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Abstract

This paper considers investment problems in real options with non-homogeneous two-factor

uncertainty. It shows that, despite claims made in the literature, the method used to derive an

analytical solution in one dimensional problems cannot be straightforwardly extended to problems

with two stochastic processes. To illustrate, we analyze an investment problem with two stochastic

revenue streams and a constant sunk cost. We show that a semi-analytical approach leads to a

sub-optimal investment policy. The main message of our paper is that non-homogeneous invest-

ment problems can only be solved numerically.

Keywords: Investment analysis; Optimal stopping time problem; Two-factor uncertainty
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1 Introduction

The first real options model with two-factor uncertainty occurs in McDonald and Siegel (1986).

Their value function is homogenous of degree one, and the two stochastic processes are the output

price and the investment cost. In such cases, the investment threshold level can be determined for

the price-to-cost ratio. This allows to reformulate the problem in terms of the relative price, and

to reduce the number of stochastic variables to one. In this way a standard one-factor real options

model is obtained for which a closed-form solution exists. The result of this analysis is, however, not

a threshold point but a threshold boundary at which it is optimal to invest (Nunes and Pimentel

(2017)). Hu and Øksendal (1998) generalize this solution to the n-dimensional case. Armada et al.

(2013) consider a problem where the output price and quantity are stochastic. Here the dimension of

the state space can be reduced to a one-dimensional space, because the only relevant payoff variable

is revenue (price times quantity). The problem then reduces to finding an optimal revenue threshold

that makes investment optimal.

Several authors have tried to use this dimension-reduction approach to cases characterized by

multiple stochastic processes and a constant sunk cost. Huisman et al. (2013) and Compernolle

et al. (2017) consider price and cost uncertainty and determine the investment threshold level for the

price-to-cost ratio. However, there are some problems with this approach. Due to the presence of a

constant sunk cost investment, homogeneity of degree one does not hold. For this reason, the state

space cannot be reduced to a one-dimensional one. This is also revealed in these papers, because two

processes (price/cost and cost) remain present in the equations.

For problems of this kind, Adkins and Paxson (2011b) propose a quasi-analytical approach that

results in a set of equations to determine the optimal investment boundary. They solve this set of

equations simultaneously while keeping one of the stochastic threshold variables fixed. The present

paper shows that this methodology can lead to sub-optimal solutions. In fact, the results of the

quasi-analytical approach will generically-speaking be incorrect. To put it succinctly, Adkins and

Paxson (2011b) use a “local” approach to solve a “global” problem. In addition, Adkins and Paxson

(2011b) do not derive the value function explicitly. This is problematic, because the value function and

the optimal exercise boundary need to be solved for simultaneously: they are two sides of the same

coin. In order to solve multi-dimensional problems that are not homogeneous of degree one, several

numerical schemes are available. Here we propose a finite differencing scheme that is straightforward

to implement.

The methodology developed in Adkins and Paxson (2011b) has been applied in several contri-

butions. In the context of replacement options, Adkins and Paxson (2013a) examine premature and

postponed replacement in the presence of technological progress, where revenue and operating costs are
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treated as stochastic. Adkins and Paxson (2017) use a general replacement model to investigate when

it is optimal to replace an asset whose operating cost and salvage value deteriorate stochastically. In

addition, the quasi-analytical approach is applied to investment problems in the energy sector. Adkins

and Paxson (2011a) solve a switching model for two alternative energy inputs with fixed switching

costs. Boomsma and Linnerud (2015) examine investment in a renewable energy project under both

market and policy uncertainty. Fleten et al. (2016) study investment decisions in the renewable energy

sector, where the revenue comes from selling electricity and from receiving subsidies. Both revenue

flows are considered stochastic. Adkins and Paxson (2016) consider the optimal investment policy for

an energy facility with price and quantity uncertainty under different subsidy schemes. Støre et al.

(2016) determine the optimal timing to switch from oil to gas production. Both the oil price and the

gas price are considered stochastic. Heydari et al. (2012) extend the quasi-analytical approach to a

three-factor model, which is employed to value the choice between investing in full or partial CCS

retrofits given uncertainty in electricity, CO2 and fuel prices.

To illustrate the mathematical pitfalls of the quasi-analytical approach, we apply it to a model

with two stochastic revenue streams. We determine the optimal timing of investment in the presence of

a constant sunk investment cost. We provide numerical examples where the quasi-analytical approach

approach violates certain properties of the optimal boundary, which implies that the quasi-analytical

solution gives, generically, a sub-optimal investment policy. In a nutshell, the problem is that in

solving the partial differential equation that governs the value function, two power parameters are

assumed to be constant, whereas in the numerical implementation they are treated as variable.

One may still wonder whether the obtained solution by the quasi-analytical approach results in

a useful approximation. However, we show that for the considered model this is not the case. In

particular, it holds that in some situations the threshold is lower in a more uncertain environment.

