vermunt et al. (2008) showed that the performance of MLLC is similar
to both ML for incomplete data and MI using a log-linear model, in terms of parameter
bias, some issues with respect to the model-fit strategy remain; in order to select the
optimal K value according to the AIC index, in fact, one needs to estimate a 1-class
model, a 2-class and so on, until the best fitting model has been found.5 It will be
clear that this approach may be time-consuming, especially when used with large
data sets.

MI through MLLC is available in software such as LatentGOLD (Vermunt &
Magidson, 2013), which includes a special option for MI. In R, LC analysis can
be performed with the package poLCA (Linzer & Lewis, 2014). This package could
be used to implement the MI procedure described above.

4 The nonparametric bootstrap (Efron, 1979) is a technique that allows reproducing the distribution of
some specific parameter by resampling observations from the original sample multiple times with re-
placement; in such a way, the original sample is treated as the population of interest. Through this
procedure, which is useful when the theoretical distribution of the parameters of interest is difficult to
derive, uncertainty about the model parameters can be inferred.

5 Rather than starting with a one class model and subsequently increasing the number of classes, alter-
native more efficient strategies may be used, such as starting with a large number of classes and both
increasing and decreasing this number to see whether a larger number is needed or a smaller number
suffices.
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2.3.2 Fixed K, Bayesian: the Bayesian LC Model

While in the frequentist framework a nonparametric bootstrap is needed to account
for parameter uncertainty, when using a Bayesian MCMC approach parameter un-
certainty is automatically accounted for. More specifically, Rubin (1987) recom-
mended using Bayesian methods in order to obtain proper imputations, which fully
reflect the uncertainty about the model parameters and which are draws from the
posterior predictive distribution of the missing data. Vermunt et al. (2008) mentioned
the possibility to implement their approach using a Bayesian framework. Si and
Reiter (2013) present the Bayesian LC (BLC) model as a natural step to go from the
MLLC to the DPMM MI approach. Therefore, though the BLC model has not been
proposed explicitly for MI, we present it here as one of the possible implementa-
tions of LC-based MI. As in the frequentist case, standard parametric BLC analysis
requires that we first determine the value of K, for example, using the AIC index
evaluated by ML estimation. Therefore, also with this approach, determining the
number of classes may be rather time consuming in larger data sets.

For the distribution of πx the prior will typically be a K-variate Dirichlet dis-
tribution (if K=2 this is equal to a Beta distribution), whereas for the conditional
probabilities πyj , a Dirichlet prior for each j = 1, ..., J and k = 1, ..., K, with number
of components equal to the number of categories of the j-th variable, is assumed.
Setting weakly informative prior distributions helps the posterior distribution of π
to be data dominated. For the Dirichlet distribution, an uniform prior is achievable
by initializing all its parameters to 1.6 Within the latent classes, the conditional
probabilities are initialized to be equal to the observed marginal frequencies of the
scores of each variable. Also, for MI, nonresponses are initialized with a random
draw from the observed frequency distribution of the variables with missing val-
ues. Once the first set of πx has been drawn from the Dirichlet prior, the Gibbs
sampler proceeds as follows. First, each unit is assigned to a latent category by
drawing from the posterior membership probabilities P(xi = k|yi;π); second, the
parameters of the Dirichlet distribution for πx are updated: this is done by adding
the number of units dropped in the k-th latent class to the starting value of the k-th
parameter (that is 1 in the case of a weakly informative prior). From this updating,
a new value of πx is extracted. Third, the parameters of the Dirichlet distributions
of πyj are in turn updated in an analogue way: the number of units which take on
one of the possible observed values of the j-th variable and dropped into the k-th
latent class is added to the initial parameter value of the category concerned of the

6 This is equivalent to a prior sample size equal to the number of components of the Dirichlet distribution.
Setting the Dirichlet prior with all its parameters equal to 1 is a common choice (Congdon, 2006) which
yields an uniform, but not necessarily uninformative, distribution. Jeffrey’s uninformative prior can be
obtained by initializing all the parameters of the Dirichlet distribution equal to 1/2.
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j-th Dirichlet prior of the k-th latent component (again, this is 1 in the case of a
weak prior); after the updating, a new value of πyj is drawn. The fourth, and last,
step is the imputation step: given the value xi = k of each unit (resulting from the
first step), and the new set of probabilities πyj , a new score for yij,mis is drawn from
P(yij|xi = k;πyj ). Steps 1-4 are repeated until convergence is reached. Appendix B.1
gives a formal description of these steps.

A BLC model can be estimated in R through the package “BayesLCA" (A. White
& Murphy, 2014).

2.3.3 Unknown K, Frequentist: the Divisive LC Model

The main problem of the standard LC approach is that it uses a substantial amount
of computation time to estimate multiple models with increasing number of classes
to determine the value of K. Divisive latent class (DLC) models (Van der Palm et
al., 2016b) overcome this problem by breaking down the global estimation problem
into a series of smaller local problems. The DLC model incorporates an algorithm
that increases the number of latent classes within a single run until the possible
improvements in model fit have been achieved. This implies that the best fitting
model is found in a single estimation run. The DLC model has been developed by
Van der Palm et al. (2016b, 2014) for density estimation and MI purposes, while a
substantive interpretation of the resulting LC parameters is still unexplored.

The DLC algorithm involves evaluating a series of 1-class and 2-class models. At
the start, a single LC assumed to contain the whole sample is split into two latent
classes if the 2-class model improves the model fit sufficiently (for instance, in terms
of log-likelihood). If this is the case, every unit will have a probability of belonging
to each of the two latent classes, which corresponds to the posterior class member-
ship probabilities. Using these posterior probabilities, two fuzzy subsamples are
created. In the following step, these two new latent classes are checked separately
to establish whether a further split into 2 classes, within each subsample improves
the model fit. In the next steps, this operation is repeated for each newly formed
latent class, until the best model fit is achieved for every fuzzy subsample. Since a
DLC model is estimated sequentially, each submodel created at step s builds on the
results of steps 1, ..., s− 1; in such a way an automatic estimate of the optimum K
is obtained with much smaller computation time compared to the MLLC approach.
Van der Palm et al. (2016b) discussed various decision rules to determine whether
the improvement in model fit is large enough to accept a split of a latent class. Their
advice is to use a stop-criterion based on the increase in the log-likelihood values



2.3 Four Different Implementations of Latent Class Multiple Imputation 19

between the 1-class and 2-class model for a particular fuzzy subsample. For further
technical details, we refer to Van der Palm et al. (2016b).

Van der Palm et al. (2014) observed that the DLC model in combination with
the nonparametric bootstrap may yield biased parameter estimates in a subsequent
substantive analysis. Therefore, they proposed implementing the actual MI proce-
dure in slightly different from MLLC, while still taking into account the uncertainty
about the imputation model parameters. First, the DLC model and its parameters
π is estimated using the original dataset; second, the posterior membership prob-
abilities P(xi = k|yi,obs;π) are computed; third, the original dataset is duplicated
m times; fourth, the P(xi = k|yi,obs;πl) are used to assign m times a latent class to
each respondent; last, for each missing value of unit i in item j, m missing scores
are sampled using the conditional response probabilities P(yij|xi = k;π).

The Latent GOLD software allows performing DLC-based MI, while to our knowl-
edge currently there is no R package that implements the DLC approach.

2.3.4 Variable K, Bayesian: Dirichlet Process Mixture of Products of Multino-
mial Distributions

Even if the AIC index provides a sufficiently large number of mixture components,
once the value of K is determined uncertainty about K is ignored when generating
the imputations. This counters Rubin (1987)’s suggestion to account for all possible
uncertainties about the imputation model parameters in order to avoid underesti-
mation of the variances of the substantive model parameters (Si & Reiter, 2013).
The Dirichlet process mixture of products of multinomial distributions (DPMM)
overcomes the need of an ad hoc selection of a fixed K and, moreover, automatically
deals with the uncertainty about this parameter. This happens by assuming that in
theory there is an infinite number of classes (K = +∞), but letting the data fill only
a smaller number of components that is actually needed. A simulation study by Si
and Reiter (2013) showed that DPMM MI may outperform MICE in terms of bias
and confidence interval coverage rates of the parameters of a substantive model.

DPMM offers a full Bayesian modeling approach for high-dimensional categorical
data. Similarly to BLC, DPMM can be estimated through the Gibbs sampler. One
of the possible conceptualization of the Dirichlet process which serves as a prior for
the mixture proportions πx is the stick-breaking process (Sethuraman, 1994; Ishwaran
& James, 2001). In this formulation, an element of πx, say πk (k = 1, ...,+∞), is
assumed to take on the form πk = Vk ∏h<k(1− Vh) for each k, where every Vk is
drawn from a Beta distribution with parameters (1, α). Here, α, the concentration
parameter of the process, is allowed to vary according to a Gamma distribution with
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parameters (a, b). The conditional responses (and their prior) keep the same distri-
butional form as in the BLC model, that is, multinomial densities with Dirichlet
priors. Also in this case, it is possible to set weakly informative priors for the model
parameters; Dunson & Xing’s (2009) suggestion for weak priors is to initialize α to
be equal to 1 and set the parameters of its Gamma distribution to a = b = 0.25. This
allows each Vk to be uniformly distributed in the (0,1) range, whereas the Dirichlet
priors of the conditional distributions can be made uniform by setting all their pa-
rameters to 1 (as we already saw for the BLC approach). Since the stick-breaking
specification of the Dirichlet process incentivizes the size of each latent class πk to
decrease stochastically with k, this model tends to put meaningful posterior proba-
bilities on a limited number of components automatically determined by the data.
When the concentration parameter α is small, in fact, most of the probability mass
is assigned to the first few components, with the number of significant components
increasing as α increases. As a consequence, there will be a finite number of classes
with a meaningful size, while the classes with a negligible probability mass will be
ignored.

Since working with an infinite number of classes is impossible in practice, Si and
Reiter (2013) proposed truncating the stick-breaking probabilities at an (arbitrarily)
large K∗, but not so large as to compromise the computing speed. If, after running
the MCMC chain, significant posterior masses are observed for all K∗ components,
the truncation limit should be increased. As for the BLC approach, conditional
probabilities of the J variables within each latent class are initialized with the ob-
served frequencies and, for MI, missing data are initialized too with draws from
these frequency tables. The Gibbs sampler is then performed as follows. First, each
unit is assigned to a latent category by drawing from the posterior membership
probabilities P(xi = k|yi;π); second, Vk (k = 1, ..., K∗ − 1 because of the truncation)
are drawn from a Beta distribution, whose first parameter is updated by adding the
number of units allocated in the k-th latent class to its initial value (set to 1), whereas
α is updated by adding to it the number of units assigned to the latent classes which
go from k + 1 to K∗; after setting VK∗ = 1, each πk is calculated through the formula
πk = Vk ∏h<k(1−Vh); in the third step the parameters of the conditional Dirichlet
distributions of πyj are updated by adding the number of units, which take one
of the possible observed values of the j-th variable and are dropped into the k-th
latent class, to the initial parameter value of the related component of that distribu-
tion; after the updating, a new value of πyj is drawn; fourth, a new value for the
concentration parameter α is drawn from the Gamma distribution with parameters
updated as a + K∗ − 1 and b− log(πK∗); fifth, the imputation step analogue to BLC
is performed. Steps 1-5 are repeated until convergence is reached. For a formal
description of the algorithm, see Appendix B.2.
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Table 2.1: Differing features of the four LC models for MI.

Method Parameters
uncertainty

K-handling Time-consuming

MLLC ·nonparametric
bootstrap

·fixed, determined a
priori, AIC criterion

·Yes, estimation of
multiple models

BLC ·embedded in
the posterior
distributions

·fixed, determined a
priori, AIC criterion

·Yes, estimation of
multiple models

DLC ·m different
draws through
the estimated

model

·fixed, unknown a
priori, automatically

determined by
algorithm

·No, best fitting
model achieved in

a single run

DPMM ·embedded in
the posterior
distributions

·uncertain, varying,
ruled by the data

·No, best fitting
model achieved in

a single run

To our knowledge no off-the-shelf software is currently available that enables
estimation of the DPMM model. We implemented a custom routine in R to fit the
model. The R-code is available from the corresponding author upon request.7

Table 2.1 summarizes the main differences of the four models described in this
section. In the next section, we are going to apply the LC MI models to a real-data
example in order to show their working in the practice. We will examine similarities
and differences between the four methods and also with listwise deletion and MICE.

2.4 Real-data Example

The KRISTA dataset (Van den Broek, Nyklicek, Van der Voort, Alings & Denollet,
2008) contains self-reported and interviewer-rated information from 748 patients
aged between 18 and 80 years who got an Implantable Cardioverter Defibrillator
(ICD) in two large Dutch referral hospitals between May 2003 and February 2009.
The aim of the study was to determine whether personality factors affect the oc-
currence of anxiety as a result of the shocks the patients gets from the ICD. We
selected the items of four scales to illustrate the application of MI: Eysenck Person-
ality Questionnaire (EPQ, 24 binary items scored 0-1, 12 of which measure patient’s
neuroticism -EPQN- and the remaining 12 measure patient’s extraversion -EPQE),
Marlowe Crowne Scale (MC, 30 binary items scored 0-1), State-Trait Anxiety Inven-
tory (STAI, 20 items on a 4-point Likert scale), and Anxiety Sensitivity Index (ASI,
16 items ranging from 0 to 4). We included in the analysis also the categorical

7 The code has been written and implemented to run with the example of Section 2.4, but it has been not
validated with other data sets yet.
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background variable Sex, yielding a total of J = 91 variables. After removing the
persons without any observed score on the 90 questionnaire items, we have a sam-
ple size of n = 706 patients, nM = 555 of which are men and nF = 151 of which are
women. Although in this reduced dataset the total percentage of missingness was
very low (2.4%), it should be noticed that a method such as listwise deletion (LD)
may cause a large amount of loss of power, since about 30% of the units contained
at least one missing value, resulting in only n∗ = 494 persons with fully observed
information (n∗M = 400 males and n∗F = 94 women).

We also created a version of the same dataset with some extra MAR missingness.8

The new total rate of missingness was about 22.5%. In this new case, only n∗∗ = 109
units had a completely observed response pattern (of which n∗∗M = 96 males and
n∗∗F = 13 women) while the remaining n− n∗∗ = 597 cases (84.56 % of the units)
had at least one missing value. This data set with a much larger percentage of
missing values will be used to investigate whether and how the behaviour of the
missing data models differs compared to the original low missingness situation.

Case I - Low missingness. We applied LD and MICE and the four LC MI methods to
the original dataset. Subsequently, we computed the estimates of various quantities
of interest for the resulting complete data sets. For the scales we selected, we ob-
tained Cronbach’s alpha (α̂), the means for males and females (µ̂M and µ̂F) and their
standard errors (σ̂µM , and σ̂µF ), the t-value of the test for assessing the hypothesis
of equality of means between men and women (against the alternative hypothesis
H1 : µ̂M 6= µ̂F) and the resulting p-value.

Note that the purpose of our example is to illustrate the use of the LC-based
MI approaches with a real life application. Contrary to the controlled conditions
of a simulation study, we do not know the true values of the quantities of interest.
Instead, we will compare the estimates obtained with different imputation methods,
as well as compare the estimates obtained in the low missingness condition (Case
I) with those in the high missingness condition (Case II). For elaborate simulation
studies on the behavior of the LC imputation models, we refer to Vermunt et al.
(2008); Van der Palm, Van der Ark and Vermunt (2016a); Gebegziabher and DeSantis
(2010); Si and Reiter (2013).

We applied MICE with its default setting using the R library (Van Buuren et al.,
2014) and ran it for 15 iterations. For MLLC and BLC, we specified two kind of
models, one resulting from the selection of K based on the AIC index and the other
using an arbitrarily large value for K. Models specified through the AIC index will
be denoted by MLLC(AIC) and BLC(AIC), while models with a large K will be

8 For the generation of the extra missingness, we followed Brand (1999) and Van Buuren, Brand, Groothuis-
Oudshoorn and Rubin (2006). Appendix C details the procedure adopted.
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denoted by MLLC(large) and BLC(large). For the former, we estimated a 1-class
model, a 2-class model, and so on, up to a 70-class model. The best fitting model,
according to the AIC index, was the 14-class model. MLLC(large) and BLC(large)
were implemented with K = 50. Furthermore, we used the 1-class MLLC model
(MLLC(1), an independence model), which is in fact a random version of mean (or
mode) imputation. We used the MLLC(1) model to show the consequence of using
an imputation model that does not correctly model the associations between the
variables in the data file. The DLC model was estimated with a decision rule based
on the improvement in log-likelihood larger than 0.6 · J, following Van der Palm et
al.’s (2014) advice. This resulted in a model with K = 111 classes. DPMM, finally,
was implemented with K∗ = 50 truncated components. For BLC and DPMM, the
Gibbs samplers were run with B = 50000 iterations and with the prior specifications
described in Section 2.3.

Model-estimation and imputation was performed with LatentGOLD 5.0 (Vermunt
& Magidson, 2013) for MLLC and DLC, while we implemented two routines in R
3.0.2 for the Gibbs samplers of BLC and DPMM. Following Graham, Olchowski and
Gilreath (2007) we used m = 20 imputations for each method (including MICE). R
3.0.2 was used to obtain estimates for the parameters of interest with LD and the
MI methods (pooled estimates for the latter).

Table 2.2 reports α̂, µ̂M, µ̂F,σ̂µM , σ̂µF , t-values, and p-values for each method. The
σ̂µM and σ̂µF obtained with the MI methods reflect both the “within imputation” and
the “between imputation” variability of the estimates of the population means. T-
values were also calculated taking into account both the sources of variability. Null
hypotheses rejected at the significance level of 5% are marked in boldface.

As can be seen, the estimates obtained with the different LC-MI implementations
are all very similar. However, the estimates provided by the MI methods appear
to differ systematically from the estimates of the LD method. For example, the
α̂ estimates for the EPQN and ASI scales obtained with the MI approaches are
always larger than the ones for LD, but the differences among the LC models (both
frequentist and Bayesian) are very small. Also some differences between MICE and
LC imputation methods can be observed. For example, the Cronbach’s alpha of
the EQPN and ASI scales of MICE are not only larger than those of LD, but also
somewhat larger than those of the LC methods.

Also for µ̂M and µ̂F, differences between the LC imputation models are very small.
For instance, the mean of men’s scores on the EPQN scale provided by DLC is only
slightly larger than the ones provided by MLLC(AIC), MLLC(large), BLC(AIC), and
BLC(large), the latter ones being very similar to one another, while DPMM yields
an estimate that may appear somewhat different. Actually, it seems as if the LC-
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MI models produce estimates that differ mainly because randomness involved in
the methods (parameter draws and imputation draws). Probably, if we ran these
methods again, we would obtain slightly different estimates, but without important
differences from the ones reported in Table 2.2. Differences between LD, MICE and
LC-MI estimates are larger than the differences among the various LC MI methods.
As far as MICE is concerned, it can be seen that the difference in estimated means
between MICE and LD is usually larger than the difference between LC-MI and LD.

If we look at the SE estimates, the LC-MI procedures seem to yield somewhat
smaller value than MICE and LD (which is disadvantaged by a smaller sample
size). Furthermore, SEs are very similar across LC methods. Differences between
LD and the MI methods turn out to be important for the t-tests: while we rejected
only 2 null hypotheses (EPQN and MC) with LD, we have 4 out of 5 rejections
(EPQN, MC, STAI and ASI) with all MI methods investigated.

It is also possible to see from Table 2.2 that the independence model, MLLC(1),
does not produce very different results compared to the other LC MI models. The
main difference occurred in the estimates of α̂, which are slightly lower than the
Cronbach’s alpha produced by the other LC-MI methods. The other quantities do
not differ much from those obtained with the others LC imputation models. Seem-
ingly, with this low rate of missingness, it is more important to prevent deleting
cases with missing values than to have "correct" imputations for the missing values.

Given the similar results produced by the MI methods, a look at the computation
times in Table 2.3 may be useful for a further comparison. For the MLLC approach,
the required computation time to estimate models with fewer classes is also re-
ported. Estimation of MLLC models with 1 up to 70 classes took almost 13 hours.
For BLC and DPMM, we report the computation time required to run the Gibbs
sampler for one model. The time spent on estimating all MLLC models should be
added to the computation time to run the Gibbs sampler for BLC(AIC). Running the
MICE with (only) 15 iterations required about 13 hours. Among the LC imputation
methods, MLLC and BLC(AIC) are more time-consuming than DLC, BLC(Large),
and DPMM, which are faster and took about the same computation time, as they do
not require the estimation of multiple models to find the ideal number of classes.

Case II - High missingness. Table 2.4 reports the estimates obtained using the
KRISTA dataset with extra (22.5%) missingness. The settings were the same as with
Case I, except for the number of classes of MLLC(AIC) and BLC(AIC), which was
K = 10, and the number of classes of DLC, which was K = 106. The LD method
was applied with n∗∗ = 109 persons with fully observed score patterns.
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Table 2.3: Computation time for MI using MICE and the six different LC imputation models.

Imputation model Model time Total time

MICE* / 13h05min
MLLC(AIC)** 0h58min 12h51min
MLLC(large)** 7h17min 12h51min

DLC 5h39min 5h39min
BLC(AIC)*** 6h04min 18h55min
BLC(large) 6h41min 6h41min

DPMM 6h27min 6h27min

Note: *MICE was run for 15 iterations. **MLLC models were estimated from MLLC(1) to MLLC(70). The second
column shows the required time to estimate the indicated model, while the third column shows the computation time
taken to estimate all the 70 models. ***For BLC, in the second column the computation time needed to run the Gibbs
sampler has been reported, while in the third column the computation time of MLLC for selecting the number of
classes has been added.

As can be seen from Table 2.4, the contrast between LD and the MI methods,
as well as the differences between MICE, the 1-class LC model, and the other LC
models, are much clearer now. This shows that the way the imputation is per-
formed matters with larger proportions of missing values. All LC imputation meth-
ods recover µ̂M and µ̂F well; that is, estimates of these means are similar or very
close to those of the low-missingness case. Also the estimated standard errors of
the means, σ̂µM and σ̂µF , do not differ much from the previous case, though they
are slightly smaller than for Case I. Notice, furthermore, that the MLLC(1) model
yielded standard errors that are much smaller than the other methods, showing
that an under-specified model will typically underestimate variability. The t-tests
with MLLC(large), BLC(large) and DPMM yielded the same conclusions as with
Case I, as 4 out of 5 tests are rejected at a significance level of 5 %. MLLC(AIC),
DLC, and BLC(AIC) did not reject the hypothesis of equality of means for the ASI
scale, which is result of the slightly lower power in the high missingness condition.
LD seems to produce very much biased means and large standard errors (the latter
resulting from the strongly reduced sample size). The MICE standard errors are
similar those of the LC-MI methods, except for MLLC(1). However, the MICE esti-
mated means are not only rather different from the LC-MI estimates, but also from
MICE estimates for Case I. The largest differences are encountered for STAI and
ASI.

As far as the LC-MI methods is concerned, larger differences between Case I and
Case II occurred for Cronbach’s alpha; that is, in the high missingness condition, the
α̂ estimates are lower than in the low missingness condition. MLLC(1) produced
the lowest values of α̂. The other methods are very similar to each other, but all
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Table 2.5: Comparsion of α̂ (MC scale) estimated after performing MI only on items of MC
scale.

Imputation model α̂(MC)
MICE 0.743

MLLC(1) 0.631

MLLC(AIC) 0.729

MLLC(large) 0.727

DLC 0.725

BLC(AIC) 0.725

BLC(large) 0.728

DPMM 0.728

smaller than in Case I. Especially the alpha value for the MC scale is quite a bit
lower. The fact that α̂ seems to be underestimated indicates that the LC MI models
have some difficulties in capturing and describing the complex associations among
the 91 variables used in the imputation model. MICE provides a Cronbach’s alpha
value closer to the estimates of Case I than the LC methods for the MC scale, but
for the other scales MICE seems to yield larger downward biased alpha values than
the LC-MI methods.

In order to see whether focusing on a single scale improves the estimate of Cron-
bach’s alpha, we performed a separate MI with MICE and the LC methods for
the 30 items of the MC scale (the scale with the worst results in terms of α̂, com-
pared with the results of Table 2.2). From Table 2.5 it can be seen that MLLC(AIC),
MLLC(large), DLC, BLC(AIC), BLC(large), and DPMM are doing much better now,
their estimates being much closer to those of Table 2.2. MLLC(1), on the other
hand, is still doing badly, which confirms that it is an inadequate imputation model.
MICE produced a Cronbach’s alpha identical to the one with all 91 variables.

2.5 Discussion

This chapter offered a state-of-the-art overview on the use of LC models as tools
for MI. One feature that makes LC models attractive imputation tools for psycho-
logical assessment studies is that they do not require complex model specification,
since only the specification of the number of classes, K, is needed. Second, LC
models can efficiently be computated even when dealing with a large number of
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variables. Third, by selecting a large enough number of classes, LC models can pick
up complex associations in high-dimensional datasets.

Four possible LC implementation for MI were described: the Maximum Likeli-
hood LC (MLLC), the Bayesian LC (BLC), the Divisive LC (DLC), and the Dirichlet
Process Mixture of Multinomial Distributions (DPMM) approaches. While sharing
the attractive features of LC modeling for MI, these methods differ in various ways.
One is how they account for the uncertainty about the imputation model parame-
ters: whereas MLLC uses a nonparametric bootstrap and DLC draws m unit class-
memberships from the estimated model, the Bayesian methods (BLC and DPMM)
draw parameters from their posterior distribution. Second, the decision regarding
the number of classes K is handled differently by the four approaches. MLLC and
BLC require model comparison through for example the AIC, DLC determines K in
a single run of its sequential algorithm, and DPMM leaves the number of classes un-
specified. In MLLC and BLC, it is also possible to set K to an arbitrary large value,
which makes them more similar to DLC and DPMM, also in terms of computation
time.

We illustrated the use of the LC imputation methods and compared them with
listwise deletion and MICE using a dataset with 91 categorical variables from a
psychological assessment study. We looked at two situations: the original situation
with a low rate of missingness and a situation with a much higher rate of miss-
ingness obtained by creating additional missing values. In the first situation, the
various types of LC imputation models yielded very similar results; that is, similar
Cronbach’s alpha values, means for men and women, standard errors and t-tests.
However, the fact that the results obtained with the 1-class imputation model were
also similar but those obtained with listwise deletion different indicated that in this
low missingness case it was more important to keep the records with missing values
than to have a correct imputation model. MICE imputation supplied estimates very
similar to those of the LC models, although minor systematic differences appeared
between these two different types of imputation methods.

The differences between LC imputation with both the under-specified model and
MICE were much larger in the high missingness situation. The estimates for Cron-
bach’s alpha and the standard errors of the means were smaller (too small) in the
1-class model, showing that the imputation model matters. Furthermore, LC impu-
tation methods introduced less bias in the estimates of means and standard errors
than MICE in Case II, whereas MICE appeared to better recover the alpha for one
scale but worse for the other four scales.

When comparing the LC-MI estimates of Cronbach’s alpha between the low and
high missingness condition, we saw that alpha was underestimated with more miss-
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ing values, where the degree of this underestimation varied per scale. This shows
that also the LC-MI methods do not pick up perfectly the variability in and the
associations between the variables in the dataset. When performing the imputation
for a single subscale rather than for all 91 variables simultaneously, the LC MI mod-
els yielded much better estimates for Cronbach’s alpha. Capturing the associations
among the variables turns out to be easier with a smaller more homogeneous set of
items, showing that in practice it may be a good idea to perform the imputation per
subset. Whether this is generally the case, is something that needs future research.

Despite of their favorable features for missing data imputation in large-scale stud-
ies, various issues concerning the implementation of the LC imputation models
need further research. The first, and most important, is their moderate performance
in capturing all the associations with high rates of missingness. It may be that we
need an even larger number of classes than we used in our application. In the
Bayesian specification, we have to specify the prior distributions for the parameters,
and it is well known that the choice of priors may affect the results. Therefore, also
the specification of the priors in the context of LC-MI needs further study.

Moreover, LC models can easily be extended with a regression model in which
the latent classes are predicted using background variables, such as sex, age, and
education level. Such an approach has not been used for MI yet, but it may be
interesting to investigate whether inclusion of explanatory variables may improve
the obtained imputations.

While we focused on the LC-based imputation methods for cross-sectional cate-
gorical data, the methods may also be applied with mixed categorical and continu-
ous data, as well as with more complex longitudinal or multilevel designs. This re-
flects the wide range of applications in which LC models can be used. For instance,
LC models for multilevel data (both for continuous and categorical variables) are
described by Vermunt (2008), while latent Markov models for longitudinal data are
among others described by Baum et al. (1970). Such more advanced LC models
may also be used for MI. A possible Bayesian (DPMM) implementation of LC MI
for longitudinal panel studies is provided by Si (2012).



A P P E N D I X

a Bayesian Tools

a.1 The Dirichlet Distribution

In Appendices A and B, f (·) will denote a generic probability distribution or density.
The Dirichlet Distribution will be denoted with Dir(λ), where λ = (λ1, ..., λd) is a
multi-dimensional parameter.

Suppose we have a random variable U with d components (d ≥ 2) such that
U = (U1, ..., Ud); then U ∼ Dir(λ), or equivantly,

f (U|λ) = 1
B(λ)

d

∏
i=1

udi−1
i

in the d-dimensional simplex {(u1, ..., ud) : ui ∈ R+ ∀ i, u1 + ... + ud = 1}. Here,
each ui is a realization of Ui and B(λ) is the multivariate Beta function. When
d = 2, the Dirichlet distribution becomes a Beta distribution.

This density can be used to model sets of probabilities of mutually exclusive and
exhaustive events. This property, as well as its functional form, makes the Dirichlet
distribution a conjugate candidate for the Multinomial distribution, thus forming
the Dirichlet-Multinomial conjugate. According to this model, if the prior distribu-
tion of the set of parameters of the Multinomial distribution with d categories, say
π, follows a Dirichlet distribution with parameter λ = (λ1, ..., λd) and the data Y =

(Y1, ..., Yd) are assumed to be distributed according to a Multinomial distribution
with d components, then the resulting posterior is λ|Y ∼ Dir(λ1 +Y1, ..., λd +Yd). In
case of d = 2 the Dirichlet-Multinomial conjugate corresponds to the Beta-Binomial.
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a.2 Bayesian Computation

a.2.1 The Gibbs sampler

Consider a L-dimensional random variable θ = (θ1, ..., θL) and suppose that we
want to compute the marginal densities f (θi), i = 1, ..., L. Furthermore, suppose that
these marginal densities are obtainable by integration, f (θi) =

∫
f (θ1, ..., θL)d(θ−i),

in which θ−i = (θ1, ..., θi−1, θi+1, ..., θL), is difficult to compute due to its analytical
complexity, but that a series of conditional distributions f (θi|θ−i) is available for
each i = 1, ..., L. The Gibbs sampler, after initializing the variables with some value
θ(0) = (θ

(0)
1 , ..., θ

(0)
L ), proceeds as follows:

1. Draw θ
(t+1)
1 ∼ f (θ1|θ

(t)
2 , ..., θ

(t)
L )

2. Draw θ
(t+1)
2 ∼ f (θ2|θ

(t+1)
1 , θ

(t)
3 ..., θ

(t)
L )

...

