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Researchers frequently rely on general linear models (GLMs) to investigate the impact of

human resource management (HRM) decisions. However, the structure of organizations and

recent technological advancements in the measurement of HRM processes cause contempo-

rary HR data to be hierarchical and/or longitudinal. At the same time, the growing interest in

effects at different levels of analysis and over prolonged periods of time further drives the

need for HRM researchers to differentiate from traditional methodology. While multilevel tech-

niques have become more common, this article proposes two additional methods that may

complement the current methodological toolbox of HRM researchers. Latent bathtub models

can accurately describe the multilevel mechanisms occurring in organizations, even if the out-

come resides at the higher level of analysis. Optimal matching analysis can be useful to unveil

longitudinal patterns in HR data, particularly in contexts where HRM processes are measured

on a continuous basis. Illustrating the methods’ applicability to research on employee engage-

ment, this paper demonstrates that the HRM community—both research and practice—can

benefit from a more diversified methodological toolbox, drawing on techniques from within

and outside the direct field to improve the decision-making process.

KEYWORDS

bathtub models, employee engagement, evidence-based HRM, HR analytics, latent variable
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1 | INTRODUCTION

Human resource management (HRM) emerged as a function in the

early 20th century to effectively manage and rationalize the employ-

ment relationship (Ulrich & Dulebohn, 2015). Nowadays, HRM is

increasingly becoming a “science” that aims to enhance the decisions

organizations make regarding their human capital (Boudreau & Ram-

stad, 2005, 2007; Rasmussen & Ulrich, 2015; Ulrich & Dulebohn,

2015). In creating a basis of evidence for such decisions, HRM schol-

ars have primarily relied on general linear modeling (GLM) such as lin-

ear regression. However, the data gathered and compiled in the

contemporary HR function is increasingly of hierarchical and longitu-

dinal nature, causing the current methodological toolbox of HRM

researchers to fall short (Angrave, Charlwood, Kirkpatrick, Law-

rence, & Stuart, 2016; Bersin, 2015).

Methods other than GLM may better account for the complex

effects in these new forms of HR data. On the one hand, organiza-

tional entities are hierarchical structures, which causes the effects of

HRM to occur at and across different levels of analysis simultane-

ously (Hitt, Beamish, Jackson, & Mathieu, 2007; Wright & Nishii,

2007). On the other hand, as measurement happens on a more con-

tinuous basis, HR data structures often consist of many observations

nested within subjects over prolonged periods of time (Angrave et al.,

2016; Bersin, 2015). Acknowledging the above, scholars have been

increasingly moving from GLM applied at a single level of analysis

toward multilevel techniques (Boselie, Dietz, & Boon, 2005; Sanders,
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Cogin, & Bainbridge, 2014; Snape & Redman, 2010). However, the

most commonly applied multilevel methods do not work well when

examining bottom-up effects, linking individual phenomena to

organizational-level outcomes, and they can become overly complex

when examining multiple, potentially categorical, variables simultane-

ously and over prolonged periods of time.

This article proposes two statistical methods that are rarely

applied to HRM research questions, despite having added value over

and above more traditional methodology. First, bathtub models are

proposed as a way to account for multilevel models where the out-

come resides at the higher level of analysis. Outperforming traditional

aggregation and disaggregation approaches (Bennink, 2014), bathtub

modeling can add value to HRM research on, among others, group

composition or bottom-up effects. Second, optimal matching analysis

(OMA) is advocated for its ability to detect longitudinal patterns. It

can reduce large volumes of both categorical and ordinal data into a

smaller set of underlying trajectories. Although relatively unknown in

the general HRM field, it has been a valuable tool for career pattern

analysis (Dlouhy & Biemann, 2015). This article aims to demonstrate

the added value of each method to the HRM methodological toolbox

by discussing their applicability to research on employee engagement.

After discussing each method’s strengths and weaknesses separately,

the article concludes with an overview of potential future applica-

tions and synergies.

2 | BATHTUB MODELING AND
ENGAGEMENT

Over the past two decades, the influence of HRM on organizational

performance has received much scholarly attention (e.g., Becker &

Gerhart, 1996; Paauwe, Guest, & Wright, 2013) and a major part of

the impact of HRM policies and practices has been demonstrated to

be indirect via the behavior of employees (Christian, Garza, & Slaugh-

ter, 2011; Harter, Schmidt, & Hayes, 2002; Jiang, Lepak, & Baer,

2012; Kehoe & Wright, 2013; Subramony, 2009). However, an inves-

tigation of this mediational process is complex, as it involves mea-

surements at various levels of analysis. The design of HRM policies as

well as the implementation of HRM practices commonly occur at

either an organizational, functional, departmental, or group level,

whereas the behaviors and cognitions they seek to influence are

located at the level of the individual employee (Bowen & Ostroff,

2004; Snape & Redman, 2010; Wright & Boswell, 2002; Wright &

Nishii, 2007). Although multilevel techniques provide an avenue to

test models with such hierarchical structures (e.g., Snijders & Bosker,

1999), they are developed for models where the outcome variable

lies at the lower level of analysis. Problems arise when the outcome

occurs at a macro-level (e.g., organizational performance) but the pre-

dictors reside at a micro-level (e.g., employee behaviors).

