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Chapter 1

Introduction

Global capital markets play a key role in today’s world economy by connect-
ing savers who do not need their wealth right away to those who can utilize
the wealth productively, such as companies (for example to build factories,
or acquire another company) and governments (to improve public infrastruc-
ture, invest in health care, etc.). Savers supply capital via their savings and
investments accounts, but also via their pension savings.

In the academic world, a large debate is ongoing since the 1960’s on whether
capital markets are efficient (Malkiel and Fama, 1970). If markets are efficient,
prices of assets should reflect all available information. In this dissertation, I
study the efficiency of stock and corporate bond markets, i.e. the two primary
means of financing for companies. There are five chapters, each taking a
different angle at whether stock and/or corporate bond markets are efficient.

First, in Chapter 2 individual and aggregate stock returns are decomposed
in three components, namely cash flow news, interest rate news and risk pre-
mium news. Previous studies, most notably the “good beta, bad beta” paper
by Campbell and Vuolteenaho (2004), do not include an interest rate com-
ponent. I find that unexpected interest rate changes account for more than
1/3rd of all variation in stock market returns. Using various stock portfolio
sorts, I find that exposure to interest rate news, called interest rate beta or
“ugly” beta, has a higher price of risk than both nominal cash flow beta and
risk premium beta.

Second, in Chapter 3 I study the link between the prices of stocks and
corporate bonds of the same firm. In theory, as both securities are claims on
the same firm assets, the prices should be integrated, a notion formalized by
Merton (1974). I compare corporate bond implied stock returns, inferred from
credit spreads and expected losses due to default, to realized stock returns to
determine the level of integration. Surprisingly, there is a strong negative
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correlation between expected and realized stock returns over the period 1994-
2015: stocks of which the corporate bond implies high returns realize low
returns and vice versa. This effect is stronger for firms with higher default
risk, as measured by probability of default, leverage or credit rating, and
cannot be explained by differences in the pricing of risk factors in stock and
bond markets, limits to arbitrage or liquidity premiums.

Third, in Chapter 4 I study a refined version of the standard cross-sectional
momentum strategy, called volatility-adjusted momentum. In particular, while
the standard methodology to create a momentum portfolio, originating from
the work of Jegadeesh and Titman (1993), ignores differences in volatility
amongst the individual assets, a rational investor would adjust for differences
in volatility. Volatility-adjusted momentum differs from standard momentum
in three ways: (1) assets are sorted on return-to-volatility, not on raw returns,
(2) assets are weighted inverse to their volatility within the portfolio and (3)
the portfolios target a constant volatility through time. Empirically, I find
that volatility-adjusted momentum has much higher Sharpe ratios (from 0.34
to 1.14) and alphas than standard momentum in the CRSP U.S. stock sample
spanning the 1927-2015 period. Moreover, for corporate bonds I find a sim-
ilar Sharpe ratio of 1.04 when applying volatility-adjusted momentum, while
standard momentum does not even reveal a significant momentum premium
in corporate bonds.

Fourth, in Chapter 5 I focus on the effect of momentum spilling over from
one asset class, equities (stocks), to another asset class, corporate bonds. As
in Chapter 3, the pricing of stocks and bonds of the same firm should be re-
lated, and thus also momentum effects might be related. Like previous studies
(Gebhardt, Hvidkjaer, and Swaminathan, 2005), I find that past winners in
the equity market are future winners in the corporate bond market. However,
I also find that a momentum spillover strategy exhibits strong structural and
time-varying default risk exposures that cause a drag on the profitability of
the strategy and lead to large drawdowns if the market cycle turns from a
bear to a bull market. By ranking companies on their firm-specific equity
return, instead of their total equity return, the default risk exposures halve,
the Sharpe ratio doubles and the drawdowns are substantially reduced.

Finally, in Chapter 6 I study the presence of the size, value, momentum
and low-risk anomalies, well-known in the equity literature, in corporate bond
markets. I find empirical evidence that these anomaly portfolios generate
economically meaningful and statistically significant alphas in the corporate
bond market. As the correlations between the single-factor portfolios are low,
a combined multi-factor portfolio benefits from diversification between the
factors: it has a lower tracking error and a higher information ratio than
the individual factors. The results are robust to transaction costs, alternative
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factor definitions, alternative portfolio construction settings and the evaluation
on a subsample of liquid bonds. Finally, allocating to corporate bond factors
has added value beyond allocating to equity factors in a multi-asset context.

In summary, each of the chapters covers both stock and corporate bond
markets, either by explicitly studying the relationship between the two (Chap-
ters 3 and 5), studying the same anomaly in both markets (Chapter 4) or by
porting concepts well-known in one market, i.e. interest rate risk in bond
markets and factors in equity markets, to the other market (Chapters 2 and
6).
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Chapter 2

Beta: The Good, the Bad and
the Ugly

2.1 Introduction

The relation between stock prices and interest rates is a key theme in finance,
which has been approached from various angles by existing work. Some studies
focus on understanding the correlation between (aggregate) stock returns and
interest rates (for example Baele, Bekaert, and Inghelbrecht, 2010 and Baker
and Wurgler, 2012). Other studies investigate whether interest rates contain
predictive information for stock returns (Fama and Bliss, 1987; Cochrane and
Piazzesi, 2005). Yet another stream of articles investigates whether interest
rate factors are priced in the cross-section of stock returns (for example Fama
and French, 1993). Finally, recent work has introduced the concept of equity
duration and how this affects the cross-section of stock returns (Dechow, Sloan,
and Soliman, 2004; Weber, 2016).

In this paper we aim to deepen our understanding of the relation between
stock prices and interest rates by using the present value approach of Campbell
and Shiller (1988). This approach splits stock returns into cash flow news and
discount rate news, and many researchers have applied this framework to
understand stock returns. The starting point of our analysis is to decompose
the total discount rate into the (nominal) risk-free interest rate and the equity
risk premium. Aggregate stock returns are then decomposed into cash flow
news, risk premium news, and interest rate news.

Our main focus is to extend the “good beta, bad beta” approach of Camp-
bell and Vuolteenaho (2004), who posit a two-factor model with stocks having
a beta for cash flow news and a beta for discount rate news instead of a
single (CAPM) beta. By decomposing discount rate news into risk-free rate
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news and risk premium news, we obtain a three-factor model. Using various
portfolio sorts, we show that splitting up the CAPM beta into a cash flow
beta, risk premium beta and interest rate beta generates an improved fit of
the cross-section of stock returns. In particular, we find that the interest rate
beta carries the highest price of risk, which is why we refer to this beta as the
ugly beta.

Our approach is as follows. Following existing work (for example Campbell
and Vuolteenaho, 2004; Campbell, Polk, and Vuolteenaho, 2010), we use vec-
tor autoregressive (VAR) models for stock returns, interest rates and predict-
ing variables (price-to-earnings ratio, term spread, small stock value spread,
and default spread for the aggregate stock market; book-to-market and return-
on-equity for the stock-specific model) to identify these components. We es-
timate these VAR models both for market returns and for individual stock
returns, which allows us to make statements about both the time series and
cross-section of stock returns. We focus on the U.S. stock market for the pe-
riod 1927-2015. We use a quarterly frequency for these VAR models, and thus
use the 3-month T-bill rate as the risk-free rate.

This framework generates a range of new insights on the relation between
stock returns and interest rates. As mentioned above, our main analysis is
that we decompose the CAPM beta into a cash flow beta, risk premium beta
and interest rate beta and study the pricing of these betas. Campbell and
Vuolteenaho (2004) call the cash flow beta a “bad” beta and the risk pre-
mium beta a “good” beta, because an Intertemporal CAPM predicts that the
transitory risk premium variation should carry a lower price of risk. We call
the interest rate beta an “ugly” beta because it turns out to have a price of
risk that is even higher than the price of cash flow risk, while the price of
risk premium risk is small and insignificant. We obtain this result using a
standard Fama-MacBeth approach, applied to portfolio sorts on value, size,
volatility, and various risk exposures. We can statistically reject the two-factor
“good beta, bad beta” model in favor of our three-factor model with a sep-
arate “ugly” interest rate beta. While the “good beta, bad beta” model can
explain up to 26.5% of the variation in portfolio returns, the addition of the
“ugly” beta raises this to 31.8%.

Our analysis also delivers other insights. First of all, when decomposing
the stock market return into cash flow, equity risk premium and interest rate
news, we find that interest rate news accounts for more than 1/3rd of the total
variation in market returns. The impact of interest rate movements is large
because of the persistence of interest rates. We also estimate the relevance of
interest rate shocks at the individual stock level, and find it is small: most of
the individual stock price movements are due to cash flows news, in line with
Campbell, Polk, and Vuolteenaho (2010).
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Second, we find that interest rates and risk premiums exhibit a negative
relation. In fact, an orthogonal positive shock to interest rates drives down the
total discount rate: while a 1% increase in the interest rate has a direct dis-
counting effect of about -7% on stock prices, this is more than compensated
by an indirect effect of interest rates on risk premiums, which corresponds
to a stock return effect of 9% when interest rates increase by 1%. This in-
direct effect occurs because interest rates negatively predict risk premiums
according to our estimates. Hence, the popular idea that the total discount
rate varies one-to-one with the interest rate is not supported by our results.
This also suggests that interest rate exposure cannot properly be estimated
by accounting-based measures such as equity duration (Dechow, Sloan, and
Soliman, 2004; Weber, 2016), as those measures directly measure the duration
of the cash flows of the firm, ignoring indirect risk premium effects.

Third, we find that nominal interest rate news comoves somewhat nega-
tively with nominal cash flow news and with equity risk premium news. Given
that movements in nominal interest rates are to a substantial degree driven
by changes in expected inflation (Brennan and Xia, 2002), this suggests that
stocks might provide a hedge for expected inflation risk, though the size of
these hedging effects is limited. This limited inflation hedging capability is in
line with most existing work on the inflation hedging aspects of stock invest-
ments (see for example Bekaert and Wang, 2010).

Our paper relates to various existing streams in the literature. First, it
builds on the stream of literature using the present-value framework of Camp-
bell and Shiller (1988). Campbell (1991) finds that monthly U.S. unexpected
aggregate stock market returns are driven by real cash flow news and discount
rate news in similar proportions, while Campbell and Ammer (1993) find that
discount rate news is the dominant driver. Campbell and Vuolteenaho (2004)
find that exposure to the cash flow news, “bad beta”, is significantly higher
priced than exposure to discount rate news, called “good beta”. Using this
beta decomposition, they are able to explain the size and value anomalies.
Vuolteenaho (2002) is the first paper to decompose individual stock returns,
and finds that cash flow news is the main driver of firm-level stock returns.
Campbell, Polk, and Vuolteenaho (2010) combine the market and firm-level
decompositions to examine the sources of the good and bad betas. They find
the firm-level cash flows to be the main driver of the different exposures of
value and growth stocks to aggregate discount rate and cash flow news.

Second, our paper is linked to papers estimating interest rate sensitivity of
stocks more directly. Baker and Wurgler (2012) add the excess return of long-
term government bonds to the CAPM model to find that “bond-like stocks”,
which are stocks of large, mature, low-volatile, profitable and dividend paying
firms, comove more strongly with government bonds than other stocks. Maio
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and Santa-Clara (2017) employ a similar model to explain the dispersion in
average returns of CAPM anomalies (value, return reversal, equity duration,
asset growth, inventory growth), and find short-term interest rates relevant
for pricing cross-sectional equity risk premia. Weber (2016) uses balance sheet
data to construct a measure of duration of the firms cash flows, similar to a
Macaulay duration for bonds. He finds that the stocks with a high duration
earn lower returns than short-duration stocks in the cross-section.

The remainder of this paper is organized as follows: Section 2.2 describes
the three-way stock return decomposition employed as well as the VAR model
to estimate the individual return components. Section 2.3 discusses the main
results, while Section 2.4 contains robustness checks. Section 2.5 concludes.

2.2 Theoretical framework

2.2.1 Decomposing stock returns into shocks

The methodology of this paper builds on the log-linearization of asset returns
introduced by Campbell and Shiller (1988) and Campbell (1991). Let rt+1

denote the log return of a stock from time t to time t+ 1. In general, this can
be written as:

rt+1 = log

(
Pt+1 +Dt+1

Pt

)
(2.1)

where Pt and Pt+1 are the prices of the stock at time t and t+ 1 respectively,
and Dt+1 any dividend paid out to the investor at time t + 1. Denote with
lowercase letters log variables, i.e. logDt = dt and logPt = pt. Taking a
first-order Taylor expansion around the mean of the log dividend-price ratio
d− p leads to the following equation

rt+1 ≈ ρ (pt+1 − dt+1) + ∆dt+1 − (pt − dt) (2.2)

where ρ ≡ 1

1+ed−p
is the linearization constant. Iterating forward, taking

expectations and ruling out rational bubbles, i.e. limT→∞ ρ
T pt+T → 0, results

in

pt ≈
κ

1− ρ
+ Et

 ∞∑
j=0

ρj ((1− ρ)dt+j+1 − rt+j+1)

 (2.3)

where κ ≡ − log(ρ) − (1 − ρ) log
(

1
ρ − 1

)
and Et the investors expectation at

time t. Equation 2.3 shows that the price of an asset is high when future cash
flows, i.e. dividends, are high and future returns are low.
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Substituting Equation 2.3 into Equation 2.2 leads to a two-way decompo-
sition of unexpected asset returns into cash flow (CF ) news and discount rate
(DR) news:1

rt+1 − Et [rt+1] = (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+1+j

Nt+1 = NCF,t+1 −NDR,t+1

(2.4)

This equation shows that unexpected high stock returns can be generated in
two ways: either future cash flows are expected to be higher at t+ 1 than the
expectation at time t, or expectations of future discount rates are lowered.
Thus, if the expectations on future cash flows do not change, any gain today
must be offset by losses in the future and vice versa.

In the literature various decompositions of stock returns are used. Camp-
bell and Ammer (1993) and Campbell and Mei (1993), for instance, split
stock returns into real dividends, real interest rates and excess stock returns.
Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010)
and Campbell, Giglio, and Polk (2013) split stock returns into real dividends
and excess stock returns, while assuming real interest rates remain constant.
In Appendix 2.A we provide a detailed literature overview of the various return
decomposition models, including details on the estimation inputs.

Before we turn to the specification used in this paper, we first discuss
a more general decomposition of stock returns which captures the various
two-way and three-way specifications in use. We rewrite Equation 2.4 into a
four-way decomposition by decomposing the log discount rate rt+1 into the
expected log rate of inflation πt, a log inflation premium θ 2, the ex-ante
expected log real-interest rate yreal

t and the log excess stock return et+1:

rt+1 = ynom
t + et+1 = πt + θ + yreal

t + et+1 (2.5)

where ynom
t is the log of the nominal short-term risk-free rate. By definition

the return of the nominal risk-free asset is known at the moment of investing.
As a result, the risk-free component in the total discount rate rt+1 which spans
the period from t to t + 1, is given by the risk-free rate observed at time t.

1From here on, we assume the approximate equalities in Equations 2.2 and 2.3 hold
exactly.

2Brennan and Xia (2002) show that the nominal risk-free rate may also contain a risk
premium for unexpected inflation shocks, which we denote by θ. We assume this term is
constant over time from here on, which it also is in the Brennan-Xia model. Thus this does
not affect the decomposition of unexpected returns.
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Hence we denote the nominal risk-free rate as ynom
t , not as ynom

t+1 . Equation 2.4
becomes:

Nt+1 = rt+1 − Et [rt+1]

= et+1 − Et [et+1]

= (Et+1 − Et)
∞∑
j=0

ρj∆dnom
t+1+j − (Et+1 − Et)

∞∑
j=1

ρjπt+j

− (Et+1 − Et)
∞∑
j=1

ρjyreal
t+j − (Et+1 − Et)

∞∑
j=1

ρjet+1+j

= NCFnom,t+1 −NΠ,t+1 −Nyreal,t+1 −Ne,t+1

(2.6)

where the second equality follows from Et [ynom
t ] = ynom

t , and the third equality
from substituting Equation 2.5 into Equation 2.4. Note that dt+1+j has been
written as dnom

t+1+j to emphasize the difference with real dividends. If it is
assumed that real interest rates remain constant as is commonly assumed
(Campbell and Vuolteenaho, 2004; Campbell, Polk, and Vuolteenaho, 2010;
Campbell, Giglio, and Polk, 2013), i.e. Nyreal,t+1 = 0, then the shock not
due to excess returns Ne,t+1 represents a shock to real dividends NCF real,t+1 =
NCFnom,t+1 −NΠ,t+1.

Equation 2.6 is of theoretical interest, but difficult to implement. This
is because real rates and expected inflation are not directly observable.3 In
this study we therefore focus on measuring the total nominal interest rate
component of stock returns, and focus on the term NCFnom,t+1 = NCF real,t+1 +
NΠ,t+1. The decomposition that we use in our empirical analysis is given by

Nt+1 = rt+1 − Et [rt+1]

= et+1 − Et [et+1]

= (Et+1 − Et)
∞∑
j=0

ρj∆dnom
t+1+j − (Et+1 − Et)

∞∑
j=1

ρjynom
t+j

− (Et+1 − Et)
∞∑
j=1

ρjet+1+j

= NCFnom,t+1 −Nynom,t+1 −Ne,t+1

(2.7)

From Equation 2.7 it follows that we obtain three components: interest rate
riskNynom,t+1, equity premium riskNe,t+1 and nominal cash flow riskNCFnom,t+1.

3Only for our small part of our sample period inflation-indexed bonds and inflation swap
data are available.
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Thus our results for cash flow cannot be directly compared to those of Camp-
bell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010) and
Campbell, Giglio, and Polk (2013), since in these articles it is assumed that
real interest rates are constant in order to determine a real cash flow compo-
nent. In contrast, we allow interest rates to vary and decompose stock returns
into nominal cash flows, nominal interest rates, and risk premiums. In Section
2.3.4, we do, however, use Equation 2.6 to interpret our results for nominal
interest rates and to relate our results to existing work.

2.2.2 VAR methodology

To implement the three-way decomposition in Equation 2.7, we follow Camp-
bell (1991) by using a vector autoregressive (VAR) model. In this method, first
the terms Et [et+1], (Et+1 − Et)

∑∞
j=1 ρ

jynom
t+j and (Et+1 − Et)

∑∞
j=1 ρ

jet+1+j

are estimated. Next, given the realization et+1, we can compute the total
shock Nt+1 and back out the nominal cash flow shock NCFnom,t+1 as a resid-
ual by Equation 2.7. This process has the advantage of only having to estimate
expected stock excess returns and nominal interest rates, not the dynamics of
the dividend process. Engsted, Pedersen, and Tanggaard (2012) show that
if the VAR model is properly specified, it makes no difference whether cash
flow news is computed directly or backed out as a residual. In the robustness
checks, we estimate a VAR model with less state variables and find that the re-
sults are very similar; they are thus not driven by the inclusion of a particular
state variable.

We assume the data originates from a first-order VAR model given by

Xt+1 = AXt + ut+1 (2.8)

where Xt+1 is a m×1 vector of state variables with et+1 as the first element and
ynom
t+1 as the second element, and m−2 remaining variables which are included

to predict the first two components. A, also called the companion matrix, is
a m × m matrix of the parameters of the model to be estimated and ut+1

an m × 1 vector containing the VAR innovations corresponding to Xt+1. We
do not include a constant but instead we demean the state variables prior to
estimation. The VAR model is used to decompose the stock market return into
cash flow, interest rate, and risk premium components. As discussed below,
we also estimate a VAR model at the firm level to obtain these components
for individual stocks.

From the process in Equation 2.8, the total, cash flow, interest rate and
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equity risk shocks can be computed as follows:

Nt+1 = e1′ut+1

Ne,t+1 = e1′ρA (I − ρA)−1 ut+1

Nynom,t+1 = e2′ρ (I − ρA)−1 ut+1

NCFnom,t+1 =
(
e1′ + e1′ρA (I − ρA)−1 + e2′ρ (I − ρA)−1

)
ut+1

(2.9)

where e1 is an m× 1 vector with the first element set to 1 and the remaining
elements to zero, e2 an m× 1 vector with the second element set to 1 and the
remaining elements to zero, I the m×m identity matrix and A the estimated
companion matrix. The term (I − ρA)−1 captures the persistence of a shock
in a particular state variable. Variables which have a small direct impact but
are very persistent can thus have high impact as stocks are long-term assets
(i.e., ρ is typically close to one as dividends are usually 10% or less). Note
that there is a difference between the excess return shock term Ne,t+1 and the
interest rate shock term Nynom,t+1: the former has an additional multiplication
with A due to the risk-free rate being known at the moment of investing.

2.2.3 Beta decomposition

As in Campbell and Vuolteenaho (2004), we define the market beta of stock
i as the covariance of total firm-specific shocks with contemporaneous total
market shocks, scaled with the variance of total market shocks:

βi,M =
Covt (ei,t+1 − E [ei,t+1] , eM,t+1 − E [eM,t+1])

Vart (eM,t+1 − E [eM,t+1])

=
Covt (Ni,t+1, NM,t+1)

Vart (NM,t+1)

(2.10)

where ei,t+1 is the log excess return of stock i and eM,t+1 is the log excess
return of the market. Following our decomposition of firm-specific and market-
wide total shocks in equity risk premium news −Ne, interest rate news −Ny,
and cash flow news NCFnom , we can split this single beta into three betas by
splitting the market total shock into excess return, interest rate and nominal
cash flow shocks:4

βi,M = βi,eM + βi,yM + βi,CFM (2.11)

where the subscripts denote the firm-specific (suffix i) and market (suffix M)
shock components used to compute the covariance. Note that the signs of

4One could also split the firm-specific shocks into three components using the firm VAR
model, yielding a total of 9 betas. In this study we focus on the betas involving total
firm-specific shock to a particular market shock.
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the risk premium and interest rate news terms have been flipped following
Equation 2.7. A positive innovation of the shock means that current stock
prices rise. The interest rate news component thus depends negatively on
interest rate shocks, and can be interpreted in a similar way as a bond return.

2.3 Main empirical results

We first present results for an aggregate VAR model, to decompose market
returns into risk premium, interest rate and cash flow news. We then turn to
a firm-level VAR model to estimate the stock-specific shocks, which allows us
to study the cross-section of the news components and study the various betas
defined in Equation 2.11. In particular, we study whether these betas carry
different prices of risk.

Our dataset draws from several databases. First, for the stock data, we use
data from the Center of Research in Security Prices (CRSP) monthly stock
files. We limit ourselves to common equity (share codes 10 and 11) and to
stocks traded on the NYSE, AMEX or NASDAQ. This dataset contains stock
prices, stock returns (including dividends) and shares outstanding. Second, we
merge the Compustat Annual database, which contains accounting data for
most publicly traded U.S. stocks, into our dataset. As the Compustat database
does not contain book values of equity prior to 1952, we use hand-collected
book equity values as used in Davis, Fama and French (2000). This data is
provided on the website of Kenneth French.5 Third, we source the CRSP
US Treasury and Inflation files for the 3-month, 1-year and 10-year (nominal)
US Treasury yields. The 10-year yield is provided from 1941 onwards. To
cover the 1927-1940 period, we prepend this series with the Long-Term U.S.
Government Securities series provided by the Federal Reserve Bank of St.
Louis.6 The sample data is on a quarterly frequency and runs from February
1927 to October 2015, spanning 355 quarters.

2.3.1 Aggregate VAR

We estimate our aggregate VAR on a quarterly frequency, following Campbell,
Giglio, and Polk (2013) and Campbell et al. (2017). The quarterly frequency
of the data is a compromise of statistical strength and ability to do more
granular analyses (i.e., rolling model estimation; sub period analyses) on the
one hand, for which a high data frequency is needed, and the focus on longer
term relationships between variables on the other hand, as stocks are typically

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
6https://fred.stlouisfed.org/series/LTGOVTBD
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thought of as long-term assets, making the estimation of month-to-month
dynamics less relevant.

We use six state variables in our VAR model, covering the models used in
earlier studies since Campbell and Vuolteenaho (2004). See Appendix 2.A for
details.

First, the excess log return of the market eM,t is the difference between
annual log return on the CRSP value-weighted stock index and the annual log
risk-free rate. When computing the return of the individual stocks, delisting
returns are taken into account when available to prevent survivorship bias.

Second, the log risk-free rate ynom
t is the log yield of the 3-month US

Treasury bond in fractions. We pick the 3-month rate as the data is on a
quarterly frequency, and transform it from an annual rate to a quarterly rate
in order to match the investment horizon.

Third, we compute the term yield spread TYt as the difference between the
ten-year fixed maturity rate on US Treasuries and the 3-month rate. The term
yield spread is quoted in percentages. This variable is included because the
term yield spread is known to predict long-term bond excess returns (Fama
and Bliss, 1987). Keim and Stambaugh (1986) and Campbell (1987) point out
that stocks are also long-term assets, hence TY might also forecast stock excess
returns. Moreover, the yield curve tracks the business cycle, and expected
stock market returns are likely to vary along the business cycle.

Fourth, we include the log smoothed Shiller price-to-earnings ratio PEt
as the ratio of the current stock price to the trailing 10-year earnings of the
S&P500 index (Campbell and Shiller, 1988). This ratio captures fluctuations
in market valuations, with high (low) ratios indicating the stock market to be
expensive (cheap), and thus implying lower (higher) long-run returns in the
future. We source this ratio from the website of Robert Shiller.7

Fifth, we include the small-stock value spread V St. To compute the value
spread, we use the 2x3 size and book-to-market portfolios provided by Kenneth
French. These portfolios are constructed by rebalancing the portfolios at the
end of June of year t by taking the intersection of two size groups and three
book-to-market groups. The size breakpoint is the median NYSE size; for
book-to-market, the 30% and 70% percentiles of NYSE book-to-market values
are used, where the book and market values are from December of year t− 1.
Within the small cap stocks, we take the difference of the logs of the book-to-
market ratio of the high and the low book-to-market portfolio as our measure.

Sixth, we include the default spread DEFt, computed as the difference
between the log yield on Moody’s BAA and AAA bonds. The series are ob-

7http://www.econ.yale.edu/∼shiller/data/ie data.xls
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tained from the Federal Reserve Bank of St. Louis.8 This variable is included
because the default spread reflects both aggregate default probabilities, which
should be related to future cash flows, as well as a credit risk premium, which
should be related to the equity market risk premium.

Table 2.1, panel A, presents the coefficient estimates of the aggregate VAR
model.9 The first row shows that the predictability of quarterly market excess
returns is limited, as the adjusted R-squared is only 6.6%. However, this is
still higher than other studies on quarterly frequency, with Campbell, Giglio,
and Polk (2013, Table 3) obtaining a R-squared of 4.0% and Campbell et al.
(2017, Table 2) obtaining a R-squared of 3.4% in slightly shorter data samples.
As noted by Cochrane (2007), even such a low R-squared might generate
substantial variation in risk premiums, because the predicting variables are
persistent. The low R-squares do indicate that most deviations of the long-run
mean are unexpected. Still, we find statistically significant predictive power for
most variables. Past excess returns have a positive and significant (t-statistic
of 2.98) impact similar to Campbell, Giglio, and Polk (2013). Nominal interest
rates have a negative sign (t-statistic of -2.43), which conflicts with the popular
idea that expected total stock returns can be decomposed in the risk-free rate
and a constant risk premium (Sharpe, 1964). The negative coefficient suggests
that interest rate changes are partly mitigated by risk premium changes in
the opposite direction. For the other three variables, we find that the term-
yield spread has a positive sign as expected but is statistically insignificant.
The value spread has a significant negative (t-statistic of -1.82) impact on
future stock returns, while the default spread coefficient is close to zero and
statistically insignificant. These results are similar to Campbell, Giglio, and
Polk (2013).

In the second row, the dynamics of nominal interest rates are given. We
find that last quarter’s interest rate is by far the dominant driver with a
coefficient of 0.9866 (t-statistic of 46.40). This shows that interest rates are
persistent and only slowly mean-revert. Lagged values of the excess market
return also have a positive and significant impact on the risk-free rate, while
other variables have limited statistical power. In the remaining rows, the
dynamics of the term yield spread, the price-to-earnings ratio, the value spread
and the default spread are given. We find that the own-lags have a large and
highly significant impact; the cross-variable terms have a more limited impact.

In panel B, the variance-covariance matrix of the news terms is given on
the left. These are derived by computing the shock vector ut+1 each period fol-

8https://fred.stlouisfed.org/categories/32348
9We find the modulus. i.e. the maximum absolute eigenvalue, of the VAR to be 0.9834,

below 1. Thus the VAR is stationary.
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lowing from the VAR model coefficients, and subsequently applying Equation
2.9 to split the excess return shocks into equity risk premium, interest rate
and cash flow news. We set ρ to 0.95 at an annual level for this computation.
The results are insensitive to modest variations in ρ. As mentioned above,
we flip the signs of the risk premium and interest rate news terms for ease of
interpretation: an increase in −Ne,t+1, −Nynom,t+1 or NCFnom,t+1 raises the
current stock price, and a positive covariance means that the impact on the
current stock price is in the same direction. We find that the largest compo-
nent is risk premium news with a variance of 0.0060 out of a total of 0.0066,
thus representing 90.8% of the total variation. Campbell, Giglio, and Polk
(2013) find a similar figure.10 Of the remaining variation interest rate news
and nominal cash flow news are approximately equally important, with 36%
and 40% respectively. Together, these contributions add up to 167%, which
can be attributed to the negative covariance terms.

Interestingly, we find modest evidence for stocks being real assets. If we
assume that real interest rates are constant, shocks in the nominal interest
rate are driven by shocks in the expected inflation. If stocks are real assets,
then an increase in inflation expectations should be offset by an increase in
nominal cash flow expectations, by a decrease of future excess returns or a mix
of the two. We find that the two covariance terms with interest rate news are
indeed negative (Table 2.1, Panel B), but these offsetting effects are not very
large. The correlations, listed on the right, equal -0.18 and -0.38 for risk pre-
mium news and cash flows news, respectively. These results can be compared
to the literature on the limited inflation hedging capacity of stock market in-
vestments. For example, Bekaert and Wang (2010) document low correlations
between stock market returns and inflation rates for many countries. Bekaert
and Engstrom (2010) show that increases in expected inflation coincide with
increases in equity risk premiums, while our results suggest a negative relation.
The correlation between news on future nominal cash flows and future excess
returns is small with -0.15. This suggests that, on a quarterly frequency, stock
returns are driven almost independently by updated future excess returns and
changes in future cash flow expectations.

One should be careful interpreting the finding that interest rate news drives
as much of the variation in stock returns as nominal cash flow news, as the
variance-covariance matrix does not show what the initial shock, i.e. “trigger”,
is for shocks in stock returns, only where these triggers accumulate: changes in
expected future excess returns, future interest rates or future cash flows. The
finding that interest rate “news” is a large component of stock returns should

10They report only the correlations and standard deviations. From these, it can be inferred
that the ratio of variances of risk premium news to total news is 88.9%.
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thus not be interpreted as stocks being very sensitive to contemporaneous
interest rate changes. Indeed, the VAR coefficients suggest that future excess
returns partly offset the future interest rate changes. Instead, it shows that
updated expectations on future interest rates, irrespective of the “trigger”,
have contributed substantially to the total variation in stock returns.

Panel C of Table 2.1 provides more insight in which shocks are driving the
news terms. On the left, the correlations between the residuals of the VAR
state variables and the news terms are given. Unsurprisingly, shocks in the
excess return correlate positively with risk premium news, interest rate news
as well as cash flow news. A shock in the interest rate correlates negatively
with risk premium news, implying that a positive interest rate shock causes
future excess returns to be lower, raising current stock prices. As interest
rates are persistent, future interest rates will also be higher, leading to lower
current stock prices and hence we observe a strong negative correlation of -0.76
between interest rate shocks and future interest rate news. The correlation
with cash flow news is relatively small, with a value of just -0.06. Shocks
in the term yield spread TY correlate mainly with interest rate news: an
increase in the term yield spread can be caused by higher 10-year rates, lower
3-month rates or a positive combined effect of the two. If the 3-month rate
is lower, it means lower future interest rates, leading to positive interest rate
news. For the price-to-earnings ratio, most of the shock comes from changing
prices, as the 10-year earnings only slowly updates. The correlation with the
excess return residual is 0.85 (not reported). Thus, it mainly correlates with
risk premium news. The correlations for the value spread are relatively small,
while an unexpected increase in the default spread, which typically happens
at the start of a recession, leads to higher future risk premia, lower expected
interest rates and lower future expected cash flows, in line with economic
intuition.

The right part of panel C shows the analytical mapping functions as defined
in Equation 2.9. These functions should be interpreted as marginal effects:
given a one-unit shock in the respective state variable, and no shocks in any of
the other state variables, it shows the distribution over the three news terms.
Thus by construction, the terms either add up to 1 for excess return (as the
three news terms add up to the excess return shock), or to 0 for all other state
variables (as we force the excess return shock to be zero). Still, these functions
provide insight in where shocks in particular state variables accumulate. For
excess returns, we find that the majority of an orthogonal positive shock would
be taken as positive news on future cash flows, with a relatively small positive
effect on future excess returns, and a small negative effect on future interest
rates. For interest rate shocks, we find a strong negative effect of -29.14 (t-
statistic of -1.41): a higher interest rate means future interest rates will also be
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higher, lowering current stock prices. This is a direct discounting effect, and
one can thus interpret the coefficient of -29.14, or -29.14/4 = -7.3 annually, as
a duration effect. This direct discounting effect is, however, more than offset
by lowered future excess returns (coefficient of 36.59), due to the fact that the
interest rate negatively predicts risk premiums in the VAR model.

It should be noted that the coefficients for interest rate shocks are not all
statistically significant though. For the term yield spread, value spread and
default spread the absolute t-statistics do not exceed 1.20, meaning they do
capture one of the news terms specifically. For the PE ratio, we find that an
increase leads to a strongly negative cash flow. This is an intuitive result, as
we impose that the excess return residual has to be zero, and thus by definition
the price will change very little. The PE ratio can thus only increase due to
lowered earnings. The lower the earnings of companies, the lower the expected
future dividends will be.

In Figure 2.1, the news terms are plotted through time. For the sake of
readability, the series have been smoothed by taking a exponentially weighted
trailing average. In line with the covariances in the table, we observe little
co-movement between the three news terms. The causes for up and down-
turns of the stock market are thus diverse. During the Great Depression (end
1920s), the cash flow shock was extremely negative, contributing substantially
to this crisis. However, also equity risk was discounted more heavily. The only
other period where both cash flow and risk premium news were very negative
together was during the Great Financial Crisis (2008). Campbell, Giglio, and
Polk (2013) find similar patterns for this “hard time”. In the other “hard
time” they document, namely the early 2000s, it was mainly due to investors
increasing future equity premia leading to current stock prices dropping, af-
ter a long period of compressing equity risk premia in the second half of the
90s. For interest rate news, the largest losses occurred in the early 80s. This
is mainly driven by strong upward shocks in interest rates at the time. We
conclude that there is sufficient variation in the news terms through time to
separately estimate the price of each.

2.3.2 Firm-level VAR

Besides the aggregate VAR, we also estimate a firm-level VAR to be able to
derive shocks on the firm and portfolio level. These shocks can then be used
to estimate betas of portfolios using Equation 2.11.

To estimate the firm-level VAR, we include the same state variables as for
the market-level VAR, except that we add the firm-specific log excess stock
return ei,t, log book-to-market ratio bmi,t and log return-on-equity roei,t.

11

11We do not remove the aggregate versions of the state variables, as we want these to drive
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The choice for these variables follows Vuolteenaho (2002) and Campbell, Polk,
and Vuolteenaho (2010).

The log book-to-market ratio is included to capture cross-sectional differ-
ences in valuations between stocks, where high (low) ratios indicate higher
(lower) future long-run excess returns (Graham and Dodd, 1934). We com-
pute the ratio by applying shrinkage prior to taking the log following Camp-
bell, Polk, and Vuolteenaho (2010).12 This is necessary, as taking the log of
values (close to) zero leads to extreme observations. Therefore, we shrink the
book-to-market ratio to 1, with a weight of 10% on the prior and 90% on the
observation, resulting in

bmi,t = log

(
0.9BEi,t + 0.1MEi,t

MEi,t

)
(2.12)

where BEi,t (MEi,t) is the book (market) value of equity of firm i at quarter t
respectively. We assume the book value at the close of December of a particular
year is available from April the next year onwards. The market value of equity
is always the most recently observed value, ensuring the book-to-market ratio
changes from quarter to quarter.

The log return-on-equity ratio is included to capture the evidence that
firms with higher profitability, controlling for their book-to-market ratio, earn
higher average stock returns (Haugen and Baker, 1996). We construct the
measure as in Vuolteenaho (2002). First, to compute return on equity, we
divide last year’s US GAAP earnings to the beginning of last years book
value of equity. The earnings and book value of equity are sourced from
Compustat. When earnings are missing, the clean surplus formula is computed
using the hand-collected book value of equity data from Kenneth French. See
Vuolteenaho (2002) for details on the computation. We ensure that potential
losses are not larger than the beginning-of-period book value of equity by
winsorization of the earnings. Otherwise, the return-on-equity might be below
-100%. The log return-on-equity ratio is then computed as:

roei,t = log

(
1 + 0.9

NIi,t−4:t

BEi,t−4
+ 0.1yt

)
(2.13)

where NIi,t−4:t is the net income over the last four quarters, BEi,t−4 the
beginning-of-period book value of equity and yt the 3-month T-bill rate. We

the interest rate process in the same way as in the aggregate VAR model. Coefficients of
aggregate variables (time t+ 1) on firm-specific variables (time t) are restricted to zero.

12For the firm-specific returns, we winsorize negative returns at -99.9% to prevent taking
logs of zero.
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shrink the return-on-equity to the risk-free rate to prevent the log transfor-
mation from returning extreme values in case the non-transformed return-on-
equity is close to -100%.

As most firms do not exist throughout the sample, we assume that the
companion matrix A is the same for all firms and time periods. In Section
2.4, we relax this assumption and find that our results are not altered in any
significant way. We estimate the firm-level VAR model with pooled-panel OLS
regressions. To ensure our results are not biased towards the end of the sample
due to the strong growth in number of stocks over time, we weight each stock-
quarter observation with the inverse of the number of stocks in that particular
quarter. This adjustment also ensures that the coefficients for the aggregate
variables are independent from the number of observations per time period,
and are therefore the same as in the aggregate VAR.

Table 2.2 reports the results.13 Panel A reports the dynamics of the firm-
specific variables; the rows with the aggregate variables have been omitted for
space reasons, as these are the same as in Table 2.1. We find that firm-specific
returns are harder to predict than aggregate returns, as the R-squared is only
3.1%, versus 6.1% for the aggregate return. This is not surprising given that
individual stock returns exhibit substantial idiosyncratic risk. Of the variables
predicting the firm-specific returns well are the log book-to-market ratio, albeit
with a t-statistic of only 1.50, and log return-on-equity with a t-statistic of
5.87, confirming the profitability effect. As with aggregate stock returns, past
quarter stock market returns have significant positive effect, which is in line
with the standard momentum effect of Jegadeesh and Titman (1993), while
interest rates and the price-to-earnings ratio have a significant negative impact.
Interest rate shocks now have a more negative effect than in the aggregate VAR
model. The book-to-market ratio and return-on-equity load strongly on their
own lags with coefficients of 0.97 and 0.89 respectively.

The variance-covariance matrix of the news terms is listed in Panel B of
Table 2.2. The variance of interest rate news is, as it is an aggregate variable,
similar to that in the aggregate model.14 However, as the variance of returns
on the firm-level is much larger, this represents just 3.9% of the total variance
of firm-specific stock returns. The cash flow news variance is 91.0% of the total
variance, and the equity risk premium news variance 32.0%. Thus nominal
cash flow news is on the firm-level relatively much more important than it is
on market level, where it accounted for just 40.2% of the total variation. This

13As with the aggregate VAR model, we find the maximum modulus of the eigenvalues to
be 0.9834.

14We equal weight all firm-quarter observations, rather than equal weighting the cross-
sections. Hence the variance deviates slightly from the aggregate VAR model, as it empha-
sizes recent quarters due to the growth in number of stocks over time.
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finding has also been documented by Vuolteenaho (2002). The correlations,
listed on the right of Panel B, are modest, ranging from -0.35 to +0.05.

Panel C reports the impact of shocks in VAR variables on the news terms.
The table on the left shows the empirical correlations between the residuals of
the VAR model and the news terms. We find similar effects as in the aggregate
model for the firm-specific variables. For the market state variables, we find
the correlation with (firm-specific) cash flow news to be approximately zero.

2.3.3 Betas of anomaly portfolios

Since its introduction in the 1960s, the Capital Asset Pricing Model (CAPM)
has been challenged by numerous “anomalies”, notably the size (Banz, 1981),
value (Basu, 1977) and low volatility (Haugen and Heins, 1972) effects. One
way to deal with these findings has been to simply add these anomalies as
new factors to the model, arguing these anomalies are compensations for some
unknown risks to investors. For instance, Fama and French (1992) developed
a three-factor model containing the market, size and value factors. However,
this approach does not provide a deeper understanding on why these anomalies
exist.

The beta decomposition derived in Equation 2.11 can provide this deeper
understanding. This study is not the first to employ beta decompositions to
study CAPM anomalies. Based on an Intertemporal CAPM, Campbell and
Vuolteenaho (2004) argue that market cash flow news should carry a higher
risk premium than market discount rate news. This is because discount rate
shocks are transitory: low returns due to an increase in discount rates today are
partially compensated by higher future expected returns. They find that value
and small cap portfolios have outperformed growth and large cap portfolios as
they have a relatively high exposure to market cash flow shocks (“bad beta”),
relative to exposure to market discount rate shocks (“good beta”). Campbell,
Polk, and Vuolteenaho (2010) extend this work by documenting that for value
portfolios this is mainly driven by a high sensitivity of the portfolio’s cash
flows to the market shocks, not the portfolio’s discount rate shocks. Campbell
et al. (2017) extend the two-way decomposition to include a premium for
volatility. They find that growth not only better hedges declines in future
discount rates, but also increases in volatility, hence demanding a lower risk
premium. However, none of these studies have analyzed potential differences
in interest rate beta as an explanation for differences in risk premiums.

To determine the pricing of the three betas we use portfolios as test assets.
As in Campbell and Vuolteenaho (2004), our primary set of test assets are
the 5x5 size-by-value portfolios. We construct these portfolios by sorting at
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the end of July15 of each year all stocks in five market cap groups and inde-
pendently in five book-to-market groups where the quintiles are based on the
NYSE stocks only. Subsequently, we form 25 market-value weighted portfolios
based on the intersection of these groups. For the book-to-market ratio, we
take the book and market values as of December of the year before. For the
three quarters following the rebalance, we maintain the positions unless there
are delistings; in that case, the proceeds are reinvested proportionally in the
remaining positions.

Besides these 25 portfolios, we add five market value weighted portfo-
lios based on past 12-month stock return volatility. These are rebalanced
each quarter, and are included to explicitly address the question whether low
volatility stocks indeed have a higher interest rate exposure.

Finally, we add a third set of portfolios. This set is specifically designed
to address the concern of Daniel and Titman (1997) that using only portfolios
sorted on characteristics known to influence average returns like value and size
might lead an asset pricing model to fit the high variation in mean returns to
only small deviations in the betas, as the betas might be close to each other.
To ensure there is sufficient spread in the betas, we construct 40 risk-sorted
portfolios in the spirit of Campbell and Vuolteenaho (2004). First, per stock
and per quarter, we estimate the following OLS regression over the past 20
quarters:

ri,t = β0+βMrM,t + βy∆y
nom
t + βTY ∆TYt

+ βV S∆V St + βDEF∆DEFt + εi,t
(2.14)

where ri,t is the log excess return of the stock over the quarter, the betas are the
coefficients to be estimated, and the independent variables are changes in the
aggregate state variables used in the VAR model. We exclude the Shiller price-
to-earnings ratio PEt from this regression as quarter-on-quarter changes in the
PE ratio are almost entirely driven by stock returns, leading to a very high
correlation with rM,t. The delta operator indicates the change from the start
of the quarter to the end of the quarter, i.e. the same period as over which the
stock return is measured. Stocks are first sorted in five groups based on their
estimated βM , and then within each of the five groups sorted in two groups for
each of the other state variable coefficients estimated in the regression. This
yields a total of 40 risk-sorted portfolios, which are market-value weighted and
rebalanced quarterly. The total number of portfolios is thus 70. The portfolio

15These portfolios are similar to the ones provided by Kenneth French, but are rebalanced
at the end of July instead of June, as we do not have a quarter ending at the end of June.
We need to rebalance at the end of a quarter to be able to determine the news terms of the
portfolios, hence we rebalance one month later.



CHAPTER 2. BETA 23

shocks are obtained by taking the market-value weighted average firm-specific
shocks generated by the firm VAR model.

As we require 20 quarters of VAR shocks to compute the risk-sorted port-
folios, the first quarter we can compute a return and shock runs from May
to July 1932. For comparability, we use for all portfolios the betas from May
1932 to October 2015. As Campbell and Vuolteenaho (2004) find substantial
differences in betas in the pre- and post-1963 periods (labeled “early” and
“modern” sample), we also report results separately for these periods, where
the early sample runs from May 1932 to January 1963 (123 quarters) and the
modern sample from February 1963 to October 2015 (211 quarters).

Table 2.3, panel A, reports the betas for the size x value portfolios. In the
full sample we find that small caps tend to have higher risk premium betas,
higher interest rate betas but lower cash flow betas than large caps. For the
early sample, a similar pattern emerges, but in the modern sample the relation
between size and the interest rate beta is flat while the cash flow betas are
actually higher. For value stocks, we find that they have lower interest rate
betas then growth stocks in the early sample, but that this relation is flat in the
modern sample. The risk premium beta results are mixed in the early sample,
while in the modern sample value stocks have clearly lower risk premium
betas than growth stocks. For the nominal cash flow betas, the results are
very consistent: value stocks have higher cash flow betas than growth stocks.
Campbell, Giglio, and Polk (2013) find a similar pattern for the real cash flow
betas of value stocks in their model. In general, we find clear differences in
betas between the early and modern sample for the size x value portfolios,
consistent with prior studies.

