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CHAPTER 1

Introduction

1.1 Quadratic optimization
A quadratically constrained quadratic optimization (QCQO) problem can be formu-
lated as the mathematical optimization problem

min
y∈Rn

yTA0y + b0T y + c0

s.t. yTAjy + bj
T

y + cj ≤ 0, j = 1, ...,m,
(1.1)

where, n,m ∈ N, Aj ∈ Rn×n, bj ∈ Rn, and cj ∈ R, j = 0, ...,m. A convex QCQO
problem, where all the matrices Aj, j = 0, ...,m, are positive semi-definite (PSD),
is known to be tractable (polynomial-time solvable), see, e.g., [28, 100]. There are
different approaches that can be applied to solve a convex QCQO problem. Many
methods have been proposed to solve a convex QCQO problems directly (see, e.g.,
[2, 98]). Besides, since convex QCQO problems are a special case of the class of
second-order cone optimization (SOCO) problems, all of the algorithms to solve an
SOCO problem, like [10,107], are applicable to solve a convex QCQO problem.
There are many problems that can be formulated as a QCQO problem; see, e.g.,
the applications in [91, 98, 104] for convex cases, and applications in [15, 46, 62] for
nonconvex ones. In the next section, we briefly describe three applications, each of
which belongs to a challenging class of QCQO problems that we consider in this
thesis, namely nonconvex QCQO problems and convex ones containing uncertainty.
We discuss these classes in Sections 1.3 and 1.4, respectively. More precisely, in
Section 1.3 we first briefly talk about the underlying ideas of some existing methods
that solve a general QCQO problem. Then, by use of examples, we explain the
ideas behind the methods that we will propose in Chapters 2 and 3. In Section 1.4,
after a short description of a QCQO problem with uncertainties we describe two
standard ways of dealing with the uncertainties. Then, we describe the contributions
of Chapters 4 and 5 using examples. A summary of the contributions of this thesis
is provided in Section 1.6.
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1.2 Applications
In this section, we describe three well-known problems that are considered in this
thesis, namely pooling, portfolio choice, and norm approximation problems, as ap-
plications of our theoretical results.

1.2.1 Pooling problem

A class of nonconvex QCQO problems that we consider in this thesis is called pooling
problems. Pooling problems arise in chemical processes, wastewater treatment, and
petroleum industries, see, e.g., [5, 16,42,80].
Several different optimization formulations have been proposed for a pooling problem
in the literature, all of which contain bilinear equality and inequality constraints. The
extensive description of a pooling problem and three formulations are presented in
Chapter 2, and here we only provide a simple example to illustrate the problem.
This example is equivalent to Haverly1 [70], a well-known pooling problem instance.
We develop this simple example further throughout this chapter to illustrate the
nonconvexity aspect of the problem, and the techniques we use to solve it.

Example 1.1 Consider a water supplier who has to meet demands for two types of
water, one at a temperature at most 25◦C, and another at a temperature at most
15◦C. The supplier plans to meet the demands by mixing three types of water with
degrees 30◦C, 10◦C, and 20◦C, respectively, using one pool. Figure 1.1 shows the
mixing diagram used by the supplier.

Inputs Pool Outputs

30◦C

p ≤ 25◦C

10◦C

20◦C ≤ 15◦C

y1

y2

y5

y6

y3

y4

Figure 1.1: The diagram of the illustrative example for a pooling problem.

The temperatures of the water in the outputs depend on the temperature of the water
in the pool. For example, assume that y1 and y2 kiloliters (kl) of water of degrees
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30◦C and 10◦C, respectively, go to the pool. Then, the temperature of the water in
the pool, denoted by p, is

p = 30y1 + 10y2

y1 + y2
.

Hence, the flows y1 and y2, and the temperature p satisfy the bilinear constraint

30y1 + 10y2 = p (y1 + y2) . (1.2)

Similarly, by setting y3 and y5 to be the flows from the pool and the third input to the
first output, respectively, the demand for the water of degree at most 25◦C leads to
the bilinear inequality py3 + 20y5 ≤ 25(y3 + y5).

1.2.2 Portfolio choice problem

The first convex QCQO problem that we consider is called a portfolio choice problem.
We explain this problem by the following example.

Example 1.2 Assume that an investor wants to invest her money in two companies
for the year 2018. The annual returns of the companies in the last seven years are
as in Table 1.1.

2010 2011 2012 2013 2014 2015 2016
Company 1 -1.43 -2.52 1.54 1.31 1.33 3.01 0.77
Company 2 1.07 -2.31 5.39 1.58 0.66 2.26 -0.19

Table 1.1: Information of the return rates (%) of two companies in the seven
consecutive years 2010-2016.

According to this information, the mean return vector and the covariance matrix of
the return rates of the companies are respectively

µT = [0.5729, 1.2086], Σ =
[
3.6013 2.8915
2.8915 5.5640

]
.

The investor wants to find a portfolio that minimizes the overall trade-off between
the negative return and risk of the portfolio for the year 2018. Hence, she decides to
solve

min
y∈R2

{
−µTy + λyTΣy : y1 + y2 = 1, y ≥ 0

}
, (1.3)

where λ > 0 is a parameter that is chosen by the investor and controls the trade-off
between the mean and the risk. Also, y is the decision variable, which shows how the
investor should choose the portfolio for the year 2018, i.e., yi is the percentage of the
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money that will be invested on the ith company, i = 1, 2. This way of formulating
a portfolio choice problem is first proposed in [94], and known as the Markowitz
mean-variance formulation. Let λ = 1. By solving (1.3), the investor reaches the
conclusion of investing 70% of the money on Company 1 and 30% of it on Company
2 (we will call this Portfolio 1). She has reached to this portfolio by estimating µ and
Σ based on the historical data in Table 1.1. However, these estimations may have
some errors, and the solution may be sensitive to them.
One of the characteristics of this problem that we use later is concavity (more precisely
linearity) of the objective function in µ and Σ.

1.2.3 Norm approximation and linear regression problems

The last application that we present in this section is a norm approximation problem,
which has a convex quadratic formulation. Consider a matrix A ∈ Rm×n and a vector
b ∈ Rm. Assume that the goal is to find the closest point to the vector b in the range
of the matrix A. Therefore, we are interested in the optimal solution to the norm
approximation problem

min
y∈Rn
‖Ay − b‖2, (1.4)

where ‖.‖2 is the Euclidean norm. Depending on the characteristics of A and b, the
optimal solution may be extremely sensitive to a minor error in A and b. Notice that
for this problem the objective function is convex in A and b.

Example 1.3 A particular case of a norm approximation problem is finding a re-
gression line. Consider two random variables X and Y , where Y depends on X. The
regression line problem finds a line with the slope of c and the intercept b such that
the line Y = cX+b has the least distance to a set of data points with m observations,
i.e., (c, b) is an optimal solution to

min
ω∈Rm,c∈R

b∈R

‖ω‖2

s.t. ωi = cX i + b− Y i, i = 1, ...,m,

where (X i, Y i) ∈ R2, i = 1, ...,m, are the data points. Figure 1.2 provides an example
of linear regression for a data set. In this example, the red line is the regression line
corresponding to the 7 data points.
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-4 -2 0 2 4

-10

0

10

[X
i
,Y

i
]

cX+b

Figure 1.2: Illustrative example for a linear regression problem. The bullets
are the data points and the red line is the regression line.

1.3 The nonconvexity aspect
In (1.1), if one of the matrices Aj, j = 0, ...,m, is not PSD, then the QCQO problem
is not convex anymore. There are nonconvex QCQO problems that are proved to
be tractable (see, e.g., [39, 73, 82]) or have convex reformulations (see, e.g., [20, 30,
113, 122]). Furthermore, there are nonconvex QCQO problems for which a global
optimum can be approximated efficiently (see, e.g., [49, 121]).
In contrast to the tractable cases, there are nonconvex QCQO problems proved to
be intractable. A simple example is when A0 has one negative eigenvalue, and Aj =
0, j = 1, ...,m [105]. A class of intractable nonconvex QCQO problems, which is
considered in this thesis, is the class of pooling problems [7].
General QCQO problems have been studied in the literature extensively. The recently
proposed methods to solve a QCQO problem can be classified into different classes,
such as piecewise linear relaxations [4], semi-definite relaxations [77, 108], convex
relaxations [11, 123], sum-of-squares (SOS) polynomial relaxations [89], methods for
linear complementarity problems [47,99], and heuristics [90,106].
The state-of-the-art algorithm for solving a pooling problem is based on the piecewise
linear relaxation proposed in [4], and implemented in the software APOGEE [97].
In this thesis, to approximate nonconvex QCQO problems, we modify two recently
proposed hierarchies based on SOS polynomial relaxations, called bounded degree
sum of squares (BSOS) [88] and sparse-BSOS hierarchies [120], for polynomial opti-
mization (PO) problems. To have a better understanding of the two hierarchies we
briefly explain the ideas behind them on an example. The detailed discussions on
them are presented in Chapters 2 and 3, respectively.

Example 1.1 (continued) Assume that the capacity of the tanks storing the water
with degrees at most 25◦C and 15◦C are 100 kl and 200 kl, with selling price of 9100$

kl
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and 15100$
kl

, respectively. Also, assume that the costs of the different input water types
with degrees 30◦C, 10◦C, and 20◦C are 6100$

kl
, 16100$

kl
, and 10100$

kl
, respectively. The

supplier wants to find the cheapest flows, and the resulting temperature of the water
in the pool that meet the demand. The following problem is called the P-formulation,
which formulate the supplier’s problem mathematically:

min
y∈R6
p∈R

6y1 + 16y2 + y5 − 5y6 − 9y3 − 15y4

s.t. y1 + y2 − y3 − y4 = 0,
y3 + y5 ≤ 100,
y4 + y6 ≤ 200,
30y1 + 10y2 − p(y3 + y4) = 0,
20y5 + py3 ≤ 25(y5 + y3),
20y6 + py4 ≤ 15(y6 + y4),
yi ≥ 0, i = 1, ..., 6, 10 ≤ p ≤ 30.



(1.5)

Note that the interpretation of the fourth and fifth constraint was explained earlier
and the other constraints may easily be interpreted in the same way. Figure 1.3 shows
the graph G associated with this problem. This graph is constructed as follows: As
the nodes, we set V = {y1, ..., y7}, where y7 = p. The nodes yi and yj are adjacent if
yi and yj are present in the definition of at least one constraint.

y1 y3 y5

y7

y2 y4 y6

Figure 1.3: The associated graph G corresponding to the problem (1.5).

The maximal complete subgraphs of Graph G (demonstrated in Figure 1.3) are

D1 = {y1, y2, y3, y4, y7} , D2 = {y3, y5, y7} , D3 = {y4, y6, y7} .

The sets D1, D2, and D3 are called maximal cliques in graph theory.

The basic idea behind the BSOS and sparse-BSOS hierarchies is adding a type of re-
dundant constraints to (1.5) and approximating its Lagrangian dual. The redundant
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constraints that are considered are constructed by multiplying d constraints, in the
dth level of the hierarchy.
One of the differences in the hierarchies is in the constraint-multiplications used in
them. The BSOS hierarchy makes use of all constraint-multiplications in contrast
to the sparse-BSOS hierarchy that takes advantage of the maximal cliques of the
associate graph. More precisely, the multiplication of two constraints is used in the
sparse-BSOS hierarchy if both of them contain variables that are in the same maximal
clique. This will be illustrated in the following example.

Example 1.1 (continued) For problem (1.5) the multiplication

[y1 + y2 − y3 − y4] y5 (1.6)

plays no role in the sparse-BSOS hierarchy, since the set {y1, y2, y3, y4, y5} is not a
subset of any maximal clique. However, the multiplication (1.6) is involved in the
BSOS hierarchy.

The major benefit of working with maximal cliques rather than all variables is for
sparse problems, where the overlaps in the maximal cliques of the associated graph
are small. For these problems, the sparse-BSOS hierarchy has levels that may be
solved more efficiently than the ones in the BSOS hierarchy.

1.4 The uncertainty aspect
As it was mentioned, a challenge in optimization is dealing with uncertainties in the
parameters, i.e., uncertainties in the matrix Aj, vector bj, or scalar cj, j = 0, ...,m, in
(1.1). Uncertainties in parameters of a QCQO problem may arise from measurement,
estimation, and implementation errors. In general, a QCQO problem is prone to any
errors (uncertainties) in its parameters. Even a slight change in one parameter value
may have an enormous impact on the feasibility or the quality of the solution. Let
us give an example to show how the uncertainty may affect a solution.

Example 1.2 (continued) According to the information in Table 1.1, for Company
1 the return rate got positive from 2012 onward. Let us consider the mean return
and covariance matrix of the returns from 2012 until 2016 instead of 2010 until
2016. By using this information, solving (1.3) results in the following portfolio: 94%
investment on Company 1 and 6% on Company 2. We will call it Portfolio 2.
Let us evaluate the portfolios on the objective function of (1.3) using the mean re-
turn vector and covariance matrix of the information from 2010 until 2016, and the
information from 2012 until 2016 in the following table.
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2010-2016 2012-2016
Portfolio 1: 70% investment on

Company 1 and 30% on Company 2 2.7163 -0.6783

Portfolio 2: 94% investment on
Company 1 and 6% on Company 2 2.9173 -0.9004

This table shows that choosing different µ and Σ yields different solutions with no-
ticeably different objective values.

As it was mentioned in Example 1.2, the imprecise (uncertain) data results in a
solution that may not be reliable. To handle this data uncertainty, we use Robust
Optimization [24], where the only known information about data is a user-specified
set that contains the values of the uncertain parameters against which the decision
maker wants to be safeguarded. There are two approaches in Robust Optimization
dealing with uncertainties: static robust optimization (SRO) [26] and adjustable
robust optimization (ARO) [25]. SRO tries to find a solution by considering the worst-
case scenario in the uncertainty set. In SRO all decisions are made at the moment
of solving the problem (“here and now”), and before realization of the uncertain
parameters.

Example 1.2 (continued) To compare the SRO with (1.3), let us assume that the
possible values of the mean return and covariance matrix are obtained either from the
information from 2010 until 2016 or from 2012 until 2016 (Z = {(µ1,Σ1), (µ2,Σ2)}).
SRO tries to optimize the problem with respect to the worst-case scenario in the
uncertainty set:

Opt(SRO) = min
y∈R2
t∈R

t

s.t. − µTy + yTΣy ≤ t, ∀ (µ,Σ) ∈ Z
y1 + y2 = 1,
y1, y2 ≥ 0.

(1.7)

In (1.7) the uncertain parameters appear only in the first constraint. Therefore, the
uncertain parameter can be replaced by a worst-case scenario in Z. Since Z has only
two elements, we conclude that the optimal solution of (1.7) is either Portfolio 1 or
Portfolio 2. By solving (1.7), we find out that the optimal solution is Portfolio 1,
which means it is the best solution considering the worst-case scenario in Z.

The uncertainty set Z in Example 1.2 contains only finite number of scenarios. In
Chapter 4, we show how to construct a statistical sound uncertainty set based on
historical data. This set contains infinitely many scenarios, but we will show that
the problem (1.7) is still tractable.
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Another approach that deals with uncertainty is ARO. In ARO, a part of the decisions
is “here and now.” The rest of the decisions will be made after the realization of the
uncertain parameter (“wait and see”). We describe the ARO more precisely by means
of another example.

Example 1.4 ( [43]) A construction company plans to build two subway stations in
two districts of a city that are separated by a river; see Figure 1.4.

10 12 14 16
9

10

11

12

13

District 1 District 2

River

Figure 1.4: Locations of the districts in Example 1.4.

The manager uses the polyhedra {x ∈ R2 : Axx ≤ bx} and {y ∈ R2 : Ayy ≤ by} to lo-
cate the districts. She then tries to find the location of the stations in such a way
that their distance is as low as possible. Therefore, she decides to solve the following
problem:

min
x∈R2
y∈R2

‖x− y‖2

s.t. Axx ≤ bx, Ayy ≤ by,

(1.8)

where x and y are the locations of the first and second station, respectively. Using
Figure 1.4, she finds that the locations marked by “*” are the optimal solutions to
(1.8). After looking at the previous constructions of the company on District 1, the
manager finds out that because of the rocky ground on that area the solution to (1.8)
cannot be implemented precisely in the first district and there is always an error
(denoted by ζx) in it, which is between `ζ and uζ. Therefore, she decides to find the
closest locations in Districts 1 and 2 that are immunized against any implementation
error in District 1. Thus, she solves the corresponding SRO problem:

min
x,y∈R2
t∈R

t

s.t. ‖x+ ζx − y‖2 ≤ t, ∀ζx ∈ [`ζ , uζ ]
Ax (x+ ζx) ≤ bx, ∀ζx ∈ [`ζ , uζ ]
Ayy ≤ by,

(1.9)
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where [`ζ , uζ ] denotes the box [`ζ1 , uζ1 ]×[`ζ2 , uζ2 ]. After talking to a robust optimization
expert, the manager notices that (1.9) is conservative. This is because the company
first constructs the station in the first district and then according to its location they
can find the location of the station in the second district. Thus, the location of the
station in the second district is a function of the implementation error, and can be
adjusted when the error has been realized. Therefore, she also considers the ARO
problem:

min
x∈R2

max
`ζ≤ζx≤uζ

min
y(ζx)∈R2
t(ζx)∈R

t(ζx)

s.t. ‖x+ ζx − y(ζx)‖2 ≤ t(ζx),
Ax (x+ ζx) ≤ bx,

Ayy(ζx) ≤ by.

(1.10)

By solving (1.10), the manager gets the optimal decision rule y∗(ζx), which not only
yields a better objective value in (1.10) than the optimal value of (1.9), but also helps
the manager to make a suitable decision about the location of the second station when
the construction of the first station is finished.

There are some challenges in Examples 1.2 and 1.4, that are general challenges in the
field of Robust Optimization. The first challenge, as can be seen in Example 1.2, is
the construction of the uncertainty set. There are different ways of constructing an
uncertainty set for the mean vector and covariance matrix, e.g., using complicated
statistical results [50] or using distance functions such as different norms without
utilizing any statistical information [55, 64]. In Chapter 4, contrary to the results
in the literature, we make use of some standard statistical results to construct an
uncertainty set for (µ,Σ). We prove that, considering this uncertainty set, (1.7) has
a tractable reformulation.
The other challenges are in obtaining the optimal values of SRO and ARO problems
(we denote them by Opt(SRO) and Opt(ARO), respectively). The usual way in
acquiring Opt(SRO) is by making use of duality for each constraint. In this way,
the robust counterpart of a constraint, which is mostly written as a maximization
of a function over the uncertainty set, is reformulated in such a way that the “max-
imization” becomes “minimization”, and then the “minimization” is reduced to a
feasibility problem (see, e.g., [22, 66]).

Example 1.8(continued) Consider the second constraint in (1.9). Let us assume
that Ax has m rows denoted by Aix, i = 1, ...,m. Using duality in linear optimization,
for i = 1, ...,m, we have

max
`ζ≤ζx≤uζ

Aix (x+ ζx) = min
λi1,λ

i
2∈R2

{
Aixx+ uTζ λ

i
1 − `Tζ λi2 : λi1 − λi2 = Ai

T

x , λ
i
1, λ

i
2 ≥ 0

}
.
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Additionally, we know that the first constraint is equivalent to

max
`ζ≤ζx≤uζ

‖x+ ζx − y‖2 ≤ t,

and the maximum is attained in a corner point of `ζ ≤ ζx ≤ uζ. Therefore, the first
constraint in (1.9) is equivalent to∥∥∥∥∥x+

[
`ζ1
`ζ2

]
− y

∥∥∥∥∥
2
≤ t,

∥∥∥∥∥x+
[
`ζ1
uζ2

]
− y

∥∥∥∥∥
2
≤ t,∥∥∥∥∥x+

[
uζ1
uζ2

]
− y

∥∥∥∥∥
2
≤ t,

∥∥∥∥∥x+
[
uζ1
`ζ2

]
− y

∥∥∥∥∥
2
≤ t.

Hence, (1.9) is equivalent to

min
x,y∈R2
t∈R

t

s.t.
∥∥∥∥∥x+

[
`ζ1
`ζ2

]
− y

∥∥∥∥∥
2
≤ t,

∥∥∥∥∥x+
[
`ζ1
uζ2

]
− y

∥∥∥∥∥
2
≤ t,∥∥∥∥∥x+

[
uζ1
uζ2

]
− y

∥∥∥∥∥
2
≤ t,

∥∥∥∥∥x+
[
uζ1
`ζ2

]
− y

∥∥∥∥∥
2
≤ t,

Aixx+ uTζ λ
i
1 − `Tζ λi2 ≤ bix, λi1 − λi2 = Ai

T

x , i = 1, ...,m,
Ayy ≤ by, λi1, λ

i
2 ≥ 0, i = 1, ...,m.

(1.11)

The known results in the literature to reformulate an SRO problem corresponding
to an uncertain convex QCQO problem can be split into two classes. The first class
contains convex uncertainty sets over (Aj, bj, cj), j = 0, ...,m, in problem (1.1). The
second class contains convex uncertainty sets over (Lj, bj, cj), where Aj = LjLj

T ,
j = 0, ...,m. We call these classes convex QCQO problems with concave and convex
uncertainties, respectively. Surprisingly, the focus of the literature is more on the
second class. As one can see, problems (1.3) and (1.4) belong to the first and second
class, respectively.
For each of the classes, there are only some specific-structured uncertainty sets that
are dealt with in the literature. As an example, for convex QCQO problems with
concave uncertainty, tractable reformulations exist only for specific polyhedral and
ellipsoidal uncertainty sets. In this thesis, we treat both classes in Chapter 4 consid-
ering a broad range of uncertainty sets.
It is known that Opt(ARO) ≤ Opt(SRO). Therefore, for an uncertain convex QCQO
problem, ARO may yield a better objective value than SRO, but, computational
intractability is an obstacle in the path of acquiring the optimal value of ARO, even
for linear optimization problems [57]. One way of finding an upper bound on the
optimal value of an ARO is by solving the corresponding SRO, because even though
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ARO is intractable in many cases, the corresponding SRO may be tractable (see,
e.g., [24,66]). This can be seen in Example (1.4), where the ARO problem (1.10) on
page 10 is intractable but the SRO problem (1.9) is tractable.
For an uncertain linear optimization (LO) problem, it is shown in [27] that if the
uncertain parameters in each constraint are independent of ones in the other con-
straints, then any optimal solutions to the SRO problem is optimal for the ARO
problem; however, there is no such a result for an uncertain QCQO problem. In
Chapter 5, we obtain such results not only for a convex QCQO, but also for some
general nonlinear optimization problems.
Another way of finding an upper bound on Opt(ARO) is by restricting the “wait and
see” variable y to be affine in the uncertain parameter ζ. This approximation, which
is called using affine decision rules, is tractable for some specific QCQO problems
where the functions in the optimization problem are linear in the “wait and see”
variables. However, affine decision rules are not efficient, in general, even when
at least one of the constraints or objective function is quadratic in “wait and see”
variables, such as in (1.10). In the following example, we illustrate the impact of
using affine decision rules for the ARO problem (1.10).

Example 1.8(continued) For the ARO problem (1.10), using affine decision rules
means restricting y(ζx) to be affine in ζx, i.e., y(ζx) = u + V ζx, where u ∈ R2 and
V ∈ R2×2. Therefore, (1.10) can be approximated by

min
x,t
u,V

t

s.t. ‖x+ ζx − u− V ζx‖2 ≤ t, ∀ζx ∈ [`ζ , uζ ]
Ax (x+ ζx) ≤ bx, ∀ζx ∈ [`ζ , uζ ]
Ay (u+ V ζx) ≤ by, ∀ζx ∈ [`ζ , uζ ]
x, u ∈ R2, V ∈ R2×2, t ∈ R,

(1.12)

which is an SRO problem. As we explained it earlier, the first constraint can be
reformulated as a system of four constraints by checking the corner points of the
uncertainty set. However, if the dimension of the uncertainty set increases, then this
method is not applicable anymore, and (1.12) becomes intractable. We emphasize here
that (1.12) belongs to the second class of SRO problems, since the first constraint is
convex in the uncertain parameter.

1.5 Contributions of the thesis
The contributions of the thesis can be split into two parts: ones on approximating
a nonconvex QCQO problem such as a pooling problem, and ones on dealing with
uncertainties in the parameters of a convex QCQO problem.
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1.5.1 The nonconvexity aspect

As it was mentioned, we use the BSOS and sparse-BSOS hierarchies in PO to ap-
proximate a general QCQO problem and specially a pooling problem. Here, we list
the contributions of the thesis regarding this aspect:

(1) We provide, for the first time in the literature of pooling problems, a systematic
method of eliminating all linear and nonlinear equality constraints in a mathe-
matical formulation of a pooling problem.

(2) We make a contribution to the performance improvement of the BSOS hierarchy
by reducing the number of variables and constraints in each level of the hierarchy
for a general QCQO problem.

(3) We introduce a generalization of the BSOS and sparse-BSOS hierarchies for a
general PO problem, where the functions in the problem are all polynomial.
This generalization is made to handle problems with equality constraints without
increasing the size and destroying the sparsity pattern of the problem, while
keeping the convergence results.

(4) The performance assessment of the hierarchies with and without our contribu-
tions are carried out on pooling problems. Based on our numerical experiments
on some well-known instances and the one constructed in this thesis, we con-
clude that the contributions have a significant impact on improving the perfor-
mance of the hierarchies and make them comparable with the state-of-the-art
algorithm [97] for small-sized instances.

1.5.2 The uncertainty aspect

The contribution of this thesis in the realm of Robust Optimization is five-fold:

(5) We extend the scope of the robust convex QCQO problems and provide a tractable
reformulation of a convex quadratic constraint with concave uncertainty for a
vast range of vector and matrix uncertainty sets. This extends the results in
the literature, which are only for some specific vector-valued and matrix-valued
uncertainty sets.

(6) We construct a new uncertainty set over a vector containing the mean vector
and vectorized covariance matrix, using historical data and standard statistical
results. The advantage of the uncertainty set compared to the one in [50] is that
we do not have a restrictive assumption on the statistical information derived
from the historical data. Moreover, we use some standard statistical results,
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rather than some complicated ones that are used in [50], to derive the uncertainty
set for the mean vector and covariance matrix. In addition to our theoretical
results, we assess the effectiveness of this uncertainty set on deriving a tractable
reformulation of a robust portfolio choice problem (problem (1.7)) using real-life
data.

(7) We provide inner and outer tractable approximations of a convex quadratic con-
straint with convex uncertainty and compact uncertainty set. The approxima-
tions are shown to be tight for a class of problems. Our results can handle
a broad class of uncertainty sets, whereas the results in [24, 29, 54, 63] are for
specific sets. Moreover, we assess the performance of our approximations by con-
ducting numerical experiments on a norm approximation and a linear regression
problem.

(8) We provide conditions under which the optimal solutions to SRO problems are
also optimal for the ARO problems not only for an uncertain QCQO problem but
also for a general uncertain nonlinear optimization problem. The main assump-
tion for this equivalence is that the uncertain parameters in each constraint are
independent of the ones in the other constraints (constraint-wise uncertainty).

(9) We show under some mild assumptions that for problems in which some, but not
all, of the uncertain parameters are constraint-wise, there exist optimal solutions
to the ARO problems in which the “wait and see” variables are independent of
the constraint-wise uncertain parameters. Moreover, we show that for a class of
problems, to approximate the ARO problems by using affine decision rules we
can restrict the decision rules to be affine in the non-constraint-wise uncertain
parameters and constant in the others, and get the same approximation.

1.6 Structure of the thesis and disclosure
This thesis was partially supported by the EU Marie Curie Initial Training Network,
grant number 316647 (“Mixed Integer Nonlinear Optimization (MINO)”), and it is
based on the following four research papers:

Chapter 2 A. Marandi, J. Dahl, E. de Klerk, “A numerical evaluation of
the bounded degree sum-of-squares hierarchy of Lasserre,
Toh, and Yang on the pooling problem”, Annals of Operations
Research (online first), DOI: 10.1007/s10479-017-2407-5, 2017.
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Chapter 3 A. Marandi, E. de Klerk, J. Dahl, “Solving sparse polynomial
optimization problems with chordal structure using the
sparse, bounded degree sum-of-squares hierarchy,” Opti-
mization Online, 2017, first revision submitted to Discrete Applied
Mathematics.

Chapter 4 A. Marandi, A. Ben-Tal, D. den Hertog, B. Melenberg,
“Extending the scope of robust quadratic optimization,”
Optimization Online, 2017, Submitted to Operations Research.

Chapter 5 A. Marandi, D. den Hertog, “When are static and adjustable
robust optimization problems with constraint-wise uncer-
tainty equivalent?” Mathematical Programming, (online first),
DOI: 10.1007/s10107-017-1166-z, 2017.

This thesis is split into two parts. In the first part, which consists of the first two
chapters, we present the contributions regarding solving a general QCQO problem.
In Chapter 2, after providing some preliminaries, we show how one can eliminate
the equality constraints in a formulation of a pooling problem (Contribution 1) using
techniques from linear algebra. Then, we explain a procedure to reduce the number
of variables and constraints in each level of the BSOS hierarchy (Contribution 2).
Chapter 3 contains the generalization of the BSOS and sparse-BSOS hierarchies
(Contribution 3). Moreover, we show how one can find a sparsity pattern in a PO
problem using some techniques from graph theory. The performance assessments
(Contribution 4) of the first two contributions are provided in Chapter 2, and ones
corresponding to the third contribution are presented in Chapter 3.
The numerical experiments in this thesis were carried out on an Intel i7-4790 3.60GHz
Windows computer with 16GB of RAM in two programming languages. The results
in Chapters 2 and 4 are obtained using MATLAB, but the results in Chapter 3 are
achieved from Julia [38]. Therefore, to have a fair comparison, a part of the numerical
experiments in Chapter 2 are repeated in Chapter 3. The semi-definite optimization
(SDO) solver that is used in this thesis is MOSEK 8 [12].
The second part of the thesis, which consists of the last two chapters, contains the
contributions regarding a convex QCQO problem with uncertainty. Particularly, in
Chapter 4, we show how one can reformulate a convex quadratic constraint with
concave uncertainty to a system of convex constraints (Contribution 5). Then, we
show how one can approximate a convex quadratic constraint with convex uncertainty
in two ways (Contribution 7). At the end, by making use of some standard statistical
tools, we construct an uncertainty set over the mean vector and vectorized covariance
matrix, based on historical data (Contribution 6). In Chapter 5, we present the
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results regarding solving and approximating an ARO problem. We provide some
conditions for problems with constraint-wise uncertainty under which the SRO and
ARO problems have the same optimal value (Contribution 8). Then, we show for
problems in which a part of the uncertainty is constraint-wise and not all, that there
exists an optimal decision rule for the ARO problem that is independent of the
constraint-wise uncertain parameters (Contribution 9).



Part I

Nonconvex Quadratic
Optimization





CHAPTER 2

A numerical evaluation of the BSOS hierarchy on
the pooling problem

2.1 Introduction
Polynomial optimization (PO) is the class of nonlinear optimization problems involv-
ing polynomials only:

f ∗ = inf
x∈Rn

f(x)

s.t. gj(x) ≥ 0, j = 1, ...,m,
(2.1)

where f and all gj are n-variate polynomials. We will assume throughout this chapter
that

Assumption I) the feasible set F = {x ∈ Rn | gj(x) ≥ 0, j = 1, ...,m} is compact;

Assumption II) for all x ∈ F one has gj(x) < 1, j = 1, ...,m.

The Assumption II is theoretically without loss of generality. To see this, set

Mj := max
{

max
x∈F

gj(x), 1
}
.

Therefore, gj(x) ≤ Mj for all x ∈ F . Now, instead of considering (2.1), we consider
the following equivalent PO problem:

f ∗ = inf
x∈Rn

f(x)

s.t. ε

Mj

gj(x) ≥ 0, j = 1, ...,m,
(2.2)

where ε is a parameter in (0, 1). Clearly, (2.2) satisfies the assumptions I and II.
Note that, in practice, it may be difficult to find the values Mj, or even useful upper
bounds on these values.
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In general, PO problems are intractable, since they contain problems like the maxi-
mum cut problem1 as special cases; see e.g. [89]. In 2015, Lasserre, Toh and Yang [88]
introduced the so-called bounded degree sum-of-squares (BSOS) hierarchy to obtain a
nondecreasing sequence of lower bounds on the optimal value of problem (2.1) when
the feasible set is compact. Each lower bound in the sequence is the optimal value of
an SDO problem. Moreover, the authors of [88] showed the following asymptotically
convergent results:
Theorem 2.1 ( [88]) Consider (2.1), and let Assumption I hold. If {1, g1, . . . , gm}
in (2.1) generates the ring of polynomials and gj(x) ≤ 1, j = 1, ...,m, for any x ∈ F ,
then the sequence of lower bounds obtained by the BSOS hierarchy (as defined in (2.5)
below) converges asymptotically to the optimal value of problem (2.1).

The authors in [88] from their numerical experiments concluded that the BSOS hi-
erarchy was efficient for quadratic problems.
In this chapter, we analyze the BSOS hierarchy in more detail. We also study variants
of the BSOS hierarchy where the number of variables is reduced.
The numerical results in this chapter are on pooling problems, that belong to the
class of problems with bilinear functions. The pooling problem is well-studied in the
chemical process and petroleum industries. It has also been generalised for appli-
cation to wastewater networks; see, e.g., [80]. It is a generalization of a minimum
cost network flow problem where products possess different specifications. There
are many equivalent mathematical models for a pooling problem and all of them
include bilinear functions in their constraints. Haverly [70] described the so-called
P-formulation, and afterwards many researchers used this model, e.g., [1, 23, 58]. In
the recent paper [17], Baltean-Lugojan and Misener show that the P-formulation of
the pooling problem instances Haverly1-3 proposed by Haverly [70], which have been
considered in the literature as test problems, belong to a class of polynomial-time
solvable instances. There are other formulations in the literature for the pooling
problem, such as Q-, PQ-, and TP-formulations; in this chapter, we use the P- and
PQ-formulations and point the reader to the survey by Gupte et al. [68] where all
the formulations are described, as well as the PhD thesis by Alfaki [6].
One way of getting a lower bound for a pooling problem is using convex relaxation, as
done, e.g., by Foulds et al. [58]. Similarly, Adhya et al. [1] introduced a Lagrangian
approach to get tighter lower bounds for pooling problems. Also, there are many
other papers studying duality [23], piecewise linear approximation [97], heuristics
for finding a good feasible solution [8], etc. A relatively recent survey on solution
techniques is [96].

1The maximum cut problem is to find a subset S of vertex set V in a graph G = (V,E) such
that the number of edges between S and V \S is as large as possible. It is proved in [79] that a
maximum cut problem is NP-complete.
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In a seminal paper in 2000, Lassere [85] first introduced a hierarchy of lower bounds
for PO problems using SDO relaxations. Frimannslund et al. [60] tried to solve
pooling problems with the linear matrix inequality (LMI) relaxations obtained by
this hierarchy. They found that, due to the growth of the SDO problem sizes in
the hierarchy, this method is not effective for the pooling problems. In this chap-
ter, we therefore consider the BSOS hierarchy as an alternative, since it is not so
computationally intensive.
The structure of this chapter is as follows: We describe the BSOS hierarchy in Section
2.2. In Section 2.3 the pooling problem is defined, and we review three mathematical
models for it, namely the P-, Q- and PQ-formulations. Also, we solve some pooling
problems by the BSOS hierarchy in this section. Section 2.5 contains the numerical
results after a reduction in the number of linear variables, using Assumption II, and
reduction in the number of constraints in each iteration of the BSOS hierarchy.

