
  

 

 

Tilburg University

Towards an understanding of job matching using web data

Fabo, B.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Fabo, B. (2017). Towards an understanding of job matching using web data. CentER, Center for Economic
Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/b8b877f2-ae6a-495f-b6cc-9b92a2453d71


 

   

Towards an Understanding of 

Job Matching Using Web Data 

 

 
Brian Fabo 

CentER  

Tilburg University  

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy  

August 2017



 

 I  

  



 

 II  

Towards an Understanding of Job Matching 

Using Web Data 
PROEFSCHRIFT 

 

ter verkrijging van de graad van doctor aan Tilburg University op gezag van de rector 

magnificus, prof. dr. E.H.L. Aarts, in het openbaar te verdedigen ten overstaan van een door het 

college voor promoties aangewezen commissie in de aula van de Universiteit op vrijdag 3 

november 2017 om 14.00 uur door  

 

BRIAN FABO 

geboren op 29 april 1986 te Kosice, Slowakije. 

  



 

 III  

Promotiecommissie:  

 

Promotores:  

Prof. dr. J.W.M. Das 

Prof. dr. M. Kahanec 

Em. Prof. dr. K.G. Tijdens 

Overige leden:  

Prof. dr. A.H.O. van Soest  

Prof. dr. ir. J.C. van Ours  

Dr. S.M. Steinmetz 

Dr. N. Askitas 

  



 

 IV  

Acknowledgements  

I would like to thank my supervisors: Marcel Das, Kea Tijdens and Martin Kahanec. Marcel is 

probably the most optimistic person I have ever known, making every problem seem solvable. 

Kea is the personification of the word ‘brilliance’, with the ability to seamlessly harness the 

power of emerging technologies and understand new developments far faster than anyone else. 

Martin is someone with whom I have worked on a daily basis for five years and I still feel I 

could learn new things from him for another fifteen years.  

Along with my supervisors, I feel indebted to Eduworks colleagues and friends: Gábor 

Kismihók, Maarten van Klaveren, Stefan Mol, Pablo de Pedraza, Stefano Visintin, Magdalena 

Ulceluse, Christian Weber, Stéphanie Gauttier, Jovana Karanović, Sofia Pajić, Vladimer 

Kobayashi, Sisay Adugna, Raquel Sebastián Lago, Sudipa Sarkar, Scott Harrison and all the rest 

of the team. Being part of this group has been the biggest achievement and the best time of my 

life. 

I would like to extend my thanks to(in no particular order): 

 My CEU comrades: Levente Littvay (for taking me on as a TA), Anil Duman (for helping 

me kickstart my academic career back in the day), Sharon S. Belli (for everything), Adela 

Danaj, Arthur Nogacz (for being my closest friend these last two years), Katerina Dukova 

(for being able to always count on her), Garrett Jones, Alexandru Moise, Tatiana 

Rogovich (for all the Pythonic stuff), Olga Löblová , Sanja Hajdinjak, Daniel Izsak, 

Alina Poliakova (for being the best possible research assistant), Jakub Kostolný, Sára 

Kende (for being there when it counted), Donát Szűcs, Iryna Koval, Riham Wahba, 

Jasmin Gamez, Mikhail Guliaev and all the rest. #IstandwithCEU.  

 My CEPS colleagues and co-authors: Miroslav Beblavý and Karolien Lenaerts, Gabriele 

Marconi and Mikkel Barslund. It has been a pleasure and an honour! 

 My CELSI folks: Marta Kahancová, Mária Sedláková, Tomáš Mamrilla, Michal Mudroň 

and Katarína Gandžalová. 



 

 V  

 The amazing people who do not fall into any of the categories above: Mina Sumati, 

Martin Myant, Jan Drahokoupil, Michal Polák, Zoltán Pogátsa, Agnieszka Piasna, Lucia 

Mýtna-Kureková, Vladimír Kvetan, Juraj Draxler, Mario Sante Belli, Edward Branagan 

(for being so amazing at being my first boss ever), Július Horváth, Francesco Nicolli, 

Paulien Osse, Dirk Dragstra, Tendayi Matimba, Dani Ceccon, Janna Besamusca, Huub 

Bouma, Duko Dokter, Wietze Helmantel, Ernest Ngeh Tingum (and his son Brian), Klára 

Brožovičová, Roman Vido, Vít Hloušek, Petr Kaniok, Jan Řezáč, Hana Delsoir, Michal 

Lehuta, Jakub Jošt, Silvia Hudáčková, Andrej Svorenčík, Marek Hlaváč, Eva Liberda, 

Hana Janderová, Braňo Slávik, Richard Golier, Janka Kušnírová, Daiva Repečkaitė, 

Monika Kokštaitė, Zoltán Egeresi, Aliona Romaniuk, Márton Bárta, Soňa Mikulíková, 

my MCC students and all those special people I inexcusably forgot to mention. 

 

Above all, huge thanks goes to my family: Mum, Dad, my little Sister and all the rest. Love you 

forever. 

 

 

 

  



 

 VI  

Contents 

List of Tables ........................................................................................................................................... VIII 

List of Figures ............................................................................................................................................. IX 

General Introduction ..................................................................................................................................... 1 

Chapter 1: State of the Art ............................................................................................................................ 6 

Introduction ............................................................................................................................................... 6 

Occupations, Jobs, Tasks and Skills and the Complex Relationships between Them .............................. 7 

Occupations and Skills in the 21st Century ............................................................................................ 11 

Researching the Labour Market Using Web Data .................................................................................. 20 

Overview of Existing Web-Data-based Research ................................................................................... 21 

Pros and Cons of Using Web Data.......................................................................................................... 37 

Conclusion .............................................................................................................................................. 39 

Chapter 2: Using Voluntary Web Surveys Beyond Exploratory Research ................................................. 41 

Introduction ............................................................................................................................................. 41 

Literature Review .................................................................................................................................... 42 

Data and Empirical Strategy ................................................................................................................... 44 

Model ...................................................................................................................................................... 46 

Results ..................................................................................................................................................... 51 

Conclusion .............................................................................................................................................. 54 

Chapter 3: Using Online Job Vacancies to Better Understand Labour Market .......................................... 56 

Introduction ............................................................................................................................................. 56 

Literature Review .................................................................................................................................... 57 

Methodological Aspects of Using Vacancy Data ................................................................................... 60 

Vacancy Data Collection Methods ......................................................................................................... 63 

Conclusion .............................................................................................................................................. 73 

Chapter 4: Analysing Skill Supply: ‘Pricing of Skills’ ............................................................................... 75 

Introduction ............................................................................................................................................. 75 



 

 VII  

Literature Review .................................................................................................................................... 78 

Data and Methodology ............................................................................................................................ 81 

Results ..................................................................................................................................................... 85 

Conclusion and Policy Implications ....................................................................................................... 96 

Chapter 5: Analysing Skill Demand: Measurements of Skills Intensity of Occupations ........................... 99 

Introduction ............................................................................................................................................. 99 

Literature review ................................................................................................................................... 101 

Data ....................................................................................................................................................... 103 

Analytical Strategy ................................................................................................................................ 106 

Results ................................................................................................................................................... 108 

Conclusion ............................................................................................................................................ 114 

References ................................................................................................................................................. 116 

 

 

  



 

 VIII  

List of Tables 

Table 1: Number of observations per year after data cleaning ................................................................... 46 

Table 2: Comparison of non-wage continuous variables between WI and SILC in % ............................... 50 

Table 3: Comparison of categorical variables between WI and SILC ........................................................ 51 

Table 4: Pooled OLS run on WI and SILC datasets covering the period 2005-2014 ................................. 52 

Table 5: Statistical test results of equality of estimates generated from WI and SILC data (F = F-ratio). . 53 

Table 6: Main skill-relevant keywords identified in the vacancies ............................................................. 64 

Table 7: Number of tags in the benchmark and on the shortlist for each country ...................................... 71 

Table 8: Overview of the advantages and limitations of using vacancies, job portal metadata and to study 

labour market .............................................................................................................................................. 74 

Table 9: Share of people able to have a conversation in English or German in the EU27 and the V4 ....... 76 

Table 10: Overview of the online job portals used and the number of job advertisements available for the 

four countries in our sample (in July 2015). ............................................................................................... 82 

Table 11: Percentage of vacancies for high-skilled occupations that require English-language skills in 

each of the V4 countries. The five occupations with the highest shares in each country are indicated in 

grey. ............................................................................................................................................................ 88 

Table 12: Percentage of vacancies for low- and medium-skilled occupations that require English-language 

skills in each of the V4 countries. The five occupations with the highest shares in each country are 

indicated in grey. ISCO ............................................................................................................................... 89 

Table 13: OLS analysis of the relationship between English proficiency and wages in Czechia, Slovakia 

and Hungary ................................................................................................................................................ 95 

Table 14: Web-based measurement of applicability of computer skills for occupations requiring computer 

skills. ......................................................................................................................................................... 108 

Table 15: Web-based measurement of applicability of computer skills for occupations with no apparent 

use for computer skills. ............................................................................................................................. 110 

Table 16: Web-based measurement of the applicability of computer skills for occupations with possible, 

but not necessary, use for computer skills. ............................................................................................... 111 

Table 17: Overview of computer skills applicability based on different data sources.............................. 114 

 

  



 

 IX  

List of Figures 

Figure 1: Changes in demand for jobs per ISCO skill level. ...................................................................... 14 

Figure 2: Comparison of median wages between WI and SILC data. ........................................................ 49 

Figure 3: Overview of the factor analysis outcomes ................................................................................... 67 

Figure 4: Example of autocomplete functionality from job board reed.co.uk. ........................................... 69 

Figure 5: Illustration of the data collection steps ........................................................................................ 70 

Figure 6: Share of tasks not completed on the Listminut platform contrasted with the share of workers 

with requested skills available for each of these categories ........................................................................ 73 

Figure 7: Classification of occupations into three classes depending on the demand for English-language 

skills across the V4 ..................................................................................................................................... 90 

Figure 8: Classification of occupations into three classes depending on the demand for German language 

skills across the V4 ..................................................................................................................................... 92 

Figure 9: Correlation between the share of job advertisements that require English and the hourly log 

wages in Czechia, Hungary and Slovakia ................................................................................................... 93 

Figure 10: Correlation between the share of job advertisements that require German and the hourly log 

wages in Czechia, Hungary and Slovakia ................................................................................................... 94 

Figure 11: Comparison of self-reported computer use per occupation between WageIndicator and PIAAC 

datasets ...................................................................................................................................................... 105 

Figure 12: Average computer skills applicability per ISCO occupation group in the WI dataset and in job 

vacancies ................................................................................................................................................... 113 

 

file:///C:/Users/fabob/Documents/thesis/Arthur/Disertation_Draft_final_manuscript_proofed.docx%23_Toc494195608


 

 1   

General Introduction 

"Data are not taken for museum purposes; they are taken as a basis for doing 

something. … The ultimate purpose of taking data is to provide a basis for action or a 

recommendation for action" 

W. Edwards Deming
1
 

“It is, in fact, amazing how little labor economists know about the actual mechanics of 

how workers get assigned to jobs.” 

Peter J. Kuhn
2
 

The quotations above have been chosen to introduce this dissertation because they represent the 

motivation and purpose of this dissertation. Even though they were pronounced in two very 

different periods with over seventy years between them, taken together they convey one 

message: There is a lot that we do not know (but need to know) about how matching on the 

labour market works, which data can show us. At the same time, the sole purpose of collecting 

data is to learn more about the world and potentially take action to make it a better place by 

addressing pressing challenges that hinder societal progress, in our case by ensuring that workers 

are equipped with the skills they need on the job market.  

Labour market matching is one of the most salient challenges in terms of research as well as 

policy. This is particularly true in Europe, where the issue of equipping workers with right skills 

for employment has been considered an important policy priority for quite some time 

(CEDEFOP 2014, 2015). This policy discourse reflects the important debate about the “future of 

work” in the literature, with Tyler Coven’s Average Is Over, being perhaps the most well-known 

example. According to Coven, “Quality labor with unique skills” (Cowen 2013) is one of three 

crucial resources needed in the modern economy, where an increasing number of tasks 

traditionally performed by humans will be conducted by robots.  

                                                      

1
 American statistician (1900 – 1993). Cited from presentation of director DG ESTAT Emanuele Baldacci 

on Big Data (Baldacci 2016) 

2
 American economist, University of California, Santa Barbara. Quote from his IZA World of Labour 

piece, Internet as a labor market matchmaker (Kuhn 2014). 
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The debates outlined above cannot be separated from the rise of the Internet phenomenon. The 

Internet changed the way how the hiring process is organized, how the work itself looks like and 

allowed us to collect immense volumes of very detailed data on nearly any aspect of human life 

including work. Given these developments, it comes as no surprise that the push for an 

understanding of the role of skills on the labour market, going beyond the limitations of the 

canonical models such as Beveridge curve, is rising fueled by the new reality on the labour 

market and the unprecedented access to innovative data sources.  

At the same time, while it is widely accepted that changes are afoot, we are still quite unsure how 

deep are they. Is the fact that web is becoming so crucial in labour market matching – up to the 

point of work being organized online through online platforms – going to improve the labour 

market matching? Do the robots and artificial intelligence increasingly present at the workplace 

alongside humans represent just a “tactical mutation” or something more fundamental with 

regards to how society is organized. Are the “big” web data the future of research. These are 

important complex puzzles, which can not all be answered in depth within a thesis.  

Being aware of the limitation outlined above, the thesis aims for a pragmatic approach through 

making steady advances exploring the methodological issues but also showcasing the potential of 

web data to understand the labour market role of specific skills, such as language and computer 

proficiency from both supply and demand perspectives. As such, the presented research 

represents an ahead of the curve exploration and is intended to set the stage for the future 

research. At the same time, the thesis very much aims to place the web-based research of labour 

matching within the cyclopean scope and diversity of the applications of web data in modern 

labour studies and in the wider scientific enquiry. The presented research draws from my 

research collaborations focusing on labour market matching and the use of web data, which took 

place within the framework of the InGRID and Eduworks international collaborative research 

projects, funded under the 7th financial program of the European Commission in the period 

2013-2017.  

Each of the individual chapters presents an essay on a distinct topic and, as such, is structured on 

the basis of a standard research paper, with an introduction, literature review, description of 

methodology, presentation of analytical results and a concluding section. Chapter 3 is a slight 
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exception, because it discusses three separate approaches to the same methodological issue, each 

constituting an individual piece of work. The chapters have been published, or are in the process 

of being published, in scientific journals or as online discussion papers.  

The research presented in this dissertation shows that web data has a potential to contribute 

significantly to improving our understanding of labour market matching by enabling research 

into the role of specific skills from both supply and demand perspectives. Nonetheless, rather 

than displacing traditional data sources, the web data appears to be useful in supplementing them 

either through enabling initial exploratory research as well as offering additional insights and 

more up-to-date coverage, which can be quite robust as long as there is a representative data 

source to benchmark the findings again.  

This is particularly true for the online job vacancies, which have developed into a full-fledged 

industry with companies such as Burning Glass or Textkernel producing regularly updated, high-

quality datasets. With the further development of text mining technologies, the use of this source 

of data will no doubt become more prominent in the future. Nonetheless, given that employers 

do not explicitly list all skill requirements, the information obtained will likely continue to be of 

limited use without knowledge of the context. The study of metadata, such as the occupational 

classification (if provided) or any other information, which might be present in the standardised 

form, represents another promising avenue for future research. Finally, the online labour 

platforms, represent yet another potentially rich source of data, enabling the researchers to 

observe job matching as it happens.  

In addition to the online job vacancies, online surveys are likely to gain in importance. Already 

the web has become an important tool for survey dissemination, efforts will likely continue to 

use the Internet without any ‘offline’ component to survey various populations. This will drive 

demand for the study of Internet behaviour to understand how people are contacted by general 

invitation to participate in a survey and what makes them accept or decline participation.  

The variety of other web data sources, such as social media, search engine searches or CVs – 

although not explored in detail in this thesis - will undoubtedly present additional avenues for 

further research. The undergoing transformation of the labour markets, requiring stakeholders to 

understand changing skill requirements in a timely and robust manner, will result in a growing 
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interest in using web data for labour market research purposes.  

The text of the dissertation is divided into five chapters. With the exception of the first one, each 

is meant to represent my contribution to the literature of web data application in social science 

research (chapters 2 and 3) and labour market matching (chapters 4 and 5). The opening chapter 

sets the stage for the later chapters by providing a detailed overview of the ongoing state of the 

art. Nonetheless, while the individual chapters may be read as standalone pieces, there are 

synergies between them and they are all part of a single research agenda. Their composition is as 

follows: 

The first chapter aims to map the current state of the art in the relevant research from two angles. 

Firstly, it summarises the structural ways of thinking about work analysis through concepts such 

as occupation, job, task and skill and then proceeds to discuss interactions between these 

concepts as well as the important changes to the labour market in the 21
st
 century, such as 

polarisation, or technologically-driven transformation of employment to justify the need for 

detailed and up-to-date datasets for the purpose of developing adequate policies to respond to 

these changes. In the second part of the chapter, online data sources are presented as a possible 

solution to this need. A large number of different applications of web data is presented, although 

perhaps the two most relevant ones (web surveys and online job vacancies) are only discussed in 

passing, because I focus on those in chapters 2 and 3. 

The second chapter discusses the applicability of large-scale, voluntary web surveys in social 

science research beyond exploratory research. By complementing the existing body of literature, 

which found significant biases in the data obtained through such surveys, we argue that as the 

survey becomes well-established in a country, the structure of respondents tend to stabilise in 

time, despite their being self-selected. Even though this, by itself, does not suffice to result in 

dependable estimates, we show that in some cases it might. As long as a quality data source 

applicable for benchmarking is available, low-cost web surveys may potentially generate nearly 

real-time and relatively robust measurements of relationships between variables. 

The third chapter discusses online job vacancies, covering both vacancies posted online for 

‘offline’ jobs and online platforms, through which workers can provide services to other platform 

users. The three applications consider the straightforward, text-focused approach to vacancy 
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analysis, the metadata-based analysis and finally an analysis of data obtained through online 

platforms. The main finding is that each of these approaches comes with specific trade-offs: 

Vacancy text analysis is the most comprehensive, but also resource-intensive approach. Metadata 

analysis is more straightforward and can also offer additional insights, but the available data is 

very dependent on a particular website. Finally, online labour platforms are potentially 

revolutionary for labour matching research, because they enable observation of both supply and 

demand dynamics, however, so far they only represent a niche labour market and the 

generalisability of results obtained from this source is uncertain. 

The fourth chapter focuses on the specific application of web data to study the role of foreign 

language knowledge in Europe. Using metadata (language requirement tasks) from key job 

vacancies websites in the four ‘Visegrád’ countries: Czechia, Hungary, Poland and Slovakia 

combined with web survey data, we were able to identify and especially quantify the strong 

demand for the English language in non-manual occupations across these countries.  

The fifth and final chapter again combines the application of job vacancy and web survey data to 

analyse the use of computers at work in the Netherlands. Here, we identified a major issue due to 

computer skill requirements not being explicitly requested for many occupations, which clearly 

required the use of computers, in particular, for professional and managerial occupations, where 

it was likely simply assumed that candidates would have computer skills. The web survey data, 

meanwhile, proved to be robust and not significantly different from representative survey data.  
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Chapter 1: State of the Art
3
 

Introduction 

The last few decades have been characterised by an astonishing advancement of technology, 

which has substantially transformed many aspects of life. Perhaps the most visible manifestation 

of this change has been the rise of the Internet. The number of Internet users has skyrocketed. A 

recent report by the International Telecommunications Union shows that at the end of 2014, 

almost three billion people had access to the Internet (ITU 2014). Globally, close to 44% of 

households have Internet access. The economic and societal changes that result from these 

developments are considerable and have attracted the attention of academics and policymakers. 

Along with the advancement of the Internet, researchers have increasingly shown interest in the 

Internet, not only as a research subject but also as a potential data source. This interest has not 

been limited to a single field but stretches out across many different domains. In the discipline of 

economics, labour economics has been identified as a field for which web-based data is 

particularly promising. In their seminal papers, Kuhn and Skuterud (2004), as well as Askitas 

and Zimmermann (Askitas and Zimmermann 2009, 2015), argue that web data could be very 

valuable for research on the labour market.  

Just as these new, web-based data sources are emerging, the need for a more in-depth 

understanding of labour market matching is increasingly pressing. The labour markets around 

Europe have undergone important changes, manifesting themselves through dynamic processes 

such as job creation and destruction, skill upgrading, unemployment and wage inequality. The 

underlining force driving these symptoms is the fact that the structure of employment is 

constantly changing, and new jobs and skills are frequently arising (Goos et al. 2009).  

The aim of this chapter is to provide an overview of the state of art in both aspects discussed 

                                                      
3
 This paper represents the author’s contribution to the InGRID collaborative research project, developed 

in collaboration with Miroslav Beblavý and Karolien Lenaerts and has previously been made 

available online (Beblavý et al. 2016a). Furthermore, the discussion of the utilization of web-based 

data in labour research has been published in the IZA Journal of Labor Economics (Lenaerts et al. 

2016). 
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above, the changes in the labour market and the rise of the Internet as a data source, and thus 

provide the background for research activities presented in chapters two to five of this 

dissertation.  

The structure of this chapter follows the following logic: Firstly, the conceptualisation of key 

terms such as occupation, job, skill and task, which are heavily used throughout the entire 

dissertation. Building on this basis, the academic discourse regarding interactions between these 

key concepts is presented, setting the stage for a structured discourse on the ongoing changes in 

the labour market, which in turn encourage the need for increased use of innovative, web-based 

data sources. The state of the art with regards to the use of these data sources is discussed 

throughout the remaining part of the chapter. Arguably, the two most crucial data sources, web 

surveys and online job vacancies, are not discussed in detail because they are the focus of 

Chapters two and three respectively.  

Occupations, Jobs, Tasks and Skills and the Complex Relationships between Them 

Occupation is the crucial concept in labour market analysis, lying at the heart of the academic 

debate on labour topics (Tijdens 2010). An occupation may be defined as ‘a grouping of jobs 

involving similar tasks, which require similar skills set’. It includes multiple jobs or job titles that 

have common characteristics. A job, which is more commonly used in the context of labour 

market practice rather than research, ‘is bound to a specific work context and executed by one 

person’ (ESCO 2015). In the latest edition of the International Standard Classification of 

Occupations (ISCO), the International Labor Organization (ILO) identifies a job as a ‘set of tasks 

and duties performed, or meant to be performed, by one person, including for an employer or in 

self-employment’ while an occupation is ‘a set of jobs whose main tasks and duties are 

characterized by a high degree of similarity’ (Hunter 2009). Tijdens (2010) uses the following 

definition: ‘An occupation is a bundle of job titles, clustered in such a way that survey 

respondents in a valid way will recognize it as their job title; an occupation identifies a set of 

tasks distinct from another occupation; an occupation should have at least a non-negligible 

number of jobholders and it should not have an extremely large share in the labor force’ . Elias 

(1997) goes back to the history of an ‘occupation’, which still has an impact on how the concept 

is regarded today. He maintains that occupations have clear space and time dimensions which 
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can extend beyond the job that one holds. Damarin (2006) explains that occupations are 

generally regarded as a mechanism for dividing, allocating and directing labour. This view builds 

on the work of Abbott (1995), which lists three crucial occupational features: ‘a particular group 

of people, a particular type of work and an organized body or structure other than the workplace 

itself’. This group of people may be distinguished by their skills, experience, culture, gender or 

race, while the group of tasks may be split according to products, activities, tools or customers 

(and other categories). Occupations, however, are considered as relatively stable across time and 

organisations. Occupations are typically presented in an occupational classification, in which 

they are grouped on the basis of similarity in terms of tasks, responsibilities, education and skill 

level. 

Although the difference between an occupation and a job is clear in theory, it is not 

straightforward to disentangle these two concepts from one another in practice. In fact, the two 

concepts may even coincide. An example is ‘project manager’, which may refer to a broader 

occupation or a specific job (e.g. project manager in an IT firm). In addition, in some cases, it is 

rather difficult to infer any information about a worker’s occupation from the job title: a project 

manager in an IT firm and one working for a charity can have a very different set of tasks 

(depending on the work context). At the same time, two workers with the same occupation may 

have completely different job titles, e.g. astronaut, cosmonaut or taikonaut, in spite of the fact 

that they perform similar tasks. Another issue is that given that an occupation is a group of jobs 

with similar tasks and skills, one may wonder how similar these actually have to be. Damarin 

(2006) further finds that when workers are asked to describe their jobs, many of them list 

multiple roles (that often vary across jobs and organisations). Some occupations may be 

distinguished through differences in education requirements or earnings. Because the distinction 

between occupations and jobs is not always clear, the concepts are sometimes regarded as 

‘interchangeable’. Moreover, there are many studies on the labour market and work that start 

from the concept of ‘jobs’ (without referencing to occupations), while the term ‘occupation’ 

appears to be particularly important in specific strands of literature. Tomaskovic-Devey (1995) 

explains that the concept is relevant for comparative work at the national or international level, 

because occupations are independent of the specific work context, unlike jobs. Levenson and 

Zoghi (2010) maintain that occupations have a central role in the labour market. Both formal 

education and on-the-job training are often aimed towards a set of skills useful in different 
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categories of jobs (i.e. occupations). Moreover, occupation-specific experience appears to be 

valuable in the labour market.  

In each of the definitions of occupations and jobs listed above, the concepts of ‘tasks’ and ‘skills’ 

are present. These concepts are therefore clearly important building blocks in the literature as 

well. Acemoğlu and Autor (2011) define a task as a ‘unit of work activity that produces output 

(goods and services)’ (p.2) and a skill as a ‘worker’s endowment of capabilities for performing 

various tasks’ (p.2). In exchange for a wage, workers apply their skill endowments to tasks and 

generate output. Commonly, tasks are divided into routine and non-routine tasks (Baumgarten, 

2015). Another definition for skills is given by the ILO; where a skill is ‘the ability to carry out 

the tasks and duties of a given job’ (Elias 1997). In ISCO, both the skill level and skill 

specialisation are considered. The European Commission uses ‘skills’ and ‘competences’ (ESCO 

2015). Both are defined according to the European Qualifications Framework. Skills are ‘the 

ability to apply knowledge and use know-how to complete tasks and solve problems’. 

Competences refer to ‘the proven ability to use knowledge, skills and personal, social and/or 

methodological abilities in work or study situations and in professional and personal 

development’. From a review of the concept and measurement of skills in the social sciences, 

Spenner (1990) concludes that skills are increasingly measured directly either via expert systems 

(e.g. Dictionary of Occupational Titles) or self-report measures. Correlations between both 

measures are high. Initially, skills were commonly assessed on a case-by-case basis but later 

large-scale surveys of employers and employees were used instead (Gallie et al. 2007). 

Furthermore, the skill level of an occupation was often derived from the occupational 

classification. Occupational classifications, however, are not stable over time and reflect 

different bundles of tasks from one period to another (due to technological or organisational 

change) (Gallie et al. 2007). For this reason, skill levels are often proxied by learning 

requirements in more recent work.  

There are two caveats to this approach, however: it primarily focuses on initial knowledge 

acquisition and it ignores the issue of mismatch (Borghans et al. 2001; Gallie et al. 2007). Other 

ways to measure skills are standardised tests (PISA), wages, experience or other proxies 

(Borghans et al. 2001; Elias and McKnight 2001). Similarly to tasks, skills are commonly 

separated into groups (generic and occupation-related skills (Tijdens et al. 2012, 2013b), 
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cognitive and non-cognitive skills (Brunello and Schlotter 2011; Mýtna-Kureková et al. 2016). 