Scholars have creatively circumvented modeling such micro–

macro processes. For example, studies relating HRM implementation

and employee engagement to organizational performance have used

three different approaches. Nevertheless, all three have their down-

sides. First, the micro-level scores can be aggregated to the macro-

level. As such, studies have investigated HRM, engagement, and

performance at the level of the organization or the work group

(e.g., Harter et al., 2002; Jiang et al., 2012; Subramony, 2009; Whit-

man, Van Rooy, & Viswesvaran, 2010). However, after aggregation to

the macro-level, the data loses all information on individual variations

(Bennink, Croon, & Vermunt, 2013). To illustrate, an aggregated team

score of average engagement can be interpreted either as all employ-

ees in the team being averagely engaged, or as the team being a mix

of highly engaged and highly disengaged employees. Moreover,

aggregation has considerable consequences because the reduction of

the sample size—to the size of the macro-level sample—significantly

decreases the power of the statistical test (Bennink et al., 2013;

Krull & MacKinnon, 1999). As a second approach, scholars have

restricted the analysis to micro-level variables. For example, studies

have examined employees’ individual perceptions of HRM practices

and its influence on employees’ engagement and individual perfor-

mance scores (e.g., Christian et al., 2011; Halbesleben, 2010). How-

ever, this approach introduces perspective bias as it looks at the

impact of the perceptions employees have of the HRM strategies,

policies, and practices. Moreover, no conclusions can be drawn

regarding the impact on the actual organizational performance, as the

models have to rely on micro-level outcomes, such as individual per-

formance evaluations. Finally, disaggregation has been a third

approach, in which the macro-level scores (i.e., HRM and organiza-

tional performance) are assigned to each micro-level case

(i.e., employee). Luckily, this method is not frequently found in pub-

lished academic studies, as disaggregating scores violates the assump-

tion of independent error terms (Keith, 2005), causing biased

standard error estimates, overly liberal tests (Krull & MacKinnon,

1999), and artificially high power (Bennink et al., 2013).

Bathtub models provide a solution that overcomes the problems

specific to the aforementioned approaches by correctly modeling the

multilevel processes at hand. They offer an opportunity to investigate

the relationship between macro-level variables through micro-level

mechanisms. Using a latent variable model, a bathtub model raises

micro-level responses to the macro-level while taking into account

both within-group variance and sampling variability. Subsequently,

the latent variable can be used as a regular predictor in the macro-

level model. Applied to employee engagement, bathtub modeling pro-

vides an opportunity to examine how HRM policies and practices

influence organizational performance through the behaviors of

employees. This analysis can be conducted without ignoring the pos-

sibility that employee engagement is personal and individually deter-

mined (Macey & Schneider, 2008), and without inflating statistical

power (Bennink et al., 2013, Krull & MacKinnon, 1999). The following

illustrates the modeling process step by step. First, the data require-

ments are described, followed by the two parts of the model and

their respective interpretation. Afterwards, several limitations to

bathtub modeling are presented.

2.1 | Data requirements

Before conducting a bathtub model, the sample size and the data for-

mat need to be considered. The power of a bathtub model largely

depends on the sample size at all levels of analysis. Hence, research-

ers should not only gather data of multiple groups, but they should
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also ensure high response rates within the groups. Bennink (2014)

demonstrates that a sample of as small as 40 groups with 10 respon-

dents per group can already result in nearly unbiased parameter esti-

mates in case of a bottom-up, micro–macro effect (e.g., engagement

on organizational performance). In order to detect more complex

effects like interactions or indirect effects, larger sample sizes at the

macro-level are required. Simulations demonstrate that 200 groups

with 10 respondents per group should be enough to detect most

effects (Bennink, 2014), suggesting that increasing the macro-level

sample size should be the focus for researchers seeking to examine

small and/or complex effects.

After data collection, the bathtub modeling requires the data to

be structured according to its multilevel nature. Depending on the

statistical software used, the model can be estimated on a data set

with either a long or a wide format. For long data sets, each row

would represent a micro-level case (e.g., employee), and one of the

columns would identify the macro-level unit this micro-level case

belongs to (e.g., team or work group). Subsequently, a bathtub model

can be applied using a multilevel regression approach. For wide data

sets, the format is more peculiar: each row needs to represent a

macro-level unit, whereas for each micro-level case, each measure-

ment should be stored in a separate column. This format is commonly

referred to as the persons-as-variable approach, and it does not work

in all software packages (e.g., Mplus).