L. Draw θ
(t+1)
L ∼ f (θL|θ

(t+1)
1 , θ

(t+1)
2 ..., θ

(t+1)
L−1 )

for t = 1, ..., T, where T is the total number of iterations of the sampler. Under mild
conditions, the Gibbs sampler converges to the stationary distributions f (·). For
further technical details, we refer to Gelfand and Smith (1990). Liu (1994) argued
that the efficiency of the Gibbs sampler can be further improved by considering
blocks of correlated components together. For instance, it is possible to group θ

into two blocks, G1 = (θ1, ..., θd′ ) and G2 = (θd′+1, ..., θL). The result is a two-blocks
Gibbs sampler:

1. Draw G(t+1)
1 ∼ f (G1|G

(t)
2 )

2. Draw G(t+1)
2 ∼ f (G2|G

(t+1)
1 )

for t = 1, ..., T.

a.2.2 The Data Augmentation Algorithm

The Data Augmentation (DA) Algorithm (Tanner & Wong, 1987) is a special case of
the Gibbs sampler. It exploits the fact that

f (θ|Y) =
∫
Z

h(θ, Z|Y)dz,

that is, the completion or data augmentation of f . Here, Z are unobserved or latent
data whose support is denoted by Z , whereas Y denotes a set of observed variables
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and h(·) is a probability density function. The aim of the DA algorithm is to sim-
plify the sampling from the joint distribution f (θ|Y) through a simpler conditional
distribution f (θ|Z, Y). For the DA algorithm, both f (θ|Z, Y) and f (Z|θ, Y) must
be available. After initializing the unobserved Z and the values of θ with some
arbitrary values Z(0) and θ(0), the algorithm consist of two steps:

• Imputation Step: Draw Z(t+1) ∼ f (Z|Y, θ(t))

• Posterior Step: Draw θ(t+1) ∼ f (θ|Y, Z(t+1))

for t = 1, ..., T. In fact, this a version of the DA algorithm in which a single Z-value
is drawn at each step. The original DA algorithm with multiple Z-value draws, as
well as the conditions for convergence to the target distribution, can be found in
Tanner and Wong (1987).

The DA algorithm can be seen as the Bayesian counterpart of the EM algorithm.
Since both latent variables and missing data can be treated as unobserved values,
this algorithm is of particular interest in applications such as LC-MI.

b Bayesian Multiple Imputation via Mixture Modeling

The notation and the model specification are the same as described in Section 2.2.1.
The parameters of a specific class k (i.e., πyj when x = k) will be denoted by πk

j .
For parameters initialization and implementation of the algorithms, we follow Si
and Reiter (2013). In order to simplify notation, a dot in the condition sign, i.e.
P( |·), will indicate a conditioning on all the data and other parameters included in
the model.

b.1 The Bayesian Latent Class Multiple Imputation Model

a. Distributional assumptions.
-Data likelihoods:

• xi ∼ Multinom(πx) where Multinom(πx) is the Multinomial distribution with
parameter πx = (π1, ..., πk, ..., πK) ∀ i;

• Yij|xi = k ∼ Multinom(πk
j ) with πk

j = (πk
j1, ..., πk

jd, ..., πk
jdj
) where dj is the

number of categories of the variable Yj ∀ i, j.

-Parameters priors:

• πx ∼ Dir(αx) with αx = (α1, ..., αk, ..., αK);

• πk
j ∼ Dir(αk

j ) with αk
j = (αk

j1, ..., αk
jd, ..., αk

jdj
).
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b. Implementation.
-Parameters initialization:

• set α(0)
x = (α

(0)
1 , ..., α

(0)
k , ..., α

(0)
K ) = (1, ..., 1);

• set αk(0)
j = (α

k(0)
j1 , ..., α

k(0)
jd , ..., α

k(0)
jdj

) = (1, ...., 1) ∀ j, k;

• initialize π(0)
x with a draw from the Dirichlet distribution with parameters

α
(0)
x

• set P(yij = d|xi = k;πyj)
(0) = π

k(0)
jd = f̂ (yj,obs = d) ∀ i, j, k, where f̂ (yj,obs = d)

is the marginal observed empirical probability that yij = d;

• sample a value for Yij,mis from f̂ (yj,obs) ∀ i in Yj,mis.

-The algorithm:
For t = 1, ..., T:

1. sample x(t)i ∈ {1, ..., K} ∀ i = 1, ..., n from a Multinomial distribution with
posterior membership probabilities as parameters:

P(x(t)i = k|·) =
π
(t−1)
k ∏J

j=1

(
∏

dj
d=1

(
π

k(t−1)
jd

)I(yij=d)
)

∑K
h=1 π

(t−1)
h ∏J

j=1

(
∏

dj
d=1

(
π

h(t−1)
jd

)I(yij=d)
)

where I(yij = d) = 1 if yij = d and 0 otherwise;

2. sample

(π
(t)
x |·) ∼ Dir

(
α
(0)
1 +

n

∑
i=1
I(x(t)i = 1), ..., α

(0)
K +

n

∑
i=1
I(x(t)i = K)

)

where I(x(t)i = k) is an indicator variable which is equal to 1 if x(t)i = k and 0

otherwise;

3. draw

(π
k(t)
j |·) ∼ Dir

α
k(0)
j1 + ∑

i:x(t)i =k

I(yij = 1), ..., α
k(0)
jdj

+ ∑
i:x(t)i =k

I(yij = dj)


∀ i, j, k ;

4. (imputation step): given the value x(t)i = k of each unit, for each {i, j} in Ymis

sample from
(Y(t)

ij |·) ∼ Multinom(π
k(t)
j ).
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Once the MCMC chain has completed its iterations, the m imputations are obtained
by selecting m draws from the sampled values Ymis from Step 4 in such a way that
the draws are sufficiently independent. The thinning of the chain by taking the
draws far enough from one another reduces the autocorrelations within the chain.

Furthermore, with a few minor adjustments, it is possible to let the algorithm es-
timate a LC model using only the observed information Yobs. This involves ignoring
Step 4 (the imputation step) and setting I(yij = d) = 0 for every Yij ∈ Ymis in Step
1, in order to ignore the missing values at every iteration of the MCMC chain. In
this way, each subject contributes to the model estimation and parameters updating
only through his observed values.

b.2 The Dirichlet Process Mixture of Multinomial Distributions Imputation Model

This section gives a short description of the implementation of the algorithm. For
a more detailed information on the Dirichlet Process Mixture, see Congdon (2006)
and Escobar and West (1995).
a. Distributional assumptions.
-Data likelihood:

• xi ∼ Multinom(πx) where πx = (π1, ..., πk, ..., π∞) ∀ i;

• in the practice, the process is truncated at some K∗, with K∗ choosen to be
arbitrarily high, so that πx = (π1, ..., πk, ..., πK∗);

• Yij|xi = k ∼ Multinom(πk
j ) with πk

j = (πk
j1, ..., πk

jd, ..., πk
jdj
) where dj is the

number of categories of the variable Yj.

-Parameters priors:

• πk = Vk ∏h<k(1−Vh) for h ∈ {1, ..., K∗};9

• Vk ∼ Beta(1, α) where α is the concentration parameter of the process;

• α ∼ Gamma(a, b);

• πk
j ∼ Dir(αk

j ) with αk
j = (αk

j1, ..., αk
jd, ..., αk

jdj
).

b. Implementation.
-Parameters initialization:

• set α(0) = 1;

• initialize Vk with a draw from the Beta(1,1) distribution ∀ k;

9 This is the stick-breaking representation of the Dirichlet Process. For technical details, see Sethuraman
(1994) and Ishwaran and James (2001).
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• initialize the parameters of the Gamma distribution (a, b) = (0.25, 0.25);10

• set αk(0)
j = (α

k(0)
j1 , ..., α

k(0)
jd , ..., α

k(0)
jdj

) = (1, ...., 1) ∀ j, k;

• set P(yij = d|xi = k;πyj)
(0) = π

k(0)
jd = f̂ (yj,obs = d) ∀ i, j, k, where f̂ (yj,obs = d)

has been defined in Appendix B.1;

• sample a value for Yij,mis from f̂ (yj,obs) ∀ i inYj,mis.

-The algorithm:
For t = 1, ..., T:

1. sample x(t)i ∈ {1, ..., K} ∀ i = 1, ..., n from a Multinomial distribution that has
the posterior membership probabilities as parameters:

P(x(t)i = k|·) =
π
(t−1)
k ∏J

j=1

(
∏

dj
d=1

(
π

k(t−1)
jd

)I(yij=d)
)

∑K∗
h=1 π

(t−1)
h ∏J

j=1

(
∏

dj
d=1

(
π

h(t−1)
jd

)I(yij=d)
)

where I(yij = d) = 1 if yij = d and 0 otherwise;

2. sample V(t)
k for each k ∈ {1, ..., K∗ − 1} from

(V(t)
k |·) ∼ Beta

(
1 +

n

∑
i=1
I(x(t)i = k), α(t−1) +

K∗

∑
h=k+1

(
n

∑
i=1
I(x(t)i = h)

))

where I(x(t)i = k) is an indicator variable which is equal to 1 if x(t)i = k and 0

otherwise; set VK∗ = 1 and calculate each π
(t)
k = V(t)

k ∏h<k(1−V(t)
h );

3. draw

(π
k(t)
j |·) ∼ Dir

α
k(0)
j1 + ∑

i:x(t)i =k

I(yij = 1), ..., α
k(0)
jdj

+ ∑
i:x(t)i =k

I(yij = dj)


∀ i, j, k ;

4. update the value of α(t) according to

(α(t)|·) ∼ Gamma
(

a + K∗ − 1, b− log(π(t)
K∗ )
)

10 In consistent with Dunson and Xing (2009) and Si and Reiter (2013)’s guidelines.
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5. (imputation step): given the value x(t)i = k of each unit, for each {i, j} in Ymis

sample from
(Y(t)

ij |·) ∼ Multinom(π
k(t)
j ).

Once the chain has completed its iterations, m imputation are obtained in the same
way as seen for the Bayesian LC imputation model (see Appendix B.1). A DPMM
(without imputation purposes) can also be estimated using only the observed part
of the dataset, Yobs, in a fashion similar as indicated for the Bayesian LC analysis (see
Appendix B.1).

c Generating the Extra Missingness for the Real-data Example

In the Case II condition of the real-data example, missing values were generated
by a MAR mechanism following Brand (1999) and Van Buuren et al. (2006). After
selecting sample units with fully observed data (n∗ = 494, from here on referred
as Y∗), we specified γ (i.e., the sought new proportion of incomplete cases) and
P, the number of new missing data patterns that should be created. The missing
data patterns were randomly generated through a series of binomial distributions,
yielded P vectors Rp = (rp1, ..., rpJ) of length J (in our example application J = 91),
where each rpj = 0 if variable Y∗j is missing in pattern p and rpj = 1 otherwise.
Moreover, the relative frequency of each pattern, f = ( f1, ..., fP), is such that ∑p fp =

1.

Subsequently, each person was randomly allocated to one of the P patterns ac-
cording with probabilities f : in this way, γ n∗ fp units were made incomplete for
each pattern according to the following probabilistic model. First, a linear combina-
tion of the observed variables for each case in block p was calculated. For instance,
we calculated cip = ∑j wpjrpjY∗ij , where wpj are the regression coefficient resulting
from the linear regression of Y∗p on Y∗−p = (Y∗1 , ..., Y∗p−1, Y∗p+1, ..., Y∗J ). Second, for
each p the cip were categorized into 3 categories by specifying 2 cutoff points. For
this purpose, we used the 0.33 and 0.66 quantiles of cip within each block p. Third,
odds ratio of having response pattern Rp were specified for the second and the
third category (the first category is the reference category), were determined. For
simplicity, in every block we created a MARTAIL MAR mechanism with the same
odds ratio for each p. A MARTAIL mechanism is more likely to generate missing-
ness for the lowest and highest cip scores. More specifically, we set the missingness
odds ratios to 0.25 and 1.00 for the medium and high cip categories, respectively,
yielding the missingness probabilities as in Brand (1999), equation 5.5. Finally, a
random draw uip from the uniform distribution determined whether the data for
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unit i should be set as missing according to pattern Rp; that is, if the value of uip

is not larger than the corresponding probability of missingness for case i, missing
values were created in agreement with response pattern Rp. Once this operation
was accomplished, the resulting sub-dataset of 494 units was merged with the 212

incomplete cases of the original dataset, yielding the dataset used for our Case II
analyses.



3
B AY E S I A N L AT E N T C L A S S M O D E L S F O R T H E M U LT I P L E
I M P U TAT I O N O F C AT E G O R I C A L D ATA

Latent class analysis has been recently proposed for the multiple imputation of
missing categorical data, using either a standard frequentist approach or a non-
parametric Bayesian model called Dirichlet process mixture of multinomial distri-
butions. The main advantage of using a latent class model for multiple imputation
is that it is very flexible in the sense that it can capture complex relationships in
the data, given that the number of latent classes is large enough. However, the two
existing approaches also have certain disadvantages. The frequentist approach is
computationally demanding because it requires estimating many LC models: first
models with a different number of classes should be estimated to determine the
required number of classes, and subsequently the selected model is re-estimated
for multiple bootstrap samples, to take into account parameter uncertainty during
the imputation stage. Whereas the Bayesian Dirichlet process model performs the
model selection and the handling of the parameter uncertainty automatically, the
disadvantage of this method is that it tends to use a too small a number of clus-
ters during the Gibbs sampling, leading to an underfitting model yielding invalid
imputations. In this chapter, we propose an alternative approach which combined
the strengths of the two existing approaches; that is, we use the Bayesian standard
latent class model as an imputation model. We show how model selection can be
performed prior to the imputation step using a single run of the Gibbs sampler
and, moreover, show how underfitting is prevented by using large values for the
hyperparameters of the mixture weights. The results of two simulation studies and
one real-data study indicate that with a proper setting of the prior distributions, the
Bayesian latent class model yields valid imputations and outperforms competing
methods.

This chapter has been accepted for publication in the journal Methodology.
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3.1 Introduction

Multiple imputation (MI; Rubin (1987)) is a powerful technique to deal with the
problem of missing data in a dataset. Unlike other missing data procedures, it al-
lows for separating the missing data handling step and the substantive analysis step
under the assumption that data are missing at random (MAR). In MI, to account for
the uncertainty about the imputations, the original incomplete dataset is replaced
by multiple (m > 1) complete datasets, in each of which the missing values are
replaced by different sets of random values generated from an imputation model.
In the substantive analysis, each of the m datasets is analyzed separately and m
results are pooled through Rubin (1987)’s rules. This yields point estimates of the
parameters of interest, such as regression coefficients, along with their standard er-
rors, which also reflect the uncertainty due to the presence of missing data (Little &
Rubin, 2002; Schafer & Graham, 2002; Allison, 2009). In order for MI to work well,
the imputation model should preserve the important relationships between the vari-
ables of interest, which can be simple bivariate associations but also higher-order
interactions.

While methods for continuous missing data have been extensively researched
in the past, methods to handle missing values in categorical variables have not
been fully established yet. During the past years, the literature has considered
log-linear models (Schafer, 1997) and MI by chained equations (MICE; Van Buuren
and Groothuis-Oudshoorn (2000)). The former has the advantage of being able
to describe complex associations in the data (through the saturated model), but it
can only handle a limited number of variables. MICE can also be used when the
number of categorical variables with missing values is large, but since this requires
estimating a large number of binary and/or multinomial logistic models, model
selection and specification can become a cumbersome task, especially if complex
relationships requiring higher-order interactions should be preserved by the impu-
tation model (Vermunt et al., 2008; Si & Reiter, 2013).

Vermunt et al. (2008) proposed using a frequentist latent class (FLC), or finite mix-
ture, model for the MI of categorical data. LC models overcome the difficulties
encountered with log-linear models and chained equations. Firstly, the model spec-
ification only requires specifying the number of latent classes (or mixture compo-
nents) K. When K is set large enough, LC models can estimate the joint distribution
of the data and automatically capture important associations among the variables at
hand (Vermunt et al., 2008). Secondly, the particular form of the model and the local
independence assumption offer easy computation even with a large number of vari-
ables. Furthermore, Vermunt et al. (2008) showed by means of a simulation study
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that MI via FLC modeling yields correct parameter estimates of the substantive
model. With the FLC model, the uncertainty about the imputation model parame-
ters is accounted for by bootstrapping. Using a similar model but with a Bayesian
non-parametric approach, Si and Reiter (2013) introduced imputation of categorical
data with the Dirichlet Process Mixture of Multinomial Distributions (DPMM). While
the DPMM assumes a (theoretically) infinite number of mixture components, in
practice an arbitrarily large number of clusters is selected during the Gibbs sam-
pling iterations (Gelfand & Smith, 1990) to perform the actual imputations.

Albeit appealing, both the FLC and the DPMM models have certain disadvan-
tages. The former requires multiple, sequential runs of the EM algorithm, first for
determining the number of classes using a model selection criterion like the AIC,
and subsequently for obtaining the m imputations, which involves re-estimating the
selected FLC imputation model using m bootstrap samples. Hence, imputing with
the frequentist model can be time consuming, especially for large datasets when
various models with large numbers of classes have to be compared and/or when
a large number of imputations has to be performed. The DPMM overcomes these
problems by performing the selection of the number of classes and the actual im-
putations as part of a single run of the Gibbs sampling procedure. However, this
method is prone to data underfitting; that is, relevant associations in the data may
not be picked up because not all the necessary LCs get filled during the Gibbs sam-
pling. This can be deleterious for the resulting imputations: Vermunt et al. (2008)
observed that underfitting in MI is undesirable, because it causes the imputation
model to disregard important relationships in the data, leading to biased and in-
accurate final inferences. On the other hand, overfitting is of small concern, since
picking up particular features which are sample specific does not introduce bias in
the final imputations.

In the current chapter we propose performing MI using a Bayesian LC (BLC)
model, which overcomes the disadvantages of the FLC and the DPMM approaches.
One of the new feature of our approach is that the number of classes needed for
the imputation model is determined using a single, preliminary run of the Gibbs
sampler in which a model is used with a large number of classes and with prior
distributions that favor the emptying of extra components. The m imputations can
subsequently be obtained in a second run, in which the number of LCs is fixed at
the value determined in the first stage. A second special feature of our approach is
that the prior distribution of the mixture weights are set in such a way that the units
are allocated across all the LCs during the Gibbs sampler, helping the BLC model
to prevent underfitting, and leading to more accurate imputations than the DPMM.



42 3 BAYESIAN LC MODELS FOR THE MI OF CATEGORICAL DATA

The outline of the remainder of this chapter is as follows. In Section 3.2, the
BLC model for the MI of categorical data is introduced, along with its estimation
and set-up. Section 3.3 describes two simulation studies which compare the BLC
model with different prior specifications, as well as with the DPMM, FLC, and
MICE approaches. Section 3.4 reports the results of a real-data experiment. Section
3.5 concludes with final remarks by the authors.

3.2 Bayesian Latent Class Imputation

Bayesian imputations are derived from the posterior predictive distribution of the
missing data given the observed data, i.e. Pr(Ymis|Yobs) =

∫
Pr(Ymis|π)Pr(π|Yobs)dπ,

in which π is the model parameter vector. Thus, imputations are performed by first
drawing m values from the posterior distribution of the model parameter Pr(π|Yobs),
and then by sampling from the predictive distribution Pr(Ymis|π∗(l)), l = 1, ..., m.
The posterior Pr(π|Yobs) is estimated via Gibbs sampling and derived from two
quantities: a probabilistic model for the data (the likelihood) and a prior distribu-
tion for π.

3.2.1 The data model

Let yi be a vector of length J, denoting the observed response pattern for unit i
(i = 1, ..., n) on J categorical variables, so that yij = s is unit i’s value on the j-th
variable (j = 1, ..., J; s = 1, ..., sj). Furthermore, let xi = k be a realization of the latent
categorical variable X for person i, taking on one of the possible values k ∈ {1, ..., K}.
The latent class (LC) model (Lazarsfeld, 1950; Goodman, 1974) describes the joint
distribution of the observed variables (Y1, ..., YJ) through the well-known form

Pr(yi) =
K

∑
k=1

Pr(xi = k)
J

∏
j=1

Pr(yij = s|xi = k),

in which the Pr(xi = k) are the latent class weights and the Pr(yij = s|xi = k) are
the conditional response probabilities. By assuming a Multinomial distribution for
both X and Yj|X, with parameters denoted by Pr(xi = k) = πk and Pr(yij = s|xi =

k) = πkjs, respectively, the model can be rewritten in terms of the Multinomial
parameters as

Pr(yi; π) =
K

∑
k=1

πk

J

∏
j=1

sj

∏
s=1

(πkjs)
Iijs , (3.1)
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where Iijs is an indicator variable equal to 1 when yij = s and 0 otherwise. Below,
we will use the symbols πx and πkj to refer to the two sets of model parameters, i.e.
πx = (π1, ..., πK) and πkj = (πkj1, ..., πkjsj

), while π = (πx, π11, ..., πKJ).

With a sufficiently large number of classes, the LC model can capture the first-
and higher-order moments of the joint distribution of the J categorical variables
(McLachlan & Peel, 2000). The resulting density is a weighted average (i.e., a
mixture) of class-specific Multinomial densities, where the probabilities πk act as
weights. Furthermore, the local independence assumption makes the conditional den-
sity Pr(Yj|X = k) independent of the other response variables given the k-th latent
class. As a result, the estimation of a LC model involves processing J two-way K-by-
sj tables, instead of the full multi-way table involving all J variables (as done by e.g.
the log-linear model). For this reason, especially when the number of variables is
large, the LC model is computationally appealing for MI. Details about MI through
FLC models can be found in Vermunt et al. (2008).

3.2.2 The prior distributions

Model (3.1) can be turned into a Bayesian LC (BLC) model by placing prior distribu-
tions upon the latent class proportions πx and the conditional response probabili-
ties πkj. A common choice conjugate to the Multinomial distribution is the Dirichlet
prior. Therefore, we will assume that

πx ∼ Dir(αx)

and
πkj ∼ Dir(αkj)

∀ k, j. Here the vectors αx (from here on referred to as the latent hyperparameter) and
αkj (from here on referred to as conditional hyperparameter) are defined as

αx = (α1, ..., αk, ..., αK)

and
αkj = (αkj1, ..., αkjs, ..., αkjsj

),

with αk > 0 and αkjs > 0 ∀ k, j, s.

The most common setting is to use a single value for the hyperparameters α,
yielding symmetric Dirichlet distributions with constant α values; that is, αx =

(c1, ..., c1) and αkj = (c2, ..., c2). Below, we will use the fact that the magnitude of
c1 parameters affects the shape of the posterior class distribution: the larger c1 the
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more the observations will tend to be evenly distributed across all latent classes,
while with c1 close to 0 only some of the classes will have a non-negligible posterior
probability mass.

3.2.3 BLC Model Estimation and Imputation

Model estimation is performed via a Gibbs sampling algorithm. In our implementa-
tion, we separate the Gibbs sampling of the LC model parameters from the imputa-
tion of the missing values. That is, we first run the Gibbs sampler for a certain num-
ber of iterations and store m sets of parameters from iterations which are spaced
enough to prevent auto-correlations among the draws. Subsequently, m imputed
data sets are created using these m sets of stored parameters. An alternative would
be to impute the missing values as a part of the Gibbs sampling iterations, and
base the posterior class membership probabilities used in the Gibbs sampler on both the
observed and the imputed values rather than on the observed part of the data only.
Our implementation is computationally more efficient, because there is no need to
update the missing data at each iteration, nor to take imputed values into account
when the posterior membership probabilities of Step 1 are calculated (e.g., Si and Reiter
(2013)).

Here, we assume that both the number of classes K and the hyperparameter val-
ues have been previously chosen. The next section discusses how to perform these
choices. The parameters of both the latent variable X and the conditional distri-
butions of the j-th variable given the k-th latent class, Yj|X = k, can be initialized
through random draws from uniform Dirichlet distributions: π0

x ∼ Dir(1, ..., 1) and
π0

kj ∼ Dir(1, ..., 1) ∀ k, j, in order to increase the likelihood of initializing the sampler
from the interior of the parameter space. The total number of iterations (T) depends
on the number of burn-in iterations (b), the number draws used for the imputations
(m), and the spacing between these m draws (d); that is, T = b + d ·m. The value of
b should be large enough to ensure convergence of the chain to its equilibrium dis-
tribution Pr(π|Yobs). Since a BLC imputation model may consist of a large number
of parameters and since the quantity of interest in MI is the likelihood Pr(Yobs|π),
convergence is assessed by inspecting the traceplot of the log-likelihood function
calculated at each iteration, as suggested by Schafer (1997).

The Gibbs sampler proceeds as follows, for t = 1, ..., T:
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Algorithm 3.1:

1. sample x(t)i ∈ {1, ..., K} ∀ i = 1, ..., n from the Multinomial distribution
with the posterior membership probabilities as parameters, defined as:

Pr(x(t)i = k|Yobs, π(t−1)) =

π
(t−1)
k ∏J

j=1

(
∏

sj
s=1

(
π
(t−1)
kjs

)I∗ijs)
∑K

h=1 π
(t−1)
h ∏J

j=1

(
∏

sj
s=1

(
π
(t−1)
kjs

)I∗ijs) ,

in which I∗ijs equals 1 when yij = s and yij ∈ Yobs, and 0 otherwise;

2. sample

(π
(t)
x |Yobs, x(t), αx) ∼ Dir

(
α1 +

n

∑
i=1
I(x(t)i = 1), · · · , αK +

n

∑
i=1
I(x(t)i = K)

)

where I(x(t)i = k) is equal to 1 if x(t)i = k and 0 elsewhere;

3. draw

(π
(t)
kj |Yobs, x(t), αkj) ∼ Dir

αkj1 + ∑
i:x(t)i =k

I∗ij1, · · · , αkjsj
+ ∑

i:x(t)i =k

I∗ijsj

 ,

∀ k, j.

After ruling out the first b iterations for the burn-in, the BLC model is estimated
with the remaining d ·m iterations, which are draws from the conditional distribu-
tion Pr(π|Yobs). For the imputations, at each dth iteration we store the sampled
parameters and class memberships, yielding π∗(1), ..., π∗(m) from Pr(π|Yobs) and
x(1)i , ..., x(m)

i . The imputed values are subsequently drawn from the posterior pre-

dictive distribution of the missing data, denoted by Pr(Y∗(l)mis |Yobs, π∗(l)), l = 1, ..., m.
These simulated values will be then entered in the blank part of the original incom-
plete dataset, replicated m times. Formally:

4. imputation step: with each of m parameter sets selected for the imputations,
l = 1, ..., m, given the sampled value x(l)i = k of each unit, and for each {i, j} ∈
Ymis, sample from

(Yij|Yobs, π(l), x(l)i = k) ∼ Multinom(π
∗(l)
kj )
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and store the imputed values.

In the experiments described in Sections 3.3 and 3.4, Algorithm 3.1 is run with a
routine we implemented in R, which is available upon request from the first author.

3.2.4 Setting up the model

3.2.4.1 Model Selection: Number of Classes

For Bayesian finite mixture models, Gelman, Carlin, Stern and Rubin (2013) (chapter
22) proposed performing model selection by resorting to a computational expedi-
ent. In particular, they noticed that by starting with an arbitrarily large K and latent
hyperparameters supporting the occurrence of empty components while the Gibbs
sampler is running, it is possible to obtain a posterior distribution for the number
of clusters by counting the number of classes filled at each iteration of Algorithm
3.1 (without step 4). A possible value for the latent hyperparameter that encourages
the realization of empty components is given by αk = 1/K ∀ k, which as indicated
by Gelman et al. (2013) is insensitive to the choice of the starting K. Hence, their
approach consists of two main steps: (1) preliminarily run the Gibbs sampler (steps
1-3 of Algorithm 3.1) and obtain the posterior distribution K|Yobs; (2) set K equal
to the posterior mode of this distribution, and re-run the Gibbs sampler with this
value of K to perform inference. Whereas setting the number of classes equal to
the posterior mode is a logical choice in a substantive LC analysis (i.e., for model
interpretation), in MI a number of components larger than the one used for sub-
stantive analysis is usually required (Vermunt et al., 2008). Therefore, we suggest
using the posterior maximum of the distribution K|Yobs, that is, the largest K∗ such
that Pr(K = K∗|Yobs) > 0. Afterwards, it is possible to perform the imputations
(Algorithm 3.1 including step 4) with a second run of the Gibbs sampler, with K
selected at the previous stage and a latent hyperparameter that supports the alloca-
tion of the units across all the mixture components (see below). In the experiments
of Sections 3.3 and 3.4 this model selection method was tested for the BLC model,
as well as for the FLC imputation model to assess whether this is a good and fast
alternative for the model selection step of the FLC model.
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3.2.4.2 Hyperparameter Selection

Latent hyperparameter. Hoijtink and Notenboom (2004) noticed that when standard
priors (e.g., the uniform prior) for the latent weights are used, the probability of
obtaining empty classes increases with K. In these situations, sampling from the
true posterior becomes difficult for the Gibbs sampler, since the (conditional distri-
bution) parameters of the empty components are fully determined by their prior
distributions, making the Gibbs sampler unstable.

As mentioned in the previous section, the assumed prior distribution for the mix-
ture weights strongly affects the shape of the posterior when the Gibbs sampler is
run with a large number of classes. In particular, αx can be set in such a way that all
the specified LCs are filled during the Gibbs sampler iterations. Rousseau and Mer-
gensen (2011) showed that, when an overfitting mixture model is estimated with
max(α1, ..., αK) < p/2, where p is the number of free parameters to be estimated
within each mixture component,1 the latent proportions of the extra classes will
approach 0, while with min(α1, ..., αK) > p/2, the possibly redundant classes will
be given a non-negligible weight. The larger the value of αk is, the larger the num-
ber of filled LCs will be. Obtaining full allocation of the components is desirable,
because in this way the Gibbs sampler avoids to sample from the prior distribution
of the empty components parameters, making the composition of the clusters fully
determined by the data. The MCMC output can be used to assess whether all the
LCs have been filled during the Gibbs sampling: if this is not the case, then we
suggest making αk ∀ k more informative by increasing its value (while maintaining
a symmetric Dirichlet distribution) until full allocation is achieved.