Tijdens et al. (2012) indicate that in contrast to generic skills, which are commonly measured via 

surveys, occupation-related skills are hardly ever measured in this way. In addition, they find 

that it is difficult to measure mismatch by comparing educational attainment and skill 

requirements of occupations.  

Making the distinction between tasks and skills can be rather complicated. Workers of a given 

skill level can carry out a range of tasks and at the same time workers with the same skill level 

can perform tasks of different levels of complexity. As workers need to possess the right set of 

skills to be able to do the tasks associated with their job, employers emphasise skills in the hiring 

process (Winterton 2009). Additionally, there is a clear link between skills, tasks, jobs and 

occupations. Occupations are grouped on the basis of tasks and responsibilities, education and 

skills. Moreover, skills are often proxied by occupations or derived from the occupational 

classifications. This implies that when doing research on one of these concepts, one also has to 

account for the other concepts. 

Use of occupations, tasks and skills in social science is very widespread. For instance, Tijdens et 

al. (2012) analyse how work activities and skill requirements are measured on the basis of 

occupations. For comparative research on this topic, a sufficiently detailed occupational 

classification is required (one going beyond the four-digit level). Other types of work deal with a 

single occupation or a set of occupations. Recent work has concentrated on STEM (science, 

technology, engineering and mathematics) occupations (Brunello and Schlotter 2011; Rothwell 

2014). An additional stream of work analyses sociological or psychological topics, such as the 

gender dimension, socio-economic or ethnic gaps and stereotypes in specific occupations (Byars-

Winston et al. 2015; Pan 2015; Daniels and Sherman 2016). 

Nonetheless, the main research focuses on skills matching with occupations. Fitzenberger and 

Licklederer (2016) consider school-to-work transitions, skill formation and career guidance of 

students graduating from lower-track secondary schools in Germany. Most students with poor 

grades appear to continue with pre-vocational training despite the fact that career guidance 

appeared to be effective (as students became more aware of their desired occupation). Virolainen 

and Stenström (2014) compare the system of vocational training in Finland with the systems of 
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Norway, Denmark, Sweden, Germany and the United Kingdom. They report that completion of 

upper secondary education is highest in Sweden and Finland, which could be due to the fact that 

in both countries both vocational and upper secondary education students are eligible for and 

proceed to higher education. In other words, vocational training is not a ‘dead end’ in these 

countries. The massification of higher education, however, complicates the transition of 

vocational education graduates to the labour market: there is increasing competition between 

higher education graduates (in all countries except for Germany, the completion of third-level 

education has increased). Tyler et al. (1999) focus on the cognitive skills of young high school 

dropouts in the United States. They find that annual earnings are higher for young dropouts with 

higher levels of basic cognitive skills. 

Equally important is the topic of mismatch. Caroleo and Pastore (2015) survey the literature on 

educational and skills mismatch. The mismatch can be of a horizontal (level of schooling is 

appropriate, the type of schooling is not) or vertical (over- or under education) nature. These 

issues have mostly been investigated from the supply rather than the demand side of the labour 

market. Theoretical work explains over-education on the basis of a set of models: the human 

capital theory (over-education results from a lack of skills gained through work experience), the 

job competition model hugely in demand for highly educated labour encourages students to 

acquire more education, which could be more than that requested), the assignment theory, job 

search models and career mobility models. Allen and van der Velden (2001) put the assignment 

theory to the test. Educational mismatches do not necessarily imply skill mismatches. 

Furthermore, educational mismatches have a clear impact on wages, and only a small part of this 

effect is accounted for by skill mismatches. Skill mismatches, on the other hand, are important 

for job satisfaction and on-the-job search, in contrast to educational mismatches. For skills, there 

seems to be an extensive literature covering mismatch, over-education, educational attainment, 

skill measurement and a variety of other subjects. 

Occupations and Skills in the 21st Century 

In this section, occupational and skill changes are discussed in depth, with the aim of identifying 

their drivers and consequences. This analysis is not limited to the changes that occurred in the 

21st century; it also considers historical trends. This allows us to better understand whether these 



Chapter 1: State of the Art 

 12   

labour market dynamics are completely new or whether they are part of a longer history of 

similar changes. As Katz (1972) notes, there has been a vast increase in the number of distinct 

occupations between the 19th and 20th centuries. Abbott (1995), in contrast, noted that 

occupations are relatively stable across time and organisations. The section covers job 

polarisation, skill-biased technological change and other hypotheses. At the end of the section, an 

outlook towards the future is presented. 

Studies on the history of occupational and skill change often depend on case studies to illustrate 

how occupations and skills were affected by specific factors in the past. One of the main reasons 

for this is that information on this period is difficult to come by. 

Chin et al. (2006) focus on the Second Industrial Revolution at the end of the 19th century. The 

basis for their work is the literature on technological change and its implications during this 

period. Early work had reached a broad consensus that technological progress was skill-replacing 

(i.e. de-skilling). This is confirmed by Frey and Osborne (2017), who explain that technologies 

increasingly substituted for skills (by task simplification) as artisan shops were replaced by 

factories and steam power was adopted. The introduction of steam power along with major 

developments in continuous-flow production –(production parts became identical and 

interchangeable), also gave rise to assembly lines. A well-known example is the Ford Motor 

Company assembly line, where work that was previously performed by one person was now 

divided among many workers. Frey and Osborne (2017) conclude that in the 19th century, 

physical capital was a relative complement to unskilled labour but acted as a substitute for 

relatively skilled labour. 

Along with the technological developments that shape the labour market, education has changed 

dramatically. In the US, this was first reflected in an increasing number of workers with a 

secondary school degree. Recently, it became even more prominent during the ‘computer 

revolution’ (which started in 1960 with the first commercial uses of computers and rapidly grew 

in the 1990s with the introduction of the Internet). Since the 1980s, educational wage 

differentials and wage inequality have grown a lot. This is often explained by the stronger 

complementarity between capital and skills that results from the computer revolution. 

Computerisation raises demand for clerical skills, similar to the introduction of office machines 
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in the beginning of the 20th century, but it can also lead to automatisation (Autor et al. 2003; 

Frey and Osborne 2017). Frey and Osborne, therefore, conclude that computers have caused a 

shift in the occupational structure of the labour market: ‘the result has been an increasingly 

polarised labour market, with growing employment in high-income cognitive jobs and low-

income manual occupations, accompanied by a hollowing-out of middle-income routine jobs’ (p. 

12).  

As indicated above, one of the most remarkable characteristics of new jobs and new skills, at 

least in the context of developed economies, is their polarised nature. The polarisation of labour 

(or jobs) is a phenomenon where the demand for labour does not rise linearly with the skill level 

but rather resembles a U-shaped function (as illustrated on Figure 1). Instead, there is a 

polarisation in favour of both low-skilled and high-skilled jobs. Evidence of job polarisation has 

been found around the world (Autor et al. 2006; Goos et al. 2009; Fernández-Macías 2012; 

Ikenaga and Kambayashi 2016). In their work, Gallie et al. (2004) discuss the polarisation of 

skills. Skill polarisation may occur at the occupation level: where workers in lower occupational 

classes face skill stagnation or depreciation, the opposite holds for a worker in higher 

occupational classes because their employers tend to invest in on-the-job training. Skill 

polarisation could also arise on the basis of contractual status, in a core-periphery setting. At the 

core, we find full-time permanent workers, who are offered skill training; at the periphery we 

find part-time and temporary workers.  

Job polarisation has received attention from academics and policy-makers. Many studies have 

been conducted on the causes and consequences of the phenomenon. Among the possible causes 

of job polarisation are technological change and globalisation, both of which mainly impact 

routine jobs (Autor 2001; Blinder 2009). Importantly, jobs, particularly in the middle of the 

distribution, are affected (Maselli 2012). The demand for high-skilled employment has been on 

the rise for many years, and a similar trend is detected for low-skilled jobs (especially in the 

service sector) (Maxwell, 2006). Low-skilled service jobs, however, commonly offer minimal 

levels of job quality and job security, low wages and few possibilities for advancement. These 

jobs, therefore, tend to come attached with negative selection stigma and are difficult to fill (as 

many of the unemployed try to avoid such positions, particularly if before they held low-skilled 

manufacturing jobs that offered a higher wage) (Lindsay and McQuaid, 2004). Furthermore, 
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while low-skilled service jobs are sometimes referred to as de-skilled due to the very low barrier 

to entry; in many cases, they tend to be quite demanding in terms of social and language skills 

and – in some cases – even in terms of formal education.  

The up-skilling of some occupations combined with de-skilling associated with many new jobs 

(especially those in the low-skilled sector) complicates thinking about the labour market 

structure. This problem, however, is difficult to address. The issue also became clear in the 

EUROCCUPATIONS project, which measured the internal consistency of a wide range of 

occupations and found little grounds to assume that workers in the same occupation groups 

actually perform similar tasks (Tijdens et al. 2012). For these reasons, efforts have been made to 

include more dimensions into the way we think about jobs (e.g. computer use). In addition, there 

is a separate stream of literature that is focused on skills rather than jobs (Tijdens et al. 2012) as 

well as work that aims to bridge the gap between jobs and skills on the basis of novel datasets 

(Tijdens 2010; Fabo and Tijdens 2014).  

What is driving occupational and skill change? Oesch (2013) explores different possibilities on 

the basis of a supply-demand-institutions framework. This framework is embedded in the 

Figure 1: Changes in demand for jobs per ISCO skill level. 

Source: (Maselli, 2012) 
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canonical model of the labour market, which attributes changes in the skill premium and skill-

upgrading to shifts in the relative demand or supply for skilled workers and to labour market 

institutions. Oesch detects an occupational ‘upgrading’, i.e. the average occupation has become 

higher-skilled and better paid. This upgrading could be driven by demand-related factors (skill-

biased) technological change, routinisation), supply-related factors (changes in skill supply, 

immigration) and institution-related factors (de-standardisation of work contracts). In another 

paper, Oesch and Rodríguez (2011) explore the drivers of polarisation on the basis of the same 

framework. In the remainder of this section, several of these theories are explored in more detail.  

Before many researchers set out to address the issue of job polarisation, the literature focused on 

another very closely-related issue. This was the global increase of wage and employment 

inequalities between skilled and unskilled workers that has been documented in several 

contributions. Many of the early contributions have attributed these rising inequalities to skill-

biased technological change (among others Chin et al. 2006; Oesch and Menés 2011). This view 

was challenged in later work, as we will see later on. Most work has focused on developed 

economies (e.g. Juhn et al. 1993; Nickell and Bell 1996), but there are also studies that cover 

developing countries. One example of the latter is Conte and Vivarelli (2011), who examine the 

occurrence of skill-enhancing technology import and find that this significantly increases the 

demand for skilled workers (while it does not affect the demand for unskilled workers). Katz and 

Murphy (1991) mainly attribute the increasing wage inequality in the US between 1963 and 1987 

to skill-biased technological change within sectors (resulting from computerisation; see Krueger, 

1993). Alternative drivers, such as labour allocation shifts between sectors and globalisation, 

appear to be less important. In a recent paper, Weiss and Garloff (2011) relate skill-biased 

technological change to unemployment and wage inequality in Europe and the US. Whereas 

skill-biased technological change is associated with increasing wage dispersion in the United 

Kingdom and the United States, it increases the level of unemployment in continental Europe. 

Antonietti (2007) reviews the literature on the relationship between skills and technology. He 

concludes that technology is a complement of non-routine, non-manual tasks and a partial 

substitute for repetitive manual tasks. 

Skill-biased technological change, however, cannot explain the phenomenon of labour market 

polarisation that characterises many economies today. In fact, the evidence of job polarisation in 
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favour of high-skilled and low-skilled jobs is inconsistent with the hypothesis of skill-biased 

technological change (Wright and Dwyer 2003; Autor et al. 2003; Goos and Manning 2007; Jung 

and Mercenier 2014). These papers suggest that employment growth has taken place in low-paid 

personal service jobs and in well-paid professional and managerial jobs, while employment in 

average-paid production and office jobs has disappeared (Oesch and Menés 2011). This is why a 

number of alternative explanations have been put forward since the early 1990s. Chin et al. 

(2006), for example, consider labour market frictions and computerisation. From his review of 

the empirical literature, Antonietti (2007) concludes that early studies have relied mostly on the 

sector- and firm-level data, while more recent work used work-level data or even job-level data. 

The latter appears to present a more complex picture of the underlying dynamics. 

In their seminal paper, Autor et al. (2003) propose an alternative theory of technological change 

to explain job polarisation: ‘routinisation-biased technological change’. Routinisation-biased 

technological change entails that technology (computers in particular) can replace labour in 

routine tasks but not in non-routine tasks. Routine tasks are defined as codifiable tasks that 

involve a step-by-step procedure. One of the main features of this theory is that it shifts the focus 

from skills to tasks. In the model, technology affects the returns to tasks rather than skills. The 

plausibility of this theory as an explanation for job polarisation has been confirmed by Goos and 

Manning (2007), who show that routine tasks are indeed concentrated in the centre of the 

distribution (using data for the UK). Moreover, Acemoğlu and Autor (2011) demonstrate that the 

variance in the growth of US wages since the early 1980s may be attributed to changes in inter-

occupational wage differentials. Other work also stresses the importance of this phenomenon 

during the First Industrial Revolution (2013).  

Another potential explanation for the recent labour market polarisation is related to changes in 

international trade (or globalisation - see Jung and Mercenier 2014). In this regard, work on two 

dimensions has been particularly important: trade in intermediates (Feenstra and Hanson 1999) 

and offshoring (delegating work to other countries) (Blinder 2009; Grossman and Rossi-

Hansberg 2012; Ebenstein et al. 2013; Helpman et al. 2017). In this literature, the idea of trade in 

tasks has also been highly relevant, with digital platforms increasingly enabling the offshoring of 

tasks without intermediaries (Drahokoupil and Fabo 2016). In addition to these factors, demand-

side factors may also have an impact on the labour market (Jung and Mercenier 2014). Shifts in 
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the composition of demand (e.g. because of population aging, non-homothetic preferences) have 

been investigated by Manning (2004) and Autor and Dorn (2009). The latter two examine 

employment growth in service occupations. 

Institutional factors are also of high importance. Labour market deregulation, the decline of trade 

unions and general preference of governments for job creation over social considerations
4
 has 

contributed to shaping a world, in which employment is much more fluid and uncertain than it 

used to be over much of the post-war period. Technological progress can accelerate these trends 

by increasing the relative power of employers vis-à-vis workers or make some occupations more 

easily standardizable and outsourceable (that is, transferable to external contractors, rather than 

done internally) (Huws 2014; Drahokoupil and Fabo 2017). At the same time, the technology 

also drives the competition for the best talent, which is increasingly “footloose” and able to 

choose the place of its work (Huws 2014). Such qualified workers are have guaranteed good 

working conditions on the basis of their skills and do not need to rely on traditional labour 

market institutions. 

In an interesting contribution by Jung and Mercenier (2014) compare the impact of these 

different explanations on the distribution of employment and wages. Firstly, the authors model a 

‘closed economy’ to examine the impact of skill-biased technological change, reutilisation-

biased technological change and demand shifts. The model only provides empirical support for 

the second hypothesis. When an ‘open economy’ model is used, Jung and Mercenier (2014) 

conclude that labour market polarisation is likely to be jointly induced by reutilisation-biased 

technological change and by globalisation. Nevertheless, the authors find that the within-group 

and overall wage inequalities – which are changing disproportionately– can only be accounted 

for by reutilisation-biased technological change. Another paper that compares several potential 

explanations for polarisation is Goos et al. (2009). These authors study job polarisation in 16 

European countries in the period 1993-2006, with a focus on three hypotheses: reutilisation, 

globalisation and offshoring, and wage inequality. They find clear evidence of reutilisation, 

while the results for offshoring and inequality are less convincing.  

                                                      
4
 These aspects have been presented to a very different extend in different economies, resulting in both 

heterogenity of institutions and heterogenity of outcomes.  
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Oesch and Rodríguez (2011) point to the role of institutions in Britain, Germany, Spain and 

Switzerland. In all four countries, they detect a pattern of occupational upgrading, as the 

strongest employment growth is found at the top of the distribution. Furthermore, in all countries 

employment declined more in average-paid than in low-paid jobs. Importantly, wage-setting 

institutions do appear to filter the pattern of occupational change: countries only experience a 

trend towards polarisation if wage-setting institutions facilitate the creation of low-paid 

interpersonal service jobs. This may be more the case in Britain and Spain than Germany and 

Switzerland.  

A final hypothesis to take into account is that of Schumpeterian creative destruction 

(Immergluck 1999; Mendez 2002). The emergence of new highly-skilled jobs can result in 

creative destruction. An example of this is the finance industry. This industry used to employ 

many clerks focused on interacting with clients, but many of these jobs has been disappeared due 

to increased automatisation and a stronger focus on areas such as secondary mortgage markets 

(Immergluck 1999). 

Technological change in the past and the present has clearly had its labour market implications, 

as evidenced by many studies. Frey and Osborne (2017) summarise the conclusions of this 

literature as follows: technological progress has been accompanied by substantial changes in the 

occupational structure throughout history, but it has not resulted in widespread technological 

unemployment as predicted by Keynes (2010). This is due to the fact that technological progress 

has two opposing effects on employment: a capitalisation effect (employment grows in highly 

productive sectors) and a destruction effect (technology and labour are substitutes) (Aghion and 

Howitt, 1994). Frey and Osborne (2017)) argue that in the past the former has been dominant. 

The impact of capital deepening on the relative demand for skilled labour has changed 

substantially throughout history. In the 19th century, manufacturing technologies and skilled 

labour were substitutes. The 20th century was characterised by job polarisation, caused by 

computerisation. Other work has related these conclusions to education and training. For the 

United States, Rauscher (2015) explores the link between educational expansion and 

occupational change over the period from 1850 to 1930. Results suggest that compulsory school 

attendance laws and the educational expansion are associated with skill-biased technological 

change, a higher average occupational standing and an expanded occupational distribution. 
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Education may change the occupational structure.  

A question that still remains unanswered, however, is what the future will look like? In their 

paper, Frey and Osborne (2017) suggest that although the capitalisation effect historically has 

been dominant, this does not necessarily apply to the future. In fact, computerisation is no longer 

limited to manual and cognitive routine tasks but it is being extended to non-routine tasks as 

well. This development is supported by the recent advancements related to ‘big data’ and 

robotics (e.g. robot senses and dexterity). Frey and Osborne (2017) estimate the probability of 

computerisation for 702 occupations in the United States. They find that about 47% of total US 

employment is at a high risk of computerisation. Transport, logistics, office and administrative 

support and production occupations are at high risk. Interestingly, a vast share of the service 

occupations is likely to be computerised in the future as well. Furthermore, they document a 

negative relationship between the probability of computerisation and wages and educational 

attainment. In a related paper, Beaudry et al. (2015) show that the demand for skills is 

decreasing. For the 21st century, Frey and Osborne predict a curb in the current trend towards 

polarisation: further computerisation is limited to low-skill and low-wage workers, who will 

switch to tasks that are not susceptible to computerisation. To this end, workers will have to 

acquire social and creative skills. Education and skills will remain important in the future for all 

workers. Another example of this is the incredible growth in STEM jobs in the past decade and 

the clear emphasis from policy-makers on STEM skills. As a result, educational institutes 

worldwide have introduced STEM-oriented training programmes and are encouraging students to 

opt for STEM training.  

Finally, Autor (2015) predicts that polarisation will not continue indefinitely. He argues that 

although some of the tasks in middle-skill jobs are susceptible to automation, many of the jobs in 

this segment of the distribution will still demand a mixture of tasks from across the skill 

spectrum. Moreover, the tasks bundled into the middle-skill jobs cannot be unbundled so easily, 

without causing a substantial decline in job quality. Autor therefore maintains that many middle-

skill jobs will combine routine with non-routine tasks in the future. These jobs are not off-

shorable. In these jobs, workers continue to have the comparative advantage (e.g. problem-

solving skills, interpersonal interactions). Autor concludes that the emphasis of human capital 

investment should be on the production of skills that are complemented rather than substituted by 
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technological change.  

Researching the Labour Market Using Web Data 

Internet has risen as an important potential source of valuable data for labour market research. 

The literature therefore distinguishes between studies that cover the Internet and studies that 

make use of the Internet to conduct research but note that these two domains are actually 

strongly connected (Hooley et al. 2011). The earliest studies were mostly of the first type, with 

research that focused on the social dimension of the web (Freeman 1984; Finholt and Sproull 

1990). Shortly after these first studies, work that used the Internet to do analyses emerged 

(Kiesler and Sproull 1986; Foster 1994; Kehoe and Pitkow 1996). As the field expanded, new 

approaches and data collection methods were developed, which were often strongly embedded in 

the existing methodological framework and enriched with insights from technological progress.  

The universe of various web data-based methods is vast and quite offten used intecconectively or 

interchangibly with the concept of “Big Data”, refering to the fact that data collected online tend 

to surpass threshold where theirs sheer size makes the difficult to process using standard social 

science methodologies and equipment. But web data do not necessarily need to be “big”. For 

instance, in their book, Hooley et al. (2011) delimit online research using found categories of 

research, where datasets tend to be relatively small: surveys, interviews and focus groups, 

ethnographies, and experiments. Of course modern web data-driven research goes far beyond 

these found approaches, as evidenced by a large number different research applications of 

diverse web data discussed in the remaining part of this chapter. While this thesis only focuses 

on a number of selected web data sources, the used datasets reflect diversity of the field being 

markantly different in orgin and size, united only by their web-based origins. 

Nonetheless, the “Big Data” conceptualization can be quite useful due to its core concepts of the 

“Vs” such as volume, velocity and variety at the core of it (http://tarjomefa.com/wp-

content/uploads/2017/04/6539-English-TarjomeFa-1.pdf) What makes the potential of web data 

particularly excisting and potentially fundamental shift vis-à-vis traditional data sources is the 

potential to provide (a) large number of observations allowing for detailed cross-tabulation of 

many variables, (b) enabling data collection in near real-time (c) including variables covered 

poorly or not at all by traditional data sources, such as detailed information about tasks 

http://tarjomefa.com/wp-content/uploads/2017/04/6539-English-TarjomeFa-1.pdf
http://tarjomefa.com/wp-content/uploads/2017/04/6539-English-TarjomeFa-1.pdf
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performed by the workers and their skills .  

Overview of Existing Web-Data-based Research 

In this section, we provide an overview of the data variety of web data sources available. 

Generally, we first describe the source. Then, we discuss which information can be collected 

from the source, with a focus on labour-related features. We continue with an overview of 

applications that either cover the source itself or use it for research on other topics. Because the 

field is rapidly developing, we do not limit our analysis to articles published in academic journals 

but also consider works-in-progress and other contributions. We aim for an extensive coverage 

going going beyond the data sources used in the following chapter of this dissertation in line with 

our ambition to locate our research within the “big pricture”.  

Web Surveys, Interviews and Focus Groups 

Surveys were among the first research activities performed online. In fact, the first recorded 

email survey was done in 1986 (Kiesler and Sproull 1986) and the first recorded web survey in 

1994 (Kehoe and Pitkow 1996). Compared to traditional paper-and-pencil methods, online 

surveys have the advantage of being flexible, fast, cheap and easy to set up. Data may be 

collected from a larger and more diverse sample, including hard to survey groups such as the 

undocumented migrants, which has a positive impact on data accuracy. At the same time, the 

respondents’ anonymity is perhaps more easily ensured, because fewer people are involved in 

data processing. Web surveys also possibly contain more information to analyse than traditional 

surveys, because they offer additional information, such as meta-data. Disadvantages of online 

surveys include sample bias, measurement error, non-response and dropout, as well as other 

technical and ethical issues. 

Of particular interest are the Internet panel surveys, which are well on the way to becoming the 

dominant method of collecting panel data in social science (Das et al. 2011; Das 2012; Blom et al. 

2016; Bosnjak et al. 2016). Several Internet panel surveys exist currently. In the USA, there are 

two Internet panel surveys that we wanted to bring to the reader’s attention: RAND’s American 

Life Panel (ALP with 6,000 participants) and the Understanding America Study (UAS) panel 
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(2,500 participants, CESR, University of Southern California). Both panels represent the US 

population of ages 18 and up. In the Netherlands, the important CentERPanel started in 1991, 

representing 2,000 households and the more recently established Longitudinal Internet studies 

for Social Science (LISS) panel, consisting of 5,000 households. In Germany, there is the 

German Internet Panel (GIP, University of Mannheim, nearly 3500 participants) and the Gesis 

panel (4,900 participants, mixed method, partly collected offline). In France, there is the 

Longitudinal Internet Studies for Social Sciences (ELIPSS) with 2,500 participants. Beyond 

academia, many commercial operators exist and these facilitate Internet panel surveys (Ipsos, 

‘Contribute’ by Survey Monkey).  

Other web-based data sources buildig on an interaction with respondents, such as online 

interviews and focus groups have developed more slowly. This research mainly concerns 

asynchronous email interviews, although limited work does consider synchronous interviews and 

focus groups (Mann and Stewart 2000; Fielding et al. 2008). Online interviews and focus groups 

are more flexible as well as cost- and time-effective. They do, however, require technical 

competence from the participants, shift the power balance in their favour and prevent the 

researcher from observing any non-verbal communication. Online ethnographers examine how 

humans live and interact online; research commonly deals with social interactions on online 

communities, networks, gaming, discussion groups, bulletin boards and social media 

(Papacharissi 2009; Guo et al. 2012).  

Online Experiments 

Online experiments have been extensively used beyond the boundaries of social science. There 

are many examples in the literature of using experimental web data in economic research (Krantz 

and Dalal 2000; Musch and Reips 2000; Horton et al. 2011; Pallais 2014; Zheng et al. 2014; 

Dukova 2016; Horton 2017). Pallais (2014) performs an experiment on oDesk—an online labour 

platform—to test the hypothesis that young workers have a higher probability of being 

unemployed than older workers because of barriers to labour market entry. oDesk is also used by 

Pallais and Sands (2016), to examine why referred workers have a better chance of being hired. 

Horton (2017) uses oDesk to investigate the role of recommendations (which appear to increase 

the probability of hiring). Horton et al. (2011) perform a set of experiments on Amazon 
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Mechanical Turk (MTurk). More specifically, the authors replicate three classic experiments 

online and prove that such experiments are valid and beneficial to researchers. Aside from oDesk 

and MTurk, there is another platform on which researchers can do online experiments: TESS 

(Time-sharing Experiments for the Social Sciences, http://www.tessexperiments.org/). 

Researchers may submit proposals for experiments, which are peer-reviewed. When a proposal is 

approved, TESS does the experiment free of charge on a representative sample of US-based 

adults. These demonstrate that online experiments are more flexible so they are faster, cheaper 

and easier to conduct than real-life experiments and they allow for a broader scope, being able to 

potentially recruit a much larger number of participatns. The sample of participants that one can 

reach is also larger and more diverse. These features improve the quality of the study. 