Panel B reports the results for the five volatility portfolios. Not surpris-
ingly, due to the close relationship between volatility and beta, the risk pre-
mium and cash flow betas tend to increase from low volatility to high volatility,
which is consistent across the samples. The exception is the interest rate beta.
Measured over the full sample as well as in the two sub samples, low volatility
stocks tend to have a higher interest rate beta than high volatility stocks, con-
sistent with other studies (Baker and Wurgler, 2012; Maio and Santa-Clara,
2017). However, we also note that this is mainly due to high volatility stocks
having a lower interest rate beta, Q1 to Q4 are relatively close to each other.

Panel C reports the full sample results for the risk-sorted portfolios. Of
particular interest are the portfolios double-sorted on market beta and the
interest rate change, as the coefficient on the interest rate change corresponds
closely with the interest rate beta. Within the high market beta portfolios,
we find that stocks which had, in the past, a high sensitivity to interest rate
changes (i.e., high βY in Equation 2.14), indeed also a higher interest rate beta
going forward. However, it seems that this effect only exists in market beta
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Q1 and Q2 portfolios, not in the lower market beta portfolios.

2.3.4 Pricing of the betas

In this section, we analyse the cross-sectional pricing of the betas using the
70 portfolios constructed in the previous section. Campbell (1993) derives a
discrete time version of the Merton (1973) intertemporal capital asset pricing
model (ICAPM) model to show that the expected return of an asset is a linear
function of the betas under certain assumption. This pricing model has been
employed by for instance Campbell and Vuolteenaho (2004) and Campbell
et al. (2017) to estimate the premium on each of the betas.

To understand how nominal interest rate risk should be priced in an In-
tertemporal CAPM, we consider two extreme cases. First, if real interest
rates are constant, all variation in nominal interest rates is due to changes in
expected inflation. Then, nominal interest rate news and nominal cash flow
news sum up to real cash flow news. Assuming that the ICAPM investor cares
about real returns, the ICAPM of Campbell and Vuolteenaho (2004) implies
a single price of risk for real cash flow news, and in this case nominal cash flow
risk and nominal interest rate risk should thus carry the same price of risk,
while risk premium news has a lower price of risk. Campbell and Vuolteenaho
(2004) assume that real rates are constant, hence this case corresponds to the
way they interpret their results.

The alternative extreme case is that inflation is constant. In this case, all
variation in nominal interest rates is due to changes in real rates. These real
rates directly enter the total discount rate, and hence in this case the price of
interest rate risk should equal the price of risk premium risk.

In reality, both real rates and inflation vary over time and the pricing of
nominal interest rate risk will differ from both cash flow risk and risk premium
risk. This is why we mainly focus on a model where all three components
have separate risk prices. As discussed below, we do however also include a
specification that follows Campbell and Vuolteenaho (2004).

In addition, it is important to note that the Intertemporal CAPM is just
one justification for why the different components carry different prices of risk.
In particular, there are several reasons why investors might care about interest
rate risk beyond its effect on stock prices. First, interest rates may affect
risk premiums in bond markets, and investors who invest both in bonds and
stocks will care about this. Second, pension funds and insurance companies
have liabilities that depend on interest rates. Third, interest rate risk may be
related to systemic liquidity risk which could in turn affect financial markets
beyond stock markets.

To estimate the prices of risk, we employ a Fama and MacBeth (1973)
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procedure using the full-sample equity risk premium, interest rate and cash
flow betas by estimating per year the following equation using Ordinary Least
Squares:

Ri,t = λe,tβi,eM + λyβi,yM + λCFβi,CFM + εi,t (2.15)

where Ri,t is the simple excess return of portfolio i over the 3-month T-bill
rate, and βi,eM (βi,yM , βi,CFM ) the full-sample estimated risk premium (in-
terest rate, cash flow) beta of portfolio i. The subscript t denotes the quarter;
the lambda coefficients, which represent the return per unit of beta, are aver-
aged over time. Standard errors are computed in two ways: first, we report
heteroskedasticity and autocorrelation corrected standard errors (Newey and
West, 1987).16 Second, we report bootstrapped standard errors in square
brackets where we resample quarters with replacement.17

We compute the price of the betas under three assumptions:

1. CAPM all betas are equally priced. This means we are pricing the total
(CAPM) beta.

2. GBBB the interest rate and cash flows betas are equally priced (λy =
λCF ), the risk premium beta might differ. This is the same setup as in
the “Good Beta, Bad Beta” study (Campbell and Vuolteenaho, 2004).

3. unrestricted all three betas priced separately.

For each of the three assumptions, we also re-estimate Equation 2.15 including
a constant. There are two interpretations to the results with constant versus
those without the constant. First, including a constant can be viewed as a
model misspecification test. The betas should capture all risks, and thus no
significant positive or negative excess return, captured by the constant, should
remain. Alternatively, it can also be viewed as a lighter test on the model, as
we no longer force the model to price both the equity premium as well as the
cross-sectional differences between the 70 portfolios, but only the cross-section.

A priori, we would expect a small and probably insignificant premium for
the risk premium beta, as it represents transitory risk, while for the sum of
the interest rate and nominal cash flow betas (i.e. GBBB model) we would
expect a highly positive premium if inflation risk is an important component

16We ignore the uncertainty in the estimation of the betas and news terms themselves. A
common way to incorporate uncertainty in the beta estimates is to use the Shanken (1992)
correction. However, we do not derive the betas from a multivariate regression as is common
(Cochrane, 2001), but instead compute covariances directly as implied by the Campbell-
Shiller return decomposition. When we use multivariate regressions to estimate the betas,
we find similar values, and the Shanken correction factor amounts to 1.84.

17We thus maintain the cross-sectional correlation structure between the portfolios and
the factors.
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of interest rate risk, as it adds up to the real cash flow beta representing
permanent risk (Campbell and Vuolteenaho, 2004). For the interest rate beta
alone we would also expect a positive risk premium, as interest rate changes
pose a risk to bond investors. Government bonds are assumed to carry a
positive risk premium to compensate for this risk (Fama and Bliss, 1987),
and thus one would also expect this premium to appear in stock returns. As
discussed above, whether the nominal cash flow beta has a premium similar,
lower or higher than the interest rate beta is undetermined.

Table 2.4, panel A, reports the full sample results. We first focus on the
results without constant. Under the CAPM assumption, we find a positive
and significant price of risk of 2.14% per quarter per unit of beta. The R-
squared of 11.4%18 indicates that the CAPM beta is not really able to price
the portfolio returns. The GBBB model is much better at explaining the
returns, increasing the R2 to 26.5%, while the mean absolute pricing error
of the portfolios drops from 0.45% to 0.30%. To test whether the constraint
λe = λy+CF that the CAPM implicitly imposes versus the GBBB model can be
rejected, we employ an F -test. The F -test statistic of 40.54 indicates that the
GBBB model is also statistically significantly better at explaining the returns
than the CAPM model. It achieves this by setting a low and insignificant
price on the risk premium beta and a high premium on the real cash flow beta
(βi,yM+βi,CFM ) of 6.63% per quarter. Campbell and Vuolteenaho (2004) have
found similar differences in the pricing of the two betas. The unrestricted
model reveals, however, significant differences in the pricing of the interest
rate beta versus the nominal cash flow beta. Although both are positive
and significant, the interest rate beta has a much higher price of risk than the
nominal cash flow beta. The F -statistic of 12.63 indicates that the unrestricted
model is a statistically significant improvement over the GBBB model. Also,
the R2 increases, and the mean absolute error declines slightly. We also find
the unrestricted model to be significantly better than the CAPM model (F -
statistic of 30.05). As mentioned above, there are several reasons why interest
rate risk may carry a higher price of risk than cash flow risk.

The three right-most columns of Table 2.4, panel A, show the same anal-
yses but then with a constant included. Clearly, the CAPM model without

18The adjusted R-squared is computed as follows per quarter:

R2 = 1− n− 1

n− k

∑
i ε

2
i∑

i(Ri − R̄)2

where n is the number of portfolios, k the number of regressors, εi the residuals, Ri the
return of portfolio i and R̄ the average over the portfolios returns. This allows negative
R-squares as we force the constant to be zero. Subsequently, the quarterly R-squares are
averaged over time.
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constant only loads on the CAPM beta to explain the equity risk premium; the
CAPM beta does not explain cross-sectional dispersion in returns, in line with
literature on the relation between beta and return to be relatively flat (Haugen
and Heins, 1972). Also with a constant, we find the GBBB and unrestricted
models to be significant improvements over the CAPM model (F -statistics
of 3.58 and 6.24 respectively), although the gain in R2 is less strong than
without constant. For the GBBB model, we find that part of the loading on
the real cash flow beta is shifted to the constant, which is positive and just
significant (t-statistic of 1.70), implying misspecification of the model without
constant. For the unrestricted model, the loadings on the three betas hardly
change when the constant is included; the constant itself is close to zero and
insignificant. We can thus not reject the hypothesis that the model without
constant is correctly specified. Moreover, also with a constant included we
find the unrestricted model to be statistically stronger than the GBBB model
in pricing the portfolios (F -statistic of 6.24).

Panel B reports the results for the pre-1963 period. In general, we find that
the GBBB and unrestricted models substantially improve upon the CAPM
model when no constant is included. However, once a constant is included,
we find hardly any statistical evidence of improved pricing of the GBBB and
unrestricted models over the CAPM model. Campbell and Vuolteenaho (2004)
come to a similar result, and point out that their real cash flow betas are during
this period approximately a fixed proportion of the total beta across the test
assets, making it hard for the asset pricing test to assign prices. We find
that in our early sample this proportion ranges from 5% to 26%, whereas in
the full sample it ranges from 15% to 43%. Thus there indeed seems to be
less variation relative to the full sample, but variation in the relative betas
certainly exists.

Panel C reports the results for the post-1963 period. For the CAPM model,
the results are very similar: the constant subsumes the total beta coefficient.
Both the GBBB and unrestricted models prove significant improvements over
the CAPM model (F -statistics of 6.83 and higher), although the improvement
of the unrestricted model over the GBBB model is now smaller and not always
significant. The premium on the interest rate beta is a much smaller 3.24%
(1.09%) versus the full sample estimate of 10.32% (10.07%) and the early
sample estimate of 15.04% (4.09%) for the model without (with) constant.

Still, in the model with constant the interest beta is statistically significant
and positive with a t-statistic of 1.79. Figure 2.2 plots the prices of risk
through time for the final specification. For the sake of readability, the prices
are smoothed using an exponentially weighted average with half-time of 12
quarters. It is immediately clear from the figure that the prices vary through
time, but are also relatively smooth. While the risk premium (excess return)
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beta is usually close to zero or slightly negative, both cash flow and especially
interest rate premiums vary strongly and are mostly positive. For the interest
rate beta, 1999-2000, i.e. the dot-com bubble, is an exceptional period with a
very negative price of risk.

The interest beta premium tends to comove with the cash flow premium
(correlation of 33%), and to a lesser extent with the risk premium (correla-
tion of 15%). Still, there are also periods where the correlation breaks down
between interest rate and cash flow prices, such as the early 1950s and late
1960s.

So far, the assessment of the various asset pricing models has focused on
statistical evidence: are the betas priced differently? Another way to compare
the models is to check whether a model is better able to price the anomaly
portfolios. As a measure, we compute per portfolio the pricing error, that is,
the difference between the quarterly realized return and the fitted return of
the pricing model, and subsequently take the average over the absolute values
of errors. The smaller this mean absolute error (MAE), the better the pricing
model is able to explain the returns of the anomaly portfolios.

Table 2.4 reports in the bottom two rows of each panel the MAE. The
first row (“MAE1”) is computed over all 70 portfolios, i.e. the exact same
set as on which the prices are calibrated; the second row (“MAE2”) reports
the MAE over the 25 size x value portfolios plus the 5 volatility portfolios.
Full sample, the improvement over all 70 portfolios is small for the three-
beta model over the GBBB model. However, for the anomaly portfolios we
find clear evidence the pricing improves when the interest beta is included,
especially in the cross-section: the MAE drops from 0.4620% to 0.4178%. It
also shows that still a relatively large portion of the errors remains. Over the
early sample, the MAE is close to unchanged, and for the modern sample we
observe a modest decrease in the pricing error.

In Table 2.5 the pricing errors for selected anomaly portfolios19 are dis-
played per model specification. Although we observe that in general the errors
indeed tend to shrink to zero when the interest beta is added, this is typically
by a small magnitude. This holds for the size, value as well as the low volatility
effect.

To conclude, there is clear statistical evidence that the interest rate beta
is priced differently from the cash flow and risk premium beta, but we find
the economic significance to be limited when it comes to pricing anomaly
portfolios.

19Of the 25 size x value portfolios, only the Q1/Q3/Q5 combinations are shown to save
space. The other portfolio results are available upon request.
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2.4 Robustness checks

2.4.1 Reduced VAR model

In Section 2.3 we based all results on the aggregate VAR model with six
state variables. Although the selection of state variables follows the literature
well (see Appendix 2.A for a discussion), the inclusion of particular variables
might drive our findings. Therefore we redo the analyses with a reduced VAR
model. For the absolute minimum number of variables, we need to have the
market excess return and the risk-free rate to estimate the two respective news
components, as well as a variable which includes the current stock price, oth-
erwise the decomposition no longer holds (Engsted, Pedersen, and Tanggaard,
2012). Amongst the six state variables, the Shiller PE ratio fulfills this role.
The Shiller PE also happens to be the strongest of the four remaining state
variables in predicting future market returns in the full VAR model (Table
2.1). Hence we re-estimate the VAR model with the market excess return, the
risk-free rate and the price-to-earnings ratio.

Panel A of Table 2.6 contains the results of the estimation. We find that
the adjusted R2 for the market return decreases slightly versus the full model,
from 6.57% to 5.88%. For the risk-free rate and the price-to-earnings ratio
it is virtually the same. The estimated transition matrix coefficients are also
very similar. This indicates that there are no major changes compared to the
full model.

In panel B, the covariance matrix of the news terms is shown. Compared to
the full model, the covariances between the news terms change only modestly.
Of the variance of the three terms, only the nominal cash flow changes from
0.0026 to 0.0018. In panel C, the correlations between the full model and
reduced model news terms are listed. The correlation between the excess
return components is very high at 0.97. The correlations for the other two
news terms amount to 0.75. They are thus highly correlated, but not perfect.

To assess whether this has a meaningful impact on the pricing of the betas,
the analysis in Table 2.4 is repeated with the reduced VAR model news terms
in panel A of Table 2.7. We find that the results are similar or even stronger:
the interest beta has a very high and significant premium, and is statistically
different from the nominal cash flow premium.

Interestingly, we also find that the inclusion of the interest rate beta im-
proves the pricing performance compared to the GBBB model: not only is the
statistical evidence stronger (higher F -statistics), but also the mean absolute
error decreases by about 25%, whether a constant is included (specification 6
vs. 5), or not (specification 3 vs. 2). This is large compared to the reductions
found for the full model.
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2.4.2 Out-of-sample estimation of the news terms

Underlying our main results is the assumption that the VAR model properly
captures investors’ expectations. In the previous robustness check, we checked
the sensitivity of the results for the inclusion of particular state variables,
but this still assumes that the relationships between the state variables are
constant over the sample and known in advance to investors.

To incorporate a dynamic relationship between the state variables, stock
returns and interest rates in particular, as well as to prevent foresight we re-
estimate the VAR model in a rolling fashion. At each quarter, we use the
previous 40 quarters, i.e. 10 years, to estimate the transition matrix and
apply this to the next quarter to compute the news terms. If we would do this
without any constraints, the transition matrix becomes non-stationary during
some periods, as indicated by a modulus being greater than 1. To prevent this
situation, we apply the following restrictions:

• We use the reduced VAR model to prevent too many coefficients to be
estimated over relatively few data points.20

• We explicitly restrain the interest rate dynamics by requiring the same
long-term average as in the full model as well as the same own-lag coef-
ficient of 0.9834. If we would not do this, the own-lag coefficient can be
greater than 1 at times, as interest rates are only stationary in the very
long run, not per se on a 10-year horizon.

• To prevent non-stationarity, we explicitly restrain the modulus of the
transition matrix to be 0.99 or smaller.

To incorporate the restrictions, we estimate the rolling VAR with the General-
ized Method of Moments (GMM). Like Campbell, Giglio, and Polk (2013), we
use Hansen, Heaton, and Yaron (1996) continuously updated (CUE) GMM as
it has finite-sample advantages over standard GMM. For comparability with
the full sample estimations, we include the first 10 years (February 1927 to
January 1937) by using the coefficients estimated over this period.

Each quarter, we re-estimate the VAR coefficients and apply these out-
of-sample to compute the news terms. We find that the total shock variance
increases from 0.0067 for the full sample estimated VAR model to 0.0073 for
the rolling VAR. The increase is relatively modest, given that the fit is no
longer in-sample. If we analyze the decomposition in more detail, we find

20The full VAR model has 42 coefficients, as it has 6 state variables and per state variable
7 coefficients (a constant and 6 coefficients on the lagged state variables). The reduced VAR
model has only 12 coefficients, of which we effectively fixate 2 (see second point), leaving 10
free coefficients to be estimated.
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that the risk premium variance decreases from 0.0060 to 0.0044, while the
other two variances increase. This suggests that the lack of foresight makes
the changes in expected excess returns more muted, attributing more of the
total shock variance to interest rates (from 0.0023 to 0.0037) and nominal cash
flows (from 0.0026 to 0.0060) instead. Comparing the shock terms head-to-
head, the total shocks have a correlation of 94%, while the individual news
terms correlations range from 75% to 84%. This suggests that the in-sample
estimation procedure does not lead to overfitting.

Panel B of Table 2.7 reports the asset pricing results for the full sample. In
contrast to the full-sample VAR model results, we observe that nominal cash
flow premium is no longer statistically larger than zero in the unrestricted
model, while the price attached to the interest rate beta becomes even larger.
Therefore, the evidence of the added value of splitting the real cash flow beta
into an interest rate beta and a nominal cash flow beta is even stronger, with
the F -statistics being 85.50 and 12.82 for the models without and with a
constant respectively. Also economically, the gain of including the interest
rate beta is large: the mean absolute pricing error decreases dramatically,
with the strongest decrease for the anomaly portfolio under the specification
without constant: from 0.5748% to 0.3017%. Thus by allowing one additional
free parameter, the pricing error is almost halved.

2.4.3 Characteristic-dependent firm VAR model

In the main results we have assumed that the companion matrix A is the
same for all firms. As we are employing characteristics-sorted portfolios in our
asset pricing test, we are making the strong assumption that the dynamics of
the individual stocks are the same across these portfolios. To alleviate this
concern, we modify the firm VAR model by adding interaction dummies based
on the characteristics. Specifically, each period we divide the universe in three
equal sized groups based on the book-to-market ratio (market capitalization or

12-month historic volatility) to create the dummies 1bmQ1
i,t and 1

bmQ1
i,t+1 , where

the superscript indicates the characteristic on which the sort is based (i.e., bm
for book-to-market, me for market capitalization equity and vol for volatility)
and whether the stock is on this characteristic in the top (Q1) or bottom (Q3)
tertile, where the ordering is such that high values of the characteristic are
assigned to Q1 and low values to Q3. We take the middle group Q2 as the base
group and hence do not include a dummy for this group. To ensure the groups
are equal sized, we compute the dummies for t and t+ 1 every quarter again.
Thus entrants and leavers in the universe do not bias the sizes of the groups.
To prevent the number of parameters to become very large, we only interact
the dummies with the interest rate state variable ynom

t , and interaction terms
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are only driven by the interest rate variable ynom
t and the interaction terms

based on the same characteristic.

Table 2.8 reports the results. For space reasons, the rows and columns
with the aggregate state variables have been removed, with the exception of
the interest rate column, which is the only aggregate variable to drive the inter-
acted variables. As we have three characteristics and two additional terms per
characteristic, there are six new state variables in total. These state variables,
being firm-specific, are constrained to only explain firm-specific variables, as
are the other firm-specific variables. We first discuss the bottom 6 rows of the
matrix, which describe the dynamics of the interaction terms, and then the
impact on other state variables.

From the coefficients, we observe that the interaction terms are positively
autocorrelated. For instance, ynom

t+1 1
bmQ1
i,t+1 has a coefficient of 0.11 on ynom

t , 0.75

on its own lag and -0.11 on ynom
t 1

bmQ3
i,t . Thus if a stock belongs to the top book-

to-market tertile Q1, next quarters value for the state variable ynom
t+1 1

bmQ1
i,t+1 is

expected to be 0.11 + 0.75 = 0.86ynom
t , which is positive. In words: if a stock

is this quarter in the top book-to-market group, it likely is next quarter as
well. The coefficient of 0.75 indicates how persistent this likeliness is.21 On the
other hand, if the stock currently belongs to the bottom group, next quarters
expected value is 0.11-0.11, which is close to zero. Thus, the data tells us
that it is unlikely a stock moves from the bottom to the top group from one
quarter to the next. The opposite is also true: the coefficient for a stock
currently being in the top group ending up in the bottom group ynom

t+1 1
bmQ3
i,t+1

equals 0.09-0.09, which is zero as well. This persistence is also visible for
the market cap groups, which have higher own-lag coefficients than the book-
to-market interaction terms. This indicates that the market capitalization
dummies are more persistent than the book-to-market dummies. For volatility,
we also find persistence, but the own-lag coefficients are the lowest of the
three characteristics, indicating that stocks transition groups fastest along the
volatility dimension.

With these interaction terms, we can assess the impact on the other state
variables. For the news decomposition the stock-specific log excess return
ei,t+1 and the interest rate dynamics ynom

t+1 are of particular importance. As
the interest rate is an aggregate variable, it is not affected by the inclusion
of firm-specific interaction terms. For the log excess return, we find that
the effects are relatively modest and statistically insignificant for the book-
to-market, but not for market cap and volatility: t + 1 excess returns of low

21These coefficients also pick up the persistence in interest rates. As the coefficient for
interest rates on its own lag is 0.87 is less than one, the coefficients of the interaction terms
cannot directly be interpreted as probabilities of switching from one group to another.
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market cap (volatility) stocks are more (less) negatively exposed to an interest
rate shock in year t than middle market cap (volatility) stocks. For volatility,
stocks in the Q1 group are also more negatively exposed.

This has implications for the news terms: if market participants expect a
difference in the reaction of high volatility stocks to interest rate shocks versus
low volatility, an interest rate shock will lead to different expected excess re-
turns versus the firm-VAR model employed in the previous section. Results of
the beta decomposition of the portfolio as well as the pricing of the betas show,
however, very small differences (results are available upon request). The rea-
son is that although the expected excess returns can now be estimated slightly
more precisely, firm-specific excess returns remain very hard to predict.22 For
comparison, the standard deviation of interest rate residuals is 0.16%, whereas
the standard deviations of the firm-specific excess return residuals in the base
case firm VAR model is 24.99%. Thus the difference in coefficients between
high and low volatility of 2.18 (0.70 + 1.48) is relatively small in comparison
to the difference in the volatilities of the two state variables.

2.5 Conclusions

Since the introduction of the present-value decomposition of asset returns by
Campbell and Shiller (1988), a number of studies have exploited this break-
down of stock returns into several components to better understand stock
return dynamics, both in aggregate as well as in the cross-section. Although
there has been active debate on the interest rate exposure of stock returns,
and given the important role interest rates play in financial markets in gen-
eral, to the best of our knowledge no other studies have separately estimated
a nominal interest rate component of stock returns. Instead, most studies opt
for estimating real cash flow and total discount rate shocks.

In this study, we disentangle interest rate shocks and nominal cash flow
shocks, and find that unexpected interest rate shocks, i.e. “interest rate news”,
explains as much of the variation in stock returns as nominal cash flow news.
Although interest rates have much lower variation than stock excess returns,
we find that the high persistence of interest rates leads to sizeable effects.
On the firm level, interest rates explain only 3.3% of the total variation, as
interest rates, in contrast to firm-specific excess returns and cash flows, are

22By construction, adding explanatory variables in an OLS framework can only reduce
the unexplained variation in the excess returns, not increase. The adjusted R-square, which
corrects for the number of regressors included, shows a small increase from 3.05% (Table 2.2)
to 3.30% (Table 2.8), indicating limited additional explanatory power of the six interaction
terms.
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identical for all firms in a given period, and are thus unable to explain any
cross-sectional variation by construction.

We also analyze the sensitivity of anomaly portfolios to interest rate news.
We find that growth stocks, large stocks and low volatility stocks have higher
interest betas than value, small and high volatility stocks, but these relation-
ships can vary through time. Allowing the prices of the three betas (equity
risk premium beta, interest rate beta and nominal cash flow beta), to vary
leads to a considerable improvement in explaining the returns of the anomaly
portfolios. The price of interest rate beta is estimated to be positive, and is in
most tests significantly different from the nominal cash flow beta price. Thus
treating the two betas separately reveals important distinctions in interest rate
exposures and pricing previously not observed.
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2.A Literature overview VAR models and decom-
positions

In the academic literature, multiple VAR models are in use. Table 2.9 sum-
marizes the main features of those models.

The model in this study draws primarily on the model of Campbell, Giglio,
and Polk (2013). For the sample period, we are limited by the CRSP and
COMPUTSTAT datasets, hence we start in February 1927. The quarterly
frequency of the data is a compromise of statistical strength and ability to do
more granular analyses (i.e., rolling VAR model estimation and rolling betas)
on the one hand for which monthly or quarterly data is needed and the focus
on longer term relationships between variables on the other hand, as stocks are
typically thought of as long-term assets, making the estimation of month-to-
month dynamics less relevant. We include all state variables used in the four
most recent papers except stock return variance as we are not interested in a
volatility beta. Campbell et al. (2017, Table 1, panel B) find that this variable
has very limited and statistically insignificant forecasting power for the other
state variables, thus excluding it is unlikely to affect our results. Campbell
et al. (2017) is the only study of the four to use real returns; in this study we
opt for excess stock returns rather than real returns for reasons explained in
the beta decomposition section.

For the firm-VAR model, there are less studies to draw on; see Table 2.10.
Both Vuolteenaho (2002) and Campbell, Polk, and Vuolteenaho (2010) use
annual data with excess stock returns, book-to-market ratio (for the cross-
sectional value effect) and a profitability measure.
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6Table 2.1: Aggregate VAR model
Panel A reports the OLS estimated coefficients, t-statistics (in brackets) and adjusted R2’s. The state variables are constructed as described in Section
2.2 and demeaned prior to estimation. Panel B reports the empirical covariance matrix (left) and the correlations, off-diagonal terms, and standard
deviations, diagonal (right) of the news terms. Panel C reports the mapping of a shock in a state variable to the news terms: left the empirical
correlations, on the right the marginal effects of a state variable shock as implied by the VAR model. To compute the standard errors of these derived
quantities, the delta-method (Cramér, 1946) is used. Significance at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively. A ρ
of 0.95 is assumed in the computation of the news terms. Sample period from February 1927 to October 2015.

Panel A: VAR coefficients
eM,t ynomt TYt PEt V St DEFt Adj R2

eM,t+1 0.1805*** -1.7159** 0.0017 -0.0385*** -0.0350* 0.0008 0.0657
(excess market return) (2.9840) (-2.4291) (0.3817) (-2.9441) (-1.8299) (0.0485)

ynomt+1 0.0025** 0.9866*** 0.0002 -0.0002 -0.0002 -0.0004* 0.9592
(risk-free rate) (2.0108) (46.3992) (1.4542) (-0.7391) (-0.6614) (-1.7818)

TYt+1 -0.1534 -2.6343 0.8526*** 0.0489 0.0149 0.1739*** 0.8150
(term yield spread) (-0.3984) (-0.4715) (25.7095) (0.6449) (0.1380) (2.7688)

PEt+1 0.3635*** -0.3705 0.0051 0.9726*** -0.0261 0.0049 0.9563
(price-to-earnings ratio) (5.8013) (-0.5445) (1.0823) (73.2478) (-1.2581) (0.2969)

V St+1 0.0781 -1.8002*** -0.0116*** 0.0250* 0.8934*** 0.0687*** 0.9451
(value spread) (1.3961) (-2.7611) (-2.6449) (1.8294) (41.2596) (6.1499)
DEFt+1 -0.4952** 5.2462** 0.0044 0.0005 0.2168*** 0.8284*** 0.8347

(default spread) (-2.2153) (2.3751) (0.4068) (0.0122) (2.6595) (14.5067)
Panel B: News

Var/covar −NM,e −NM,ynom NM,CFnom Corr/std −NM,e −NM,ynom NM,CFnom

−NM,e 0.0060 -0.0007 -0.0006 −NM,e 0.0773 -0.1812 -0.1454
−NM,ynom -0.0007 0.0023 -0.0009 −NM,ynom -0.1812 0.0484 -0.3761
NM,CFnom -0.0006 -0.0009 0.0026 NM,CFnom -0.1454 -0.3761 0.0514

Panel C: Shocks and news
Corr. shocks and news −NM,e −NM,ynom NM,CFnom Functions −NM,e −NM,ynom NM,CFnom

eM,t+1 0.7527 0.1856 0.2711 eM,t+1 0.1821 -0.0194 0.8373***
(1.5050) (-0.2731) (7.2464)

ynomt+1 0.4649 -0.7579 -0.0558 ynomt+1 36.5884 -29.1380 -7.4504
(1.2192) (-1.4091) (-0.3496)

TYt+1 -0.2985 0.4353 -0.0543 TYt+1 0.0457 -0.0314 -0.0144
(0.7438) (-0.8652) (-0.2567)

PEt+1 0.8276 0.3031 -0.1948 PEt+1 0.6678 0.2456 -0.9133**
(1.5347) (0.9012) (-2.3928)

V St+1 0.2224 0.2489 -0.2359 V St+1 0.0303 0.1858 -0.2161
(0.1052) (1.1972) (-0.6781)

DEFt+1 -0.4166 0.4136 -0.5170 DEFt+1 -0.0036 0.1036 -0.1000
(-0.0230) (1.3694) (-0.5871)
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Table 2.2: Firm VAR model
Panel A reports the OLS estimated coefficients, t-statistics (in brackets; clustered by firm-quarter as suggested by Petersen (2009)) and adjusted R2’s
of a pooled-panel regression. For space reasons only the results for the firm-specific state variables are shown; the other lines are identical to those in
the aggregate VAR model (Table 2.1). Panel B reports the empirical covariance matrix (left) and the correlations, off-diagonal terms, and standard
deviations, diagonal (right) of the news terms. Panel C reports the mapping of a shock in a state variable to the news terms: left the empirical
correlations, on the right the marginal effects of a state variable shock as implied by the VAR model. To compute the t-statistics of these derived
quantities, the delta-method (Cramér, 1946) is used. Significance at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively. A ρ
of 0.95 is assumed in the computation of the news terms. Sample period from February 1927 to October 2015.

Panel A: VAR coefficients
ei,t bmi,t roei,t eM,t ynomt TYt PEt V St DEFt Adj R2

ei,t+1 -0.0082 0.0055 0.0326*** 0.2968*** -2.9006*** -0.0008 -0.0648*** -0.0406 0.0023 0.0305
(excess return) (-0.6280) (1.4995) (5.8730) (3.4916) (-3.2505) (-0.1379) (-4.2080) (-1.4825) (0.1258)

bmi,t+1 0.0103 0.9666*** 0.0076 -0.2694*** 0.7733 -0.0066 0.0272* 0.0434* -0.0057 0.9192
(book-to-market ratio) (0.8173) (225.9875) (1.6249) (-3.4163) (0.9400) (-1.2154) (1.9002) (1.6827) (-0.3176)

roei,t+1 0.0284*** -0.0104*** 0.8943*** -0.0419*** -0.7415*** -0.0062*** -0.0252*** 0.0144*** -0.0098*** 0.7872
(return-on-equity) (7.7799) (-7.5487) (94.5513) (-3.5549) (-5.9849) (-7.9441) (-8.6599) (3.1787) (-3.8935)

Panel B: News
Var/covar −NM,e −NM,ynom NM,CFnom Corr/std −NM,e −NM,ynom NM,CFnom

−NM,e 0.0202 -0.0025 -0.0066 −NM,e 0.1420 -0.3491 -0.1937
−NM,ynom -0.0025 0.0024 0.0006 −NM,ynom -0.3491 0.0494 -0.0469
NM,CFnom -0.0066 0.0006 0.0573 NM,CFnom -0.1937 0.0469 0.2395

Panel C: Shocks and news
Corr. shocks and news −NM,e −NM,ynom NM,CFnom Functions −NM,e −NM,ynom NM,CFnom

ei,t+1 0.3123 0.0442 0.8538 ei,t+1 -0.0003 1.0003***
(-0.0248) (75.2215)

bmi,t+1 -0.3739 -0.0411 -0.5607 bmi,t+1 -0.0561 0.0561
(-0.6895) (0.6895)

roei,t+1 -0.3795 -0.0078 0.2691 roei,t+1 -0.2784*** 0.2784***
(-5.4423) (5.4423)

eM,t+1 0.6265 0.2091 -0.0329 eM,t+1 0.3409 -0.0194 -0.3215
(1.5265) (-0.2884) (-1.5476)

ynomt+1 0.4173 -0.8056 -0.0780 ynomt+1 69.5739 -29.1380 -40.4360
(1.2496) (-1.5294) (-0.8969)

TYt+1 -0.0971 0.3899 -0.0264 TYt+1 0.1418 -0.0314 -0.1104
(1.3663) (-1.0068) (-1.1795)

PEt+1 0.6848 0.2630 -0.1220 PEt+1 1.0596 0.2456 -1.3051**
(1.3738) (0.9482) (-2.0142)

V St+1 0.0380 0.2278 0.0216 V St+1 -0.2830 0.1858 0.0972
(-0.4797) (1.1042) (0.1643)

DEFt+1 -0.4449 0.3715 -0.0088 DEFt+1 -0.0751 0.1036 -0.0285
(-0.2640) (1.0720) (-0.1035)
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Table 2.3: Beta decomposition portfolios
Portfolios are constructed as described in Section 2.3.3. The table reports per portfolio the beta to
the three market news terms generated by the VAR model of Table 2.1. Betas are reported over
the full sample period (“Full”) which runs from May 1932 to October 2015, as well as for the early
sample (“Early”; May 1932 - January 1963) and the modern sample (“Modern”; February 1963 -
October 2015). To save space, we only report Q1, Q3 and Q5 for the 5x5 size x value portfolios; for
the risk-sorted portfolio we only report the full sample results.

Panel A: size (ME) x value (BE/ME) portfolios
ME Low Q3 High

BE/ME Low Q3 High Low Q3 High Low Q3 High

Full βi,eM 1.38 1.07 1.17 1.02 0.86 0.96 0.73 0.64 0.86
βi,yM 0.24 0.21 0.16 0.18 0.16 0.17 0.14 0.11 0.12
βi,CFM 0.00 0.09 0.13 0.12 0.17 0.21 0.10 0.17 0.23

Early βi,eM 1.55 1.31 1.47 1.07 1.03 1.24 0.79 0.73 1.23
βi,yM 0.35 0.26 0.20 0.17 0.12 0.13 0.10 0.05 0.02
βi,CFM -0.26 -0.07 0.02 -0.01 0.10 0.14 0.05 0.15 0.24

Modern βi,eM 1.22 0.85 0.90 0.97 0.70 0.71 0.66 0.55 0.53
βi,yM 0.15 0.16 0.13 0.18 0.20 0.21 0.18 0.17 0.20
βi,CFM 0.22 0.24 0.24 0.24 0.23 0.27 0.15 0.20 0.23

Panel B: volatility portfolios
Vol Low Q2 Q3 Q4 High

Full βi,eM 0.52 0.78 1.00 1.15 1.37
βi,yM 0.16 0.11 0.14 0.14 0.10
βi,CFM 0.09 0.18 0.20 0.25 0.28

Early βi,eM 0.63 0.86 1.05 1.16 1.28
βi,yM 0.11 0.06 0.10 0.10 0.06
βi,CFM 0.01 0.15 0.13 0.19 0.27

Modern βi,eM 0.42 0.71 0.95 1.14 1.44
βi,yM 0.20 0.17 0.18 0.18 0.14
βi,CFM 0.17 0.21 0.26 0.29 0.28

Panel C: risk-sorted portfolios (full sample only)
βM High Q2 Q3 Q4 Low
βY High Low High Low High Low High Low High Low

Full βi,eM 1.26 1.11 0.96 0.89 0.82 0.75 0.64 0.55 0.55 0.41
βi,yM 0.18 0.13 0.17 0.14 0.10 0.13 0.14 0.16 0.16 0.14
βi,CFM 0.15 0.24 0.13 0.20 0.17 0.17 0.11 0.14 0.11 0.16

βM High Q2 Q3 Q4 Low
βTY High Low High Low High Low High Low High Low

Full βi,eM 1.23 1.13 0.92 0.94 0.80 0.78 0.63 0.58 0.56 0.42
βi,yM 0.18 0.13 0.16 0.14 0.11 0.12 0.15 0.16 0.14 0.15
βi,CFM 0.15 0.25 0.15 0.17 0.16 0.18 0.10 0.16 0.12 0.17

βM High Q2 Q3 Q4 Low
βV S High Low High Low High Low High Low High Low

Full βi,eM 1.21 1.16 0.95 0.93 0.80 0.80 0.60 0.60 0.53 0.46
βi,yM 0.13 0.17 0.15 0.17 0.11 0.12 0.14 0.17 0.16 0.14
βi,CFM 0.23 0.19 0.19 0.13 0.19 0.17 0.19 0.09 0.14 0.16

βM High Q2 Q3 Q4 Low
βDEF High Low High Low High Low High Low High Low

Full βi,eM 1.16 1.19 0.90 1.00 0.73 0.88 0.53 0.72 0.43 0.60
βi,yM 0.16 0.15 0.16 0.16 0.12 0.11 0.15 0.18 0.17 0.13
βi,CFM 0.16 0.24 0.13 0.19 0.15 0.21 0.11 0.15 0.09 0.22
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Table 2.4: Pricing of betas
We employ Fama and MacBeth (1973) regressions by regressing each quarter the simple returns of
the 70 portfolios (25 size x value, 5 volatility, 40 risk-sorted) in excess of the risk-free rate on the
full sample betas to market risk premium shock, market cash flow shock and market interest rate
as reported in Table 2.3. In round brackets are the Fama-MacBeth standard errors, corrected for
autocorrelation and heteroscedasticity (Newey and West, 1987); in square brackets bootstrapped
standard errors. In the first column we restrict all beta coefficients to be equal to each other
(“CAPM”), and in the second column we restrict the cash flow and interest rate betas to be equal
to each other (“GBBB”) and in the final column we leave all coefficients free (“unrestricted”).
The adjusted R2 is the average adjusted R2 of the cross-sectional regressions. The F -tests below
the columns show the test-statistic whether the model in that column (i.e. no longer imposing the
equality of particular coefficients) is significantly better either the CAPM model (“F -test vs CAPM”)
or the “Good Beta, Bad Beta” model (“F -test vs GBBB”). The mean absolute error (MAE) is the
mean of the absolute values of the difference of the actual and fitted quarterly mean return of the
70 portfolios (“MAE1”) or only the 30 anomaly portfolios (“MAE2”). Stars denote the significance
at the 10% (*), 5% (**) and 1% (***) level. Results are reported for the full sample period which
runs from May 1932 to October 2015 (Panel A), as well as for the early sample May 1932 - January
1963 (Panel B) and the modern sample February 1963 - October 2015 (Panel C) separately.

no constant constant

model CAPM GBBB unrestricted CAPM GBBB unrestricted
specification 1 2 3 4 5 6

Panel A: full sample (May 1932 - October 2015)
constant 0.0168*** 0.0103* 0.0005

(2.9390) (1.6974) (0.0671)
[3.3810] [1.2919] [0.0534]

λe (price βi,eM ) 0.0214*** 0.0057 0.0026 0.0077 0.0053 0.0026
(4.6029) (0.7920) (0.3464) (1.1303) (0.7292) (0.3721)
[4.7885] [0.5608] [0.2807] [1.1690] [0.6148] [0.3019]

λy (price βi,yM ) 0.0214*** 0.0663*** 0.1032*** 0.0077 0.0350** 0.1007***
(4.6029) (4.4299) (4.1507) (1.1303) (2.1209) (2.6487)
[4.7885] [3.2998] [3.8297] [1.1690] [1.0768] [1.9732]

λCF (price βi,CFM ) 0.0214*** 0.0663*** 0.0491*** 0.0077 0.0350** 0.0479***
(4.6029) (4.4299) (3.2349) (1.1303) (2.1209) (2.9874)
[4.7885] [3.2998] [1.7823] [1.1690] [1.0768] [1.5030]

Adj. R2 11.4% 26.5% 31.8% 28.3% 32.0% 36.6%
F -test vs CAPM 40.54*** 30.05*** 3.58** 4.36**
F -test vs GBBB 12.63*** 6.24**
MAE1 0.4567% 0.3011% 0.2940% 0.3081% 0.2961% 0.2938%
MAE2 0.5515% 0.4343% 0.4161% 0.4941% 0.4620% 0.4178%

Panel B: early sample (May 1932 - January 1963)
constant 0.0151* 0.0128* 0.0126*

(1.9163) (1.6832) (1.6550)
[1.7299] [1.5297] [1.4453]

λe (price βi,eM ) 0.0331*** 0.0250** 0.0136 0.0209 0.0189 0.0181
(3.6336) (1.9880) (0.9042) (1.6212) (1.3319) (1.3799)
[3.8483] [1.8073] [0.7706] [1.6275] [1.1796] [1.0489]

λy (price βi,yM ) 0.0331*** 0.0740** 0.1504** 0.0209 0.0422 0.0490
(3.6336) (2.4857) (2.3089) (1.6212) (1.3029) (0.9655)
[3.8483] [2.1152] [1.8799] [1.6275] [1.1003] [0.6990]

λCF (price βi,CFM ) 0.0331*** 0.0740** 0.1047*** 0.0209 0.0422 0.0454*
(3.6336) (2.4857) (3.1902) (1.6212) (1.3029) (1.9353)
[3.8483] [2.1152] [2.4594] [1.6275] [1.1003] [1.1054]

Adj. R2 9.9% 18.9% 23.8% 25.3% 30.6% 32.7%
F -test vs CAPM 12.29*** 8.50*** 2.82* 1.33
F -test vs GBBB 4.14** 0.02
MAE1 0.4504% 0.4000% 0.3800% 0.3400% 0.3266% 0.3258%
MAE2 0.4882% 0.4647% 0.4555% 0.4544% 0.4303% 0.4304%
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(Table 2.4 continued)

no constant constant

model CAPM GBBB unrestricted CAPM GBBB unrestricted
specification 1 2 3 4 5 6

Panel C: modern sample (February 1963 - October 2015)
constant 0.0181** 0.0022 0.0066

(2.3889) (0.2882) (0.8120)
[2.9504] [0.2337] [0.6327]

λe (price βi,eM ) 0.0143*** -0.0030 -0.0056 -0.0004 -0.0030 -0.0066
(2.8922) (-0.3563) (-0.6265) (-0.0548) (-0.3571) (-0.6967)
[2.8684] [-0.3171] [-0.5170] [-0.0591] [-0.3443] [-0.6329]

λy (price βi,yM ) 0.0143*** 0.0478*** 0.0324* -0.0004 0.0426*** 0.0109
(2.8922) (3.5171) (1.7925) (-0.0548) (2.6014) (0.5235)
[2.8684] [3.5449] [1.3941] [-0.0591] [1.7712] [0.2901]

λCF (price βi,CFM ) 0.0143*** 0.0478*** 0.0689*** -0.0004 0.0426*** 0.0612***
(2.8922) (3.5171) (3.3217) (-0.0548) (2.6014) (2.8580)
[2.8684] [3.5449] [2.0905] [-0.0591] [1.7712] [1.9030]

Adj. R2 12.0% 31.7% 33.7% 32.0% 35.4% 36.9%
F -test vs CAPM 94.10*** 49.25*** 13.10*** 6.83***
F -test vs GBBB 2.42 3.79*
MAE1 0.4846% 0.2804% 0.2712% 0.3333% 0.2829% 0.2764%
MAE2 0.6086% 0.4054% 0.3926% 0.4908% 0.4118% 0.3992%



CHAPTER 2. BETA 41

Table 2.5: Pricing errors anomaly portfolios under various asset pricing models
Pricing errors full sample under the six specifications in Table 2.4. Errors represent quarterly
returns, and are defined as realized return minus fitted return. The sample runs from May
1932 to October 2015.

