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There are often reasons to expect  
certain relations between the variances 
of multiple populations. For example, 
in an educational study one might  
expect that the variance of students’ 
performances increases or decreases 
across grades. Alternatively, it might be 
expected that the variance is constant 
across grades. Such expectations can  
be formulated as equality and  
inequality constrained hypotheses on 
the variances of the students’ perfor-
mances. In this dissertation we develop 
automatic (or default) Bayes factors for 
testing such hypotheses. The methods 
we propose are based on default priors 
that are specified in an automatic fashion 
using information from the sample 
data. Hence, there is no need for the 
user to manually specify priors under 
competing (in)equality constrained  
hypotheses, which is a difficult task in 
practice. All the user needs to provide is 
the data and the hypotheses. Our Bayes 
factors then indicate to what degree  
the hypotheses are supported by 
the data and, in particular, which  
hypothesis receives strongest support.
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Chapter 1

Introduction

Statistical data analysis commonly focuses on measures of central tendency like means
and regression coefficients. Measures such as variances that capture the heterogeneity
of observations usually do not receive much attention. In fact, variances are often re-
garded as nuisance parameters that need to be “eliminated” when making inferences
about mean and regression parameters. In this dissertation we argue that variances
are more than just nuisance parameters (see also Carroll, 2003): Patterns in variances
are frequently encountered in practice, which requires that researchers carefully model
and interpret the variability. By disregarding the variability, researchers may overlook
important information in the data, which may result in misleading conclusions from
the analysis of the data. For example, psychological research has found males to be
considerably overrepresented at the lower and upper end of psychological scales mea-
suring cognitive characteristics (e.g. Arden & Plomin, 2006; Borkenau, Hřeb́ıčková,
Kuppens, Realo, & Allik, 2013; Feingold, 1992). To understand this finding, it is not
sufficient to inspect the means of the groups of males and females. Rather, an inspec-
tion of the variances reveals that the overrepresentation of the males in the tails of
the distribution is due to males being more variable in their cognitive characteristics
than females.

1.1 Motivating Example

There are often reasons to expect certain patterns in variances. For example, Aunola,
Leskinen, Lerkkanen, and Nurmi (2004) hypothesized that the variability of students’
mathematical performances either increases or decreases across grades. On the one
hand, the authors expected that an increase in variability might occur because stu-
dents with high mathematical potential improve their performances over time more
than students with low potential. On the other hand, they reasoned that the variabil-
ity of mathematical performances might decrease across grades because systematic
instruction at school helps students with low mathematical potential catch up, which
makes students more homogeneous in their mathematical performances. These two
competing expectations can be expressed as inequality constrained hypotheses on the

11



12 CHAPTER 1. INTRODUCTION

variances of mathematical performances in J ¥ 2 grades:

H1 : σ2
1   � � �   σ2

J and

H2 : σ2
J   � � �   σ2

1 ,
(1.1)

where σ2
j is the variance of mathematical performances in grade j, for j � 1, . . . , J .

Thus, H1 states an increase in variances across grades, whereas H2 states a decrease.
Two additional competing hypotheses that are conceivable in this example are

H0 : σ2
1 � � � � � σ2

J and

H3 : not pH0 or H1 or H2q,
(1.2)

where H0 is the null hypothesis that states equality of variances and H3 is the com-
plement of H0, H1, and H2. The complement covers all possible hypotheses except
H0, H1, and H2 and is often included as a safeguard in case none of H0, H1, and
H2 is supported by the data. Note that we do not impose any constraints on the
mean parameters of the grades, which is why these parameters are omitted from the
formulation of the hypotheses in Equations (1.1) and (1.2). This illustrates that we
reverse common statistical practice in this dissertation by focusing on the variances,
while treating the means as nuisance parameters.

1.2 The Bayes Factor

In this dissertation we use the Bayes factor to test equality and inequality constrained
hypotheses on variances. The Bayes factor is a Bayesian hypothesis testing and model
selection criterion that was introduced by Harold Jeffreys in a 1935 article and in his
book Theory of Probability (1961). For the moment, suppose there are two competing
hypotheses H1 and H2 under consideration (i.e. it is assumed that either H1 or H2 is
true). Jeffreys introduced the Bayes factor for testing H1 against H2 as the ratio of
the posterior to the prior odds for H1 against H2:

B12 �
P pH1|xq

P pH2|xq

N
P pH1q

P pH2q
, (1.3)

where x are the data, and P pHt|xq and P pHtq are the posterior and the prior proba-
bility of Ht, for t � 1, 2. A Bayes factor of B12 ¡ 1 indicates evidence in favor of H1

because then the posterior odds for H1 are greater than the prior odds (i.e. the data
increased the odds for H1). Likewise, a Bayes factor of B12   1 indicates evidence in
favor of H2.

The prior probabilities P pH1q and P pH2q � 1� P pH1q need to be determined by
the researcher before observing the data and reflect to what extent one hypothesis
is favored over the other a priori. In case no hypothesis is favored, a researcher
may specify equal prior probabilities of P pH1q � P pH2q � 1{2, resulting in prior
odds of P pH1q{P pH2q � 1. In this case the Bayes factor is equal to the posterior
odds. The posterior probabilities of the hypotheses are obtained by updating the
prior probabilities with the information from the data using Bayes’s theorem:

P pHt|xq �
mtpxqP pHtq

m1pxqP pH1q �m2pxqP pH2q
, t � 1, 2, (1.4)
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where mtpxq is the marginal likelihood of the observed data x under Ht. The posterior
probabilities quantify how plausible the hypotheses are after observing the data. In
Equation (1.4) the marginal likelihoods are obtained by integrating the likelihood with
respect to the prior distribution of the model parameters under the two hypotheses:

mtpxq �

»
ftpx|θtqπtpθtqdθt, t � 1, 2, (1.5)

where ftpx|θtq is the likelihood under Ht and πtpθtq is the prior distribution of the
model parameters θt under Ht. In this dissertation we use the normal distribution to
model the data. The expression in Equation (1.5) can be interpreted as the average
likelihood under hypothesis Ht, weighted according to the prior πtpθtq. The marginal
likelihood quantifies how well a hypothesis was able to predict the data that were
actually observed; the better a hypothesis was able to predict the data, the larger the
marginal likelihood.

When plugging the expression for the posterior probabilities of the hypotheses
in Equation (1.4) into Equation (1.3), the expression for the Bayes factor of H1

against H2 simplifies to the ratio of the marginal likelihoods under the two competing
hypotheses:

B12 �
m1pxq

m2pxq
. (1.6)

Note that the prior probabilities of the hypotheses cancel out in this step, which shows
that the Bayes factor does not depend the prior probabilities. From the expression
in Equation (1.6) it can be seen the Bayes factor can be interpreted as a ratio of
weighted average likelihoods: If B12 ¡ 1 (B12   1), then it is more likely that
the data were generated under hypothesis H1 (H2). For example, a Bayes factor of
B12 � 10 indicates that it is 10 times more likely that the data originate from H1

than from H2. In other words, the evidence in favor of H1 is 10 times as strong as
the evidence in favor of H2. Likewise, a Bayes factor of B12 � 1{10 indicates that H2

is 10 times more likely.
It is straightforward to test T ¡ 2 hypotheses simultaneously using the Bayes

factor (as in the motivating example in Section 1.1). In such a multiple hypothesis
test the Bayes factor of two competing hypotheses Ht and Ht1 , for t, t1 P t1, . . . , T u, is
still given by the ratio of the marginal likelihoods under the two hypotheses, that is,
Btt1 � mtpxq{mt1pxq. The posterior probabilities of the hypotheses can be computed

as P pHt|xq � mtpxqP pHtq
L�°T

t1�1mt1pxqP pHt1q
�
, for t � 1, . . . , T . Here the prior

probabilities P pH1q, . . . , P pHT q need to sum to 1, which implies that it is assumed
that one of the T hypotheses under investigation is the true hypothesis. A common
choice when prior information is absent is to set equal prior probabilities P pH1q �
� � � � P pHT q � 1{T . In a multiple hypothesis test it is useful to inspect the posterior
probabilities of the hypotheses to see at a glance which hypothesis receives strongest
support from the data.

From Equation (1.5) it can be seen that in order to compute the marginal likeli-
hoods a prior distribution of the model parameters is needed under each hypothesis
to be tested. In fact, Bayes factors are sensitive to the exact choice of the priors. It
is therefore crucial to specify the priors with care. In case prior information about
the magnitude of the variances is available (e.g. from earlier studies), one might con-
sider using this information to specify informative priors. However, often such prior
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information is not available or a researcher would like to refrain from using informa-
tive priors (e.g. to “let the data speak for themselves”). In Bayesian estimation it is
then common to use improper priors that essentially contain no information about
the model parameters. In Bayesian hypothesis testing, however, one may not use
improper priors because these depend on undefined constants, as a consequence of
which the Bayes factor would depend on undefined constants as well. Using vague
proper priors with very large variances to represent absence of prior information is not
a solution to this problem when testing hypotheses with equality constraints on the
variances. The reason is that using vague priors might induce the Jeffreys–Lindley
paradox (Jeffreys, 1961; Lindley, 1957) where the Bayes factor always favors the null
hypothesis regardless of the data. Hence, the main objective of this dissertation is
to develop Bayes factors for testing equality and inequality constrained hypotheses
on variances that can be applied when prior information about the magnitude of the
variances is absent. In general, the Bayes factors we propose are based on proper
priors that contain minimal information, which avoids the problem of undefined con-
stants in the Bayes factors and the Jeffreys–Lindley paradox. In Chapters 2, 3, and
4 we use a minimal amount of the information in the sample data to specify proper
priors in an automatic fashion. In Chapter 5 we propose a default prior containing
minimal information based on theoretical considerations.

1.3 Outline of the Dissertation

This dissertation is structured as follows. In Chapter 2 we consider the problem
of testing (in)equality constrained hypotheses on the variances of two independent
populations. We shall be interested in testing the following hypotheses on the two
variances: the variances are equal, population 1 has smaller variance than population
2, and population 1 has larger variance than population 2. We consider three different
Bayes factors for this multiple hypothesis test: The first is the fractional Bayes factor
(FBF) of O’Hagan (1995), which is a general approach to computing Bayes factors
when prior information is absent. The FBF is inspired by partial Bayes factors, where
proper priors are obtained using a part of the sample data. It is shown that the FBF
may not properly incorporate the parsimony of the inequality constrained hypothe-
ses. As an alternative, we propose a balanced Bayes factor (BBF), which is based
on identical priors for the two variances. We use a procedure inspired by the FBF
to specify the hyperparameters of this balanced prior in an automatic fashion using
information from the sample data. Following this, we propose an adjusted fractional
Bayes factor (aFBF) in which the marginal likelihood of the FBF is adjusted such
that the two possible orderings of the variances are equally likely a priori. Unlike the
FBF, both the BBF and the aFBF always incorporate the parsimony of the inequal-
ity constrained hypotheses. In a simulation study, the FBF and the BBF provided
somewhat stronger evidence in favor of a true equality constrained hypothesis than
the aFBF, whereas the aFBF yielded slightly stronger evidence in favor of a true
inequality constrained hypothesis. We apply the Bayes factors to empirical data from
two studies investigating the variability of intelligence in children and the precision
of burn wound assessments.

In Chapter 3 we address the problem of testing equality and inequality constrained
hypotheses on the variances of J ¥ 2 independent populations. Hypotheses on the
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variances may be formulated using a combination of equality constraints, inequality
constraints, and no constraints (e.g. H : σ2

1 � σ2
2   σ2

3 , σ
2
4 , where the comma before σ2

4

means that no constraint is imposed on this variance). We first apply the FBF to an
inequality constrained hypothesis test on the variances of three populations and show
that it may not properly incorporate the parsimony introduced by the inequality
constraints. We then generalize the aFBF to the problem of testing equality and
inequality constrained hypotheses on J ¥ 2 variances. As in Chapter 2, the idea
behind the aFBF is that all possible orderings of the variances are equally likely
a priori. An application of the aFBF to the inequality constrained hypothesis test
shows that it incorporates the parsimony introduced by the inequality constraints.
Furthermore, results from a simulation study investigating the performance of the
aFBF indicate that it is consistent in the sense that it selects the true hypothesis if
the sample size is large enough. We apply the aFBF to empirical data from the Math
Garden online learning environment (https://www.mathsgarden.com/) and present a
user-friendly software application that can be used to compute the aFBF in an easy
manner.

In Chapter 4 we extend the FBF and the BBF to the problem of testing equality
and inequality constrained hypotheses on the variances of J ¥ 2 independent pop-
ulations. As in Chapter 2, the BBF is based on identical priors for the variances,
where the hyperparameters of these priors are specified automatically using informa-
tion from the sample data. In three numerical studies we compared the performance
of the FBF, the BBF, and the aFBF as introduced in Chapter 3. We first examined
the Bayes factors’ behavior when testing nested inequality constrained hypotheses.
The results show that the BBF and the aFBF incorporate the parsimony of inequal-
ity constrained hypotheses, whereas the FBF may not do so. Next, we investigated
information consistency. A Bayes factor is said to be information consistent if it goes
to infinity as the effect size goes to infinity, while keeping the sample size fixed. In our
numerical study the FBF and the aFBF showed information consistent behavior. The
BBF, on the other hand, showed information inconsistent behavior by converging to
a constant. Finally, in a simulation study investigating large sample consistency all
Bayes factors behaved consistently in the sense that they selected the true hypothesis
if the sample size was large enough. Subsequent to the numerical studies we apply
the Bayes factors to hypothetical data from four treatment groups as well as to em-
pirical data from two studies investigating attentional performances of Tourette’s and
ADHD patients and influence of group leaders, respectively.

In Chapter 5 we address the problem of testing inequality constrained hypotheses
on the variances of dependent observations (we do not consider equality constraints
between the variances in this case for reasons of complexity due to the dependency).
In this chapter we apply the encompassing prior approach to computing Bayes fac-
tors. In this approach priors under competing inequality constrained hypotheses are
formulated as truncations of the prior under the unconstrained hypothesis that does
not impose any constraints on the variances. We specify the hyperparameters of this
unconstrained prior such that it contains minimal information and all possible order-
ings of the variances are equally likely a priori. The encompassing prior approach has
two main advantages: First, the problem of specifying a prior under every inequality
constrained hypothesis to be tested simplifies to specifying one unconstrained prior.
Second, computation of the Bayes factor is straightforward using a simple Monte
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Carlo method. Our Bayes factor is large sample consistent, which is confirmed in
a simulation study investigating the behavior of the Bayes factor when testing an
inequality constrained hypothesis against its complement. We apply the Bayes factor
to an empirical data set containing repeated measurements of reading recognition in
children.

In the epilogue in Chapter 6 we first give a brief summary of the most important
aspects of our approach to testing equality and inequality constrained hypotheses on
variances and discuss some limitations. Following this, potential directions for future
research in the area of testing hypotheses on variances are outlined.



Chapter 2

Automatic Bayes Factors for
Testing Variances of Two
Independent Normal
Distributions

Abstract

Researchers are frequently interested in testing variances of two independent
populations. We often would like to know whether the population variances
are equal, whether population 1 has smaller variance than population 2, or
whether population 1 has larger variance than population 2. In this chapter
we consider the Bayes factor, a Bayesian model selection and hypothesis testing
criterion, for this multiple hypothesis test. Application of Bayes factors requires
specification of prior distributions for the model parameters. Automatic Bayes
factors circumvent the difficult task of prior elicitation by using data-driven
mechanisms to specify priors in an automatic fashion. In this chapter we develop
different automatic Bayes factors for testing two variances: first we apply the
fractional Bayes factor (FBF) to the testing problem. It is shown that the FBF
does not always function as Occam’s razor. Second we develop a new automatic
balanced Bayes factor with equal priors for the variances. Third we propose
a Bayes factor based on an adjustment of the marginal likelihood in the FBF
approach. The latter two methods always function as Occam’s razor. Through
theoretical considerations and numerical simulations it is shown that the third
approach provides strongest evidence in favor of the true hypothesis.

2.1 Introduction

Researchers are frequently interested in comparing two independent populations on a
continuous outcome measure. Traditionally, the focus has been on comparing means,

This chapter is published as Böing-Messing, F., & Mulder, J. (2016). Automatic Bayes factors
for testing variances of two independent normal distributions. Journal of Mathematical Psychology,
72, 158–170. http://dx.doi.org/10.1016/j.jmp.2015.08.001.
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whereas variances are mostly considered nuisance parameters. However, by regarding
variances as mere nuisance parameters, one runs the risk of overlooking important in-
formation in the data. The variability of a population is a key characteristic which can
be the core of a research question. For example, psychological research frequently in-
vestigates differences in variability between males and females (e.g. Arden & Plomin,
2006; Borkenau et al., 2013; Feingold, 1992).

In this chapter we consider a Bayesian hypothesis test on the variances of two in-
dependent populations. The Bayes factor is a well-known Bayesian criterion for model
selection and hypothesis testing (Jeffreys, 1961; Kass & Raftery, 1995). Unlike the
p-value, which is often misinterpreted as an error probability (Hubbard & Armstrong,
2006), the Bayes factor has a straightforward interpretation as the relative evidence
in the data in favor of a hypothesis as compared to another hypothesis. Moreover,
contrary to p-values, the Bayes factor is able to quantify evidence in favor of a null
hypothesis (Wagenmakers, 2007). Another useful property, which is not shared by
p-values, is that the Bayes factor can straightforwardly be used for testing multi-
ple hypotheses simultaneously (Berger & Mortera, 1999). These and other notions
have resulted in a considerable development of Bayes factors for frequently encoun-
tered testing problems in the last decade. For example, Klugkist, Laudy, and Hoi-
jtink (2005) proposed Bayes factors for testing analysis of variance models. Rouder,
Speckman, Sun, Morey, and Iverson (2009) proposed a Bayesian t-test. Mulder, Hoi-
jtink, and de Leeuw (2012) developed a software program for Bayesian testing of
(in)equality constraints on means and regression coefficients in the multivariate nor-
mal linear model, and Wetzels and Wagenmakers (2012) proposed Bayesian tests for
correlation coefficients. The goal of this chapter is to extend this literature by devel-
oping Bayes factors for testing variances. For more interesting references we also refer
the reader to the special issue ‘Bayes factors for testing hypotheses in psychological
research: Practical relevance and new developments’ in the Journal of Mathematical
Psychology in which this chapter appeared (Mulder & Wagenmakers, in preparation).

In applying Bayes factors for hypothesis testing, we need to specify a prior dis-
tribution of the model parameters under every hypothesis to be tested. A prior
distribution is a probability distribution describing the probability of the possible
parameter values before observing the data. In the case of testing two variances, we
need to specify a prior for the common variance under the null hypothesis and for the
two unique variances under the alternative hypothesis. Specifying priors is a difficult
task from a practical point of view, and it is complicated by the fact that we cannot
use noninformative improper priors for parameters to be tested because the Bayes
factor would then be undefined (Jeffreys, 1961). This has stimulated researchers to
develop Bayes factors which do not require prior elicitation using external prior in-
formation. Instead, these so-called automatic Bayes factors use information from the
sample data to specify priors in an automatic fashion. So far, however, no automatic
Bayes factors have been developed for testing variances.