2.2 | Bathtub model

A bathtub model consists of two parts: a measurement model and a

structural model. The measurement model describes the relationship

between the observed micro-level (individual) variable(s) and the

macro-level latent variable(s) based on them. Because this part of the

model is primarily concerned with raising the individual-level scores

to the group level, it is often referred to as the within-group part.

Next, the structural model describes the relationship between the

variables at the macro-level. By relating the latent variable, derived

from the measurement part, to the other macro-level variables of

interest, the bathtub model takes the individual variation that occurs

at the micro-level into account. The following elaborates on both

parts in more detail.

The measurement part of a bathtub model uses a multilevel

latent variable model to raise the observed individual data to the level

of the group. Here, the format of the individual, micro-level data is

quite important. The latent variable approach was initially proposed

by Croon and van Veldhoven (2007), who demonstrated how treating

individual scores as exchangeable indicators for a continuous latent

variable makes it possible to predict a group-level outcome with

lower-level independent variables. It works by estimating an unob-

served continuous score at the group-level based on the observed

individual data. Because the resulting latent group score reflects the

underlying individual data and its variance, it takes the measurement

and sampling errors that occur at the micro-level into account. How-

ever, this approach was developed specifically for raising continuous

variables to the group level using a normally distributed latent varia-

ble and, while very useful, the approach has the limitation that it can-

not treat categorical variables adequately.

Bennink, Croon, and Vermunt (2015) therefore propose an

extension of this latent variable approach, which makes it possible to

raise categorical variables to the group level using a generalized latent

variable modeling framework (Skrondal & Rabe-Hasketh, 2004). This

extended model allows micro-level discrete variables to be raised to

the macro-level using a categorical latent variable, called a latent class

variable. Using this approach, the unobserved heterogeneity at the

group level can be estimated using a latent class variable that clusters

together groups that are more similar to each other. In this way, indi-

vidual data can be raised to the group level by creating clusters of

macro-level groups (i.e., latent classes) based on the similarity of their

micro-level scores. Although it is common practice to have as many

latent classes at the macro-level as there are discrete categories at

the micro-level (Bennink, 2014), the optimal number of classes may

also be estimated based on fit measures like the Bayesian information

criterion (BIC), Akaike information criterion (AIC), or chi-square (χ2).

The strength of the measurement model can be assessed using the

entropy (R2), with values above .70 reflecting a strong model where

classes are adequately distinguished (Vermunt, 2010). This latent

class approach is especially useful in the social sciences. For example,

in HRM research, the effects of categorical variables are often of

interest (e.g., gender and educational level), whereas employee

behaviors are often measured with categorical, ordinal measures

(e.g., Likert-type items).

Once the measurement model is specified, the structural part of

the model can be estimated. As the individual scores have been ele-

vated in the measurement model, the structural model occurs com-

pletely at the macro-level, and this is where the actual hypothesis

testing takes place. Because it occurs on a single level, the interpreta-

tion of the structural model is comparable to that of a regular regres-

sion model, with direct, indirect, and/or interaction effects depending

on the specified model. The measurement scale of the dependent

variable determines the type of regression model that applies

(i.e., logistic, linear, or analysis of variance [ANOVA]).

To illustrate the above, imagine a study examining the effect of a

specific HRM practice, hours of leadership training received by man-

agers, on the performance of teams. The researchers might want to

examine whether a part of this effect is indirect, for instance, via the

engagement of employees. The bathtub model that corresponds with

such a study is presented in Figure 1. Both the leadership training

and the team performance occur at a macro-level, and therefore their

relationship can be estimated directly using a linear regression model

at the group level. In contrast, the engagement data is located at the

level of the individual employee and thus requires elevation to the

group level using a bathtub model before its involvement can be

examined. For this elevation, researchers can choose either a continu-

ous latent variable model or a latent class model. A continuous latent

variable would imply that group-level engagement scores run from

highly disengaged up to highly engaged groups, following a normal

distribution. A linear regression model could then be used to predict

team performance, based on the leadership training and the continu-

ous latent engagement scores. Alternatively, a latent class model

could be applied. This would result in various macro-level classes, and

subsequently, for each team, the probability that it belongs to one of

the classes is estimated. For instance, one class could consist of
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teams where most individuals display an average level of engage-

ment, whereas another class could be composed of teams with a few

highly engaged and several disengaged team members. In contrast to

an aggregation approach, the latent class model is able to differenti-

ate between these two groups based on their different team dynam-

ics. Afterwards, an analysis of covariance (ANCOVA) model can be

run at the macro-level, where team performance is explained by the

leadership training and the discrete latent group engagement scores.