Panel A: size (ME) x value (BE/ME) portfolios
ME Low Q3 High

BE/ME Low Q3 High Low Q3 High Low Q3 High

1 -1.45% 0.36% 1.43% -0.31% 0.41% 0.81% -0.09% 0.35% 0.43%
2 -0.36% 0.68% 1.93% -0.06% 0.28% 0.62% -0.05% 0.06% 0.20%
3 -0.82% 0.42% 1.93% -0.20% 0.25% 0.66% -0.18% 0.15% 0.45%
4 -0.93% 0.55% 1.75% -0.18% 0.36% 0.96% -0.45% -0.06% 0.40%
5 -0.60% 0.63% 1.87% -0.11% 0.31% 0.81% -0.29% -0.04% 0.30%
6 -0.82% 0.42% 1.93% -0.20% 0.25% 0.67% -0.19% 0.15% 0.45%

Panel B: volatility portfolios
Vol Low Q2 Q3 Q4 High

1 0.39% 0.28% -0.52% -0.67% -1.48%
2 0.07% 0.19% -0.48% -0.62% -1.06%
3 -0.19% 0.33% -0.35% -0.35% -0.54%
4 -0.24% 0.07% -0.38% -0.26% -0.78%
5 -0.15% 0.11% -0.41% -0.39% -0.84%
6 -0.19% 0.32% -0.35% -0.34% -0.54%
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2Table 2.6: Reduced aggregate VAR model
Panel A reports the OLS estimated coefficients of the aggregate VAR model as well as the t-statistics in brackets. The final column reports
the adjusted R2. The state variables are constructed as described in Section 2.3.1 and demeaned prior to estimation. Panel B reports
descriptive statistics on the implied news terms. On the left, the empirical covariance matrix; on the right, the correlations (off-diagonal
terms) and the standard deviations (diagonal). Panel C reports the correlations with the news terms of the full VAR model. Significance
at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively. A ρ of 0.95 is assumed in the computation of the news
terms. The sample period runs from February 1927 to October 2015.

Panel A: VAR coefficients
eM,t ynomt PEt Adj R2

eM,t+1 0.1825** -1.1146* -0.0343*** 0.0588
(log excess market return) (2.3275) (-1.9380) (-3.1410)

ynomt+1 0.0031*** 0.9834*** 0.0000 0.9586
(risk-free rate) (2.5925) (66.8369) (0.0124)

PEt+1 0.3575*** -0.3371 0.9709*** 0.9562
(price-to-earnings ratio) (4.9145) (-0.5747) (82.3894)

Panel B: News
Var/covar −NM,e −NM,ynom NM,CFnom Corr/std −NM,e −NM,ynom NM,CFnom

−NM,e 0.0058 -0.0018 0.0009 −NM,e 0.0763 -0.4632 0.2646
−NM,ynom -0.0018 0.0025 -0.0008 −NM,ynom -0.4632 0.0502 -0.3822
NM,CFnom 0.0009 -0.0008 0.0018 NM,CFnom 0.2646 -0.3822 0.0424

Panel C: Correlation full VAR model news with reduced VAR model news
reduced/full −NM,e −NM,ynom NM,CFnom

−NM,e 0.9688 -0.1160 -0.1235
−NM,ynom -0.4706 0.7536 -0.0056
NM,CFnom 0.2529 -0.3281 0.7462
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Table 2.7: Pricing of betas under the reduced VAR model & under the rolling
reduced VAR model
We employ Fama and MacBeth (1973) regressions by regressing each quarter the simple returns
of the 70 portfolios (25 size x value, 5 volatility, 40 risk-sorted) in excess of the risk-free rate on
the full sample betas to market risk premium shock, market cash flow shock and market interest
rate. In round brackets are the Fama-MacBeth standard errors, corrected for autocorrelation and
heteroscedasticity (Newey and West, 1987; Newey and West, 1994); in square brackets bootstrapped
standard errors. In the first column we restrict all beta coefficients to be equal to each other
(“CAPM”), and in the second column we restrict the cash flow and interest rate betas to be equal
to each other (“GBBB”) and in the final column we leave all coefficients free (“unrestricted”). The
adjusted R2 is the average adjusted R2 of the cross-sectional regressions. The F -tests below the
columns show the test-statistic whether the model in that column is significantly better either the
CAPM model (“F -test vs CAPM”) or the Good Beta, Bad Beta model (“F -test vs GBBB”). The
mean absolute error (MAE) is the mean of the absolute values of the difference of the actual and fitted
quarterly mean return of the 70 portfolios (“MAE1”) or only the 30 anomaly portfolios (“MAE2”).
Stars denote the significance at the 10% (*), 5% (**) and 1% (***) level. Results are reported for the
full sample period which runs from May 1932 to October 2015. Panel A reports the results for the
full-sample reduced VAR model (see Table 2.6) and Panel B reports the results for the out-of-sample
rolling reduced VAR model.

no constant constant

model CAPM GBBB unrestricted CAPM GBBB unrestricted
specification 1 2 3 4 5 6

Panel A: full sample reduced VAR model
constant 0.0172*** 0.0109* -0.0001

(3.0228) (1.9371) (-0.0118)
[3.4741] [1.6917] [-0.0111]

λe (price βi,eM ) 0.0213*** 0.0005 0.0185* 0.0074 0.0013 0.0186
(4.5997) (0.0609) (1.9351) (1.0944) (0.1665) (1.6112)
[4.7825] [0.0396] [1.3974] [1.1365] [0.1208] [1.2268]

λy (price βi,yM ) 0.0213*** 0.0829*** 0.1608*** 0.0074 0.0455*** 0.1613***
(4.5997) (4.4450) (4.4300) (1.0944) (2.6612) (3.1742)
[4.7825] [2.9585] [4.0963] [1.1365] [1.2934] [3.2159]

λCF (price βi,CFM ) 0.0213*** 0.0829*** 0.0342 0.0074 0.0455*** 0.0344*
(4.5997) (4.4450) (1.6104) (1.0944) (2.6612) (1.9050)
[4.7825] [2.9585] [1.0369] [1.1365] [1.2934] [1.0268]

Adj. R2 11.3% 24.3% 30.7% 28.3% 32.0% 38.7%
F -test vs CAPM 41.08*** 47.26*** 6.80** 31.87**
F -test vs GBBB 58.14*** 12.77**
MAE1 0.4638% 0.3103% 0.2484% 0.3109% 0.2908% 0.2484%
MAE2 0.5619% 0.4254% 0.3187% 0.4977% 0.4462% 0.3183%

Panel B: rolling reduced VAR model
constant 0.0178*** 0.0171*** 0.0078

(3.1620) (2.9394) (1.2120)
[3.4741] [1.6917] [-0.0111]

λe (price βi,eM ) 0.0246*** 0.0466*** 0.0341*** 0.0079 0.0183 0.0239
(4.5960) (3.2997) (2.5792) (1.0229) (1.0907) (1.3505)
[4.7825] [0.0396] [1.3974] [1.1365] [0.1208] [1.2268]

λy (price βi,yM ) 0.0246*** -0.0188 0.2146*** 0.0079 -0.0107 0.1668***
(4.5960) (-0.8122) (4.6215) (1.0229) (-0.4640) (3.7358)
[4.7825] [2.9585] [4.0963] [1.1365] [1.2934] [3.2159]

λCF (price βi,CFM ) 0.0246*** -0.0188 0.0302 0.0079 -0.0107 0.0231
(4.5960) (-0.8122) (1.4654) (1.0229) (-0.4640) (1.1952)
[4.7825] [2.9585] [1.0369] [1.1365] [1.2934] [1.0268]

Adj. R2 11.2% 15.3% 24.3% 28.0% 32.8% 37.8%
F -test vs CAPM 4.96*** 48.85*** 1.52 39.55***
F -test vs GBBB 85.50*** 12.82***
MAE1 0.4749% 0.4504% 0.2728% 0.3167% 0.3154% 0.2592%
MAE2 0.5752% 0.5748% 0.3017% 0.5042% 0.5062% 0.3079%
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4Table 2.8: Firm VAR model with interaction terms
Panel A reports the OLS estimated coefficients, t-statistics (in brackets) and adjusted R2’s of a pooled-panel regression. The standard errors to
compute the t-statistics are clustered by firm-quarter (Petersen, 2009). The rows with the aggregate variables have been removed to save space. The
dynamics of the aggregate variables are the same as in Table 2.1. Panel B reports descriptive statistics on the implied news terms. On the left, the
empirical covariance matrix. On the right, the correlations (off-diagonal terms) and the standard deviations (diagonal). Significance at the 90%, 95%
and 99% levels are indicated with *, ** and *** respectively. A ρ of 0.95 is assumed in the computation of the news terms. The sample period runs
from February 1927 to October 2015. The columns with aggregate state variables, except for interest rate risk have also been removed to save space.

Panel A: VAR coefficients

ei,t bmi,t roei,t ynomt ynomt 1
meQ1
i,t ynomt 1

meQ3
i,t ynomt 1

bmQq
i,t ynomt 1

bmQ3
i,t ynomt 1

volQ1
i,t ynomt 1

volQ3
i,t Adj R2

ei,t+1 -0.0081 0.0044 0.0263*** -2.5812*** 0.1673 -0.3844** 0.1205 -0.2355 -1.4836*** 0.7026*** 0.0330
(log excess return) (-0.6326) (0.8913) (4.7177) (-2.7604) (1.1695) (-2.1939) (0.5792) (-0.9378) (-8.1774) (3.9332)

bmi,t 0.0086 0.9678*** 0.0100** 1.1659 -0.3574*** -0.3749** -0.2779 0.0379 0.3669** -0.4177*** 0.9189
(book-to-market) (0.6870) (170.6688) (2.0682) (1.3641) (-2.6627) (-2.2308) (-1.1232) (0.1435) (2.3494) (-2.7007)

roei,t 0.0265*** -0.0104*** 0.8897*** -0.1874 0.2027*** -0.6543*** -0.1741** -0.3214*** -0.9806*** 0.2512*** 0.7885
(return-on-equity) (7.4453) (-5.5851) (89.3682) (-1.4739) (4.3727) (-8.4610) (-2.1843) (-2.9151) (-8.0636) (6.4250)

ynomt+1 1
meQ1
i,t+1 0.0296*** 0.9242*** -0.0327*** 0.8993

(11.3013) (81.6711) (-35.3563)

ynomt+1 1
meQ3
i,t+1 0.0434*** -0.0465*** 0.8966*** 0.8682

(15.0337) (-36.3080) (81.5298)

ynomt+1 1
bmQ1
i,t+1 0.1134*** 0.7527*** -0.1127*** 0.7170

(30.1700) (73.4231) (-47.9399)

ynomt+1 1
bmQ3
i,t+1 0.0957*** -0.0931*** 0.7865*** 0.7469

(26.4699) (-44.8889) (75.7148)

ynomt+1 1
volQ1
i,t+1 0.1466*** 0.6751*** -0.1348*** 0.6353

(34.5499) (62.0846) (-46.5421)

ynomt+1 1
volQ3
i,t+1 0.1486*** -0.1405*** 0.6749*** 0.6396

(34.9431) (-48.4664) (61.6906)

Panel B: News terms
Var/covar −NM,e −NM,ynom NM,CFnom Corr/std −NM,e −NM,ynom NM,CFnom

−NM,e 0.0211 -0.0024 -0.0077 −NM,e 0.1451 -0.3353 -0.2204
−NM,ynom -0.0024 0.0024 0.0005 −NM,ynom -0.3353 0.0493 0.0435
NM,CFnom -0.0077 0.0005 0.0582 NM,CFnom -0.2204 0.0435 0.2412
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Table 2.9: Literature overview aggregate VAR models
Studies marked with a * in the return components section assume that real interest rates are constant.

Study Data sample Frequency State variables Return components

Campbell (1991) 1927-1988 monthly Real stock return
Dividend-to-price
1M T-bill rate (12m demeaned)

Real stock return
Real dividends

Campbell and Ammer (1993) 1952-1987 monthly Excess stock return
Dividend-to-price
Real interest rate
Change 1M T-bill rate
10Y-2M term yield
1M T-bill rate (12m demeaned)

Excess stock return
Real interest rate
Real dividends

Campbell and Mei (1993) 1952-1987 monthly Excess stock return
Real interest rate
Dividend yield
Inflation rate
Growth rate industrial production

Excess stock return
Real interest rate
Real dividends

Vuolteenaho (2002) 1954-1996 annual Excess stock return
Book-to-market
Profitability

Excess stock return
Real dividends*

Campbell and Vuolteenaho (2004) 1929-2001 monthly Excess stock return
10Y-3M term yield
Shiller PE
Value Spread

Excess stock return
Real dividends*

Campbell, Polk, and Vuolteenaho (2010) 1928-2001 annual Excess stock return
10Y-3M term yield
Shiller PE
Value Spread

Excess stock return
Real dividends*

Campbell, Giglio, and Polk (2013) 1929-2010 quarterly Excess stock return
10Y-3M term yield
Shiller PE
Value Spread
Default Spread

Excess stock return
Real dividends*

Campbell et al. (2017) 1926-2011 quarterly Real stock return
Stock return variance
Shiller PE
3M T-bill rate
Value Spread
Default Spread

Real stock return
Real dividends
Volatility
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Table 2.10: Literature overview firm VAR models
Studies marked with a * in the return components section assume that real interest rates
are constant.

Study Data sample Frequency State variables Return components

Vuolteenaho (2002) 1954-1996 annual Excess stock return
Book-to-market
Return-on-equity

Excess stock return
Real dividends*

Campbell, Polk and
Vuolteenaho (2010)

1928-2001 annual Excess stock return
Book-to-market
Return-on-equity

Excess stock return
Real dividends*
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Figure 2.1: News terms through time
This figure plots the trailing exponentially weighted average quarterly news term in fractions. The smoothing parameter is set to 0.51/12 =
0.9439. The news terms are based on the aggregate VAR model displayed in Table 2.1.
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4
8Figure 2.2: Prices through time
This figure plots the trailing exponentially weighted average quarterly prices of risk in fractions. The smoothing parameter is set to
0.51/12 = 0.9439. The prices are from specification 6 in Table 2.4.
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Chapter 3

Are Stock and Corporate
Bond Markets Integrated?
Evidence from Expected
Returns

3.1 Introduction

Firms can finance themselves on public capital markets in two ways: first, by
issuing equity, i.e. stocks, and second by issuing debt, i.e. corporate bonds.
Since both instruments are claims on the same assets, their prices and expected
returns should be linked to each other. As discussed below, several studies have
therefore studied the integration of stock and corporate bond markets using
various empirical methods.

In this paper we add to this integration literature by directly comparing
bond-implied expected equity returns to realized equity returns. For each firm,
we construct the expected equity return that is implied by the credit spread
on corporate bonds of this firm, following the approach of Campello, Chen,
and Zhang (2008). We then analyze the cross-sectional relation between these
bond-implied expected equity returns and average realized equity returns for
the U.S. market. Surprisingly, we find a strong negative relation. Firms with
high bond-implied expected equity returns have low average equity returns
and vice versa. This suggests that corporate bonds and stocks are not priced
consistently. The economic significance of this result is large. When sorting
firms on the bond-implied expected equity return, we find a predicted equity
return gap of 1.27% per month for the highest versus lowest decile portfolio,
while the realized equity return gap equals -1.79% per month.
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It is important to note that our analysis of expected and realized returns
provides evidence for relative mispricing of corporate bonds versus stocks. We
do not aim to explain the level of bond-implied expected returns, nor the level
of realized average equity returns. For such an analysis, one would need to
assume a specific asset pricing model and see if these levels are in line with
the model predictions. In contrast, for our main result, the negative relation
between expected bond and stock returns, we do not need to assume a specific
asset pricing model.

We do need to make a few other modeling assumptions. This concerns
first of all the default probability, which is required to transform the credit
spread to a corporate bond expected return. Second, our approach requires an
estimate of the sensitivity of equity returns to corporate bond returns, which is
needed to transform the corporate bond expected return to an expected equity
return. Our benchmark approach uses a Merton (1974) model to estimate
default probabilities, following Feldhütter and Schaefer (2016). We find the
Merton model to be more adaptive than the hazard rate model of Campbell,
Hilscher, and Szilagyi (2008) and better able to capture the strongly increasing
probability of default for low-rated debt. To estimate equity-bond sensitivities,
we employ a regression approach following Campello, Chen, and Zhang (2008).
We perform a wide range of robustness checks on these two methods. We
also perform robustness checks on the benchmark cross-sectional analysis, to
check that results are stable over time and not concentrated in small, hard-
to-arbitrage stocks. In addition, we correct for liquidity effects. We find that
our key result survives all these robustness checks.

We then proceed by trying to understand this lack of integration in more
detail. First, we document that the anomalous realized equity returns to
some extent reflect temporary mispricing in the equity market, but substantial
mispricing remains even at longer horizons. Specifically, when we focus on the
realized equity returns over a period of 5 years after sorting on the expected
return, the realized return gap is -0.50% per month instead of -1.79%. Second,
we analyze whether market risk or characteristics like size, book-to-market,
momentum, profitability, and investments are priced differently in corporate
bonds versus equities. We find some evidence that the market betas have a
negative slope for average realized returns (in line with existing work on the
“beta anomaly”; Frazzini and Pedersen, 2014), while the slope is positive for
bond-implied returns. However, we find that these differences in pricing do not
explain the negative relation between bond-implied and realized returns. In
line with these results, the alpha of a portfolio that shorts stocks of firms with
high bond-implied returns and buys stocks with low bond-implied returns is
significantly positive, even when we control for the five factors in the Fama and
French (2015) model, the Carhart (1997) momentum factor and the Quality-
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Minus-Junk factor of Asness, Frazzini, and Pedersen (2017).

Our paper relates to various streams in the literature. Most importantly,
two recent studies also focus on the cross-sectional relation between expected
returns in credit markets (corporate bonds and credit default swaps) and re-
alized equity returns: Friewald, Wagner, and Zechner (2014) and Anginer and
Yildizhan (2017). Both studies conclude that there is a positive relation be-
tween the cross-section of credit risk premiums and average realized equity
returns. Our results thus conflict with these studies. We now discuss both
studies in more detail.

Friewald, Wagner, and Zechner (2014) and our study differ in several as-
pects. First, Friewald, Wagner, and Zechner (2014) use a different approach to
construct credit risk premiums. Following Cochrane and Piazzesi (2005) they
run predictive regressions of credit spread changes on forward credit spreads
to obtain time series of the credit risk premium for each firm. Second, most
of their analysis is in-sample, since they run the predictive regressions over
the same period that is used to calculate realized equity returns. This is
particularly important in this case. Consider a firm that has had excellent
performance over the sample period with declining credit spreads and increas-
ing equity prices. The in-sample estimation will then lead to high estimates
for the credit risk premium as the credit spreads have compressed, while the
average realized equity return will be high as well. Hence, the in-sample esti-
mation biases towards finding a positive relation between credit risk premiums
and equity returns.1 In contrast, our credit risk premiums are only based on
information available at the given point in time and sorting stocks on these
credit risk premiums thus delivers a tradable investment strategy. Third, our
sample is much more extensive, covering on average 685 firms per month for a
period of more than 20 years. Friewald, Wagner, and Zechner (2014) use credit
default swaps to obtain credit spreads, and as a result their sample period is
less than 10 years and includes just 491 unique firms.

Anginer and Yildizhan (2017) use conceptually the same approach as we do
to obtain the credit risk premium from credit spreads.2 However, they do not
transform the credit risk premium to an expected, corporate bond-implied,
equity return. Hence, they cannot perform the quantitative comparison of
expected corporate bond-implied equity returns and realized equity returns.
Moreover, the focus of their paper is to analyze how systematic default risk

1In their out-of-sample robustness check Friewald, Wagner, and Zechner (2014) find much
weaker evidence for a positive relation between credit premiums and stock returns.

2Anginer and Yildizhan (2017) employ a hazard rate model to estimate the probability
of default rather than the probability of default implied by the Merton (1974) model. In
the robustness section we employ the hazard rate model of Campbell, Hilscher, and Szilagyi
(2008) and obtain results that are qualitatively similar to our benchmark results.
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betas relate to these expected and realized returns, while our main focus is
to perform an extensive and quantitative analysis of the bond-implied equity
returns and realized equity returns. Finally, Anginer and Yildizhan (2017)
use a longer sample period (1980 to 2010) but have a smaller cross-section of
firms: about 338 firms each month3, compared to 685 for our sample.

Our work also relates to other studies on the integration of stock and cor-
porate bond markets. In particular, a number of studies study integration
by looking at the time-series relation between stock and corporate bond re-
turns. Hence, these studies do not focus on pricing and expected returns, and
our work thus complements this stream in the literature. Examples of stud-
ies in this literature are Collin-Dufresne, Goldstein, and Martin (2001) and
Demirovic, Guermat, and Tucker (2017), who focus on the contemporaneous
relation between stock and bond returns, and conclude that stock and bond
markets are not perfectly integrated.4 In addition, there is a large body of
literature on lead-lag effects, concluding either that stock returns lead bond re-
turns (Kwan, 1996; Gebhardt, Hvidkjaer, and Swaminathan, 2005; Downing,
Underwood, and Xing, 2009; Haesen, Houweling, and Van Zundert, 2017) or
vice versa (Bittlingmayer and Moser, 2014; Ben Dor and Xu, 2015), which is
also indirect evidence of disintegration between the two markets as it suggests
new information is not priced in in both assets at the same time.5 Note that,
even if there is an imperfect time-series relation between stock and corporate
bond returns, this does not necessarily imply that long-term expected returns
are different, because this imperfect time-series relation might be caused by
temporary illiquidity or price pressure effects, or by exposure to factors that
are not priced.

In addition, our work is related to several studies that focus on the pric-
ing of equity market anomalies in bond markets (Chordia et al., 2017; Choi
and Kim, 2017). If bond and stock markets are integrated, then well-known
anomalies should be present in both stock and bond markets. Concretely, Choi
and Kim (2017) study the cross-sectional pricing of known equity anomalies
in the cross-section of corporate bond returns, and find that some anomalies
are similarly priced (net issuance, gross profitability, idiosyncratic volatility,
beta and accruals), but others are not (asset growth and momentum). Related

3Anginer and Yildizhan (2017) report 121,714 firm-month observations over the period
January 1981 to December 2010, which means on average there are 338 firms in a month.

4Schaefer and Strebulaev (2008) find that, despite this imperfect time-series relation, the
size of the exposure of corporate bonds to equity returns is similar to predictions of a Merton
(1974) model.

5Relatedly, there are also studies focusing on the link between credit default swaps and
stocks at the firm level, such as Duarte, Longstaff, and Yu (2007), Kapadia and Pu (2012),
Hilscher, Pollet, and Wilson (2015), and Kiesel, Kolaric, and Schiereck (2016).
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to Choi and Kim (2017) is the work of Chordia et al. (2017), who study the
predictive power of profitability, asset growth, equity market capitalization,
accruals and earnings surprises. They find that, after transaction costs, bonds
are efficiently priced. In our analysis, we examine whether our results can be
explained by a different effect of anomalies on stock and bond markets. We
control for anomalies related to beta, size, book-to-market, momentum, prof-
itability, investment, and quality-minus-junk, and find that our main result
cannot be explained by a different presence of these anomalies in stock versus
corporate bond markets.

Finally, our paper is related to the literature that documents a relation
between the default probability and average equity returns. They mostly
document a negative relation: firms with a high default probability have low
average returns. This result is often referred to as the “distress risk puzzle”.
We show that our main result is not simply a restatement of this distress risk
puzzle. First of all, we show that the relation between our bond-implied equity
return and default probabilities is not monotonic. Second, we double-sort on
default probabilities and the bond-implied equity return and continue to find
evidence for a negative relation between bond-implied and realized returns.

The remainder of this paper is organized as follows. In Section 3.2 we de-
scribe the data. Section 3.3 describes how we obtain expected equity returns
from corporate bond credit spreads. Section 3.4 presents the benchmark em-
pirical results: we analyze the relation between the bond-implied expected
equity returns and realized equity returns. Section 3.5 provides robustness
checks and Section 3.6 concludes.

3.2 Data

For our empirical analyses, we use stock data from the Center of Research
in Security Prices (CRSP) at a monthly frequency over the period January
1994 to December 2015. We only include common equity (share codes 10 or
11) and exclude financials (SIC codes 6000-6999) as their financial structure
is very different from corporates (see also Campbell, Hilscher, and Szilagyi,
2008).

To compute probabilities of default, we use accounting data from COM-
PUSTAT Quarterly. The COMPUSTAT data is linked to CRSP using the
CRSP/Compustat Merged database, and all accounting data is lagged for two
months to account for the reporting lag.

For the bond data we use monthly constituent data of the Bloomberg Bar-
clays U.S. Corporate Investment Grade and Bloomberg Barclays U.S. Cor-
porate High Yield indices, formerly known as the Lehman Brothers Fixed
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Income database. This dataset includes per bond the (option adjusted) spread
duration, which is adjusted for embedded options by Bloomberg. This is nec-
essary in case bonds are likely to be called ahead of their maturity date, as
the standard modified duration would overstate the interest rate sensitivity.
Using the option-adjusted spread duration, the bond is matched with the ap-
propriate U.S. Treasury bond. The credit spread (excess return) is computed
as the difference between the yield (return) on the corporate bond and the
yield (return) on the duration-matched Treasury bond. As the embedded
option-adjustment for the spread duration and the credit spread fields are not
available prior to January 1994, we start at this date. Furthermore, the credit
rating is computed as the middle rating of S&P, Moody’s and Fitch if all
three are available, or the worst rating if only two are available, in line with
the Bloomberg-Barclays index methodology.

We link the bond data to the stock/accounting data using CUSIP’s and if
not possible, hand-match the data, while taking M&A activity into account.
See Appendix 3.A for details. A single stock can have multiple bonds associ-
ated. To make the selected bonds as comparable as possible between stocks,
we always pick a senior unsecured bond. If multiple senior unsecured bonds
exist, we pick the one with the spread duration closest to 5 years in order to
reduce the dispersion across maturities.

Finally, we obtain the 1-month T-bill rate, the five Fama and French (2015)
factors and the Carhart (1997) Momentum factor return series from the web-
site of Kenneth French.6 The Quality-Minus-Junk factor is from the website
of AQR.7

3.3 Methodology

Our empirical framework is based on the idea that the equity and bond risk
premium of a firm are linked to each other as both are contingent claims
on the same firm assets (Merton, 1974). In the Merton (1974) model, the
bond and equity value are dependent on the firm value, the interest rate and
the asset volatility. To arrive at a parsimonious model, we assume, following
Campello, Chen, and Zhang (2008)8, the interest rate term structure to be
flat and deterministic, and the asset volatility to be at most a function of
asset value. This leaves the firm value as the sole driver of expected bond and
equity returns.

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
7https://www.aqr.com/library/data-sets/
8Campello, Chen, and Zhang (2008) also include a convexity effect. As we estimate the

expected return to maturity, convexity effects are not relevant in our setting.
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3.3.1 Obtaining expected equity returns

In this framework, the expected return of the equity of firm j can be written
as a function of the expected return on the bond:

Et
(
rEj
)

= yg,t +
δE/E

δB/B

(
Et(rBj )− yg,t

)
(3.1)

where yg,t is the yield of the duration-matched Treasury9, δE/E
δB/B the elasticity

of equity returns to bond returns and Et(rBj )− yg,t the expected return of the
bond of firm j over the duration matched Treasury bond. To implement this
equation, we need to have estimates for the elasticity and the expected bond
return.

We follow Campello, Chen, and Zhang (2008), Bongaerts, De Jong, and
Driessen (2017), and others for computing the expected bond return over Trea-
suries. Specifically, we assume defaults occur at maturity only and approxi-
mate the coupon-paying bonds by zero-coupon bonds with maturity equal to
the duration of the original bonds. Then, an investment of $1 in the zero-
coupon corporate bond pays off (1 + yg,t + sj,t)

Tj,t (1− Lπj,t) by expectation
at maturity Tj,t. Here, sj,t is the credit spread, πj,t the cumulative probability
of default to maturity, L is the loss rate in case of default, and Tj,t the time
to maturity, which we set equal to the duration of the bond. It then follows
that the annualized expected bond return in excess of a maturity-matched
Treasury bond is given by

Et
(
rBj
)
− yg,t = (1 + yg,t + sj,t) (1− Lπj,t)1/Tj,t − (1 + yg,t) (3.2)

Given the observed credit spread and Treasury bond yield, only an estimate
of the loss rate and default probability are needed to obtain a forward-looking
expected return. The loss rate L is set to 60% following Bongaerts, De Jong,
and Driessen (2017).10 In the next section we discuss the estimation of default
probabilities.

9Under our assumption of a flat interest rate term structure, we can pick any maturity
for the risk-free rate. Empirically, the term structure is not flat. We accommodate this by
picking the duration-matched Treasury bond yield, which is the relevant rate for the chosen
corporate bond. This also allows us to use the (option-adjusted) credit spreads as supplied
by Bloomberg-Barclays to compute the expected bond return.

10A loss rate of 60% (recovery rate of 40%) is a reasonable assumption, as the recovery
rates for senior unsecured bonds with credit ratings between AA and C vary between 37.2%
and 44.5% for the period 1985-2014 (Moody’s Investors Services, 2015, exhibit 21; assum-
ing default occurs within two to five years). Setting it to 50% or 70% does not alter our
conclusions. Results are available upon request.
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3.3.2 Estimating default probabilities

There are several existing approaches to estimate default probabilities. A first
popular approach is to use structural models such as the Merton (1974) model,
calibrated to equity data, to obtain default probabilities. Besides academic
work (Vassalou and Xing, 2004; Duffie, Saita, and Wang, 2007), this is also
a common approach in practice. For example, Moody’s-KMV use this ap-
proach. Second, several articles model default events as a function of various
financial and accounting measures and estimate logit or hazard rate models to
explain default occurrences (Campbell, Hilscher, and Szilagyi, 2008; Bharath
and Shumway, 2008). Third, one can simply focus on credit ratings to mea-
sure default risk, using the historical default rates per credit rating (see for
example Elton et al., 2001 and Campello, Chen, and Zhang, 2008).

Since the default probability is a key input variable for the expected equity
return, we use all three approaches in this paper and find that our empirical
results are largely similar across these three methods. For our benchmark
analysis we choose to use the structural Merton model to estimate default
probabilities. This approach is able to generate substantial cross-sectional and
time-series variation in default probabilities, whereas the other two approaches
generate much less variation. This is directly clear for the ratings-based ap-
proach, since credit ratings are quite stable over time while default rates spike
around crisis periods. In Appendix 3.B we provide more details on the accu-
racy of hazard rate models. We find that the hazard rate model is unable to
model the strong increase in default probabilities when credit ratings deterio-
rate, in contrast to the Merton model. For instance, the historically observed
average 5-year cumulative default rate for B-rated bonds equals 20.5%. The
Merton model predicts an average probability of 19.6% for all B-rated bonds
in our sample, while the hazard-rate model predicts a mere 5.4%.

We now discuss the implementation of the Merton model in more detail.
In the Merton model, the probability of default is given by (subscripts j and
t have been removed for brevity):

π = N

(
− log(V/D) + (µ− δ − 0.5σ2)T

σ
√
T

)
(3.3)

where N(.) is the normal cumulative distribution function, V the value of the
firm’s assets and D the default barrier at maturity. The value of the firm
is set to the market value of equity plus the book value of total liabilities,
where book value of liabilities approximates the market value of liabilities.
The default barrier is set to the book value of total liabilities. The term
µ − δ represents the net growth rate of the firm’s assets over time, where
the drift rate µ represents the earnings generated by the firm’s assets and
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the payout rate δ represents the amount distributed to all stakeholders of the
firm. This growth rate holds over the specific horizon T , and is unobservable
ex-ante. Therefore, we set the drift rate µ equal to the risk-free rate over
this horizon, the duration-matched Treasury yield yg,t, plus a term to reflect
the risk of the firm’s assets. We set the risk premium equal to a constant
price of risk (θ) times the volatility of the firm’s assets σ, using θ = 0.22
for all firm-month observations following Feldhütter and Schaefer (2016) and
Chen, Collin-Dufresne, and Goldstein (2008). The procedure to compute the
volatility of the firm’s assets is described below. The payout rate δ consists
of all cash distributed to or collected from debt (interest) and equity holders
(dividends and stock issuance/repurchase). We compute the past years payout
ratio and assume it remains at this level over the horizon T .

To compute the firm’s assets volatility σ over the coming T years, we need
to predict the volatility of equity and debt over T years. In most implemen-
tations of the Merton (1974) model, the asset volatility is derived from the
equity volatility, which is assumed to be constant and equal to historically
observed volatility levels. Empirically, however, equity volatility mean reverts
to a long-run mean to a large extent within five years, which is the typical
maturity of corporate bonds in our sample. For instance, the VIX, a measure
of implied equity index volatility for the S&P500 index, reached in November
2008 a high of 80.86, whereafter it quickly fell to a level lower than the long
run average of approximately 20 in January 2010. In the fall of 2008, we would
overstate the expected volatility over the coming five years substantially by
using the equity volatility level at that time. Therefore we estimate the ex-
pected average equity return variance over the horizon by incorporating the
mean-reversion, and then transform it into an asset variance. The expected
average variance can replace the constant variance in an option pricing model
(like the Merton model) under some assumptions (Hull and White, 1987). In
Appendix 3.C we discuss in detail how we obtain, for each firm and at each
point in time, an estimate of the expected average equity return variance over
the maturity of the given bond.

To transform the resulting equity volatility σE estimate into an asset
volatility σA, we follow Feldhütter and Schaefer (2016). Their starting point is
that, given that the assets of the firm (V ) are the sum of equity (E) and debt
(B) values, asset volatility is a weighted average of equity and debt volatility:

σ2
A =

(
E
V

)2
σ2
E +

(
B
V

)2
σ2
B + 2EV

B
V σBE . To avoid estimation of the debt return

variance σB and equity-debt covariance σBE , they propose an approximation.
Specifically, their asset volatility is given by

(
E
V

)
σEc, where c is a factor de-

pending on the leverage ratio B/V (= 1−E/V ) to account for Treasury bond
volatility. The factor c is 1 if B/V < 0.25, 1.05 if 0.25 < B/V ≤ 0.35, 1.10 if
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0.35 < B/V ≤ 0.45, 1.20 if 0.45 < B/V ≤ 0.55, 1.40 if 0.55 < B/V ≤ 0.75,
and 1.80 if B/V > 0.75.

Table 3.1 shows the average value for each of the inputs of the probability
of default estimation, both on average as well as per credit rating. The results
show that as the credit rating deteriorates, the asset volatility, leverage and
payout ratio increase, which all three lead (ceteris paribus) to a higher prob-
ability of default in Equation 3.3. The time-to-maturity is shorter when the
credit rating is lower, reflecting shorter-dated issuance by high yield firms.

3.3.3 Estimating the elasticity

We then turn to estimation of the equity-bond elasticity δE/E
δB/B . We follow

Campello, Chen, and Zhang (2008) and use the fitted values of a regression
model for the realized elasticities. We now describe this approach in detail.
For each firm and each month, we determine the change in market value of
equity (E) and market value of debt (B) over the month. The market value
of debt is estimated by the book value of total liabilities multiplied by the
ratio of the corporate bond price and its nominal value ($100 usually). In
this way, the monthly change in the market value of debt reflects the change
in corporate bond market prices, which is important to capture the elasticity
properly. If we would take book values, there would be many months with
zero debt return as book values are not updated on a monthly basis.

We calculate the realized elasticity, δE/E
δB/B , for each month and each firm.

Then we perform a panel regression of these realized elasticities on the vari-
ables of which the elasticity is a function in the Merton (1974) model: leverage,
volatility, the (duration-matched) risk-free rate and the time-to-maturity. This
results in the following panel regression for the elasticity for each month and
each firm:

δE/E

δB/B
= c+ βLEV LEV + βV OLV OL+ βygyg + βTT + ε (3.4)

where all right hand variables are known as of the beginning of the month, and
the elasticity is measured over the month. LEV is the leverage ratio B/V, VOL
is the past 1-month annualized daily stock return volatility in fractions, yg the
duration matched Treasury yield in fractions and T the time-to-maturity in
years. When estimating Equation 3.4, we remove the top and bottom 5% of
elasticity observations, since bond returns close to zero can deliver extreme
elasticities, and the top 5% of equity volatility observations. See Appendix
3.D for more discussion and robustness checks on this winsorization.

The results are reported in Table 3.2. We find that the coefficients for
leverage (significantly positive), volatility (significantly positive) and the risk-
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free rate (negative but insignificant) have the signs as predicted by the Merton
(1974) model (Schaefer and Strebulaev, 2008, p. 7). The effect for time-to-
maturity is ambiguous in theory; we find a significantly negative coefficient of
-0.09 for this sample.

Figure 3.1 reports the distribution of the fitted elasticities, which shows
there is substantial variation between firm-month observations. The average
value is 0.98, but values as low as 0.25 or as high as 2 are not uncommon.
This shows that we cannot simply assume the elasticity to be identical across
firms and time.

We use the fitted values of the regression model in Equation 3.4 to con-
struct, for each firm and each month, the expected elasticity given the values
of the explanatory variables. These fitted elasticities are then used to con-
struct expected equity returns based on Equation 3.1. In Section 3.5 we find
that our empirical results are robust to the exact specification of elasticity. In
particular, using a 12-month historical elasticity or no elasticity at all (i.e.,
sort directly on expected bond returns) leads to similar results.

3.3.4 Aggregate expected returns over time

Before we turn to our main focus, the cross-sectional patterns in expected
returns, we report in Figure 3.2 the market value weighted average of the ex-
pected bond and equity returns per month as estimated following the approach
discussed in the previous sections. We find that there is substantial variation
over time. Whereas in spring 2007 expected monthly equity returns (over 1-
month T-bill) are close to zero, they are equal about 60 basis points at the
beginning of November 2008. The average level is 18 basis points per month, or
2.19% per annum. Expected corporate bond returns (over duration-matched
Treasury) tend to show lower variation through time compared to equities,
with an average annualized level of 0.83%.

3.4 Benchmark results

In this section we compare our corporate bond-implied expected equity return
with realized equity returns. Section 3.4.1 contains the results of portfolio sorts
on expected returns. Section 3.4.2 tests whether the results can be explained
by mispricing.

3.4.1 Cross-sectional results

If corporate bond and equity markets are integrated, the expected equity re-
turns inferred from the corporate bond spreads should equal the realized eq-
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uity return on average. At a minimum, stocks with high expected returns as
implied from corporate bonds should have high realized returns as well and
vice versa. We test this by creating each month equal-weighted decile port-
folios based on the expected equity returns as implied from corporate bond
spreads. The monthly rebalancing means that we implicitly test whether the
bond-implied expected returns, which have an average horizon of 5 years, are
consistent with realized 1-month returns. Hence we implicitly assume that the
term-structure of expected returns is flat. In the next subsection, we evaluate
this assumption. In the robustness checks, we verify that our results are ro-
bust to the sampling period, to value weighting of the portfolios and various
methods to construct expected equity returns from corporate bond spreads.

Table 3.3 reports the full-sample results. The first row shows the expected
return we sort on, sorting from high to low expected returns. It declines from
1.14% per month for the first decile (D1) to -0.14% per month for D10. How-
ever, for the realized stock returns, we observe a generally increasing pattern,
with D1 (high expected return) having a strong negative average return of -
0.87% per month, and then it increases until around D5. From D6 to D10 the
returns are relatively similar, at a level of 0.8% to 1.0% per month. The last
column reports the D1-D10 long-short portfolio, which has a realized return of
-1.79% per month, with a corresponding robust t-statistic of -3.35, while the
bond-implied expected return for the long-short portfolio is 1.27% per month.

These striking results show that the hypothesis that higher bond-implied
expected returns imply higher equity returns is clearly rejected. The evidence
points towards the opposite conclusion: the higher the expected return im-
plied by the corporate bond, the lower the realized equity return is. A stricter
test focuses on whether realized returns are (on average) equal to expected
returns. We test this for each portfolio in lines 4 and 5 of Table 3.3. For 8
out of the 11 portfolios this hypothesis is rejected. In particular, for the long-
short portfolio D1-D10, the difference between realized and expected returns
amounts to -3.07% per month (-36.8% per annum), which is highly economi-
cally and statistically significant (t-statistic of -5.57). We thus conclude from
this empirical evidence that there is major mispricing in the cross-section of
equity versus corporate bond markets. This is the key finding of our paper.
In Section 5 we therefore conduct a wide range of robustness checks on this
result.

Rows 6 to 10 of Table 3 show the volatility of the realized returns, the
average corporate bond spread, the expected bond return, the elasticity and
the estimated probability of default. From all measures, it is clear that the high
(default) risk firms are concentrated in D1, D2 and D10. This is important, as
it shows that the puzzle we document is not simply a restatement of the low-
volatility anomaly (Haugen and Heins, 1972), which states that low-volatility
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stocks have high risk-adjusted returns, or the distress risk anomaly (Dichev,
1998; Griffin and Lemmon, 2002; Campbell, Hilscher, and Szilagyi, 2008),
which states that stocks with high default probabilities have low returns. We
formally control for these anomalies in Section 3.5.

3.4.2 Understanding the mispricing

In this subsection, we aim to better understand the negative relation between
bond-implied expected and realized equity returns. We first analyze real-
ized bond and equity returns over various horizons. Second, we test whether
the negative relationship between expected and realized equity returns can
be related to well-known proxies of mispricing, and third, we link the ex-
pected and realized equity returns to standard asset pricing models. Before
we discuss these analyses in detail, it is important to note that our analysis
of expected and realized returns provides evidence for relative mispricing of
corporate bonds versus stocks. We do not aim to explain the level of bond-
implied expected returns, nor the level of realized average equity returns. For
such an analysis, one would need to assume a specific asset pricing model and
see if these levels are in line with the model predictions. As mentioned earlier,
our analysis of relative mispricing does not require assumptions on an asset
pricing model.

Horizon effects for bonds To understand our key finding better, we first
study the horizon effects in more detail. In the previous section we assumed
that the term structure of expected returns is flat in order to compare 5-year
ahead expected returns with 1-month realized returns. It could however be
that this term structure of expected returns is not flat. In the extreme case
that bonds with a high (low) 5-year expected return have a low (high) expected
return for the coming month, which is more than reversed in the remainder of
the 5-year period, the realized 1-month equity returns would not be anomalous
at all.

We thus start by analyzing the 1-month realized returns on the corporate
bonds. We create each month ten portfolios based on the expected bond
return. For each portfolio, we compute the 1-month realized return. Table
3.4, Panel A, reports the results. We find a monotonically increasing pattern
in realized returns from the low expected return portfolio (-0.09%) to the
high expected return portfolio (0.29%). Moreover, we observe that the 1-
month realized returns, except for D1, match the 5-year expected returns in
magnitude quite well. Hence we do not find evidence against a flat term
structure of expected returns for bonds. Importantly, we can thus conclude
that the mismatch in horizon between the expected and realized returns is not
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driving the empirical negative relation between expected and realized equity
returns.

Panel A of Table 3.4 also presents realized bond returns over a 5-year
horizon. We pick 5 years, as the bonds used to calculate expected returns
tend to have an average maturity of about 5 years. If our estimate of the
probability of default is unbiased, these 5-year realized bond returns should
by construction be equal to the bond-implied expected returns (on average).
This is because, corrected for expected default losses, the corporate bond yield
exactly equals the return of holding the bond to maturity. Hence, analyzing
5-year bond returns provides an important check on the validity of our default
probability estimates. Table 3.4 shows that, for these 5-year returns, expected
and realized returns line up quite well. Realized returns depend positively on
expected returns except for D9 and D10, but D9 and D10 (which have low
expected returns) still have realized returns well below D1 and D2. Although
the cross-sectional spread in 5-year realized returns is smaller in magnitude
compared to the 1-month realized returns, implying that the effect is stronger
on the short horizon, there is no evidence of a reversal after 1 month. This gives
us confidence that we predict the probability of default reasonably well. If we
would have strongly over (under) estimated the probabilities of default, the
expected bond returns would be too low (high) compared to realized returns.

In sum, the main findings of this horizon analysis for bonds are: 1) both on
a 1-month as well as a 5-year horizon, we find a positive relationship between
expected and realized corporate bond returns, 2) this relation is strongest for
the 1-month horizon, in the longer run it remains, though somewhat dimin-
ished and 3) the 1-month realized returns match the (5-year) expected returns
well in magnitude.

Horizon effects for stocks We then turn to horizon effects for equities.
Our main goal is to analyze how persistent the effects for 1-month realized
returns are. If bond-implied expected returns and realized equity returns are
more in line with each other on a longer horizon, this would suggest that
equities are temporarily mispriced relative to bonds. Panel B of Table 3.4
reports the results for equities. The expected and 1-month realized returns
are identical to the numbers in Table 3.3, Panel A, and are only included
for reference purposes. The 5-year returns, like for bonds, differ less across
the portfolios, but still reveal a negative relationship. In particular, D1-D10
has an economically sizeable negative return of -0.50% per month, which does
not differ significantly from zero (t-statistic of -1.47). However, it does differ
significantly from the bond-implied expected return of 1.27% for D1-D10 (t-
statistic of -5.20). Given that the average return on D1-D10 equals -1.79% in
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the first month, these results indeed provide evidence for temporary mispricing
of equities, which is partially but not fully resolved over a longer horizon.

Which stocks are mispriced most? A common concern for research that
documents anomalies is that these anomalies might only be present in small,
hard-to-arbitrage stocks. In such a case, the economic relevance of the anomaly
might be limited. We analyze whether this issue applies to our setting using
Fama and MacBeth (1973) regressions at the firm level. As proxies for the
economic relevance and arbitrage costs we use the number of analysts follow-
ing the stock (obtained from I/B/E/S; see for instance Hong, Torous, and
Valkanov, 2007), the turnover of the stock over the past month (Amihud and
Mendelson, 1986) and the market capitalization of the equity (Merton, 1987;
Grossman and Miller, 1988).