2.2 The bounded degree sum of squares hierarchy
for polynomial optimization

In this section, we briefly review the background of the BSOS hierarchy from [88].
For easy reference, we will use the same notation as in [88].
In what follows Nk will denote all k-tuples of nonnegative integers, and we define

Nk
d =

{
α ∈ Nk :

k∑
i=1

αi ≤ d

}
.

The space of n×n symmetric matrices will be denoted by Sn, and its subset of PSD
matrices by S+

n .
Consider the general nonlinear optimization problem (2.1). For fixed d ≥ 1, the
following problem is clearly equivalent to (2.1):

min
x

f(x)

s.t.
m∏
j=1

gj(x)αj(1− gj(x))βj ≥ 0, ∀(α, β) ∈ N2m
d .

(2.3)

The underlying idea of the BSOS hierarchy is to rewrite problem (2.1) as

f ∗ = sup
t
{t : f(x)− t ≥ 0 ∀x ∈ F} .

The next step is to use the following Positivstellensatz by Krivine [84] to remove the
quantifier ‘∀x ∈ F ’.
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Theorem 2.2 ( [84], see also §3.6.4 in [89]) Assume that gj(x) ≤ 1 for all x ∈ F and
j = 1, ...,m, and {1, g1, . . . , gm} generates the ring of polynomials. If a polynomial g
is strictly positive on F then

g(x) =
∑

(α,β)∈N2m

λαβ
m∏
j=1

gj(x)αj(1− gj(x))βj

for finitely many λαβ > 0.

Defining
hαβ(x) :=

m∏
j=1

gj(x)αj(1− gj(x))βj , x ∈ Rn, α, β ∈ Nm,

we arrive at the following sequence of lower bounds (indexed by d) for problem (2.1):

f ∗ ≥ sup
t∈R
λ≥0

t : f(x)− t =
∑

(α,β)∈N2m
d

λαβhαβ(x) ∀x ∈ Rn

 . (2.4)

For a given integer d > 0 the right-hand-side is a linear optimization (LO) problem,
and the lower bounds converge to f ∗ in the limit as d→∞, by Krivine’s Positivstel-
lensatz. This hierarchy of LO bounds was introduced by Lasserre [86].
A subsequent idea, from [87, 88] was to strengthen the LO bounds by enlarging
its feasible set as follow: If we fix κ ∈ N, and denote by ∑[x]κ the space of SOS
polynomials of degree at most 2κ, then we may define the bounds

qκd := sup
t,λ≥0

t : f(x)− t−
∑

(α,β)∈N2m
d

λαβhαβ(x) ∈ Σ[x]κ

 .
The resulting problem is an SDO problem, and the size of the PSD matrix variable
is determined by the parameter κ, hence the name bounded-degree sum-of-squares
(BSOS) hierarchy. By fixing κ to a small value, the resulting SDO problem is not
much harder to solve than the preceding LO problem, but potentially yields a better
bound for given d.
For fixed κ and for each d, one has

qκd = sup
t,λ,Q

t

s.t. f(x)−
∑

(α,β)∈N2m
d

λαβhαβ(x)− t = trace
(
Qvκ(x)vκ(x)T

)
, ∀x ∈ Rn

Q ∈ S+
s(κ), λ ≥ 0,

(2.5)

where s(κ) =
(
n+κ
κ

)
, and vκ(x) is a vector with a basis for the n-variate polynomials

up to degree κ.
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Letting τ = max{deg(f), 2κ, dmaxj deg(gj)}, we may eliminate the variables x in
two ways to get an SDO:

• Equate the coefficients of the polynomials on both sides of the equality in
(2.5), i.e., use the fact that two polynomials are identical if they have the same
coefficients in some basis.

• Use the fact that two n-variate polynomials of degree τ are identical if their
function values coincide on a finite set of s(τ) =

(
n+τ
τ

)
points in general position.

The second way of obtaining an SDO problem is called the ‘sampling formulation’,
and was first studied in [92]. It was also used for the numerical BSOS hierarchy
calculations in [88], with a set of s(τ) randomly generated points in Rn.
It was proved, e.g. in [102, Theorem 3.1], that two polynomials are identical if they
have the same values on the points in

∆(n, τ) =
{
x ∈ Rn τx ∈ Nn,

n∑
i=1

xi ≤ 1
}
,

where τ is the largest degree of the polynomials. So, instead of randomly generated
points we use ∆(n, τ). Thus we obtain the following SDO reformulation of (2.5):

qκd = sup
t,λ,Q

t

f(x)−
∑

(α,β)∈N2m
d

λαβhαβ(x)− t = trace
(
Qvκ(x)vκ(x)T

)
,∀x ∈ ∆(n, τ)

Q ∈ S+
s(κ), λ ≥ 0.

(2.6)

In the following, we will mention results, proved in [88], that give some information
on feasibility and duality issues for the BSOS relaxation. But we first mention a
well-known result, which is called the conic duality theorem.

Theorem 2.3 [see, e.g., Theorem 2.4.1 in [28] ] Consider the following SDO prob-
lem:

P ∗ := min
x∈Rn

cTx :
n∑
j=1

Ajxj −B � 0

 , (2.7)

for given matrices B,Aj ∈ Rn×n, j = 1, ..., n. Then, the dual of (2.7) is

D∗ := max
Λ∈Rn×n

{
trace (BΛ) : trace

(
AjΛ

)
= cj, j = 1, ..., n, Λ � 0

}
, (2.8)

and we have:
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1. trace (BΛ) ≤ cTx for any feasible x in (2.7) and feasible Λ in (2.8);

2. If (2.7) is bounded below and strictly feasible (∑n
j=1A

jxj − B � 0 for some
feasible x), then (2.8) is solvable and P ∗ = D∗;

3. If (2.8) is bounded above and strictly feasible (there exists Λ � 0 such that
trace (AjΛ) = cj for all j = 1, ..., n), then (2.7) is solvable and P ∗ = D∗.

Now, we are ready to mention the results from [88] about the dual of (2.6).

Theorem 2.4 ( [88]) If the feasible region of problem (2.1) contains a solution x̄

such that gj(x̄) > 0, for all j = 1, ...,m ( (2.1) is strictly feasible), then the dual SDO
problem of (2.6) is strictly feasible.

Theorem 2.4 asserts the link between the strictly feasibility of the dual of (2.6) and
the PO problem (2.1). Now we mention a straightforward corollary of this theorem
for solvability of (2.6).

Corollary 2.1 Let the problem (2.1) be strictly feasible. If the SDO problem (2.6)
has a feasible solution, it has an optimal solution as well.

Proof. Theorem 2.4 implies that the dual of (2.6) is strictly feasible. Also, since the
SDO problem (2.6) is feasible by assumption, we can conclude that the dual of (2.6)
is bounded below, using Theorem 2.3 part 1. Now Theorem 2.3 part 2 implies that
(2.6) has an optimal solution.

Note that problem (2.6) may be infeasible for given d and κ. One only knows that
it will be feasible, and therefore qκd will be defined, for sufficiently large d.

Remark 2.1 Assume that at the d-th level of the hierarchy we have qκd = f ∗, i.e.
finite convergence of the BSOS hierarchy, then

f(x)− f ∗ =
∑

(α,β)∈N2m
d

λαβhαβ(x) + vκ(x)TQvκ(x) ∀x ∈ Rn. (2.9)

Let x∗ ∈ F be an optimal solution (f(x∗) = f ∗), then it is clear from (2.9) that

0 =
∑

(α,β)∈N2m
d

λαβhαβ(x∗) + vκ(x∗)TQvκ(x∗),

and due to the fact that Q is PSD, then

λαβhαβ(x∗) = 0 ∀(α, β) ∈ N2m
d . (2.10)

Hence, for an (α, β) ∈ N2m
d , if hαβ(x) is not binding at an optimal solution, then

λαβ = 0. We will use this observation to reduce the number of variables later on.
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Inputs Pools Outputs

1 1 1

2 2 2

... ... ...

I L J

Figure 2.1: An example of a standard pooling problem with I inputs, L pools
and J output.

2.3 The P-, Q- and PQ-formulations of the pool-
ing problem

In this section, we describe the P-, Q- and PQ-formulations of the pooling problem.
The notation we are using is the same as in [68]. To define the pooling problem,
consider an acyclic directed graph G = (N ,A) where N is the set of nodes and A is
the set of arcs. This graph defines a pooling problem if:

i) the set N can be partitioned into three subsets I,L and J , where I is the set
of inputs with I members, L is the set of pools with L members and J is the
set of outputs with J members.

ii) A ⊆ (I × L) ∪ (I × J ) ∪ (L × L) ∪ (L × J ); see Figure 2.1.

In this chapter, we consider cases where A ∩ L × L = ∅, which is called standard
pooling problem because there is no arc between the pools.
For each arc (i, j) ∈ A, let cij be the cost of sending a unit flow on this arc. For each
node, there is possibly a capacity restriction, which is a limit for sum of the incoming
(outgoing) flows to a node. The capacity restriction is denoted by Ci for each i ∈ N .
Also, there are some specifications for the inputs, e.g., the sulfur concentrations in
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them, which are indexed by k in a set of specifications K with K members. By letting
yij be the flow from node i to node j, uij the restriction on yij that can be carried
from i to j, and plk the concentration value of kth specification in the pool l, the
pooling problem can be written as the following optimization model:

min
y,p

∑
(i,j)∈A

cijyij (2.11a)

s.t. ∑
i∈I:

(i,l)∈A

yil =
∑
j∈J :

(l,j)∈A

ylj, l ∈ L (2.11b)

∑
j∈L∪J :
(i,j)∈A

yij ≤ Ci, i ∈ I (2.11c)

∑
j∈J :

(l,j)∈A

ylj ≤ Cl, l ∈ L (2.11d)

∑
i∈I∪L:
(i,j)∈A

yij ≤ Cj, j ∈ J (2.11e)

0 ≤ yij ≤ uij, (i, j) ∈ A (2.11f)∑
i∈I:

(i,l)∈A

λikyil = plk
∑
j∈J :

(l,j)∈A

ylj, l ∈ L, k ∈ K (2.11g)

∑
i∈I:

(i,j)∈A

λikyij +
∑
l∈L:

(l,j)∈A

plkylj ≤ µmaxjk

∑
i∈I∪L:
(i,j)∈A

yij, j ∈ J , k ∈ K (2.11h)

∑
i∈I:

(i,j)∈A

λikyij +
∑
l∈L:

(l,j)∈A

plkylj ≥ µminjk

∑
i∈I∪L:
(i,j)∈A

yij, j ∈ J , k ∈ K (2.11i)

where µmaxjk and µminjk are the upper and lower bound of the kth specification in out-
put j ∈ J , and λik is the concentration of kth specification in the input i. Here is a
short interpretation of the constraints:
(2.11b): volume balance between the incoming and outgoing flows in each pool.
(2.11c): capacity restriction for each input.
(2.11d): capacity restriction for each pool.
(2.11e): capacity restriction for each output.
(2.11f): limitation on each flow.
(2.11g): specification balance between the incoming and outgoing flows in each pool.
(2.11h): upper bound of the output specification.
(2.11i): lower bound of the output specification.

For a general pooling problem, the aforementioned model is called the P-formulation.
Consider a pool l ∈ L and the arc incident to it from input i ∈ I. Let us denote
by qil the ratio between the flow in this arc and the total incoming flow to this pool.
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So, yil = qil
∑
j∈J ylj, and plk = ∑

i∈I λikqil for any k ∈ K. Applying these to the
P-formulation yields the following problem called the Q-formulation:

min
y,p

∑
(i,j)∈A

cijyij (2.12)

s.t.
(2.11c)− (2.11f)∑
i∈I:

(i,l)∈A

qil = 1, qil ≥ 0, l ∈ L, i ∈ I, (i, l) ∈ A

yil = qil
∑
j∈J :

(l,j)∈A

ylj, l ∈ L, i ∈ I, (i, l) ∈ A

∑
i∈I:

(i,j)∈A

λikyij +
∑
l∈L:

(l,j)∈A

∑
i∈I:

(i,l)∈A

λikqilylj ≤ µmaxjk

∑
i∈I∪L:
(i,j)∈A

yij, j ∈ J , k ∈ K

∑
i∈I:

(i,j)∈A

λikyij +
∑
l∈L:

(l,j)∈A

∑
i∈I:

(i,l)∈A

λikqilylj ≥ µminjk

∑
i∈I∪L:
(i,j)∈A

yij, j ∈ J , k ∈ K.

Adding two sets of redundant constraints

ylj
∑
i∈I:

(i,l)∈A

qil = ylj, l ∈ L, j ∈ J , (l, j) ∈ A, (2.13a)

qil
∑
j∈J :

(l,j)∈A

ylj ≤ Clqil, i ∈ I, l ∈ L, (i, l) ∈ A, (2.13b)

gives an equivalent problem, called the PQ-formulation. It is clear that all formula-
tions are nonconvex quadratic optimization problems which are not easy to solve [69].

2.3.1 McCormick relaxation and the pooling problem

Assume that x and y are variables with given lower and upper bounds

`x ≤ x ≤ ux, `y ≤ y ≤ uy.

Then, the following inequalities are implied when χ = xy:

χ ≥ `xy + `yx− `x`y, (2.14a)
χ ≥ uxy + uyx− uxuy, (2.14b)
χ ≤ `xy + uyx− `xuy, (2.14c)
χ ≤ uxy + `yx− ux`y. (2.14d)
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It is known that the convex hull of

B := {(x, y, χ) χ = xy, `x ≤ x ≤ ux, `y ≤ y ≤ uy} ,

which is called the McCormick relaxation, is exactly the set of (x, y, χ) that satisfies
the inequalities (2.14); see, e.g. [68].
In the pooling problem, the following lower and upper bounds on the variables are
implied:

mλ := mini∈I λik ≤ plk ≤Mλ := maxi∈I λik, ∀l ∈ L, k ∈ K,
0 ≤ ylj ≤ min{Cj, ulj}, ∀j ∈ J , l ∈ L.

So, one can get a lower bound by using the McCormick relaxation of each bilinear
term in the P- or PQ-formulations.
The redundant constraints (2.13) guarantee that the relaxation obtained by using
the McCormick relaxation for the PQ-formulation is stronger than that for the P-
formulation (see, e.g., [68] for the proof).
In this chapter, we are going to use the BSOS hierarchy to find a sequence of a
lower bounds that approximate the optimal value of the pooling problem. First we
analyze the P-formulation and in Section 2.5.3 we compare the results by using the
PQ-formulation.
The BSOS hierarchy is only defined for problems without equality constraints and the
P-formulation has (K + 1)L equality constraints. The simplest way of dealing with
equality constraints is to replace each equality constraint by two inequalities; however,
this process increases the number of constraints which is not favorable for the BSOS
hierarchy. In Chapter 3, we provide a modification of the BSOS hierarchy to deal with
the equality constraints directly without increasing the size of the problem. Another
way of dealing with the equality constraints is eliminating the equality constraints
(2.11b) and (2.11g), if possible.

2.3.2 Eliminating equality constraints

Let l ∈ L. We assume without loss of generality that the first t inputs feed the pool
l. Therefore, equality constraints (2.11b) and (2.11g) can be written as follows:

1 1 . . . 1
λ11 λ21 . . . λt1
λ12 λ22 . . . λt2
... ... . . . ...

λ1K λ2K . . . λtK


︸ ︷︷ ︸

A:=


y1l

y2l
...
ytl

 =
∑
j∈J :

(l,j)∈A

ylj



1
pl1
pl2
...
plK


∀l ∈ L. (2.15)
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Let rank(A) = r. Applying Singular Value Decomposition [44, Apendix A.5.4], there
are matrices U = [U1, U2] ∈ R(K+1)×(K+1), V = [V1, V2] ∈ Rt×t,Σ ∈ Rr×r such that

A = U

[
Σ 01

02 03

]
V T , UTU = I, V TV = I,

Σ = diag(σ1, ..., σr), σ1 ≥ σ2 ≥ ... ≥ σr > 0,

where V1 ∈ Rt×r, V2 ∈ Rt×(t−r), U1 ∈ R(K+1)×r, U2 ∈ R(K+1)×(K+1−r), 01 ∈ Rr×(t−r), 02 ∈
R(K+1−r)×r, 03 ∈ R(K+1−r)×(t−r). Therefore, (2.15) can be written as

V T
1


y1l

y2l
...
ytl

 =

 ∑
j∈J :

(l,j)∈A

ylj

Σ−1UT
1



1
pl1
pl2
...
plK


∀l ∈ L, (2.16)

0 =

 ∑
j∈J :

(l,j)∈A

ylj

UT
2



1
pl1
pl2
...
plK


∀l ∈ L. (2.17)

The fact that V TV = I, implies that all columns in V , and hence in V1 are linearly
independent. Therefore, taking the QR decomposition of V T

1 , i.e., V T
1 = Q[R1, R2],

where R1 ∈ Rr×r is upper triangular and invertible, R2 ∈ Rr×(t−r), and Q ∈ Rr×r is
orthonormal (QTQ = QQT = I), (2.16) is equivalent to


y1l

y2l
...
yrl

 = R−1
1


 ∑

j∈J :
(l,j)∈A

ylj

QTΣ−1UT
1



1
pl1
pl2
...
plK


−R2


y(r+1)l

y2l
...
ytl




, ∀l ∈ L. (2.18)

Concerning (2.17), if for a feasible solution of (2.11), ∑j∈J ylj = 0 then it means that
there is no outflow from pool l, which implies that there is no input to it and plk,
k = 1, ..., K, can attain any real values. So, among all of the possible values for plk
we choose one satisfying

0 = UT
2



1
pl1
pl2
...
plK


, (2.19)
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which is a system of K variables and K − r + 1 linearly independent equalities with
r ≥ 1. Moreover, a feasible solution with the property ∑j∈J ylj 6= 0 definitely satisfies
(2.19). So, instead of (2.17), we may solve (2.19), which may be done using the QR
decomposition.
By solving (2.19), we may write [plr, ..., plK ] as a linear function of [pl1, ..., pl(r−1)], and
by substitution in (2.18), we find the quadratic function corresponding to [y1l, y2l, . . . , yrl].

Remark 2.2 We emphasize that after these substitutions, the equivalent mathemat-
ical model to the pooling problem is still a nonconvex QCQO problem.

Remark 2.3 The interpretation of eliminating equality constraints is as follows when
the matrix A is full rank (rank(A) = min{K + 1, t}): For pools with exactly K + 1
entering arcs, the entering flow values are given by the total leaving flow and the
concentrations in the pool. With more than K + 1 arcs, say t, t−K − 1 flow values
can be chosen freely and the remaining K + 1 determined by total leaving flow and
concentrations. When t < K+1, a basis of t concentration values define the K+1−t
remaining ones.

2.4 First numerical Results
In this section, we study convergence of the BSOS hierarchy of lower bounds q1

d

(d = 1, 2, ...) for pooling problems (κ = 1). First, it is worth pointing out the number
of variables and constraints needed to compute q1

d. The number of constraints, as it
is mentioned in the previous section, is

(
n+2d

2d

)
. Also, the number of linear variables

is one more than the size of N2m
d , namely

(
2m+d
d

)
+ 1.

Table 2.1 gives some information of the standard pooling problem instances we use
in this chapter. The GAMS files of the pooling problem instances that we use in this
chapter, except DeyGupte4, can be found on the website http://www.ii.uib.no/
˜mohammeda/spooling/.
The DeyGupte4 instance is constructed in this section by using the results of [51] as
follows. Consider a standard pooling problem with I = 2 inputs, L = 2 pools and
J = 4 outputs. Assume that both inputs are connected to the pools and both pools
are connected to the outputs (see Figure 2.2). Let K = 2 and the concentration
of specifications be (1, 0) and (0, 1) for the first and second input, respectively. We
number the inputs by 1, 2, pools by 3, 4, and outputs by 5, 6, 7, 8. Let µmaxjk = µminjk

(given in Figure 2.2), uil = 4 and ulj = 1, for i = 1, 2, l = 3, 4, j = 5, 6, 7, 8, and
k = 1, 2. Set the capacity of inputs, pools, and outputs to C1 = C2 = 8, C3 = C4 = 4,
and C5 = C6 = C7 = C8 = 1. Let

δ := min{‖µmaxĵk − µ
max
j̄k ‖2 : ĵ 6= j̄ ĵ, j̄ = 5, 6, 7, 8, k = 1} ≈ 0.014,

http://www.ii.uib.no/~mohammeda/spooling/
http://www.ii.uib.no/~mohammeda/spooling/
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optimal value
[7], [51]

PQ-linear relaxation
value [7], [51] I J L K # var. # const.

Haverly1 -400.00 -500.00 3 2 1 1 5 11
Haverly2 -600.00 -1,000.00 3 2 1 1 5 11
Haverly3 -750.00 -800.00 3 2 1 1 5 11
Ben-Tal4 -450.00 -550.00 4 2 1 1 6 13
Ben-Tal5 -3,500.00 -3,500.00 5 5 3 2 29 54

DeyGupte4 -1.00 [-4,-3] 2 4 2 2 10 52
Foulds2 -1,100.00 -1,100.00 6 4 2 1 18 38
Foulds3 -8.00 -8.00 11 16 8 1 152 219
Foulds4 -8.00 -8.00 11 16 8 1 152 219
Adhya1 -549.80 -840.27 5 4 2 4 11 41
Adhya2 -549.80 -574.78 5 4 2 6 11 53
Adhya3 -561.05 -574.78 8 4 3 6 17 66
Adhya4 -877.6. -961.93 8 5 2 4 16 51

RT2 -4,391.83 -6,034.87 3 3 2 8 14 67
sppA0 Unknown * -37,772.75 20 15 10 24 161 816

Table 2.1: Details for some well-known pooling problem instances.
* The optimal value for this instance is not known, and it lies in
[−36233.40,−35812.33], using [7] and NEOS server [48].

cil = 0, for i = 1, 2 and l = 3, 4. Set c3j = −1, c4j = 2
δ
, for all j = 5, 6, 7, 8, and the

rest of the costs as 0.
The optimal value of this problem is −1 with the optimal solution constructed by
sending flows from inputs to the first pool, and from it to one of the outputs such
that the restriction in the specification in it is satisfied [51]. As an example, one of
the optimal solutions is constructed by sending 0.13 and 0.87 unit flow from the first
and second inputs, respectively, to the first pool, and then 1 unit flow from the first
pool to the first output.
DeyGupte4 is constructed to show that a specific class of approximations of the
bilinear terms in the PQ-formulation, including the McCromick relaxation, provides
bounds far from the optimal value. In particular, one can show the following:

Theorem 2.5 ( [51]) Consider a scaled PQ-formulation of the DeyGupte4 instance
where each variable lies in [0, 1]. Let g, h : [0, 1] × [0, 1] → R be piecewise linear
functions such that

g(α, β) ≥ αβ ≥ h(α, β), ∀α, β ∈ [0, 1].

Also, let us replace any bilinear term αβ in the scaled PQ-formulation by a new
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Inputs Pools Outputs

(0.87, 0.13)

(0,1) (0.83, 0.17)

(1,0) (0.84, 0.16)

(0.9, 0.1)

Format: λik µmax
jk

Figure 2.2: The diagram of the DeyGupte4 instance.

variable χ and add the following constraints to it:

g(α, β) ≥ χ ≥ h(α, β).

If (α, β, αβ + e), (1 − α, β, (1 − α)β + e) ∈ S for α = 0.87 and β = 0.67, and any
|e| ≤ 0.054, where

S = {(α, β, χ) g(α, β) ≥ χ ≥ h(α, β), α, β ∈ [0, 1]} ,

then the optimal value of the reformulation is in [−4,−3].

Remark 2.4 The restriction that we have put here on the approximation S is weaker
than what we imposed in our paper [93], which restricted the approximation S to be
such that, for any α, β ∈ [0, 1] and |e| ≤ 0.05, the point (α, β, αβ + e) lies in S.
Clearly, McCormick relaxation does not satisfies this assumption, since the piecewise
under and over estimators that we get from it touch the manifold B on page 28 at some
points. The weaker assumption in this section, however, holds for the McCormick
relaxation, even when the box [0, 1]× [0, 1] is split into the four boxes[

0, 1
2

]
×
[
0, 1

2

]⋃[
0, 1

2

]
×
[1
2 , 1

]⋃[1
2 , 1

]
×
[
0, 1

2

]⋃[1
2 , 1

]
×
[1
2 , 1

]
.

In Table 2.1, we recall in column “PQ-linear relaxation value” the lower bound
proposed in [7] of each instance. This lower bound is the optimal value of the
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Inputs Pools Outputs

(6, 3)

(9, 100)
2.5

(16, 1)

(10, 2) (15, 200)
1.5

Format: (cil, λik) (−clj , Cj)
µmax

jk

0

100
0

1000

100

y∗
il

y∗
lj

Figure 2.3: Optimal solution for Haverly1

PQ-formulation after applying McCormick relaxation for each bilinear term. Fur-
thermore, columns “# var.” and “# const.” in this table represents the number of
variables and constraints in the P-formulation after eliminating equality constraints,
respectively.

Example 2.1 By way of example, we give the details for the first instance in Table
2.1, called Haverly1. Its optimal solution is shown in Figure 2.3, and the optimal
value is −400 [1]. The optimal flow from node i to node j is denoted by y∗ij in Figure
2.3.
This instance has three inputs (denoted by 1, 2, 3), one pool (denoted by 4), two
outputs (denoted by 5, 6), and one specification. The mathematical model for this
instance is as follows:

min 6y14 + 16y24 + 10 [y35 + y36]− 9 [y45 + y35]− 15 [y46 + y36]
s.t. y14 + y24 = y45 + y46,

0 ≤ y45 + y35 ≤ 100, (2.20a)
0 ≤ y46 + y36 ≤ 200, (2.20b)
3y14 + y24 = p1 [y45 + y46] ,
2y35 + p1y45 ≤ 2.5 [y35 + y45] , (2.20c)
2y36 + p1y46 ≤ 1.5 [y36 + y46] , (2.20d)
yij ≥ 0, p1 ≥ 0.

So, we can use the elimination method described in the previous section, which implies
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that y14 = 1
2(y45 +y46)(p1−1), y24 = 1

2(y45 +y46)(3−p1). Therefore, the reformulated
model of this instance using scaling x1 := p1

3 , x2 := y45
200 , x3 := y46

200 , x4 := y35
200 , x5 :=

y36
200 , is

min −200x2(15x1 − 12)− 200x3(15x1 − 6) + 200x4 − 1000x5

s.t. 1 ≥− 3
4(x1 − 1)(x2 + x3) ≥ 0 (2.21a)

1 ≥ 1
4(3x1 − 1)(x2 + x3) ≥ 0 (2.21b)

1 ≥ 1− 2(x2 + x4) ≥ 0 (2.21c)
1 ≥ 1− (x3 + x5) ≥ 0 (2.21d)

1 ≥ 1
2(x4 + x2)− 2

5x4 −
3
5x1x2 ≥ 0 (2.21e)

1 ≥ 1
2(x5 + x3)− 2

3x5 − x1x3 ≥ 0 (2.21f)
1 ≥ xi ≥ 0, i = 1, ..., 5,

where the leftmost inequalities are redundant, (2.21a) and (2.21b) are from the sign
constraints after the elimination, (2.21c), (2.21d), (2.21e), and (2.21f) are from
(2.20a), (2.20b), (2.20c) and (2.20d), respectively.
The last step is to multiply the constraint functions by a factor 0.9 (any value in (0, 1)
will do, but we used 0.9 for our computations), to ensure that the ‘≤ 1’ conditions
hold with strict inequality on the feasible set. Thus, we define g1(x) = −0.9 · 3

4(x1 −
1)(x2 + x3), etc.
We will use the BSOS hierarchy to find the optimal value of this example (Table 2.2
below).

The results of applying the BSOS hierarchy to Haverly1 and the other pooling prob-
lem instances are listed in Table 2.2. “Numerical Prob.” and “≈” in the tables mean
the solver reported a numerical problem, and only obtained an approximate optimal
value, respectively. For the model construction, we have put a time limit of 5 hours.
In all the tables from now on, columns “# lin. var.”, “size of SD var.” and “# const.”
present the number of linear variables, the size of the PSD matrix variable and the
number of constraints in the hierarchy (2.6). Also, “-” in the tables means that the
time limit for the model construction has been reached.
As it is clear from Table 2.2, in order to compute qκd we can have a large number
of linear variables and constraints (depending of d), which affects the speed and the
time we need to solve (2.6). In the coming section, we describe how one can reduce
the number of linear variables and constraints at each level of the BSOS hierarchy
significantly.
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iteration time solution # lin. var. size of
SD var. # const.

Haverly1
d=1 0.01s -600.00 23 6 21
d=2 0.03s -417.20 276 6 126
d=3 0.47s -400.00 2,300 6 462

Haverly2
d=1 0.01s -1,200 23 6 21
d=2 0.03s -601.67 276 6 126
d=3 0.39s -600.00 2,300 6 462

Haverly3 d=1 0.02s -875.00 23 6 21
d=2 0.03s -750.00 276 6 126

Ben-Tal4
d=1 0.02s -650.00 27 7 28
d=2 0.03s -467.20 378 7 210
d=3 1.44s -450.00 3,654 7 924

Ben-Tal5 d=1 0.06s -3,500.00 109 30 465

DeyGupte4
d=1 0.02s -4.00 105 11 66
d=2 4.60s -3.86 5,565 11 1,001
d=3 - - 198,485 11 8,008

Foulds2
d=1 0.01s -1,200.00 77 19 190
d=2 109.20s -1,191.30 3,003 19 7,315
d=3 - - 79,079 19 134,596

Foulds3 d=1 90.84s -8.00 439 153 11,781
Foulds4 d=1 92.85s -8.00 439 153 11,781

Adhya1
d=1 0.02s -999.32 83 12 78
d=2 4.26s ≈-723.94 3,486 12 1,365
d=3 - - 98,770 12 12,376

Adhya2
d=1 0.02s -798.29 107 12 78
d=2 11.51s ≈-576.82 5,778 12 1,365
d=3 - - 209,934 12 12,376

Adhya3
d=1 0.03s -882.84 133 18 171
d=2 135.39s ≈-802.89 8,911 18 5,985
d=3 - - 400,995 18 100,947

Adhya4
d=1 0.02s -1,055.00 103 17 153
d=2 52.59s ≈-1,035.00 5,356 17 4,845
d=3 - - 187,460 17 74,613

RT2
d=1 0.02s -45,420.50 135 15 120
d=2 30.84s -36,542.19 9,180 15 3,060
d=3 - - 419,220 15 38,760

sppA0 d=1 273.00s -47,675.00 1,633 162 13,203
d=2 - - 1,334,161 162 29,772,765

Table 2.2: Results for computing the lower bounds q1
d for various pooling

problem instances.
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2.5 Reduction in the number of linear variables
and constraints

In this section, we propose a method to reduce the number of linear variables and an
upper bound for the number of linearly independent constraints in each iteration of
the BSOS hierarchy.

2.5.1 Reduction in the number of variables

As it is mentioned in Remark 2.1, if we can identify constraints that are not binding
at optimality, then we can reduce the number of variables.
In particular, because of Assumption II on page 19 the constraints gj(x) ≤ 1 will
never be binding at optimality. Recalling that the variable λαβ corresponds to

hαβ(x) :=
m∏
j=1

gj(x)αj(1− gj(x))βj , x ∈ Rn,

we know from Remark 2.1 that, in case of finite convergence, we will have λαβ = 0
whenever α = 0.
Hence, instead of solving (2.6) to compute qκd , we may compute the following (weaker)
bound more efficiently:

q̂κd := sup
t,λ,Q

t

f(x)−
∑

(α,β)∈N2m
d

α 6=0

λαβhαβ(x)− t = trace
(
Qvκ(x)vκ(x)T

)
, ∀x ∈ ∆(n, τ),

Q ∈ S+
s(κ), λ ≥ 0.

(2.22)

The advantage of (2.22) is that it has
(
m+d
d

)
fewer nonnegative variables than (2.6).

We emphasize that problem (2.22) is not equivalent to (2.6), i.e., the lower bounds
qκd and q̂κd are not equal in general — the bound q̂κd is weaker, and may be strictly
weaker.
The precise relation of the bounds qκd and q̂κd is spelled out in the next theorem, which
follows from the argument in Remark 2.1.

Theorem 2.6 If, for given d and κ, qκd and q̂κd are both finite, then q̂κd ≤ qκd . More-
over, if the sequence qκd (d = 1, 2, . . .) from (2.6) converges finitely to f ∗, then so
does q̂κd (d = 1, 2, . . .) from (2.22). More precisely, if qκd∗ = f ∗ for some d∗ ∈ N, then
q̂κd∗ = f ∗.
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It is important to note that finite convergence of the sequence qκd (d = 1, 2, . . .) is
not guaranteed in general. Sufficient conditions for finite convergence are described
in [88].
The numerical results for using (2.22) for the pooling problem instances is demon-
strated in Table 2.3. The “rel. time” column from this table onward gives the solution
time for each level of the hierarchy as a ratio of that in Table 2.2, which shows that
there is a significant reduction in computational times when compared to Table 2.2.
This time reduction is because of the smaller number of variables in (2.22). Regard-
ing the quality of the lower bounds that we get from (2.22), even though q̂κd could
theoretically be weaker than qκd , but for the pooling problem instances we get the
same values.

2.5.2 Reduction in the number of constraints

From now on we fix κ = 1 and v1(x) = (1, x1, ..., xn). As it was mentioned, the
number of constraints in each level of the BSOS hierarchy is

(
n+2d

2d

)
, where n is the

number of variables in the original problem (2.1) and d is the level of the BSOS
hierarchy. So, the number of constraints increases quickly with d. In this subsection,
we discuss the redundancy of constraints and how we can remove linearly dependent
constraints.
Let svec denote the map from the (n+ 1)× (n+ 1) symmetric matrix space Sn+1 to
R1×(n+2

2 ) given by

svec(X) =
[
X11,

√
2X12, X22, ...,

√
2Xn(n+1), X(n+1)(n+1)

]
, ∀X ∈ Sn+1.

It will also be convenient to number the elements of ∆(n, τ) as x1, . . . , xL where
L = s(τ). Finally, we will use the notation |β| = ∑

i βi.
So, for d ≥ 1 and κ = 1 we may write the linear equality constraints in (2.6) as
Hdyd = bd, where

Hd =


1 (hαβ(x1))(α,β)∈N2m

d
svec

(
v1(x1)v1(x1)T

)
... ... ...
1

(
hαβ(xL)

)
(α,β)∈N2m

d

svec
(
v1(xL)v1(xL)T

)
 ,

bd =


f(x1)

...
f(xL)

 , yd =


t

(λαβ)(α,β)∈N2m
d

svec(Q)T

 ,
and L =

(
n+2d

2d

)
. It is clear that Hd ∈ RL×[( 2m+d

d )+L+1].
In the following theorem we prove that all the constraints are linearly independent
when d = 1.
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iteration rel. time solution # lin. var. size of
SD var. # const.