Observing online activity 

In recent years, the analysis of labour demand, supply and matching became increasingly based 

on online data (Askitas and Zimmermann 2009; Kuhn 2014; Kuhn and Mansour 2014; Askitas 

and Zimmermann 2015). Internet data can contribute to our understanding of the labour market 

by filling the gaps that currently exist in the literature (Mýtna-Kureková et al. 2015). A first web 

data source that may be particularly useful in this case is a dataset extracted from online job 

portals. Many job boards are not limited to vacancies but also collect CVs and résumés. They 

also offer wage comparisons, employer evaluations and career advice. Some examples of this 

source use are: Marinescu (2016), who uses CareerBuilder to investigate geographical mismatch 

in the USA, while Marinescu and Rathelot (2016) rely on this portal to study unemployment 

insurance. Hershbein (2015) provides evidence for upskilling with a sample of vacancies from 

Burning Glass: employers require more in areas with higher unemployment rates, Tijdens et al 

(2015a) looks at the required educational attainment per occupation while Beblavý et al. (2013) 

analyse the values of different study fields. Mamertino and Sinclair (2016) explore the 

connection between job search and migration. Using a similar approach and dataset, Sasser 

Modestino et al. (2014) examine changes in employers during the Great Recession (2007–2012) 

and the subsequent recovery (2010–2012). In ‘bad’ labour markets, employers are more 

demanding, in terms of both education and experience. Kudlyak et al. (2014) rely on matched 

applicant-vacancy data from SnagAJob to assess how job seekers’ behaviour changes during 

their job search. In another contribution based on SnagAJob, Faberman and Kudlyak (2014) 
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report that job seekers’ search effort declines with search duration. Brenčič (2014) looks into 

information acquisition through portals and résumé databases, suggesting that users only access a 

small portion of available information. Agrawal and Tambe (2014) use online résumés to track 

workers’ career paths, focusing on workers previously employed in firms acquired through 

leveraged buyouts. 

Note that there is a distinction between online jobs portals, which connect workers to traditional 

‘offline’ jobs and other online labour market platforms like oDesk, Amazon Mechanical Turk 

(MTurk), CoContest and TaskRabbit, which directly connect workers and beneficiaries of 

labour. Much of the work on these market intermediaries has focused on MTurk, an online 

marketplace through which employers offer tasks that require human intelligence (i.e. that 

computers are unable to do). Horton (2011), for example, examines the fairness of MTurk 

employers. Buhrmester et al. (2011) evaluate MTurk’s potential as a data source in the field of 

psychology and the behavioral social sciences. We have used the CoContest and Listminut 

platforms to study labour market matching and income-generating potential of the platforms 

(Maselli and Fabo 2015; de Groen et al. 2016; Fabo et al. 2017b, c). Other studies cover a wide 

range of diverse labour platforms (Ghani et al. 2012; Pallais 2014; Berg 2016; Mandl 2016).  

 

Google Trends 

Google Trends ( https://www.google.com/trends/) was launched by Google in 2006 and has been 

established as an excellent tool to detect new trends (Askitas and Zimmermann 2009; Askitas 

2015, 2016). The service is based on Google Search and analyses a percentage of these searches. 

In particular, Google Trends allows users to check how often search terms, or combinations 

thereof, are entered relative to the total number of searches done (by region, across time). When 

multiple search terms are entered, their relative popularity is compared. More precisely, on the 

web page, there is a search button which allows users to type in their search term of interest. 

Google Trends displays the interest in this search term over time (on the rise or declining) and by 

region (at global, national or regional levels) and related searches, spilt out into topics and 

queries. Regional searches are possible because a user’s location can be identified via his/her IP 

address. Google Trends provides a normalised volume of queries for a specified term which is 

presented in a graph. Spikes in the graph are associated with news headlines, when possible. 

However, to protect the privacy of its users, Google does not publish results when there are 

https://www.google.com/trends/
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insufficient observations. Trends data excludes searches made by very few people, duplicate 

searches and special characters. Searches and search outcomes can be manipulated by companies 

operating the search engines, because they are the ones capable of modifying the search 

algorithms. One has to keep in mind that it is a company that develops content, sells 

advertisements and promotes its sub-brands (e.g. Yahoo Finance). This may particularly affect 

small- and medium-sized firms, which see their search ranks worsen and lose significant 

amounts of traffic. Moreover, organisations and large companies are able to manipulate search 

results as well, in order to maximise traffic and exposure. 

Google Trends further has lists of ‘hot searches’ and ‘hot topics’. The former tracks the most 

rapidly increasing searches at that given moment, while the latter captures trending terms in the 

news and on social media. Google Trends also features top stories that can be filtered by region 

and topic (eg business or health). In 2008, Google launched Google Insights, an extension to 

Google Trends, which allowed users to track words and phrases entered into search boxes, 

analyse results and structure data. The tool was integrated into Google Trends in 2012. All data 

can be downloaded in .csv format. Because Google Trends enables users to verify which 

(combinations of) search terms are on the rise, the platform provides us with more insight into 

the type of positions that job seekers are looking for, the types of skills that are in great demand, 

the industries that are booming and many other aspects. Google Trends presents information on 

labour demand and supply. 

Nevertheless, there are some caveats to Google Trends. Because only a sample of searches is 

used and searches for which there are insufficient observations are excluded, Google Trends data 

may be affected by sample bias; in small samples, only random draws with enough observations 

are shown (Kearney and Levine 2015). A second issue is sampling variability (problematic for 

standard error calculations when data is treated as fixed rather than random variables). To 

address these issues, the authors repeat their searches on Google Trends several times and 

calculate the average of the indices (to reduce the sampling variability). As temporal and 

geographic variations are sources of variation that labour economists typically rely on, the above 

issues are important to account for. 

Google Trends serves as a data source in a large number of contributions. One of the most well-
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known applications is Google Flu Trends. In an influential article published in Nature, Ginsberg 

et al. (2009) explain how Google Trends may be used to improve the early detection of seasonal 

influenza by monitoring search engines like Google. This approach seemed to work well because 

of the high correlation between the percentage of doctor visits and the relative frequency of 

specific queries on Google, nonetheless eventually failed due to being unable to differentiate 

between searches related to the actual doctor visits and searches caused by media panic (Lazer et 

al. 2014). The authors can predict weekly influenza activity in the USA (with a time lag of one 

day). Other studies have used Google Trends to examine health-related topics as well (e.g. 

papers that extend or improve Ginsberg’s method or focus on other diseases). 

The strand of literature that relies on Google Trends for forecasting and now-casting is also 

extensive. Choi and Varian (2012) show that Google Trends is a useful tool for predicting the 

‘present’ (in the form of subsequent data releases, i.e. the short-term future) due to the 

correlation between queries and economic indicators. They illustrate this result with the 

examples of travel, retail sales, home sales and automotive sales. Carriere-Swallow and Labbé 

(2013) work on a related topic, focusing on automobile purchases in Chile. Preis et al. (2013) 

and Preis and Moat (2015) relate Google queries to stock market dynamics and show that losses 

are often preceded by a growing volume of specific stock market search terms. In a recent 

publication, Chen et al. (2015) evaluate the extent to which Google search queries can be used to 

‘now-cast’ business cycle turning points during 2007–2008. Schmidt and Vossen (2012) use 

Google Trends to account for special events in economic forecasting. In another paper, Preis et 

al. (2012) link queries, specifically whether they refer to the future or past, to countries’ 

economic success. Constant and Zimmermann (2008) use Google Trends to measure economic 

and political activities, while Askitas and Zimmermann (2009), Foundeur and Karamé (2013) 

and Choi and Varian (2009) use it to predict unemployment. Yang et al. use search engine traffic 

to predict tourist traffic in China (2015), while Bangwayo-Skeete et al. extend this application 

more broadly (2015). 

Other studies use Google Trends for behavioral analysis. Moat et al. (2014) use Google Trends 

to predict collective behaviour. In a series of articles, Stephens-Davidowitz (Stephens-

Davidowitz 2014) uses Google Trends to explore topics such as racism, religion, prejudice and 

health. Rode and Shukla (2013) use a Google search query to examine racial differences in 
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labour market outcomes in the USA. The authors provide evidence for racial prejudice: in 

metropolitan areas with more racially charged searches, black-white gaps in annual income, 

hourly wage and annual hours worked are wider. This result appears to be somewhat stronger for 

less-educated workers. Another relevant paper is Kearney and Levine (2015), who combine data 

from Google Trends, Twitter and two other sources to examine how media images affect 

adolescents’ attitudes and outcomes for the case of MTV’s reality TV show 16 and Pregnant. 

Interestingly, the TV series appeared to increase the amount of Google searches and tweets on 

birth control and abortion. Moreover, the show is associated with a 5.7% reduction in teen births 

in the 18 months after its introduction. Kearney and Levine (2015) do point to potential 

endogeneity: the interest in 16 and Pregnant is likely higher in areas where the teen birth rate is 

higher or where it is rising or falling more slowly. While the former may be tackled via 

geography-fixed effects, the latter is addressed with an instrumental variables (IV) strategy in 

which ratings are instrumented with ratings of any MTV show broadcasted during the same time 

in the previous period. 

The ability to ‘nowcast’ economic indicators using Google can be quite important in overcoming 

the gap between research and policy cycles and thus potentially contribute to the smoother 

implementation of evidence-driven policy solutions.  

LinkedIn 

In the last few years, many studies have appeared that concern social networking websites. 

Social networks commonly have large user bases comprising individuals, firms and other 

organisations. User profiles often contain detailed information about current employment, 

experience, educational attainment and other qualifications (labour supply). Information about 

individuals’ behaviour and preferences can easily be obtained from these sites. In addition, firms 

and organisations often have profiles on these networks as well, through which they can interact 

with current employees and interested job applicants, as well as share vacancies (labour 

demand). Information is often publicly available. A vast majority of companies use social 

networks to look for candidates. Social networks can reduce search frictions. Acquisti and Fong 

(2015) investigate how information available on job applicants’ profiles affects their interview 

invitation rates. A third of employers searched online for information on the candidates. Results 
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also suggest that employers in the Republican parts of the USA have a significant bias against 

Muslim candidates and in favour of Christian applicants. 

Of the social networks discussed in this article, LinkedIn (www.linkedin.com) is the most 

obvious candidate to serve as a data source for labour market analysis because of its focus on 

professional networks, which are now being used for labour market research as well (Barslund 

and Busse 2016). By enabling users to set up profiles, connect with other users and find or list 

job openings, LinkedIn aims to ‘connect the world’s professionals to make them more productive 

and successful’ and to ‘transform the ways companies hire, market and sell’ . LinkedIn was 

founded in 2002 and became available online in the spring of 2003. About 4,500 users signed up 

during the first month. Since then, LinkedIn has developed into the largest global online 

professional network, connecting over 364 million users (individuals and organisations) in over 

200 countries and territories. In the first quarter of 2015, over 75% of LinkedIn’s new users were 

not US-based. LinkedIn currently supports 24 languages. In Europe, LinkedIn has more than 89 

million users. Two new users sign up every second. In the USA, 28% of the adult Internet users 

use LinkedIn. The website is particularly popular among college graduates, higher-income 

households and the employed. LinkedIn is the only platform where people aged 30–64 are more 

likely to be users than those aged 18–29 (Duggan et al. 2015). 

Because LinkedIn holds profiles of companies, job seekers and recruiters, it is an interesting 

platform to analyse labour market dynamics. Firms can use LinkedIn to set up a ‘Company Page’ 

on which they can post job opportunities or create dedicated ‘Career Pages’ for this purpose. 

LinkedIn users can go through company pages to find job opportunities, use the general search 

options that LinkedIn offers, or connect with recruiters. Since 2011, users can even apply for 

jobs directly by using their profile as a résumé when they click on the ‘Apply with LinkedIn’ 

button on job listing pages. Another feature is the option to establish or become a member of an 

interest group (e.g. the group ‘Java Developers’). User profiles of employees and job seekers 

further comprise valuable information on their education level and skills. In the autumn of 2012, 

LinkedIn added a feature through which users could comment on each other’s profiles and 

endorse each other’s skills. From this, it is clear that LinkedIn reduces search frictions, as job 

seekers (employed or unemployed) can easily find positions in their organisation or sector of 

interest and employers can easily browse through a large set of profiles to find their ideal 
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candidate ( passive candidates are also available). LinkedIn therefore is a good starting point for 

labour market analysis. For the 94% of job candidates (two-thirds of recruiters), LinkedIn is the 

most important social network for job hunting (candidate sourcing) (University of Kent 2015). 

Currently, the majority of the work on LinkedIn covers the platform itself. For example, there are 

several studies that examine how LinkedIn can be used in selection, recruitment or other 

business processes taking the perspective of job seekers and employers (Caers and Castelyns 

2011; Bonsòn and Bednárová 2013; Rangel 2014; Zide et al. 2014). Jarrow et al. (2011) discuss 

LinkedIn’s stock price. On the other hand, there are only a few contributions in which LinkedIn 

serves as a data source. An interesting example is State et al. (2014), who examine migration to 

the USA among professional workers of different education levels with a database of geo-located 

career histories from LinkedIn, a line of research further pursued for IT works by Barslund and 

Busse (2016). Boucher and Renault (2015) use a dataset compiled by hiQ Labs, which comprises 

many job titles and LinkedIn profile summaries, to construct a job classification. Gee (2014) 

takes vacancies published on LinkedIn to do an online experiment that covers 2.3 million job 

seekers. She demonstrates that reporting the number of previous applications increases the 

likelihood of application, especially among female job seekers. Tambe (2014) examines how 

labour market factors shape early returns to investment in big data technologies such as Hadoop 

and Apache Pig on the basis of LinkedIn. Other studies, of which several are related to the 

analysis of jobs and skills, can be found on the LinkedIn website 

(http://data.linkedin.com/publications). 

A final set of applications worth mentioning are embedded in LinkedIn’s ‘Economic Graph’ 

challenge. This challenge was launched in 2012 and sets out to create an ‘economic graph’ 

within a decade (i.e. to digitally map the world economy). For this challenge, teams were invited 

to propose how they would use LinkedIn data to research a range of topics related to the job 

market. 11 teams were selected (see http://economicgraphchallenge.linkedin.com/). 

Unfortunatell, outside of such events, LinkedIn is generally quite unkeen on providing access to 

data for researchers, hindering the use of this data source.  

Facebook 

Facebook (www.facebook.com) is a well-known online social network that was launched in 

http://economicgraphchallenge.linkedin.com/
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2004. On Facebook, users can set up a profile on which they can post messages, photos and 

videos; update their status; and use other features. User profiles can be public or private. On their 

profile, users can share their employment status or occupation, education level, family situation, 

skills, interests and hobbies, and other information (labour supply). Users can connect with 

others by becoming ‘friends’, in which case they receive notifications when a friend updates 

his/her profile (via the ‘news feed’), and are able to send messages or chat. Since 2004, users 

have the possibility to create or become a member of a (private) Facebook group. As of 31 

March 2015, Facebook had 1.44 billion monthly active users. The average number of daily 

active users during March 2015 was 936 million. About 83% of the daily active users do not 

reside in the USA or Canada. This number reveals that Facebook has an extremely large global 

user base. The website has a much larger network of users than any of the other social networks 

discussed. Duggan et al. (2015) find that Facebook is the most popular social network: it is used 

by 71% of online American adults. Women are particularly likely to use Facebook compared to 

men (66% of men; 77% of women have a profile). 

Companies, recruiters and other organisations can also create a Facebook profile. This possibility 

was introduced in 2007 and is known as ‘Facebook Pages’. Facebook Pages are public profiles 

held by celebrities, businesses, organisations and brands. On their profile, firms can present 

themselves to users, interact with them, introduce new products and post job vacancies (labour 

demand). On this note, there are also many job portals that have their own Facebook page 

through which they look for new talent, share job opportunities and offer career advice (labour 

demand, matching). Some examples are Indeed and Monster. In 2012, Facebook launched a job 

board, the ‘Social Jobs Partnership Application’ , which is the result of a collaboration with the 

Department of Labor, the National Association of Colleges and Employers, the Direct Employers 

Association, and the National Association of State Workforce Agencies. The introduction of the 

job board was motivated by the outcome of a survey performed by the National Association of 

Colleges and Employers (NACE), which targeted 530 employers and recruiters in the spring of 

2012. This survey revealed that (i) 50% of the employers used Facebook in the hiring process, 

(ii) almost 90% of the companies claimed that recruiting via Facebook is more cost-effective 

than through other channels and (iii) especially networking and referrals are key features to find 

new employees (e.g. engaging in a network with a candidate who ‘liked’ the company’s 

Facebook page). Via the application, recruiters can post job opportunities which can be sorted by 
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location, industry and skills. When the application was first launched, it combined offers from 

BranchOut, Direct Employers Association, Jobvite, Monster and Work4 Labs. The goal of the 

project is to support finding and sharing jobs via Facebook. A final option is to exploit Facebook 

Graph Search (Headworth 2014). Note that Facebook lowers search frictions (users can easily 

connect with an employer of interest or join a group; employers can browse through profiles and 

discover interesting candidates more easily via groups). 

There are many studies on the topic of Facebook, but at first glance, only a few studies exist that 

use Facebook data to analyse labour market dynamics. Overall, the literature is extensive and 

covers many fields. Some examples are health-related issues, network analysis and education. 

Wilson et al. (2012) examined the research on Facebook in the social sciences. Their analysis is 

based on 412 articles published up until 1 January 2012. Wilson et al. (2012) classified these 

articles into five categories that reflect five research questions: (i) Who is using Facebook and 

what are users doing while on Facebook? (ii) Why do people use Facebook? (iii) How are people 

presenting themselves on Facebook? (iv) How is Facebook affecting relationships among groups 

and individuals? and (v) Why are people disclosing personal information on Facebook despite 

potential risks? The bulk of the articles addressed the fourth question. These questions are also 

particularly interesting to get more insight into labour market dynamics, recruitment and 

selection. Some work has been done on these issues, from the perspective of both job seekers and 

that of employers and recruiters. Research confirms that Facebook is a popular tool to screen 

applicants (Kluemper and Rosen 2009; Karl et al. 2010). This, however, implies that employers 

and recruiters can also evaluate job applicants on other criteria, such as their gender or race or 

‘inappropriate’ material on their profile (Kluemper and Rosen 2009; Bohnert and Ross 2010). 

Kelkar and Kulkarni (2013) discuss the usefulness of Facebook from the labour supply side. 

While pointing out Facebook’s possible advantages for job seekers, They do find that only a 

small number of members actually use Facebook to look for jobs and for networking. The 

authors criticise the Social Jobs Application, which tends to yield inconsistent and ineffective 

results and does not appear to add much to what is already available on job portals. One can 

conclude that Facebook has the potential to serve as a source for recruitment and selection, but 

this has not yet been fully exploited. Two other examples of work on Facebook are Gee et al. 

(2016) on the link between job transmission and Facebook and Gee et al. (2017 on weak ties), 

based on the influential theory of Mark Granovetter (1973). Facebook appears to be an 
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interesting and valuable data source that has been used for labour market research. Wilson et al. 

(2012), however, do note that data crawling techniques are becoming less effective because of 

stricter privacy settings. 

Twitter 

Twitter (www.twitter.com) is a micro-blogging website through which users can read and send 

short messages (of no more than 140 characters) called ‘tweets’. Whereas these messages can be 

read by anyone, only registered users can send tweets. Users are ‘connected’ to each other when 

they follow or are followed by other users. Moreover, messages sent out by one user can be re-

tweeted by others. Tweets can cover any topic and can be grouped by topic or via hash tags. 

Twitter also tracks ‘trending topics’ (global and regional, via an algorithm that accounts for the 

location and interests of users). Twitter was launched in 2006 and has grown substantially ever 

since. About 500 million tweets are sent each day, most of which are accessible for public view 

as tweets are publicly visible by default. As of 31 March , 2015, Twitter has 302 million monthly 

active users. Twitter supports 33 languages. 77% of Twitter’s accounts are held outside the USA, 

which illustrate the website’s global outreach. Twitter’s mission is to ‘give everyone the power 

to create and share ideas and information instantly, without barriers’ . This idea is put into 

practice through following and followers, re-tweeting and the public nature of the service. 

Twitter can be used by job seekers, employers or companies as well as recruiters. It is, therefore, 

a useful tool for analysing the labour market. Job seekers can use Twitter to get more 

information on companies, discover job openings and find out more about the qualifications 

required by following these firms. They can also interact with current employees (labour supply). 

Moreover, job seekers can also find vacancies via the general ‘search’ function. Companies, on 

the other hand, do not only turn to Twitter for marketing purposes and sales; they may also use 

the website to tweet about vacancies and look for employees (labour demand). Such tweets often 

consist of a job title, a brief description of the position and a link to a webpage with more 

information. Companies can also use Twitter to strengthen their profile and spread information to 

clients and (potential) employees. A further option that companies have is to work with third 

parties, for example, ‘Tweet My Jobs’, to share their vacancies (Schawbel 2012). Recruiters can 

also rely on Twitter to find talent, through their own account, by becoming a member of groups 
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or by following other users. Another feature that is particularly useful in this regard is the option 

to embed a web link in the Twitter profile page of the company or recruiter, which directs job 

seekers to their website. Furthermore, many job portals, such as CareerBuilder, Indeed, Simply 

Hired and Monster, have their own Twitter accounts through which they share job listings and 

offer job search and career advice. As Twitter messages are fairly short, employers will generally 

not use Twitter as their main recruiting tool, but rather as a part of a whole recruitment strategy 

(Larsen 2011). Duggan et al. (2015) suggest that 23% of the US adults online use Twitter. The 

site is particularly popular among those younger than 50 and those who went to college. 

 Although Twitter was only introduced in July 2006, there already exists an extensive literature 

on the micro-blogging website. Academics and other researchers from many different fields have 

taken an interest in Twitter, which resulted in a high number of studies on a variety of topics 

(including but not limited to the field of computer and information sciences, physics, linguistics 

and economics). This interest is motivated by the scale of the database (many users and tweets) 

and its time dimension. In a recent article, Williams et al. (2013) focus on Twitter-based research 

to identify and classify the types of studies that are being done. From their review of the 

literature, they conclude that the following four elements are generally covered: the message, 

user, technology and concept. Other elements that are considered in some papers are the domain 

(e.g. education, health, business and security), data and research method. For a sample of 575 

papers on Twitter published between 2007 and 2011, the authors show that most research deals 

with the content of Tweets followed by work on the users (together they represent 80% of the 

papers). Some more specific examples of recent work on Twitter are the paper by Achrekar et al. 

(2011) on the prediction of flu trends, by Murth (2015) on elections and by Yu and Wang (2015) 

on sentiments expressed in tweets during the World Cup of 2014. Despite a large number of 

topics covered, research on the relationship between Twitter and labour market dynamics and the 

use of Twitter data to identify or classify occupations and skills is limited. Kearney and Levine 

(2015) use Google Trends and Twitter but find that it is more difficult to access the latter than 

the former. Historical data cannot be accessed nor is there information on the frequency of tweets 

on the site. A library of past tweets can be obtained, but this library is difficult to manipulate due 

to its size and format. Data can be obtained through third-party vendors. Other limitations are 

that geographical information is difficult to obtain (no IP address) and that information on 

demographics is unavailable. Only a few papers seem to use Twitter for behavioural analysis. 
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In February 2014, Twitter launched a pilot project called ‘Twitter Data Grants’ . The project 

consisted of a call for proposals for research institutions to collaborate with Twitter staff and 

obtain historical and public data (see https://blog.twitter.com/2014/twitter-datagrants-selections). 

Six teams were selected. Before the Data Grant programme was launched, free access to data 

was limited to the previous seven days. The difficulty in accessing Twitter data also spurred 

several papers on the topic. Kwak et al. (2010), for example, describe crawling the platform to 

examine its topological characteristics. Twitter, in contrast to other platforms, is mainly relevant 

for labour demand as user profiles are fairly limited. One option, however, is that job seekers can 

spread their résumé via Twitter in the hope of attracting the attention of companies and 

recruiters. 

Glassdoor 

Web-based surveys, such as WageIndicator and Glassdoor, have already been introduced in the 

first sections of this article. In this section, we present Glassdoor (www.glassdoor.com), a 

popular career community website that was first launched in 2008. Although the website 

operates as a job board, Glassdoor goes beyond traditional job portals as the company also 

targets employers, recruiters, career centres and libraries. The company is US-based and has 

managed to develop into one of the largest websites there. Its user base is rapidly expanding 

towards a more global audience. In fact, Glassdoor currently has over 30 million members in 

over 190 countries worldwide. The Glassdoor website is organised into six categories. The first 

four categories are oriented towards job seekers and employees (who are invited to post their 

résumé), while the last two target firms and recruitment agencies.  

The first out of the six categories is ‘jobs’. Similarly to the traditional portals, Glassdoor 

functions as a job board on which millions of vacancies are listed. Job seekers can browse 

through these job openings to discover which firms are hiring and which positions are available. 

On the website, job seekers are able to look for positions by location, title, occupation or 

keywords. Glassdoor also presents them with a list of popular and related searches.  

The second category is ‘companies’. Job seekers can look for firms in a specific location and are 

redirected to a detailed company page when they select a firm. On a company page, job seekers 

can upload or read company reviews, find CEO approval ratings, discover the salaries that the 
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firm offers for specific roles, ask questions to current or former employees, find office photos 

and other information, read interview tips and so on. One of the innovative features of Glassdoor 

is that all this information is provided by companies’ former or current employees. The website 

covers over 400,000 firms worldwide. To write a company review, users need to have an 

account. Users are only allowed to write one review per firm worked at per year. Reviews are 

published anonymously. Firms have no information on the identity of the employee that posted 

the review and cannot manipulate or remove reviews. Before a review is published, it has to be 

approved by Glassdoor. Reviews that do not meet the guidelines are not published (e.g. reviews 

should be balanced, cannot disclose trade secrets). Employers can respond to reviews and flag 

reviews that do not meet the guidelines, are inappropriate or fraudulent.  

The third category on Glassdoor is ‘salaries’, which can be viewed for specific positions. The 

fourth category targeted towards job seekers is ‘interview’. Job seekers can find information on 

the interview style, level of difficulty and sample questions. Since much of the information 

provided on Glassdoor is provided by former and current employees, the site clearly has a ‘web 

survey’ dimension. 

Glassdoor also aims to attract employers. The two remaining categories are ‘employers’ and 

‘post a job’. On the website, employers can set up an ‘Enhanced Employer profile’ on which 

they can share their history and discuss their activities, promote vacancies or post a link to their 

Facebook account. Glassdoor offers employers recruiting and branding solutions via ‘Glassdoor 

for Employers’. Employer branding implies that employers can track the candidates that are 

looking into their company and the reputation that their firm has on the website. Job advertising 

involves listing a single or all available jobs, targeting job seekers and using analytics to improve 

matching. Glassdoor has over 2,000 clients and partners for which they do employer branding 

promotion, job advertising (especially to candidates who may not have been aware of the 

position) or both. Glassdoor also offers a solution for companies in specific sectors, such as tech, 

telecom and SaaS companies; banking and finance companies; and consulting firms. Finally, 

Glassdoor also reaches out to career centres and libraries, which can offer unlimited access to the 

website without having to post information. 

Glassdoor is an excellent source for the analysis of labour market dynamics as the website 
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collects a very large amount of real-time information on several dimensions. The database 

comprises millions of vacancies, company reviews, CEO approval rates, and salary and benefit 

reports. For employers, the website provides analytics of search behaviour, targeted job 

advertising and employer branding solutions. According to Glassdoor, users of all ages and 

backgrounds are on the website. Moreover, the average company rating is 3.4 (on a 1–5 scale). 

Of the employees, 70% indicate ‘OK’ or ‘satisfied’ when asked about their employer. A survey 

of over 4,600 Americans revealed that 2,201 of them use Glassdoor (Osterhaus 2014). About 

50% consult Glassdoor at the start of their job search to identify top employers. Osterhaus (2014) 

reports that especially job seekers aged 55–64 and those earning between $25,000 and $49,999 

annually are active on the site. Most respondents live in urban or suburban areas. Glassdoor 

seems to attract users of all ages and income levels. As Glassdoor engages more users and 

companies, representativeness may increase further. 

There are numerous studies that use data extracted from Glassdoor to study the labour market. In 

many cases, data on wages and other information posted on Glassdoor are used to complement a 

more extensive analysis. An example of this is a study on the opportunities of females in IT by 

Thiele (2014), who uses Glassdoor to find the average wages for several IT professions 

(including software trainers, system programmers and network technicians). Massimino et al. 

