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Chapter 1

Introduction

1.1 The Latent Class model

The last decades, Latent Class (LC) analysis has become a popular tool among
social and behavioral scientists, as often substantive concepts of the research
at hand cannot be measured directly. LC analysis allows to detect unob-
served homogeneous subgroups in multivariate categorical data that can be
interpreted substantively. For example, using a LC analysis Savage et al.
(2013) identified different social classes using a set of questions on social,
cultural, and economic topics, Jansen and van der Maas (1997) found dif-
ferent developmental stages in children based on rule assessment of the bal-
ance scale task (Inhelder & Piaget, 1958; Siegler, 1976), and Mulder, Vermunt,
Brand, Bullens, and van Marle (2012) detected different groups of juvenile of-
fenders based on their criminal history.

The LC model was originally known as Latent Structure analysis, but it
is also referred to as a binomial (finite) mixture model and it can be seen as
the categorical data analogue to factor analysis. Lazarsfeld (1950) introduced
it as a method to build a typology or clustering based on a set of dichoto-
mous variables. Much later, Goodman (1974) developed an algorithm to ob-
tain maximum-likelihood estimates and solved identification issues associ-
ated with the model, while (Haberman, 1979) showed how the model can be
specified as a log-linear model for the contingency table cross-tabulating the
categorical latent and observed variables. The algorithm proposed by Good-
man, which was later on labelled as the EM algorithm (Dempster, Laird, &
Rubin, 1977), is still the dominant approach used for parameter estimation,
though it is nowadays often combined with a Newton-Raphson algorithm
(Vermunt & Magidson, 2013).
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The two basic assumptions of the LC model are that the population con-
sists of K latent classes and that the observed variables are locally indepen-
dent. The latter implies that responses are assumed to be statistically inde-
pendent from another within each latent class. The number of classes is usu-
ally an unknown “parameter” which is determined by increasing its number
as long as some fit measure, e.g. the AIC (Akaike, 1974) or BIC (Schwarz,
1978), improves. The encountered classes are characterized by their class
proportions and their response probabilities of all observed variables. Sub-
stantive interpretation is given to the latent classes by examining these con-
ditional response probabilities of each class.

With the increasing availability of LC software programs during the 90's,
LC analysis became available to the applied researcher and since then the
use of LC analysis has increased rapidly, especially in the past two decades.
This also led to quite some extensions of the basic LC model, which will be

described in the next section.

1.2 Extensions of the LC model

Different types of extensions have been proposed for the basic LC model.
Some examples are the LC discrete-factor model which contains multiple
categorical latent variables (Magidson & Vermunt, 2001), models with both
categorical and continuous latent variables (Dolan & van der Maas, 1998;
McLachlan & Peel, 2004; Rost, 1990; Yung, 1997), and multilevel LC mod-
els incorporating discrete latent variables at multiple levels of a hierarchi-
cal data structure (Nagelkerke, Oberski, & Vermunt, 2016, 2017; Vermunt,
2003). Besides such extensions, LC models have also been used and new
LC models have been developed for completely other purposes than sub-
stantive interpretation, like density estimation (Van der Palm, van der Ark,
& Vermunt, 2016) and multiple imputation (Vidotto, Kaptein, & Vermunt,
2015). Nevertheless, substantive interpretation is still often an important as-
pect for researchers to choose to perform a LC analysis. However, the results
of a LC model are sometimes difficult to interpret. Several alternative exten-
sions have been suggested that facilitate the interpretation of LC models in
practical situations.

When the interpretation of the LC models is difficult, it is frequently as-
sessed whether some model assumptions should be relaxed. It is possible
to assess what the effect of relaxing a restriction has on the model and its
parameters (Oberski, van Kollenburg, & Vermunt, 2013; Oberski, Vermunt,
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& Moors, 2015). To accommodate studies with small sample sizes and/or
sparse contingency tables, special measures have been proposed to detect
misfit (Van Kollenburg, Mulder, & Vermunt, 2015). One of the most common
options is to relax the conditional independence assumption between certain
pairs of variables (Hagenaars, 1988) by including direct effects in the model.
In a confirmatory setting, the number of classes may be based on a priori
knowledge, though the specified LC model may not fit due to, for instance,
the presence of subclasses or other kinds of mechanisms causing violations
of the local independence assumption. Many of these restricted LC models
are very similar to (non)parametric IRT models (Croon, 1990; Heinen, 1996;
Lindsay, Clogg, & Grego, 1991). However, these options usually require some
a priori knowledge and therefore are often not sensible in an exploratory set-
ting.

Furthermore, a LC analysis is frequently only part of the data analysisina
research project, as researchers frequently want to relate the LCs to external
variables. It was initially suggested to adapt the standard LC model to in-
clude variables affecting the responses (Wedel & DeSarbo, 1994) or the class
memberships (Dayton & Macready, 1988). However, this one-step approach
is in practice hardly ever used , because applied researchers prefer a sepa-
rate measurement part (assessing the LC model) and a structural part (relate
the LCs to explanatory variables). Therefore the three-step approach is most
often used, in which first a LC model is assessed, subsequently class assign-
ment takes place and finally the relation between the LCs and the explana-
tory variables is assessed. This last step can be corrected for bias caused by
classification errors (Bakk, Oberski, & Vermunt, 2016; Bakk & Vermunt, 2016;
Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010).

Though various procedures have been developed that help to interpret
LC models, there are still situations where interpretation of the LCs can be
troublesome. For instance, with large data sets (with a large number of re-
spondents and variables) the fit usually improves until the model contains a
large number of classes, as a large number of dependencies needs to be taken
into account. This causes many very specific classes to be identified and such
specific classes might not be of interest for the research at hand. Moreover,
the choice of criterion (e.g., AIC or BIC) can lead to a completely different
number of classes. This is even more problematic because different latent
class solutions are substantially very hard to compare. This can be seen at
the left of Figure 1.1: Every class that is added to a standard LC model con-
structs a completely new set of classes. Hence, it might very well be that
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Figure 1.1: Example of a standard LC analysis on the left
and a LCT analysis on the right.

none of the K classes is similar to any of the K" — 1 classes of the previously

estimated model.

1.3 Latent Class Trees

To circumvent the issues mentioned above, the possibility to construct classes
that are substantially related is introduced in this thesis. When interpretation
of a standard LC analysis becomes problematic, we suggest to impose a hi-
erarchical structure on the classes by constructing a Latent Class Tree (LCT).
For this purpose, we use the divisive LC algorithm introduced for density
estimation by Van der Palm et al. (2016). LCTs are a variant of model-based
recursive partitioning, and as such related to decision trees (Breiman, Fried-
man, Olshen, & Stone, 1984), SEM trees (Brandmaier, von Oertzen, McAr-
dle, & Lindenberger, 2013), and divisive cluster analysis (Everitt, Landau,
Leese, & Stahl, 2011). Instead of fitting a single model to an observed data
set, the data set is partitioned step by step with respect to a LC model with
a restriction on the maximum number of classes at a node*. Substantially
related classes, as shown at the right of Figure 1.1 are constructed by subse-
quently re-estimating a LC model on each of the “parent” classes. The parti-
tioning procedure is a soft partitioning based on the posterior class member-
ship probabilities and continues as long as for a partitioned class a chosen fit
measure prefers a 2-class over a 1-class solution.

Hierarchical tree structures similar to those obtained with a LCT analy-
sis are very practical as clustering procedures because solutions at different

levels of a tree allow different granularity to be extracted during the data

*A restriction of 2 classes is initially used, but extensions are discussed in Chapter 3.
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analysis, making them ideal for exploration (Ghattas, Michel, & Boyer, 2017;
Zhao, Karypis, & Fayyad, 2005). A step-wise interpretation is often easier
but, moreover, the interpretation of a split can be used to determine the ap-
propriate number of classes for the topic at hand. For instance, at the bottom
of the LCT in Figure 1.1, the choice could be made to disregard the final split
based on interpretation of this split. Therefore the LCT methodology can be
a practical alternative for LC models when one encounters difficulties in de-
ciding about the number of classes or in interpreting the differences between

a large number of classes.

1.4 Outline of the dissertation

This thesis consists of four papers in which different aspects of the new LCT
approach are developed. In each of these papers, the proposed LCT mod-
els are illustrated by empirical examples, which is the most practical way to
show the benefits for interpretation and substantive assessment of the num-
ber of classes of a LCT.

® The second chapter of this dissertation contains an introduction to LCTs.
Based on the divisive LC algorithm for density estimation by Van der
Palm et al. (2016), the basic procedure to build a LCT is described. This
basic LCT consisting of binary splits only is illustrated by an empirical

example in which a LCT on social capital is built.

¢ In the third chapter of this dissertation, some problems associated with
having only binary splits are discussed. It is discussed how one can
decide to increase the number of classes of a split and whether this is
the same for the first and subsequent splits of an LCT. Subsequently, a
relative measure of fit is introduced to decide whether to increase the
number of classes of the first split of an LCT. This approach is illustrated
again with the empirical example on social capital. Moreover, the LCT
procedure is also applied to data from a cross-national study using a
set of ranking items on (post-)materialism, which illustrates how it can

be accommodated for other types of LC models.

¢ The fourth chapter of this dissertation extends the LCT procedure to the
longitudinal framework. By applying the LCT procedure in the con-
text of Latent Class Growth modeling it is shown how a Latent Class
Growth Tree (LCGT) can be constructed. For longitudinal data the tree



6 Introduction

approach is even more useful, because such applications result even
more often in a large number of classes than LC models based on cross
sectional data. However, it also requires some additional considera-
tions, such as the specification of the shape of the trajectories. These
LCGT models are illustrated by empirical examples on drugs use dur-
ing adolescence and mood regulation during the day assessed using

experience sampling.

¢ The fifth and final chapter of this dissertation extends the use of LCTs
by showing what can be done after building a tree and how the classes
of a tree can be related to covariates. It is shown how distal outcomes
are related to the classes and how class membership can be predicted
based on covariates. Both options are illustrated with empirical exam-

ples, one on social capital and one on mood regulation.

The four chapters of this thesis were written as separate articles intended for
publication in academic journals. Because the content of each chapter was
kept as close to the original articles, the chapters contain some overlap.



Chapter 2

Building Latent Class Trees,
with an application to a study of
social capital

Abstract

Researchers use latent class analysis to derive meaningful clusters from sets
of categorical observed variables. However, especially when the number of
classes required to obtain a good fit is large, interpretation of the latent classes
in the selected model may not be straightforward. To overcome this problem,
we propose an alternative way of performing a latent class analysis, which
we refer to as latent class tree modelling. For this purpose, we use a recursive
partitioning procedure similar to those used in divisive hierarchical cluster
analysis; that is, classes are split until the model selection criterion indicates
that the fit does no longer improve. The key advantage of the proposed latent
class tree approach compared to the standard latent class analysis approach
is that it gives a clear insight into how the latent classes are formed and how
solutions with different numbers of classes are linked to one another. We
also propose measures to evaluate the relative importance of the splits. The
practical use of the new approach is illustrated by the reanalysis of a data set
with indicators of social capital.

This chapter is published as Bergh, M. van den, Schmittmann, V.D., & Vermunt, J.K.
(2017) Building latent class trees, with an application to social capital Methodology, 12(4),
124-138
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2.1 Introduction

Latent class (LC) analysis has become a popular statistical tool for identi-
fying subgroups or clusters of respondents using sets of observed categor-
ical variables (Clogg, 1995; Goodman, 1974; Hagenaars, 1990; Lazarsfeld &
Henry, 1968; McCutcheon, 1987). Since in most LC analysis applications the
number of subgroups is unknown, the method will typically be used in an
exploratory manner; that is, a researcher will estimate models with different
numbers of latent classes and select the model which performs best accord-
ing to a certain likelihood-based criterion, for instance, the BIC or AIC. Al-
though there is nothing wrong with such a procedure, in practice it is often
perceived as being problematic, especially when the model is applied to a
large data set; that is, when the number of variables and/or the number of
subjects is large. One problem occurring in such situations is that the selected
number of classes may be rather large, which makes their interpretation dif-
ficult. A second problem results from the fact that usually one would select a
different number of classes depending on the model selection criterion used,
and that because of this, one may wish to inspect multiple solutions because
each of them may reveal specific relevant features in the data. However, it is
often unclear how solutions with different numbers of classes are connected,
making it very hard to see what a model with more classes adds to a model
with less classes.