Finally, based on the output test statistics, the study’s hypotheses

can be confirmed or rejected.

2.3 | Limitations of bathtub modeling

The micro–macro analysis in general and the bathtub modeling in par-

ticular are innovative and well-performing approaches to examine

how micro-level mechanisms influence the relationship between

macro-level variables. However, there are several limitations.

For example, it is unclear how sample size influences the perfor-

mance of bathtub models. Although Bennink (2014) demonstrates

that the method generally outperforms the traditional aggregation

and disaggregation approaches, the more complex bathtub models

with indirect or interaction effects can provide equally inaccurate

estimates when applied to small macro-level samples. While a sample

of 200 groups should be sufficient to provide accurate results for

complex models (Bennink, 2014), this number is quite large. The mini-

mum sample size to establish accurate results is unknown and seems

to differ from one model to the next. Furthermore, to date, no

research has been conducted regarding power in bathtub models

with continuous latent variables.

Additionally, it is unknown how missing values impact the perfor-

mance of bathtub models. Although the standard approach to hand-

ling missing values in multilevel research is listwise deletion, multiple

imputation is currently undergoing heavy development for the classi-

cal top-down effects (Van Buuren, 2011). The impact of missing

values and the best way of handling them in multilevel research with

bottom-up effects, such as bathtub models, has yet to receive empiri-

cal attention.

A further consideration lies in the person-as-variable approach,

which considers the employees within a group as interchangeable.

This approach implies that each individual within a group contributes

equally to the estimation of the latent score for that group. For con-

structs like engagement, this seems theoretically sound as each

employee’s engagement can be considered equally important to the

team’s latent score. However, there may be HRM research questions

in which the data of certain employees can be considered more

important to or representative of the group’s latent score. For exam-

ple, when accounting for differences in employment type (e.g., full-/

part-time or temporary/fixed contracts) or when scores follow spe-

cific distributions within subgroups of employees (e.g., forced distrib-

uted performance evaluations).

Although bathtub modeling clearly outperforms traditional aggre-

gation and disaggregation approaches (Bennink, 2014; Bennink et al.,

2013, 2015; Croon & van Veldhoven, 2007), multilevel structural

equation modeling (SEM) may function as an alternative. When the

outcome variable resides at the micro-level, multi-level SEM can be

preferable to bathtub models (Lüdtke et al., 2008). However, similar

to the traditional micro–macro analysis (Croon & van Veldhoven,

2007), multilevel SEM only works with continuous data and is unable

to handle categorical predictors. Additionally, multilevel SEM on con-

tinuous data frequently provides more biased estimates of the

bottom-up effects than the latent bathtub model advocated by this

paper (Onrust, 2015).

On a final note, bathtub models are very flexible and they run in

most statistical software developed for latent variable modeling,

including Mplus (Muthén & Muthén, 1998/2016) and Latent GOLD

(Vermunt & Magidson, 2013). They can be conducted in R (R Core

Team, 2016) as well, using the lavaan package (Rosseel, 2012), but this

requires some technical expertise. Similar to SEM, latent bathtub mod-

els can be extended to include multiple variables—both continuous

and discrete latent variables, with single or with multiple response

variables at the micro-level (Bennink et al., 2015). More detailed statis-

tical descriptions of the model can be found in Croon and van Veldho-

ven (2007) and Bennink et al. (2013, 2014), whereas a syntax for

bathtub implementation in Mplus is provided by Bennink (2014).

FIGURE 1 A bathtub model of the

mediating effect of employee engagement
in the relationship between leadership
training and team performance
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3 | OPTIMAL MATCHING ANALYSIS AND
EMPLOYEE ENGAGEMENT

The rapid development of HR technology has initiated a trend toward

the continuous measurement of personnel behaviors and cognitions.

Mobile applications, social networks, sociometric badges, wearables,

and continuous employee feedback systems are rendering more com-

plex and longitudinal HR data (Angrave et al., 2016; Bersin, 2015).

Employee engagement is one of the constructs that organizations

increasingly measure on such an ongoing basis, potentially because

research demonstrates it is less stable than previously assumed.

Although the work engagement employees experience is often

regarded as a stable state of mind, with a dispositional element to it

(Macey & Schneider, 2008; Schaufeli, Salanova, González-Romá, &

Bakker, 2002), studies demonstrate that the explained variance

among consecutive yearly measures ranges from a high of 74% to a

low of 31% (Mauno, Kinnunen, & Ruokolainen, 2007; Schaufeli, Bak-

ker, & Salanova, 2006; Seppälä et al., 2009). It seems that there is

also a temporary, transient element to engagement, as employees

report weekly and even daily fluctuations (Bakker & Bal, 2010; Llo-

rens, Schaufeli, Bakker, & Salanova, 2007; Sonnentag, 2003).