This does not comply with a, if not the, major result from real options theory: “an increase in

uncertainty leads to an increase in project value”. We formally prove that this major result should

also hold for the model under consideration. In contrast, our finite differencing scheme does exhibit

the expected behavior in relation to an increase in uncertainty.

The remainder of this paper is organized as follows. Section 2 introduces a non-homogeneous

investment problem characterized by two uncertain revenue flows. Section 3 applies the methodological

approach in Adkins and Paxson (2011b) to solve the model presented in Section 2, and highlights the

mathematical problems with the solution. Section 4 proposes an alternative numerical approach to

solve the model. Section 5 concludes.
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2 Investment decision given two uncertain revenue flows

Consider a profit-maximizing, risk-neutral firm that has the opportunity to invest in a production

plant by paying a constant investment cost, I. The plant can produce two different products, the prices

of which are stochastic and follow correlated geometric Brownian motions X and Y , i.e.,

dXt = α1Xtdt+ σ1XtdWX,t, dYt = α2Ytdt+ σ2YtdWY,t (1)

with

X0 = x, Y0 = y, (2)

and E[dWX,tdWY,t] = ρdt.

At any instant, if the prices of each product are x and y, the instantaneous profit of the firm is

given by:

π(x, y) = Q1x+Q2y, (3)

where Q1 and Q2 denote the quantities of the products produced. Moreover, at that instant the firm’s

value is equal to the perpetual revenue flow from selling two products:1

F (x, y) = E(x,y)

[∫ ∞
0

e−rtπ(Xt, Yt)dt− I
]

=
Q1x

δ1
+
Q2y

δ2
− I, (4)

with δi := r − αi, i ∈ {1, 2}. To ensure finite integrals, we assume that r > α1 ∨ α2.

The firm needs to determine the optimal time to undertake the investment, and, thus, solves the

following optimal stopping problem

V (Xt, Yt) = sup
τ≥t

E(Xt,Yt)

[
e−r(τ−t)F (Xτ , Yτ )

]
(5)

where τ is a stopping time with respect to the filtration generated by the joint process (WX ,WY ).

Using standard calculations from optimal stopping theory (see, e.g., Øksendal and Sulem (2007)),

we derive the following Hamilton-Jacobi-Bellman (HJB) equation for this problem:

min{rV (x, y)− LV (x, y), V (x, y)− F (x, y)} = 0, ∀ (x, y) ∈ <+ ×<+. (6)

Here L denotes the infinitesimal generator of the process (X,Y ), which is given by (Øksendal and

Sulem (2007)):

LV (x, y) =
1

2
σ21x

2∂
2V (x, y)

∂x
+

1

2
σ22y

2∂
2V (x, y)

∂y2
+ ρσ1σ2xy

∂2V (x, y)

∂x∂y

+ α1x
∂V (x, y)

∂x
+ α2y

∂V (x, y)

∂y
. (7)

1
E(x,y) denotes the expectation conditional on (X0, Y0) = (x, y).
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Moreover, we let the set D := {(x, y) ∈ <2
+|V (x, y) > F (x, y)} denote the continuation region, and

S := <2
+ \ D = {(x, y) ∈ <2

+|V (x, y) = F (x, y)} denote the stopping region. Following the general

theory of optimal stopping, it then follows that τ∗, the time at which the investment should be

undertaken, is given by the first exit time of the continuation region, i.e.,

τ∗ = inf{t > 0; (Xt, Yt) /∈ D}. (8)

In view of the equation (6), it follows that

rV (x, y)− LV (x, y) ≥ 0 ∧ V (x, y) ≥ F (x, y), ∀ (x, y) ∈ <2
+.

Moreover,

rV (x, y)− LV (x, y) = 0 ∧ V (x, y) ≥ F (x, y), ∀ (x, y) ∈ D, (9)

whereas

rF (x, y)− LF (x, y) ≥ 0 ∧ V (x, y) = F (x, y), ∀ (x, y) ∈ S. (10)

The solution of the HJB equation, V , must satisfy the following boundary condition:

V (0+, 0+) = 0, (11)

which reflects the fact that the value of the firm will be zero if the prices are zero. Also the following

value-matching and smooth-fit conditions should hold (see Pham (1997), Tankov (2003) and Larbi

and Kyprianou (2005)):

V (x, y) = F (x, y) and ∇V (x, y) = ∇F (x, y), for (x, y) ∈ ∂D. (12)

Here ∂D denotes the boundary of D, which we call critical boundary, and ∇ is the gradient operator.

Therefore, the solution of the problem is continuous at the critical boundary, not only for itself but

also for its derivatives. The resulting threshold is a curve separating the two regions (the continuation

and the stopping regions).