Haverly1
d=1 1 -600.00 11 6 21
d=2 1 -417.20 198 6 126
d=3 0.60 -400.00 1,936 6 462

Haverly2
d=1 1 -1,200.00 11 6 21
d=2 1 -601.67 198 6 126
d=3 0.79 -600.00 1,936 6 462

Haverly3 d=1 1 -875.00 11 6 21
d=2 1 -750.00 198 6 126

Ben-Tal4
d=1 1 -650.00 14 7 28
d=2 1 -467.20 274 7 210
d=3 0.73 -450.00 3,095 7 924

Ben-Tal5 d=1 0.83 -3,500.00 55 30 465

DeyGupte4
d=1 1 -4.00 53 11 66
d=2 0.62 -3.86 4,135 11 1,001
d=3 - - 172,250 11 8,008

Foulds2
d=1 1 -1,200.00 39 19 190
d=2 0.85 -1,191.29 2,224 19 7,315
d=3 - - 66,419 19 134,596

Foulds3 d=1 0.94 -8.00 220 153 11,781
Foulds4 d=1 0.92 -8.00 220 153 11,781

Adhya1
d=1 1 -999.32 42 12 78
d=2 0.95 ≈-723.94 2,583 12 1,365
d=3 - - 85,526 12 12,376

Adhya2
d=1 1 -798.29 54 12 78
d=2 0.55 ≈-576.82 4,293 12 1,365
d=3 - - 182,214 12 12,376

Adhya3
d=1 1 -882.84 67 18 171
d=2 0.69 ≈-802.82 6,634 18 5,985
d=2 - - 348,601 18 100,947

Adhya4
d=1 1 -1,055.00 52 17 153
d=2 0.71 ≈-1,035.10 3,979 17 4,845
d=3 - - 162,657 17 74,613

RT2
d=1 1 -45,420.48 68 15 120
d=2 0.65 -36,542.06 6,836 15 3,060
d=3 - - 419,220 15 38,760

sppA0 d=1 0.99 -47,6750.00 817 162 13,203
d=2 - - 1,000,008 162 29,772,765

Table 2.3: Results for computing the lower bounds q̂1
d for pooling problem

instances using (2.22).
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Theorem 2.7 For the general problem (2.1) with quadratic functions f(x) and gj(x),
j = 1, ...,m, all of the constraints in the first iteration of the BSOS hierarchy are
linearly independent, i.e. if d = 1, all of the constraints of (2.6) are linearly indepen-
dent.

Proof. Fix d = 1, which implies τ = 2 and L =
(
n+2

2

)
in (2.6). Then,

H1 =


1 g1(x1) . . . gm(x1) 1− g1(x1) . . . 1− gm(x1) svec

(
v1(x1)v1(x1)T

)
... ... . . . ... ... . . . ... ...
1 g1(xL) . . . gm(xL) 1− g1(xL) . . . 1− gm(xL) svec

(
v1(xL)v1(xL)T

)
 ,

and,

b1 =


f(x1)

...
f(xL)

 , y1 =


t

(λαβ)(α,β)∈N2m
1

svec(Q)T

 ,
for x1, ..., xL ∈ ∆(n, 2), defined in (2.6). To show that all of the rows in H1 are
linearly independent, we prove that the submatrix

V 1
n =


svec

(
v1(x1)v1(x1)T

)
...

svec
(
v1(xL)v1(xL)T

)
 ∈ R(n+2

2 )×(n+2
2 ) = RL×L,

is a full rank matrix by induction over n, the dimension of x. Assume that n = 1.

Because ∆(1, 2) = {0, 1
2 , 1}, it is clear that the rank of the matrix V 1

1 =


1 0 0
1

√
2

2
1
4

1
√

2 1

 ,
is 3, which means that V 1

1 is a full rank matrix.
Now, suppose that V 1

n is a full rank matrix, and let us show it is full rank for n+ 1.
When x ∈ Rn+1, we can partition the points in ∆(n+ 1, 2) into three cases:

I) points with xn+1 = 0. These points can be generated by considering all of the
points in ∆(n, 2), and adding a 0 as their last component.

II) points with xn+1 = 1
2 . The points in this class can be sub-partitioned into two

groups:

i) points with one nonzero component.

ii) points with two nonzero components.

III) points with xn+1 = 1. Clearly, there is only one point in this class.
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According to the definition of svec
(
v1(x)v1(x)T

)
, each of V 1

n+1’s column is related to
xγ, where γ ∈ Nn+1

2 . Let us order the columns of V 1
n+1 as follows: first we put all

of the columns related to xα, where (α, 0) ∈ Nn+1
2 , after that the columns related to

xn+1, x2
n+1, xn+1xi, i = 1, ..., n. So, because each row of V 1

n+1 is related to a point in
∆(n+ 1, 2), after ordering its rows, the matrix looks like this:

Vn+1 =



xα

(α,0)∈Nn+1
2

xn+1 x2
n+1

xn+1xi
i=1,...,n

Case I V 1
n 0L×1 0L×1 0L×n

Case IIii a1
√

2
2 1n×1

1
41n×1

√
2

4 In

Case IIi a2
√

2
2

1
4 01×n

Case III a3
√

2 1 01×n

,

for some a1 ∈ Rn×L, and a2, a3 ∈ R1×L. Due to the induction assumption, V 1
n is a full

rank matrix, which implies that V 1
n+1 is a full rank matrix. Therefore, the constraints

in the first iteration of the BSOS hierarchy are linearly independent.

In Theorem 2.7, we prove that if d = 1, then all of the constraints in (2.6) are
linearly independent. In the next theorem, we prove that for d ≥ 2, if we rewrite Hd

as [H̄d, V
d
n ], where

V d
n =


svec

(
v1(x1)v1(x1)T

)
...

svec
(
v1(xL)v1(xL)T

)
 ∈ RL×L,

then rank(Hd) = rank(H̄d).

Theorem 2.8 Suppose that f is quadratic, d ≥ 2, and Θ ⊆ ∆(n, 2d). The equality
constraints in (2.6) corresponding to the points in Θ applied to the general problem
(2.1) with sign constraints over all of the variables, are linearly independent if and
only if rows in H̄d corresponding to the points in Θ are linearly independent.

Proof. The ‘if’ part is trivial.
To prove the ‘only if’ part, without loss of generality we assume that xp, p = 1, ..., t
generate linearly independent constraints, which means that the first t rows of Hd

are linearly independent. Since the objective function f is quadratic, bd is a linear
combination of the columns of V d

n . Because of the sign constraints over all variables,
each column of V d

n is also a column in H̄d, for d ≥ 2. This means that V d
n is a

submatrix of H̄d, which implies that the first t rows in H̄d are linearly independent.

After elimination of the equality constraints in pooling problem (2.11), we rewrite
the model with sign constraints over all of the remaining variables. So, when using
Theorem 2.8 to find the linearly independent constraints, we only need to check H̄d.
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Theorem 2.9 Fix d ≥ 2. Consider Ĥd, which is a matrix with all columns of H̄d

related to (α, β) with β = 0. Then Range(H̄d) = Range(Ĥd).

Proof. Since we consider β = 0, we can write Ĥd as follows:

Ĥd =


(g(x1)α)α∈Nm

d...(
g(xL)α

)
α∈Nm

d

 ,

where L =
(
n+2d

2d

)
, g(x) = (g1(x), ..., gm(x)), for each α ∈ Nm

d , g(xp)α = ∏m
j=1 gj(x)αj ,

and (g(xp)α)α∈Nm
d
∈ R1×(m+d

d ), p = 1, ..., L.

Because the columns of Ĥd are a subset of the columns of H̄d, so Range(Ĥd) ⊆
Range(H̄d). To prove the other containment, we show that all columns of H̄d are
linear combinations of Ĥd’s columns. Each column of H̄d is related to a function
hαβ(x) for some (α, β) ∈ N2m

d . If β = 0 for a column of H̄d, then it is a column of
Ĥd. Now consider a column with β 6= 0. Therefore, hαβ(x) related to this column is
equal to

m∏
j=1

gj(x)αj
t∏

j=1
(1− gj(x))βj = g(x)α

(
w∑
i=1

aig(x)γi
)
,

for some γi ∈ Nm
|β|, ai ∈ R, i = 1, ..., w, and w ≥ 0. Hence, hαβ(x) = ∑w

i=1 aig(x)γi+α.
Because γi + α ∈ Nm

d , g(x)γi+α is related to a column of Ĥd, for each i = 1, ..., w.
This means that any column of H̄d is a linear combination of the columns in Ĥd.

By Theorem 2.9, to find the number of linearly independent constraints in (2.6), we
only need to check the columns related to hαβ(x) with β = 0.
It is clear that the results in this chapter, except Theorem 2.7, can be modified for the
LO bounds (2.4). In fact, Theorems 2.8 and 2.9 are true in each level, even d = 1. In
Table 2.4, the results of solving the pooling problem instances in Table 2.1 are shown
after removing the linearly dependent constraints using (2.4) and q̂1

d in (2.22). Note
that the computational times at the d = 2 and d = 3 levels are greatly reduced when
compared to the times in Table 2.3. For some instances because of the large number of
constraints in the last level of the hierarchy, we could not find the number of linearly
independent constraints and we put “-” as in Table 2.4. Also in this table we show
how much stronger the BSOS hierarchy is compared to the LO bounds (2.4) after
reducing the number of variables and deleting the linear dependent constraints. As
one can see, the main difference between the BSOS hierarchy and (2.4) is in the first
level, in which the number of independent constraints in (2.4) is much smaller than
the BSOS hierarchy. If there is a difference between two hierarchies, it is presented
in Table 2.4 with “()”, in which the value corresponds to the LO bounds (2.4). It



42 A numerical evaluation of the BSOS hierarchy

can be seen that there is a pay-off between using (2.4) and the BSOS hierarchy. By
using the LO bounds you may solve each level faster (4 cases) but the lower bound
can be strictly weaker than the one from the BSOS hierarchy (2 cases).

2.5.3 Lower bounds using PQ-formulation

Up to now, we evaluated the BSOS hierarchy on the P-formulation. Since the Mc-
Cormick relaxation (Section 2.3.1) of the PQ-formulation is stronger than that of
the P-formulation [68], it is worthwhile to evaluate the BSOS hierarchy using the
PQ-formulation. In Table 2.5 we present these results for the PQ-formulation. To
deal with the equality constraints, we replace them by two inequalities. As one can
see, the quality of the lower bounds obtained by using PQ-formulation are much
better in a few of the instances, such as DeyGupte4 and RT2, than when using the
P-formulation; however, the size of the problems do not allow us to go further than
the first iteration for the moderate-sized instances.

2.5.4 Upper bound for the number of linearly independent
constraints

According to Theorem 2.9, to find the number of linearly independent columns of
Hd, for d ≥ 2 we only need to find the rank of the linear space, say Nd, spanned
by {g(x)α}α∈Nm

d
. Hence, the dimension of Nd is an upper bound on the number

of linearly independent constraints. In this part we give an upper bound on the
dimension of Nd, which is an upper bound on the number of linearly independent
constraints in (2.6).
It is clear that Nd is a subspace of the linear space Md spanned by {w(x)α}α∈Nω

d
,

where w(x) is a vector containing all of the monomial existing in (2.1), and ω in the
size of w(x). Therefore, rank(Md) is an upper bound on rank(Nd), and hence an
upper bound of the number of linearly independent constraints in each iteration of
the BSOS hierarchy.
In the rest of this part, we try to find rank(Md) for the pooling problems, and assume
that the number of outgoing flows from each pool is equal to J . After elimination
of equality constraints in the pooling problem (2.11), the functions defining the in-
equality constraints can be partitioned into three classes:

I) bilinear functions,

II) xi, i = 1, ..., n,

III) some other affine functions.
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iteration rel. time solution # lin. var. # const.

Haverly1
d=1 1 -600.00 12 21(8)
d=2 1 -417.20 199 33
d=3 0.11 -400.00 1,937 98

Haverly2
d=1 1 -1,200.00 12 21(8)
d=2 1 -601.67(-640.00) 199 33
d=3 0.13 -600.00 1,937 98

Haverly3 d=1 1 -875.00 12 21(8)
d=2 1 -750.00 199 33

Ben-Tal4
d=1 1 -650.00 14 28(9)
d=2 1 -467.20 274 42
d=3 0.08 -450.00 3,095 140

Ben-Tal5 d=1 1(0.11) -3,500.00 55 465(44)

DeyGupte4
d=1 1 -4.00 53 66(16)
d=2 0.03 -3.86 4,135 131
d=3 - - 172,250 -

Foulds2
d=1 1 -1,200.00 39 190(24)
d=2 0.002 -1,191.30 2,224 295
d=3 - - 49,385 -

Foulds3 d=1 0.94(10−4) -8.00 220 11,781(176)
Foulds4 d=1 0.92(10−4) -8.00 220 11,781(176)

Adhya1
d=1 1 -999.32 42 78(24)
d=2 0.06(0.5) ≈-723.95 2,583 260
d=3 - - 85,526 -

Adhya2
d=1 1 -798.29 54 78(24)
d=2 0.12(0.3) -576.83 4,293 260
d=3 - - 182,214 -

Adhya3
d=1 1 -882.84 67 171(38)
d=2 0.02 ≈-802.88(-806.64) 6,634 671
d=3 - - 348,602 -

Adhya4
d=1 1 -1,055.00 52 153(39)
d=2 0.03 ≈-1,035.54 3,979 732
d=3 - - 162,657 -

RT2
d=1 1 -45,420.48 68 120(23)
d=2 0.02 -36,541.89 6,836 266
d=3 - - 364,480 -

sppA0 d=1 0.99(10−4) -47,675.00 817 13,203(372)
d=2 - - 1,000,008 -

Table 2.4: Results for computing the bounds from (2.4) and q̂1
d in (2.22) after

removing of linearly dependent constraints. The values in “()” are
corresponding to the LO bounds (2.4) if they are different than
those from q̂1

d.
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iteration rel.
time solution # lin. var. size of

SD var. # const.

Haverly1
d=1 1 -600.00 25 9 45
d=2 1 -411.11 901 9 82
d=3 - Numerical Prob. 17,901 9 354

Haverly2 d=1 1 -1,200.00 25 9 45
d=2 1 -600.00 901 9 82

Haverly3 d=1 1 -875.00 25 9 45
d=2 1 -750.00 901 9 82

Ben-Tal4
d=1 1 -650.00 30 11 66
d=2 1 -459.86 1,306 11 124
d=3 - - 31,031 11 -

Ben-Tal5 d=1 4.17 -3,500.00 127 45 1,035

DeyGupte4
d=1 1 -4.00 89 17 153
d=2 0.35 ≈-2.49 11,749 17 438
d=3 - - 818,445 17 -

Foulds2 d=1 1 -1,200.00 77 25 325
d=2 - - 8,779 25 -

Foulds3 d=1 2.26 -8.00 628 193 18,721
Foulds4 d=1 2.32 -8.00 628 193 18,721

Adhya1 d=1 1 -999.32 73 19 190
d=2 - - 7,885 19 -

Adhya2 d=1 1 -798.29 81 19 190
d=2 - - 9,721 19 -

Adhya3 d=1 2 -882.84 109 29 435
d=2 - - 17,659 29 -

Adhya4 d=1 2 -1,055.00 96 27 378
d=2 - - 13,680 27 -

RT2 d=1 1 -18,155.84 96 23 276
d=2 - - 13,680 23 -

sppA0 d=1 5.88 -47,675.00 1,165 234 27,495
d=2 - - 1,326,340 234 -

Table 2.5: Results for computing the bounds q̂1
d in (2.22) after removing

linearly dependent constraints on the PQ-formulation.
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The bilinear functions are those related to constraints (2.11h) and (2.11i), or those
related to the constraints (2.11f) after elimination of equality constraints. Hence,
the only bilinear terms in the reformulated problem are plkylj, for each pool l and
specification k, where there is an outgoing flow from pool l to output j. Therefore,〈{(

1, {yij} i∈I
j∈J

, {ylj} l∈L
j∈J

, {yil}(i,l)∈Ī , {plk}(l,k)∈L̄ , {plkylj}(l,k,j)∈J̄
)α}

α∈Nω
d

〉
= Md,

where Ī, L̄ and J̄ are respectively including (i, l), (l, k) and (l, k, j) that yil, plk and
plkylj appear in (2.11) after elimination of the equality constraints, and

ω = 1 + I × L+ L× J + |Ī|+ |L̄|+ |J̄ |.

Clearly the number of variables in the pooling problem (2.11) after elimination of
equality constraints is I × L + L × J + |Ī| + |L̄|. For d = 1, we prove in Theorem
2.7 that all of the constraints in (2.6) are linearly independent, with the number of(
n+2

2

)
. For d ≥ 2, we are seeking for the monomials up to degree 2d that appear in

Md. If d = 2, the number of monomials with degree at most 2 is
(
n+2

2

)
. The number

of monomials with degree 3 that appear in Md is at most

K × L×
[(
n+ 1

2

)
−
(
n− J + 1

2

)]
,

because for each k ∈ K and l ∈ L, in this case the only way of having a monomial
with degree 3 is by multiplying a monomial of degree 2 with a variable, which makes(
n+1

2

)
−
(
n−J+1

2

)
monomials of degree 3. And finally, the number of monomials of

degree 4 that appear in Md is
[(

K×L×J
2

)
+K × L× J

]
, because the only ways to

make such monomials are by taking the square of a monomial with degree 2, or
multiplying two degree 2 monomials. Therefore, the number of linearly independent
constraints for d = 2 is at most(

n+ 2
2

)
+K ×L×

[(
n+ 1

2

)
−
(
n− J + 1

2

)]
+
(
K × L× J

2

)
+K ×L× J. (2.23)

With the same line of reasoning as above, the number of monomials with degree at
most 6 for d = 3 is less than or equal to(

n+ 3
3

)
︸ ︷︷ ︸
monomials up

to degree 3

+K × L×
[(
n+ 2

3

)
−
(
n− J + 2

3

)]
︸ ︷︷ ︸

monomials of
degree 4

+K × L×
[(
n+ 2

3

)
−
(
n− J + 2

3

)
− J ×

(
n− J + 1

2

)]
︸ ︷︷ ︸

monomials of
degree 5

+
[(
K × L× J

3

)
+K × L× J + 2

(
K × L× J

2

)]
︸ ︷︷ ︸

monomials of
degree 6

. (2.24)
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Example 2.2 Consider the example (2.21). The only bilinear terms in (2.21) are
y1y2 and y1y3. So,

Md =
〈
{(1, y1, y2, y3, y4, y5, y1y2, y1y3)α}α∈N8

d

〉
Therefore, the number of linearly independent constraints is at most(7

2

)
+
(6

2

)
−
(4

2

)
+
(2

2

)
+ 2 = 33,

if d = 2, and

(8
3

)
+ 2×

(7
3

)
− 2×

(5
3

)
− 2×

(4
2

)
+ 2×

(2
2

)
+ 2 = 98,

if d = 3.

2.6 Improving lower bounds by adding valid in-
equalities

Adding redundant constraints to the original problem (2.1) increases the number of
linear variables in (2.5); this introduces some flexibility in each level of the hierarchy
because of the new linear variables and may provide a stronger lower bound. As it
was mentioned in Section 2.3.1, for each bilinear term in the P- or PQ-formulations
there are four valid inequalities given by (2.14). So, in Table 2.6 we present the result
of adding these valid inequalities to the P-formulation and using q̂1

d in (2.22) to solve
the problem. In each level of the hierarchy in this table, we use the upper bounds
for the number of constraints proposed in Section 2.5.4. As Table 2.6 shows, this
improvement helps to obtain the optimal values of Haverly1, Harverly2, Ben-Tal4,
and DeyGupte4, and to get a good approximation of the optimal value of Foulds2
in the second level of the hierarchy. Also, for Adhya1,2,4 we obtained better lower
bounds than the PQ-linear relaxation values in Table 2.1.

2.7 Conclusion
In this chapter we analyzed and evaluated the bounded degree sum-of-squares (BSOS)
hierarchy of Lasserre, Toh and Yang [88] for a class of bilinear optimization problems,
namely pooling problems. We showed that this approach is successful in obtaining
the global optimal values for smaller instances, but scalability remains a problem
for larger instances. In particular, the number of nonnegative variables and linear
constraints grows quickly with the level of the hierarchy. We have showed that it is
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iteration rel. time solution # lin. var. size of
SD var. # const.

Haverly1 d=1 1 -600.00 18 6 21
d=2 1 -400.00 460 6 33

Haverly2 d=1 1 -1,100.00 18 6 21
d=2 1 -600.00 460 6 33

Haverly3 d=1 1 -850.00 18 6 21
d=2 1 -750.00 460 6 33

Ben-Tal4 d=1 1 -650.00 20 7 28
d=2 1 -450.00 571 7 42

Ben-Tal5 d=1 1 -3,500.00 145 30 465

DeyGupte4 d=1 1 -4.00 101 11 66
d=2 0.32 -1.02 15,155 11 170

Foulds2
d=1 1 -1,200.00 63 19 190
d=2 0.02 -1,101.83 5,860 19 358
d=3 - - 289,695 19 2,850

Foulds3 d=1 1.60 -8.00 604 153 11,781
Foulds4 d=1 1.53 -8.00 604 153 11,781

Adhya1
d=1 1 -960.37 138 12 78
d=2 1.34 -640.19 28,360 12 270
d=3 - - 3,056,470 12 2,860

Adhya2
d=1 1 -777.63 198 12 78
d=2 1.13 -569.55 58,510 12 270
d=3 - - 9,036,390 12 4,108

Adhya3
d=1 1 -879.02 283 18 171
d=2 1.06 -664.39 119,710 18 691
d=2 - - 26,402,485 18 13,452

Adhya4
d=1 1 -1,032.50 172 17 153
d=2 1.58 -948.88 44,119 17 1,038
d=3 - - 5,921,616 17 7,089

RT2
d=1 1 -36,542.22 212 15 120
d=2 0.091 ≈-32,739.03 67,099 15 354
d=3 - - 11,093,536 15 6,440

sppA0 d=1 1.39 ≈-46,636.57 4,705 162 13,203
d=2 - - 37,414,021 162 94,812

Table 2.6: Results for computing the lower bounds q̂1
d for the P-formulation

after adding valid inequalities and considering (2.23) and (2.24)
as the upper bound on the number of linearly independent con-
straints.
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possible to eliminate some variables and redundant linear constraints in the hierarchy
in a systematic way, and this goes some way in improving scalability. More ideas are
needed, though, if this approach is to become competitive for medium to larger scale
pooling problems.
In the next chapter, we will investigate how one may solve the BSOS hierarchy more
efficiently by exploiting sparsity in the data, in particular so-called “chordal sparsity”.



CHAPTER 3

Solving sparse polynomial optimization problems
with chordal structure using the sparse-BSOS

hierarchy

3.1 Introduction
A PO problem is a mathematical optimization problem in which all constraints and
the objective function are multi-variate polynomials. PO problems include non-
convex QCQO problems, which were proved to be intractable by Pardalos and Vavasis
[105].
Many approaches are available for constructing lower bounds for the optimal value
of a PO problem (denoted by f ∗). Kim, Kojima and Waki [81] proposed a relaxation
of a PO problem using a generalized Lagrangian dual. Lasserre [86] introduced an
LO hierarchy that constructs a sequence of lower bounds for f ∗. Using the Krivine
positivstellensatz (Theorem 2.2), Lasserre showed that under some assumptions the
sequence converges to f ∗. In the hope of getting a tighter lower bound, Lasserre,
Toh, and Yang [88] extended the LO hierarchy to an SDO one, called the BSOS
hierarchy. The advantage of the BSOS hierarchy is that it contains one semi-definite
matrix variable, which has a fixed size that is independent of the level of the hier-
archy. A major drawback of the BSOS hierarchy lies in the fact that the number of
linear variables grows quickly when the level of the hierarchy increases. Also, for a
large problem, the size of the semi-definite matrix variable gets large, which makes
the hierarchy inefficient. In an effort to resolve these issues, Weisser, Lasserre and
Toh [120] introduced a modification of the BSOS hierarchy, called the sparse-BSOS
hierarchy, for PO problems with a particular structural sparsity, which satisfies the
running intersection property (RIP).
The RIP is a well-known concept in graph theory. In the literature of positive semi-
definite (PSD) matrices and polynomial optimization, exploiting a sparsity that sat-
isfies the RIP is done by studying the corresponding chordal graphs, see [61] for PSD
matrices and [119] for polynomial optimization. The results in [120] can be seen as
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a combination of the results in the papers [88] and [119].
PO problems have many real-life applications. Some of these applications were stud-
ied in the recent paper by Ahmadi and Majumdar [3]. In this chapter, we analyze the
behavior of the sparse-BSOS hierarchy on a class of bilinear programming problems,
called pooling problems, and a class of discrete-time optimal control problems.
Solving the pooling problem is attracting considerable interest due to their appli-
cations in many real-life optimization problems, like oil refinery planning, chemical
process, and water-waste network design. There are many formulations for the pool-
ing problem. Haverly [70] proposed a formulation, called the P-formulation. It
was shown by Alfaki and Haugland [7] that the P-formulation problem is NP -hard.
One way of finding a lower bound for the P-formulation problem is by using the
McCormick relaxation of each bilinear term, which can be reformulated as a Mixed
Integer Linear Programing problem. In order to tighten this relaxation, Tawarmalani
and Sahinidis [115] proposed the PQ-formulation. Dey and Gupte [51] proved that
even for the PQ-formulation, using the McCormick relaxations of the bilinear terms
might yield a lower bound that is far from the optimal value of the problem. There
are other formulations with different characteristics for the pooling problem, like Q-,
TP- formulations. Detailed discussion can be found in the surveys by Misener and
Floudas [96] and Gupte et al. [68], and the Ph.D. thesis by Alfaki [6].
Recently, SDO hierarchies have been used to find lower bounds for pooling problems.
Frimannslund et al. [60] applied the hierarchy proposed by Lasserre [85] to pooling
problems. As they pointed out, the fast increase in the sizes of the semi-definite
matrix variables in the problem, which is related to the level of the hierarchy, prevents
the hierarchy from being applicable for pooling problems. In Chapter 2, we evaluated
the BSOS hierarchy on pooling problems. We found that the BSOS hierarchy is
successful in acquiring the optimal values of small-sized instances, but because of
the number of variables, the hierarchy does not work well on moderate and large-
sized instances. In this chapter, we evaluate the sparse-BSOS hierarchy on the P-
formulation of the pooling problem and compare the results with BSOS.
Another class of problem that we consider in this chapter is a class of optimal control
problems. A continuous-time optimal control problem finds a control function for a
dynamical system such that a certain objective function is optimized. A discrete-time
optimal control (DTOC) is a method of solving a continuous one by discritizing the
time slot that is considered in it. There are different approaches to solve a DTOC
problem using a nonlinear optimization problem. In [59], Friesz provides necessary
conditions to make the KKT solutions optimal for the problem. Also, the authors
in [45,52,119] test their proposed method on a DTOC problem. We refer the reader
to the Ph.D. thesis by Nielsen [103] for a more detailed discussion. In this chapter,
we show how sparse-BSOS hierarchy works on a DTOC problem.
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The BSOS and sparse-BSOS hierarchies are applicable to PO problems that do not
contain any equality constraints. However, all pooling problem formulations and
DTOC problems contain many equality constraints. The standard way of dealing
with equality constraints is elimination, or replacing them with two inequalities. A
way of eliminating equality constraints in the P-formulation was proposed in Section
2.3.2; however, the elimination may destroy the sparsity pattern. On the other hand,
replacing any equality constraints with two inequalities keeps the sparsity pattern
but increases the number of constraints in the problem, which is not desirable in
the BSOS and sparse-BSOS hierarchies because it makes each level harder to solve.
In this chapter, we show how the hierarchies can be modified to deal with equality
constraints directly so that the convergence results remain valid.
The remainder of the paper is organized as follows. In Section 3.2, we describe
continuous- and discrete-time optimal control problems. Section 3.3 describes the
sparse-BSOS hierarchy proposed in [120]. Section 3.4 demonstrates the link between
graph theory, PSD matrices, and PO problems. In particular, in Section 3.4.1 we
mention some well-known results in graph theory. Then in Section 3.4.2 we provide
the links between chordal graphs and PSD matrices, and in Section 3.4.3 we construct
a graph corresponding to a PO problem and exploit a sparsity that satisfies the RIP.
In Section 3.5, we show how to modify the BSOS and sparse-BSOS hierarchies to deal
with equality constraints directly. A numerical evaluation of the results is provided
in Section 3.6.

3.2 Discrete-time optimal control
In this section, we briefly describe continuous- and discrete-time optimal control
(DTOC) problems. We borrow the notation from [109]. A continuous-time optimal
control is the optimization problem

min
x(.):R→Rn

u(.):R→Rm

∫ T

0
F [x(t), u(t), t] dt+ S[x(T ), T ]

s.t. ẋ(t) = f [x(t), u(t), t], ∀t ∈ [0, T ]
x(t) ∈ X , u(t) ∈ U , ∀t ∈ [0, T ]
x(0) = x0, x(T ) = xT ,

(3.1)

where F [., ., .] : Rn×Rm×R→ R is a function with continuous partial derivatives with
respect to x(t), S[., .] : Rn × R→ R is a function with continuous partial derivatives
with respect to x(T ), f : Rn × Rm × R→ Rm is a function, X ⊆ Rm and U ⊆ Rn are
given sets, and x0, xT are given vectors.
One of the methods for solving (3.1) is discretizing the problem and consider the
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discrete-time optimal control

min
xk∈Rn,k=1,...,N−1
uk∈Rm,k=0,...,N−1

1
N

N−1∑
k=0

F

[
xk, uk,

kT

N

]
+ S[x(T ), T ]

s.t. xk+1 = xk + 1
N
f

[
xk, uk,

kT

N

]
, k = 0, ..., N − 1

xk ∈ X , k = 1, ..., N − 1,
uk ∈ U , k = 0, ..., N − 1,

(3.2)

where x0, xN are given. It is clear that when F and f are polynomials, and the sets
X and U are semi-algebraic, then (3.2) is a polynomial optimization problem. The
size of (3.2) is related to the number of intervals (N), which can be large. In Section
3.6.2, we show how one can apply the sparse-BSOS hierarchy to solve (3.2).

3.3 Sparsity pattern in a polynomial optimization
problem

In this section, we briefly describe the sparse-BSOS hierarchy in PO problems intro-
duced, by Weisser, Lasserre and Toh. [120]. In what follows, for an integer m ≥ 0,

[m] :=
{
{1, ...,m} if m > 0,
∅ if m = 0.

Also, we assume that x ∈ Rn, and for a given D ⊆ [n], we denote by Σ[x;D]κ,
the cone of SOS polynomials of degree at most 2κ, and by R[x;D] the ring of all
polynomials in the variables {xi : i ∈ D}.
We recall that a general PO problem is the mathematical problem:

f ∗ = min
x

f(x)

s.t. gj(x) ≥ 0, j = 1, ...,m,
(3.3)

where x ∈ Rn, n,m ∈ N and all f(x) and gj(x), j = 1, ...,m are n-variate polynomi-
als. For (3.3) the running intersection property is defined as follows.

Definition 3.1 Problem (3.3) satisfies the running intersection property if there ex-
ists q ∈ N, D` ⊆ [n] and C` ⊆ [m] for all ` ∈ [q] such that

• f = ∑q
`=1 f

`, for some f ` ∈ R[x;D`], for all ` ∈ [q],

• gj ∈ R[x;D`], for all j ∈ C`, and ` ∈ [q],
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• ⋃q`=1D` = [n], and ⋃q`=1 C` = [m],

• for all ` ∈ [q − 1], there is an s ≤ ` such that
(
D`+1 ∩

⋃`
r=1Dr

)
⊆ Ds.

Assume that the running intersection property holds for (3.3). Let

N̂`
d :=

(α, β) ∈ N2m : αj = βj = 0 if j /∈ C`,
∑
j∈[m]

αj + βj ≤ d

 ,
and

h`αβ :=
∏
j∈[m]

g
αj
j (1− gj)βj ∈ R[x,D`], (α, β) ∈ N̂`

d.

Then, we have the following result from [120].

Theorem 3.1 [120, Theorem 2] Consider the general PO problem (3.3). Suppose
that it satisfies the running intersection property, and gj(x) ≤ 1 for any feasible
solution x, j ∈ [m]. Also, assume that for all ` ∈ [q], the ring of R[x;D`] is generated
by {1, (gj)j∈C`}, and there exists M` > 0 and j ∈ C` such that gj = 1− 1

M`

(∑
i∈D` x

2
i

)
.

Then, for a fixed κ ∈ N, {q̃κd} is a non-decreasing sequence and q̃κd → f ∗ as d→ +∞,
where

q̃κd := sup

t :
f ` −∑(α,β)∈N̂`

d
λ`αβh

`
αβ ∈ Σ[x;D`]κ, ` ∈ [q]

f − t = ∑
`∈[q] f

`, λ` ≥ 0, t ∈ R, f ` ∈ R[x;D`], ` ∈ [q]

 . (3.4)

Theorem 3.1 introduces a non-decreasing sequence that converges to the optimal
value of (3.3) under some assumptions. Instead of (3.4), we consider the following
equivalent problem where the f `, ` = 1, ..., q, have been eliminated,

q̃κd = sup

t :
f − t = ∑

`∈[q]
∑

(α,β)∈N̂`
d
λ`αβh

`
αβ +∑

`∈[q] σ`

σ` ∈ Σ[x;D`]κ, λ` ≥ 0, t ∈ R, ` ∈ [q]

 . (3.5)

The number of scalar variables in each level of (3.5) is smaller than the one in the
same level of the BSOS hierarchy (2.5). In the next proposition we show that all
constraints in (3.5) are linearly independent, when the degree of the SOS polynomial∑
`∈[q] σ` equals the degree of the whole equality constraint. To prove this proposition,

we need the following remark.

Remark 3.1 Let x ∈ Rn and p(x) = ∑
α∈N̄[n]

2ω
pαx

α, where

N̄Dκ :=

α ∈ Nn : αi = 0 if i /∈ D,
∑
i∈[n]

αi ≤ κ

 ,
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for a set D ⊆ [n]. If M ∈ R(n+ω
ω )×(n+ω

ω ) is a symmetric matrix variable whose rows
(columns) are corresponding to the members of N̄[n]

ω , then linear constraints

pα =
∑

β,γ∈N̄
[n]
ω

β+γ=α

Mβγ, ∀α ∈ N̄[n]
2ω, (3.6)

are linearly independent. This is because all the constraints in (3.6) involve different
variables, i.e., no variable appears in two constraints in (3.6). To see this, let β, γ ∈
N̄[n]
ω be fixed. Due to the construction of the constraints in (3.6), the variable Mβγ

appears only in the constraint corresponding to α = β + γ, and no other constraints.

Proposition 3.1 Consider problem (3.3). Let d be such that

2κ = max{d max
j=1,...,m

(deg(gj)) , deg(f), 2κ}.

Then, all equality constraints in (3.5) are linearly independent, if the polynomial
equality is modeled by equating the monomials coefficients.

Proof. For each ` ∈ [q], set v` =
(
xβ
)
β∈N̄

D`
κ

. Also, let σ` = v`
T
W `v`, for each ` ∈ [q],

where W ` ∈ R(n`+κκ )×(n`+κκ ) is a PSD matrix variable, and n` = |D`|. So, Remark
3.1 implies that the equality constraints in (3.5) are linearly independent, if the
polynomial equality is modeled by equating the monomials coefficients.

According to the proof of Proposition 3.1, if

2κ 6= max{d max
j=1,...,m

(deg(gj)) , deg(f), 2κ},

still the constraints corresponding to the monomials up to degree 2κ are linearly
independent. If deg(f) > max{dmaxj=1,...,m (deg(gj)) , 2κ}, then

deg(f) = max{d max
j=1,...,m

(deg(gj)) , deg(f), 2κ},

and clearly the dth iteration of the hierarchy is infeasible, because there is no mono-
mial with degree deg(f) in ∑`∈[q]

∑
(α,β)∈N̂`

d
λ`αβh

`
αβ +∑

`∈[q] σ`.
The main assumption in Theorem 3.1 is the existence of a splitting that satisfies the
running intersection property. So, the question is how to exploit such a sparsity for
a PO problem. In the next section we answer this question.

3.4 Polynomial optimization and chordal graphs
In this section, we study the relation between graph theory, PSD matrices, and PO
problems. Specifically, we mention some results on chordal graphs and their relations
to PSD matrices, and use them to exploit sparsity for a PO problem that satisfies
the running intersection property.
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3.4.1 Chordal graph and maximal cliques

In this subsection we recall some well-known results on chordal graphs and maximal
cliques. The notation we are using in this section is the same as in [41].