In this chapter we develop three types of automatic Bayes factors for testing
variances of two independent normal populations. We first consider the fractional
Bayes factor (FBF) of O’Hagan (1995) and apply it for the first time to the problem
of testing variances. In the FBF methodology the likelihood of the complete data
is divided into two fractions: one for specifying the prior and one for testing the
hypotheses. However, it has been shown (e.g. Mulder, 2014b) that the FBF may not
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be suitable for testing inequality constrained hypotheses (e.g. variance 1 is smaller
than variance 2) because it may not function as Occam’s razor. In other words, the
FBF may not prefer the simpler hypothesis when two hypotheses fit the data equally
well. This is a consequence of the fact that in the FBF the automatic prior is located
at the likelihood of the data. We develop two novel solutions to this problem: the first
is an automatic Bayes factor with equal automatic priors for both variances under
the alternative hypothesis. This methodology is related to the constrained posterior
priors approach of Mulder, Hoijtink, and Klugkist (2010). The second novel solution is
an automatic Bayes factor based on adjusting the definition of the FBF such that the
resulting automatic Bayes factor always functions as Occam’s razor. This approach
is related to the work of Mulder (2014b), with the difference that our method results
in stronger evidence in favor of a true null hypothesis.

The remainder of this chapter is structured as follows. In the next section we
provide details on the normal model to be used and introduce the hypotheses we
shall be concerned with. We then discuss five theoretical properties which are used
for evaluating the automatic Bayes factors. Following this, we develop the three
automatic Bayes factors and evaluate them according to the theoretical properties.
Subsequently, the performance of the Bayes factors is investigated by means of a small
simulation study. We conclude the chapter with an application of the Bayes factors to
two empirical data examples and a discussion of possible extensions and limitations
of our approaches.

2.2 Model and Hypotheses

We assume that the outcome variable of interest, X, is normally distributed in both
populations:

Xj � N
�
µj , σ

2
j

�
, j � 1, 2, (2.1)

where j is the population index and µj and σ2
j are the population-specific parameters.

The unknown parameter in this model is
�
µ,σ2

�1
�

�
pµ1, µ2, q

1
,
�
σ2

1 , σ
2
2

�1	1
P R2�Ωu,

where Ωu :� pR�q
2

is the unconstrained parameter space of σ2.
In this chapter we shall be concerned with testing the following nonnested

(in)equality constrained hypotheses against one another:

H0 : σ2
1 � σ2

2 � σ2,

H1 : σ2
1   σ2

2 ,

H2 : σ2
1 ¡ σ2

2 ,

ô

H0 : σ2 P Ω0 :� R�,

H1 : σ2 P Ω1 :�
 
σ2 P Ωu : σ2

1   σ2
2

(
,

H2 : σ2 P Ω2 :�
 
σ2 P Ωu : σ2

1 ¡ σ2
2

(
,

(2.2)

where Ω1,Ω2 � Ωu and Ω0 denote the parameter spaces under the corresponding
(in)equality constrained hypotheses.

We made two choices in formulating the hypotheses in Equation (2.2). First, we
do not test any constraints on the mean parameters µ1 and µ2. This is because
the objective of this chapter is to provide a Bayesian alternative to the classical
frequentist procedures for testing two variances. For a general framework for testing
(in)equality constrained hypotheses on mean parameters, see, for example, Mulder et
al. (2012). The second choice we made is to divide the classical alternative hypothesis
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Ha : σ2
1 � σ2

2 ô Ha : σ2
1   σ2

2 _ σ2
1 ¡ σ2

2 into two separate hypotheses, H1 : σ2
1   σ2

2

and H2 : σ2
1 ¡ σ2

2 (_ denotes logical disjunction and reads “or”). The advantage of
this approach is that it allows us to quantify and compare the evidence in favor of
a negative effect (H1) and a positive effect (H2). This is of great interest to applied
researchers, who would often like to know not only whether there is an effect, but also
in what direction.

Another hypothesis we will consider is the unconstrained hypothesis

Hu : σ2
1 , σ

2
2 ¡ 0 ô Hu : σ2 P Ωu �

�
R�

�2
. (2.3)

This hypothesis is not of substantial interest to us because it is entirely covered by
the hypotheses in Equation (2.2). In other words, tH0, H1, H2u is a partition of Hu.
The unconstrained hypothesis will be used to evaluate theoretical properties of the
priors and Bayes factors such as balancedness and Occam’s razor (discussed in the
next section).

2.3 Properties for the Automatic Priors and Bayes
Factors

Based on the existing literature on automatic Bayes factors, we shall focus on the fol-
lowing theoretical properties when evaluating the automatic priors and Bayes factors:

1. Proper priors: The priors must be proper probability distributions. When us-
ing improper priors on parameters that are tested, the resulting Bayes factors
depend on unspecified constants (see, for instance, O’Hagan, 1995). Improper
priors may only be used on common nuisance parameters that are present under
all hypotheses to be tested (Jeffreys, 1961).

2. Minimal information: Priors under composite hypotheses should contain the
information of a minimal study. Using arbitrarily vague priors gives rise to
the Jeffreys–Lindley paradox (Jeffreys, 1961; Lindley, 1957), whereas priors
containing too much information about the parameters will dominate the data.
Therefore it is often suggested to let the prior contain the information of a
minimal study (e.g. Berger & Pericchi, 1996; O’Hagan, 1995; Spiegelhalter &
Smith, 1982). A minimal study is the smallest possible study (in terms of sample
size) for which all free parameters under all hypotheses are identifiable. If prior
information is absent (as is usually the case when automatic Bayes factors are
considered), then a prior containing minimal information is a reasonable starting
point.

3. Scale invariance: The Bayes factors should be invariant under rescaling of the
data. In other words, the Bayes factors should not depend on the scale of
the outcome variable. This is important because when comparing, say, the
heterogeneity of ability scores of males and females, it should not matter if the
ability test has a scale from 0 to 10 or from 0 to 100.

4. Balancedness: The prior under the unconstrained hypothesis should be balanced.
If we denote η � log

�
σ2

1{σ
2
2

�
, then the unconstrained hypothesis can be written
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as Hu : η P R. The prior for η under Hu should be symmetric about 0 and
nonincreasing in |η| (e.g. Berger & Delampady, 1987). Following Jeffreys (1961),
we shall refer to a prior satisfying these properties as a balanced prior. A
balanced prior can be considered objective in two respects: first, the symmetry
ensures that neither a positive nor a negative effect is preferred a priori. Second,
the nonincreasingness ensures that no other values but 0 are treated as special.

5. Occam’s razor: The Bayes factors should function as Occam’s razor. Occam’s
razor is the principle that if two hypotheses fit the data equally well, then the
simpler (i.e. less complex) hypothesis should be preferred. The principle is based
on the empirical observation that simple hypotheses that fit the data are more
likely to be correct than complicated ones. When testing nested hypotheses,
Bayes factors automatically function as Occam’s razor by balancing fit and
complexity of the hypotheses (Kass & Raftery, 1995). When testing inequality
constrained hypotheses, however, the Bayes factor does not always function as
Occam’s razor (Mulder, 2014a).

2.4 Automatic Bayes Factors

The Bayes factor is a Bayesian hypothesis testing criterion that is related to the
likelihood ratio statistic. It is equal to the ratio of the marginal likelihoods under two
competing hypotheses:

Bpq �
mp pxq

mq pxq
, (2.4)

where Bpq denotes the Bayes factor comparing hypotheses Hp and Hq, and mp pxq is
the marginal likelihood under hypothesis Hp as a function of the data x.

2.4.1 Fractional Bayes Factor

The fractional Bayes factor introduced by O’Hagan (1995) is a general, automatic
method for comparing two statistical models or hypotheses. In this chapter we apply
it for the first time to the problem of testing variances. We use the superscript F to
refer to the FBF.

Marginal Likelihoods

The FBF marginal likelihood under hypothesis Hp, p � 0, 1, 2, u, is given by

mF
p pb,xq �

³
Ωp

³
R2 fp

�
x|µ,σ2

�
πNp

�
µ,σ2

�
dµdσ2³

Ωp

³
R2 fp px|µ,σ2q

b
πNp pµ,σ

2q dµdσ2
, (2.5)

where p � u refers to the unconstrained hypothesis (with a slight abuse of notation),
and under H0 the variance parameter σ2 is a scalar containing only the common
variance σ2. Here πNp

�
µ,σ2

�
is the noninformative Jeffreys prior on

�
µ,σ2

�1
. Under

H0 it is πN0
�
µ, σ2

�
9 σ�2, while under Hu we have πNu

�
µ,σ2

�
9 σ�2

1 σ�2
2 . Under Hp,

p � 1, 2, the Jeffreys prior is πNp
�
µ,σ2

�
9 σ�2

1 σ�2
2 1Ωp

�
σ2

�
, where 1Ωp

�
σ2

�
is the
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indicator function which is 1 if σ2 P Ωp and 0 otherwise. The expression fp
�
x|µ,σ2

�b
denotes a fraction of the likelihood, the cornerstone of the FBF methodology. Let
xj �

�
x1j , . . . , xnjj

�1
be a vector of nj observations coming from Xj . Fractions of the

likelihoods under the four hypotheses are given by

f0

�
x|µ, σ2

�b
:� f

�
x1|µ1, σ

2
�b1

f
�
x2|µ2, σ

2
�b2

,

fu
�
x|µ,σ2

�b
:� f

�
x1|µ1, σ

2
1

�b1
f
�
x2|µ2, σ

2
2

�b2
, (2.6)

fp
�
x|µ,σ2

�b
:� fu

�
x|µ,σ2

�b
1Ωp

�
σ2

�
, p � 1, 2,

where

f
�
xj |µj , σ

2
j

�bj
�

�
nj¹
i�1

N
�
xij |µj , σ

2
j

��bj
(2.7)

is a fraction of the likelihood of population j (e.g. Berger & Pericchi, 2001). Here
b1 P p1{n1, 1s and b2 P p1{n2, 1s are population-specific proportions to be determined
by the user, and by using b � pb1, b2q

1
as a superscript we slightly abuse notation.

We obtain the full likelihood fp
�
x|µ,σ2

�
by setting b1 � b2 � 1.

Plugging f0

�
x|µ, σ2

�
, f0

�
x|µ, σ2

�b
, and πN0

�
µ, σ2

�
into Equation (2.5), we obtain

the marginal likelihood under H0 after some algebra (see Appendix 2.A) as

mF
0 pb,xq �

pb1b2q
1
2 Γ

�
n1�n2�2

2

� �
b1 pn1 � 1q s2

1 � b2 pn2 � 1q s2
2

� b1n1�b2n2�2
2

π
n1p1�b1q�n2p1�b2q

2 Γ
�
b1n1�b2n2�2

2

�
ppn1 � 1q s2

1 � pn2 � 1q s2
2q

n1�n2�2
2

,

(2.8)

where Γ denotes the gamma function, and s2
j �

1
nj�1

°nj
i�1 pxij � x̄jq

2
is the sample

variance of xj , j � 1, 2. The marginal likelihoods under H1 and H2 are functions of
the marginal likelihood under Hu, which is given by

mF
u pb,xq �

π�
n1p1�b1q�n2p1�b2q

2 b
b1n1

2
1 b

b2n2
2

2 Γ
�
n1�1

2

�
Γ
�
n2�1

2

�
Γ
�
b1n1�1

2

�
Γ
�
b2n2�1

2

�
ppn1 � 1q s2

1q
n1p1�b1q

2 ppn2 � 1q s2
2q

n2p1�b2q
2

. (2.9)

For the marginal likelihoods under H1 and H2 we then have

mF
p pb,xq �

PF
�
σ2 P Ωp|x

�
PF pσ2 P Ωp|xbq

mF
u pb,xq , p � 1, 2. (2.10)

Here PF
�
σ2 P Ωp|x

�
and PF

�
σ2 P Ωp|x

b
�

denote the probability that σ2 is in Ωp
given the complete data x or a fraction thereof (for which we use the notation xb).
The exact expressions for the two probabilities are given in Equations (2.33) and
(2.34) in Appendix 2.B. The derivation of Equations (2.9) and (2.10) is analogous to
that of Equation (2.8) given in Appendix 2.A.

Evaluation of the Method

We will now evaluate the FBF according to the five properties discussed in Section
2.3:
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1. Proper priors. First, note that the marginal likelihood in Equation (2.5) can be
rewritten as

mF
p pb,xq

�

»
Ωp

»
R2

fp
�
x|µ,σ2

�1�b fp
�
x|µ,σ2

�b
πNp

�
µ,σ2

�
³
Ωp

³
R2 fp px|µ,σ2q

b
πNp pµ,σ

2q dµdσ2
dµdσ2

�

»
Ωp

»
R2

fp
�
x|µ,σ2

�1�b
πFp

�
µ,σ2|xb

�
dµdσ2,

(2.11)

where we use the superscript 1 � b � p1� b1, 1� b2q
1

analogously to b in

Equation (2.6). Here πFp
�
µ,σ2|xb

�
9 fp

�
x|µ,σ2

�b
πNp

�
µ,σ2

�
is a posterior

prior obtained by updating the Jeffreys prior with a fraction of the likelihood.
It can be considered the automatic prior implied by the FBF approach and is
proper if b1n1 � b2n2 ¡ 2 under H0 and bjnj ¡ 1, j � 1, 2, under H1, H2, and
Hu. We use the notation xb to indicate that it is based on a fraction b of the
likelihood of the complete sample data x.

2. Minimal information. A minimal study consists of four observations, two from
each population. This is because we need two observations from population j
for

�
µj , σ

2
j

�1
to be identifiable. We can make the priors contain the information

of a minimal study by setting b � p2{n1, 2{n2q
1

(O’Hagan, 1995).

3. Scale invariance. Multiplying all observations in xj by a constant w results in
a sample variance of w2s2

j , j � 1, 2. Plugging w2s2
j into the formulas for the

marginal likelihoods in Equations (2.8) and (2.9) does not change the resulting
Bayes factors. Thus the FBF is scale invariant.

4. Balancedness. The marginal unconstrained prior on σ2 implied by the FBF
approach is given by

πFu
�
σ2|xb

�
� Inv-χ2

�
σ2

1 |ν1, τ
2
1

�
Inv-χ2

�
σ2

2 |ν2, τ
2
2

�
, (2.12)

where

νj � bjnj � 1 and τ2
j �

bj pnj � 1q s2
j

bjnj � 1
, j � 1, 2. (2.13)

Here Inv-χ2
�
ν, τ2

�
is the scaled inverse-χ2 distribution with degrees of freedom

hyperparameter ν ¡ 0 and scale hyperparameter τ2 ¡ 0 (Gelman, Carlin, Stern,
& Rubin, 2004). The corresponding unconstrained prior on η � log

�
σ2

1{σ
2
2

�
,

πFu pη|x
bq, is balanced if and only if ν1 � ν2 ^ τ2

1 � τ2
2 (^ denotes logical con-

junction and reads “and”; see Appendix 2.C for a proof). In practice the sample
sizes and sample variances will commonly be such that  

�
ν1 � ν2 ^ τ

2
1 � τ2

2

�
,

which is why πFu pη|x
bq will commonly be unbalanced ( denotes logical nega-

tion and reads “not”). Figure 2.1 illustrates this. The figure shows the priors on
σ2 (top row) and η (bottom row) for sample variances s2

1 � 1 and s2
2 P t1, 4, 16u,

sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1. It can be seen that
πFu pη|x

bq is only balanced if s2
2 � s2

1 � 1, in which case ν1 � ν2 ^ τ
2
1 � τ2

2 . For
s2

2 P t4, 16u it is shifted to the left (i.e. it is not skewed).
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Figure 2.1: The marginal unconstrained FBF prior πFu
�
σ2|xb

�
(top row) and the

corresponding prior πFu
�
η � log

�
σ2

1{σ
2
2

�
|xb

�
(bottom row) for sample variances s2

1 �
1 and s2

2 P t1, 4, 16u, sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1. The
prior πFu pη|x

bq is only balanced when s2
2 � s2

1 � 1.
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Figure 2.2: Bayes factors BF1u (solid line) and BF2u (dashed line) for sample variances
s2

1 � 1 and s2
2 P rexpp�6q, expp6qs, sample sizes n1 � n2 � 20, and fractions b1 �

b2 � 0.1. The Bayes factors approach 1 for very large and very small s2
2, respectively.

That is, they do not favor the more parsimonious inequality constrained hypothesis
even though it is strongly supported by the data. This shows that BF1u and BF2u do
not function as Occam’s razor.



2.4. AUTOMATIC BAYES FACTORS 25

5. Occam’s razor. The Bayes factors BF1u and BF2u should function as Occam’s
razor by favoring the simplest hypothesis that is in line with the data. This,
however, is not the case, as Figure 2.2 illustrates. The plot shows BF1u (solid line)
and BF2u (dashed line) for sample variances s2

1 � 1 and s2
2 P rexpp�6q, expp6qs,

sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1. It can be seen
that BF1u and BF2u approach 1 for very large and very small s2

2, respectively.
Thus BF1u and BF2u are indecisive despite the data strongly supporting the more
parsimonious inequality constrained hypothesis. This undesirable property is
a direct consequence of the fact that the unconstrained prior is located at the
likelihood of the data.

2.4.2 Balanced Bayes Factor

In the previous section we have seen that the FBF involves two problems: the marginal
unconstrained prior πFu

�
σ2|xb

�
is unbalanced and the Bayes factors BFpu and BFp0,

p � 1, 2, do not function as Occam’s razor. In this section we propose a solution to
these problems which we refer to as the balanced Bayes factor (BBF). The BBF is a
new automatic Bayes factor for testing variances of two independent normal distri-
butions that satisfies all five properties discussed in Section 2.3. The BBF approach
is related to the constrained posterior priors approach of Mulder et al. (2010) with
the exception that the latter uses empirical training samples for prior specification
instead of a fraction of the likelihood. The fractional approach of the BBF is therefore
computationally less demanding. We use the superscript B to refer to the BBF.

Marginal Likelihoods

In the FBF approach the marginal unconstrained prior πFu
�
σ2|xb

�
�

Inv-χ2
�
σ2

1 |ν1, τ
2
1

�
Inv-χ2

�
σ2

2 |ν2, τ
2
2

�
is balanced if and only if ν1 � ν2 ^ τ2

1 � τ2
2 ,

which in practice will rarely be the case. The main idea of the BBF thus is to replace
πFu

�
σ2|xb

�
with a marginal unconstrained prior πBu

�
σ2|xb

�
� Inv-χ2

�
σ2

1 |ν, τ
2
�
�

Inv-χ2
�
σ2

2 |ν, τ
2
�

with common hyperparameters ν and τ2. This way πBu
�
η|xb

�
is

balanced by definition (see Appendix 2.C). As with the FBF, we shall use informa-
tion from the sample data x to define ν and τ2: first we assume that σ2

1 � σ2
2 and

update the Jeffreys prior with a fraction of the likelihood under H0, f0

�
x|µ, σ2

�b
.