Conditional hyperparameter. In MI, the aim is to obtain imputations which resemble
as much as possible the observed data, implying that the prior distributions should
be dominated by the data likelihood (Schafer & Graham, 2002). For the conditional
response probabilities, Si and Reiter (2013) proposed setting uniform priors for all
variables and mixture components, that is, αkj = (1, ..., 1) ∀ k, j. However, as will be
shown in Section 3.3, this may still be too informative, leading to invalid imputa-
tions. Note that using such uniform priors for the conditional response probabilities
is equivalent to adding K · sj observations for each variable (see Step 3 of Algorithm
3.1). To prevent having too informative priors for this part of the model, we suggest
making the conditional hyperparameters less influential by decreasing their values
and setting them as low as αkjs = 0.01 or 0.05 ∀ k, j, s.2

1 In LC models, the number of free parameters within each components is given by p = ∑j sj − 1.
2 This is equivalent to entering 0.01Ksj or 0.05Ksj imaginary observations for each variable.
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3.3 Simulation Studies

Here we report the results of two simulation studies. In both studies the perfor-
mance of our method is compared to that of FLC, DPMM, and MICE. Study 1

concerns a situation with a large sample size and a small number of variables while
Study 2 is based on data with a smaller sample size and a large number of variables.
All analyses were performed with R version 3.3.0.

3.3.1 Study 1

3.3.1.1 Study Design

Population model. The population model was specified for five predictor variables
Y1, ...., Y5 and one outcome variable Y6, all of which were trichotomous (coded with
0, 1 and 2). The relationships between the predictors were described by the log-
linear model

log Pr(Y1, Y2, Y3, Y4, Y5) ∝ −0.5
5

∑
j=1

Yj −
4

∑
j=1

5

∑
j′=j+1

YjYj′ − 0.2Y1Y3Y5 + 0.5Y2Y4Y5.

(3.2)
Subsequently, the outcome was generated from a multinomial logistic model, de-
fined for Pr(Y6 = r|Y1, ..., Y5) (r = {1, 2}), whose probabilities were specified
through

log(Pr(Y6 = 1)/ Pr(Y6 = 0)) = −0.1 + Y1 + β1,2Y2 + β1,3Y3 − 0.6Y4 + 0.5Y5+

β1,25Y2Y5 + β1,34Y3Y4

log(Pr(Y6 = 2)/ Pr(Y6 = 0)) = −0.6 + 1.8Y1 + β2,2Y2 + β2,3Y3 + Y4 − 0.5Y5+

β2,25Y2Y5 + β2,34Y3Y4,

(3.3)

where, as can be seen, the reference category is Y6 = 0. The values of the β

parameters are reported in Table 3.1. Based on models (3.2) and (3.3), we generated
N = 500 datasets with n = 5000 observations each.

Introducing missingness. A low and a high missingness condition was created by
introducing missing values in Y2 and Y3 according to MAR mechanisms. The total
rate of missingness for both Y2 and Y3 was around 10% and 20% for the low and
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Table 3.1: Parameter values under investigation in Study 1.

Parameter β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Value -1.7 1.5 -0.25 0.1 -1.25 1 -0.5 0.2

high missingness condition, respectively. Table 3.2 shows how the probability of a
missing value depends on Y1 and Y4 for Y2, and on Y5 and Y6 for Y3.

Settings of the imputation models. For all the imputation models, we performed m =

20 imputations. For the BLC and the FLC models we performed model selection
with the Gelman et al. (2013)’s method exposed in Section 3.2.4.1. In particular,
for each simulated datasets we ran steps 1-3 of Algorithm 3.1 with 20 components
for T = 3000 iterations, of which b = 1000 served as burn-in. The remaining
2000 iterations were used to determine the distribution of the number of LCs. This
led to an average (maximum) number of classes equal to K̄ = 15.94 in the low
missingness condition and to K̄ = 15.41 in the high missingness condition. The
FLC imputation model was run with LatentGOLD 5.1 (Vermunt & Magidson, 2013)
with the settings given in Vermunt et al. (2008). We imputed the data with the BLC
model using different prior specifications. In particular, we manipulated αk to be
equal to 1 and to 20 (we found out that αk = 20 was sufficiently large to ensure full
allocation of the units across all the LCs), and αkjs to be equal either to 1 or to 0.01.
The BLC models we used will be denoted with BLC(αk,αkjs); for instance, BLC(1,1)
indicates the BLC model with uniform priors for both the latent proportions and
the conditional response probabilities. We ran the DPMM model with K = 20 and
hyperparameters of the Dirichlet Process prior set as in Si and Reiter (2013); αkjs

was handled as done for the BLC model. Therefore, we will denote the two DPMM
models we implemented with DPMM(1) and DPMM(.01). The Gibbs sampler for
both the BLC and the DPMM methods were run with self-implemented routines,3

with T = 5000 total and b = 1000 burn-in iterations. Lastly, the MICE method was
run with its standard settings and with 20 iterations for each imputation4 using the
mice library (Van Buuren et al., 2014).

Outcomes. After applying the imputation models, estimating model (3.3) on each
imputed dataset, and applying the pooling rules for MI, we compared relative bias,
stability (i.e., the standard deviation of the estimates across the 500 replications),
and coverage rates of the 95% confidence intervals of the MI estimates. In partic-

3 We implemented the DPMM model as described in Si and Reiter (2013).
4 MICE produces m imputations by starting from m different (independently drawn) values for the missing

data. Subsequently, the imputation model parameters and the missing data are iteratively updated in
parallel for a number of specified iterations. Following Van Buuren et al. (2006), to reach convergence
the number of iterations does not need to be large, and we decided to set it equal to 20.
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Table 3.2: MAR mechanisms used in Study 1: the table reports the probability of missingness in Y2 for
each combination of Y1, Y4 and in Y3 for each combination of Y5, Y6.

Missingness Rate Y1,Y4 Pr(Y2 is missing) Y5,Y6 Pr(Y3 is missing)

Low 0,0 .100 0,0 .125

0,1 .025 0,1 .075

0,2 .125 0,2 .100

1,0 .150 1,0 .100

1,1 .075 1,1 .150

1,2 .050 1,2 .175

2,0 .125 2,0 .150

2,1 .200 2,1 .050

2,2 .150 2,2 .125

Large 0,0 .200 0,0 .250

0,1 .050 0,1 .150

0,2 .250 0,2 .200

1,0 .300 1,0 .200

1,1 .150 1,1 .300

1,2 .100 1,2 .350

2,0 .250 2,0 .300

2,1 .400 2,1 .100

2,2 .300 2,2 .250
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ular, we considered the estimates of the parameters reported in Table 3.1: these
parameters correspond to the main and interaction effects of the variables with
missing values (Y2 and Y3).

3.3.1.2 Results

Tables 3.3 and 3.4 show the results for the Low and High missingness condition,
respectively.

Low missingness condition. In the first condition, the largest bias was observed for
the two interaction terms β1,25 (MICE) and β1,34 (MICE, FLC, BLC(1,1), BLC(20,1),
DPMM(1)). The interaction term β2,34 recovered by BLC(1,1) and DPMM(1) was
also biased. Parameter estimates produced by all the LC methods tended to be sim-
ilar in terms of stability, but the most stable parameter estimates were provided by
MICE. The coverage rate of the 95% confidence intervals was close to the nominal
level for all the parameters estimated after processing the data with any of the con-
sidered imputation methods, except for the confidence intervals of the main effects
β1,2 and β1,3 produced by MICE, which were too short.

High missingess condition. With a larger rate of missingness more pronounced
relative bias was observed across a larger number of estimates and for more impu-
tation methods. All methods, with the exception of BLC(20,.01), retrieved a biased
estimate of the parameter β1,34. Furthermore, the interaction terms β2,25 and β2,34

provided by all the Bayesian LC models (excluding BLC(20,.01)) were also biased.
The remaining interaction term (β1,25) was correctly recovered by all methods, ex-
cept for MICE and DPMM(1). As with low missingness, all LC methods retrieved
similarly stable estimates, although now the BLC(1,1), BLC(20,1), and DPMM(1)
models tended to produce relatively more stable estimates for some of the parame-
ters. As in the previous condition, the confidence intervals for all parameters pro-
duced by most methods were close to their 95% nominal level. The only exceptions
were the much too low coverage for the main effects β1,2, β1,3, and β2,3 produced
by MICE and the slightly too low coverage for the interaction terms β2,25 and β2,34

by various of the LC-based methods.
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Table 3.3: Relative bias, stability and coverage rate observed for the estimates of eight multinomial
logistic model parameters in (3.3) after applying three different imputation models.

Low Missingness Condition

Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Relative MICE -0.06 -0.09 -0.22 0.22 0.02 -0.06 -0.04 0.03

Bias FLC 0.00 0.01 -0.02 0.22 0.01 0.01 0.02 0.06

BLC(1,1) 0.00 0.00 -0.08 -0.21 0.01 0.00 -0.11 -0.18

BLC(20,1) 0.00 0.00 -0.07 -0.20 0.01 -0.01 -0.09 -0.15

BLC(1,.01) 0.00 0.00 -0.04 -0.03 0.01 0.00 -0.05 -0.08

BLC(20,.01) 0.00 0.00 -0.02 0.05 0.00 0.00 -0.02 -0.02

DPMM(1) 0.00 0.00 -0.10 -0.52 0.02 0.00 -0.14 -0.40

DPMM(.01) 0.00 0.00 -0.04 -0.06 0.01 0.00 -0.06 -0.09

Stability MICE 0.09 0.08 0.11 0.16 0.08 0.10 0.19 0.15

FLC 0.10 0.10 0.13 0.19 0.08 0.11 0.20 0.17

BLC(1,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16

BLC(20,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16

BLC(1,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

BLC(20,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

DPMM(1) 0.10 0.10 0.13 0.17 0.08 0.11 0.17 0.16

DPMM(.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

Coverage MICE 0.82 0.72 0.96 0.98 0.94 0.92 0.97 0.98

Rate FLC 0.93 0.95 0.95 0.96 0.95 0.95 0.97 0.95

BLC(1,1) 0.94 0.96 0.95 0.97 0.95 0.95 0.95 0.96

BLC(20,1) 0.93 0.96 0.94 0.97 0.96 0.95 0.96 0.95

BLC(1,.01) 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.95

BLC(20,.01) 0.94 0.96 0.94 0.97 0.94 0.95 0.97 0.95

DPMM(1) 0.94 0.95 0.95 0.96 0.95 0.95 0.95 0.94

DPMM(.01) 0.93 0.95 0.95 0.96 0.95 0.95 0.96 0.95

MICE: MICE imputation technique; FLC: frequentist LC imputation model; BLC(1,1): Bayesian LC im-
putation model with αk = 1, αkjs = 1; BLC(20,1): Bayesian LC imputation model with αk = 20, αkjs = 1;
BLC(1,.01): Bayesian LC imputation model with αk = 1, αkjs = .01; BLC(20,.01): Bayesian LC imputation
model with αk = 20, αkjs = .01; DPMM(1): DPMM imputation model with αkjs = 1; DPMM(.01): DPMM
imputation model with αkjs = .01. Largest values in relative bias and too low coverage rates are marked
in boldface.
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Table 3.4: Relative bias, stability and coverage rate observed for the estimates of eight multinomial
logistic model parameters in (3.3) after applying three different imputation models.

High Missingness Condition

Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Relative MICE -0.12 -0.18 -0.38 0.34 0.04 -0.13 -0.13 0.02

Bias FLC 0.00 0.01 -0.02 0.35 0.02 0.02 -0.02 0.09

BLC(1,1) 0.01 -0.01 -0.14 -0.56 0.03 -0.01 -0.28 -0.41

BLC(20,1) 0.00 -0.01 -0.13 -0.55 0.03 -0.02 -0.25 -0.37

BLC(1,.01) 0.00 0.00 -0.05 -0.23 0.02 0.00 -0.16 -0.23

BLC(20,.01) 0.00 0.00 -0.02 -0.04 0.01 0.00 -0.10 -0.09

DPMM(1) 0.01 -0.01 -0.17 -0.99 0.05 -0.01 -0.33 -0.75

DPMM(.01) 0.00 0.00 -0.05 -0.32 0.02 0.00 -0.17 -0.28

Stability MICE 0.08 0.08 0.09 0.16 0.09 0.10 0.18 0.14

FLC 0.11 0.11 0.13 0.21 0.09 0.12 0.20 0.20

BLC(1,1) 0.11 0.10 0.13 0.19 0.09 0.11 0.16 0.16

BLC(20,1) 0.11 0.10 0.13 0.19 0.08 0.11 0.17 0.17

BLC(1,.01) 0.11 0.11 0.13 0.21 0.09 0.12 0.18 0.19

BLC(20,.01) 0.11 0.11 0.14 0.21 0.09 0.12 0.19 0.19

DPMM(1) 0.10 0.10 0.13 0.19 0.08 0.11 0.16 0.17

DPMM(.01) 0.11 0.11 0.13 0.20 0.09 0.12 0.19 0.18

Coverage MICE 0.48 0.17 0.96 0.98 0.93 0.80 0.96 0.99

Rate FLC 0.94 0.94 0.96 0.95 0.95 0.91 0.96 0.94

BLC(1,1) 0.95 0.95 0.95 0.96 0.94 0.95 0.92 0.95

BLC(20,1) 0.95 0.96 0.96 0.96 0.96 0.96 0.92 0.95

BLC(1,.01) 0.95 0.95 0.96 0.95 0.95 0.94 0.94 0.93

BLC(20,.01) 0.93 0.95 0.96 0.95 0.94 0.94 0.95 0.95

DPMM(1) 0.95 0.95 0.96 0.92 0.93 0.96 0.89 0.87

DPMM(.01) 0.94 0.95 0.96 0.95 0.95 0.95 0.93 0.94

MICE: MICE imputation technique; FLC: frequentist LC imputation model; BLC(1,1): Bayesian LC im-
putation model with αk = 1, αkjs = 1; BLC(20,1): Bayesian LC imputation model with αk = 20, αkjs = 1;
BLC(1,.01): Bayesian LC imputation model with αk = 1, αkjs = .01; BLC(20,.01): Bayesian LC imputation
model with αk = 20, αkjs = .01; DPMM(1): DPMM imputation model with αkjs = 1; DPMM(.01): DPMM
imputation model with αkjs = .01. Largest values in relative bias and too low coverage rates are marked
in boldface.
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Table 3.5: Probability of observing 1 for the independently generated variables of Study 2.

Pr(Y16 = 1) = 0.7
Pr(Y17 = 1) = 0.6

Pr(Y18 = 1) = 0.55
Pr(Y19 = 1) = 0.6
Pr(Y20 = 1) = 0.7

3.3.2 Study 2

3.3.2.1 Study Design

Population model. In Study 2 we used J = 21 binary variables Y1, ..., Y21 (coded with
0 and 1), 20 predictors and 1 outcome. The first 15 predictors were generated from
the following log-linear model:

log Pr(Y1, ..., Y15) ∝ −0.15
15

∑
j=1

Yj + 0.5
4

∑
j=1

5

∑
j′=j+1

YjYj′ − 0.1
10

∑
j=6

11

∑
j′=j+1

YjY′j

+0.15
14

∑
j=12

15

∑
j′=j+1

YjY′j + 0.3Y1Y2Y7 + 0.6Y3Y4Y8 − 0.4Y6Y9Y10,

(3.4)
while the remaining 5 predictors were assumed to be independent of the rest, with
marginal probabilities Pr(Yj = 1), j = 16, ..., 20, as reported in Table 3.5.

Given Y1, ...., Y20 the outcome Y21 was generated from the following binary logistic
model:

logit(Y21) = −1.9 + β1Y1 + 1.8Y2 − 0.95Y3 − 0.9Y4 + .8Y5 + β6Y6 − 0.5Y7 + 0.6Y8 + Y9

+0.55Y10 − 0.6Y11 + 0.75Y12 − 1.2Y13 + 0Y14 + 0Y15 + β16Y16 − 0.85Y17

+0.55Y18 + 0Y19 + β20Y20 + β1.5Y1Y5 + β1.17Y1Y17 + β1.5.17Y1Y5Y17.
(3.5)

Besides the two- and three-way interaction terms, in model (3.5) we also specified
some null effects (coefficients equal to 0) in order to assess how the imputation
models deal with irrelevant variables. The values of the β parameters are shown in
Table 3.6. From models (3.4) and (3.5) (and the variables described in Table 3.5), we
generated N = 200 datasets with n = 2000 observations.
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Table 3.6: Parameter values under investigation in Study 2.

Parameter β1 β6 β16 β20 β1.5 β1.17 β1.5.17

Value 0.8 1.1 -0.45 0 1.3 -.85 0.45

Table 3.7: MAR mechanisms used in Study 2.

Variable with missingness Condition Pr(Variable is missing)

Y1 Y3 = 0, Y4 = 0 .15

Y3 = 0, Y4 = 1 .05

Y3 = 1, Y4 = 0 .25

Y3 = 1, Y4 = 1 .30

Y6 Y5 = 0, Y21 = 0 .30

Y5 = 0, Y21 = 1 .20

Y5 = 1, Y21 = 0 .10

Y5 = 1, Y21 = 1 .35

Y16 Y9 = 0, Y10 = 0 .30

Y9 = 0, Y10 = 1 .25

Y9 = 1, Y10 = 0 .10

Y9 = 1, Y10 = 1 .40

Y20 Y14 = 0, Y15 = 0 .35

Y14 = 0, Y15 = 1 .10

Y14 = 1, Y15 = 0 .10

Y14 = 1, Y15 = 1 .45

Introducing missingness. Missingness was entered in Y1 (involved in all the in-
teraction terms), Y6, Y16, and Y20 (an irrelevant predictor). The marginal rate of
missingness (generated with the MAR mechanism reported in Table 3.7) was equal
to 25% for each variable with missing values.

Settings of the imputation models. The specifications used for the imputation models
were similar to Study 1. For FLC and BLC, our model selection procedure gave an
average (maximum) number of classes of K̄ = 16.31, while we increased the number
of classes for the DPMM, specifying for the latter 20 more classes than the FLC and
BLC models5. Based on the results of Study 1, we decided not to vary αkjs anymore,

5 With the DPMM model superfluous classes are given weights equal to zero during the Gibbs sampling.
Hence, with such an imputation model any selected number of classes leads to similar inferences, pro-
vided that this number is large enough.
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Table 3.8: Relative bias, stability and coverage rate observed for the estimates of seven logistic model
parameters in (3.5) after applying three different imputation models. For the null effect β20
absolute bias is reported.

Parameter

Method β1 β6 β16 β20 β1.5 β1.17 β1.5.17

Relative MICE 0.20 -0.01 0.00 0.01 -0.22 -0.16 -0.06

Bias FLC -0.05 -0.09 -0.10 0.00 -0.11 -0.14 -0.05

BLC(1) 0.01 -0.12 -0.13 0.00 -0.21 -0.16 -0.06

BLC(80) -0.04 -0.08 -0.08 0.00 -0.09 -0.12 -0.05

DPMM 0.02 -0.12 -0.13 0.00 -0.22 -0.16 -0.06

Stability MICE 0.41 0.14 0.15 0.14 0.38 0.40 0.35

FLC 0.44 0.13 0.13 0.13 0.42 0.42 0.35

BLC(1) 0.40 0.14 0.13 0.13 0.40 0.39 0.35

BLC(80) 0.44 0.14 0.14 0.14 0.43 0.42 0.36

DPMM 0.40 0.14 0.13 0.13 0.39 0.40 0.35

Coverage MICE 0.98 0.93 0.92 0.96 0.96 0.96 0.94

Rate FLC 0.94 0.88 0.95 0.96 0.96 0.96 0.96

BLC(1) 0.97 0.84 0.94 0.98 0.96 0.97 0.95

BLC(80) 0.94 0.91 0.94 0.96 0.96 0.96 0.94

DPMM 0.96 0.87 0.94 0.98 0.96 0.97 0.94

MICE: MICE imputation technique; FLC: frequentist LC imputation model; BLC(1): Bayesian LC im-
putation model with αk = 1; BLC(80): Bayesian LC imputation model with αk = 80; DPMM: DPMM
imputation model. Largest values in relative bias and too low coverage rates are marked in boldface.

but instead fixed it to 0.01 for both BLC and DPMM. The latent hyperparameter of
the BLC model αk was set to be equal to either 1 or 80, where the latter was chosen
to be sufficiently large to ensure full allocation of the latent classes. This is indicated
with BLC(1) and BLC(80).

Outcomes. To assess the performance of the imputation models, we looked at
relative bias, stability, and coverage rates for the coefficients of the variables with
missing values (see Table 3.8). For the null effect β20, we considered the absolute
bias.

3.3.2.2 Results

The results reported in Table 3.8 show that the null effect β20, the three-way in-
teraction term β1.5.17, and the main effects β6 and β16 were well retrieved by all
methods. The two-way interaction terms resulting from MICE, BLC(1), and DPMM



3.4 Real-data Study 57

were remarkably biased, while FLC and BLC(80) provided good estimates for these
parameters. The β1 coefficient was also correctly recovered by all methods, except
for MICE. FLC and BLC(80) produced the least stable estimates, probably due to the
fact that a larger number of LCs was exploited by these two methods. DPMM and
BLC(1) returned similarly stable estimates: their standard deviations were overall
smaller than those of the other two LC imputation methods. MICE provided the
least varying estimates across all the imputation methods. All methods yielded
confidence intervals with acceptable coverage (close to the 95% nominal level). The
only exceptions was the interval for β6, which resulted in too low coverage after
imputing with FLC, BLC(1), or DPMM.

3.4 Real-data Study

The General Social Survey (GSS) (National Opinion Research Center, 1972) is a survey
conducted by the National Opinion Research Center and administered every two
years to a random sample of households resident in the Unites States. Here we
use data from this study to evaluate the imputation models in a situation where
the associations between variables are as encountered in real data. Our experiment
was carried out with the GSS cross-sectional wave of 2014. Analyses were again
performed with R 3.3.0.

3.4.1 Study Design

The data. From the original dataset (which consisted of n = 2538 units and J = 895)
we removed all records with missing data and ‘Don’t know’ and ‘Not applicable’
answers. The resulting dataset had a sample size equal to n = 477. Subsequently,
we selected a subset of J = 15 variables, of which the first 12 were the possible
outcome and the predictors of a potential analysis model, and the remaining 3 were
used to generate the missingness (and therefore included in the imputation models).
The variables names and the description of their categories are listed in Table 3.9. 6

The substantive model. The analysis was performed with an ordered logistic model
estimated on the complete dataset (with n = 477), in which the variable Happiness
(Y0 in Table 3.9) was the outcome and the Y1, ..., Y11 of Table 3.9 were the predictors.
More specifically, the model we estimated was

log
(

Pr(Y0 ≤ s)
Pr(Y0 > s)

)
∝

11

∑
j=1

β jYj + β57Y6Y7 + β48Y4Y8. (3.6)

6 For some variables the categories were reversed, while for others some categories were combined.
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Table 3.9: Variables used in the real-data application. Top: variables of the analysis model (3.6). Bottom:
variables used to generate missingness.

Variables for the analysis model

Variable Label Variable Description Values (range)

Y0 Respondent’s happiness 1 Not Happy - 3 Very Happy

Y1 Respondent’s opinion about his/her life 1 Dull - 3 Exciting

Y2 Respondent’s job satisfaction 1 Very dissatisfied - 4 Very satisfied

Y3 Respondent’s health status 1 Poor - 5 Excellent

Y4 Respondent’s marital status 0 Not married - 1 Married

Y5 Respondent’s employment status 1 Self employed - 2 Work for someone else

Y6 Respondent’s political view 1 Liberal - 3 Conservative

Y7 Respondent’s gender 0 Female - 1 Male

Y8 Respondent’s working status 1 Full time - 4 Not working

Y9 Respondent’s employer 1 Government - 2 Private

Y10 Respondent’s family income 1 <5000 - 4 >25000

Y11 Respondent’s time spent with friends 1 Almost every day - 7 Never

Variables used to generate missingness

Variable Label Variable Description Values (range)

Y12 Respondent’s education 0 <Highschool - 4 Graduate

Y13 Respondent’s working contract 1 Full time - 2 Part-time

Y14 Respondent’s occupation prestige (score) 1 10/19 - 8 80/89
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Table 3.10: MAR mechanisms used to generate missing data in the real-data application.

Variable with missingness Missingness generating model

Y2 1− 1.5Y12

Y5 −2.2 + 1.2Y13

Y6 1.3− 1.25Y9

Y8 2.1− 0.8Y14

The first columns of Table 3.11 (below) reports the estimates and the standard
errors of the β’s parameters obtained with the complete data, where significant
predictors at 5% are highlighted.

Introducing missingness. We artificially created missing values for the variables
Y2, Y5, Y6, and Y8. MAR missingness was generated with the four different logistic
models described in Table 3.10. The parameters of these logistic models were set
such that the rate of missingness was between 25% and 33% per variable.

Imputation model settings. For each MI method m = 50 imputations were per-
formed. For the model selection, we ran the BLC model with 50 components and
b = 5000 iterations for the burn-in, and 5000 to estimate the distribution of K. The
resulting posterior maximum for the number of classes was equal to 16. Therefore,
we performed the imputations with the FLC and BLC models with K = 16. The
latent hyperparameter for the BLC model was set equal to αk = 40, which was large
enough to ensure full allocation of the LCs, while the conditional hyperparameter
for the BLC and the DPMM models was set equal to αkjs = 0.05. The DPMM model
was implemented with K = 20. The Gibbs sampler for both BLC and DPMM was
run with T = 55000 and b = 5000. For MICE, 20 iterations were used for each
imputation.

Outcomes. After imputing the data, model (3.6) was estimated for each completed
dataset. We focused on the point estimates and the standard errors obtained after
applying the MI pooling rules. We also assessed which estimates were significant
at 5% after calculating their MI p-values.7

3.4.2 Results

The results reported in Table 3.11 show that MICE performed badly: its point es-
timates for both main and interaction effects were rather far from those obtained

7 The degrees of freedom were calculated as in Van Buuren (2012).
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Table 3.11: Results of the real-data application. The table shows the point estimates and the standard er-
rors for the ordered logistic regression model (3.6) estimated on the complete data (n = 477)
and on the incomplete datasets, imputed with the MICE, FLC, BLC and DPMM methods.
The ∗ indicates the 5% significant parameter estimates.

Imputation method

Parameter Complete Data MICE FLC BLC DPMM

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

β1 1.12
∗

0.21 1.06
∗

0.46 1.12
∗

0.22 1.14
∗

0.21 1.19
∗

0.21

β2 0.82
∗

0.15 0.56 0.35 0.95
∗

0.17 0.87
∗

0.18 0.68
∗

0.17

β3 0.80
∗

0.16 1.27
∗

0.37 0.79
∗

0.16 0.77
∗

0.16 0.79
∗

0.16

β4 -0.24 0.42 -0.05 0.92 -0.51 0.48 -0.35 0.51 -0.27 0.50

β5 0.62 0.46 0.72 2.21 0.69 0.62 0.56 0.61 0.62 0.63

β6 0.25 0.13 0.40 0.29 0.36
∗

0.16 0.28 0.16 0.25 0.16

β7 3.02
∗

1.24 5.50 5.03 3.72
∗

1.58 3.18
∗

1.59 3.20
∗

1.59

β8 -0.47
∗

0.19 -0.05 0.41 -0.52
∗

0.21 -0.46
∗

0.22 -0.40 0.22

β9 -0.22 0.27 -0.50 0.65 -0.15 0.28 -0.21 0.27 -0.22 0.27

β10 0.13 0.21 0.05 0.48 0.14 0.23 0.14 0.22 0.14 0.22

β11 -0.17
∗

0.07 -0.09 0.17 -0.20
∗

0.08 -0.18
∗

0.08 -0.17
∗

0.07

β57 -1.70
∗

0.65 -3.11 2.55 -2.08
∗

0.82 -1.81
∗

0.83 -1.81
∗

0.83

β48 0.69
∗

0.28 0.29 0.62 0.84
∗

0.32 0.74
∗

0.35 0.72
∗

0.35

with the Complete Data. Furthermore, MICE produced very large standard errors,
causing most of the estimates to be no longer significant (except for β1 and β3).
In contrast, the LC imputation models (FLC, BLC and DPMM) yielded parameter
estimates close to those of the Complete Data, and the extra uncertainty due to the
presence of missing data (reflected in the standard errors) was much smaller than
with the MICE. Because of this, most of the parameters that were significant with
the Complete Data were also significant (at the 5% level) after imputing the data
using the LC-based imputation techniques. The only exceptions were β6, which
became significant with FLC, and β8, which was no longer significant with DPMM.
The significant parameters according to the BLC imputation were the same as those
by the Complete Data.

3.5 Discussion

In this chapter, we proposed using a BLC model for the MI of categorical data. As
any LC model, this model is automatically able to capture the dependencies present
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in the data -including complex interactions- with the simple specification of the
needed number of classes. We also highlighted the advantages of performing the
imputations with the BLC model, rather than with the FLC or the DPMM method.
Compared to the FLC model, the BLC model offers a very fast and intuitive model
selection step, which makes use of the posterior distribution of the number of LCs
required by the data and which can be obtained with an extra (preliminary) run of
the Gibbs sampler. Another computational advantage is that parameter uncertainty
is automatically accounted for, whereas the FLC requires using a non-parametric
bootstrap procedure. Compared to the DPMM approach, the BLC model offers
important additional flexibility through the specification of the hyperparameter for
the latent class proportions. By setting its value large enough, one guarantees the
allocation of units across all LCs, which is a way to avoid the risk of underfitting
associated with the DPMM model.

Two simulation studies and a real-data experiment were carried out in which the
BLC model was contrasted with the FLC, DPMM, and MICE methods. In the first
study, we used a large sample size (n = 5000) and a small number of variables
(J = 6), and we manipulated the total rate of missingness in the variables with
nonresponses. In the second study, a smaller sample size (n = 2000) and a larger
J (=21) were considered. In both studies, the latent hyperparameter of the BLC
model was also manipulated, in order to emphasize the influence of this value on
the final imputations. In the real-data study, the sample size was n = 477 and
the number of variables (used for the imputations) was equal to J = 15. In all
studies the BLC imputation model (with large values for the latent hyperparameter
and small values for the conditional hyperparameter) provided the best results in
terms of bias, stability, and coverage rates for the main and interaction effects of the
substantive model. In the real-data study, the BLC model also detected the same
set of significant parameters as with the Complete Data analysis The FLC method
(implemented with the same number of classes of the BLC model) also yielded good
results, although worse than the BLC method (e.g., the bias of one of the interaction
terms in Study 1 was remarkable). This was probably due to the fact the FLC model,
unlike the BLC model with a large value of the latent hyperparameter, gave too
small weights to LCs that were important for the imputations. The DPMM model
and the BLC model with uniform prior for the latent proportions both failed to
correctly retrieve the estimates of some interaction terms. Lastly, the MICE method
was not flexible enough to be able to capture all important features of the data in
most situations.