To overcome the above mentioned problems, we propose an alternative
way of performing a latent class analysis, which we call Latent Class Tree
(LCT) modeling. More specifically, we have developed an approach in which
a hierarchical structure is imposed on the latent classes. This is similar to
what is done in hierarchical cluster analysis (Everitt et al., 2011), in which
clusters are either formed by merging (the agglomerative procedure) or split-
ting (the divisive procedure) clusters which were formed earlier. For hierar-
chical cluster analysis it has been shown that divisive procedures work at
least as well as the more common agglomerative procedures in terms of both
computational complexity and cluster quality (Ding & He, 2002; Zhao et al.,
2005). Here, we will use a divisive procedure in which latent classes are split
step-by-step since such an approach fits better with the way LC models are
estimated than an agglomerative approach.

For the construction of a LCT we use the divisive LC analysis algorithm
developed by Van der Palm et al. (2016) for density estimation, with applica-

tions in among others missing data imputation. This algorithm starts with a
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parent node consisting of the whole data and involves estimating a 1- and a
2-class model for the subsample at each node of the tree. If a 2-class model is
preferred according to the fit measure used, the subsample at the node con-
cerned is split and two new nodes are created. The procedure is repeated
at the next level of the hierarchical structure until no further splits need to
be performed. Van der Palm et al. (2016) used this algorithm with the aim
to estimate LC models with many classes, say 100 or more, in an efficient
manner. Because they were not interested in the interpretation of the classes
but only in obtaining an as good as possible representation the data, they
used very liberal fit measures. In contrast, our LCT approach aims at yield-
ing an interpretable set of latent classes. In order to construct a substantively
meaningful and parsimonious tree, we will use the rather conservative BIC
(Schwarz, 1978) to decide about a possible split.

The resulting tree structure contains classes which are substantively linked.
Pairs of lower-order classes stem from a split of a higher-order class and vice
versa a higher-order class is a merger of a pair of lower-order classes. The
tree structure can be interpreted at different levels, where the classes at a
lower level yield a more refined description of the data than the classes at a
higher level of the tree. To further facilitate the interpretation of the classes at
different levels of the tree, we have developed a graphical representation of
the LCT, as well as propose measures quantifying the relative importance of
the splits. It should be noted that the proposed LCT approach resembles the
well-known classification trees (Friedman, Hastie, & Tibshirani, 2001; Loh &
Shih, 1997) in which at each node it is decided whether the subsample con-
cerned should be split further. Classification trees are supervised classifica-
tion tools in which the sample is split based on the best prediction of a single
outcome using a set of observed predictors variables. In contrast, the LCT is
an unsupervised classification tool, in which the sample is split based on the
associations between multiple response variables rather than on observed
predictors.

Two somewhat related approaches for imposing a hierarchical structure
on latent classes have been proposed before. Zhang (2004) developed a hi-
erarchical latent class model aimed at splitting the observed variables into
sets, where each set is linked to a different dichotomous latent variable and
where the dependencies between the dichotomous latent variables are mod-
eled by a tree structure. The proposed LCT model differs from this approach
in that it aims at clustering respondents instead of variables. Hennig (2010)
proposed various methods for merging latent classes derived from a set of
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continuous variables. His approach differs from ours in that it uses an ag-
glomerative instead of a divisive approach and, moreover, that it requires
applying a standard latent class model to select a solution from which the
merging should start. Though LCT modeling may also be applicable with
continuous variables, here we will restrict ourselves to its application with
categorical data.

The next section describes the algorithm used for the construction of a
LCT in more detail and presents post hoc criteria to evaluate the importance
of each split. Subsequently, the use of the LCT model is illustrated using an
application to a large data set with indicators on social capital. A discussion
on the proposed LCT method is provided in the last section.

2.2 Method

2.2.1 Standard LC analysis

Let y;; denote the response of individual i on the jth of J categorical response
variables. The complete vector of responses of individual 7 is denoted by y;.
A latent class analysis defines a model for the probability of observing y;;
that is, for P(y;). Denoting the discrete latent class variable by X, a particular
latent class by &, and the number of latent classes by K, the following model

is specified for P(y;):

K J
Plyi) = > P(X = k) [T Pyl X = k). @1)
k=1 j=1

Here, P(X = k) represents the (unconditional) probability of belonging
to class k and P(y;;|X = k) represents the probability of giving the response
concerned conditional on belonging to class k. The product over the class-
specific response probabilities shows the key model assumption of local in-

dependence.
LC models are typically estimated by maximum likelihood, which in-
volves finding the values of the unknown parameters maximizing the fol-

lowing log-likelihood function:

N
log L(6; y) = > _log P(ys), 22)
i=1
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where N denotes the total sample size and where P(y;) takes the form de-
fined in Equation (2.1). Maximization is typically done by means of the EM
algorithm.

2.2.2 Buildinga LCT

The building of a LCT involves the estimation and comparison of 1- and 2-
class models only. If a 2-class solution is preferred over a 1-class solution
(say based on the BIC), the sample is split into two subsamples and 1- and 2-
class models will subsequently be estimated for both newly formed samples.
This top-down approach continues until only 1-class models are preferred,
yielding the final hierarchically ordered LCT. An example of such a LCT is
depicted in Figure 2.1. The top level contains the root node which consists of
the complete sample. After estimating 1- and 2-class models with the com-
plete sample, it is decided that the 2-class model is preferred, which implies
that the sample is split into two subsamples (class X=1 and class X =2), which
form level 2 of the tree. Subsequently, class 1 is split further while class 2 is
not, yielding classes X;=1, X;=2, and X,=1 at level 2. In our example, after
level 4 there are no splits anymore and hence the final solution can be seen at
both levels 4 and 5. Though level 5 is redundant, this is only visible after the

procedure has been finished; i.e., after only 1-class models are preferred.

Tree Structure Level # Classes

Data 1 1

Figure 2.1: Graphical example of a LCT
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More formally, the 2-class LC model defined at a particular parent node
can be formulated as follows:

2

P(yi‘Xpa'rent) = Z P(Xchild = leparent> H P(yij|Xchild = k7 Xparent) (23)

k=1 j=1

where X, represent the parent class at level ¢ and X4 one of the two
possible newly formed classes at level ¢ + 1. In other words, as in a standard
LC model we define a model for y;, but now conditioning on belonging to
the parent class concerned.

A key issue for the implementation of the divisive LC algorithm illus-
trated in Figure 2.1 is how to perform the split at the parent node when a
2-class model is preferred. As proposed by Van der Palm et al. (2016), we use
a proportional split based on the posterior class membership probabilities
for the two child nodes conditional on the parent node, denoted by & = 1, 2.
These are obtained as follows:

P(Xchild = k|XpaTent) H;'Izl P(yilechild = kv Xparent)

PX( =k L)X rent) —
( child |y pare zf) P(yl“Xparent)

(2.4)
Estimation of the LC model at the parent node X, e, involves maximiz-

ing the following weighted log-likelihood function:

N
IOg L(97 Yy, Xparent) = Z wi,Xpa,mm P(YZ |Xpa'rent) (25)

i=1
where w; x,,,... is the weight for person ¢ at the parent class, which equals

the posterior probability of belonging to the parent class for the individual
concerned. If a split is performed, the weights for the two newly formed

classes at the next level are obtained as follows:

Wi Xepia=1 = wivXparentP(XChild = 1]yi; Xparent) (2.6)

Wi Xopg=2 = Wi Xparene ' (Xenita = 2|¥i5 Xparent)- (2.7)

In other words, a weight at a particular node equals the weight at the parent
node times the posterior probability of belonging to the child node concerned
conditional on belonging to the parent node. As an example, the weights
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w;, x,—2 used for investigating a possible split of class X; = 2 are constructed
as follows:

Wi X1y = wi,x:1P(X1 = 2|}’i7X = 1)7 (2.8)

where in turn w; x-1 = P(X = 1|y;). This implies:

Wi, X5 = P(X = 1|yZ)P(X1 = Q‘y“X = 1)7 (29)

which shows that a weight at level 2 is in fact a product of two posterior
probabilities.

Construction of a LCT can thus be performed using standard software
for LC analysis, namely by running 1- and 2-class models multiple times
with the appropriate weights. We developed an R routine in which this
process is fully automated®. It calls the Latent GOLD program (Vermunt
& Magidson, 2013) in batch mode to estimate the 1- and 2-class models,
evaluates whether a split should be made, and keeps track of the weights
when a split is accepted. In addition, it creates several types of graphical dis-
plays which facilitate the interpretation of the LCT. A very useful and novel
graphical display is a tree depicting the class-specific response probabilities
P(yij| Xenita = k, Xparent) for the newly formed child classes using profile plots
(for an example, see Figure 2.2). In this tree, the name of a child class equals
the name of the parent class plus an additional digit, a 1 or a 2. To prevent
that the structure of the tree will be affected by label switching resulting from
the fact the order of the newly formed classes depends on the random start-
ing values, when building the LCT we locate the larger class at the left branch

with number 1 and the smaller class at the right branch with number 2.

2.2.3 Statistics for building and evaluating a LCT

In a standard LC analysis, one will typically estimate the model for a range
of values for K, say from 1 to 10, and select the model that performs best
according to the chosen fit measure. The most popular measures are infor-
mation criteria such as BIC, AIC, and AIC3, which aim at balancing model fit
and parsimony (Andrews & Currim, 2003; Nylund, Asparouhov, & Muthén,
2007). Denoting the number of parameters by P, these measures are defined

as follows:

“Though still under development, this can be retrieved from http://github.com/
MattisvdBergh/LCT


http://github.com/MattisvdBergh/LCT
http://github.com/MattisvdBergh/LCT
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BIC = —=2logL +log(N)P (2.10)
AIC = —2logL +2P (2.11)
AIC3 = —2logL+ 3P (2.12)

Because log(NV) is typically larger than 3, the BIC penalizes the number
of parameters most strongly. This implies that BIC will select a model with
a smaller than or equal number of classes as AIC3, and AIC3 with a smaller
than or equal number of classes as AIC.

As in a standard LC model, at each parent node that can potentially be
split, we need to determine which model should be preferred, with the dif-
ference that here we only have to make a choice between a 1- and a 2-class
model. In the empirical example presented in the next section, we will base
this decision on the BIC, which means that we give a large weight to parsi-
mony. However, in the evaluation of the tree, we will also investigate which
splits rejected by BIC would be accepted by AIC3. In the computation of the
BIC, we use the total sample size, and thus not the sample size at the node
concerned. Note that classes are split as long as the difference between the
BIC of the estimated 1- and 2-class models, ABIC = BIC(1) — BIC(2), is
larger than 0. The size of ABIC can be compared across splits, where larger
ABIC values indicate that a split is more important; that is, it yields a larger
increase of the log-likelihood and thus a larger improvement of fit.

Another possible way to assess the importance of a split is by looking at
the reduction of a goodness-of-fit measure such as the Pearson chi-square.
Because overall goodness-of-fit measures are not very useful when the num-
ber of response variables is large, we will use a measure based of the fit in
two-way tables. The fit in a two-way table can be quantified using the bi-
variate residual (BVR), which is a Pearson chi-square statistic divided by the
number of degrees of freedom (Oberski et al., 2013). A large BVR value indi-
cates that the association between that pair of variables is not picked up well
by the LC model or, alternatively, that the local independence assumption
does not hold for the pair concerned. By summing the BVR values across all
pairs of variables, we obtain what Van Kollenburg et al. (2015) refer to as the
total BVR (TBVR):

J j-1

TBVR =YY BVR; (2.13)

j=1j'=1
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A split is more important if it yields as larger reduction of the TBV R
between the 1- and 2-class solution. In other words, we look at: ATBVR =
TBVR(1) — TBVR(2).

While ABIC and AT BV R can be used to determine the importance of
the splits in terms of model fit, it may also be relevant to evaluate the quality
of splits in terms of their certainty or, equivalently, in terms of the amount of
separation between the child classes. This is especially relevant if one would
like to assign individuals to the classes resulting from a LCT. Note that the
assignment of individuals to the two child classes is more certain when the
larger of the posterior probabilities P(X nia = k|yi; Xparent) is closer to 1. A

measure to express this is the entropy; that is,

Entropy(Xenaaly) = (2.14)
2

N
Z ’wi\Xparem Z _P(Xz:hild = k|yu Xpurent) log P(Xchild = k'y” Xpar‘ent)-
i=1 k=1

Typically Entropy(Xcnaaly) is rescaled to lie between 0 and 1 by express-
ing it in terms of the reduction compared to Entropy(Xcniq), which is the
entropy computed using the unconditional class membership probabilities
P(Xchita = k| Xparent). This so-called R3,,,,,, is obtained as follows:

R2 _ Entropy(Xenia) — Entropy(Xenialy)

Entropy —

(2.15)

Entropy(Xenia)
The closer R?