Note that this results in the FBF posterior prior πF0
�
µ, σ2|xb

�
. Next, we obtain the

marginal posterior prior on σ2 by integrating out µ:

πF0
�
σ2|xb

�
�

»
R2

πF0
�
µ, σ2|xb

�
dµ � Inv-χ2

�
σ2|ν, τ

2


�
, (2.14)

where

ν � b1n1 � b2n2 � 2 and τ2
 �

b1 pn1 � 1q s2
1 � b2 pn2 � 1q s2

2

b1n1 � b2n2 � 2
. (2.15)

We use the subscript  to indicate that the hyperparameters ν and τ2
 combine

information from both samples x1 and x2. We propose using the distribution in
Equation (2.14) as the prior on both σ2

1 and σ2
2 under Hu, giving us the BBF marginal
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unconstrained prior on σ2 as

πBu
�
σ2|xb

�
� πF0

�
σ2

1 |x
b
�
πF0

�
σ2

2 |x
b
�
, (2.16)

with πF0
�
σ2
j |x

b
�

as in Equation (2.14). Note that b1 and b2 need to be specified such
that b1n1 � b2n2 ¡ 2 for ν to be positive. With the marginal unconstrained prior at
hand, we define the joint prior on

�
µ,σ2

�1
under Hu as

πBu
�
µ,σ2|xb

�
� πBu

�
σ2|xb

�
πN pµq , (2.17)

with πBu
�
σ2|xb

�
as in Equation (2.16). Here πN pµq9 1 is the Jeffreys prior for µ,

which we may use since in our testing problem µ is a common nuisance parameter
that is present under all hypotheses. We shall define the BBF priors under H1 and
H2 as truncations of the prior under Hu (Berger & Mortera, 1999; Klugkist, Laudy,
& Hoijtink, 2005):

πBp
�
µ,σ2|xb

�
�

1

PB pσ2 P Ωp|xbq
πBu

�
µ,σ2|xb

�
1Ωp

�
σ2

�
� 2 � πBu

�
µ,σ2|xb

�
1Ωp

�
σ2

�
, p � 1, 2,

(2.18)

where

PB
�
σ2 P Ωp|x

b
�
�

»
Ωp

»
R2

πBu
�
µ,σ2|xb

�
dµdσ2 �

»
Ωp

πBu
�
σ2|xb

�
dσ2 � 0.5.

(2.19)
We have PB

�
σ2 P Ω1|x

b
�
� PB

�
σ2 P Ω2|x

b
�
� 0.5 because πBu

�
σ2|xb

�
is the prod-

uct of two identical scaled inverse-χ2 distributions. In Equation (2.18) the inverse
1{PB

�
σ2 P Ωp|x

b
�

acts as a normalizing constant. Eventually, we define the BBF
prior under H0 such that it is in line with the priors under H1 and H2:

πB0
�
µ, σ2|xb

�
� πF0

�
σ2|xb

�
πN pµq , (2.20)

with πF0
�
σ2|xb

�
as in Equation (2.14).

With the priors at hand we can now determine the marginal likelihoods. The BBF
marginal likelihood under hypothesis Hp, p � 0, 1, 2, u, is given by

mB
p pb,xq �

»
Ωp

»
R2

fp
�
x|µ,σ2

�
πBp

�
µ,σ2|xb

�
dµdσ2. (2.21)

Besides the prior, this formulation differs from the FBF marginal likelihood in another
important aspect: in Equation (2.11) we have seen that to compute the FBF marginal

likelihood we implicitly factor the full likelihood as fp
�
x|µ,σ2

�
� fp

�
x|µ,σ2

�1�b
�

fp
�
x|µ,σ2

�b
. Then a proper posterior prior is obtained using fp

�
x|µ,σ2

�b
, and

the marginal likelihood is computed using the remaining fraction fp
�
x|µ,σ2

�1�b
.

From Equation (2.21) it can be seen that to compute the BBF marginal likelihoods

we use the full likelihood fp
�
x|µ,σ2

�
instead of fp

�
x|µ,σ2

�1�b
. That is, we first

use f0

�
x|µ, σ2

�b
to obtain the proper prior πBu

�
σ2|xb

�
, and subsequently we use

fp
�
x|µ,σ2

�
to compute the marginal likelihoods. This implies that we use the data
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twice, once for prior specification and once for hypothesis testing. We choose to do so

for the following reason: we use the information in f0

�
x|µ, σ2

�b
to specify the variance

of the balanced prior, but not its location. This means that we use less information

for prior specification than is actually contained in f0

�
x|µ, σ2

�b
. Therefore, the full

likelihood fp
�
x|µ,σ2

�
is used for hypothesis testing. The latter illustrates that the

BBF approach differs fundamentally from standard automatic procedures such as the
FBF in which the likelihood is explicitly divided into a training part and a testing
part. This is reflected in the function of b in the FBF and the BBF: while in the FBF
the b determines how the likelihood is divided, in the BBF it determines how much
of the information in the data we want to use twice.

Now, plugging f0

�
x|µ, σ2

�
and πB0

�
µ, σ2|xb

�
into Equation (2.21), we obtain the

BBF marginal likelihood under H0 as

mB
0 pb,xq �

k
�
ντ

2


� ν
2 Γ

�
n1�n2�ν�2

2

�
π
n1�n2�2

2 Γ
�
ν
2

�
pn1n2q

1
2 ppn1 � 1q s2

1 � pn2 � 1q s2
2 � ντ

2
 q

n1�n2�ν�2
2

,

(2.22)
with ν and τ2

 as in Equation (2.15), and k is an unspecified constant coming from
the improper Jeffreys prior on the common mean parameter, πN pµq (similar to k0 in
Appendix 2.A).

The marginal likelihoods under H1 and H2 are functions of the marginal likelihood
under Hu, which is

mB
u pb,xq �

k π�
n1�n2�2

2 pn1n2q
� 1

2
�
ντ

2


�ν
Γ
�
n1�ν�1

2

�
Γ
�
n2�ν�1

2

�
Γ
�
ν
2

�2
ppn1 � 1q s2

1 � ντ
2
 q

n1�ν�1
2 ppn2 � 1q s2

2 � ντ
2
 q

n2�ν�1
2

, (2.23)

with k as in Equation (2.22). The marginal likelihoods under H1 and H2 are then
given by

mB
p pb,xq �

PB
�
σ2 P Ωp|x

�
PB pσ2 P Ωp|xbq

mB
u pb,xq � 2 � PB

�
σ2 P Ωp|x

�
�mB

u pb,xq , p � 1, 2,

(2.24)
with PB

�
σ2 P Ωp|x

b
�

as in Equation (2.19), and the exact expression for

PB
�
σ2 P Ωp|x

�
is given in Equation (2.35) in Appendix 2.B. The derivation of Equa-

tions (2.22), (2.23) and (2.24) follows steps similar to those in Appendix 2.A. Note
that the unspecified constant k cancels out in the computation of Bayes factors.

Evaluation of the Method

We will now evaluate the BBF according to the five properties discussed in Section
2.3:

1. Proper priors. Equations (2.18) and (2.20), in combination with Equations
(2.14)–(2.17), show that the priors on σ2 under H0, H1, and H2 are proper
(truncated) scaled-inverse-χ2 distributions if b1n1 � b2n2 ¡ 2.

2. Minimal information. As was set out in the previous section, the unconstrained
prior is based on the assumption that σ2

1 � σ2
2 � σ2. A minimal study therefore
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consists of three observations, with at least one observation from each popula-
tion. We can thus make the priors contain the information of a minimal study
by setting b � p1.5{n1, 1.5{n2q

1
. Note that this results in degrees of freedom of

ν � 1 (see Equation (2.15)).

3. Scale invariance. The BBF is scale-invariant for the same reason that the FBF
is (see Section 2.4.1).

4. Balancedness. As was mentioned before, the unconstrained prior πBu
�
η|xb

�
is

balanced by definition. An illustration is given in Figure 2.3, which shows the
priors on σ2 (top row) and η (bottom row) for sample variances s2

1 � 1 and
s2

2 P t1, 4, 16u, sample sizes n1 � n2 � 20 � n, and fractions b1 � b2 � 1.5{n �
1.5{20 � 0.075. It can be seen that πBu

�
η|xb

�
is always balanced.

5. Occam’s razor. Figure 2.4 shows the Bayes factors BB1u (solid line) and BB2u
(dashed line) for sample variances s2

1 � 1 and s2
2 P rexpp�6q, expp6qs, sample

sizes n1 � n2 � 20, and fractions b1 � b2 � 0.075. It can be seen that BB1u
(BB2u) increases (decreases) monotonically as s2

2 increases, favoring the more
parsimonious inequality constrained hypothesis over the unconstrained hypoth-
esis if the former is supported by the data. The Bayes factors thus function as
Occam’s razor. In fact, the Bayes factors go to 2 for very large and very small
s2

2, respectively, because H1 and H2 are twice as parsimonious as Hu.

2.4.3 Adjusted Fractional Bayes Factor

Mulder (2014b) proposed a modification of the integration region in the FBF marginal
likelihood under (in)equality constrained hypotheses to ensure that the latter always
incorporates the complexity of an inequality constrained hypothesis. Compared to
the FBF, the proposed modification is always larger for an inequality constrained
hypothesis that is supported by the data. Even though this is essentially a good
property, a possible disadvantage of this approach is that it results in a slight decrease
of the evidence in favor of a true null hypothesis. For this reason we propose an
alternative method in this chapter: we adjust the FBF marginal likelihood under an
inequality constrained hypothesis as suggested by Mulder (2014b), but we keep the
marginal likelihood under the equality constrained hypothesis as in the FBF approach.
We shall refer to this approach as the adjusted fractional Bayes factor (aFBF). We
use the superscript aF to refer to the aFBF.

Marginal Likelihoods

Following Mulder (2014b), we define the adjusted FBF marginal likelihood under an
inequality constrained hypothesis as

maF
p pb,xq �

³
Ωp

³
R2 fu

�
x|µ,σ2

�
πNu

�
µ,σ2

�
dµdσ2³

Ωap

³
R2 fu px|µ,σ2q

b
πNu pµ,σ

2q dµdσ2
, p � 1, 2, (2.25)

where b � pb1, b2q
1
P p1{n1, 1s � p1{n2, 1s as with the FBF. Note the two adjustments

that were made compared to the standard FBF marginal likelihood given in Equation
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Figure 2.3: The marginal unconstrained BBF prior πBu
�
σ2|xb

�
(top row) and the

corresponding prior πBu
�
η � log

�
σ2

1{σ
2
2

�
|xb

�
(bottom row) for sample variances s2

1 �
1 and s2

2 P t1, 4, 16u, sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.075. The
prior πBu

�
η|xb

�
is always balanced.
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Figure 2.4: Bayes factors BB1u (solid line) and BB2u (dashed line) for sample variances
s2

1 � 1 and s2
2 P rexpp�6q, expp6qs, sample sizes n1 � n2 � 20, and fractions b1 �

b2 � 0.075. The Bayes factors favor the more parsimonious inequality constrained
hypothesis if it is supported by the data. This shows that BB1u and BB2u function as
Occam’s razor.
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(2.5). First, we use the unconstrained likelihood and Jeffreys prior. Second, in the
denominator we integrate over an adjusted parameter space Ωap, which will be defined
shortly. We do not adjust the FBF marginal likelihoods under H0 and Hu, that is,
we set

maF
0 pb,xq � mF

0 pb,xq and maF
u pb,xq � mF

u pb,xq . (2.26)

The aFBF of Hp, p � 1, 2, against Hu is then given by

BaFpu �
maF
p pb,xq

maF
u pb,xq

�

³
Ωp
πFu

�
σ2|x

�
dσ2³

Ωap
πFu pσ

2|xbq dσ2
�

PF
�
σ2 P Ωp|x

�
PF

�
σ2 P Ωap|x

b
� , (2.27)

where PF
�
σ2 P Ωp|x

�
and πFu

�
σ2|xb

�
are as in Equations (2.33) and (2.12), respec-

tively. A derivation is given in Appendix 2.D.

Now, we want PF
�
σ2 P Ωap|x

b
�
�

³
Ωap
πFu

�
σ2|xb

�
dσ2 � 0.5 (similar to

PB
�
σ2 P Ωp|x

b
�

in Equation (2.19)) to ensure that the automatic Bayes factor BaFpu
functions as Occam’s razor when evaluating an inequality constrained hypothesis. To
achieve this, we define the adjusted parameter space Ωap, p � 1, 2, as

Ωa1 :�
 
σ2 P Ωu : σ2

1   aσ2
2

(
and Ωa2 :�

 
σ2 P Ωu : σ2

1 ¡ aσ2
2

(
, (2.28)

where a is a constant chosen such that PF
�
σ2 P Ωa1 |x

b
�
� PF

�
σ2 P Ωa2 |x

b
�
� 0.5.

Figure 2.5 illustrates this. The plot shows πFu
�
σ2|xb

�
for sample variances s2

1 � 1 and
s2

2 � 4, sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1. Two lines σ2
1 � aσ2

2

are depicted, one for a � 1 and one for a � 0.25. To determine Ωa1 and Ωa2 we
proceed as follows. It can be seen that the probability mass in Ω1 (i.e. above the line
σ2

1 � 1 �σ2
2) is larger than that in Ω2. By tuning a we tilt the line σ2

1 � aσ2
2 such that

the probability mass above and below the line is equal to 0.5. For the prior depicted in
Figure 2.5 this is the case for a � 0.25. We thus have Ωa1 �

 
σ2 P Ωu : σ2

1   0.25 � σ2
2

(
and Ωa2 �

 
σ2 P Ωu : σ2

1 ¡ 0.25 � σ2
2

(
, and PF

�
σ2 P Ωa1 |x

b
�
� PF

�
σ2 P Ωa2 |x

b
�
�

0.5.

If we use b � p2{n1, 2{n2q
1

in order to satisfy the minimal information prop-

erty, then it can be shown that a �
n2pn1�1qs21
n1pn2�1qs22

. In this case we can show that

PF
�
σ2 P Ωap|x

b
�
� 0.5 by transforming the integral

PF
�
σ2 P Ωa1 |x

b
�
�

»
Ωa1

πFu
�
σ2|xb

�
dσ2

�

»
tσ2PΩu:σ2

1 aσ
2
2u

Inv-χ2
�
σ2

1 |ν1, τ
2
1

�
Inv-χ2

�
σ2

2 |ν2, τ
2
2

�
dσ2

�

»
tσ2PΩu:σ2

1 σ
2
2u

Inv-χ2
�
σ2

1 |1, τ
2
1

�
Inv-χ2

�
σ2

2 |1, aτ
2
2

�
dσ2

�

»
tσ2PΩu:σ2

1 σ
2
2u

Inv-χ2
�
σ2

1 |1, τ
2
1

�
Inv-χ2

�
σ2

2 |1, τ
2
1

�
dσ2

�

»
tσ2PΩu:σ2

1 σ
2
2u

πaFu
�
σ2|xb

�
dσ2 � 0.5,

(2.29)
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Figure 2.5: Marginal unconstrained FBF prior πFu
�
σ2|xb

�
for sample variances s2

1 � 1
and s2

2 � 4, sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1. The probability
mass above the line σ2

1 � aσ2
2 , a � 1, is larger than that below it. We adjust the line

by decreasing a until the probability mass above and below the line σ2
1 � aσ2

2 is equal
to 0.5. For the depicted prior this is the case for a � 0.25.

with νj and τ2
j , j � 1, 2, as in Equation (2.13). Here we used the result that if

σ2 � Inv-χ2
�
ν, τ2

�
, then aσ2 � Inv-χ2

�
ν, aτ2

�
. The density

πaFu
�
σ2|xb

�
� Inv-χ2

�
σ2

1 |1, τ
2
1

�
Inv-χ2

�
σ2

2 |1, τ
2
1

�
(2.30)

can be regarded as the implicit unconstrained prior in the aFBF approach. Note that
irrespective of the exact choice of b there always exists an a that yields
PF

�
σ2 P Ωa1 |x

b
�
� PF

�
σ2 P Ωa2 |x

b
�
� 0.5.

Evaluation of the Method

We will now evaluate the aFBF according to the five properties discussed in Section
2.3:

1. Proper priors. As with the FBF, we must have b1n1 � b2n2 ¡ 2 under H0 and
bjnj ¡ 1, j � 1, 2, under H1, H2, and Hu to ensure that the priors are proper.

2. Minimal information. As was mentioned before, the minimal information prop-
erty can be satisfied by setting b � p2{n1, 2{n2q

1
.

3. Scale invariance. The aFBF is scale-invariant for the same reason that the FBF
is (see Section 2.4.1).

4. Balancedness. In Equation (2.30) we have seen that the implicit unconstrained
prior on σ2 is a product of two scaled inverse-χ2 distributions with identical
hyperparameters. Thus the corresponding prior on η is balanced (see Appendix
2.C).
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Figure 2.6: Bayes factors BF1u (solid line), BB1u (dashed line), and BaF1u (dotted line)
for sample variances s2

1 � 1 and s2
2 P rexpp�6q, expp6qs and sample sizes n1 � n2 � 20.

In the FBF and the aFBF the fractions are b1 � b2 � 0.1, while in the BBF we have
b1 � b2 � 0.075. For s2

1   s2
2 the Bayes factor BaF1u favors the more parsimonious

inequality constrained hypothesis H1 : σ2
1   σ2

2 . It thus functions as Occam’s razor.

5. Occam’s razor. Figure 2.6 shows the behavior of BaF1u (dotted line) as compared
to BF1u (solid line) and BB1u (dashed line) for sample variances s2

1 � 1 and
s2

2 P rexpp�6q, expp6qs, sample sizes n1 � n2 � 20, and fractions b1 � b2 � 0.1.
For s2

1   s2
2 the Bayes factor BaF1u favors the more parsimonious inequality

constrained hypothesis H1 : σ2
1   σ2

2 . It thus functions as Occam’s razor.

2.5 Performance of the Bayes Factors

We present results of a simulation study investigating the performance of the three
automatic Bayes factors. We consider two normal populations X1 � Np0, 1q and
X2 � Np0, σ2

2q, where σ2
2 P t1.0, 1.5, 2.0, 2.5u. That is, we consider four effect sizes

σ2
2{σ

2
1 P t1.0, 1.5, 2.0, 2.5u. A study by Ruscio and Roche (2012, Table 2) indicates

that these population variance ratios roughly correspond to tno, small,medium, largeu
effects in psychological research. We first investigate the strength of the evidence in
favor of the true hypothesis Ht, t � 0, 1. The goal here is to see which automatic
Bayes factor converges fastest to the true hypothesis. Following this, we consider
frequentist error probabilities of selecting the wrong hypothesis. Note that from a
Bayesian point of view these probabilities are of limited importance because Bayes
factors are consistent in the sense that the evidence in favor of the true hypothesis
grows to infinity as the sample size accumulates. These frequentist probabilities can
be useful, however, to decide which automatic Bayes factor to use based on differences
in error probability behavior.
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2.5.1 Strength of Evidence in Favor of the True Hypothesis

In this section we will investigate which automatic Bayes factor provides strongest
evidence in favor of the true hypothesis. We shall use two measures of evidence. The
first is the weight of evidence in favor of Ht against Ht1 , where t1 � 1 if t � 0 and
t1 � 0 otherwise. The weight of evidence is given by the logarithm of the Bayes factor,
that is, log pBtt1q. The second measure of evidence we use is the posterior probability
of the true hypothesis. Assuming that all hypotheses are equally likely a priori (i.e.
P pH0q � P pH1q � P pH2q � 1{3, which is a standard default choice), it is given by

P pHt|xq �
mtpb,xq

m0pb,xq�m1pb,xq�m2pb,xq
, where mt pb,xq denotes the marginal likelihood

under Ht. Both measures of evidence are computed for the FBF, the BBF, and the
aFBF.

We drew 5000 samples of size n1 � n2 � n P t5, 10, 20, . . . , 100u from X1 and X2.

Denote these samples by xpmq �
�
x
pmq
1 ,x

pmq
2

	1
, m � 1, . . . , 5000. For each xpmq we

computed the two measures of evidence log pBtt1q
pmq

and P
�
Ht|x

pmq
�
. Eventually,

we computed the median of
!

log pBtt1q
pmq

)5000

m�1
and

 
P
�
Ht|x

pmq
�(5000

m�1
to estimate

the average evidence in favor of Ht, as well as the 2.5%- and 97.5%-quantile to obtain
an indication of the variability of the evidence.