Based on our results, our recommendation for researchers that need to deal with
(MAR) missing categorical data is to use our BLC MI approach combined with
the model selection and prior specifications described in this chapter. However, a
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limitation of this new MI approach is that it can be used only with cross-sectional
categorical data. However, in future research, we will extend it to deal with combi-
nations of categorical and continuous variables, as well as with data from multilevel
and longitudinal designs in which more complex dependencies may arise. Another
challenge for future research is to develop a version of the BLC imputation model
for situations in which the missing data are missing not at random.



4
B AY E S I A N M U LT I L E V E L L AT E N T C L A S S M O D E L S F O R T H E
M U LT I P L E I M P U TAT I O N O F N E S T E D C AT E G O R I C A L D ATA

With this chapter, we propose using a Bayesian multilevel latent class (or mixture)
model for the multiple imputation of nested categorical data. Unlike recently de-
veloped methods that can only pick-up associations between pairs of variables, the
multilevel mixture model we propose is flexible enough to automatically deal with
complex interactions in the joint distribution of the variables to be estimated. After
formally introducing the model and showing how it can be implemented, we carry
out a simulation study and a real-data study in order to assess its performance, and
compare it with the commonly used listwise deletion and an available R-routine.
Results indicate that the Bayesian Multilevel Latent Class model is able to recover
unbiased parameter estimates of the analysis models considered in our studies, as
well as to correctly reflect the uncertainty due to missing data.

This chapter is submitted for publication.
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4.1 Introduction

Nested or multilevel data are typical in educational, social, and medical sciences.
In this context, level-1 (or lower-level) units, such as students, citizens, patients, are
nested within level-2 (or higher-level) units, such as schools, cities, hospitals. When
lower-level units within the same group are correlated with each other, the nested
structure of the data must be taken into account. While standard single-level anal-
ysis assumes independent level-1 observations, multilevel modeling allows these
dependencies to be taken into account. In addition, variables can be collected and
observed at both levels of the dataset, which is another feature not taken into ac-
count by single-level analyses.

Akin to single-level analysis, however, the problem of missing data arises and
must be properly handled also with multilevel data. While multilevel modeling has
in general gained a lot of attention in the last decades, issues related to item nonre-
sponses in this context are still open (Van Buuren, 2011). In this respect, Van Buuren
(2011) observed that the most common practice followed by analysts is discarding
all the units with missingess and performing the analysis with the remaining data,
a technique known as listwise deletion (LD). While LD can potentially lead to a large
waste of data (for instance, with a missing variable for a level-2 unit, all the level-1
units belonging to that group are automatically removed), it also introduces bias in
the estimates of the analysis model when the missingness is in the predictors. An-
other missing-data handling technique, maximum likelihood for incomplete data, which
is considered one of the major methods for missing data in single-level analysis
(Allison, 2009; Schafer & Graham, 2002) under the missing at random (MAR) as-
sumption1, has certain drawbacks with multilevel data (Allison, 2009; Van Buuren,
2011). First, the variables that rule the missingness mechanism must be included
in the analysis model. As a consequence, specifying and interpreting the joint dis-
tribution of such data can become a complex task in this case. Furthermore, de-
partures from the true model can lead to biased estimates, or incorrect standard
errors (Van Buuren, 2011). Second, with multilevel models the derivation of the
maximum likelihood estimates, for instance through EM algorithm or numerical
integration, can be computationally troublesome (Goldstein, Carpenter, Kenward &
Levin, 2009).

A more flexible tool present in the literature is multiple imputation (MI; Rubin
(1987)). MI substitutes the original incomplete dataset with M > 1 completed
datasets, in which the missing values have been replaced by means of an impu-

1 That is, the distribution of the missing data depends exclusively on other observed data, and not on the
missing data itself.
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tation model. Good performance of MI is obtained when the imputation model
preserves the original relationships present among the variables (reflected in the
imputed data), while the imputation model parameters are not of primary inter-
est: the imputation model is only used to draw imputed values from the posterior
distribution of the missing data given the observed data. After this step, standard
full-data analysis can be performed on each of the M completed datasets. By doing
this, uncertainty coming from the sampling stage can be distinguished from uncer-
tainty due to the imputation step in the pooled estimates and their standard errors.
One of the major advantages of MI is that, after the imputation stage, any kind of
analysis can be performed on the completed data (Allison, 2009). In particular, in
this chapter we deal with MI of missing level-1 and level-2 predictors of the analysis
model.

Specification of the imputation model is one of the most delicate steps in MI. Two
main imputation modeling techniques are present in the literature: full conditional
specification (FCS) (Van Buuren et al., 2006) and joint modeling (Schafer, 1997).
While the former is based on a variable-by-variable imputation, and requires speci-
fication of separate conditional models for each variable with missing observations,
the latter only needs specification of a joint multivariate model of the variables in
the dataset, from which the imputations are drawn. As a general rule, the impu-
tation model should be at least as complex as the substantive model, in order not
to miss important relationships between the variables and the observations that are
object of study in the final analysis (Schafer & Graham, 2002).

In a multilevel context, this means that also the sampling design must be taken
into account. A number of studies has shown the effect of ignoring the double-level
structure of the data when imputing with standard single-level models (Van Bu-
uren, 2011; Carpenter & Kenward, 2013; Drechsler, 2015; Andridge, 2011; Reiter,
Raghunathan & Kinney, 2006). Results indicate that including design effects in the
imputation model - when they are not actually needed - can lead in the worst case
to a loss of efficiency and conservative inferences, while using single-level imputa-
tion models when design effects are present in the data can be detrimental for final
inferences. The latter case can result in biased final estimates, as well as in severe
under-estimation of the between-groups variation and biased standard errors of the
fixed effects (Carpenter & Kenward, 2013). To take the nested structure of the data
into account, mixed effects models are better equipped than fixed effects imputation
models with dummy variables, since the latter can overestimate the between-groups
variance (Andridge, 2011). Furthermore, single-level imputation can yield different
values for level-2 variables within the same group, if these are included in the model.
Conversely, multilevel modeling automatically incorporates the nested structure of
the data, takes into account level-1 units correlations within the same level-2 unit,
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and imputes the data respecting the exact level of the hierarchy under which the
imputations have to be performed.

Survey data often record categorical variable responses. While multilevel MI for
continuous data has already been discussed in the literature (Schafer & Yucel, 2002;
Yucel, 2008; Van Buuren, 2011), to our knowledge no ad hoc methods have been pro-
posed in the literature for categorical data, and require better coverage (Van Buuren,
2012). Most of the standard software focuses on single-level imputation models (see
Andridge, 2011 for a review of software packages wrongly suggested for multilevel
studies), or does not allow for the MI of multilevel categorical data, such as the
mice package (Zhao & Schafer, 2016; Van Buuren & Groothuis-Oudshoorn, 2000),
which bases its imputations on full conditional specification modeling. An MI tech-
nique based on multilevel joint modeling can be found in the pan R-library (Zhao &
Schafer, 2016). However, pan is also not suited for categorical data, because it does
not work with the original scale type and treats all the variables as continuous. The
imputed data are then imputed through rounding, which can introduce bias in the
MI estimates (Horton, Lipsitz & Parzen, 2003). Recently developed FCS approaches
for multilevel data are the one-step FCS (Jolani, Debray, Koffijberg, Van Buuren &
Moons, 2015) and the two-steps FCS (Resche-Rigon & White, 2016): the former uses
a homoscedastic covariance matrix for the level-1 errors, while the second assumes
heteroscedastic matrices. These methods cannot handle more than two categories
for each categorical variable, and have not been extended yet to the imputation of
level-2 predictors. An R package that allows for the MI of multilevel mixed type
of data (categorical and continuous) is the jomo package (Quartagno & Carpen-
ter, 2016), another joint modeling (JOMO) approach. For each categorical variable
with missingness, JOMO assumes an underlying latent q-variate normal distribu-
tion, where q + 1 is the number of categories of each variable, at both levels. The
joint distribution of the lower- and higher-level variables is then estimated, and the
imputations are based on the normal variable components scores. For more infor-
mation about the functioning of JOMO, see Carpenter and Kenward (2013). JOMO
works under a Bayesian paradigm and uses the Gibbs sampler (Gelfand & Smith,
1990) to perform the imputations. While representing a further step in the literature,
JOMO still has some major limitations. By working with multivariate normal dis-
tributions, imputations yielded by JOMO can correctly reflect only pairwise linear
relationships in the data, i.e., important relationships that may occur between pairs
of variables. Possible higher-orders of associations, such as interactions and non-
linearities, are disregarded by JOMO, making it less flexible and possibly leading
to less optimal imputations if more complex dependencies are present which are of
interest in the subsequent analysis of the MI dataset. Furthermore, the default prior
distributions for the covariance matrices used by JOMO can become very informa-
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tive in case of small (level-1) sample sizes, leading to biased parameter estimates
and/or standard errors, as observed through a simulation study by Audigier et al.
(2017).

Vermunt et al. (2008) proposed performing single-level MI of categorical data
with frequentist Latent Class (LC) or mixture models, while Si and Reiter (2013)
implemented the same model under a non-parametric Bayesian framework. The at-
tractive part of using LC models for MI is their flexibility, since mixture models can
pick up very complex associations in the data at both levels when a large enough
number of latent classes (or mixture components) is specified (Vermunt et al., 2008).
Furthermore, the model works with the original scale type of the data, preventing
the risk of rounding bias (Horton et al., 2003). The Bayesian setting allows for an
easier and more appealing computation in presence of multilevel data (Goldstein
et al., 2009; Yucel, 2008) through MCMC algorithms, and it is viewed as a natural
choice in a MI context (Schafer & Graham, 2002), since the posterior distribution of
the missing data given the observed data can be directly specified as a part of the
model.

Multilevel MI of categorical data with LC models can be performed by estimating
single-level LC models separately for each higher-level unit, performing in this way
the imputations independently for each higher-level unit. However, this approach
has some disadvantages. First, by focusing on a single higher-level unit it becomes
impossible to either use or impute values of higher-level variables since these are
constants within a higher-level unit. Therefore, this method cannot be used when
missingness is present also in the higher-level variables. Second, this method can
be applied only when the number of level-2 units is small, and the number of level-
1 units for each group is large. When this method is run with a large number
of higher-level units, model estimation (and selection) becomes time-consuming,
because a larger number of LC models (and, therefore, parameters) must be imple-
mented. Furthermore, small level-1 sample sizes for (some of the) level-2 units will
make the LC model extremely unstable (Vermunt, 2003), leading to overly uncertain
imputations.

With this chapter, we propose the use of a LC imputation model which is more
naturally tailored for multilevel data: the Bayesian Multilevel Latent Class (BMLC)
model. The BMLC imputation model we propose corresponds to the non-parametric
version of the multilevel LC model introduced by Vermunt (2003) in a frequentist
setting. Unlike the single-level LC model, the BMLC is able to capture heterogeneity
in the data at both levels of the dataset, by clustering the level-2 units into level-2
LCs and, conditioned on these clusters, level-1 units are classified into level-1 LCs.
With this setting, units at level-1 of groups within the same level-2 LC are assumed
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to be independent from each other. The BMLC model extends the work of Vermunt
(2003) to include also level-2 indicators, allowing for correct imputations at both
levels of the dataset.

The outline of the chapter is as follows. In Section 4.2, the BMLC model is in-
troduced, along with model and prior selection and model estimation issues. In
Section 4.3, a simulation study is performed with two different sample size condi-
tions. Section 4.4 shows an application to a real-data situation. Finally, Section 4.5
concludes with final remarks by the authors.

4.2 The Bayesian Multilevel Latent Class Model for Multiple Im-
putation

In MI, imputations are drawn from the distribution of the missing data conditioned
on the observed data. With Bayesian imputations, this is the posterior predictive
distribution of the missing data given the observed data and the model parameter
π, that is Pr(Dmis|Dobs,π), which can be derived from the posterior of the model pa-
rameter given the observed data, Pr(π|Dobs). This allows for modeling uncertainty
about π. Since Pr(π|Dobs) ∝ Pr(π)Pr(Dobs|π), we need to specify a data model -
Pr(Dobs|π) - and a prior distribution - Pr(π) - in order to obtain the posterior of
π. Model estimation, as well as the imputation step, is performed through Gibbs
sampling.

4.2.1 The Data Model

We now introduce the BMLC models as if there were no missing data in the dataset
(Dobs = D). Let D = (Z, Y) denote a nested dataset with J level-2 units and nj level-1
units within level-2 unit j (j = 1, ..., J), with a total sample size of n = ∑j nj. Suppose,
furthermore, that the dataset contains T level-2 categorical variables Z1, ..., Zt, ..., ZT ,
each with Rt observed categories (t = 1, ..., T) and S level-1 categorical variables
Y1, ..., YS, each with Us (s = 1, ..., S) observed categories.

We denote with zj = (zj1, ..., zjT) the vector of the T level-2 item scores for level-2
unit j, and with yj = (yj1, ..., yji, ...yjnj) the full vector of the level-1 observations
within the level-2 unit j, in which yji = (yji1, ..., yjiS) is the vector of the S level-1
item scores for level-1 unit i within the level-2 unit j. The data model consists of
two parts, one for the level-2 (or higher-level) units and one for the level-1 (or lower-
level) units. Let us introduce the level-2 LCs variable Wj with L classes (Wj can take
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Wj

Zj2Zj1 · · · ZjT

Yji2Yji1 · · · YjiS

Xji

level-2

level-1

Unit j

Unit i

Figure 4.1: Graphical representation of the multilevel LC model with observed variables at both levels
of the hierarchy.

on values 1, ..., l, ..., L), and the level-1 LCs variables Xji|Wj - with K classes - within
the l-th level-2 LC (with Xji ranging in 1, ..., k, ..., K).

The higher-level data model for unit j can then be expressed by

Pr(Zj = zj, Yj = yj) =
L

∑
l=1

Pr(Wj = l)
T

∏
t=1

Pr(Zjt = zjt|Wj = l)
nj

∏
i=1

Pr(Yji = yji|Wj = l).

This model is linked to the lower-level data model for the level-1 unit i within the
level-2 unit j through

Pr(Yji = yji|Wj = l) =
K

∑
k=1

Pr(Xji = k|Wj = l)
S

∏
s=1

Pr(Yjis = yjis|Wj = l, Xji = k).

Figure 4.1 represents the underlying graphical model. From the figure, it is pos-
sible to notice both how the number of level-1 latent variables is allowed to vary
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with j (because within each level-2 unit we have nj level-1 units and, accordingly, nj

latent variables Xji) and how Wj affects Zj, Xji and Yji simultaneously.

As in a standard LC analysis, we will assume Multinomial distributions for the
level-1 LCs variable X|W and the conditional response distributions Pr(Ys|W, X).
Additionally, we will assume Multinomial distributions also for the conditional re-
sponses at the higher level Pr(Zt|W) and, as we are considering the non-parametric2

version of the multilevel LC model, also the level-2 mixture variable W is assumed
to follow a Multinomial distribution. Formally,
W ∼ Multinom(πW)

X|W = l ∼ Multinom(πlX) for l = 1, ..., L
Zt|W = l ∼ Multinom(πlt) for t = 1, ..., T, l = 1, ..., L
Ys|W = l, X = k ∼ Multinom(πlks) for s = 1, ..., S, l = 1, ..., L, k = 1, ..., K.
The parameters denote a vector containing the probabilities of each category of the
corresponding Multinomial distribution. That is, πW = (π1, ..., πl , ..., πL),πlX =

(πl1, ..., πlk, ..., πlK),πlt = (πlt1, ..., πltr, ...πltRt), πlks = (πlks1, ..., πlksu, ..., πlksUs). The
whole parameter vector is π = (πW ,πlX ,πlt,πlks).

Assuming Multinomiality for all the (latent and observed) variables of the model,
we can rewrite the model for Pr(zj, yj) as

Pr(Zj = zj, Yj = yj; π) =
L

∑
l=1

πl

T

∏
t=1

Rt

∏
r=1

(πltr)
Ir

jt

nj

∏
i=1

πjil , (4.1)

in which I r
jt = 1 if zjt = r and 0 otherwise, and πjil = Pr(Yji = yji|Wj = l). The

latter quantity is derived from the lower-level data model, given by

πjil =
K

∑
k=1

πlk

S

∏
s=1

Us

∏
u=1

(πlksu)
Iu

jis (4.2)

where Iu
jis = 1 if yjis = u and 0 otherwise.

The model is capable of capturing between- and within-level-2 unit variability, by
first classifying the J groups in one of the L clusters of the mixture variable W and
subsequently, given a latent level of W, classifying the level-1 units within j in one
of the K clusters of the mixture variable X|W. In order to capture heterogeneity at
both levels, the model makes two important assumptions:

2 Vermunt (2003) denoted with ‘non-parametric’ the version of the multilevel LC model that uses a categor-
ical random effect, for which a Multinomial distribution is assumed. This is opposed to the ‘parametric’
version of the model, which uses a (normally distributed) continuous random effect.
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• the local independence assumption, according to which variables at level-2 are
independent from each other within each LC Wj and variables at level-1 are in-
dependent from each other given the level-2 LC Wj and the level-1 LC Xji|Wj;

• the conditional independence assumption, where level-1 observations within the
level-2 unit j are independent from each other once conditioned on the level-2
LC Wj.

By virtue of these assumptions, the mixture variable W is able to pick up both
dependencies between the level-2 variables and dependencies among the level-1
units belonging to level-2 unit j, while the mixture variable X is able to capture
dependencies among the level-1 variables. Both equations (4.1) and (4.2) incorporate
these assumptions through their product terms.

It is also noteworthy that, by excluding the last product (over i) in equation (4.1)
we obtain the standard LC model for the level-2 units, while, by excluding the
product over t in equation (4.1) and setting L = 1, we obtain the standard LC model
for the level-1 units.

In Bayesian MI, the quantity Pr(Zj, Yj;π) tends to dominate the (usually non-
informative) prior distribution of the parameter, because the primary interest of an
imputation model is the estimation of the joint distribution of the observed data,
which determines the imputations. Thus, as remarked by Vermunt et al. (2008), we
do not need to interpret π, but rather obtain a good description of the distribution
of the variables. Moreover, since an imputation model should be as general as
possible (that is, it should make as few assumptions as possible) in order to be able
to describe all the possible relationships between the variables needed in the post-
imputation analysis (Schafer & Graham, 2002), we will work with the unrestricted
version of the multilevel LC model proposed by Vermunt (2003). In such a version,
both the level-1 latent proportions and the level-1 conditional response probabilities
are free to vary across the L level-2 LCs. For a deeper insight into the (frequentist)
multilevel LC model we refer to Vermunt (2003, 2008).

4.2.2 The Prior Distribution

In order to obtain a Bayesian estimation of the model defined by equations (4.1) and
(4.2), a prior distribution for π is needed. For the Multinomial distribution, a class
of conjugate priors widely used in the literature is the Dirichlet distribution. The
Dirichlet distribution gives a probability measure in the simplex {(q1, ..., qD)|qd >

0 ∀d and ∑d qd = 1} (where D represents the number of categories of the Multi-
nomial distribution) and its parameters represent pseudo-count artificially added by
the analyst in the model. Thus, for the BMLC model we assume as priors:
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• πW ∼ Dir(αW),

• πlX ∼ Dir(αlX),

• πlt ∼ Dir(αlt),

• πlks ∼ Dir(αlks).

Under this notation, the hyperparameters of the Dirichlet distribution denote vec-
tors, in which each single value is the pseudo-count placed on the corresponding
category. Thus, αW corresponds to the vector (α1, ..., αl , ..., αL), and similarly αlX =

(αl1, ..., αlk, ..., αlK) ∀ l, αlt = (αlt1, ..., αltr, ..., αltRt) ∀ l, t and αlks = (αlks1, ..., αlksu, ...,
αlksUs) ∀ l, k, s. The vector containing all the hyperparameter values will be indi-
cated by α = (αW , ...., αlks) ∀ l, k, s, t.

Because in our MI application we will work with symmetric Dirichlet priors3,
in the remainder of the chapter we will use the value of a single pseudo-count
to denote the value of the whole corresponding vector. For instance, the notation
αl = 1 will indicate that the whole vector αW will be a vector of 1’s.

In MI a large number of LCs is usually required when performing the imputa-
tions. The probability of empty clusters increases with the number of classes L or
K when standard priors (such as the uniform Dirichlet prior) are used (Hoijtink
& Notenboom, 2004). This causes the Gibbs sampler (described in Section 4.2.4)
to sample from the prior distributions of the empty components, hence becoming
unstable (Fruhwirth-Schnatter, 2006). In turn, this can lead to imputations that
produce poor inferences, especially in terms of bias and coverage rate for some of
the parameter estimates in the analysis model, as shown in Chapter 3. Better infer-
ences can be obtained by setting the hyperparameters of the mixture components
in such a way that units are distributed across all the LCs during the Gibbs sampler
iterations. This is achievable by increasing the values of αl and αlk (maintaining
symmetric Dirichlet distributions) until all the LCs are filled throughout the sam-
pler iterations. Whether the selected values are large enough can easily be assessed
with MCMC graphical output.4 With such priors, the Gibbs sampler is able to draw
from the equilibrium distribution π|Z, Y and, accordingly, it can produce imputa-
tions that lead to correct inferences, since the model exploits all the selected classes.
Because the imputation model parameter values do not need be interpreted in MI,
more informative priors do not represent a problem here.

About the prior distribution of the conditional response probabilities, in Chap-
ter 3 we advocated using hyperparameters which influence the imputations as

3 That is, Dirichlet distributions whose all the pseudo-counts are equal to each other.
4 The value of the pseudo-counts for the LC proportions hyperparameter should be at least equal to half

times the number of free parameters to be estimated within each LC, in order to cause the sampler to
give non-zero weights to the extra components. See Rousseau and Mergensen (2011) for technical details.
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little as possible. Their results indicated that uniform Dirichlet priors lead to bi-
ased parameter estimates of the analysis model, especially interaction terms (when
present). However, decreasing the hyperparameter of the variables’ conditional dis-
tribution probabilities to 0.01 (or 0.05) led the imputation model to obtain unbiased
terms. Making the prior distribution of the conditional response probabilities as
non-informative as possible is effective because it helps to identify the LCs and
create imputations that are almost exclusively based on the observed data.

Concerning the BMLC model, little is known about the effect of the choice of prior
distributions for model (4.1) because the model has not been extensively explored
in the literature. Nonetheless, we suspect that behaviors observed for single-level
LC imputation models will also hold at the higher level of the hierarchy. In order
to assess the effect of different prior specifications for the level-2 model parameters,
we will manipulate αl and αltr in the study of Section 4.3. For the lower-level model
(model (4.2) in the previous section), we will assume that the findings of Chapter 3

hold.5 Therefore, we will set informative values for αlk ∀ l, k and non-informative
values for αlksu ∀ l, k, s, u.

4.2.3 Model Selection

In MI, mis-specifying a model in the direction of over-fitting is less problematic
than mis-specifying towards under-fitting (Carpenter & Kenward, 2013; Vermunt et
al., 2008). While the former case, in fact, might lead to slightly over-conservative
inferences in the worst scenario, the latter case is likely to introduce bias (and too
liberal inferences) since important features of the data are omitted. In mixture
modeling, over-fitting corresponds to selecting a number of classes larger than what
is required by the data.

For the BMLC model in MI applications, model selection can be performed simi-
lar to Gelman et al. (2013)’ s method (chapter 22). The procedure requires running
the Gibbs sampler described in Algorithm 4.1 (without Step 7) of Section 4.2.4 with
arbitrarily large L∗ and K∗, and setting hyperparameters for the LC probabilities
that can favor empty superfluous components. Following Gelman et al. (2013)’ s
guidelines6, these values could be equal to αl = 1/L∗ and αk = 1/K∗. At the end
of every iteration of the preliminary Gibbs sampler, we keep track of the number

5 This conjecture is justified by noticing that, given a level-2 LC Wj, the lower level model corresponds to
a standard LC model.

6 Importantly, while Gelman et al. (2013)’s goal was to find a minimum number of interpretable clusters
for inference purposes, here our goal is to find a large enough number of LCs for the imputations.
Therefore, Gelman et al. (2013) determined the number of classes based on the posterior mode, while we
perform model selection based on the posterior maximum. Moreover, Gelman et al. (2013)’s method was
designed for single-level mixture models. We extend here the mechanism to the level-2 mixture variable.
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of LCs that are allocated, in order to obtain a distribution for L and K when the
algorithm terminates. If the posterior maxima Lmax and Kmax of such distributions
are smaller than the proposed L∗ and K∗, in the next step the imputations can be
performed with Lmax and Kmax. However, if either Lmax or Kmax (or both of them)
equals L∗ or K∗, we re-run the preliminary Gibbs sampler by increasing the corre-
sponding value(s), and repeat the procedure until optimal L and K are found. This
method corresponds to the multilevel extension of the model selection proposed in
Chapter 3 for single-level LC MI. The method for BMLC models will be tested in
the simulation study of Section 4.3 and in the real-data experiment of Section 4.4.

4.2.4 Estimation and Imputation

Since we are dealing with unobserved variables (W and X), model estimation is per-
formed through a Gibbs sampler with Data Augmentation configuration (Tanner &
Wong, 1987). Following the estimation and imputation scheme proposed for single-
level LC imputation models by Vermunt et al. (2008) , we will perform the estima-
tion only on the observed part of the dataset (denoted by {Yobs, Zobs}). In particular,
in the first part of Algorithm 4.1 (see below) the BMLC model is estimated by first
assigning the units to the LCs (steps 1-2) through the posterior membership probabili-
ties -the probability for a unit to belong to a certain LC conditioned on the observed
data, Pr(Wj|Yobs

j , Zobs
j ) and Pr(Xji|Wj, Yobs

j , Zobs
j ) ∀ i, j- and subsequently by updat-

ing the model parameter (steps 3,4,5,6). At the end of the Gibbs sampler (step 7),
after the model has been estimated, we impute the missing data through M draws
from Pr(π|Yobs, Zobs).

After fixing K, L and α, we must establish I, the number of total iterations for
the Gibbs sampler. If we denote with b the number of the iterations necessary for
the burn-in, we will set I such that I = b + (I − b), where I − b is the number of
iterations used for the estimation of the equilibrium distribution Pr(π|Yobs, Zobs),
from which we will draw the parameter values necessary for the imputations. Of
course, b must be large enough to ensure convergence of the chain to its equilibrium
(which can be assessed from the output of the Gibbs sampler).

We initialize π(0) through draws from uniform Dirichlet distributions (that is,
Dirichlet distributions with all their parameter values set equal to 1), in order to
obtain π

(0)
W , π(0)

lX , π(0)
lt and π

(0)
lks ∀ l, k, t, s. After all these preliminary steps are

performed, the Gibbs sampler is run as shown in Algorithm 4.1.
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Algorithm 4.1:
(A) Part 1. For h = 1, ..., I:

1. for j = 1, ..., J sample W(h)
j ∈ {1, ..., L} from a Multinomial distribution

with the posterior membership probabilities at level-two as parameters
(and sample size 1), calculated through

Pr(W(h)
j = l|Yobs

j , Zobs
j ,π(h−1)) =

π
(h−1)
l

{
∏T

t=1 ∏Rt
r=1

(
π
(h−1)
ltr

)I r∗
jt
}{

∏
nj

i=1 ∑K
k=1 π

(h−1)
lk ∏S

s=1 ∏Us
u=1

(
π
(h−1)
lksu

)Iu∗
jis
}

∑L
p=1 π

(h−1)
p

{
∏T

t=1 ∏Rt
r=1

(
π
(h−1)
ptr

)I r∗
jt
}{

∏
nj

i=1 ∑K
k=1 π

(h−1)
pk ∏S

s=1 ∏Us
u=1

(
π
(h−1)
pksu

)Iu∗
jis
} ,

in which Ir∗
jt = 1 if Zjt = r and Zjt ∈ Zobs or Ir∗

jt = 0 otherwise, and similarly

Iu∗
jis = 1 if Yjis = u and Yjis ∈ Yobs or Iu∗

jis = 0 otherwise;

2. for i = 1, ..., nj ∀ j, and given W(h)
j , sample X(h)

ji ∈ {1, ..., K} from a Multinomial
distribution with the posterior membership probabilities at level-one as parame-
ters (and sample size 1), calculated through

Pr(X(h)
ji = k|W(h)

j = l, Yobs
j , Zobs

j , π(h−1)) =

π
(h−1)
lk

{
∏S

s=1 ∏Us
u=1

(
π
(h−1)
lksu

)Iu∗
jis
}

∑V
v=1 π

(h−1)
lv

{
∏S

s=1 ∏Us
u=1

(
π
(h−1)
lvsu

)Iu∗
jis
} ;

3. draw

(
π
(h)
W |W

(h),αW

)
∼ Dir

α1 +
J

∑
j=1
I
(

W(h)
j = 1

)
, ..., αL +

J

∑
j=1
I
(

W(h)
j = L

)
where I(w(h)

j = l) = 1 if w(h)
j = l and 0 otherwise;

4. for l = 1, ..., L draw(
π
(h)
lX |W

(h) = l, X(h),αlX

)
∼

Dir

αl1 + ∑
j,i:W(h)

j =l

I
(

X(h)
ji = 1

)
, ..., αlK + ∑

j,i:W(h)
j =l

I
(

X(h)
ji = K

)
where I(X(h)

ji = k) = 1 if X(h)
ji = k and 0 otherwise;
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5. for l = 1, ..., L, t = 1, ..., T draw

(
πlt|W(h) = l, Zobs

t ,αlt

)
∼ Dir

αlt1 + ∑
j:W(h)

j =l

I1∗
jt , ..., αltRt + ∑

j:W(h)
j =l

IRt∗
jt

 ;

6. for l = 1, ..., L, k = 1, ..., K, s = 1, ..., S draw(
πlks|W(h) = l, X(h) = k, Yobs

s ,αlks

)
∼

Dir

αlks1 + ∑
j,i:W(h)

j =l∩X(h)
ji =k

I1∗
jis , ..., αlksUs + ∑

j,i:W(h)
j =l∩X(h)

ji =k

IUs∗
jis

 .

(B) Part 2. After I iterations:

7. (imputation step) perform M draws from the distribution Pr(π|Yobs, Zobs)

estimated in Steps 1-6; in particular, the m-th draw (m = 1, ..., M) must
include w(m)

j , x(m)
ji , π(m)

lt and π(m)
lks ∀j, i, t, s ∈ {Ymis, Zmis}, the missing part

of the dataset. Perform the m-th imputation for the variables at level-2 by
drawing (

Zjt|W
(m)
j = l,π(m)

)
∼ Multinom

(
π
(m)
lt

)
,

and the m-th imputation for the variables at level-1 by drawing(
Yjis|W

(m)
j = l, X(m)

ji = k,π(m)
)
∼ Multinom

(
π
(m)
lks

)
,

∀ Zjt, Yjis ∈ {Ymis, Zmis}.