Entropy
classes in the split concerned.

is to one, the better the separation between the child

2.3 Application of a LCT to a study of social capital

2.3.1 Building the LCT

The proposed LCT methodology is illustrated by a reanalysis of a large data
set which was previously analyzed using a standard LC model. Owen and
Videras (2008) used the information from 14.527 respondents of the 1975,
1978, 1980, 1983, 1984, 1986, 1987 through 1991, 1993, and 1994 samples of the
General Social Survey to construct “a typology of social capital that accounts
for the different incentives that networks provide.” The data set contains six-
teen dichotomous variables indicating whether respondents participate in
specific types of voluntary organizations (the organizations are listed in the
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legend of Figure 2.2) and two variables indicating whether respondents agree
with the statements “other people are fair” and “other people can be trusted”.
Owen and Videras explain the inclusion of the latter two variables by stat-
ing that social capital is a multidimensional concept which embeds multiple
manifestations of civic engagement as well as trust and fairness. Using the
BIC, Owen and Videras selected a model with eight classes, while allowing
for one local dependency, namely between fraternity and school fraternity.

Figure 2.2 depicts the results obtained when applying our LCT approach
using the BIC as the splitting criterion. A figure of a tree containing informa-
tion on the sample sizes a the different nodes is provided in Appendix A.1.
As can be seen, at the first two levels of the tree, all classes are repetitively
split. However, at the third level only three out of four classes are split, as a
division of class 12 is not supported by the BIC. Subsequently, the number of
splits decreases to two at the fourth level, while at the fifth level there are no
more splits, indicating the end of the divisive procedure.

For the interpretation of the LCT, we can use the profile plots, which show
which variables are most important for the split concerned (exact probabil-
ities can be found in Appendix A.1). From the upper panel of Figure 2.2,
which depicts class-specific response probabilities for classes 1 and 2, it can
easily be seen that all probabilities are higher for class 2 than for class 1,
which is confirmed by Wald tests (W>7.43, p<0.05). So basically the first
split divides the sample based on general social capital, where class 1 con-
tains respondents with low social capital and class 2 respondents with high
social capital. This is supported by the total group participation of each class
(TGP, the sum of all probabilities except fair and trust), which equals 0.88 for
class 1 and 3.83 for class 2.

The second row of Figure 2.2 shows the splitting of both class 1 and 2
is mainly due to the variables fair and trust. Apparently the low and high
social capital groups can both be split based on how respondents view other
people regarding fairness and trustworthiness. This categorization will be
called optimists versus pessimists. The difference in TGP is relatively small
for these two splits, being 0.09 between class 11 and 12 and 0.83 between
class 21 and 22. Up to here, there are four classes: pessimists with low social
capital (11), optimists with low social capital (12), optimists with high social
capital (21) and pessimists with high social capital (22).
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Looking at the next level, one can see that class 12 is not split further. The
third row of Figure 2.2 shows similar patterns for all three splits at this level:
all probabilities are lower in one class than in the other. Therefore these splits
can be interpreted as capturing more refined quantitative differences in social
capital. This results in seven classes, ranging from high to very low social

capital, as can be seen from the TGP values reported in Table 2.1.

Table 2.1: Interpretation of classes at level 3 with TGP in brackets

Social capital Pessimist Optimist
High 222 (8.13) 212 (6.45)
Average 221 (3.97) 211 (3.23)
Low 111 (1.22) 12 (0.93)
Very Low 112 (0.31)

At the fourth level, both the optimists and pessimists class with average
social capital (211 & 221) are split. Contrary to the previous splits, here we
can see qualitative differences in terms of the type of organization in which
one participates. For instance, in classes 2112 and 2211, respondents have
higher probabilities of being a member of a sports or a youth group, while
in the corresponding classes 2111 and 2212, respondents have a higher prob-
ability of being a member of a professional organization. The TGP of the
newly formed classes ranges from 3.17 to 4.06, while fair and trust are high
at the optimistic branch and low at the pessimistic branch of the tree. At level
five no further splits occur.

At the lowest level, the constructed LCT has nine classes, one more than
obtained with a standard LC analysis. It turns out that the classes identified
with the two alternative approaches are rather similar. The parameters from
the standard 8-class model appear in the profile plot depicted in Figure 2.3
and in Appendix A.2. For instance, the conditional probabilities of LC-class
1 are very similar to those of LCT-classes 111 and 112. Moreover, LC-class
1 is even more similar to the higher-order LCT-class 11, which suggests that
the distinction between LCT-classes 111 and 112 is probably not made in the
standard LC analysis. The three largest classes of the original analysis are
very similar to at least one LCT-class (LC 1 to TLC 11, LC 2 to LCT 12 and
LC 3 to LCT 2111), while 3 out of the five smaller original classes can also be
directly related to a LCT-class (LC 6 to LCT 221, LC 7 to LCT 2112 and LC 8
to LCT 222). LC-classes 4 and 5 (containing 7% and 5% of the respondents)

are not clearly related to a LCT-class.
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Figure 2.3: Profile plot of original LC solution

2.3.2 Evaluating the splits of the LCT

Now let us look in more detail at the model fit and classification statistics
associated with the accepted and rejected splits. Table 2.2 reports the values
of ABIC, AAIC3, ATBV R, and R}, ,,,,,, as well as the class proportions, for
the considered splits, where the classes split based on the ABIC appear in
the top rows and the others in the bottom rows. Looking at the AAIC3, we
can see that this criterion would have allowed (at least) five additional splits.
The AT BV R values show the fit always improves, but the improvements
are larger for the accepted than for the rejected splits. The R3,,,,,, indicating
the quality of a split in terms of classification performance, shows a rather
different pattern: it takes on both higher and lower values among accepted
and non-accepted splits.

Based on the information provided in Table 2.2, one could opt not to split
class 11. Compared to other accepted splits, splitting this class contributes
much less in terms of improvement of fit, while also the classification perfor-
mance associated with this split is rather bad. Note also that this is one of the
largest classes and therefore the statistical power to retrieve subclasses with
small differences is relatively high. The decision on retaining this split de-
pends on the whether the encountered more detailed distinction within this
low social capital and pessimistic class is of substantive interest. However,
what is clear is that if a good classification performance is required, this split
seems to be less appropriate.
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Table 2.2: Information criteria per split, with split classes in the
top and not split classes in the bottom rows

ABIC AAIC3 ATBVR Ry PX=k)

0 92054  9330.5 235977 0.648 1.000
1 13462 14713 1495.0 0.489 0.705
2 691.0 816.1 1071.4 0.516 0.295
11 30.8 155.9 279.1 0.261 0.378
21 117.7 242.8 275.6 0.512 0.195
22 94.9 220.0 285.2 0.610 0.100
211 929 218.0 338.2 0.353 0.176
221 58.6 183.7 313.9 0.433 0.090
12 -37.7 87.4 179.4 0.222 0.327
111 -84.3 40.8 100.5 0.295 0.221
112 -167.3 -42.2 16.4 0.174 0.157
212 -125.5 -0.4 72.3 0.473 0.020
222 -119.0 6.1 64.6 0.815 0.010
2111 2.7 122.4 206.0 0.353 0.118
2112 -126.7 -1.6 63.7 0.288 0.058
2211 -136.4 -11.4 54.8 0.257 0.049
2212 -99.1 26.0 100.6 0.383 0.041

Conversely, one might want to include the split of class 2111. Though this
split was rejected by the ABIC stop criterion, this is based on a rather small
negative value, while the values for the AA/C3 and AT BV R are relatively
high. However, the R, ,,,,, indicates a low quality of this split. Hence, the
information on the fit improvement might be misleading, due to this class
being the largest class at the lowest level of the tree.

The opposite is true for the split of class 222. Though this class is quite
small and the fit statistics of this split indicate not much improvement, the
Riropy indicates that classes 2221 and 2222 would be very well separated.
Of course, once again the research question at hand is crucial for the decision
to add a class to the tree. For exploration the split of class 2111 can be rele-

vant, while for classification the split of class 222 might be more appropriate.

2.4 Discussion

In this paper, we proposed an alternative way of performing a latent class
analysis, which we called Latent Class Tree modeling. More specifically, we
showed how to impose a hierarchical structure on the latent classes using
the divisive LC analysis algorithm developed by Van der Palm et al. (2016).
To further facilitate the interpretation of the classes created at different levels

of the tree, we developed graphical representations of the constructed LCT,
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as well as proposed measures quantifying the relative importance and the
quality of the splits. The usefulness of the new approach was illustrated by
an empirical example on latent classes differing in social capital using data
from the General Social Survey.

Various issues related to the construction of LCTs need further study. The
first we would like to mention is related to the fact that we choose to restrict
ourselves to binary splits. However, the LCT can easily be extended to allow
for splits consisting of more than two classes. It is not so difficult to think
of situations in which it may be better to start with a split into say three
or four classes, and subsequently continue with binary splits to fine tune the
solution. The main problem to be resolved is what kind of statistical criterion
to use for deciding about the number of classes needed at a particular split.
One cannot simply use the BIC, since that would again yield a standard LC
model.

In the empirical application, we used the BIC based on the total sample
size as the criterion for deciding whether a class should be split. However,
the use of a more liberal criterion may make sense in situations in which the
research question at hand requires more detailed classes. Criteria such as
the AIC3 or the BIC based on the sample size at the node concerned will re-
sult in a larger and more detailed tree, but the estimates for the higher-order
classes will remain the same. At the same time, the stopping criterion for the
LCT approach could be made more strict by including additional require-

ments, such as the minimal size of the parent class and/or the child classes,

2

the minimal classification performance in terms of R,

,» or the minimal
number of variables providing a significant contribution to a split. The possi-
ble improvement of the stopping criterion is another topic that needs further
research.

In the current paper, we restricted ourselves to LC models for categori-
cal variables. However, LC models have also become popular cluster analy-
sis tools for continuous and mixed response variables (Hennig & Liao, 2013;
Vermunt & Magidson, 2002). In these kinds of applications, the number of
latent classes obtained using a standard LC analysis can sometimes be rather
large. It would therefore be of interest to extend the proposed LCT approach

to be applicable in those situations as well.






Chapter 3

Deciding on the starting number of

classes of a Latent Class Tree

Abstract

Recently, Latent Class Tree (LCT) modelling has been proposed as a conve-
nient alternative to standard latent class (LC) analysis. Instead of using an
estimation method in which all classes are formed simultaneously given the
specified number of classes, in LCT analysis a hierarchical structure of mutu-
ally linked classes is obtained by sequentially splitting classes into two sub-
classes. The resulting tree structure gives a clear insight into how the classes
are formed and how solutions with different numbers of classes are substan-
tively linked to one another. A limitation of the current LCT modelling ap-
proach is that it allows only for binary splits, which in certain situations may
be too restrictive. Especially at the root node of the tree, where an initial
set of classes is created based on the most dominant associations present in
the data, it may make sense to use a model with more than two classes. In
this paper, we propose a modification of the LCT approach which allows for
a non-binary split at the root node, and provide methods to determine the
appropriate number of classes in this first split, either based on theoretical
grounds or based on a relative improvement of fit measure. Furthermore, we
show how to apply a LCT model when a non-standard LC model is required.
These new approaches are illustrated using two empirical applications: one
on social capital and another on (post-)materialism.

This chapter is conditionally accepted for publication in Sociological Methodology as
Bergh, M. van den, Kollenburg, G.H. van, & Vermunt, ].K. Deciding on the starting number
of classes of a Latent Class Tree
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3.1 Introduction

Latent Class (LC) modelling has become a popular tool for clustering respon-
dents into homogeneous subgroups based on their responses on a set of cat-
egorical variables (Clogg, 1995; Goodman, 1974; Hagenaars, 1990; Lazarsfeld
& Henry, 1968; Magidson & Vermunt, 2004; McCutcheon, 1987; Vermunt &
Magidson, 2002). LC models have been applied for the investigation of a va-
riety of subjects, e.g., risk behavior like gambling (Studer et al., 2016) and sui-
cide attempts (Thullen, Taliaferro, & Muehlenkamp, 2016), social constructs
like social class (Savage et al., 2013) and social support (Santos, Amorim, San-
tos, & Barreto, 2015), and cognitive constructs like rule assessment (Jansen &
van der Maas, 1997) and cognitive control (Van Hulst, de Zeeuw, & Durston,
2015).