Figure 2.7 shows the results for the weight of evidence, log pBtt1q. The plots show
the median (black lines) and the 2.5%- and 97.5%-quantile (gray lines) as a function
of the common sample size n for each σ2

2 P t1.0, 1.5, 2.0, 2.5u. It can be seen that the
three automatic Bayes factors provide similarly strong median evidence in favor of
the true hypothesis (panels (a) to (d)). In panel (a) the dotted line for the aFBF is
actually covered by the lines for the FBF and the BBF. If there is a positive effect
(panels (b) to (d)), then the aFBF provides slightly stronger evidence in favor of the
true hypothesis H1 than the FBF and the BBF (as can be seen from the lines for the
median and the 97.5%-quantile). The BBF, on the other hand, provides somewhat
weaker evidence in favor of H1. This is because the balanced prior slightly shrinks the
posterior towards σ2

1 � σ2
2 , which results in a loss of evidence in favor of an inequality

constrained hypothesis that is supported by the data. The FBF and the aFBF are not
affected by such shrinkage. Figure 2.8 shows the simulation results for the posterior
probability of the true hypothesis, P pHt|xq. In the legends the superscripts F , B,
and aF denote on which Bayes factor the posterior probability is based. The results
are in line with those from Figure 2.7. In fact, the advantage of the aFBF over the
FBF and the BBF in terms of strength of evidence is a bit more pronounced. Overall,
it can be concluded that the aFBF performs best: under H0 it performs about as
good as the FBF and the BBF, while under H1 it slightly outperforms the latter two.

2.5.2 Frequentist Error Probabilities

Table 2.1 shows simulated frequentist error probabilities of the three automatic Bayes
factors and the likelihood-ratio (LR) test for σ2

1 � 1 and σ2
2 P t1.0, 1.5, 2.0, 2.5u. For

each σ2
2 we drew 5000 samples of size n1 � n2 � n P t5, 50, 500u from X1 � Np0, 1q

and X2 � Np0, σ2
2q. On each sample we computed the Bayes factors and the LR

test. In the Bayesian testing approach an error occurs if the true hypothesis Ht does
not have the largest posterior probability, that is, if P

�
Ht1 |x

pmq
�
¡ P

�
Ht|x

pmq
�

for
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Figure 2.7: Results of a simulation study investigating the performance of the FBF,
the BBF, and the aFBF in testing variances of two normal populations X1 � Np0, 1q
and X2 � Np0, σ2

2q, where σ2
2 P t1.0, 1.5, 2.0, 2.5u. The black lines depict the median

weight of evidence in favor of the true hypothesis Ht, log pBtt1q, as a function of the
common sample size n1 � n2 � n. The gray lines depict the 2.5%- and 97.5%-
quantile. It can be seen that if there is a positive effect (i.e. if σ2

1   σ2
2), then the

aFBF provides strongest evidence in favor of the true hypothesis H1.
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2 � 2.5

Figure 2.8: Results of a simulation study investigating the performance of the FBF,
the BBF, and the aFBF in testing variances of two normal populations X1 � Np0, 1q
and X2 � Np0, σ2

2q, where σ2
2 P t1.0, 1.5, 2.0, 2.5u. The black lines depict the median

posterior probability of the true hypothesis Ht, P pHt|xq, as a function of the common
sample size n1 � n2 � n. The gray lines depict the 2.5%- and 97.5%-quantile. In the
legends the superscripts F , B, and aF denote on which Bayes factor the posterior
probability is based. It can be seen that if there is a positive effect (i.e. if σ2

1   σ2
2),

then the aFBF provides strongest evidence in favor of the true hypothesis H1.
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Table 2.1: Frequentist error probabilities of the three automatic Bayes factors and
the likelihood-ratio (LR) test for σ2

1 � 1, σ2
2 P t1.0, 1.5, 2.0, 2.5u, and n1 � n2 � n P

t5, 50, 500u. In the LR test we set α � 0.05. It can be seen that under H1 the aFBF
has lower error probabilities than the FBF and the BBF.

σ2
2 1.0 1.5 2.0 2.5

n 5 50 500 5 50 500 5 50 500 5 50 500
FBF 0.23 0.07 0.02 0.80 0.66 0.01 0.72 0.28 0.00 0.65 0.09 0.00
BBF 0.26 0.07 0.02 0.79 0.66 0.01 0.69 0.28 0.00 0.62 0.09 0.00
aFBF 0.36 0.08 0.02 0.72 0.63 0.01 0.60 0.26 0.00 0.54 0.08 0.00
LR test 0.05 0.05 0.05 0.94 0.71 0.00 0.92 0.33 0.00 0.89 0.11 0.00

some t1 � t. Here again we assumed equal prior probabilities of the hypotheses.
In the frequentist approach an error occurs under H0 if p   α and under H1 if
p ¡ α _

�
p   α^ s2

1 ¡ s2
2

�
. In the present simulation we set α � 0.05. Table 2.1

shows the proportions of errors in the 5000 samples. It can be seen that the error
probabilities of the three automatic Bayes factors are quite similar. Under H0 the
aFBF shows somewhat larger error probabilities. Under H1, however, it has lower
error probabilities than the FBF and the BBF, particularly for n � 5. Moreover, it
can be seen that under H1 the Bayes factors have lower error probabilities than the
LR test. While the differences are considerable for n � 5, the LR test closes the gap as
the sample size increases. One final remark concerns the error probabilities under H0:
While the LR test has unconditional error probabilities equal to α � 0.05 regardless of
the sample size, the conditional error probabilities of the three Bayes factors decrease
as the sample size increases. This illustrates that the automatic Bayes factors are
consistent whereas the p-value is not.

Additional insight into the performance of the three automatic Bayes factors is
given in Table 2.2. It is well-known that p-values tend to overstate the evidence
against the null hypothesis and that methods based on comparing likelihoods (such
as Bayes factors and posterior probabilities of hypotheses) commonly yield weaker
evidence against the null (see, for example, Berger & Sellke, 1987; Held, 2010; Sellke,
Bayarri, & Berger, 2001). Table 2.2 shows that this also holds for the three automatic
Bayes factors discussed in this chapter. The table can be read as follows. For sample
sizes of n1 � n2 � n � 5 and sample variances of s2

1 � 1 and s2
2 � 9.60, the

standard likelihood-ratio test of equality of variances yields a two-sided p-value of 0.05.
The posterior probabilities of H0 based on these sample data are PF pH0|xq � 0.26,
PBpH0|xq � 0.34, and P aF pH0|xq � 0.19. From the frequentist significance test
we would thus conclude that there is evidence against H0, whereas the posterior
probabilities tell us that there is some evidence for H0 given the observed data. This
discrepancy between the p-value and the posterior probabilities of H0 becomes even
more pronounced for larger sample sizes. A similar picture emerges for p � 0.01:
While the p-value tells us that there is strong evidence against H0, it is difficult to
rule out H0 given posterior probabilities roughly between 0.1 and 0.3. It can be seen
that the posterior probabilities of H0 decrease as the p-value decreases. This suggests
that only very small p-values should be considered indicative of evidence against H0,
particularly if sample sizes are large.
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Table 2.2: Comparison of two-sided p-values and posterior probabilities ofH0, denoted
by P pH0|xq. The superscripts F , B, and aF denote on which Bayes factor P pH0|xq
is based. For example, sample sizes of n1 � n2 � n � 5 and sample variances of
s2

1 � 1.00 and s2
2 � 9.60 yield a p-value of 0.05 and posterior probabilities of H0 of

0.26, 0.34, and 0.19. It can be seen that while the p-values indicate evidence against
H0, the posterior probabilities tell us that H0 is quite likely given the sample data.

p � 0.05 p � 0.01

n s21 s22 PF pH0|xq PBpH0|xq PaF pH0|xq s22 PF pH0|xq PBpH0|xq PaF pH0|xq
5 1.00 9.60 0.26 0.34 0.19 23.15 0.11 0.28 0.07
10 1.00 4.03 0.29 0.34 0.23 6.54 0.11 0.20 0.08
20 1.00 2.53 0.34 0.36 0.29 3.43 0.13 0.16 0.10
50 1.00 1.76 0.43 0.43 0.39 2.11 0.17 0.18 0.14
100 1.00 1.49 0.51 0.50 0.48 1.69 0.21 0.21 0.19

2.6 Empirical Data Examples

In this section we apply the three automatic Bayes factors to two empirical data sets.

2.6.1 Example 1: Variability of Intelligence in Children
(Arden & Plomin, 2006)

We first consider a study by Arden and Plomin (2006) investigating differences in
variance of intelligence between girls and boys. Psychological research has consistently
found males to be more variable in intellectual abilities than females (e.g. Feingold,
1992). Arden and Plomin therefore assumed that this finding would also apply to
children. Their dependent variable of interest was a general ability factor extracted
from several tests of verbal and non-verbal ability. The authors expected that boys
would show larger variance on this factor than girls, which can be formulated in
the hypothesis H1 : σ2

f   σ2
m, where σ2

f and σ2
m denote the population variances of

females and males, respectively. The competing hypotheses are H0 : σ2
f � σ2

m and

H2 : σ2
f ¡ σ2

m.

In samples of nf � 1366 girls and nm � 1136 boys of age 10, Arden and Plomin
found sample variances of s2

f � 0.92 and s2
m � 1.10. Table 2.3 provides the Bayes

factors B10 and B12 and the posterior probabilities of H0, H1, and H2 (assuming equal
prior probabilities) for these sample data. As can be seen, the posterior probabilities of
H0, H1, and H2 are approximately 0.13, 0.87, and 0.00 for all three automatic Bayes
factors. An immediate conclusion we can draw from these results is that we can
basically rule out H2. The Bayes factors B10 and B12, and the posterior probability
of H1, P pH1|xq, indicate positive evidence in favor of H1. However, the evidence does
not appear to be strong enough to completely rule out H0. The two-sided p-value for
these data obtained from the standard likelihood-ratio test equals 0.002, which would
commonly be interpreted as sufficient evidence to reject H0 in favor of the two-sided
alternative.
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Table 2.3: Results for two empirical data examples.

Example 1 Example 2

B10 B12 P pH0|xq P pH1|xq P pH2|xq B01 B02 P pH0|xq P pH1|xq P pH2|xq
FBF 6.32 1176.58 0.14 0.86 0.00 7.14 5.52 0.76 0.10 0.14
BBF 6.43 1261.63 0.13 0.87 0.00 7.73 4.96 0.75 0.10 0.15
aFBF 6.68 1316.52 0.13 0.87 0.00 7.21 5.47 0.76 0.10 0.14

2.6.2 Example 2: Precision of Burn Wound Assessments
(N. A. J. Martin, Lundy, & Rickard, 2014)

We next reanalyze data from a study by Martin et al. (2014) investigating the precision
of burn wound assessments by UK Armed Forces medical personnel. The percentage
of the total body surface area that is burned (%TBSA burned) is a very important
measure in the treatment of burn victims. The authors had two groups of medical
personnel estimate the %TBSA burned for one particular burn case. The first group
consisted of n1 � 20 experienced burn specialists, while the second group consisted
of n2 � 40 relatively inexperienced participants of a surgical training course. Martin
et al. expected the experienced burn specialists to be less variable in their %TBSA
burned estimates than the inexperienced medical personnel. This expectation can be
formulated in the hypothesis H1 : σ2

1   σ2
2 , the competing hypotheses being H0 : σ2

1 �
σ2

2 and H2 : σ2
1 ¡ σ2

2 .

Martin et al. found sample variances of s2
1 � 105.88 and s2

2 � 100.60. The two-
sided p-value obtained from the standard likelihood-ratio test equals p � 0.86 for
these sample data. From this p-value it can be concluded that there is not enough
evidence to reject the null hypothesis that the two groups are equally heterogeneous.
However, we cannot conclude that there is evidence in favor of the null hypothesis
since p-values do not imply this kind of information. The p-value of 0.86 thus leaves us
in a state of ignorance. The Bayes factor on the other hand can be used to quantify the
relative evidence in favor of a null hypothesis. Table 2.3 provides the Bayes factors
B01 and B02 and the posterior probabilities of H0, H1, and H2 (assuming equal
prior probabilities). The Bayes factors and the posterior probability of H0, P pH0|xq,
indicate positive evidence in favor of H0. In particular, the posterior probability of H0

is approximately 0.76 for all three automatic Bayes factors. However, the posterior
probabilities of H1 and H2 are between 0.10 and 0.15, indicating that it is difficult to
completely rule out either of the two hypotheses based on the sample data.

2.7 Discussion

In this chapter we presented three automatic Bayes factors for testing variances of
two independent normal distributions: the FBF, the BBF, and the aFBF. The three
Bayes factors are fully automatic and thus readily applicable. All the user needs to
provide is the two sample sizes and sample variances. This makes the Bayes factors
particularly valuable for both statisticians and applied researchers who are interested
in a user-friendly Bayesian method for testing two variances.

The methods were theoretically evaluated on the basis of five properties: proper
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priors, minimal information, scale invariance, balancedness, and Occam’s razor. As
was shown, the FBF satisfies neither the balancedness property nor the Occam’s
razor property when testing inequality constraints on variances. The BBF and the
aFBF, on the other hand, satisfy all five properties. In the BBF, an automatic
balanced prior is constructed based on equal prior distributions for the variances with
minimal information. In the aFBF the FBF marginal likelihood is adjusted such that
it adequately incorporates the parsimony of an inequality constrained hypothesis. The
simulation study indicates that the aFBF provides strongest evidence in favor of a
true inequality constrained hypothesis. The slightly worse performance of the BBF is
caused by the fact that the balanced prior shrinks the posterior towards the boundary
of the constrained space where σ2

1 � σ2
2 , resulting in weaker evidence in favor of a

true inequality constrained hypothesis. The FBF and the aFBF, on the other hand,
are not affected by prior shrinkage.

One possible point of debate relating to all three Bayes factors is the the choice of
the fraction b. In this chapter we used the minimal information approach to specifying
b, which is a widely accepted principle. However, there are other approaches to
specifying b, each of which pursuing a different goal (see, for example, Conigliani &
O’Hagan, 2000; O’Hagan, 1995). All important formulas in this chapter are expressed
in terms of b. It is therefore straightforward to use a different b if desired.

There are two natural extensions of our approach to testing two variances. First,
we are often interested in testing variances of J ¡ 2 independent populations. Rele-
vant hypotheses in this case include the null hypothesis H0 : σ2

1 � σ2
2 � � � � � σ2

J , the
order constrained hypothesis H1 : σ2

1   σ2
2   � � �   σ2

J , and hypotheses with combi-
nations of equality and inequality constraints, for example H2 : σ2

1 � σ2
2   � � �   σ2

J .
The second natural extension is testing variances of dependent populations, which
is relevant when analyzing repeated measurement data. Based on our findings the
automatic Bayes factors discussed in this chapter will prove useful for these more
complex testing problems.

2.A Derivation of mF
0 pb,xq

Plugging f0

�
x|µ, σ2

�
, f0

�
x|µ, σ2

�b
, and πN0

�
µ, σ2

�
into Equation (2.5) gives us

mF
0 pb,xq �

³
Ω0

³
R2 f0

�
x|µ, σ2

�
πN0

�
µ, σ2

�
dµdσ2³

Ω0

³
R2 f0 px|µ, σ2q

b
πN0 pµ, σ

2q dµdσ2
�

mF
0 pxq

mF
0 px

bq
. (2.31)

We first derive the denominator mF
0

�
xb

�
. Note that the Jeffreys prior can be written

as πN0
�
µ, σ2

�
� k0σ

�2, where k0 is an unspecified normalizing constant (see, for
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instance, O’Hagan, 1995). Then

mF
0

�
xb

�
�

»
R�

»
R2

f
�
x1|µ1, σ

2
�b1

f
�
x2|µ2, σ

2
�b2

k0σ
�2dµdσ2

� k0

»
R�

»
R
f
�
x1|µ1, σ

2
�b1

dµ1

»
R
f
�
x2|µ2, σ

2
�b2

dµ2 σ
�2dσ2

� k0

»
R�
pb1n1q

� 1
2
�
σ22π

�� b1n1�1
2 exp

�
�
b1 pn1 � 1q s2

1

2σ2




pb2n2q
� 1

2
�
σ22π

�� b2n2�1
2 exp

�
�
b2 pn2 � 1q s2

2

2σ2



σ�2dσ2

� k0 pb1b2q
� 1

2 pn1n2q
� 1

2 p2πq
�
b1n1�b2n2�2

2»
R�

�
σ2

��p b1n1�b2n2�2
2 �1q

exp

�
�
b1 pn1 � 1q s2

1 � b2 pn2 � 1q s2
2

2σ2



dσ2

� k0 pb1b2q
� 1

2 pn1n2q
� 1

2 π�
b1n1�b2n2�2

2 Γ

�
b1n1 � b2n2 � 2

2



�
b1 pn1 � 1q s2

1 � b2 pn2 � 1q s2
2

�� b1n1�b2n2�2
2 ,

(2.32)

where the integrand in the last but one line is the kernel of a scaled inverse-χ2 dis-

tribution with parameters ν � b1n1 � b2n2 � 2 and τ2 �
b1pn1�1qs21�b2pn2�1qs22

b1n1�b2n2�2 . We

obtain mF
0 pxq by setting b1 � b2 � 1 in the expression for mF

0

�
xb

�
. Dividing mF

0 pxq

by mF
0

�
xb

�
eventually yields the expression given in Equation (2.8). Note that the

unspecified constant k0 cancels out in this step.

2.B Probability That σ2 Is in Ωp

For the FBF we have

PF
�
σ2 P Ωp|x

�
�

»
Ωp

Inv-χ2
�
σ2

1 |n1 � 1, s2
1

�
Inv-χ2

�
σ2

2 |n2 � 1, s2
2

�
dσ2, p � 1, 2,

(2.33)
and

PF
�
σ2 P Ωp|x

b
�
�

»
Ωp

Inv-χ2

�
σ2

1 |b1n1 � 1,
b1 pn1 � 1q s2

1

b1n1 � 1




Inv-χ2

�
σ2

2 |b2n2 � 1,
b2 pn2 � 1q s2

2

b2n2 � 1



dσ2, p � 1, 2.

(2.34)

For the BBF we have

PB
�
σ2 P Ωp|x

�
�

»
Ωp

Inv-χ2

�
σ2

1 |n1 � ν � 1,
pn1 � 1q s2

1 � ντ
2


n1 � ν � 1




Inv-χ2

�
σ2

2 |n2 � ν � 1,
pn2 � 1q s2

2 � ντ
2


n2 � ν � 1



dσ2, p � 1, 2.

(2.35)
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The integrals cannot be solved analytically, but they can be approximated numerically
using Monte Carlo methods: first we draw samples from the two scaled inverse-
χ2 distributions Inv-χ2

�
σ2

1 |ν1, τ
2
1

�
and Inv-χ2

�
σ2

2 |ν2, τ
2
2

�
. An approximation of the

integral is then given by the proportion of draws that fall in Ωp.

2.C Distribution of η � log
�
σ2

1{σ
2
2

�

Let πσ2
1 ,σ

2
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2
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σ2

2 |ν2, τ
2
2

�
be the joint distribution

of σ2
1 and σ2

2 . We derive the distribution of η � log
�
σ2

1{σ
2
2

�
. To do so we first derive

the distribution of ζ � σ2
1{σ

2
2 and subsequently apply the transformation η � logpζq.