Table 3.5 reports the results. In the first specification, the 1-month realized
return is only regressed on the bond-implied expected return. If the expected
and realized returns would match, we should find a slope equal to one and a
R-squared of 100%. However, we find a strongly negative coefficient of -2.64
with a t-statistic of -5.30 and a R-squared of only 2.7%, confirming the results
of the portfolio sorts in Table 3.3. If the mispricing is concentrated in small,
hard-to-arbitrage stocks, we would expect this coefficient to be more negative
for such stocks. For all three proxies, we therefore split the stock universe each
month in three equal-sized groups and create dummies per group, which we
interact with the bond-implied expected return. The base level is the group for
which the number of analysts is high, the stock turnover high and the market
capitalization large, i.e. the group of large stocks with low arbitrage costs. If
mispricing is concentrated in small, hard-to-arbitrage stocks, the interaction
terms should be significantly negative. However, columns 2 to 5 in Table 3.5
show that this is not the case. In specification 3, we even find a statistically
positive coefficient (at the 10% level) for the middle stock turnover group.
The coefficient for the base group in the specification with all three proxies
included is -2.31 (t-statistic of -2.74), not far from the unconditional coefficient
of -2.64 found in the first regression specification. The group with the least
negative slope (high number of analysts following the stock, low turnover, large
market capitalization) has a slope of -2.31+0.81=-1.50, still far below the a
priori expected level of +1. In sum, even for the stocks which are least likely
to be mispriced we find a strong negative relationship between the expected
and realized equity returns.

Pricing of risk factors across markets A large number of studies in the
asset pricing literature focuses on explaining differences in expected returns
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using factors, the prime example being the Fama and French (1992) three-
factor model. In this paper we compute expected equity returns and compare
those directly with realized equity returns. As mentioned earlier, this analysis
does not require any assumptions on a specific asset pricing model. In other
words, it does not matter which factors or characteristics drive the returns
and whether they can fully explain the variation in returns. Any factor or
characteristic that drives expected returns should affect both the bond-implied
expected equity return and the realized equity return equally. But if equities
are mispriced relative to bonds, it might be because, for some reason, some
risk factor exposure or characteristic is priced differently in stock versus bond
markets. Choi and Kim (2017) provide evidence this might be the case for
asset growth and momentum.

To investigate this, we perform the usual Fama-MacBeth regressions where
we regress the cross-section of realized (or expected) equity returns on the eq-
uity market beta and various characteristics. We focus on characteristics like
size rather than exposure to the SMB factor to avoid estimating many risk
factor exposures. We use the standard Fama and French (1992) characteristics
(size and value, specification 1) and an extended version including the momen-
tum, operating profitability and investments characteristics (specification 2).
The construction of these variables follows standard practice, see Appendix
3.A for details.

Table 3.6 reports the results. When we use the realized return as left-hand-
side variable, we find that the equity risk premium is not priced (specification
1) or even negatively priced (specification 2). This result is in line with an
extensive literature on the slope of the Capital Asset Pricing Model being too
flat or even negative (Jensen, Black, and Scholes, 1972). For size and value we
also find effects contrary to expectations. This could be driven by the large
cap bias in our universe as we require companies to have bonds outstanding
meeting the minimum amount outstanding criteria of the Bloomberg-Barclays
indices. However, for the expected equity returns, we find effects as expected:
market beta, size (specification 1 only) and book-to-market are priced. For
momentum, we find it to be strongly negatively priced.

When we use the expected return as left-hand-side variable, our results are
similar to Campello, Chen, and Zhang (2008).11 For operating profitability
we do not find significant results. For the investments variable, we find that
companies with high investments have actually higher expected returns than

11An important distinction between the approach of Campello, Chen, and Zhang (2008)
and ours is that we do not use historical default rates per credit rating but rather use
the Merton model directly to estimate the probability of default, leading to more adaptive
probabilities of default through time. Appendix 3.B provides more details on the accuracy
of our method.
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companies with low investments in our sample. The final two columns of Table
3.6 show the statistics for regressions where the left-hand-side variable is the
difference between the realized and expected return. Only in the full model
(specification 2) do we find statistically significant pricing differences between
realized and expected returns: especially the pricing of the market beta, size
and momentum differ substantially between the equity and corporate bond
market (t-statistics of -2.20, 1.91 and 1.60 respectively), suggesting that these
are not well integrated.

It could thus be that we find a negative relationship between the expected
and realized returns due to different pricing of risk factors or characteristics.
Therefore, we remove the risk exposures and effects of characteristics from
both the expected and realized returns by using the 6-factor coefficients in
Table 3.6 (columns 2 and 4; FF6 ) to compute “excess” expected and realized
returns. Subsequently, we regress these excess realized returns on excess ex-
pected returns in the same way as in Table 3.5, specification 1. The slope
coefficient of -2.64 for the total return (Table 3.5) becomes -4.15 (t-statistic of
-4.68) when using these “excess” returns, implying that the different pricing
of risk factors and characteristics across equity and bond markets does not
drive our findings. In fact, the relation between expected and realized returns
becomes even more negative.

3.5 Robustness

This section describes the results of our robustness checks. We find that the
results are robust through time, not dependent on implementation details of
the portfolios and expected return calculations, and are not driven by default
risk or liquidity.

3.5.1 Results are robust through time

In Table 3.7, panels A and B, the results are shown per sub period, where
the first period covers January 1994 to December 2004 and the latter period
January 2005 to December 2015. We find that the results are comparable to
the full-sample results. Most importantly, for D1-D10, the hypothesis that
realized returns are equal to expected returns is rejected. For the period
January 1994 - December 2004 we reject the hypothesis that the return is
equal to zero as well, as it is strongly negative; in the recent period the D1-
D10 return is -128bps a month on average, but not statistically significant
different from zero.

To provide more insight into the results in Table 3.3 through time, Figure
3.3 shows the cumulative (log) bond-implied expected equity return as well as
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the realized equity return. As the portfolio is constructed by going long high
expected return and short low expected return, the bond-implied expected
return is steadily trending upwards by construction. During crisis periods,
such as the Dot-Com bubble and the Great Financial Crisis, the dispersion in
expected equity returns is larger and as a result the line trends upwards at
a higher rate during those periods. The realized equity return, on the other
hand, is steadily declining. There is some variation through time, but except
for the calendar years 2003 and 2009 the realized return is always negative.
Thus the results are robust through time.

3.5.2 Results are robust to choices in portfolio construction
and expected return calculation

We first conduct robustness checks on the construction of the decile portfolios.
We test market-value weighted portfolios instead of equal-weighted portfolios.
The results for the long-short portfolio are in Table 3.8, column 2. We find
that the realized D1-D10 equity returns are still negative, but the effect is
statistically weaker with a t-statistic of -1.68. Compared to the expected
returns, the realized returns are significantly lower (t-statistic of -2.89).

For the robustness to the estimation of the elasticity we test two alter-
natives: 1) using the past 12-month observed elasticity and 2) exclude the
elasticity altogether (i.e. assume it is one for every stock). The results are
in Table 3.8, columns 3 and 4. We find that the results for both choices are
very similar to the base case results, with all four tests (versus zero and versus
expected return) having t-statistics of -2.17 and lower.

For the probability of default, we test two alternatives, namely using the
hazard rate model of Campbell, Hilscher, and Szilagyi (2008), and using av-
erage default rates per credit rating. The hazard rate model of Campbell,
Hilscher, and Szilagyi (2008) includes the following accounting and market-
related explanatory variables: past 12-month net income to total assets (NIM-
TAAVG), total liabilities to total assets (TLMTA), past 12-month stock excess
return over the S&P500 (EXRET), past 3-month daily stock return volatility
(SIGMA), relative size of the stock in comparison the S&P500 total market
capitalization (RSIZE), cash and cash equivalents to total assets (CASHMTA),
market to book ratio (MB) and the log of the stock price winsorized at $15
(PRICE). We transform these variables to a probability of default using the
estimated parameters for the 12-month horizon Campbell, Hilscher, and Szi-
lagyi (2008, Table IV). For details on the construction of these variables, see
Appendix 3.A.

In Appendix 3.B we analyze the differences with the probabilities of default
as estimated by the Merton model. In particular, we find that the Merton
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model is better able to match the high probabilities of default for lower credit
ratings. The portfolio return results when using the hazard rate model are
in Table 3.8, column 5. We find that the realized returns D1-D10 are again
negative at -0.24% per month, but no longer statistically different from zero.
However, compared to the expected return, the returns are substantially lower
with a t-statistic of -2.60.

The second alternative to estimate the probabilities of default is to use
credit ratings. We obtain long-run average cumulative default rates provided
by Moody’s Investors Services (2015, exhibit 34) for the period 1920 to 2014.
For each bond and each month, we use the credit rating and maturity to infer
the cumulative default rate.12 We find that the results, reported in column 6,
are very similar to those of specification 1. In particular, the realized returns
are still significantly different from the expected returns with a t-statistic of
-4.72.

Finally, if we assume that 1) the expected credit return of a bond is a
fixed proportion of the total credit spread, 2) the credit spread, and thus the
expected return, is constant over maturities (flat term structure) and 3) firms
do not differ in their elasticity, then expected equity returns are proportional
to the credit spread. The assumption that expected equity returns are pro-
portional to credit spreads is very strong. For instance, the expected return
measure used in our benchmark analysis is not increasing in the credit spread.
Rather, in the group with the 10% lowest expected returns, some of highest
credit spreads can be found (see Table 3.3; D10 has a credit spread of 24bps
per month, which is only exceeded by D1, D2 and D3). Still, we find that the
results for sorting directly on the credit spread (column 7) are quite similar to
those for the base case (column 1), with strongly negative t-statistics of -2.16
and -3.24 for the tests versus zero and the expected equity return respectively.

3.5.3 Interaction with default risk

In the portfolio sorts reported in Section 3.4.1 an interaction of expected eq-
uity returns with physical default risk is visible, but the relationship is not
monotonic, as D1, D2 and D10 have higher risk than other groups. This sug-
gests that our results are not simply a mirror image of the traditional distress
risk puzzle. To further analyze this, we construct a double sort based on five
(default) risk measures, namely 1) the credit spread of the bond, 2) the prob-
ability of default as measured with the Merton (1974) model implementation,

12As the maturity is usually not equal to a round number, we use linear interpolation
between the two maturities nearest by. For example, a BB-rated bond with 4.5 years’ time-
to-maturity will have a default probability of 9.35% (average of 8.24% for 4-year horizon and
10.46% for 5-year horizon).
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3) the credit rating of the bond, 4) past 1-month equity return volatility and
5) past 36-month equity market beta. First we split the universe each month
in five equal sized groups based on the risk measure. Second, within each risk
group, we sort on the bond-implied expected return and create a top 20%
minus bottom 20% long-short portfolio. The mean realized returns and asso-
ciated t-statistics of the top-bottom portfolios are reported in Table 3.9. We
see that the negative returns on the top-bottom expected return portfolios
are concentrated in the 40% highest risk groups, with highly significant nega-
tive returns for the 20% highest risk group for all default risk measures. For
the 20% lowest risk group, we observe positive returns on the top-bottom ex-
pected return portfolios for all risk measures (except for the equity beta), but
not significantly positive. Thus we conclude that also after correcting for the
interaction with default risk, no evidence exists for a positive relation between
expected and realized equity returns.

3.5.4 Bond liquidity

So far we assumed that the part of the credit spread that cannot be attributed
to physical default risk probability is a risk premium for the credit risk. In
various other studies part of the credit spread is attributed to an illiquidity
premium (Bao, Pan, and Wang, 2011; Dick-Nielsen, Feldhütter, and Lando,
2012; Bongaerts, De Jong, and Driessen, 2017). Hence our expected return
measure might be biased due to these liquidity effects. We therefore use data
from the TRACE database to construct an estimate of the illiquidity premium.
TRACE is a transaction report database covering almost all trading in USD-
denominated corporate bonds. We use Enhanced TRACE from 2005 to Q3
2014, and standard TRACE afterwards, as Enhanced TRACE is only available
after 18 months. To filter the data for cancellations, reversals and errors, we
follow Dick-Nielsen (2009) and Dick-Nielsen (2014) for the non-enhanced and
enhanced version respectively. The TRACE data is linked to the bond data
using the CUSIPs.

We first compute the monthly turnover of all bonds per expected return
portfolio, which is equal to the total dollar amount traded in a given month
divided by the total dollar notional amount outstanding at the beginning of
the month. Second, we follow the procedure of Feldhütter (2012) and compute
realized bid-ask spreads by identifying pairs of transactions on a given day for
the same bond and transaction size. The absolute value of the price difference
of the two transactions, divided by the average of the two prices, is a good
measure of the percentage bid-ask spread as the two transactions likely involve
a dealer intermediating a bond transfer from a seller (or buyer) to a buyer (or
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seller). See Feldhütter (2012) for more details.13 Finally, we compute the
product of turnover and the realized bid-ask spread as a proxy for the illiq-
uidity premium, which is what the Amihud and Mendelson (1986) model with
homogeneous investors predicts. Bongaerts, De Jong, and Driessen (2017) es-
timate liquidity premiums for corporate bonds and find that their estimates
are close to those of Amihud and Mendelson (1986).

Table 3.10 reports the results. We observe that the bonds of companies
with the highest expected returns, D1, experience the highest turnover on
average (14.3% per month, or 172% per annum), but also have the highest
round-trip costs. This results in an average bond liquidity premium of 5.2
basis points per month (or 62 basis points per annum), substantially larger
than the average liquidity premium of 2.3 basis point per month across all
portfolios. Thus, our expected return measure is indeed tilted to companies
with less liquid bonds. To correct the expected equity return for this liquidity
premium, we multiply the bond liquidity premium with the average bond-
equity elasticity; the results are reported in the third row of Table 3.10. We
find that the expected equity returns are biased upwards by 8.2 basis points
for D1, and somewhat less for other deciles. Still, the magnitude of this bias
is small compared to the total expected return differences between portfolios.
Specifically, Table 3.10 reports all liquidity-corrected expected returns and we
see that the effect of liquidity is minor. For instance, D1 has an expected
equity return of 114 basis points (row 4). Deducting 8.2 basis points monthly
liquidity premium results in 106 basis points expected equity return after
correction (row 5), which is still much higher than 38 basis points for D2. It is
thus unlikely that the presence of a liquidity premium is substantially affecting
our sorting, and therefore our results.

3.5.5 Risk factors

In Section 3.4.2 we show that the difference between expected and realized
returns cannot be explained by different pricing of risk factors in bond versus
equity markets. Although we construct expected returns independent of a
particular asset pricing model, a comparison with leading asset pricing models
is still of interest. In particular, we find a statistically and economically size-
able monthly return of -179bps for our D1-D10 portfolio sorted on expected
returns (Table 3.3).

Before we turn to the asset pricing models, we show in Figure 3.4 the rela-
tion between the monthly D1-D10 portfolio returns and the monthly market
returns. We find that there is a clear positive relationship, with a correlation

13In our data set, buy and sell indicators are available, allowing us to more precisely define
roundtrips compared to Feldhütter (2012).
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of 0.42. Thus the high expected return stocks outperform the low expected
return stocks during positive states of the world. Given the higher volatility,
credit spreads and probability of default of D1 in comparison to D10, this is
not a surprising result. Next we show that this market beta cannot explain
the negative return of D1-D10. In Table 3.11 we regress these D1-D10 realized
equity portfolio returns on the five Fama and French (2015) equity risk-factors,
the Carhart (1997) momentum factor and the Asness, Frazzini, and Pedersen
(2017) Quality-Minus-Junk factor for various factor model specifications. Re-
gardless of the specification, we find large and statistically significant negative
alphas, ranging from -130bps a month to -236bps a month (t-statistics of -3.66
to -5.85). The coefficients reveal sizeable positive loadings on the market pre-
mium (RMRF ) and size (SMB), and negative loadings on momentum (MOM )
and profitability (RMW ). Hence, our sort on expected returns implies an eq-
uity trading strategy with a considerable alpha, and this trading strategy does
not simply mirror existing risk factors or anomalies.

3.6 Conclusions

We perform a direct test of the cross-sectional integration of corporate bond
and stock market pricing. The test does not rely on a specific asset pricing
model. As the stock and bond of a firm are contingent claims on the same
assets, we can use the risk premium on the bond to infer a risk premium
on the stock. We find empirically that bond-implied expected stock returns
relate negatively to realized stock returns, suggesting stock and corporate bond
markets are not integrated and that relative mispricing between stocks and
corporate bonds exists.

This negative relation cannot be explained by methodological choices.
First, to transform corporate bond spreads to expected bond returns, we
deduct the expected loss from the corporate bond credit spread using an esti-
mate of the probability of default. We model the probability of default using
an implementation of the Merton (1974) model, but find similar results when
employing a hazard rate model or using historical default rates as a function
of credit rating instead. Second, to transform expected bond returns to equity
returns, we measure the bond-equity sensitivity using a regression approach as
in Campello, Chen, and Zhang (2008). Even when the sensitivity is set to one
for all stocks, the results remain similar. Third, our main analyses compare 5-
year ahead bond-implied stock returns with one-month realized stock returns.
Also when using 5-year realized stock returns, we find a negative relationship.

We find differences in the pricing of systematic risk factors, especially
momentum, between bond-implied stock returns and realized stock returns.
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These differences cannot, however, explain our key result. Our findings can
also not be attributed to the portfolio weighting scheme, specific time periods,
limits to arbitrage nor a potential illiquidity premium in the corporate bond
spread. Finally, our results point towards temporary mispricing in equity
markets, which is only partially corrected over longer horizons.
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3.A Data

3.A.1 Linking bond to stock data

In principle, linking bonds to stocks is straightforward. At bond issuance,
the first six digits of the bond CUSIP should match the first six digits of
issuers historical CUSIP. The seventh and eight digit of the CUSIP identify
the specific security of the issuer; the last digit is a check digit. Hence one
could match on the first six digits of the CUSIP. However, due to mergers,
acquisitions, bankruptcies and other delisting reasons this might not work.
Therefore, we match a bond to a company at issuance, and then follow it
through time. Example:

Feb 16, 1993, MOBIL CORP issues MOBIL CORP 02/23/2033 (CUSIP:
607059AZ). Matching on the first six digits with CRSP’s NCUSIP field leads
to a match with PERMCO 21211 (CUSIP: 6075910), company name MOBIL
CORP in CRSP. For this bond, from issuance we assign this PERMCO until it
does not exist anymore. This happens in November 1999, when EXXON and
MOBIL merge into EXXON MOBIL. CRSP has an ACPERM field which in-
dicates that the stock has been taken over by PERMNO 11850, which belongs
to the combined EXXON MOBIL entity (PERMCO 11850). From December
1999 onwards, the bond is assigned to PERMCO 11850, and the process is
repeated until the bond expires.

Note that a single company (PERMCO) might have multiple stock listings
(PERMNO). We always assign a bond to a PERMCO, hence a bond can be
assigned to multiple stock listings (PERMNO) at the same time.

Our procedure thus consists of two steps:

1. For each bond, identify the issuing company in CRSP. If no match is
found using the first six digits of the CUSIP, try to hand-match data
using the company names in the bond and stock data sets. If still no
match is found, the bond is not linked to any stock in CRSP.

2. If a PERMCO has been found at issuance, follow it in CRSP from the
moment of bond issuance until either

(a) the bond matures, or

(b) the stock is delisted. In this case verify why it is delisted. If an
acquiring company is known (ACPERM), continue by following this
company and repeat. Otherwise the link stops.
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3.A.2 Inputs for the Merton (1974) probability of default

In this section the exact definitions of the variables using CRSP and COM-
PUSTAT fields are given. All fields are from COMPUSTAT except SHROUT,
PRC and RET. All COMPUSTAT data is lagged two months to account for
the reporting lag and reported in millions USD.

• Value of the firm (V ) = market value equity + book value total liabilities

– Market value equity: SHROUT × |PRC| / 1000 (in millions USD)

– Book value total liabilities: LTQ

• Default barrier (D): LTQ. Feldhütter and Schaefer (2016) find that this
choice for the default barrier fits historical probabilities of default well

• Drift rate (µ) = yg,t + θσ

– yg,t: duration-matched Treasury yield from Barclays

– θ = 0.22 following Feldhütter and Schaefer (2016) and Chen, Collin-
Dufresne, and Goldstein (2008)

– σ: asset volatility; see below

• Payout ratio (δ) = (Interest payments - Net stock repurchases + Divi-
dends) / V

– The ratio is capped at 0.13 following Feldhütter and Schaefer (2016)

– Interest payments: previous fiscal year’s fourth quarter INTPNY

– Dividends: DVPSXQ × SHROUT / 1000 (in millions USD)

– Net stock repurchases: previous fiscal year’s fourth quarter PRSTKCY

• Time-to-maturity (T ) = option-adjusted duration of the corporate bond

• Asset volatility (σ) = (1−D/V )σEc

– D and V as given above

– σE : past 1-month daily stock return (RET ) volatility; extrapolated
using the method as described in Appendix 3.C.

– c: coefficient to adjust for bond volatility following Feldhütter and
Schaefer (2016), ranging from 1 to 1.8.
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3.A.3 Inputs for the hazard rate model

In this section the exact definitions of the variables using CRSP and COM-
PUSTAT fields are given. All fields are from COMPUSTAT except SHROUT,
PRC and RET. All COMPUSTAT data is lagged two months to account for
the reporting lag and reported in millions USD.

• market value total assets: book value total liabilities (LTQ) plus market
cap equity (SHROUT × |PRC| / 1000)

• NIMTAAVG: weighted average over the past four fiscal quarters of NIMTA,
where a weight of 1 is assigned the most recent quarter, 0.5 to the quar-
ter before, 0.25 to the third most recent quarter and 0.125 for the first
quarter.

• NIMTA: net income (NIQ) to market value of total assets

• TLMTA: total liabilities (LTQ) to market value of total assets

• EXRET: past 12-month stock return (RET ) over the S&P500 (obtained
from Bloomberg)

• SIGMA: past 3-month daily stock return (RET ) volatility

• RSIZE: log of the ratio of the market cap of the stock (SHROUT ×
|PRC| / 1000) to the market cap of the S&P500 (obtained from Bloomberg)

• CASHMTA: cash and cash equivalents (CHEQ) to market value of total
assets

• MB: ratio of market value of total assets to book value of assets (ATQ),
where for the latter 10% of the difference between the market value of
equity and book value of common equity (CEQQ) is added. In case
book value of equity is negative, we divide by $1+book value liabilities
(LTQ) instead (i.e., the book value of equity cannot be below $1).

• PRICE: log of the stock price, where the price is winsorized at $15.

3.A.4 Construction risk characteristics

In this section the exact definitions of the variables using CRSP and COM-
PUSTAT fields are given. All fields are from COMPUSTAT except SHROUT,
PRC and RET. All COMPUSTAT data is lagged two months to account for
the reporting lag and reported in millions USD.
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• Beta Mkt Rf: the beta is obtained by regressing the past 36-month
equity returns from CRSP on the RMRF factor provided by Kenneth
French. If less than 18 out of the 36 months are available, no beta is
estimated.

• Log(Mcap): log of total market capitalization of all common stocks out-
standing (SHROUT × |PRC| / 1000).

• Log(Book-to-Market): log of the ratio of book value equity (including
deferred taxes; CEQQ + TXDBQ) to market value equity (SHROUT
× |PRC| / 1000). If book and/or market value are zero, no value is
computed.

• Mom12 1M: the stock return (RET ) over the past 12 months, skipping
the most recent month to account for short-term reversals.

• Oper. Prof: revenues (SALEQ) minus cost of goods sold (COGSQ)
minus selling, general and administrative expenses (XSGAQ) minus in-
terest expense (INTPNY ) over the quarter, divided by the book value
of equity.

• Investments: book value of assets (ATQ) as of now minus the book value
of assets 12 months ago divided by the book value of assets 12 months
ago.

3.B Estimating the probability of default

To assess the accuracy of our estimated probabilities of default, we compare the
5-year probabilities from the Merton (1974) and Campbell, Hilscher, and Szi-
lagyi (2008) hazard rate model (hereafter: CHS) through time and in the cross
section with realized default data from Moody’s Investors Services (2015). We
use a 5-year horizon, as this is the average time-to-maturity of the bonds in our
sample. As noted by Feldhütter and Schaefer (2016), default models should be
calibrated to long-run averages of default rates, not to realizations over a short
period of time. For instance, if we would compare the 5-year expectations of
the models with 5-year realized default rates at January 2005, we would find
a severe underestimation, because the realized rates will include the Great
Financial Crisis in 2008/2009. It is unlikely market participants anticipated
this event at the start of 2005.

Figure 3.6 reports the average 5-year cumulative probabilities of default
through time, and compared with the long-run average based on 1920-2014
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Moody’s Investors Services (2015) data (“rating”). Both models show substan-
tial variation in probability of default levels through time, with clear increases
visible for the Dot-Com bubble (1999-2003) and the Great Financial Crisis
(2008-2009). We find that the average level is higher for the Merton model,
and better matches the historical average. In contrast, the CHS model is
consistently below the historic average.

Table 3.12 reports the average levels through time per credit rating for
the 5-year horizon. We find that the Merton model (10.03%) matches the
long-run average of 9.44% probability of default well. Moreover, the model is
able to capture the strong increase in default rates when credit ratings dete-
riorate, although estimated probabilities are a bit too high for AAA to BBB
rated firms. The CHS model, on the other hand, underestimates default rates
considerably for BB and lower rated bonds, leading to an overall substantial
underestimation (3.61% versus 9.44%).

3.C Estimating volatility over long horizons

To estimate the degree of mean reversion of stock return variance, we estimate
per firm an AR(1) time series model:

σE,t
2 − γ = θ

(
σE,t−12

2 − γ
)

+ εt (3.5)

where σE,t
2 is the squared stock return volatility over month t using daily

stock returns from CRSP, γ the long run average parameter and θ the mean
reversion parameter. We estimate this equation using standard Ordinary Least
Squares. We use as explanatory variable the volatility 12 months ago, not the
most recent month, to capture the long-run dynamics of volatility, as our
typical horizon is five years due to choosing bonds closest to the 5-year point.

Per firm, we estimate Equation 3.5 for each of the 12 calendar months, with
the restriction that at least 10 observations are required. As this effectively
requires at least 10 years of stock return data, not all firms have an estimate
for theta. Therefore, we average all thetas across all twelve calendar months
per firm, and then over all firms. This results in an average θ̂ of 0.8735. Figure
3.1 shows the distribution of the thetas across the firms, showing that most
firms have thetas in the 0.80 to 0.95 range. Thus, the average of 0.8735 is a
close approximation for most firms in our data set. For the long run mean
γ, we take into account that some firms are riskier than others by using the
average stock return variance of all observations with the same credit rating.14

Per credit rating, we compute per month the median variance (not mean, to

14The credit rating is of the selected (senior unsecured) bond.
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prevent outliers affecting our results) of all stocks with this rating, and then
average over time to obtain the long-run mean. The table below shows the
long-run mean parameter per credit rating:

credit rating AAA/AA A BBB BB B CCC-C

gamma (γ̂) 0.1078 0.1162 0.1349 0.2113 0.3938 1.0214

The average variance increases from 0.1078 to 1.0214 when moving from rat-
ing AAA/AA to CCC-C. The expected equity volatility over the horizon T is
then given by:

̂σE,t,t+T =
1

12T

√√√√12T∑
k=1

σ̂E,t+k =
1

12T

√√√√12T∑
k=1

γ̂ + θ̂k(σ2
E,t − γ̂) (3.6)

where σ2
E,t is the past 1-month daily equity return variance and γ̂ and θ̂ the

parameter estimates.

3.D Equity-bond elasticity

For each firm and each month, we determine the change in market value of
equity (E) and market value of debt (B) over the month. The market value
of debt is estimated by the book value of total liabilities multiplied by the
ratio of the corporate bond price and its nominal value (100 usually). In this
way, the monthly change in the market value of debt reflects the change in
corporate bond market prices, which is important to capture the elasticity
properly. If we would take book values, there would be many months with
zero debt return.

We can calculate the realized elasticity, δE/E
δB/B , for each month and each

firm. We find that this is very noisy, and as bond returns can be zero (which
happens for 3.68% of all observations) or close to zero, there can be extreme
values as the distribution shows:

Percentile < 1.5 2.5 3 5 95 97 97.5 > 98.5

Elasticity -inf -137.52 -85.84 -35.62 42.12 105.83 192.42 +inf

Instead of directly plugging in the most recently observed, potentially ex-
treme, elasticity, we follow Campello, Chen, and Zhang (2008) by regressing
these realized elasticities on variables suggested by the Merton (1974) model
using Ordinary Least Squares (OLS). To prevent the outliers from distorting
the fit, we exclude those observations which have an elasticity in the top or
bottom 5% (i.e., bond return is close to zero, hence hard to infer the elasticity
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between the bond and the equity), or an equity volatility in the top 5% (which
corresponds with a volatility of 90.63% per annum). Together, this removes
14.41% of all observations from the estimation of the coefficients. To check
for the robustness of the estimation, we run four separate estimations, using
either 2.5%, 5% (the base case), 7.5% or 10% as the threshold; see Table D.2.
We find that the coefficients differ not much from one estimation to another.

We have also considered various alternative regression specifications. In
particular, Kronmal (1993) suggests for regressions involving ratios on the left-
hand side to move the denominator to the right hand side, and use a Weighted
Least Squares approach where the weight is the inverse of the denominator
to correct for the change in definition of the error term. However, in our
setting the bond return is the denominator, and negative and zero values are
perfectly valid. Hence this is not an option, as it would result in observations
with infinite weight.

Taking all considerations into account, the OLS fit seems the best option
available. To ensure our conclusions are not driven by this particular choice, we
have also included results for two alternative equity-bond elasticity estimation
methods:

• use the past 12-month observed bond-equity elasticity, or

• assume the elasticity to be one for all firms.

Neither these alternatives changes our conclusion that there is a distress risk
puzzle (Table 3.8).
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Table 3.1: Parameter estimates equity volatility and average characteristics
For each column (rating group), per month, the asset volatility, leverage, payout ratio and time to maturity are averaged, and subsequently
averaged over time. The column All denotes the average across all credit ratings. The data sample runs from January 1994 to December
2015.

Rating All AAA/AA A BBB BB B CCC-C

Avg. number of observations per month 685 31 150 207 103 155 39
Asset volatility (σ) 24.31% 20.16% 19.79% 21.11% 25.04% 30.43% 37.44%
Leverage (B/V ) 0.54 0.43 0.48 0.51 0.55 0.61 0.71
Payout ratio (δ) 2.76% 2.17% 2.31% 2.59% 2.83% 3.27% 3.77%
Time-to-maturity (T , in years) 4.88 5.19 5.24 5.26 4.70 4.29 4.07
Equity market capitalization (bln USD) 12.34 96.47 24.29 9.20 3.61 1.58 0.99
Book-to-market ratio 0.75 0.50 0.55 0.68 0.83 0.84 1.63
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Table 3.2: Determinants of bond-equity return elasticity
This table shows the results of the full sample pooled panel regression estimated using
Ordinary Least Squares: δE/E

δB/B
= c+βLEV LEV +βV OLV OL+βygyg +βTT + ε where LEV

is defined as the ratio of the book value of total liabilities to book value total liabilities +
market value equity, VOL is the past 1-month annualized equity volatility, yg is the duration
matched Treasury yield, and T is the time-to-maturity of the bond. The table shows the
coefficients and associated t-statistics. Stars denote significance at the 10% (*), 5% (**) and
1% (***) level. Standard errors are calculated using two-way firm-month clustered standard
errors (Petersen, 2009). The data sample runs from January 1994 to December 2015.

constant LEV VOL yg T Adj R2 # obs

coefficient 0.63** 1.00*** 1.09*** -3.54 -0.09*** 0.15% 153527
t-statistic (2.08) (4.85) (2.44) (-0.71) (-3.24)
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Table 3.3: Decile portfolios based on expected equity return
This table shows the returns and other characteristics of decile portfolios based on expected equity returns, where D1 contains the 10% highest expected
equity returns and D10 the lowest 10% expected equity returns. D1-D10 is long the D1 portfolio and short the D10 portfolio. Expected equity returns
are constructed as described in Section 3.3. The portfolios are monthly rebalanced and equal weighted. For each portfolio, the expected return, the
realized return, realized minus expected return, the volatility of realized returns, the spread, expected bond return, elasticity and probability of default
are shown. All returns and the credit spread are monthly and in percentages. The t-statistics use Newey and West (1987) and Newey and West (1994)
robust standard errors. Stars denote significance at the 10% (*), 5% (**) and 1% (***) level. Data sample is from January 1994 to December 2015.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D1-D10

Expected return 1.14 0.41 0.32 0.27 0.24 0.21 0.19 0.17 0.14 -0.14 1.27
Realized return -0.87 0.66 0.83* 0.84** 0.90*** 0.99*** 0.88*** 0.87*** 0.78*** 0.92** -1.79***

(-1.06) (1.22) (1.86) (2.18) (2.76) (3.21) (2.99) (3.25) (2.87) (2.29) (-3.35)
Realized minus expected return -2.01** 0.25 0.52 0.57 0.66** 0.78** 0.69** 0.70*** 0.64** 1.06*** -3.07***

(-2.37) (0.46) (1.15) (1.47) (2.02) (2.50) (2.33) (2.60) (2.35) (2.65) (-5.57)
Volatility realized returns 11.33 8.07 6.39 5.61 4.88 4.71 4.40 4.08 4.00 5.78 7.52
Credit spread 0.70 0.36 0.26 0.21 0.18 0.15 0.13 0.12 0.12 0.24 0.46
Expected return bond 0.50 0.22 0.17 0.14 0.11 0.09 0.08 0.06 0.04 -0.12 0.62
Elasticity 1.57 1.11 0.96 0.89 0.84 0.79 0.77 0.77 0.83 1.28 0.29
Probability of default (in %) 17.90 11.34 8.59 7.16 6.20 5.40 4.84 4.64 5.96 20.87 -2.97
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2Table 3.4: Expected versus realized returns over short and long horizon
In panel A (B) the expected and realized returns for bonds (equities) are shown of decile portfolios sorted on the expected return of the bond (equity).
All figures are monthly and in percentages. The t-statistics use Newey and West (1987) and Newey and West (1994) robust standard errors. Stars
denote significance at the 10% (*), 5% (**) and 1% (***) level. Data sample is from January 1994 to December 2015.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D1-D10

Panel A: Bonds
Expected bond return 0.52 0.23 0.17 0.14 0.11 0.09 0.08 0.06 0.03 -0.13 0.65
Realized return 1-month 0.29 0.33 0.23 0.13 0.13 0.09 0.04 0.03 -0.01 -0.09 0.38

(0.70) (1.51) (1.52) (0.98) (1.25) (0.93) (0.51) (0.40) (-0.16) (-0.76) (1.16)
Realized 1-month minus expected -0.23 0.10 0.06 -0.01 0.02 -0.00 -0.03 -0.03 -0.04 0.04 -0.27

(-0.56) (0.45) (0.40) (-0.07) (0.19) (-0.02) (-0.37) (-0.43) (-0.58) (0.32) (-0.84)
Realized return 5-years 0.23 0.21 0.16 0.15 0.13 0.12 0.10 0.09 0.10 0.14 0.09

(0.79) (1.03) (1.01) (1.11) (1.14) (1.17) (1.17) (1.15) (1.03) (1.03) (0.53)
Realized 5-year minus expected -0.29 -0.02 -0.01 0.01 0.02 0.03 0.02 0.03 0.07 0.27** -0.56***

(-1.00) (-0.10) (-0.06) (0.07) (0.18) (0.29) (0.23) (0.38) (0.72) (1.99) (-3.30)

Panel B: Equities
Expected equity return 1.14 0.41 0.32 0.27 0.24 0.21 0.19 0.17 0.14 -0.14 1.27
Realized return 1-month -0.87 0.66 0.83* 0.84** 0.90*** 0.99*** 0.88*** 0.87*** 0.78*** 0.92** -1.79***

(-1.06) (1.22) (1.86) (2.18) (2.76) (3.21) (2.99) (3.25) (2.87) (2.29) (-3.35)
realized 1-month minus expected -2.01** 0.25 0.52 0.57 0.66** 0.78** 0.69** 0.70*** 0.64** 1.06*** -3.07***

(-2.37) (0.46) (1.15) (1.47) (2.02) (2.50) (2.33) (2.60) (2.35) (2.65) (-5.57)
Realized return 5-years 0.30 0.60 0.73* 0.83** 0.88*** 0.84*** 0.83*** 0.78*** 0.80*** 0.80** -0.50

(0.46) (1.19) (1.72) (2.25) (2.69) (2.71) (2.71) (2.58) (2.80) (2.13) (-1.47)
Realized 5-year minus expected -0.84 0.19 0.41 0.56 0.64** 0.63** 0.64** 0.61** 0.66** 0.94*** -1.77***

(-1.29) (0.38) (0.97) (1.52) (1.96) (2.03) (2.09) (2.02) (2.31) (2.50) (-5.20)
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Table 3.5: Fama-MacBeth
Each month, a cross-sectional regression of realized equity return on the corporate bond
implied equity return (EXP) and one or more interaction terms is conducted. Equity return
and expected equity return are monthly and in percentages. Specifications 2 to 5 include
interaction terms of EXP with dummies proxying the likelihood of mispricing. The dummies
are constructed by each month splitting the universe in three equal sized buckets based on
the number of analysts following the stock, the turnover of the stock and the equity market
cap. The base case is a stock with high number of analysts, high stock turnover and large
equity market cap (i.e. least likely mispriced). The t-statistics use Newey and West (1987)
and Newey and West (1994) robust standard errors. Stars denote significance at the 10%
(*), 5% (**) and 1% (***) level. Sample period January 1994 to December 2015.

1 2 3 4 5

constant 1.21*** 1.22 1.21 1.23 1.23***
(3.91) (4.02) (4.15) (3.68) (3.68)

EXP -2.64*** -2.09*** -3.23*** -1.97*** -2.31***
(-5.30) (-3.13) (-4.23) (-2.37) (-2.74)

EXP × [#analysts mid] -0.70 -0.57
(-1.22) (-1.15)

EXP × [#analysts low] -0.77 -0.58
(-1.23) (-1.03)

EXP × [#turnover mid] 0.98* 0.80
(1.83) (1.63)

EXP × [#turnover low] 0.93 0.81
(1.44) (1.30)

EXP × [#equity mcap mid] -0.44 -0.01
(-0.55) (-0.02)

EXP × [#equity mcap low] -0.90 -0.40
(-0.89) (-0.40)

Adj R2 2.7% 3.5% 3.7% 3.7% 5.2%
#observations per month 685 685 685 685 685
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4Table 3.6: Fama-MacBeth regressions on factor characteristics
Each month, a cross-sectional regression of the monthly realized equity return (monthly bond-implied expected equity return) on various
characteristics (winsorized at 1 and 99% percentile each month) is conducted: 1. FF3: 36-month beta to RMRF, log of equity market
cap in millions USD, log of book-to-market ratio 2. FF6: FF3 + 12 minus 1-month momentum, operating profitability, and investments.
Equity return and expected equity return are monthly, in excess of the risk-free rate and in percentages. The t-statistics use Newey and
West (1987) and Newey and West (1994) robust standard errors. Stars denote significance at the 10% (*), 5% (**) and 1% (***) level.
Sample period January 1994 to December 2015.

Dependent variable Realized equity returns Expected equity returns Realized minus expected returns

Factor model FF3 FF6 FF3 FF6 FF3 FF6

constant 0.52 -1.79 0.64*** 0.15 -0.12 -1.94
(0.61) (-1.06) (7.72) (1.40) (-0.14) (-1.10)

Beta Mkt RF 0.03 -0.60** 0.04*** 0.05*** -0.01 -0.65**
(0.25) (-2.01) (4.83) (2.59) (-0.07) (-2.20)

Log(Mcap) 0.01 0.30** -0.05*** 0.00 0.05 0.30*
(0.08) (2.01) (-5.82) (0.27) (0.69) (1.91)

Log(Book-to-Market) -0.14 -0.34 0.05*** 0.04** -0.19 -0.37
(-1.20) (-1.12) (5.25) (2.20) (-1.62) (-1.21)

Mom12 1M 1.56 -0.21*** 1.77
(1.45) (-3.27) (1.60)

Oper. Prof. -0.79 0.20 -1.00
(-0.68) (1.19) (-0.76)

Investments 0.06 0.03*** 0.03
(0.13) (2.52) (0.07)

Adj. R2 0.05 0.12 0.09 0.11 0.05 0.12
Nobs 627 530 627 530 627 530
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Table 3.7: Decile portfolios based on expected equity return for sub periods
This table shows the returns and other characteristics of decile portfolios based on expected equity returns, where D1 contains the 10%
highest expected equity returns and D10 the lowest 10% expected equity returns. D1-D10 is long the D1 portfolio and short the D10
portfolio. Expected equity returns are constructed as described in Section 3.3. The portfolios are monthly rebalanced and equal weighted.
For each portfolio, the expected return, the realized return, realized minus expected return, the volatility of realized returns, the spread,
expected bond return, elasticity and probability of default are shown. All returns and the credit spread are monthly and in percentages.
The t-statistics use Newey and West (1987) and Newey and West (1994) robust standard errors. Stars denote significance at the 10% (*),
5% (**) and 1% (***) level. Panel A reports the first 11 years and Panel C the final 11 years of the sample

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D1-D10

Panel A: Jan 1994 - Dec 2004
Expected return 1.37 0.40 0.30 0.26 0.23 0.21 0.19 0.18 0.15 -0.07 1.43
Realized return -1.25 0.69 0.93** 0.87** 0.88** 0.99*** 0.91** 0.92*** 0.78** 1.06** -2.31***
t-statistic vs 0 (-1.24) (1.15) (2.07) (2.20) (2.19) (2.90) (2.47) (2.71) (2.18) (2.34) (-3.32)
Realized minus expected return -2.61** 0.29 0.63 0.61 0.65 0.78** 0.71* 0.75** 0.63* 1.13** -3.74***
t-statistic vs expected return equity (-2.45) (0.48) (1.39) (1.53) (1.60) (2.25) (1.92) (2.18) (1.75) (2.47) (-4.90)

Panel B: Jan 2005 - Dec 2015
Expected return 0.90 0.42 0.33 0.28 0.24 0.21 0.19 0.16 0.12 -0.21 1.11
Realized return -0.50 0.63 0.73 0.80 0.92* 0.99* 0.86* 0.82** 0.78* 0.78 -1.28
t-statistic vs 0 (-0.38) (0.70) (0.94) (1.22) (1.78) (1.92) (1.85) (1.97) (1.91) (1.17) (-1.60)
Realized minus expected return -1.41 0.21 0.40 0.52 0.67 0.77 0.67 0.66 0.66 0.98 -2.39***
t-statistic vs expected return equity (-1.08) (0.23) (0.51) (0.79) (1.30) (1.50) (1.44) (1.57) (1.59) (1.50) (-3.11)
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6Table 3.8: Robustness top-bottom decile portfolio results
This table shows the returns of top-bottom decile portfolios based on expected equity returns. There are six specifications:

1. Base case (as in Table 3.3)
2. Market value weighted stock positions (instead of equal weighted)
3. Sort on expected bond returns
4. Elasticity is based on past 12-month OLS of realized equity returns on realized credit returns (instead of pooled panel regression)
5. Probability of default estimated using the CHS model rather than implementation of the Merton (1974) model
6. Probability of default using long-term cumulative default rates per credit rating over the period 1920-2014

(Moody’s Investors Services, 2015, Exhibit. 32)
7. Sort on credit spread

For each portfolio, the expected return, the realized return, and realized minus expected return are shown. The expected returns are
computed as described in Section 3.3, except for specifications 4, 5, 6, where the expected equity return follows the modification. All
returns are monthly and in percentages. The t-statistics use Newey and West (1987) and Newey and West (1994) robust standard errors.
Stars denote significance at the 10% (*), 5% (**) and 1% (***) level. Sample runs from January 1994 to December 2015.

Specification 1 2 3 4 5 6 7

Expected return 1.27 0.76 0.98 1.87 1.61 1.35 0.80
Realized return -1.79*** -1.10* -1.03** -0.85** -0.24 -1.87*** -1.48**
t-stat vs 0 (-3.35) (-1.68) (-2.21) (-2.17) (-0.34) (-2.81) (-2.16)
Realized minus expected return -3.07*** -1.86*** -2.01*** -2.72*** -1.84*** -3.22*** -2.29***
t-stat vs expected return equity (-5.57) (-2.89) (-4.10) (-6.50) (-2.60) (-4.72) (-3.24)



CHAPTER 3. STOCK-BOND INTEGRATION 87

Table 3.9: Expected equity return top-bottom portfolios within risk groups
Each month, the universe is split in five groups according to a risk measure. The risk
measures are (1) the credit spread of the bond, (2) the probability of default as described in
Section 3.3.2, (3) the credit rating, (4) the past 1-month daily equity return volatility and
(5) the equity market beta which is computed by regressing the past 36 month stock returns
on the RMRF factor provided by Kenneth French. Within each group, an equal weighted
long-short portfolio is constructed by going long (short) the 20% highest (lowest) expected
equity returns stocks. The table reports the mean monthly realized return in percentages
and the associated t-statistic which uses Newey and West (1987) and Newey and West (1994)
robust standard errors. Stars denote significance at the 10% (*), 5% (**) and 1% (***) level.
Sample runs from January 1994 to December 2015.