In line with the above, researchers call for prolonged periods of

observation with more frequent measurements of engagement. For

example, Harter et al. (2002) conclude their meta-analysis of the

Gallup engagement data calling for “longitudinal designs that study

changes in employee satisfaction–engagement, the causes of such

changes, and the resulting usefulness to the business future research”

(p. 276). Similarly, despite their relatively stable results, Seppälä

et al. (2009) argue that “longer follow-up with several measurement

points would also allow investigation of the developmental trajec-

tories of work engagement; utilizing a person-oriented approach

would yield a more specific understanding of stability/change in work

engagement than the conventional methods of the variable-centered

approach” (p. 478).

HRM researchers have been using methodology other than GLM

to examine longitudinal patterns for quite some time (Sanders et al.,

2014), but optimal matching analysis (OMA) remains relatively

unknown in the field. OMA is a quantitative method originating from

the natural sciences, where it has been especially useful in detecting

temporal patterns. The method works by assessing the similarity

among longitudinal sequences, after which an unsupervised learning

algorithm can be used to group the sequences based on their similar-

ity. The result is a categorical variable representing the patterns hid-

den in the longitudinal data, which can be an insightful classifier on

its own or can function as a predictor or outcome variable in further

analysis.

OMA has several unique characteristics that make it an addition

to the current methodological toolbox of HRM researchers. Similar to

other longitudinal methods, OMA only requires a small sample and

simulations demonstrate that results are still 95% accurate for sam-

ples as small as 50 employees (Dlouhy & Biemann, 2015). In contrast

to other methods, however, OMA is a person-oriented method,

meaning that the object under observation—the employee or team—

is the focus of the analysis, rather than the variance in a specific

independent variable (Abbot, 1988). This allows OMA to examine

patterns on multiple variables simultaneously, which is a more com-

plex assignment for other longitudinal methods, such as multilevel

and latent growth models (Curran, Obeidat, & Losardo, 2010). Hence,

OMA can be used to examine employees’ patterns on multiple

dimensions of engagement (e.g., vigor, dedication, and absorption;

Schaufeli et al., 2002) or on engagement data coupled with other

constructs. Additionally, OMA functions particularly well with the

new forms of HR data. OMA’s classification results only increase with

the number of nested observations (Dlouhy & Biemann, 2015), while

other longitudinal methods soon require higher order polynomials to

model observations over prolonged periods of time (Curran et al.,

2010). Finally, despite the many observations and dimensions poten-

tially included in OMA, it remains a relatively easy method to imple-

ment and interpret. To illustrate these advantages, the following

section elaborates on a hypothetical study of weekly employee

engagement data, like those gathered by a mobile application. The

data requirements are described, and afterwards each of the model

steps is explained. Finally, several limitations and alternatives are

discussed.

3.1 | Data requirements

OMA works by comparing cases based on their temporal sequences.

These sequences consist of a string of elements, each reflecting the

temporal state of the case at a specific moment in time. OMA han-

dles these elements as categorical labels at this stage of the analysis,

not recognizing any ordinal nature among them. Although this seems

a disadvantage, it allows OMA to discover patterns in data that do

not necessarily have an underlying order. For example, employees’

trajectories across functions, locations, or organizational units

(i.e., nominal or categorical variables) can be examined simultaneously

with their engagement or performance levels (i.e., ordinal variables).

While an order among elements can be assigned at a later stage of

the analysis, at this time, it suffices to label each state with a unique

element (e.g., working in finance, with high engagement, and high

performance = “A”). Once the elements are determined and labeled,

OMA requires the input data set to be transformed into a wide for-

mat, where each row represents a case and each column a measure-

ment occasion, so that for each case a sequence of elements arises.

Missing values are common in longitudinal research, but, com-

pared to other methods, OMA handles them relatively easy. As long

as no more than 30% of the elements within a sequence are missing,

replacing missing values by an additional element (e.g., “X” or “?”) will

result in a model performance that is nearly equal to that of a com-

plete data set (3% decreased classification accuracy in Dlouhy & Bie-

mann, 2015). Although late joiners, attrition, and other factors may

cause sequences to have different lengths, OMA can handle these as

long as the length of the shortest included sequence is at least 70%

of that of the longest sequence. Nonetheless, specific sequences may

contain more than 30% missing values. These sequences can either

be deleted or, if missing values gather around the start or end of the

sequences, the time frame of observation can be shortened. How-

ever, both of these approaches may introduce bias to the results and,

as an alternative, researchers can decide to impute the missing
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values. Despite potential collinearity between sequential and missing

elements, gap closure by recursive imputation has been demonstrated

to provide accurate estimates of the missing data points

(Halpin, 2012).