Note that x = 0 and y = 0 are absorbing barriers. Consequently, at these boundaries, the firm

only receives revenues from one product and only one stochastic process is in use. Therefore, the

threshold at these points corresponds to the standard solution for a one-dimensional problem. It

follows that the investment triggers at the y and x axis are

x∗ =
β1

β1 − 1
δ1I, and y∗ =

η1
η1 − 1

δ2I,

respectively. The parameters β1 > 1 and η1 > 1 are the positive roots of the quadratic equations

1

2
σ1β(β − 1) + α1β − r = 0, and

1

2
σ2η(η − 1) + α2η − r = 0,

respectively. The next theorem derives some qualitative features of the threshold boundary for the

problem defined in (5).
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Theorem 1 The boundary between D and S can be described by a mapping x 7→ b(x), where:

1. b(x) = sup { y ∈ <+ | V (x, y) > F (x, y) } for all x ∈ (0, x∗);

2. b is non-increasing on (0, x∗);

3. b is convex on (0, x∗);

4. b is continuous;

5. b(x) < y∗ on (0, x∗), and b(x) = 0 on [x∗,∞).

In addition, the stopping set S is:

1. closed;

2. convex.

Finally, the value function V satisfies:

1. V > 0 on <2
++;

2. V is convex;

3. V is continuous;

4. V is increasing in x and y.

Remark 1 Theorem 1 leads to the following observations.

1. We can write

D =
{

(x, y) ∈ <2
+

∣∣ y < b(x)
}
, and S =

{
(x, y) ∈ <2

+

∣∣ y ≥ b(x)
}
.

2. The optimal stopping boundary can never lie below the Net Present Value boundary b̄, i.e.

b(x) > b̄(x) := δ2(I − x/δ1), all x ∈ (0, δ1I).
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3 The quasi-analytical approach

Following the approach in Adkins and Paxson (2011b), we start by postulating a solution to

equation (7) of the following form:

v(x, y) = Axβyη, (13)

where A, β, and η are constants. Simple calculations lead to the conclusion that for (13) to be a

solution to (7) it must hold that β and η are the roots of the characteristic root equation:

Q (β, η) =
1

2
σ22η (η − 1) +

1

2
σ21β (β − 1) + ρσ1σ2βη + α1β + α2η − r = 0. (14)

The set of solutions to (14) defines an ellipse that intersects all quadrants of <2, with β (η) on

the horizontal (vertical) axis.

Adkins and Paxson (2011b) hypothesize that the boundary between the continuation and stopping

regions is of the form x 7→ b(x). As Theorem 1 shows, this is correct. In order to find this boundary,

Adkins and Paxson (2011b) try to extend the standard value-matching and smooth-pasting conditions

to a two-dimensional setting. The way this is done is as follows: on the boundary it should hold for

every x̂ ∈ (0, x∗) that

v(x̂, b(x̂)) =
Q1x̂

r − α1
+
Q2b(x̂)

r − α2
− I (value matching) (15)

∂v(x, y)

∂x |x=x̂,y=b(x̂)
=

Q1

r − α1
(smooth pasting in x-direction) (16)

∂v(x, y)

∂y |x=x̂,y=b(x̂)
=

Q2

r − α2
(smooth pasting in y-direction). (17)

Now, if the value function is of the form2

v(x, y) = Axβyη,

then it should hold that β, η > 0 since the boundary conditions limx↓0 v(x, y) = limy↓0 v(x, y) = 0

should be satisfied. Therefore, for every x̂ ∈ (0, x∗) we can solve the system of non-linear equations

Ax̂βb(x̂)η =
Q1x̂

r − α1
+
Q2b(x̂)

r − α2
− I (18)

βAx̂β−1b(x̂)η =
Q1

r − α1
(19)

ηAx̂βb(x̂)η−1 =
Q2

r − α2
(20)

Q (β, η) = 0, (21)

2Note that Adkins and Paxson (2011b) assume this is the case.
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in b, A, β, and η, under the condition that β, η > 0.

Using the approach presented in Støre et al. (2016) to solve this system, we find the explicit

solution for the boundary3:

b̂(x) = x
η(x)(r − α2)Q1

β(x)(r − α1)Q2
, (22)

where

β(x) =
σ2
1−2α1+C∗(x)(2α2+σ2

2)

2(σ2
1+σ

2
2C

∗(x))
+

√(
σ2
1−2α1+C∗(x)(2α2+σ2

2)

2(σ2
1+σ

2
2C

∗(x))

)2
+ 2 r−α2

σ2
1+σ

2
2C

∗(x)
, (23)

η(x) = 1− β(x)C∗(x), (24)

C∗(x) = 1− (r−α1)I
xQ1

. (25)

Therefore, solving (19)-(21) leads to values of β and η that do depend on the value of x and, thus,

cannot be treated as fixed parameters. This is also the case for the problem in Adkins and Paxson

(2011b), as illustrated by their Figure 3.4 The same holds for A and b.