1 (high risk) 2 3 4 5 (low risk)

Credit spread -2.79*** -0.67*** -0.21 0.11 0.06
(-4.91) (-3.01) (-1.02) (0.63) (0.44)

Probability of default -2.89*** -1.35*** -0.07 -0.29 0.47
(-4.56) (-3.05) (-0.23) (-1.27) (1.40)

Credit rating -3.50*** -0.49 -0.07 0.15 0.15
(-5.05) (-1.54) (-0.22) (0.66) (0.84)

Equity volatility -2.93*** -0.35 -0.53** -0.23 0.14
(-5.16) (-0.87) (-2.16) (-1.40) (0.88)

Equity RMRF beta -1.59*** -0.63* -0.84*** -0.46 -1.55***
(-2.99) (-1.88) (-2.62) (-1.30) (-2.90)
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8Table 3.10: Liquidity of the expected return portfolios
This table shows liquidity characteristics for the ten decile portfolios sorted on expected equity returns as in Table 3.3, where D1 contains the 10%
highest expected equity returns and D10 the lowest 10% expected equity returns. The monthly turnover is computed per month and per portfolio
as the total trading volume in TRACE divided by the total notional amount outstanding of the bonds, and subsequently averaged over time. The
round-trip cost is computed per bond per month as the average bid-ask spread of all customer-to-customer round trips that occur within 24 hours,
and then averaged over all bonds in the portfolio and subsequently over time. The bond liquidity premium per month is the product of the monthly
turnover and the average round-trip cost. The last row shows the implied liquidity premium in the expected bond return by multiplying the bond
liquidity premium with the average elasticity. The data runs from January 2005 to December 2015.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Monthly turnover 14.3% 9.9% 8.7% 7.9% 7.4% 7.3% 7.3% 8.7% 8.4% 9.6%
Round-trip cost 0.37% 0.28% 0.24% 0.24% 0.23% 0.22% 0.21% 0.20% 0.23% 0.24%
Bond liquidity premium per month 0.052% 0.028% 0.021% 0.019% 0.017% 0.016% 0.016% 0.017% 0.020% 0.023%
Liquidity premium in exp. equity return 0.082% 0.031% 0.020% 0.017% 0.014% 0.013% 0.012% 0.013% 0.016% 0.029%
Exp. equity return before liquidity premium 1.14 0.41 0.32 0.27 0.24 0.21 0.19 0.17 0.14 -0.14
Exp. equity return after liquidity premium 1.06 0.38 0.30 0.25 0.23 0.20 0.18 0.16 0.12 -0.17
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Table 3.11: Expected equity return top-bottom portfolio factor regressions
The D1-D10 expected equity return portfolio is constructed as described in Table 3.3. The
realized returns of this portfolio (R) are regressed on one or more factors denoted by F:
R = α + βF + ε. The factor series are obtained from the website of Kenneth French. The
table reports the monthly alpha in percentages, the coefficients β and all associated robust
t-statistics following Newey and West (1987) and Newey and West (1994). Sample period is
January 1994 to December 2015.

1 (CAPM) 2 (FF3) 3 (FF3-Carhart) 4 (FF5) 5 (FF5-Carhart)

alpha -2.30*** -2.36*** -1.78*** -1.65*** -1.30***
(-5.49) (-5.87) (-5.06) (-3.70) (-3.66)

RMRF 0.83*** 0.74*** 0.44*** 0.45*** 0.26**
(6.07) (5.62) (4.90) (3.84) (2.57)

SMB 0.63*** 0.72*** 0.33** 0.45***
(5.26) (4.78) (2.18) (3.33)

HML 0.04 -0.24 0.69*** 0.21
(0.17) (-1.16) (2.58) (1.23)

MOM -0.74*** -0.69***
(-6.26) (-6.36)

RMW -1.12*** -0.91***
(-4.79) (-4.14)

CMA -0.72 -0.38
(-1.42) (-1.19)

Adj. R2 0.23 0.30 0.52 0.38 0.57

Table 3.12: Cumulative 5-year probability of default per credit rating
Long-run average: based on data per credit rating of Moody’s Investors Services (2015,
Exhibit 32), spanning the 1920-2014 period.

model Avg. AAA/AA A BBB BB B CCC/CC/C

Merton 10.03% 2.14% 2.83% 4.69% 9.39% 19.61% 35.81%
CHS 3.61% 1.86% 2.09% 2.45% 3.36% 5.38% 10.38%
Long-run average 9.44% 0.70% 1.37% 2.87% 9.34% 20.54% 39.77%
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Table 3.13: Coefficients panel OLS regression for various thresholds
This table shows the results of the full sample pooled panel regression estimated using
Ordinary Least Squares: δE/E

δB/B
= c+βLEV LEV +βV OLV OL+βygyg +βTT + ε, where LEV

is defined as the ratio of the book value of total liabilities to book value total liabilities +
market value equity, VOL is the past 1-month annualized equity volatility, yg is the duration
matched Treasury yield, and T is the time-to-maturity of the bond. The table shows the
coefficients and associated t-statistics for various winsorization thresholds. Stars denote
significance at the 10% (*), 5% (**) and 1% (***) level. Standard errors are calculated
using two-way firm-month clustered standard errors (Petersen, 2009). The data sample runs
from January 1994 to December 2015.

threshold constant LEV VOL yg T Adj R2 # obs

2.5% 1.20*** 0.79** 0.76 -2.61 -0.10* 0.02% 166311
(2.59) (2.00) (1.27) (-0.35) (-1.88)

5% 0.63** 1.00*** 1.09*** -3.54 -0.09*** 0.15% 153527
(2.08) (4.85) (2.44) (-0.71) (-3.24)

7.5% 0.48* 0.85*** 1.10*** -2.79 -0.07*** 0.22% 141173
(1.92) (5.40) (2.77) (-0.67) (-3.47)

10% 0.35* 0.80*** 1.01*** -1.83 -0.05*** 0.26% 129216
(1.68) (6.16) (2.85) (-0.55) (-3.24)
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Figure 3.1: Distribution of fitted elasticities
The following pooled panel OLS regression is estimated: δE/E

δB/B
= c + βLEV LEV +

βV OLV OL + βygyg + βTT + ε where δE/E
δB/B

is the observed elasticity measured over the

month (winsorized top and bottom 5%); all right hand variables are known as of the be-
ginning of the month: LEV is the leverage ratio B/V, VOL is the past 1-month annualized
stock return volatility (winsorized top 5%), yg the duration matched Treasury yield and T
the time-to-maturity. The figure reports the distribution of the fitted elasticities, winsorized
at the 0.5% and 0.995% quantiles.
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Figure 3.2: Average expected bond and equity returns through time
This figure reports the market value weighted average of the monthly expected bond return
over duration matched Treasuries and the expected equity return over the 1-month T-bill
following the methodology in Section 3.3. Sample from January 1994 to December 2015.
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Figure 3.3: Bond-implied expected and realized returns D1-D10
This figure plots the cumulative bond-implied and realized equity returns of the bond-implied
expected return sorted D1-D10 portfolio following the methodology in Section 3.3. Sample
from January 1994 to December 2015.
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Figure 3.4: Relation D1-D10 expected equity return portfolio with stock market
return
This figure plots the monthly realized equity return of the market over the 1-month T-
bill to the D1-D10 expected equity return portfolio monthly realized returns following the
methodology in Section 3.3. Sample from January 1994 to December 2015.
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Figure 3.5: Distribution mean-reversion parameter equity return variance
Per stock, we estimate for each calendar month the following regression using OLS:
σ2
Et − γ = θ

(
σ2
Et−12 − γ

)
+ εt, where σ2

Et is the squared stock volatility over month t using
daily stock returns from CRSP, γ the long run average parameter and θ the mean reversion
parameter. For each stock, we take the average over the 12 θ’s. The figure shows the
distribution of thetas, where thetas below zero or above 1 are excluded.
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Figure 3.6: Average 5-year cumulative probability of default through time
Average 5-year cumulative probability of default for the Merton (1974) model implemen-
tation and the Campbell, Hilscher, and Szilagyi (2008, CHS) hazard rate model; equal
weighted. “Rating” is the average cumulative 5-year default rate for a bond given its credit
rating using data from Moody’s Investors Services (2015). Fluctuations in this series are
caused by a changing credit rating composition of the universe. Sample period January 1994
to December 2015.
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Chapter 4

Volatility-Adjusted
Momentum

4.1 Introduction

Cross-sectional momentum premia have been thoroughly documented in the
academic literature for many asset classes over the past two decades, first for
US equities by Jegadeesh and Titman (1993), and subsequently in other as-
set classes such as international equities (Rouwenhorst, 1998), commodities
(Miffre and Rallis, 2007), currencies (Okunev and White, 2003; Menkhoff et
al., 2012), high-yield corporate bonds (Jostova et al., 2013), sovereign bonds
(Asness, Moskowitz, and Pedersen, 2013) and real estate (Derwall et al., 2009;
Beracha and Skiba, 2011). Ever since the first study in 1993, the de-facto
standard methodology is to construct a non-levered long-short quantile port-
folio based on past returns. This “winner-minus-loser” (WML) momentum
portfolio is long assets with the highest past returns, and finances these long
positions with short positions in assets with the lowest past returns.

There are a number of details in the exact construction of the momentum
portfolio that vary across studies, such as the percentage of assets in the long
and short leg (e.g., decile, quintile or tertile portfolios), the horizon over which
past returns are measured (the formation period length), whether to skip the
most recent week/month or not to account for bid-ask bounces (Jegadeesh and
Titman, 1993), the rebalancing frequency and the weighting scheme within the
portfolio (equal or market value weighted). Despite these differences, sorting
assets based on past returns seems to be taken as a given.

The main contribution of this paper, motivated by portfolio theory going
back to Markowitz (1952), is to make assets with different volatilities compa-
rable to each other, such that there is a “level playing field”. I achieve this
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by incorporating ex-ante volatility estimates in both the sorting stage and the
weighting scheme when constructing the momentum portfolio. The resulting
volatility-adjusted momentum portfolio differs in three ways from the standard
momentum portfolio, namely (1) assets should not be sorted into quantile port-
folios based on their past returns, but rather on their past returns-to-volatility
ratio, (2) the weight of an asset within the quantile portfolio should be inverse
proportional to its volatility and (3) each quantile portfolio should target a
constant volatility through time.

The empirical contribution of this paper is to compare volatility-adjusted
momentum, and each of the individual steps from standard momentum to
volatility-adjusted momentum, to standard momentum on CRSP U.S. stock
data from January 1927 to December 2015. I find that the Sharpe ratio in-
creases from 0.34 for standard momentum to 1.14 for volatility-adjusted mo-
mentum, the alpha more than doubles and that volatility-adjusted momentum
has much less crash risk as evidenced by the reduction in skewness (from -3.91
to -1.02). This improvement is visible in both large caps and small caps.

The stronger performance is primarily driven by two effects. First, volatility-
adjusted momentum avoids selling the highest volatility losers. Although high
volatility stocks do not tend to have higher returns than low volatility stocks
in general (Haugen and Heins, 1972), this is not the case amongst the losers,
where the high volatility stocks do not continue their decline, but rather have
an alpha close to zero. Avoiding the short-selling of high volatility losers raises
the Sharpe ratio from 0.34 to 0.85.

Second, volatility-adjusted momentum (de-)levers the winner and loser
portfolios when past 12-1 month daily return volatility of the stocks selected
has been low (high), targeting a constant volatility instead. As future Sharpe
ratios of the winner and loser portfolios are almost uncorrelated to their ex-
ante volatility estimates, de-levering high volatility months and levering low
volatility months boosts the Sharpe ratio. In particular, the winner portfolio
is improved as a negative relation exists between ex-ante volatility and the
realized 1-month Sharpe ratio. For the loser portfolio, the relation is flat,
leading to a smaller increase in Sharpe ratio. Also, the constant volatility
targeting reduces the natural imbalance in volatilities between winners and
losers: losers tend to be more risky, as also documented by Haesen, Houwel-
ing, and Van Zundert (2017). The reduced volatility imbalance increases the
winner-minus-loser Sharpe ratio by 0.12. In total, the Sharpe ratio rises from
0.85 to 1.14 due to the constant volatility targeting.

Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), instead
of levering the individual winner and loser portfolios, lever the standard WML
portfolio as a whole. In particular, Barroso and Santa-Clara (2015) target a
constant volatility of WML by scaling with the volatility of the past 6 month
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of daily returns of the same portfolio. Adding this WML-specific leverage on
top of the volatility-adjusted momentum portfolio increases the Sharpe ratio
even further, to 1.31. Stand-alone, this timing element leads to a Sharpe ratio
of only 0.74, well below the ratio of 1.14 for volatility-adjusted momentum.

As an out-of-sample test, I employ volatility-adjusted momentum on USD-
denominated corporate bond data spanning the 1994-2015 period. Especially
the application on investment-grade bonds, i.e., higher credit quality bonds,
is of interest as it is one of the few asset classes for which no momentum
effect has been found so far (Khang and King, 2004; Gebhardt, Hvidkjaer,
and Swaminathan, 2005). In line with those earlier findings, no momentum
effect is visible using traditional return-based sorts. I find the WML alpha to
be only 1.80% per annum and statistically insignificant, and the Sharpe ratio
with a value of 0.04 is close to zero as well. However, as the dispersion in
volatility is very large within this dataset, the volatility-adjusted momentum
portfolio generates a significant positive alpha of 3.26% per annum with a
Sharpe ratio of 1.04.

This paper relates to several streams in the literature. First, it is closely
connected to recent studies on understanding and improving stock momen-
tum. Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) find
that timing the momentum factor for US stocks, using indicators like the past
6-month realized return volatility of the winner-minus-loser momentum port-
folio itself, substantially improves the performance. In particular, the crashes
associated with standard momentum are largely mitigated. I deviate from
their work by not scaling the WML portfolio, but go one level deeper by first
making the individual assets comparable in terms of ex-ante risk. This is an
important difference as it also affects the selection of assets in the long and
short portfolios, whereas scaling after the construction of the long and short
portfolio completely ignores biases in the selection of individual assets, lead-
ing to suboptimal portfolios to start with. The Sharpe ratio of Barroso and
Santa-Clara (2015) risk-managed momentum (0.74) is lower than the Sharpe
ratio of volatility-adjusted momentum (1.14).

Second, it relates to the concurrent work of Ledoit, Wolf, and Zhao (2017)
who test a large number of anomalies on U.S. stock data. Similar to this
paper, they argue that the standard portfolio sort ignores the covariances
of the asset returns. The key challenge with the mean-variance portfolio of
Markowitz (1952) is exactly to estimate the covariance matrix of asset returns.
Ledoit, Wolf, and Zhao (2017) solve this by using the DCC-NL estimator of
Engle, Ledoit, and Wolf (2017). In contrast, the adjustment proposed in this
paper assumes a uniform correlation structure and explicitly creates quantile
portfolios rather than a single optimized portfolio. This simplifies the portfolio
construction drastically and provides a clear interpretation of the differences
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versus the standard quantile portfolio sort.

Third, it relates to earlier work on momentum in corporate bond markets.
Gebhardt, Hvidkjaer, and Swaminathan (2005) and Khang and King (2004)
find evidence for reversals in the investment grade market. Jostova et al. (2013)
and Houweling and Van Zundert (2017) do not find momentum in investment
grade bonds, but do find momentum in high yield bonds. Barth, Hühn, and
Scholz (2017) document similar findings for euro-denominated bonds. A con-
current paper by Lin, Wu, and Zhou (2017) identifies momentum effects in
the US corporate bond market, but with a different methodology. First, Lin,
Wu, and Zhou (2017) empirically determine the optimal combination of mov-
ing averages of bond yields over eight horizons, ranging from 1 month to 60
months, to form a signal. In contrast, in this paper a single horizon is used
as is standard in the momentum literature. Second, this paper purposely uses
excess returns over duration matched Treasuries, i.e. the credit component of
returns, not total returns as used by Lin, Wu, and Zhou (2017). The reason
is that, especially for investment grade bonds, a sizable part of the return is
driven by the interest rate component. Any momentum effects documented
could thus entirely be due to momentum in Treasuries, not by momentum in
the firm-related credit return. By zooming in on the credit return, I ensure
that the results are driven by the firm-related credit component.

The remainder of this paper is structured as follows: Section 4.2 discusses
the theoretical framework in which volatility-adjusted momentum is optimal.
Section 4.3 contains the main empirical analyses. Section 4.4 describes the
results of the out-of-sample check on corporate bonds. Section 4.5 concludes.

4.2 Methodology

In this section I explain and motivate the volatility adjustments to the stan-
dard momentum portfolio. First, I explain the adjustment to the standard
top 10% winner minus bottom 10% loser momentum portfolio. Then, I use a
reduced-form model to motivate the inclusion of volatility in the momentum
portfolio construction process. This model is not meant as an explanation to
momentum, rather, it shows why the incorporation of volatility in the con-
struction process is optimal from the point of view of a rational momentum
trader. Finally, I break down the adjustment from standard momentum to
volatility-adjusted momentum in three steps. The empirical section shows
results for each of the steps as to better understand the source of the improve-
ment versus standard momentum.
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4.2.1 Adjusting for volatility

The volatility adjustment aims to make assets with different levels of volatility
comparable by scaling their returns Ri,t with an ex-ante volatility estimate
σ̂i,t, where the subscript i (t) denotes the asset (time). This adjustment is
common in studies involving multiple asset classes, such as Moskowitz, Ooi,
and Pedersen (2012) who study time series momentum over numerous asset
classes.

Denote the money weight as wi,t, the past k-period return per unit of ex-

ante volatility as R∗i,t−k:t

(
=

Ri,t−k:t
σ̂i,t

)
, and the weight in units of volatility

as w∗i,t (= wi,t × σ̂i,t).
The concept of volatility-adjusted momentum, as introduced in this pa-

per, works a follows. I construct the top (bottom) decile momentum port-
folio as an equal w∗i,t weighted portfolio of the 10% assets with the highest
(lowest) R∗i,t−k:t, with the total weight of the top (bottom) portfolio

∑
iw
∗
i,t

constant through time. I.e., after scaling the returns of the assets with their
ex-ante volatility and adjusting positions correspondingly, the methodology of
volatility-adjusted momentum is exactly the same as the standard momentum
portfolio sorts.

4.2.2 A single optimal portfolio

I now present a simple model to motivate the concept for volatility-adjusted
momentum. In this model an agent has information on past price innovations
to construct an optimal portfolio at time t. The agent has a constant relative
risk aversion utility with risk aversion parameter γ and can invest in N risky
assets which have normally distributed returns with mean µt and a variance-
covariance matrix Σt. For simplicity, the problem is assumed to be single-
period. I assume a riskless asset exists, and without loss of generality set it’s
return to zero. Under these assumptions, the optimal portfolio is the mean-
variance portfolio, with weights given by (Markowitz, 1952):

wt =
1

γ
Σt
−1µt (4.1)

The disadvantage of this solution is that the full variance-covariance matrix
Σt has to be estimated, and that the optimal weights wt are very sensitive to
the estimated covariance terms. Therefore, I make the assumption that the
pairwise correlations are uniform, which has been shown to produce better
out-of-sample forecasts than many more sophisticated methods (Elton and
Gruber, 1973). This simplifies Equation 4.1. Setting the correlation to a
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specific value ρ ∈ (0, 1)1, the relative weight2 of asset i in the portfolio at time
t, zi,t, is given by (Elton, Gruber, and Padberg, 1976, Equation 12):

zi,t =
1

1− ρ
1

σi,t

µi,t
σi,t
− ρ

1− ρ+Nρ

N∑
j=1

µi,t
σi,t

 (4.2)

where σi,t is the volatility of asset i at time t. Note that this is a relative
weight, not an absolute weight. The absolute weight depends on the exact
level of risk aversion of the investor.

4.2.3 Translation of single optimal portfolio to quantile port-
folios

In the momentum literature, the usage of non-levered long-only quantile port-
folios is standard. For comparability, I convert the single optimal portfolio
into quantile portfolios. Although this reduces the optimality of the portfolio,
it provides a clear interpretation of the differences between the standard and
the volatility-adjusted momentum quantile portfolios. The differences can be
broken down in three steps, and for better understanding of the differences I
test each step separately in the empirical section.

Step 1 selecting assets To translate the portfolio in Equation 4.2, I use
the insight that if a limited number of assets may be selected for the optimal
portfolio, those assets included should be the ones with the highest Sharpe
ratio

µi,t
σi,t

(Elton, Gruber, and Padberg, 1976, p. 1354). Thus, these assets

do not have to be the ones with the highest weight in the single optimal
portfolio! For instance, an asset with a just above-average Sharpe ratio and
very low volatility will receive a high weight, but would not be selected in
the top portfolio as the Sharpe ratio does not belong to the highest values.
Intuitively, given that leverage is possible in the Markowitz (1952) framework,
the optimal risky-asset portfolio will be the one that produces the highest
Sharpe ratio. As all assets are equal in terms of diversification benefits due
to the assumption of uniform correlations, the assets with the highest Sharpe
ratio are most attractive to include. Leverage can be used to attain the desired
risk given the risk aversion of the investor.

The assets in the top decile portfolio are therefore the 10% assets with the
highest Sharpe ratios. The next decile portfolio, which cannot select assets

1Correlations could also be negative, but in the context of individual stocks they are
positive in general. For example, Pollet and Wilson (2010) show that the average pairwise
correlation between the 500 largest exchange-traded stocks in the U.S. is approximately 0.3.

2I.e., wi,t =
zi,t∑
j zj,t

. Later the absolute weight will be derived.
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already included in the top decile portfolio by construction, should thus include
the next 10% assets sorted by Sharpe ratio. This process is repeated until the
bottom decile contains the 10% assets with the lowest Sharpe ratio. The
sorting of assets into quantile portfolios is thus straightforward: sort on the
Sharpe ratio, rather than on raw returns.

Step 2 weighting assets within the (non-levered) portfolio The next
question is how large the weight of an asset within its decile portfolio should
be. Due to the sorting of the assets by their Sharpe ratio into decile portfolios,
the k assets included in a specific decile portfolio will have approximately the
same Sharpe ratio SRq. Under the simplifying assumption that all assets
included in the quantile portfolio have exactly the same Sharpe ratio3, the
weight of each asset in a quantile portfolio is given by (Appendix 4.A provides
the details for the derivation)

wi,t =
1

σi,t

1

γ

(
1

1− ρ+ kρ

)
SRq (4.3)

In this step, I aim to construct portfolios that are not levered, since this is
what standard momentum does. Thus the portfolio money weights wi,t have
to add up to 1, implying

wi,t =
σ−1
i,t∑kt

j=1 σ
−1
j,t

(4.4)

as γ, ρ, k and SRq cancel out. Thus within the quantile portfolio, assets
should be weighted with the reciprocal of their volatility.

Step 3 levering portfolios After steps 1 and 2, there are 10 non-levered
decile portfolios by sorting assets on their Sharpe ratio and within each port-
folio weighting the assets by the inverse of their volatility. However, Equation
4.3 shows that the total portfolio weight, i.e. leverage, varies through time
as the investors risk-aversion γ, the correlation parameter ρ, the number of
assets k, the risk premium SRq and the asset specific volatilities σi,t can vary
through time. Under the assumption that γ, ρ and SRq are constant through

3Between the quantile portfolios, the Sharpe ratios will differ, as that is the goal of con-
structing anomaly portfolios. As the focus is on optimizing each individual quantile portfolio
and show the difference in risk and return characteristics across the quantile portfolios, the
same Sharpe ratio for each portfolio is implicitly assumed in step 3. As for the standard
momentum methodology, which also creates $1 decile portfolios from D1 to D10, I make
each decile portfolio the same. A momentum trader would invest more in D1 than in D2,
and short-sell less in D9 than in D10.
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time (i.e., the momentum trader does not update correlation nor risk premium
estimates), Appendix 4.A shows that wi,t can be approximated by

wi,t = cσ−1
i,t k

−1
t (4.5)

where the parameter c is a scaling parameter. This parameter depends on the
assumed risk aversion γ, the correlation parameter ρ and the assumed risk
premium SRq. In the empirical section I set c to 0.60. As I explicitly con-
struct WML portfolios with equal full sample volatility to allow a meaningful
comparison of mean returns and alphas between portfolios, the exact value is
not important.

To conclude, the leverage of the portfolio is inverse proportional to the
volatilities σi,t. If the volatilities double (halve), the weights wi,t halve (dou-
ble). Due to this levering, the quantile portfolio volatility is (approximately)
constant through time. See Appendix 4.A for the details. The parameter kt
is included to control for the number of assets. Otherwise, if the number of
assets included in the portfolio would double, the leverage would also dou-
ble, as the total weight invested, wq, is the sum over all individual positions:
wq =

∑k
j=1wj,t.

4.2.4 Momentum trader inputs

In the concept of volatility-adjusted momentum, the momentum trader uses
past returns to forecast future volatilities and Sharpe ratios. For the volatili-
ties, the momentum trader estimates the volatility of asset i at time t, σi,t, by
the past 12-1 month daily return volatility Si,t−12:t−2. For the Sharpe ratio,
the trader assumes that the returns over the past 12 months, skipping the
most recent month, continue into the future:

ŜRi,t =
Ri,t−12:t−2

Si,t−12:t−2
(4.6)

where Ri,t−12:t−2 is the realized return of asset i over the past 12-1 months.
The decile volatility-adjusted momentum portfolios are thus constructed by
sorting on

Ri,t−12:t−2

Si,t−12:t−2
, and weighting with S−1

i,t−12:t−2.

4.3 Empirical results

4.3.1 Data

For the stock data, I select all common equity (share codes 10 and 11) listed on
the New York Stock Exchange, the American Stock Exchange and the Nasdaq
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Stock Market (exchange codes 1, 2 and 3) in the Center of Research in Security
Prices (CRSP) database from the daily files. The resulting dataset contains
stock returns at a daily frequency over the period January 1926 to December
2015. All stocks are made long-short assets by subtracting the risk-free rate,
which I proxy with the 1-month T-bill rate from the CRSP Treasury index
files. As this is a monthly available rate, it is converted to a daily rate at the
beginning of each month, and assumed to be constant throughout the month.

Momentum decile portfolios are constructed by ranking each month all
stocks on their past 12-month returns, excluding the most recent month in
line with previous studies on stock momentum to avoid the bid-ask bounce
(Jegadeesh and Titman, 1993). Both the returns, as well as the volatilities for
the volatility-adjusted momentum portfolios are based on these 11 calendar
months of returns. The stocks with the 10% highest returns (or return-to-
volatility) are incorporated in the first decile portfolio (D1), the next 10% in
D2, etcetera, until the lowest 10% which are included in D10. The momentum
portfolios are rebalanced every month-end. In between rebalancing moments
the weights are updated with the daily stock returns. The constituents of
the decile portfolios remain constant throughout the remainder of the month,
except for delistings. If delisting returns are provided in the CRSP dataset, I
include these in the return calculation. The proceeds from the divestment of
the delisted stocks are reinvested proportionally in the remaining constituents
of the momentum portfolios.

4.3.2 Momentum versus volatility-adjusted momentum

As the benchmark for volatility-adjusted momentum, I compute equal weighted
standard momentum decile portfolios, as equal weighting is a natural bench-
mark in the context of portfolio choice. In Section 4.3.5, I discuss the robust-
ness of the results to value-weighting, which is also commonly used in stock
momentum studies. Moreover, the portfolios are recalculated on a large cap
universe. The conclusions are unchanged. Due to the 12-month look back
window, the portfolio returns start from the 2nd of January 1927.

Table 4.1 reports the results of the standard momentum portfolios (panel
A), the volatility-adjusted momentum portfolios (panel D) as well as the in-
between steps (panels B and C). In line with existing literature, the standard
momentum deciles in Panel A show a near-monotonic declining pattern in
mean return, Sharpe ratio, and alpha when moving the winners (D1) to the
losers (D10). The winner portfolio excess return of 18.59% is much higher than
the loser’s portfolio returns of 8.64%. The long-short momentum portfolio
WML, which is long D1 and short D10, achieves a return of 9.95% per annum,
with a volatility of 29.40%, resulting in a Sharpe ratio of 0.34.
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Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) find
Sharpe ratios of 0.53 and 0.60 respectively for the standard momentum WML
portfolio. The difference with those studies is caused by the usage of equal
weights instead of market cap weights. If I apply value weighting, I find a
Sharpe ratio of 0.61 over the 1927:01-2013:03 period studied in Daniel and
Moskowitz (2016), close to their estimate of 0.60. Section 4.3.5 discusses the
impact of value weighting and the interaction with inverse volatility weighting.
In particular, the improvement of volatility-adjusted momentum over standard
momentum is not driven by small caps.

The final two rows of panel A report the Fama and French (1993) 3-factor
alpha. This alpha is computed by estimating a full-sample OLS regression on
the RMRF, SMB and HML factors.4 The alphas are monotonously declining
across the momentum deciles. The WML 3-factor alpha amounts to 16.67%
per annum, which is higher than the raw return due to negative loadings on
RMRF (-0.25), SMB (-0.48) and HML (-0.75) while all three factors have a
positive premium over this sample.

Panel B reports step 1, sorting stocks based on return to 12-1 month ex-
ante volatility rather than on raw returns. Compared to standard momentum,
the return of the loser portfolio (D10) is substantially lower, from 8.64% to
3.31%, while the return for the winner portfolio stays approximately the same.
This increases the return of WML by 48%. Moreover, the volatility of WML
declines from 29.40% to 18.78%, which is mainly driven by the decline in
volatility of the loser portfolio from 41.03% to 28.09% per annum. The cor-
relation between the winner and loser portfolio increases only slightly, from
0.70 to 0.75. In summary, step 1 improves the WML portfolio by lowering the
loser portfolio return and volatility.

Panel C reports step 2, where stocks are not only sorted on return-to-
volatility, but also weighted with the inverse of their ex-ante 12-1 month
volatility following Equation 4.4. The improvement over step 1 is relatively
small, with the WML Sharpe ratio increasing from 0.79 to 0.85. Adjusting the
within-portfolio weighting scheme thus has very limited impact.5

The volatility-adjusted momentum results are shown in panel D. The
Sharpe ratio increases from 0.85 for step 2 to 1.14. The returns and alphas in
panel D are not directly comparable with those in the previous panels, as lever-
age is used. Therefore, the final column WMLC reports the results of WML
scaled to an annualized volatility of 30% using the full sample WML portfolio

4These have been obtained from the website of Kenneth French
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html)

5If the standard momentum portfolio is adjusted by only adjusting the weighting scheme
(step 2), but not the sorting (step 1), the Sharpe ratio increases from 0.34 to 0.43, which is
also a small improvement.
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volatility for each of the steps. The raw returns (alphas) more than triple
(double) when considering volatility-adjusted momentum (panel D) instead of
standard momentum (panel A).

What is even more surprising is that the negative skewness, dubbed “crash
risk” by Daniel and Moskowitz (2016), largely disappears. While standard
momentum has a skewness of -3.91, this reduces to just -1.02 for volatility-
adjusted momentum. This negative skewness is pronounced during and just
after crisis periods. Figure 4.1 shows the cumulative log returns through time.
The standard momentum portfolio (“MOM”) experiences substantial crashes
in 1929, 1939, 2000 and 2009. It is exactly during these periods that volatility-
adjusted momentum (“VA-MOM”) outperforms. The high WML alpha of
17% per annum could be explained by an aversion of investors to the crash
risk. However, volatility-adjusted momentum has relatively small crash risk,
but obtains an alpha of over 39% per annum. This suggests crash risk is an
unlikely explanation of the momentum premium, in line with the conclusions
of both Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016).

Table 4.2 shows the details of the Fama and French (1993) regression for
the standard (panel A) and volatility-adjusted (panel B) momentum portfo-
lios. I use the 30% volatility scaled versions to make the alphas comparable
between the two portfolios. Volatility-adjusted momentum, due to the per-
stock volatility target, is constructed to be close to market-neutral and this
is confirmed by the zero coefficient on RMRF, while standard momentum
has a significant negative exposure in line with previous literature (Barroso
and Santa-Clara, 2015). Specification 2 in both panels shows that volatility-
adjusted momentum can fully explain the alpha of standard momentum, but
not the other way around. Still, volatility-adjusted momentum can only ex-
plain up to 63% of the total variant in standard momentum, which shows that
the two also behave differently through time.

In specification 3, a levered LOWVOL factor is included. This factor is
constructed like volatility-adjusted momentum, but instead of sorting stocks
based on their past return-to-volatility ratio, stocks are sorted based on their
volatility, selecting low volatility stocks in the top and high volatility stocks in
the bottom. The reason for considering this factor is that volatility-adjusted
momentum will overweight low volatility stocks in the winner portfolio (but
also, as it is a short position, underweight low volatility stocks in the loser
portfolio). It might be that part of the alpha is driven by the low volatility
anomaly (Haugen and Heins, 1972). Table 4.2 shows that indeed part of the
alpha disappears after including LOWVOL, as the alpha drops from 39.1%
to 33.4% for volatility-adjusted momentum. Interestingly, also for standard
momentum (panel A), the alpha declines, by more than 7%-point. Thus the
low volatility exposure of volatility-adjusted momentum seems to be a feature
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of momentum in general, and not the construction procedure in particular.
Haesen, Houweling, and Van Zundert (2017) provide evidence for this low
volatility bias. Most importantly, low volatility cannot explain the high alpha
of volatility-adjusted momentum.

4.3.3 The source of the improvement

The results from the previous section indicate that volatility-adjusted momen-
tum has a substantial higher Sharpe ratio than standard momentum, mainly
due to (1) the inclusion of different assets in the winner and loser portfolios,
i.e. step 1, and (2) targeting a constant volatility for the winner and loser port-
folios in step 3. These two steps present two dimensions of volatility: the first
step improves the profitability of individual positions by relating momentum
and volatility in the cross-section, and the second step (de)levers the winner
and loser portfolios through time.6 To better understand the source of the
improvement, I analyze the relation between momentum and volatility both
in the cross-section and through time.

To determine the impact of the cross-sectional adjustment, I employ a 5x5
doublesort.7 First, five momentum portfolios are created based on past 12-
1 month stock returns. Then, within each momentum portfolio, stocks are
sorted into five 12-1 month daily return volatility portfolios, resulting in 25
portfolios in total. Table 4.3 shows the raw returns (panel A) as well as the
3-factor alphas (panel B). Within the momentum portfolios, high volatility
has a higher return but lower alpha than low volatility in general, reflecting
the empirical finding that the relation between risk and return is too flat
(Haugen and Heins, 1972). Within each volatility portfolio, high momentum
portfolios have higher returns and alphas than low momentum portfolios (i.e.,
the momentum effect). However, there is an exception for the high volatility
loser portfolio: it has above average return, even higher than the high volatility
winner portfolio, and by far the highest alpha across the losers. It thus seems
that of the losers, for the ones with the highest volatility the downward trend
does not continue but remains (risk-adjusted) flat, suggesting that the negative
news has been priced in already. Volatility-adjusted momentum avoids short
selling these stocks as it uses return-to-volatility rather than raw returns to
construct quantile portfolios.

For the time series component, step 3, we note that both top and bottom
portfolio Sharpe ratios improve with 0.19 and 0.06 respectively due to scaling

6Step 2 shows that weighting assets based on the reciprocal of their volatility within the
portfolio, but not through time, is just a minor improvement.

7A 10x10 sort is not feasible in the earlier part of the sample, as there is an insufficient
number of stocks to select from.
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the portfolios through time versus step 2. The scaling adds value as the relation
between the ex-ante volatility and the realized Sharpe ratio is negative. For
the top (bottom) portfolio, an OLS regression of the realized annualized 1-
month Sharpe ratio on the ex-ante volatility results in a coefficient of -0.076
(-0.0137) on the ex-ante volatility. Hence, the Sharpe ratios of both the loser,
but especially the winner portfolio, improve, as more (less) weight is given to
high (low) Sharpe ratio months.8

Figure 4.2 shows the leverage ratios of the winner and loser portfolios,
where 1 means that the portfolio is fully invested in stocks, a value greater
than 1 that part of the long stock position is financed by borrowing at the
risk-free rate and a value below 1 that part of the portfolio is not invested
in stocks but in the riskfree asset instead. The average level is above 1 due
to the choice of 60% per stock volatility. This is merely a scaling constant.
However, the average leverage of the winners is also higher than of the losers by
20%, as stocks with improving momentum tend to have lower volatility than
losers. This effect has been documented before by Haesen, Houweling, and
Van Zundert (2017), and by reducing this imbalance in portfolio volatilities
the WML Sharpe ratio rises from 0.85 to 0.97 already.9 The remainder of
the improvement, from 0.97 to 1.14, is driven by the increase in the winner
portfolio Sharpe ratio versus the loser portfolio Sharpe ratio.

4.3.4 How does volatility-adjusted momentum compare to WML
timing?

Barroso and Santa-Clara (2015), taking the standard WML portfolio as given,
show that this portfolio can be timed, as the volatility is relatively predictable
while returns are unrelated to the volatility. Although this is similar to step
3 of this study, it is not the same as on the one hand their method does not
separately consider winners and losers, but on the other hand there might
also be information in the volatility of the WML portfolio itself that is not
captured in the bottom-up stock volatility adjustment used in this study.

To verify which effect is stronger, I replicate the Barroso and Santa-Clara
(2015) methodology. That is, given a WML portfolio, I scale the returns over
month t with the annualized volatility estimated on the daily returns over the

8Even if the relation is positive, the smoothing of the volatility through time can poten-
tially outweigh the loss in average monthly return per unit of risk.

9Simple algebra shows that the Sharpe ratio of the WML portfolio can be written as
SRWML = δSRW−SRL√

1+δ2−2δρW,L
, where SRW and SRL are the Sharpe ratios of the winner and

loser portfolio respectively, δ = σW
σL

is the ratio of the volatilities, and ρW,L the correlation
between the winner and loser portfolios. Plugging in all values of step 2, but with the ratio
of volatilities (δ) of step 3, gives a Sharpe ratio of 0.97
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past 6 calendar months:

St−6:t−1 =

√√√√250

K

K∑
j=1

rj2 (4.7)

where rj is the return on day j in the window and K the total number of days
in the six-month window.

Table 4.4 reports the results for the standard momentum portfolio (columns
1 and 2), as well as for volatility-adjusted momentum (columns 3 and 4). All
portfolios are scaled to a full-sample volatility of 30% for comparability of raw
returns and alphas. I find that the Barroso and Santa-Clara (2015) method
more than doubles the standard momentum portfolio Sharpe ratio, from 0.34
to 0.74. The Fama and French (1993) 3-factor alpha also increases by 9.9%-
point to 26.9%, which is a relative increase of just over 50%. Still, this is lower
than the Sharpe ratio (alpha) of volatility-adjusted momentum (1.14; 39.1%).

However, this does not mean that there is no value in the timing element.
In the final column of Table 4.4, the Barroso and Santa-Clara (2015) method-
ology is applied on top of the volatility-adjusted momentum portfolio. The
Sharpe ratio increases from 1.14 to 1.31, and the alpha from 39.1% to 42.5%.

To conclude, bottom-up adjusting for volatility in the construction of the
momentum portfolio is superior to ex-post timing of the momentum portfolio
as a whole, but it does not subsume this method.

4.3.5 Volatility and market cap

As noted in Section 4.3.2, many studies use value weighting rather than equal
weighting to control for liquidity concerns. To ensure the results are not
driven by the small caps in the dataset, I make a direct comparison between
equal weighted momentum, value weighted momentum, and volatility-adjusted
momentum on three size universes: all caps, large caps and small caps.

Table 4.5 reports the results on the winner-minus-loser portfolios. For the
all cap universe, I indeed find that value weighted momentum has a much
higher Sharpe ratio of 0.62, compared to 0.34 for equal weighted momen-
tum. This difference in Sharpe ratios is driven by higher returns for the value
weighted portfolios.

Zooming in on the large cap and small cap universe results, the main cause
of the relative under performance of the equal weighted versus the market
weighted portfolio is with the small caps, where the Sharpe ratio is a mere
0.24 (although the alpha is still highly significant). Within the large caps, the
performance of the equal-weighted portfolio is actually slightly better than for
the value weighted portfolio. Both the equal and value weighted portfolios
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Sharpe ratios and alphas are, however, low compared to volatility-adjusted
momentum. Within the large caps (small caps), the Sharpe ratio increases
from 0.53 (0.71) for the value weighted portfolio to 1.06 (1.17) for volatility-
adjusted momentum. Thus the finding that volatility-adjusted momentum
substantially improves over both equal or value weighted momentum is robust
to the exclusion of the small cap stocks.

4.4 Corporate bond results

Momentum effects have been documented in many different asset classes. How-
ever, investment grade corporate bonds seem to be a notable exception to this
empirical finding. Previous studies have either found no momentum premium
(Gebhardt, Hvidkjaer, and Swaminathan, 2005; Jostova et al., 2013; Houwel-
ing and Van Zundert, 2017), or even a reversal effect (Khang and King, 2004).
On the other hand, within high yield bonds momentum premia exist (Jostova
et al., 2013; Houweling and Van Zundert, 2017). Therefore corporate bonds
provide a suitable out-of-sample test for volatility-adjusted momentum.

4.4.1 Data

For the corporate bond dataset, I use all constituents in the Barclays U.S.
Corporate Investment Grade and Barclays US High Yield indices. The data
is on a monthly frequency and spans the period January 1994 to December
2015, containing 1,350,229 bond-month observations. The indices consist of
US dollar denominated corporate bonds with a time-to-maturity of at least
one year and a minimum notional of 150 million, preventing the most illiquid
bonds to enter the index.

The dataset contains a number of characteristics per observation. The total
return is the return of the bond from the previous month-end to the current
month-end, and assumes coupons are reinvested. In case of a default, the last
available return of the bond is based on the last traded price, hence reflect-
ing the market perception of the recovery rate. There is thus no survivorship
bias. The excess return is the total return over the duration-matched Trea-
sury return. I use duration-matched excess returns throughout this section
to properly clean for interest rate risk differences. The momentum results
are thus only driven by the firm-related credit part, not by momentum across
the Treasury curve. This is an important difference from most earlier studies,
which tend to focus on the total return. The usage of total returns has the
disadvantage that any momentum effect found could be driven by momentum
in Treasuries alone, not necessarily in the firm-specific component of corpo-
rate bond returns. The excess returns can be obtained in practice by hedging
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the interest rate exposure with interest rate swaps or bond futures. The du-
ration used to match the corporate bond with the correct Treasury includes
adjustments for embedded options and is provided by Barclays. The credit
rating is the middle credit rating of the three rating agencies Standard and
Poor’s, Moody’s and Fitch. If only two ratings are known, the lowest rating
is assumed.

To control for systematic risks, I use the five Fama and French (1993) risk
factors and the Carhart (1997) momentum factor. The equity market factor
(RMRF ), the equity size factor (SMB), the equity value factor (HML) and
equity momentum factor (MOM ) are from the website of Kenneth French.
For the bond factors, I use the return-based term and default factors. Specifi-
cally, for the bond term factor (TERM ), I use the return of the Barclays U.S.
Treasury 7-10 year index over the 1-month T-bill return (from the website of
Kenneth French). For the default risk factor (DEF ), I use the excess return
over duration-matched Treasuries of the Barclays U.S. Corporate Investment
Grade index. This definition, in contrast to the Fama and French (1993)
Ibbotson based factor, properly cleans for interest rate risk (Hallerbach and
Houweling, 2013).

4.4.2 Empirical results

Volatility-adjusted momentum, which improves standard momentum by sort-
ing on return relative to risk rather than return alone, is especially effective if
the volatility differences between securities are large. As a proxy for the cross-
sectional dispersion, I compute each month the ratio between the 90th and
10th percentile of the past 12-1 month return volatility per bond/stock, and
subsequently take the average of the ratios over time. For the stock sample,
the average ratio amounts to 3.1, which is small relative to the ratio of 14.2 for
the corporate bonds data. The reason for this large dispersion is that bonds
cannot only differ in terms of their credit rating (lower rated bonds tend to
be more volatile), but also in their time-to-maturity. As a result, some bonds
have a duration of 20, while others have a duration of just 1. Thus a par-
allel upward spread curve shift will mean the long bond suffers a 20 times
larger loss than the short bond. Due to the large dispersion, it is expected
that volatility-adjusted momentum can provide even larger improvements for
corporate bond momentum.

To compute the momentum signal, a 7-minus-1 month window is used,
following previous studies on corporate bond momentum (Gebhardt, Hvidk-
jaer, and Swaminathan, 2005; Jostova et al., 2013). Table 4.6 reports the full
sample, i.e. investment grade and high yield together, decile portfolio results
for standard momentum (panel A) and volatility-adjusted momentum (panel
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B). As with stock momentum, the more volatile assets tend to be among
the winner and loser portfolios, as indicated by the higher volatility of those
portfolios. Intuitively, high volatility assets are more likely to show extreme
returns, and thus to be selected in the extreme portfolios. Although the mean
return of the winners is larger than that of the losers by 0.38% per annum,
the WML column shows clearly that it has a very insignificant t-statistic of
0.12. Also after correcting for the five Fama and French (1993) bond risk fac-
tors, the alpha is not significantly positive (t-statistic of 0.81). However, for
volatility-adjusted momentum there is a significant positive premium of 3.18%
per annum (t-statistic of 4.58), and this remains after controlling for the bond
risk factors. Thus while the standard momentum methodology does not pick
up a premium, volatility-adjusted momentum does.

Table 4.7 shows the results for the winner-minus-loser portfolio for vari-
ous credit qualities. Panel A makes a distinction between investment grade
and high yield. Both raw returns and alphas show significant positive pre-
mia for volatility-adjusted momentum, while standard momentum has only a
significantly positive alpha in high yield.

Panel B provides a more granular breakdown by credit quality. As the
number of observations becomes smaller within a particular bucket, this anal-
ysis uses momentum quintiles rather than deciles. Except for AAA/AA rated
bonds, which account for just 8.4% of the total dataset, volatility-adjusted
momentum has significant positive returns. Risk-adjusted, the premium in
A-rated bonds is not significant though. Interestingly, standard momentum,
which has been found by previous studies to have a positive premium in high
yield (Jostova et al., 2013), only shows a statistically significant premium for
bonds rated CCC and lower. These bonds constitute just 20.2% of high yield,
and 5.8% of the total dataset.

In conclusion, based on the standard methodology, momentum seems to
be largely absent in corporate bond markets. This is, however, due to the
large volatility dispersion. Volatility-adjusted momentum reveals significant
momentum premia in both high yield as well as investment grade.

4.5 Conclusions

Sorting assets based on past returns into unlevered quantile portfolios is a
natural way to test for cross-sectional momentum. Therefore, this method has
become the de-facto standard method to test for the existence of momentum
in many asset classes since the first momentum study of Jegadeesh and Titman
(1993). However, standard portfolio theory suggests to scale assets, i.e. the
past returns to sort on as well as the position size, with their ex-ante expected
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volatility to construct quantile momentum portfolios. I call this volatility-
adjusted momentum.