Definition 3.2 Consider an undirected graph G = (V,E), where V and E denote
the sets of vertices and edges, respectively. A chord of a cycle is any edge joining two
nonconsecutive vertices of the cycle. A graph G is called chordal, if every cycle of
length greater than 3 has a chord.

Definition 3.3 Let G = (V,E) be any graph. A clique of G is any subset of V for
which the induced graph is complete in G. A maximal clique is a clique that is not
properly contained in another clique. We denote by KG the set of all maximal cliques
of G.

Example 3.1 Figure 3.1 provides a chordal and a nonchordal graph. The graph in
Figure 3.1(a) is not chordal, because the cycle (1, 2, 4, 3) has no chord. For this graph
the maximal cliques are {1, 2}, {2, 4}, {3, 4}, and {1, 3}. The graph in Figure 3.1(b)
is chordal with the maximal cliques {1, 2, 3} and {2, 3, 4}.

1 2

3 4

(a)

1 2

3 4

(b)

Figure 3.1: Simple examples of chordal and non-chordal graphs: The graph
in (a) is not chordal with four maximal cliques. The graph (b),
however, is chordal with two maximal cliques.

Let adj(v) denote the set of vertices adjacent to a vertex v. A vertex ordering φ of
graph G = (V,E) with n vertices is a bijection φ : V → [n], and it can be denoted
by indexing the vertex set, such that V = {v1, ..., vn}, and φ(vi) = i, for i ∈ [n]. Let
v1, ..., vn be a vertex ordering of G and set

Li := {vi, ..., vn} , i ∈ [n].

Definition 3.4 A vertex ordering φ is a perfect elimination ordering if for any i ∈ [n]
the subgraph of G induced by Li ∩ adj(vi) is complete.
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In words, in a perfect elimination ordering, the induced subgraph on vi and its
neighboring vertices that come after it in the ordering, forms a clique for i ∈ [n].

Example 3.1(continued) The labeling of the graph in Figure 3.1(b) is a perfect
elimination ordering. However, the graph in Figure 3.1(a) cannot have a perfect
elimination ordering, since it is a cycle graph of length 4, and in any labeling L1 ∩
adj(v1) is not complete.

As we already mentioned, the graph in Figure 3.1(b) is chordal in contrary to the
one in Figure 3.1(a). The following theorem states the link between a chordal graph
and a perfect elimination ordering.

Theorem 3.2 (see, e.g., [41, Theorem 2.2]) A graph G is chordal if and only if G
has a perfect elimination ordering.

Definition 3.5 Consider a graph G with the set of maximal cliques KG. A tree with
the vertex set KG, which is called a clique tree of G, satisfies the clique-intersection
property, if, for every pair of distinct cliques K̂,K ′ ∈ KG, the set K̂∩K ′ is contained
in every clique on the path connecting K̂ and K ′ in the tree.

Here, we provide an example to illustrate Definition 3.5.

Example 3.2 Let G be the chordal graph in Figure 1.3 on page 6. For this graph, a
tree that satisfies the clique-intersection property is provided in Figure 3.2.

y3 y7 y4

y7 y3 y4 y7

y5 y1 y2 y6

Figure 3.2: A clique tree of the graph G in Figure 1.3 that satisfies the
clique-intersection property.

In Example 3.2, we considered a chordal graph and provided a clique tree that satisfies
the clique-intersection property. The following theorem shows that the existence of
the clique tree in Example 3.2 was not by chance.
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Theorem 3.3 (see, e.g., [41, Theorem 3.1]) A connected graph G is chordal if and
only if it has a clique tree that satisfies the clique-intersection property.

Next definition provides the running intersection property in graph theory.

Definition 3.6 For a graph G with q maximal cliques, a labeling KG = {K1, ..., Kq}
has the running intersection property if for each clique Kj, j = 2, ..., q, there exists a
clique Ki, i = 1, ..., j − 1, such that

Kj ∩ (K1 ∪K2 ∪ ... ∪Kj−1) ⊂ Ki.

In the following theorem, the link between the running intersection and clique-
intersection properties is established.

Theorem 3.4 (see, e.g., [41, Corollary 1]) For a connected graph G, a clique tree
satisfies clique-intersection property if and only if there exists a labeling of KG that
satisfies the running intersection property.

Now, it is time to connect two concepts of chordal graph and the running intersection
property by using the following theorem.

Corollary 3.1 For a graph G, assume that |KG| = q. Then, G is chordal if and only
if there is a labeling KG = {K1, ...,Kq} such that

∀` ∈ [q − 1], ∃s ≤ ` :
(
K`+1 ∩

⋃̀
r=1
Kr
)
⊆ Ks.

Proof. By invoking Theorems 3.3 and 3.4, one can deduce the theorem.

Corollary 3.1 asserts the link between a chordal graph and the running intersection
property in its maximal cliques. Later in Section 3.4.3, we will show that the existence
of a labeling on the maximal cliques that satisfies the running intersection property
is enough for finding the sparsity in a PO problem. Now, the question is how we can
find the maximal cliques of a chordal graph. Next theorem answers this question.

Theorem 3.5 (see, e.g., [41, Lemma 6]) For a graph G with n vertices, let {v1, ..., vn}
be a perfect elimination ordering. Then, the set of maximal cliques of G is given by

Ki := {vi}
⋃

(Li ∩ adj(vi))

where there is no vertex vj, j < i, such that Ki ⊂ Kj.
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Example 3.1(continued) To see how Theorem 3.5 works, we apply it to the chordal
graph in Figure 3.1(b). As we already mentioned, {1, 2, 3, 4} is a perfect elimination
ordering. It is clear that

K1 = {1} ∪ {2, 3}, K2 = {2} ∪ {3, 4}, K3 = {3} ∪ {4}.

Since, K3 ⊂ K2, the set of maximal cliques is KG = {K1,K2}.

For any vertex ordering φ of graph G = (V,E), let us add extra edges to G in order
to make all Li ∩ adj(vi) complete, i ∈ [n], and denote by E∗φ the union of E with the
extra edges. Then clearly G∗ = (V,E∗φ) is chordal, because φ is a perfect elimination
ordering for G∗, and one may use Theorem 3.5 to find the maximal cliques of G∗.
The graph G∗ is called a chordal extension (or triangulation) of G.

3.4.2 Chordal graphs and positive semi-definite matrices

In this section, we briefly mention the known results on the connection of PSD
matrices and chordal graphs. We start with the definition of the Laplacian matrix
of a graph G, which is known to be PSD.

Definition 3.7 Laplacian matrix of a graph G with vertices {v1, ..., vn} is defined as
follows:

Lij =


deg(vi) if i = j

−1 if i 6= j, and vj is adjacent to vi
0 otherwise,

where deg(vi) is the degree of the vertex vi, i = 1, ..., n.

It is well-known that the Laplacian matrix of a graph G = (V,E) is PSD. This is
because L is a symmetric matrix with positive diagonal entries and

Lii =
n∑
j=1
i 6=j

|Lij|,

for any i = 1, ..., n. Thus L is diagonally dominant, and therefore positive semidefinite
(see, e.g., Proposition 1.8 in [31]).
In the following definition, we associate a graph to a matrix.

Definition 3.8 Consider a symmetric matrix A ∈ Rn×n. The graph associated with
A is constructed as follows: Set the vertex set V to [n]. Nodes i and j (i 6= j) are
adjacent if Aij 6= 0.
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The associated graph of a matrix A is an object that helps us to study the sparsity
of the matrix. One of the advantages of studying the associated graph is helping to
check whether the matrix is PSD or not, based on the following theorem.

Theorem 3.6 (see, e.g., [118, Theorem 9.2]) For any K = {K(1), ...,K(r)} ⊆
{1, ..., n}, let PK denotes the r × n matrix with entries

(PK)ij =
{

1 if j = K(i)
0 otherwise.

Let A ∈ Rn×n be a symmetric matrix and G be its associated graph. Assume that G
is chordal. Then, A is PSD if and only if it can be written as A = ∑

K∈KG P
T
KHKPK,

where HK is symmetric and PSD.

We illustrate Theorem 3.6 in the following example.

Example 3.3 Consider the PSD matrix

A =



86 51 74 62 50 83 54 0 0 0
51 44 52 57 47 60 30 0 0 0
74 52 95 74 57 78 45 0 0 0
62 57 74 173 152 156 119 48 67 71
50 47 57 152 169 144 118 54 75 80
83 60 78 156 144 177 129 52 74 65
54 30 45 119 118 129 148 58 82 73
0 0 0 48 54 52 58 44 59 53
0 0 0 67 75 74 82 59 89 67
0 0 0 71 80 65 73 53 67 79



.

The associated graph to A is

4

1 5 8

2 6 9

3 7 10
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with maximal cliques K1 = {1, ..., 7} and K2 = {4, ..., 10}. One can check that A can
be written as

A = P T
K1HK1PK1 + P T

K2HK2PK2 ,

where

HK1 =



86 51 74 62 50 83 54
51 44 52 57 47 60 30
74 52 95 74 57 78 45
62 57 74 86 68 83 42
50 47 57 68 73 71 42
83 60 78 83 71 102 60
54 30 45 42 42 60 45


, HK2 =



87 84 73 77 48 67 71
84 96 73 76 54 75 80
73 73 75 69 52 74 65
77 76 69 103 58 82 73
48 54 52 58 44 59 53
67 75 74 82 59 89 67
71 80 65 73 53 67 79


.

Until now, we mentioned some results on chordal graphs and the connection of sparse
PSD matrices with chordal graphs. In the rest of this section, we discuss how one
can use these results and connections step by step to find the sparsity pattern of a
graph G.
We denote the permuted Laplacian matrix of a graph G according to a vertex ordering
φ by Lφ. As it is proved in [118, Section 9.1], using the Cholesky factorization
Lφ = RTR, the nonzero entries of R +RT correspond to the edges in E∗φ.
A vertex ordering that minimizes |E∗φ\E| over all possible vertex orderings of G is
called a minimum ordering. Finding a minimum ordering is known to be intractable
[118, Section 6.6]. There are many polynomial-time algorithms to find a “good” or-
dering, see [118, Section 6.6]. Minimum degree ordering is such an algorithm, which
finds the vertex v with the least degree, set φ(v) = i and delete v from the graph
G in the ith iteration. In our numerical results, we use the approximate minimum
degree ordering (AMD) introduced in [9], which is known to have a lower complexity
than the minimum degree ordering. We do not explain the algorithm here, and in our
numerical experiments we use the available package called “CHOLMOD” (https:
//github.com/JuliaLang/julia/blob/master/base/sparse/cholmod.jl) in Ju-
lia 0.5 to get the ordering. This package uses AMD algorithm to find the ordering.

3.4.3 Exploiting sparsity in a polynomial optimization prob-
lem using chordal graphs

In this subsection, we construct a graph corresponding to problem (3.3) and use
the results mentioned in Sections 3.4.1 and 3.4.2 to exploit sparsity that satisfies
the running intersection property. The graph is essentially the same as the one
constructed in [119].

https://github.com/JuliaLang/julia/blob/master/base/sparse/cholmod.jl
https://github.com/JuliaLang/julia/blob/master/base/sparse/cholmod.jl
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Consider a general PO problem (3.3). A graph G = (V,E) associated to this problem
can be constructed as follows:

• the vertex set V := {x1, ..., xn},

• Ej := {(xi, xk) : variables xi, xk are present in the definition of gj(x)}, j ∈ [m],

• E0 := {(xi, xk) : product xixk is present in the definition of f(x)},

• the edge set E := ⋃m
j=0Ej.

Let L be the Laplacian matrix of G = (V,E). Using the results in Sections 3.4.1
and 3.4.2, in order to find the sparsity pattern for the PO problem that satisfies the
running intersection property, one can use Algorithm 1.

Algorithm 1 Exploit sparsity in the PO (3.3) using chordal graphs
φ← get the ordering from AMD algorithm on graph G

Lφ ← reorder Laplacian matrix L according to φ
use Cholesky factorization of Lφ to construct a chordal extension G∗ of G
{D1, ...,Dq} ← the maximal cliques of G∗
for all l ∈ [q] do
Cl ← all gj in R[x,Dl]

end for

Theorem 3.7 There is a bijection Γ : [q] → [q], such that the index blocks DΓ(`)

and constraint blocks CΓ(`), ` ∈ [q], constructed by Algorithm 1 satisfy the running
intersection property for the PO problem (Definition 3.1).

Proof. By Corollary 3.1, there is a bijection Γ : [q]→ [q] such that

∀Γ(`) ∈ [q − 1], ∃Γ(s) ≤ Γ(`) :
(
DΓ(`)+1 ∩

⋃̀
r=1
DΓ(r)

)
⊆ DΓ(s).

Now, we show that f = ∑q
`=1 f

`, where f ` ∈ R[x;DΓ(`)], for all ` ∈ [q]. Because f
is a polynomial, it is sufficient to show that for each monomial in the definition of
f there is an ` such that the monomial belongs to R[x;D`]. Let xβ be a monomial
in the definition of f , where β ∈ Nn. Due to the structure of E0, the graph induced
by the vertices corresponding to xβ is complete and hence contained in one of the
maximal cliques of G∗. Therefore, there is an ` ∈ [q] such that xβ ∈ R[x;D`].
By the construction of Cl, it is clear that gj ∈ R[x,D`] for all j ∈ Cl, l ∈ [q], and⋃q
`=1 C` = [m]. Also, ⋃q`=1D` = [n], because {D1, ...,Dq} is the set of all maximal

cliques of G∗.
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In Theorem 3.7, we showed that there is an ordering of [q] with which the blocks D`
and C`, ` ∈ [q] satisfy the running intersection property. In the following lemma, we
show that we do not need to know the ordering to solve problem (3.5).

Lemma 3.1 Let Γ : [q] → [q] be a bijection for some q ∈ N, D` ⊆ [n] and C` ⊆ [m]
for all ` ∈ [q]. Then for each κ, d ∈ N, q̃κd in (3.5) is given by

q̃κd = sup

t :
f − t = ∑

`∈[q]
∑

(α,β)∈NΓ(`)
d

λ
Γ(`)
αβ h

Γ(`)
αβ +∑

`∈[q] σΓ(`)

σ` ∈ Σ[x;D`]κ, λ` ≥ 0, t ∈ R, ` ∈ [q]

 . (3.7)

Proof. The summations in (3.7) are over ` ∈ [q], and may change the order of sum-
mations. In other words:∑

`∈[q]

∑
(α,β)∈NΓ(`)

d

λ
Γ(`)
αβ h

Γ(`)
αβ =

∑
`∈[q]

∑
(α,β)∈N`

d

λ`αβh
`
αβ,

∑
`∈[q]

σΓ(`) =
∑
`∈[q]

σ`.

Theorems 3.1, 3.7 and Lemma 3.1 show that if:

• gj(x) ≤ 1 for any feasible solution x, j ∈ [m],

• for all ` ∈ [q], the ring of R[x;D`] is generated by {1, (gj)j∈C`},

• there exists M` > 0 and j ∈ C` such that gj = 1− 1
M`

(∑
i∈D` x

2
i

)
,

then for a fixed κ ∈ N, {q̃κd} is a non-decreasing sequence that converges to the
optimal value of (3.3), when D` and C` are the outputs of Algorithm 1.
The result of this section can be applied to the P-formulation (2.11) by elimination
of equality constraints proposed in Section 2.3.2. The following example shows how
Algorithm 1 works for “Haverly1” and “Adhya1”, two pooling problem instances,
after elimination of the equality constraints.

Example 3.4 “Haverly1” is a pooling problem instance with 3 inputs, 2 outputs
and 1 pool, where the inputs are characterized with only 1 specification. Recall from
Example 2.1 on page 33 that the formulation of this instance after elimination of the
equality constraints, proposed in Section 2.3.2, is

min −200x2(15x1 − 12)− 200x3(15x1 − 6) + 200x4 − 1000x5

s.t. 1 ≥− 3
4(x1 − 1)(x2 + x3) ≥ 0 (3.8a)
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1 ≥ 1
4(3x1 − 1)(x2 + x3) ≥ 0 (3.8b)

1 ≥ 1− 2(x2 + x4) ≥ 0 (3.8c)
1 ≥ 1− (x3 + x5) ≥ 0 (3.8d)

1 ≥ 1
2(x4 + x2)− 2

5x4 −
3
5x1x2 ≥ 0 (3.8e)

1 ≥ 1
2(x5 + x3)− 2

3x5 − x1x3 ≥ 0 (3.8f)

1 ≥ xi ≥ 0, i = 1, ..., 5. (3.8g)

For this problem, the Laplacian matrix corresponding to its graph G (Figure 3.3(a))
is

L =



4 −1 −1 −1 −1
−1 3 −1 −1 0
−1 −1 3 0 −1
−1 −1 0 2 0
−1 0 −1 0 2

 .

The output of the AMD algorithm is φ({x1, x2, x3, x4, x5}) = [5, 3, 1, 4, 2]. Using the
Cholesky factorization, one finds out that there is no need to add any extra edge,
so G is chordal with the maximal cliques D1 = {x1, x2, x3}, D2 = {x1, x2, x4}, and
D3 = {x1, x3, x5}. Hence,

C1 = {(3.8a), (3.8b), (3.8g)1, (3.8g)2, (3.8g)3},
C2 = {(3.8c), (3.8e), (3.8g)1, (3.8g)2, (3.8g)4},
C3 = {(3.8d), (3.8f), (3.8g)1, (3.8g)3, (3.8g)5},

where (3.8g)i is the constraint (3.8g) for xi, i = 1, ..., 5.
“Adhya1” is a pooling problem instance that has 5 inputs, 4 outputs, 2 pools where
the inputs are characterized with 4 specifications. After elimination of the equality
constraints, the problem contains 11 variables and 41 constraints. The graph in
Figure 3.3(b) shows G where the red dashed arcs are corresponding to the nonzero
entries of R+RT that are zeros in Lφ. This means that the red dashed arcs are added
to make the graph chordal. For G∗, the maximal cliques are

D1 = {x1, x2, x3, x4, x5, x9, x10, x11},
D2 = {x2, x3, x4, x5, x6, x9, x10, x11},
D3 = {x3, x4, x5, x6, x7, x9, x10, x11},
D4 = {x4, x5, x6, x7, x8, x9, x10, x11}. (3.9)

Elimination of the equality constraints may destroy the sparsity pattern of a general
PO problem. So, in the following section we study algebraic sets with equality
constraints and prove a Positivstellensatz that deals with equality constraints.
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x1 x2

x3 x4

x5

(a) Haverly1

x1 x2 x3 x4 x5

x11

x6 x7 x8 x9 x10

(b) Adhya1

Figure 3.3: The graphs corresponding to “Haverly1” and “Adhya1” after
elimination of the equality constraints. The red dashed arcs are
added to make the graph chordal.

3.5 Problems with equality constraints
Consider the following algebraic set:

F := {x ∈ Rn : et(x) = 0, t ∈ [T ], gi(x) ≥ 0, i ∈ [m]} , (3.10)

where et, gi ∈ R[x, [n]], t ∈ [T ], i ∈ [m]. In the next theorem we show that one can
slightly change the Krivine’s Positivstellensatz [84] in order to handle algebraic set
F .

Theorem 3.8 Assume that gi(x) ≤ 1, for all x ∈ F , i ∈ [m]. If a polynomial f(x) is
positive on F and the ring of polynomials R[x, [n]] is generated by {1, et(x), gi(x)} i∈[m]

t∈[T ]
,

then there is an integer d such that

f(x) =
∑

(γ,α,θ,β)∈N2m+2T
d

λγ,α,θ,β
∏
t∈[T ]

et(x)γt (1− et(x))θt
∏
i∈[m]

gi(x)αi (1− gi(x))βi ,

for some λ that {
λγ,α,θ,β ≥ 0 if γ = 0 or T = 0,
λγ,α,θ,β ∈ R otherwise.

Proof. We prove this theorem by induction on T , the number of equality constraints.
If T = 0, there is no equality constraints in F . So, the result follows directly from
Krivine’s Positivstellensatz [84]. Now, assume that the result holds for all sets in the



Problems with equality constraints 65

form of (3.10) with T equality constraints and we prove it for a set F with T + 1
equality constraints.
Setting g(x) := eT+1(x), we can write F as follows:

{x : g(x) ≥ 0, −g(x) ≥ 0, gi(x) ≥ 0, i = 1, ...,m, et(x) = 0, t = 1, ..., T} .

So, by the induction hypothesis, there is an integer d such that

f(x) =
∑

ᾱ = (α0, α00, α, γ)
β̄ = (β0, β00, β, θ)
λᾱ,β̄ ∈ N2m+2T+4

d

λᾱ,β̄ g(x)α0 (−g(x))α00 (1 + g(x))β00 hβ0αβγθ(x),

where,

hβ0αβγθ(x) = (1− g(x))β0
m∏
i=1

gi(x)αi (1− gi(x))βi
T∏
t=1

et(x)γt (1− et(x))θt ,

and {
λᾱ,β̄ ≥ 0 γ = 0 or T = 0,
λᾱ,β̄ ∈ R otherwise.

So, f(x) can be written as∑
ᾱ = (α0, α00, α, γ)
β̄ = (β0, β00, β, θ)
λᾱ,β̄ ∈ N2m+2T+4

d

(−1)α00λᾱ,β̄ g(x)α0+α00 (1 + g(x))β00 hβ0αβγθ(x).

By using binomial theorem for (1 + g(x))β00 , we have

f(x) =
∑

ᾱ = (α0, α00, α, γ)
β̄ = (β0, β00, β, θ)
λᾱ,β̄ ∈ N2m+2T+4

d

(−1)α00λᾱ,β̄ g(x)α0+α00

β00∑
j=0

ajg(x)j
hβ0αβγθ(x),

where aj, j = 0, ..., β00, are the binomial coefficients and therefore positive. This
means that

f(x) =
∑

ᾱ = (α0, α00, α, γ)
β̄ = (β0, β00, β, θ)
λᾱ,β̄ ∈ N2m+2T+4

d

β00∑
j=0

(−1)α00ajλᾱ,β̄ g(x)α0+α00+jhβ0αβγθ(x).

Let us fix β0, α, β, γ, θ such that k := β0 + |α|+ |β|+ |γ|+ |θ| ≤ d, and set

χβ0,α,β,γ,θ(x) :=
∑

(α0,α00,β00)∈N3
d−k

β00∑
j=0

(−1)α00ajλᾱ,β̄ g(x)α0+α00+j.
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The coefficient of g(x)l, l = 0, ..., d − k, in χβ0,α,β,γ,θ(x) is the summation of some
ajλᾱ,β̄ and −ajλᾱ,β̄ corresponding to different β̄ and j. If l = 0 and γ = 0, or
l = 0 and T = 0, then, α0 = α00 = j = 0, which means the coefficient of g(x)0 is
nonnegative. Hence,

f(x) =
∑

(β0,α,β,γ,θ)
k≤d

χβ0,α,β,γ,θ(x)hβ0,α,β,γ,θ(x)

=
∑

(β0,α,β,γ,θ)
k≤d

d−k∑
l=0

λ̄l,β0,α,β,γ,θ g(x)lhβ0,α,β,γ,θ(x),

for some λ̄ with real components such that λ̄l,β0,α,β,γ,θ is nonnegative if l = 0 and
γ = 0 or l = 0 and T = 0. So, combining the two summations completes the
proof.

Theorem 3.8 asserts that the coefficients corresponding to the polynomial-multiplications∏
t∈[T ]

et(x)γt (1− et(x))θt
∏
i∈[m]

gi(x)αi (1− gi(x))βi ,

with γ 6= 0, are unrestricted.

Remark 3.2 Applying Theorem 3.8 to [120, Theorem 1], if a PO problem with fea-
sible region (3.10) satisfies the assumptions of Theorem 3.1, then the part of linear
variable λ` in (3.4) associated with the polynomial-multiplications containing equality
constraints is unrestricted, and all of the convergence results in [120] are valid.

Remark 3.3 Considering Theorem 3.8 and Remark 3.2, one can easily construct the
corresponding graph to any PO problem with some equality constraints, and exploit
the sparsity that satisfies the running intersection property, as described in Section
3.4.

For a pooling problem, let G be the graph of the P-formulation (2.11) on page 26 that
is constructed with the procedure in Section 3.4.3. All nodes in G are corresponding
to a variable in the P-formulation (2.11). Because of the constraint (2.11c), nodes
corresponding to yil, yij, (i, l), (i, j) ∈ A are connected inG, for each i ∈ I. We denote
by Ki, i ∈ I, this type of cliques. The nodes corresponding to yij, ylj, (i, j), (l, j) ∈ A,
for each j ∈ J are connected because of (2.11e), and we denote the cliques by Kj,
j ∈ J . In the same way because of (2.11d), the nodes yil, ylj, (i, l), (l, j) ∈ A,
make the cliques Kl for each l ∈ L. If there is an arc in A between two units, then
their corresponding cliques have a node in common. This means that the overlaps
between the cliques in G are related to the arcs in A. Let Ḡ be the network (Figure
2.1 on page 25) of the pooling problem. The latter discussion shows that the more
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sparse is Ḡ, the fewer overlaps are between the cliques in G. This means that if Ḡ
is sparse then the possibility that in the sparse-BSOS hierarchy the matrix variables
have fewer overlaps is high and therefore in this case each level of the sparse-BSOS
hierarchy can be solved faster than the same level of the BSOS one.

3.6 Numerical result
The results in Sections 3.4 and 3.5 have been implemented in a Julia 0.5 package
called “Polyopt”, available on https://github.com/MOSEK/Polyopt.jl.
In the implementation of the BSOS hierarchy, we model the polynomial equality by
equating the monomials coefficients. To construct problems that satisfy the assump-
tions of Theorem 3.1, we add to the problems the constraints

1− 1
M`

∑
i∈D`

x2
i

 ≥ 0 ` ∈ [q].

The rest of this section is split into two parts, each of which presents the evaluation
of our results on a class of optimization problems.

3.6.1 The evaluation on the pooling problems using the P-
formulation

In this subsection, we present the numerical evaluation of the sparse-BSOS hierarchy
on the P-formulation of the pooling problem instances and compare it with the BSOS
hierarchy (Section 2.2). In all tables, #var., #const., and bold numbers mean the
number of linear variables, the number of constraints, and the optimal value of
the instance, respectively.
In the numerical experiments, we consider κ = 1 in (3.5). We compare the results of
applying the BSOS and sparse-BSOS hierarchies to this formulation when the equal-
ity constraints are eliminated (Section 2.3.2), and when they are handled directly
using Theorem 3.8. The time in the tables contains the time of constructing the level
of the hierarchy and solving it by Mosek 8.0 [12] in seconds.
Table 3.1 presents the results of solving different pooling problem instances with the
sparse-BSOS hierarchy (3.5) and BSOS hierarchy [88].
The comparison has been made in two ways: the columns that are denoted by “with
elimination” contain the result of applying the corresponding hierarchy to the pooling
problem instances using the elimination method proposed in Section 2.3.2. In the
other columns, we use Theorem 3.8 to handle the equality constraints directly. For

https://github.com/MOSEK/Polyopt.jl
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a few instances, such as sppA0, the time that is mentioned in Table 3.1 is larger for
the sparse-BSOS hierarchy than the one for the BSOS hierarchy. This is due to the
overlap of the matrix variables in the sparse-BSOS hierarchy. The dash “-” in Table
3.1 means we cannot solve the corresponding level of the hierarchy, due to the size
of the problem.
After elimination of equality constraints, the constraints and variables are reduced.
This means that in this case, applying Theorem 3.8 is not worthwhile with respect to
the time, because the solver needs to solve a larger problem. Comparing the columns
in Tables 3.1 shows that using Theorem 3.8 does not necessarily result in better
or worse lower bounds. For Adhya4, applying this theorem results in better lower
bounds both in the sparse-BSOS and BSOS hierarchies, but this is not the case for
Adhya1.
As it can be seen in Tables 3.1, the sparse-BSOS hierarchy may construct worse lower
bounds compared to the BSOS hierarchy, which can be seen on the second level of
the sparse-BSOS hierarchy of Haverly1-3, Ben-Tal4, Adhya1-3. The advantage of
the sparse-BSOS hierarchy is that each level of the hierarchy can be solved relatively
faster than the BSOS one, if the problem is sparse. For Foulds2, the lower bounds
from the BSOS and sparse-BSOS hierarchies are close but the time in the sparse-
BSOS hierarchy is much less than in the BSOS one.
The intuition behind the sparse-BSOS hierarchy is to split the variables into some
blocks that contain only some (and not all) variables. If the blocks have many
variables in common, then it does not matter much if we merge them together. In
Table 3.2 we present the results of solving the P-formulation of the pooling problem
instances when two blocks are merged if the number of variables in their intersection
is greater than 75% of the size of the smallest one.

Table 3.1: Comparing the BSOS hierarchy and sparse-BSOS hierarchies with
κ = 1 for the P-formulation. The columns denoting by “with
elimination” apply the hierarchy after elimination of equality con-
straints. The number of maximal cliques (q) in each level is pre-
sented between parentheses. The time of the model construction
and the solution time is presented between the brackets. Bold-
faced entries indicate the (approximate) optimal value.

iteration BSOS with
elimination BSOS SBSOS with

elimination SBSOS

Haverly1
d=1 −600.00

[0.02]
−600.00

[0.03]
−600.00(3)

[0.01]
−600.00(3)

[0.03]
d=2 −417.20

[0.04]
−417.20

[0.05]
−509.09(3)

[0.02]
−505.00

[0.04]
d=3 -400.00

[0.10]
-400.00

[0.15]
-400.00(3)

[0.06]
-400.00(3)

[0.07]
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Haverly2

d=1 −1200.00
[0.03]

−1200.00
[0.03]

−1200.00(3)
[0.02]

−1200.00(3)
[0.03]

d=2 −601.67
[0.05]

-600.00
[0.05]

−1,054.55(3)
[0.05]

−1,054.55(3)
[0.05]

d=3 -600.00
[0.16]

-600.00
[0.21]

−634.65(3)
[0.08]

−628.98(3)
[0.09]

d=4 -600.00
[2.63]

-600.00
[3.28]

−601.09(3)
[0.44]

−600.51(3)
[0.52]

Haverly3

d=1 −875.00
[0.03]

−875.00
[0.03]

−875.00(3)
[0.03]

−875.00(3)
[0.03]

d=2 -750.00
[0.04]

-750.00
[0.05]

−811.98(3)
[0.04]

−810.80(3)
[0.05]

d=3 -750.00
[0.10]

-750.00
[0.16]

−756.95(3)
[0.06]

−754.01(3)
[0.06]

d=4 -750.00
[1.12]

-750.00
[1.91]

-750.00(3)
[0.20]

-750.00(3)
[0.31]

Ben-Tal4
d=1 −650.00

[0.03]
−650.00

[0.03]
−650.00(3)

[0.03]
−650.00(3)

[0.03]
d=2 −467.20

[0.05]
−467.20

[0.05]
−558.29(3)

[0.04]
−540.81(3)

[0.04]
d=3 -450.00

[0.18]
-450.00

[0.22]
-450.00 (3)

[0.08]
-450.00 (3)

[0.09]

Ben-Tal5 d=1 -3500.00
[0.06]

-3500.00
[0.15]

-3500.00(9)
[0.05]

-3500.00(13)
[0.09]

DeyGupte4
d=1 −4.00

[0.03]
−1.33
[0.04]

−4.00(1)
[0.04]

−1.33(6)
[0.05]

d=2 −3.86
[0.19]

−1.33
[0.20]

−3.86(1)
[0.19]

−1.33(6)
[0.18]

d=3 ≈-0.99
[22.92]

-1.00
[36.77]

≈-0.99(1)
[23.15]

≈−1.30(6)
[7.29]

Foulds2
d=1 −1,200.00

[0.03]
−1,200.00

[0.07]
−1,200.00(6)

[0.05]
−1,200.00(8)

[0.05]
d=2 −1,191.30

[0.22]
−1,182.80

[0.34]
−1,193.92(6)

[0.15]
−1,182.80(8)

[0.16]
d=3 −1,103.10

[26.45]
≈−1,102.34

[101.43]
−1,104.53(6)

[3.79]
−1,103.96(8)

[3.64]

Foulds3 d=1 -8.00
[62.26]

-8
[138.25]

-8(20)
[95.30]

-8(33)
[136.94]

Foulds4 d=1 -8.00
[61.77]

-8
[126.13]

-8(22)
[194.33]

-8(33)
[137.44]

Adhya1
d=1 −999.32

[0.0.3]
−999.32

[0.05]
−999.32(4)

[0.04]
−999.32(4)

[0.05]
d=2 −721.12

[0.19]
−997.63

[0.40]
−957.02(4)

[0.13]
≈−998.43(4)

[0.22]
d=3 −578.27

[36.50]
≈−669.86
[210.43]

−778.72(4)
[3.42]

≈−860.91(4)
[17.16]

Adhya2
d=1 −798.29

[0.01]
−854.10

[0.05]
−798.29(4)

[0.01]
−854.10(4)

[0.04]
d=2 −577.00

[0.24]
−853.82

[0.89]
−686.60(4)

[0.12]
−854.10(4)

[0.44]
d=3 −566.52

[39.02]
≈−575.81
[1,163.57]

−573.31(4)
[8.42]

−749.44(4)
[99.10]

Adhya3 d=1 −882.84
[0.02]

−882.84
[0.18]

−882.84(5)
[0.03]

−882.84(7)
[0.13]

d=2 −805.08
[0.64]

−882.73
[9.28]

−870.55(5)
[0.31]

−882.84(7)
[3.20]

Adhya4
d=1 −1055.00

[0.01]
−1003.33

[0.05]
−1055.00(5)

[0.02]
−1003.33(7)

[0.05]
d=2 −1,040.00

[0.33]
−1003.33

[0.90]
−1,040.00(5)

[0.20]
−1003.33(7)

[0.38]
d=3 ≈−908.13

[317.94]
−893.68

[1,343.85]
−1,012.16(5)

[17.46]
−982.42(7)

[40.42]

RT2 d=1 −45,420.50
[0.02]

−22,578.70
[0.20]

−45,420.49
[0.02]

−22,578.70(13)
[0.22]

d=2 ≈−39,287.34
[0.54]

−22,153.45
[3.42]

≈−39,291.55(2)
[0.56]

−22,153.48(13)
[1.66]

sppA0 d=1 −47,675.00
[193.38] − −47,675.00(27)

[413.88] −
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For Haverly1-3, and Ben-Tal4, there is no block merging. For DeyGupte4, Foulds3-4,
Adhya2-3, RT2 and sppA0, all of the blocks get merged, which results in the BSOS
hierarchy. Hence, we present the results for the rest of the instances in Table 3.2. In
this table, we present the number of linear variables (the number of λ`, ` ∈ [q]), the
number of constraints, and the size of the semi-definite variables (size of PSDs) as
well as the lower bounds that we get in each level of the hierarchies. As one can see,
in all the instances in Table 3.2, the elimination of the equality constraints results in
the high overlap in the maximal cliques of the associated graph to the P-formulation,
and therefore we have merged all the maximal cliques. For the instances Foulds2 and
Adhya4, even though the number of constraints in the first level of the sparse-BSOS
hierarchy is less when the equality constraints are eliminated compared to the one
when the equalities are handled directly, it is other way around in the third iteration.
This is because, for each ` ∈ [q], the constraints in R[x;D`] are fewer than the ones
in R[y], where x is the vector of variables in the P-formulation (2.11) and y is the
vector of variables in the P-formulation after eliminating equality constraints.
According to the discussion in Section 3.5, the overlaps in the matrix variables of
the sparse-BSOS hierarchy corresponding to the P-formulation (2.11) is related to
the sparsity of the network of the pooling problem, Figure 2.1, and the number of
specifications. As one can see, for the four instances in Table 3.2, the networks of the
instances are highly sparse, and therefore the possibility that each level of the sparse-
BSOS hierarchy can be solved faster than the same level in the BSOS hierarchy is
high. For Adhya2, the network is the same as Adhya1, but because the number of
specifications is much higher in Adhya2, the overlaps of the matrix variables in the
sparse-BSOS hierarchy are much higher and more than 75% of their sizes.