To determine the distribution of ζ we first determine the joint distribution of ζ and
σ2

2 , which is given by

πζ,σ2
2
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2
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We then obtain the marginal distribution of ζ by integrating out σ2
2 :

πζpζq �

»
R�
πζ,σ2

2

�
ζ, σ2

2

�
dσ2

2

�

�
ν1τ

2
1
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2
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2 Γ
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� ζ�p
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2
1 ζ
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2
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(2.37)

Eventually, we obtain the distribution of η by applying the transformation η � logpζq:

πηpηq �

∣∣∣∣d exppηq

dη

∣∣∣∣πζ pexppηqq

�

�
ν1τ

2
1

� ν1
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2 Γ
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� expp�ηq
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�
ν1τ

2
1 expp�ηq � ν2τ

2
2

�� ν1�ν2
2 .

(2.38)

Next, we show that πηpηq is balanced if and only if πσ2
1 ,σ

2
2

�
σ2

1 , σ
2
2

�
�

Inv-χ2
σ2

1

�
σ2

1 |ν, τ
2
�

Inv-χ2
σ2

2

�
σ2

2 |ν, τ
2
�
. In other words, we show that πηpηq is symmetric

about 0 and nonincreasing in |η| if and only if ν1 � ν2^ τ
2
1 � τ2

2 . We first use a proof
by contrapositive to show that if πηpηq is balanced, then ν1 � ν2 ^ τ

2
1 � τ2

2 . Assume
that  

�
ν1 � ν2 ^ τ

2
1 � τ2

2

�
. We show that πηpηq is not balanced. We consider three

cases.
Case 1. ν1 � ν2 ^ τ2

1 � τ2
2 . Note that if πηpηq was symmetric about 0 and

nonincreasing in |η|, then it would have a single mode at 0. In this case we would
have d

dηπηp0q � 0. However, if ν1 � ν2 ^ τ2
1 � τ2

2 , then d
dηπηp0q � 0, which shows

that πηpηq is not balanced.
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Case 2. ν1 � ν2 ^ τ2
1 � τ2

2 . Note that if πηpηq was symmetric about 0, then we
would have πηpηq � πηp�ηq. Let ν1 � ν2 � ν. Then

πηpηq �
Γpνq
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(2.39)

since τ2
1 � τ2

2 . This shows that πηpηq is not symmetric about 0, and thus not balanced.
Case 3. ν1 � ν2 ^ τ

2
1 � τ2

2 . The argument is analogous to that in Case 2.
We next show that if ν1 � ν2 ^ τ

2
1 � τ2

2 , then πηpηq is balanced. Let ν1 � ν2 � ν
and τ2

1 � τ2
2 � τ2. Then πηpηq is symmetric about 0 since
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(2.40)

Eventually, note that expp�η{2q � exppη{2q is strictly monotonically increasing for
|η| � η ¡ 0, in which case the inverse of this expression and πηpηq are strictly
monotonically decreasing (i.e. nonincreasing).

2.D Derivation of BaF
pu
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Chapter 3

Bayesian Evaluation of
Constrained Hypotheses on
Variances of Multiple
Independent Groups

Abstract

Research has shown that independent groups often differ not only in their
means, but also in their variances. Comparing and testing variances is there-
fore of crucial importance to understand the effect of a grouping variable on
an outcome variable. Researchers may have specific expectations concerning
the relations between the variances of multiple groups. Such expectations can
be translated into hypotheses with inequality and/or equality constraints on
the group variances. Currently, however, no methods are available for testing
(in)equality constrained hypotheses on variances. This chapter proposes a novel
Bayesian approach to this challenging testing problem. Our approach has the
following useful properties: First, it can be used to simultaneously test multi-
ple (non)nested hypotheses with equality as well as inequality constraints on
the variances. Second, our approach is fully automatic in the sense that no
subjective prior specification is needed. Only the hypotheses need to be pro-
vided. Third, a user-friendly software application is included that can be used
to perform this Bayesian test in an easy manner.

3.1 Introduction

Data analysis in psychological research commonly focuses on measures of central ten-
dency such as means and regression coefficients. Measures of dispersion like variances
receive relatively little attention. By disregarding the dispersion, however, researchers

This chapter is published as Böing-Messing, F., van Assen, M. A. L. M., Hofman, A. D., Hoijtink,
H., & Mulder, J. (2017). Bayesian evaluation of constrained hypotheses on variances of multiple
independent groups. Psychological Methods, 22 (2), 262–287. http://dx.doi.org/10.1037/met0000116.
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run the risk of overlooking vital information in the data. Carroll (2003) distinguished
two situations in which it is crucial to carefully consider the structure of variances.
The first is the situation in which the variability systematically depends on known
factors. An example is heteroscedasticity in ANOVA and regression. For instance,
it has been pointed out that in experimental studies treatments often not only affect
group means, but also group variances (e.g., Bryk & Raudenbush, 1988; Grissom,
2000; Ruscio & Roche, 2012). However, heterogeneity of variances is common in
existing groups as well (e.g., Grissom, 2000; Ruscio & Roche, 2012). For example,
males have been found to be more variable than females on a variety of measures
(e.g., Lehre, Lehre, Laake, & Danbolt, 2009). Furthermore, it is frequently observed
that the variability changes systematically with time (e.g., Aunola, Leskinen, Lerkka-
nen, & Nurmi, 2004; Hultsch, MacDonald, & Dixon, 2002). For example, a method
that allows for the variability to systematically depend on known factors is the beta
regression approach of Smithson and Verkuilen (2006). The authors model the mean
as well as the variance as a function of (possibly different) predictors, thus treating
the variance as a parameter of interest rather than as a nuisance parameter. The
second situation in which variances play a crucial role is in multilevel modeling. Here
researchers need to carefully model the variability at multiple levels, which results
in multiple variance components. For example, Verhagen and Fox (2013) proposed
a test on variance components in multilevel IRT models to check for measurement
invariance in cross-national surveys. Furthermore, Kim and Seltzer (2011) examined
heterogeneity in residual variance in multilevel models applied to (quasi-)experimental
data in order to detect differential response to treatments. In the present chapter the
focus is on heterogeneity of variances in one-way ANOVA designs with independent
groups in the first situation.

There are often reasons to expect a certain structure of the variances of multiple
independent groups. Typically one expects that certain groups are more heteroge-
neous than others, less heterogeneous, or equally heterogeneous. Such expectations
can be translated into equality and inequality constrained hypotheses on the group
variances. For example, in experimental studies one would expect treatment groups
to have larger variances than control groups because participants respond differently
to treatments (e.g., Bryk & Raudenbush, 1988; Grissom, 2000). Suppose we compare
a control group with two treatment groups receiving a mild and an intense treatment,
respectively. A conceivable hypothesis in this case would be H1 : σ2

1   σ2
2   σ2

3 ,
where σ2

1 is the variance of the control group and σ2
2 and σ2

3 are the variances of the
groups receiving the mild and the intense treatment, respectively. Note that H1 states
that the intense treatment produces larger variance than the mild treatment. To see
whether there is evidence in favor of H1 we test it against one or more competing
hypotheses. Potential competitors are the null hypothesis H0 : σ2

1 � σ2
2 � σ2

3 stating
equality of variances and the complement of H1 given by H2 : not σ2

1   σ2
2   σ2

3 . The
complement H2 entails all possible hypotheses except H1. Hence, testing an order
constrained hypothesis like H1 against its complement tells us whether there is ev-
idence in favor of our expected order or whether another hypothesis is more likely.
Note that the interest is solely on the group variances, whereas the group means are
treated as nuisance parameters.

Theoretical considerations often suggest (in)equality constrained hypotheses on
the variances of existing groups as well. For example, Aunola et al. (2004) hypothe-
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sized that the variance of mathematical abilities either increases or decreases across
grades. For J ¥ 2 grades this can be expressed in the two competing hypothe-
ses H1 : σ2

1   � � �   σ2
J and H2 : σ2

J   � � �   σ2
1 , where σ2

j denotes the variance
in grade j. The idea behind an increase (H1) is that students who start out with
high mathematical potential develop their mathematical abilities faster than students
with low potential, which increases interindividual differences. A decrease in the vari-
ability of mathematical abilities (H2) might occur because systematic instruction at
school helps students with low mathematical potential catch up, so that interindivid-
ual differences decrease. Another potential competing hypothesis would be the null
hypothesis H0 : σ2

1 � � � � � σ2
J . Note that H1 and H2 are in agreement with models

of development over time. For example, in the random slope model variances may
increase over time, decrease over time, or first decrease and then increase over time
(Snijders & Bosker, 2012). Constrained hypotheses on the variances of existing groups
are conceivable in a variety of psychological research areas. For example, research on
gender differences often finds males to be more variable in their intellectual abilities
and personality than females (e.g., Borkenau et al., 2013; Feingold, 1992). Geron-
tological studies have found that the variability of reaction times increases with age
(e.g., Hultsch et al., 2002). Research on psychological disorders has shown that ADHD
patients tend to be more variable in their attentional performances than groups of
people who do not suffer from ADHD (e.g., Silverstein, Como, Palumbo, West, &
Osborn, 1995). Furthermore, research on person-in-context behavior suggests that
the variability of people’s behavior may differ across situations. For example, Van
Mechelen (2009) argued that in an aggression context the variability may depend
on the amount of social control in a situation, where high social control results in
homogeneous behavior and thus low variability.

The standard approach to testing variances is null hypothesis significance testing
(NHST). Classical NHST procedures like the likelihood ratio test or Levene’s test
(Levene, 1960) test the null hypothesis stating that all J variances are equal, H0 : σ2

1 �
� � � � σ2

J , against the alternative hypothesis stating that the variances are not all
equal, Ha : not σ2

1 � � � � � σ2
J . In testing the order constrained hypothesis H1 : σ2

1  
� � �   σ2

J using classical NHST procedures one would proceed as follows: First we test
the null against the alternative hypothesis. If we are able to reject the null hypothesis,
we check whether the sample variances follow the order stated in the order constrained
hypothesis. For more than two groups this is done by pairwise comparisons. This
approach entails two problems: First, it suffers from Type I error inflation if we do not
adjust the significance level for multiple testing. If we do adjust the significance level,
then the procedure suffers from low power (e.g., Cohen, 1992). Second, it is possible
that the pairwise comparisons produce contradictory results (e.g., H0 : σ2

1 � σ2
2 and

H0 : σ2
1 � σ2

3 are not rejected, but H0 : σ2
2 � σ2

3 is).

Motivated by these disadvantages, Gastwirth, Gel, and Miao (2009) proposed an
NHST procedure for testing the null hypothesis against an order constrained hypoth-
esis. The advantage of this test is that it has higher power to detect an order effect.
However, the method does not allow testing the null against an alternative hypothesis
with a combination of equality and inequality constraints on the variances. This is
a serious limitation given the large number of distinct hypotheses we can formulate.
Using different combinations of equality and inequality constraints, we can specify
dozens of distinct hypotheses on three variances. For more than three groups there
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are well over 100 distinct hypotheses. Furthermore, the test by Gastwirth et al. does
not solve the problems inherent in all NHST procedures: First, NHST procedures
are not able to quantify evidence in favor of a hypothesis, no matter whether it is
a null, an order constrained, or an unconstrained hypothesis (e.g., Wagenmakers,
2007). Second, it often happens that researchers have multiple competing hypotheses
they would like to compare. NHST procedures do not allow testing these hypotheses
against one another to determine which is most supported by the data. All one can do
is test each hypothesis against the null, which does not answer the research question
which hypothesis receives strongest support.

Given the problems with NHST procedures, it seems natural to use an information
criterion like the Akaike information criterion (AIC; Akaike, 1973) or the Bayesian in-
formation criterion (BIC; Schwarz, 1978) to compare the hypotheses. However, these
criteria cannot be used to test inequality constrained hypotheses. Both the AIC and
the BIC involve a penalty term that measures the complexity of a hypothesis by the
number of parameters. However, under inequality constrained hypotheses the num-
ber of parameters is not a suitable measure of the complexity because each inequality
constraint effectively reduces the complexity. For example, the order constrained
hypothesis H1 : σ2

1   σ2
2   σ2

3 is less complex than the unconstrained hypothesis
Hu : σ2

1 , σ
2
2 , σ

2
3 because under H1 the variances can take on fewer values (e.g., σ2

1 can-
not be greater than σ2

2). As a solution to this problem, Anraku (1999) proposed
the order-restricted information criterion (ORIC). However, the ORIC is designed for
testing order constrained hypotheses on means. At this point it is unclear whether
this methodology can be generalized to the case of testing equality and inequality con-
strained hypotheses on variances. Note that the deviance information criterion (DIC;
Spiegelhalter, Best, Carlin, & van der Linde, 2002) and the Watanabe-Akaike infor-
mation criterion (WAIC; Watanabe, 2010) do not provide a solution to this problem
because they do not properly take the parsimony introduced by inequality constraints
into account (Mulder et al., 2009; Gelman, Hwang, & Vehtari, 2014). Under certain
conditions the DIC and the WAIC are asymptotically equal to leave-one-out cross-
validation (Gelman et al., 2014), which implies that the latter is not suitable for
testing inequality constrained hypotheses on variances either.

In this chapter we adopt a Bayesian approach to testing equality and inequal-
ity constrained hypotheses on variances using Bayes factors (Jeffreys, 1961; Kass &
Raftery, 1995). The Bayes factor is a Bayesian hypothesis testing and model selection
criterion. It provides a solution to the aforementioned problems inherent in NHST
procedures and existing information criteria. In particular, the Bayes factor quan-
tifies the evidence in favor of a hypothesis. This holds for all types of hypotheses:
The Bayes factor allows quantification of evidence in favor of a null hypothesis, order
constrained hypotheses, and hypotheses with a combination of equality and inequality
constraints. Furthermore, using the Bayes factor it is straightforward to simultane-
ously test multiple hypotheses against one another. In this case the Bayes factor tells
us which hypothesis is most supported by the data. Bayes factors have a number of
additional desirable properties: First, contrary to NHST procedures, Bayes factors do
not require the hypotheses under consideration to be nested (e.g., Berger & Mortera,
1999). Bayes factors are therefore able to directly test, for example, H1 : σ2

1   σ2
2   σ2

3

against H2 : σ2
3   σ2

2   σ2
1 . Second, Bayes factors automatically function as Occam’s

razor. This means that if two hypotheses describe the data equally well, then the
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Bayes factor automatically chooses the more parsimonious hypothesis. This is a use-
ful property of Bayes factors because it is frequently observed that parsimonious
hypotheses that describe the data well are more likely to be correct than complex
ones. Third, Bayes factors are consistent. This means that the Bayes factor always
chooses the true hypothesis if we have enough data.

Bayes factors have been developed for various testing problems frequently encoun-
tered in the psychological sciences. For instance, Rouder, Speckman, Sun, Morey, and
Iverson (2009) proposed a Bayesian t-test. Klugkist, Laudy, and Hoijtink (2005) dis-
cussed a Bayes factor for testing hypotheses on mean parameters in analysis of vari-
ance designs. Mulder, Hoijtink, and Klugkist (2010) presented methods for Bayesian
testing of means and regression coefficients in the multivariate normal linear model.
Gu, Mulder, Deković, and Hoijtink (2014) proposed an approximate Bayes factor for
evaluating hypotheses with inequality constraints on means and regression parame-
ters. In the present chapter we propose a novel Bayes factor for testing equality and
inequality constrained hypotheses on variances of multiple independent groups. Our
methodology builds upon the fractional Bayes factor of O’Hagan (1995) in combi-
nation with the prior adjustment of Mulder (2014b) and Böing-Messing and Mulder
(2016).

The remainder of this chapter is structured as follows. First, we discuss the
statistical model and options for formulating hypotheses on the group variances. We
then give a brief introduction to the Math Garden (Klinkenberg, Straatemeier, &
van der Maas, 2011; Straatemeier, 2014), which we use to illustrate the importance
of testing (in)equality constrained hypotheses on variances. Next, we discuss Bayes
factors for testing hypotheses on variances. We first apply the fractional Bayes factor
(O’Hagan, 1995) to the testing problem and show that it may not function as Occam’s
razor when testing inequality constrained hypotheses. As a novel solution to this
problem we propose an adjusted fractional Bayes factor. The performance of the
new method is illustrated in a simulation study. Following this, we continue the
illustrative example by applying the adjusted fractional Bayes factor to data from the
Math Garden. We then present a user-friendly software application for computing
the adjusted fractional Bayes factor. We conclude the chapter with a discussion of
our approach.

3.2 Model and Hypotheses

We consider the one-way ANOVA design with J ¥ 2 independent groups of size nj ,
j � 1, . . . , J . Each observation in group j is assumed to be independent and normally
distributed with mean µj and variance σ2

j . The unconstrained likelihood with no
constraints on the group means and variances is given by

fu
�
x|µ,σ2

�
�

J¹
j�1

nj¹
i�1

N
�
xij |µj , σ

2
j

�
, (3.1)

where x are the data, xij is the ith observation from the jth group, µ � pµ1, . . . , µJq
1

is the vector of group means, and σ2 �
�
σ2

1 , . . . , σ
2
J

�1
is the vector of group variances.

Hypotheses on the variances can be formulated using two basic types of con-
straints: equality constraints and inequality constraints. With equality constraints
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we can specify equalities of two or more variances, for example H : σ2
1 � σ2

2 � σ2
3 .

Inequality constraints are used to formulate expectations regarding differences in mag-
nitude between variances, for example H : σ2

1   σ2
2   σ2

3 . If we do not expect certain
relations between variances, then we simply do not impose constraints on them. We
shall use the comma symbol (,) to indicate that there are no constraints between
variances, for example Hu : σ2

1 , σ
2
2 , σ

2
3 . We refer to the hypothesis with no constraints

on the variances as the unconstrained hypothesis. In formulating hypotheses we may
combine equality constraints, inequality constraints, and no constraints between vari-
ances, for exampleH : σ2

1 � σ2
2   σ2

3 , σ
2
4 . Another hypothesis that is often of interest is

the complement of an order constrained hypothesis. For example, the complement of
the order constrained hypothesis H1 : σ2

1   σ2
2   σ2

3 is given by H2 : not σ2
1   σ2

2   σ2
3 ,

for which we also write H2 : not H1 in short. The complement entails all possible hy-
potheses except the order constrained hypothesis. We may also test the complement
of multiple orders. For example, Aunola et al. (2004) expected the variance of math-
ematical abilities to either increase or decrease across grades. This corresponds to
the two order constrained hypotheses H1 : σ2

1   � � �   σ2
J and H2 : σ2

J   � � �   σ2
1 ,

for which the complement is given by H3 : not pH1 or H2q. Note that one may also
perform the classical test of the null hypothesis H0 : σ2

1 � � � � � σ2
J against the uncon-

strained alternative hypothesis Hu : σ2
1 , . . . , σ

2
J if the interest is on whether the group

variances are equal or not. The likelihood under a constrained hypothesis Ht is a
truncation of the unconstrained likelihood in Equation (3.1) in the parameter space
that is admissible under Ht, which we denote by Ωt:

ft
�
x|µ,σ2

�
� fu

�
x|µ,σ2

�
IΩt

�
σ2

�
, (3.2)

where IΩt
�
σ2

�
is an indicator function that equals 1 if the variances σ2 are in the

admissible parameter space Ωt and 0 if the variances are outside the admissible pa-
rameter space.