Clearly, the M parameter values obtained in Step 7 should be independent, such
that no autocorrelations are present among them. This can be achieved by selecting
I large enough and performing M equally spaced draws between iteration b + 1
and iteration I. The Gibbs sampler output can help to assess the convergence of the
chain.

4.3 Study 1: Simulation Study

4.3.1 Study Set-up

In Study 1, we evaluated the performance of the BMLC model and compared it
with the performance of the LD and the JOMO methods.
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We generated 500 datasets from a population model, created missing data through
a MAR mechanism, and then applied the JOMO and BMLC imputation methods,
as well as the LD technique, to the incomplete datasets. To assess the performance
of the missing data methods bias, stability and coverage rates of the 95% confi-
dence intervals were compared, where the results of the complete-data case (that
is, the results obtained if there was no missingness in each dataset) were taken as
benchmark.

Population Model. For each of the 500 datasets, we generated T = 5 binary level-2
predictors Zj = (Zj1, ..., Zj5) for each higher-level unit j = 1, ..., J from the log-linear
model

log Pr(Zj) = −.1
5

∑
t=1

Zjt + .1
4

∑
t=1

5

∑
t′=(t+1)

ZjtZjt′ + .8Zj1Zj2Zj4.

Within each level-2 unit j, S = 5 binary level-1 predictors Yji = (Yji1, ..., Yji5) were
generated for each level-1 unit i = i, ..., nj from the (conditional) log-linear model

log Pr(Yji|Zj) =1.5
5

∑
s=1

Yjis − .5
4

∑
s=1

5

∑
s′=(s+1)

YjisYjis′ − 1.5Yji1Yji2Yji3 + Yji3Yji4Yji5

+ 2.25Yji4Zj1 + 1.5Yj2Zj2 − 2.3Yj3Zj4,

where cross-level interactions were inserted to introduce some intra-class correla-
tion between the level-1 units. Finally, we generated the binary outcome Y6 from a
random intercept logistic model, where

logit Pr(Yji6|Yji, Zj) =β j0 + β1Yji1 + β2Yji2 + β3Yji3 + β4Yji4 + (β5 + γ35Zj3)Yji5

+ β24Yji2Yji4
(4.3)

was the level-1 response model and

β j0 = β00 + γ1Zj1 + γ2Zj2 + γ3Zj3 + γ4Zj4 + γ5Zj5 + uj, with uj ∼ N(0, τ2) (4.4)

was the level-2 model. Table 4.1 shows the numerical values of the level-1 param-
eters β00, ..., β24, the level-2 parameters γ1, ..., γ5, and the cross-level interaction γ35.
Table 4.1 also reports the value of the variance of the random effects, τ2. Model (4.3)-
(4.4) was the analysis model of our study, in which the main goal was recovering
its parameter estimates after generating missingness.
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Table 4.1: Parameter values for model (4.3)-(4.4).

Parameter β00 β1 β2 β3 β4 β5 β24 γ1 γ2 γ3 γ4 γ5 γ35 τ2

Value -0.5 1.35 -1 -0.4 0.8 -0.75 0.25 0.5 0.85 0.45 -0.6 0.3 0.15 1

Sample size conditions. We fixed the total level-1 sample size to n = ∑j nj =

1000, and generated 500 datasets for two different level-2 and level-1 sample size
conditions. In the first condition, J = 50 and nj = 20 ∀ j, while in the second
condition J = 200 and nj = 5 ∀ j.

Generating missing data. From each dataset, we generated missingness according
to the following MAR mechanism. For each combination of the variables (Y3, Y4)

observations were made missing in Y1 with probabilities (0.05, 0.55, 0.4, 0.14); for
each combination of the variables (Y3, Y6) observations were made missing in Y2

with probabilities (0.15, 0.25, 0.65, 0.35); for each combination of (Y4, Z4) observa-
tions were made missing in Y5 with probabilities (0.01, 0.1, 0.55, 0.2); for each pos-
sible value of the variable Z2 missingness was generated on Z1 with probabilities
(0.15, 0.4); finally, for each of the values taken on by Z5 missingness was gener-
ated on Z2 with probabilities (0.1, 0.5). Through such a mechanism, the rate of
nonresponses across the 500 datasets was on average 30% for each variable with
missingness.

Missing-data methods. We applied three missing data techniques to the incomplete
datasets: LD, JOMO and BMLC imputation, with the latter set up as follows. We ap-
plied Gelman et al. (2013) ’s method described in Section 4.2.3 for model selection,
by running a preliminary Gibbs sampler (with 1000 burn-in and 2000 estimation
iterations) and obtaining a posterior distribution for L and K for each incomplete
dataset. From these distributions, we selected the posterior maxima as the number
of components to be used in the imputation stage. This led to an average number
of classes equal to L = 8.53 at level-2 and K = 10.83 at level-1 when J = 50, nj = 20
and L = 9.70 at level-2 and K = 10.80 at level-1 when J = 200, nj = 5. Hyperpa-
rameters of the level-1 LCs and conditional responses (namely αlx and αlks ∀ l, k, s)
were set following the guidelines of Section 4.2.2, that is, with informative prior
distributions7 for the parameters πlX and with a non-informative prior distribution
for the parameters πlks. In order to assess the performance of the BMLC model
under different level-2 prior specifications, we manipulated the level-2 hyperpa-
rameters αl and αltr. Each possible variant of the BMLC model will be denoted

7 We set αlk = (∑s(Us − 1)) ∀ l, k, i.e., the number of free parameters within each level-1 LC; this value
was sufficiently large to ensure units’ allocation across all the level-1 LCs.
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by BMLC(αl , αltr). In particular, we tested the BMLC model with uniform priors
for both the level-2 LC variable parameters and the level-2 conditional response
parameters - the BMLC(1,1) model - or with non-informative prior for the condi-
tional responses - the BMLC(1,.01) model. We alternated the same values for the
conditional response pseudo-counts with a more informative value for the level-2
mixture variable parameter, the BMLC(*,1) and the BMLC(*,.01) model. Here, the ‘*’
denotes the hyperparameter choice based on the number of free parameters8 within
each class l = 1, ..., L; since this number could change with K, different values for
this hyperparameter were used across the 500 datasets. For each dataset, M = 5 im-
putations were performed and a total of I = 5000 Gibbs sampler iterations were run,
of which b = 2000 were used for the burn-in and I − b = 3000 for the imputations.

For the JOMO imputation method, which also performs imputation through
Gibbs sampling, we specified a joint model for the categorical variables with miss-
ingness, and used the variables with completely observed data as predictors. We
set the number of burn-in iterations equal to b = 10000, and performed the 5 im-
putations for each dataset across I − b = 3000 iterations, in order to have a number
of iterations for the imputations equal to the Gibbs sampler of the BMLC method.
We ran the algorithm with its default non-informative priors and cluster-specific
random covariance matrices for the lower-level errors.

In order to have a benchmark for results comparison, we also estimated model
(4.3)-(4.4) to the complete data, before generating the missingness.

Study outcomes. For each parameter of model (4.3)-(4.4), we compared the bias of
the estimates, along with their standard deviation (to assess stability) and coverage
rate of the 95% confidence intervals. Analyses were performed with R version 3.3.0.
JOMO was run from the jomo R-library. For each dataset, the analysis model (4.3)-
(4.4) was estimated with the lme4 package in R.

4.3.2 Study Results

Figures 4.2a, 4.2b and 4.3 show the bias, standard deviations and coverage rates of
the 95% confidence intervals for the thirteen fixed effect coefficients of model (4.3)-
(4.4), averaged over the 500 datasets. The figures also show point estimates of each
coefficient, distinguishing between level-1, level-2 and cross-level interaction fixed
effects.

Figure 4.2a reports the bias of the fixed-effects estimates. Under both scenarios,
BMLC and JOMO imputation appeared as the missing-data methods which pro-

8 Calculated through αl = (∑t(Rt − 1) + (K− 1) + K(∑s Us − 1)) ∀ l.
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(a)

(b)

Figure 4.2: Bias (a) and standard deviation (b) observed for the thirteen fixed multilevel logistic re-
gression level-1, level-2, and cross-level coefficients obtained with complete data and the
missing data methods BMLC(*,.01), BMLC(*,1), BMLC(1,.01), BMLC(1,1), JOMO and LD.
Left: J = 50, nj = 20. Right: J = 200, nj = 5.
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duced the least biased estimates, producing similar results (the boxplots are fairly
centered around 0). When J = 50 and nj = 20, the choice of the prior distribution
for the BMLC model did not seem to affect the final results in terms of bias. In
this first condition BMLC imputation seem to be slightly outperformed by JOMO
imputation, which also produced, on average, unbiased estimates. The LD method,
which was negatively affected by a smaller sample size, yielded the most biased
coefficients. In particular, some of the level-1 fixed effects appeared heavily biased
both down- and up-wards. In the J = 200, nj = 5 condition, the bias for the BMLC
models was reduced with respect to the previous scenario. In this condition, the
specification of the prior distribution seemed to have an effect in the final estimates
produced by the BMLC model. In particular, models with priors that favored a full
allocation of the level-2 units across all the L classes, as the BMLC(*,.01) and the
BMLC(*,1), resulted with a slightly smaller bias than models with priors that did
not favor full allocation, namely the BMLC(1,.01) and the BMLC(1,1). With J = 200,
the bias of the level-2 fixed effects resulting from BMLC imputation was lower than
in the condition with J = 50. LD method also yielded estimates with smaller bias
in the second condition (with the exception of one level-1 fixed effect, β3), although
still more biased, in general, than the ones produced by the BMLC models. As
far as the JOMO imputation was concerned, no particular improvements were ob-
served in the bias of the estimates from the scenario with J = 50 to the scenario
with J = 200. On the contrary, some of the level-1 fixed main effects (β2, β4) and
the two interaction terms resulted in a larger bias than in the the previous case.
This was mainly due to the prior distributions for the level-1 covariance matrices
specified by the JOMO method, which are more influential with smaller group sizes
(Audigier et al., 2017). In addition, in the second scenarios the BMLC imputation
model under all prior specifications could correctly retrieve the level-1 interaction
term and yield the least biased cross-level interaction term among all missing data
techniques.

Figure 4.2b shows the stability of the estimates produced by all models, repre-
sented by their standard deviations across replications. The BMLC methods were
the most similar - in terms of magnitude - to the Complete Data case, with both
J = 50 and J = 200. For such models, the prior distribution did not seem to have an
influence on the stability of the estimates. LD technique estimates were the most un-
stable, as a result of a smaller sample size. The JOMO imputation technique, on the
other hand, resulted with the most stable estimates, even more than the Complete
Data case. As already observed, this was probably due to the fact that the JOMO
method, by ignoring complex relationships, was an imputation model simpler than
what was required by the data, and produced estimates that did not vary as they
should.
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Figure 4.3: Coverage rates observed for the confidence intervals of the thirteen fixed multilevel logistic
regression level-1, level-2, and cross-level coefficients obtained with complete data and the
missing data methods BMLC(*,.01), BMLC(*,1), BMLC(1,.01), BMLC(1,1), JOMO and LD.
Left: J = 50; nj = 20. Right: J = 200; nj = 5.
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Table 4.2: Bias of the variance of the random effect for the complete data and the missing data methods
BMLC(*,.01), BMLC(*,1), BMLC(1,.01), BMLC(1,1), JOMO and LD. Significant bias (w.r.t. the
complete data estimator) is marked in boldface.

τ2 = 1: Bias

Method J = 50, nj = 20 J = 200, nj = 5

Complete Data -0.14 -0.05

BMLC(*,.01) -0.17 -0.08

BMLC(*,1) -0.15 -0.05

BMLC(1,.01) -0.16 -0.07

BMLC(1,1) -0.15 -0.06

JOMO -0.11 -0.01

LD -0.31 0.05

Figure 4.3 displays the coverage rates of the 95% confidence intervals obtained
with each method. For the Complete Data, the asymptotic confidence intervals had
(on average) too low coverage due to the finite sample sizes used for our simulations.
This is in line with the results of other multilevel simulation studies such as the ones
performed by Maas and Hox (2005) and Paccagnella (2011). In the light of these re-
sults, LD produced overall coverage rates rather close to the ones obtained under
the Complete Data case. However, the coverages of the confidence intervals yielded
by the LD method were the result of a large bias and large standard errors of the
parameter estimates, which led to too wide intervals. Furthermore, the LD method
generated coefficients for one of the parameters (β3) with a too low coverage (about
0.7). The BMLC and JOMO imputation methods produced more conservative con-
fidence intervals with J = 50 than with J = 200. In this latter case, their intervals
appeared closer to the nominal level. Behavior of the confidence intervals for the
BMLC models also depended on the prior distribution used by the model. In fact,
priors which favored full allocation of the level-2 LCs led to confidence intervals
slightly closer to the nominal level. Interestingly, most of the confidence intervals
produced by the two imputation methods (BMLC and JOMO), had a coverage rate
larger than their nominal level. This can be the consequence of the large amount
of missingness (about 30% for each variable) entered in the data. Moreover, for the
BMLC model, this can also be attributed to the over-fitting strategy pursued in this
chapter. JOMO also led to intervals that were too short for a level-1 fixed effect (β1)
when J = 200. This was probably caused by the too small uncertainty captured by
the model (see figure 4.2b), or by the stronger influence of the prior distribution in
the second condition.



84 4 BAYESIAN MULTILEVEL LC MODELS FOR THE MI OF NESTED DATA

Table 4.2 reports the results obtained for the variance of the random effects, in
term of bias. All the BMLC models yielded a random effect variance very close to
the Complete Data case under both scenarios, while the JOMO method - which uses
continuous random effects for the imputations - led to the least biased estimates for
such parameter. Interestingly, in both conditions the variance estimated by JOMO
was less biased than the Complete Data estimator. Finally, the LD method produced
the most biased variance of the random effects, in particular when the number of
level-2 units was equal to J = 50.

4.4 Study 2: Real-data case

The European Social Survey (NSD: Norwegian Centre for Research Data, 2012),
or ESS, collects sociological, economical and behavioral data from European citi-
zens. The survey is performed by the NSD (Norwegian Centre for Research Data)
every two years, and consists of variables both at the individual (level-1) and at
the country (level-2) level. The data are freely available at the website http://

www.europeansocialsurvey.org/. In order to assess the performance of the BMLC
model with real data, we carried out an analysis using the ESS data of Round 6,
which consists of multilevel data collected in 2012.

After cleaning the dataset, we estimated a possible analysis model using one of
the variables as outcome. Subsequently, we introduced missingess according to a
MAR mechanism. Finally, the results (bias of the estimates, standard errors and p-
values) obtained after BMLC imputation were compared with the results obtained
under the Complete Data case and the LD method. We also made an attempt to
perform imputations with the JOMO technique, but the dataset was too large for
this routine. After 5 days of computation on a normal calculator (Intel Core i7),
JOMO had not completed the burn-in iterations yet, and we decided to stop the
process. This highlights another issue of the JOMO method (as implemented in the
jomo package): when dealing with large datasets, the routine must handle too many
multivariate normal variables and random effects, and becomes extremely slow. As
a comparison, computations with the BMLC model required less than two days on
the same machine for both the model selection and the imputation stages (see below
for details).

4.4.1 Study Set-up

Data preparation. The original datasets consisted of n = 54673 level-1 respondents
within J = 29 countries and 36 variables, of which T = 15 were observed at the

http://www.europeansocialsurvey.org/
http://www.europeansocialsurvey.org/
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country level, S = 20 at the person level and one variable was the country indicator.
At level-1, variables consisted either of social, political, economical and behavioral
questions, which the respondents were asked to rate (e.g., from 0 to 10) according
to their opinion, or of background variables, such as age and education. At level-2,
some economical and political (continuous) indicators related to the countries were
reported. Some of the units (at both levels) contained missing or meaningless values
(such as “Not Applicable”), and those units were removed from the dataset, in order
to work with “clean” data. Furthermore, we recoded the qualitative levels of the
rating scales and converted them to numbered categories, and transformed some
continuous variables (such as Age or all the level-2 variables) into integer valued
categories9. This enabled us to run the BMLC model on this dataset.

After removing level-1 variables related with the study design and least “recent”
versions of the items (i.e., all the replicated items across the survey waves, observed
before 2010), and discarding units younger than 18 years old and/or not eligible for
voting (in the next sub-paragraph we will explain the reason of this choice), T = 11
level-2 and S = 17 level-1 variables were left, observed across n = 28704 level-1
units within J = 21 countries. These countries were Belgium (nj = 1497), Switzer-
land (nj = 1002), Czech Republic (nj = 1308), Germany (nj = 2285), Denmark
(nj = 1321), Estonia (nj = 1485), Spain (nj = 1429), Finland (nj = 1772), France
(nj = 1581), UK (nj = 1575), Hungary (nj = 1327), Ireland (nj = 1948), Iceland
(nj = 519), Italy (nj = 623), Netherlands (nj = 1591), Norway (nj = 1312), Poland
(nj = 1281), Portugal (nj = 1263), Sweden (nj = 1473), Slovenia (nj = 706) and
Slovakia (nj = 1406).

Analysis model. We looked for a possible model of interest that can be estimated
with the data at hand. First, we selected the binary variable “Voted in the last
elections” (Y0) as outcome. This is why we deleted the level-1 units “Not eligible
for voting” from the dataset in the previous step. Second, we looked for possible
variables that could significantly explain the variability of the outcome through a
multilevel logistic model. Selection of the predictors (and of the random effects)
was performed through stepwise forward selection, including in the model only
the significant predictors (i.e., with p-values lower than 0.05) which led to a drop
of the AIC index of the model. The final model for “Voted in the last elections”
was a multilevel logistic model with random intercept and random slope, and was
specified as

9 In particular, percentiles were used to create break-points and allocate units into the new categories. The
choice of the percentiles depended on the number of categories used for each variable.
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logit Pr(Yji0|Yji, Zj) =β j0 + (β1 + γ11Zj1)Yji1 + β2Yji2 + β3Yji3 + β4Yji4 + β5Yji5

+ β6Yji6 + β j7Yji7 + β8Yji8 + β9Yji9
(4.5)

at level-1 and

β j0 =β00 + γ1Zj1 + uj0, with uj0 ∼ N(0, τ2
0 = 0.29),

β j7 =β70 + uj1, with uj1 ∼ N(0, τ2
1 = 0.02)

(4.6)

at level-2. A description of the 11 variables used in the model can be found at the
top of Table 4.3, while the values of the coefficients (both fixed and random) are
reported in the second column of Table 4.5 below. Furthermore, columns 5 and 8 of
Table 4.5 show standard errors and p-values (for the hypothesis of null coefficients)
of the fixed effect parameters, obtained with the original data.

Entering missingness. Subsequently, we entered MAR missingness in the dataset.
Missingness was generated on Y2, Y4, Y7, Y6 and Z1 through logistic models for
the missingness indicator. We did not only use the variables in model (4.5)-(4.6) in
order to generate the missingness, but also other items still present in the dataset.
The latter are listed in the bottom part of Table 4.3. Table 4.4 shows the logistic
models used to create missingness. The coefficients of these models were chosen
in such a way to ensure between (about) 14% and 25% of missingness for each of
the selected variables. At the end of the process, only 18 countries and 9871 level-1
units (about one third of the dataset) were left with fully observed data.

Missing data methods. We applied LD and BMLC to the sample with missing
values. The BMLC was run with all the 23 variables listed in Table 4.3, and was set as
follows. We performed model selection using the method exposed in Section 4.2.3
based on Gelman et al. (2013)’s technique. A preliminary run of the Gibbs sampler
with L∗ = 6 and K∗ = 30 indicated that running Algorithm 4.1 with L = 2 (the
posterior maximum of L) and K = 26 (the posterior maximum of K) was sufficient
to perform the imputations. We set the hyperparameter priors αltr = αlksu = 0.05
for each l, k, t, s, r, u, and the prior hyperparameters for the mixture weights which
guaranteed full allocation were αl = 1500 for each l at level-2 and αlk = 50 for each
l, k at level-1. M = 100 imputations were performed across 25000 iterations after a
burn-in period of b = 5000 iterations, for a total of I = 30000 iterations.

Outcomes. We applied the considered methods (LD and BMLC), and evaluated
bias, standard errors and p-values of the final estimates, and compared them with
the Complete Data case.
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Table 4.3: ESS data variables used in the Study 2.

Variable Name Description Coding

Y0 Voted in the last elections 0 No, 1 Yes

Y1 TV watching: news and politics 0 No time, 7 >3 hours

Y2 Trust in politicians 0 No trust, 10 Complete trust

Y3 Placement in the right/left scale 1 Left, 5 Right

Y4 Life satisfaction 0 Dissatisfied, 10 Satisfied

Y5 Immigration is bad/good for economy 0 Bad, 10 Good

Y6 National elections are free and fair 0 Not important, 10 Extremely important

Y7 Age (Range) 1 (18/34), 5 (68/103)

Y8 Marital status 0 Not married, 1 Married

Y9 Highest level of education 1 <Secondary, 7 >Tertiary

Z1 Social Expenditure (Country level) 1 Low, 2 High

Y1Z1 Cross-level interaction between Y1 and
Z1

-

Other Variables used to generate missingess:

Variable Name Description

Y10 Subjective general health

Y11 Political parties offer alternatives

Y12 Media provide reliable information

Z2 Area (Country level)

Z3 Median age (Country level)

Z4 Population size (Country level)

Z5 Unemployment level (Country level)

Z6 Number of students (primary - secondary education) (Country level)

Z7 Number of students (tertiary education) (Country level)

Z8 Governmental capabilities (Country level)

Z9 Transparency (Country level)

Z10 Health Expenditure (Country level)

Table 4.4: Missingness generating mechanism for the variables of the ESS dataset.

Missingness in... Missingness generating model

Y2 1.3 + 0.1Y11 − 0.4Y12 − 0.15Z7

Y4 0.5− 0.5Y10 − 0.5Y9 + Z5

Y6 −1− 1.7Y0 + 0.3Z10 + 0.15Z8

Y7 −0.5 + 0.2Y3 + 0.25Z3 − 1.5Z4

Z1 −1− Z9 − 0.5Z6 + Z2
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Table 4.5: Study 2: Estimates, standard errors and p-values obtained with Complete Data, LD and
BMLC methods for the fixed and random effects parameters of model (4.5)-(4.6), attained
after applying each method to the (fully or partially) observed data. Non-significant 5%
p-values are marked in boldface.

Estimates Standard errors p-values

Parameter Complete Data LD BMLC Complete Data LD BMLC Complete Data LD BMLC

β00 -3.45 -2.72 -3.29 0.33 0.44 0.36 0.00 0.00 0.00

β1 0.15 0.07 0.16 0.04 0.08 0.04 0.00 0.42 0.00

β2 0.07 0.07 0.07 0.01 0.02 0.01 0.00 0.00 0.00

β3 0.05 0.01 0.05 0.02 0.03 0.02 0.00 0.82 0.00

β4 0.06 0.07 0.06 0.01 0.02 0.01 0.00 0.00 0.00

β5 0.02 0.04 0.02 0.01 0.01 0.01 0.02 0.01 0.01

β6 0.12 0.10 0.11 0.01 0.02 0.01 0.00 0.00 0.00

β70 0.34 0.35 0.33 0.03 0.05 0.03 0.00 0.00 0.00

β8 0.39 0.33 0.40 0.03 0.07 0.03 0.00 0.00 0.00

β9 0.23 0.23 0.22 0.01 0.02 0.01 0.00 0.00 0.00

γ1 0.71 0.57 0.62 0.20 0.24 0.23 0.00 0.03 0.02

γ11 -0.06 -0.01 -0.07 0.03 0.06 0.03 0.02 0.87 0.03

τ2
0 0.29 0.42 0.32

τ2
1 0.02 0.03 0.01

4.4.2 Study Results

Table 4.5 shows the results of the experiment. From the table, it is possible to ob-
serve how the BMLC method led to final parameter estimates very close to the Com-
plete Data case. Only two coefficients (β00 and γ1) were slightly off the Complete
Data case value. The LD method tended to retrieve slightly more biased estimates
(in particular β00, β1 and γ1), but overall the retrieved values with such technique
were acceptable. In columns 5-7 of the table standard errors of the estimates are
reported. The standard errors obtained with the LD method were larger than the
ones yielded by the BMLC imputation model, as a consequence of a smaller sample
size. On the other hand, the BMLC imputation model could exploit the full sample
size, and retrieved standard errors very close to the Complete Data Case. The effect
of the smaller standard errors obtained with the BMLC imputation model can be
observed in the last three columns of Table 4.5, reporting the p-values of the fixed
effects: the fixed effects estimated through the BMLC imputation resulted all sig-
nificant (p < 0.05), as they were supposed to be. The LD technique, on the other
hand, produced some non-significant coefficients (β1, β3 and γ11), showing how
this method, unlike MI, could lead to loss of power in statistical tests.

With respect to the variance of the random components (reported in the bottom
of Table 4.5), the Complete Data case and the BMLC imputation method yielded
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roughly similar values of τ2
0 and τ2

1 . Conversely, the LD method led to an overly
large estimate of the random intercept τ2

0 .

4.5 Discussion

In this chapter we proposed the use of Bayesian Multilevel Latent Class (BMLC)
models for the MI of multilevel categorical data. After presenting the model and
its configurations in Section 4.2, we performed two studies in order to assess its
performance under different conditions.

In Study 1, a simulation study with two sample size conditions was carried out
in which the BMLC imputation method was compared to the LD method (still one
of the most applied techniques in the presence of multilevel missing data according
to Van Buuren, 2011) and the JOMO technique, one of the few available routines
which allow for the MI of multilevel categorical data. The analysis model used was
a random intercept logistic model. In Study 2, data coming from the ESS survey
were used to investigate the behavior of the BMLC model with real-case data, and
compared with the LD method. In this second study, the analysis model was a
multilevel logistic model with random intercept and slope.

Overall, the BMLC model showed a good performance in terms of bias, stability
of the estimates and coverage rates of the coefficient intervals of the final estimates.
Unlike the LD and the JOMO methods, which had limitations either because of a too
small sample size used (LD) or because of too influential default prior distributions
(JOMO), the BMLC model offers a flexible imputation technique, able to pick up
complex orders of associations among the variables of the dataset at both levels,
returning unbiased and stable parameter estimates of the analysis model. This
imputation model can be a useful tool for applied researchers that need to deal
with missing multilevel categorical data (e.g., coming from surveys), since it can
help to recover potentially valuable information that could be lost if the subjects
with missingness were simply discarded, as the results coming from the LD method
have shown in both Study 1 and Study 2 of this chapter.

Despite the proven utility of the BMLC imputation model, some issues still need
to be better crystallized by further studies. First, the current chapter aimed to give
a general introduction of the BMLC model as a tool for MI, highlighting some of
its strengths. Therefore, the simulation study in Section 4.3 was carried out under
two sample size conditions typical of multilevel analysis (i.e., few large or several
small level-2 units) and a moderately large proportion of missing data (about 30%
per variable). The performance of the BMLC imputation model may be investigated
further with other more extensive simulation studies, in which the model is tested
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against more extreme missingness rates and sample size conditions (e.g., with few
small or several large higher-level units). Second, the setting of the prior distribu-
tion for the higher-level mixture weights must be better examined, especially when
the level-2 sample size is small and the number of classes selected with the method
of Section 4.2.3 is (relatively) large. In these cases, achieving full allocation of the
higher-level units across all the level-2 LCs is problematic, no matter how large the
value of αl . For instance, in the condition with J = 50 groups in the simulation
study of Section 4.3, in which we selected an average number of level-2 LCs equal
to L = 8.53 and a value for the hyperparameter αl equal to the number of free
parameters within each higher-level LC, the number of classes filled by the Gibbs
sampler was on average roughly equal to L = 5. We tried to re-run the experiment
by increasing the value of αl , always obtaining similar results (in terms of classes
allocated and MI inferences). It is possible that, because of the small sample size J,
the Gibbs sampler reached the maximum possible number of classes that could be
filled, and the groups could not be allocated to any new LC. We noticed, however,
that the informative values used for αl could help the Gibbs sampler to stabilize
the number of occupied classes at that possible maximum. That is, for a maximum
number of classes L̄ that the sampler could occupy with informative hyperparam-
eter αl , the posterior distribution of the occupied number of classes during the
imputation stage was Pr(L = L̄|Z, Y) = 1. Therefore, it is possible that in order for
the Gibbs sampler to work correctly in presence of a small number of higher-level
groups it is more important to have the level-2 units allocated to a stable number of
classes, rather than to reach the full allocation of all the specified LCs. This can be
the reason of the good results obtained in the simulation study of Section 4.3 with
J = 50. However, in order to confirm our intuition, a more comprehensive study
with different settings for the number of higher-level units and LCs, as well as for
the value of the level-2 mixture weights hyperparameter αl , should be carried out
in future research.

Finally, the proposed approach can be extended in various meaningful ways.
First, the BMLC model can be also applied to longitudinal data, in which multi-
ple observations in time (level-1 units) are nested within individuals (level-2 units).
If the level-1 observations within the same subject are independent with each other,
but depend on a (discrete) time indicator, it suffices to include the latter in the
BMLC model as level-1 variable and perform the imputations. Second, while we
dealt with multilevel categorical data, the BMLC model can also be applied to con-
tinuous or mixed type of data. This can be achieved, for instance, by assuming
mixture of univariate Normal (for the continuous data) and Multinomial (for the
categorical data) distributions. In this case, Gelman et al. (2013)’s method might
still be used for the model selection. Third, the model can be easily extended to
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deal with three or more levels of the hierarchy. This can be the case, for instance,
when a sample of students (level-1) is drawn from a sample of schools (level-2)
which, in turn, is drawn from a sample of countries (level-3). Fourth, the proposed
BMLC imputation model with LCs at two levels can easily be generalized to situa-
tions with more levels, where there is no need that the multiple levels are mutually
nested. For example, one could deal with children nested within both schools and
neighborhoods, where schools and neighborhoods form crossed rather than nested
levels. These extensions are straightforward by making sure that the Gibbs sampler
gets the LCs at one level conditioning on the sampled LCs for all other levels.
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5
M U LT I P L E I M P U TAT I O N O F L O N G I T U D I N A L C AT E G O R I C A L
D ATA T H R O U G H B AY E S I A N M I X T U R E L AT E N T M A R K O V
M O D E L S

Standard latent class modeling has recently been shown to provide a flexible tool
for the multiple imputation (MI) of missing categorical data in cross-sectional stud-
ies. This chapter introduces an analogous tool for longitudinal studies: MI using
Bayesian mixture Latent Markov (BMLM) models. Besides retaining the benefits
of latent class models, i.e., respecting the (categorical) measurement scale of the
variables and preserving possibly complex relationships between variables within
a measurement occasion, the Markov dependence structure of the proposed BMLM
model allows capturing lagged dependencies between adjacent time points, while
the time-constant mixture structure allows capturing dependencies across all time
points, as well as retrieving associations between time-varying and time-constant
variables. The performance of the BMLM model for MI is evaluated by means of
two simulation studies and a real-data experiment, in which it is compared with
complete case analysis and MICE. Results show good performance of the proposed
method in retrieving the parameters of the analysis model. In contrast, competing
methods could provide correct estimates only for some aspects of the data.
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5.1 Introduction

Sociological, psychological and medical research studies are often performed by
means of longitudinal designs, and with variables measured on a categorical scale.
An example is the LISS (Longitudinal Internet Studies for the Social Sciences) panel
study consisting of periodically administered internet surveys by CentERData (Tilburg
University, The Netherlands) to a representative sample of the Dutch population,
and covering a broad range of topics such as health, religion, work, and the like.