For US stock data, 1927 to 2015, the annualized alpha increases from 17%
for standard momentum to 39% for volatility-adjusted momentum, and this
result is robust when the universe is restricted to large caps only. A detailed
analysis shows that the benefit mainly comes from two sources.

First, it comes from not selecting high volatility stocks among the losers.
Such stocks, which have experienced very negative and also very volatile re-
turns over the past year, tend to have average returns going forward, in con-
trast to lower volatility losers which tend to keep under performing. Second,
as the winner and loser portfolios differ in volatility, i.e. losers tend to have
higher volatility than winners going forward, the constant volatility target-
ing through time of the quantile portfolios reduces the imbalance in volatility
between winners and losers, benefiting the winner-minus-loser portfolio

As an out-of-sample check, the analysis is repeated for USD-denominated
corporate bonds over the 1994-2015 period. Due to the high cross-sectional dis-
persion in volatility of the individual bonds, the standard momentum method-
ology does not even reveal momentum premia except for the 6% lowest-rated
bonds. This has led previous studies to conclude momentum is largely ab-
sent from corporate bond markets. However, volatility-adjusted momentum
has economically and statistically significant alphas for both high and low
rated bonds, revealing a momentum premium previously masked by the large
dispersion in volatility in the cross-section.
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4.A Derivation optimal portfolio

This appendix provides more details on the derivation of the optimal portfolio
weights. The optimal portfolio is a simplification of the mean-variance optimal
portfolio, given by (Markowitz, 1952):

wt =
1

γ
Σt
−1µt (4.8)

where t denotes the time, µt is the vector of mean returns and Σt the variance-
covariance matrix.

Elton, Gruber, and Padberg (1976) show that the optimal relative portfolio
weights zi,t under the assumption of uniform correlations (ρ)10 and no short-
sales is (Elton, Gruber, and Padberg, 1976, p. 1354):

zi,t =
1

1− ρ
1

σi,t

µi,t
σi,t
− ρ

1− ρ+ kρ

k∑
j=1

µj,t
σj,t

 (4.9)

for all non-zero weight assets, where k is the number of included assets in
the portfolio and µi,t and σi,t the mean and volatility of the return of asset i,
respectively.

This formula provides a straightforward decision rule to determine whether
a particular asset should be included (Elton, Gruber, and Padberg, 1976):
asset i should be included as long as zi,t is positive. Clearly, zi,t > 0 is only
satisfied if the term in square brackets is positive. The last term in the square
brackets is, given any k, a constant if a particular asset with Sharpe ratio
µi,t
σi,t

is included, any asset with a higher ratio should also be included in the

portfolio. Thus, determining which assets should be included is based on the
Sharpe ratio

µi,t
σi,t

: order all assets from high to low, and continue adding until

zi,t turns negative. To translate this to quantile portfolios: assets are sorted
on

µi,t
σi,t

, and the top 10% is put in the first decile portfolio, the next 10% in

the second decile, etcetera, until the final 10% is put in the bottom decile.
The ordering on Sharpe ratio is an intuitive result, as the goal is to optimize

the portfolio’s Sharpe ratio. Leverage is used to attain the risk level that fits
the investor’s risk aversion γ. As all assets are, in terms of diversification,
equal, i.e. the assumption of uniform correlations, the most attractive asset is
the one with the highest Sharpe ratio.

Equation 4.9 is the solution for the relative weight zi,t, not for the absolute
weight wi,t. To compute the absolute weight, I use the separation theorem of
Tobin (1958). That is, the relative weights in the risky asset portfolio are

10I assume ρ ∈ (0, 1).
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independent of the allocation of the total portfolio to the (optimal) risky asset
portfolio and the riskfree asset. The optimal portfolio can thus always be
written as a linear combination of the riskfree asset and the (unscaled) optimal
risky asset portfolio.

The optimal weight of the quantile portfolio in the total portfolio of the
riskfree asset and the risky-asset portfolio wq is again the mean-variance op-
timal portfolio (dropping subscripts t for notational convenience):

wq =
1

γ

µq

σq2
(4.10)

where µq and σq are the (unscaled) risky asset quantile portfolio mean return
and volatility respectively, with weight per asset given by zi. If wq is known,
then it is straightforward to derive the absolute weight, as wqi = wqzi.

All that remains is to solve for wq. For analytical tractability, and as a
reasonable approximation, I assume that for a quantile portfolio q the following
holds:

µi
σi

= SRq ∀i ∈ q (4.11)

Thus, the Sharpe ratios are assumed to be equal in the cross-section. This
a reasonable assumption, as the quantile portfolios are created by sorting on
the Sharpe ratio, and thus by definition the Sharpe ratios will be close to each
other.

Given this assumption, the relative weight becomes

zi =
1

1− ρ
1

σi

µi
σi
− ρ

1− ρ+ kρ

k∑
j=1

µj
σj


=

1

1− ρ
1

σi

[
SRq − ρ

1− ρ+ kρ
kSRq

]
=

1

σi

(
1

1− ρ+ kρ

)
SRq

(4.12)

The portfolio mean return is then

µq =
k∑
i=1

ziµi

=

k∑
i=1

µi
σi

(
1

1− ρ+ kρ

)
SRq

=

(
k

1− ρ+ kρ

)
SRq

2

(4.13)
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and the variance is equal to

σq2 =

k∑
i=1

k∑
j=1

zizjσiσjρi,j

=

k∑
i=1

k∑
j=1

1

σi

(
1

1− ρ+ kρ

)
SRq

1

σj

(
1

1− ρ+ kρ

)
SRqσiσjρi,j

=

(
1

1− ρ+ kρ

)2

SRq
2

k∑
i=1

k∑
j=1

ρi,j

=

(
1

1− ρ+ kρ

)2

SRq
2

(k + k(k − 1)ρ)

=

(
k

1− ρ+ kρ

)
SRq

2

(4.14)

where ρi,j is equal to ρ if i 6= j, and 1 otherwise. The optimal weight in the
risky asset portfolio is then given by

wq =
1

γ

(
k

1−ρ+kρ

)
SRq

2(
k

1−ρ+kρ

)
SRq

2

=
1

γ

(4.15)

This implies that the absolute weight of an asset is given by

wi =
1

σi

1

γ

(
1

1− ρ+ kρ

)
SRq (4.16)

Instead of estimating the parameters γ and ρ and forecasting SRq, I assume
that each of these are equal through time.11,12 Approximating the term 1

1−ρ+kρ

by 1
ρk

13, an intuitive formula for the proportional weight appears:

wi,t ∝ σ−1
i,t k

−1
t (4.17)

where the subscript t has been added back to emphasize that both volatilities
and the number of assets can change through time. Thus, under the assump-
tion of a constant premium per unit of risk (Sharpe ratio), constant pairwise

11This is more restrictive than necessary. As long as the combination in which they appear
in the equation is constant, the individual parts are allowed to be dynamic.

12Empirically, I find that the Sharpe ratio of the winner and loser portfolios is negatively
related to the ex-ante volatility estimate, but only mildly.

13This is a slight overestimation. Given ρ = 0.3 and k = 50, the overestimation is 4.7%.
If k = 100, the estimation error is 2.3%. The larger k, the smaller the error is.
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correlations, constant risk aversion and the number of assets not too small,
the weight per asset is inverse proportional to (1) the number of assets k in
the quantile portfolio and (2) its own volatility σi. Thus if from one period
to the next all volatilities double, all money weights wi will halve, resembling
a constant volatility strategy. Indeed, simple algebra shows that the portfo-

lio volatility, under the solution in Equation 4.16, is given by 1
γSR

q
√

k
1−ρ+kρ ,

which is constant given the assumptions.
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Table 4.1: Performance statistics of momentum portfolios
Each month-end, all stocks are sorted into 10 decile portfolios based on their past 12-1 month returns (panel A) or past 12-1 month return-to-volatility
ratios (panels B, C & D), where D1 is the portfolio with the highest values (winners) and D10 with the lowest values (losers). The stocks are equal
weighted (panels A & B) or inverse volatility weighted (panels C & D). The portfolios are either non-levered (panels A, B & C) or target a constant
volatility per stock of 60% per annum (panel D). The column WML reports the results of the long D1 - short D10 portfolio. The final column WMLC

is the same portfolio as WML, but scaled to a volatility level of 30% per annum using the full-sample volatility. For each portfolio the mean return
(mean), volatility (vol), Sharpe ratio (SR), skewness (skew) and Fama and French (1993) 3-factor alpha are reported. All statistics are based on
monthly returns and subsequently annualized. In brackets are the Newey and West (1987) and Newey and West (1994) t-statistics. Stars denote
significance at the 10% (*), 5% (**) and 1% (***) level. The sample runs from January 2, 1927 to December 31, 2015.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 WML WMLC

Panel A: Momentum
mean 18.59 15.85 14.43 12.99 12.24 10.43 11.03 8.58 8.64 8.64 9.95 10.15
vol 26.34 22.83 22.18 22.68 22.98 24.21 26.74 28.13 32.70 41.03 29.40 30.00
SR 0.71 0.69 0.65 0.57 0.53 0.43 0.41 0.31 0.26 0.21 0.34 0.34
skew 0.14 0.13 0.98 1.22 1.35 1.81 2.45 1.88 2.85 2.73 -3.91 -3.91
alpha 8.93*** 6.42*** 4.78*** 2.74*** 1.70*** -0.78 -1.32* -4.08*** -5.75*** -7.74*** 16.67*** 17.01***

(7.88) (9.00) (8.58) (5.31) (3.40) (-1.48) (-1.84) (-4.67) (-4.58) (-3.98) (6.91) (6.91)
Panel B: Momentum sorted on return-to-volatility (Step 1)
mean 18.08 15.64 14.68 13.61 12.49 12.18 11.86 11.62 7.92 3.31 14.77 23.60
vol 23.75 24.58 23.69 25.05 26.19 26.68 29.37 30.78 29.64 28.09 18.78 30.00
SR 0.76 0.64 0.62 0.54 0.48 0.46 0.40 0.38 0.27 0.12 0.79 0.79
skew 1.36 3.71 1.76 1.76 1.74 1.58 2.28 2.22 1.37 0.99 -0.64 -0.64
alpha 8.92*** 5.07*** 4.06*** 2.24*** 0.50 0.22 -1.31 -1.90** -4.52*** -8.40*** 17.32*** 27.67***

(9.71) (6.68) (7.06) (3.98) (0.79) (0.29) (-1.48) (-2.05) (-4.15) (-7.23) (9.88) (9.88)
Panel C: Momentum sorted on return-to-volatility and inverse volatility weighted (Step 2)
mean 16.64 14.67 13.45 12.38 11.41 10.16 9.88 9.30 6.93 2.83 13.81 25.62
vol 19.66 21.06 20.62 21.67 22.46 22.84 24.85 25.96 25.64 24.70 16.17 30.00
SR 0.85 0.70 0.65 0.57 0.51 0.44 0.40 0.36 0.27 0.11 0.85 0.85
skew -0.02 3.06 1.79 1.54 1.47 1.22 1.70 1.63 1.06 0.73 -1.17 -1.17
alpha 9.25*** 5.61*** 4.20*** 2.47*** 1.02** -0.21 -1.47** -2.38*** -4.10*** -7.63*** 16.88*** 31.33***

(11.06) (8.44) (7.86) (4.95) (1.96) (-0.35) (-2.16) (-3.29) (-4.45) (-7.12) (10.80) (10.80)
Panel D: Volatility-adjusted momentum (Step 3)
mean 34.40 29.70 25.93 22.89 20.08 16.88 15.39 13.36 10.61 6.20 28.20 34.18
vol 33.17 31.75 30.81 30.61 30.10 29.71 30.96 31.79 32.61 36.54 24.75 30.00
SR 1.04 0.94 0.84 0.75 0.67 0.57 0.50 0.42 0.33 0.17 1.14 1.14
skew -0.66 -0.55 -0.46 -0.29 -0.23 -0.15 0.21 0.27 0.31 0.40 -1.02 -1.02
alpha 23.99*** 18.79*** 14.86*** 11.33*** 8.29*** 5.23*** 2.86* 0.30 -2.45 -8.24*** 32.23*** 39.07***

(10.66) (9.16) (7.55) (6.28) (5.18) (3.36) (1.83) (0.20) (-1.44) (-4.22) (12.88) (12.88)
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Table 4.2: Factor regressions momentum portfolios
Each month-end, all stocks are sorted into 10 decile portfolios based on their past 12-1
month returns (panel A) or past 12-1 month return-to-volatility ratio (panel B), where D1
is the portfolio with the highest values (winners) and D10 with the lowest values (losers).
The stocks are equal weighted (panels A) or a volatility of 60% per stock is targeted (panel
B). Both momentum portfolios are scaled to 30% volatility per annum to make the alphas
comparable. The monthly returns of the portfolios are regressed on several factors. Factors
included are the three Fama and French (1993) factors RMRF, SMB and HML, a levered
low vol factor LOWVOL and the momentum portfolios themselves (MOM & VA-MOM ).
The alphas are annualized. In brackets are the Newey and West (1987) and Newey and West
(1994) t-statistics. Stars denote significance at the 10% (*), 5% (**) and 1% (***) level.
The sample runs from January 2, 1927 to December 31, 2015.

alpha RMRF SMB HML VA-MOM MOM LOWVOL Adj R2

Panel A: Momentum (MOM)
(1) 17.01*** -0.26*** -0.49*** -0.77*** 0.21

(6.91) (-2.92) (-2.78) (-3.38)
(2) -10.16*** -0.26*** -0.23*** -0.18 0.70*** 0.63

(-3.27) (-4.79) (-2.58) (-1.08) (11.86)
(3) 9.63*** -0.64*** -0.24 -0.74*** 0.35*** 0.29

(2.73) (-4.56) (-1.56) (-3.63) (4.23)

Panel B: Volatility-adjusted momentum (VA-MOM)
(1) 39.07*** 0.00 -0.38** -0.84*** 0.15

(12.88) (0.02) (-2.08) (-5.85)
(2) 26.23*** 0.20*** -0.01 -0.26*** 0.75*** 0.59

(11.27) (3.23) (-0.06) (-2.68) (13.35)
(3) 33.43*** -0.29** -0.18 -0.82*** 0.27*** 0.19

(10.03) (-2.48) (-1.05) (-5.97) (4.11)
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Table 4.3: Doublesort momentum and volatility
Each month-end, all stocks are first sorted into 5 groups based on their past 12-1 month
returns, and then within each group the stocks are sorted into 5 groups based on past 12-1
month daily return volatility, yielding a total of 25 portfolios. For each of the 25 portfolios the
raw returns (panel A) and Fama and French (1993) 3-factor alphas (panel B) are reported.
Returns and alphas are annualized. The sample runs from January 2, 1927 to December 31,
2015.

volatility groups
Q1 (high) Q2 Q3 Q4 Q5 (low)

Panel A: Raw returns

momentum groups

Q1 (high) 17.09 19.01 17.29 16.97 15.72
Q2 16.50 14.39 13.53 13.20 10.98
Q3 14.27 12.00 11.34 9.80 9.35
Q4 13.97 10.34 8.71 8.86 7.31
Q5 (low) 18.30 7.82 6.02 5.00 6.26

Panel B: Alphas

momentum groups

Q1 (high) 3.77 7.62 8.07 9.17 9.60
Q2 2.35 2.75 3.89 4.98 4.75
Q3 -0.70 -0.37 0.72 0.43 2.19
Q4 -2.38 -3.83 -3.69 -2.34 -1.25
Q5 (low) -0.39 -8.80 -9.52 -9.36 -5.57

Table 4.4: Timing the winner-minus-loser portfolio
Portfolios are computed as described in Section 4.3.4. Every portfolio is scaled to a volatility
level of 30% per annum using the full-sample volatility. For each portfolio the mean return
(mean), volatility (vol), Sharpe ratio (SR), skewness (skew) and Fama and French (1993)
3-factor alpha are reported. All statistics are based on monthly returns and subsequently
annualized. In brackets are the Newey and West (1987) and Newey and West (1994) t-
statistics. Stars denote significance at the 10% (*), 5% (**) and 1% (***) level. The sample
runs from January 2, 1927 to December 31, 2015.

Volatility-adjusted no no yes yes
Timing no yes no yes

mean 10.15 22.34 34.18 39.21
vol 30.00 30.00 30.00 30.00
SR 0.34 0.74 1.14 1.31
skew -3.91 -1.38 -1.02 -0.46
alpha 17.01*** 26.88*** 39.07*** 42.52***

(6.91) (9.60) (12.88) (12.46)



1
2
2Table 4.5: Performance statistics of size x momentum portfolios

Each month-end, all stocks are sorted into 10 decile portfolios based on their past 12-1 month returns (MOM-VW & MOM-EW) or past
12-1 month return-to-volatility ratio (VA-MOM), where D1 is the portfolio with the highest values (winners) and D10 with the lowest
values (losers). The stocks are market cap weighted (MOM-VW), equal weighted (MOM-EW) or inverse volatility weighted (VA-MOM).
The portfolios are either non-levered (MOM-VW & MOM-EW) or target a constant volatility per stock such that the MOM portfolio has
30% volatility (VA-MOM). This procedure is applied on the full universe (“all caps”), the 50% largest stocks by market capitalization at
the moment of sorting (“large caps”) and the 50% smallest stocks (“small caps”). For each portfolio the mean return, volatility, Sharpe
ratio, skewness and Fama and French (1993) 3-factor alpha are reported. All statistics are based on monthly returns and subsequently
annualized. In brackets are the Newey and West (1987) and Newey and West (1994) t-statistics. Stars denote significance at the 10% (*),
5% (**) and 1% (***) level. The sample runs from January 2, 1927 to December 31, 2015.

all caps large caps small caps

MOM-VW MOM-EW VA-MOM MOM-VW MOM-EW VA-MOM MOM-VW MOM-EW VA-MOM

mean 18.41 9.95 34.18 14.08 15.84 31.93 20.89 7.49 35.12
vol 29.93 29.40 30.00 26.77 25.27 30.00 29.31 31.58 30.00
SR 0.62 0.34 1.14 0.53 0.63 1.06 0.71 0.24 1.17
skew -1.98 -3.91 -1.02 -2.42 -2.95 -0.73 -3.08 -3.95 -1.12
alpha 25.50*** 16.67*** 39.07*** 19.88*** 21.72*** 37.03*** 27.17*** 13.23*** 41.08***

(9.64) (6.91) (12.88) (8.13) (9.32) (11.96) (10.48) (5.21) (14.13)
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Table 4.6: Momentum portfolios corporate bonds
Each month t, bonds are ranked into equal-weighted decile portfolios D1 (highest returns/winners) to D10 (lowest returns/losers) based on
their excess return over duration matched Treasuries over the months t− 6 to t− 1. In Panel B, all bonds are first scaled with 1.7%

̂σi,t−12:t−1

, where ̂σi,t−12:t−1 is the monthly standard deviation of the excess returns over the past 12 months, skipping the most recent month.
Positions are held for 6 months. The return of a portfolio is the average of the portfolios formed at t− 6 up to t− 1. The table reports per
portfolio and the difference between D1 and D10 (WML) average excess returns over duration matched Treasuries (mean), the volatility
(vol), annualized Sharpe ratio (SR) and the alpha over the five Fama and French (1993) bond risk-factors. The mean return, volatility and
alpha are annualized and in percentages. In brackets the Newey and West (1987) and Newey and West (1994) t-statistics. Stars denote
the significance at the 10% (*), 5% (**) and 1% (***) level. The sample period is from January 1994 to December 2015.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 WML

Panel A: Momentum decile portfolios
mean 2.48 1.40 1.18 1.04 1.11 1.07 1.13 1.18 1.24 2.10 0.38

(1.18) (1.05) (1.01) (0.94) (0.96) (0.82) (0.76) (0.68) (0.53) (0.47) (0.12)
vol 7.54 5.06 4.33 4.02 4.11 4.56 5.10 5.92 7.82 14.37 10.49
SR 0.33 0.28 0.27 0.26 0.27 0.23 0.22 0.20 0.16 0.15 0.04
alpha 1.80* 0.90 0.70* 0.63* 0.73** 0.75* 0.79 0.87 0.58 0.00 1.80

(1.83) (1.56) (1.70) (1.75) (2.03) (1.70) (1.52) (1.32) (0.67) (0.00) (0.81)

Panel B: Volatility-adjusted momentum decile portfolios
mean 2.68* 1.60 1.25 1.07 0.95 0.73 0.43 0.30 -0.13 -0.50 3.18***

(1.91) (1.25) (0.98) (0.84) (0.74) (0.56) (0.31) (0.21) (-0.09) (-0.30) (4.58)
vol 5.35 5.02 5.10 5.12 5.15 5.20 5.35 5.40 5.77 6.23 3.06
SR 0.50 0.32 0.24 0.21 0.18 0.14 0.08 0.05 -0.02 -0.08 1.04
alpha 2.02* 1.00 0.69 0.49 0.39 0.20 -0.17 -0.31 -0.80 -1.24 3.26***

(1.94) (1.16) (0.82) (0.61) (0.48) (0.25) (-0.21) (-0.40) (-0.90) (-1.31) (4.82)
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Table 4.7: Momentum portfolios corporate bonds by credit quality
Decile (Panel A)/quintile (Panel B) top-bottom momentum portfolios are within
the respective credit quality group (investment grade/high yield in Panel A; AAA-
AA/A/BBB/BB/B/CCC-C in panel B) constructed following Table 4.6. The table reports
the average absolute number of observations per month, the percentage this constitutes of
the total universe, the return and the alpha of the momentum portfolios, where MOM in-
dicates the standard momentum portfolio and VA-MOM the volatility-adjusted momentum
portfolio. The alpha is computed versus the five Fama and French (1993) bond risk-factors.
The return and alpha are annualized and in percentages. In brackets are the Newey and
West (1987) and Newey and West (1994) t-statistics. Stars denote the significance at the
10% (*), 5% (**) and 1% (***) level. The sample period is from January 1994 to December
2015.

credit rating observations mean return 5-factor alpha

absolute percentage MOM VA-MOM MOM VA-MOM

Panel A: Momentum decile portfolios (D1-D10)
investment grade 3185 71.3 -1.08 2.47*** -1.27 2.40***

(-0.66) (3.19) (-0.98) (3.06)
high yield 1284 28.7 2.56 4.02*** 6.29** 4.52***

(0.60) (4.03) (2.05) (4.44)

Panel B: Momentum quintile portfolios (Q1-Q5)
AAA/AA 377 8.4 -0.33 0.46 -0.20 0.74

(-0.41) (0.62) (-0.26) (0.99)
A 1410 31.6 -0.85 1.26** -1.20 0.92

(-0.74) (2.11) (-1.16) (1.38)
BBB 1398 31.3 -0.64 2.75*** -0.74 2.77***

(-0.41) (3.66) (-0.64) (3.59)
BB 467 10.4 -0.99 1.78*** -0.54 1.82***

(-0.44) (2.79) (-0.34) (3.01)
B 559 12.5 2.09 2.71*** 3.93 2.95***

(0.62) (3.91) (1.36) (4.57)
CCC-C 258 5.8 7.17 4.36*** 10.44*** 4.85***

(1.64) (4.98) (2.99) (5.98)
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Figure 4.1: Cumulative log return of momentum portfolios
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6Figure 4.2: Leverage D1 & D10 volatility-adjusted momentum portfolios

This figure shows the leverage used in the winners (D1) and losers (D10) of volatility-adjusted momentum.
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Chapter 5

Momentum Spillover from
Stocks to Corporate Bonds

5.1 Introduction

We investigate and improve momentum spillover from stocks to corporate
bonds. Momentum spillover is the phenomenon that companies that recently
outperformed in the equity market tend to subsequently outperform in the
corporate bond market. This spillover effect was first documented by Geb-
hardt, Hvidkjaer, and Swaminathan (2005) for investment grade bonds. Our
study contributes to the existing literature in four ways.

First, we show that the spillover effect is also present for high yield bonds,
whereas Gebhardt, Hvidkjaer, and Swaminathan (2005) only investigated in-
vestment grade.

Second, we find that a momentum spillover strategy tends to select compa-
nies with low (high) default risk in the winner (loser) portfolio, as indicated by
a variety of risk measures: credit volatility, credit market beta, credit rating,
credit spread, distance-to-default and leverage. Therefore, the profitability of
momentum spillover depends on the realized credit market return during the
holding period, because companies with low (high) default risk tend to out-
perform in bear (bull) markets. This causes a drag on the profitability of the
strategy, amounting to one third of the alpha, because the credit market has
generated a positive premium on average.

Third, we document that the default risk exposure of momentum spillover
strongly depends on the equity market return during the formation period: if
the equity market has positive (negative) returns in the formation period, the
default risk of the winner-minus-loser portfolio is smaller (larger). We show
that this dependency is highly statistically significant in a conditional regres-
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sion framework, in which we model the default risk exposure as a function of
the equity market return over the formation period. The time-varying default
risk exposure makes the momentum spillover strategy vulnerable to a scenario
in which an equity bear market is followed by a credit bull market: a negative
equity market return lowers the default risk exposure of the portfolio, which
hurts performance in a subsequent credit bull market. For instance, in 2009
the momentum spillover winner-minus-loser portfolio suffered a drawdown of
80%. We find that the structural and time-varying default risk exposures to-
gether explain 44% of the variation in the profitability of momentum spillover.

Our final contribution to the literature is that we show that the time-
varying default risk exposure of momentum spillover can be substantially re-
duced by ranking companies on their residual equity return. Moreover, resid-
ual momentum spillover achieves a larger risk reduction than hedging the
default risk after formation of a total momentum spillover portfolio. Since the
residual return of a stock is calculated by subtracting the expected return that
can be attributed to its equity market exposure, it does not depend on the
equity market return in the formation period, which is the primary driver of
the structural and time-varying default risk exposure.

We find that the volatility of residual momentum spillover is halved com-
pared to total momentum spillover, from 8.85% to 4.80%, the Sharpe ratio
is more than doubled, from 0.35 to 0.77, and the worst drawdown is reduced
substantially, from 80% to 25%. We also find that a total momentum spillover
portfolio in combination with a hedge after the portfolio has been constructed
is in fact less effective in reducing the risk of the strategy, since volatility
is reduced from 8.85% to at most 6.17%, depending on the chosen hedging
method. The improvements offered by residual momentum spillover over to-
tal momentum spillover are robust to changes in the formation period and
holding period lengths, the estimation method of residual equity returns, the
specification of the factor model, correcting for equity momentum and bond
momentum, liquidity effects and credit rating effects.

The structure of this paper is as follows. In Section 5.2 we provide an
overview of the literature. In Section 5.3 we describe our data and in Section
5.4 we present our methodology and empirical results. In Section 5.5 we
perform various robustness checks. Section 5.6 concludes.

5.2 Literature review

The profitability of momentum strategies in equity markets is well documented
in the academic literature. In their seminal paper, Jegadeesh and Titman
(1993) demonstrate that momentum returns are large and significant. Differ-
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ent explanations have been put forward for the momentum effect. Jegadeesh
and Titman (2001) provide an overview and conclude that a risk-based ex-
planation is unlikely. They argue that the evidence points towards behavioral
explanations, of which under reaction to news seems to be the most promi-
nent candidate. For instance, the gradual diffusion of information hypothesis
of Hong and Stein (1999) argues that when information travels slowly across
investors, it can generate price under reaction and momentum effects. More-
over, they show that under reaction is more pronounced for firm-specific events
than for common events.

Even though momentum profits cannot be explained by higher risk, various
studies show that equity momentum portfolios exhibit time-varying exposures
to the Fama and French (1993) common risk factors; see e.g. Grundy and
Martin (2001) and Blitz, Huij, and Martens (2011). Gutierrez and Pirin-
sky (2007), Blitz, Huij, and Martens (2011) and Chaves (2016) demonstrate
that measuring momentum in idiosyncratic, or residual, equity returns, im-
proves upon traditional total return momentum. Specifically, Blitz, Huij, and
Martens (2011) show that residual momentum is effective in strongly reduc-
ing the time-varying factor exposures without harming the profitability of the
momentum strategy. Residual momentum also fits well with gradual diffusion
hypothesis on firm-specific news of Hong and Stein (1999), because of its focus
on firm-specific returns.

The literature on corporate bonds shows that investment grade bonds do
not exhibit momentum; see e.g. Khang and King (2004), Gebhardt, Hvidkjaer,
and Swaminathan (2005), Pospisil and Zhang (2010) and Jostova et al. (2013).
The latter study does document that momentum is a profitable strategy for
high yield corporate bonds.

Gebhardt, Hvidkjaer, and Swaminathan (2005) are the first to provide ev-
idence on the momentum spillover phenomenon. They show that even though
bond prices do not underreact to firm information, they do underreact to past
stock returns: past winners (losers) in the equity market are future winners
(losers) in the corporate bond market. Foster and Galindo (2007), using a rela-
tively short data set from 2002 to 2006, also document a momentum spillover
effect from stocks to bonds, and the other way around. Kwan (1996) and
Gurun, Johnston, and Markov (2015) obtain a similar finding, i.e. that cor-
porate bond yield changes can be predicted with the company’s lagged stock
return. Looking for possible explanations for the momentum spillover effect,
Gebhardt, Hvidkjaer, and Swaminathan (2005) demonstrate that high (low)
past stock returns predict better (worse) bond ratings in the future, so that
equity winners (losers) see their credit worthiness improve (deteriorate) and
their bonds outperform (underperform) as time progresses. An alternative
explanation for momentum spillover is offered by Hong, Torous, and Valkanov
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(2007), who show, building on Hong and Stein (1999), that gradual informa-
tion diffusion can lead to cross-asset return predictability if many, though not
necessarily all, investors in one market (here: the credit market) do not pay
close attention to information in other markets (here: the equity market).

Our paper contributes to the existing literature on stock-bond momentum
spillover by providing new insights in the risk profile of the traditional momen-
tum spillover strategy and by documenting superior performance of residual
momentum spillover. Moreover, we are the first to document the momentum
spillover effect for high yield bonds.

Even though Gebhardt, Hvidkjaer, and Swaminathan (2005) show that
equity winners (losers) become less (more) default-risky in the future, they do
not investigate differences in default risk at the moment of forming momentum
spillover portfolios. We find that equity winners are already less default-risky
than equity losers at the time of creating the momentum spillover portfolios,
and that these default risk differences affect the profitability of the momentum
winner-minus-loser spillover strategy.

Moreover, we document that this default risk difference is strongly time-
varying and depends on the equity market return in the formation period.
This insight motivates us to evaluate residual momentum spillover. We not
only find that it is effective in reducing the time-variation in default risk, but
also that it generates superior investment results.

Finally, we compare the residual momentum technique with various hedg-
ing methods to reduce the default risk exposure of the constructed momentum
spillover portfolio, amongst which the method used by Gebhardt, Hvidkjaer,
and Swaminathan (2005). We find that residual momentum achieves a larger
risk reduction than any of the investigated hedging methods.

5.3 Data

Our corporate bond data consist of all constituents of the Barclays U.S. Cor-
porate Investment Grade Index and the Barclays U.S. High Yield Index. The
data have a monthly frequency, start in January 1994 and end in December
2013. These two indexes represent the largest corporate bond market in the
world: the Investment Grade (High Yield) bonds in our data set constitute
60% (62%) of the market value of the Barclays Global Investment Grade (High
Yield) index. For each bond, Barclays provides static characteristics, such as
its issue date, maturity date and notional, as well as monthly data, such as
total return, credit spread, and credit rating. In addition to a bond’s total re-
turn, Barclays also provides its excess return over duration-neutral Treasuries,
which properly cleans the total return from interest rate influences. There-
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fore, these excess returns are only affected by changes in credit spreads. We
purposely use excess returns, because equity returns are positively related to
the credit spread component of corporate bond returns, but negatively related
to their interest rate component; see Ilmanen (2011, Chapter 10) and Haesen
and Houweling (2012). Our key results hold for both excess and total returns;
results for total returns are available upon request.

If a company has more than one bond outstanding in a particular month,
we compute the market value weighted return over all its outstanding bonds
to represent the bond return for that company. Other characteristics, like
credit spread, are also computed as market value weighted average over all
outstanding bonds. If a company defaults, Barclays calculates the last return
of its bonds from their last traded prices, reflecting the market’s perception of
the companys recovery rate. Hence, there is no survivorship bias in our data.

Because we are investigating stock-bond momentum spillover, we restrict
our sample to companies that have publicly listed equity on a U.S. stock
exchange with a history of at least three years. For each company, we obtain
monthly equity returns from FactSet. We also download its equity market
capitalization, the 1-year volatility of daily equity returns, the book value of
total liabilities, and the book value of total assets on a monthly frequency.
These items are used to calculate the distance-to-default for each company
(using the Byström (2006) method, see Appendix 5.A) and the leverage (as
the ratio of book value total liabilities and book value total assets). This
results in a data set comprising 2,439 unique companies.

Table 5.1 shows various descriptive statistics for our total universe (ALL),
as well as for the Investment Grade (IG) and High Yield (HY) universes sep-
arately. The entire corporate bond universe had an annualized excess return
of 1.76%, with a volatility of 6.22% and a corresponding Sharpe ratio of 0.28.
We observe that the HY universe had a higher average corporate bond return
(2.70%), volatility (9.27%) and Sharpe ratio (0.29), while the IG universe had
a higher average equity return (8.38%) and Sharpe ratio (0.54). Naturally,
default risk is higher in the HY universe than in the IG universe, as measured
by credit spread (528 bps vs. 159 bps), distance-to-default (3.26 vs. 5.81) and
leverage (0.60 vs. 0.49).

In our analyses, we also use the five Fama and French (1993) bond risk
factors. We download the equity market factor (RMRF ), the equity size factor
(SMB) and the equity value factor (HML) from Kenneth French’ website.1 For
the bond term factor (TERM ) and corporate bond default factor (DEF ), we
purposely deviate from Fama and French (1993)’s use of the Ibbotson factors,
because Hallerbach and Houweling (2013) show that the Ibbotson DEF factor

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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is seriously flawed. They find that the Ibbotson DEF factor has a statisti-
cally significant negative sensitivity to interest rate changes and a statistically
insignificant sensitivity to credit spread changes and thus does not represent
a default premium. Instead, we calculate DEF as the average excess return
over duration-neutral Treasuries of the corporate bonds in our universe. By
using duration-neutral excess returns, DEF does not contain a term premium,
which is already captured by TERM. DEF is universe-specific, i.e. if we an-
alyze momentum spillover in the IG universe, DEF is the average return of
all IG-rated bonds. Likewise for the HY and ALL universes. We calculate
TERM as the return of the Barclays U.S. Treasury 7-10 year index minus the
1-month T-bill return (obtained from the website of Kenneth French).

5.4 Results

5.4.1 Return characteristics of momentum spillover

Following Gebhardt, Hvidkjaer, and Swaminathan (2005), we use the over-
lapping portfolio approach of Jegadeesh and Titman (1993) as our method-
ological framework. Each month, all companies are divided into ten decile
portfolios based on their past J-month equity return. For each decile port-
folio (D1 to D10), we calculate the future K-month equally weighted excess
return over Treasuries of the corporate bonds. We also construct a zero net-
investment winner-minus-loser portfolio (D1-D10) by going long (short) the
companies with the highest (lowest) past equity returns. We calculate the
return of a portfolio in period t as the equally weighted average of the port-
folios constructed in periods t −K to t − 1. Following Gebhardt, Hvidkjaer,
and Swaminathan (2005), our base case strategy uses a formation period of
J = 6 months, a holding period of K = 6 months and an implementation lag
of 1 month. We show results for other formation and holding periods in the
robustness section.

Table 5.2 shows the return, volatility and Sharpe ratio of the momentum
spillover decile portfolios as constructed on our entire universe (Panel A), as
well as on IG (Panel B) and HY (Panel C) separately. We also calculate a
1-factor alpha by regressing the strategy return rt on the credit market return
DEFt:

rt = α+ βDEFt + εt (5.1)

We find strong evidence that momentum spills over from the equity market to
the corporate bond market, as the Sharpe ratios and alphas are monotonically
decreasing as we move from the winner portfolio D1 to the loser portfolio



CHAPTER 5. MOMENTUM SPILLOVER 133

D10. For example, in Panel A (ALL universe) the Sharpe ratios decline from
0.59 for D1 to 0.06 for D10 and the alphas from 1.94% to -2.86% per annum.
For all three universes, we find that the positive alphas of the D1, D2 and D3
portfolios and the negative alphas of the D9 and D10 portfolios are statistically
significant. This also holds for the alphas of the winner-minus-loser portfolios,
which are all significant at the 99% confidence level. For IG (Panel B), the
return of 1.73% per annum (14 bps per month) of the winner-minus-loser
portfolio is of the same order of magnitude as the 11 bps per month that
Gebhardt, Hvidkjaer, and Swaminathan (2005, Table 3) report. Since they
use data from 1973 to 1996, our results on data from 1994 to 2013 provide a
successful out-of-sample test of momentum spillover. Furthermore, our results
in Panel C show that the strategy also works for HY, with a very similar
Sharpe ratio for the winner-minus-loser portfolio as for IG: 0.44 vs. 0.42.

5.4.2 Risk characteristics of momentum spillover

Next, we analyze the risk of momentum spillover in more detail. Moving
from D6 to D10 in Table 5.2, we observe a strictly monotonous pattern of
increasing volatilities for all three universes. So, the lower a company’s equity
return in the formation period, the higher its credit volatility in the holding
period. Especially the higher volatility of D10 stands out. For the ALL and
HY universes, it is about twice as large as the volatility of D1, while for IG it
is about 60% higher.

To better understand the differences in credit volatility between the decile
portfolios, we calculate portfolio risks according to various measures of default
risk. These risk measures are not meant as an exhaustive list, but rather serve
to shed light on the risk differences from various angles, as assessed by the
credit market, the equity market, the company’s balance sheet and rating
agencies:

credit spread the credit market’s current assessment of the company’s credit
risk. The credit spread is provided by Barclays and is calculated as the
yield difference between the corporate bond and a duration-matched
government bond.

credit beta the realized sensitivity of the portfolio to the credit market, thus
measuring the systematic risk component. We calculate the beta of each
decile portfolio by regressing its return on the DEF factor.

credit rating the rating agencies’ assessment of the company’s credit worthi-
ness. Barclays calculates the composite rating by using the middle rating
in case of three available ratings (Moody’s, S&P, Fitch) and the lowest
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in case of two ratings. We convert this composite rating to a numerical
scale (AAA = 1, AA+ = 2, AA = 3, etc.) to allow for aggregation of
individual bond ratings to the portfolio level.

distance-to-default the equity market’s assessment of the company’s de-
fault risk in the structural framework of Merton (1974), measuring the
proximity of the firm to the default barrier. We calculate distance-to-
default using the Byström (2006) method, which combines the market
value of equity, the 1-year equity volatility and the book value of the
total liabilities into a single measure of default risk. Distance-to-default
is used in various empirical studies on credit markets, e.g. by Schaefer
and Strebulaev (2008) and Correia, Richardson, and Tuna (2012).

leverage a measure of the company’s riskiness as indicated by its balance
sheet. We calculate leverage as the book value of a company’s total
liabilities divided by the book value of its total assets. Various empirical
studies on corporate bond markets use leverage as a control variable, e.g.
Collin-Dufresne and Goldstein (2001) and Campbell and Taksler (2003).

Except for the credit beta, all portfolio risk measures are first calculated as
cross-sectional averages over a portfolio’s constituents at the time of formation,
and then averaged over time. This is different from Gebhardt, Hvidkjaer, and
Swaminathan (2005) who relate momentum spillover to default risk in the
period after formation.

Table 5.3 shows these average risk measures for all decile portfolios. As we
move from D1 to D10, we find a smirk-like pattern for all risk measures: D1
and D2 generally have somewhat higher risk than the middle portfolios, but
risk starts to increase as we move on from D6 and sharply increases for D9
and D10. This pattern indicates that the momentum winners tend to be a bit
more risky than the average company in the universe, but that the momentum
losers are much more risky. Especially the differences in credit beta and credit
spread stand out, because according to these measures D10 is about twice as
risky as D1 in the ALL and HY universes, and about 30-40% riskier in the IG
universe.

The much higher risk of D10 is immediately visible from the last column
of Table 5.3, which presents the differences in default risk between D1 and
D10. For the ALL and HY universes, this column consistently shows that
D10 is the more risky portfolio for all five risk measures. For IG, this is the
case for four out of five risk measures. Because D1-D10 is negatively exposed
to default risk, and in particular because it has a negative credit beta, its
return is negatively affected by the credit market return in the holding period.
This means that the profitability of momentum spillover not only depends on
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its ability to distinguish winners from losers, but also to a large extent on
the credit market return. Since the credit market has a positive premium on
average (see Table 5.1), the negative beta of momentum spillover eats into its
long-term profits, as evidenced by the mean return being up to one third lower
than the alpha (Table 5.2).

5.4.3 Time-varying risk of momentum spillover

In this section we investigate the time-varying risk profile of momentum spillover.
Above we showed that at the time of creating the momentum spillover port-
folios, equity losers are much more risky than equity winners, as indicated by
a variety of default risk measures. Next we investigate whether these risk dif-
ferences depend on the market environment in the formation period. Previous
studies on time-varying risks of momentum in the equity market, like Grundy
and Martin (2001), show that in equity bear markets the companies in the
loser portfolio tend to be more risky than in equity bull markets. Therefore,
one may hypothesize that the momentum losers exhibit higher default risk in
bear markets than in bull markets.

To explore this hypothesis, we first conduct a graphical analysis, just like
Grundy and Martin (2001, Figures 4 and 5). We plot the equity market
return in the formation period against the default risk of the winner-minus-
loser portfolio. Figure 5.2 shows scatter plots for the ALL universe for credit
rating (Panel A), credit spread (Panel B), distance-to-default (Panel C) and
leverage (Panel D). In each panel we observe the expected relation: the lower
the equity market return in the formation period, the higher the default risk
of the winner-minus-loser portfolio. For example, in times of higher (lower)
equity returns, the momentum spillover strategy selects higher-rated (lower-
rated) firms in the winner portfolio and lower-rated (higher-rated) firms in
the loser portfolio. Hence, during equity bull (bear) markets, the momentum
spillover winner-minus-loser portfolio has a bias towards companies with higher
(lower) ratings. A similar reasoning applies to the other default risk proxies
in Panels B, C and D.

In Table 5.4 we extend this analysis to the IG and HY universes by cal-
culating the average default risk measure of the winner-minus-loser portfolios
in five states as defined by the equity market return. State 1 (Low RMRF )
contains all months in our data sample with the 20% lowest equity market
returns, state 2 the next 20%, etc., until state 5 (High RMRF ) with the 20%
highest equity market returns. The reported credit beta in a particular state
is estimated by regressing the strategy return on the DEF factor in a sample
consisting of the months in that state. For the risk measures credit spread
and leverage we observe a strictly monotonous relation between the equity
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market return and the default risk of the winner-minus-loser portfolio in all
three universes. This confirms our earlier observation, that when the equity
market return in the formation period was stronger (weaker), the difference
in default risk between the momentum spillover winner and loser portfolio is
smaller (larger). For distance-to-default this also holds in the IG and HY
universes, and for credit rating in the HY universe. For the remaining cases,
we observe a strong relation pointing in the same direction, but not strictly
monotonous.

The state-specific default risk estimates in Table 5.4 suggest a time-varying
risk profile of momentum spillover: its default risk exposure strongly depends
on the equity market return in the formation period. The default risk scatter
plots in Figure 5.2 suggest that this relationship is approximately linear. In-
spired by the conditional regression frameworks in Grundy and Martin (2001)
and Blitz, Huij, and Martens (2011), we estimate the following equation to
formally test the time-varying risk profile:

rt = α+ (βDEF + βDEF,RMRFRMRFt−K:t−1)DEFt + εt (5.2)

where rt is the return of the momentum spillover winner-minus-loser portfolio
in month t, RMRFt−K:t−1 is the equity market return in the formation period,
and DEFt is the credit market return in month t. This equation, which is an
extension of Equation 5.1, models the strategy’s beta to the credit market
as a linear function of the equity market return in the formation period, as
suggested by Figure 5.2. Equation 5.2 stipulates that, if indeed βDEF <
0 and βDEF,RMRF < 0, a negative equity market return RMRFt−K:t−1 in
the formation period, results in a stronger negative exposure to the credit
market return DEFt in the evaluation period. As a reference, we also estimate
a restricted version of this equation with βDEF,RMRF = 0. This results in
Equation 5.1, which thus only estimates the structural exposure βDEF to the
credit market.

For the time-varying framework, column two in Table 5.5 shows that for
all universes the estimated βDEF,RMRF coefficient is positive and statistically
significant with t-values of 3.35 for the ALL universe, 2.49 for IG and 2.84 for
HY. Also, the adjusted R2 in column three has increased compared to the spec-
ification without the time-varying DEF exposure. The estimated βDEF,RMRF

coefficient is around 1, implying that for every 10% lower return in the equity
market over the formation period, the DEF beta of the winner-minus-loser
portfolio is 0.1 lower. Since the equity market return in the formation pe-
riod, RMRFt−K:t−1 in Equation 5.2, ranges from about -34% to +26%, the
DEF beta difference between the worst state and the best state amounts to
about 0.6. This is a large difference, given the structural DEF beta of 0.21 for
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IG and 0.76 for HY. These results suggest that the time-variation in default
risk of momentum spillover is both statistically and economically meaningful,
and distinguish our work clearly from Gebhardt, Hvidkjaer, and Swaminathan
(2005). They do establish a structural link between momentum spillover and
default risk, but they do not explore the time-varying nature of this risk profile.