3.2 | Penalty costs

OMA determines the similarity between sequences based on the

operations needed to align them—to make them similar. There are

two types of operations that can be used to align sequences: indel

and substitution. Indel is short for the insertion or the deletion of an

element somewhere in the sequence whereas substitution refers to

the replacement of an element by another element in that same exact

place in the sequence. Both operations need to be assigned a penalty

cost to reflect the dissimilarity the operation corrected, and especially

the ratio between these respective costs is important (Aisenbrey &

Fasang, 2010; Biemann & Datta, 2014). By default, OMA uses a

standard indel–substitution cost ratio of 1:2, meaning that deleting

an element and inserting another comes at the same penalty cost of

a substitution.

This standard ratio implies that OMA views all underlying states

as equally dissimilar. However, as discussed earlier, HRM research

often uses ordinal variables, which imply that certain states are more

similar to each other based on their place in the underlying order. To

reflect this similarity, the penalty cost of substitutions between those

states can be decreased. Such a decrease can be based solely on the-

oretical assumptions but, alternatively, the observed transitions in the

actual data function as a basis. Here, the rationale is that the

observed transition frequency between states provides information

about the similarity between these states (Biemann & Datta, 2014).

To illustrate the above, assume three 5-week sequences: E-E-E-

E-E, representing a consistently engaged employee; N-N-E-E-E,

representing an employee who went from neutral to engaged; and D-

D-E-E-E, representing an employee who was disengaged for two

weeks. Using the standard cost ratio, either sequence can be changed

into the other at a penalty cost of 4: either by two element deletions

and two element insertions, or by two substitutions. Alternatively,

researchers could set theory-based substitution costs, penalizing tran-

sitions between states adjacent in the underlying order at a lower

rate. For example, 1.75 for the adjacent levels of engagement and the

standard 2 for more “distant” levels. Subsequently, the penalty costs

between the first and the last sequence in the above example would

still equal 4, whereas those between the first two sequences and the

last two sequences would now amount to 3.5. Data-based substitu-

tion costs would have the same effect if transitions between distant

ordinal states occur less frequently.

Although setting custom substitution costs thus seems sensible,

the approach has two downsides. First, substitution costs are not

sensitive to the direction of a transition. Hence, Aisenberg and Fas-

ang (2010) argue that custom costs should only be used “if there is

either a theoretical justification for the assumption that the costs are

the same independent of the direction of the movement […] or if one

of the directions is impossible” (p. 430). In HRM research, phenomena

like positive and negative spirals (Fredrickson & Joiner, 2002) may,

for instance, cause transitions toward the extremes of the

engagement continuum to be more frequent than the other way

around, invalidating this assumption of directional independence. Sec-

ond, data-based substitution costs will reflect the within-sequence

variability of elements and, therefore, the chosen time span of ele-

ments has a strong influence. This becomes evident once applied to

our engagement example. Assuming engagement fluctuates over

time, element transitions would occur relatively frequently when

longer spaced time spans, like yearly measurements, are used. In con-

trast, element repetition would occur frequently in the case of hourly

observations. Both time spans have consequences for the data-based

substitution costs, and while neither necessarily deteriorates results,

researchers should consider that an interdependency exists.

3.3 | Clustering the sequences

Once the penalty costs are determined, the optimal matching algo-

rithm can assess the (dis)similarity of each dyad of sequences by

aligning them. Although there may be several ways to align two

sequences, the algorithm seeks the one with the least penalty costs.

As illustrated earlier, assigning custom substitution costs would thus

make the algorithm more prone to use substitution. The process of

sequence alignment is repeated for all dyads in the data set and the

resulting penalty costs are stored in a Euclidian distance matrix

known as the dissimilarity matrix.

Next, a classification algorithm can be applied to the dissimilarity

matrix. Any unsupervised learning algorithm that handles Euclidian

distance matrices can be used. However, Dlouhy and Biemann (2015)

“do not recommend using k-means, median, centroid and single link-

age clustering for OMA at all” (p. 171). Out of the eight techniques

they tested, Ward’s minimum variance method consistently per-

formed best. Irrespective of the chosen algorithm, the result is a cate-

gorical variable where cases are assigned to a category based on the

underlying patterns in their sequence. In the engagement example,

employees will be grouped based on the patterns that have occurred

in their weekly engagement levels. One can expect to find, for exam-

ple, clusters of consistently disengaged, neutral, and engaged

employees. Similarly, other clusters may include employees whose

engagement has been steadily rising or falling, whose engagement

demonstrates certain cyclical patterns, or whose engagement fluctu-

ates randomly. Depending on the assigned penalty costs and the cho-

sen number of clusters, employees with missing values will be added

either to the regular clusters or to clusters with specific, recurring

patterns of missing values.