Different from cross-sectional studies, missing data in longitudinal studies may
not only concern partial missingness within a single measurement occasion, but
may also take the form of complete missing information for certain occasions as a
result of missing visits (or complete missingness) or subjects dropping out from the
study.1 It is well known that the presence of missing data can cause biased or
inaccurate inferences, as well as loss of power, if it is not cautiously handled either
before or during the actual statistical analysis. Multiple Imputation (MI) is a method
developed by Rubin (1987) which allows separating the missing data handling from
the substantive analyses of interest, and moreover takes the additional uncertainty
resulting from the missing values into account. Assuming that data are missing at
random (MAR)2, in MI the missing values in a dataset are replaced with M > 1 sets
of values sampled from the distribution of the missing data given the observed data,
Pr(ymis|yobs). In order to be able to do this, we have to build an imputation model.
The substantive model of interest is then estimated on each of the M completed
datasets, where the M sets of estimates can be pooled through the rules provided
by Rubin (1987).

When imputing missing longitudinal data, the imputation model must fulfill sev-
eral requirements in order to produce valid imputations. In particular, an imputa-
tion model for longitudinal analysis should:

1. capture dependencies among variables within measurement occasions;

2. capture overall dependencies between time points resulting from the fact that
individuals differ from one another in a systematic way;

3. capture potential stronger relationships between adjacent time points;

1 In the first case (missing visits), subjects fail or refuse to provide information for all variables at one
or more time occasions. In the second case (drop-out), a subject stops providing information for all
variables from a specific time point until the end of the study. Even though this chapter generally deals
with partial missingness, we will also test the performance of the BMLM model for MI in presence of
missing visits by means of a simulation study and an empirical experiment. In the latter few cases of
drop-out are also present in the dataset.

2 That is, the probability of missingness depends exclusively on the observed data.
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4. automatically (i.e., without explicit specification) capture complex relation-
ships in the data, such as higher-order interactions and non-linear associa-
tions;

5. respect the measurement scale of the variables (continuous/categorical).

In particular, requirement 4 is motivated by the fact that the imputed datasets
could be re-used for several types of analyses, in which different aspects of the data
need to be taken into account. An imputation model that can automatically describe
all the relevant associations of the data provides datasets that can be re-used in
different contexts. Conversely, if an imputation model requires explicit specification
of interaction terms and other complex relationships, the imputed datasets are likely
to be tailored only for some specific analyses, and the imputation step should be re-
performed according to the particular problem under investigation. Furthermore,
specifying all the complex interactions that might arise in a dataset can be a difficult
and tedious task (Vermunt et al., 2008).

While for longitudinal continuous data the joint-modeling approach with the mul-
tivariate normal model (Schafer, 1997) and the full conditional specification with
the MICE technique (Van Buuren & Oudshoorn, 1999; Van Buuren & Groothuis-
Oudshoorn, 2000) have been proposed and evaluated in the literature (Romaniuk,
Patton & Carling, 2014), for categorical data the problem has not yet been settled.

One possible approach is implementing MICE with generalized linear models us-
ing a logistic link function after converting the data from long to wide format.3 In
such a way, relationships among the variables at different time points can correctly
be captured by MICE and reproduced in the imputations (Allison, 2009; I. R. White,
Royston & Wood, 2011). Despite the advantages and the ease of implementation
of the method, MICE is not always guaranteed to work. In the first place, notwith-
standing its good performances in simulation studies, convergence to the true dis-
tribution of the missing data is not ensured, since the method lacks of theoretical
and statistical foundation (Vermunt et al., 2008). Second, conversion from long
to wide format causes the number of variables to be imputed (and to be used as
predictors) to grow linearly with the number of time points T, slowing down com-
putations and requiring regularization techniques if the sample size is small. Lastly,
by default MICE only includes linear main effects into the imputation model, neces-
sitating explicit specification of more complex relationships when those are needed
in the analysis model, and thus failing to meet requirement 4 above.

3 That is, converting the dataset in such a way that the different time points (the single rows of the dataset
in the long format) become columns in the wide format. In this way, each row in the wide format
corresponds to a single unit of analysis.
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An alternative solution for categorical data is represented by mixture or latent
class (LC) models (Lazarsfeld, 1950), proposed and shown to provide good results
as imputation models by Vermunt et al. (2008). Mixture modeling allows for flexible
joint-density estimation of the categorical variables in the dataset, and requires only
the specification of the number of LCs K. When K is set large enough, the model
can automatically capture the relevant associations of the joint distribution of the
variables (McLachlan & Peel, 2000; Vermunt et al., 2008), achieving requirement 4.
However, standard LC models are better suited for cross-sectional datasets, because
they do not account for the longitudinal architecture of the data, and, accordingly,
do not satisfy requirement 3 above.

A natural extension of the LC model to longitudinal categorical data, which in
addition accounts for unobserved heterogeneity between units, is represented by
the mixture Latent Markov (MLM) model (Vermunt, 2010). With the MLM model
subjects are clustered at two levels. At the higher level, a time-constant LC variable
groups the units with similar time-varying patterns with each other, meeting in this
way requirement 2. At the within-subject level, dynamic latent states (LSs; i.e., LCs
that can vary over time) are specified for each time point, and -with the first-order
Markov assumption- the LS distribution at time t depends only on the LS occupied
at time t− 1. From a MI point of view, the dynamic LSs help accounting for stronger
dependencies across adjacent time points, satisfying requirement 3 above. Further-
more, the distribution of the observed variables at a specific time point depends non
only on the time-constant LCs but also on the dynamic LSs, allowing to take depen-
dencies within time points into account, thus meeting requirements 1 and 4. Lastly,
the model respects the data scale (requirement 5) by assuming Multinomial distri-
butions for all variables in the measurement model. As a further advantage, the
MLM model can produce imputations also for time-constant variables with missing
values, when present in the dataset at hand.

In this chapter, we investigate the performance of MLM modeling as a MI tool for
missing categorical longitudinal data. The model is implemented under a Bayesian
paradigm. The choice of Bayesian modeling in MI is mainly motivated by two
arguments: (a) it naturally yields the posterior distribution of the missing data
given the observed data; and (b) it automatically takes into account the variability of
the imputation model parameter, yielding proper imputations (Schafer & Graham,
2002).

The outline of the chapter is as follows. In Section 5.2, the model is formally
introduced, and the model selection issue is addressed. Sections 5.3 and 5.4 describe
a simulation and a real-data study evaluating the performance of the Bayesian MLM
(BMLM) imputation model. The authors provide final remarks in Section 5.5.
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5.2 The Bayesian mixture Latent Markov Model for Multiple Impu-
tation

Bayesian estimation of the MLM model requires defining the exact data generat-
ing model, such as the number of classes for the mixture part and the number of
states for the latent Markov chain, as well as the prior distribution of the model
parameters. This allows obtaining Pr(θ|yobs), the posterior distribution of the un-
known model parameters given the observed data yobs. In MI, the M sets of impu-
tations are obtained from the posterior predictive distribution of the missing data,
i.e. Pr(ymis|yobs) =

∫
Pr(ymis|θ)Pr(θ|yobs)dθ. To achieve this, M parameter val-

ues θ(m) (m = 1, ..., M) are first sampled from Pr(θ|yobs), and subsequently the
imputations are drawn from Pr(ymis|θ(m)).

5.2.1 Data generating model and prior distribution

We will assume fixed measurement occasions t (t = 1, ..., T) over all subjects and
variables. For the i-th unit (i = 1, ..., n), yitj indicates the value observed for the j-th
time-varying categorical variable (j = 1, ..., J) at time t, with yitj ∈ {1, ..., r, ..., Rj}
(therefore Rj represents the number of categories for the j-th variable). The J-
dimensional vector of observed values for unit i at time t is denoted by yit = rt,
where r represents a generic pattern, and yi = r∗ is the vector of responses at all
time points for unit i.

Often, also time-constant variables (such as the subject’s gender) are present in
the dataset. When this is the case, zip is used to denote the value on the p-th
(p = 1, ..., P) time-constant variable observed for unit i. Here zip ∈ {1, ..., u, ..., Up}
and the P-dimensional time-constant pattern observed for i is given by zi = u.

The MLM describes the joint distribution of the data Pr(zi, yi) by introducing two
types of categorical latent variables: a time-constant LC variable w (w ∈ {1, ..., l, ..., L})
and a sequence of dynamic LSs s1, s2, ..., st, ..., sT |w = l (st ∈ {1, ..., k, ..., K} ∀ t). For
the first-order Markov assumption, the distribution of the LSs at time t is depen-
dent on the past only through state at time t− 1, that is Pr(st|st−1, ..., s1, w = l) =

Pr(st|st−1, w = l). Furthermore, the model assumes local independence for the
distribution of both time-constant and time-varying variables conditioned on the
latent variables: Pr(yit = rt|st = k, w = l) = ∏j Pr(yitj = r|st = k, w = l) and
Pr(zi = u|w = l) = ∏p Pr(zip = u|w = l).

The MLM model is composed of four parts:
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• the latent class probabilities for the time-constant latent clusters, expressed by
Pr(w = l) = ωl ∀ l;

• the latent states probabilities, which represent the distribution of the LSs at each
time point; these are given by:

– the initial state probabilities, which describe the distribution of the latent
states at time t = 1, and denoted by Pr(s1 = κ|w = l) = νκl ∀ κ, l;

– the transition probabilities, the probabilities for a unit to switch from state
st−1|w = l to state st|w = l (t = 2, ..., T), and indicated with Pr(st =

k|st−1 = q, w = l) = ξq,k(t)l ;

• the conditional response probabilities of the time-constant variables given the
LC w, denoted with Pr(zip = u|w = l) = λupl for the p-th variable and
Pr(zi = u|w = l) = Λul for the whole pattern: under local independence,
Λul = ∏p λupl ;

• the emission probabilities, which define the probability of the time-varying vari-
ables conditioned on the LC w and the LS at time t: Pr(yitj = r|st = k, w =

l) = φrtjkl , and -for the local independence- Pr(yit = rt|st = k, w = l) =

Φrtkl = ∏j φrtjk.

Given the model components above, the MLM model describes the probability of
the observed variables as

Pr(zi = u, yi = r∗) = ∑
l

ωlΛulπr∗ l (5.1)

where, at the within-subject level,

πr∗ l = Pr(yi = r∗|w = l) = ∑
s1,...,sT

νκlΦr1kl ∏
t>1

ξq,k(t)lΦrtkl . (5.2)

Figure 5.1 represents the path diagram of the data generating model. The picture
stresses the double task executed by the subject-level mixture component w: cap-
turing dependencies among the time constant variables and overall dependencies
between all time points. Figure 5.1 also shows how the LS st at time t affects the
distribution of both st+1 and yit, capturing dependencies between variables within
time point t (by means of the emission probabilities) as well as relationships be-
tween adjacent time points (by means of the transition probabilities). With such a
model configuration, requirement 2 of Section 5.1 is satisfied with the time-constant
latent variable w, while requirements 1 and 3 are met by means of the latent Markov
structure assumed upon the time-varying variables.
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w

· · ·z2z1 zP

s2s1 · · · sT

· · · y1Jy12y11 y21 y22 · · · y2J yT1 yT2 · · · yTJ

Figure 5.1: MLM model, graphical representation. w: time-constant latent class variable; z:
time-constant variables; s: dynamic latent variable; y: time-varying variables.

Importantly, the model can also be implemented in absence of the time-constant
variables, which involves dropping the term Λul from equation (5.1) and the nodes
representing the time-constant variables zi1, ..., ziP from Figure 5.1.

The transition probabilities ξq,k(t)l are stored in T K×K squared matricesX t
l ∀ t ≥

2. X t
l is a stochastic matrix, the rows of which must sum to 1: an entry in row q

and column k of the matrix represents the probability for a unit to switch from state
q at time t− 1 to state k at time t. The q-th row of X t

l will be denoted by ξt
ql .

In order to improve class identification, and to reduce the computational bur-
den during the estimation step, we will assume homogeneous transition and emis-
sion probabilities across time points: ξq,k(t)l = ξq,k(h)l ∀ t 6= h and t, h ≥ 2 and
φrtjkl = φrhjkl , which entails Φrtk = Φrhk ∀ t 6= h and t, h ≥ 1. Thus, the time-
identifier subscript will be dropped from the transition and emission probabilities
in the remainder of this chapter, i.e., ξq,k(t)l = ξq,kl ,X t

l = Xl and ξt
ql = ξql∀ t ≥ 2,

and φrtjk = φrjk, Φrtk = Φrk ∀ t ≥ 1.

For the Bayesian specification of the model, distributional assumptions must be
made for all variables and parameters in model (5.1)-(5.2). Since all (latent and
observed) variables in the model are categorical, a Multinomial distribution will be
adopted for each of them. Formally:

• w ∼ Multinomial(ω), with ω the latent weights vector (ω1, ..., ωL);
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• zip|w = l ∼ Multinomial(λpl), with λpl = (λ1pl , ..., λUp pl) ∀ p, l;

• s1|w = l ∼ Multinomial(νl), where νl is the initial state probabilities vector
(ν1l , ..., νKl) ∀ l;

• st|st−1 = q, w = l ∼ Multinomial(ξql) ∀ t > 1, l;

• yitj|st = k, w = l ∼ Multinomial(φjkl), with φjkl the probability vector (φ1jkl ,
..., φrjkl , ..., φRj jkl) ∀ j, k, l.

We denote by θ the whole parameter vector, i.e. θ = (ω,λ11, ...,λPL,ν1, ...,νL,
X1, ...,XL,φ111, ...,φJKL). The conjugate of the Multinomial is the Dirichlet distribu-
tion. Hence we will set:

• ω ∼ Dirichlet(η), with η = (η1, ..., ηL), ηl > 0 ∀ l;

• λpl ∼ Dirichlet(ζpl), with ζpl = (ζ1pl , ..., ζUp pl) and ζupl > 0 ∀ u, p, l.

• νl ∼ Dirichlet(α), with α = (α1, ..., αK), ακ > 0 ∀ κ, l;

• ξql ∼ Dirichlet(γ), with γ = (γ1, ..., γK), γk > 0 ∀ k, l;

• φjkl ∼ Dirichlet(δjk), with δjk = (δ1jk, ..., δRj jk), δrjk > 0 ∀r, j, k, l .

η, ζpl ,α,γ and δjk are called hyperparameters of the model. Appendix A gives
some guidelines about how to set the priors for MI purposes.

5.2.2 Model Selection

In MI the imputation model parameters need not be interpreted, and performing
imputations with a model that takes into account sample-specific aspects (i.e., a
model that overfit the data) is of little concern here (Vermunt et al., 2008). Much
more problematic is performing imputations with models that disregard important
associations in the data (i.e., models that underfit the data).

Overfitting the data with the BMLM model, and with mixture models in general,
means that a number of LCs and LSs (L and K) has been selected for the imputations
that is larger than what is needed for the data. When this happens, the BMLM
model can carefully capture all relevant associations among the variables as well
as sample-specific fluctuations, similar to log-linear imputation models that include
non-significant terms (Vermunt et al., 2008). Therefore, to perform imputations a
large L and a large K can be chosen. However, it is not always clear whether the
selected number of LCs/LSs is large enough; at the same time, too large values
might unnecessarily slow down computations, specially with large datasets.

Bayesian modeling offers a simple solution to detect the number of LSs to be used
in the imputation model. The method is described by Gelman et al. (2013), chapter
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22 for standard mixture models (i.e., for T = 1). Their method consists of preliminar-
ily processing the data by estimating a LC model (by means of the Gibbs sampler)
with an arbitrarily large number of classes (K = K∗) and prior distributions for the
latent variable parameter that favor the occurrence of empty components (e.g., with
αk = 1/K∗ ∀ k) during the iterations of the Gibbs sampler. Counting the number of
latent clusters (at each time point) occupied by the units during every iteration leads
to a probability distribution for K once the Gibbs sampler is terminated. Gelman et
al. (2013), who developed the method for substantive analysis, suggested to use the
posterior mode of such distributions to perform inference and obtain interpretable
classes. For MI purposes, in Chapter 3 we recommended using the posterior maxi-
mum of the resulting posterior distribution.4 Once K has been chosen, the mixture
model can be re-run (with prior distributions set as described in Appendix A) and
the imputations can then be performed.

For the BMLM model, this method can be used to detect the number of states
K when L = 1 (with hyperparameters αk = γk = 1/K∗ ∀ k and K = K∗), as is
shown using the first simulation study presented in Section 5.3 and the BMLM
model (case L = 1) in the application of Section 5.4. More specifically, K can be set
equal to the largest posterior maximum across all time points. When the number
of latent clusters L is larger than 1, Gelman et al. (2013)’s method can be used to
determine both L and K (as shown in the second simulation study of Section 5.3
and in the application of Section 5.4, case L > 1), by setting arbitrarily large values
for the number of latent classes and states (L = L∗ and K = K∗) when running the
preliminary Gibbs sampler, and hyperparameters for the latent classes proportions
and transition probabilities equal to ηl = 1/L∗ ∀ l and αk = γk = 1/K∗ ∀ k. The
number of clusters to be used for the mixture components can then be chosen to be
equal to the posterior maximum of the resulting distribution for L. The number of
latent states can be chosen to be the largest among the L (smallest) posterior maxima
observed across time points. That is, we would first consider the smallest posterior
maxima of the number of latent states occupied at each time point (within each
latent cluster l = 1, ..., L), and subsequently we would choose K as the maximum
of the resulting L-dimensional vector. We opt for the smallest posterior maxima
across time points, rather than for the largest ones, in order not to incur to the risk
of leaving some of the latent states empty during the imputation stage, which could
make the Gibbs sampler unstable, as explained in Appendix A.

4 That is, the largest K̄ such that Pr(K = K̄) > 0.
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5.2.3 Model Estimation and Imputation Step

In presence of the latent variable w and the dynamic states s1, ..., sT , model estima-
tion occurs through Gibbs sampling with Data Augmentation scheme5 (Geman &
Geman, 1984; Tanner & Wong, 1987).

Appendix B reports the Gibbs sampler (Algorithm 5.1) used to estimate model
(5.1)-(5.2). For MI, model estimation is performed only on zobs, yobs, as in Vermunt
et al. (2008). During one iteration, units are first allocated to the time-constant
classes according to the posterior membership probabilities Pr(w|θ, zi, yi) and then, con-
ditioned on the sampled w, units are assigned to the states of the LM chain at each
time point. For each subject, the sequence s1, ..., sT is drawn via multi-move sam-
pling (Chib, 1996; Fruhwirth-Schnatter, 2006) through their posterior distribution
Pr(s1, ..., sT |w = l,θ, yobs). Multi-move sampling requires to store the filtered state
probabilities Pr(st|yit,θ) for each time point. How to perform multi-move sampling
and compute the filtered-state probabilities is reported in Algorithms 5.2 and 5.3 of
Appendix B. After units have been allocated to the LSs, the model parameters are
updated using subsequent steps of Algorithm 5.1.

For each subject with missing values, M values of the LCs w and the LSs st

(for any t in which the subject provided one or more missing values) should be
drawn, along with the conditional distribution probabilities and emission probabil-
ities corresponding to the variables with missing information. These draws must
be performed during M of the (post-burn in) Gibbs sampler iterations and should
be as spaced from each other as to resemble i.i.d. samples. The sampled values can
then be used to perform the imputations: ∀ zip ∈ zmis and yitj ∈ ymis,

Pr(zmis
ip |w(m) = l) ∼ Multinomial(λ(m)

pl )

and
Pr(ymis

itj |s
(m)
t = l, w(m) = l) ∼ Multinomial(φ(m)

jkl )

for m = 1, ..., M.

5.3 Simulation Studies

Performance of the BMLM imputation model was assessed by means of two simu-
lation studies. In the first study, four time-varying variables were used, while in the

5 In Data Augmentation units are assigned to the LCs in a first step, and -accordingly- model parameters
are updated in the subsequent step. These two main steps are then iterated.
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second four time-constant variables were added. In this way, with Study 1 we as-
sessed the performance of the Bayesian LM model (that is, the BMLM model with
L = 1) and in Study 2 we checked the performance of the BMLM model with a
larger number of subject-level LCs. In both studies, analyses were carried out with
R version 3.3.0.

5.3.1 Study 1: time-varying variables

In the first simulation study, we compared the BMLM imputation method with
MICE and with complete case (CC) analysis method.6 We followed this approach:
first, N = 200 datasets were generated from a population model (which was not
a MLM!). Second, MAR (and MCAR) missing values were created for some of
the observations in the datasets. Third, the missing-data techniques (BMLM, MICE
and CC analysis) were applied to deal with the missingness and it was checked
whether the population model parameters of main interest were recovered. In order
to highlight the ability of the BMLM model to automatically capture interaction terms
(requirement 4 of Section 5.1), the MICE method was run with its default, main-
effect only, settings. Last, results (in terms of bias, stability and coverage rate of the
estimates) were compared across methods.

5.3.1.1 Set-up

Population Model. We started by defining the predictors of a potential substantive
model at time point t = 1. Therefore, we generated J = 3 binary predictors
Y11, Y12, Y13 with the log-linear model

log Pr(Y11, Y12, Y13) ∝ −0.5 ∑
j

Y1j +
2

∑
j=1

3

∑
j′=j+1

Y1jY1j′ − 0.5Y11Y12Y13. (5.3)

For t > 1, the binary predictors Yt1, Yt2 and Yt3 were generated through auto-
regressive (AR) logistic models

logit Pr(Ytj) = 0.5Y(t−1)j − 0.15 ∑
j′ 6=j

Y(t−1)j′ , (5.4)

6 CC analysis is a commonly used missing-data method which simply discards all units with at least one
missing value from the dataset.
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Table 5.1: Parameter values for model (5.5).

Parameter β0 β1 β2 β3 β12 ρ τ

Value -0.4 0.6 -1 0.8 -0.8 0.75 0.2

for j = 1, ..., 3 and ∀ t > 1. In this way we created predictors that are auto-correlated
with each other in time. After generating the 3 predictors, we created at each time
point the outcome variable Yt4 through the AR logistic model

logit Pr(Yt4) =


β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 if t = 1

β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2

+ρY(t−1)4 + τY(t−1)3 if t > 1.

(5.5)

The values for the model parameters are reported in Table 5.1. These parame-
ters were chosen in order to assess how the missing data techniques could capture
different aspects of the data:

• β0, β1, β2, β3, β12 were used to assess how the techniques recovered relation-
ships among variables at the same time point;

• ρ was used to assess how the models could recover auto-correlations in Y4 at
lag-1;

• τ served to determine whether the models could recover crossed-lagged asso-
ciations (between Y3 and Y4) at lag-1.

From this population model, we generated N = 200 datasets for n = 200 subjects
and T = 10 time points. The datasets were created and stored in long format, so
that each dataset was composed of 2000 rows and 6 column (Y1,...,Y4 as well as the
subject and time indicators).

Generating missingness. For each dataset, we generated missing data in the pre-
dictor Y2 and the outcome Y4 according to the following mechanism. Let Rtj be an
indicator function equal to 1 when Ytj was missing (j ∈ {2, 4}) and 0 when Ytj was
observed. For each t = 1, ..., 10 Y2 was made missing through

Pr(Rt2 = 1) =

 0.45 if Yt3 = 0

0.20 if Yt3 = 1.
(5.6)
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Missingness in the outcome was instead produced with

Pr(Rt4 = 1) =


0.30 if t = 1

0.35 if Y(t−1)1 = 0 and t > 1

0.25 if Y(t−1)1 = 1 and t > 1.

(5.7)

While for Yt2 missingness was fully MAR and dependent on present values of Yt3,
for the outcome the missingness mechanism depended on the time indicator t. In
particular, at t = 1 missing values were entered according to a MCAR mechanism.
For t > 1, missingness for Yt4 was MAR with a probability depending on the value
of Y(t−1)1. In such a way, we allowed the missingness mechanism of the outcome to
depend also on past values. Mechanisms (5.6)-(5.7) led to about 30% missingness
(across and within each time point) for both Y2 and Y4.

Missing data methods. After missingness was generated, we implemented three
missing data techniques on the dataset. The first one was CC analysis. The sec-
ond was the BMLM imputation technique presented in this chapter. Study 1 was
mainly carried out to assess the performance of the standard Bayesian LM impu-
tation model for longitudinal data. Therefore, in Study 1 we set L = 1 for the
time-constant mixture component. Using Gelman et al. (2013) ’s method in Section
5.2.2 for model selection (running a preliminary Gibbs sampler with K∗ = 25 for
1000 burn-in and 2000 estimation iterations) led to an average (posterior maximum)
number of states for the imputations equal to K = 15.38 across the 200 datasets.
The setting of the prior distribution is reported in Appendix A. For the imputation
step, the Gibbs sampler was run for B = 3000 iterations, in which I = 1000 served
as burn-in. For each dataset, M = 20 imputations were performed.

The third missing data technique was the MICE imputation method via logistic
regression. For MICE, the datasets were transformed from long to wide format.
Notice that, in this case, MICE used an imputation model with JT = 40 variables,
compared to the 4 variables (for each time point) considered by the BMLM model.
MICE was implemented with its default settings and run for 20 iterations per im-
putation, with which M = 20 imputations were obtained.

Outcomes. Bias, stability (in terms of standard deviation of the produced esti-
mates) and coverage rates of the 95% confidence intervals of the parameters in
model (5.5) were used in order to evaluate the performance of each method.

5.3.1.2 Results

Results for bias, stability and coverage rates are reported in Table 5.2.
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Overall, the BMLM outperformed both CC analysis and MICE in terms of bias.
Not only relationships between the outcome and the predictors (β0, ..., β3, β12) could
be well recovered by the BMLM model, but also auto- and cross-lagged associations
(ρ and τ). On the other hand, CC analysis was one of the best performing methods
in terms of bias observed in the regression slopes of the predictors Y1, Y2 and Y3,
that is β1, β2, β3, as well as the interaction β12. However, the intercept β0 and
the auto-correlation parameter ρ and the crossed-lagged association parameter τ

resulted somewhat biased with the CC analysis method. This means that these
relationships were either weaker (ρ) or lost (τ) in the complete cases of the datasets.
Lastly, the method that produced most biased estimates in Study 1 was MICE. While
it could retrieve the estimates of τ successfully, it failed to capture other relevant
relationships. In particular, due to the fact that MICE was run with its standard
settings, the interaction effect resulted in extremely large bias, and the main effect
parameter β1 was far from its true value.

As far as the stability is concerned, the estimates yielded by the BMLM model
were placed in an intermediate position between the ones resulting from CC analy-
sis and MICE. In particular, Table 5.2 shows that the BMLM model estimates were
more stable than the CC analysis estimates (due to the smaller sample size in the
latter) and slightly (except β12) less stable than the MICE estimates. The extra un-
certainty (with respect to the MICE method) in the BMLM imputation estimates
contributed -along with unbiasedness- to produce confidence intervals with cover-
age rates fairly close to their nominal level. Conversely, due to biased estimates (CC
analysis) as well as too modest variability (MICE), most of the confidence intervals
produced in the competing methods were too short. CC analysis yielded confidence
intervals with coverage rate close to the exact ones for β1, β2, β3, β12.

5.3.2 Study 2: time-constant and time-varying items

In Study 2 we used the same approach for data and missingness generation and
imputation of Study 1, with the addition of subject-level variables which will be
used as new predictors in the substantive model under consideration. In Study 2

the BMLM imputation was implemented with L > 1, and its performance was again
confronted with the CC analysis and MICE methods (the latter run with its default
settings, as in Study 1). As a further challenge for the missing-data techniques, we
generated missing visits (or complete missingness) for the time-varying variables,
which often occur in longitudinal analysis.
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Table 5.2: Study 1: results observed for the estimates of the AR logistic regression coefficients in model
(5.5) for three missing data methods: CC (complete case analysis), BMLM (Bayesian mixture
Latent Markov model with L = 1) imputation, MICE imputation. Large bias (in absolute
value) and too low coverage rates are marked in boldface.

Missing data method

Parameter CC BMLM MICE

Bias β0 = −0.40 0.34 0.03 0.12

β1 = 0.60 -0.01 -0.07 -0.26
β2 = −1 -0.02 0.01 0.00

β3 = 0.80 -0.02 -0.03 -0.09

β12 = −0.80 -0.03 0.08 0.42
ρ = 0.75 -0.17 0.04 -0.15

τ = 0.20 -0.22 -0.05 0.00

Stability β0 = −0.40 0.17 0.16 0.15

β1 = 0.60 0.21 0.19 0.16

β2 = −1 0.20 0.20 0.17

β3 = 0.80 0.15 0.12 0.11

β12 = −0.80 0.29 0.28 0.23

ρ = 0.75 0.20 0.14 0.13

τ = 0.20 0.19 0.12 0.12

Coverage β0 = −0.40 0.46 0.94 0.89
Rate β1 = 0.60 0.95 0.94 0.66

β2 = −1 0.96 0.96 1.00

β3 = 0.80 0.94 0.92 0.88
β12 = −0.80 0.96 0.97 0.58
ρ = 0.75 0.88 0.97 0.80
τ = 0.20 0.78 0.98 0.95
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Table 5.3: Values of the parameters in model (5.9).

Parameter β0 β1 β2 β3 β12 µ1 µ2 µ3 µ4 ρ τ

Value -0.8 0.6 -0.9 0.8 -1 0.3 -0.2 0.75 0.6 0.75 0.2

5.3.2.1 Set-up

Population Model. Four time-constant binary predictors Z1, ..., Z4 were generated
from

log Pr(Z1, Z2, Z3, Z4) ∝ 0.5. ∑
p

Zp −
3

∑
p=1

4

∑
p′=p+1

ZpZp′ + 2.8Z1Z2Z3 (5.8)

The population model for the three binary predictors Y1, Y2, Y3 was the same as
in (5.3)-(5.4). The AR logistic model for the time-varying outcome Y4 was specified
as

logit Pr(Yt4) =


β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + µ1Z1 + µ2Z2

+µ3Z3 + µ4Z4 if t = 1

β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + µ1Z1 + µ2Z2

+µ3Z3 + µ4Z4 + ρY(t−1)4 + τY(t−1)3 if t > 1.
(5.9)

Table 5.3 shows the parameter values chosen for β0,...,β12, ρ, τ, and µ1, ..., µ4.
The new set of regression parameters µ1, ..., µ4 served to monitor how the missing
data models could retrieve the relationships between the time-varying outcome and
the time-constant variables. From the population model (5.3)-(5.4)-(5.8)-(5.9), we
generated N = 200 datasets with n = 200 units and T = 10 time points.