3.3 Illustrative Example: The Math Garden

The Math Garden (Klinkenberg et al., 2011; Straatemeier, 2014) is an online adaptive
learning environment for basic mathematics. It is currently used by more than 300,000
children in primary education, involving more than 4,000 schools. Next to providing
children and teachers with an online learning tool, the system opens up a valuable data
base for researchers. In this chapter we present an analysis of children’s abilities in
four different games, each covering one of the basic mathematical operations addition,
subtraction, multiplication, and division.

As mentioned in the introduction, Aunola et al. (2004) hypothesized that the
variance of mathematical abilities either increases or decreases across grades. This
suggests testing the following two research hypotheses in the Math Garden:

H1 : σ2
1   � � �   σ2

J ,

H2 : σ2
J   � � �   σ2

1 ,
(3.3)

where σ2
j is the variance of mathematical abilities in grade j and J is the number

of grades to be compared. Thus, H1 states an increase in variance, whereas H2
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states a decrease. We shall test these two research hypotheses against two competing
hypotheses:

H0 : σ2
1 � � � � � σ2

J ,

H3 : not pH0 or H1 or H2q.
(3.4)

Here H0 is the classical null hypothesis stating equality of variances. Hypothesis H3

is the complement of H0, H1, and H2. We include it to cover all possible hypotheses
in case neither the research hypotheses nor the null hypothesis is supported by the
data. In the Math Garden a player’s ability is estimated separately for each of the
four games addition, subtraction, multiplication, and division. That is, each player
has a separate ability estimate for each game they play. We will therefore test the
hypotheses in Equations (3.3) and (3.4) for each game separately.

3.4 Bayes Factors for Testing Constrained Hypothe-
ses on Variances

The Bayes factor is a Bayesian testing criterion that can be used to quantify the rela-
tive evidence in the data between two hypotheses. The main ingredient of the Bayes
factor is the marginal likelihood of the data under each hypothesis. The marginal like-
lihood of the data x under the constrained hypothesis Ht, denoted by mt, is defined
by the integral over the product of the likelihood, denoted by ft, and the prior, de-
noted by πt, over the admissible parameter space under Ht. The marginal likelihood
can be expressed as

mtpxq �

»
Ωt

»
RJ
ft
�
x|µ,σ2

�
πt

�
µ,σ2

�
dµ dσ2, (3.5)

where the likelihood ft under the constrained hypothesis Ht was given in Equation
(3.2), the prior distribution πt contains the information about the parameters µ and
σ2 before observing the data, which will be discussed below, and Ωt denotes the
constrained parameter space of the variances under Ht. For example, for H1 : σ2

1  
� � �   σ2

J the constrained space Ω1 corresponds to the subspace of the variances that
is in agreement with the ordering σ2

1   � � �   σ2
J . The marginal likelihood quantifies

how well the model and the prior under Ht were able to predict the observed data
(Jeffreys, 1961; Kass & Raftery, 1995).

In order to determine the evidence in the data in favor of a hypothesis, say H1,
relative to another hypothesis, say H2, the ratio of the marginal likelihoods needs to
be computed via

B12 �
m1pxq

m2pxq
, (3.6)

which is known as the Bayes factor of hypothesis H1 against hypothesis H2. If the
Bayes factor B12 is larger (smaller) than 1, this indicates that the evidence in the data
in favor of H1 (H2) is stronger than the evidence in favor of H2 (H1). For example,
a Bayes factor of B12 � 10 implies that the evidence in the data in favor of H1 is
ten times as strong as the evidence in favor of H2. Kass and Raftery (1995) provided
interpretation guidelines for the Bayes factor as stated in Table 3.1. We would like
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Table 3.1: Interpretation guidelines for the Bayes
factor B12 testing hypothesis H1 against hypothesis
H2 (from Kass & Raftery, 1995).

B12 Evidence in favor of H1

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
¡ 150 Very strong

to emphasize, however, that these guidelines should not be used as strict rules when
interpreting Bayes factors. A researcher should decide for himself or herself whether
a Bayes factor of, say, B12 � 120 is enough to completely rule out hypothesis H2 in
comparison to hypothesis H1.

Prior specification is an important step when computing the marginal likelihood.
First, it is important to note that priors should not be specified in an ad hoc man-
ner because the Bayes factor strongly depends on the exact choice of the prior. For
instance, the Bayes factor for a null hypothesis against an unconstrained alternative
hypothesis can be made arbitrarily large when specifying the prior under the uncon-
strained alternative extremely vague. This is known as Bartlett’s phenomenon (e.g.,
Bartlett, 1957; Jeffreys, 1961; Liang, Paulo, Molina, Clyde, & Berger, 2008; Lind-
ley, 1957). Alternatively, one might consider using noninformative improper priors,
which are commonly used in objective Bayesian estimation (Berger, 2006). When
using Bayes factors, however, it is not possible to work with noninformative improper
priors since these contain undefined normalizing constants which do not cancel out
when computing the marginal likelihoods and Bayes factors according to Equations
(3.5) and (3.6).

Thus, in order to quantify the relative evidence in the data between constrained
hypotheses on variances using the Bayes factor one needs to carefully formulate proper
priors for the unknown parameters under all hypotheses under consideration. For
instance, in the Math Garden example a proper prior needs to be specified for the
group variances under H1 satisfying the increasing order, the group variances under
H2 satisfying the decreasing order, the common group variance under H0, and the
group variances under the complement hypothesis H3. Because often precise prior
information about the degree of heterogeneity across populations is not available,
specification of proper priors is a difficult task for a researcher. This holds especially
when testing hypotheses with constraints on variances.

To avoid this limitation statisticians have developed automatic (or default)
marginal likelihoods and Bayes factors that enable researchers to automatically quan-
tify the relative evidence in the data between the hypotheses. These default Bayes
factors can be computed in an automatic fashion without needing to specify proper
priors for the model parameters based on one’s subjective prior beliefs. Well-known
examples are the fractional Bayes factor (O’Hagan, 1995), the intrinsic Bayes factor
(Berger & Pericchi, 1996), and the Bayes factor based on expected-posterior priors
(Mulder et al., 2009; Pérez & Berger, 2002). Here we shall focus on the fractional
Bayes factor because it is computationally efficient and has desirable theoretical prop-
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erties (O’Hagan, 1995, 1997).

3.4.1 Fractional Bayes Factors

The fractional Bayes factor (FBF) was proposed by O’Hagan (1995) to circumvent
the need to specify a proper prior based on external prior information. In the FBF,
the marginal likelihood is defined as

mF
t px, bq �

³
Ωt

³
RJ ft

�
x|µ,σ2

�
πNt

�
µ,σ2

�
dµ dσ2³

Ωt

³
RJ ft px|µ,σ

2q
b
πNt pµ,σ

2q dµ dσ2
, (3.7)

where πNt denotes a noninformative improper prior and the fraction b can take on
values between 0 and 1. Thus, the marginal likelihood in the FBF corresponds to
the standard marginal likelihood based on a noninformative improper prior divided
by the standard marginal likelihood where the likelihood is raised to the power of
the fraction b. O’Hagan (1995) motivates this form of the marginal likelihood in the
context of partial Bayes factors. In particular, he argues that the fraction of the
likelihood (i.e., the likelihood to the power of b) contains a part of the information
in the full likelihood in the sense that the fraction of the likelihood is approximately
equal to the likelihood based on a training sample if we set b � m{n, where both the
sample size n and the training sample size m are large. As will be elaborated below,
the fraction b controls the amount of information in the implicit automatic proper
prior.

The noninformative improper prior we use in Equation (3.7) is the standard inde-
pendence Jeffreys prior. For a constrained hypothesis, this noninformative improper
prior is proportional to the product of the reciprocals of the unique variances trun-
cated in the inequality constrained parameter space (if there are inequality constraints
present). For example, under H0 : σ2

1 � � � � � σ2
J with one unique variance, say, σ2,

and H1 : σ2
1   � � �   σ2

J with J unique variances that are inequality constrained, the
noninformative improper priors are given by

πN0
�
µ, σ2

�
� C0 � σ

�2 and

πN1
�
µ,σ2

�
� C1 � σ

�2
1 � � � � � σ�2

J � I
�
σ2

1   � � �   σ2
J

�
,

(3.8)

respectively, where I
�
σ2

1   � � �   σ2
J

�
is an indicator function that equals 1 if σ2

1  
� � �   σ2

J and 0 otherwise, and C0 and C1 denote the respective undefined normalizing
constants. Because the noninformative improper prior appears in the numerator as
well as in the denominator in the marginal likelihood in Equation (3.7), the undefined
constants in the improper prior cancel out in the FBF approach. Note that the
noninformative priors imply flat priors for the group means.

The fraction b controls how much of the information in the data is used to specify
an automatic proper prior. This can be made explicit by rewriting the marginal
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likelihood in Equation (3.7) following Gilks (1995):

mF
t px, bq �

»
Ωt

»
RJ
ft
�
x|µ,σ2

�1�b ft
�
x|µ,σ2

�b
πNt

�
µ,σ2

�
³
Ωt

³
RJ ft px|µ,σ

2q
b
πNt pµ,σ

2q dµ dσ2
dµ dσ2

�
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RJ
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dµ dσ2,

(3.9)

where

πt
�
µ,σ2|xb

�
�
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�
x|µ,σ2
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πNt

�
µ,σ2

�
³
Ωt

³
RJ ft px|µ,σ
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b
πNt pµ,σ

2q dµ dσ2
(3.10)

is the automatic proper prior that is obtained by updating the noninformative im-
proper prior with a fraction b of the likelihood. Note that the symbol xb is used to
illustrate that this prior contains a fraction b of the information in the complete data
x. As can be seen from Equation (3.9), in computing the marginal likelihood the frac-
tion b of the likelihood is used to obtain a proper automatic prior and the remaining
fraction 1� b is used for hypothesis testing. It is generally recommendable to choose
the fraction b based on the minimal number of observations that is needed to obtain
a proper automatic prior when updating the improper Jeffreys prior (e.g., Berger &
Mortera, 1999; O’Hagan, 1995). In our testing problem with 2J unknown parameters
(i.e., J unknown means and J unknown variances), we need at least 2J observations
to obtain a proper prior when updating the improper Jeffreys prior. This implies
setting b � 2J{N , where N �

°J
j�1 nj is the total sample size. This choice ensures

that the remaining fraction 1 � b that is used for hypothesis testing is maximal. As
was shown by O’Hagan (1995), the FBF is consistent under very general settings,
which implies that as the sample size grows to infinity, the evidence in favor of the
true hypothesis goes to infinity. If we use a minimal fraction the evidence in favor
of the true hypothesis goes fastest to infinity, which makes the minimal fraction the
optimal choice.

3.4.2 Fractional Bayes Factors for an Inequality Constrained
Test

Next we apply the FBF to test the inequality constrained hypothesis H1 : σ2
1   σ2

2  
σ2

3 against the unconstrained hypothesis Hu : σ2
1 , σ

2
2 , σ

2
3 . The inequality constrained

subspace underH1 can be written as Ω1 �
 
σ2|σ2

1   σ2
2   σ2

3

(
. As shown in Appendix

3.A, the FBF for H1 against Hu can be written as the posterior probability that the
constraints of H1 hold divided by the automatic prior probability that the constraints
of H1 hold:

BF1u �
mF

1 px, bq

mF
u px, bq

�
P
�
σ2 P Ω1|x

�
P pσ2 P Ω1|xbq

�
P
�
σ2

1   σ2
2   σ2

3 |x
�

P pσ2
1   σ2

2   σ2
3 |x

bq
. (3.11)

The unconstrained marginal automatic prior for the variances, which is needed to
compute the probability in the denominator in Equation (3.11), can be obtained by
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integrating the group means out of the joint automatic prior:

πu
�
σ2|xb

�
�

»
R3

πu
�
µ,σ2|xb

�
dµ �

3¹
j�1

Inv-χ2

�
σ2
j

��� bnj � 1,
bpnj � 1qs2

j

bnj � 1

�
, (3.12)

which is a product of scaled inverse-χ2 distributions with degrees of freedom of bnj �

1 and scale hyperparameters of
bpnj�1qs2j
bnj�1 , where s2

j �
1

nj�1

°nj
i�1 pxij � x̄jq

2
is the

sample variance of group j. In this setting the minimal fraction is given by b � 6{N ,
where N � n1�n2�n3. The unconstrained marginal posterior can simply be obtained
by plugging b � 1 into Equation (3.12), which yields

πu
�
σ2|x

�
�

3¹
j�1

Inv-χ2
�
σ2
j |nj � 1, s2

j

�
. (3.13)

The distributions above can be used to obtain a large sample of, say, S � 100,000
draws from the unconstrained posterior and unconstrained automatic prior (see Gel-
man et al., 2004, for information on how to sample from the scaled inverse-χ2 distri-
bution). Subsequently, by taking the proportion of unconstrained draws that satisfy
the constraints of H1, the fractional Bayes factor in Equation (3.11) can be computed
as

BF1u �
S�1

°S
s�1 I

�
σ

2psq
1,post   σ

2psq
2,post   σ

2psq
3,post

	
S�1

°S
s�1 I

�
σ

2psq
1,prior   σ

2psq
2,prior   σ

2psq
3,prior

	 , (3.14)

where σ
2psq
post �

�
σ

2psq
1,post, σ

2psq
2,post, σ

2psq
3,post

	1
and σ

2psq
prior �

�
σ

2psq
1,prior, σ

2psq
2,prior, σ

2psq
3,prior

	1
are

the sth draw from the unconstrained posterior and automatic prior, respectively, for
s � 1, . . . , S.

It is important to note that the use of a common fraction b for all groups may be
problematic in the case of unbalanced data with unequal group sizes. For example,
when n1 � 10, n2 � 20, and n3 � 30, it holds that b � 6{60 � 0.1. This results in
prior degrees of freedom of 0, 1, and 2, for σ2

1 , σ2
2 , and σ2

3 , respectively. However,
the degrees of freedom must be larger than 0. This shows that the standard FBF
approach is not generally applicable in the case of unequal group sizes. We come
back to this issue in the next section.

Another important consequence of using a fraction of the data for constructing the
automatic prior in Equation (3.12) is that the scale hyperparameter of each variance
σ2
j depends on the corresponding sample variance s2

j . This implies that the automatic
prior is concentrated around the observed effect, which has undesirable consequences
when testing inequality constrained hypotheses on variances. We illustrate this with
an example. For the moment, let us consider a balanced data set with equal group
sizes of nj � n � 20, for j � 1, 2, and 3, and let the sample variances satisfy s2

1 � 1,
s2

2 � s, and s2
3 � s2. Thus, if s ¡ 1, then there is evidence in favor of H1 because the

sample variances are in agreement with the inequality constraints under H1. Similarly,
if s   1, then there is evidence against H1 because the sample variances are not in
agreement with the inequality constraints. Note that the degrees of freedom in the
automatic prior equal 6{60 � 20 � 1 � 1, which implies a distribution with minimal
information.
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Figure 3.1 shows the FBF for H1 against Hu (solid line) when letting s2 increase
from expp�10q � 0.00 to expp10q � 22,000. As s2 becomes large (which implies
clear evidence in favor of H1), the FBF goes to 1. This can be explained by the
fact that as s2 increases, the unconstrained posterior in Equation (3.13) as well as
the unconstrained automatic prior in Equation (3.12) become completely located in
the constrained space of H1. For example, in Figure 3.2a it can be seen that a large
portion of an isodensity surface of the automatic prior for s2 � 9 and nj � 20 is
located in the inequality constrained space σ2

1   σ2
2   σ2

3 (marked with thick lines).
The automatic prior probability that the inequality constraints hold is equal to 0.38
in this case. As s2 increases, both the posterior and the prior probability that the
inequality constraints hold go to 1 because the posterior and the automatic prior
become completely located in the inequality constrained space. Therefore the ratio
of the two probabilities in Equation (3.11) also goes to 1. Thus, in the FBF approach
the parsimonious order constrained hypothesis that is strongly supported by the data
does not receive stronger support than the more complex unconstrained hypothesis.
This implies that the FBF does not function as Occam’s razor in this situation. This
undesirable property is a direct consequence of the fact that the automatic prior for
the group variances is concentrated around the sample variances. For this reason we
propose an adjustment of the FBF that corrects for this undesirable behavior when
testing inequality constrained hypotheses on variances.

3.4.3 Adjusted Fractional Bayes Factors

In this section we present two novel extensions of the FBF approach for testing hy-
potheses with equality and inequality constraints on variances. The resulting criterion
will be referred to as the adjusted fractional Bayes factor (aFBF).

In the aFBF the marginal likelihood is defined as

maF
t px,bq �

³
Ωt

³
RJ fu

�
x|µ,σ2

�
πNu

�
µ,σ2

�
dµ dσ2³

Ωat

³
RJ fu px|µ,σ

2q
b
πNu pµ,σ

2q dµ dσ2
. (3.15)

This expression has three important differences in comparison to the marginal like-
lihood in the FBF approach given in Equation (3.7). First, in the denominator in
Equation (3.15) we integrate over an adjusted parameter space, which is denoted by
Ωat . The adjusted parameter space contains the same constraints as the unadjusted
space Ωt, except that each variance σ2

j is multiplied by a tuning parameter aj . These
tuning parameters are chosen such the automatic prior probability that the inequal-
ity constraints hold is based on prior distributions for the variances with equal scale
hyperparameters (unlike in the FBF, as was observed in Equation (3.12)). Details on
the choice of the tuning parameters will be discussed below. This adjustment results
in a criterion that always incorporates the parsimony of a hypothesis with inequality
constraints on the variances (Böing-Messing & Mulder, 2016; Mulder, 2014b). Sec-
ond, in the denominator in Equation (3.15) the fraction of the likelihood is based on
group-specific fractions b � pb1, . . . , bJq

1, where the fraction of the likelihood of group
j depends on the group size according to bj � 2{nj , for j � 1, . . . , J . This general-
ization ensures that the minimal amount of information based on two observations
per group is used for automatic prior specification. This was suggested by Berger
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Figure 3.1: Fractional Bayes factor BF1u (solid line) and adjusted fractional Bayes
factor BaF1u (dashed line) for testing H1 : σ2
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where s2 P rexpp�10q, expp10qs, and for equal sample sizes of n1 � n2 � n3 � 20.
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and Pericchi (2001) and De Santis and Spezzaferri (2001) for testing equality con-
straints on group means. Here we extend the idea to testing equality and inequality
constrained hypotheses on variances. Finally, it is important to note that in the de-
nominator in Equation (3.15) the likelihood and noninformative improper prior under
the unconstrained hypothesis, fu and πNu , are used instead of the likelihood and prior
under the constrained hypothesis, ft and πNt . This ensures that we integrate over
the complete adjusted parameter space Ωat in the denominator. For completeness,
the unconstrained likelihood and prior are also used in the numerator of the marginal
likelihood in the aFBF approach in Equation (3.15).