5.4.4 Reducing time-varying risk using residual momentum

The evidence presented in the previous section shows that the default risk
exposure of momentum spillover strongly depends on the equity market return
in the formation period. In order to reduce the dependency of momentum
spillover to the equity market return in the formation period, we first need to
understand its origin.

For this, we look at the RMRF -beta of the stocks that are selected by the
momentum strategy in each of the five equity market states, see the last column
of Table 5.4. We find that in states with low (high) equity market returns,
the equity beta is small (large). This finding is consistent with the equity
momentum literature, e.g. Grundy and Martin (2001) who show that equity
momentum exhibits a time-varying exposure to the equity market: in bull
markets, the winner portfolio tends to contain high-beta stocks and the loser
portfolio low-beta stocks, and vice versa in bear markets. Hence, if we are able
to reduce dependency of the equity momentum strategy on RMRF, we can also
reduce the time-varying DEF exposure of momentum spillover. To accomplish
this, we follow Gutierrez and Pirinsky (2007), Blitz, Huij, and Martens (2011)
and Chaves (2016) by ranking companies on their firm-specific, or residual,
equity return. To make the distinction clear, we call the momentum measure
of the previous section total momentum spillover as it uses total equity returns.
To estimate the residual return we regress the excess equity return on the
equity market factor RMRF using a moving window regression over 36 months:

Ei,t = αi + βRMRF,iRMRFt + εi,t (5.3)

where Ei,t denotes the equity return of company i in excess of the 1-month T-
bill return in month t. The residual equity return is equal to εi,t. To construct
the J-month residual equity momentum, we compound the last J residuals
and divide it by the standard deviation of all 36 residuals over the estimation
window, hence penalizing uncertain estimates. Gutierrez and Pirinsky (2007)
argue that this improves the residual momentum measure, because a firm-
specific return can either be real news or just noise.

The resulting strategy is lagged by one month, in line with total momentum
spillover. The top-minus-bottom portfolio construction method for residual
momentum (RM) is identical to that for total momentum (TM), except for
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the momentum measure used to rank the companies. Note that by ranking
companies on their residual equity return, the winner and loser portfolios
are populated by different companies than in case of ranking on total equity
returns. For example, higher-beta stocks do not necessarily enter the winner
portfolio after a positive equity market return in the formation period, but
only if they performed better than the beta-dependent expected return.

Below we investigate to which extent RM is able to reduce the time-varying
default risk exposure of momentum spillover. First, we conduct a visual in-
spection of the dependency of the default risk exposure of the winner-minus-
loser portfolio on the equity market return in the formation period. Again,
we measure default risk using four risk measures, credit rating, credit spread,
distance-to-default and leverage; see Figure 5.3. We observe that the relation
is much weaker than in case of TM spillover in Figure 5.2. So, RM clearly
reduces the dependency of the default risk exposure of momentum spillover
on the equity market return.

Next, we formally test the significance of the structural and time-varying
default risk exposure by estimating Equation 5.2, see the right-hand side of
Table 5.5. We find that the βDEF,RMRF coefficient, which relates to the de-
pendency on the equity market return, is strongly reduced compared to TM
spillover: from 1.31 to 0.37 for the ALL universe (panel A), from 0.90 to
0.01 for IG (panel B) and from 1.02 to 0.41 for HY (panel C). For IG it is
no longer statistically significant. Moreover, for all three universes we see a
strong reduction in the structural DEF exposure, as measured by the βDEF
coefficient of Equation 5.2. The lower adjusted R2 values for RM spillover
also suggest that the DEF factor explains less of the return variation of RM
spillover compared to TM spillover. We thus conclude that RM spillover ex-
hibits much smaller structural and time-varying default risk exposures than
traditional TM spillover. In other words, the use of residual equity returns
instead of total equity returns proofs to be an effective way of reducing the
structural and time-varying default risk exposures in momentum spillover.

5.4.5 Reducing drawdowns using residual momentum

To visualize the impact of the reduced time variation in default risk exposure,
Figure 5.1 plots the cumulative returns through time of the winner-minus-
loser portfolio, for both TM and RM spillover. The chart shows that the
time-variation in the DEF beta is especially hurting the performance of TM
spillover when a strong equity bear market is followed by a strong credit bull
market. For instance, the profits of TM spillover doubled during the 2008
sub-prime crisis, when the strategy correctly selected low-beta companies in
the winner portfolio and high-beta companies in the loser portfolio. However,
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all gains were lost again in 2009, when the low beta was detrimental in months
with strongly positive credit returns. This generated a drawdown of 80%. The
same behavior occurred in the 2002 equity bear market following the collapse
of the IT bubble, and the subsequent 2003 credit bull market. This time the
drawdown was -51%.

These episodes illustrate the sensitivity of TM spillover to strong changes
in market sentiment from an equity bear market to a credit bull market. RM
spillover is much less affected in such circumstances, because RM has a lower
tendency to select companies with a low equity beta and low default risk during
equity bear markets, so that it suffers less in the subsequent credit bull market.
While TM spillover lost approximately 80% in 2009, RM spillover managed to
limit the loss to -25%. Likewise, in 2003, RM spillover lost substantially less
than TM spillover: -14% vs. -51%.

5.4.6 Risk-adjusted company selection or risk-adjusted strat-
egy returns?

The residual equity return of a company can be interpreted as a risk-adjusted
return: it corrects the equity return for the expected return that is driven by
the company’s exposure to the equity market. Therefore, the RM strategy
tends to selects different companies than TM, which does not use this risk-
adjustment. The results shown above demonstrate that the company selection
based on residual equity returns substantially lowers the structural and time-
varying risk of the momentum spillover strategy.

However, one may wonder whether the risk reduction of RM could also be
obtained by TM in combination with a hedge of the default risk of the strategy
after the portfolio has been constructed. To test whether this yields similar
results, we use three methods to calculate risk-adjusted strategy returns, which
could be interpreted as hedging methods:

Static DEF method adjusting strategy returns for the structural DEF ex-
posure by using the full-sample βDEF estimate as shown in Table 5.5.
For example, for TM spillover in the ALL universe, the beta equals -0.89,
so that the risk-adjustment in month t is the credit market return DEFt
times -0.89.

Dynamic DEF method adjusting strategy returns for both the structural
and time-varying DEF exposures, by using the full sample βDEF and
βDEF,RMRF estimates as shown in Table 5.5. Extending the previous
example, the risk-adjustment in month t equals the credit market return
DEFt times (−0.70 + 1.31RMRFt−K:t−1), where RMRFt−K:t−1 is the
equity market return in the formation period.
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Dynamic rating x maturity method adjusting strategy returns for the
bottom-up rating and maturity biases. We follow the methodology of
Gebhardt, Hvidkjaer, and Swaminathan (2005) by first dividing the uni-
verse in six rating groups (AAA/AA, A, BBB, BB, B, CCC-C), and then,
within each rating group, further dividing bonds in four maturity groups
(0-10yr, 10-15yr, 15-20yr, 20+yr). For each bond, the risk-adjusted re-
turn is computed in excess of the average return of all bonds in the same
rating x maturity peer group.

Table 5.6 reports the risk-adjusted return statistics for the momentum
spillover strategies for the three methods, as well as the non-adjusted returns
for comparison. Looking first at the non-adjusted returns, we observe that
RM spillover has much lower volatility than TM spillover. For the ALL uni-
verse, the volatility is reduced by approximately 50%, which is in line with
the reduction found by Blitz, Huij, and Martens (2011) and Chaves (2016) for
equities. For the IG and HY universes, the reductions are smaller, but still
substantial. Since the returns of RM spillover are a bit higher, the Sharpe
ratios vastly improve, e.g. from 0.35 to 0.77 for the ALL universe.

Next, we consider the risk-adjusted return statistics. We find that all
methods result in a reduction of the volatility of TM spillover. For example,
for the ALL universe the static DEF hedge reduces volatility from 8.85% to
6.92%, the dynamic DEF hedge to 6.57% and the rating-maturity hedge to
6.17%. However, these risk reductions are not as large as obtained by RM
spillover, which reduces volatility to 4.80%. We see the same patterns in the
IG and HY universes. This implies that hedging the risk exposures after the
construction of the TM spillover portfolio does not achieve the same level of
risk reduction as directly constructing the portfolio based on residual equity
returns.

Nonetheless, the Sharpe ratios of the hedged TM spillover portfolios are
similar to the Sharpe ratio of the RM spillover portfolio. Does this suggest
that the residualization of equity returns is redundant? Table 5.6 shows that
combining RM spillover with a hedging method achieves the strongest results,
regardless of the hedging method chosen, since the volatilities are the lowest
and the Sharpe ratios the highest.

We conclude from Table 5.6 that by selecting companies on their residual
momentum is effective in reducing the volatility from total momentum spillover
and results in a superior Sharpe ratio, whether one uses risk-adjusted or non-
adjusted returns to evaluate the strategies. This shows that there is added
value in selecting companies on residual equity returns that cannot be realized
by hedging the constructed portfolio.
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5.5 Robustness checks

In this section we show that our results are robust to different formation pe-
riods, holding periods, estimation window lengths and factor models for the
residualization of equity returns and the evaluation of the portfolios. Besides
we also document that the improvements of residual momentum spillover are
robust across liquidity groups and credit ratings. Finally, we show that mo-
mentum spillover is not equity momentum or bond momentum in disguise.

5.5.1 Sensitivity to model parameters

So far, we have used a formation period and holding period of 6 months.
The results are however robust for other combinations. We have verified the
results for TM spillover and RM spillover for a formation period of 6 months
with holding periods of 1, 3 and 12 months, and for a holding period of 6
months with formation periods of 1, 3 and 12 months. For each combination
of formation and holding period, RM spillover has much lower exposures (time-
varying exposures ranging from 0.16 to 0.63) than TM spillover (time-varying
exposures ranging from 0.64 to 1.52), resulting in a much lower volatility and
higher Sharpe ratio for the residual strategy.

We have also investigated alternative regression windows for estimating
residual equity returns, ranging from 24 to 60 months. For each estimation
window the alphas and Sharpe ratios remain highly significant. Alphas range
between 3.90% and 4.43%, while Sharpe ratios are between 0.68 and 0.81.
Furthermore, all structural and time-varying default risk exposures of RM
spillover remain substantially smaller than those of TM spillover.

5.5.2 Other factor models

In the construction of the residual equity returns, we have only residualized
with respect to the equity market factor RMRF. However, as documented by
Fama and French (1993), stock returns are not only driven by RMRF, but also
by size (SMB) and value (HML). Therefore, we test an alternative residual
momentum spillover strategy, denoted FF3-residual, that residualizes equity
returns to all three Fama and French (1993) factors:

Ei,t = αi + βRMRF,iRMRFt + βSMB,iSMBt + βHML,iHMLt + εi,t (5.4)

The results are reported in Table 5.7, Panel A. The alpha is slightly lower com-
pared to the 1-factor RMRF -only residual momentum spillover: 3.98% versus
4.43%, but still highly significant. However, the reduction in time-varying
exposure (βDEF,RMRF ) is even stronger; while total momentum spillover has
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a coefficient of 1.31 and RMRF -only residual momentum spillover of 0.37,
FF3 -residual momentum spillover has a coefficient of just 0.25, which is not
statistically significant.

So far, to evaluate momentum spillover we calculated a 1-factor alpha by
regressing its returns on the credit market factor DEF. However, bond returns
may also be driven by the equity factors RMRF, SMB and HML, as well
by the TERM premium (Fama and French, 1993). Moreover, the SMB and
HML exposures might spill over from the equity market to the bond market
in a similar way as the RMRF exposure does, driving time-variation in the
default risk exposure. Therefore we extend our evaluation framework to a
more general form:

rt = α+
∑

j∈FF5

βjFj,t +
∑

j∈FF3

βDEF,jFj,t−K:t−1DEFt + εt (5.5)

where FF5 = {RMRF,SMB,HML, TERM,DEF},
FF3 = {RMRF,SMB,HML}, Fj,t is the return of factor j in month t and
βj and βDEF,j are the associated coefficients. Because we use excess returns
over duration-matched Treasuries, we do not expect strong loadings on the
TERM factor. The results are reported in Table 5.7, Panel B. This extended
specification reveals that the time-variation in default risk exposure is not
only driven by RMRF, but also by SMB. The strongest driver remains RMRF,
reducing the adjusted R2 from 0.54 to 0.30. Including SMB and HML in the
residualization reduces the R2 further, from 0.30 to 0.25. Even though RMRF -
residual momentum spillover does not explicitly residualize equity returns for
SMB exposures, the time-variation due to SMB is nonetheless substantially
reduced from 2.80 to 1.32. The time-variation is still statistically significant.
By explicitly residualizing for SMB and HML, as is done in the FF3 -residual
momentum spillover, this time-variation coefficient βDEF,SMB is no longer
significant.

We conclude that the profitability of momentum spillover cannot be ex-
plained by structural exposures to the five Fama and French (1993) factors,
nor by the time-variation in default risk exposure spilling over from the equity
market due to RMRF, SMB or HML. Moreover, the main channel driving
time-variation in default risk exposure is via RMRF.

5.5.3 Liquidity Effects

A concern when investing in corporate bonds is that they are less liquid than
stocks. Some corporate bond strategies may unintentionally favor illiquid
bonds, leading to less reliable results. Lin, Wang, and Wu (2013) show that a
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substantial part of the momentum spillover return in corporate bond markets
is a compensation for bearing liquidity risk.

To examine the effect of liquidity on momentum spillover, we run two
analyses. In the first analysis, we create market value-weighted (VW) portfo-
lios instead of equally-weighted (EW) portfolios. VW portfolios require lower
turnover and therefore lower transaction costs to maintain than EW portfo-
lios. Moreover, a VW portfolio is tilted towards larger bonds, which tend to be
more liquid than smaller bonds; see Crabbe and Turner (1995) and Houwel-
ing, Mentink, and Vorst (2005). When we compare the VW results to the
EW results, we observe lower, but still highly significant, alphas. Importantly,
we find that RM spillover has substantially lower structural and time-varying
DEF exposures than TM spillover, just like for EW portfolios. Also, the
volatility of RM spillover is roughly half the volatility of TM spillover and the
Sharpe ratio is more than doubled.

The second analysis in this section is more granular, as we run both the
TM and RM spillover strategies on subsamples of bonds with different degrees
of liquidity. In addition to bond size, previous literature shows that a bonds
age (elapsed time since issuance) is a strong liquidity proxy; see e.g. Sarig
and Warga (1989), and Houweling, Mentink, and Vorst (2005). For age we
create groups of young, middle and old bonds, while for size we create groups
of large, middle and small bonds. We construct momentum spillover portfolios
within each of these equally-populated groups.

Table 5.8 reports the results. In every liquidity group RM spillover has
a lower volatility and a higher Sharpe ratio than TM spillover. Also, in
line with earlier results, exposures and R2-values are substantially smaller
for RM spillover. The reduction in the time-varying exposure seems to be
even stronger for young (and thus more liquid) bonds than for old bonds.
From these analyses, we conclude that momentum spillover returns and the
enhancements obtained by using residual equity returns cannot be attributed
to illiquidity.

5.5.4 Credit Rating Effects

Avramov et al. (2007) find that equity momentum leads to disproportion-
ally large investments in the lowest-rated companies. After excluding the
lowest-rated issuers from their sample, they find that momentum disappears.
One may wonder whether stock-bond momentum spillover also only works for
lower-rated companies.

A first indication that momentum spillover does work for higher-rated com-
panies is provided in Table 5.5: the alphas are also highly significant in the
Investment Grade universe. In Table 5.9 we make a more granular decomposi-
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tion by splitting the universe in five equally populated sub-universes based on
the credit rating. Within each rating group, quintile winner-minus-loser port-
folios are constructed based on total or residual equity returns. The results
clearly show that for lower ratings the alpha is higher, the structural default
exposure is more negative and the spillover of default risk is also stronger.
This is not surprising, given the more equity-like behavior of high-risk corpo-
rate bonds (Kwan, 1996). However, also within the 20% highest-rated bonds,
there is still significant positive alpha and spillover of time-varying default
risk. We conclude that the momentum spillover alpha cannot be attributed
to the riskiest companies only.

5.5.5 Is momentum spillover equity momentum or bond mo-
mentum in disguise?

The results so far show strong performance of momentum spillover. However,
given that momentum spillover uses equity returns, just like a momentum
strategy applied to equities, it could be that the alpha of momentum spillover is
just the alpha of equity momentum, manifested in the corporate bond market.

To test this hypothesis, we construct a decile equity momentum winner-
minus-loser portfolio on the same data set and with the same formation and
holding period as momentum spillover. Then we regress the return of the
momentum spillover strategy in the corporate bond market on the return of
the momentum strategy in the equity market, while controlling for structural
and time-varying DEF exposures. We find that (total) momentum spillover
shows a highly significant positive loading on equity momentum, halving the
alpha. However, the alpha remains highly significant, indicating that the
momentum spillover effect is not subsumed by the equity momentum effect.
We also observe that the βDEF,RMRF coefficient reduces from 1.31 to 0.75
(but still significant), because equity momentum has a similar time-varying
risk profile as momentum spillover.

If we run the same regression for residual momentum spillover, we see sim-
ilar patterns, though to a lesser extent. Both the coefficient and the t-statistic
of equity momentum are smaller for RM spillover than for TM spillover. Also,
the alpha reduction is smaller. Finally, we still observe the ability of residual
momentum spillover to lower the structural and time-varying DEF exposures.

Next, we conduct the same regressions as above, but with bond momentum
instead of equity momentum. We find that for both TM and RM spillover,
the exposure to bond momentum is actually negative, not positive.

We conclude that the alpha of momentum spillover is neither explained by
equity momentum nor by bond momentum.
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5.6 Conclusions

This paper investigates stock-bond momentum spillover. We first confirm
and extend the results of Gebhardt, Hvidkjaer, and Swaminathan (2005) on
the existence of a momentum spillover effect in investment grade bonds and
continue by identifying, understanding and reducing the risks of the strategy.

First, we show that the momentum spillover effect not only exists for in-
vestment grade bonds, but also for high yield bonds.

Our second contribution is that we demonstrate that a traditional momen-
tum spillover portfolio based on total equity returns exhibits a significantly
negative default risk exposure at the moment of constructing the portfolio.
We measure default risk by a variety of risk measures, including the beta to
the credit market. This means that the strategy return is sensitive to the
credit market return in the holding period. More specifically, this causes a
drag on the profitability of momentum spillover, because the credit market
has generated a positive return, on average.

Our third contribution is that we find that the default risk exposure of mo-
mentum spillover is time-varying, and strongly depends on the equity market
return in the formation period. We show that the credit market beta of mo-
mentum spillover is more negative after negative equity market returns. This
makes the strategy vulnerable to a turn in the market cycle, in which an equity
bear market is followed by a credit bull market. For instance, in 2009, when
the credit market recovered from the sub-prime crisis, the winner-minus-loser
momentum spillover portfolio suffered a drawdown of 80%.

Fourth, we show that the time-varying default risk exposure of momentum
spillover can be substantially reduced by ranking companies on their residual
equity return, instead of on their total equity return. Compared to tradi-
tional momentum spillover based on total equity returns, residual momentum
spillover has much smaller structural and time-varying default risk exposures.
Further, it has half the volatility, the same return and hence double the Sharpe
ratio. Also, the drawdowns are substantially reduced, e.g. in 2009 from 80%
to 25%. Using residual equity returns to construct a momentum spillover port-
folio is more effective in reducing the risk of the strategy than adding a hedge
on top of a total momentum spillover portfolio. The benefits of using residual
momentum are robust to the model specification and the effects of liquidity
and credit ratings.
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5.A Distance-to-Default computation

The distance-to-default measure originates from the Merton (1974) structural
model. In this model, the equity is modeled as a call option on the firms assets,
with the strike price being the value of the debt. The physical probability of
default is given by

πP = N(−DDP ) (5.6)

where N(.) denotes the cumulative distribution function of the standard nor-
mal distribution, and the distance-of-default is given by

DDP
t =

log (Vt/Xt) +
(
µ− 0.5σ2

)
(T − t)

σ
√
T − t

(5.7)

where log is the natural logarithm, Vt the value of the firms assets at time t,
Xt the strike price of the option, µ the drift rate of the firms assets, σ the
volatility of the assets and T the time-to-maturity of the option.

The drift rate µ and volatility σ are unobservable. In the literature several
methods exist to estimate these. We follow the procedure by Byström (2006),
as it is not computationally intensive while it provides a good proxy. Equation
5.7 then simplifies to

DDP
t =

log(Vt/Xt)

σE
√
T − t

(5.8)

where σE is the volatility of the firm’s equity. We proxy the value of the firm
with the sum of book value of total liabilities and market value of equity. The
strike is set equal to the book value of total liabilities and σE is taken to be
the past 1-year daily equity return volatility.



CHAPTER 5. MOMENTUM SPILLOVER 147

Table 5.1: Descriptive statistics
Descriptive statistics over the period January 1994 to December 2013 of Barclays U.S. In-
vestment Grade and High Yield index constituents that have at least three years of stock
return history on a US stock exchange. If a company has more than one bond outstanding
in a particular month, we compute the market value weighted return over all its outstanding
bonds. ALL represents the total universe, IG is the Investment Grade universe and HY
is the High Yield universe. The excess return is the difference between a corporate bonds
total return and duration-neutral Treasuries; equity return is the return of the correspond-
ing stock; credit spread is the difference between the option-adjusted yield on the corporate
bond and the duration-neutral Treasury yield; DtD is the distance-to-default, see Appendix
5.A; leverage is the company’s book value of total liabilities divided by the book value of
total assets; rating is the median credit rating of the ratings provided by Standard & Poors,
Moodys and Fitch. If the credit rating from only two agencies is available, the minimum
rating is selected. Ratings are converted to a numerical scale: AAA = 1, AA+ = 2, AA = 3,
etc. Age is the time-since-issuance in years; amount outstanding is the notional amount
outstanding in mln USD. All statistics, except for the last row, are first calculated as an
equally-weighted cross-sectional average, and subsequently computed over time. Number of
companies per month is computed as the average through time. Mean returns and volatilities
are annualized.

ALL IG HY

Mean excess return 1.76% 0.80% 2.70%
Volatility excess return 6.22% 4.04% 9.27%
Sharpe ratio excess return 0.28 0.20 0.29
Mean equity return over risk-free 7.99% 8.38% 6.01%
Volatility equity return over risk-free 19.31% 15.50% 25.49%
Sharpe ratio equity return 0.41 0.54 0.24
Credit spread (bps) 289 159 528
DtD 4.70 5.81 3.26
Leverage 0.54 0.49 0.60
Rating 10.56 7.57 14.50
Age 3.07 3.33 2.70
Amount outstanding 1650 2386 773
Number of companies per month 760 425 335
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8Table 5.2: Performance statistics of momentum spillover

Mean return, volatility, Sharpe ratio and 1-factor alpha of momentum spillover for decile portfolios D1, . . . , D10 and winner-minus-loser
portfolio D1-D10. The return per decile portfolio in month t is calculated as the average return of the decile portfolios constructed from
month t − 6 to t − 1. Each month, the decile portfolios take equally-weighted positions in the bonds of the companies that according
to their past 6-month equity returns belong in the decile portfolio. The 1-factor alpha is obtained by regressing the strategy return on
the corporate bond default factor (DEF ). Newey and West (1987) and Newey and West (1994) t-statistics are reported in parentheses.
Significance at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively. Mean, volatility and alpha are annualized and
expressed in percentages. Panel A shows results for the total universe (ALL), Panel B for Investment Grade (IG) and Panel C for High
Yield (HY). Sample period from January 1994 to December 2013.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D1-D10

Panel A: ALL
Mean 3.92 2.46 2.03 2.03 1.67 1.69 1.68 1.69 1.77 0.85 3.08
Volatility 6.63 5.17 4.89 4.86 4.95 5.18 5.69 6.39 7.95 13.15 8.85
Sharpe 0.59 0.48 0.42 0.42 0.34 0.33 0.30 0.26 0.22 0.06 0.35
Alpha 1.94*** 0.89*** 0.54** 0.54** 0.15 0.10 -0.07 -0.28 -0.65* -2.86** 4.80***

(4.23) (3.28) (2.45) (2.25) (0.70) (0.47) (-0.33) (-1.16) (-1.75) (-1.97) (2.77)

Panel B: IG
Mean 1.56 1.36 1.31 1.09 1.04 0.95 0.86 0.66 0.36 -0.17 1.73
Volatility 3.94 3.74 3.86 3.98 4.06 3.86 4.17 4.29 4.45 6.38 4.16
Sharpe 0.40 0.36 0.34 0.27 0.26 0.25 0.21 0.15 0.08 -0.03 0.42
Alpha 0.72*** 0.56*** 0.49*** 0.24 0.17 0.12 -0.04 -0.26*** -0.60*** -1.34** 2.06***

(4.00) (4.09) (3.52) (1.45) (1.36) (1.05) (-0.41) (-3.06) (-3.37) (-1.97) (2.60)

Panel C: HY
Mean 5.83 4.05 3.62 3.47 3.42 3.55 3.26 3.15 2.20 0.04 5.79
Volatility 8.20 7.50 7.57 7.48 8.11 8.54 9.27 10.1 12.46 18.13 13.25
Sharpe 0.71 0.54 0.48 0.46 0.42 0.42 0.35 0.31 0.18 0.00 0.44
Alpha 3.12*** 1.53*** 1.04*** 0.92*** 0.65 0.62 0.06 -0.34 -2.01** -5.63*** 8.74***

(4.51) (3.18) (2.68) (2.70) (1.48) (1.35) (0.14) (-0.77) (-2.33) (-2.79) (3.55)
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Table 5.3: Default risk statistics of momentum spillover per decile portfolio
Default risk statistics for decile portfolios D1, . . . , D10 and winner-minus-loser portfolio D1-D10 of momentum spillover. Each month, the
decile portfolios take equally-weighted positions in the bonds of the companies that according to their past 6-month equity returns belong
in the decile portfolio. DEF beta is obtained from a time-series regression of the portfolio return on the DEF factor; rating is the median
credit rating of the ratings provided by Standard & Poors, Moodys and Fitch. If the credit rating from only two agencies is available, the
minimum rating is selected. Ratings are converted to a numerical scale: AAA = 1, AA+ = 2, AA = 3, etc.; credit spread is the difference
between the option-adjusted yield on the corporate bond and the duration-neutral Treasury yield; DtD is the distance-to-default, see
Appendix 5.A for the definition; leverage is the company’s book value of total liabilities divided by the book value of total assets. All risk
measures, except for the DEF beta, are first calculated as cross-sectional averages over a portfolios constituents at the time of formation,
and then averaged over time. Panel A shows results for the total universe (ALL), Panel B for Investment Grade (IG) and Panel C for
High Yield (HY). Sample period from January 1994 to December 2013.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D1-D10

Panel A: ALL
DEF beta 1.02 0.81 0.77 0.77 0.78 0.82 0.90 1.02 1.25 1.91 -0.89
Rating 12.51 10.48 9.79 9.46 9.36 9.40 9.56 10.04 10.94 13.66 -1.15
Credit spread 334 246 223 215 217 220 234 265 338 684 -350
DtD 3.71 4.78 5.22 5.37 5.44 5.38 5.24 4.87 4.30 2.77 0.94
Leverage 0.51 0.50 0.50 0.51 0.51 0.52 0.53 0.55 0.57 0.68 -0.17

Panel B: IG
DEF beta 0.94 0.90 0.93 0.95 0.98 0.93 1.01 1.04 1.07 1.31 -0.37
Rating 7.96 7.61 7.48 7.41 7.42 7.42 7.42 7.49 7.56 7.87 0.09
Credit spread 161 152 150 150 152 152 155 161 168 207 -46
DtD 5.18 5.85 6.09 6.09 6.15 6.14 6.04 5.82 5.54 4.61 0.57
Leverage 0.45 0.47 0.48 0.49 0.50 0.50 0.51 0.52 0.52 0.54 -0.09

Panel C: HY
DEF beta 0.83 0.77 0.79 0.78 0.85 0.90 0.98 1.07 1.29 1.73 -0.90
Rating 14.91 14.19 14.00 13.94 13.90 13.99 14.10 14.34 14.71 15.75 -0.84
Credit spread 470 415 411 415 422 451 483 541 654 1021 -550
DtD 2.86 3.57 3.79 3.91 3.91 3.82 3.63 3.31 2.84 1.99 0.87
Leverage 0.55 0.54 0.55 0.56 0.57 0.59 0.61 0.63 0.67 0.76 -0.21
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Table 5.4: Default risk statistics of momentum spillover per equity state
Default risk statistics for winner-minus-loser portfolio of momentum spillover. The return
in month t is calculated as the average of the winner-minus-loser portfolio constructed from
month t−6 to t−1. Each month, the winner (loser) portfolio takes equally-weighted positions
in the bonds of the best (worst) companies according to their past 6-month equity returns.
DEF beta is obtained from a time-series regression of the portfolio return on the DEF factor;
rating is the median credit rating of the ratings provided by Standard & Poors, Moody’s
and Fitch. If the credit rating from only two agencies is available, the minimum rating
is selected. Ratings are converted to a numerical scale: AAA = 1, AA+ = 2, AA = 3,
etc.; credit spread is the difference between the option-adjusted yield on the corporate bond
and the duration-neutral Treasury yield; DtD is the distance-to-default, see Appendix 5.A;
leverage is the company’s total liabilities divided by the total assets; RMRF beta is obtained
by calculating per stock the rolling 36-month beta to the RMRF factor. All risk measures,
except for the DEF beta, are first calculated as cross-sectional averages over a portfolios
constituents at the time of formation, and then averaged over time. Panel A shows results
for the total universe (ALL), Panel B for Investment Grade (IG) and Panel C for High Yield
(HY). Sample period from January 1994 to December 2013.

DEF beta Rating Credit spread DtD Leverage RMRF beta

Panel A: ALL
Average -0.89 -1.15 -350 0.94 -0.17 -0.10
Low RMRF -0.97 -2.88 -913 1.75 -0.25 -0.77
2 -1.21 -1.58 -314 1.42 -0.20 -0.33
3 -0.72 -0.61 -224 0.81 -0.18 -0.09
4 -0.59 -1.15 -221 0.93 -0.15 0.12
High RMRF -0.25 0.49 -75 -0.24 -0.07 0.54

Panel B: IG
Average -0.37 0.09 -46 0.57 -0.09 -0.07
Low RMRF -0.35 0.11 -153 1.73 -0.15 -0.63
2 -1.10 0.00 -45 1.10 -0.13 -0.20
3 -0.42 0.19 -20 0.39 -0.11 -0.01
4 -0.15 -0.06 -15 0.28 -0.06 0.09
High RMRF 0.11 0.22 3 -0.68 0.00 0.40

Panel C: HY
Average -0.90 -0.84 -550 0.87 -0.21 -0.10
Low RMRF -1.02 -1.98 -1339 1.33 -0.28 -0.74
2 -0.98 -0.90 -456 1.15 -0.23 -0.39
3 -0.53 -0.69 -368 0.88 -0.22 -0.10
4 -0.63 -0.69 -376 0.88 -0.20 0.14
High RMRF -0.49 0.05 -213 0.08 -0.12 0.59
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Table 5.5: Structural and time-varying default exposures of total and residual
momentum spillover
Structural and time-varying default exposures for winner-minus-loser portfolio of total mo-
mentum spillover (left) and residual (right) momentum spillover. The return rt in month t
is calculated as the annualized average of the winner-minus-loser portfolio constructed from
month t− 6 to t− 1. Each month, the winner (loser) portfolio takes equally-weighted posi-
tions in the bonds of the winner (loser) companies according to their past 6-month total or
residual equity return. Residual equity returns are estimated using Equation 5.2. The struc-
tural exposure βDEF to the corporate bond market factor DEF is estimated using Equation
5.1. The time-varying exposures βDEF,RMRF , where the exposure to DEF is dependent on
the equity market return RMRF in the formation period, is estimated according to Equa-
tion 5.2. Newey and West (1987) and Newey and West (1994) t-statistics are reported in
parentheses. Significance at the 90%, 95% and 99% levels are indicated with *, ** and ***
respectively. Mean, volatility and alpha are annualized and expressed in percentages. Panel
A shows results for the total universe (ALL), Panel B for Investment Grade (IG) and Panel
C for High Yield (HY). Sample period from January 1994 to December 2013.

Total momentum spillover Residual momentum spillover

βDEF βDEF,RMRF Adj. R2 βDEF βDEF,RMRF Adj. R2

Panel A: ALL
-0.89*** 0.39 -0.33** 0.18
(-3.72) (-2.33)

-0.70*** 1.31*** 0.44 -0.28** 0.37** 0.19
(-3.49) (3.35) (-2.05) (2.23)

Panel B: IG
-0.37 0.13 -0.15 0.03

(-1.55) (-1.02)
-0.21 0.90** 0.18 -0.15 0.01 0.03

(-1.03) (2.49) (-0.96) (0.08)

Panel C: HY
-0.90*** 0.40 -0.52*** 0.33
(-5.47) (-5.07)

-0.76*** 1.02*** 0.43 -0.47*** 0.41** 0.34
(-5.55) (2.84) (-4.65) (2.08)
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2Table 5.6: Risk-adjusted returns of total and residual momentum spillover

Risk-adjusted returns of winner-minus-loser portfolios of total momentum spillover (“total”) and residual momentum spillover (“residual”).
The return rt in month t is calculated as the average of the winner-minus-loser portfolio constructed from month t − 6 to t − 1. Each
month, the winner (loser) portfolio takes equally-weighted positions in the bonds of the best (worst) companies according to their past
6-month total (residual) equity returns. Residual equity returns are estimated using Equation 5.3. We test three risk-adjustments: 1.
excess returns after hedging with the full sample exposure βDEF (as reported in Table 5.5), 2. excess returns after hedging with the full
sample βDEF and βDEF,RMRF exposure (as reported in Table 5.5) and 3. excess returns over rating (AAA/AA, A, BBB, BB, B, CCC-C)
x maturity (0-10yr, 10-15yr, 15-20yr, 20+yr) peer groups. Newey and West (1987) and Newey and West (1994) t-statistics are reported in
parentheses. Significance at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively. Mean and volatility are annualized
and expressed in percentages. Panel A shows results for the total universe (ALL), Panel B for Investment Grade (IG) and Panel C for
High Yield (HY). Sample period from January 1994 to December 2013.

Risk-adjustment Non βDEF βDEF & βDEF,RMRF Rating & maturity

Mom. spillover total residual total residual total residual total residual

Panel A: ALL
Mean 3.08% 3.70*** 4.80*** 4.34*** 5.12*** 4.43*** 4.21%** 3.78%***

(1.19) (3.05) (2.77) (3.75) (2.97) (3.80) (2.33) (3.76)
Volatility 8.85% 4.80% 6.92% 4.33% 6.57% 4.29% 6.17% 3.98%
Sharpe ratio 0.35 0.77 0.69 1.00 0.78 1.03 0.68 0.95

Panel B: IG
Mean 1.73%* 1.99*** 2.06*** 2.12*** 2.28*** 2.12*** 1.68%* 1.98%***

(1.85) (3.13) (2.60) (3.03) (2.92) (3.08) (1.95) (3.63)
Volatility 4.16% 3.08% 3.87% 3.02% 3.75% 3.02% 3.82% 2.64%
Sharpe ratio 0.42 0.64 0.53 0.70 0.61 0.70 0.44 0.75

Panel C: HY
Mean 5.79% 6.13*** 8.74*** 7.83*** 8.96*** 7.92*** 6.69%** 5.96%***

(1.59) (2.88) (3.55) (4.58) (3.61) (4.63) (2.32) (3.21)
Volatility 13.25% 8.40% 10.26% 6.86% 9.96% 6.79% 10.48% 7.32%
Sharpe ratio 0.44 0.73 0.85 1.14 0.90 1.17 0.64 0.81
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Table 5.7: Alphas and betas of total and residual momentum spillover for various factor model specifications
Structural and time-varying factor exposures for winner-minus-loser portfolio of total momentum spillover, residual momentum spillover
based on RMRF and residual momentum spillover based on RMRF, SMB and HML (FF3 ). The return rt in month t is calculated as
the average of the winner-minus-loser portfolio constructed from month t − 6 to t − 1. Each month, the winner (loser) portfolio takes
equally-weighted positions in the bonds of the companies that according to their past 6-months (residual) equity returns belong in the
winner (loser) portfolio. Residual equity returns are estimated using Equation 5.3 for RMRF -residual momentum spillover or Equation
5.3 for FF3-residual momentum spillover. We estimate the structural exposure βDEF and time-varying exposures βDEF,RMRF to the
corporate bond market factor DEF using Equation 5.2, for Panel A (DEF exposure depends on RMRF in the formation period) or using
Equation 5.4 for Panel B (DEF exposure depends on RMRF, SMBF and HML in the formation period). Newey and West (1987) and
Newey and West (1994) t-statistics are reported in parentheses. Significance at the 90%, 95% and 99% levels are indicated with *, **
and *** respectively. Mean, volatility and alpha are annualized and expressed in percentages. Results are on the total universe. Sample
period from January 1994 to December 2013.

Momentum spillover Alpha βRMRF βSMB βHML βTERM βDEF βDEF,RMRF βDEF,SML βDEF,HML Adj. R2

Panel A: time-varying DEF exposures depend on RMRF
total 5.12*** -0.70*** 1.31*** 0.44

(2.97) (-3.49) (3.35)
RMRF -residual 4.43*** -0.28** 0.37** 0.19

(3.80) (-2.05) (2.23)
FF3 -residual 3.98*** -0.24** 0.25 0.15

(3.84) (-1.99) (1.60)

Panel B: time-varying DEF exposures depend on RMRF, SMB and HML
total 5.15*** -0.06 -0.09** -0.11** 0.02 -0.49* 1.87*** 2.80*** -0.46 0.54

(2.60) (-1.27) (-1.97) (-1.99) (0.16) (-1.91) (4.64) (3.21) (-1.06)
RMRF -residual 4.35*** -0.04 -0.04 -0.03 -0.01 -0.17 0.67*** 1.32** -0.50 0.30

(3.15) (-1.36) (-1.29) (-1.43) (-0.19) (-1.06) (3.48) (2.17) (-1.58)
FF3 -residual 3.95*** -0.04 -0.04 -0.05* 0.00 -0.11 0.55*** 1.07 -0.52 0.25

(3.25) (-1.39) (-1.45) (-1.66) (0.02) (-0.76) (2.75) (1.63) (-1.49)
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4Table 5.8: Statistics total and residual momentum spillover per liquidity segment

Total and residual momentum spillover performance statistics for three liquidity segments based on age (Panel A) and size (Panel B). We first split
the universe in three equally populated sub-universes based on age or size. Subsequently we create 5 portfolios based on total or residual spillover
momentum. The return rt in month t is calculated as the average of the winner-minus-loser quintile portfolio constructed from month t − K to
t− 1. Each month, the winner (loser) portfolio takes equally-weighted positions in the bonds of the companies that according to their past J-months
(residual) equity returns belong in the quintile winner (loser) portfolio. Residual equity returns are estimated using Equation 5.3. Alphas and betas
are estimated according to Equation 5.2. βDEF is the structural exposure to the corporate bond market DEF , and βDEF,RMRF is the time-varying
exposure, where the exposure to DEF is dependent on the equity market return RMRF in the formation period. Newey and West (1987) and Newey
and West (1994) t-statistics are reported in parentheses. Significance at the 90%, 95% and 99% levels are indicated with *, ** and *** respectively.
Mean, volatility and alpha are annualized and expressed in percentages. Results are on the total universe. Sample period from January 1994 to
December 2013.

Momentum spillover Mean Volatility Sharpe ratio Alpha βDEF βDEF,RMRF Adj. R2

Panel A: Age
Age 1 (old) total 1.53 5.04 0.30 2.78*** -0.40*** 0.91*** 0.52

(0.99) (3.20) (-7.16) (5.80)
residual 1.52** 2.82 0.54 1.96*** -0.13*** 0.35*** 0.20

(2.38) (4.02) (-2.72) (2.68)
Age 2 total 1.70 7.11 0.24 3.37** -0.53*** 1.21*** 0.46

(0.84) (2.55) (-3.30) (4.21)
residual 3.06*** 4.28 0.71 3.60*** -0.25** 0.10 0.15

(3.05) (3.61) (-2.27) (0.67)
Age 3 (young) total 2.39 7.17 0.33 4.13*** -0.55*** 1.31*** 0.50

(1.10) (2.87) (-3.27) (3.55)
residual 3.15** 4.61 0.68 3.87*** -0.33*** 0.17 0.22

(2.48) (3.33) (-2.88) (1.02)
Panel B: Size
Size 3 (small) total 1.82 5.96 0.31 3.24*** -0.44*** 1.07*** 0.47

(1.05) (2.99) (-3.03) (2.76)
residual 2.56*** 3.68 0.70 3.17*** -0.25*** 0.23 0.24

(2.75) (3.86) (-2.61) (1.48)
Size 2 total 0.87 7.02 0.12 2.68*** -0.54*** 1.45*** 0.56

(0.43) (2.81) (-5.58) (4.45)
residual 1.95** 3.85 0.51 2.52*** -0.25*** 0.17 0.20

(2.46) (3.96) (-4.59) (1.25)
Size 1 (large) total 2.88 7.42 0.39 4.30*** -0.50*** 0.86*** 0.30

(1.37) (2.60) (-3.21) (3.54)
residual 3.34*** 4.79 0.70 3.86*** -0.23* 0.11 0.10

(2.58) (3.00) (-1.94) (0.75)
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Table 5.9: Statistics total and residual momentum spillover per rating sub-universe
Total and residual momentum spillover performance statistics for five rating sub universes. We first split the universe in five equal sized
sub universes based on rating. Subsequently we create 5 portfolios based on total/residual spillover momentum. The return rt in month t is
calculated as the average of the winner-minus-loser quintile portfolio constructed from month t−K to t−1. Each month, the winner (loser)
portfolio takes equally-weighted positions in the bonds of the companies that according to their past J-months (residual) equity returns
belong in the quintile winner (loser) portfolio. Residual equity returns are estimated using Equation 5.3. Alphas and betas are estimated
according to Equation 5.2. βDEF is the structural exposure to the corporate bond market DEF, and βDEF,RMRF is the time-varying
exposure, where the exposure to DEF is dependent on the equity market return RMRF in the formation period. Newey and West (1987)
and Newey and West (1994) t-statistics are reported in parentheses. Significance at the 90%, 95% and 99% levels are indicated with *, **
and *** respectively. Mean, volatility and alpha are annualized and expressed in percentages. Results are on the total universe. Sample
period from January 1994 to December 2013.

Momentum spillover Mean Volatility Sharpe ratio Alpha βDEF βDEF,RMRF Adj. R2

Q1 (low rating) total 7.87** 13.80 0.57 10.48*** -1.06*** 1.03** 0.31
(2.09) (3.78) (-8.19) (2.50)

residual 7.71*** 10.38 0.74 9.32*** -0.68*** 0.56* 0.21
(2.88) (4.23) (-5.71) (1.65)

Q2 total 1.79 6.14 0.29 3.24*** -0.56*** 0.67** 0.48
(1.02) (2.87) (-4.42) (2.34)

residual 2.35** 4.06 0.58 3.07*** -0.37*** 0.03 0.32
(2.22) (3.59) (-3.88) (0.19)

Q3 total 1.14 3.79 0.30 1.95*** -0.26*** 0.58*** 0.38
(1.10) (2.75) (-3.31) (3.64)

residual 1.97*** 2.67 0.73 2.17*** -0.17*** -0.25 0.12
(3.30) (3.89) (-3.12) (-1.54)

Q4 total 1.25* 2.83 0.44 1.63*** -0.09 0.40 0.15
(1.94) (2.71) (-0.87) (1.63)

residual 1.44*** 2.00 0.72 1.56*** -0.07 -0.02 0.03
(3.39) (3.43) (-1.10) (-0.22)

Q5 (high rating) total 1.20* 3.10 0.39 1.51** -0.10 0.22** 0.07
(1.93) (2.36) (-1.16) (2.08)

residual 1.14** 2.57 0.44 1.13* -0.04 -0.16** 0.00
(2.28) (1.95) (-0.54) (-2.51)
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Figure 5.1: Cumulative returns total & residual momentum portfolios
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Figure 5.2: Exposures D1-D10 total momentum portfolio vs. stock market return formation period
D1-D10 total momentum portfolio risk exposures at formation versus RMRF realization over the formation period. Risk measures are
credit spread (top-left), Distance-to-Default (top-right), credit rating (bottom-left) and leverage(bottom-right).
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5
8Figure 5.3: Exposures D1-D10 residual momentum portfolio vs. stock market return formation period

D1-D10 residual momentum portfolio risk exposures at formation versus RMRF realization over the formation period. Risk measures are
credit spread (top-left), Distance-to-Default (top-right), credit rating (bottom-left) and leverage(bottom-right).
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Chapter 6

Factor Investing in the
Corporate Bond Market

6.1 Introduction

This paper examines the performance of Size, Low-Risk, Value and Momen-
tum factor portfolios in the corporate bond market. A factor portfolio is
constructed by sorting bonds on a specific characteristic: Size contains bonds
of small companies, based on the market value of their outstanding bonds;
Low-Risk contains short-maturity bonds with a high credit rating; Value se-
lects bonds whose credit spread is high relative to a model-implied fair spread;
Momentum consists of bonds with high past returns. In addition to these in-
dividual factors, we analyze a multi-factor portfolio that combines the four
factors. We find that both single-factor and multi-factor portfolios generate
economically meaningful and statistically significant alphas.