(2015) use Glassdoor to find employee satisfaction rates. Other publications refer to Glassdoor as 

a source of information on interview techniques, skill requirements and other useful tips. Kaplan 

(2014), for example, refers to Glassdoor in her article on how to prepare for job interviews. 

Another example is Lauby (2013), who considers Glassdoor’s growing popularity as an 

indication of the rising importance of employer and career branding. Chandra (2012) uses 

Glassdoor data on the work-life balance ratings across firms to compare Eastern and Western 

perspectives on work-life balance. American and European companies rank higher than Indian 

companies as they pay substantial attention to this issue. 

Glassdoor also has its own research team of economists and data scientists: Glassdoor Economic 

Research (http://www.glassdoor.com/research/). Because Glassdoor gathers an enormous amount 

of real-time data on different labour market aspects, the website is a unique and rich data source. 

This data has been difficult to collect in the past, especially on such a large scale. Recent studies 

published on the site deal with hiring times, jobs affected by the introduction of a minimum 
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wage, and the link between salary and employee satisfaction. The site will offer downloadable 

data in the future and supports ‘Job Tools’. The latter are two interactive map-based tools that 

can be used by job seekers nationwide. The first tool is ‘Job Explorer’, through which job 

seekers can find where their skills are in demand. The second tool is ‘Apprenticeship Finder’ that 

can be used to explore apprenticeship and career opportunities. Job seekers can view 

apprenticeship opportunities (high to low) on a map of their states with the aid of this second 

tool. For example, in the state of California, 5,704 apprenticeship jobs were available at the end 

of July 2015, most of which were in the areas around San Francisco, Sacramento, San Diego, 

Los Angeles and Silicon Valley. With the first tool, the job explorer, Job seekers can select a job 

category or type in a keyword to view on a map where these skills or jobs are concentrated with 

the aid of the first tool, Job Explorer. For California, this resulted in 94 ‘programming skills’ 

jobs and 44,556 ‘programmer’ jobs. The tool indicates ‘top cities’ for the jobs and lists ‘other 

jobs you should consider’ (for ‘programmer’, these jobs are senior programmer, consultant, 

software engineer, programmer analysts). 

Pros and Cons of Using Web Data 

Although several of the advantages and limitations of traditional and web-based data sources 

have already been pointed out above, we devote more attention to this topic in this paragraph. 

Labour market data is typically initiated and made available by governments or international 

organisations. This data is generally considered to be more accurate, better structured and more 

complete than data from other sources. Traditional sources such as the Current Population 

Survey in the USA or Census further have the advantage of being based on a randomly selected 

sample of the populatio. A disadvantage of traditional sources, however, is that statistics are 

usually distributed with a lag. Some databases are not regularly updated or even frequently 

revised. Data is often gathered from administrative sources or surveys, which could result in a 

small sample size or data unavailability for sectors or regions with limited coverage (Wright 

2012). For many less-developed countries, labour market data is simply absent or of low quality 

(Friederici et al. 2016). 

 By contrast, online data is available in real time (no lags, no revisions) and is thus an excellent 

tool to detect current trends and dynamics. Web data allows researchers to fill gaps where 
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traditional data sources are absent or weak (e.g. due to low coverage or limited quality) (Autor 

2001; Shapiro 2014). Online, researchers can assemble large, diverse and potentially more 

representative datasets. As an increasing part of the population is active online, some claim that 

sampling may become unnecessary in the future (Askitas and Zimmermann 2015), because the 

internet access has become nearly universal in many developed countries. Other advantages are 

that data collection and analysis are easy, fast, flexible and relatively inexpensive and that 

logistical issues associated with traditional sources can be avoided (e.g. tedious data entry prone 

to errors) (Benfield and Szlemko 2006). Another advantage of web data is that it facilitates 

research on self-employment, which is a key driver for entrepreneurship and job creation and 

may become even more relevant in the future labour market, which will make it even more 

important research topic. This is also highlighted in a recent OECD report: the web is a catalyst 

for business innovation, across all sectors of the economy, but it is not easy to study these 

dynamics (OECD 2014). At the same time, self-employment is difficult to measure on the basis 

of traditional data sources, because data is lagged and the definition of self-employment differs 

across data providers (Fairlie and Robb 2009). Many datasets cover information on either the 

owner or the business, but not on both. Web data may be a solution, as users can indicate on their 

profiles whether or not they are self-employed and information on the business can be found 

online.  

Furthermore, the web may potentially be tremendously useful in capturing hard to identify/hard 

to reach groups, such as undocumented workers, workers in the informal economy or very young 

workers (Tijdens and van Klaveren 2011; Tijdens et al. 2015b). Another advantage is that online 

portals and social networks facilitate on-the-job search. Stevenson (2008) reports that 77% of the 

people that use the web for job search are employed. These employed job seekers are more likely 

to leave their current job and have better negotiation positions opposite their employer. 

Stevenson (2006) already concluded that the Internet leads to better matches for the employed 

(e.g. higher wage growth when changing jobs). Kuhn and Skuterud (2004) assess which 

unemployed workers look for a job online and whether they became re-employed more quickly. 

Online job search seems ineffective in reducing unemployment duration. However, an alternative 

explanation is negative selection on unobservable variables (e.g. poor networks). 

Web data, however, is also characterised by some limitations (Benfield and Szlemko 2006; 
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Carnevale et al. 2014; Shapiro 2014). There are ethical and technical issues (e.g. privacy, 

familiarity with a computer), online data and vacancy data, in particular, are incomplete and 

biased towards specific regions or sectors, when compared to the actual existing jobs (Wright 

2012). For example, Carnevale et al. (2014) find a bias towards high-skilled, white-collar 

workers and STEM positions in the vacancies published online. Autor (2001) further points to an 

adverse selection of job applicants (applying for a job is cheap and easy; therefore, job seekers 

apply for many jobs, for which they could be over- or underqualified).  

Selection bias is an important issue for web data (see Bethlehem 2010; Carnevale et al. 2014; 

Kearney and Levine 2015). Websites or online platforms may attract specific users, which affects 

our ability to generalize on the basis of this data source. For this reason, we describe the 

demographics of the social networks below. Kureková et al. (2014) examine the 

representativeness of vacancy data. This data is not missing by sheer coincidence; this results 

from sampling. The quality, consistency, accuracy and volatility of web data should be examined 

(Carnevale et al. 2014). 

Conclusion 

In the chapter, we have shed some more light on the academic discourse on jobs and skills and 

focused on how occupations and skills have been transformed recently as well as the ways in 

which web data can help us shed light on these transformations. This section clearly shows that 

occupational and skill changes are not new phenomena. By contrast, they appear to have a 

permanent nature and are (predominantly) driven by technological progress. The technologies at 

the core of these advancements appear to differ (e.g. the steam engine, computers and robots). 

What also differs is the labour market impact that technological progress has. In this regard, the 

issues of de-skilling, up-skilling and job polarisation have been discussed. This conclusion is 

supported by Gray (2013), who states that the electrification episode in the beginning of the 20th 

century ‘mirrors the more recent polarization of the US labor force associated with 

computerization’ (Gray 2013).  

One may wonder whether the concept of an occupation is still relevant, given that most of the 

literature appears to emphasise tasks and jobs. In the past, occupations were regarded as the 

dominant form of work organisation (Damarin 2006). This view has been challenged by the 
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emergence of large multi-divisional firms and Fordist mass production, which caused many 

occupations to become part of a large organisational structure. However, organisations are also 

subject to change (more flexible work forms, web-based work), which in turn could affect 

occupations. Damarin focuses on web labour, which has a modular structure; i.e. multiple roles 

are combined in ways that vary substantially across projects or organisations. In a way, this is 

similar to the flexible practices in other sectors such as job rotation. Damarin argues that the 

existing literature largely neglects this issue. Nevertheless, the concept of occupations is still 

relevant as occupations remain task-based mechanisms to divide labour. 

From this overview of the academic literature, we conclude that occupations, jobs, tasks and 

skills are strongly related and intertwined. This notion is also reflected in the many theoretical 

and empirical contributions that deal with several of these concepts simultaneously. In the 

literature, occupations, skills, jobs and tasks are all important (in some branches more so than in 

others) and rather clearly defined. Nevertheless, some of these concepts are used as synonyms 

rather than as distinct concepts (e.g. occupations and jobs).  

Furthermore, we have shown the great diversity and growing importance of labour market 

research based on web data. Most work in the field relies on vacancy or CV data extracted from 

online job boards or online labour market intermediaries or online survey. Nevertheless, there are 

many other web-based data sources that could be valuable for labour market analysis. These 

sources have not been overlooked completely, but their use is more limited. In this chapter, we 

have therefore explored the potential of Google Trends, social networks and Glassdoor. 

From our survey, it is also clear that there are many possible avenues for future research. Some 

first examples are the use of web data for research on self-employment and on-the-job search. 

Research could also focus in more depth on the demographics of the users of the different 

platforms, from the perspective of both the job seekers and the companies or recruiters. Although 

social networks are used by employers to share vacancies, little work seems to exist on the nature 

of these vacancies (e.g. in which sectors, types of jobs). In addition, only few studies seem to 

examine the effectiveness of the different platforms for job search, selection and matching. The 

future of Internet-based labour market research, therefore, seems to be bright. 
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Chapter 2: Using Voluntary Web Surveys Beyond Exploratory Research
5
 

Introduction 

The main objective of this chapter is to contribute to the debate among social scientists about the 

usefulness of web data (Baltar and Brunet 2012; Edwards et al. 2013; Tijdens and Steinmetz 

2016). To this end, we use ten years of data from the WageIndicator (WI) survey in the 

Netherlands, which is probably the most comprehensive and largest web-based labour force 

survey available. Specifically, we show that this data source can provide salient estimates of 

some key relationships between labour market variables compared to the estimates obtained from 

the same econometric model run on a random sample of Dutch households from the European 

Survey of Income and Living Conditions (SILC).  

Our motivation is related to the general need to collect labour market data more timely, 

efficiently and comprehensively. Web-based techniques have this very potential, but due to the 

non-randomness of the produced samples, they are often deemed unsuitable for salient statistical 

analysis. As a rule, surveys strive to obtain representative samples of the respective populations, 

as researchers typically aim to generalise their empirical findings to the entire studied population 

(Couper 2000; Steinmetz et al. 2013). However, such efforts are getting increasingly difficult due 

to growing difficulties associated with contacting respondents and ensuring their collaboration 

(Kitchenham and Pfleeger 2002; Tijdens et al. 2005; Kohut et al. 2012; Baltar and Brunet 2012; 

Sloane 2014). Various techniques, including web-experimenting, non-reactive data collection, 

web-based testing and, in particular, web-surveys have been developed to counter the negative 

effects of social changes by harnessing the power of technology. (Reips 2006; Stieger and Reips 

2010; Lenaerts et al. 2016).  

The WI survey, which we examine in this paper, represents a clear case of what is called, in the 

survey literature, a convenience sample. It is an online survey with a set of questions modeled on 

the basis of the EU Labour Force Survey (LFS) available in about 100 countries around the 

world in a large number of languages. Respondents are reached by general invitation to 

                                                      

5
 This work has been submitted to the International Journal of Social Research Methodology as a paper 

co-authored by Martin Kahanec.  
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participate in the survey posted on a network of websites offering a veriety labour market 

information, with response rate being determined by who gets attracted to the website and who 

decides to accept the invitation to participate in a survey. As such, attempts to use it for social 

science research are naturally treated with caution. While a degree of convenience sampling has 

been commonly included in qualitative studies (Marshall 1996), quantitative research has 

historically frowned upon convenience samples. Nonetheless, the prospect of wider usage of WI 

is quite tempting, due to a very large sample covering many countries, including those not 

covered by traditional surveys, with data available nearly in the real time.  

Our aim in this paper is certainly not to argue that prudence in regards to sampling methods is 

overrated or that it should be abandoned in favour of convenience offered by the new data 

sources. Neither do we claim that non-representative data in general or WI in particular are 

necessarily usable as a source of data for reliable analysis in the same way as the probabilistic 

sample data. Rather, we intent to demonstrate that statistical results based on non-probabilistic 

survey data can be possibly similar and even statistically not significantly different from a 

probabilistic sample. To our knowledge, this chapter is the first to present such evidence.  

Literature Review 

The strengths and weaknesses of web-surveys have been discussed extensively in the literature 

(Couper 2000; Fricker and Schonlau 2002; Steinmetz et al. 2013; Tijdens and Steinmetz 2016). 

The comparative advantage of web-based surveys lies in cost-effectiveness, versatility, speed, 

and the opportunities for innovation; and hence the potential for generation of large samples. 

While by itself, a large sample does not equate quality, it allows for research into specific 

subgroups, which might not be present in sufficient quantity in smaller samples. Important 

methodological challenges, primarily linked to the lack of Internet access of some sub-

populations and selection into survey samples, relate to sources of survey error associated with 

coverage, non-response and measurement, as well as inference from non-probability samples 

(Couper 2000; Dillman and Bowker 2001; Bandilla et al. 2003; Bethlehem 2010).  

The challenges of web-based surveys regularly lead to two outcomes: discouragement of 

researchers and thus underuse of available web-based datasets or inappropriate use of such 

datasets and misinterpretation of the analytical results. Nonetheless, there has been effort made 
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to address shortcomings of this data source. Ex-ante design-based methods alleviate the 

representativeness issues by means of auxiliary sampling methods, such as provision of Internet 

access if needed, or ensuring respondents do not become too ‘trained’ in filling questionnaires 

(Toepoel et al. 2008; Das et al. 2011) or by focusing on optimising the questionnaire design and 

user interface (Toepoel et al. 2009). The model-based approach uses weighting techniques to 

correct for representation bias of non-probability web-surveys ex-post (Schonlau et al. 2009; de 

Pedraza et al. 2010). The non-coverage problem has decreased, to a certain degree, as Internet 

access became nearly universal in developed countries (Askitas and Zimmermann 2015). The 

position that web-based survey data are potentially a very rich resource that we should learn to 

use wisely rather than discard a priori is gaining footing among an increasing number of 

researchers, as evidenced also by concrete academic projects based on web-based data (van der 

Laan and van Nunspeet 2009; Reips 2012; Mýtna-Kureková et al. 2015).  

Topics as diverse as job security (de Bustillo and de Pedraza 2010), satisfaction of workers (Guzi 

and de Pedraza 2015), education requirements (Steinmetz et al. 2013) and skill mismatch for 

migrants (Visintin et al. 2015b) have been explored using WI data. A unique trait of WI data is 

that question have been modeled according to the LFS, and thus results can be easily 

benchmarked against LFS itself or other surveys adhering to a comparable question structure or 

other datasets following the same variable structure.  

Efforts made in that direction so far have found that WI data can be used to correctly identify 

significant relations between variables, as well as the direction of the relation. Nonetheless, this 

did not appear to be true for the size of the estimates. The strength of a relationship was found to 

be under/over-estimated when statistical inference is run on WI data, as opposed to the situation 

when the same model is run on a data source generally seen as representative (de Pedraza et al. 

2010; Guzi and de Pedraza 2015). The main potential sources of bias in WI data are as follows: 

(1) self-selection, due to targeting only users interested in WI content; (2) limitation of sample to 

people who are on the Internet; and (3) non response, as many people from WI audience choose 

not to answer the survey, or start answering but drop out (Guzi and de Pedraza 2015). Tijdens 

and Steinmetz (2016) therefore conclude that WI is mainly useful as a tool for exploratory 

research, to determine whether there appears to be a relationship between two or more variables, 

but not solid enough to test hypotheses.  
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Data and Empirical Strategy  

Data and Research design 

WI is an international survey covering 85 countries, the quality of the data varies among 

countries. The largest data sample by far is collected in the Netherlands. About 18% of all data 

collected by WI worldwide in 2015 came from this one country. In terms of the audience, the 

number is even greater – one in four visitors of the WI sites globally comes to the Dutch website. 

In 2015, the site recorded 7.5 million visitors, more than 5 million of them unique
6
. These 

numbers represent a very large segment of the country’s total population of 17 million. 

Nonetheless, not everyone invited to participate in the survey did so. The response rate was 

about 1%, which is around 50,000 people who accepted the invitation to participate in the survey 

in 2015. Additionally, not every participant actually completed the survey: a significant portion 

was lost along the way due to dropout, particularly due to questions enquiring about sensitive 

personal information, such as wage (Steinmetz et al. 2013). In 2015, a total of 15,000 Dutch 

people – 30% out of the survey respondents and 0.3% of the unique visitors provided wage 

information.  

To benchmark the data, we will use the EU Statistics on Income and Living Conditions survey 

(SILC). SILC is a comprehensive source of income statistics in the EU. In the Netherlands it is 

collected since 2005 on an annual basis, the most recent covered year being 2014. In general, 

SILC data is collected by national statistical offices in line with the best practices for obtaining a 

high-quality sample in each covered country (European Commission 2015). Furthermore, the 

SILC dataset contain weights to ensure representativness of frequency statistics callculated on 

the basis of the survey. Unfortunatelly, such weights are not available for WI, thus we had to 

compare unweighted samples. In the Dutch case, the data is collected as a four-year rotational 

panel. Households were randomly chosen based on a stratified selection of 40 NUTS3 regions in 

the country, to ensure data quality comparable with the Labour Force Survey (Statistics 

Netherlands 2013).  

                                                      
6
 According to Google Analytics over 95% of the visitors originate from the Netherlands.  
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The choice of the Netherlands as the focus of the analysis is also based on the fact that it is rather 

homogenous in economic development. Analysing wages in the Netherlands does not entail 

dealing with issues such as the Flemish – Wallonian divide in Belgium, or federal structure and 

legacy of country division in Germany, to name two other countries, which have long been 

covered by WI and come with a large number of observations.
7
 Additionally, Internet access has 

become nearly universal among the working age population in the Netherlands (Statistics 

Netherlands 2016).  

To avoid outlier effect from both of these data sources, we select only respondents who fulfill the 

following conditions: 

 Are employees; 

 Reported a wage higher than the minimum wage; 

 Work between 10 and 60 hours a week. 

Observations containing a missing value in any of the variables included in the model are 

removed. In a typical year, about half of the observations with wage information are retained 

after data selection, the other half consisting of the economically inactive, the unemployed and 

people who do not satisfy the conditions listed above. 

The number of observations in WI varies more over the years than in EU SILC. This is caused 

by factors such as the advertising budget for respondents recruitment, time of year (very few 

people fill the survey during summer holidays or major holidays). Nonetheless, more 

observations are typically collected in WI than in SILC, years 2007 and 2009 being exceptions 

(see Table 1). The dropout is substantial, with only about a fourth of observations retained for 

EU-SILC and even less for WI. The reasons for the large-scale elimination of observations is that 

all non-employees are removed from the dataset and removal of observations with missing 

values. The later was much more widespread in the WI survey, which suffers from high dropout 

rates (Tijdens 2014), but given the sensitivity of the wage variable, affects also the EU SILC 

sample considerably.  

                                                      
7
 For comparison for 15,000 ‘valid’ observations in Netherlands, there were 7,500 in Germany and 2,500 

in Belgium.  
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Table 1: Number of observations per year after data cleaning  

 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

SILC 2,093 2,233 2,501 2,476 2,173 2,160 2,130 2,068 1,894 1,795 

WI 13,186 4,387 2,008 9,154 1,006 5,140 3,517 3,428 2,876 2,185 

We observe that in the Netherlands, a country where WI has a fifteen-year tradition and a large 

number of website visitors, there is a stabilised audience (see the Descriptive statistics section of 

this chapter). These are the people who are interested in WI content. They therefore either 

regularly visit the WI website or are likely to respond to an invitation to visit the site and, at the 

same time, accept the invitation to fill the survey either due to a desire to contribute to the 

WageIndicator project in line with the theory of gift exchange reciprocity (Falk and Fischbacher 

2006) or to be in for a chance to win a cash prize
8
. 

In this article, we test whether these two data sources – WI and SILC – produce 

comparable wage estimates. Unfortunately, we can only look at the unweighted data, because 

there are no weights for the WI survey available. To determine this, we run the same economic 

model, checking for common determinants of wages separately on these two data sources and 

then comparing the estimates. The similarity of estimates is evaluated statistically using a test of 

joint equality of coefficients. The test in effect verifies that the coefficient on the dummy 

variable denoting the dataset (SILC or WI) and the coefficients of interaction terms of all other 

independent variables with that dummy variable are jointly zero
9
. In effect, this test tells us 

whether estimated parameters from the two regressions differ. 

Model 

We evaluate the usefulness of WI data based on the (dis-)similarity of estimates based on WI and 

EU LFS data on a key question of labour economics – the wage equation. This issue has been 

covered in a large body of literature. There is a standardised way to measure wage determination 

that has been widely adopted by the economic literature (Heckman et al. 2006; Lemieux 2006; 

                                                      
8
 Equal to the amount of the weekly minimum wage in the Netherlands, adjusted annually, which replaced 

the original prize of a trip to South Africa in the first three years..  

9
 See https://www.stata.com/support/faqs/statistics/test-equality-of-coefficients/ for details about the test. 

https://www.stata.com/support/faqs/statistics/test-equality-of-coefficients/
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Beblavý et al. 2013). The Mincer earnings function (Mincer 1974) represents a formalisation of 

economic thinking about earning differentials, mainly based on human capital theories. In other 

words, wages – just like all earnings in general – are seen as payoffs from investments in 

acquisition of skills either through education or employment.  

The standard formalisation of Mincer’s equation is as follows: 

ln 𝑦 = ln 𝑦0 +  𝛽1𝑆 +  𝛽2𝑋 + 𝛽3 𝑋
2 

with y denoting earnings, S years of education and X years of potential work experience. For the 

purpose of this study, we use gross hourly earnings calculated from the wages reported by the 

WI respondents
10

 and annual gross earnings from the EU – SILC data from which we obtained 

hourly earnings in line with the methodology developed by Berger and Schaffner (2012).  

Years of schooling are calculated based on a difference between the current age of the 

respondent and the Dutch standard of beginning primary school education at 4 years of age as:  

𝑆 = 𝑌𝑠 − (𝑌𝑏 + 4) 

With Ys representing year of graduation and Yb year of birth. While in the Dutch system, 

children start primary school at the age 4 or 5, we ignored the first two years, the so-called group 

1 and group 2. We stick to the international standard of counting years of education from the age 

of 6. The reasons are that group 1 is not mandatory. Before 1995, the first two groups were not 

considered a part of elementary school and only in group 3 did children actually start learning 

reading, writing and arithmetics.  

The years of potential working experience are calculated as the difference between the year in 

which the respondent started working in the first job and the year of the survey: 

𝑋 = 𝑌𝑥 − 𝑌𝑓 

We amend the Mincer equation with several control variables based on theoretical literature on 

wages, although limiting ourselves to those feasible given the available variables in the dataset. 

                                                      
10

 Respondents can choose the reporting period, in the case of the Netherlands, 95% of the respondents 

report monthly wage 
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Firstly, we consider the gender dimension by running the regressions separately for men and 

women. This is in line with the vast literature on gender pay gap literature as reviewed by Altonji 

and Blank (1999), which recognises that key wage determinants affect men and women in 

different ways. Secondly, we include variables measuring the permanency of the contract and 

whether the respondent holds a supervisory position. The literature overwhelmingly confirms 

that workers in permanent jobs, as well as those in positions of responsibility, are better paid than 

those in more precarious work arrangements. The likely reason being that permanent contracts 

are offered to workers whose replacement is seen as associated with high fixed cost, which is 

also the case for supervisors (Averett and Hotchkiss 1996; Mitra 2003). Thirdly, we consider the 

size of the firm, because bigger firms are generally able to attract higher quality (and thus better 

paid) labour (Oi and Idson 1999). Finally, we check for marital status to account for the 

‘marriage wage premium’ (Antonovics and Town 2004). 

The resulting model is as follows: 

ii marstatsvisorcontractfirmsizeeduwexwexInW   76543

2

210

 

where natural logarithm of gross wage (Wi) is the dependent variable and the independent 

variables are wex (years of potential working experience), wex² (years of potential working 

experience squared), edu (years of education), and dummies for firm size (number of co-

workers), contract (has a permanent contract), svisor (is in a supervisory position) and marstat 

(marital status). The error term represents the deviation between model-based expectation and 

the observed values.  

Descriptive statistics 

For the period 2005-2014, respondents in the WI survey generally reported lower gross wages 

(range: €15-18 per hour) than the workers tested by EU SILC (range: €16-20 ) (see Figure 2). 

Meanwhile, the wage gap between WI and SILC data increased over time up until the year 2013. 

A possible reason could be that the younger workers (mainly covered by WI) were 

disproportionally affected by the Great Recession and saw their wage stagnated for quite some 

time as a result (Bell and Blanchflower 2011; Kahanec and Fabo 2013; Beblavý and Fabo 2015).  
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Figure 2: Comparison of median wages between WI and SILC data.  

Own calculation. 

Respondents in the WI sample work longer hours – 35 to 36 hours a week on average, compared 

to 32-33 hours for the EU SILC respondents. However, WI respondents are less experienced, 

which is in line with the finding of de Pedraza et al. (2010) for Spain. In contrast with the 

Spanish situation, however, we do not see any difference between the educational attainment of 

the SILC and WI respondents. This is possibly due to a wider spread of internet connection in the 

Netherlands compared to Spain, which probably means that the internet is also widely accessible 

for people without a particularly high education attainment (see Table 2). 