Generating missingness. MAR missingness was generated in Z1, Z2, Y1 and Y3.
Defining Rp equal to 1 when Zp was missing and 0 otherwise for p ∈ {1, 2}, and
Rtj as in Section 5.3.1.1, missingness was entered as follows. For the subject-level
variable Z1,

Pr(R1 = 1) =

 0.1 if Z3 = 0

0.3 if Z3 = 1
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and Z2

Pr(R2 = 1) =

 0.15 if Z4 = 0

0.35 if Z4 = 1.

For the time-varying items, we generated missing values in Yt3 with a system
analogous to mechanism (5.6) (conditioned on Yt2) of Section 5.3.1.1, while for Yt1

the mechanism was

Pr(Rt1 = 1) =


0.30 if t = 1

0.35 if Y(t−1)4 = 0 and t > 1

0.25 if Y(t−1)4 = 1 and t > 1.

Furthermore, we entered missing visits at each time point by removing for some
units simultaneous values of Yt1, Yt2, Yt3 and Yt4 with probability equal to 0.05 ∀ t.
These mechanisms yielded about 35% missing observations in Y1 and Y3 (across the
whole dataset and for each time point), about 20% in Z1 and Z2, and about 5% in
Y2 and Y4.

Missing data methods. As for Study 1, the BMLM model was compared with the
CC analysis and MICE. Gelman et al. (2013)’s method described in Section 5.2.2
was used for the selection of L and K. Running a preliminary Gibbs sampler for
each datasets led to select an average number of latent clusters equal to L = 7.76
and average number number of LSs equal to K = 10.54 (starting with L∗ = 10 and
K∗ = 15, with 3000 iterations for the Gibbs sampler, of which 1000 for the burn-
in). Appendix A reports how the prior distributions for the BMLM model were set.
B = 3000 iterations were run for the imputation step, including I = 1000 of burn-in.
MICE was implemented in the same way as in Study 1, with the only difference that
now also the time-constant variables are included in the imputation model, serving
as predictors of (and predicted by) the time-varying variables.

Outcomes. As done in Study 1 bias, stability, and coverage rates of the parameter
estimates in model (5.9) were used to determine the behavior of the missing-data
methods under investigation.

5.3.2.2 Results

Results for Study 2 are shown in Table 5.4. The BMLM imputation method could,
overall, retrieve approximately unbiased parameter estimates not only for the pre-
dictors of the time-varying variables, but also for the parameters of the time-constant
variables, µ1, ..., µ4. Similar to Study 1, CC analysis retrieved unbiased parameter
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Table 5.4: Study 2: results observed for the estimates of the AR logistic regression coefficients in model
(5.9) for three missing data methods: CC (complete case analysis), BMLM (Bayesian Mixture
Latent Markov model) imputation, MICE imputation. Large bias (in absolute value) and too
low coverage rates are marked in boldface.

Missing data method

Parameter CC BMLM MICE

Bias β0 = −0.80 0.36 0.10 0.18
β1 = 0.60 0.01 0.00 -0.19
β2 = −0.90 -0.02 0.00 -0.14

β3 = 0.80 0.01 -0.02 -0.10

β12 = −1 -0.03 0.00 0.33
µ1 = 0.30 0.03 -0.04 -0.03

µ2 = −0.20 -0.05 0.00 0.01

µ3 = 0.75 0.09 -0.01 -0.01

µ4 = 0.60 0.08 -0.02 -0.01

ρ = 0.75 -0.22 -0.05 -0.04

τ = 0.20 -0.24 -0.05 -0.01

Stability β0 = −0.80 0.30 0.18 0.18

β1 = 0.60 0.32 0.19 0.18

β2 = −0.90 0.28 0.16 0.15

β3 = 0.80 0.19 0.13 0.12

β12 = −1 0.40 0.25 0.23

µ1 = 0.30 0.20 0.12 0.12

µ2 = −0.20 0.20 0.12 0.12

µ3 = 0.75 0.20 0.11 0.11

µ4 = 0.60 0.23 0.13 0.13

ρ = 0.75 0.27 0.11 0.11

τ = 0.20 0.27 0.12 0.12

Coverage β0 = −0.80 0.76 0.92 0.84
Rate β1 = 0.60 0.96 0.94 0.84

β2 = −0.90 0.95 0.96 0.91

β3 = 0.80 0.94 0.94 0.90

β12 = −1 0.98 0.97 0.72
µ1 = 0.30 0.93 0.97 0.96

µ2 = −0.20 0.98 0.97 0.95

µ3 = 0.75 0.94 0.95 0.97

µ4 = 0.60 0.92 0.94 0.96

ρ = 0.75 0.88 0.94 0.92

τ = 0.20 0.82 0.96 0.94
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estimates for the main effects parameters of the time-varying variables (as well as
the main effects of the subject-specific variables), but retrieved biased intercept and
lagged-relationships. The MICE imputation technique could not picked up the esti-
mates of the main and interaction effects of time-varying variables (specially β1 and
β12), but could recover unbiased lagged relationships (ρ and τ) and parameters of
the time-constant effects.

As observed in Study 1, CC analysis produced the most unstable estimates among
the three methods. Estimates yielded by the BMLM technique and MICE had, over-
all, similar stability for all types of regression coefficients, although the main and in-
teraction effects of time-varying predictors produced by the BMLM model tended to
vary more. The BMLM method yielded confidence intervals that were mostly close
to their nominal level. MICE produced confidence intervals for the time-constant
and lagged effects with coverage rates rather close to their nominal level, but in-
tervals with too low coverage for main and interaction effects of the time-varying
items. The confidence intervals computed after CC analysis were close to their nom-
inal coverage level, excluding the intervals of β0, ρ and τ, which resulted in a too
low coverage.

5.4 Real-data Study

While in the previous section the parameters of the BMLM MI method was evalu-
ated using simulated datasets from constructed populations, in this section we focus
on a real dataset. More specifically, we make use of the associations as present in
a real longitudinal dataset rather than specifying these ourselves, and investigate
whether these associations are retained when introducing missing values (including
missing visits) and imputing these using the BMLM model. For this application we
create the missing values in the dataset ourselves, in such a way to have a bench-
mark (the results obtained with the complete data) for the estimates retrieved by
the missing-data methods.

We used data collected by CentERData through their LISS panel, which consists
of a (representative) sample of Dutch individuals, who participate in monthly Inter-
net surveys. Key topics surveyed once per year include work, education, income,
housing, time use, political views, values, and personality.7 For our experiment,
we selected the first 4 yearly waves (T = 4, from June 2008 until June 2011) of the
Housing questionnaire.

7 More information about the LISS panel can be found at www.lissdata.nl.

www.lissdata.nl
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Table 5.5: Real-data experiment: variables used in the panel regression model (5.10) (top part) and to
generate missingness (bottom part). Type of variables: TV = time-varying; TC = time-constant.
R = respondent.

Variables for the analysis model

Variable ID Description Values (range)

Yt0 (TV) R.’s house satisfaction 1 Very unsatisfied; 4 Very satisfied
Yt1 (TV) R.’s vicinity satisfaction 1 Very unsatisfied; 4 Very satisfied
Yt2 (TV) R.’s opinion about the value of the dwelling 1 Low; 5 High
Yt3 (TV) Type of R.’s dwelling 1 Single family; 7 With shop or workplace
Yt4 (TV) The dwelling has damp walls or floors 0 No; 1 Yes
Yt5 (TV) Number of living-at-home children 0 = 0; 3 ≥ 3
Yt6 (TV) Personal net income 0 No income; 7 ≥ 3000 euros
Yt7 (TV) Paid service costs to associations of owners 1 Yes; 2 No
t (TV) Wave indicator 1 = 1st wave; 4 = 4th wave

Extra variables used to generate missingness

Variable ID Description Values (range)

Z1 (TC) R.’s gender 0 Female; 1 Male

5.4.1 Study set-up

The data and the analysis model. The original datasets consisted of about a hundred
variables (which included survey-specific and background variables) and sample
sizes that varied from wave to wave, ranging from 4411 (Wave 3) to 5018 (Wave 4)
cases. We merged the datasets coming from the four surveys, retained only those
units with complete information for all four waves, and selected only those cases
who were owners of the dwellings where they had residence (this was functional to
the analysis model we decided to estimate). This resulted in a dataset with sample
size of n = 257 (and 1028 rows in total for the four time points).

Next, using this dataset, we estimated a panel regression model with random
intercept and auto-regressive errors for the outcome variable ‘House Satisfaction’8;
this variable is denoted by Yt0 in Table 5.5. Among the remaining variables, we
detected 7 (time-varying) predictors (Yt1, ..., Yt7 in Table 5.5) that were significant at
the 5% level, yielding a total of J = 8 variables in the analysis model. Descriptions
of these variables, including the time indicator t, are given in Table 5.5 (top part).
Some of these were re-coded (transformed from continuous to categorical) and for
others we collapsed some categories (so that their frequencies were not too small).

The panel regression model we estimated was

Yit0 = β0 +
6

∑
j=1

β jYitj + β16Yit1Yit6 + τ1Yi(t−1)1 + τ7Yi(t−1)7 + ui0 + εit (5.10)

8 The name of the variable was cd08a001 in the original dataset.
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where the random effects ui0 were assumed to be normally distributed:

ui0 ∼ N(0, σ2
1 ).

The errors εit were assumed to be the components of a Multivariate Normal, with
auto-regressive (AR(1)) covariance structure:

εi ∼ MVN
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The values of the model parameters β0, ...β6, β16, τ1, τ7, σ2
1 , σ2

2 , ρ estimated on the
complete data are reported in the first columns of Table 5.6 below, along with their
standard errors. All predictor effects were signficant at 5% level as highlighted,
except for Yt6, one of the variables yielding the significant interaction term β16.

Generating missingness. Apart from the variables Yt0, ..., Yt7, we used the time-
constant variable gender denoted with Z1 in Table 5.5, to generate MAR missingness
in the variable Yt1 (Z1 was thus also included in the imputation models as a time-
constant variable). In particular, by denoting the missingness of Yt1 with Rt1, we
created missing values for Yt1 with the logistic model

logit Pr(Rt1 = 1) = −3 + 1.9Z1.

Furthermore, we entered MAR missingness in Yt2 - conditioned on Yt3 - with the
logistic model

logit Pr(Rt2 = 1) = 2.5− 1.6Yt3,

where Rt2 is defined in a way similar to Rt1. The parameters of both logistic models
were chosen in such a way to obtain marginal missingness rates of about 20% for
each of these two variabes.

Furthermore, we generated missing visits in the dataset; thus, for some units, we
removed the observations for all the time-varying variables Yt0, ..., Yt7 with increas-
ing probability at each time point. If RMV(t) is the indicator equal to 1 for those
units with missing visits at time t and equal to 0 otherwise, the mechanism we
used was

logit Pr(RMV(t) = 1) = −4.5 + 0.55t,

which generated missing visits for about 1% of the cases at the first wave, and for
about 9% of the cases at the fourth wave.
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Overall, all the time-varying variables had a marginal (i.e., across all time points)
rate of missingness equal to about 5%, except for Yt1 and Yt2, which had a marginal
rate of missingness roughly equal to 25%.

Missing data methods. As in the studies reported in Section 5.3, we compared the
performance of three missing data methods to retrieve the parameters of model
(5.10): CC analysis, BMLM MI and MICE.

With CC analysis we estimated model (5.10) on the dataset with only complete
observations, i.e., excluding all cases with missing data. This left a dataset with 591

rows, with sample sizes ranging from n = 129 at wave four to n = 171 at wave one.

We decided to run the BMLM model using two settings: the first with only one
subject-level LC, i.e. with L = 1, and the second with L > 1. For both settings
we performed model selection (for the number of LSs K) with Gelman et al. (2013)
’s method reported in Section 5.2.2. In the first scenario, running the preliminary
Gibbs sampler (for 5000 iterations, 2000 of which served as burn-in) with K∗ = 80
led us to select K = 55. For the second scenario, we ran the preliminary Gibbs
sampler with L∗ = 20 and K∗ = 20, and the same number of iterations as the
previous case. This led us to choose L = 18 and K = 9. In what follows, the BMLM
model with L = 1 and K = 55 will be denoted by BMLM(1), and the BMLM model
with L = 18 and K = 9 by BMLM(2). In the subsequent step, M = 50 imputations
were performed during 50000 iterations (plus 10000 iterations for the burn-in) for
both BMLM(1) and BMLM(2).

Lastly, MICE was implemented with its default settings, and its algorithm was
run for 50 iterations for each of the M = 50 produced imputations.

Outcomes. We compared the results provided by each missing data method with
the results observed for the complete-data case. In particular, we focused on the
point estimates of all parameters in model (5.10) as well as the standard errors for
the fixed effects (β0, ..., τ7). We also examined which fixed effect estimates were
significant at a 5% level.

5.4.2 Results

The results are reported in Table 5.6. Both CC analysis and the two versions of
the BMLM imputation model retrieved point estimates of the fixed effects rather
close to those of the complete-data analysis. Exceptions for the CC analysis were
the main effects β1 and β6 and the interaction term β16, which were slightly differ-
ent from the corresponding values obtained with the complete data. Some of the
standard errors yielded by CC analysis were inflated because of the limited sample
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Table 5.6: Real-data experiment: results for the parameters in model (5.10). Est. = point estimate. S.E.
= standard error. 5% significant predictors are denoted with a ‘∗’ next to the point estimates
obtained with each method.

Missing Data Method
Parameter Complete Data CC analysis BMLM(1) BMLM(2) MICE

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
β0 0.86

∗
0.23 1.03

∗
0.30 0.99

∗
0.27 0.99

∗
0.29 1.04

∗
0.27

β1 0.73
∗

0.08 0.67
∗

0.11 0.67
∗

0.10 0.66
∗

0.10 0.65
∗

0.11

β2 0.12
∗

0.02 0.12
∗

0.03 0.08
∗

0.03 0.09
∗

0.03 0.10
∗

0.03

β3 -0.05
∗

0.02 -0.06 0.03 -0.06
∗

0.03 -0.06
∗

0.03 -0.06
∗

0.03

β4 -0.52
∗

0.16 -0.49
∗

0.22 -0.51
∗

0.18 -0.48
∗

0.20 -0.40
∗

0.19

β5 -0.09
∗

0.03 -0.12
∗

0.04 -0.08
∗

0.04 -0.08
∗

0.04 -0.08 0.04

β6 0.07 0.04 0.03 0.06 0.09 0.05 0.11 0.05 0.07 0.05

β16 -0.05
∗

0.02 -0.03 0.02 -0.05
∗

0.02 -0.05
∗

0.02 -0.05
∗

0.02

τ1 0.11
∗

0.02 0.12
∗

0.03 0.12
∗

0.03 0.11
∗

0.03 0.12
∗

0.03

τ7 -0.10
∗

0.03 -0.11
∗

0.05 -0.11
∗

0.04 -0.09
∗

0.04 -0.12
∗

0.04

σ2
1 0.19 - 0.20 - 0.20 - 0.21 - 0.21 -

σ2
2 0.25 - 0.26 - 0.28 - 0.28 - 0.30 -

ρ 0.13 - 0.07 - 0.12 - 0.11 - 0.10 -
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size exploited by this method, which made some parameter estimates no longer
significant at the 5% level (in Table 5.6, some fixed effects are no longer marked
with a ‘*’). Conversely, despite a couple of values being slightly off (the intercept
β0 and the main effect β1), both BMLM(1) and BMLM(2) could exploit the original
sample size, causing the standard errors to be only slightly larger than those of
complete-data analysis (reflecting in this way the imputation step uncertainty). As
a result, all parameters that were significant with the full data were also significant
after imputing the missing values with the BMLM model. The MICE method did
not manage to recover well all parameter estimates; for instance, the intercept β0

and the main effects β1 and β4 were (in a more or less pronounced manner) far
from the estimates of the complete-data condition, while the standard errors ob-
served after imputing the data with MICE were close to the BMLM MI estimates.
Nevertheless, the parameter β5 which was significant with the complete data and
the BMLM imputation method, was no longer significant with the MICE.

Concerning the parameters of the random part of the models, all missing data
techniques could retrieve good estimates for the variances of the random effect σ2

1 ,
as well as the variance for residuals σ2

2 , although the latter was slightly overesti-
mated by all imputation methods. The auto-regressive coefficient ρ, on the other
hand, was well retrieved by all MI techniques, and considerably underestimated by
CC analysis.

5.5 Discussion

We introduced the use of the BMLM model for the MI of missing categorical
longitudinal data. With a limited amount of model specification (only the num-
ber of time-constant clusters L and the number of dynamic states K), the model
is flexible enough to automatically recover complex relationships arising between
time-varying and time-constant variables, as well as lagged relationships and auto-
correlations. Lastly, the model reflects the correct (categorical) scale with which the
variables are measured.

The performance of BMLM-based MI approach was evaluated and compared
with other two missing data methods, CC analysis and MICE, by means of two sim-
ulations studies and a real-data experiment. In the simulation studies, the analysis
model used was a logistic model including an auto-regression term and a crossed-
lagged relationship coefficient (Study 1), as well as main effects of time-constant
predictors (Study 2). Results showed a good (overall) performance of the BMLM
imputation model compared with the competing methods, since it could retrieve
(approximately) unbiased estimates for all types of parameters specified in the sub-
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stantive models, with coverage rates of the confidence intervals that were never too
small compared to their 95% nominal level. The good performance of the BMLM
model in Study 2 showed that the model can also cope with missing visits when
these are present at any time point. Conversely, CC analysis could not recover well
the lagged relationships in terms of both bias and confidence intervals, with cov-
erage rates that were too low for their nominal level, while MICE provided biased
time-varying main and interaction effects, with corresponding confidence intervals
that tended to be too narrow.

In the real-data experiment we estimated a panel regression model using data
from the LISS panel. The model included main and interaction fixed effects, along
with crossed-lagged relationships and random intercept. Furthermore, the distribu-
tion of the residuals was described by a variance and an auto-correlation coefficient.
As done in Study 2, we also included cases with missing visits in the LISS dataset
as a further challenge for the missing data methods. Results demonstrated the
superiority of the BMLM model (run with two different conditions of number of
clusters and states) when compared to competing methods; in particular, the same
conclusions (i.e., the same terms were statistically significant) were drawn for the
complete-data analysis and the BMLM imputation method. This did not happen
with the CC and the MICE techniques, for which some terms were not significant
anymore. In addition, the BMLM method retrieved variance and error components
close to the complete-data analysis.

In the light of the results of the studies carried out in this chapter, we recommend
the applied researcher that needs to deal with missing longitudinal categorical data
to consider the BMLM model as a possible MI tool. However, some issues still need
to be better analyzed in future research. For instance, whereas in this chapter we
aimed to introduce the use of the BMLM model for MI purposes, some more ex-
tensive simulation experiments (in which the model is tested with different sample
size and missingness conditions, such as systematic drop-out) should be performed
in future studies. In addition, while we showed that our model can deal with MAR
missing data, a version of the BMLM model for missing not at random data (MNAR;
i.e., the distribution of the missingness depends on the unobserved data), which are
likely to occur in longitudinal analysis, should be developed in future research.

Furthermore, the proposed imputation model itself can be extended in various
useful ways. Firstly, while we dealt with categorical (both ordinal and nominal)
variables, the BMLM model can be extended to accommodate mixed types of data,
i.e., it can be implemented on datasets containing both categorical and continuous
variables. This can be achieved, for instance, by specifying mixtures of univariate
Normal and Multinomial distributions. Second, although we assumed the BMLM
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model to have a Markov chain of order 1, it is possible to consider lags of higher
orders by conditioning the distribution of the dynamic LSs at time t on the configu-
ration of the states at earlier time points, e.g. t− 2, t− 3, etc., if these kinds of lags
are needed in the substantive analysis. Third, when the measurement may occur at
different continuous time points rather than at fixed discrete occasions, imputations
of the missing data can be provided by assuming a continuous-time latent Markov
chain for the distribution of the LSs. Last, for applications in which the subjects
observed across time are coming from different groups (e.g., patients coming from
different hospitals), the model can be moved towards a multilevel framework, for
instance, by adding a further LC variable at the group-level.



A P P E N D I X

a Setting the prior distribution

As outlined in Section 5.2.1, independent Dirichlet distributions can be specified
for each Multinomial in model (5.1)-(5.2). In a MI context, in which the imputation
model does not necessarily match the analysis model, it is common to have no previ-
ous knowledge about the imputation model parameters. In such a case, symmetric
Dirichlet priors can be chosen: Dirichlet(c1, c2, ..., cD) where c1 = c2 = ... = cD. This
is the approach we used in all the experiments of the chapter, and implied in the
remaining of the current section.

Rousseau and Mergensen (2011) found out that when a Bayesian mixture model is
overfitting the data (as our model selection approach of Section 5.2.2 implies), units
are allocated by the Gibbs sampler to some of the extra LCs if each component of
the latent probabilities hyperparameter is at least as large as half times the number
of free parameters within each components. For the BMLM model, this means that
each pseudo-count of the LSs αk ∀ k should be set at least equal to ∑j(Rj − 1)/2.
Following the guidelines of Chapter 3, who examined the behavior of the prior
distribution for standard Bayesian LC models (for the MI of cross-sectional missing
data), we suggest increasing αk and γk ∀ k in such a way that as many states s1, ..., sT

as possible are occupied during the imputation stage, which can be assessed with
the MCMC output. By manipulating with trial-and-error (before the imputation
step) the hyperparameters in the priors of the latent states probabilities, we decided
to set αk = γk = 5 in Study 1 and 2 of Section 5.3, while in the real-data experiment
of Section 5.4 - in which the number of within-state free parameters was equal to
27 - we arbitrarily set αk = γk = 100 (for both the BMLM(1) and the BMLM(2)). As
reported in Chapter 3, full allocation of the latent classes/states helps to capture all
relevant associations in the data, preventing the sampler from becoming unstable;
in fact, in this way the states are identified by the data, rather than by the prior
distribution of the emission probabilities.

In Study 1 and in the empirical study we found out by means of pre-imputation
inspections that reinforcing the prior persistence probabilities caused the Gibbs sam-
pler to produce higher likelihood values (on average) during its iterations. In turn,
this could help the BMLM model to better recover the lagged relationships specified
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for that study. Persistence probabilities are represented by the diagonal elements of
the matrix Xl . These probabilities can be reinforced by manipulating the hyperpa-
rameter vector of the q-th row ofXl , by setting it equal to γ = (γ1, ..., γ∗q , ..., γK) with
γ∗q > γk ∀ k 6= q. In Study 1 we achieved this by setting γ∗q > ∑k 6=q γk, with γk = 5
and γ∗q = Kγk = 5K, while in the empirical study this was done with γk = 100 and
γ∗q = Kγk = 100K (in this study, K was equal to 55 for the BMLM(1) and to 9 for the
BMLM(2)). Reinforcing the persistence probabilities in Study 2 was not necessary,
since increasing this did not entail any increase in the (averaged) likelihood values
produced during the Gibbs sampler iterations.

Concerning the hyperparameters for the weights of the time-constant LCs, we
decided to perform the imputations of Study 2 in Section 5.3 and the real-data
experiment in Section 5.4 (for the BMLM(2) model) by setting ηl equal to the number
of free parameters within each time-constant component, i.e., we set ηl = {(K −
1)(K + 1) + K(∑j Rj − 1) + ∑p Up − 1} ∀ l.

Lastly, for the time-constant conditional and the time-varying emission proba-
bilities we follow the guidelines of Chapter 3 and set ζupl = δrjkl = 0.01 or 0.05
∀ u, p, r, j, k, l (final results are usually similar for these two values). This setting
helps to make the prior pseudo-counts of the parameters ruling the conditional
distribution of the observed data less influential in the imputation step.

b BMLM model estimation

In this section, the Gibbs sampler for the BMLM model estimation is described.
It is assumed that L, K, and the model hyperparameters have been established
already according to the guidelines of Section 5.2.2 and Appendix A. Furthermore,
also the total number of Gibbs sampler iterations B should be chosen. I of these
B iterations will be used as burn-in (such that model estimation is performed on
the last B− I iterations). I should be large enough to make the sampler attain the
equilibrium distribution of the model parameter, which can be assessed by typical
MCMC output inspection, e.g., by considering the traceplot of the log-likelihood
functions generated at each iterations (as suggested in Chapter 3). Additionally, θ(0)

is initialized by sampling all model parameters from uniform Dirichlet distributions,
in such a way to increase the likelihood of initializing the sampler in the interior of
the parameter space, speeding up convergence.

Algorithm 5.1 reports the steps for the Gibbs sampler. In order to sample the
states of the Markov chain for each subject, multi-move sampling is used. The steps
necessary to perform multi-move sampling are shown in Algorithm 5.2. Multi-
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move sampling, in turn, requires the calculation of the filtered state probabilities
Pr(st = k|θ, w = l, yit), the computation of which is described in Algorithm 5.3.

b.1 The Gibbs sampler

Algorithm 5.1
For b=1,...,B:

1. for i = 1, ..., n sample a LS w(b) from a Multinomial distribution with
probabilities

Pr(w(b) = l|θ(b−1), zi, yi) =
ω
(b−1)
l Λ(b−1)

ul π
(b−1)
r∗ l

∑c ω
(b−1)
c Λ(b−1)

uc π
(b−1)
r∗c

for each l = 1, ..., L, and where πr∗ l = Pr(yi = r∗|w = l)(b−1) (equation
5.2);

2. for each i = 1, ..., n and for all time points t = 1, ..., T, conditioned on the
LC w(b), sample a LS st from

Pr(s(b)t |θ
(b−1), w(b) = l, yit).

This can be achieved with multi-move sampling (see Algorithm 5.2 be-
low);

3. for l = 1, ..., L, update the mixture weights ω with
ω(b)|w(b) = l,η ∼

Dirichlet

(
η1 +

n

∑
i=1
Ii(w(b) = 1), ..., ηL +

n

∑
i=1
Ii(w(b) = L)

)

where Ii(w(b) = l) = 1 if for unit i w(b) = l and 0 otherwise;

4. for l = 1, ..., L, p = 1, ..., P update the conditional probabilities
λ
(b)
pl |w

(b) = l, zobs, ζpl ∼

Dirichlet

(
ζ1pl + ∑

i:w(b)=l

I(zip = 1), ..., ζUp pl + ∑
i:w(b)=l

I(zip = Up)

)

where I(zip = u) = 1 if zip = u and zip ∈ zobs and 0 otherwise;
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5. for l = 1, ..., L compute π
(b)
r∗ l conditioned on w(b) = l after updating the

parameter values of each within-class LM model:

• for t = 1, update the initial state probabilities

ν(b)|s(b)1 , w(b) = l,α ∼

Dirichlet
(

α1 + ∑i:w(b)=l Ii1(s
(b)
1 = 1), ..., αK + ∑i:w(b)=l Ii1(s

(b)
1 = K, w(b) = l)

)
where Iit(s

(b)
t = k) = 1 if for unit i s(b)t = k and 0 otherwise;

• for q = 1, ..., K and ∀ t ≥ 2 update the transition probabilities

ξ
(b)
q |s

(b)
t−1, s(b)t , w(b) = l,γ ∼

Dirichlet
(

γ1 + ∑i,t:w(b)=l,s(b)t−1=q
Iit(s

(b)
t = 1), ..., γK + ∑i,t:w(b)=l,s(b)t−1=q

Iit(s
(b)
t = K)

)
;

• for k = 1, ..., K, j = 1, ..., J and ∀ t update the conditional response
probabilities

φ
(b)
jk |s

(b)
t , w(b) = l, yobs, δjk ∼

Dirichlet

(
δ1jk + ∑i,t:w(b)=l,s(b)t =k

I(yitj = 1), ..., δRj jk + ∑i,t:w(b)=l,s(b)t =k
I(yitj = Rj)

)

where I(yitj = r) = 1 if yitj = r and yitj ∈ yobs and 0 otherwise.

b.2 Multi-move sampling

Algorithm 5.2:

1. For i=1,...,n calculate and store the filtered state probabilities
Pr(s(b)t |θ(b−1), w(b) = l, yit) for t = 1, ..., T (see Algorithm 5.3);

2. for i = 1, ..., n sample s(b)T from Pr(s(b)T |θ(b−1), w(b) = l, yiT);
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3. for t = T − 1, ..., 1 and i = 1, ..., n, given the known state s(b)t+1 = k sample

s(b)t from

Pr(s(b)t = q|s(b)t+1 = k,θ(b−1), w(b) = l, yit) =

ξ
(b−1)
q,kl Pr(s(b)t = q|θ(b−1), w(b) = l, yit)

∑q ξ
(b−1)
q,kl Pr(s(b)t = q|θ(b−1), w(b) = l, yit)

.

b.3 Filtered State Probabilities

Algorithm 5.3:

1. At t=1, for i = 1, ..., n, κ = 1, ..., K compute

Pr(s(b)1 = κ|θ(b−1), w(b) = l, yi1 = r) =
ν
(b−1)
κl Φ∗(b−1)

rκl

∑c ν
(b−1)
cl Φ∗(b−1)

rcl

.

Since we are estimating the model only on yobs, we define Φ∗(b−1)
rkl =

∏j φ
∗(b−1)
rjkl where

φ
∗(b−1)
rjkl =

 φ
(b−1)
rjkl if yitj = r and yitj ∈ yobs

1 otherwise

∀ t, i, j, r.

2. for t = 2, ..., T:

• for i = 1, ..., n, k = 1, ..., K compute
Pr(s(b)t = k|θ(b−1), yi(t−1)) = ∑q ξ

(b−1)
q,kl Pr(s(b)t−1 = q|θ(b−1), w(b) = l, yi(t−1));

• for i = 1, ..., n, k = 1, ..., K compute the filtered state probabilities through
Pr(s(b)t = k|θ(b−1), w(b) = l, yit = rt) =

Φ∗(b−1)
rkl Pr(s(b)t = k|θ(b−1), w(b) = l, yi(t−1))

Pr(yit = rt|θ, w(b) = l, yi(t−1))
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where
Pr(yit = rt|θ(b−1), w(b) = l, yi(t−1)) =

∑
c

Φ∗(b−1)
rcl Pr(s(b)t = c|θ(b−1), w(b) = l, yi(t−1)).