A crucial part of doing a LC analysis is the decision on the required num-
ber of classes. In a confirmatory setting, the number of classes may be based
on a priori knowledge, though the specified LC model may not fit due to, for
instance, the presence of subclasses or other kinds of mechanisms causing
violations of the local independence assumption. In such situations, it may
make sense to relax the local independence assumption, as suggested among
other by Oberski (2016).

In an exploratory setting, we will typically not aim at finding the “true”
number of clusters, but instead look for a clustering that describes the data
reasonably well and is moreover easy to interpret. To achieve this goal, re-
searchers estimate models with different numbers of classes and select the
model that performs best according to some fit measure, for example, ac-
cording to the information criterion AIC or BIC. While AIC and BIC penalize
model complexity and thus prefer models with less classes, when applying
LC models to data sets which are (very) large in terms of number of cases
and/or number of variables, one will often end up with a model with a large
number of classes. Some of these classes may differ from one another in very
specific and possibly less interesting ways, making their distinction hard to
interpret substantively. Moreover, different model selection measures will
typically point at different best models in terms of the number of classes.
In such situations, researchers can no longer rely on purely statistical cri-
teria, but will instead need to inspect solutions with different number of
classes and probably opt for the model that fits best to their substantive goals
(e.g., Hadiwijaya, Klimstra, Vermunt, Branje, & Meeus, 2015; Oser, Hooghe,
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& Marien, 2013; Spycher, Silverman, Brooke, Minder, & Kuehni, 2008; Sulli-
van, Kessler, & Kendler, 1998). It will be clear that such an approach may be
somewhat problematic since different researchers may come up with rather
different final models when analyzing exactly the same data.

To overcome the abovementioned problems associated with LC analysis
applications with large data set sets, Van den Bergh, Schmittmann, and Ver-
munt (2017) proposed an alternative way of performing a LC analysis, which
they called LC Tree (LCT) analysis. Their approach involves performing a
divisive hierarchical cluster analysis using an algorithm develop by Van der
Palm et al. (2016) for density estimation with a large number of categori-
cal variables. The main advantage of the LCT modelling approach is that it
shows how models with different numbers of classes are linked to one an-
other; for instance, a model with 6 classes is a model with 5 classes in which
one of the classes split into two parts. When applying a LCT, the model
selection problem reduces to deciding whether a particular split should be
accepted yes or no. As in a standard LC analysis, this can be decided based
on fit measures, but also based on whether a split is meaningful content wise.

As the name suggests, the method yields tree structure (see Figure 3.1 for
an example), which at the top contains a root node that serve as "parent’ node
of two ’‘child” nodes. At the next level of the tree, these child nodes become
parent nodes and produce possibly their own child nodes, and so on. More
specifically, the algorithm used to construct a LCT works as follows: first a
1- and 2-class model is estimated for the root node, that is, using the original
data set. If the 2-class model is preferred according to the model selection cri-
terion used, then two child nodes are created. For each of the two child nodes
anew data set is constructed, which contains the posterior membership prob-
abilities for the class concerned as case weight. Subsequently, each new child
node is treated as a parent and it is checked whether a 2-class model provides
a better fit than a 1-class model on the corresponding weighted data set. This
stepwise procedure continues until no node is split up anymore.

The sequential LCT algorithm yields child classes which are subclasses of
a parent class, which implies that interpretation can take place at any level
of the tree. That is, after labeling the classes formed at the root of the tree,
the classes formed at the next level of the tree will be labelled conditionally
on the labeling of their parent classes. This makes it much easier to interpret
LC solution with more than a few classes. Moreover, the fact the classes are

hierarchically linked makes it possible to decide on the number of classes
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Complete
Data

Figure 3.1: Example of a tree structure with two binary splits.

based on substantive interpretation of the splits; if certain splits are not inter-
esting or relevant for the research question at hand, the child classes of a split
can be substituted for their parent class. Hierarchical tree structures similar
to those obtained with a LCT analysis are very practical as clustering proce-
dures because clustering solutions at different levels of a tree allow different
granularity to be extracted during the data analysis, making them ideal for
exploration (Ghattas et al., 2017; Zhao et al., 2005).

An important limitation of the current LCT modeling approach is that
it is limited to binary splits. While this may be less of a problem for the
lower levels of the tree where more detailed between-cluster differences are
detected, it can sometimes be problematic for the root of the tree. As an
illustration of this problem, Figure 3.2 presents three examples of possible
latent class configurations: two with three classes and one with four classes.
The first configuration of three classes (Panel A) shows two fairly similar
classes (classes 2 and 3), while class 1 is quite distinct from these two. This
is a situation in which a tree with binary splits is expected to perform well.
In the first binary split, class 1 will be separated from classes 2 and 3, where
the class combining the latter two will have response probabilities close to
0.2 (the average of these two classes). The binary split at the next level will
detect the differences between class 2 and 3. Hence, binary splits do not cause
any problems with this setup and an example of the resulting tree structure
is shown by Figure 3.1, where classes 2 and 3 are defined as 21 and 22 in the
tree structure.

The second configuration of three classes in Figure 3.2 (Panel B) shows
three rather distinct classes. The first binary split will mainly be based on
most dissimilar classes 1 and 3, while class 2 will be spread out over the two
classes. By splitting both classes again, a third and fourth class are retrieved

and a tree structure as shown in Figure 3.3 is obtained. Neither the number
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Figure 3.2: Two examples of three classes
and one of four classes.

of classes nor the encountered class-specific response probabilities will cor-
respond to what could be expected. Hence, using only binary splits is not
appropriate in this case and a ternary split, or 3-class LC model, as shown in
Figure 3.4, should be preferred. Note that this is not a LCT yet, but further
splitting one of the three classes results in a tree structure.

The third configuration in Figure 3.2 (Panel C) contains four classes. Ap-
plying a binary split in this situation results in a child node combining classes
1 and 2 with response probabilities of 0.8 and another node combining classes
3 and 4 with response probabilities of 0.2 on the other side. Each of these com-
binations is split further, resulting in the tree structure of Figure 3.3 with both
the expected number of classes and the appropriate conditional response
probabilities.

While these illustrative examples are somewhat artificial, in real data ap-
plications with a larger number of classes, other types of class configurations
may arise in which a LCT with simple binary splits may not be the right way
to go. To overcome this limitation of the current LCT models, we propose a

new procedure that is somewhat intermediate between a LCT analysis and
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Figure 3.3: A tree structures with three binary splits.
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Figure 3.4: A 3-class LC model.

a standard LC analysis. Though in principle the procedure can be applied
at any node of a tree, since the first split picks up the most dominant as-
sociations in the data and moreover affects most strongly the tree structure,
we focus on the root node where we allow the number of child nodes to
be larger than two. Various approaches can be used to decide on the num-
ber of starting classes. One option is that a researcher specifies the number
of classes at the root based on theoretical grounds, and lets the binary LCT
algorithm discern possible subclasses. When a priori knowledge or beliefs
about the number of classes is absent, one may select the number of starting
classes such that they have a clear interpretation. Note that while choosing
the number of starting classes based on what is substantively meaningful ig-
nores the statistical fit of the model, model fit is still warranted since the LCT
picks up remaining associations (i.e., misfit) when classes are split up further
down the tree. We also present a method for choosing the number of starting
classes based on the statistical fit index. More specifically, we propose choos-
ing the number of classes in the first split based on a relative improvement in
fit measure.

The remainder of the paper is set up as follows. In the next section we
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discuss the basic LC model and how it can be used to build a LCT. After that
we describe the measure of relative improvement in fit that we propose to
determine the split size at the root, and moreover present a small simulation
study on its performance in the situations depicted in Figure 3.2. Then, two
empirical examples are presented illustrating how the improvement of fit
measure and substantive reasoning can be used to determine the appropriate
number of classes at the first split of a tree. The paper is concluded with final
remarks by the authors.

3.2 Method

3.2.1 LC models

Let y;; denote the response of individual i on the j categorical variable.
The responses of individual i on the full set J variables is denoted by y;.
A standard LC analysis defines a model for the probabilities of observing
the various possible response patterns. Let X denote the discrete latent class
variable, k denote a particular latent class, and K the number of latent classes.

A LC model is specified for P(y;) as follows:

K J
ZPX kH (yi;] X = k). (3.1)

=1

Here, the probability of belonging to class  is represented by P(X = k) and
the probability of giving the response concerned conditional on belonging
to class k is represented by P(y;;|X = k). The product of the class-specific
response probabilities of the .J variables follows from local independence as-
sumption.

The model parameters are usually estimated by maximizing the likeli-
hood through the EM algorithm (Dempster et al., 1977). The log-likelihood
function is as follows:

log L(6; y) ZlogP vi), (3.2)

where P(y;) takes the form defined in Equation (3.1), 6 contains the model
parameters P(X = k) and P(y;;|X = k), and N denotes the total sample size.
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3.2.2 Buildinga LCT

Building a LCT starts with the estimation of a standard one- and two-class
model at the root node. If the two-class model is preferred, individuals are
assigned to the two child classes having the root node as their parent. While
the current LCT model is restricted to binary splits, below we show how to
decide about a possibly larger number of starting classes. Subsequently, at
the next level of the tree, the child nodes become parent nodes themselves.
For each parent class, one- and two-class models are estimated, and it is de-
cided whether a two-class model is preferred. If so, the cases belonging to
the parent class concerned are assigned to the newly formed child classes,
and the same procedure is repeated at the next level of the tree.

The model defined at a particular parent node is very similar to a standard

LC model; i.e, it can be formulated as follows:

K J
yz|Xparent Z P child = k|Xparent) H P(yijlxchild = k7 Xparent)7 (33)
k=1 j=1

where Xt Tepresents one of the parent classes at a particular level of the
tree, and X4 represents one of the K possible newly formed child classes
at the next level for the parent class concerned, with in general K equals 2. It
should be noted that each child has only one parent. Hence, X,;;4 actually
represents Xchidjparent, DUt for the purpose of readability, we use the short-
hand X ;4 throughout this paper. Furthermore, P(X nia = k| Xparent) and
P(yij| Xenita = k, Xparent) represent the class proportion and the class-specific
response probabilities for child class & within the parent node concerned. In
other words, as in a standard LC model we define a model for y;, but now
conditioning on belonging to a particular parent node.

As indicated above, if a split is accepted and new child classes are formed,
observations are assigned to the newly formed classes based on their pos-
terior class membership probabilities. More specifically, the posterior class
membership probabilities for the K child nodes conditional on the parent
node are obtained as follows:

P(Xanita = k| Xparent) [1=1 P3| Xenita = ¥, Xparent)
P(X‘/’”ld - k|yu purf’nt) = L J=1 J P ‘

P(yl ‘Xparent)
(3.4)
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However, the actual class assignment can be done in several ways, among
others using modal, random, or proportional assignment rules (Dias & Ver-
munt, 2008). As proposed by Van der Palm et al. (2016), we use proportional
class assignment in which every respondent is present at each node with
a weight equal to the posterior membership probability for the node con-
cerned.

Estimation of the LC model at the parent node X,,en: involves maximiz-

ing the following weighted log-likelihood function:

N

IOg L(9~ Y, Xparent) = Z wi,Xpa,,-em,P(yi |Xparent)7 (35)

i=1
where w; x,,,... is the weight for person ¢ at the parent class, which equals
the posterior probability of belonging to the parent class for the individual
concerned. If a split is performed, the weights for the two newly formed

classes at the next level are obtained as follows:

Wi, Xepiza=1 = wi,XpammP(Xchild = 1‘yi§XpaT6nt) (3.6)
Wi X piia=2 — u)i,Xpm.em,P(Xchild - 2‘yi;Xparent)~ (37)

In other words, a weight at a particular node equals the weight at the parent
node times the posterior probability of belonging to the child node concerned
conditional on belonging to the parent node. As an example, the weights
w;, x, =2 used for investigating a possible split of class X; = 2 are constructed

as follows:

Wi X195 = wi,X:IP(Xl =2ly;, X =1), (3.8)

where in turn w; x—1 = P(X = 1|y;). This implies:

which shows that a weight at level two is in fact a product of two poste-
rior probabilities. More details on the estimation procedure can be found in
Van der Palm et al. (2016).