The younger audience might be due to focus of the WI websites on the provision of wages and 

labour market information, which might be more relevant for more junior workers, rather than 

ones already established in their career field.  
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Table 2: Comparison of non-wage continuous variables between WI and SILC in % 

    2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

SILC mean workhours 32.8 31.5 31.4 31.5 31.9 31.8 31.7 31.6 31.6 31.8 

sd workhours 8.1 8.8 8.8 8.7 8.7 8.5 8.5 8.6 8.5 8.4 

mean experience 17.8 18.5 19.1 19.8 19.9 20.2 20.2 20.3 21 21.4 

sd experience 9.9 9.7 9.7 9.8 9.8 9.6 10 10 10 10 

mean education 15.2 15.3 15.3 15.4 15.6 15.6 15.6 15.7 15.8 15.9 

sd education 2.6 2.5 2.5 2.4 2.3 2.3 2.4 2.4 2.5 2.5 

WI mean workhours 36.2 35.3 36.1 35.9 36.2 36 35.6 35.4 35.8 35.7 

sd workhours 5.9 6.7 6.5 6.5 6.2 6.3 6.6 6.7 6.3 6.5 

mean experience 15.6 15.8 17.1 17.9 18.4 18.3 18.5 18.6 17.8 17.8 

sd experience 9.9 10 10 9.9 10 9.9 10 10 10 10 

mean education 15.6 15.6 15.4 15.4 15.2 15.4 15.5 15.6 15.8 15.9 

sd education 2.4 2.4 2.4 2.5 2.4 2.5 2.5 2.4 2.5 2.4 

Own calculation 

When looking at the categorical variables, we see a big difference in gender composition. While 

the SILC sample consists of about 50% of women, with the exception of the year 2005, in the 

case of the WI sample, the share of women varies and is generally about 45% since 2009. Before 

that, it was even more unbalanced because it greatly oversampled women in the first couple of 

years, possibly a consequence of the historical focus of the Dutch WI project on women. They 

are also more likely to be single, rather than married and also more likely to be employed with a 

temporary, rather than a permanent contract (see Table 3). 
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Table 3: Comparison of categorical variables between WI and SILC 

      2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

S
IL

C
 

  Woman 48% 52% 52% 53% 52% 52% 53% 54% 54% 54% 

N
u

m
b

er
 o

f 

co
w

o
rk

er
s 

<10 13% 13% 14% 14% 13% 12% 12% 12% 11% 11% 

10 to 19 10% 10% 11% 11% 11% 11% 10% 10% 11% 9% 

20 to 49 20% 19% 18% 18% 17% 17% 18% 17% 16% 17% 

>50 57% 57% 57% 57% 59% 60% 60% 61% 62% 63% 

F
am

il
y

 s
ta

tu
s 

Never Married 34% 31% 33% 34% 35% 36% 36% 36% 35% 36% 

Married 57% 61% 58% 57% 55% 54% 54% 54% 55% 54% 

Divorced/Wid

owed 

9% 8% 9% 9% 10% 10% 10% 10% 10% 11% 

Jo
b

 s
p

ec
if

ic
s 

Permanent 

contract 

48% 52% 52% 53% 52% 52% 53% 54% 54% 54% 

Supervisor 13% 13% 14% 14% 13% 12% 12% 12% 11% 11% 

W
I 

  

Woman 53% 54% 41% 38% 44% 43% 47% 48% 46% 45% 

N
u

m
b

er
 o

f 

co
w

o
rk

er
s 

<10 16% 16% 17% 14% 18% 16% 16% 17% 17% 18% 

10 to 19 12% 12% 11% 11% 14% 13% 14% 13% 13% 14% 

20 to 49 17% 17% 18% 17% 16% 16% 18% 18% 16% 17% 

>50 54% 55% 54% 57% 53% 55% 53% 52% 53% 51% 

fa
m

il
y

 s
ta

tu
s Never Married 49% 51% 44% 45% 43% 47% 44% 42% 45% 46% 

Married 41% 40% 47% 46% 46% 44% 49% 49% 47% 47% 

Divorced/Wid

owed 

10% 10% 9% 8% 10% 9% 7% 8% 8% 7% 

Jo
b

 

sp
ec

if
ic

s Permanent 53% 54% 41% 38% 44% 43% 47% 48% 46% 45% 

Supervisor 16% 16% 17% 14% 18% 16% 16% 17% 17% 18% 

 

Results 

We ran the regression for all years pooled together with very large samples (47,000 for WI and 

20,000 for SILC). We found all relationships to be highly significant and the coefficients largely 

similar (Table 4). Nonetheless, the model run on SILC data explains more variance in wages for 

both genders (33 % for men and 24% for women), the same model run on WI data explains only 

29% and 23% respectively. Although the coefficients look largely similar between the two 
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samples, when tested statistically, the difference between coefficients is significant. The 

statistical test of joint equality of coefficients produced the resulting F – statistic of 13.31 for 

men and 22.03 for women, which are both very far from the critical value of 1.57 for the 

standard 5% significance threshold.  

Table 4: Pooled OLS run on WI and SILC datasets covering the period 2005-2014  

 Men SILC Men WI Women SILC Women WI 

Years of potential experience  0.0165*** 0.0193*** 0.0135*** 0.0193*** 

 (0.00142) (0.000849) (0.00125) (0.000758) 

Years of experience squared -0.000209*** -0.000236*** -0.000189*** -0.000295*** 

 (3.25e-05) (2.05e-05) (2.97e-05) (1.91e-05) 

Years of education 0.0431*** 0.0353*** 0.0442*** 0.0305*** 

 (0.00130) (0.000870) (0.00124) (0.000848) 

Firm size 10 – 20 0.0501*** 0.0405*** 0.100*** 0.0564*** 

  (0.0135) (0.00777) (0.0112) (0.00661) 

Firm size 20 – 50 0.0799*** 0.0805*** 0.117*** 0.0905*** 

  (0.0120) (0.00707) (0.00993) (0.00629) 

Firm size 50 + 0.201*** 0.187*** 0.188*** 0.165*** 

 (0.0103) (0.00599) (0.00828) (0.00503) 

Permanent contract 0.126*** 0.0982*** 0.0653*** 0.0771*** 

 (0.0118) (0.00602) (0.00994) (0.00472) 

Supervisory position 0.124*** 0.118*** 0.0663*** 0.0816*** 

 (0.00680) (0.00420) (0.00742) (0.00438) 

Married 0.129*** 0.108*** 0.0111 0.0387*** 

  (0.00730) (0.00491) (0.00680) (0.00463) 

Divorced or widowed  0.0741*** 0.0612*** 0.0131 0.0154** 

 (0.0129) (0.00895) (0.01000) (0.00659) 

Year dummies Yes Yes Yes Yes 

 (0.0139) (0.00907) (0.0130) (0.00874) 

Constant 1.596*** 1.655*** 1.686*** 1.745*** 

 (0.0279) (0.0173) (0.0260) (0.0161) 

Observations 9,553 24,739 10,851 22,146 

R-squared 0.325 0.287 0.238 0.225 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

The pooled regression is not an ideal choice for estimation technique, mainly due to a major 

external shock represented by the Great Recession that took place during the covered period and 

severely affected the labour market. Thus, we broke the sample per year and ran separate 

regressions for each year. The predictors are again highly significant and quite similar at the first 

sight. Nonetheless, the explanatory power of the model estimated on WI data appears to be lower 
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and moreover varies from year to year, while the explanation power of models run on the SILC 

data appears to be quite stable. One potential explanation for this phenomenon is that the 

younger workers in the WI sample might see their wages affected more by factors related to the 

general well-being of the economy, which goes beyond the presented model, such as the highly 

disproportionate effect the Great Recession had on the younger generation. Indeed, when trying 

to see whether removing individual variables from the model can help us identify individual 

variables driving the result, we find the differences between estimates on the basis of the two 

data sources becoming larger, rather than smaller. 

Furthermore, we once again applied the equality of coefficients test, as explained in the empirical 

strategy section. What we see is that the coefficients tend to be significantly different for most 

year-gender combinations, just like it is the case with the pooled data from all years. 

Nonetheless, in some cases, the coefficients not only appear similar, but also pass the statistical 

test, which means the test does not provide sufficient evidence to rule out their similarity. 

Specifically, in 2007, the difference between the coefficients estimated on both samples is not 

significant for both genders. Furthermore, when we take 5% significance threshold (which makes 

the critical value around 1.79 due to the decreased number of variables in the model as a result of 

the year dummies not being present), the estimates for men are not significantly different in 

2007, 2009 and 2014. (see Table 5).  

Table 5: Statistical test results of equality of estimates generated from WI and SILC data (F = F-

ratio). 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Men 3.27 2.15 1.21 3.21 1.71 3.37 6.96 5.72 3.35 1.45 

Women 5.27 4.5 1.72 3.36 2.46 5.05 8.55 6.53 8.93 4.47 

Note: Bold coefficients are NOT significantly different at the 5% significance threshold.  

Having confirmed similarity of coefficients only in four out of twenty regression pairs, we 

position our findings in line with the literature, reaffirming that while the WI survey can be used 

to gain a general idea about relationships between variables, it produces different results 

compared to the high quality SILC sample. At the same time, we have shown, that there are 

estimates based on the WI data which are not significantly different from the ones obtained 

through a widely used, traditional survey. By showing that these coefficients can be similar in a 
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standard model, commonly used in labour economics, we strengthen the case for future 

methodological research on the WI data in particular and web surveys in general.  

Conclusion 

Based on statistical analyses of the WI and SILC data, we have shown that while the WI data 

(most likely) does not represent the Dutch working-age population, the estimates are at the first 

sight quite comparable with the SILC–based ones. While this similarity is not necessarily also 

confirmed by statistical tests, we managed to identify occasions, where similar coefficients were 

indeed produced. While such coefficients were only identified in a minority of cases, being the 

first to show it is possible in such a robust model makes our expectations somewhat more 

optimistic in regards to the usability of non-probability based web surveys than most of the 

literature published so far.  

Nonetheless, it is important not to overstate the importance of our results. Indeed, in most tests, 

we have identified significant differences and thus our findings do not in any way contradict the 

consensus in the literature, that WI usefulness in mainly limited to exploratory research. 

However, we believe it is possible to further build on our findings by exploring the underlining 

reasons behind the similar results in cases when such a matching coefficients are produced. One 

interesting finding is that this appears to be the case when looking at male respondents and less 

of the case when looking at women. This gender aspect represents one avenue that ought to be 

looked into more closely. 

Additionally, we believe that our choice of the Netherlands as the country of focus was an 

important reason for getting a WI survey sample which is not too dissimilar to SILC in important 

respects, such as educational attainment of the respondents. That is because internet access in the 

Netherlands is much more widespread than in previously analysed countries, such as Spain (de 

Pedraza et al., 2010). Additionally, we analysed a survey which has been accessible for a very 

long time from a website, which has its established fairly large audience.  

As a result, we are analysing a sample, which generally is not comparable with the actual 

population of the country, but which is typically similar enough to determine the determinants of 

wages comparable to estimates from a representative sample. Although the socio-demographic 
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composition of respondents has changed over the years – the share of women has decreased as 

the project moved away from its initial focus on women towards being a survey of general 

population – the share of workers in supervisory positions declined. But in terms of average 

wages, working hours, educational attainment and working experience, the WI surveys cover 

quite a stable sample, which does not change more year to year than the samples collected 

through standard sampling techniques. Consequently, we see potential for exploring whether the 

sample is also comparable to representative samples in matters other than wage determinants.  
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Chapter 3: Using Online Job Vacancies to Better Understand Labour Market
11

 

Introduction 

This chapter examines the potential of online job portals as a data source for labour market 

research and particularly for research on the rise of new occupations and skills. The aim is to 

establish an overview of the main existing approaches to online vacancy analysis, contextualize 

the analytical approach within the broader literature, and to showcase some empirical 

applications to demonstrate the advantages and drawback of the individual approaches.  

Thee distinct methodologies for approaching vacancy analysis are presented in this chapter.The 

first two methodologies assess the potential job boards in the classical sense. Firstly, we discuss 

the possibility of using the text of vacancies and secondly, we will focus on so-called metadata. 

The third methodological discussion revolves the developing phenomenon of ‘online labour 

platforms’, that is, spaces offering the general public the chance to sell a wide range of services 

on an open market to customers, with work being organised entirely online.  

We find that each of those methodologies has different uses and come with different downsides. 

More specifically, the analysis of the text of the vacancy is the most universally applicable at the 

expanse of possibly quite noisy data, that might not be in possible to interpret in a 

straightforward way (see Chapter 5 for an example of this shortcoming potentially having a 

major impact on the usability of the data). The metadata are much more simple to draw 

conclusion from, but typically only allow us to ask a limited set of questions. Finally, the online 

job platforms allow researchers to observe both supply and demand side of matching to an 

unprecedented extend, but findings might be impossible to generalize beyond individual 

platforms.  

The remainder of this chapter follows this structure: Firstly, existing applications of job 

                                                      

11
 This paper represents the author’s contribution to the InGRID collaborative research project, developed 

in collaboration with Miroslav Beblavý and Karolien Lenaerts and has been published as working 

papers (de Groen et al. 2016; Beblavý et al. 2017). The platform analysis was used as a basis for a 

paper published in Transfer: European Review of Labour and Research (Fabo et al. 2017c). 
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vacancies as a data source are presented. Secondly, the three methodologies we propose for using 

online job vacancies as a data source are discussed, along with a short example of their practical 

implementation. The chapter ends with a discussion of pros and cons of the individual 

methodologies. 

Literature Review 

A vacancy is a key concept in labour economics, being studied since the famous Holt paper The 

concept of job vacancies in a dynamic theory of the labor market in the mid 1960s. Holt was 

mainly concerned about the quantities – numbers of openings by the companies and the number 

of workers available on the market. Nonetheless, already Holt was already interested in the 

content of the vacancy, namely skill requirements and salary offered (Holt and David 1966). 

Historically, attempts to use vacancies on labour market analysis on printed job advertisements. 

Jackson et al. (2005) and Jackson (2001), for instance, work with job advertisements published 

in newspapers to test a number of sociological theories. Their work focuses on the merit 

selection hypothesis and on the link between social mobility and education in the UK. This work 

does not appear to be at all concerned with the questions of data quality and generalizability. 

This shortcoming was to an extent addressed by Dörfler and van de Werfhorst (2009), who 

examine the merit selection hypothesis for the case of Australia, on the basis of 47 

advertisements published in newspapers between 1985 and 2005. Further, they attempt to 

increase the robustness of their findings econometrically, opting for a multivariate regression 

approach to account for the fact that some skills levels may be under-represented in their 

database. van Ours analyses the duration of vacancies being advertised with connection to the 

required educational attainment (Ours 1989). 

Most newer studies, however, focus on analysis of online job advertisements instead of the 

printed ones. In an early study, Backhaus (2004) examined how firms describe themselves to job 

seekers in their recruitment materials (or, in other words, how firms go about company branding 

and which marketing materials are used with that objective in mind). To this end, she obtained a 

sample of job advertisements from Monster.com. Other authors developed the topic further: 

Kuhn and Shen (2013) use a data sample that includes millions of job listings extracted from the 

third-largest Chinese job portal (through web ‘spidering’) to analyse gender discrimination in the 
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recruitment of workers. The database is supplemented by firm-level data. They detect gender 

discrimination but note that it is less problematic for positions that require highly-skilled 

workers. In other studies, Maurer-Fazio and Lei (2015) consider discrimination based on gender 

and facial attractiveness in the Chinese labour market, while Maurer-Fazio (2012) looks into 

ethnic discrimination. Martínek and Hanzlík (2014) combine data from job portals with data 

obtained from the Ministry of Labour and Social Affairs to study labour market dynamics in 

Czechia. Masso et al. (2014) take a different approach and use job board data to study the 

occupational mobility of return migrants in Estonia. The sample that these authors have is 

extensive, but not completely representative due to a bias towards younger, highly-educated 

workers and towards private sector jobs with higher remuneration levels. Yet, no action has been 

taken to address these issues. 

Skills and matching research is perhaps the most developed research direction using online job 

vacancies. Mýtna-Kureková et al. (2012), for example, discuss the formal qualifications and 

other skills requested for low- to medium-level skilled occupations in Slovakia. These authors 

maintain that their results may be considered generalisable to the Slovak labour market, because 

the job portal from which the data is assembled covers a substantial market share. In another 

recent paper, Mýtna-Kureková and Žilinčíková (2016) explore whether low-educated workers 

and student workers are competitors for the same positions. Their results suggest that this does 

not appear to be the case, as they have different skill sets that are in fact complementary.  

Other papers focus on the skill requirements in the IT industry. Wade and Parent (2002), for 

example, look into the relationship between performance and job skills. More specifically, they 

compile a database of job advertisements for webmasters, to which data gathered via a web 

survey are added. They also apply multivariate regression techniques. Meanwhile, Huang et al. 

(2009) differentiate between business, humanistic and technical IT skills. Capiluppi and 

Baravalle (2010) explore the popular website Monster.com to investigate the potential mismatch 

between the skills required for IT staff and those developed in education or training programmes 

in the UK. Kennan et al. (2006) compare skills requirements for librarians in Australia and the 

US, on the basis of a set of advertisements published online and in the printed media. They find 

that skill requirements vary greatly across these two countries and through time. Hershbein and 

Kahn (2015) provide evidence for upskilling with a sample of vacancies from Burning Glass: 



Chapter 3: Using Job Vacancies to Better Understand Labour Market 

 59   

employers require more in areas with higher unemployment rates.  

Using a similar approach and dataset, Sasser Modestino et al. (2014) examine changes in 

employers’ demands during the Great Recession (2007-2012) and the subsequent recovery 

(2010-2012). Employers are more demanding in bad labour markets, both in terms of education 

and experience. Kudlyak et al. (2014) rely on matched applicant-vacancy data from SnagAJob to 

assess how job seekers’ behaviour changes during their job search. In another contribution based 

on SnagAJob, Faberman and Kudlyak (2014) report that job 48 seekers’ search efforts decline 

with search duration. Finally, in a recent report, Rothwell (2014) uses data from Burning Glass to 

study the duration and skill requirements of job advertisements, focusing in particular on 

Science, Technology, Engineering and Mathematics (STEM) positions.  

In these studies, too, methodological issues do not appear to receive much attention, due to their 

mainly explorative nature. However, it is important that all vacancies are posted online. Not 

every job opening creates a vacancy and not all vacancies are actually (new) jobs. In addition, 

online job listings appear to be targeted towards more highly-educated applicants looking for 

white-collar and STEM jobs in sectors with high skill requirements (Carnevale et al. 2014). 

Furthermore, job advertisement data is highly volatile and may be inconsistent. In this respect, it 

has been argued that job advertisements are combined with other labour market information and 

educational data sources. The combined data approach has already been established by Dunlop 

(1966), who compares the advantages and disadvantages of vacancy analysis. According to this 

author, job vacancy data may be regarded as the counterpart of unemployment series and can be 

used as a measure of economic fluctuations. Vacancy data may support labour allocation, labour 

administration and the development of (re-)training programmes. Nevertheless, job opportunities 

are made available in a variety of different ways. Moreover, vacancy data does not capture the 

internal labour market and self-employment. As such, future advancement in using online 

vacancy data is necessarily connected to an increase of methodological sophistication of the 

conducted analysis.  
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Methodological Aspects of Using Vacancy Data 

Online job portals 

At the heart of the online job portals are the vacancies or job advertisements published by 

employers looking for qualified applicants to fill a position in their firm. Many of these websites, 

however, also allow job seekers to post their CV and résumé, provide job-search or career advice 

and other information (such as average wages by sector or legal advice on employment 

contracts). Some well-known examples of job portals are Monster.com, Careerbuilder.com and 

Glassdoor.com. Job portals can list domestic positions and/or jobs abroad. Although many 

portals cover all sectors and occupations, there are also a lot of job boards that specifically target 

a narrow selection of sectors or jobs (some examples are itjobs.com and euroeconomistjobs.com) 

or ones that focus on a specific region (e.g. jobsinberlin.eu).  

Job seekers benefit from using online portals as they can browse through a high number of 

positions, use search criteria to find a position that matches their profile and get a better 

understanding of employers’ requirements. For firms and recruiters, job boards offer many 

advantages too, such as the ability to list job openings on targeted websites while keeping 

advertising costs low. Online job boards also serve as a useful tool for workforce agencies and 

colleges, as they facilitate the identification of emerging occupations or new education and skill 

requirements (Carnevale et al. 2014).  

Job portals are typically structured in a way that allows job seekers to easily find similar jobs to 

the one they are looking for. To this end, portals rely on an occupational classification to 

structure their database and facilitate job search. In some cases, advertisements are assigned to a 

specific category (‘tagged’) by the advertiser. The list of tags can be published online or stored in 

a library which is called by a search Application Processing Interface (API). Job portals 

generally update these tags quite regularly to capture changes in the labour market.  

The Slovak job portal profesia.sk, for example, included about ten new occupations every year 

between 2011 and 2014. In other cases, job portals do not use the tags system but associate 

occupations purely on the basis of keywords in the job description. This approach, however, is 

more prone to errors. The underlying occupational classification is a good data source to capture 
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the occupational structure in a region at a certain point in time. These classifications can easily 

be compared with occupational classifications from other sources, such as ISCO. 

Job advertisements themselves also contain a lot of information that can be used to detect new 

occupations and skills. An advertisement typically includes a job title, description (e.g. 

responsibilities, tasks), requirements (e.g. level and type of education, skills) and other 

information (e.g. details about the position, firm or industry, such as salary, company name and 

field of activity). In their study based on online advertisements, Burning Glass (2014), a 

company which collects job vacancies posted on the American and British markets, detects more 

than 70 ‘data fields’ in a single job post.  

The appearance of a new type of platforms, which are no longer limited to serving as notice 

boards for “offline jobs”, but rather facilitate online work directly opens up additional options for 

research. Job matching on those platforms is quite often transparent and capturable through 

techniques such as data crawling and data scrapping. Furthermore, the rules governing matching 

of jobs and workers are also often publically available. As a result, researchers are able to 

observe characteristics of jobs as well as individual applicants and see the matching to a much 

greater detail than it is the case with ‘traditional’ job vacancies, allowing us to for instance better 

understand the dynamics of freelancing. 

Job portals of all sorts connect the demand and supply side of the labour market. As finding and 

responding to an advertisement is often the first step, job portals are a valuable source for labour 

market research, especially in light of technological progress (Carnevale et al. 2014; Kuhn 2014; 

Kuhn and Mansour 2014; Mýtna-Kureková et al. 2015) Job advertisements shed more light on 

the qualifications and skills that employers are looking for. Compared to traditional data sources, 

web data such as job vacancies have the advantage of being more detailed and providing 

information that may not have been available before.  

Using online job portals for research 

Using online job vacancy data for labour market analysis comes with several strengths and 

weaknesses. In general, they should be understood not as a replacement for traditional data 

sources, such as the Labour Force Survey (LFS) or census data, but rather as complimentary 
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resources, where traditional methodologies fall short.  

The first set of benefits relates to the data collection process (Wade and Parent 2002; Kennan et 

al. 2006; Benfield and Szlemko 2006; Mang 2012). Internet data can be collected in real time. In 

contrast to traditional sources, there are no lags or revisions. Another advantage is that web data 

allows researchers to collect large and diverse samples in a fast, flexible, easy and inexpensive 

way. Web data also makes some of the tedious and complicated steps of collecting data from 

traditional sources redundant (e.g. data entry). Similarly, even though printed vacancies are a 

rich source of data, they are more difficult to manage and manipulate than job advertisements 

published online.  

Secondly, web data can be used to fill research gaps (Shapiro 2014). Internet data is particularly 

useful for covering areas where traditional sources do not exist or are only limited (e.g. low 

quality or a lot of missing information). In that way, web data can also enable research on topics 

or concepts that are difficult to grasp or measure with traditional data sources. An important 

example is self-employment. Self-employment is a driver of job creation and entrepreneurship. It 

has therefore received a lot of attention from policymakers. Nonetheless, it is not well 

represented in traditional data sources (Fairlie and Robb 2009). More specifically, the traditional 

data sources on self-employment commonly only provide details on the business or on the owner 

and only few datasets appear to combine both. Other issues are that data is lagged and self-

employment is defined in different ways in different sources. 

Another advantage is that web data is often publicly available and relatively detailed. Moreover, 

job advertisements in particular typically have a clear structure and contain real job titles, 

descriptions and requirements (Shapiro 2014). They have clear space and time dimensions and 

reflect what is demanded in the labour market. As such, vacancies provide an excellent tool for 

studying new occupations and skills as they arise, which is why they are at the heart of our work 

- along with other data available on the job boards that publish them. Aside from vacancies and 

job portals, other web-based data sources may be relevant.  

Nonetheless, as online job vacancies are becoming increasingly established as a data source for 

labour research, some are hesitant about using them. A variety of authors (Carnevale et al. 2014; 

Mýtna-Kureková et al. 2015; Kearney and Levine 2015) have drawn attention to the 
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methodological issues related to using data obtained from online job boards (vacancies in 

particular) and intermediaries. The main issue is data representativeness. First of all, not all job 

openings entail a vacancy. Not all vacancies are published online and vacancies may not refer to 

(new) jobs. Secondly, it is unlikely that all vacancies would be collected, even if all would be 

published online. Thirdly, vacancies may appear to be targeted towards highly-educated white 

collar workers and STEM jobs, at least in the US (Carnevale et al. 2014). Fourthly, statistics 

generated on the basis of this data source tend to be quite volatile in time and may be 

inconsistent; vacancies may be duplicate and poorly structured. In particular, vacancies may not 

explicitly contain all requirements demanded. Fifthly, there remain some ethical issues 

connected with the mass download of vacancies and the potential bandwidth cost data collection 

might include on job board operators.  

Mýtna-Kurekova et al. (2015) suggests two venues possibly suitable for increasing robustness of 

findings based on online job vacancies. Firstly, they argue combining a higher number of various 

data sources might be a suitable way forward. Alternatively, they suggest utilizing advanced 

econometric methods such as Bayesian inference or maximum likelihood. In the remaining part 

of this chapter, we point out another possible venue, connected with careful consideration of all 

information presented in the vacancy, including the metadata and also inclusion of vacancies 

posted on online labour platforms.  

Vacancy Data Collection Methods 

Method I: Vacancy Content 

Job vacancies and CVs may be assembled via web crawling or ‘spidering’. With a ‘spider’ or 

web bot, a substantial sample of job advertisements may be obtained and stored in a database. 

The data collection process is relatively fast and easy. Vacancies are typically detailed and 

contain crucial information such as a job title, description (e.g. responsibilities, tasks), 

requirements (e.g. level and type of education, skills) and other information (e.g. details on the 

position, firm or industry, such as salary, company name and field of activity).  

One of the main difficulties of using vacancy data is that data cleaning, processing and 

management is relatively complicated (Carnevale et al. 2014). Data is assembled in a database, 
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extracted and divided into smaller fragments. These fragments are then coded and analysed. This 

process can be very straightforward or very difficult, depending on the structure and content of 

the job vacancy. To carry out this process, a comprehensive taxonomy of variables and words is 

essential. In addition, semantic analysis and text mining are often required to support data 

coding. These issues are difficult to address, but nonetheless have to be overcome when one uses 

vacancy or CV data. 

An example of this research is an analysis of about two million job vacancies from the US, 

obtained from the Burning Glass company, in thirty common occupations, which was undertaken 

in 2016. In this exercise, we broke down the large body of vacancies, identified common words 

in the vacancy text using an algorithm and selected those, which could potentially constitute a 

skill indicator (see Table 6). Based on this exercise, we calculated the share of vacancies 

containing one of the specified list of keywords.  

Table 6: Main skill-relevant keywords identified in the vacancies 

Education & formal qualifications 

 

Formal 

education 

Diploma, GED, bachelor, college, university, degree, 

high school 

Specialised 

training & 

licenses 

Apprenticeship, training, card, certificate, certification, 

certified, CDA, ASE, CPR, AED 

Cognitive skills 

Specific Computer skills Computer, PC, CRM, Microsoft (Office, Word, Excel, 

Power Point, Outlook, and Access), Windows, SAP 

Analytical skills Mathematics, analytical, logic, quantitative 

Language skills Bilingual, English, Spanish 

 Driving licence  Driving licence 

Generic Ability to learn Ability to learn, able to learn 

Non-cognitive skills 

Social Communication Communication, speak, write, articulate, verbal, 
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skills interact, communicate 

Service skills Client, customer, guest, needs and attention 

Team-work 

skills 

Team, attitude, focus, leader work, environment, spirit 

Personal Creativity Creative 

Flexibility Flexible, stay overnight, travel, shifts, work evenings 

Independence Self-motivated, takes initiative, independent 

Pleasant 

demeanour & 

manners 

Attitude, positive, mature, helpful, confident, 

enthusiastic, professional 

Reliability Attention to detail, dependable, reliable 

Stress-resistant Calm, stress, crisis situation 

Timeliness & 

punctuality 

Timely manner, deadlines, act quickly, punctual, 

prioritise 

Experience 

 Experience Experience combined with year, month, work, 

preferred, desirable 

Appearance / look 

 Appearance well-groomed, clean, neat, professional appearance 

Other 

 Citizenship US citizen, citizenship 

 Criminal 

record 

No criminal record, clean criminal record 

 Drug testing Drugs, drug testing 

 

On the basis of this exercise, we found that 67% of the vacancies examined include formal 

education requirements. 49% of these vacancies demand service skills and 38% of them refer to 
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experience. These three factors constitute the main 19 filters that US employers use to select job 

applicants. Interestingly, other non-cognitive skills are also relevant: 30-40% of the vacancies 

refer to a pleasant demeanour (manners) and flexibility, while 20-30% contain communication 

skills, timeliness and creativity. As expected, there are huge differences among the 30 

occupations. In general, vacancies in the United States prove to be relatively demanding in terms 

of the requirements that applicants have to meet. This also applies to low-skilled and mid-skilled 

jobs. Nevertheless, employers tend to be more demanding as the level of complexity of an 

occupation goes up (at least for some requirements). 