After some algebra (see Appendix 3.B for a proof) the marginal likelihood in the
aFBF can be expressed as

maF
t px,bq � m̃aF

t px,bq
P
�
σ2 P Ωt|x

�
P pσ2 P Ωat |x

bq
, (3.16)

where
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�Jk

2
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(3.17)

In Equation (3.17) the expression Γp�q is the gamma function, K denotes the number
of unique variances, and Jk denotes the number of groups sharing the unique variance
σ2
k, for k � 1, . . . ,K. Furthermore, bkj and nkj are the fraction and the sample size

of the jth group sharing the unique variance σ2
k, for j � 1, . . . , Jk. In Equation (3.16)

the adjusted parameter space Ωat is defined by

Ωat �
!
σ2

�� �a1σ
2
1 , . . . , aKσ

2
K

�1
P Ωt

)
, (3.18)

where the tuning parameters ak are given by

ak �

�°Jk
j�1 bkjnkj

	
� Jk°Jk

j�1 bkj
�
nkj � 1

�
s2
kj

, (3.19)

for k � 1, . . . ,K. Furthermore, the expressions P
�
σ2 P Ωt|x

�
and P

�
σ2 P Ωat |x

b
�

are the posterior and the adjusted automatic prior probability that the inequality
constraints on the variances hold, respectively. These can be computed by drawing
a large sample of, say, S � 100,000 draws from the unconstrained posterior and
automatic prior distribution of the variances given by

πu
�
σ2|x

�
�

K¹
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Inv-χ2

�
�σ2
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�����
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Jķ
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�
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�
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�
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� Jk

�
 (3.20)
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and
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°Jk
j�1 bkj

�
nkj � 1

�
s2
kj�°Jk

j�1 bkjnkj
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�
, (3.21)

respectively. The posterior probability that the inequality constraints hold is then
given by the proportion of posterior draws that satisfy the constraints, that is,

P
�
σ2 P Ωt|x

�
�

1

S

Ş

s�1

IΩt

�
σ

2psq
post

	
, (3.22)

where σ
2psq
post is the sth draw from the posterior in Equation (3.20), for s � 1, . . . , S.

Similarly, the adjusted prior probability that the inequality constraints hold is given
by

P
�
σ2 P Ωat |x

b
�
�

1

S

Ş

s�1

IΩat

�
σ

2psq
prior

	
, (3.23)

where σ
2psq
prior is the sth draw from the prior in Equation (3.21), for s � 1, . . . , S.

Finally, it is important to note that the aFBF is scale invariant, that is, it does
not depend on the scale of the outcome variable (a proof is given in Appendix 3.C).
Note that scale invariance is of crucial importance because in comparing educational
performances in different grades, for example, it should not matter whether students’
performances are rated on a scale from 0 to 10 or from 0 to 100.

3.4.4 Adjusted Fractional Bayes Factors for an Inequality Con-
strained Test

Now we apply the aFBF to the test of H1 : σ2
1   σ2

2   σ2
3 against Hu : σ2

1 , σ
2
2 , σ

2
3 .

As noted above, the adjusted parameter space contains the same constraints as the
unadjusted space, except that the variances are multiplied by tuning parameters aj
which correct for the differences between the observed sample variances. Thus, the
adjusted parameter space under H1 is given by Ωa1 �

 
σ2|a1σ

2
1   a2σ

2
2   a3σ

2
3

(
, with

aj � nj{
�
2pnj � 1qs2

j

�
. Furthermore, the fractions are given by b � pb1, b2, b3q

1, with
bj � 2{nj , for j � 1, 2 and 3. The aFBF for H1 against Hu can then be written as

BaF1u �
P
�
σ2 P Ω1|x

�
P pσ2 P Ωa1 |x

bq
�

P
�
σ2

1   σ2
2   σ2

3 |x
�

P pa1σ2
1   a2σ2

2   a3σ2
3 |x

bq
. (3.24)

Note that the posterior probability in the numerator is identical to that in the FBF in
Equation (3.11). On the other hand, the automatic prior probability of the adjusted
ordering in the denominator is computed using the automatic prior distribution

πu
�
σ2|xb

�
�

3¹
j�1

Inv-χ2

�
σ2
j

��� bjnj � 1,
bjpnj � 1qs2

j
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�

�
3¹
j�1

Inv-χ2

�
σ2
j

��� 1, 2pnj � 1qs2
j

nj

�
.

(3.25)
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First note that the prior degrees of freedom are equal to 1, which implies minimal
information for any group size nj . Regarding the scale hyperparameter, standard
mathematical statistics dictates that multiplying a random variable having a scaled
inverse-χ2 distribution by a constant, say a, results in a new random variable having
a scaled inverse-χ2 distribution where the original scale parameter is multiplied by a.
For this reason, since σ2

j

��xb � Inv-χ2
�
1, 2pnj � 1qs2

j{nj
�
, it automatically holds that

ajσ
2
j

��xb � Inv-χ2

�
1, aj

2pnj � 1qs2
j

nj

�
� Inv-χ2 p1, 1q , (3.26)

for j � 1, 2, and 3. Thus, the multiplication by the tuning parameters results in equal
automatic prior distributions for a1σ

2
1 , a2σ

2
2 , and a3σ

2
3 . Because these distributions

are equal, all six possible adjusted orderings “a1σ
2
1   a2σ

2
2   a3σ

2
3”, . . . ,“a3σ

2
3  

a2σ
2
2   a1σ

2
1” are equally likely under the automatic prior. Therefore, the automatic

prior probability of each adjusted ordering is equal to 1{6. Consequently, the Bayes
factor in Equation (3.24) is equal to

BaF1u � 6� P
�
σ2

1   σ2
2   σ2

3 |x
�
. (3.27)

Again, we consider data with nj � n � 20 observations in each group with sample
variances of s2

1 � 1, s2
2 � s, and s2

3 � s2, and we compute the aFBF for H1 against
Hu while letting s2 increase from expp�10q � 0 to expp10q � 22,000. The results are
shown in Figure 3.1. It can be seen that the aFBF (dashed line) converges to 6 as s2

increases. This is a result of the posterior probability in Equation (3.27), which goes
to 1 as s2 increases, similar as in the FBF. Unlike in the FBF, however, the prior
probability of the adjusted ordering is equal to 1{6. To give some more intuition,
Figure 3.2b displays the adjusted parameter space when the sample variances are
equal to s2

1 � 1, s2
2 � 3, and s2

3 � 9, and the group sizes are equal to nj � n � 20,
for j � 1, 2, and 3. The plot illustrates how the adjusted parameter space adapts to
the observed sample variances to ensure that the automatic prior probability of the
adjusted ordering always equals 1{6. Because the aFBF for H1 against Hu converges
to 6, it can be argued that the order constrained hypothesis H1 is 6 times more
parsimonious than the unconstrained hypothesis.

Finally, note that in practice we do not recommend testing an inequality con-
strained hypothesis against the unconstrained hypothesis as in the above example.
The reason is that the aFBF (and Bayes factors in general) is then bounded (e.g., by
6 in the case of J � 3 groups). This implies that we can never get decisive evidence
in favor of H1, even when observing very large effects in the direction of H1 with very
large samples. The main reason for testing H1 against Hu in the above example was
to illustrate how the parsimony of an inequality constrained hypothesis on variances
is incorporated in the FBF and the aFBF. Generally, we would recommend testing
an inequality constrained hypothesis H1 against its complement H2 : not H1 to avoid
the issue of a bounded Bayes factor. For this test the aFBF would be equal to

BaF12 �
BaF1u

BaF2u

�
6� P

�
σ2

1   σ2
2   σ2

3 |x
�

6{5� P pnot σ2
1   σ2

2   σ2
3 |xq

� 5�
P
�
σ2

1   σ2
2   σ2

3 |x
�

1� P pσ2
1   σ2

2   σ2
3 |xq

, (3.28)

which does not have an upper bound.
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3.4.5 Posterior Probabilities of the Hypotheses

When there are more than two hypotheses under investigation, it is useful to transform
Bayes factors to posterior probabilities of the hypotheses. Here we show how to
do this when working with the aFBF. To compute the posterior probabilities we
first need to specify the prior probabilities of the hypotheses, denoted by P pHtq,
for t � 1, . . . , T , where T is the number of hypotheses that are tested. These prior
probabilities quantify how plausible each hypothesis is before observing the data.
After observing the data, the prior probabilities can be updated using the marginal
likelihoods from the aFBF in Equation (3.16) as follows:

P aF pHt|x,bq �
maF
t px,bqP pHtq°T

t1�1m
aF
t1 px,bqP pHt1q

. (3.29)

The resulting posterior probabilities P aF pHt|x,bq quantify how plausible each hy-
pothesis is after observing the data, for t � 1, . . . , T . Note that the superscript aF
is added to make it explicit that the posterior probabilities are computed using the
marginal likelihoods based on the aFBF approach (see Equation (3.16)).

The default (or objective) choice in the literature is to set equal prior probabilities
for the hypotheses, that is, P pH1q � � � � � P pHT q � 1{T , which implies that it is
assumed that all hypotheses are equally likely a priori (e.g., Berger & Mortera, 1999;
Hoijtink, 2011; Mulder, Hoijtink, & de Leeuw, 2012). A consequence is that the ratio
of the posterior probabilities of a pair of hypotheses is equal to the respective Bayes
factor of these hypotheses. Because the prior probabilities sum to 1 (as well as the
posterior probabilities), it is implicitly assumed that the true hypothesis is present in
the set of constrained hypotheses under investigation. To ensure that this is the case
it is recommended to always include the complement hypothesis when testing a set
of constrained hypothesis on the variances. This was also done in the Math Garden
example by including the complement hypothesis H3 in Equation (3.4). Note that it is
not recommended to set the prior probability of a hypothesis equal to the proportion
of the unconstrained parameter space that it covers (e.g., 1{6 for H1 : σ2

1   σ2
2   σ2

3).
In that case the posterior probability of an inequality constrained hypothesis does not
properly take the parsimony due to the inequality constraints into account (for details
see Mulder, 2014a). Furthermore, the proportion of the unconstrained parameter
space that is covered by a hypothesis involving at least one equality constraint is 0
(e.g., H2 : σ2

1 � σ2
2   σ2

3 describes a plane in the unconstrained space, which has a
volume of 0). However, a prior probability of 0 results in a posterior probability of 0
(see Equation (3.29)), which means that there can never be evidence in favor of an
equality constrained hypothesis.

3.5 Simulation Study: Performance of the Adjusted
Fractional Bayes Factor

The goal of our simulation study is to assess the performance of the adjusted fractional
Bayes factor when testing equality and inequality constrained hypotheses on variances.
Our focus is both on consistency (i.e., does the aFBF select the true hypothesis when
the sample size is large) and small-sample performance.
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3.5.1 Design

The performance of the aFBF is examined as a function of the following four factors:

1. Number of groups: We compared variances of J � 3 and 5 groups.

2. Population: For each of the two numbers of groups we considered five popu-
lations differing in the structure of the population variances. An overview is
given in Table 3.2. The first was a null population in which all population
variances were equal, σ2

1 � � � � � σ2
J . The second population was one in which

the variances followed the hypothesized order σ2
1   � � �   σ2

J . We refer to this
population as the order population. The mixed population featured equalities
as well as inequalities among the variances. For J � 3 groups the structure
of the population variances was σ2

1   σ2
2 � σ2

3 , whereas for J � 5 groups it
was σ2

1   σ2
2 � σ2

3   σ2
4 � σ2

5 . The near order population was identical to
the order population with the exception that the order of the two groups with
the largest variances was reversed, σ2

1   � � �   σ2
J   σ2

J�1. Finally, in the re-
verse order population the order of the population variances was the opposite
of that in the order population, σ2

J   � � �   σ2
1 . Note that the reverse order is

maximally different from the hypothesized order. We included the near order
and the reverse order population to check how much data is needed to detect
that the hypothesized order is slightly different from the true order (near order
population) or very different from the true order (reverse order population).

3. Effect size: In all populations except the null population we considered three
effect sizes: small, medium, and large. The effect size is given by the ratio
of the largest population variance to the smallest population variance. To our
knowledge no guidelines exist as to what population variance ratios constitute
a small, medium, and large effect. We therefore based our effect sizes on well-
known guidelines for testing equality of means of two independent populations.
These guidelines state that the power to detect a small, medium, and large
effect equals 0.8 for α � 0.05 and sample sizes of 310, 51, and 21 in each group,
respectively (Faul, Erdfelder, Buchner, & Lang, 2009). We used these numbers
to determine the population variances in our simulation study in four steps:
First, we used the sample sizes of 310, 51, 21 to determine the noncentrality
parameter λ of the non-central F -distribution such that the power for testing
equality of variances of two independent populations equals 0.8. For a small,

Table 3.2: Structure of population variances in five popula-
tions for J P t3, 5u groups.

Population J � 3 J � 5

Null σ2
1 � σ2

2 � σ2
3 σ2

1 � � � � � σ2
5

Order σ2
1   σ2

2   σ2
3 σ2

1   � � �   σ2
5

Mixed σ2
1   σ2

2 � σ2
3 σ2

1   σ2
2 � σ2

3   σ2
4 � σ2

5

Near order σ2
1   σ2

3   σ2
2 σ2

1   � � �   σ2
5   σ2

4

Reverse order σ2
3   σ2

2   σ2
1 σ2

5   � � �   σ2
1
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Table 3.3: Population variances in the simulation study.

J � 3 J � 5

Population Effect σ2
1 σ2

2 σ2
3 σ2

1 σ2
2 σ2

3 σ2
4 σ2

5

Null No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Small 1.00 1.20 1.43 1.00 1.11 1.23 1.37 1.52
Order Medium 1.00 1.53 2.33 1.00 1.27 1.61 2.05 2.60

Large 1.00 1.89 3.59 1.00 1.42 2.03 2.88 4.10

Small 1.00 1.33 1.33 1.00 1.20 1.20 1.43 1.43
Mixed Medium 1.00 2.00 2.00 1.00 1.53 1.53 2.33 2.33

Large 1.00 2.94 2.94 1.00 1.89 1.89 3.59 3.59

Small 1.00 1.43 1.20 1.00 1.11 1.23 1.52 1.37
Near order Medium 1.00 2.33 1.53 1.00 1.27 1.61 2.60 2.05

Large 1.00 3.59 1.89 1.00 1.42 2.03 4.10 2.88

Small 1.43 1.20 1.00 1.52 1.37 1.23 1.11 1.00
Reverse order Medium 2.33 1.53 1.00 2.60 2.05 1.61 1.27 1.00

Large 3.59 1.89 1.00 4.10 2.88 2.03 1.42 1.00

medium, and large effect, we obtain values of λ of 100.74, 49.94, and 38.80,
respectively. Second, we computed the population variance ratio as VR �
pn � 1 � λq{pn � 1q, which equals the expected value of the non-central F -
distribution. Here the common sample size n equals 310, 51, and 21 if λ equals
100.74, 49.94, and 38.80, respectively. The resulting ratios are 1.33, 2.00, and
2.94 for a small, medium, and large effect, respectively. Third, to determine
σ2
J{σ

2
1 for J � 3 and 5 groups, we computed the pJ �1q{J quantile of a uniform

distribution with minimum value 1 and maximum value 2 � VR � 1. This
results in population variance ratios that increase with the number of groups
J , which is supported by empirical findings (see, e.g., Ruscio & Roche, 2012).
In all populations we set σ2

1 � 1, so that σ2
J is determined by the population

variance ratio. Fourth, we computed the intermediate population variances as

σ2
j �

�
σ2
J

�pj�1q{pJ�1q
for j � 2, . . . , J � 1. As a result, the ratio of adjacent

population variances is constant, that is, σ2
2{σ

2
1 � � � � � σ2

J{σ
2
J�1. Table 3.3

gives an overview of all population variances used in the simulation study. Note
that in the mixed population with J � 3 groups we used the population variance
ratios from the J � 2 groups case, that is, 1.33, 2.00, and 2.94. We did so
because, in fact, there are only two distinct variances in this population (cf.
Table 3.2). Similarly, in the mixed population with J � 5 groups we used the
population variance ratios from the J � 3 groups case.

4. Sample size: We used a balanced design with common sample sizes of 5, 10, 20,
50, 100, 200, 500, 1,000, 2,000, and 5,000.

Thus, in total there were 260 conditions, 2 (number of groups)�10 (sample size) �
20 for the null population and 2 (number of groups)�4 (population)�3 (effect size)�
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10 (sample size) � 240 for the remaining four populations.

3.5.2 Hypotheses and Data Generation

In each of the five populations we tested three hypotheses. An overview is given in
Table 3.4. In the null population, the order population, the near order population, and
the reverse order population we tested the following three hypotheses: H0 : σ2

1 � � � � �
σ2
J , H1 : σ2

1   � � �   σ2
J , and H2 : not σ2

1   � � �   σ2
J . Note that H2 : not σ2

1   � � �   σ2
J

is equivalent to H2 : not pH0 or H1q because the probability of the event that the
variances are exactly equal is 0 under the unconstrained hypothesis. In Table 3.4
the true hypothesis (i.e., the hypothesis that correctly describes the structure of the
population variances) is flagged with an asterisk (H�). Note that for the near order
and the reverse order population the true hypothesis is contained in the complement
H2. In the mixed population with J � 3 groups we tested H0 : σ2

1 � σ2
2 � σ2

3 ,
H1 : σ2

1   σ2
2 � σ2

3 , and H2 : σ2
1  

�
σ2

2 , σ
2
3

�
. Here H2 states that the variances in

Groups 2 and 3 are larger than in Group 1, but not necessarily equal. In the mixed
population with J � 5 groups we tested the corresponding hypotheses H0 : σ2

1 � � � � �
σ2

5 , H1 : σ2
1   σ2

2 � σ2
3   σ2

4 � σ2
5 , and H2 : σ2

1  
�
σ2

2 , σ
2
3

�
 

�
σ2

4 , σ
2
5

�
.

In each of the 260 conditions we generated 1,000 data sets. The population vari-
ances were specified according to Table 3.3. In all conditions we set µ1 � � � � � µJ � 0.
We may do so because the aFBF is independent of the population means (in Equations
(3.16) and (3.17) it can be seen that the marginal likelihood in the aFBF approach
does not depend on the sample means). For each of the 1,000 data sets we computed
the evidence in favor of the true hypothesis. We used two measures of evidence: The
first is the logarithm of the Bayes factor in favor of the true hypothesis Ht, log

�
BaFtt1

�
.

The second measure is the posterior probability of the true hypothesis, P aF pHt|x,bq,
which was computed assuming equal prior probabilities of the hypotheses. The log
Bayes factors and posterior probabilities were computed using minimal fractions of
bj � 2{nj , for j � 1, . . . , J . Eventually, we computed the median of the 1,000 log
Bayes factors and posterior probabilities.

Table 3.4: Hypotheses tested in the simulation study. In each population we tested
three hypotheses. The true hypothesis is flagged with an asterisk (H�). Here J P
t3, 5u indicates the number of groups.

Population Tested hypotheses

Null H�

0 : σ2
1 � � � � � σ2

J H1 : σ2
1   � � �   σ2

J H2 : not σ2
1   � � �   σ2

J

Order H0 : σ2
1 � � � � � σ2

J H�

1 : σ2
1   � � �   σ2

J H2 : not σ2
1   � � �   σ2

J

Mixed, J � 3 H0 : σ2
1 � σ2

2 � σ2
3 H�

1 : σ2
1   σ2

2 � σ2
3 H2 : σ2

1  
�
σ2
2 , σ

2
3

�

Mixed, J � 5 H0 : σ2
1 � � � � � σ2

5
H�

1 : σ2
1   σ2

2 � σ2
3  

σ2
4 � σ2

5

H2 : σ2
1  

�
σ2
2 , σ

2
3

�
 �

σ2
4 , σ

2
5

�

Near order H0 : σ2
1 � � � � � σ2

J H1 : σ2
1   � � �   σ2

J H�

2 : not σ2
1   � � �   σ2

J

Reverse order H0 : σ2
1 � � � � � σ2

J H1 : σ2
1   � � �   σ2

J H�

2 : not σ2
1   � � �   σ2

J
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3.5.3 Results

The results of the simulation study are shown in Figures 3.3 to 3.7. Each figure
shows the results for one of the five populations we considered. The plots show the
median log Bayes factors in favor of the true hypothesis (left-hand column) and the
median posterior probability of the true hypothesis (flagged with an asterisk in Table
3.4; right-hand column) for J � 3 groups (top row) and J � 5 groups (bottom
row) as a function of the common sample size n1 � � � � � nJ � n. For the null
population the results for J � 3 and J � 5 groups are combined in one pair of plots,
see Figure 3.3. Two important general conclusions can be drawn from the figures.
First, the aFBF is consistent. For all numbers of groups, populations, and effect sizes
the posterior probability of the true hypothesis was equal or close to 1 for a common
sample size of 5,000. Second, the performance of the aFBF was similar for J � 3
and J � 5 groups, with the relevant differences being that for J � 5 groups the null
hypothesis received stronger support and larger sample sizes were needed to reject a
false null hypothesis. We now focus on small-sample performance of the aFBF for
each population separately.