Construction of a LCT can be performed using standard software for LC
analysis, namely by running multiple LC models with data sets containing
the appropriate case weights. After each accepted split a new data set is con-
structed and the procedure repeats itself, which is displayed in pseudo-code
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in Algorithm 1. We developed an R package that automatizes these steps and
which calls a LC routine — in our case version 5.1 of the Latent GOLD pro-
gram (Vermunt & Magidson, 2016) — to perform the actual estimation of the
LC models using the weighted data sets. This routine also provides graph-
ical displays of the class profiles as well as of the tree structure. Thus once
the tree is formed, one can investigate the discrepancies between classes at
every split using profile plots. An example of a graphical representation of a
LCT can be seen in Figure 3.5. To prevent the structure of the tree to be af-
fected by the fact that classes can be permuted without changing the model
fit, our R routine orders the child classes within a split based on their size in

descending order.

Algorithm 1 Algorithm to construct a LCT
Decide on the number of classes at the first split of the tree (on the complete data)

based on the relative improvement of fit measure. Make a new data set for every
new class where each observation gets as a weight equal to its posterior probability

for the class concerned
while Splits have been made at the previous level of the tree do
for Every new class at the previous level do

if A split is preferred over no split then
Construct a new data set for each class and estimate 1 and 2 class models to decide

whether a further split is needed

3.2.3 Statistics used to define the splits.

Different types of statistics can be used to determine whether a split should
be accepted or rejected. Here, we use the BIC (Schwarz, 1978), which is de-
fined as follows:

BIC = ~210g L(0: y, Xparent) + log(N) P, (3.10)

where log L(.) represents the log-likelihood at the parent node concerned, N
the total sample size, and P the number of parameters of the model at hand.
Thus, a split is performed if at the parent node concerned the BIC for the
2-class model is lower than the one of the 1-class model. Note that using
a less strict criterion (e.g. AIC) yields the same splits as the BIC, but also

possible additional splits, and thus a larger tree. In other words, depending
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Figure 3.5: Graphical example of a LCT with
a first split into three classes.

on whether one wishes a smaller or a larger tree, a more conservative or a
more liberal criterion can be used.

As explained in the introduction, in some situations, a binary split may be
too much of a simplification, and one would prefer allowing for more than
two classes. This is especially true for the first split of the tree, in which one
picks up the most dominant features in the data. However, for this purpose,
we cannot use the usual criteria like a AIC or BIC, as this would boil down to
using again a standard LCT model. Instead, for the decision to use more than
two classes at the first split, we propose looking at the relative improvement
of fit compared to the improvement between the 1- and 2-class model. When
using the log-likelihood value as the fit measure, this implies assessing the
increase in log-likelihood between, say, the 2- and 3-class model and com-
pare it to the increase between the 1- and 2-class model. More explicitly, the
relative improvement between models with K and K + 1 classes (Rl k1)
can be computed as:

log Ly, —log Ly (3.11)

RI =
fofert log L, — log L,

which yields a number between 0 and 1, where a small value indicates that
the K'-class model can be used as the first split, while a larger value indicates
that the tree might improve with an additional class at the first split of the
tree. Note that instead of an increase in log-likelihood, in Equation 3.11 one

may use other measures of improvement of fit, such as the decrease of the
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BIC or the AIC.

To get an indication of the performance of the Rl i1, we run a small
simulation study using the three scenarios discussed in the introduction and
depicted in Figure 3.2. For each scenario we generated 100 data sets contain-
ing 10 dichotomous response variables for 1000 respondents and assuming
equal class sizes. Results on the relative improvements from 2 to 3 classes

and from 3 to 4 classes are shown via boxplots in Figure 3.6.
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Figure 3.6: Boxplots of the improvement in fit from 2 to 3 and
from 3 to 4 classes relative to the improvement from 1 to 2
classes, based on the configurations presented in Figure 3.2.

For configuration A, binary splits suffice as is shown by the always very
low relative improvement when adding a third class. For configuration B,
a ternary split is more suitable, which is confirmed by the high relative im-
provement in fit when increasing the classes from 2 to 3 obtained for ev-
ery simulation replication. For configuration C, our measure indicates that
a binary option sulffices since the relative improvement was smaller than .10
for most of the simulation replications. Compared to the first configuration,
the sampling fluctuation is somewhat larger in this configuration, which ex-
plains why a somewhat larger values were found in a small portion of the

simulation replications.

3.3 Empirical examples

The proposed LCT methodology is illustrated by the analyses of two data
sets which were previously studied using a standard LC model. The data

set in the first example comes from a study by Owen and Videras (2008) and
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contains both a large number of respondents and a large number of variables,
yielding a situation for which LCTs are well suited. For this data set, we com-
pare the original LC solution by Owen and Videras (2008), the first splits of
a binary LCT, and a LCT with a more appropriate number of child classes at
the root using our relative improvement of fit measure. The second example
concerns a very large data set in term of the number of observations from
Moors and Vermunt (2007) and uses a LC model for ranking data. A LCT is
very suited for this data set, as a traditional LC analysis indicates that the fit

improves up to a large number of classes.

3.3.1 Social capital

Owen and Videras (2008) used the information from 14.527 respondents of
several samples of the General Social Survey to construct “a typology of
social capital that accounts for the different incentives that networks pro-
vide.” Social capital is a construct that is plagued by “conceptual vagueness”
(Durlauf & Fafchamps, 2004) and therefore Owen and Videras (2008) perform
a Latent Class analysis to grasp this concept. The data set used by Owen and
Videras (2008) contains sixteen dichotomous variables indicating whether re-
spondents participate in specific types of voluntary organizations (the orga-
nizations are listed in the legend of Figure 3.7) and two variables indicating

whether respondents agree with the statements “other people are fair” and
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Figure 3.7: Profile plot of a standard LC analysis
on social capital.
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“other people can be trusted”. Owen and Videras explain the inclusion of
the latter two variables by stating that social capital is a multidimensional
concept which embeds multiple manifestations of civic engagement as well
as trust and fairness. Using the BIC, Owen and Videras selected a model
with eight classes, while allowing for one local dependency, namely between
the variables fraternity and school fraternity. The 8-class original solution
by Owen and Videras (2008) is displayed in Figure 3.7*, with the size of the
classes displayed on the x-axis.

The classes retrieved by Owen and Videras (2008) are quite difficult to in-
terpret. Classes 1 and 2 seem to mainly differ on the variables fair and trust,
while classes 2 and 3 differ on almost all variables but fair and trust. The
differences between classes 1 and 3 are subsequently a lot harder to pinpoint
and this becomes increasingly difficult when including the other classes in
the comparisons. Note furthermore that various of the classes contain have
small class proportion (classes 4 to 8 each contain less than 10% of the obser-
vations). To facilitate the interpretation of a classification of social capital, a
LCT is built with this data.

// N
CEECEND )
) (=) () (=)

Figure 3.8: Layout of a LCT starting with a two-class split on
the social capital data set.

The layout and class sizes' of a binary LCT based on the data of Owen
and Videras (2008) is shown in Figure 3.8. The fifth and final level of the tree

“The exact conditional probabilities of the LC model and the LCTs on social capital can
be found in Appendix A.

*Every split should sum up to a the class size of its parent node. However, because
the allocation is carried out on the basis of the posterior probabilities, the class sizes are not
integers. For convenience, these numbers have been rounded, which causes slight deviations
where the sum of two child nodes does not exactly add up to the parent node.
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consists of nine classes (every class which is not split further from a certain
level, is taken passed as it is to a next level).

The first two levels of the binary LCT can be closer examined in their
profile plots in Figure 3.9. The top panel shows the first split, which in-
dicates that the probabilities on all variables are higher for class 2 than for
class 1. So basically the first split divides the sample based on general social
capital, where class 1 contains respondents with low social capital and class
2 respondents with high social capital. Within each of these groups a pes-
simistic (classes 11 and 22) and optimistic (classes 12 and 21) social capital
group seems to be present, as these groups are split mainly on the variables
fair and trust. The fact that both splits at this level are mainly due to these
two variables indicates that there is a large amount of residual association
between these variables within the two classes formed at the root. Hence, a

tree starting with more classes at the first split may perhaps be better suited.
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Figure 3.9: Profile plots of the first two levels of a LCT on so-

cial capital with only 2-class splits. Conditional response prob-

abilities of the 18 items are shown on the y-axis and different
(sub)classes are shown on the x-axis.

To decide on the number of classes at the root of the tree, multiple stan-
dard LC models with increasing number of classes are estimated. The fit
statistics and the relative improvement of the fit statistics are shown in Table



38 Deciding on the starting number of classes of a Latent Class Tree

3.1. The relative fit improvement is about 20% when expanding a model from
2 to 3 classes, compared to the improvement in fit when expanding from 1 to
2 classes. Adding more classes improves the fit marginally, indicating that a
root size of three classes may be used. The complete LCT obtained by start-
ing with three classes is shown in Figure 3.10, with the class sizes displayed
for every node of the tree. For every final node it holds that, according to the
BIC, a 1-class model is preferred to a 2-class model.

Table 3.1: Fit statistics and their relative improvement
of the social capital data.

logL P BIC AIC RLL RBIC RAIC
-94204 18 188581 188444
-89510 37 179376 179095  1.000 1.000  1.000
-88501 56 177539 177115 0.215 0.199 0.212
-88117 75 176952 176383  0.082 0.064 0.078
-87826 94 176553 175840  0.062 0.043  0.058
-87619 113 176321 175464  0.044 0.025  0.040
-87425 132 176114 175113  0.041 0.022  0.038
-87322 151 176090 174945 0.022 0.003  0.018
-87234 170 176098 174808 0.019 -0.001  0.015

O 0 NI OO W

Figure 3.10: Layout of a LCT starting with a three-class split on
the social capital data.

The profile plots for the splits of the LCT with three initial classes are
shown in Figure 3.11, while the exact probabilities can be found in Appendix
B. At first split, the first class has a low probability on all variables, the second
class displays a low probability on participation in all voluntary organiza-
tions and very high probabilities on the variables fair and trust, and the third
class displays relative high probabilities on participation in the voluntary or-
ganizations and rather high probabilities for fair and trust. Subsequently, the
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Figure 3.11: Profile plots of a LCT with a root of three classes
on social capital.

first and third class are split further, while the second is not. The first class

is split in a class with low and very low probabilities on all variables, while

the third class is split in two classes with preferences for different voluntary

organizations (e.g., a high probability for being part of a professional orga-

nization in class 31 versus a high probability for being part of a youth group

in class 32). Subsequently, class 31 is split further into classes 311 and 312,

which seem to differ mainly in participation in all voluntary organizations.

The final split yielding classes 3111 and 3112 results in classes which differ

again in preferences for different voluntary organizations (e.g, a high prob-

ability for being part of a literary or art group in class 3111 versus a high
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probability for being part of a fraternity in class 3112).

The original solution of eight classes by Owen and Videras (2008) can be
compared with the LCT with three initial classes. Note the resemblance be-
tween the first classes of the LCT and the standard LC model. The relation
between the fully binary LCT and standard LC analysis solutions is less clear,
though there are also similarities. For instance, LCT-class 21 is rather similar
to standard LC analysis class 2. Similarities in the results of the LCT and stan-
dard LC analysis are expected, though the goal of a LCT is not to resemble the
standard LC analysis result. A great advantage of the LCT is that the classes
can be interpreted stepwise, as first the classes at the first level of the tree
can be interpreted and subsequently the classes at lower levels. Moreover, it
offers the possibility to make a decision on the number of classes based on
substantive reasons. Hence, splits at lower levels which are of no substan-
tive interest can be ignored. For instance, the distinction between classes 11
and 12, which differ mainly in the degree of low participation in voluntary
groups may be of less interest, as it reflects subtle quantitative differences
rather than qualitative differences. In such a case, class 1 can be used in the

final classification instead of classes 11 and 12.

3.3.2 (Post-)Materialism

The study by Moors and Vermunt (2007) used the answers of 21468 respon-
dents participating in the 1990 European Values Survey on three questions of
meant to validate the measurement of (post-)materialism as proposed by In-
glehart (1971). Each item contained four aims of a country and respondents
were to determine which aim should have the highest priority and which
one should have the second highest priority in their opinion. The response
options of the three item can be seen in Table 3.2.