As a following step, we perform a factor analysis. This technique is widely used in the social 

sciences because it allows researchers to identify the underlying relationships between a set of 

variables (which may not be directly measured). With this technique, a large set of variables can 

be replaced by a smaller number of ‘factors’, which reflect what the variables have in common 

with one another. In other words, factor analysis is a data reduction technique that can be used to 

remove redundancy or duplication from a set of correlated variables and replaces these with a 

smaller set of factors. This smaller set of factors may be easier to interpret and derive 

conclusions from. In our work, we identify the underlying relationships between the education, 

skills and qualifications demanded in the job advertisements. By identifying the underlying 

factors – which can be regarded as ‘profiles’ - we can substantially reduce the list of 

qualifications and skills that we have been using so far to simplify the subsequent analysis. In 

this way, we can get more insight into the general characteristics and the combinations of 

requirements that employers have in mind when publishing vacancies.  

How was this factor analysis executed? In a factor analysis, observed variables are modeled as 

linear combinations of the potential factors plus error terms. The information gained about the 

interdependencies between observed variables can be used to decrease the number of variables in 

a dataset. In our analysis, we start from a set of 22 skills and end up with 5 factors (which now 

combine 18 skills and qualifications). Initially, we obtained 15 factors, but only 5 of them had an 

eigenvalue that was at least equal to 1. These five factors explain 85.3% of the cumulative 

variance. When the eigenvalue of a factor is equal to one or higher, it explains more variance 

than a single observed variable. We then excluded 10 factors, by restricting the eigenvalue to be 

at least equal to one when re-running the analysis; also restricting the number of factors to five 
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and the factor loadings to at least 0.6 (after rotation) (Field 2013). We also considered the 

uniqueness of the variables. The results that were obtained from the factor analysis and skills and 

other qualifications that they comprise are depicted in Figure 3.  

 

 

Figure 3: Overview of the factor analysis outcomes 

As indicated above, we started our analysis with a set of 22 skills and requirements. As Figure 3 

shows, five factors were identified that group 18 individual qualifications and skills. Factor I 

includes education, analytical skills (cognitive), service skills and creativity (both non-

cognitive). Factor II comprises language skills (cognitive), communication skills, timeliness and 

a pleasant demeanour (all three non-cognitive), and appearance/look. Factor III is composed of 

three non-cognitive skills, namely independence, reliability and stress-resistant, and citizenship. 

Factor IV covers driving license, no criminal record and drug testing. Finally, Factor V is 

composed of ICT / computer skills and experience. From the factor analysis it is clear that 

specialised training and licenses, team-working skills, flexibility and the ability to learn are not 

positively correlated with any of the factors. Some of these skills and requirements can be 

expected to be relevant in a broad sense, and may, therefore, be not really related to any of the 

other skills or requirements.  

 

While these factors might sound logical, they differ from the classification that one would arrive 

at based on the literature. Following the literature (Mýtna-Kureková et al. 2012), one may be 

Factor I 

Education, Analytical 
Skills, Service Skills, 

Creativity 

Factor II 

Language Skills, 
Communication Skills, 

Timeliness, Pleasant 
Demeanour, Appearance 

Factor III 

Independence, Reliability, 
Stress Resistance, 

Citizenship 

Factor IV 

Driving License, Clean 
Criminal Record, Drug 

Testing 

Factor V 

ICT/Computer Skills, 
Experience 
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inclined to separate cognitive from non-cognitive skills, to distinguish between experience and 

education, to put the other factors in a distinct category, and so on. As such, this exercise shows 

that while text analysis of vacancies gives a lot of information and can be very useful to identify 

general paterns, the results can be influenced by noise in the data.  

Method II: Vacancy Metadata 

An alternative methodology is to rely on the metadata of online job portals rather than the text of 

vacancies and CVs published. Job boards are typically structured in such a way that a job seeker 

is offered a range of similar vacancies (rather than one perfect match) when looking for job 

offers. This implies that portals arrange their content or advertisements within a clear framework, 

often based on an occupational classification. Job portals often contain tens of thousands of 

vacancies, which have to be organised in a structured way in order to keep them manageable.  

How does a job board set up an occupational classification? Again, there are several approaches 

that can be followed. A first approach is to create an occupational classification on the basis of a 

system of ‘tags’. Job advertisements can be assigned to specific categories or ‘tagged’ by the 

advertiser or the portal. Tags can refer to many things, such as job type, employer type, location, 

sector, wage bracket, etc. On most job portals, but not all, each vacancy is also assigned one or 

more occupation tags. Some job boards publish their list of tags online, so that job seekers can 

select their occupation of interest from the list. Other portals store the list of tags in a library that 

can be accessed by an application program interface (API) search. In this case, when job seekers 

start typing into a search box, the system generates options for automatic completion (as 

illustrated in Figure 4).  
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Figure 4: Example of autocomplete functionality from job board reed.co.uk.  

The job tags that appear when one types ‘res’ are displayed 

 

One should not think of such an occupational classification as a ‘static’ list. Instead, the 

occupational classification in both cases is regularly updated to account for changes in the labour 

market (e.g. 75 occupations that appear or disappear, new skills that are being requested, etc.). 

The Slovak job board profesia.sk is a good example: between 2011 and 2014, the job board 

added about 10 new occupations each year. Job portals’ occupational classification is a good data 

source to capture the occupational structure in a region at a certain point in time. These 

classifications may also be compared with those from other sources, such as ISCO and ESCO, to 

identify new occupations (e.g. what is available on the job portals but missing in the official 

lists). 

An example of this approach is the so-called ‘occupational observatory’, we set up in 2015 as a 

method for detection of emerging new occupations across Europe. In this we regularly collected 

all the occupation tags from job portals in 11 EU countries. Each time we found a new tag, we 

analysed the associated job vacancies and determined, looked at comparable labour markets and 

determined, whether the occupation is potentially new. After having been examined, the new tag 

was added to the benchmark list of tags and as such no longer classified as new (see the 

visualisation of the analytical strategy on Figure 5) 
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Figure 5: Illustration of the data collection steps 

As shown in Table 7, only a small percentage of the new tags correspond to potentially new 

occupations. The remaining tags generally appeared to refer to traditional occupations, which 

were not advertised online or for which no vacancies were available when the benchmark was 

created. Another reason might be that some tags are associated with seasonal jobs, which are 

only advertised during a specific time of the year. 

 

  

t= 0 
 

 

•Benchmark created 

t = 1 
 

•Data extracted and compared with benchmark 

•If tag present in benchmark - tag is dropped 

•If  tag not present in benchmark - tag added to shorlist-> shortlist cleaned and 
translated -> shortlist added to benchmark 

t = t 
 

•Data extracted and compared with benchmark 

•If tag present in benchmark - tag is dropped 

•If  tag not present in benchmark - tag added to shorlist-> shortlist cleaned and 
translated -> shortlist added to benchmark 
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Table 7: Number of tags in the benchmark and on the shortlist for each country 

Country Job Portal Number 

of tags 

in 

benchm

ark 

Number 

of new 

tags 

Number 

of valid 

new 

tags 

BE vacature.com (Dutch-speaking part) 

(www.vacature.com/vacature/bladeren/functienaam/), 

 references.be (French-speaking part) 

(www.references.be/job/parcourir/fonction/) 

415 714 NA 

CZ jobs.cz (www.jobs.cz/) 424 0 0 

DE jobsnet.dk (https://job.jobnet.dk/CV) 1,507 0 0 

DK keljob.com (www.keljob.com/emploi/metiers) 2,163 0 0 

ES jobs.de (www.jobs.de/regional/taetigkeitssuche) 233 2 1 

FR profession.hu (www.profession.hu/) 1,087 32 11 

HU lavoro.corriere.it (http://lavoro.corriere.it/) 369 91 11 

IT jobs.pl (www.jobs.pl/stanowiska-pracy) 962 0 0 

PL profesia.sk (www.profesia.sk/) 795 15 7 

SK careerbuilder.es (www.careerbuilder.es/) 468 30 16 

UK jobsite.co.uk (www.jobsite.co.uk/jobs/all/job-titles/) 6,063 0 0 

Note” The number of valid tags for Belgium is missing, because of the peculiar way in which the job 

portal adds new tags (which, as explained, not only refer to actual occupations but also to other items and 

words).Therefore, there were many tags that indeed carried valuable information, but a manual inspection 

of these 

 

The metadata analysis has a big advantage over text analysis connected to the lack of need to 

explore a large number of data points to identify relevant information. As a downside, the 

information we get is much more limited and we depend to a much greater extent to the structure 

of functioning of the individual portals.  

 

Method III: Online Labour Platforms ‘Vacancies’ 

The data collection methods so far discussed have been limited to the situation when the Internet 

serves merely as a notice board for jobs, which exist ‘offline’. However, that is not the case 

anymore. Online labour platforms have developed globally overnight, offering companies and 

even individuals the opportunity to outsource all sorts of tasks to an online labour force of 

‘seervice providers’ (Drahokoupil and Fabo 2016). A sizable body of literature has been recently 

produced, dealing with the rise of these platforms and their labour market impact (Codagnone et 

al. 2016a; Codagnone and Martens 2016; Maselli et al. 2016; Goudin 2016; Degryse 2016; de 

Groen and Maselli 2016; Codagnone et al. 2016b; Schmid-Druner 2016). 

http://www.vacature.com/vacature/bladeren/functienaam/
http://www.references.be/job/parcourir/fonction/
http://www.jobs.cz/
https://job.jobnet.dk/CV
http://www.keljob.com/emploi/metiers
http://www.jobs.de/regional/taetigkeitssuche
http://www.profession.hu/
http://lavoro.corriere.it/
http://www.jobs.pl/stanowiska-pracy
http://www.profesia.sk/
http://www.careerbuilder.es/
http://www.jobsite.co.uk/jobs/all/job-titles/
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Unlike other data sources such as surveys or online job vacancies, which normally only provide 

information about labour supply or labour demand, the platforms can be used as a source of data 

for both supply and demand and enable us to observe labour market matching. That is because 

the matching algorithm of the platforms is typically made public and many platforms similar to 

social networks are organised. Service providers have their profiles online along with references 

from the customers and indeed the customers themselves have profiles, which contain 

information about tasks previously commissioned on the platform.  

While this data is not always available and not always complete, when presented they can often 

be obtained by means of web scrapping. As such, it is possible to reconstruct entire functioning 

of the ‘labour market’ of a particular platform. One such exercise was carried out on Belgian 

local tasks platform Listminut, which we conducted in December 2015 and January 2016. On the 

platform, customers post small jobs, such as fence repair or pet sitting, potential workers apply 

and customers choose from among the applications. After scrapping over 14,000 workers’ 

profiles and nearly 9,000 tasks advertised on the platform, we found over 75% of tasks were not 

met.  

Based on this finding, we could determine matching dynamics for individual categories of tasks 

advertised on the platform, given that all workers have information about fields they are 

available to work in. One simple exercise is to compare the share of advertised tasks per field 

with the number of workers available to work in that field. As we can see on Figure 6 , three 

clusters are evident in the data – common housework tasks and computer assistance tasks which 

are quite often fulfilled, wellness and event organisation tasks which are often not fulfilled 

(wellness, events Organisation), because there is an insufficient supply of qualified labour and 

finally tasks involving a heavy degree of trust (babysitting, tutoring, household and animal care), 

which are often unfulfilled in spite of a large supply or workers (see de Groen et al. 2016 for 

detailed discussion of methodology and results of this exercise) 

 



Chapter 3: Using Job Vacancies to Better Understand Labour Market 

 73   

 

Figure 6: Share of tasks not completed on the Listminut platform contrasted with the share of 

workers with requested skills available for each of these categories 

Conclusion 

The body of literature using job vacancies as a data source is quickly growing, nonetheless 

methodological aspects of using the data source are often treated as an afterthought. In this 

chapter, we propose three distinct methodological approaches to using online job vacancies to 

learn about the labour market, each with its own advantages and disadvantages (summarised in 

Table 8). 
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Table 8: Overview of the advantages and limitations of using vacancies, job portal metadata and 

to study labour market 

 Vacancies  Metadata Data from Platforms 

+ Detailed information, clear structure 

(job title, job description, requirements, 

etc.), easy to collect large and diverse 

sample 

Easy and fast to collect, manage, 

process and analyse data due to 

smaller samples, and to use and 

interpret 

Provide both sides of the 

equation (supply and 

demand), complete dataset 

(for the specific platform) 

- Data processing, coding and analysis is 

very resource intensive. The resulting 

data tend to remain quite noisy.  

Depending on the portal, data may 

not be very detailed or complete, 

more limited potential for research 

Platforms so far only small 

part of the labour market, 

hard to generalise findings 

beyond a single platform. 

 

The future for this data source appears to be bright. Undoubtedly, in the near future, more and 

more countries will be covered with persistent and comprehensive data crawling algorithms of 

the kind applied by Burning Glass and Textkernel. Furthermore, advancement in Big Data 

analytics will enhance our ability to gauge meaning from the data, including effective use of 

metadata. Finally, the rise of platforms and digital work in general is likely to enhance our ability 

to observe labour market dynamics in real time.  

At the same time, analysing this data source requires learning to deal with issues such as 

processing big volumes of data and finding creative solutions to gauge meaning from datasets, 

which are often structured very differently from traditional datasets commonly used in 

economics. Consequently, methodological considerations should become a much more 

prominent stream in literature dealing with job vacancies as a data source.
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Chapter 4: Analysing Skill Supply: ‘Pricing of Skills’
12

 

Introduction 

In a globalised world where countries are firmly engaged in international trade, investment and 

migration, knowledge of foreign languages is an important skill. Foreign language skills are 

considered a major asset particularly in Europe – not only because of globalisation but also due 

to the continent’s inherent linguistic diversity. Therefore, a lot of effort has been made to 

promote foreign language acquisition and multilingualism and to better understand how this can 

be facilitated (Eurydice and Eurostat 2012). Initiatives such as the Erasmus+ programme and the 

Creative Europe programme are only a few examples. This focus on foreign language skills is 

motivated by the role of language skills for everyday life (as a means of communication, 

interaction with others, bridging intercultural gaps etc.), and their significance in Europe’s labour 

markets more specifically. Esser (2006), for example, examines the link between language and 

human capital. Other work has analysed the relationship between language skills and 

employability, and reports that this relationship is positive (ET2020 2011). Moreover, foreign 

language skills are crucial for labour mobility and labour market integration. 

Although the importance of foreign language skills has been widely recognised, studies on the 

supply and demand of these skills have only started to emerge in the last two decades (Antonietti 

and Loi 2014). Economics literature has mostly discussed the topic of language in relation to 

migration and trade, from both aggregate and individual perspectives (Antonietti and Loi 2014; 

Isphording 2014). The supply of foreign language skills is typically measured on the basis of 

interviews and surveys. According to a Eurobarometer survey conducted in 2012, 54% of 

Europeans speak at least one other (foreign) language, in addition to their mother tongue, while 

25% can speak at least two foreign languages and 10% at least three (Eurydice and Eurostat 

2012). These results further show that at least half of the population cannot speak any foreign 

                                                      
12

 This paper has been published in Empirica: Journal of European Economics, as a co-authored paper 

with Karolien Lenaerts and Miroslav Beblavý (Fabo et al. 2017a) 
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language well enough to hold a conversation.
13

 Meanwhile, foreign language proficiency appears 

to be even less common in the Visegrad countries than in the EU (as reported in Table 9).  

 

Table 9: Share of people able to have a conversation in English or German in the EU27 and the 

V4 

 English German 

EU27 38% 11% 

Czechia 27% 15% 

Hungary 20% 18% 

Poland 33% 19% 

Slovakia 26% 2% 

Source: Eurostat, 2012: Special Eurobarometer Report 386 

 

Nevertheless, even in those countries, foreign language skills are required for the labour market. 

In fact, when it comes to labour demand, previous research has confirmed that the demand for 

foreign language skills is on the rise and that this trend is likely to continue in the future (see a.o. 

ET2020 2011; Antonietti and Loi 2014; Isphording 2014). This development is driven by the 

multilingual and multicultural environment in which firms increasingly operate, the global 

competition that they face and their aim to broaden their market access (ET2020 2011). It is also 

an important factor facilitating mobility of workers on the single EU labour market (Barslund 

and Busse 2016). 

In our paper, we contribute to this literature and focus on the importance of foreign languages in 

the labour markets of Central and Eastern Europe. Specifically, we examine how common it is 

for employers to make foreign language skills a requirement in their job advertisements and 

whether proficiency in foreign languages is rewarded with a wage premium.  

We discuss the case of the Visegrád Four (V4), which is composed of Czechia, Hungary, Poland 

                                                      
13

 The ten countries in which over half of the population cannot speak any foreign languages are: 

Hungary, Italy, Portugal, the United Kingdom, Ireland, Spain, Bulgaria, Romania, Czechia and 

Poland. 
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and Slovakia. We selected the Visegrád Four because we are interested in the role of foreign 

language skills on the labour markets in countries that are open to international trade and foreign 

investors, but where the population’s language skills may not be very well developed. During the 

last two decades, the economies of the V4 countries have grown considerably, attracting 

substantial amounts of foreign direct investment (FDI). The FDI-driven nature of growth resulted 

in a deep integration of the V4 economies in European and global capitalism. The regional bank 

sector is dominated by foreign-owned banks (typically Western European), multinational 

companies established shared service centres in all major towns of the region, and the V4 

countries are very active in international trade
14

. The openness of the V4 economies creates 

demand for workers capable of communicating in foreign languages, particularly English – the 

lingua franca of international business (Sanchez et al. 2011). 

In addition to English, German and Russian have historically been widely taught and used in the 

region. The importance of the Russian language has diminished somewhat since the end of the 

Cold War, but Germany remains the most important trading partner for all four V4 countries. 

Additionally, Germany and Austria are major sources of FDI into the region. FDI transfers from 

German-speaking countries (Germany, Austria) have been very visible in the field of 

manufacturing and, while initially outsourcing entailed mainly manual work, it now also includes 

outsourcing of skill-intensive activities (particularly since the 2004 EU enlargement) (Marin, 

2010). Given the strong mutual integration of the four Visegrád countries, languages spoken in 

one of the other V4 members can also be relevant (e.g. for cross-border labour mobility). Yet, 

out of the ten countries in which at least 50% of the population is unable to hold a conversation 

in a foreign language, five are located in Central and Eastern Europe and three are part of the 

Visegrád Four. For three of the countries, the main national language is not among the five most 

widely spoken languages in Europe (Polish shares the fifth position with Spanish). Our focus on 

the V4 countries is further motivated by the strong embeddedness of the region in the global 

division of labour and their position in global value chains, which allows us to gain new insights 

                                                      
14

 In Slovakia, exports in goods and services as a percentage of GDP amounted to 93.5% of GDP 

according to Eurostat data for year 2015. For Hungary, the share was 90.7% and for Czechia it was 

83%. Only Poland is a partial exemption here, due to its relatively sizable internal market. For 

Poland, the share of exports in goods and services represented 49.6% of GDP in 2015. 
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into the role of languages in the contemporary economy. 

In order to examine which foreign language skills are demanded on the V4 labour markets and 

whether knowledge of these languages would result in a wage premium, we combine data 

obtained from online job portals with data from the WageIndicator survey. The WageIndicator 

survey (WI) is a continuous, voluntary web-based survey of wages and working conditions. For 

our purposes, it is important that the wage data be available at occupational level, coded at the 4-

digit ISCO level, which makes it possible to connect data at occupation level with the job portals 

data. Furthermore, since September 2015, the WageIndicator survey has been gradually enlarged 

by variables on language proficiency, which allows us to perform limited exploratory statistical 

analysis on an individual level as well.  

The four job portals that we use for our analysis each have an interesting feature: each of them 

offers the option to select vacancies according to the demand for individual languages (e.g. the 

Slovak job portal also allows its users to select vacancies that require English language skills). 

This feature considerably facilities data extraction. Most job portals, however, do not have this 

feature. Instead, selection is normally limited to criteria such as income bracket, region, 

minimum education attainment etc. Because we were able to use the information about language 

requirements for each vacancy, normally coded by the prospective employer, we could avoid the 

need to work with the entire text of the vacancies (i.e. the job description) and having to deal 

with identification of skill requirement, which is normally a painstaking process (Beblavý et al. 

2016b; Mýtna Kureková et al. 2016).  

The remainder of this chapter is structured as follows. In the first section, we review the 

literature on the role of foreign language skills on the labour market. In the second section, we 

describe our data sources’ composition, limitations and elaborate on the methodology used. 

Thirdly, we provide a descriptive and statistical analysis of our data. The final section presents a 

discussion of the results and conclusion.  

Literature Review 

 

Our analysis of employer demand for foreign language skills in the Visegrád region is embedded 
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in literature on the role of language in the economy, which was surveyed fairly recently by 

Zhang and Grenier (2013). Their main argument is that traditional research on the relationship 

between economics and languages may be divided into three strands: the first strand deals with 

language and economic status, the second strand covers the dynamic development of languages 

(from an economic perspective) and the third strand addresses language policy and planning 

(also from an economic perspective). Since the 1990s, these three strands have been 

supplemented by applications of game theory to model linguistic issues (Zhang and Grenier 

2013). The game theory approach has become very popular, particularly for studying bilingual 

labour markets (Armstrong 2015). Antonietti and Loi (2014) organise this literature into three 

subject areas: immigration, international trade and firm performance.  

In our work, we are especially interested in empirical work that bridges the gap between 

globalisation, labour and the historical context, as all these factors come into play in the Visegrád 

Four. Many recent contributions are dedicated to the relationship between language skills and 

trade or foreign direct investment. Kim et al. (2015) investigate the link between language and 

FDI, finding a robust, significant relationship between them. Oh et al. (2011) explore the 

transaction costs that exist between country pairs that do not speak the same language - with a 

focus on English, French, Spanish and Arabic - and compare the transaction costs related to trade 

and FDI for these four languages. Their results suggest that speaking a common language raises 

both trade and FDI, but appears to have a larger impact for the former than the latter. They also 

detect a common hierarchy in transaction costs for both phenomena: transaction costs are the 

lowest for English, followed by French, Spanish and Arabic. Another important contribution on 

this topic is the work of Melitz, which looks into the channels through which foreign language 

skill influences trade (Melitz 2008; Melitz and Toubal 2014). 

The relationship between language and migration has also received a lot of attention. Yao and 

van Ours (2015) examine the importance of Dutch language skills for immigrants in the 

Netherlands. They only find an effect on working hours for female immigrants. In another 

article, Budria and Swedberg (2012) assess how immigrants’ Spanish language proficiency 

affects their earnings. The discovered effect is very high for highly-educated workers, but 

negligible for uneducated workers. Rooth and Ekberg (2006) relate language skills to 

occupational mobility in Sweden. The results suggest that upward mobility accelerates among 
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those who have invested in a Swedish academic education or destination-specific language skills. 

Bleakley and Chin (2004) indicate that language is a social and economic barrier that separates 

immigrants from natives. Migrants with poor language skills often face discrimination and social 

isolation. Finally, Chiswick and Miller (2010) investigate the demand for English in the United 

States. They find a stronger relationship between proficiency in English and intra-occupational 

earnings differences than between proficiency in English and inter-occupational differences. 

Yet another set of papers considers historical and cultural ties to explain why certain language 

skills are (still) relevant on the labour market. As an example of this work, we list two papers 

that cover Russian language skills in Central and Eastern European countries. Other authors 

discuss the issue of language proficiency in labour market entry among young workers in Estonia 

and Ukraine (Constant et al. 2012; Lindemann and Kogan 2013). In Ukraine, being able to speak 

Russian - as well as the national language - appears to be much more important than in Estonia. 

This difference may be attributed to disparities in the immigration history of the Russian 

minority population and the language prevalence in both countries. In another contribution, 

Duncan and Mavisakalyan (2015) consider the importance of Russian language skills in the 

labour markets of Armenia, Azerbaijan and Georgia for the period 2008-2010. In these three 

countries, the Russian language is still commonly used in everyday life. The authors confirm that 

speaking Russian is a valued skill in their labour markets. 

Closer to our research is the literature that examines the importance of language skills in specific 

occupations. Maxwell (2010), for example, analyses the role of English language skills in low-

skilled jobs arguing that workers with a limited knowledge of the English language have less 

employment opportunities and lower wages. In the case of Germany, Stöhr (2015) examines the 

wage premiums of occupational language requirements and finds a systematic premium for 

English only, not for other languages. Another example is the paper by Coombs and Cebula 

(2010), who study the language skill rewards for registered nurses in the United States but find 

mixed results. In a related study, Beblavý et al. (Beblavý et al. 2016b) examine the skill demand 

of U.S. employers on the basis of a sample of advertisements extracted from Burning Glass, 

identifying the explicit demand for language skills in 16% of the vacancies. Another interesting 

article is Mýtna-Kureková et al. (2012). These authors consider the demand for a range of skills 

for 23 low- to medium-skilled occupations in Slovakia. They find that knowledge of foreign 
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languages is explicitly demanded in 38% of the vacancies, making it the second-most-demanded 

requirement. Interestingly, this skill is important, even for low- and medium-skilled jobs 

performed on the domestic market.  

Data and Methodology 

 

Our main data sources are popular online vacancy portals in the four analysed countries. In fact, 

we do not analyse the content of these vacancies as such but instead work with the metadata 

available on the job portals. Online job portals are increasingly used as a data source for the 

labour market research (Carnevale et al. 2014; Kuhn 2014; Kuhn and Mansour 2014; Askitas and 

Zimmermann 2015; Mýtna-Kureková et al. 2015). While analysing online vacancies is a 

relatively new trend, it builds upon an existing empirical literature based on an analysis of 

traditional, printed job advertisements (Jackson et al. 2005; Jackson 2007; Dörfler and Werfhorst 

2009). Nonetheless, the literature warns that this web-based source may not be completely 

representative, given that not all job vacancies are published online and white-collar jobs 

vacancies tend to be overrepresented on online job boards (Carnevale et al. 2014; Mýtna-

Kureková et al. 2015). For that reason, job vacancies are a good way of understanding skill 

requirements for individual occupations, but not necessarily of estimating the number of 

vacancies on the market (Slane 2013). In other words, online vacancy analysis may provide 

valuable insights for a specific research setting (such as skill demand for a set of occupations), 

yet its results cannot be generalised. While data representativeness has been put forward as a 

major concern in this young though rapidly developing discipline, few solutions have been put 

forward (Štefánik 2012; Mýtna-Kureková et al. 2015; Beblavý et al. 2016a)  

Our approach differs from the common methodology in that we focus on the metadata – the tag 

system that job portals use to structure the vacancies – rather than perform an analysis of the 

vacancies themselves. This approach is explained in more detail below. While an analysis of the 

text of the vacancies provides more detailed information, tags are quicker and easier to collect, 

process and analyse than vacancies (because sample sizes are smaller, yet essential information 

is still available). More specifically, for each of the Visegrád countries, we extracted data from a 

major online job portal (all are presented in Table 2). These job boards were not randomly 
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chosen but instead selected after a careful analysis of their labour market coverage. We looked 

for job portals that are dominant players in their respective national labour markets and have 

been previously used as a source of data by local scholars (Szabó 2011; Chmielecki 2013; 

Bohmová and Pavlíček 2015; Beblavý et al. 2016e). For example, the Slovak portal 

www.profesia.sk that we use has a market share of over 80% (Štefánik 2012).The Czech board 

www.jobs.cz belongs to the dominant player in the online vacancy boards sector (Švihel, 2016).  