Our paper belongs to the empirical asset pricing literature that documents
that factor portfolios carry a premium beyond the traditional asset class pre-
mium, as postulated by the CAPM. Even though this literature has existed
for decades, it has predominantly focused on equities. The best documented
factors in the equity literature are Low-Risk (starting with Haugen and Heins,
1972), Value (Basu, 1977), Size (Banz, 1981), and Momentum (Jegadeesh and
Titman, 1993). For corporate bonds, the evidence is more limited and more
recent. Documented factors are Low-Risk (e.g. Ilmanen et al., 2004; Frazz-
ini and Pedersen, 2014) and Momentum (Pospisil and Zhang, 2010; Jostova
et al., 2013). Evidence on other factors is scarce. We are aware of only two
papers on Value (L’Hoir and Boulhabel, 2010; Correia, Richardson, and Tuna,
2012) and none on Size. The existing studies on factors in the corporate bond
market each focus on one particular factor, while we jointly analyze the Size,
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Low-Risk, Value and Momentum factors using a consistent methodology on a
single data set. Our data set consists of all bonds in the Barclays U.S. Corpo-
rate Investment Grade and High Yield indexes over the period from January
1994 to June 2015.

Our paper contributes to the existing literature in three ways. First, we
confirm previous work on Low-Risk and Momentum, we confirm and extend
the relatively new evidence on Value, and we are the first to provide evidence
on Size. We show that all factors have significant alphas, both in the CAPM,
correcting factor returns for their beta to the corporate bond market, and
in the Fama-French-Carhart framework, additionally correcting for betas to
equity and bond common risk factors.

Our second contribution is that we go beyond previous work by combining
factors in a multi-factor portfolio. We find that factors have relatively low pair-
wise correlations, so that the multi-factor portfolio substantially reduces the
tracking error and improves the information ratio versus the corporate bond
market index, compared to single-factor portfolios. The annualized Fama-
French-Carhart alpha of a long-only multi-factor portfolio is 0.84% (3.65%)
in Investment Grade (High Yield), which is sizable given the corporate bond
market premium of 0.50% (2.33%). We find that break-even transaction costs
are well above actual transaction costs of corporate bonds reported in various
studies, so that after-cost alphas remain substantial. These findings are robust
to a variety of sensitivity checks, including alternative factor definitions, al-
ternative portfolio construction choices and the evaluation of factor portfolios
on a subset of liquid bonds.

Our final contribution is the joint application of factor investing in the
equity and the corporate bond markets. We show that the corporate bond
factors have added value beyond their counterparts in the equity market: by
not only applying factor investing in the equity market, but also in the corpo-
rate bond market investors can increase the alpha of their multi-asset portfolio
by more than 1% per year.

Our results have strong implications for strategic asset allocation decisions.
Most investors focus on traditional asset classes when determining their strate-
gic investment portfolio. For example, by including stocks, government bonds
and corporate bonds, they aim to earn the Equity, Term and Default premi-
ums. Implementation of the actual investment portfolio is typically delegated
to external managers. However, the results of our study, in line with results of
similar studies on equity markets, suggest that investors should strategically
and explicitly allocate to factors instead of relying on external managers to
implement factor exposures. A seminal study on this topic is that of Ang,
Goetzmann, and Schaefer (2009) who were asked by the Norwegian Govern-
ment Pension Fund to analyze the funds performance. This study finds that a
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large part of the funds outperformance versus its strategic benchmark could be
explained by factor exposures that were implicitly present in the investment
portfolios. Therefore, the authors recommend making the funds exposure to
factors a top-down decision rather than emerging as a byproduct of bottom-
up active management (Ang, Goetzmann, and Schaefer, 2009, p. 20). Blitz
(2012) argues that investing in factors should be a strategic decision, because
of the long-term investment horizon required to harvest the premiums. Bender
et al. (2010) and Ilmanen and Kizer (2012) also make the case for strategic al-
locations to factors, stressing the diversification benefits. Ang (2014) devotes
an entire book to factor investing.

Two papers that are related to ours are Israel, Palhares, and Richardson
(2017) and Bektic et al. (2017). Like our paper, these papers study single-
factor and multi-factor portfolios in the corporate bond market.

Our paper differs from Israel, Palhares, and Richardson (2017) in three
important aspects. First, we use more realistic assumptions, such as a hold-
ing period of 12 months (instead of 1 month), we study long-only portfolios
(instead of long-short) and we do not use leverage. Secondly, in our paper we
conduct a variety of sensitivity analyses, including alternative factor defini-
tions, to verify the robustness of our results. Finally, we conduct a multi-asset
analysis to investigate the added value of corporate bond factor investing be-
yond equity factor investing.

The key difference between Bektic et al. (2017) and our paper is that they
use equity definitions for each factor, whereas we focus on bond-specific factor
definitions. In one of our robustness checks we show that although factor
portfolios constructed using the equity definitions do generate a premium in
the corporate bond market, they do not work as well as the bond-specific
definitions, with the exception of Momentum.

6.2 Data and Methodology

6.2.1 Data

We use monthly constituent data of the Barclays U.S. Corporate Investment
Grade index and the Barclays U.S. Corporate High Yield index from January
1994 to June 2015. For each bond in each month, Barclays provides vari-
ous characteristics, including its market value, time-to-maturity, credit rating,
credit spread and return. The data set is survivorship-bias free: whenever a
firm defaults, the returns of its bonds are based on their final traded price,
reflecting the markets expected recovery rate.

To calculate the monthly return of the factor portfolios, we use the excess
return of each corporate bond versus duration-matched Treasuries. These
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excess returns are provided by Barclays as well and accurately remove the
Term premium. The Term premium is driven by changes in risk-free interest
rates and can be efficiently harvested by investing in government bonds. The
main purpose of investing in corporate bonds is to additionally earn the Default
premium, which is driven by changes in credit spreads. By using excess returns
versus Treasuries we can focus on the credit spread component.

Since we evaluate factor portfolios using excess returns versus Treasuries,
we also obtain excess returns for the Investment Grade and High Yield market
indexes from Barclays. Barclays calculates the index return each month as
the market value-weighted average excess return over all index constituents
in that month. We use the index returns to calculate outperformances and
alphas of the factor portfolios. Note that this index return is basically the
standard benchmark return for active portfolio managers, but calculated using
excess returns instead of total returns. In practice, portfolio managers are
benchmarked using total returns. Portfolio managers could come close to
replicating the excess return outperformance by using Treasury bond futures
to hedge the interest rate exposure of the portfolio to that of the benchmark.

Our data set contains over 1.3 million bond-month observations, of which
about 900,000 are in Investment Grade and about 400,000 in High Yield. The
average number of observations per month is 3,520 in Investment Grade and
1,473 in High Yield. Table 6.1 provides further summary statistics of our data
set by showing the mean and various percentiles of the bond characteristics.
All statistics are first calculated cross-sectionally per month, and then averaged
over time. We observe that Investment Grade bonds tend to have lower excess
returns over Treasuries, longer time-to-maturities, and are issued by larger
companies, as compared to High Yield.

6.2.2 Methodology

For each factor in each month, we construct an equally-weighted top (bottom)
portfolio of the 10% corporate bonds with the highest (lowest) exposure to that
factor. Our key results are presented in two ways. First, we analyze long-short
portfolios on a one-month investment horizon. This analysis serves to identify
the potential of the factors to generate alpha in the corporate bond market by
overweighting or underweighting bonds. However, shorting corporate bonds
is hard and costly in practice, so including the short-side inflates potential
benefits beyond those achievable in practice; see also Blitz et al. (2014) for a
discussion on long-short factor portfolios in the equity market. In our second
set of results, we therefore analyze long-only portfolios on a twelve-month
horizon using the overlapping portfolio methodology of Jegadeesh and Titman
(1993). This is a realistic holding period and prevents extreme turnover. Next
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to the single-factor portfolios, we also analyze a multi-factor portfolio, which
invests 25% in each of the four single-factor portfolios. In the online appendix1

we check the robustness of our results when the factor portfolios contain 20%
of the bonds (instead of 10%) or when the bonds in the portfolio are market
value weighted (instead of equal weighted).

We create the factor portfolios separately for Investment Grade and High
Yield, because these market segments are basically treated as two separate
asset classes by financial market participants, such as asset owners (making
separate allocations to Investment Grade and High Yield), both passive and
active asset managers (offering separate investment products for Investment
Grade and High Yield), index providers (offering separate indices for Invest-
ment Grade and High Yield) and regulators (often prohibiting certain groups
of institutional investors to hold High Yield-rated bonds). Evidence on the
segmentation of the corporate bond market into Investment Grade and High
Yield segments is provided by Ambastha et al. (2010) and Chen et al. (2014).
Chen et al. (2014) mention that a large stream of theoretical literature exists
that shows that labels (in this case: ratings of corporate bonds) can lead to
market segmentation and asset class effects by affecting investors willingness
to hold the security and thus can affect security prices. Chen et al. (2014)
provide empirical evidence that credit ratings indeed segment the market in
two parts: Investment Grade and High Yield. Therefore, it is crucial to cre-
ate and evaluate the factor portfolios separately in the Investment Grade and
High Yield market segments.

We calculate outperformances and alphas of factor portfolios versus their
own market segment. To calculate the CAPM-alpha we run the following
regression:

Rt = α+ βDEFt + εt (6.1)

where Rt is the return on a factor portfolio and DEFt the corporate bond
market premium, which is the Investment Grade index excess return for In-
vestment Grade factor portfolios and the High Yield index excess return for
High Yield factor portfolios. The intercept of Equation 6.1 is the CAPM-
alpha. We also evaluate the factor portfolios against the Fama and French
(1993) five-factor model supplemented with the Carhart (1997) equity mo-
mentum factor:

Rt = α+β1RMRFt + β2SMBt + β3HMLt+

β4MOMt + β5TERMt + β6DEFt + εt
(6.2)

where RMRFt is the equity market premium, SMBt the equity Size premium,

1The appendix is available at http://www.cfapubs.org/doi/suppl/10.2469/faj.v73.n2.1/
suppl file/houweling faj appendix 2017.docx.
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HMLt the equity Value premium, MOMt the equity Momentum premium, and
TERMt the default-free interest rate Term premium. We refer to the intercept
of Equation 6.2 as the Fama-French-Carhart alpha. The four equity factors
are downloaded from the website of Kenneth French. The Term factor is
constructed as the total return of the Barclays US Treasury 7-10 year index
minus the 1-month T-bill rate from Kenneth French.

6.3 Defining factors in the corporate bond market

Next, we describe the definitions of the Size, Low-Risk, Value and Momentum
factors. For each factor definition, we purposely use only bond characteristics,
such as rating, maturity and credit spread, and we do not use accounting data,
e.g. leverage or profitability, or equity market information, e.g. equity returns
or equity volatility. This choice makes sure that we can include all bonds in
our analyses, and not only bonds issued by companies with publicly listed
equity. Our definitions also facilitate the actual implementation of factors in
investment portfolios. We acknowledge that accounting and equity market
information, or the use of more sophisticated methods, could improve the
results. However, by using bond-only definitions we demonstrate that factor
investing already works using readily available data and methods. In the online
appendix we investigate the sensitivity of our results to the specific choice for
the factor definitions.

6.3.1 Size

To define the Size factor in the corporate bond market, we use the total index
weight of each company, calculated as the sum of the market value weights of
all its bonds in the index in that month. We thus look at a company’s total
public debt instead of the size of individual bonds, because most explanations
for the Size effect in equity markets relate to the company size, e.g. incomplete
information about small firms, or size being a proxy for (default) risk; see Van
Dijk (2011) for a literature overview. Moreover, since smaller companies tend
to issue smaller bonds, and smaller bonds are less liquid than larger bonds
(Sarig and Warga, 1989), our Size definition picks up a potential illiquidity
premium as well. To the best of our knowledge we are the first to document
a Size effect at the company level in the corporate bond market.

To construct Size decile portfolios, we rank each month all bonds on their
issuer’s size. The top (bottom) portfolio contains the bonds of the 10% small-
est (largest) companies.
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6.3.2 Low-Risk

Previous studies show that bonds with lower risk earn higher risk-adjusted
returns. Most papers use maturity and/or rating as risk measures. The short-
maturity effect has been documented by Ilmanen et al. (2004) and Derwall
et al. (2009); the high-rating effect has been documented by amongst others
Kozhemiakin (2007) and Frazzini and Pedersen (2014). Blitz, Falkenstein, and
Vliet (2014) provide an overview of possible explanations for the existence of
a low-volatility effect in equity markets. Most explanations in their overview
are related to human behavior, incentive structures or constraints, and are
therefore equally applicable to corporate bond markets as they are to equity
markets.

We follow Ilmanen (2011) by using both maturity and rating to construct
our Low-Risk factor portfolios. For the Low-Risk top portfolio, we select high-
rated, short-dated bonds, while the bottom portfolio consists of low-rated,
long-dated bonds. For the Investment Grade top portfolio, we first select all
bonds rated AAA to A-, hence excluding the most risky bonds rated BBB+,
BBB or BBB-. From these bonds, we select each month all bonds shorter
than M years such that the portfolio makes up 10% of the total number of
bonds. This maturity threshold M thus fluctuates through time. We use this
approach to allow a fair comparison with the other factor portfolios that also
contain 10% of the bonds by definition. For High Yield, we follow the same
procedure, selecting bonds rated BB+ to B- in the first step. On average, the
maturity threshold equals 3.1 (3.6) years for Investment Grade (High Yield).

For the bottom portfolio, we select for Investment Grade (High Yield) the
longest 10% of all bonds rated below AA- (BB-). On average, the maturity
threshold for the bottom portfolio equals 26.4 (11.6) years for Investment
Grade (High Yield).

6.3.3 Value

The Value effect in equity markets is well-documented since the 1970s, starting
with Basu (1977). It can be summarized as mean-reversion in valuations:
cheap stocks outperform, while expensive stocks underperform. To determine
whether a stock is cheap or expensive, the market value of a company is
compared to a fundamental measure, such as earnings or the equity book value.
As far as we know, L’Hoir and Boulhabel (2010) and Correia, Richardson, and
Tuna (2012) are the only papers that study Value investing in the corporate
bond market. They translate the Value concept from equities to credits by
comparing the markets required compensation for the bonds riskiness (i.e. the
credit spread) to fundamental risk measures. In other words, a bond is cheap
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if it offers an ample reward for the risk investors bear by buying the bond.

Both studies consider a variety of risk measures, including leverage, prof-
itability, equity volatility and the distance-to-default measure of Merton (1974).
Our methodology is in the spirit of L’Hoir and Boulhabel (2010) and Correia,
Richardson, and Tuna (2012), but we restrict ourselves to risk measures that
can be derived from the bond market only. We choose maturity, rating, and
the 3-month change in the bonds credit spread. The latter is motivated by Nor-
den and Weber (2004) and Norden (2017), who show that, on average, credit
spreads already increase three months prior to a rating downgrade. Therefore,
the spread change is a useful risk indicator beyond rating or maturity.

Specifically, to construct Value factor portfolios each month, we first run
a cross-sectional regression of credit spreads on rating dummies (AAA, AA+,
AA, . . . , C), time-to-maturity and 3-month spread change

Si = α+
21∑
r=1

βr1ir + γMi + δ∆Si + εi (6.3)

where Si is the credit spread of bond i, 1ir is equal to 1 if bond i has rating
r, and 0 otherwise, Mi is the maturity and ∆Si is the 3-month change in
the credit spread. Then, following Correia, Richardson, and Tuna (2012), we
calculate the percentage difference between the actual credit spread and the
fitted (fair) credit spread for each bond. Finally, we rank all bonds on this
percentage difference from high to low and select the first (last) 10% bonds
for the top (bottom) Value portfolio.

6.3.4 Momentum

Research on Momentum started with the seminal study by Jegadeesh and
Titman (1993) on equity markets. Results of studies on corporate bond Mo-
mentum are mixed. Investment Grade bond returns exhibit either reversal
(Khang and King, 2004; Gebhardt, Hvidkjaer, and Swaminathan, 2005) or in-
significant Momentum effects (Jostova et al., 2013). In the High Yield market,
on the other hand, Momentum strategies have been shown to generate profits;
see Pospisil and Zhang (2010) and Jostova et al. (2013).

We follow Jostova et al. (2013) by defining Momentum as the past 6-
month return using a one-month implementation lag. We use the excess return
versus duration-matched Treasuries, for consistency with our return measure
for evaluating factor portfolios. The 10% bonds with the highest (lowest) past
returns are selected for the Momentum top (bottom) portfolio.
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6.4 The benefits of allocating to factors

In this section we present our main result that factor portfolios in the corpo-
rate bond market earn alpha beyond the corporate bond market premium and
beyond common equity and bond risk premiums. We also highlight the ten-
sion between evaluating factors in an absolute or relative risk context and the
importance of a long investment horizon. Further, we show the diversification
benefits of combining the factors in a multi-factor portfolio, which substan-
tially reduces the tracking error and improves the information ratio versus the
corporate bond market, compared to single-factor portfolios. Finally, by calcu-
lating break-even transaction costs and comparing them to actual transaction
costs, we show that single-factor and multi-factor portfolios deliver positive
after-cost alphas.

6.4.1 Long-short factor portfolios

We start our empirical analysis by showing performance statistics for long-
short factor portfolios, which go long in the top decile portfolio and short in
the bottom decile portfolio; see Table 6.2.

Panels A and B show the annualized CAPM-alphas and Fama-French-
Carhart alphas. A comparison of these panels shows that both alphas are
actually very similar. For Investment Grade, alphas range from around 1.2%
for Size and Low-Risk to 2.5 to 3% for Value. For Low-Risk and Value the
alphas are statistically significant, with t-values well above 2 for Low-Risk
and above 3 for Value. For Size the t-values are around 1.6. The absence of a
Momentum effect in Investment Grade is consistent with previous literature;
see e.g. Jostova et al. (2013).

For High Yield, the CAPM-alphas and Fama-French-Carhart-alphas of
Value and Momentum are highly significant with t-values between 2 and 3.
Alphas are around 5% for Value and around 8% for Momentum. For Low-Risk,
the CAPM-alpha of 2.0% is statistically significant, while the Fama-French-
Carhart-alpha of 1.2% is not. Just like for Investment Grade, the alphas for
Size are strongly positive, but insignificant.

To investigate diversification opportunities between the factors, Panel C
shows pairwise correlations between the CAPM-alphas. Most correlations tend
to be below 20%, except between Value and Size. Correlations are lowest
between Value and Momentum. The results imply that there are diversification
benefits to be gained by combining multiple factors in one portfolio. We will
investigate this below in a long-only context.
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6.4.2 Long-only single-factor portfolios

Having discussed the more theoretical long-short portfolios evaluated on a 1-
month investment horizon, we now turn our attention to the more realistic
long-only portfolios on a 12-month horizon.

Table 6.3 contains the performance statistics for the long-only factor port-
folios as well as for the corporate bond market. Panel A shows that for our
sample period from January 1994 to June 2015 the Investment Grade (High
Yield) corporate bond market generated 0.50% (2.33%) per annum in excess
of duration-matched Treasury bonds. For both Investment Grade and High
Yield we find substantial outperformances for Size (1.12% and 5.50%, respec-
tively), Low-Risk (0.41% and 1.45%), Value (1.30% and 4.26%) and Momen-
tum (0.30% and 2.04%) versus the corporate bond market; see Panel B. The
magnitude of these factor premiums is substantial: investors could have tripled
their long-term average excess returns by investing in factors as compared to
passively investing in the corporate bond market index.

We calculate risk-adjusted returns in three ways. First, in Panel A we mea-
sure returns relative to total volatility using the Sharpe ratio measure. For
Investment Grade (High Yield) the Sharpe ratios of the factor portfolios are all
higher than the Sharpe ratio of 0.12 (0.23) of the market. Except for Invest-
ment Grade Momentum, these differences are statistically significant. Second,
in Panel C, we calculate annualized CAPM-alphas, risk-adjusting factor re-
turns for their systematic exposure to the corporate bond market. We find
that all CAPM-alphas are positive, large and statistically significant, except
for Momentum and Value in Investment Grade. For Investment Grade, alphas
range from 0.35% to 1.24% and for High Yield from 2.15% to 5.68%. These
alphas are sizeable compared to the average corporate bond market returns of
0.50% and 2.33% for Investment Grade and High Yield, respectively. Third,
we calculate annualized Fama-French-Carhart alphas. These are actually very
similar in magnitude to the CAPM-alphas. Again, most alphas are statisti-
cally significant, except for Size and Momentum in Investment Grade. We
conclude that factor portfolios generate superior risk-adjusted returns, mea-
suring risk either as volatility, beta to the corporate bond market, or betas to
equity and bond common risk factors.

Nonetheless, investing in factor portfolios could be considered risky in a
relative sense, as evidenced by the substantial tracking errors (volatility of the
outperformance) in Panel B. For Investment Grade, the tracking errors range
from 1.84% to 3.07%, which are fairly large compared to the markets excess
return volatility of 4.32%. For High Yield, tracking errors range from 3.86% to
7.95%, which are again substantial compared to the High Yield markets excess
return volatility of 10.04%. As a result, the information ratios of single-factor
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portfolios are not high. This is especially true for Low-Risk, with information
ratios of only 0.14 and 0.29 in Investment Grade and High Yield, respectively.
On the other hand, the Low-Risk portfolio does have high Sharpe ratios of
0.41 and 0.56, respectively. This highlights the importance of a long-term
investment horizon for factor investing, because on shorter horizons factor
portfolios may underperform the market index due to their large tracking
errors. The relatively low information ratios also make clear that single-factor
portfolios are unattractive from the point of view of portfolio managers of
delegated investment portfolios that are benchmarked to the market index.

6.4.3 Long-only multi-factor portfolio

The correlations in Table 6.2 indicate that combining multiple factors in a
single portfolio can generate substantial diversification benefits. We construct
a multi-factor long-only portfolio that has equal allocations to each of the
single-factor portfolios. Table 6.3 shows that both for Investment Grade and
for High Yield, the multi-factor portfolio has a lower tracking error than each
of the single-factor portfolios. Nonetheless, the alphas and Sharpe ratios are
among the highest. Because of the lower tracking error, and the still sub-
stantial outperformance, the information ratio of the multi-factor portfolio is
higher than of all single-factor portfolios. The Investment Grade (High Yield)
multi-factor portfolio has a Sharpe ratio of 0.32 (0.56), which is more than
twice as high as the Sharpe ratio of the corporate bond market of 0.12 (0.23),
and an information ratio of 0.66 (0.85). The CAPM (Fama-French-Carhart)
alphas are 0.84% (0.84%) and 3.49% (3.65%) per annum.

Note that one can easily improve the multi-factor portfolio, e.g. by allo-
cating more to Size and Low-Risk, which have the highest stand-alone Sharpe
ratios, or by allocating more to Size and Value, which have the highest returns
and alphas, or by omitting Momentum from the Investment Grade multi-
factor portfolio. However, one should be careful in cherry-picking the results.
A multi-factor approach, which balances the individual factors, is a robust
method to harvest the various premiums offered in the corporate bond mar-
ket.

6.4.4 Break-even transaction costs

The results above show that allocating to factors leads to higher risk-adjusted
returns. However, the analyses do not take transaction costs into account.
Therefore, we calculate break-even transaction costs, both for single-factor
and multi-factor portfolios. We define the break-even transaction costs of a
portfolio as the costs that would lower its CAPM-alpha to 0.
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In order to calculate the break-even transaction costs, we first calculate
the turnover of each portfolio. Recall from Section 6.2.2 that we use the
overlapping portfolio approach of Jegadeesh and Titman (1993) with a 12-
month holding period. This implies that the weight of each bond in a factor
portfolio is equal to the average weight across the 12 portfolios constructed
from month t− 11 to t. The single-counted turnover from month t to month
t+ 1 is subsequently determined as the sum over all weight increments across
the portfolio constituents.

Likewise, we calculate the turnover for the Investment Grade and High
Yield market indexes. Panel D of Table 6.3 reports the results. Note that the
31% (55%) annualized turnover of the Investment Grade (High Yield) index
indicates that tracking the market comes at a cost. The index turnover comes
from new bonds entering the index (due to bond issuance or rating migrations
from Investment Grade to High Yield or vice versa) and from bonds leaving the
index (due to redemptions, calls, and migrations, or from no longer satisfying
the index inclusion rules, e.g. a maturity shorter than one year). The four
single-factor portfolios have higher turnover than the market, with Size being
on the lower end (small companies tend to remain small), and Momentum on
the high end, with more than 100% turnover. One may expect that the Low-
Risk portfolio also has low turnover (because ratings tend be fairly sticky).
However, as it contains only short-dated bonds, it has to regularly reinvest
redemptions from maturing bonds. The turnover of the multi-factor portfolio
is equal to the average turnover of the single-factor portfolios.

Next, we calculate the break-even transaction costs of each portfolio as its
gross alpha divided by its turnover; see Panel D. For Investment Grade, we find
that Low-Risk, Value and the multi-factor portfolio can sustain transaction
costs of around 1% to generate positive after-cost alphas. For Size, the break-
even transaction costs are the highest (around 2%), because it has the highest
gross alpha and the lowest turnover. The opposite holds for Momentum,
which has the lowest before-cost alpha and the highest turnover, resulting in
break-even transaction costs of only 0.34%. We see similar patterns for High
Yield, with Size having the highest break-even transaction costs of 6.60% and
Momentum the lowest of 1.82%. The break-even transaction costs for Low-
Risk, Value and the multi-factor portfolio are in between.

To put these figures into perspective, we compare them to actual bid-ask
spreads and transaction costs of corporate bonds. Chen, Lesmond, and Wei
(2007, Table I) report that the average bid-ask spread over the period from
1995 to 2003 are 41 (81) bps for Investment Grade (High Yield). Feldhütter
(2012, Table I), using data from 2004 to 2009, estimates average transaction
costs at 42 (25) [18] bps for trade sizes of at least USD 100,000 (500,000)
[1,000,000], without distinguishing between Investment Grade and High Yield.
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Harris (2015, Table 1) analyzes a 2014-2015 data set and estimates bid-ask
spreads at 30 (51) bps for Investment Grade (High Yield). Finally, Mizrach
(2015, Figure 13) analyses data from 2003 to 2015 and estimates a 30 bps
average bid-ask spread across all ratings.

All these transaction cost and bid-ask spreads are well below the break-even
transaction costs reported in Panel D, except for Momentum in Investment
Grade. We thus conclude that also after transaction costs single-factor and
multi-factor portfolios generate positive CAPM-alphas.

6.4.5 Robustness checks

For all results documented above, we have done extensive robustness checks.
In particular, we have checked whether our findings are robust to the specific
definition of the factors, the portfolio weighting, and the portfolio size. We
have also verified that the performance is robust across sub periods, ratings,
maturity segments and sectors. Finally, we checked that our results our robust
to liquidity effects by creating factor portfolios on a liquid subset of our data
sample. We refer the interested reader to the online appendix for more details.

6.5 Strategic allocation to factors in a multi-asset
context

Asset owners do not only hold corporate bonds in their portfolios, but also
other assets such as government bonds and equities. Below we show that allo-
cating to corporate bond factors leads to better performance, also if investors
already apply factor investing for their equity investments.

6.5.1 Data

For the equity factors Size, Value and Momentum we use the top decile port-
folio returns from Kenneth French’ website.2 For Size, we take the equal-
weighted portfolio consisting of the 10% stocks with lowest equity market
value (“Lo 10”). For Value, we take the equal weighted portfolio contain-
ing the 10% stocks with the highest equity book-to-market ratio (“Hi 10”).
For Momentum, we take the equally weighted portfolio containing the 10%
stocks with the highest past 12-1 month returns (“High”). The construction
of these portfolios is most similar to the methodology used in this paper. Un-
fortunately, Kenneth French does not provide a series for the equity Low-Risk
factor. Therefore, we use the returns of the MSCI Minimum Volatility Index,

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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obtained via Bloomberg (code: M00IMV $T ). For all four equity factor series,
we subtract the 1-month T-bill rate (“RF”) of Kenneth French. The RMRF
factor is used to reflect the equity market premium. We construct the gov-
ernment bond market premium (TERM ) as the total return of the Barclays
US Treasury 7-10 year index minus the 1-month T-bill rate; see also Section
6.2.1.

So far, we have used excess returns over Treasuries to analyze the corpo-
rate bond market and factor premiums. To compare them with equity and
government bond premiums, which are measured in excess of the risk-free rate,
we add the TERM premium to our corporate bond series. This implies that
the corporate bond total returns thus constructed have the same interest rate
return as the TERM factor, so that interest duration differences do not affect
our results.

6.5.2 Analyses

Table 6.4, Panel A, shows the performance statistics of the market portfolios
for equities, government bonds, and Investment Grade and High Yield corpo-
rate bonds. As Treasury yields have declined substantially over this sample
period, government bonds have generated a large 3.50% annualized excess re-
turn over the risk-free rate with a Sharpe ratio of 0.55. This also leads to high
Sharpe ratios for the Investment Grade and High Yield market portfolios of
0.61 and 0.64. Note that these Sharpe ratios are higher than the 0.12 and 0.23
mentioned in Table 6.3, because the return series in Table 6.4 additionally
benefit from the Term premium. The equity market Sharpe ratio of 0.49 is
the lowest across the four asset classes.

Panel B shows the same statistics for the multi-factor portfolios in equities
and Investment Grade and High Yield corporate bonds. All three multi-factor
portfolios have higher returns and Sharpe ratios than their own market portfo-
lios. The Sharpe ratios range from 0.72 (equities) to 1.00 (High Yield). Panel
C shows that the multi-factor portfolios also did well in a relative sense, sig-
nificantly outperforming their market indexes with information ratios between
0.58 and 0.85. In Panel D, we compute the correlation of the outperformance
of the multi-factor portfolios between Investment Grade, High Yield and eq-
uities. We find modestly positive correlations, between 0.17 and 0.35. This
shows that the outperformance of the corporate bond multi-factor portfolios
diversify with the outperformance of the equity multi-factor portfolio. Hence,
factor investing in the corporate bond market captures different, though par-
tially similar, effects as factor investing in the equity market.

To further analyze the added value of factor investing in a multi-asset con-
text, we construct four portfolios. The first portfolio, “Traditional”, consists
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of an equal allocation of 25% to each asset class. The second portfolio, “Equity
Factor Investing”, allocates the 25% equities to the equity multi-factor port-
folio instead of to the equity market. The third portfolio, “Corporate Bond
Factor Investing”, replaces the Investment Grade and High Yield allocations
of the Traditional portfolio with their respective multi-factor portfolios. The
fourth portfolio, “Equity + Corporate Bond Factor Investing”, allocates both
to the equity and corporate bond multi-factor portfolios.

Table 6.5, Panel A, shows the return statistics of the four portfolios.
Clearly, both equity and corporate bond factor investing lead to higher Sharpe
ratios: 0.91 and 0.96 versus 0.78 for the Traditional portfolio. However, invest-
ing in factors in both the equity and the corporate bond market leads to an
even higher Sharpe ratio of 1.07. Panel B shows that not only investing in the
equity multi-factor portfolio, but also in the corporate bond multi-factor port-
folios improves the outperformance from 1.33% to 2.35% and the information
ratio from 0.58 to 0.81. Panel C shows the 4-factor alpha relative to the four
market portfolios. The alphas of the three portfolios that include at least one
multi-factor portfolio are large and highly significant. The “Equity + Corpo-
rate Bond Factor Investing” portfolio has an alpha of 2.53%, versus 1.26% for
“Equity Factor Investing”. This shows that the corporate bond factors add
over 1% alpha per annum for investors beyond their equity counterparts.

6.6 Conclusions and implications

We provide empirical evidence that explicitly allocating to the four well-known
factors Size, Low-Risk, Value and Momentum, delivers economically meaning-
ful and statistically significant risk-adjusted returns in the corporate bond
market. We use monthly constituent data of the Barclays U.S. Corporate In-
vestment Grade index and the Barclays U.S. Corporate High Yield index from
January 1994 to June 2015 and measure corporate bond returns in excess of
duration-matched Treasury bonds. Both single-factor and multi-factor portfo-
lios show higher Sharpe ratios than the corporate bond market and significant
alphas. The Investment Grade long-only multi-factor portfolio has a Sharpe
ratio of 0.32, versus 0.12 for the market. In High Yield, the Sharpe ratio also
more than doubles, from 0.23 to 0.56. The Fama-French-Carhart-alphas are
0.84% and 3.65% per annum, for Investment Grade and High Yield respec-
tively. These alphas are statistically significant and are large compared to
the Investment Grade (High Yield) market returns over this period of 0.50%
(2.33%). We find that break-even transaction costs are well above actual
transaction costs of corporate bonds reported in various studies, so that af-
ter cost-alphas remain substantial. These findings are robust to a variety of
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sensitivity checks, including alternative factor definitions, alternative portfolio
construction choices and the evaluation of factor portfolios on a subset of liq-
uid bonds. Finally, we find that the corporate bond factors have added value
above equity factors. Investors that already apply factor investing in the eq-
uity market can add more than 1% alpha and 0.1 Sharpe ratio by allocating
to factors in the corporate bond market too.

We see several advantages of investing in a multi-factor portfolio over se-
lecting a single factor. Firstly, diversifying across factors protects against
the possible underperformance of one or more factors for prolonged periods
of time; see also Bender et al. (2010) and Ilmanen and Kizer (2012) for a
more detailed exposition on the diversification benefits of allocating to fac-
tors. Secondly, the tracking errors of individual factors to the market are
relatively large, but given the modest correlations between the factors’ out-
performances, the tracking error of the multi-factor portfolio is well below the
average of the tracking errors of the individual factors. Thirdly, the magnitude
of the premiums realized in the past may not be representative for the future.
So, the best-performing factor in the past might not be the winning factor in
the future.

What about the implementation of factors in actual investment portfolios?
Traditionally, investors delegate the implementation of their investment port-
folios to contracted external managers. However, these investment managers,
being benchmarked to the market index, might not be willing to implement
certain factors, because of the factors’ large tracking errors or limited informa-
tion ratios. The Low-Risk factor, for example, does not yield a high informa-
tion ratio. Therefore, the traditional paradigm of delegated and benchmarked
asset management, at best leads to implicit and time-varying exposures to
factors, and at worst to no exposures at all.

In an absolute-risk framework, evaluated by the Sharpe ratio instead of
the information ratio, allocating to factors does offer clear benefits. Factor
investing is thus a strategic choice: in the short run, the tracking error versus
the market may be large, but in the longer run higher risk-adjusted returns
lure on the horizon. Investors should therefore seek managers that explicitly
and consistently implement factor exposures in their investment strategy.

At the moment investors do not have many investment vehicles available
to harvest factor premiums in the corporate bond market. In equity markets,
value, small cap and low-vol funds are numerously available. Therefore, with
the increasing popularity of the factor investing concept, we expect this to
change in the near future in the corporate bond market too.
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Table 6.1: Summary statistics dataset
This table shows summary statistics for U.S. Investment Grade and U.S. High Yield corporate bonds over the period January 1994 - June
2015. The annualized excess return is the monthly return of the bond over duration-matched Treasuries, multiplied by 12, and reported
in percentages. The time-to-maturity is the number of years until the bond expires. credit rating is the middle credit rating of the three
rating agencies S&P, Moodys and Fitch (worst rating in case of two ratings), where the credit ratings have been converted to a numeric
scale as follows: AAA = 1, AA+ = 2, AA = 3, etc. The credit spread is the option-adjusted yield of the bond in excess of the yield of the
duration-matched government bond, in basis points. The market value of the company is the sum of the market value of all bonds of the
company in the corporate bond index, in billion USD. The number of observations is the average number of bonds per month. For every
characteristic the mean and five percentiles (5%, 25%, 50%, 75%, 95%) are reported. Each statistic is first calculated cross-sectionally per
month, and subsequently averaged over time.

Investment Grade High Yield

mean 5% 25% 50% 75% 95% mean 5% 25% 50% 75% 95%

annualized excess return 0.58 -1.75 -0.40 0.08 0.56 1.86 2.46 -5.78 -1.02 0.33 1.68 5.92
time-to-maturity 10.89 1.63 3.92 7.21 16.13 28.93 7.74 2.45 4.98 6.76 8.44 18.61
credit rating 6.69 3.45 5.56 7.04 8.80 10.00 14.30 11.00 12.93 14.67 16.09 18.22
credit spread 148.16 58.95 93.55 127.15 172.65 293.77 481.11 213.76 322.48 440.70 677.44 1540.58
market value company 13.83 0.44 1.70 4.43 9.49 19.32 3.27 0.14 0.30 0.77 2.10 8.48
number of observations 3520 1473
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6Table 6.2: Performance statistics and correlations of long-short factor portfolios

This table shows performance statistics of the Size, Low-Risk, Value and Momentum factors for U.S. Investment Grade and U.S. High
Yield corporate bonds over the period January 1994 - June 2015. Each month, a factor portfolio takes equally-weighted long positions in
the top 10% of the bonds and short positions in the bottom 10% of the bonds following the definitions in Section 6.3. Panel A shows the
CAPM-alpha and -beta with respect to the corporate bond market (DEF ). Panel B shows the Fama-French-Carhart-alpha (RMRF, SMB,
HML, MOM, TERM and DEF ). Panel C shows pairwise correlations between the CAPM-alphas of the factors. Alphas are annualized.
Corporate bond returns are measured as excess returns versus duration-matched Treasuries. * and ** indicate statistical significance at
the 95% and 99% confidence levels, respectively, of two-sided tests whether the mean returns and alphas are different from 0 (t-tests with
Newey and West (1987) and Newey and West (1994) standard errors).

Investment Grade High Yield

Size Low-Risk Value Momentum Size Low-Risk Value Momentum

Panel A: CAPM statistics
alpha 1.15% 1.27%* 2.56%** -1.38% 3.28% 2.02%* 5.14%** 8.49%**
t-value (1.63) (2.49) (3.14) (-0.77) (1.21) (2.04) (2.70) (2.80)
beta -0.27 -1.28 0.98 -1.04 0.19 -0.76 0.60 -1.07
adjusted R2 0.17 0.81 0.65 0.29 0.03 0.66 0.40 0.38

Panel B: Fama-French-Carhart statistics
alpha 1.22% 1.18%* 3.01%** -3.46% 4.84% 1.19% 5.33%** 7.84%*
t-value (1.56) (2.39) (3.24) (-1.68) (1.77) (1.18) (2.82) (2.28)
adjusted R2 0.23 0.82 0.67 0.38 0.09 0.70 0.43 0.40

Panel C: CAPM-alpha correlations
Size -17% 41% 18% -19% 51% -19%
Low-Risk 10% -17% -18% 10%
Value -14% -36%
Momentum
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Table 6.3: Performance statistics of long-only factor portfolios
This table shows performance statistics of the corporate bond market and the Size, Low-Risk, Value and Momentum factors for U.S. Investment Grade
and U.S. High Yield corporate bonds over the period January 1994 - June 2015. The return in month t is calculated as the average of the portfolios
constructed from month t− 11 to t. Each month, a factor portfolio takes equally-weighted long positions in 10% of the bonds following the definitions
in Section 6.3. The multi-factor portfolio is an equally weighted combination of Size, Low-Risk, Value and Momentum. Panel A shows the return
statistics. Panel B shows the outperformance statistics. Panel C shows the CAPM-alpha (DEF ) and the Fama-French-Carhart alpha (RMRF, SMB,
HML, MOM, TERM and DEF ). Panel D shows the turnover and break-even transaction costs implied by the CAPM-alpha and turnover. Mean,
volatility, outperformance, tracking error and alphas are annualized. Corporate bond returns are measured as excess returns vs. duration-matched
Treasuries. * and ** indicate statistical significance at the 95% and 99% confidence levels, respectively, of two-sided tests whether the Sharpe ratio is
different from the Sharpe ratio of the corporate bond market (Panel A, Jobson and Korkie (1981)-test), whether the outperformance is different from
0 (Panel B, t-test), and whether the alphas are different from 0 (Panel C, t-test). The t-tests are calculated with Newey and West (1987) and Newey
and West (1994) standard errors.

Investment Grade High Yield

Market Size Low-Risk Value Momentum Multi Market Size Low-Risk Value Momentum Multi

Panel A: Return statistics
mean 0.50% 1.61% 0.91% 1.79% 0.80% 1.28% 2.33% 7.83% 3.78% 6.58% 4.37% 5.64%
volatility 4.32% 3.82% 2.24% 6.76% 4.32% 3.98% 10.04% 12.20% 6.69% 13.37% 10.29% 10.04%
Sharpe ratio 0.12 0.42* 0.41* 0.27* 0.19 0.32** 0.23 0.64** 0.56** 0.49** 0.42* 0.56**
t-value JK test (2.57) (2.14) (2.02) (0.76) (3.44) (2.72) (3.32) (3.02) (2.33) (3.88)

Panel B: Outperformance statistics
outperformance 1.12%* 0.41% 1.30% 0.30% 0.78%** 5.50%* 1.45% 4.26%* 2.04%* 3.31%**
tracking error 2.29% 2.85% 3.07% 1.84% 1.18% 7.95% 5.02% 5.66% 3.86% 3.88%
information ratio 0.49 0.14 0.42 0.16 0.66 0.69 0.29 0.75 0.53 0.85
t-value (2.15) (0.60) (1.35) (0.72) (2.79) (2.24) (1.16) (2.28) (2.20) (3.04)

Panel C: Alpha statistics
CAPM 1.24%* 0.70%** 1.06% 0.35% 0.84%** 5.68%* 2.39%** 3.72%* 2.15%* 3.49%**
t-value (2.08) (3.12) (1.87) (0.81) (2.71) (2.36) (3.43) (2.49) (2.24) (3.12)
Fama-French-Carhart 1.13% 0.78%** 1.32%* 0.15% 0.84%** 6.36%** 2.28%** 3.62%** 2.36%** 3.65%**
t-value (1.76) (3.68) (2.01) (0.35) (2.64) (2.78) (3.61) (2.64) (2.88) (3.61)

Panel D: Turnover and break-even transaction costs
turnover 31% 63% 78% 80% 103% 81% 55% 86% 92% 96% 118% 98%
break-even costs 1.97% 0.90% 1.33% 0.34% 1.04% 6.60% 2.60% 3.88% 1.82% 3.56%
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Table 6.4: Performance statistics government bond, corporate bond and equity
market and factor portfolios
This table shows the performance statistics for equities, government bonds and U.S. Invest-
ment Grade and U.S. High Yield corporate bonds over the period from January 1994 to June
2015. The government bond index is the Barclays US Treasury 7-10 year index. Panel A
shows the mean, volatility and Sharpe ratio of the excess return over the 1-month T-bill rate
for the market portfolios. Panel B shows the same statistics for the multi-factor portfolios
for equities and Investment Grade and High Yield corporate bonds. Panel C shows the out-
performance statistics. Panel D shows the correlations between the outperformances. Mean,
volatility, outperformance and tracking error are annualized. * and ** indicate statistical
significance at the 95% and 99% confidence levels, respectively, of two-sided tests whether
the Sharpe ratio is different from the Sharpe ratio of the market (Panel B, Jobson and Korkie
(1981)-test), and whether the outperformance is different from 0 (Panel C, t-test with Newey
and West (1987) and Newey and West (1994) standard errors).

Corporate Bonds

Government bonds Investment Grade High Yield Equities

Panel A: Market
mean 3.50% 3.99% 5.82% 7.54%
volatility 6.34% 6.51% 9.10% 15.30%
Sharpe ratio 0.55 0.61 0.64 0.49

Panel B: Multi-factor portfolio
mean 4.78% 9.14% 12.85%
volatility 6.21% 9.14% 17.87%
Sharpe ratio 0.77** 1.00** 0.72
t-value JK test (3.84) (3.77) (1.93)

Panel C: Outperformance statistics
outperformance 0.78%** 3.31%** 5.31%*
tracking error 1.18% 3.88% 9.21%
information ratio 0.66 0.85 0.58
t-value (2.79) (3.04) (2.22)

Panel D: Outperformance correlations
Investment Grade 0.23 0.17
High Yield 0.35
Equities
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Table 6.5: Performance statistics multi-asset portfolios
This table shows performance statistics of four multi-asset portfolios consisting of govern-
ment bonds, corporate bonds and equities over the period from January 1994 to June 2015.
All portfolios are constructed using the portfolios displayed in Table 6.4. The “Traditional”
portfolio invests 25% in equities, 25% in government bonds, 25% in Investment Grade corpo-
rate bonds and 25% in High Yield corporate bonds. The “Factor Investing Equity” portfolio
only applies factor investing in the equity market. The “Factor Investing Corporate Bond”
only applies factor investing in the corporate bond market. The “Factor Investing Equity
+ Corporate Bond” portfolio applies factor investing in both the equity and corporate bond
markets. Panel A shows the statistics of the excess return over the 1-month T-bill rate.
Panel B shows the outperformance statistics. Panel C shows the alpha of a regression of the
portfolio return on the four market returns (Table 6.4, Panel A). Mean, volatility, outper-
formance, tracking error and alpha are annualized. * and ** indicate statistical significance
at the 95% and 99% confidence levels, respectively, of two-sided tests whether the Sharpe
ratio is larger than the Sharpe ratio of the traditional portfolio (Panel A, Jobson and Korkie
(1981)-test), whether the outperformance is different from 0 (Panel B, t-test), and whether
the alpha is different from 0 (Panel C, t-test). The t-tests are calculated with Newey and
West (1987) and Newey and West (1994) standard errors.

Factor investing

Traditional Equity Corporate Bond Equity + Corporate Bond

Panel A: Return statistics
Mean 5.21% 6.54% 6.24% 7.57%
Volatility 6.69% 7.16% 6.48% 7.09%
Sharpe ratio 0.78 0.91 0.96** 1.07**
t-value JK test (1.86) (4.65) (3.07)

Panel B: Outperformance statistics
outperformance 0.00% 1.33%* 1.02%** 2.35%**
tracking error 0.00% 2.30% 1.17% 2.91%
information ratio 0.58 0.88 0.81
t-value (2.22) (3.13) (2.91)

Panel C: Alpha statistics
alpha 1.26%* 1.27%** 2.53%**
t-value (2.09) (4.10) (3.18)
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