Moors and Vermunt (2007) used a latent class discrete choice model for
their study, as every respondent gave two ranked responses per item. A
latent class discrete choice model is quite similar to a traditional latent class
model as depicted in Equation (3.1). For response pattern s, with the first and
second response on an item denoted as by a;s and a,s respectively, a discrete

choice model has the form of:

K J

P(y) =Y P(X =k) [ Py = a1, 42 = 02| X = ). (3.12)

k=1 j=1

With a LCT approach this model becomes:
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P(ys‘Xparent) = Z P(Xchild = k‘Xpm‘ent) H P(ylj = Q1s, Y25 = a23|Xchild = kv Xparent)~

K J
k=

1 =1
(3.13)

Within a discrete choice framework the choice probabilities are parame-
terized, in terms of the utilities of the alternatives. In our case, for the first

item, this implies that

P(y11 = a1s, Y21 = o5 Xehita = Ky Xparent) = Zalk 4Ta2k : (3.14)
Za:l Tak Za#al Tak

A higher value of 7, indicates a higher probability that someone belonging
to class k selects alternative a. Two important differences with a standard LC
model are that the utilities are assumed to be equal between the first and sec-
ond choices and that it should be taken into account that the first and second
choice a ranking task cannot be the same, which is why the summation for
the second choice is over the non-selected alternatives (¢ # a1). As is usually

done, we use log transformed utilities, which are logit coefficients; that is:

108 Tak = Bak (3.15)

For identification, effects coding is used implying that the 3,; sums to 0
within latent class k. The larger positive ., the more attractive alternative
a for someone belonging to the class k, while the reverse applies to negative
values.

The fit statistics obtained when estimating LC discrete choice models with

Table 3.2: Indicators for the latent class discrete choice model

Item A Item B Item C
. Maintaining a high level
of economic growth.

+ Maintaining order in the nation. » A stable economy.

Progress toward a

. Making sure the country . Giving people more say in . less impersonal and
has strong defense forces. important government decisions. more human society.
Seeing that people have

3 peop © Progress toward a
more say about how things o .
. e . society in which

« are done at their jobs « Fighting rising prices. .

. . . ideas count more
and in their communities.
than money.
Trying to make our cities and . . . .
. « Protecting freedom of speech. + The fight against crime.

countryside more beautiful.
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1 to 10 classes, as well as the corresponding relative fit improvement are re-
ported in Table 3.3. As can be seen, the BIC and AIC values keep decreasing
till 10 classes, indicating that a large number of classes should be selected
based on the measures. However, the relative improvement of fit decreases
rather quickly and seems to become rather small after four classes. Thus
based on this measure, a LCT model with 4 starting classes seems to be suited
for this data set.

Table 3.3: Fit statistics and their relative improvement
of the Discrete Choice data.

logL P BIC AIC RLL RBIC RAIC

1 -98236 9 196557 196489
2 95154 19 190490 190347 1.00 1.00 1.00
3 94389 29 189056 188837 0.25 024 0.25
4 93965 39 188304 188009 0.14 0.12 0.13
5 93796 49 188060 187689 0.05 0.04 0.05
6 -93678 59 187920 187474 0.04 0.02 0.04
7 9359 69 187853 187331 0.03 0.01  0.02
8 -93531 79 187818 187220 0.02 0.01  0.02
9 93465 89 187782 187109 0.02 0.01 0.02
10 -93416 99 187779 187030 0.02 0.00 0.01

Besides the relative improvement of fit, other (substantive) considerations
can be appropriate to decide on the number of classes at the first split of the
tree. This is also what Moors and Vermunt (2007) did in the original study.
They compared the two- to five-class models and concluded that four classes
could be identified in which at least one item from each set is related to a
particular latent class. Such substantive reasoning can also guide a decision
on the number of classes, but with the LCT approach these classes can further
be explored. Out of the four initial classes, two are split based on the BIC, and
at the final level there is one more split. This yield a total number of seven
classes at the final level of the tree, as is shown in Figure 3.12.

The estimated utilities are reported in Table 3.4. For the first class at the
first level of the tree it can be seen that the high utilities for the first response
option of every item, (to wit, the issues "Maintaining a high level of eco-
nomic growth’, "Maintaining order in the nation” and A stable economy’),
shape the first class. These economic and ‘maintaining order’ issues made
Moors and Vermunt (2007) interpret this class as a ‘conservative’ elite class,
which stresses issues of macro-socio-economic order. For the second class
the response options ’strong defense forces’, ‘fighting rising prices” and "fight
against crime’ cluster together. These issues have been interpreted as "typical’
concerns of the lower class. The third class favors the more post-materialistic
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Figure 3.12: Layout and class sizes of the LCT based on the
discrete choice data on (Post-)Materialism.

response options ‘More say at work’, ‘More say in government decisions’
and ‘More human society’. This class is therefore also interpreted as a post-
materialist class. The fourth and final class combines post-materialistic and
economic issues, to wit, "Economic growth’, ‘More say in government issues’
and "A stable economy’. This is interpreted as a more democratic but also
macro-economic class.

These four classes at the first level are the same as those identified by
Moors and Vermunt (2007) using a traditional latent class analysis. However,
the tree extension allows obtaining a more detailed picture regarding the
more subtle variation within these four classes. The first thing that stands out
is that only classes 1 and 3 are split into subclasses. The first, so-called "con-
servative” elite, class splits in two classes which differ mainly in how much

Table 3.4: Logits of the latent class discrete choice models.

Level of the tree 1 2 3
Classes 1 2 3 4 11 12 31 32 111 112
Set A

Economic growth 1590 0217 0302 2.075 1571 1.750 0.438 0.045 1452 1.800
Strong defence forces -0.992 -0.797 -2.178 -1.526 -1.525 -0.609 -2.255 -2.123 -1.311 -1.813
More say at work 0.009 0561 1.662 0.440 0456 -0.514 1490 2.088 0.667  0.209
Beautiful cities -0.606 0.019 0.213 -0.989 -0.502 -0.626 0.326 -0.010 -0.808 -0.196
Set B

Maintaining order 1.678 0.160 -0.500 -0.652 1796 1.581 -0.299 -0.962 1983 1.685
More say -0.924 -0334 0774 0617  -0.839 -099 0476 1532  -0.807 -0.852

Fight rising prices -0.521 0470 -0.893 0.024 -0.886 -0.154 -1.183 -0.618 -0.696 -1.292
Freedom of speech -0.233 -0.297 0.619 0.010 -0.071 -0.431 1.005 0.048 -0.480  0.460
Set C

Stable economy 1467 0.050 -0.591 1.638 1.356 1.619 -0.663 -0.488 1.367 1.353
Humane society -0484 -0.206 1.050 -0.223 -0.366 -0.648 0.918 1.314 -0.222  -0.577
Ideas count -1415 -0.658 0.112 -1.102 -1.365 -1.476 0.188 -0.014 -1.465 -1.234

Fight against crime 0.432 0.814 -0.570 -0.313 0375 0.504 -0.443 -0.813 0.319  0.459




44 Deciding on the starting number of classes of a Latent Class Tree

they (dis)like ‘more say at work’ on the first item and how much they dislike
‘strong defense forces’ on the first item and "fighting rising prices” on the sec-
ond item. The third class at the first level, labelled the post-materialist class,
is split into two classes which mainly differ in the importance attributed to
"protecting freedom of speech’ and ‘giving people more say in important gov-
ernment decisions’. Hence, here one can distinguish two groups that differ
in their preference for the post-materialistic aspects. At the final level of the
tree the so-called "conservative’ elite class that focused mainly on economic
growth is split further. This split is based mainly on difference on the first
and second item, where class 111 has a stronger preference for the options
'Strong defense forces” and "More say at work’ on item one and the option
"fighting rising prices’ on item two, and class 112 has a stronger preference
for the option ‘beautiful cities and countryside’ on item one and "protecting
freedom of speech’.

To summarize, the tree starts with four branches which correspond with
the four classes of the original solution by Moors and Vermunt (2007), and
subsequently yields five subclasses spread over two branches. The final re-
sult at the lowest level of the tree consists of 7 classes, but it is possible to
decide on the most interesting number of classes of LCT with substantive
reasoning. For instance, if for a particular study specific clusters of an elite
class are of interest, but not a division of the post-materialistic class, classes
31 and 32 can be replaced by class 3.

3.4 Discussion

The LCT models approach discussed in this paper provide an alternative
approach to LC analysis, in which a stepwise procedure is used to build a
meaningful cluster model for the data set at hand. LCT models are especially
useful when standard LC models would yield a large number of classes with
mutual differences which are difficult to interpret. Because the restriction of
the current LCT to binary splits can be problematic, we proposed a modifica-
tion allowing for a larger number of child classes at the root of the LCT. We
introduced a relative improvement of fit measure to decide about the num-
ber of classes, which turned out to work well in our small simulation study.
We illustrated the new approach using two empirical examples, in which the
relative improvement of fit measure indicated that one should use three and

four starting classes, respectively. For the first example, we also compared
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trees starting with 2 and 3 classes, and showed that the latter yielded a much
more easily interpretable clustering.

While in the current paper, the option of using non-binary splits has been
applied only to the first split of the LCT, in principle it could also be used at
the next levels of a tree. For instance, in the first example on social capital,
both class 1 and 3 could be split into more than two classes. Based on the BIC
this would be three and six classes, respectively. Rather than using the BIC, it
may be possible to adapt our measure of relative improvement for this pur-
pose, for instance, by comparing the improvement of fit with the one at the
first split or with the one within the branch at hand. Because the number of
classes at the splits can strongly affect the outcome of a LCT analysis, we rec-
ommend deciding this separately for every split, starting with the first split.
Note that at lower levels of the tree more substantive information about the
branch is already available which can be used to guide the decision regarding
the number of subclasses.

The LCT models described in this paper are somewhat similar to the LC
factor models proposed by Magidson and Vermunt (2001). For example, a
tree with binary splits at the first and second level resembles a LC factor
model with 2 dichotomous latent factors. However, in LC factor models not
only the number of factors can be increased, but also the number of categories
of the factors. While this is similar to increasing the number of subclasses in
a split as discussed in this paper, an important difference is that the multiple
classes corresponding to the same factor are restricted to be ordered. It may
be worth investigating whether such an approach — in which the number
of classes is increased but at the same type the classes are restricted to be
ordered - is useful in the context of a LCT models as well. For instance, in
our example on social capital, one may wish to force the splits at the first
and second level to represent different dimensions, using possibly more than
two classes. In such a case, it would make sense to apply a LC factor like
approach at these splits of the LCT.

In this paper, we used the BIC to decide whether or not to stop the split-
ting process of the classes. While the BIC has been shown to perform well for
standard LC analysis (Nylund et al., 2007), various other model selection cri-
teria are available, such as the integrated classification likelihood (Biernacki,
Celeux, & Govaert, 2000). Their strictness influences the probability to start a
new branch within a LCT, implying that the choice for the decision criterion
can affect the bottom of the tree significantly. Whereas we used the standard
maximum likelihood method for the estimation of the submodels forming a
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LCT, it may be worth considering other estimation procedures, such as the
recently proposed minimum ¢-divergence estimation method (Felipe, Mi-
randa, & Pardo, 2015).

Summarizing, it can be stated that various options are available for de-
ciding on the size of the splits of a LCT. In a purely exploratory analysis, the
proposed relative improvement of fit measure seems to be a useful tool for
deciding about the number of starting classes, while in other situations one
may wish to base this decision on content information. The form of the tree
and thus the composition of the classes will therefore be subject to the avail-
able information and requirements of the research question at hand. There
are many ways to derive a clustering from a data set, and it is best to assume
that there is no particular method which is correct in all situations (Hennig,
2015). In other words, we do not want to claim that the LCT approach will
always yield the best or the true clusters, but this is often also unlikely for a
standard LC analysis. In practice, a researcher may start with a standard LC
analysis, and switch to our LCT approach when encountering difficulties in
deciding about the number of classes or interpreting the differences between
a possibly large number of classes.



Chapter 4

Building Latent Class Growth
Trees

Abstract

Researchers use latent class growth (LCG) analysis to detect meaningful sub-
populations that display different growth curves. However, especially when
the number of classes required to obtain a good fit is large, interpretation of
the encountered class-specific curves may not be straightforward. To over-
come this problem, we propose an alternative way of performing LCG anal-
ysis, which we call LCG tree (LCGT) modeling. For this purpose, a recur-
sive partitioning procedure similar to divisive hierarchical cluster analysis is
used: classes are split until a certain criterion indicates that the fit does not
improve. The advantage of the LCGT approach compared to the standard
LCG approach is that it gives a clear insight into how the latent classes are
formed and how solutions with different numbers of classes relate. The prac-
tical use of the approach is illustrated using applications on drugs use during
adolescence and mood regulation during the day.