OMA’s output can be valuable to researchers and practice in at

least four ways. First, OMA’s relatively simple implementation and

interpretation makes it an effective tool to get descriptive insights in

longitudinal data patterns. Second, OMA can be useful for identifica-

tion purposes. For example, based on the cluster output, researchers

can effectively identify which employees display certain (dis)engage-

ment patterns and reach out with follow-up interviews or (support-

ive) interventions. Third, the output can be used as an independent

variable in subsequent analyses to study the consequences of follow-

ing a specific pattern. For example, the displayed engagement pat-

terns could function as a predictor in leadership, performance, or

attrition models. Fourth and final, the cluster output can function as a
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dependent variable for subsequent analysis regarding pattern occur-

rence. For example, individual differences or HRM practices may

explain why certain employees are more likely to display particular

engagement patterns.

3.4 | Limitations of OMA

A general shortcoming of OMA is that it aims to summarize a data-

base filled with potentially very complex sequential patterns into a

(handful of) categorical variable(s). While this has proven useful in

certain research fields—including research on DNA, life courses, and

careers—it has yet to be tested whether longitudinal measures of

employee behaviors and cognitions can be similarly reduced to a set

of patterns.

A second challenge relates to setting the substitution costs right.

Several studies illustrate how this ratio should be matched to the spe-

cific requirements of the research question and the analysis (Hollister,

2009; Lesnard & Kan, 2011). Other scholars have argued that stand-

ard and custom cost ratios lead to similar conclusions (Biemann &

Datta, 2014). No study provides insights regarding the optimal set-

tings for research on employee experiences, which may be affected

by a wide variety of personal and institutional factors. Moreover,

there are rightful concerns regarding the symmetrical nature of the

substitution costs (Aisenbrey & Fasang, 2010), which causes transi-

tions between states to be regarded as similar, irrespective of their

direction. There seems to be no simple solution to the aforemen-

tioned issues, apart from some general best practices regarding the

cost-setting procedure (e.g., Gauthier, Widmer, Bucher, & Notredame,

2009).

A third limitation lies in the descriptive nature of OMA. The

method can reduce large information volumes into smaller, workable

sets of underlying patterns, and complementary analysis may provide

insights into why these patterns occur and what they result

in. However, researchers seeking to test why, how, and when pat-

terns occur and trajectories develop may turn to other methods.

Here, multilevel and latent growth models can be used to examine

the rate of pattern development as well as its causes. Additionally,

hazard and Markov models may uncover why and when transitions

between states happen. Moreover, time series analysis could be

applied to investigate reoccurring patterns and forecast the future

state of employees.

Finally, the only software that currently provides a means for

automated implementation of OMA is R (R Core Team, 2016). The

TraMineR package (Gabadinho, Ritschard, Müller, & Studer, 2011)

contains functions that automate the process to a large extent, and

only minor specification and customized programming is required.

Additionally, the package includes several visualization functions that

facilitate the interpretation of the model’s output. However, getting

accustomed to the R language and syntax can be effortful.

4 | DISCUSSION

Previous research has heavily relied on GLM to investigate HRM pro-

cesses and their potential impact on performance. This article

proposes two statistical modeling techniques that, despite their nov-

elty to the field, can be valuable additions to the methodological tool-

box of HRM researchers and practitioners. Such additions are

necessary seen the growing need particularly in light of the growing

need to justify, prioritize, and improve HRM decision making

(Boudreau & Ramstad, 2007; Rasmussen & Ulrich, 2015; Ulrich &

Dulebohn, 2015) and the new forms of HR data that arise due to

technological developments (Angrave et al., 2016; Bersin, 2015).

Using latent variables, bathtub models are put forward as the solution

to examine multilevel mechanisms with outcomes at the team or

organizational level without decreasing the sample size or neglecting

the variation inherent in employees’ responses to HRM activities.

Optimal matching analysis is proposed as particularly useful to exam-

ine the longitudinal patterns that occur in repeated observations over

a prolonged time frame. Research on employee engagement was

used to illustrate how each method functions and how they add value

over and above the current methods used in HRM research.

Although both bathtub modeling and OMA elevate micro-level

data to a macro-level, the two methods strongly vary in their pur-

pose, their complexity, and the expertise required to implement them.

The application of OMA does not require deep statistical or concep-

tual knowledge and the pattern visualizations facilitate an easy inter-

pretation. However, this simplicity is also reflected in the primarily

descriptive insights the method provides. In contrast, the underlying

equations as well as the output of bathtub models may be harder to

explain to laymen such as business and HR professionals (see Ben-

nink et al., 2013, 2014; Croon & Van Veldhoven, 2007). This

increases the difficulty that scholars and HR analytics professionals

may experience in translating the latent variable model’s results into

actionable insights for decision makers.