Let u = [β(x) η(x) A(x) b̂(x) ]T denote the vector of solutions resulting from (19)-(21). Then

at b̂(x), the value of the firm can be written as

v(x, b̂(x)) = A(x)xβ(x)b̂
η(x)

(x). (26)

Note that from (9) the partial differential equation rV (x, y)−LV (x, y) = 0 must also hold along

the threshold boundary, implying that

1

2
σ21x

2

(
∂2v(x, b̂)

∂x2
+

∂

∂u

(
∂v(x, b̂)

∂x

)
∂u

∂x
+

∂

∂x

(
∂v(x, b̂)

∂u

∂u

∂x

))
+

1

2
σ22 b̂

2∂2v(x, b̂)

∂b̂2

+α1x

(
∂v(x, b̂)

∂x
+
∂v(x, b̂)

∂u

∂u

∂x

)
+ α2b̂

∂v(x, b̂)

∂b̂
− rv(x, b̂) = 0. (27)

Using (26) we can rewrite (27) as

1

2
σ21x

2

(
∂

∂u

(
∂v(x, b̂)

∂x

)
∂u

∂x
+

∂

∂x

(
∂v(x, b̂)

∂u

∂u

∂x

))
+ α1x

(
∂v(x, b̂)

∂u

∂u

∂x

)

+Axβ b̂η
(

1

2
σ22η (η − 1) +

1

2
σ21β (β − 1) + α1β + α2η − r

)
= 0, (28)

3For simplicity, henceforth we assume that ρ = 0.
4The same holds for (Adkins and Paxson, 2011a), see Table 2; Heydari et al. (2012), see equation (19); Adkins and

Paxson (2013a), see equation (9); Adkins and Paxson (2013b), see Figure 2; Fleten et al. (2016), see equation (17); Støre

et al. (2016), see equation (18); and Adkins and Paxson (2017), see Table 3.
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The first two terms in (28) represent the contributions of the partial derivatives of b̂, A, β and η

with respect to x, whereas the last term is equal to Axβ b̂ηQ (β, η). If the solution proposed in (13) is

correct, then the latter should be equal to zero, and we can still use the system (18)-(21) to determine

the threshold boundary. In what follows we verify whether the contribution of the partial derivatives

is negligible for the numerical example in Table 1.

x̂ Contribution of partial derivatives

10 -10841.14

20 -54 856.60

30 -9040.40

Table 1: The value of the first two terms of equation (28) for the following set of the parameter values:

σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, and I = 2000.

For x̂ = 10, and the set of parameter values in Table 1, F (x̂, b̂(x̂)) = 7281.23. Therefore, we

conclude that the contribution of the partial derivatives cannot be neglected. As a result, substitution

of the solution (26) in (7) leads to the conclusion that the condition for η and β is no longer (14). In

fact, (14) needs to be modified to incorporate terms involving β′(x), η′(x), β′′(x), η′′(x), A′(x), A′′(x),

b̂′(x) and b̂′′(x). The implication is that solving the system (18)-(21) for different values of x̂ does not

result in a correct threshold boundary.

3.1 Results of the quasi-analytical approach

After having shown that the boundary b̂, as determined by the quasi-analytical approach, is not

the true boundary b, it could still be the case that b̂ is a good approximation of b. This section,

however, provides an argument that this is not the case, at least for the problem in Section 2.

We start out by presenting the following proposition.

Proposition 2 The value function, V , is monotonically increasing in both σ1 and σ2.

Proof. The result follows from Proposition 3 in Olsen and Stensland (1992) using the fact that the

optimal value function is convex, as stated in our Theorem 1.

Corollary 3 Let b(σ1, σ2;x) denote the optimal investment threshold boundary for a given level of x.

Then it holds that b(σ1, σ2;x) is increasing in both σ1 and σ2.

Proof. We prove the result by contradiction. Without loss of generality we only consider a change in

σ1. Consider two different values of σ1, such that σ̂1 > σ̄1, and b(σ̂1, σ2;x) < b(σ̄1, σ2;x) for some x.

9



Let V (σ1, σ2;x, y) denote the optimal value function for a given level of x. Then,

V (σ̂1, σ2;x, y) =

> F (x, y) for y < b(σ̂1, σ2;x),

= F (x, y) for y ≥ b(σ̂1, σ2;x),
(29)

V (σ̄1, σ2;x, y) =

> F (x, y) for y < b(σ̄1, σ2;x),

= F (x, y) for y ≥ b(σ̄1, σ2;x).
(30)

If b(σ̂1, σ2;x) < b(σ̄1, σ2;x), then for y ∈ (b(σ̂1, σ2;x), b(σ̄1, σ2;x)), it holds that V (σ̄1, σ2;x, y) >

F (x, y) = V (σ̂1, σ2;x, y), which contradicts Proposition 1.

Figure 1 illustrates the quasi-analytical threshold boundaries for different values of σ2.

σ2=0.1

σ2=0.2

σ2=0.4

σ2=0.6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x

y

Figure 1: The threshold boundaries, b̂, for the following set of parameter values: σ1 = 0.2, α1 = 0.02, α2 = 0.02,

r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different values of σ2.

Evidently, the numerical example violates Corollary 3, since the threshold boundaries intersect.