This chapter is in press at Structural Equation Modeling as Van den Bergh, M. & Ver-
munt, ].K. Building Latent Class Growth Trees https://doi.org/10.1080/10705511
.2017.1389610
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4.1 Introduction

Longitudinal data are used by social scientists to study development of be-
haviors or other phenomena. The analysis will often be done with latent
growth curve models (MacCallum & Austin, 2000), with the aim to assess
inter-individual differences in intra-individual change over time (Nesselroade,
1991). The typical growth model can be described as a multilevel model
(Raudenbush & Bryk, 2002), in which the intercept and slopes of the time
variables are allowed to vary across individuals. This heterogeneity is cap-
tured using random effects, which are basically continuous latent variables
(Jung & Wickrama, 2008). This approach assumes that the growth trajecto-
ries of all individuals can be appropriately described by a single set of the
growth parameters, and thus that all individuals come from a single pop-
ulation. Growth mixture modeling relaxes this assumption by allowing for
differences in growth parameters across unobserved subpopulations; that is,
each latent class has a separate growth model. However, fully unrestricted
growth mixture models are seldom used in practice, in part due to frequent
estimation problems, as well as the preference for simpler, restricted models.
Probably the most widely used form of growth mixture modeling is Latent
Class Growth (LCG) analysis, whereby the variances and covariances of the
growth factors within classes are fixed to zero (Jones, Nagin, & Roeder, 2001;
Nagin & Land, 1993). This assumes that all individuals within a class follow
the same trajectory and thus that there is no residual heterogeneity within
classes.

When a LCG model is applied, two key modeling decisions need to be
made; that is, on the number of classes and on the shape of the class-specific
trajectories. In general, the decision on the number of classes is of more im-
portance than the decision on the shape of the trajectory of each class as long
as the shape is flexible enough (Nagin, 2005). Typically, researchers estimate
LCG models with different numbers of classes and select the best model us-
ing likelihood-based statistics, usually with information criteria like AIC or
BIC, which weigh model fit and complexity. Although there is nothing wrong
with such a procedure, in practice it is often perceived as being problematic,
especially when the model is applied with a large data set; that is, when the
number of time points and/or the number of subjects is large. One problem
occurring in such situations is that the selected number of classes may be
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rather large (Francis, Elliott, & Weldon, 2016). This causes the class trajecto-
ries to pick up very specific aspects of the data, which might not be interest-
ing for the research question at hand. Moreover, these specific trajectories are
hard to interpret substantively and compare to each other. A second prob-
lem results from the fact that usually one would select a different number
of classes depending on the model selection criterion used. Because of this,
one may wish to inspect multiple solutions, as each of them may reveal spe-
cific relevant features in the data. However, it is often unclear how solutions
with different numbers of classes are connected, making it very unclear to
see what a model with more classes adds to a model with less classes.

To circumvent the issues mentioned above, it is most convenient to have
models with differing numbers of classes that are substantively related; in
other words, a model with K +1 classes is a refined version of a model with K
classes, where one of the classes is split in two parts. Such an approach would
result in a hierarchical structure, comparable to hierarchical cluster analysis
(Everitt et al., 2011) or regression trees (Friedman et al., 2001). Van der Palm
et al. (2016) developed an algorithm for hierarchical latent class analysis that
can be used for this purpose. While they focused on density estimation, with
some adaptations their algorithm has also been used to build so called la-
tent class trees for substantive interpretation (Van den Bergh et al., 2017). In
this paper, this procedure will be extended to the longitudinal framework to
construct Latent Class Growth Trees (LCGT).

With LCGT analysis a hierarchical structure is imposed on the latent classes
by estimating 1- and 2-class models on a ‘parent’ node, which initially com-
prised the full data. If the 2-class model is preferred according to a certain
information criterion, the data is split into ‘child” nodes and separate data
sets are constructed for each of the child nodes. The split is based on the pos-
terior class membership probabilities; hence, the data patterns in each new
data set will be the same as the original data set, but with weights equal to
the posterior class membership probabilities for the child class concerned.
Subsequently, each new child node is treated as a parent and it is checked
again whether a 2-class model provides a better fit than a 1-class model on
the corresponding weighted data set. This procedure continues until no node
is split up anymore. Because of this sequential algorithm, the classes at dif-
ferent levels of the tree can be substantively related, since child classes are
subclasses of a parent class. Therefore, LCGT modelling allows for direct in-
terpretation of the relationship between solutions with different numbers of
classes, while still retaining the same statistical basis.
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The remainder of the paper is set up as follows. In the next section, we
discuss the basic LCG model and show how it can be used to build a LCGT.
Also split criteria and guidelines for deviating from a binary split at the root
of the tree will be discussed, together with an entropy measure for the post-
hoc evaluation of the quality of splits. Two empirical data sets are used to
illustrate LCGT analysis. The paper concludes with final remarks by the au-
thors.

4.2 Method

4.2.1 Latent Class Growth models

Let y;; denote the response of individual ¢ at time point ¢, T; the number of
measurements of person ¢, and y; the full response vector of person i. More-
over, let X be the discrete latent class variable, k a particular latent class, and
K the number of latent classes. A LCG model is, in fact, a regression model
for the responses y;;, where time variables are used as predictors and where
intercept and slope parameters differ across latent classes. We will define the
LCG model within the framework on the generalized linear model, which
allows dealing with different scale types of the response variable (Muthén,
2004; Vermunt, 2007).

Let E(y;|X = k) denote the expected value of the response at time point
t for latent class k. After an appropriate transformation ¢(-), which mainly
depends on the measurement level of the r esponse variable, E(y;|X = k) is
modelled as a linear function of time variables. The most common approach
is to use polynomial growth curves, which yields the following regression
model for latent class k:

JIEWil X = k)] = Bor + Big -t + Pog - 2+ . + By, - £° 4.1)

The choice of the degree of the polynomial (the value of s) is usually an em-
pirical matter, though polynomials of degree larger than three are seldom
used. Recently, Francis et al. (2016) proposed an alternative approach involv-
ing the use of baseline splines in LCG models.

To complete the model formulation for the response vector y;, we have
to define the form of the class-specific densities f(y;|X = k), which could
be univariate normal for a continuous response, binomial for a binary re-

sponse, etc.. The response density for class k is a function of the expected
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value E(y;|X = k) and for continuous variables also of the residual vari-

ance. The LCG model for y; can now be defined as follows:

i

T;

where the size of class k is represented by P(X = k). A graphical represen-
tation of a LCG model with K = 3 can be seen in Figure 4.1.

The model estimates (the 5 parameters and class sizes) can be obtained
by maximizing the following log-likelihood function:

log L(6;y) Zlogf Vi), (4.3)

where f(y;) takes the form defined in Equation (4.2) and N denotes the total
sample size. Maximization is usually achieved through an EM algorithm
(Dempster et al., 1977), possibly combined with a Newton-type algorithm
(Vermunt & Magidson, 2013).

Figure 4.1: Graphical representation of a LCG model
with three trajectory classes.

After selecting a particular model, individuals may be assigned to latent
classes based on their the posterior class membership probabilities. Using
the Bayes theorem, these probabilities are obtained as follows:
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— I T; . =K
PX = KT fyalX = k) (4.4)

P = blys) = f(yi)

4.2.2 Latent Class Growth Tree models

Using an algorithm similar to the algorithm developed by Van der Palm et al.
(2016) for divisive latent class analysis, a LCG model can also be constructed
in a tree form. Such a LCGT has the advantages that increasing K classes to
K +1 classes results in directly related classes. This is because newly formed
classes are obtained by splitting one of the K classes. Due to this direct rela-
tion, models with different numbers of classes can be substantively related,
while still retaining the same statistical basis. Below we first describe the al-
gorithm for constructing a LCGT in more detail, and subsequently discuss
various statistics that can be used during this process.

A LCGT consists of parent and child nodes. Every set of child nodes
is based on one parent node and the first parent node consists of the root
node containing the complete data set. At each parent node, standard LCG
models are used and its child nodes are the classes assessed with the selected
parent model. At the next level of the tree, these child nodes, in their turn,
become parent nodes, and conditional on each new parent node a new set of
LCG models is defined. This process continues until a stopping criterion is
reached, for example, when the BIC does no longer decrease when splitting.

The basic equations of the growth curves of a LCGT model do not differ
from those of a standard LCG model (e.g., Equation 4.1). The fact that the
LCGT model is based on LCG models at parent nodes can be formulated as
follows:

K T
YZ|Xpn.rent Z P child — k|Xpm'ent) H f(yit|Xchild = k-, Xparent)7 (45)
k=1 t=1

where X,qcn Tepresents the parent class at level [ and X4 represents one
of the K possible newly formed classes at level [ + 1, with in general K being
2. Furthermore, P(X pia = k|Xparent) represents the size of a class, given
the parent node, while f(yi|Xchia = k, Xparent) represents the class-specific
response density at timepoint ¢, given the parent class. In other words, as in
a standard LCG analysis, a model for y; is defined, but now conditioned on
belonging to the parent class concerned.
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Estimation of the LCG model at the parent node X, involves maxi-
mizing the following weighted log-likelihood function:

N
log L(ea Yy, Xpurent) = Z wi,XparcmP(yi ‘Xpa'rent)7 (46)

i=1
where w; x,,,..... is the weight for person i at the parent class, which equals this
person’s posterior probability of belonging to the parent class concerned. So,
building a LCGT involves estimating a series of LCG model using weighted
data sets.

To see how the weights w; x are constructed, let us first look at the

parent
posterior class membership probabilities for the child nodes, conditional on
the corresponding parent node. Assuming a split is accepted, the posteriors

are obtained as follows:

P(Xchild = k|Xparent) HZLI f(yit‘Xchild = kv Xparent)

P(Xch,ild = k‘yu Xpa'r’ent) = P(y |X )
7 parent

4.7)

As proposed by Van der Palm et al. (2016), we use a proportional split
based on these posterior class membership probabilities for the K child nodes
conditional on the parent node, denoted by k£ = 1,2,..., K. If a split in two
classes is performed, the weights for the two newly formed classes at the next

level are obtained as follows:

Wi X pia=1 — /wv',,Xpm.e,,”,P(Xchild - 1‘yi;Xparent) (48)
WiXonia=2 = Wi Xparene D (Xenita = 2/Yi; Xparent)- (4.9)
In other words, a weight for individual 7 at a particular node equals the
weight at the parent node times the posterior probability of belonging to the
child node concerned conditional on belonging to the parent node. As an

example, the weights w; x,—, used for investigating a possible split of class
X, = 2 are constructed as follows:

Wi X119 = wi,leP(Xl = 2|y“X = 1), (410)

where in turn w; x-1 = P(X = 1|y;). This implies:
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which shows that a weight at level two is in fact a product of two posterior
class membership probabilities.

Construction of a LCGT can be performed using standard software for
LC analysis, namely by running a series of LC models with the appropriate
weights. After each accepted split a new data set is constructed and the pro-
cedure repeats itself. We developed an R routine in which this process is fully
automated. It calls the Latent GOLD program (Vermunt & Magidson, 2013)
in batch mode to estimate 1- and 2-class models, evaluates whether a split
should be made, and keeps track of the weights when a split is accepted. In
addition, it creates various graphical displays which facilitates the interpre-
tation of the LCGT (see among others Figure 4.2). A novel graphical display
is a tree depicting the class-specific growth curves for the newly formed child
classes (for an example, see Figure 4.4). In the trees, the name of a child class
equals the name of the parent class plus an additional digit, a 1 or a 2. To pre-
vent that the structure of the tree will be affected by label switching resulting
from the fact that the order of the newly formed classes depends on the ran-
dom starting values, when building the LCGT we locate the larger class at
the left branch with number 1 and the smaller class at the right branch with

number 2.

4.2.3 Statistics for building and evaluating the LCGT

Different types of statistics can be used to determine whether a split should
be accepted or rejected. Here, we will use the BIC (Schwarz, 1978), which is
defined as follows:

BIC = —2log L(0;y, Xparent) + log(N) P, (4.12)

where log L(.) represents the log-likelihood at the parent node concerned, N
the total sample size, and P the number of parameters of the model at hand.
Thus, a split is performed if at a parent node concerned the BIC for the 2-class
model is lower than the one of the 1-class model. Note that using a less strict
criterion (e.g. AIC) will yield the same splits as the BIC, but possible also
additional splits, and thus a larger tree.