Nevertheless, both techniques can add value to HRM research

on a variety of themes, either applied separately or in synergy with

each other and other methods. Recruitment and selection is one field

of potential future application. OMA has been frequently applied on

career patterns (e.g., Blair-Loy, 1999) and, similarly, by clustering

applicants based on their prior work experiences, the method could

be valuable for selection purposes. For example, applicants’ historic

job positions can be coded into unique states based on the associated

management responsibilities or the required level of technical exper-

tise. The required 25 months of input data for OMA (Dhouly & Bie-

mann, 2015) could be extracted directly from applicants’ résumés,

but the digital job market becomes an ever richer data source as well

(e.g., LinkedIn, Xing, ResearchGate). The resulting clusters may facili-

tate decision making in the selection process, similar to applicants’

assessment center scores, interviewer ratings, and other recruitment

data. Additionally, a latent bathtub model could use such data to

examine the effectiveness of recruitment, selection, and/or socializa-

tion practices. Irrespective of these practices, bathtub models could

also investigate whether certain (combinations of) applicant profiles

improve the effectiveness of teams.

The methods may additionally be valuable with regard to work-

force planning, facility management, and flexible working arrange-

ments. Recent work by Lesnard and Kan (2011) demonstrates how a

two-stage OMA can be used to first cluster the daily work schedules

of employees, and subsequently use these clusters to unveil the
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patterns employees display in their weekly schedules. Using the data

collected by sociometric badges and “smart” workplaces, HRM scho-

lars and practitioners could use OMA to uncover patterns in the use

of office spaces over time or across locations. This may have direct

practical value in terms of the cost reductions related to facility man-

agement, but may also be insightful for the design of flexible work

arrangements. Moreover, certain configurations of work schedules

within teams may have a detrimental impact on their effectiveness.

This could be examined by using the cluster output of OMA in subse-

quent bathtub models, raising the work schedules to a team level and

relating them to team performance.

Furthermore, talent management research may benefit from OMA

and bathtub models. Contemporary organizations often focus their

attention on a small group of employees labeled with high leadership

potential (so-called HYPOs), consistent with the literature on Paretian

performance distribution (O’Boyle & Aguinis, 2012). OMA could model

the history of job positions that distinguish such HYPOs from other

employees. Moreover, one could examine whether receiving the status

of HYPO influences the developmental opportunities employees get in

the period that follows. The characteristics of the clusters derived by an

application of OMA to such research questions can be directly valuable

for the design of talent management policies and practices. Moreover,

the cluster output may function as input data for further analysis exam-

ining the causes and results of cluster membership. With or without the

cluster information, bathtub models could examine how talent manage-

ment policies affect individual employees and, in turn, organizational

performance. Moreover, bathtub models could examine which HRM

practices stimulate the development of employees in general, and

HYPOs specifically, and whether this development contributes to the

achievement of business goals. Finally, irrespective of HRM implemen-

tation, a latent variable model could be used to examine whether the

presence of HYPOs in a team influences team effectiveness.

Finally, the flexibility of latent variable models makes it a valuable

tool to examine a wide variety of contemporary HRM themes. For

example, latent approaches can also be used to model unobserved

heterogeneity between respondents. This can be valuable to HRM

research on team diversity, for example, in terms of location, tenure,

age, gender, or cultural background. A more abstract example lies in

the investigation of team heterogeneity in terms of individual psycho-

logical contracts (e.g., Bakk, Tekle, & Vermunt, 2013). Similarly, the

data of e-mail traffic or sociometric badges can be used to examine

heterogeneity in terms of the personal networks employees have.

Subsequently, the impact of such heterogeneity on the development,

retention, or performance of individuals, teams, and organizations

could be assessed. Combined with OMA, this latent heterogeneity of

teams could be monitored over longer periods of time to see whether

improvement occurs, potentially as a result of changes in HRM poli-

cies. Moreover, latent variable models can be used to grasp constructs

that are otherwise hard to measure. For instance, a latent performance

score could be estimated using multiple indicators of employees’

behavior or job output. This latent score has the potential to be a more

accurately reflection of employees’ actual performance than the sepa-

rate indicators or their combined average (Murphy, 2008).

In conclusion, bathtub models and OMA can add value on many

HRM themes, allowing an investigation of research questions that

were previously hard to examine. The methods can stimulate the

quality of decision making either by offering a different analytical

approach to the issue at hand or by working in synergy with each

other and more traditional HRM methodology. Bathtub modeling and

OMA are just two examples of methods that are common in other

research fields and can benefit the HRM community. We hope that,

by demonstrating how these specific methods add value in analyzing

the new forms of HR data, HRM researchers and practitioners

become more open to methodological developments within and out-

side the field of HRM. In the end, alternative methodology can offer

a different perspective and facilitate improved, more objective deci-

sion making regarding human capital.
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