6
D I S C U S S I O N

This dissertation proposed and investigated the use of Bayesian mixture models
for the multiple imputation (MI) of categorical data for different study designs.
Chapters 2 and 3 dealt with MI of cross-sectional categorical data. Chapter 2 gave
an overview of different (frequentist and Bayesian) latent class (LC) imputation
models present in the literature, and highlighted pros and cons of each method. In
Chapter 3 a closer investigation of Bayesian LC analysis for MI was presented, and
the effect of different prior distributions on the substantive inferences was shown
by means of a simulation study. Chapter 4 was about MI of multilevel categorical
data, and for this purpose a Bayesian multilevel LC (BMLC) model was proposed.
A simulation study and a real-data study showed the good performance of the
model at retrieving correct inferences for the substantive analysis model considered
(random intercept and random slope logistic regression models). Last, Chapter
5 dealt with the imputation of longitudinal data, proposing the use of Bayesian
mixture latent Markov (BMLM) models for this task. The good performance of the
BMLM model as an imputation model was established by means of two simulation
studies and a real-data application. Overall, it has been shown that mixture models
represent a flexible imputation method, which can capture complex relationships
in the data with a very simple model specification. Furthermore, the imputation
models are tailored for the sampling design used at the data collection stage, an
aspect that allows them to capture all the demanded variability to perform the
imputations.

Despite the promising results observed for the Bayesian LC imputation models,
not all issues related to their use have been addressed in this dissertation. A first
problem, common to all the models presented in this thesis, is related to model selec-
tion. As constantly remarked in the thesis, when dealing with mixture imputation
models the main concern is about data underfitting, rather than overfitting. This
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means that capturing features that are specific for the sample is of little concern
here, since these also include the relevant associations present at the population
level. On the other hand, ignoring relevant associations of the population leads to
biased post-imputation inferences. We decided, as a strategy, to select the number
of classes by exploiting a characteristic of the Gibbs sampler when used in combi-
nation with mixture models. That is, by manipulating the prior distribution of the
latent class weights it is possible to determine beforehand whether units should be
allocated to all the LCs, or only to those classes that are non-redundant. Our pro-
posed method was used for model selection by Gelman et al. (2013) in a substantive
analysis framework, and it consists of running a preliminary Gibbs sampler in or-
der to assess how many classes are filled by units during model estimation, with a
prior distribution that encourages the emptying of extra components. This proce-
dure leads to a posterior distribution of the number of classes given the data, and
the approach suggested in this dissertation is to pick the maximum of such distri-
bution and perform the imputations with this number of classes. Despite of the fact
that the method was shown to work rather well in the simulation studies and real-
data applications carried out and reported in the dissertation, we did not investigate
the performance of our imputation models with different choices for the number
of classes. For instance, selecting the posterior mode - rather than the posterior
maximum - would theoretically lead to faster computations and to larger stability
of the post-imputation parameter estimates, but possibly also to an increase in the
bias of such estimates. On the other hand, increasing the value of the posterior
maximum (by some arbitrary constant) would produce most likely a decrease in
bias, but not without a loss in stability and slower computations at the imputation
stage. Therefore, the choice of the number of classes should depend on the main fo-
cus of the analysis (bias/stability) and should be inspected in more detail in future
research. For the BMLM model of Chapter 5, an alternative option for the choice of
the number of latent states could be represented by their maximum posterior mode
observed across all time points, which should also be tested in future research.

A problem related to the Bayesian specification of the model is the choice of
the prior distribution. The approach used in the thesis was to use independent
(symmetrical) Dirichlet distributions for each set of multinomial probabilities in-
volved in the imputation models. As a general approach, we recommend using
hyperparameters for the mixture(s) weights that prevent the occurrence of empty
components during the imputations, and very small pseudo-counts for the proba-
bilities of the variables conditioned on the LCs. In this way, the Gibbs sampler can
perform model estimation without sampling from the prior distribution of empty
clusters, and the distribution of the observed variables conditioned on the LCs is
determined by the data. With such a configuration, the resulting imputations are
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more accurate than the imputations performed with other types of prior distribu-
tions (e.g., with uniform priors for both the mixture weights and the conditional
response probabilities). However, while in Chapter 3 (for standard LC models) and
4 (for multilevel LC models) a number of possible prior conditions was compared
to assess their effect on the final imputations, we did not provide a full overview of
all possible prior specifications. For instance, we did not consider the effect of Jef-
frey’s priors for the conditional response probabilities, nor we considered possible
data-driven priors (i.e., priors that can be derived from some characteristic of the
observed data, such as their empirical distribution). Furthermore, it is possible that
the data analyst and/or the data imputer is in possession of some prior informa-
tion concerning the imputation model parameters, or data relationships. In these
cases, informative (non-symmetrical) Dirichlet priors can be specified for the model,
and they should make the imputations more precise. Therefore, a more complete
overview on the specification of the hyperparameters of the model is needed in the
literature. Morevoer, the BMLM model of Chapter 5 was not tested with all possi-
ble combinations of prior specifications, and it is possible that better settings can be
found for such model, also with symmetric priors.

The imputation models described in this dissertation can be extended in a num-
ber of ways. An issue not covered is the scale type of the variables in the dataset.
While survey data are mostly observed on a categorical (nominal/ordinal) scale, it
is common to have to deal with datasets that contain both continuous and categori-
cal variables. The LC models proposed in this thesis are designed only to describe
associations under the first scenario, but they can easily be extended to accommo-
date for both types of scales. A possible solution can be given by using mixtures
of independent univariate Multinomial (for the categorical variables in the dataset)
and Normal (for the continuous part of the dataset) distributions. Similar to the
Bayesian LC models encountered in this dissertation, model selection can still be
performed with Gelman et al. (2013)’s method. However, LC imputation models
with such mixed data type configuration have not been tested yet in the literature.
Therefore, their functioning in this context must be properly assessed.

In this project, we did not deal with impossible score combinations in the data
(also known as structural zeroes), which means that the ‘unconstrained’ imputa-
tion models proposed in the dissertation can produce with nonzero probability
imputations with -for example- pregnant fathers, or married kids. These issues can
be overcome by accounting for structural zeroes within the imputation model, as
proposed for instance by Manrique-Vallier and Reiter (2014) and Hu, Reiter and
Wang (2017) for the estimation of Dirichlet processes in cross-sectional and multi-
level contexts, correspondingly. In particular, they assumed that the observed data
are sampled from a restricted set in which structural zeroes are impossible. This
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restricted set is in turn a subset of a larger, augmented space, in which also the
impossible combinations can occur. With appropriate modifications of the Gibbs
sampler, Manrique-Vallier and Reiter (2014) showed how this technique allows to
sample from the correct distribution of the parameter space accounting for impossi-
ble combinations (by integrating over the structural zeroes in the augmented space),
while Hu et al. (2017) exploited this method to generate multilevel synthetic data.
In a similar fashion, this approach can be used to perform the imputations with
the LC models of this thesis, and its effectiveness should be explored in the future.
Another approach could be given by collapsing the variables with structural ze-
roes and eliminate those categories corresponding to the impossible combinations.
Another method to deal with this issue might be to allow for local dependencies
between variables that comprise structural zeroes, and restraining their parameter
space with the prior distribution. These alternative approaches should also be in-
vestigated in future studies.

The BMLC imputation model of Chapter 4 was developed for two-level hierar-
chies (e.g., students within schools). Nevertheless, more complex sampling designs
can occur in scientific research: for instance, when students within different schools
are observed from multiple regions in a country, or even from multiple countries.
In the former case, the hierarchy is composed of three levels (students, schools,
regions) while in the latter case a fourth level (countries) is needed to explain all
the necessary variability in the data. Fortunately, it is possible to generalize the
BMLC model of Chapter 4 to a larger number of hierarchical levels, which involves
having LCs at each of the levels and conditioning lower-level model probabilities
on higher-level class memberships. The Gibbs sampler can easily be modified to
account for such more complex structures. The adequacy of the BMLC model for
contexts with larger number of levels in the hierarchy should therefore be consid-
ered and inspected in the future. Furthermore, using the parametric version of the
BMLC model (as presented by Vermunt (2003)) for MI could lead to retrieve better
estimates for the (continuous) random effects of the analysis model. This is because
the parametric BMLC model uses continuous -rather than discrete- random effects
at the group-level. Thus, its implementation in MI could be of interest for future
research.

The BMLM model of Chapter 5 assumes a first-order Markov chain for the dis-
tribution of the latent states to capture lagged relationships in the time-varying
variables. While it makes sense to assume that adjacent time points carry over de-
pendencies among each other, it is possible for some applications that relationships
at higher lags occur in the data, and that these are needed in the analysis model. In
this case, the BMLM model should take into account relationships between more
distant time points. The BMLM model can be extended to accommodate for such
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relationships. In order to achieve this, a second- (or higher-) order Markov chain
must be assumed for the latent states, the distribution of which must then be condi-
tioned not only on the previous time point, but also to earlier points in time. As a
proposal for future research, it would be interesting to compare the performance of
the first-order mixture latent Markov model proposed in this thesis with a higher-
order mixture latent Markov model when in the analysis model dependencies with
higher-order lags are needed.

Lastly, the BMLM model proposed in this dissertation deals with individuals
(subjects) observed over time. However, these individuals in turn may come from
multiple groups (higher-level units such as schools, hospitals, and so on) and also
variables for the higher-level units may be observed over time. In these cases, the
BMLM model must be framed into a multilevel setting in order to take into account
the new form of dependencies present in the data. This can be done, for instance,
by adding a level of hierarchy to the simple BMLM model and introducing a LC
variable at this level (similar to the BMLC models with new higher-levels of hier-
archy) which picks up possible heterogeneity between the clusters from which the
lower-level subjects are observed.



B I B L I O G R A P H Y

Akande, O., Li, F. & Reiter, J. (2017). An empirical comparison of multiple imputa-
tion methods for categorical data. The American Statistician, 71(2), 162-170.

Allison, P. D. (2009). Missing data. The SAGE Handbook of Quantitative Methods in
Psychology (4), 72-89.

Andridge, R. (2011). Quantifying the impact of fixed effects modeling of clusters
in multiple imputation for cluster randomized trials. Biometrical Journal, 53(1),
57-74.

Audigier, V., White, I. R., Jolani, S., Debray, T., Quartagno, M., Carpenter, J., . . .
Resche-Rigon, M. (2017). Multiple imputation for multilevel data with continuous
and binary variables. Retrieved from https://arxiv.org/abs/1702.00971

Baraldi, A. N. & Enders, C. K. (2010). An introduction to modern missing data
analyses. Journal of School Psychology, 48(1), 5-37.

Baum, L. E., Petrie, T., Soules, G. & Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains.
Annals of Mathematical Statistics, 41(1), 164-171.

Brand, J. P. L. (1999). Development, implementation and evaluation of multiple imputation
strategies for the statistical analysis of incomplete data sets (Chapter 5). Dissertation.
Erasmus University Rotterdam, The Netherlands.

Carpenter, R. & Kenward, M. (2013). Multiple imputation and its application. New
York: John Wiley & Sons.: Wiley.

Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov
mixture models. Journal of Econometrics, 75(1), 79-97.

Congdon, P. (2006). Bayesian statistical modelling (Second ed.). Chichester: Wiley.
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society
Series B (Methodological), 39(1), 1-38.

Diebolt, J. & Robert, C. (1994). Estimation of finite mixture distributions through
Bayesian sampling. Journal of the Royal Statistical Society Series B (Methodologi-
cal), 56(2), 363-375.

Drechsler, J. (2015). Multiple imputation of multilevel missing data - Rigor versus
simplicity. Journal of Educational and Behavioral Statistics, 40(1), 69-95.

Dunson, D. B. & Xing, C. (2009). Nonparametric Bayes modeling of multivariate
categorical data. Journal of the American Statistical Association, 104(487), 1042-

https://arxiv.org/abs/1702.00971


Bibliography 131

1051.
Efron, B. (1979). Bootstrap methods: another look at the Jakknife. The Annals of

Statistics, 7(1), 1-26.
Escobar, M. D. & West, M. (1995). Bayesian density estimation and inference using

mixtures. Journal of the American Statistical Association, 90(430), 577-588.
Fruhwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models (First

ed.). New York: Springer-Verlag.
Gebegziabher, M. & DeSantis, S. (2010). Latent class based multiple imputation ap-

proach for missing categorical data. Journal of Statistical Planning and Inference,
140(11), 3252-3262.

Gelfand, A. E. & Smith, A. F. M. (1990). Sampling based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410), 398-
409.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2013). Bayesian Data Analysis
(Third ed.). London: Chapman and Hall.

Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transacations on Pattern Analysis and
Machine Intelligence, 6(6), 721-741.

Goldstein, H., Carpenter, J. R., Kenward, M. & Levin, K. (2009). Multilevel models
with multivariate mixed response types. Statistical modelling, 9(3), 173-197.

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable
and unidentifiable models. Biometrika, 61(2), 215-231.

Graham, J. W., Olchowski, A. E. & Gilreath, T. D. (2007). How many imputations
are really needed? Some practical clarifications of multiple imputation theory.
Prevention Science, 8(3), 206-213.

Graham, J. W. & Schafer, J. L. (1999). On the performance of multiple imputation for
multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies
for small sample research, pp. 1-29. Thousand Oaks, CA: Sage.

Hoijtink, H. & Notenboom, A. (2004). Model based clustering of large data sets:
tracing the development of spelling ability. Psychometricka, 69(3), 481-498.

Horton, N. J., Lipsitz, S. & Parzen, M. (2003). A potential for bias when rounding
in Multiple Imputation. The American Statistician, 57(4), 229-232.

Hu, J., Reiter, J. P. & Wang, Q. (2017). Dirichlet process mixture models for modeling
and generating synthetic versions of nested categorical data. Bayesian Analysis.
doi: 10.1214/16-BA1047.. Retrieved from http://projecteuclid.org/euclid

.ba/1485227030

Huisman, M. (1999). Item nonresponses: Occurrence, causes, and imputation of missing
answers to test items. Leiden, The Netherlands: DSWO Press.

Ishwaran, H. & James, L. F. (2001). Gibbs sampling for stick-breaking priors. Journal

http://projecteuclid.org/euclid.ba/1485227030
http://projecteuclid.org/euclid.ba/1485227030


132 Bibliography

of the American Statistical Association, 96(453), 161-173.
Jolani, S., Debray, T., Koffijberg, H., Van Buuren, S. & Moons, K. (2015). Imputation

of systematically missing predictors in an individual participant data meta-
analysis: a generalized approach using MICE. Statistics in Medicine, 34(11),
1841-1863.

Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure
analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A.
Star & J.A. Clausen (Eds.), Measurement and prediction, pp. 361-412. Princeton:
Princeton University Press.

Linzer, D. & Lewis, J. (2014). poLCA: Polytomous variable Latent Class Analysis
[Computer software manual]. Retrieved from http://cran.r-project.org/

web/packages/poLCA/index.html (R package version 1.4.1.)
Little, R. J. A. & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.).

New York: Wiley.
Liu, J. S. (1994). The collapsed Gibbs sampler in Bayesian computation with applica-

tion to a gene-regulation problem. Journal of the American Statistical Association,
89(427), 958-966.

Maas, C. & Hox, J. (2005). Sufficient sample sizes for multilevel modeling. Method-
ology: European journal of Research methods for the Behavioral and Social sciences,
1(3), 86-92.

Manrique-Vallier, D. & Reiter, J. P. (2014). Bayesian estimation of discrete multivari-
ate latent structure models with strutural zeros. Journal of Computational and
Graphical Statistics, 23(4), 1061-1079.

McLachlan, G. J. & Peel, D. (2000). Finite mixture models. New York: Wiley.
National Opinion Research Center. (1972). General Social Survey. GSS (1972-2014)

Release 4. Cross-sectional wave 2014. Retrieved from http://www3.norc.org/

GSS+Website/Download/SPSS+Format/. University of Chicago.
NSD: Norwegian Centre for Research Data. (2012). ESS Round 6: European Social Sur-

vey Round 6 Data. Data file edition 2.2. Norway: Data Archive and distributor
of ESS data for ESS ERIC.

Paccagnella, O. (2011). Sample size and accuracy of estimates in multilevel models.
Methodology 7(3), 111-120.

Quartagno, M. & Carpenter, J. (2016). jomo: A package for multilevel joint modelling
multiple imputation [Computer software manual]. Retrieved from https://

CRAN.R-project.org/package=jomo

Reiter, P., Raghunathan, T. E. & Kinney, S. (2006). The importance of modeling
the survey design in multiple imputation for missing data. Survey Methodol-
ogy,32(3), 143-149.

Resche-Rigon, M. & White, I. (2016). Multiple imputation by chained equations for

http://cran.r-project.org/web/packages/poLCA/index.html
http://cran.r-project.org/web/packages/poLCA/index.html
http://www3.norc.org/GSS+Website/Download/SPSS+Format/
http://www3.norc.org/GSS+Website/Download/SPSS+Format/
https://CRAN.R-project.org/package=jomo
https://CRAN.R-project.org/package=jomo


Bibliography 133

systematically and sporadically missing multilevel data. Statistical Methods in
Medical Research, 1-16. doi: https://doi.org/10.1177/0962280216666564

Romaniuk, H., Patton, G. & Carling, J. (2014). Multiple Imputation in a Longitudinal
Cohort Study: A Case Study of Sensitivity to Imputation Methods. Am Journal
of Epidemiology, 180(9), 920-932.

Roth, P. L. (1994). Missing data: A conceptual review for applied psychologysts.
Personnel Psychology, 47(3), 537-560.

Rousseau, J. & Mergensen, K. (2011). Asymptotic behaviour of the posterior distri-
bution in overfitted mixture models. Journal of the Royal Statistical Society Series
B (Statistical Metodology), 73(5), 689-710.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman &

Hall.
Schafer, J. L. & Graham, J. W. (2002). Missing data: Our view of the state of the art.

Psychological methods, 7(2), 147-177.
Schafer, J. L. & Yucel, R. M. (2002). Computational strategies for multivariate linear

mixed-effects models with missing values. Journal of computational and graphical
statistics, 11(2), 437-457.

Schlomer, G. L., Bauman, S. & Card, N. (2010). Best Practices for Missing Data
Management in Counseling Psychology. Journal of Counseling Psychology, 57(1),
1-10.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica,
4(2), 639-650.

Si, Y. (2012). Nonparametric Bayesian methods for Multiple Imputation of large scale
incomplete categirical data in panel studies. Ph.D. Thesis. Duke University, USA.

Si, Y. & Reiter, J. P. (2013). Nonparametric Bayesian Multiple Imputation for In-
complete Categorical Variables in Large-Scale Assessment Surveys. Journal of
Educational and Behavioral Statistics, 38(5), 499-521.

Tanner, A. M. & Wong, W. H. (1987). The calculation of posterior distributions
by Data Augmentation. Journal of the American Statistical Association, 82(398),
528-540.

Van Buuren, S. (2011). Multiple imputation of multilevel data. In Eds, Hox J, J.
& Roberts J, K. (eds.), The Handbook of Advanced Multilevel Analysis(10), pp.
173-196. Routledge, Milton Park, UK.

Van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL.: Chapman
& Hall/CRC.

Van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M. & Rubin, D. B. (2006).
Fully conditional specification in multivariate imputation. Journal of Statistical



134 Bibliography

Computation and Simulation, 76(12), 1049-1064.
Van Buuren, S. & Groothuis-Oudshoorn, K. (2000). Multivariate impu-

tation by Chained equations: MICE V.1.0 User’s manual. Leiden, The
Netherlands: Toegepast Natuurwetenschappelijk Onderzoek (TNO) Report
PG/VGZ/00.038.

Van Buuren, S., Groothuis-Oudshoorn, K., Robitzsch, A., Vink, G., Doove, L. &
Jolani, S. (2014). mice: Multivariate Imputation by Chained Equations [Com-
puter software manual]. Retrieved from http://cran.r-project.org/web/

packages/mice/index.html (R package version 2.22)
Van Buuren, S. & Oudshoorn, C. (1999). Flexible multivariate imputation by MICE

(Tech. rep. TNO/VGZ/PG 99.054). Leiden: TNO Preventie en Gezondheid.
Van den Broek, K., Nyklicek, I., Van der Voort, P., Alings, M. & Denollet, J. (2008).

Shocks, personality, and anxiety in patients with an implantable defibrillator.
Pacing and Clinical Electrophysiology, 31, 850-857.

Van der Palm, D. W., Van der Ark, L. A. & Vermunt, J. K. (2014). Divisive latent
class modeling as an incomplete-data method for categorical data. Manuscript
submitted for publication.

Van der Palm, D. W., Van der Ark, L. A. & Vermunt, J. K. (2016a). A comparison
of incomplete-data methods for categorical data. Statistical Methods in Medical
Research, 25(2), 754-774.

Van der Palm, D. W., Van der Ark, L. A. & Vermunt, J. K. (2016b). Divisive latent
class modeling as a density estimation method for categorical data. Journal of
Classification, 33(1), 52-72.

Van Ginkel, J. R. (2007). Multiple imputation for incomplete test, questionnaire and
survey data. Ph.D. Thesis. Tilburg University, The Netherlands.

Vermunt, J. K. (2003). Multilevel latent class models. Social methodology, 33(1),
213-239.

Vermunt, J. K. (2008). Latent class and finite mixture models for multilevel datasets.
Statistical Methods in Medical Research, 17(1), 33-51.

Vermunt, J. K. (2010). Longitudinal research using mixture models. In Longitudi-
nal research with latent variables, Montfort, V.K., Oud, J. and Satorra, A., Eds.,
Springer, Verlag, Berlin and Heidelberg, 2010, pp. 119-152.

Vermunt, J. K. & Magidson, J. (2013). LatentGOLD 5.0 Upgrage manual. Belmont,
MA: Statistical Innovations Inc.

Vermunt, J. K., Van Ginkel, J. R., Van der Ark, L. A. & Sijtsma, K. (2008). Multiple
imputation of incomplete categorical data using latent class analysis. Sociolog-
ical Methodology, 38(1), 369-397.

White, A. & Murphy, B. (2014). BayesLCA: Bayesian Latent Class Analysis [Com-
puter software manual]. Retrieved from http://cran.r-project.org/web/

http://cran.r-project.org/web/packages/mice/index.html
http://cran.r-project.org/web/packages/mice/index.html
http://cran.r-project.org/web/packages/BayesLCA/index.html
http://cran.r-project.org/web/packages/BayesLCA/index.html


Bibliography 135

packages/BayesLCA/index.html (R package version 1.5)
White, I. R., Royston, P. & Wood, A. M. (2011). Multiple imputation using chained

equations: issues and guidance for practice. Statistics in Medicine, 30(4), 377-
399.

Wilkinson, L. & Task Force on Statistical Inference. (1999). Statistical methods
in psychology journals: Guidelines and explanations. American Psychologist,
54(8), 594-604.

Yucel, R. (2008). Multiple imputation inference for multivariate multilevel contin-
uous data with ignorable non-response. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 366(1874), 2389-2403.

Zhao, J. H. & Schafer, J. L. (2016). pan: Multiple imputation for multivariate panel
or clustered data [Computer software manual]. (R package version 1.4)

http://cran.r-project.org/web/packages/BayesLCA/index.html
http://cran.r-project.org/web/packages/BayesLCA/index.html


S U M M A RY

This dissertation investigates the use of latent class (or mixture) models for Multiple
Imputation (MI). MI is a technique that enables the retrieval of parameter estimates
and the performance of statistical inference in the presence of missing data in a
dataset. While missing data may represent an issue for standard statistical analysis
(e.g., they can introduce bias and loss of power in the final or substantive analysis),
MI seeks to fix the problem by replacing the missing data with plausible imputed
data, predicted by means of an imputation model. Repeating the replacements (or
imputations) several times allows the uncertainty of the imputed values to be taken
into account, and leads to valid inferences.

In this context, the choice of the imputation model is crucial: it should not only
preserve all the relevant relationships needed for a specific analysis of interest (e.g.,
the main effects of a regression reflect the relationships between the outcome and
the predictors), but it should be able also to reflect overall relationships present in
the data, in such a way to allow to carry out further analyses with other (more
complex) kinds of associations (e.g., interaction terms represent the simultaneous
relationship between two predictors and the outcome). Thus, in MI we are inter-
ested in the predictions produced by the imputation model - and how they reflect
relationships among variables - rather than in interpreting its parameter values. The
broader the imputation model, the better it can capture important relationships in
the data. As a consequence, overfitting the data with the imputation model is of
smaller concern than underfitting: while an underfitting model might ignore im-
portant relationships of the data, an overfitting one takes into account all relevant
relationships, as well as sample-specific fluctuations. As a result, in the former case
the model could produce too poor imputations, while in the latter case the relevant
relationships are preserved by the model.

The thesis deals in particular with the MI of missing categorical data; while meth-
ods for continuous data have been extensively explored, in the literature there is
a lack of MI models for categorical data. With categorical data, the focus is on re-
trieving relevant associations in the joint distribution of the categorical variables of
a dataset. The saturated log-linear model, which takes into account all theoretically
possible associations of the data, is a typical choice in this context. However, sat-
urated log-linear models are computationally appealing only with a small number
of items. As a solution, recent proposals for the MI of categorical data include the
use of either latent class analysis (frequentist framework) or the Dirichlet Process
Mixture of Multinomial Distributions (Bayesian framework) as imputation models,
which both belong to the family of mixture models. Unlike MI via saturated log-
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linear models, MI through latent class models can be performed on datasets con-
taining a large number of variables by means of the local independence assumption,
which assumes independence between variables once their distribution is condi-
tioned on the latent classes.

In order to reflect all the necessary variability for the imputations, the imputa-
tion model should be tailored for the design used to collect and analyze the data.
For instance, cross-sectional data need a model that takes all relevant associations
among items into account; with multilevel data, in which several lower-level units
are nested within higher-level units (such as students nested within schools), cor-
relations and dependencies arising from units of the same group must be also ac-
counted for; with longitudinal data, variables are observed over time for the same
units, and auto-correlations and lagged relationships are likely to arise. Ignoring
these aspects of the data may lead to underfitting and, as a consequence, to biased
(and/or too stable) post-imputation inferences. The purpose of this thesis is to pro-
pose and investigate different types of latent class models for the MI of categorical
data; each of these types of models are tailored for the design chosen for the data
collection and analysis. Thus, Chapter 2 of the thesis offered a review of the la-
tent class models present in the literature for the MI of cross-sectional categorical
data. Chapter 3 investigated in detail the behavior of Bayesian latent class models
for the MI of cross-sectional data. Chapter 4 examined the behavior of Multilevel
latent class models for the MI of multilevel data. Lastly, Chapter 5 assessed the
performance of the Mixture latent Markov model for the imputation of longitudi-
nal data. All models presented in the thesis have been developed under a Bayesian
framework and estimated by means of the Gibbs sampler. Bayesian analysis is well-
suited for MI, since it automatically accounts for the variability caused by both the
missing data distribution and the parameter uncertainty. Another purpose of the
thesis was to find a way to perform model selection which is suitable for MI. With
mixture models, model selection is equivalent to detecting the number of compo-
nents (or classes) to be used at the imputation stage. To achieve this, we exploited a
feature of the Gibbs sampler run in combination with mixture models: with a pre-
liminary run of the sampler (and with a particular setting of the prior distribution
of the mixture components), it is possible to obtain a (posterior) distribution of the
number of classes actually occupied by the data. As a general approach, we chose
the maximum of this distribution in order to perform the imputations, in such a
way to use the broadest possible imputation model.

As mentioned above, Chapter 2 provided an overview of latent class models for
the MI of missing categorical data present in the literature. Latent class modeling,
mainly known as a clustering tool, can be used for density estimation, i.e., to get a
good description of the lower- and higher-order associations among the variables in
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a dataset. For MI, the latter aspect is essential in order to be able to draw meaningful
imputing values from the conditional distribution of the missing data given the
observed data. In this chapter, we explained the general logic underlying the use of
latent class analysis for MI, and presented several variants developed within either a
frequentist or a Bayesian framework. In this chapter, the different approaches were
illustrated and compared using a real-data psychological assessment application.

The great advantage of using latent class models for MI is represented by their
flexibility, which allows to capture complex relationships in the data, given that the
number of specified latent classes is large enough. However, the frequentist latent
class model and the Dirichlet Process Mixture of Multinomial Distributions both
have certain disadvantages. The frequentist approach is computationally demand-
ing because it requires estimating many latent class models: first models with a
different number of classes should be estimated to determine the required number
of classes, and subsequently the selected model is re-estimated for multiple boot-
strap samples, to take into account parameter uncertainty during the imputation
stage. Whereas Bayesian Dirichlet process models perform the model selection and
the handling of the parameter uncertainty automatically, the disadvantage of this
method is that it tends to use too small a number of clusters during the Gibbs sam-
pling, leading to an underfitting model yielding invalid imputations. In Chapter
3, we proposed an alternative approach which combined the strengths of the two
methods; that is, we used the Bayesian standard latent class model as an imputation
model. We showed how model selection can be performed prior to the imputation
step, using a single run of the Gibbs sampler and, moreover, showed how under-
fitting is prevented by using large values for the hyperparameters of the mixture
weights. The results of two simulation studies and one real-data study indicated
that with a proper setting of the prior distributions, the Bayesian latent class model
yields valid imputations and outperforms competing methods.

With Chapter 4, we proposed using a Bayesian multilevel latent class model for
the MI of nested categorical data. Unlike recently developed methods that can only
pick-up associations between pairs of variables, the multilevel mixture model we
proposed is flexible enough to automatically deal with complex interactions in the
joint distribution of the variables to be estimated. After formally introducing the
model and showing how it can be implemented, we carried out a simulation study
and a real-data study in order to assess its performance, and compared it with the
commonly used listwise deletion and an available R-routine. Results indicated that
the Bayesian Multilevel latent class model is able to recover unbiased parameter
estimates of the analysis models considered in our studies, as well as to correctly
reflect the uncertainty due to missing data, outperforming the other methods.
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Chapter 5 introduced an MI tool for longitudinal studies: MI using the Bayesian
mixture Latent Markov models. Besides retaining the benefits of latent class models,
i.e., respecting the (categorical) measurement scale of the variables and preserving
possibly complex relationships between variables within a measurement occasion,
the Markov dependence structure of the Bayesian mixture Latent Markov model al-
lows capturing lagged dependencies between adjacent time points, while the time-
constant mixture structure allows capturing dependencies across all time points, as
well as retrieving associations between time-varying and time-constant variables.
The performance of the BMLM model for MI was evaluated by means of two simu-
lation studies and a real-data experiment, in which it was compared with complete
case analysis and MI by chained equations. Results showed good performance of
the proposed method in retrieving the parameters of the analysis model. In con-
trast, competing methods could provide correct estimates only for some aspects of
the data.

Several extensions of the models proposed in this dissertation are possible. The
main one concerns the measurement scale of the variables assumed by the mod-
els: while in social and behavioral sciences categorical scales are frequently used
in questionnaires, variables measured with mixed types of scales (i.e., continuous
and categorical) can be frequently found in different contexts. The mixture models
described above can be easily modified to accommodate for both kinds of measure-
ment scales (e.g., by assuming mixtures of Normal and Multinomial distributions),
but their performance must be evaluated in future research. Multilevel latent class
models can also be adjusted to account for more than two levels in the hierarchy,
while mixture latent Markov models can be extended to include second or higher-
level orders of lagged relationships.
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