Special attention needs to be dedicated to the first split at the root node
of the tree, in which one picks up the most dominant features in the data.
In many situations, a binary split at the root may be too much of a simplifi-
cation, and one would prefer allowing for more than two classes in the first
split. For this purpose, we cannot use the usual criteria like a AIC or BIC, as
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this would boil down to using again a standard LCG model. Instead, for the
decision to use more than two classes at the root node, we propose looking
at the relative improvement of fit compared to the improvement between the
1- and 2-class model. When using the log-likelihood value as the fit mea-
sure, this implies assessing the increase in log-likelihood between, say, the 2-
and 3-class model and compare it to the increase between the 1- and 2-class
model. More explicitly, the relative improvement between models with K
and K + 1 classes (Rl k1) can be computed as:

log Ly, —log Ly
log Ly, —log L,

Rlg g = , (4.13)

which yields a number between 0 and 1, where a small value indicates that
the K-class model can be used as the first split, while a larger value indicates
that the tree might improve with an additional class at the root of the tree.
Note that instead of an increase in log-likelihood, in Equation 4.13 one may
use other measures of improvement of fit, such as the decrease of the BIC or
the AIC.

The BIC and Rl i1 statistics are used to determine whether and how
splits should be performed. However, often we are also interested in evalu-
ating the quality of splits in terms of the amount of separation between the
newly formed classes; that is, to determine how different the classes are. In
other words, is a split substantively important or not. This is also relevant
if one would like to assign individuals to the classes resulting from a LCGT.
Note that the assignment of individuals to the two child classes is more cer-
tain when the larger of the posterior probabilities P(X nia = k|y:; Xparent) 1S
closer to 1. A measure to express this is the entropy; that is,

N 2
E””'OPZ/(XchM\Y) = Z Wi| X parent Z _P(Xch,ild = k|Y1‘,1, X;Um‘ent) log P(Xchv‘,ld = kb’z‘§ Xparent)~
i=1

k=1
(4.14)

Typically Entropy(Xchaqly) is rescaled to lie between 0 and 1 by express-
ing it in terms of the reduction compared to Entropy(Xcniq), which is the
entropy computed using the unconditional class membership probabilities
P(Xehita = k| Xparent). This so-called R?

Bntropy 15 Obtained as follows:

2 ~ Entropy(Xenia) — Entropy(Xenialy)

Entropy —

4.15
Entropy(Xenia) a1
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Latent Trajectory Classes
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Figure 4.2: Graphical example of a LCGT model
with a root of three classes.

2
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classes in the split concerned.

is to one, the better the separation between the child

4.3 Empirical examples

The proposed LCGT methodology will be illustrated by the analyses of two
longitudinal data sets. The data set in the first example contains a yearly di-
chotomous response on drugs use collected using a panel design. The second
data set contains an ordinal mood measure, recorded using an experience
sampling design with eight measures per day during one week. The two
data sets illustrate LCGT analyses, differing in the number of classes at their
root node. For both examples, the quality of the splits will also be evaluated
using the entropy-based R-squared.
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4.3.1 Example 1: Drugs Use

The first data set stems from the National Youth Survey (Elliot, Huizinga &
Menard, 1989). It contains nine waves, from 1976 to 1980 yearly and from
1980 to 1992 with three year intervals. The age at the first wave of the 1725
respondents (53% men and 47% women) varied between 11 and 17 years.
We use age at the panel wave concerned as the time variable, which takes on
values ranging from age 11 to 33. Each respondent has been observed at most
nine times (on average 7.93 times). The dichotomous dependent variable of
interest in our example will be whether the respondent used drugs or not
during the past year.

Because the trees based on second and third degree polynomial growth
curves were almost identical, the simpler one using a second degree poly-
nomial was retained. The tree structure and the class sizes at the splits* are
presented in Figure 4.3. As can be seen, there are four binary splits, which
result in a total of five latent classes at the end nodes.

Data
1037 269 \257 16
206 51

Figure 4.3: Layout of a LCGT with
a root of two classes on drugs use over age.

)

To determine whether it would be better to increase the number of classes
at the root of the tree, we can look at the relative improvement in fit of mod-
els with more than 2 classes according to the likelihood, BIC, and AIC as
reported in Table 4.1. As can be seen, the relative improvement with a third
class is around 10%. As this is quite low, we retain the tree with a binary split
at the root.

To interpret the encountered classes, the growth curves can be plotted for
the two newly formed classes at each node of the tree. This is displayed
in Figure 4.4. As can be seen, the first split results in a class with a low

*Every split should sum up to the class size of its parent node. However, because the
allocation is carried out on the basis of the posterior probabilities, the class sizes are not
integers. For convenience, these numbers have been rounded, which causes slight deviations
where the sum of two child nodes does not exactly add up to the parent node.
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Table 4.1: Likelihood, number of parameters, BIC, AIC,
and relative improvement of the fit statistics of a
traditional LC growth model with 1 to 6 classes.

IOgL P BIC AIC RIlogL RIBIC’ R[A](j
-5089 3 10200 10183

-4246 7 8543 8505

-4156 11 8394 8334 0106  0.090 0.102
-4086 15 8284 8202  0.083 0.067  0.079
-4046 19 8233 8129  0.048 0.031  0.043
-4028 23 8228 8102  0.021  0.003  0.016
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probability to use drugs (class 1) and a class with a high probability to use
drugs (class 2). Subsequently both of these classes are split further. Class 1
is split into class 11 with a very low probability of using drugs (on average
0.01%) and class 12 with a low probability during the first few years, but
with a slight increase from age 20 to 33. Class 2 is split into class 21 and
22, which mainly differ in the moment at which the probability of drugs use
is the highest: Respondents of class 21 start using drugs a few years earlier
than respondents of class 22. Finally, class 21 is split further, where class
211 has a moderate probability (around 0.6) to use drugs at an early age, but
this probability also quickly declines. Class 212 has a very high probability
(around 0.95) to start using drugs at an early age and this probability stays

quite constant up to age 25.

1.0
208 _
— Class1 506 Lo T T T TN
- - Class2 804 e S
a 0.2 7 S
00 = T T T 1
15 20 25 30
N .
1.0
2038
£0.6
—E 0.4
a0.2 -7
00 ———F——F—

Figure 4.4: LCGT with a root of 2 classes on drug use over age.
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The RQEntmpy values confirm what could also be seen from the depicted
growth curves: The first split on the complete data set shows a large differ-

ence between the two classes with a R? of 0.746. Furthermore, classes 11

Entropy
and 12 are quite similar with a R},,,,,, of 0.268, whereas the differences be-
tween classes 21 and 22 and between classes 211 and 212 are substantial (the
R iropy Values are 0.545 and 0.619 respectively). Hence, after the first split,
the branch of class 2 contains more important additional differences than the

one of class 1.

4.3.2 Example 2: Mood Regulation

The second data set stems from a momentary assessment study by Crayen,
Eid, Lischetzke, Courvoisier, and Vermunt (2012). It contains 8 mood as-
sessments per day during a period of one week among 164 respondents (88
women and 76 men, with a mean age of 23.7, SD = 3.31). Respondents an-
swered a small number of questions on a handheld device at pseudo-random
signals during their waking hours. The delay between adjacent signals could
vary between 60 and 180 minutes (M [SD] = 100.24[20.36] minutes, min = 62
minutes, max = 173 minutes). Responses had to be made within a 30-minute
time window after the signal, and were otherwise counted as missing. On
average, the 164 participants responded to 51 (of 56) signals (M [SD] = 51.07
[6.05] signals, min = 19 signals, max = 56 signals). In total, there were 8374
non-missing measurements.

At each measurement occasion, participants rated their momentary mood
on an adapted short version of the Multidimensional Mood Questionnaire
(MMQ). Instead of the original monopolar mood items, a shorter bipolar ver-
sion was used to fit the need for brief scales. Four items assessed pleasant-
unpleasant mood (happy-unhappy, content-discontent, good-bad, and well-
unwell). Participants rated how they momentarily feel on a 4-point bipo-
lar intensity scales (e.g., very unhappy, rather unhappy, rather happy, very
happy). For the current analysis, we focus on the item well-unwell. Prelim-
inary analysis of the response category frequencies showed that the lowest
category (i.e., very unwell) was only chosen in approximately 1% of all occa-
sions. Therefore the two lower categories were collapsed together into one
unwell category. The following analysis is based on the recoded item with
three categories (conform Crayen et al. (2012)).

For the analysis, we used a LCG model based on an ordinal logit model.
The time variable was the time during the day, meaning that we model the
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Figure 4.5: Layout of a LCGT with a root of two classes
on mood regulation during the day.

mood change during the day. There was a substantial difference between a
tree based on a second or a third degree polynomial, which indicates that
developments are better described by cubic growth curves (see also the tra-
jectory plots in Figure 4.7). Because there was no substantial difference be-
tween a tree based on a third or a fourth degree polynomial, a third degree
polynomial was used. The LCGT model obtained with a root of two classes
is quite large, with in total seven binary splits, resulting in a total of eight
latent classes (Figure 4.5). A large tree already indicates that a larger number
of classes at the root of the tree might be appropriate. Moreover, based on
the relative improvement of the log-likelihood, BIC, and AIC (Table 4.2), it
seems sensible to increase the number of classes at the root of the three.

The layout and size of the LCGT with 3 root classes can be seen in Figure
4.6 and its growth curve plots in Figure 4.7. The growth plots show that at the
root of the tree, the three different classes all improve their mood during the
day. They differ in their overall mood level, with class 3 having the lowest

Table 4.2: Likelihood, number of parameters, BIC, AIC,
and relative improvement of the fit statistics of a
traditional LC growth model with 1 to 6 classes.

IOgL P BIC AIC RIlogL RIBIC’ R[A]C
-7199 4 14424 14408

-6741 9 13538 13504

-6578 14 13244 13191 0355  0.333  0.347
-6516 19 13149 13077 0.137  0.107  0.126
-6471 24 13091 13001 0.097  0.065 0.085
-6443 29 13064 12956  0.062  0.030  0.050
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Figure 4.6: Layout of a LCGT with a root of three classes
on mood regulation during the day.
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and class 2 the highest overall score. Moreover, class 1 seems to be more
consistently increasing than the other two classes.

These three classes can be split further. Class 1 splits into two classes
with both an average score around one, class 11 just above and class 12 just
below. Moreover, the increase in class 11 is larger than in class 12. The split of
class 2 results in class 21 consisting of respondents with a very good mood in
the morning, a quick decrease until mid-day, and a subsequent increase. In
general the mean score of class 21 is high relative to the other classes. Class
22 starts with an average mean score and subsequently only increases. The
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Figure 4.7: LCGT with a root of three classes
on mood regulation during the day.
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splitting of class 3 results in two classes with a below average mood. Both
classes increase, class 31 mainly in the beginning and class 32 mainly at the
end of the day.

The Rf%t,,opy of the different splits is quite high. The root of the tree has a
of 0.889, while the R? of the subsequent splits are 0.734, 0.932

Entropy

RQE'm‘,ropy
and 0.897 respectively. This indicates that the differences between the sub-
classes 21 and 22 are larger than those between subclasses 31 and 32, while

classes 11 and 12 differ the least.

4.4 Discussion

LCG models are used by researchers who wish to identify (unobserved) sub-
populations with different growth trajectories using longitudinal data. How-
ever, often the number of latent classes encountered is rather large, making
interpretation of the results difficult. Moreover, because solutions with dif-
ferent number of classes are unrelated, a substantive comparison of models
with different numbers of classes is not possible, which is especially prob-
lematic when different model selection criteria point at a different optimal
number of classes. To resolve these issues, we proposed using LCGT models
in which the identification of the latent classes is done in a sequential manner.
The constructed hierarchical tree will show the most important distinctions
in growth trajectories in the first splits, and more detailed distinctions in lat-
ter splits. While we primarily used binary splits, we also showed how to
decide about larger splits using relative improvement of fit measures. The
latter is mainly of interest at the root of the tree. The proposed LCGT algo-
rithm and graphical displays which are available as R code were illustrated
with two empirical examples. The two illustrative examples showed that
easily interpretable solutions are obtained using our new procedure.
Various extensions and variants of the proposed procedure are possible
and worth to study in more detail. Whereas in the current paper we restricted
ourselves to LCGTs with only binary splits after the split at the root of the
tree, also at the second and next levels it may be of interest to use larger split
sizes, which may result in a tree with different split sizes within branches.
Because the size of the splits may strongly affect the structure of the con-
structed LCGT, we recommend deciding this separately per split rather than
using a fully automated procedure. Note that at this stage more substantive

information about the branch is available to guide a decision.
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The BIC was used to decide whether or not to split a class, as it has been
shown to perform well for standard LC and LCG analysis (Nylund et al.,
2007). However, other measures could be used as well, where their strictness
will influence the likelihood to start a new branch within a tree. Therefore,
the decision criterion used can affect the bottom part of the tree significantly.
Note that the lower parts are also affected by the decision to increase th