Moreover, this result does not correspond to what we would expect from real options theory, i.e. that

the firm invests for a larger threshold level in a more uncertain environment. In fact, for x > 32, the

quasi-analytical approach suggests that the firm should invest for a lower threshold level when σ2 is

larger. This clearly leads to a sub-optimal decision, so the quasi-analytical solution falls short in being

a useful approximation to the optimal solution in this case.
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4 Numerical Solution

This section develops a finite difference algorithm to solve the optimal stopping problem in (5).

The results of the numerical approach are different from the results obtained by the analytical approach

and in line with Theorem 1 and Proposition 2.

We start by generating a discrete grid over the domain of the partial differential equation in (7):

xi = ih i = 0, 1, 2, .., Nx, h =
x∗

Nx
, (31)

yj = jg i = 0, 1, 2, .., Ny, g =
y∗

Ny
. (32)

Recall that x∗ and y∗ are the optimal investment triggers in case the other state variable is zero

and, thus, are the natural end points of the grid. Moreover, we consider the following notation. Let

Vi,j denote the value of the firm at the grid points (xi, yj). Then we are able to derive a linear system

of equations that allows to solve for the discrete grid points simultaneously.

We discretize the partial differential equation using a weighted sum of the function values at the

neighboring point approximations to the partial derivatives. This yields

1

2
σ21p

2
1

Vi+1,j − 2Vi,j + Vi−1,j
h2

+
1

2
σ22p

2
2

Vi,j+1 − 2Vi,j + Vi,j−1
g2

+ α1x
Vi+1,j − Vi,j

h
+ α2y

Vi,j+1 − Vi,j
g

+ρσ1σ2xy
Vi+1,j+1 − Vi+1,j−1 − Vi−1,j+1 + Vi−1,j−1

4hg
− rVi,j = 0.

(33)

Rearranging the terms, gives

Vi,j

(
−σ21i2 − α1ih− σ22

j2h2

g2
− α2

jh2

g
− rh2

)
+ Vi,j+1

(
1

2
σ22
j2h2

g2
+ α2

jh2

g

)
+ Vi+1,j

(
1

2
σ21i

2 + α1ih

)
+

Vi,j−1

(
1

2
σ22
j2h2

g2

)
+ Vi−1,j

(
1

2
σ21i

2

)
+ ρσ1σ2

ijh

4g
(Vi+1,j+1 − Vi+1,j−1 − Vi−1,j+1 + Vi−1,j−1) = 0.

(34)

The vector of unknown grid points, v, can be ordered in the following way

v =



V0,0

V0,1
...

V0,Nj

...

VNi,Nj


(35)
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Then the partial differential equation (33) can be represented as a system of linear equations

Bv = 0, (36)

where B is the matrix of coefficients resulting from (34).

This system can be solved by applying appropriate boundary conditions. We use the fact that the

value at (x∗, 0) and (0, y∗) must equalthe value of the immediate investment. In addition, if either xi

or yj is equal to zero the problem is reduced to one-dimension, and the grid points together with the

threshold boundary can be found analytically. Given a candidate threshold function, the system (36)

in combination with the boundary conditions in zero and final nodes, yield a solution for the unknown

grid points. To determine the optimal threshold we implement the following procedure. First, we

propose a shape of the exercise boundary. For example, the results that we present in Figure 2 are

based on the quadratic function, i.e. y = a + bx + cx2. The unknown parameters, a and b can be

determined using the analytical threshold boundaries when either xi or yj is zero. In order to find

c, we compute the derivative of the option value at the candidate threshold boundary at each node,

and compare it with the derivatives resulting from the smooth pasting conditions. Next, we compute

the sum squared error of the differences and minimize it with respect to unknown parameter c, which

allows to determine the optimal threshold in such a way that the smooth pasting condition is satisfied.

We now replicate Figure 1 using our finite-differencing scheme and depict it in Figure 2.

σ2=0.1

σ2=0.2

σ2=0.4

σ2=0.6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

x

y

Figure 2: The numerical threshold boundary for the following set of parameter values: σ1 = 0.2, α1 = 0.02,

α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different values of σ2.
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This numerical example results in a more intuitive shape of thresholds boundaries and represent

a standard result from the real options theory. Namely, an increase in volatility leads to an increase

of the optimal investment threshold.

In addition, finite differencing also allows for the calculation of an approximation to the value

function that is implied by the quasi-analytical boundary b̂. This can be done by solving (36) for the

boundary in (22). Figure 3 illustrates the comparison between the implied value function and the

numerical solution represented by quadratic boundary for a fixed level of x and different values of y.

Quasi-analytical solution

Numerical solution

0 yN2 6 8yQA

800

1000

1200

1400

1600

1800

2000

y

V

Figure 3: The numerical threshold boundary for the following set of parameter values: x = 40.52, σ1 = 0.2,

σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different values of y.