Table 3.2: The result of solving the P-formulation of pooling problem in-
stances with sparse-BSOS hierarchy when two maximal cliques
are merged if the intersection size is larger than 75% of the size of
smallest maximal clique (the size(s) of the positive semi-definite
matrix variable(s) is (are) presented in the second row of each
iteration).

iteration SBSOS with elimination SBSOS
Value

([size of PSDs])
[time]

#const. #var.
Value

([size of PSDs])
[time]

#const. #var.

Ben-Tal5 d=1
-3,500.00

([30])
[0.06]

465 112
-3,500.00

([12, 22, 29])
[0.07]

601 169
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Foulds2

d=1
-1,200.00

([19])
[0.02]

190 80
-1,200.00

([2× 8, 19])
[0.02]

220 112

d=2
-1,191.30

([19])
[0.17]

973 3,161
-1,182.80

([2× 8, 19])
[0.16]

1,109 2,665

d=3
-1,103.14

([19])
[25.97]

13,601 85,321
≈-1,102.74
([2× 8, 19])

[20.61]
14,609 49,529

Adhya1

d=1
-999.32
([12])
[0.01]

78 86
-999.32

([12, 19])
[0.04]

223 114

d=2
-721.12
([12])
[0.13]

543 3,656
≈-998.09
([12, 19])

[0.42]
2,317 4,035

d=3
-578.27
([12])
[38.18]

5,105 105,996
≈-776.44
([12, 19])
[71.97]

41,127 107,300

Adhya4

d=1
-1,055.00

([17])
[0.01]

153 106
-1,003.33

([2× 14, 19])
[0.03]

290 156

d=2
-1,040.00

([17])
[0.33]

1,730 5,566
-1,003.33

([2× 14, 19])
[0.31]

3,253 5,194

d=3
≈-908.13

([17])
[360.27]

27,922 198,486
-974.55

([2× 14, 19])
[62.54]

61,401 135,764

3.6.2 The evaluation on DTOC problems

Consider a DTOC problem (3.2). If F and f are polynomials, and X ,U are semi-
algebraic sets, then it is easy to see that (3.2) satisfies the RIP with the maximal
cliques

Dk = {xk+1, xk, uk} , k = 0, ..., N − 1.
In the numerical experiments, we consider the following DTOC problem:

min
xk∈R,k=1,...,N−1
uk∈R,k=0,...,N−1

1
N − 1

N−1∑
k=0

(
x2
k + u2

k

)

s.t. xk+1 = xk + 1
N

(
x2
k − uk

)
, k = 0, ..., N − 1,

x` ≤ xk ≤ xu, k = 1, ..., N − 1,
u` ≤ uk ≤ uu, k = 0, ..., N − 1,

(3.11)
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for given x`, xu, x0, xN , u
`, uu. Special cases of (3.11) were considered in [45,52,119].

In our numerical experiments, we compare the sparse-BSOS hierarchy, when the
equality constraints are replaced by two inequalities (which we will call SBSOS with-
out Theorem 3.8), with the sparse-BSOS hierarchy after applying Theorem 3.8 (which
we will call SBSOS with Theorem 3.8). To evaluate the lower bounds that we get
from the SBSOS with and without Theorem 3.8, we compare them with the bounds
that we get from the global optimization solver BARON [111], and the objective
value of the local solution obtained from CONOPT [53]. To pass the problems to the
solvers, we use AIMMS 4.39 [40]. For a fair comparison, we report the times that
MOSEK 8.0 needs to solve the level of the hierarchies, as well as the times taken by
BARON and CONOPT to solve the DTOC problems in seconds. We put a maximum
time limit of 120 seconds for all methods. We emphasize that we do not report the
result of using the BSOS hierarchy for this problem, since the number of variables in
(3.11) is large and the size of the semi-definite matrix variable in the BSOS hierarchy
makes the hierarchy inefficient for this type of problems.

Table 3.3: Numerical experiments on DTOC problems (3.11) with the input
data

(
x`, xu, x0, xN , u

`, uu
)

= (0.9, 5, 1, 1,−10, 10), and different
N , for κ = 2, d = 2, . The upper bounds obtained by BARON in
all cases are the same as the one obtained by CONOPT.

SBSOS with SBSOS without
Theorem 3.8 Theorem 3.8 BARON [111] CONOPT [53]

N value time value time lower
bound time upper

bound time

50 1.6600 0.14 1.6600 0.19 1.6600 1.06 1.6600 0.02
250 1.6569 0.78 1.6569 1.06 1.6544 120.00 1.6569 0.08
500 1.6566 1.65 1.6566 2.28 1.6201 120.00 1.6566 0.19
1000 1.6564 3.77 1.6564 4.88 1.5932 120.00 1.6564 0.80
2000 1.6563 9.14 1.6563 12.68 1.5613 120.00 1.6563 2.17
3000 1.6563 14.54 1.6563 22.14 1.5611 120.00 1.6563 5.23
4000 ≈1.6563 25.12 ≈1.6563 31.14 0.8118 120.00 1.6562 8.77
5000 ≈1.6562 36.33 ≈1.6562 54.83 0.8118 120.00 1.6562 42.20

Table 3.3 presents the results of applying the SBSOS with and without Theorem 3.8
to DTOC problems for fixed(

x`, xu, x0, xN , u
`, uu

)
= (0.9, 5, 1, 1,−10, 10)

and different N , and demonstrates the advantage of applying Theorem 3.8 to the
sparse-BSOS hierarchy. As one can see in the table, the lower bounds that we
obtain from the SBSOS with and without Theorem 3.8 are the same but applying
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this theorem helps us to get the lower bounds much faster. Moreover, the lower
bounds are equal to the objective values of the solutions found by both BARON and
CONOPT (the upper bounds obtained by BARON in all cases are the same as the
one obtained by CONOPT). Therefore, even though the solvers can not guarantee
optimality of the solutions, the lower bounds from the hierarchies assure us that the
solutions are globally optimal for N = 250, 1000, 2000, 3000. For N = 4000, 5000
the lower bounds that we get from the hierarchies are not precise and hence we
cannot deduce that the solution is optimal; however the lower bounds are close to
the objective values of the solutions.

3.7 Conclusion
In this chapter, we studied the sparse-BSOS hierarchy introduced in [120]. We first
showed how to find a splitting of variables for a general polynomial optimization
problem that satisfies the running intersection property. Then, we modified this
hierarchy to handle the problems with equality constraints. The results in this chap-
ter has been implemented in a Julia 0.5 package “Polyopt” to solve a polynomial
optimization problem.
In the numerical results we compared the sparse-BSOS hierarchy with the BSOS
one, when Theorem 3.8 is applied. For the P-formulation, the problems in each
level of the sparse-BSOS hierarchy could be solved faster than the BSOS one if the
network of the pooling problem is sparse enough and the number of specifications
is small. This is the case for example in the Foulds2 instance. The quality of the
lower bounds we got from the sparse-BSOS hierarchy could sometimes be worse than
the BSOS hierarchy. The modification we proposed to the BSOS and sparse-BSOS
hierarchies to handle equality constraints could sometimes yield much better lower
bounds than the original hierarchies, like the first and second levels of the hierarchies
in the DeyGupte4 instance.
Applying the sparse-BSOS hierarchy to the discrete-time optimal control problems
showed that the lower bounds we obtained from the sparse-BSOS hierarchy and
the modified one using Theorem 3.8 were the same, but each level of the modified
hierarchy could be solved faster. Also, the lower bounds guaranteed optimality of
the feasible solutions found by the solvers BARON and CONOPT.



74 Solving sparse polynomial optimization problems



Part II

Convex Quadratic problems with
Uncertainty





CHAPTER 4

Extending the scope of robust quadratic
optimization

4.1 Introduction
Many real-life optimization problems have parameters whose values are not exactly
known. One way to deal with parameter uncertainty is Static Robust Optimization
(SRO), which enforces the constraints to hold for all uncertain parameter values in a
user specified uncertainty set. This leads to a semi-infinite optimization problem,
called the static robust counterpart (SRC), which is generally (computationally)
intractable. A challenge in SRO is to find a tractable reformulation of the SRC.
Tractability depends not only on the functions defining the problem, but also on the
uncertainty set. For a linear optimization problem with linear uncertainty, there is
a broad range of uncertainty sets for which the SRC has a tractable reformulation,
see [24, 66].
A natural way of extending the results for linear to quadratic optimization problems,
is by keeping the functions defining the optimization problem concave in the uncertain
parameters, and using convex quadratic constraints in the variable y ∈ Rn of the form

yTA(∆)y + b(∆)Ty + c ≤ 0, ∀∆ ∈ Z, (4.1a)

where ∆ ∈ Rn×n is the uncertain parameter belonging to the convex compact uncer-
tainty set Z ⊂ Rn×n, and where A(∆) ∈ Rn×n and b(∆) ∈ Rn are affine in ∆, and
c ∈ R is not uncertain.
There are many real-life problems having constraints in the form (4.1a), one of which
is a portfolio choice problem, which tries to find a combination of asset allocations
that trade off the lowest risk against the highest return. One can formulate a portfolio
choice problem using the form (4.1a), where A(∆) and b(∆) are the covariance matrix
and minus the mean vector return (possibly with a weight), respectively, both of
which are affine in the uncertain parameter ∆. In this chapter, we construct a
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convex compact uncertainty set for ∆, using statistical tools.
In addition to the constraints in the form (4.1a), we consider conic quadratic con-
straints with concave uncertainty in the form√

yTA(∆)y + b(∆)Ty + c ≤ 0, ∀∆ ∈ Z. (4.1b)

To the best of our knowledge, there are only a few papers treating the constraints
in the forms (4.1). Moreover, the matrix A(∆) typically is given as an uncertain
linear combination of some primitive matrices with vector uncertainty. For example,
the authors in [63] study constraints in the form (4.1a), where ∆ ∈ Z ⊆ Rt is
a vector, and A(∆) = ∑t

i=1 ∆iAi, for given Ai, i = 1, ...,m. They provide exact
tractable reformulations of SRCs for polyhedral and ellipsoidal uncertainty sets. The
uncertainty set Z that we consider in this chapter is a matrix valued one, which
cannot be covered by the results in that paper. In a more general setting, the authors
in [65] introduce a dual problem to a general convex nonlinear robust optimization
problem with concave uncertainty, and provide conditions under which strong duality
holds. Furthermore, the results in [76] are similar to the results in [65].
Except for the aforementioned papers, the focus in the literature remarkably is on
the constraints in the variable y ∈ Rn in the forms

yTA(∆)TA(∆)y + b(∆)Ty + c ≤ 0, ∀∆ ∈ Z, (4.2a)√
yTA(∆)TA(∆)y + b(∆)Ty + c ≤ 0, ∀∆ ∈ Z, (4.2b)

where A(∆) and b(∆) are affine in ∆ ∈ Z. For example, the book [24] and papers [54]
and [29] treat the constraints in the forms (4.2). The drawback of (4.2) is that the
SRC is, in general, (computationally) intractable, because the functions defining the
constraints are convex in the uncertain parameter ∆.
Albeit there are applications in which constraints in the forms (4.2) with convex
compact uncertainty sets make sense (notably least-squares problems), there are
many applications, other than portfolio choice problems, where constraints in the
forms (4.1) with convex compact uncertainty sets seem quite natural:

Electrical Network Design [24, Example 8.2.6]: Electrical network design is a
problem of finding the best currents and potentials in an electrical circuit
with the lowest absorbed power. The absorbed power can be formulated as
a quadratic function of the potentials in the form (4.1a), in which A is a func-
tion of the temperature and thus uncertain.

Chance Constraint [19, Chapter 1]: Consider a normally distributed random
vector a ∈ Rn. Let y ∈ Rn and b ∈ R be the vector of decision variables and a
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constant scalar, respectively. The chance constraint Prob(aTy + b ≥ 0) ≥ α is
equivalent to 0 ≥ zα

√
yTΣy−yTµ−b, where α ∈ (0, 1), zα is the α percentile of

the standard normal distribution, µ and Σ are the mean vector and covariance
matrix of a, respectively. The usual way of acquiring µ and Σ is estimation
based on historical data, resulting in estimation inaccuracy.

Quadratic Approximations: Many optimization methods, like (quasi) Newton
and Sequential Quadratic Programming, use quadratic approximations of ob-
jective and constraint functions. For a twice differentiable function, this approx-
imation can be taken using the second order truncated Taylor series. However,
often the calculated gradients and Hessians are inaccurate.

It is worth mentioning that the key characteristic of the constraints in the forms
(4.1) is having concave uncertainty with a convex uncertainty set. Constraints in the
forms (4.2) can easily be formulated in the forms (4.1), but the uncertainty set is not
convex anymore.
The contribution of this chapter is threefold. First, we derive tractable formulations
of the SRCs of uncertain constraints in the forms (4.1) with a general convex compact
matrix valued uncertainty set Z, given in terms of its support function. We derive
explicit formulas for support functions of many choices of Z, mostly of those given in
terms of matrix norms and cones. This contribution extends the results of [22] from
vector to matrix uncertainty.
The second contribution is finding inner and outer tractable approximations of the
SRCs of constraints in the forms (4.2) with a general compact convex uncertainty
set. We do this by substituting the quadratic term in the uncertain parameter with
proper upper and lower bounds that are linear in the uncertain parameter and hence
are in the forms (4.1).
Thirdly, we show how to construct a natural uncertainty set consisting of the mean
and (vectorized) covariance matrix by using historical data and probabilistic confi-
dence sets. We prove for this case that the support function is semi-definite repre-
sentable.
The remainder of the chapter is organized as follows. Section 4.2 introduces notations
and definitions that are used throughout the chapter. In Section 4.3, we derive an
exact tractable formulation for the SRC of constraints in the forms (4.1) with a wide
range of uncertainty sets. In Section 4.4, we study constraints in the forms (4.2) with
a general bounded uncertainty set, and provide inner and outer approximations of
the SRCs. We show that the approximations are tight for some uncertain constraints.
Section 4.5 is about constructing an uncertainty set using historical information and
confidence sets. In Section 4.6, we apply the results of this chapter to a portfolio
choice, a norm approximation, and a regression line problem. All proofs in this
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chapter are presented in the Appendices.

4.2 Preliminaries
In this section, we introduce the notations and definitions we use throughout the
chapter. A matrix A ∈ Rn×n (not necessarily symmetric) is PSD if xTAx ≥ 0, for
any x ∈ Rn. We denote by Sn the set of all n× n symmetric matrices, and by S+

n its
subset of all PSD matrices. For A,B ∈ Rn×n, the notations A � B and A � B are
used when A − B ∈ S+

n and A − B ∈ int(S+
n ), respectively, where int(S+

n ) denotes
the interior of S+

n . We denote by trace (A) the trace of A. For A,B ∈ Rn×m, we set
vec(A) := [A11, ..., A1m, ..., An1, ..., Anm]T , and hence, trace

(
ABT

)
= vec(A)Tvec(B).

For symmetric matrices A,B ∈ Sn, we set

svec(A) := [A11,
√

2A12, ...,
√

2A1n, A22, ...,
√

2A(n−1)n, Ann]T ,

and hence, trace (AB) = svec(A)T svec(B). Additionally, to represent a vector d ∈ Rn

by its components, we use [di]i=1,...,n. Also, we denote the zero matrix in Rn×m and
identity matrix in Sn by 0n×m and In, respectively.
We denote the singular values of a matrix A ∈ Rm×n with rank r by σ1(A) ≥ ... ≥
σr(A) > 0. For a vector x ∈ Rn, the Euclidean norm is denoted by ‖x‖2. We use the
following matrix norms in this chapter:

Frobenius norm: ‖A‖F =
√∑m

i=1
∑n
j=1A

2
ij;

l1 norm: ‖A‖1 = ∑m
i=1

∑n
j=1 |Aij|;

l∞ norm: ‖A‖∞ = max 1≤i≤m
1≤j≤n

|Aij|;

spectral norm: ‖A‖2,2 = sup‖x‖2=1 ‖Ax‖2 ;

dual norm: For a general matrix norm ‖.‖, its dual norm is defined as ‖A‖∗ =
max‖B‖=1 trace

(
BTA

)
;

trace (nuclear) norm: ‖A‖Σ = σ1(A) + ...+ σr(A).

Remark 4.1 Let ‖.‖ be a general vector norm. Then a corresponding matrix norm
can be defined as ‖vec(A)‖ for a matrix A ∈ Rm×n. Frobenius, l1, and l∞ norms are
examples of this type of matrix norms.

The following lemma provides the exact formulations of the dual norms corresponding
to the matrix norms defined above.

Lemma 4.1 [72, Section 5.6]
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(a) ‖A‖∗F = ‖A‖F = ‖vec(A)‖2.

(b) ‖A‖∗1 = ‖A‖∞.

(c) ‖A‖∗Σ = ‖A‖2,2 = σ1(A).

In the rest of this section, we recall some definitions related to optimization.

Definition 4.1 Let Y be a set determined by constraints in a variable y. A set S
determined by constraints in the variable y and additional variable x, is an inner
approximation of Y, if

(x, y) ∈ S ⇒ y ∈ Y .

A set S is an outer approximation if

y ∈ Y ⇒ ∃x : (x, y) ∈ S.

In [24] the inner approximation is called safe approximation.

Definition 4.2 For a convex set Z, the support function δ∗Z(.) is defined as follows:

if Z ⊆ Rn, δ∗Z(u) := sup
b∈Z

{
uT b

}
,

if Z ⊆ Rm×n, δ∗Z(W ) := sup
A∈Z

{
trace

(
AW T

)}
,

if Z ⊆ Rm×n × Rn, δ∗Z(W,u) := sup
(A,b)∈Z

{
trace

(
AW T

)
+ uT b

}
,

where W ∈ Rm×n, u ∈ Rn.

4.3 Tractable reformulation for constraints with
concave uncertainty

In this section, we derive tractable formulations of the SRCs in the forms (4.1).

4.3.1 Main results

In the first theorem we provide reformulations of the SRCs for uncertain constraints
in the forms (4.1).

Theorem 4.1 Let Z ⊂ Rn×n be a convex, compact set. Also, let A ∈ Rn×n, a, b ∈ Rn,
and c ∈ R be given. For any ∆ ∈ Z, let A(∆) = A + ∆, b(∆) = b + ∆a. Assume
that A(∆) is positive semi-definite (PSD), for all ∆ ∈ Z, and there exists ∆ in the
relative interior of Z such that A(∆) is positive definite. Then:
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(I) y ∈ Rn satisfies (4.1a) if and only if there exists W ∈ Rn×n satisfying the
convex system

trace (AW ) + bTy + c+ δ∗Z(W + yaT ) ≤ 0,[
W y

yT 1

]
� 0n+1×n+1.

(4.3)

(II) y ∈ Rn satisfies (4.1b) if and only if there exist W ∈ Rn×n and η ∈ R satisfying
the convex system

trace (AW ) + bTy + c+ δ∗Z(W + yaT ) + η
4 ≤ 0,[

W y

yT η

]
� 0n+1×n+1.

(4.4)

Proof. Appendix 4.B.1.

Remark 4.2 One of the assumptions in Theorem 4.1 is that A(∆) is positive semi-
definite. This assumption is needed to guarantee convexity of the constraint and holds
in many applications. An example is when A(∆) is a covariance matrix, which is
estimated, e.g., by using historical data. In this case, A(∆) is positive semi-definite,
for all possible values of the uncertain parameter ∆.

4.3.2 Support functions

According to Theorem 4.1, tractability of the SRCs in the forms (4.1) depends on
the tractability of the support function of the uncertainty set Z. In this subsection,
we derive such tractable reformulations for several typical uncertainty sets.
In the following lemma we provide equivalent formulations of the support functions
of the uncertainty sets constructed using standard composition rules.

Lemma 4.2 Let U ∈ Rn×n.

(i) Let Z =
{

∆ ∈ Rn×n : vec(∆) ∈ U ⊂ Rn
2
}
. Then δ∗Z(U) = δ∗U(vec(U)).

(ii) Let ∆1, ...,∆k ∈ Rn×n be given. Also, let Z =
{∑k

i=1 ζi∆i : ζ ∈ U ⊂ Rk
}
.

Then, δ∗Z(U) = δ∗U

([
trace

(
∆iUT

)]
i=1,...,k

)
.

(iii) Let L ∈ Rn×t and R ∈ Rs×n be given, and Z = {L∆R : ∆ ∈ U ⊆ Rt×s}. Then
δ∗Z(U) = δ∗U

(
LTURT

)
.

(iv) Let Zi ⊆ Rn×n, i = 1, ..., k, and let Z = ∑k
i=1Zi be the Minkowski sum. Then

δ∗Z(U) = ∑k
i=1 δ

∗
Zi(U).
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(v) Let Zi ⊆ Rn×n, i = 1, ..., k, such that ⋂ki=1 ri(Zi) 6= ∅, where ri() denotes the
relative interior. Also, let Z = ⋂k

i=1Zi. Then

δ∗Z(U) = min
Ui∈Rn×n
i=1,...,k

{
k∑
i=1

δ∗Zi(U
i) :

k∑
i=1

U i = U

}
.

(vi) Let Zi ⊆ Rni×ni , Ui ∈ Rni×ni, i = 1, ..., k, and

Z = {∆ = (∆1, ...,∆k) : ∆i ∈ Zi, i = 1, ..., k} .

Then we have δ∗Z ((U1, ..., Uk)) = ∑k
i=1 δ

∗
Zi(Ui).

(vii) Let Zi ⊆ Rn×n, i = 1, ..., k, be convex and Z = conv(⋃ki=1Zi) be the convex
hull. Then δ∗Z(U) = maxi=1,...,k δ

∗
Zi(U).

Proof. Appendix 4.B.2.

The support functions derived in [22], which are for vector uncertainty sets, can
directly be used for the support functions δ∗Z(.) in (4.3) or (4.4) in cases similar
to the ones considered in Lemmas 4.2(i) and 4.2(ii). In the next lemma we derive
tractable reformulations of matrix uncertainty sets.

Lemma 4.3 Let U ∈ Rn×n.

(a) Let Z = {∆ ∈ Rn×n : ‖∆‖ ≤ ρ} , where ‖.‖ is a general matrix norm. Then
δ∗Z(U) = ρ‖U‖∗.

(b) Let Z = {∆ : ∆l � ∆ � ∆u}, where ∆l, ∆u ∈ Sn are given such that
∆u −∆l � 0n×n. Then

δ∗Z(U) = min
Λ1,Λ2

{
trace (∆uΛ2)− trace

(
∆lΛ1

)
: Λ2 − Λ1 = U + UT

2 , Λ1,Λ2 � 0n×n
}
.

Proof. (a) It follows directly from the definition of the dual norm.
(b) Appendix 4.B.3.

Special cases of the uncertainty sets studied in Lemma 4.3 have been considered in the
literature. The uncertainty set constructed using the Frobenius norm is considered
in [54] for the constraints in the form (4.2b). Also, the authors in [112] construct an
uncertainty set for the covariance matrix using the Frobenius norm. The constraints
in the forms (4.2) with uncertainty set defined by the spectral norm is treated in
Chapter 6 of [24]. Furthermore, the uncertainty set that we considered in Lemma
4.3(b) is constructed in [110] for covariance matrices. Besides, the authors in [50]
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construct an uncertainty set for the mean vector and covariance matrix, which can
be formulated as an intersection of two sets that are considered in Lemma 4.3(b).
It is known that the l1 and l∞ norms are linear representable and the Frobenius norm
is conic quadratic representable [22]. The following lemma shows that the spectral
and trace norms are semi-definite representable.

Lemma 4.4 Let U ∈ Rn×n and ρ ≥ 0.

(i) ‖U‖Σ ≤ ρ if and only if there exist matrices Y ∈ Rn×n and Z ∈ Rn×n such that[
Y U

UT Z

]
� 02n×2n, trace (Y ) + trace (Z) ≤ 2ρ.

(ii) ‖U‖2,2 ≤ ρ if and only if [
ρ2In U

UT In

]
� 02n×2n.

Proof. (i) See, e.g., Lemma 1 in [56].
(ii) See, e.g., Example 8 in [22], or Appendix 4.B.4.

4.3.3 Illustrative examples

In this section we derive tractable reformulations of SRCs for some natural uncertain
convex quadratic and conic quadratic constraints.

Example 4.1 Let Z = {∆ ∈ Rn×n : ‖∆‖F ≤ 1} and let the assumptions of Theorem
4.1 hold. Then, using Theorem 4.1(I), Lemma 4.1(a), and Lemma 4.3(a), y satisfies
(4.1a) if and only if there exists W ∈ Rn×n such that

trace (AW ) + bTy + c+
∥∥∥W + yaT

∥∥∥
F
≤ 0,[

W y

yT 1

]
� 0n+1×n+1.

In the next example, we derive a tractable reformulation of the SRC in the form
(4.1b) with the uncertainty set similar to the one proposed in [50].

Example 4.2 Consider the constraint√
yTA(∆)y + b(ζ)Ty + c ≤ 0 ∀(ζ,∆) ∈ Z, (4.5)
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where ζ ∈ Rn, ∆ ∈ Rn×n are uncertain parameters, A(∆) = A + ∆, b(ζ) = b + Dζ,
A,D ∈ Rn×n, b ∈ Rn, and Z = Z1 ∩ Z2,

Z1 =
{

(ζ,∆) :
[
1 ζT

ζ ∆

]
� 0n+1×n+1

}
, Z2 =

{
(ζ,∆) : ∆l � ∆ � ∆u

}
,

with given ∆l and ∆u such that ∆u−∆l � 0n×n. Also, assume that the assumptions
of Theorem 4.1 hold. By Lemma 4.2(v),

δ∗Z(U, v) = min
U1,U2∈Rn×n
v1,v2∈Rn

{
δ∗Z1(U1, v1) + δ∗Z2(U2, v2) : U1 + U2 = U, v1 + v2 = v

}
.

Following a similar line of reasoning as in the proof of Theorem 4.1(II), y ∈ Rn

satisfies (4.5) if and only if there exist W,U1, U2 ∈ Rn×n, v1, v2 ∈ Rn and η ∈ R such
that 

trace (AW ) + bTy + c+ δ∗Z1(v1, U1) + δ∗Z2(v2, U2) + η
4 ≤ 0,[

W y

yT η

]
� 0n+1×n+1, U

1 + U2 = W, v1 + v2 = DTy.
(4.6)

Using Lemma 4.3(b), (4.6) is equivalent to

trace (AW ) + bTy + c+ trace (∆uΛ2)− trace
(
∆lΛ1

)
+ η

4 + γ ≤ 0,

U1 + U2 = W, Λ2 − Λ1 = U2 + U2T

2 , Λ1,Λ2 � 0n×n,[
W y

yT η

]
� 0n+1×n+1,

U1+U1T

2
1
2D

Ty
1
2y

TD −γ

 � 0n+1×n+1,

for some Λ1,Λ2 ∈ Sn and γ ∈ R.

The following example is for constraints in the form (4.1a) with vector uncertainty.

Example 4.3 Consider

yTA(ζ)y + b(ζ)Ty + c ≤ 0, ∀ζ ∈ Z, (4.7)

where A(ζ) = A + ∑t
i=1 ζiA

i, b(ζ) = b + ∑t
i=1 ζib

i, (Ai, bi) ∈ Rn×n × Rn is given,
i = 1, ..., t. This constraint is considered in [63], where the uncertainty in A and b

are independent with polyhedral or ellipsoidal, and where Ai is positive semi-definite,
i = 1, ..., t . In this example we show how using the results of [22] and Section 4.3.1
can extend the results of [63] for general uncertainty sets, where A(ζ) is positive
semi-definite for all ζ ∈ Z.
First, we assume that Z ⊂ Rt+, where Rt+ denotes the nonnegative orthant of Rt.
Also, we assume that Ai is positive semi-definite, i = 1, ..., t. In this case, y ∈ Rn

satisfies (4.7) if and only if there exists v ∈ Rt such that

yTAy + δ∗Z(v) + bTy + c ≤ 0, v ≥
[
yTAiy + bi

T

y
]
i=1,...,t

, (4.8)
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where the proof can be found in Appendix 4.B.5. It is clear that in this case A(ζ)
is positive semi-definite for all ζ ∈ Z. Moreover, as it is mentioned in Remark 2
of [63], if bi = 0, i = 1, ..., t, then, for a general uncertainty set Z, y ∈ Rn satisfies
(4.7) if and only if

yT
(
A+

t∑
i=1

ζiAi

)
y + bTy + c ≤ 0, ∀ζ ∈ Z̄,

where Z̄ = Z ∩{ζ : ζ ≥ 0t×1} and Z̄ 6= ∅. Hence, y ∈ Rn satisfies (4.7) if and only if

yTAy + δ∗Z̄(v) + bTy + c ≤ 0, v ≥
[
yTAiy

]
i=1,...,t

,

which is an extension of the results of [63], since there is a broad range of uncertainty
sets for which the support functions have tractable reformulations.
Now, for a general case with dependent uncertainty in A and b, if A(ζ) is positive
semi-definite for all ζ ∈ Z, and positive definite for a ζ in its relative interior, then
by Theorem 4.1(I), y satisfies (4.7) if and only if there exists W ∈ Rn×n such that

trace (AW ) + bTy + δ∗Z

([
trace (AiW ) + bi

T
y
]
i=1,...,t

)
+ c ≤ 0,[

W y

yT 1

]
� 0n+1×n+1.

(4.9)

In the last example we derive a tractable reformulation of a quadratic constraint
with an uncertainty set similar to the one constructed in Section 4.5, and used in the
numerical experiments (Section 4.6.1).

Example 4.4 Consider the uncertain quadratic constraint

yTAy + bTy + c ≤ 0, ∀
(

b

svec(A)

)
∈ Z

where Z = Z1 ∩ Z2, and

Z1 =
{(

b

svec(A)

)
= Bν : ‖ν‖2 ≤ ρ, ν ∈ R

n2+3n
2

}
,

Z2 =
{(

b

svec(A)

)
: b ∈ Rn, A ∈ S+

n

}
,

for some invertible B ∈ R
n2+3n

2 ×n
2+3n

2 , ρ > 0. For a fixed W ∈ Sn, by Lemma 4.2(v),
and Example 4 in [22],

δ∗Z

(
u

svec(W )

)
=


min
u1,u2
W1,W2

ρ

∥∥∥∥∥BT

(
u1

svec(W 1)

)∥∥∥∥∥
2

+ δ∗Z2

(
u2

svec(W 2)

)

s.t. u1 + u2 = u, W 1 +W 2 = W, W 1,W 2 ∈ Sn.
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Similar to the proofs of Lemmas 4.2(i) and 4.2(vi), we have

δ∗Z

(
u

svec(W )

)
= min

W 1

{
ρ

∥∥∥∥∥BT

(
u

svec(W 1)

)∥∥∥∥∥
2

: W 1 � W

}
. (4.10)

Since B is invertible, it is easy to show that there exist a positive definite A and a
vector b such that

(
b

svec(A)

)
is in the relative interior of Z. Hence, y ∈ Rn satisfies

(4.4) if and only if there exists W ∈ S+
n that satisfies

ρ

∥∥∥∥∥BT

(
u

svec (W )

)∥∥∥∥∥
2

+ c ≤ 0,
[
W y

yT 1

]
� 0n+1×n+1.

4.4 Inner and outer approximations for constraints
with convex uncertainty

In this section, we provide inner and outer approximations of the SRCs of constraints
in the forms (4.2) by replacing the quadratic term in the uncertain parameter with
suitable upper and lower bounds. We assume that A(∆) = A+ ∆, b(∆) = b+D∆a,
for given A ∈ Rm×n, D ∈ Rn×m, b ∈ Rn, a ∈ Rn, c ∈ R, and ∆ ∈ Z ⊆ Rm×n, Z is
convex and compact. Here, we list all assumptions on the constraints in the forms
(4.2a) and (4.2b) that we will make in this section, and use some of them in each
theorem.
Assumption:

(A) 0m×n is in the relative interior of Z.

(B) there exists Ω > 0 such that ‖∆‖2,2 ≤ Ω for all ∆ ∈ Z.

(C) ATA+ 2∆TA is positive semi-definite for all ∆ ∈ Z.

(D) ATA+ 2∆TA is positive definite for some ∆ in the relative interior of Z.

The following theorem provides tractable inner approximations of the constraints in
the forms (4.2) by replacing the quadratic term in the uncertain parameter with a
linear upper bound.

Theorem 4.2 Let Assumptions (A) and (B) hold. Then:

(I) y ∈ Rn satisfies (4.2a) if there exists W ∈ Rn×n satisfying the convex system
trace

(
(ATA+ Ω2In)W

)
+ δ∗Z(2AW +DTyaT ) + bTy + c ≤ 0,[

W y

yT 1

]
� 0n+1×n+1.

(4.11)
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(II) y ∈ Rn satisfies (4.2b) if there exist W ∈ Rn×n and η ∈ R satisfying the convex
system

trace
(
(ATA+ Ω2In)W

)
+ δ∗Z(2AW +DTyaT ) + bTy + c+ η

4 ≤ 0,[
W y

yT η

]
� 0n+1×n+1.

(4.12)

Proof. Appendix 4.B.6.

The inner approximations proposed in Theorem 4.2 can be tight. As a simple ex-
ample, if A = 0m×n, D = 0n×m, and the uncertainty set is {∆ : ‖∆‖2,2 ≤ Ω}, then
y and W satisfy (4.11) if and only if y satisfies (4.2a). This result holds because in
this case max∆∈Z ‖∆y‖2 = Ω ‖y‖2.
In the next theorem we derive tractable outer approximations of the constraints in
the forms (4.2).

Theorem 4.3 Let Assumptions (C) and (D) hold. Then:

(I) if y satisfies (4.2a), then there exists W ∈ Rn×n satisfying the convex system
trace

(
ATAW

)
+ δ∗Z(2AW +DTyaT ) + bTy + c ≤ 0,[
W y

yT 1

]
� 0n+1×n+1.

(4.13)

(II) if y ∈ Rn satisfies (4.2b), then there exist W ∈ Rn×n and η ∈ R satisfying the
convex system

trace
(
ATAW

)
+ δ∗Z(2AW +DTyaT ) + bTy + c+ η

4 ≤ 0,[
W y

yT η

]
� 0n+1×n+1.

(4.14)

Proof. Appendix 4.B.7.

In the next theorem we provide an upper bound on the violation errors of (4.2a)
and (4.2b) for the solutions that satisfy the outer approximations (4.13) and (4.14),
respectively.

Theorem 4.4 Let Assumptions (B), (C), and (D) hold. Then,

(I) if y ∈ Rn and W ∈ Rn×n satisfy (4.13), then y violates (4.2a) by at most
Ω2 ‖y‖2

2.

(II) if y ∈ Rn and W ∈ Rn×n satisfy (4.14), then y violates (4.2b) by at most
Ω ‖y‖2.
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Proof. Appendix 4.B.8.

In Theorems 4.2 and 4.4 we need Assumption (B), which states that there exists
an upper bound Ω for sup∆∈Z ‖∆‖2,2. Notice that ‖.‖2,2 is a convex function and
the maximization of a convex function over a set, in general, is intractable. In the
cases for which sup∆∈Z ‖∆‖2,2 cannot be computed efficiently, one may use an upper
bound for ‖.‖2,2 to calculate Ω.
Furthermore, it is mentioned in Section 8.2 of [24] that finding a robust solution
to an uncertain LMI, in general, is NP-hard. Hence, there is no efficient way to
check Assumption (C) exactly. In the following proposition, we provide equivalent
statements to Assumption (C).

Proposition 4.1 Let B(∆) := ATA+ ∆TA+AT∆. Then, the following statements
are equivalent:

(i) Assumption (C) holds.