The four job boards that we used are listed in Table 10, together with the total number of 

vacancies that was available on each of them when we first extracted our data (July 2015). In 

total, the four portals contained approximately 74,000 vacancies. The Czech job board counted 

close to 15,300 advertisements, the Hungarian portal covered about 11,200 vacancies, the Polish 

job board published about 36,000 advertisements and the Slovak portal had close to 11,300 

vacancies. For reference, we added the number of job advertisements available in Q3 of 2015 as 

reported by Eurostat (the data was not seasonally adjusted, derived from national statistical 

offices). Apart from Czechia, for which a very large number of vacancies was reported on 

Eurostat, it appears that the share of vacancies available on the job portals we use is quite 

substantial. Note, however, that this data is not fully comparable as the Eurostat data refers to a 

three-month period while the vacancy counts were obtained at a single point in time. More 

details on these vacancy counts and the extent to which they may be influenced by seasonal 

dynamics is provided below.  

Table 10: Overview of the online job portals used and the number of job advertisements 

available for the four countries in our sample (in July 2015). 

 

Online job board on 

which the vacancies 

were found 

Total number of vacancies 

available on the job board 

(July 2015) 

Number of vacancies 

available in 2015 Q3 

(Eurostat) 

Czechia www.jobs.cz 15,269 102,141 

Hungary www.profession.hu 11,231 46,559 

Poland www.pracuj.pl 36,079 73,154 

Slovakia www.profesia.sk 11,344 17,288 

 

Each of the four job portals uses a system of tags to organise individual job advertisements into 

http://www.profesia.sk/
http://www.jobs.cz/
http://www.jobs.cz/
http://www.profession.hu/
http://www.pracuj.pl/
http://www.profesia.sk/
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clusters. Clustering facilitates the search process, as this allows users to select, for example, only 

vacancies requiring specified language skills or only those for specified occupations. It is 

important to note here that tags are not disjunctive groups: a single job advertisement could 

indeed be mapped into several occupations or may, for instance, call for knowledge of multiple 

foreign languages (e.g. a vacancy that would call for English and German language skills would 

carry two foreign language-related tags: ‘English’ and ‘German’ – by tracking these tags, we can 

obtain information about skill demand more easily than if we would have to examine the full text 

of the vacancy instead). We therefore considered these tags as a proxy. 

Our analysis is composed of two important steps. Firstly, we consider the total number of 

vacancies offered on each of the four job portals as well as the number of vacancies offered with 

a tag that refers to foreign language skills. For each country, we calculate the share of vacancies 

requiring individual language skills out of the total number of vacancies. Here, we do not focus 

on individual occupations but rather examine the aggregate demand for foreign language skills. 

As a next step in our empirical analysis, we concentrate on the foreign language requirements for 

individual occupations in each of the V4 countries. Our aim is to arrive at a set of occupations 

that are present in all Visegrád countries and for which we could find a sufficient number of 

advertisements. To this end, we refine our analysis in the following way: For each Visegrad 

country, we remove the occupations for which fewer than 30 vacancies are published on the job 

portal. Thus, we no longer consider 11% of the job advertisements published on the Czech 

portal; for the Hungarian, the Polish and the Slovak job boards the corresponding percentages are 

7%, 12% and 9%. As a second step, we matched the occupations across the countries, which 

proved to be a rather difficult task. Firstly, we translated the occupations (their occupational 

titles) to English and then compared them across the Visegrád group. Occupations that were not 

represented in each of the four countries were dropped from the sample immediately. Then, we 

mapped the occupations that were present in all countries into each other. For some occupations, 

this was relatively easy because there was only one suitable match in each country. For other 

occupations, more than one possible match was found. The reason this can occur is that an 

individual occupation or tag in one country (portal) may be split into several occupations or tags 

in the other countries (portals). For example, the tag ‘teacher’ - which is represented by a single 

tag in Czechia, Hungary, and Slovakia - is split into two tags, ‘teacher’ (Nauczyciel) and 
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‘instructor’ (Wykładowca), in Poland. Another example is that of programmer, for which a job 

portal can use multiple tags to distinguish between JAVA programmers, Python programmers 

and other programmers (whereas other job portals simply attach the ‘programmer’ tag to all sub-

groups). In these cases, where multiple possible matches arose, a weighted average was 

calculated (weights equal to the number of job advertisements by occupation).  

Altogether 59 occupations were identified as being sufficiently represented in all four countries 

(both in terms of the number of available vacancies and presence across the countries, although 

in some cases combining several tags). After identifying the 59 occupations, we return to the 

four job portals and extract the amount of vacancies available for each of these occupations as 

well as the amount of vacancies that demand certain foreign languages (i.e. that are tagged). 

From these numbers, we calculated the share of English and German languages, because we only 

find these languages relevant in the analysis of the entire sample of job vacancies. In the 

hypothetical example that the Slovak job portal would have 500 job advertisements for the 

‘teacher’ occupation (i.e. 500 vacancies are tagged ‘teacher’), of which 150 would also be tagged 

‘English’ (i.e. 150 carry the tags ‘teacher’ and ‘English’), the share would be 0.3. 

Finally, we analyse the relationship between foreign language demand and wages. Unfortunately, 

there is no publically accessible representative data source that links proficiency in foreign 

languages to wage variables (on the occupation or individual level). While the Adult Education 

Survey, organised by Eurostat, has information on foreign language proficiency and wages, the 

wage variable contains only deciles, as opposed to specific amount, and the data is only collected 

in five-year intervals. More importantly, the occupation variable is not coded on the four-digit 

level. Meanwhile, the online-based WageIndicator (WI) survey has the required variables, but 

out of the V4 countries, it only covers Czechia and Slovakia with a sufficient sample. While this 

data source is not representative, it generally deemed reliable for exploratory research and, 

therefore, serves our purposes (de Pedraza et al. 2010; Tijdens and Steinmetz 2016). Our wage 

data are based on the median hourly gross wages, obtained from the WI web surveys collected 

from the beginning of 2013 until the end of the first quarter of 2016. We correlate the median 

wage in the occupation with the demand for foreign languages in that occupation.  

From September 2015, the WI survey also contains the question ‘In which languages are you 
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skilled?’ with answers ‘Not at all’ , ‘Barely skilled’ , ‘Rather skilled’ , ‘Skilled’ and ‘Mother 

language’ . The question is asked for the English, Spanish, Russian, Chinese and Arabic 

languages, thus it does not allow us to study other languages. Nevertheless, the information we 

can gather for English enables us to increase the robustness of our findings by analysing the 

relationship between knowledge of foreign languages and wages on the individual level. 

Unfortunately, the sample size does not allow estimating this relation for individual occupations, 

which is why we run our analysis for the entire labour market. We base our test on the standard 

Mincerian earnings function, which predicts the logarithm of earnings (y) based on years of 

potential working experience and years of education (Mincer 1974). Formally, the Mincer 

equation is represented as follows, with S being the year of schooling and X years of potential 

working experience:  

ln 𝑦 = ln 𝑦0 + 𝑟𝑆 + (𝛽1𝑋 + 𝛽2𝑋2) 

On top of the Mincer’s predictors, we added dummies for English proficiency (with categories 

‘skilled’ and ‘native speaker’ merged due to the low number of native speakers), gender, 

residency in the capital city, sector of employment, supervisory position, size of the company, 

occupation
15

 and whether the respondent is in Slovakia or Czechia (more details on what 

variables are included in what model are provided in the next section). Using the Mincer function 

is a technique that has been used in the context of estimating value added of language skills 

particularly in the research of focusing on migration and multilingual countries (see e.g. 

Chiswick and Miller 1994, 1999; Constant et al. 2012). To the best of our knowledge, we are not 

aware of any study that used this technique in the context of the foreign language skills in the 

Visegrad region.  

Results 

 

Firstly, we looked at the number of vacancies that do not require foreign language knowledge. 

Of the job advertisements published on the Czech portal, 38% that are tagged ‘does not require 

any foreign languages’ . This share is equal to 25% for Hungary and 43% for Slovakia. 

Nonetheless, the relatively low number in the Hungarian case may be explained by the fact that 

                                                      
15

 Represented by 1-digit International Classification of Occupations 2008 version occupational groups. 
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not all vacancies are tagged for languages. If approximately 20% of vacancies with no language 

tags were tagged as without language requirement, the share would be similar to the Czech and 

Slovak portals. As no such tag is available on the Polish job board, we do not have information 

on the share of job advertisements that do not require any foreign language skills in this case 

(note that we cannot simply calculate this number, as a single job advertisement may have 

multiple tags). From these percentages, it is clear that there are considerable differences between 

the four countries that make up the Visegrád group. Foreign language skills are more demanded 

explicitly on the Hungarian and Czech labour markets than in Slovakia. We can only capture job 

advertisements that are explicitly tagged, not those where foreign language skills are implicitly 

demanded. This is an important caveat that one has to be aware of in any research that is based 

on vacancy-based analysis. In addition, foreign language skills do appear to matter to employers, 

as they are explicitly requested in more than half of the vacancies. The tags, therefore, do appear 

to have a signalling function. 

We then focus on the individual languages, first at the regional level and then at the country 

level. When we consider all job advertisements at once (for the Visegrád region as a whole), we 

notice that 52% of them require English language skills, 12% demand German language skills, 

2% list French language skills and less than 2% request Italian, Spanish or Russian language 

skills. However, these aggregates likely hide differences between the countries and could 

certainly be affected by the number of vacancies for each country. For these reasons, we also 

look at the percentages of job advertisements within each country that comprises these language 

demands. 

Interestingly, English is the most frequently demanded language in all four countries. 

Nonetheless, there is significant variation between countries. 28% of the Czech vacancies refer 

to English language skills, 64% of the Polish advertisements demand English language skills. In 

Hungary, the share is 39%, while in Slovakia, it reaches 49%. German is the second most 

demanded language in all countries of the V4. For German, the shares seem to differ to a smaller 

extent. Across the four countries the share of advertisements with German language demands 

ranges from 10% in Czechia to 15% in Slovakia (again, this means that on the four job portals, 

between 10% and 15% of all advertisements published is tagged ‘German’). Even though 

French, Italian and Spanish are used extensively in the European Union, these three languages 



Chapter 4: Analysing Skill Supply: ‘Pricing of Skills’ 

 87   

are in low demand in the Visegrád labour markets.  

These percentages should be interpreted with some caution, as they might reflect seasonal 

dynamics (as indicated above, our data was collected in the month of July). To rule out seasonal 

dynamics, we contacted each of the job boards to inquire about the statistics for the entire year 

2015. The Slovak job board informed us that 46% of the vacancies required English, while 14% 

required German. In Czechia, the 10% share of vacancies for German was confirmed, but the 

share for English was reported to vary between 28% and 59% depending on whether the 

vacancies were supplied by public employment agencies or employers. The Hungarian portal 

reported that 55% of the vacancies demanded English or German, 10% specifically requested 

English and 2% specifically called for German. We could not verify whether or not German was 

meant to substitute English. We unfortunately did not receive any further information from the 

Polish job board. Overall, these numbers are largely in line with our initial results. 

Let us now focus our attention on the demand in individual occupations, for which results are 

presented in Table 11 and Table 12. Table 11 shows the share of vacancies for each country that 

carry the tag for English language skills (ISCO codes 1-3). Table 12 depicts similar results, but 

for the low- and medium-skilled occupations (ISCO codes 4-9). In both tables, the five 

occupations in each country with the highest percentages are marked with a shaded background 

(i.e. we use country share rather than regional shares).  

From the tables, we derive that it is relatively high in occupations where ISCO codes start with 2 

or 4, the professional and administrative occupations. Meanwhile, we detect low demand for 

positions involving manual work. Another interesting result, particularly in Poland, is that some 

of the ISCO 7 occupations, denoting craftsmen, show a relatively high demand for English-

language skills. This may indicate that these workers are employed by foreign employers or that 

they work abroad.
16

  

                                                      
16

 With regard to the latter option, we explored the share of vacancies that refer to positions abroad for the 

Slovak job portal. Overall, less than 10% of the positions advertised were positions outside the country 

(with the vast majority in Czechia). Vacancies were advertised for positions in Germany and Austria 

in the case of only a few occupations. 
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Table 11: Percentage of vacancies for high-skilled occupations that require English-language 

skills in each of the V4 countries. The five occupations with the highest shares in each country 

are indicated in grey. 

 

ISCO Occupation Czechia Hungary Poland Slovakia 

1135 HR Manager 87% 42% 67% 67% 

1211 Financial Manager 63% 54% 62% 50% 

1213 Operations Manager 53% 48% 65% 59% 

1221 Marketing Manager 71% 95% 79% 86% 

1221 Sales Director 53% 45% 49% 51% 

1321 Production Director 69% 50% 55% 74% 

2139 Consultant 44% 64% 49% 66% 

2141 Industrial Engineer 86% 81% 85% 83% 

2142 Civil Engineer 23% 24% 22% 34% 

2149 Tester 88% 87% 76% 89% 

2164 Architect 66% 50% 64% 79% 

2211 Doctor 31% 56% 44% 26% 

2221 Nurse 27% 30% 64% 21% 

2330 Teacher 51% 15% 55% 27% 

2411 Tax Advisor 81% 50% 86% 98% 

2411 Financial Controller 83% 78% 72% 93% 

2412 Financial Analyst 81% 78% 72% 88% 

2431 Marketing Professional 68% 85% 55% 71% 

2431 Key Account Manager 63% 90% 45% 71% 

2431 Business Analyst 74% 97% 81% 70% 

2433 Product Manager 83% 94% 74% 74% 

2511 IT Analyst 81% 87% 74% 88% 

2512 Programmer 82% 84% 77% 85% 

2519 Project Manager 81% 68% 75% 84% 

2519 Computer Specialist 82% 83% 74% 80% 

2611 Lawyer 72% 42% 72% 90% 

3112 Technician 56% 35% 34% 46% 

3119 Quality Control 72% 61% 57% 50% 

3122 Foreman 33% 15% 34% 54% 

3323 Buyer 84% 86% 68% 81% 

3341 Office Manager 76% 91% 58% 78% 

3341 Team Leader 73% 83% 42% 76% 

3511 IT Administrator 81% 67% 72% 87% 

3512 Customer Support Worker 67% 66% 58% 69% 

3538 Account Manager 53% 93% 48% 67% 
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Table 12: Percentage of vacancies for low- and medium-skilled occupations that require English-

language skills in each of the V4 countries. The five occupations with the highest shares in each 

country are indicated in grey. ISCO 

 
Occupation Czechia Hungary Poland Slovakia 

4226 Receptionist 87% 86% 67% 87% 

4232 Transport Clerk 70% 69% 57% 65% 

4311 Accountant 74% 51% 73% 79% 

4419 Office Worker 61% 52% 61% 70% 

4419 Assistant 73% 70% 71% 68% 

5120 Cook 26% 10% 27% 12% 

5222 Sales Team Leader 37% 36% 28% 46% 

5223 Retail assistant 25% 15% 29% 15% 

5230 Cashier 36% 11% 10% 15% 

5242 
Regional Sales 

Representative 
48% 27% 35% 68% 

5242 Sales Representative 41% 36% 29% 38% 

5242 Merchandiser 39% 33% 15% 13% 

5242 Financial advisor 10% 59% 18% 10% 

5244 Telesales/Call Centre 29% 16% 23% 50% 

7212 Welder 3% 6% 39% 10% 

7231 Mechanic 20% 10% 32% 16% 

7233 Locksmith 4% 7% 44% 8% 

7411 Electrical Mechanic 44% 3% 26% 32% 

7411 Electrician 23% 6% 42% 16% 

8121 Labourer 5% 8% 12% 5% 

8322 Driver 21% 3% 19% 18% 

8344 Forklift Operator 9% 5% 7% 4% 

9321 Packer/Auxiliary Labourer 4% 14% 11% 11% 

9333 Warehouse Worker 11% 7% 10% 13% 

 

To further show the diversity of language, we split the occupations into three groups, where the 

first one contains occupations that most often require English-language skill, while the third 

group contains occupations where this requirement is rare (see Figure 7). More specifically, we 

first gathered all available vacancies for each occupation (thus bringing together the vacancies 

available in all four countries) and calculated the share of vacancies that required English-

language skills. This gives us a single number for each occupation and allows us to rank 

occupations according to their demand for English. We rank the occupations from high to low, 

identifying two cut-off points (on the basis of percentiles). This enables us to distinguish 

between three groups, which we have labelled ‘highest’, ‘intermediate’ and ‘lowest’. Note that 
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within each group, occupations are still ranked on the basis of their share, meaning that the 

occupations towards the top of each bar report higher shares than the occupations towards the 

bottom. 

Once again, we show that the demand for English-language skills is the highest in managerial, 

professional, technical, administrative and IT-related occupations. On the lower side of the 

distribution, we mainly find manual labour jobs (Figure 7). 

 

Figure 7: Classification of occupations into three classes depending on the demand for English-

language skills across the V4 
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 We also calculated requirements for the German language, using the same strategy as for 

English-language skills. In this case, the results are noisier because the variance is much smaller, 

as no occupation in either of the analysed countries was found to contain at least 50% of 

vacancies requiring German. Nonetheless, we have discovered some interesting results. Firstly, 

the demand for English is higher than the demand for German across countries and occupations. 

More advertisements request German than English in only 14 of the 236 occupation-country 

combinations. These are all artisan occupations, particularly welders and locksmiths. The only 

exceptions are Slovak nurses, where the demand for German is 13% higher than the demand for 

English. This largely reflects the high level of circular migration of Slovak nurses to German-

speaking countries, in particular Austria (Bahna, 2014). In general, the demand for German does 

not seem so dependent on occupation complexity as it is in the case of demand for English. We 

find several ‘manual’ occupations in the group with the highest demand for language skills 

(Figure 8). 
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Figure 8: Classification of occupations into three classes depending on the demand for German 

language skills across the V4 

 

For three of the Visegrád countries, Czechia, Hungary and Slovakia, we were able to find data on 

the hourly wages (expressed in the national currency) for some occupations. This wage data is 

based on the median hourly gross wages, obtained from the WageIndicator web surveys 

collected from 2013 to 2016. Our data covers 29 occupations for Czechia, 25 occupations for 

Hungary, and 27 occupations for Slovakia
17

. There is a clear positive correlation between the 

                                                      
17

 Only occupations with at least 30 observations were taken into consideration.  

lo
w

es
t 

in
te

rm
ed

ia
te

 h
ig

h
es

t 

Quality Control 

Industrial Engineer 

Office Manager 

Transport Clerk 

Buyer 

Welder 

Customer Support Worker 

Production Director 

Computer Specialist 

Office Worker 

Architect 

Accountant 

Assistant 

Nurse 

Foreman 

Technician 

Electrician 

Lawyer 

Regional Sales 
Representative 

Driver 

Receptionist 

Electrical Mechanic 

HR Manager 

Mechanic 

Teacher 

Project Manager 

Telesales/Call Centre 

Programmer 

Tester 

Locksmith 

Operations Manager 

Sales Director 

Tax Advisor 

Key Account Manager 

IT Administrator 

Product Manager 

Sales Representative 

Team Leader 

Sales Team Leader 

Account Manager 

Business Analyst 

Doctor 

Financial Analyst 

Retail assistant 

Financial Controller 

Consultant 

Financial Manager 

Marketing Professional 

Civil Engineer 

Packer/Auxiliary Laborer 

Warehouse Worker 

IT Analyst 

Cook 

Financial advisor 

Forklift Operator 

Labourer 

Marketing Manager 

Merchandiser 

Cashier 



Chapter 4: Analysing Skill Supply: ‘Pricing of Skills’ 

 93   

shares of vacancies that require English and wages in all three countries (Figure 9). It is the 

strongest in Czechia, where each additional 10% demand for English is connected with an 

additional 50 cents of hourly income, followed by Slovakia, where the value is about 35 cents 

and Hungary, where more linguistically-demanding occupations result in a premium of only 20 

cents per additional 10% for vacancies demanding English. The correlation between the German-

language demand and wages is much weaker in Czechia and even negative for Slovakia. 

Interestingly, it is very strong for Hungary, resulting in a premium of €1.15 for an additional 

10% of vacancies demanding German (Figure 10). Following up on our previous line of thought 

that much of the demand for German speakers might be for jobs located in German-speaking 

countries, the lack of monetary premium associated with speaking German might be 

unobservable on the Slovak labour market because German speakers are collecting it abroad.  

 

 

Figure 9: Correlation between the share of job advertisements that require English and the hourly 

log wages in Czechia, Hungary and Slovakia  
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Figure 10: Correlation between the share of job advertisements that require German and the 

hourly log wages in Czechia, Hungary and Slovakia  

 

Finally, with the question about English proficiency recently added to the WI survey, we 

examine the relationship between English proficiencyand wages on individual levels as well. The 

analysis is conducted on data collected between September 2015, when the language question 

has been added to the survey
18

 and the end of 2016. An important caveat of using WageIndicator 

data is the potential measurement error in survey-based occupation data. This is a well-known 

issue that affects surveys in general. Bound et al. (2001) explain that survey responses are 

typically not perfectly reliable and that even relatively common variables may not be reported 

without error. For the ‘occupation’ variable, for example, response errors as well as coding errors 

occur quite frequently, as occupational classifications can be fairly detailed (e.g. 4-digit level) or 

may differ across institutes. As the WageIndicator survey is widely used in several disciplines, 

the issue of measurement error has also been assessed (de Pedraza et al. 2010; Guzi and de 

Pedraza 2015). Although it is clear that the WageIndicator survey may not be fully 

representative, it has been found to produce estimates of labour market outcome determinants 
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that are consistent with representative data sources. 

The results of our estimation exercise are presented in Table 13. We consider three estimation 

models. In the simplest model 1, there is no relation between having a basic command of English 

and earnings (when compared to no knowledge at all, which is the reference category). However, 

being rather skilled already appears to result in a 15% earnings premium, while being highly 

skilled increases the salary by 37%. This model relates wages to experience and experience 

squared, gender, education, and English proficiency and further includes country and year 

dummies.  

When controlling for the occupation dummies in model 2, by adding a full set of ISCO dummies 

to the variables considered in model 1, we see that the coefficient remains statistically 

significant, yet the size of the premium decreases to 13% and 31% respectively. Finally, when 

more detailed occupation variables, such as firm size, sector, supervisory position and job being 

located in the capital city are taken into account, the coefficient decreases to 6% for rather skilled 

English speakers and 20% to fluent English speakers. Model 1 explains 18.5% of variation in 

wages, model 2 22% and model 3 already 30%, which already indicates that our results are 

somewhat robust, especially considering that the coefficients of control variables are in line with 

expectations.  

Table 13: OLS analysis of the relationship between English proficiency and wages in Czechia, 

Slovakia and Hungary 

  (1) (2) (3) 

    

Years of Experience 0.0295*** 0.0252*** 0.0212*** 

 (0.00419) (0.00416) (0.00404) 

Years of Experience Squared -0.000582*** -0.000511*** -0.000397*** 

 (0.000110) (0.000109) (0.000106) 

Education 0.0444*** 0.0330*** 0.0273*** 

  (0.00491) (0.00508) (0.00492) 

 Women -0.181ource*** -0.191*** -0.165*** 

 (0.0238) (0.0249) (0.0241) 
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English skill level (reference 

category: no English) 

   

- Basic 0.0313 0.0214 -0.0186 

 (0.0337) (0.0332) (0.0320) 

- Rather skilled 0.154*** 0.128*** 0.0618* 

 (0.0377) (0.0374) (0.0360) 

- Skilled 0.364*** 0.306*** 0.197*** 

 (0.0417) (0.0418) (0.0409) 

Country and year dummies YES YES YES 

Basic occupation dummies NO YES YES 

Extended occupation dummies NO NO YES 

    

Observations 1,988 1,988 1,947 

R-squared 0.185 0.217 0.300 

* p < 0.1; ** p < 0.05; *** p < 0.01  

 

Given the limitations of the data source used, the significance of the analysis should not be 

overstated. Nonetheless, the signs of the estimated coefficients are in line with our initial 

expectations (and that coefficients are found to be statistically significant across the three 

models), we can see our analysis as an additional piece of support suggesting that English 

language skills are important to employers in the countries examined.  

Conclusion and Policy Implications 

 

In this chapter, we used metadata associated with approximately 74,000 job advertisements 

published on leading online job boards in the Visegrád countries to analyse demand for foreign 

language skills. We found that demand is widespread, but limited to two languages: English and, 

to a lesser extent, German. The exact degree of demand varies between individual countries and 

occupations, although we do observe some common trends.  
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Most importantly, our analysis suggests that English is a language of professionals and white 

collar workers. For these professions, it is demanded almost everywhere. For working-class 

professions, English language skills seem less important. These results, however, necessarily 

apply to the German language. We report a high demand for German in some professional 

occupations, but also in artisan and nursing occupations. Additionally, both individual-level and 

occupational-level analyses show that English-language skill comes with a wage premium. We 

did not find a similar correlation for German.  

While we found that learning German can be beneficial for some occupations (in addition to 

benefits unrelated to the labour market), English is by far the foreign language most in demand. 

Furthermore, we found evidence that English proficiency is associated with wage premium, 

suggesting that employers are willing to pay wage premium for English-language proficiency.  

We believe that our research provides some tentative evidence for policy-makers in the V4 

region to invest in English teaching. Proficiency in English in the V4 countries currently ranges 

from 20% in Hungary to 33% in Poland and is thus well below the EU average of 38%. 

Meanwhile, the knowledge of German varied between 15% in Czechia and 22% in Slovakia and 

was thus above the EU average of 11%. In this regard, it seems that governments are becoming 

aware of the importance of foreign language skills. Eurostat data on the number of foreign 

languages that students learn in school reveals that well over 90% of them learn at least one 

foreign language in upper secondary education (and in general secondary education students 

seem to even learn two or more foreign languages) in all four Visegrád countries. In Czechia, 

Poland and Slovakia, over 70% of primary school students learn at least one foreign language.  

Nonetheless, it is important to reiterate the caveats of our work. Firstly, it is important to 

acknowledge that job vacancies are an incomplete measure of labour demand, for several reasons 

(e.g. not all job openings are advertised as recruitment; they may occur through internal or 

informal channels). Secondly, online job boards have additional limitations: not all vacancies 

may be advertised online and those that are published online may be biased towards specific 

regions, industries or applicants (Carnevale et al. 2014). Our results and conclusions, therefore, 

have to be weighed against these limitations. In other words, we are aware that the structure of 

the sample may have been biased by its limited focus on online job search and vacancies, so that 
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an extension of our findings the ‘offline’ labour market may not be clear-cut. At the same time, 

the use of online vacancy data has been advocated by Kuhn and Skuterud (2004) and Askitas and 

Zimmermann (2009, 2015), who have pointed to its potential as a real-time data source to 

capture ongoing trends. For an in-depth discussion of the potential and caveats of web data, we 

also refer to Benfield and Szlemko (2006), Wright (2012), Carnevale et al. (2014) and Beblavý et 

al. (2016b). 

Our chapter represents a first effort to exploit innovative data sources to better understand this 

important topic. While our results are both internally consistent and in line with the literature, we 

believe that additional reinforcement checks are needed. One issue of our research is that it is 

based only on a cross-section of crawled data from job portals. Efforts such as the one currently 

spearheaded by the European Centre for the Development of Vocational Training (Cedefop) to 

establish a system for continuous data collection across the EU28 are, therefore, crucial. 