From Figure 3 it is evident that the value function implied by the quasi-analytical solution has

a kink at the boundary point yQA = b̂(40.52) = 2.49, violating the smooth-pasting condition. Con-

sequently, the quasi-analytical approach underestimates the true value function, which leads to a

sub-optimal investment decision rule for large values of x. Note that the quasi-analytical approach

suggests a much lower trigger than our finite-differencing scheme. For x = 40.52, the numerical pro-

cedure based on the finite-difference algorithm gives the boundary point yQA = 10.26, such that the

smooth-pasting condition holds. Figure 4 illustrates the value function for different values of x and y,

as well as the threshold boundary.
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Figure 4: The numerical value function and threshold boundary (solid black curve) for the following set of

parameter values: σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and

different values of x and y.

As can be seen, the value appears to be smooth for different values of x and y in the grid. The

average squared error resulting from the numerical procedure is equal to 0.44, which corresponds

to 0.17% of the true value of total derivative of the value function. Therefore, we conclude that the

proposed numerical method is a good approximation for the true value function and optimal threshold.

Lastly, in order to give an indication how often a firm would make a poorly timed investment

decision, we simulate the passage time for the processes Xt and Yt to reach the quasi-analytical

boundary. We then run the procedure 5000 times for a specific set of starting values (x0, y0), and

calculate the percentage of cases of the threshold being reached within the next 5 years. We perform

a similar procedure, to determine the investment probabilities for our numerical solution. The results

for the different starting points are presented in Table 2.
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(x0, y0) 5 10 15

10 10.06% 23.97% 39.03%

15 21.69% 42.87% 61.69%

20 40.32% 68.34% 90.21%

(a) Quasi-analytical boundary

(x0, y0) 5 10 15

10 5.40% 5.56% 5.51%

15 5.57% 5.41% 5.57%

20 5.43% 5.24% 5.59%

(b) Numerical boundary

Table 2: Percentage of cases when a firm undertakes an investment within the next 5 years for the

set of parameter values: σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10,

I = 2000.

Table 2b shows that, for example, for the starting values (15,10) the firm should invest in 5.41%

of the cases. According to the quasi-analytical approach however, the firm invests in 42.87% of the

cases, implying that many times the firm invests while it is in fact not optimal to do so.

5 Conclusion

Since the seminal works of Dixit and Pindyck (1994) and Trigeorgis (1996), it became clear that

real investment problems must be solved using a real options approach. Instead, application of the

standard net present value decision rule could lead to investment decisions that are “very wrong”, as

is extensively demonstrated in the above books. Since firm investment decisions lie at the basis of

economic growth, it is crucial to take these decisions in the right way. From this perspective it is clear

that it is of main importance to work on the development of the theory of real options.

Where in the basic analysis the real options model consists of a single firm having the opportunity

to invest in a project of given size, with revenue governed by a single geometric Brownian motion

process, several authors have extended this framework. Smets (1991) is the first to consider a scenario

where two firms can invest in the same market. The revenue in this market is still governed by one

stochastic process, also after both firms have already invested and thus are active in this market. The

assumption ”project of given size” is relaxed in Bar-Ilan and Strange (1999) and Dangl (1999), in

which the firm not only needs to decide about the time, but also about the size of the investment.

Huisman and Kort (2015) combine the two extensions by considering a duopoly market where both

firms also have to determine the investment size.

The above mentioned contributions have in common that just one stochastic process governs the

dynamics of the model. This can be a major shortcoming, especially when problems are considered

with multiple firms or products. Therefore, also considering real options problems driven by multiple

sources of uncertainty is an important extension to the basic real options analysis, especially from
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a practical perspective. Adkins and Paxson (2011b) develop a so-called quasi-analytical approach

to attack such problems. This approach has already been adopted by several other authors, as the

overview in Section 1 shows. Our paper argues, however, that this quasi-analytical method does not

result in the correct investment decision rule. We get to our point by analyzing a particular real

options model with two-factor uncertainty. It considers an investment project where after investment

the firm is able to produce two different products. The output price of each of these products follows

a different geometric Brownian motion process. The investment cost is constant and sunk.

From the analysis of this two-factor real options problem we obtain that the quasi-analytical

investment decision rule also fails to be a reasonable approximation to the optimal decision. In

particular, we find that the quasi-analytical solution does not comply with the (analytical) result that

the investment threshold boundary must be monotonically increasing in the volatility parameters of

both stochastic processes.

The ultimate conclusion is that non-homogenous real options problems with two-factor uncer-

tainty should be solved using a different numerical procedure. We propose an easy-to-implement finite

difference algorithm. Note, however, that if our two-factor uncertainty problem is homogenous, then

a standard (cf. McDonald and Siegel (1986)) reduction in dimensionality can be obtained, leading to

an analytical solution.

Appendix

Proof of Theorem 1

Throughout the proof, we will denote the unique solution to (1) for given starting point (X0, Y0) ∈
<2
+ \ {0} by (Xx, Y y). Note that (Xx, Y y) = (xX1, yY 1).

1. (V > 0 on <2
++) On S the result is trivial. Let (x, y) ∈ D ∩ <2

++. Consider the stopping

time

τ = inf{t ≥ 0|F (Xτ , Yτ ) > 0}.