(ii) B(∆) � 0n×n, for all ∆ ∈ Z.

(iii) ‖B(∆)‖Σ − trace (B(∆)) ≤ 0, for all ∆ ∈ Z.

Proof. Appendix 4.B.9.

Using Proposition 4.1, depending on the structure of Z, to check Assumption (C)
one may use an upper bound for ‖B(∆)‖Σ for which the robust counterpart has a
tractable reformulation.

4.5 Data-driven uncertainty set
A usual way of constructing an uncertainty set is by using historical data and statis-
tical tools, such as a hypothesis testing [36], or asymptotic confidence sets [21]. In
this section, we use the latter to design an uncertainty set for a vector consisting of
the mean and vectorized covariance matrix.
For notational simplicity, we explain how to construct an uncertainty set for the two
dimensional case; the extension to higher dimensions is straightforward. For the two
dimensional case, assume that

(
x
z

)
is a random vector with components x, z, and set

µx = E(x), µz = E(z), σ2
x = E(x−µx)2, σ2

z = E(z−µz)2, σxz = E(x−µx)(z−µz), and
µkl = E(x − µx)k(z − µz)l, k, l = 0, 1, 2, .... Assume that the fourth moments exist,
which means that µkl exists when k + l ≤ 4, k, l = 0, 1, 2, 3, 4. This assumption can
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be tested using the result in [116]. Now, consider a random sample of size n,
(
xi
zi

)
,

i = 1, ..., n, that are independent and identically distributed. Set

x̄ = 1
n

n∑
i=1

xi, z̄ = 1
n

n∑
i=1

zi, S
2
x = 1

n

n∑
i=1

(xi − x̄)2,

S2
z = 1

n

n∑
i=1

(zi − z̄)2, Sxz = 1
n

n∑
i=1

(xi − x̄)(zi − z̄).

Using the Central Limit Theorem (Example 2.18 in [117]) and the Delta Method
(Theorem 3.1 in [117]), and setting

Y =
(
µx, µz, E(x2), E(xz), E(z2)

)T
,

Yn =
(
x̄, z̄,

1
n

n∑
i=1

x2
i ,

1
n

n∑
i=1

xizi,
1
n

n∑
i=1

z2
i

)T
,

it follows for any differentiable function φ : R5 → Rm that
√
n (φ(Yn)− φ(Y)) con-

verges in distribution to the normal distribution N(0,∇φ(θ)Σ∇φ(θ)T ), where Σ and
∇φ are the covariance matrix of (x, z, x2, xz, z2)T −Y and the Jacobian matrix of φ,
respectively. Letting

φ(x1, ..., x5) =
(
x1, x2, x3 − x2

1, x4 − x1x2, x5 − x2
2

)T
,

it is easy to show, similar to Example 3.2 in [117], that

√
n (Tn − θ) d−−−→

n→∞
N





0
0
0
0
0

 ,


µ20 µ11 µ30 µ21 µ12

µ11 µ02 µ21 µ12 µ03

µ30 µ21 µ40 − µ2
20 µ31 − µ11µ20 µ22 − µ20µ02

µ21 µ12 µ31 − µ11µ20 µ22 − µ2
11 µ13 − µ11µ02

µ12 µ03 µ22 − µ20µ02 µ13 − µ11µ02 µ04 − µ2
02


︸ ︷︷ ︸

V


,

(4.15)

where

θ = φ(Y) =
(
µx, µz, σ

2
x, σxz, σ

2
z

)T
, Tn = φ(Yn) =

(
x̄, z̄, S2

x, Sxz, S
2
z

)T
,

and d−−−→
n→∞

means convergence in distribution when the size of the random sample goes
to infinity (for a precise definition of the multivariate normal distribution N(µ,Σ)
with mean µ and covariance matrix Σ see, e.g., Section 45.2 in [83] ).
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Let V̂ and θ̂ be consistent estimates of V and θ defined in (4.15), respectively. Then,
asymptotically with (1 − α)% confidence, θ belongs to the following ellipsoid (see,
e.g., Section 45.9 in [83]):

U :=
{
θ : n

(
θ̂ − θ

)T
V̂ −1

(
θ̂ − θ

)
≤ χ2

rank(V ),1−α

}
,

where χ2
d,1−α denotes the (1 − α) percentile of the Chi-square distribution with d

degrees of freedom( for a precise definition of the univariate χ2 distribution see, e.g.,
Section 18.2 in [78]).
To use the results of Section 4.3, we reformulate the uncertainty set U . Setting

A =
[
Aµ
AΣ

]
, Aµ =

(
1 0 0 0 0
0 1 0 0 0

)
, AΣ =


0 0 1 0 0
0 0 0

√
2 0

0 0 0 0 1

 ,
µ = [µx µz]T , Σ =

[
σ2
x σxz

σxz σ2
z ,

]
,

(4.16)

due to positive semi-definiteness of Σ, with (1− α)% confidence(
µ

svec(Σ)

)
∈ Ū := Û ∩

{
γ : n

(
Aθ̂ − γ

)T
A−1V̂ −1A−1

(
Aθ̂ − γ

)
≤ χ2

rank(V ),1−α

}
,

where Û =
{(

γµ
γΣ

)
: γΣ = svec(M), M � 0n×n

}
. Letting RTR be the Cholesky fac-

torization of V̂ −1, i.e., V̂ −1 = RTR, Ū can be rewritten as

Ū = Û ∩

γ :
∥∥∥RA−1

(
γ − Aθ̂

)∥∥∥
2
≤

√√√√χ2
rank(V ),1−α

n


= Û ∩

AR−1ν + Aθ̂ : ‖ν‖2 ≤

√√√√χ2
rank(V ),1−α

n

 .
Hence, by letting the estimated mean vector and covariance matrix based on the
random sample be µ̂ and Σ̂, respectively, we have

Ū = Û ∩

AR−1ν +
(

µ̂

svec(Σ̂)

)
: ‖ν‖2 ≤

√√√√χ2
rank(V ),1−α

n

 . (4.17)

Remark 4.3 If V is not invertible, then one can use a generalized inverse, such as
the Moore-Penrose inverse.

Remark 4.4 The construction of the uncertainty set can straightforwardly be ex-
tended to higher dimensions using suitable φ, A, and V . Details are omitted for
brevity of exposition.
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Now, consider a convex quadratic constraint

yTΣy + µTy + c ≤ 0, (4.18)

where µ and Σ are the mean vector and covariance matrix of a random vector. By
using the uncertainty set Ū in (4.17) and Example 4.4, the SRC of (4.18) is

µ̂Ty + trace
(
Σ̂W

)
+ ρ

∥∥∥∥∥(AR−1
)T ( y

svec(W )

)∥∥∥∥∥
2

+ c ≤ 0,[
W y

yT 1

]
� 0n+1×n+1,

(4.19)

where ρ =
√

χ2
rank(V ),1−α

n
. If y and W satisfy (4.19), then y satisfies (4.18) for

all
(

µ
svec(Σ)

)
∈ Ū , which asymptotically contains the population mean vector and

covariance matrix with confidence level (1 − α)%. This means that y satisfies
(4.18) with at least confidence level (1 − α)% for the actual population mean vec-
tor and covariance matrix µ and Σ. Therefore, y that satisfies (4.19) is proba-
bly also immunized against some extra µ and Σ and hence conservative. In or-
der to reduce conservativeness, we make use of the (asymptotic) chance constraint
Prob

(
yTΣy + µTy + c ≤ 0

)
≥ 1− α, where α > 0 is close to 0. Consider a solution

ȳ that satisfies (4.19) with a desired confidence level. Prob
(
ȳTΣȳ + µT ȳ + c ≤ 0

)
is expected to be larger than the desired confidence level. If so, then by decreasing
the confidence level that is used in the construction of the uncertainty set and con-
sidering ỹ that satisfies (4.19), Prob

(
ỹTΣỹ + µT ỹ + c ≤ 0

)
gets closer to the desired

confidence level. This procedure of finding a suitable confidence level used in the
uncertainty set for which the chance constraint has the desired confidence level may
be time consuming. Therefore, we propose a reformulation of the chance constraint
Prob

(
yTΣy + µTy + c ≤ 0

)
≥ 1− α.

For any vector β, (4.15) implies that
√
n
(
βTTn − βT θ

)
d−−−→

n→∞
N
(
0, βTV β

)
. (4.20)

By setting β = A
(

y
svec(yyT )

)
, it follows straightforwardly that the (asymptotic)

chance constraint with probability of 1− α is equivalent to

z1−α√
n

√
βT V̂ β + µ̂Ty + yT Σ̂y + c ≤ 0, (4.21)

where z1−α is the 1 − α percentile of the standard normal distribution. A solution
that satisfies constraint (4.21) is less conservative than a solution that satisfies (4.19).
However, due to the term svec(yyT ) in β,

√
βT V̂ β is not convex and therefore the
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computational complexity of (4.21) is much higher than (4.19). So, we find a tractable
relaxation of it.
Clearly (4.21) is equivalent to the set of constraints

z1−α√
n
‖R−1β‖+ µ̂Ty + yT Σ̂y + c ≤ 0, β = A

(
y

svec(W )

)
, W = yyT ,

where R is the Cholesky factorization of V̂ −1. The constraint W = yyT is nonconvex,
so we relax it to W � yyT , which is a semi-definite representable constraint. Hence,

z1−α√
n
‖R−1β‖+ µ̂Ty + yT Σ̂y + c ≤ 0,[

W y

yT 1

]
� 0n+1×n+1, β = A

(
y

svec(W )

)
,

(4.22)

is a relaxation of (4.21). After solving the problem containing (4.22), it can be
checked whether the constraint W = yyT is satisfied in the solution, which surpris-
ingly happens to be the case in all our numerical results.

4.6 Applications
In this section, we apply the results of the previous sections to a robust portfolio
choice, norm approximation, and regression line problem.

4.6.1 Mean-Variance portfolio problem

In this subsection, we describe a formulation for a mean-variance portfolio problem
(Chapter 2 of [55]), and use the results of Section 4.5 to construct an uncertainty set
and to derive a tractable reformulation of the robust counterpart.
Problem formulation: We consider a mean-variance portfolio problem with n

assets. Let µ and Σ be the expectation and covariance matrix of the return vector
r = (r1, ..., rn), respectively. One formulation of a mean-variance portfolio problem
is to model the trade-off between the risk and mean return in the objective function
using a risk-aversion coefficient λ:

max
ω

{
µTω − λωTΣω : 1Tω = 1, ω ≥ 0

}
, (4.23)

where 1 = [1, 1, ..., 1]T . The risk aversion coefficient is determined by the decision
maker. When it is small, it means that the mean return is more important than the
corresponding risk and it leads to a more risky portfolio than when the risk-aversion
coefficient is large.
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In practice µ and Σ are typically estimated from a set of historical data, which
makes them sensitive to sampling inaccuracy. There are several ways of defining
uncertainty sets for the expected return vector and asset return covariance matrix,
e.g., see Chapter 12 of [55]. In this section, we use Ū defined in (4.17), i.e., the
uncertainty set constructed for

(
µ

svec(Σ)

)
. Using (4.19), the robust counterpart of

(4.23) with uncertainty set Ū reads

max
ω,W

µ̂Tω − λtr(Σ̂W )− ρ
∥∥∥∥∥(AR−1

)T ( −ω
λsvec(W )

)∥∥∥∥∥
2

s.t.
[
W ω

ωT 1

]
� 0n+1×n+1, 1Tω = 1, ω ≥ 0,

(4.24)

where ρ =
√

χ2
rank(V ),1−α

n
, µ̂, Σ̂, and V̂ are consistent estimates of µ, Σ, and V , with V

and A as in (4.15) and (4.16), respectively, but formulated for the higher dimensional
case, and R is the Cholesky factorization of V̂ −1.
Furthermore, by setting β = A

(
ω

−λsvec(W )

)
, and using the relaxed chance constraint

(4.22), the robust counterpart of problem (4.23) with confidence (1−α)% is approx-
imated by

max
ω

µ̂Tω − λωT Σ̂ω − z1−α√
n

∥∥∥R−1β
∥∥∥

2

s.t.
[
W ω

ωT 1

]
� 0n+1×n+1, 1Tω = 1, ω ≥ 0.

(4.25)

Numerical evaluation: To evaluate the above robust counterparts, we use the
monthly average value weighted return of 5 and 30 industries from 1956 until 2015, ob-
tained from “Industry Portfolios” data on the website http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html. The data are monthly re-
turns, but to present the results, we report the annualized returns (obtained by
multiplying the expected monthly return by 12) and the annualized risk (multipli-
cation of the standard deviation by

√
12). Furthermore, we set the risk aversion

coefficient λ to 3.
We have solved the following three problems: (4.23) with nominal values for µ and Σ
estimated from the data, which we call Nominal problem; (4.24), which we call Robust
problem; and (4.25), which we call Chance problem, due to the chance constraint.
We first check the behavior of Prob(µTω∗ − λω∗

TΣω∗ ≥ z∗) as a function of the
confidence level used to construct the uncertainty set, where ω∗ and z∗ are the robust
solution and corresponding robust objective value, respectively.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 4.1: The horizontal axis presents the value of (1−α)%, the confidence
level used in the uncertainty set for data with 5 and 30 industries.
The vertical axis presents the value of Prob(µTω∗ − 3ω∗TΣω∗ ≥
z∗), where ω∗, z∗ are the robust solution and corresponding objec-
tive value for (4.24), respectively, with the uncertainty set (4.17)
and different α. The plots are constructed by considering multi-
plications of 0.02 in [0, 1] as values of α.

As shown in Figure 4.1, in order to be sure that the constraint µTω∗−λω∗TΣω∗ ≥ z∗

is satisfied with probability of at least 95%, one can reduce the confidence level used
in the construction of the uncertainty set from 95% to 30% for the 5 industries case,
and to 2% for the 30 industries case.
We considered both data sets with 5 and 30 industries in our numerical experiments;
however, due to similarity in the results, we present the results of considering only
data set with 30 industries.
After solving the Nominal problem, the Robust problem considering the uncertainty
set with 95% confidence level, the Robust problem considering the uncertainty set
with 2% confidence level, and the Chance problem with 95% confidence level, we
compare the solutions in three ways:

(i) evaluating the solutions with respect to the nominal values;

(ii) evaluating the solutions with respect to their worst-case scenarios in the uncer-
tainty set constructed with 95% confidence level;

(iii) evaluating the solutions with respect to their worst-case scenarios in the uncer-
tainty set constructed with 2% confidence level.

Table 4.1 presents the evaluations of the solutions. In the first block row (with
results), the evaluation is done using the nominal scenario. The objective value
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of the Nominal problem is the highest. The worst objective value in this row is
corresponding to the solution of the Robust problem considering the uncertainty set
with 95% confidence level. This solution is immunized against more scenarios than
the others.
The second block row is the evaluation of the solutions considering their worst-case
scenario in the uncertainty set constructed by 95% confidence level. This implies that
the solution of the Robust problem with this uncertainty set has the highest objective
value, because the solution is immunized against all scenarios in the uncertainty
set; however, other solutions are immunized against all scenarios in a subset of the
uncertainty set. The third block row has the same interpretation, where the scenario
is chosen in the uncertainty set with confidence level 2%.
Table 4.1 shows that even though all solutions have close annualized returns and
risks in the nominal scenario, the solutions of (4.24) have extremely better returns
and risks in the included worst-case scenarios.
The solution of (4.25) is much worse than the robust solutions, because all solutions of
(4.25) are immunized against 95% of possible scenarios and the worst-case scenarios
lie in the other 5% part.
We emphasize that even though the confidence level of 2% seems to make the
uncertainty set much smaller than the one corresponding to the 95%, this is not

the case because for the 30 industries case we have
√

χ2
rank(V ),0.95

n
= 0.8723 and√

χ2
rank(V ),0.02

n
= 0.7751.

4.6.2 Least-squares problems with uncertainties

This subsection contains applications of the results of Section 4.4 to two well-known
problems, namely a norm approximation and a linear regression problem.

Norm approximation with uncertainty in the coefficients The norm approx-
imation miny∈Rn ‖Ay − b‖2 tries to find the closest point to b ∈ Rm in the range of
the linear function Ay. The solution to this problem can be sensitive even to small
errors in A or b. To detect this, one can analyze the condition number of the matrix
A and check the sensitivity of the nominal solution to a perturbation in A, see, e.g.,
Chapter 7 of [71]. If the condition number is large, then the solution might be sen-
sitive to a small error in A or b and not reliable. In this subsection we are using the
results of Section 4.4 to deal with this problem.
Consider the norm approximation miny ‖(A+ ∆)y − b‖2, where ∆ ∈ Z ⊆ Rm×n re-
flects the uncertainty inA. This problem is equivalent to miny yT (A+ ∆)T (A+ ∆) y+
2bT (A+ ∆) y + bT b. Now using the results of Section 4.4, upper and lower bounds
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solution of solution of solution of
Nominal Robust problem Chance
problem (4.24) with problem
(4.23) confidence level (4.25)

95% 2%

Nominal case
Obj. value -35.57 -38.10 -37.82 -35.59
Ann. risk 12.03 12.44 12.40 12.03

Ann. return 7.02 7.41 7.36 7.00
Worst-case with
confidence level

95%

Obj. value -57.24 -48.65 -48.67 -55.83
Ann. risk 14.00 13.12 13.10 13.82

Ann. return -99.03 -67.27 -69.20 -97.24
Worst-case with
confidence level

2%

Obj. value -55.79 -47.70 -47.70 -54.44
Ann. risk 13.88 13.06 13.04 13.71

Ann. return -91.16 -60.80 -62.64 -89.46

Table 4.1: Comparison among the solutions of the nominal problem (4.23),
the Robust problem (4.24) considering the uncertainty set with
95% confidence level, the Robust problem (4.24) considering the
uncertainty set with 2% confidence level, and (4.25) in three ways:
The first block-row with results is the nominal evaluation of the
solutions. The second and third block-rows are the evaluation of
the solutions with respect to their worst-case scenarios in uncer-
tainty sets 95%, and 2% confidence level, respectively. The results
are by considering the data for 30 industries. The bold number
in each block-row shows the best objective value corresponding to
that scenario. The annualized return and risk are in italics and
not individually optimized.

on the robust optimal value of this problem are obtained by solving

min
W,y

trace
(
(ATA+ Ω2In)W

)
+ δ∗Z(2WAT − 2byT )− 2bTAy + ‖b‖2

2[
W y

yT 1

]
� 0n+1×n+1,

(4.26)

and

min
W,y

trace
(
ATAW

)
+ δ∗Z(2WAT − 2byT )− 2bTAy + ‖b‖2

2[
W y

yT 1

]
� 0n+1×n+1,

(4.27)
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respectively. As an example, let

A =


16.0283 2.0422 3.0204 13.0173
5.0000 11.0271 10.0230 7.9977
8.9510 7.0000 5.9724 12.0124
4.0343 13.9878 15.0000 0.9736

 , b =


34
34
34
34

 .

The matrix A is invertible. Hence, the nominal solution is yN = A−1b, which may be
sensitive to a small perturbation in A, since the condition number of A, calculated
by ‖A‖2,2‖A−1‖2,2, is 2.2× 104, which is rather high.
We consider the uncertainty set Z = {∆ ∈ Rn×n : ‖∆‖∞ ≤ ρ} , where n = 4. In our
numerical experiments, we use Ω = nρ. This is the exact value of sup∆∈Z ‖∆‖2,2,
which is shown in the following proposition.

Proposition 4.2 Let Z = {∆ ∈ Rn×n : ‖∆‖∞ ≤ ρ}. Then, sup∆∈Z ‖∆‖2,2 = nρ.

Proof. Appendix 4.B.10.

Let yI and yO be solutions to (4.26) and (4.27), respectively. Figure 4.2 presents the
objective values of yN , yI , and yO, for different scenarios and values of ρ ∈ [0, 0.1].
By checking all the corner points in the uncertainty set, we find that Assumption (C)
holds for all ρ ∈ [0, 0.1]. Moreover, since A is invertible and 0n×n is in the relative
interior of Z, Assumption (D) holds. To find the worst-case scenario, we check all
the corner points as well. As one can see in Figure 4.2, even though the nominal
objective values of yN , yI , and yO are not much different, the objective value of yN
in the worst-case scenario is significantly worse than the other two.

Robust linear regression with data inaccuracy Another application of the
results of this chapter is finding a robust linear regression of a dependent variable Y
and a vector of independent variables X that are highly collinear. For a data set with
n linearly independent variables and m data points, a mathematical formulation of
finding the regression line is

min
w,c,b

‖w‖2 ,

s.t. wi =
n∑
j=1

Xijcj + b− Yi, ∀i = 1, ...,m,
(4.28)

where Xij is the i-th observed value of the j-th independent variable and Yi is the
value of the dependent variable in the i-th observation.
For our numerical experiment, we use the data presented in Table 7.1 of [101]. The
data, consisting of twenty data points (m = 20), corresponds to studying the linear
regression of the amount of body fat (Y ) on three different possible independent
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Figure 4.2: Two different evaluations of yI , yO and yN related to the norm
approximation problem. (a) The nominal objective value is com-
puted by ‖Ay − b‖2. (b) The worst-case objective value is com-
puted by ‖(A+ ∆∗)y − b‖2, where ∆∗ is the worst-case scenario
corresponding to yN , yI or yO. The solid blue, red dashed, and
green dot curves correspond to yI , yN , and yO, respectively. The
objective worst-case evaluation of yI and yO are close, with the
largest difference of 0.0145 that occurs for ρ = 0.0525.

variables (X1, X2, X3), namely triceps skinfold thickness, thigh circumference, and
midarm circumference. For this data, as it is stated in Table 9.5 of the book [101], the
maximum variance inflation factor, which qualifies the strength of the linear relation
between the variables X1, X2, X3, is 708.84 with a mean of 459.26, which implies
that, for example, X3 is strongly correlated to X1 and X2.
To reformulate (4.28) into the form (4.1b), let B ∈ Rm×(n+2) be a matrix whose
collection of the first n = 3 columns is the matrix X consisting of the data points
corresponding to (X1, X2, X3), the (n + 1) = 4th column is [Yi]i=1,...,m, and the
components of the last column are all ones. Then, problem (4.28) is equivalent
to miny∈R(n+2){‖By‖2 : yn+1 = −1}. Solving this problem results in the nominal
solution yN = [cNT

,−1, bN ]T = [4.334,−2.857,−2.186,−1, 117.082]T . The condition
number of B is 1.26× 104. This means that the nominal solution might be sensitive
to an error in B. Let us assume that the maximal inaccuracy in the coefficients of
the first (n+ 1) columns of B is 0.5%. Hence, we consider the following uncertainty
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Figure 4.3: The distributions of
∥∥∥(B + ∆)yI

∥∥∥
2

and
∥∥∥(B + ∆)yN

∥∥∥
2

for 50,000
sample points ∆ from the uncertainty set Z.

set:

Z = {∆ ∈ Rm×(n+2) : |∆ij| ≤ 0.005 max
i=1,...,m

|Bij|, ∆i(n+2) = 0, i = 1, ...,m, j = 1, ..., n+1}.

Similar to the proof of Proposition 4.2, Ω = 0.005
√

(n+ 2)m‖B‖∞ is an upper bound
on sup∆∈Z ‖∆‖2,2. For this instance, Assumption (C) does not hold. Therefore, we
only consider the inner approximation

min
W ∈ R(n+2)×(n+2)

y ∈ R(n+2)

η ∈ R

trace
(
(BTB + Ω2In+2)W

)
+ δ∗Z(2BW ) + η

4

[
W y

yT η

]
� 0n+1×n+1, yn+1 = −1.

Solving the above inner approximation results in the solution yI = [cIT ,−1, bI ]T =
[0.839, 0.131,−0.331,−1, 1.370]T . To evaluate yI and yN , we find their corresponding
worst-case scenarios by using YALMIP and global solver BMIBNB. The nominal
objective values of yI and yN are 10.331 and 9.920, and the worst-case objective
values are 11.733 and 18.394, respectively. Therefore, the robust solution performs
more efficiently than the nominal solution in the worst-case scenario, considering only
0.5% inaccuracy in the data.
To have a more elegant way of comparing the solutions, we derive the distributions
of
∥∥∥(B + ∆)yI

∥∥∥
2

and
∥∥∥(B + ∆)yN

∥∥∥
2

when ∆ is drawn uniformly from Z with 50,000
sample points. Figure 4.3 shows the probability density functions of

∥∥∥(B + ∆)yI
∥∥∥

2
and

∥∥∥(B + ∆)yN
∥∥∥

2
. Here,

∥∥∥(B + ∆)yI
∥∥∥

2
has a mean and standard deviation of

10.3430 and 0.1166, respectively. For
∥∥∥(B + ∆)yN

∥∥∥
2
, these numbers are 10.3440



Applications 101

and 0.6541, respectively. This shows that for this sample set, yI and yN have close
means; however, the standard deviation of yN is much higher than yI .
As it was pointed out, X1,X2, and X3 are highly correlated. By excluding X3 from
the data set, the performance of the solution to the inner approximation problem
becomes similar to the performance of the nominal solution.
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Appendix

We provide in this section all the proofs of the results of the chapter, but first we
present one lemma from the literature.

4.A Essential lemma
Lemma 4.5 (Schur complement lemma, see, e.g., Appendix A.5.5 of [44]) A

symmetric block matrix A =
[
P QT

Q R

]
, where P ∈ Sn, Q ∈ Rm×n, and R � 0m×m,

is positive (semi-) definite if and only if the matrix P −QTR−1Q is positive (semi-)
definite.

4.B Proofs

4.B.1 Proof of Theorem 4.1

To prove this theorem we use the same line of reasoning as in Theorem 2 in [22]. For
any ∆ ∈ Z, it is clear that A(∆)+A(∆)T

2 � 0n×n due to positive semi-definiteness of
A(∆). Also, yTA(∆)y = yT A(∆)+A(∆)T

2 y for any y ∈ Rn, and ∆ ∈ Z. We substitute
yTA(∆)y by yT A(∆)+A(∆)T

2 y in constraints (4.1).
(I) Let U =

{(
A(∆)+A(∆)T

2 , b(∆)
)

: ∆ ∈ Z
}

. It is clear that y ∈ Rn satisfies (4.1a) if
and only if F (y) := max(B,b)∈U

{
yTBy + bTy + c

}
≤ 0. Setting

δU(B, b) =
{

0 if (B, b) ∈ U ,
+∞ otherwise,

we have
F (y) = max

B�0n×n
b∈Rn

{
yTBy + bTy + c− δU(B, b)

}
.

Since B � 0n×n, for all B ∈ U and there exists a positive definite B in the relative
interior of U , by Theorem 6.1 in [22], F (y) ≤ 0 is equivalent to the existence of
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W ∈ Rn×n and u ∈ Rn, such that

δ∗U(W,u)− inf
A � 0n×n
b ∈ Rn

{
trace

(
AW T

)
+ uT b−

(
yTAy + bTy + c

)}
≤ 0, (4.29)

where δ∗U(.) is the support function of the set U . It follows from the definition of the
support function that

δ∗U(W,u) = sup
(B,b)∈U

trace
(
BW T

)
+ uT b

= sup
∆∈Z

trace
(
A(∆) + A(∆)T

2 W T

)
+ uT b(∆)

= sup
∆∈Z

trace
(

(A+ ∆)
(
W +W T

2

))
+ uT (b+ ∆a)

= trace
(
A

(
W +W T

2

))
+ uT b+ sup

∆∈Z
trace

(
∆
(
W +W T

2

))
+ uT∆a

= trace
(
A

(
W +W T

2

))
+ uT b+ sup

∆∈Z
trace

(
∆
((

W +W T

2

)
+ auT

))

= trace
(
A

(
W +W T

2

))
+ uT b+ δ∗Z

((
W +W T

2

)
+ uaT

)
. (4.30)

Also, we have

inf
A � 0n×n
b ∈ Rn

{
trace

(
AW T

)
+ uT b−

(
yTAy + bTy + c

)}
= inf

A � 0n×n
b ∈ Rn

{
trace (AW ) + uT b−

(
yTAy + bTy + c

)}
= −c+ inf

A � 0n×n
b ∈ Rn

{
trace

(
A
(
W − yyT

))
+ bT (u− y)

}

=
{
−c W − yyT � 0n×n, u = y,

−∞ otherwise. (4.31)

So, the fact that W � 0n×n implies W+WT

2 = W , together with Lemma 4.5, (4.30),
and (4.31) result in (4.3).
(II) Similar to the proof of part (I) we have y ∈ Rn satisfies (4.1b) if and only if there
exists W ∈ Rn×n such that

δ∗U(W,u)− inf
A � 0n×n
b ∈ Rn

{
trace

(
AW T

)
+ uT b−

(√
yTAy + bTy + c

)}
≤ 0. (4.32)

Analogous to the result in Section 3.4 of [65],

inf
A � 0n×n
b ∈ Rn

{
trace

(
AW T

)
+ uT b−

(√
yTAy + bTy + c

)}
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= −c− inf
η

{
η

4 : u = y,

[
W y

yT η

]
� 0n+1×n+1

}
. (4.33)

So, (4.32) is equivalent to

δ∗U(W,u) + c+ inf
η∈R

{
η

4 :
[
W y

yT η

]
� 0n+1×n+1

}
≤ 0. (4.34)

In (4.34), the infimum is taken over a closed lower bounded set, since η ≥ 0. Hence,
W ∈ Rn×n and y ∈ Rn satisfies (4.34) if and only if there exists η ∈ R such that


trace

(
WAT

)
+ bTy + δ∗Z(W + yaT ) + c+ η

4 ≤ 0,[
W y

yT η

]
� 0n+1×n+1,

which completes the proof.

4.B.2 Proof of Lemma 4.2

(i)
δ∗Z(U) = sup

∆∈Rn×n

{
trace

(
∆UT

)
: vec(∆) ∈ U

}
= sup

∆∈Rn×n

{
vec(U)Tvec(∆) : vec(∆) ∈ U

}
= δ∗U(vec(U)).

(ii)

δ∗Z(U) = sup
∆∈Z

{
trace

(
∆UT

)}
= sup

ζ∈U

{
k∑
i=1

trace
(
ζi∆iUT

)}

= sup
ζ∈U

{
ζT
[
trace

(
∆iUT

)]
i=1,...,k

}
= δ∗U

([
trace

(
∆iUT

)]
i=1,...,k

)
.

(iii)
δ∗Z(U) = sup

∆∈Z

{
trace

(
∆UT

)}
= sup

Θ∈U

{
trace

(
LΘRUT

)}
= sup

Θ∈U

{
trace

(
ΘRUTL

)}
= δ∗U(LTURT ).

(iv)

δ∗Z(U) = sup
∆∈Z

trace
(
∆UT

)
= sup

∆i∈Zi
i=1,...,k

k∑
i=1

trace
(
∆iUT

)

=
k∑
i=1

sup
∆i∈Zi

trace
(
∆iUT

)
=

k∑
i=1

δ∗Zi(U).
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(v) Similar to the proof of Lemma 9 in [22].
(vi)

δ∗Z ((U1, ..., Uk)) = sup
∆∈Z

trace
(
∆(U1, ..., Uk)T

)
= sup

∆i∈Zi
i=1,...,k

trace
(
(∆1, ...,∆k)(U1, ..., Uk)T

)
= sup

∆i∈Zi
i=1,...,k

trace
(

k∑
i=1

∆iU
T
i

)

=
k∑
i=1

sup
∆i∈Zi

trace
(
∆iU

T
i

)
=

k∑
i=1

δ∗Zi(Ui).

(vii)

δ∗Z(U) = sup
∆∈Z

trace
(
∆UT

)
= sup

∆i ∈ Zi
λi ≥ 0

i = 1, ..., k

{
k∑
i=1

λitrace
(
∆iUT

)
:

k∑
i=1

λi = 1
}

= max
i=1,...,k

sup
∆i∈Zi

trace
(
∆iUT

)
= max

i=1,...,k
δ∗Zi(U).

4.B.3 Proof of Lemma 4.3(b)

The assumptions imply that

δ∗Z(U) = sup
∆

{
trace

(
∆UT

)
: ∆l � ∆ � ∆u

}
= max

∆

{
trace

(
U + UT

2 ∆
)

: ∆l � ∆ � ∆u

}

= min
Λ1,Λ2

{
trace (∆uΛ2)− trace

(
∆lΛ1

)
: Λ2 − Λ1 = U + UT

2 , Λ1,Λ2 � 0n×n
}
,

where the last equality holds because of conic duality theorem (Theorem 2.3) (both
problems are strictly feasible).

4.B.4 Proof of Lemma 4.4(ii)

Lemma 4.1(d) implies that ‖U‖2
2,2 is the largest eigenvalue of UUT . Hence, ‖U‖2

2,2 ≤
ρ2 can be reformulated as UUT � ρ2In, which by using Lemma 4.5 is equivalent to[

ρ2In U

UT In

]
� 02n×2n.
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4.B.5 Proof of the statement in Example 4.3

y ∈ Rn satisfies (4.7) if and only if

yTAy + sup
ζ∈Z

{
ζT
[
yTAiy + bi

T

y
]
i=1,...,t

}
+ bTy + c ≤ 0. (4.35)

Now, we show that y ∈ Rn satisfies (4.35) if and only if there exists v ∈ Rt such that

yTAy + sup
ζ∈Z

{
ζTv

}
+ bTy + c ≤ 0, v ≥

[
yTAiy + bi

T

y
]
i=1,...,t

. (4.36)

It is clear that if y ∈ Rn and v ∈ Rt satisfy (4.36) then due to nonnegativity of ζ ∈ Z,

ζTv ≥ ζT
[
yTAiy + bi

T

y
]
i=1,...,t

,

which implies y ∈ Rn satisfies (4.35). Now let y ∈ Rn satisfies (4.35). Then setting
v =

[
yTAiy + bi

T
y
]
i=1,...,t

, y ∈ Rn and v ∈ Rt satisfy (4.36). Now clearly (4.36) can
be reformulated as (4.8).

4.B.6 Proof of Theorem 4.2

(I) y ∈ Rn satisfies (4.2a) if and only if

yTATAy + 2yTAT∆y + ‖∆y‖2
2 + (D∆a)Ty + bTy + c ≤ 0, ∀∆ ∈ Z. (4.37)

Replacing ‖∆y‖2
2 by its upper bound Ω2 ‖y‖2

2 implies that y ∈ Rn satisfies (4.37) if it
satisfies

yTATAy + 2yTAT∆y + Ω2yTy + (D∆a)Ty + bTy + c ≤ 0, ∀∆ ∈ Z. (4.38)

Setting U = {(ATA+ 2AT∆ + Ω2In, D∆a) : ∆ ∈ Z}, (4.38) is equivalent to

yTBy + (b+ d)Ty + c ≤ 0 ∀(B, d) ∈ U . (4.39)

For any (B, d) ∈ U , B is positive semidefinite since

B = (A+ ∆)T (A+ ∆) + Ω2In −∆T∆ � 0n×n.

So, by applying Theorem 4.1(I) and Lemma 4.2(iii), y ∈ Rn satisfies (4.37) if there
exists W ∈ Rn×n such that y and W satisfy (4.11).
(II) The proof is similar to part (I).
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4.B.7 Proof of Theorem 4.3

(I) It is clear that y satisfies (4.2a) if and only if y satisfies (4.37). Replacing ‖∆y‖2
2

with its lower bound 0 implies that if y ∈ Rn satisfies (4.37) then

yTATAy + 2yTAT∆y + (D∆a)Ty + bTy + c ≤ 0, ∀∆ ∈ Z. (4.40)

Setting U = {(ATA+2AT∆, D∆a) : ∆ ∈ Z}, and using Theorem 4.1(I) and Lemma
4.2(iii) completes the proof.
(II) The proof is similar to the previous part.