Secondly, the newly-added language questions in the WageIndicator survey will eventually 

result in a valuable source of data on labour market effect of language skills among job holders 

across the EU. Future research that strengthens the methodological framework in which a sample 

of vacancies published online is used as an input for labour-related analysis is needed. 
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Chapter 5: Analysing Skill Demand: Measurements of Skills Intensity of 

Occupations
19

 

Introduction 

Skill matching in the labour market is an important conceptual and policy issue. But to better 

measure skill mismatch and provide for improved labour market matching, we need to 

understand the interconnections between tasks, skills and occupations. However, mapping these 

connections is costly when conducted by occupations experts, as it requires considerable 

expertise and time. Some attempts have been made to measure this mapping using new data 

collection techniques using data originating from the Internet (Fabo and Tijdens 2014; Visintin et 

al. 2015a; Beblavý et al. 2016c). Each of these attempts was based on a single web-based data 

source, mapping either the supply side or the demand side. A pioneering and thus far, to the best 

of our knowledge, single attempt to compare the supply and demand side using web data looked 

at education requirements only (Tijdens et al. 2015a). In this chapter, we look specifically at the 

highly policy relevant aspect of computer skills supply and demand across occupation using two 

distinct data sources – the WageIndicator web survey and job vacancies posted online.  

Our research is potentially very salient policy wise, due to its potential to help tackle skill 

mismatch. According to the European Skills and Jobs (ESJ) survey, 25% of highly-qualified 

employees were overqualified for the job in 2014. While an applicant may prefer to take a job 

requiring a lower level of qualification than they hold, the same survey also found that 27% of 

employees are stuck in so-called ‘dead end’ jobs: positions that do not allow workers to develop 

their skills and improve their productivity (CEDEFOP 2015). Furthermore, a large proportion of 

Europeans, particularly young Europeans, struggle to even enter the labour market, according to 

Eurostat.  

Economists have long considered the role of skills to be central to the understanding of the 

matching between employees and employers in the labour market, but also from a policy 
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perspective. Of particular importance is the human capital approach, which has become widely 

accepted in economics (Becker 1962; Schultz 1971; Benhabib and Spiegel 1994). According to 

this approach, more skilled workers are more productive and thus more valuable to employers. 

Unskilled workers, on the other hand, are not as productive and thus are offered only lower 

wages or less favourable working conditions. They may not be hired at all, if, for example, a 

minimum wage policy makes their employment economically unsound.  

But how can a situation where workers underuse their skills on a large scale co-exist with skill 

shortages perceived by employers? Empirical research shows that the likely reason is a shortage 

of specific skills especially required by employers (CEDEFOP 2014). Being able to identify the 

demand for skills is thus crucial for informing policy makers in particular in areas such as 

education and training. Beblavý, Fabo and Lenearts (2016) study IT skill demand based on a 

large sample of job vacancies posted online throughout 2013 for 30 common occupations in the 

USA. They find that (i) demand for computer skills is high across occupations and growing with 

increasing complexity of an occupation, (ii) while there are many different computer skills, only 

a relatively small number of them is relevant for workers outside of the IT industry itself, (iii) 

computer skills determined on the basis of job vacancies are highly in line with the computer 

skills inferred from tasks defined for the individual occupations in occupational classification 

systems O*NET and ISCO.  

These findings potentially open doors for using web data to better understand the mapping 

between skills, tasks and occupations. They also inform policy on a wide range of areas 

connected to skill acquisition and use. In particular, web-based data collection techniques may 

help us gauge information about the usefulness of skills across occupations and thus provide 

enhanced policies aimed at improved skill matching in the labour market. However, the scope 

and usefulness of web-based data for classification of jobs and tasks pertaining thereto has yet to 

be tested. In this chapter, we extend Beblavý, Fabo and Lenearts (2016) in this direction by (i) 

benchmarking based on vacancy data, benchmarking web-based survey data about the 

association of tasks to occupations with respect to expert mapping of tasks to occupations and by 

(ii) looking at a wider scope of occupations at all skill levels. We aim to show to which degree 

these different web-based data sources can represent the demand for IT skills on the labour 

market. Our main finding is that the web surveys are potentially powerful tool to analyse 
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computer skills demand, while online job vacancies need to be interpreted carefully, due to 

requirements not being necessarily explicitely listed.  

This chapter is structured as follows: After a literature review section describing the state of the 

art with regards to analysing occupations using web data, we describe data sources used in the 

analysis in detail, including a debate on the representativeness of these surveys. Building up on 

this, we follow up with a methodology section and results. The chapter concludes with a 

discussion.  

Literature review 

Studying labour market matching is a complicated matter, because the universe of jobs and tasks 

that workers do, as well as their skills, is large, complex and dynamic (Fabo and Tijdens 2014; 

Visintin et al. 2015a; Beblavý et al. 2016a). In this section, we focus on the current state of the 

art with regards to ways on how to systematically study the phenomenon. Jobs may be 

aggregated into smaller clusters by abstracting from the context of work and focusing purely on 

the tasks performed by the workers in those jobs. These groups, called occupations, can be 

defined as follows: ‘An occupation is a bundle of job titles, clustered in such a way that survey 

respondents in a valid way will recognise it as their job title; an occupation identifies a set of 

tasks distinct from another occupation; an occupation should have at least a non-negligible 

number of jobholders and it should not have an extremely large share in the labour force’ 

(Tijdens 2010).  

This aggregation of jobs is done both for practical reasons – to better organise labour (Damarin 

2006) and for research purposes – to understand skill demands on the labour market (Levenson 

and Zoghi 2010). Employers and employees use occupations to characterise and refer to jobs. 

The skill dimension is inseparable from tasks, because a skill is ‘worker’s endowment of 

capabilities for performing various tasks’ (Acemoglu and Autor 2011). Consequently, a salient 

aggregation of jobs into occupations is necessary for our understanding of the matching between 

employers and employees in the labour market.  

Skills can be generally split into two categories: job-specific and transferable. For example, the 

O*Net classification of occupations, used widely in the US considers the ‘content’ and ‘process’ 
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skills to be job specific and ‘social skills’, ‘technical skills’, ‘complex problem-solving skills’, 

‘systems skills’ and ‘resource management skills’ to be transferable. Computer skills may be 

placed into both categories (BGT 2015) as they may act as the ‘content’ of the job particularly in 

IT occupations, but they may also be regarded as a technical skill increasing productivity in non-

IT workers. Recently, empirical evidence has underlined the importance of the transferable 

dimension of computer skills across the entire labour market, including some of what had 

traditionally been considered low-skill occupations (Beblavý et al. 2016e, d). Scholars along 

with the policy makers started recognising exclusion from the labour market faced by workers 

lacking computer skills (CEDEFOP 2015; Smith 2015; Horrigan 2016; Bührer and Hagist 2017). 

Consequently, it appears pertinent to analyse the role of computer skills in non-IT occupations as 

well. 

There are several approaches for determining the demand and supply for IT skills on a labour 

market: 

The most obvious approach is connected with the occupations themselves. Because occupations 

are defined through tasks and tasks imply skills, it is possible to infer skills demand from the 

tasks associated with the individual occupations. Individual classifications of occupations, such 

as the International Standard Classification of Occupations (ISCO) or the American O*NET 

classification, define each occupation on the basis of a list of tasks assigned to it by labour 

market experts (Elias 1997). The downside is that such systems are only updated infrequently. 

For example, the last update of ISCO took place in 2008, which was preceded by the 1988 

update; overall there hsve only been four updates of the classification since the first version in 

1958. Meanwhile, the nature of the work is quickly changing due to numerous factors, including 

technological progress, outsourcing/offshoring and change in labour organisation (Acemoglu and 

Autor 2011; Cowen 2013; Beblavý et al. 2016a) 

Fortunately, it is not necessary to always rely on experts. Skill and task questions have been 

increasingly included in surveys such as the OECD Adult Skills survey PIAAC and the web-

based WageIndicator survey (Fabo and Tijdens 2014). Importantly, the evaluation of job 

requirements by the job holder was found to be largely consistent with the expert estimates, even 

in the case of non-representative web surveys (Tijdens et al. 2013a, see the data section for our 

own robustness check). Such web survey-based estimates of computer skill applicability can, 
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therefore, be used for economic analysis (Mýtna-Kureková et al. 2015; Visintin et al. 2015a; 

Tijdens and Visintin 2016). In particular the large scale, continuous web-based surveys provide 

up to-date-information and are usable for reliable exploratory analysis, especially if the results 

can be benchmarked against a representative data source on a regular basis (Steinmetz et al. 

2014; Tijdens and Steinmetz 2016).  

Additionally, it is possible to learn from employers. That is, because when hiring, employers 

tend to think of the list of tasks the worker needs to be able to perform (Autor 2001; Winterton 

2009). Furthermore, the Internet is increasingly becoming the place where job vacancies are 

advertised and thus an important source of data about skill demand (Askitas and Zimmermann 

2015; Mýtna-Kureková et al. 2015; Lenaerts et al. 2016; Beblavý et al. 2016e, d). Just like in the 

case of web surveys, there is some controversy associated with the use of these new data sources 

for social science research. Nonetheless, in spite of significant concerns pertaining to mainly the 

representativeness and the potential for generalisation of results created on the basis of this data 

source, there is a growing consensus among scholars that web-based data is going to be an 

increasingly important source for the research of the labour market (Askitas and Zimmermann 

2015). 

These two approaches to mapping tasks to occupations – web survey-based and vacancy-based – 

are evaluated to test these methodologies in terms of their precision as benchmarked to expert-

based mapping. This sheds more light on possible approaches that can help to address the need 

for a more precise and up-to-date efficient mapping of tasks to occupations in a rapidly changing 

and developing labour market. 

Data 

This chapter analyses skill requirements inferred from three data sources: (i) the tasks assigned to 

the individual occupations by labour market experts in the ISCO2008 classification of 

occupations, (ii) the self-reported use of computer skills as measured by the WageIndicator 

survey and (iii) the share of an explicit IT requirement in vacancies posted on the Internet. We 

will focus on the Netherlands because of the availability of data, as explained later in this 

section. 
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We obtained survey-based data from the WageIndicator survey, which is a continuous, large-

scale, voluntary web survey covering more than 90 countries on all continents. Nonetheless, the 

quality of the data varies among countries. 18% of all data intake is collected in the Netherlands, 

where the survey originally started and where the local website hosting the survey gets 

approximately five million unique visitors every year. The high number of respondents to the 

survey in the Netherlands and the fact that Internet use is very widespread in the country result in 

a sample which is quite similar to a general population sample and suitable for exploratory 

analysis (see Chapter 2).  

In the WI survey, we added a module asking employees about their use of computers at work. 

More specifically, we asked ‘When do you use a computer or tablet?’ with possible answers 

being (i) Only during working hours (ii) Both during working hours and free time (iii) Only 

during free time (iv) Never. We recorded these questions such that if a respondent selected either 

option (i) or (ii they would be considered as someone using a computer at work, otherwise we 

would consider them a non-user.  

We launched the module on 18 August 2016 and collected the data until the end of the year. The 

respondents were not obliged to answer all the questions in the questionnaire. We only used 

occupations for which at least ten respondents answered the IT module. Within less than five 

months, we managed to cover 62 occupations (out of a total 436 occupations defined in 

ISCO2008), with a total of 1644 responses, covering all aggregated occupations groups (one 

digit ISCO), except military occupations and skilled agriculture workers. As a result, our analysis 

is limited to common occupations and might not be representative of occupations with few 

holders, which is a widespread general problem in occupation research (Tijdens et al. 2013a).  

To get a sense of the representativeness of our data, we compare it against a representative data 

source, the Dutch Survey of Adult Skills (PIAAC), which is organised by OECD. One limitation 

is that the PIAAC data was collected in the years 2011 and 2012, so there is a 5-year asynchrony. 

A further limitation is that when we applied the same criterion as with the WageIndicator data 

and eliminated all occupations with less than 10 observations, we could match only 49 out of the 

62 occupations for which we had data in both datasets. Both datasets exhibit a largely similar 

picture for nearly all office jobs holders who show a very high intensity of computer use at work, 
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while the percentage of those using computers is lower among the holders of manual jobs. The 

correlation between the two indicators is highly significant and very strong (r=0.922, also see 

Figure 11). Statistically, we can also compare the two sets of estimates using a paired t-test for 

two sets of estimates. This test is statistically not significant with a t value of t = -0.8719 (p = 

0.806). Where we see differences, these typically reflect a large growth of use of computer at 

work by some manual occupation holders, such as electrical mechanics, truck and taxi drivers, 

cooks or carpenters.  

 

Figure 11: Comparison of self-reported computer use per occupation between WageIndicator and PIAAC 

datasets  

Source: Own calculation using the WageIndicator and OECD PIAAC dataset 

 

Vacancy-based data on the share of computer skills in occupation were obtained from job 

vacancies posted online between August and December 2016. The dataset was provided by the 

company Textkernel, which is the market leader in the collection, processing and analysing job 

vacancy data in western Europe using a large number of advanced algorithms to get as 

representative sample of job vacancies as possible, with by far the most complete dataset being 

collected in the Netherlands (Zavrel 2016). The sample covers 60 of the analysed occupations 

and is based on nearly 300,000 unique job vacancies posted online. In line with our previous 

analysis (Beblavý et al. 2016b), we calculate the share of vacancies containing at least one 

keyword associated with computer use within occupations defined at the most detailed (4-digit) 
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level of ISCO occupations classification
20

.  

The Dutch labour market represents an ideal environment to explore the use of online data 

because it contains very high quality online survey as well as a near-exhaustive database of 

online job vacancies. Furthermore, the Netherlands has a large high-skilled workforce and a high 

degree of computerisation, which makes the market for computer skills broad and deep enough 

to get sufficient number of observations for a large-enough numbers of occupations. Finally, the 

Dutch labour market is relatively homogenous with limited degree of regional variations, making 

it particularly suitable for an analysis of occupations within the country.  

Analytical Strategy 

The aim of our analysis is to evaluate what the two online data sources can tell us about the 

intensity of computer skills use across occupations in the Dutch labour market. A key question is 

how we can decide which of the mappings is more accurate. After al two things are being 

measured – demand by employers and self-reported use of skills by workers. Our strategy rests 

on the ISCO occupational classification itself and on the information it contains about skill use 

intensity across individual occupations, there are two distinct pieces of information to be 

identified: 

Firstly, we looked at the relevance of computer skills for the tasks associated with individual 

occupations in the ISCO classification. We coded a total of 466 individual tasks such that each 

one was either classified as clearly requiring a computer (for instance ‘Developing and 

implementing software and information system testing policies, procedures and scripts’ ) or not 

necessarily requiring computer skills, but having use for them (such as ‘Designing and 

modifying curricula and preparing courses of study in accordance with requirements’ , which can 

                                                      
20

 After having tried many of various IT skills from different sources while working with the US data 

(Beblavý et al. 2016c), we found the regular expression ((MS|Microsoft) Excel)|((MS|Microsoft) 

excel)|((MS|Microsoft) Word)|((MS|Microsoft) word)|((MS|Microsoft) Office)|((MS|Microsoft) 

office)|(PC)|(Computer) the best to estimate the IT skills requirement. Luckily, the Dutch word for 

computer is the same as the English one, so the regular expression was also usable with Dutch vacancies. 
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still be performed using pen or paper, but is likely done using a text processing software by most 

educators) and those that have no use for computer skills at all (such as ‘Maintaining discipline 

and good working habits in the classroom’ ). For coding, we used two typical uses of computer 

applications we identified in previous job vacancy analysis (Beblavý et al. 2016c) - general 

computer use, including using job-specific software and office application such as spreadsheet 

and text processor.  

Secondly, we used the information about occupation complexity. The ISCO classification also 

associates occupations with the concept of task complexity involved by sorting each civilian 

occupation into one of nine aggregated occupation groups plus an additional group for military 

occupations, which are not a subject of analysis in this chapter. Eight out of those groups can be 

connected to degrees of task complexity associated with them. The most complex, professional, 

occupations belong to Group 2. Groups 3-8 contain occupations with intermediate degrees of 

complexity, with groups 3 and 4 containing office jobs and groups 5-8 containing manual labour. 

Finally, Group 9 contains elementary occupations with low complexity of associated tasks. 

Group 1 is more heterogeneous than the other ones, because it contains managerial occupations 

which are generally associated with an intermediate-to-high degree of complexity (Hunter 2009; 

Mýtna-Kureková et al. 2013), which makes it impossible to exclusively assign this group to a 

specific complexity level.  

In the analysis, we used these occupation traits determined by labour market experts when 

constructing the ISCO classification as a guide. More precisely, we defined three distinct groups 

of occupations: Those that require computer skills to perform at least one of the tasks associated 

with them, those that do not have any apparent use of the computer skills and finally those that 

do not necessarily require the computer skills, but entail tasks, which might be performed more 

efficiently using a computer. Similarly, we looked at the occupation complexity to see the 

demand and use of computer skills across manual and office/service occupations with various 

levels of complexity. 

We then compared the (i) measured demand for computer skills determined on the basis of actual 

job vacancies, (ii) the use of computers reported by occupation holders and (iii) the expert-based 

mapping of skills to occupations based on the ISCO classification. Based on these three sources, 
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we established a multi-dimensional picture of the role of the IT skills in the contemporary Dutch 

labour market and shed light on their use and measurement options. 

 

Results 

Having described our analytical tools and data, we can now present findings. This section is 

organised on the basis of the ISCO classification, first looking at occupations on the basis of the 

applicability of computer skills inferred from tasks associated with them. 

Through task coding, we identified 17 occupations, a mixture of professional and administrative 

occupations, which require the use of a computer for at least one task associated with them. As 

can be seen in Table 14, all or nearly all holders of these occupations use computers at work. 

Nonetheless, when looking at the vacancies, we see these high-skill occupations (including 

several in the IT, such as computer network professionals, which cannot be performed without 

computer skills) do not explicitly ask for the computer skills in the majority of the cases. This 

likely follows from the fact that not all skill requirements are explicitly specified because they 

are sometimes taken for granted. That would explain why the demand for computer skills surges 

for administrative occupations, such as secretaries, where those skills are not necessarily taken 

for granted. Nonetheless, if we accept this explanation, it strengthens the case for skepticism 

towards the use of job vacancies to determine the applicability of specific skills, as the tendency 

of employers to leave out some skill requirements they take for granted is clearly a major 

concern (Mýtna Kureková et al. 2016).  

Table 14: Web-based measurement of applicability of computer skills for occupations requiring 

computer skills. 

Occupation Vacancies WI 

Secretaries (general) 25% 94% 

General office clerks 17% 99% 

ICT professionals 16% 100% 

Accounting and bookkeeping clerks 16% 100% 

Personnel clerks 15% 96% 

Contact centre information clerks 14% 100% 
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Systems analysts 10% 100% 

Advertising and marketing professionals 9% 100% 

Computer network professionals 9% 100% 

Industrial and production engineers 8% 100% 

Accountants 8% 100% 

Applications programmers 8% 100% 

Software and applications developers 8% 100% 

Statistical, finance and insurance clerks 8% 98% 

Accounting associate professionals 7% 100% 

Draughtspersons 6% 100% 

Graphic and multimedia designers 4% 96% 

 Source: Own calculation based on the WageIndicator dataset and Textkernel 

Shifting our attention to thirteen manual occupations, both skilled and unskilled, which have no 

apparent use for computer skills according to tasks associated with them, many of the workers 

(but certainly not all) in these occupations use computers ( 

 

Table 15). Of particular interest are Healthcare assistants, out of whom nearly 90% use 

computers, as well as Stationary plant and machine operators, Motor vehicle mechanics and 

repairers, which are all above 70%. This suggests a major shift in the nature of those occupations 

as they now require skills not foreseen when constructing the 2008 update of the ISCO 

classification. The appearance of new tasks in existing occupations has been observed in labour 

studies literature and is a common manifestation of a shifting skill demand (Barley and Tolbert 

1991; Crosby 2002; Beblavý et al. 2016a). Turning to job vacancies, we see that demand for 

computer skills in these occupations is in general lower than for occupations that entail tasks 

associated with computer skills.  

Meanwhile, the information we can learn from job vacancies is much more limited and does not 

match the story inferred from the WI survey. The explicit requirement for computer skills in 

vacancies recruiting for these jobs is negligible and does not allow us to identify the uptick in 

demand for computer skills in some occupations, which is evident from the WageIndicator data.  
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Table 15: Web-based measurement of applicability of computer skills for occupations with no 

apparent use for computer skills. 

Occupation Vacancies WI 

Stationary plant and machine operators 5% 76% 

Health care assistants 3% 89% 

Electrical mechanics and fitters 3% 56% 

Freight handlers 3% 65% 

Motor vehicle mechanics and repairers 2% 80% 

Fitness and recreation instructors 2% 73% 

Child care workers 1% 31% 

Cooks 1% 61% 

Waiters 1% 32% 

Car, taxi and van drivers  1% 64% 

Domestic cleaners and helpers 1% 10% 

Carpenters and joiners 0% 18% 

Heavy truck and lorry drivers 0% 36% 

Source: Own calculation based on the WageIndicator dataset and Textkernel 

This leaves us with a group of 32 occupations, containing professional and administrative 

occupations, service and sales occupations and even some skilled manual occupations. 

Occupations in this group do not require computer skills but entail tasks which can potentially be 

performed more efficiently ( 

Table 16). In most such occupations, the use of computers is universal or nearly universal. While 

there are still some occupations, such as Shop assistants, Primary school teachers or Building and 

related electricians, which still employ a substantial portion of workers who do not use 

computers at work, even in those occupations a vast majority of workers benefit from computers. 

Interestingly, the requirement for computer skills in posted vacancies is widely explicitly stated 

only for a few administrative positions. Consequently, on the basis of the vacancy data, we 

would not be able to see how widespread the use of computer skills is in these occupations.  
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Table 16: Web-based measurement of the applicability of computer skills for occupations with 

possible, but not necessary, use for computer skills. 

Occupation Vacancies WI 

Administrative and executive secretaries 27% 100% 

Receptionists (general) 24% 90% 

Production clerks 19% 100% 

Buyers 14% 100% 

Business services and admin managers 11% 90% 

Human resource managers 10% 100% 

Product graders and testers (except food) 10% 91% 

Sales and marketing managers 9% 100% 

Management and organisation analysts 9% 100% 

Commercial sales representatives 9% 95% 

Journalists 8% 100% 

Stock clerks 8% 80% 

University and higher education teachers 7% 100% 

Managing directors and chief executives 6% 93% 

Personnel and careers professionals 6% 100% 

Environmental and occupational health inspectors 6% 100% 

Legal professionals  5% 100% 

Employment agents and contractors 5% 100% 

Nursing professionals 4% 95% 

Policy administration professionals 4% 100% 

Construction supervisors 4% 100% 

Shopkeepers 4% 100% 

Agricultural and industrial machine mechanics 4% 80% 

Vocational education teachers 3% 100% 

Social work and counselling professional 3% 100% 

Shop supervisors 3% 81% 

Shop sales assistants 3% 62% 

Building and related electricians 3% 70% 
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Physiotherapists 1% 100% 

Primary school teachers 1% 86% 

Clerical support workers  N/A 92% 

Source: Own calculation based on the WageIndicator dataset and Textkernel 

Finally, we consider the complexity of tasks (see the discussion in the empirical strategy section) 

associated with the individual occupations, rather than specifically the applicability of computer 

skills. The results based on the WI survey and vacancy data largely match the previous results as 

far as the division between office and manual occupations is concerned. Regardless of task 

complexity, office and service jobs require computer skills more often than manual jobs.  

However, new insights emerge when looking at the details. Based on the WI data we see that 

nearly all holders of office/service jobs use computers, while only about 60% of skilled manual 

workers do. Low-skilled employment is a specific category with less than 40% of workers using 

computers at work. The detailed story told by vacancies is different from the ones inferred from 

the WI survey, or indeed can be expected on the basis of task complexity associated with the 

occupations. In all categories, less than 20% of vacancies demand computer skills. Most 

commonly, they are demanded in administrative occupations (16%). Paradoxically, the lowest 

explicit demand for computer skills among office and service occupations is in highly complex, 

professional occupations (7%). The only non-office occupational group with non-negligible 

demand for computer skills is crafts and trades workers (4%).  
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Figure 12: Average computer skills applicability per ISCO occupation group in the WI dataset 

and in job vacancies 

Source: Own calculation using the WageIndicator and OECD PIAAC dataset 

 

Notes: Inferred from self-reported rates in the WI survey (left axis) and vacancies containing IT 

skill requirement (right axis). Source: Own calculation based on the WageIndicator dataset and 

Textkernel data 

Finally, we review our findings from the three data sources in Table17. What we see based on 

the comparison of tasks associated with individual occupations in the ISCO classification 

contrasted with WI data is that while computer skills are typically necessary in particular for 

high-skill, professional occupations and only rather useful for medium-skill office/service 

occupations, nearly all workers in this category use computers at work. Indeed, when looking at 

vacancy data, we often see that the explicit demand for computer skills is the highest among 

medium-skill non-manual occupations, in particular service and sales. It seems that for high-

skilled occupations, computer skills are assumed, because they are taken for granted by 

employers. Among the manual occupations holders, we see it is often the case that occupations 

in which computers are rarely used are limited to low-skill labour.  
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Table 17: Overview of computer skills applicability based on different data sources 

 Computer skills 
requirements inferred 
from tasks 

Job vacancy demand 
for computer skills 

Use of computers 
reported by 
occupation holders 

High Skill Occupations Typically necessary, in 
some cases useful 

Medium High 

Medium Skill Office 
Occupations 

Typically useful, in some 
cases necessary 

Medium to high High 

Medium Skill Manual 
Occupations 

Useful or not relevant Low Medium 

Low-skill Occupations Typically not relevant Low Low to medium 

Own elaboration 

Conclusion 

Our analysis shows the potential of web data as a source of information for scholars and 

professionals in need of information about the relevance of specific skills for the labour market. 

In particular, we show that web surveys can be used to explore computer skill applicability 

across detailed occupations. This is an important finding, because traditional data sources 

containing skills information are rarely up to date, making use of web data a must when 

researching such a fast-changing environment as computer skills requirements. We also show, 

however, that there are limitations connected to using vacancy data. The main cause for concern 

is connected to the low incidence of explicit requirements for general computer skills even in 

some types of vacancies, where use of such skills is clearly required for fulfillment of tasks 

associated with the respective occupations.  

One way forward with this would entail a wider application of categorical metadata (such as the 

foreign language skills indication discussed in Chapter 4), whereas employers will indicate their 

requirement for common skills by checking a box. Such a system would allow researchers to 

more easily understand potential barriers to matching between a job and a candidate. 

Nonetheless, it is not very realistic to expect such as system to be introduced for all skills in all 

countries due to increased workload on the side of the employers. Therefore, a more feasible 

alternative is an exploration of job portals for cases, where such a system is already introduced 

(likely because the skill is already an important bottleneck, such as foreign language skills in the 

Visegrad countries) and increased focus on such sources.  
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We show that computers have not only become nearly universal in almost any office job, but 

they are increasingly common in manual occupations as well. Jobs not entailing any use of a 

computer appear increasingly concentrated in the low complexity, elementary occupations 

category. This represents a challenge particularly for older skilled workers lacking the computer 

skills, who might be excluded from labour market if not provided with appropriate IT training.  

Looking at job vacancy data, we see that while for professional jobs computer skills are not 

explicitly mentioned, which is likely due to expectation of employers that all candidates for some 

position are able to use computers, they are relatively often specified for administrative 

positions. Among skilled manual occupations, IT requirements appear to be often stressed for 

craft and trade workers. One way to interpret this finding is that in these occupations, there 

perhaps remains greater friction between the demand for computer skills and supply of qualified 

candidates with those skills, encouraging employers to stress the importance of computer 

proficiency as a requirement for employment.  

Further research is needed to establish the link between the explicit listing of a skill requirement 

and expectation of it being instrumental for labour market matching. Nonetheless, there is a 

potential for interesting synergy between the two web-based data sources: An online survey can 

be deployed to gain a detailed account of the computerisation of work across occupations, while 

job vacancies can tell us where there is a particular risk of mismatch between job requirements 

and the skill of job candidates.  
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