Since e−rτF (Xτ , Yτ ) = 0 on {τ =∞} (since r > max{α1, α2}) and P(τ <∞) > 0, it holds that

V (x, y) ≥ E
[
e−rτF (Xτ , Yτ )

]
> 0.

2. (Convexity of V ) On S the result is trivial. Take (x′, y′), (x′′, y′′) ∈ D and λ ∈ (0, 1). Define
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(x, y) := λ(x′, y′) + (1− λ)(x′′, y′′). It then holds that

V (x, y) = sup
τ

E
[
e−rτF (x′, y′)

]
= sup

τ
E

[
e−rτ

(
xX1

τ

δ1
+
yY 1

τ

δ2
− I
)]

= sup
τ

E

[
e−rτ

(
(λx′ + (1− λ)x′′)X1

τ

δ1
+

(λy′ + (1− λ)y′′)Y 1
τ

δ2
− I
)]

= sup
τ

E

[
λe−rτ

(
x′X1

τ

δ1
+
y′Y 1

τ

δ2
− I
)

+ (1− λ)e−rτ
(
x′′X1

τ

δ1
+
y′′Y 1

τ

δ2
− I
)]

≤λ sup
τ

E
[
e−rτF (x′, y′)

]
+ (1− λ) sup

τ
E
[
e−rτF (x′′, y′′)

]
=λV (x′, y′) + (1− λ)V (x′′, y′′).

3. (Continuity of V ) This property follows from the general theory of stochastic processes, see, e.g.,

(Krylov, 1980, Theorem 3.1.5).

4. (Monotonicity of V ) We prove that V is (strictly) increasing in x. Again, the result is trivial

on S. Take (x, y) ∈ D and let ε > 0 be such that (x + ε, y) ∈ D (such ε exists since D is open; see

below). Take any stopping time τ . It then holds that

E

[
e−rτ

(
(x+ ε)X1

τ

δ1
+
yY 1

τ

δ2
− I
)]
≥ E

[
e−rτ

(
xX1

τ

δ1
+
yY 1

τ

δ2
− I
)]

,

with equality only when {τ = ∞} a.s.. Note that τ with {τ = ∞} a.s. is never optimal. Take

τ∗ = inf{t ≥ 0|Yt ≥ δ1I+1}. Then P(τ∗ <∞) > 0 and, thus, we have that E
[
e−rτ

∗
F (Xx

τ∗ , Y
y
τ∗)
]
> 0.]

Therefore, V (x+ ε, y) > V (x, y).

5. (Closedness of D) Take a sequence (x(n), y(n))n∈ℵ in S with limit (x, y). Then V (x(n), y(n)) =

F (x(n), y(n)) for all n ∈ ℵ. Since limn→∞ F (x(n), y(n)) = F (x, y) and V is continuous, it holds that

V (x, y) = F (x, y). This implies that (x, y) ∈ S.

6. (Convexity of D) Suppose there exists (x′, y′), (x′′, y′′) ∈ S and λ ∈ (0, 1) such that (x, y) :=

λ(x′, y′) + (1− λ)(x′′, y′′) ∈ D. It then holds that

V (x, y) > F (x, y) = λF (x′, y′) + (1− λ)F (x′′, y′′) = λV (x′, y′) + (1− λ)V (x′′, y′′).

This contradicts convexity of V .

7. (b(x) can be written as a sup) Take (x, y) ∈ D. The there exists a stopping time τ∗ such that

(Xτ∗ , Yτ∗) ∈ D, a.s.. Hence,

V (x, y) = sup
τ

E
[
e−rτF (Xτ , Yτ )

]
≥ E

[
e−rτ

∗
F (Xτ∗ , Yτ∗)

]
> F (x, y).
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Now take ε ∈ (0, y). Then

V (x, y − ε) ≥E
[
e−rτ

∗
F (Xτ∗ , Yτ∗)

]
=E

[
e−rτ

∗
(
xX1

τ∗

δ1
+

(y − ε)Y 1
τ∗

δ2
− I
)]

=E

[
e−rτ

∗
(
xX1

τ∗

δ1
+
yY 1

τ∗

δ2
− I
)]
− E

[
e−rτ

∗ εY 1
τ∗

δ2

]
(∗)
≥E

[
e−rτ

∗
(
xX1

τ∗

δ1
+
yY 1

τ∗

δ2
− I
)]
− ε

δ2

>E

[
e−rτ

∗
(
xX1

τ∗

δ1
+
yY 1

τ∗

δ2
− I
)]

> F (x, y) > F (x, y − ε),

where (∗) follows from the fact that e−rtYt is a supermartingale. Therefore, (x, y − ε) ∈ D.

8. (b is non-increasing) This follows from the fact that for all (x, y) ∈ D and all ε ∈ (0, x) it

holds that (x− ε, y) ∈ D. This can be proved using a similar argument as above.

9. (b is convex) Convexity of b follows from the fact that its epigraph is the convex set S.