4.B.8 Proof of Theorem 4.4

(I) Let y ∈ Rn and W ∈ Rn×n satisfy (4.13). Then, y satisfies (4.40). Therefore,

max
∆∈Z
{yTATAy + 2yTAT∆y + (D∆a)Ty + bTy + c} ≤ 0. (4.41)

As it is mentioned in the proof of Theorem 4.2(I), (4.2a) is equivalent to (4.37).
Therefore, we have

max
∆∈Z
{yTATAy + 2yTAT∆y + ‖∆y‖2

2 + (D∆a)Ty + bTy + c}

≤ yTATAy + bTy + c+ max
∆∈Z
{2yTAT∆y + (D∆a)Ty}+ max

∆∈Z
‖∆y‖2

2

≤ yTATAy + bTy + c+ max
∆∈Z
{2yTAT∆y + (D∆a)Ty}+ Ω2 ‖y‖2

2

≤ Ω2 ‖y‖2
2 ,

where the last inequality follows from (4.41).
(II) It is clear that (4.2b) is equivalent to√

yTATAy + 2yTAT∆y + ‖∆y‖2
2 + (D∆a)Ty + bTy + c ≤ 0, ∀∆ ∈ Z.

Similar to the previous part, if y comes from the outer approximation (4.14), then
we have√

max
∆∈Z
{yTATAy + 2yTAT∆y + ‖∆y‖2

2 + (D∆a)Ty}+ bTy + c

≤
√
yTATAy + max

∆∈Z
{2yTAT∆y + (D∆a)Ty}+ max

∆∈Z
‖∆y‖2 + bTy + c

≤
√
yTATAy + max

∆∈Z
{2yTAT∆y + (D∆a)Ty}+ Ω ‖y‖2 + bTy + c

≤ Ω ‖y‖2 ,

where the first inequality holds because of the fact that
√
f + g ≤

√
f +√g for any

f, g ≥ 0.
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4.B.9 Proof of Proposition 4.1

(i) ⇔ (ii): This equivalence holds, because, in a general case, A ∈ Rn×n is positive
semi-definite if and only A+AT

2 � 0n×n.
(ii)⇔ (iii): We first show that for a given A ∈ Sn, we have A � 0n×n if and only if
‖A‖Σ − trace (A) = 0. Since A is symmetric, all of its eigenvalues are real (Theorem
7.4 in [14]). Let λ1, ..., λr be the nonzero eigenvalues of A, where r = rank(A). So,
|λi| = σi(A), i = 1, ..., r. We know A � 0n×n if and only if all of the eigenvalues
are nonnegative. This means that A � 0n×n if and only if λi = σi(A), i = 1, ..., r.
Therefore, if A � 0n×n, then

‖A‖Σ =
r∑
i=1

σi(A) =
r∑
i=1

λi = trace (A) .

For the other direction, let ‖A‖Σ − trace (A) = 0. This implies that ∑r
i=1 (|λi| − λi)

is zero. Therefore, all of the eigenvalues are nonnegative and hence A � 0n×n.
Now since ‖A‖Σ − trace (A) cannot be negative, ‖A‖Σ − trace (A) = 0 is equivalent
to ‖A‖Σ − trace (A) ≤ 0.

4.B.10 Proof of Proposition 4.2

sup
∆∈Z
‖∆‖2,2 = sup

∆ :
|∆ij | ≤ ρ

i, j = 1, ..., n.

‖∆‖2,2 = sup
∆ :

|∆ij | ≤ ρ
i, j = 1, ..., n.

sup
x:‖x‖2=1

‖∆x‖2

= sup
x:‖x‖2=1

sup
∆ :

|∆ij | ≤ ρ
i, j = 1, ..., n.

‖∆x‖2 = sup
x:‖x‖2=1

nρ ‖x‖2 = nρ.
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CHAPTER 5

When are static and adjustable robust
optimization problems with constraint-wise

uncertainty equivalent?

5.1 Introduction

Many real-life optimization problems have parameters that are not exact. One way
to deal with parameter uncertainty is Static Robust Optimization (SRO), which
enforces the constraints to hold for all uncertain parameter values in a user-specified
uncertainty region. In SRO, all decision variables represent “here and now” decisions,
which means they should obtain specific numerical values as a result of the problem
being solved before the actual uncertain parameter values “reveal themselves”.
An extension to SRO is Adjustable Robust Optimization (ARO) introduced in [25].
In ARO, some of the decision variables are “here and now”, while others represent
“wait and see” decisions, which are assigned numerical values once some of the un-
certain parameters have become known.
The advantage of using ARO lies in the fact that its worst-case objective value is
no worse, and indeed usually better, than the corresponding static SRO. In [27] the
authors prove for linear problems with linear uncertainty and convex uncertainty set
that if the uncertainty is constraint-wise, and under a few more assumptions, SRO
and ARO have the same optimal objective value. It is shown in [35] that the same
result holds even for specific non-constraint-wise uncertainty. The conservativeness
of the SRO solution for the ARO problem is studied for some classes of problems
in [34] and [35].
Solving an ARO problem can be intractable even for linear cases [57]. There are
accordingly many methods in use for finding a good approximation for an ARO
problem. Using affine decision rules, [25], for “wait and see” variables appears to
be effective for many ARO problems. For linear ARO problems with fixed recourse,
using affine decision rules leads to a robust linear problem that is computationally
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tractable for many types of uncertainty sets. This is not the case for problems with
non-fixed recourse.
An important line of research in ARO is finding classes of problems for which the
affine decision rules are optimal. In [33], the authors prove that affine decision rules
are optimal for linear ARO problems with right-hand side uncertainty and simplex
uncertainty sets. A similar result is proven in [37] for ARO problems with a specific
objective function that is convex in the uncertain parameters and adjustable vari-
ables, box constraints for the variables and a box uncertainty set. Also, in [74], the
optimality of the affine decision rules is proven for unconstrained multi-stage ARO
problems under some structural assumptions on the uncertainty set and objective
function.
In [32], a bound is derived for the gap between the objective value of the problem
that results from using affine decision rules and that of the ARO problem.
Although substituting “wait and see” decision variables with affine functions would
appear to be highly effective, the method needs introducing many new variables.
This is because for a problem with n adjustable variables and l uncertain parameters,
applying affine decision rules means substituting n adjustable variables with n(l+ 1)
non-adjustable variables.
The contribution of this chapter is twofold:

1. We prove for a class of problems containing convex problems with concave uncer-
tainty, which also satisfy a set of other conditions, that the objective values of
the corresponding SRO and ARO problems are equal. This is an extension of the
result in [27, Proposition 2.1], which is only for problems that are linear in the
variables and uncertain parameters.

2. We study uncertain nonlinear problems in which some of the uncertain parameters
are constraint-wise and the rest are not. In particular, we prove that for an ARO
problem, under a set of conditions similar to the pure constraint-wise cases, there
is an optimal decision rule that depends only on the non-constraint-wise uncertain
parameters. Moreover, we show that for a specific class of problems, there is an
affine decision rule that is only a function of the non-constraint-wise uncertain
parameters and that yields the same objective value as using an affine decision
rule that is a function of all uncertain parameters.

The first contribution means that for this class of problems, there is no need to solve
ARO ones. This has two outstanding merits: first, solving an SRO problem is com-
putationally much easier than solving an ARO one; and second, since ARO is an
online approach, parts of the solution for a problem can only be implemented once
the values of the uncertain parameters are known. The SRO approach is an offline
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one, however, so all preparations for implementing the solution can start immedi-
ately upon solving the SRO problem (for further discussion about online and offline
approaches see [95]).
The merit of the second contribution is that it reduces the number of variables in the
approximation problem that is using affine decision rules, since we know beforehand
that the coefficients of the constraint-wise uncertain parameters are zero.
In the last part of the chapter, we apply our theoretical results to important classes of
problems. We show that our contributions are applicable to convex quadratic and/or
conic quadratic problems, which can arise in multi-stage portfolio optimization, for
example. Moreover, for the facility location problem, we discuss two formulations
that are equivalent in the deterministic case, and show, by using the first contribution,
that the robust optimal value of one is better than the other. Also, we show that one
can apply this contribution to an inventory system problem with demand and cost
uncertainty to approximate the ARO problem by using affine decision rules and reach
to a tractable formulation. Besides, for a specific class of two-stage LO problems we
show that a part of the results in [35, Section 4] can be derived easily using the
second contribution of this chapter.
We emphasize that the results obtained in this chapter concern the worst-case objec-
tive value of an ARO problem. We provide conditions under which the optimal SRO
solutions are also optimal for the ARO problem. However, in such cases, another
ARO optimal solution may yield a better average-case objective value [75].
The rest of the chapter is organized as follows: Section 2 presents our main results.
We provide sets of conditions under which constraint-wise SRO and ARO problems
have the same optimal objective values. Moreover, for problems in which just some
of the uncertain parameters are constraint-wise and not all, we show that under
similar sets of conditions, there is an optimal decision rule that is independent of the
constraint-wise uncertain parameters. In Section 3, we apply our results to convex
quadratic and conic quadratic problems, inventory system problems, and a specific
class of two-stage LO problems.

5.2 Main results
In this section, we derive the main results presented in the chapter. The section starts
by introducing some definitions and preliminaries in Section 5.2.1. In Section 5.2.2,
we provide sets of conditions for problems with constraint-wise uncertainty under
which adjustable and static robust optimization produces the same optimal values.
In Section 5.2.3 we study problems in which only some of the uncertain parameters
are constraint-wise and the rest are not.
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5.2.1 Preliminaries

Consider the following uncertain nonlinear optimization problem

inf
x∈X

inf
y∈Y(x)

f(ζ, x, y)

s.t. gi(ζ, x, y) ≤ 0, i = 1, ...,m,
(5.1)

where ζ ∈ Z ⊆ Rl is an uncertain parameter and Z is a nonempty uncertainty set, x ∈
X ⊆ Rr is a non-adjustable variable, and X is a nonempty set defined by constraints
that depend only on x, y ∈ Y(x) ⊆ Rn is an adjustable variable and Y(x) is defined
by constraints independent of ζ. Also, we assume that f(ζ, x, y) and gi(ζ, x, y), i =
1, ...,m, are continuous.
We can define static and adjustable robust optimization problems corresponding to
uncertain problem (5.1).

Definition 5.1 (Static Robust Optimization) For problem (5.1), the SRC is
defined by

(SRC) inf
x∈X

inf
y∈Y(x), t

t

s.t. f(ζ, x, y) ≤ t ∀ζ ∈ Z,
gi(ζ, x, y) ≤ 0, ∀ζ ∈ Z, i = 1, ...,m.

Definition 5.2 (Adjustable Robust Optimization) For problem (5.1), there are
two different definitions for the adjustable robust counterpart (ARC):

inf
{
t ∃x ∈ X ∀ζ ∈ Z ∃y ∈ Y(x) : f(ζ, x, y) ≤ t,

gi(ζ, x, y) ≤ 0, i = 1, ...,m,

}
(5.2)

and

(ARC) inf
x∈X

sup
ζ∈Z

inf
y(ζ) ∈ Y(x)

t(ζ)

t(ζ)

s.t. f(ζ, x, y(ζ)) ≤ t(ζ),
gi(ζ, x, y(ζ)) ≤ 0, i = 1, ...,m.

The equivalence of problems (5.2) and (ARC) is proved in [114]. We denote the
objective values of problems (SRC) and (ARC) by Opt(SRC) and Opt(ARC), re-
spectively.
We extend the definition of (ARC) with fixed recourse for a linear problem with
linear uncertainty in [25] to the nonlinear case (nonlinear problem with nonlinear
uncertainty) in the following definition.
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Definition 5.3 (Fixed Recourse Problem) (ARC) has fixed recourse when there
are continuous functions f̃, g̃i : Rn+r → R, f̄, ḡi : Rl+r → R, for i = 1, ...,m, such that
for all ζ ∈ Z ⊂ Rl, x ∈ X ⊂ Rr, and y ∈ Y(x) ⊂ Rn,

f(ζ, x, y) = f̃(x, y) + f̄(ζ, x),
gi(ζ, x, y) = g̃i(x, y) + ḡi(ζ, x), i = 1, ...,m.

In this chapter, we work primarily with constraint-wise uncertainty, which is defined
as follows.

Definition 5.4 (Constraint-wise Uncertainty [25]) For problem (5.1), the un-
certainty is constraint-wise when each uncertain parameter ζ can be split into blocks
ζ = [ζ0, ..., ζm] ∈ Rl such that the data of the objective depends only on ζ0 ∈ Rl0,
the data of the i-th constraint depends solely on ζi ∈ Rli, and the uncertainty set
Z = Z0 × Z1 × ... × Zm, where Zi ⊆ Rli is the uncertainty region for ζi, for some
integers li, i = 0, ...,m.

Notice that problem (5.1) does not contain any equality constraint that depends on
ζ. The usual way of dealing with such uncertain equalities in (ARC) is to eliminate
adjustable variables [66, Section 7]. This means that we are implicitly forcing the
adjustable variables that are eliminated to obey specific decision rules. This is not
allowed in (SRC). We illustrate this in Example 5.4 of Section 5.5.
We will now outline the assumptions used in this chapter to express conditions under
which Opt(SRC) = Opt(ARC).

Assumptions. All the assumptions are with respect to problem (5.1). Throughout
this chapter, we assume that

i. There is no equality constraint in problem (5.1) that depends on ζ.

ii. The uncertainty set Z is compact.

iii. The uncertainty set Z ⊂ Rl is convex.

iv. Y(x) is a convex set for each x ∈ X .

v. Y(x) is a compact set for each x ∈ X .

vi. f(., x, y) and gi(., x, y) are concave for each x ∈ X , y ∈ Y(x), and i = 1, ...,m.

vii. f(ζ0, x, .) and gi(ζi, x, .) are convex for each x ∈ X , ζ ∈ Z = Z0 × ...× Zm, and
i = 1, ...,m.

Assumptions i, iii, iv, vi, and vii are essentially the framework of the static robust
convex optimization considered in [26].
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5.2.2 Constraint-wise uncertainty

In this subsection, we study problems with constraint-wise uncertainty and provide
sets of conditions, under which Opt(SRC) and Opt(ARC) are equal.

Theorem 5.1 If problem (5.1) has constraint-wise uncertainty and Assumptions i-vii
hold, then Opt(SRC) = Opt(ARC).

Proof. The line of reasoning is the same as in [25, Theorem 2.1].

Case I: Suppose that (ARC) does not have a non-adjustable variable. First, we
assume that (SRC) is feasible. So, it is sufficient to show that whenever t̄ ≥
Opt(ARC), then t̄ ≥ Opt(SRC) (feasibility of (SRC) impliesOpt(ARC) <∞).
According to the definitions, we have:

Opt(ARC) = (5.3)

inf
{
t ∀ζ ∈ Z = Z0 × ...×Zm ∃y ∈ Y : f(ζ0, y) ≤ t,

gi(ζi, y) ≤ 0, i = 1, ...,m

}

and,

Opt(SRC) = (5.4)

inf
{
t ∃y ∈ Y ∀ζ ∈ Z = Z0 × ...×Zm : f(ζ0, y) ≤ t,

gi(ζi, y) ≤ 0, i = 1, ...,m

}
.

If Y = ∅, it is clear that Opt(ARC) = Opt(SRC) = +∞. Now, assume
that Y 6= ∅. By contradiction, suppose that there is a scalar t̄ such that
t̄ ≥ Opt(ARC) and t̄ < Opt(SRC). Because of the constraint-wise uncertainty,
by setting β = (1, 0, 0, ..., 0)T , G0(ζ0, y) = f(ζ0, y), and Gi(ζi, y) = gi(ζi, y), for
i = 1, ...,m, and by (5.4), it follows that

∀y ∈ Y ∃ζy ∈ Z ∃iy ∈ {0, ...,m} : Giy(ζ
y
iy , y)− βiy t̄ > 0.

Also, continuity implies

∀y ∈ Y ∃εy > 0 ∃Uy ∀z ∈ Uy : Giy(ζ
y
iy , z)− βiy t̄ > εy, (5.5)

where Uy is the intersection of a 2-norm open ball with a strictly positive radius
centered at y with Y . Since Y is compact, there are yk ∈ Y , k = 1, ..., N, such
that Y = ∪Nk=1Uyk . So,

∀z ∈ Y max
k

Gi
yk

(ζy
k

i
yk
, z)− βi

yk
t̄ > ε, (5.6)
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where ε = mink εy
k . As a simplification, we set ζk = ζy

k

i
yk

, ik = iyk and

fk(z) = Gik(ζk, z)− βik t̄ ∀z ∈ Y .

Since Y is convex and all fk(z) are convex and continuous on Y due to Assump-
tion vii, and because maxk fk(z) ≥ ε for each z ∈ Y , there are nonnegative
weights λk with ∑k λk = 1 such that

f(z) :=
∑
k

λkfk(z) ≥ ε ∀z ∈ Y . (5.7)

We define

wi =
∑
k:ik=i

λk i = 0, ...,m

ζ̄i =
{ ∑

k:ik=i
λk
wi
ζk, wi 6= 0

an arbitrary point in Zi, wi = 0
ζ̄ =

[
ζ̄0, ..., ζ̄m

]
. (5.8)

It is clear by convexity of Z that ζ̄ ∈ Z. Additionally, due to t̄ ≥ Opt(ARC),
we have

∃t ≤ t̄ : ∀ζ ∈ Z ∃y ∈ Y , f(ζ0, y) ≤ t,

gi(ζi, y) ≤ 0, i = 1, ...,m, (5.9)

which means

∃ȳ ∈ Y : Gi(ζ̄i, ȳ)− βit̄ ≤ 0, i = 0, ...,m. (5.10)

Also, we know that for each i = 0, ...,m, the functions Gi(ζi, ȳ) are concave in
ζi due to Assumption vi. Hence, for all i = 0, ...,m, and wi > 0

Gi(ζ̄i, ȳ)− βit̄ = Gi

 ∑
k:ik=i

λk
wi
ζk, ȳ

− βit̄
≥

∑
k:ik=i

λk
wi
Gi(ζk, ȳ)− βit̄ =

∑
k:ik=i

λk
wi
fk(ȳ).

Summing over the indices results in

m∑
i=1
wi 6=0

wi
(
Gi(ζ̄i, ȳ)− βit̄

)
≥

N∑
k=1

λkfk(ȳ). (5.11)

By applying (5.7) and (5.10), the above inequality contradicts ε > 0.
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Now we consider the case where (SRC) is not feasible, which meansOpt(SRC) =
+∞. To prove equality of (SRC) and (ARC) with respect to the worst-
case objective value, it is sufficient to show that there is no t̄ ∈ R such that
t̄ ≥ Opt(ARC). So, the same argument used in the previous part implies that
Opt(ARC) = +∞.

Case II: Now, we consider a general case, where (ARC) contains the non-adjustable
variable x. As proved in Case I, for any x ∈ X ,

supζ∈Z infy(ζ)∈Y(x) f(ζ, x, y(ζ))
s.t. gi(ζ, x, y(ζ)) ≤ 0, i = 1, ...,m, (5.12)

and

infy∈Y(x) supζ∈Z f(ζ0, x, y)
s.t. gi(ζi, x, y(ζ0, ..., ζm)) ≤ 0, ∀ζi ∈ Zi, i = 1, ...,m, (5.13)

have the same optimal value. Therefore, taking the infimum over all x ∈ X
results in Opt(SRC) = Opt(ARC).

Theorem 5.1 extends the results for linear problems, [27, Proposition 2.1], to nonlin-
ear ones. In the following theorem, we replace Assumption v in Theorem 5.1 with
two other assumptions in order to provide another set of conditions under which
Opt(SRC) = Opt(ARC). For this theorem, without loss of generality, we assume
that (SRC) is

inf
x∈X

inf
y∈Y(x)

cTy

s.t. gi(ζi, x, y) ≤ 0, i = 0, ...,m, ∀ζi ∈ Zi,
(5.14)

where c ∈ Rr is certain, and for i = 0, ...,m,

Zi = {ζi : hik(ζi) ≤ 0, k = 1, ..., Ki}.

In what follows, the relative interior of a set S and domain of a function f(.) are
denoted by relint(S) and dom(f(.)), respectively.

Theorem 5.2 Assume that for problem (5.14) the following assumptions hold:

(a) hik(.) is convex, i = 0, ...,m, k = 1, ..., Ki,

(b) There exists (ζ0, ..., ζm) such that hik(ζi) < 0 for all i = 0, ...,m, k = 1, ..., Ki;

(c) For each x ∈ X and ζ ∈ Z;
m⋂
i=1

relint (dom (gi(ζi, x, .)))
⋂

relint(Y(x)) 6= ∅.
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Additionally, if Assumptions iv, vi, and vii hold, then Opt(ARC) = Opt(SRC).

Proof. Consider the (ARC) corresponding to (5.14) to be

inf
x∈X

sup
[ζ0,...,ζm]∈Z

inf
y(ζ)∈Y(x)

cTy(ζ)

s.t. gi(ζi, x, y(ζ)) ≤ 0, i = 0, ...,m.
(5.15)

By [2, Lemma 9] (because of Assumptions iv and vii, and assumption (c)), the optimal
value of (5.15) is equal to

inf
x∈X

sup
u ∈ Rm+1

≤
{vi}, vm+1

sup
ζ=[ζ0,...,ζm]

m∑
i=0

uig
∗
i

(
ζi, x,

vi

ui

)
+ um+1δ

∗
Y(x)

(
vm+1

um+1

)

s.t.
m+1∑
i=0

vi = c,

hik(ζi) ≤ 0, i = 0, ...,m, k = 1, ..., Ki,

(5.16)

where δ∗Y(x)

(
vm+1

um+1

)
= supy∈Y(x)

yT vm+1

um+1
and

g∗i

(
ζi, x,

vi

ui

)
= sup

y∈dom(gi(ζi,x,.))

{
yTvi

ui
− gi (ζi, x, y)

}
.

Problem (5.16) has the same optimal objective value as

inf
x∈X

sup
u ∈ Rm+1

≤
{vi}, vm+1

sup
wi

m∑
i=0

uig
∗
i

(
wi

ui
, x,

vi

ui

)
+ um+1δ

∗
Y(x)

(
vm+1

um+1

)

s.t.
m+1∑
i=0

vi = c,

− uihik(
wi
ui

) ≤ 0, i = 0, ...,m, k = 1, ..., Ki,

which is the dual of (5.14), with the same optimal objective values according to [13,
Theorem 1] (because the uncertainty is constraint-wise and assumptions (a) and (b),
as well as Assumptions vi and vii, hold). So, Opt(ARC) = Opt(SRC).

For a problem with fixed recourse and constraint-wise uncertainty, Assumption ii
(without any convexity assumption) implies equality of the objective values of (SRC)
and (ARC). We prove this in the following theorem. Even though in this case the
resulting (SRC) is intractable in general, there are cases for which (SRC) is tractable,
for instance see [24, Section 1.4].
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Theorem 5.3 Assume that in problem (5.1), the uncertainty is constraint-wise and
the uncertainty set is compact. If (ARC) has fixed recourse, then Opt(SRC) =
Opt(ARC).

Proof. First, we suppose problem (5.1) does not contain any non-adjustable variables.
According to the definitions of (SRC) and (ARC), we have Opt(ARC) ≤ Opt(SRC).
That means that if (SRC) is unbounded, thenOpt(SRC) = Opt(ARC) = −∞. Now,
if (SRC) is not unbounded, we show that Opt(ARC) ≥ Opt(SRC).
Since (ARC) has fixed recourse, we can simplify (SRC) to the following problem:

inf
y∈Y, t

t

s.t. f̃(y) + sup
ζ0∈Z0

f̄(ζ0) ≤ t

g̃i(y) + sup
ζi∈Zi

ḡi(ζi) ≤ 0, i = 1, ...,m.

(5.17)

Since f̄ and ḡi, i = 1, ...,m, are continuous, and the uncertainty is constraint-wise,
and Z is non-empty and compact, there is a point ζ̄ = [ζ̄0, ..., ζ̄m] ∈ Z where ζ̄0 is an
optimal solution of supζ0∈Z0 f̄(ζ0), and ζ̄i is an optimal solution of supζi∈Zi ḡi(ζi), for
all i = 1, ...,m. According to the definition of (ARC), Opt(ARC) ≥ q, where

q := inf
y(ζ̄) ∈ Y
t(ζ̄)

t(ζ̄)

f̃(y(ζ̄)) + f̄(ζ̄0) ≤ t(ζ̄)
g̃i(y(ζ̄)) + ḡi(ζ̄i) ≤ 0, i = 1, ...,m,

(5.18)

which is equivalent to (5.17). This implies that if (SRC) is infeasible, so is (5.18),
and therefore Opt(ARC) = Opt(SRC) = +∞ . On the other hand, if (SRC) is
feasible, then Opt(SRC) = q ≤ Opt(ARC). So, the equality of the optimal objective
values of (ARC) and (SRC) has been proved.
Now, for the general case in which (ARC) contains a non-adjustable variable x, we
have to solve:

inf
x∈X

sup
ζ∈Z

inf
y(ζ)∈Y(x)

f(ζ, x, y(ζ))

gi(ζ, x, y(ζ)) ≤ 0, i = 1, ...,m.
(5.19)

According to the first part of the proof, we have that for each x ∈ X , the objective
value of

supζ∈Z infy(ζ)∈Y(x) f(ζ, x, y(ζ))
s.t. gi(ζ, x, y(ζ)) ≤ 0, i = 1, ...,m (5.20)
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is equal to the objective value of

infy∈Y(x) supζ∈Z f(ζ0, x, y)
s.t. gi(ζi, x, y) ≤ 0, ∀ζi ∈ Zi, i = 1, ...,m. (5.21)

It follows, then, that the optimal objective value of problem (5.19) equals that of

infx∈X ,y∈Y(x) supζ∈Z f(ζ0, x, y)
s.t. gi(ζi, x, y) ≤ 0, ∀ζi ∈ Zi, i = 1, ...,m. (5.22)

Therefore, Opt(ARC) = Opt(SRC).

5.2.3 Non-constraint-wise uncertainty

Section 5.2.2 focuses on constraint-wise uncertainty. The question is what can be
concluded for a problem in which some, but not all, of the uncertain parameters are
constraint-wise. Consider the following problem:

(HRC) inf
x∈X

inf
y∈Y(x), t

t

s.t. f(ζ0, α, x, y) ≤ t ∀α ∈ A, ζ0 ∈ Z0,

gi(ζi, α, x, y) ≤ 0, i = 1, ...,m, ∀α ∈ A, ζi ∈ Zi,

where ζ = (ζ0, ..., ζm) ∈ Z = Z0 × ... × Zm and α ∈ A ⊆ Rd are uncertain parame-
ters (ζ is constraint-wise and α is non-constraint-wise). This problem has a hybrid
uncertainty, so we cannot use the results in Section 5.2.2 to deduce equality of the
optimal values of the hybrid robust counterpart (HRC) and the corresponding hybrid
adjustable robust counterpart (HARC). However, the following corollary states that
if in such a case the same set of conditions as in Theorem 5.1 hold with respect to the
constraint-wise uncertain parameters, then there exists an optimal decision rule that
is a function of only the non-constraint-wise uncertain parameters. In other words,
the two problems

(HARC) inf
x∈X

sup
ζ∈Z
α∈A

inf
y(ζ, α) ∈ Y(x)

t(ζ, α)

t(ζ, α)

s.t. f (ζ0, α, x, y(ζ, α)) ≤ t(ζ, α),
gi(ζi, α, x, y(ζ, α)) ≤ 0, i = 1, ...,m

and
(HARCα) inf

x∈X
sup
α∈A

inf
y(α) ∈ Y(x)

t(α)

t(α)

s.t. f(ζ0, α, x, y(α)) ≤ t(α) ∀ζ0 ∈ Z0,

gi(ζi, α, x, y(α)) ≤ 0, i = 1, ...,m, ∀ζi ∈ Zi
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have the same optimal objective values. We denote the optimal objective values of
(HARC) and (HARCα) by Opt(HARC) and Opt(HARCα), respectively.

Corollary 5.1 Suppose that for all α ∈ A, the assumptions of Theorem 5.1 hold
with respect to ζ, x, y. Then, Opt(HARC) = Opt(HARCα).

Proof. By fixing α ∈ A and x ∈ X and applying Theorem 5.1, the optimal objective
value of

sup
ζ∈Z

inf
y(ζ, α) ∈ Y(x)

t(ζ, α)

t(ζ, α)

s.t. f (ζ0, α, x, y(ζ, α)) ≤ t(ζ, α),
gi(ζi, α, x, y(ζ, α)) ≤ 0, i = 1, ...,m

and

inf
y(α) ∈ Y(x)

t(α)

t(α)

s.t. f(ζ0, α, x, y(α)) ≤ t(α) ∀ζ0 ∈ Z0,

gi(ζi, α, x, y(α)) ≤ 0, i = 1, ...,m, ∀ζi ∈ Zi
are equal. The result follows from taking the supremum over α ∈ A and infimum
over x ∈ X .

Corollary 5.1 can be used to reduce the complexity of solving adjustable robust
optimization problems. This is because in order to solve (HARC), one needs to
find an optimal decision rule with respect to both α and ζ, but, we can ensure
the existence of an optimal decision rule that only depends on α by applying this
corollary.
It is important to note that if we restrict ourselves to one class of decision rules,
e.g., affine decision rules, as is customary, then Corollary 5.1 does not necessarily
guarantee the existence of an optimal affine decision rule that only depends on α.
The following corollary, however, states that if the problem has fixed recourse with
respect to the constraint-wise uncertain parameter ζ and we use a specific class of
decision rules that are separable with respect to ζ and α, then there exists an optimal
decision rule that depends only on α.
Let us denote by ȳω(α) : Rd → R a function of α that belongs to a specific class
parametrized by ω. One of the examples for ȳω (α) is a polynomial. In this case, ω
could be the vector of coefficients for the monomials.
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Corollary 5.2 Assume that in (HARC),

gi(ζi, α, x, y) = g̃i(ζi, x) + ḡi(α, x, y), i = 0, ...,m, (5.23)

where g0(ζ0, α, x, y) = f(ζ0, α, x, y) and g̃i(ζi, x) and ḡi(α, x, y) are continuous for
i = 0, ...,m. Also, assume that we restrict the decision rules to be in the form of
y (ζ) + ȳω (α) , where y(.) : Rl −→ Rn. Then the optimal objective value of (HRC)
when using this decision rule is equal to that of using decision rule y + ȳω (α).

Proof. Consider the following problem:

inf
x∈X ,ω

sup
ζ∈Z

inf
y(ζ), t(ζ)

t (ζ) (5.24)

s.t. g̃0 (ζ0, x) + ḡ0 (α, x, y (ζ) + ȳω (α)) ≤ t (ζ) , ∀α ∈ A,
g̃i (ζi, x) + ḡi (α, x, y (ζ) + ȳω (α)) ≤ 0, ∀α ∈ A, i = 1, ...,m,
y (ζ) + ȳω (α) ∈ Y (x) , ∀α ∈ A.

Let Y (x)−ȳω (α) := {y − ȳω (α) : y ∈ Y (x)} , for any α ∈ A. By defining Ȳ (x, ω) =
∩α∈A [Y (x)− ȳω (α)] and

ĝi (x, ω, y (ζ)) = sup
α∈A

ḡi (α, x, y (ζ) + ȳω (α)) , i = 0, ...,m,

accordingly, we obtain an optimal objective value for (5.24) that is equal to the
optimal objective value of

inf
x∈X ,ω

sup
ζ∈Z

inf
y(ζ)∈Ȳ(x,ω),

t(ζ)

t (ζ)

s.t. g̃0 (ζ0, x) + ĝ0 (x, ω, y (ζ)) ≤ t (ζ) ,
g̃i (ζi, x) + ĝi (x, ω, y (ζ)) ≤ 0, i = 1, ...,m,

(5.25)

which is the adjustable robust counterpart related to the following robust problem:

inf
x∈X ,ω

inf
y∈Ȳ(x,ω), t

t

s.t. g̃0 (ζ0, x) + ĝ0 (x, ω, y) ≤ t, ∀ζ0 ∈ Z0,

g̃i (ζi, x) + ĝi (x, ω, y) ≤ 0, ∀ζi ∈ Zi, i = 1, ...,m.

(5.26)

In accordance with Theorem 5.3, (5.25) and (5.26) have the same optimal objective
value. Using the definitions of Ȳ (x, ω) and ĝi(x, ω, y), i = 0, ...,m, we can easily see
that the optimal objective value of (5.26) is equal to the optimal objective value of

inf
x∈X ,ω

inf
y, t

t (5.27)

s.t. g̃0 (ζ0, x) + ḡ0 (α, x, y + ȳω (α)) ≤ t, ∀α ∈ A, ∀ζ0 ∈ Z0,
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g̃i (ζi, x) + ḡi (α, x, y + ȳω (α)) ≤ 0, ∀α ∈ A, ∀ζi ∈ Zi, i = 1, ...,m,
y + ȳω (α) ∈ Y (x) , ∀α ∈ A.

So, we have proved that the optimal objective value of (5.24) and (5.27) are the
same. This means that the use of y (ζ)+ ȳω (α) and y+ ȳω (α) as decision rules yields
the same approximation of the optimal objective values.

In Corollary 5.2, y(ζ) is a general function. For instance, if we assume that ȳω (α)
lies in the class of affine functions, even for a general y(ζ), the optimal objective
value is independent from ζ. The other example is when both y(ζ) and ȳω (α) are
affine, which means that the decision rule is affine. We consider this case in the next
corollary.

Corollary 5.3 Suppose that in (HARC) the constraints and objective functions
satisfy (5.23). Then, using an affine decision rule, y(α) = u + Wα or y(ζ, α) =
u+ V ζ +Wα, where u ∈ Rn, V ∈ Rn×l, and W ∈ Rn×d, yields the same approximate
optimal value.

Corollary 5.3 mentions two different problems for approximating (HARC): one con-
siders y(α) = u+Wα as the form of decision rule and the other y(ζ, α) = u+V ζ+Wα.
We denote the optimal objective values of the former affinely adjustable robust coun-
terparts by Opt(AARCα) and Opt(AARCζ,α), respectively. Then, in general, for
problem (HRC), we have

Opt(HARC) ≤ Opt(AARCζ,α) ≤ Opt(AARCα) ≤ Opt(HRC). (5.28)

In this section, we discussed conditions that turn inequalities in (5.28) into equalities.
Theorems 5.1, 5.2, and 5.3 provide sets of conditions under which all of the inequal-
ities can be replaced by equalities. In addition, under similar sets of conditions as in
those theorems, Corollary 5.3 ensures us that the middle inequality in (5.28) turns
into an equality. Other sets of conditions for which Opt(HARC) = Opt(AARCζ,α)
are proposed in [33, 37, 74]. In Section 5.5, we provide some examples to show that
these inequalities can be strict.

5.3 Applications
In this section, we present some applications of the results obtained in Section 5.2. In
Section 5.3.1 we show by using Theorem 5.3 that between two deterministic equivalent
formulations of facility location problems with binary adjustable variables, one is
better than the other with respect to the robust optimal value. In Section 5.3.2 we use
Corollary 5.1 to reduce the complexity and the size of the affinely adjustable robust
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counterpart. In Section 5.3.3 we show that for a class of two-stage LO problems, a
part of the results in [35] is a direct consequence of Corollary 5.1. Finally, for problems
with uncertain convex quadratic and conic quadratic constraints, we use Theorem
5.1 and Corollary 5.1 to show that if the uncertainty in the quadratic constraints is
constraint-wise, then there exist optimal solutions for the adjustable variables that
are independent of the constraint-wise uncertain parameters.