10. (b is continuous) Continuity of b on (0,∞) is immediate, because it is a convex function on

an open convex set (see, for example, Berge, 1963, Theorem 8.5.7). Continuity at x = 0 follows from

the fact that the stopping set is closed.

11. (boundedness of b) The boundedness properties follow from continuity and x∗ and y∗ being

the solutions of the optimal stopping problem on <+ × {0} and {0} × <+, respectively.

References

Adkins, R. and D. A. Paxson (2011a). Reciprocal energy-switching options. Journal of Energy

Markets, 4, 91–120.

Adkins, R. and D. A. Paxson (2011b). Renewing assets with uncertain revenues and operating

costs. The Journal of Financial and Quantitative Analysis, 46, 785–813.

Adkins, R. and D. A. Paxson (2013a). Deterministic models for premature and postponed replace-

ment. Omega, 41, 1008–1019.

Adkins, R. and D. A. Paxson (2013b). The effect of tax depreciation on the stochastic replacement

policy. European Journal of Operational Research, 229, 155–164.

18



Adkins, R. and D. A. Paxson (2016). Subsidies for renewable energy facilities under uncertainty.

The Manchester School , 84, 222–250.

Adkins, R. and D. A. Paxson (2017). Replacement decisions with multiple stochastic values and

depreciation. European Journal of Operational Research, 257, 174–184.

Armada, M., A. Rodrigues, and P. Pereira (2013). Optimal investment with two-factor uncer-

tainty. Mathematics and Financial Economics, 7, 509–530.

Bar-Ilan, A. and W. C. Strange (1999). The timing and intensity of investment. Journal of

Macroeconomics, 21, 57–77.

Berge, C. (1963). Topological Spaces. Oliver & Boyd, Edinburgh and London, United Kingdom.

Boomsma, T. and K. Linnerud (2015). Market and policy risk under different renewable electricity

support schemes. Energy , 89, 435–448.

Compernolle, T., K. Huisman, K. Welkenhuysen, P. Piessens, and P. Kort (2017). Off-

shore enhanced oil recovery in the north sea: the impact of price uncertainty on the investment

decisions. Energy Policy , 101, 123–137.

Dangl, T. (1999). Investment and capacity choice under uncertain demand. European Journal of

Operational Research, 117, 415–428.

Dixit, A. K. and R. S. Pindyck (1994). Investment Under Uncertainty . Princeton University

Press, Princeton, New Jersey, United States of America.

Fleten, S.-E., K. Linnerud, P. Molnár, and M. T. Nygaard (2016). Green electricity invest-

ment timing in practice: Real options or net present value? Energy , 116, 498–506.

Heydari, S., N. Ovenden, and A. Siddiqui (2012). Real options analysis of investment in carbon

capture and sequestration technology. Computational Management Science, 9, 109–138.

Huisman, K. J., P. M. Kort, and J. Plasmans (2013). Investment in high-tech industries:

An example from the LCD industry. In Real options, Ambiguity, Risk and Insurance, edited by

A. Bensoussan, S. Peng, and J. Sung, Studies in Probability, Optimization and Statistics Series, 5,

20–32. IEEE Computer Society, Amsterdam, The Netherlands.

Huisman, K. J. M. and P. M. Kort (2015). Strategic capacity investment under uncertainty. The

RAND Journal of Economics, 46, 217–460.

Krylov, N. (1980). Controlled Diffusion Processes. Springer–Verlag, New York.

19



Larbi, A. and A. Kyprianou (2005). Some remarks on first passage of Lévy processes, the American

put and pasting principles. The Annals of Applied Probability , 15, 2062–2080.

McDonald, R. and D. R. Siegel (1986). The value of waiting to invest. The Quarterly Journal

of Economics, 101, 707–727.

Nunes, C. and R. Pimentel (2017). Analytical solution for an investment problem under uncer-

tainties with shocks. European Journal of Operational Research, 259, 1054 – 1063.

Øksendal, B. (1998). Stochastic Differential Equations. Springer Verlag, Berlin, Germany.

Øksendal, B. and A. Sulem (2007). Applied Stochastic Control of Jump Diffusions. Springer

Verlag, Berlin, Germany.

Olsen, T. E. and G. Stensland (1992). On optimal timing of investment when cost components

are additive and follow geometric diffusions. Journal of Economic Dynamics and Control , 16, 39–51.

Pham, H. (1997). Optimal stopping, free boundary, and american option in a jump-diffusion model.

Applied Mathematics and Optimization, 35, 145–164.

Smets, F. (1991). Exporting versus FDI: The effect of uncertainty, irreversibilities and strategic

interactions. Working paper , Yale University, New Haven, Connecticut, United States of America.

Støre, K., V. Hagspiel, S.-E. Fleten, and C. Nunes (2016). Switching from oil to gas production

- decisions in a field’s tail production phase. Working paper , Nord University Business School, Bodø,

Norway.

Tankov, P. (2003). Financial modelling with jump processes, volume 2. CRC press, London, United

Kingdom.

Trigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource Allocation.

The MIT Press, Cambridge, Massachusetts, United States of America.

20