5.3.1 Facility location problem with uncertain demands

In this subsection, we extend the result in [13, Theorem 1] and show that this result
also holds when parts of the adjustable variables are binary.
Assume that in a horizon with T periods, a facility should be assigned to some
candidate locations in order to satisfy demands in different customers’ locations.
The goal is to find the best allocation that satisfies the demands and maximizes the
profit. In [13] the authors study two equivalent formulations of this problem and show
by using [25, Theorem 2.1] that if the demands are uncertain and the uncertainty set
is a box, then the optimal value of the robust counterpart of one of the formulations
is better than the other.
In order to describe the two formulations, we follow the description and notations
from [18]. Let T, L,N ∈ N, be the length of the horizon, the number of candidate
locations to which a facility can be assigned, and the number of locations that have
a demand for the facility, respectively. Let η ∈ R+ be the unit price of goods, and
ci, Ci, Ki ∈ R+ be the cost per unit of production, the cost per unit of capacity, and
the cost of opening a facility at location i, respectively, for i = 1, ..., L. Moreover,
let dij ∈ R+ be the cost of shipping units from location i to j, and Djτ ∈ R+ be the
demand in period τ at location j, i = 1, ..., L, j = 1, ..., N , τ = 1, ..., T . Decision
variable Xijτ represents the proportion of the demand at location j in period τ that
is satisfied by facility i, and Piτ represents the amount of good that is produced at
facility i during the period τ . For each facility i, the decision variable Iiτ denotes
whether the facility in location i is open or closed in period τ by taking 1 or 0
respectively, and Ziτ denotes the capacity of the facility in this location and period
in case it is open. Using these notations, a deterministic facility location problem is
described by the following mixed integer LO [18]:

max
X ∈ RL×N×T

I, Z, P ∈ RL×T

T∑
τ=1

L∑
i=1

N∑
j=1

(η − dij)XijτDjτ −
T∑
τ=1

L∑
i=1

(ciPiτ + CiZiτ +KiIiτ )

s.t.
L∑
i=1

Xijτ ≤ 1, j = 1, ..., N, τ = 1, ..., T,
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N∑
j=1

XijτDjτ ≤ Piτ , i = 1, ..., L, τ = 1, ..., T,

Xijτ ≥ 0, i = 1, ..., L, j = 1, ..., N, τ = 1, ..., T,
Piτ ≤ Ziτ , Ziτ ≤MIiτ , i = 1, ..., L, τ = 1, ..., T,
I ∈ {0, 1}L×T ,

where, M is a large enough constant. We call the above formulation, proportion-
shipping formulation.
In [13] another equivalent formulation for the facility problem is studied, in which
XijτDjτ is replaced with Yijτ for all i, j and τ , where Yijτ represents how much
good is shipped in the period τ from location i to j. We call the model with Yijτ
total-shipping formulation.
Let the demands Djτ , j = 1, ..., N , τ = 1, ..., T , be the uncertain parameters with
interval uncertainty sets. In [13] the authors assume that I, Z are non-adjustable
variables, whereas X, P in the proportion-shipping formulation, and Y, P in the
total-shipping formulation are adjustable variables. However, we assume here that
parts of I, Z are non-adjustable and the rest are adjustable variables.
Let us denote the optimal values of the robust counterpart of proportion-shipping,
total-shipping formulations, and their adjustable robust counterparts by
Opt(RCproportion), Opt(RCtotal), Opt(ARCproportion), and Opt(ARCtotal), re-
spectively.
We show that the robust counterpart of the total-shipping formulation is better than
the robust counterpart of the proportion-shipping, i.e.,

Opt(RCtotal) ≥ Opt(RCproportion).

It is clear that the proportion-shipping and total-shipping formulations are equivalent
for each realization of the demand. Therefore, the corresponding adjustable robust
counterparts are equivalent as well, so Opt(ARCtotal) = Opt(ARCproportion).
The uncertainty in the total-shipping formulation is constraint-wise, because the un-
certain parameters appear only in ∑L

i=1 Yijτ ≤ Djτ , which is constructed from the first
constraint in the proportion-shipping formulation after the replacement XijτDjτ =
Yijτ , for each i = 1, ..., L, j = 1, ..., N , τ = 1, ..., T . Therefore, Opt(RCtotal) =
Opt(ARCtotal), by Theorem 1. So, we have shown that

Opt(RCtotal) = Opt(ARCtotal) = Opt(ARCproportion) ≥ Opt(RCproportion),

where the right inequality holds because the problem is a maximization one and
the optimal objective value of the adjustable robust counterpart is not less than
the optimal objective value of the robust counterpart. Hence, Opt(RCtotal) ≥
Opt(RCproportion).
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In [13], the authors show that Opt(RCtotal) ≥ Opt(RCproportion) in [13, Theo-
rem 1] for the case in which I, Z are non-adjustable variable. As observed in [13],
the proportion-shipping formulation can be obtained from the total-shipping formu-
lation by using a special decision rule Yijτ = XijτDjτ , i = 1, ..., L, j = 1, ..., N and
τ = 1, ..., T . One might think therefore that Opt(RCtotal) ≤ Opt(RCproportion).
However, the contrary is true. This is caused by the fact that the decision rule does
not have any constant term.

5.3.2 Inventory system problem with demand and cost un-
certainty

We now apply the result of Section 5.2 to the inventory system problem in [25,
Section 5], in which the authors only consider uncertainty in the demand and propose
an affine decision rule to approximate the adjustable robust counterpart. If the
cost is uncertain in addition to the demand, then the problem is not fixed recourse
anymore and using an affine decision rule leads to a non-concave robust problem
in the uncertain parameters. In this subsection, we show that by using Corollary
5.1, the affinely adjustable robust counterpart of the inventory system problem with
demand and cost uncertainty can be reformulated to a LO problem.
To describe the inventory system problem in [25, Section 5], let I, T ∈ N be the
number of producers and the length of the horizon, respectively. Assume that during
the time period τ , the i-th producer produces piτ units with per-unit cost ciτ ∈ R+.
Producer i has a production capacity Piτ ∈ R+ in period τ and overall capacity
Qi ∈ R+. Let v be the amount of the product in the warehouse at the beginning.
Besides, assume that at period τ , the demand is dτ ∈ R+ and inventory has a minimal
and maximal restriction of vmin ∈ R+ and vmax ∈ R+, respectively. The goal is to
minimize the total cost. The problem described in [25] is as follows:

min
p∈RI×T

T∑
τ=1

I∑
i=1

ciτpiτ

s.t. 0 ≤ piτ ≤ Piτ ,
T∑
τ=1

piτ ≤ Qi, i = 1, ..., I, τ = 1, ..., T,

vmin ≤ v +
τ∑
s=1

I∑
i=1

pis −
τ∑
s=1

ds ≤ vmax, τ = 1, ..., T.

(5.29)

Consider c and d as the uncertain parameters with box uncertainty for both param-
eters. The uncertainty set for d and ciτ is denoted as D and [ciτ , ciτ ], i = 1, ..., I,
τ = 1, ..., T , respectively. Because (5.29) is not fixed recourse, using affine decision
rules in c and d for the adjustable variable piτ , leads to an optimization problem with
a non-concave quadratic objective function in the uncertain parameter c.
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Because c appears only in the objective function and for each realization of d in D, the
problem is linear with the compact feasible and uncertainty set, so the assumptions
of Corollary 5.1 hold. Therefore, the adjustable robust counterpart of (5.29) equals

max
d∈D

min
p(d)∈RI×T

max
ciτ ≤ ciτ ≤ ciτ

T∑
τ=1

I∑
i=1

ciτpiτ (d)

s.t. 0 ≤ piτ (d) ≤ Piτ ,
T∑
τ=1

piτ (d) ≤ Qi, i = 1, ..., I, τ = 1, ..., T,

vmin ≤ v +
τ∑
s=1

I∑
i=1

pis(d)−
τ∑
s=1

ds ≤ vmax, τ = 1, ..., T,

in which the objective function is equivalent to ∑T
τ=1

∑I
i=1 ciτpiτ (d). So, we can

approximate the above problem using affine decision rules only in d. This reduces
the complexity and the number of variables compared to the problem acquired by
using affine decision rules in c and d.

5.3.3 Two-stage linear optimization problems

Another application of Corollary 5.1 is for specific two-stage LO problems with un-
certainty in both the constraints and the objective. In [35] a bound is derived for
this class of problems and the authors show that if the uncertainty in the objective
is independent of that in the constraints then this bound does not depend on the
objective uncertainty. In this subsection, we show that this result is a direct conse-
quence of Corollary 5.1. As in [35], we consider the adjustable robust counterpart
corresponding to a LO problem

(ARCLP ) min cTx+ max
(B,d)∈Z

min
y(B,d)

dTy(B, d)

s.t. Ax+By(B, d) ≤ h,

x ∈ Rr+,

y(B, d) ∈ Y(x),

where A ∈ Rm×r, c ∈ Rr+, h ∈ Rm, Y(x) ⊂ Rn+ is a polytope, B is an uncertain
matrix, and d is an uncertain vector. Also, let Z = ZB × Zd ⊆ Rm×n+ × Rn+ be a
convex compact uncertainty set. In addition, we suppose that Zd is a polytope, as
well. In [35], for problems with deterministic objective coefficient d, it is shown that

Opt(ARCLP ) ≥ ρ(Z)Opt(SRCLP ), (5.30)

where
ρ(Z) = max {κ (T (Z, h)) h > 0} ,
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T (Z, h) =
{
BTµ hTµ = 1, B ∈ Z, µ ≥ 0

}
,

κ (T (Z, h)) = min {α conv(T (Z, h)) ⊆ αT (Z, h)} ,

and (SRCLP ) is the robust counterpart corresponding to (ARCLP ). Then, the au-
thors in [35] show separately that for problem (ARCLP ), which has uncertainty on
objective coefficient d and the matrix coefficient B, the lower bound is independent
of the objective uncertainty, i.e., they show that Opt(ARCLP ) ≥ ρ(ZB)Opt(SRCLP ).
Here, we show that the latter result is a direct consequence of Corollary 5.1 and
(5.30). To see that, consider the following problem

min cTx+ max
B∈ZB

min
y(B), t(B)

t(B)

s.t. max
d∈Zd

dTy(B) ≤ t(B),

Ax+By(B) ≤ h,

x ∈ Rr+,

y(B) ∈ Y(x).

(5.31)

It is clear that all assumptions of Corollary 5.1 hold. So, applying this corollary to
(ARCLP ) implies that (ARCLP ) and (5.31) have the same optimal objective values.
Now, assume that dj ∈ Zd, for j = 1, ..., K, are the extreme points of the polytope
Zd. Then, the optimal objective value of (5.31) is equal to that of

min
x
cTx+ max

B∈ZB
min

y(B), t(B)
t(B)

s.t. djTy(B) ≤ t(B), j = 1, ..., K,
Ax+By(B) ≤ h,

x ∈ Rr+,

y(B) ∈ Y(x).

(5.32)

Defining

B̄ =


d1T

...
dK

T

B

 , Ā =


0
...
0
A

 , h̄ =


0
...
0
h

 , β =


1
...
1
0

 ,

we rewrite (5.32) as

(ARCLP ) min
x
cTx+ max

B̄∈Z̄
min

y(B̄), t(B̄)
t(B̄)

s.t. Āx− βt(B̄) + B̄y(B̄) ≤ h̄,

x ∈ Rr+,

y(B̄) ∈ Y(x),
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where Z̄ = [d1T , ..., dK
T ]T ×ZB. Consequently, we get

Opt(ARCLP ) = Opt(ARCLP ) ≥ ρ(ZB)Opt(SRCLP )

by applying (5.30) and the fact that ρ(Z̄) = ρ(ZB).
It is worth mentioning that if the uncertainty set ZB in (ARCLP ) is a Cartesian
product of the uncertainty region of Bj with another set, where Bj is the j-th row of
B, then it can be proved analogously that the bound is independent of the uncertainty
in Bj. Even though this is not an extension of the results in [35], it gives an intuition
behind why the bound is independent of constraint-wise uncertainty.
We emphasize that the proofs in [35] are for polytopal uncertainty sets. However,
the authors provided us additional proofs for general uncertainty sets (private com-
munications).

5.3.4 Uncertain problems containing convex quadratic and/or
conic quadratic constraints

One application of the results derived in Section 5.2 is for the following problem:

inf
x∈X

inf
y∈Y(x)

f(x, y)

s.t. gj(α, x, y) ≤ 0, ∀α ∈ A, j = 1, ...,m,
hi(ζi, x, y) ≤ 0, ∀ζi ∈ Zi, i = 1, ..., I,
pk(θk, x, y) ≤ 0, θk ∈ Tk, k = 1, ..., K,

where gj(α, x, y), j = 1, ...,m, is a continuous function, the convex quadratic function
hi is defined as

hi(ζi, x, y) =
(
x

y

)T
Ai(ζi)

(
x

y

)
+ bi(ζi)T

(
x

y

)
+ ci(ζi),

and the conic quadratic function pk is defined as

pk(θk, x, y) =

√√√√(x
y

)T
Bk(θk)

(
x

y

)
+ dk(θk)T

(
x

y

)
+ ek(θk),

where α ∈ Rl, ζi ∈ Rli , and θk ∈ RlI+k are the uncertain parameters for some
integers l, li, lI+k, i = 1, ..., I, k = 1, ..., K, and x and y are non-adjustable and
adjustable variables, respectively. We assume that the matrices Ai(ζi) and Bk(θk)
are positive semi-definite for all ζi ∈ Zi and θk ∈ Tk, i = 1, ..., I, k = 1, ..., K. Also,
we assume that Ai(ζi), bi(ζi), ci(ζi), Bk(θk), dk(θk), and ek(θk) are affine in ζi and
θk, i = 1, ..., I, k = 1, ..., K, respectively.
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This type of problem arises, for example, when a part of the problem is related
to multi-stage mean-variance portfolio optimization [67], in which the asset return
mean and covariance matrix are uncertain and these uncertainties only occur in the
objective function (hence the problem has constraint-wise uncertainty).
If the uncertainty over α is constraint-wise and gj(α, x, y) is concave in α and convex
in y, j = 1, ...,m; A, Zi and Tk are convex, i = 1, ..., I, k = 1, ..., K; and Y(x) is
compact and convex for all x ∈ X , then by Theorem 5.1, the optimal values of the
corresponding static and adjustable robust problems are equal, because hi and pk are
convex in y and concave in ζi and θk, i = 1, ..., I, k = 1, ..., K, respectively. Moreover,
if the uncertainty over α is not constraint-wise, then by Corollary 5.1, an optimal y
exists for the corresponding adjustable robust counterpart that is independent of ζi
and θk, i = 1, ..., I, k = 1, ..., K.

5.4 Illustrative examples
Example 5.1 (Illustrating Theorem 5.1) Consider the following problem:

min y1 + y2

s.t. ln(ζ)y2
1 + y2

2 ≤ 3,
y2

1 + y2
2 ≤ 4,

where ζ ∈ Z = [1, 4] is an uncertain parameter and y = (y1, y2) is an adjustable
variable.
For this example, Opt(SRC) = Opt(ARC) because by defining

Y =
{
y y2

1 + y2
2 ≤ 4

}
,

we create the conditions under which the assumptions of Theorem 5.1 will hold for
this problem. Since ln(ζ) is an increasing function, (SRC) is as follows:

min y1 + y2

s.t. ln(4)y2
1 + y2

2 ≤ 3,
y2

1 + y2
2 ≤ 4,

which has an optimal value of −
√

3 ln(4)
1+ln(4)

(
1

ln(4) + 1
)
.

Even though Opt(SRC) = Opt(ARC), by using the symmetry bound introduced in
[34], which is (1 + ρ)Opt(SRC) ≤ Opt(ARC) ≤ Opt(SRC), where

ρ = min
{
α ≥ 0 Z − (1− α)5

2 ⊂ R+

}
= 3

5 ,
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one gets
(

8
5

)
Opt(SRC) ≤ Opt(ARC) ≤ Opt(SRC).

This example shows that the symmetry bound is not tight in the presence of constraint-
wise uncertainty, even when the problem only has one uncertain parameter.

Example 5.2 (Illustrating Theorem 5.3) Consider the uncertain problem

min y2 + x3

s.t. y3 + ζ3x ≤ 0,
y2 + x2 ≤ 8,
|x| ≤ 1,

where ζ ∈ Z = [−2, 2] is an uncertain parameter, y is an adjustable variable, and x

is a non-adjustable variable. For this problem,

X = [−1, 1], Y(x) =
{
y y2 + x2 ≤ 8

}
, ∀x ∈ X .

First, we use Theorem 5.3 to calculate Opt(ARC), because the relevant assumptions
hold for this problem. According to this theorem, Opt(ARC) = Opt(SRC). Since ζ3

is an increasing function, (SRC) is equivalent to

min y2 + x3

s.t. y3 + 8x ≤ 0,
y3 − 8x ≤ 0,
y2 + x2 ≤ 8,
|x| ≤ 1.

It is easy to verify that Opt(SRC) = 0. Now we solve the (ARC) problem

min
x∈X

max
ζ∈Z

min
y(ζ)

y(ζ)2 + x3

s.t. y(ζ)3 + ζ3x ≤ 0,
y(ζ)2 + x2 ≤ 8

directly. First, we solve

z∗(ζ, x) := min
y(ζ)

y(ζ)2

s.t. y(ζ)3 + ζ3x ≤ 0,
y(ζ)2 + x2 ≤ 8

for each ζ ∈ Z and x ∈ X . It is clear that

z∗(ζ, x) =


(

3
√
−ζ3x

)2
, ζx ≥ 0,

0, otherwise.
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Hence, Opt(ARC) = minx∈X x3 + maxζ∈Z z∗(ζ, x). Therefore, we need the optimal
objective value of maxζ∈[−2,2] z

∗(ζ, x) for each x ∈ X . By checking two cases x ≥
0 and x < 0, we find 4 3

√
x2 as its optimal objective value. Hence, Opt(ARC) =

minx∈[−1,1]x
3 + 4 3

√
x2 = 0.

Hitherto, we have studied examples regarding constraint-wise uncertainty. Now, we
consider an example possessing hybrid uncertainty.

Example 5.3 (Hybrid uncertainty) Consider the following uncertain problem:

min
y,x
− x

s.t. (1− 2α)x+ y ≥ ζ,

αx− y ≥ 0,
x ≤ 1,

(5.33)

where α ∈ [0, 1] is a non-constraint-wise and ζ ∈ [−1, 0] a constraint-wise uncertain
parameter, y is an adjustable variable, and x is a non-adjustable variable.
Corollary 5.1 shows that there exists an optimal decision rule for (HARC) that is
independent of ζ. In this example, we check the inequalities in (5.28). First, we
find the optimal objective values of the static and adjustable robust counterparts cor-
responding to (5.33). After that, we discuss the dependency of the optimal decision
rules on the uncertain parameters in the adjustable robust optimization problem.
To calculate the optimal value of the robust counterpart corresponding to (5.33), it is
sufficient to solve the following problem:

q∗SRC = min
y,x
− x

s.t. x+ y ≥ 0,
− x+ y ≥ 0,
− y ≥ 0,
x− y ≥ 0,
x ≤ 1,

because the constraints in (5.33) are linear with respect to the uncertain parameters
α and ζ. This means that (0, 0) is the only robust feasible solution of (5.33). Hence,
q∗SRC = 0.
The adjustable robust counterpart corresponding to (5.33) is as follows:

q∗ARC = min
x

max
(α,ζ)∈Z

min
y(α,ζ)

− x

s.t. (1− 2α)x+ y(α, ζ) ≥ ζ,

αx− y(α, ζ) ≥ 0,
x ≤ 1,

(5.34)
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where (α, ζ) is the uncertain parameter and Z = [0, 1] × [−1, 0] is the uncertainty
set. According to the last constraint, q∗ARC ≥ −1. Fixing x = 1, we have

ζ + 2α− 1 ≤ y(α, ζ) ≤ α, (5.35)

which means that q∗ARC = −1 by choosing y∗(α, ζ) = ζ + 2α − 1 as the optimal
decision rule, which depends on both α and ζ. However, y∗∗(α, ζ) = α is another
optimal decision rule for (5.34), which is independent of ζ. We thus show by this
discussion that for (5.33) there is only one strict inequality in (19):

−1 = Opt(HARC) = Opt(AARCζ,α) = Opt(AARCα) < Opt(HRC) = 0.

5.5 Counterexamples when one of the conditions
is not satisfied

In this section, we consider examples in which all of the assumptions of Theorem
5.1 are satisfied except one. Each example is associated with the assumption not
satisfied.

Example 5.4 (Assumption i) Consider the following problem, in which Assump-
tion i is not satisfied because there is an equality constraint that is dependent on ζ:

min − y1

s.t. ζy1 + y2 = 1,
0 ≤ y1, y2 ≤ 10,

(5.36)

where ζ ∈ [1, 2]. It is clear that Opt(SRC) = 0, since (0, 1) is the only robust feasible
solution.
To calculate the optimal value of the corresponding (ARC), we eliminate the equality
constraint in (5.36) and reach the following adjustable robust problem:

max
ζ∈Z

min
y1(ζ)

− y1(ζ)

s.t. 0 ≤ y1(ζ) ≤ 1
ζ
.

(5.37)

It is clear that the optimal value of (5.37) is maxζ∈[1,2]−1
ζ

= −1
2 . Hence, Opt(ARC) <

Opt(SRC). These optimal values are different because in the elimination, we use the
decision rule y2 = 1− ζy1, which is not allowed in the corresponding (SRC).

Example 5.5 (Assumption ii) Consider the following problem

min − y2

s.t. y ≤ ζ,
(5.38)
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where ζ ≤ 0. This problem does not satisfy Assumption ii, since the uncertainty
set is not compact. It is clear that Opt(SRC) = +∞, because (SRC) is infeasible.
However, (ARC) is feasible and Opt(ARC) = −∞.

Example 5.6 (Constraint-wise uncertainty) In [25], the authors consider the
following uncertain problem:

min − x
s.t. (1− 2ζ)x+ y ≥ 0,

ζx− y ≥ 0,
0 ≤ x ≤ 1,
|y| ≤ 2,

where ζ ∈ [0, 1] is an uncertain parameter, y is an adjustable variable, and x is a non-
adjustable variable. It is easy to check that all assumptions hold except “constraint-
wise uncertainty”. The corresponding (SRC) can be reformulated as

min − x
s.t. x+ y ≥ 0,

x− y ≥ 0,
− x+ y ≥ 0,
− y ≥ 0,
0 ≤ x ≤ 1,
|y| ≤ 2.

It can easily be verified here that Opt(SRC) = 0. The corresponding (ARC) is as
follows:

min
x

max
ζ

min
y(ζ)

− x

s.t. (1− 2ζ)x+ y(ζ) ≥ 0,
ζx− y(ζ) ≥ 0,
0 ≤ x ≤ 1,
|y(ζ)| ≤ 2.

(5.39)

Similar to the discussion in Example 5.3, we can verify that Opt(ARC) = −1, which
means Opt(ARC) < Opt(SRC).

Example 5.7 (Assumption iii) Consider the problem miny∈Y ζy, where ζ ∈ Z is
the uncertain parameter, Z = {−1, 2} is the uncertainty set, and Y = [−1, 1]. It
is clear that all the assumptions of Theorem 5.1 hold except iii. A straightforward
calculation leads us to

Opt(SRC) = min
y∈Y

max
ζ∈Z

ζy = min{ min
y∈[0,1]

max
ζ∈Z

ζy, min
y∈[−1,0]

max
ζ∈Z

ζy}
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= min{ min
y∈[0,1]

2y, min
y∈[−1,0]

−y} = 0,

and

Opt(ARC) = max
ζ∈Z

min
y(ζ)∈X

ζy(ζ) = max{min
y∈X

−y,min
y∈X

2y} = max{−1,−2} = −1.

So, Opt(ARC) < Opt(SRC). However, if we replace Z with Conv(Z), then Opt(SRC)
remains the same but Opt(ARC) becomes zero, which shows that convexity of Z is
crucial for arriving at Opt(ARC) = Opt(SRC).

Example 5.8 (Assumption iv) As a counterexample for cases in which Assump-
tion iv is not satisfied, we can use the problem in Example 5.7 with Z = [−1, 2] and
Y = {−1, 1}. Then, Opt(ARC) = 0 < Opt(SRC) = 1.

Example 5.9 (Assumption vi) Consider the problem

min − y1 − y2

s.t. ζ2 + (1− ζ)y1 + (1 + ζ)y2 ≤ 3,
|yi| ≤ 3, i = 1, 2,

(5.40)

where ζ ∈ [−1, 1] is an uncertain parameter and y = (y1, y2) is an adjustable variable.
It is clear that (5.40) is not concave in ζ, but convex in y1 and y2. Also, Z = [−1, 1]
and Y = {(y1, y2) : |yi| ≤ 3, i = 1, 2} are compact and convex and the uncertainty
is constraint-wise. The (SRC) corresponding to (5.40) is as follows:

min − y1 − y2

s.t. max
ζ∈[−1,1]

[
ζ2 + (1− ζ)y1 + (1 + ζ)y2

]
≤ 3,

|yi| ≤ 3 i = 1, 2.

Due to the fact that the maximum value of a convex function over a convex set is
attained at one of the extreme points [19, Theorem 3.4.7], (SRC) is equivalent to the
following problem whose optimal objective value is −2:

min − y1 − y2

s.t. y1 ≤ 1,
y2 ≤ 1,
|yi| ≤ 3, i = 1, 2.

To get an upper bound for Opt(ARC), we choose y1(ζ) = 3
2(1+ζ) and y2(ζ) = 3

2(1−ζ)
as a decision rule, and it is easy to check the feasibility of (y1(ζ), y2(ζ)). Hence, an
upper bound for Opt(ARC) is

max
ζ∈[−1,1]

−y1(ζ)− y2(ζ) = max
ζ∈[−1,1]

−3 = −3.

So, Opt(ARC) ≤ −3 < −2 = Opt(SRC).
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Example 5.10 (Assumption vii) Consider the problem

min t

s.t. |y1| ≤ t,

|y2| ≤ t,

− (y1 − ζ1)2 − (y2 − ζ1)2 ≤ −4− 2ζ2
1 ,

− (y1 − ζ2)2 − (y2 − ζ2)2 ≤ −4− 2ζ2
2 ,

|yi| ≤ 5, i = 1, 2,

(5.41)

where ζ1 ∈ [−1, 2] and ζ2 ∈ [−2, 1] are the uncertain parameters and y = (y1, y2) is
an adjustable variable. It is easy to check that (5.41) is concave (and, more precisely,
it is linear) in the uncertain parameter ζ, and the uncertainty is constraint-wise.
Also, Z = [−1, 2]× [−2, 1] and Y = [−5, 5]× [−5, 5] are convex and compact. How-
ever, the problem is not convex in the adjustable variable y = (y1, y2). The (SRC)
corresponding to (5.41) is equivalent to

min ‖y‖∞
s.t. (y1 + 1)2 + (y2 + 1)2 ≥ 6,

(y1 − 2)2 + (y2 − 2)2 ≥ 12,
(y1 − 2)2 + (y2 + 2)2 ≥ 12,
(y1 + 1)2 + (y2 − 1)2 ≥ 6,
|yi| ≤ 5, i = 1, 2.

(5.42)

It is easy to verify that the optimal solution is y1 = −2+
√

14
5 ≈ −1.15 and y2 =

5+
√

127+6
√

14
5 ≈ 3.44, with the approximated objective value 3.44 for the problem. We

choose
y1(ζ) =

{
−1.7, ζ2 ≤ 0.3
1.6, o.w.

, y2(ζ) =
{

2.2, ζ2 ≤ 0.3
−1.6, o.w.

as a decision rule to find an upper bound for Opt(ARC). The feasibility of the
decision rule can be easily checked, and it implies that Opt(ARC) ≤ 2.2 < 3.44 ≈
Opt(SRC).

5.6 Conclusion
In this chapter, we show that for some classes of constraint-wise uncertain opti-
mization problems, the static robust optimal solution is also optimal for adjustable
robust problems. One class consists of problems that are convex with respect to the
adjustable variables and concave with respect to the uncertain parameters, and that
have a convex compact uncertainty set and adjustable variables that lie in a convex
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compact set. Moreover, we provide different examples to show that the assumptions
are tight.
This result does not hold for problems where just some of the uncertain parameters
are constraint-wise. We prove that under sets of assumptions similar to the pure
constraint-wise case, there exists an optimal decision rule that does not depend on the
constraint-wise uncertain parameters. Also, we show that for one class of problems,
restricting decision rules to be affine and independent of the constraint-wise uncertain
parameters yields the same optimal objective value as in cases where the decision
rules are affine and dependent on both the constraint-wise and non-constraint-wise
uncertain parameters.
Lastly, we apply our results to several classes of problems, such as facility location,
inventory system, specific two-stage LO, convex quadratic, and conic quadratic prob-
lems.



List of notation

Notation Description(
n
m

)
n!

(n−m)!m!

[n]
{
{1, ..., n} n 6= 0
∅ n = 0

Rn n-dimensional Euclidean vector space

Rn×m space of n×m real matrices

Sn space of n× n real symmetric matrices

S+
n cone of n× n real positive semi-definite symmetric matrices

Nn n-tuples of nonnegative integers

Nn
d

{
α ∈ Nn : ∑i∈[n] αi ≤ d

}
N̂`
d

{
(α, β) ∈ N2m : αj = βj = 0 if j /∈ C`,

∑
j∈[m] αj + βj ≤ d

}
,

given m ∈ N and C` ⊆ [m]

N̄Dd
{
α ∈ Rn : αi = 0 if i /∈ D, ∑i∈[n] αi ≤ d

}
, given n ∈ N

∆(n, τ)
{
x ∈ Rn τx ∈ Nn,

∑
i∈[n] xi ≤ 1

}
‖x‖2

√
x2

1 + ...+ x2
n, where x ∈ Rn

‖x‖∞ maxi∈[n] |xi|, where x ∈ Rn

trace (A) summation of diagonal entries of a square matrix A

rank(A) number of linearly independent columns/rows of the matrix A

rank(M) number of elements in a basis of the linear space M

vec(A) [A11, ..., A1m, ..., An1, ..., Anm]T , where A ∈ Rn×m

svec(A) [A11,
√

2A12, ...,
√

2A1n, A22,
√

2A23, ...,
√

2A(n−1)n, Ann]T ,
where A is a symmetric matrix

Range(A) {Ax : x ∈ Rm}, where A ∈ Rn×m
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A � B A−B ∈ S+
n , where A,B ∈ Rn×n

A � B A−B is a symmetric and positive definite matrix

‖A‖F
√∑

i∈[n]
∑
j∈[m] A

2
ij, where A ∈ Rn×m

‖A‖1
∑
i∈[n]

∑
j∈[m] |Aij|, where A ∈ Rn×m

‖A‖∞ max i∈[n]
j∈[m]
|Aij|, where A ∈ Rn×m

‖A‖2,2 sup‖x‖2=1 ‖Ax‖2, where A ∈ Rn×m

‖A‖Σ summation of the singular values of A

R[x] space of polynomials in x

Σ[x]d cone of sum-of-squares polynomials of degree at most 2d

hαβ(x) ∏
j∈[m] gj(x)αj (1− gj(x))βj , given m ∈ N, and gj(x), j ∈ [m]

vd(x) a vector with a basis for the ring of polynomials
in x with degree at most d

R[x;D] ring of polynomials in {xi : i ∈ D}

Σ[x;D]d cone of sum-of-squares polynomials in {xi : i ∈ D} of degree at most 2d

deg(p) degree of the polynomial p(x)

δ∗Z(u) supb∈Z
{
uT b

}
, where Z ⊆ Rn

δ∗Z(W ) supA∈Z
{

trace
(
AW T

)}
, where Z ⊆ Rm×n

δ∗Z(W,u) sup(A,b)∈Z

{
trace

(
AW T

)
+ uT b

}
, where Z ⊆ Rm×n × Rn

adj(v) set of vertices adjacent to v in a given graph

KG set of maximal cliques of the graph G



Acronyms

ARC adjustable robust counterpart. 114–121, 128–137

ARO adjustable robust optimization. 8–12, 14, 16, 111–113

BSOS bounded degree sum of squares. 5–7, 13, 15, 20–24, 28, 30, 34, 36, 37, 39–42,
46, 48–53, 67, 68, 70, 72, 73

DTOC discrete-time optimal control. 50, 51, 71, 72

HARC hybrid adjustable robust counterpart. 121–124, 133, 134

HRC hybrid robust counterpart. 121, 123, 124

LMI linear matrix inequality. 21, 89

LO linear optimization. 12, 22, 41–43, 49, 113, 125, 127, 128, 138

PO polynomial optimization. 5, 13, 15, 19–21, 24, 49–54, 57, 61, 63, 66

PSD positive semi-definite. 1, 5, 21, 22, 24, 34, 51, 54, 58–60, 80

QCQO quadratically constrained quadratic optimization. 1–3, 5, 7, 11–15, 30, 49

RIP running intersection property. 49, 51, 71

SBSOS sparse bounded degree sum of squares. 68, 70, 72

SDO semi-definite optimization. 15, 20–24, 49, 50

SOCO second-order cone optimization. 1

SOS sum-of-squares. 5, 22, 52, 53

SRC static robust counterpart. 77–79, 81, 82, 84, 87, 92, 114–116, 118–121, 128–137

SRO static robust optimization. 8–12, 14, 16, 77, 111–113
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Index

affine decision rule, 12, 14, 111–113, 122,
124, 127, 128

approximation
inner, 14, 79, 81, 87, 88, 100, 101
outer, 14, 79, 81, 87, 88, 108

chance constraint, 92, 94
chord, 55
chordal graph, 49, 51, 54–61
clique

maximal, 55–58, 60, 61, 63, 68, 70, 71
tree, 56, 57

clique-intersection property, 56, 57

formulation
P-, 20, 21, 25–28, 33, 42, 46, 47, 50,

51, 62, 66–68, 70, 73
PQ-, 20, 21, 25, 27, 28, 33, 42, 44, 46,

50
Q-, 20, 21, 25, 27

hierarchy
BSOS, 21
sparse-BSOS, 5–7, 13, 15, 49–52, 67,

68, 70, 72, 73

instance
Adhya1, 62–64
DeyGupte4, 30, 32, 35, 38, 43, 44, 46,

47
Haverly1, 2, 33–35, 38, 43, 44, 46, 47,

62, 64

Laplacian matrix, 58, 60, 61, 63

McCormick relaxation, 27, 28, 32, 33, 42

norm
l1, 80, 84
l∞, 80
l∞, 84
dual, 80, 83
Euclidean, 80
Frobenius, 80, 83, 84
spectral, 80, 83, 84
trace (nuclear), 80, 84

ordering
approximate minimum degree, 60, 61,

63
minimum degree, 60
perfect elimination, 55–58
vertex, 55, 58, 60

Positivstellensatz
Krivine’s, 21, 22, 49, 64
with equality, 63

problem
facility location, 125
fixed recourse, 111, 114, 115, 119, 120,

122
inventory system, 127
linear regression, 14, 79, 93, 96, 98
norm approximation, 2, 4, 14, 96
pooling, 2, 13, 20, 21, 25–28, 30, 31,

34, 35, 37, 38, 40–42, 45, 46, 48,
50, 51, 62, 63, 66–68, 70, 73

portfolio choice, 2, 3, 14, 93
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QR decomposition, 29, 30

robust optimization
adjustable, 112–114, 122–124, 126–128,

131, 133, 134, 137
static, 77, 111, 113–115, 131, 133, 137

running intersection property
in graph theory, 57
in polynomial optimization, 52–54, 61,

62, 66

Schur complement lemma, 103
Singular Value Decomposition, 29
support function, 79, 81–83, 86, 104

uncertainty
concave, 11, 13, 112, 115, 117, 137
constraint-wise, 14, 111–113, 115, 116,

119–121, 125, 126, 130–133, 137,
138

convex, 11, 14, 78, 79, 83, 87, 88
hybrid, 121, 133
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