Null Population

Figure 3.3 shows the simulation results for the null population. The plots show that
the evidence in favor of the true hypothesis H0 increased with sample size. The log
Bayes factor log

�
BaF01

�
was consistently larger than log

�
BaF02

�
because under H0 the

0
5

10
15

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

lo
g(

B
aF

)

log(B01
aF), J=5

log(B02
aF), J=5

log(B01
aF), J=3

log(B02
aF), J=3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

P
aF

(H
0|

x,
 b

)

J = 5
J = 3

Figure 3.3: Simulation results for a null population in which all population variances
were equal, σ2

1 � � � � � σ2
J , for J � 3 groups (dashed lines) and J � 5 groups (solid

lines). We tested the true hypothesis H0 : σ2
1 � � � � � σ2

J against the two competing
hypotheses H1 : σ2

1   � � �   σ2
J and H2 : not σ2

1   � � �   σ2
J . The plots show the

median log Bayes factors (left-hand plot) testing H0 against H1 (black lines) and H0

against H2 (gray lines) and the median posterior probability of H0 (right-hand plot)
as a function of the common sample size n1 � � � � � nJ � n.
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Figure 3.4: Simulation results for an order population in which the structure of the
population variances was σ2

1   � � �   σ2
J , with J P t3, 5u. We considered three

effect sizes: small (dotted lines), medium (dashed lines), and large (solid lines). We
tested the true hypothesis H1 : σ2

1   � � �   σ2
J against the two competing hypotheses

H0 : σ2
1 � � � � � σ2

J and H2 : not σ2
1   � � �   σ2

J . The plots show the median log
Bayes factors (left-hand column) testing H1 against H0 (black lines) and H1 against
H2 (gray lines) and the median posterior probability of H1 (right-hand column) as
a function of the common sample size n1 � � � � � nJ � n. In the log Bayes factors
plots the gray lines are discontinued due to numerical reasons (see text).
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Figure 3.5: Simulation results for a mixed population. For J � 3 groups the structure
of the population variances was σ2

1   σ2
2 � σ2

3 , whereas for J � 5 groups it was σ2
1  

σ2
2 � σ2

3   σ2
4 � σ2

5 . We considered three effect sizes: small (dotted lines), medium
(dashed lines), and large (solid lines). For J � 3 groups we tested the true hypothesis
H1 : σ2

1   σ2
2 � σ2

3 against the two competing hypotheses H0 : σ2
1 � σ2

2 � σ2
3 and

H2 : σ2
1  

�
σ2

2 , σ
2
3

�
. For J � 5 groups we tested the true hypothesis H1 : σ2

1   σ2
2 �

σ2
3   σ2

4 � σ2
5 against H0 : σ2

1 � � � � � σ2
5 and H2 : σ2

1  
�
σ2

2 , σ
2
3

�
 

�
σ2

4 , σ
2
5

�
. The

plots show the median log Bayes factors (left-hand column) testing H1 against H0

(black lines) and H1 against H2 (gray lines) and the median posterior probability of
H1 (right-hand column) as a function of the common sample size n1 � � � � � nJ � n.
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Figure 3.6: Simulation results for a near order population in which the structure of the
population variances was σ2

1   � � �   σ2
J   σ2

J�1, with J P t3, 5u. We considered three
effect sizes: small (dotted lines), medium (dashed lines), and large (solid lines). We
tested three hypotheses: H0 : σ2

1 � � � � � σ2
J , H1 : σ2

1   � � �   σ2
J , and H2 : not σ2

1  
� � �   σ2

J . Note that the true hypothesis is the complement H2. The plots show the
median log Bayes factors (left-hand column) testing H2 against H0 (black lines) and
H2 against H1 (gray lines) and the median posterior probability of H2 (right-hand
column) as a function of the common sample size n1 � � � � � nJ � n. In the log Bayes
factors plots the gray lines are discontinued due to numerical reasons (see text).
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J � 3
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J � 5
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Figure 3.7: Simulation results for a reverse order population in which the structure
of the population variances was σ2

J   � � �   σ2
1 , with J P t3, 5u. We considered three

effect sizes: small (dotted lines), medium (dashed lines), and large (solid lines). We
tested three hypotheses: H0 : σ2

1 � � � � � σ2
J , H1 : σ2

1   � � �   σ2
J , and H2 : not σ2

1  
� � �   σ2

J . Note that the true hypothesis is the complement H2. The plots show the
median log Bayes factors (left-hand column) testing H2 against H0 (black lines) and
H2 against H1 (gray lines) and the median posterior probability of H2 (right-hand
column) as a function of the common sample size n1 � � � � � nJ � n. In the log Bayes
factors plots the gray lines are discontinued due to numerical reasons (see text).
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order constrained hypotheses H1 fits worse than the complement H2. This is because
H1 is more restrictive than H2. In the right-hand plot we see that for samples of size
n � 5 the posterior probability of H0 was greater than 0.6, and samples as small as
n � 10 yielded a posterior probability of about 0.8. The probability is so high even
for small samples because neither H1 nor H2 are good competitors to H0, particularly
so for J � 5 groups.

Order Population

Figure 3.4 shows the simulation results for the order population. The plots illustrate
that the evidence in favor of the true hypothesis H1 did not increase with sample size
when the effect was small. This is a consequence of the fact that small effects can
be better explained by the null hypothesis than by the order constrained hypothesis
when the sample size is small. The posterior probability of the true hypothesis H1

was at least 0.8 for sample sizes of about 500 (small effect), 100 (medium effect),
and 50 (large effect), respectively. Finally, note that the gray lines for the log Bayes
factor log

�
BaF12

�
are discontinued at some point. This is due to numerical reasons:

In the computation of the discontinued log Bayes factors we had to divide by the
posterior probability that the inequality constraints do not hold. This was estimated
by the proportion of draws from the unconstrained posterior distribution for which
these constraints do not hold. For large samples this proportion was often 0, so that
the corresponding log Bayes factor was undefined. If this happened for the majority
of the 1,000 replications in the simulation, then the median log Bayes factor was
undefined as well. Note that theoretically the discontinued log Bayes factors keep
increasing because the posterior probability that the inequality constraints do not
hold approaches 0 as the sample size increases.

Mixed Population

The results for the mixed population are shown in Figure 3.5. Similar to the order
population, the evidence in favor of the true hypothesis did not increase with sample
size when the effect was small. For J � 3 groups and a small effect the evidence
only increased for sample sizes larger than 50. Actually, in this case the log Bayes
factor log

�
BaF10

�
favored the null hypothesis until the sample size surpassed the n �

200 mark. The reason is the same as for the order population, namely, that small
effects can be better explained by the null hypothesis when the sample size is small.
The posterior probability was above 0.8 for samples of size 500 (small effect), 50 to
100 (medium effect), and 50 (large effect), respectively. Note that it approached 1
somewhat more slowly than in the order population. This is due to the similarity of
H1 and H2. Finally, note that the log Bayes factor log

�
BaF12

�
did not depend on the

effect size. It was approximately the same under all effects, which can be seen from
the three gray lines overlapping. This is because H1 and H2 essentially state the same
effect, namely, that σ2

1 is smaller than σ2
2 and σ2

3 .

Near Order Population

Figure 3.6 shows the simulation results for the near order population. Again, the
evidence in favor of the true hypothesis did not generally increase with sample size.
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For a small effect it only increased for sample sizes larger than about 100. For J � 3
groups the posterior probability of the true hypothesis reached values of at least 0.8
for samples of size 1,000 (small effect), 100 (medium effect), and 50 (large effect),
respectively. For J � 5 groups substantially larger samples were required (5,000,
1,000, and 200, respectively). This is mainly because the ratio of adjacent population
variances is smaller in the J � 5 groups case (see Table 3.3), which makes it more
difficult to detect that the two largest population variances are ordered as σ2

J   σ2
J�1

instead of σ2
J�1   σ2

J . Similar to the order population, the log Bayes factor log
�
BaF21

�
(gray lines) could not be computed for larger sample sizes due to numerical reasons.

Reverse Order Population

The evidence in favor of the true hypothesis did not generally increase with sample
size, see Figure 3.7. For instance, for a small effect and J � 5 groups the evidence
only increased for sample sizes larger than 200. The evidence in favor of the true
hypothesis increased faster for the reverse order than for the near order population
because the reverse order population is less in agreement with the order constrained
hypothesis H1 than the near order population. The posterior probability of the true
hypothesis was greater than 0.8 for sample sizes of 500 (small effect), 100 (medium
effect), and 50 (large effect), respectively. Again, we see discontinued log Bayes factors
due to numerical reasons.

3.5.4 Conclusion

In conclusion, the results of the simulation show that the aFBF performed well in all
five populations we considered. In particular, the results indicate that the aFBF is
consistent in the sense that it selects the true hypothesis if the sample size is large
enough. Naturally, for small effects we needed larger samples to detect the true
hypothesis than for large effects.

We also performed the simulation with unequal group sizes to check for robustness
of the results obtained with equal group sizes. All settings except the sample sizes
were identical to the simulation with equal group sizes. We provide the sample sizes
and results of the simulation with unequal group sizes in the supplemental material
in Appendix 3.D. The results confirm the findings from the simulation with equal
group sizes discussed above.

3.6 Illustrative Example: The Math Garden (Con-
tinued)

After logging into the Math Garden, children are directed to a page showing a garden
in which plants represent games covering different domains of mathematics, see Figure
3.8a. In this illustrative example we focus on the four most played games: addition,
subtraction, multiplication, and division. Each of these games consists of over 700
items ranging from easy (e.g., 2�2) to difficult (e.g., 340�87). Figure 3.8b shows an
exemplary addition item. By clicking on a plant the player starts a session of 15 items.
The items are adaptively selected based on a player’s ability. The system takes both
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(a) The garden page (b) An addition item

Figure 3.8: Two screenshots of the Math Garden. Figure (a) shows the garden page
where each plant represents a game measuring a different aspect of mathematics.
Figure (b) shows an exemplary addition item.

accuracy of responses and response times into account to estimate a player’s ability.
For details on the Math Garden and the underlying IRT model we refer the interested
reader to Klinkenberg et al. (2011) and Maris and van der Maas (2012).

We used two criteria for extracting ability estimates from the Math Garden
database. The first criterion concerns the grade a student is in. Aunola et al. (2004)
hypothesize that systematic instruction at school functions as a sort of treatment that
results in an increase or a decrease of the variability of abilities across grades. It thus
makes sense to only consider grades in which the treatment is administered to the stu-
dents. In the Netherlands children are taught addition and subtraction at school from
Grade 1 through Grade 5. For the addition and the subtraction domain we therefore
extracted ability estimates of students in Grades 1 through 5. Multiplication and
division is taught from Grade 3 through 6, which is why for these two domains we
extracted ability estimates of students in these grades. The second criterion we used
is that children have to have played at least 45 items (i.e., three sessions) in the week
prior to extraction. The reason for this is twofold. First, the more items a student
plays the more precise their ability can be estimated. Experience has shown that
after 45 items ability estimates are reasonably precise and stable. Second, we require
children to have played the items in one week in order to avoid that there is too much
learning going on due to treatment at school.

Table 3.5 shows the sample size and sample variance for each grade and mathemat-
ical domain. We use the symbols �, �, �, and � to refer to the corresponding game
in the Math Garden. Furthermore, the table shows the variance ratio, which is given
by the ratio of a sample variance to the smallest sample variance in the corresponding
domain. In the addition and the subtraction domain it can be seen that the sample
variances do not follow an increasing order. The variance decreases from Grade 1 to
Grade 2, and subsequently increases from Grade 2 to Grade 5. In the multiplication
and the division domain, however, the sample variances follow an increasing order
from Grade 3 to Grade 6.

Table 3.6 shows the posterior probability of the hypotheses H0 : σ2
1 � � � � � σ2

J ,
H1 : σ2

1   � � �   σ2
J , H2 : σ2

J   � � �   σ2
1 , and H3 : not pH0 or H1 or H2q for each

domain. We computed the posterior probabilities assuming equal prior probabilities
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Table 3.5: Descriptive statistics for the Math Garden data. The symbols �, �, �,
and � refer to the corresponding domain in the Math Garden. The variance ratio is
the ratio of the sample variance to the smallest sample variance in the corresponding
domain.

Sample size Sample variance Variance ratio

Grade � � � � � � � � � � � �

1 4,336 1,471 — — 7.22 7.45 — — 1.25 1.17 — —
2 4,080 2,663 — — 5.76 6.35 — — 1.00 1.00 — —
3 2,396 1,763 3,567 1,434 7.26 9.76 4.69 24.20 1.26 1.54 1.00 1.00
4 1,551 1,123 2,968 1,907 9.86 13.83 8.04 27.10 1.71 2.18 1.71 1.12
5 1,239 756 2,197 1,815 14.57 16.69 12.99 33.99 2.53 2.63 2.77 1.40
6 — — 1,094 1,117 — — 20.64 45.65 — — 4.40 1.89

of the hypotheses. The posterior probabilities are (close to) 0.00 or 1.00 due to the
large sample sizes in combination with the considerable effect sizes (cf. the results
of the simulation study). One immediate conclusion we can draw is that there is
no evidence in favor of either H0 or H2 in any of the domains, as can be seen from
their posterior probabilities being 0.00. The hypotheses of equality of variances and
decreasing variances can therefore safely be rejected. Furthermore, in the addition and
the subtraction domain we can rule out H1 given posterior probabilities of 0.00 and
0.03, respectively. The decrease in variance from Grade 1 to Grade 2 in combination
with the large sample sizes makes an increasing order of the variances highly unlikely.
We conclude that in the addition and the subtraction domain something other than
H0, H1, and H2 is going on, as is indicated by the posterior probabilities of the
complement H3 being 1.00 and 0.97, respectively. In the multiplication and the
division domain, however, there is very strong evidence in favor of an increase in
variance, with posterior probabilities of H1 of 1.00. In these domains we can rule out
H0, H2, and H3, as is indicated by posterior probabilities of these hypotheses of 0.00.

Table 3.6: Results of the analysis of the Math Garden data. The
symbols �, �, �, and � refer to the corresponding domain in the
Math Garden.

Result � � � �

P aF pH0 : σ2
1 � � � � � σ2

J |x,bq 0.00 0.00 0.00 0.00
P aF pH1 : σ2

1   � � �   σ2
J |x,bq 0.00 0.03 1.00 1.00

P aF pH2 : σ2
J   � � �   σ2

1 |x,bq 0.00 0.00 0.00 0.00
P aF pH3 : not pH0 or H1 or H2q|x,bq 1.00 0.97 0.00 0.00
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3.7 Software Application for Computing the Ad-
justed Fractional Bayes Factor

We provide a Shiny application for computing the adjusted fractional Bayes factor.
Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2015) is a framework for creating
interactive applications using the R language for statistical computing (R Core Team,
2015). The advantage of Shiny applications is that the user does not need to read or
write R code.

Figure 3.9 shows two screenshots of our Shiny application. On the left-hand side
of Figure 3.9a one can see the “Mandatory input” tab panel. Here the user needs
to specify the sample variances, sample sizes, and hypotheses. The screenshot shows
the input for the addition domain in the Math Garden example. As can be seen,
the hypotheses need to be specified using group numbers 1, . . . , J . For example,
the hypothesis H1 : σ2

1   � � �   σ2
5 from the Math Garden example is specified as

“1   2   3   4   5”. Note that inequality constraints need to be specified using
the less-than symbol ( ); the greater-than symbol (¡) is not supported. The com-
plement of an order constrained hypothesis can be specified using the string “not”
in the beginning (e.g., “not 1   2   3   4   5”). Note that the complement of
a hypothesis containing at least one equality constraint is equivalent to the uncon-
strained hypothesis. This is because the probability of the event that two or more
variances are exactly equal is 0 under the unconstrained hypothesis. For example, the
hypothesis H1 : σ2

1 � σ2
2   σ2

3 describes a plane in the unconstrained space, which has
a probability of 0 (in the sense that the volume is 0). The complement H2 : not σ2

1 �
σ2

2   σ2
3 comprises the entire space except the plane in H1, which is mathemati-

cally equivalent to the unconstrained space. Hence the complement H2 is equivalent
to the unconstrained hypothesis Hu : σ2

1 , σ
2
2 , σ

2
3 . For the same reason the hypothesis

H3 : not
�
σ2

1 � � � � � σ2
5 or σ2

1   � � �   σ2
5 or σ2

5   � � �   σ2
1

�
from the Math Garden

example is specified as “not p1   2   3   4   5 or 5   4   3   2   1q” in the

(a) Mandatory input and output (b) Optional input

Figure 3.9: Two screenshots of the Shiny application for computing the adjusted
fractional Bayes factor. Figure (a) shows the “Mandatory input” tab panel and the
output (Bayes factors and posterior probabilities of the hypotheses). Figure (b) shows
the “Optional input” tab panel.
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application (see Figure 3.9a).

Figure 3.9b shows the “Optional input” tab panel. Here the user may specify
more advanced settings. Using the checkbox one can control whether the application
shows Bayes factors or log Bayes factors (the latter is sometimes also referred to as
the weight of evidence). In the next field the user may specify prior probabilities of
the hypotheses. By default (i.e., if the field is empty) the posterior probabilities of the
hypotheses are computed assuming equal prior probabilities. The “Fractions” field
can be used to specify custom fractions b1, . . . , bJ . If the field is empty, the application
uses the minimal information approach and sets bj � 2{nj by default. Computing the
marginal likelihood under an inequality constrained hypothesis involves sampling from
the posterior and the prior distribution of the group variances. In the field “Number
of simulation draws” one may specify how often to draw from the posterior and the
prior. By default the application simulates 100,000 draws. In the last field the user
may specify a custom seed in order to reproduce results exactly in the case of testing
inequality constrained hypotheses (which requires simulating from the posterior and
the prior). The “Help” tab panel contains detailed instructions on how to use the
application.

Once all input has been specified, clicking on the “Submit” button initiates the
computation of the results. Computation time mostly depends on the number of
simulation draws, the number of hypotheses, and the number of inequality constraints.
For example, the analysis shown in the screenshots should be completed within a
few seconds. The results are shown in the output on the right-hand side of Figure
3.9a. The output consists of two tables, one showing the (log) Bayes factors and
one showing the posterior probabilities of the hypotheses. The screenshot shows
the results for the addition domain in the Math Garden example. In the “Bayes
factors” table, the cell in row t P t1, 2, 3, 4u and column t1 P t1, 2, 3, 4u contains
the logarithm of the Bayes factor BaFtt1 (because we ticked the “Show logarithm of
Bayes factors” checkbox in the optional input, see Figure 3.9b). For example, the
cell in row 4 and column 1 contains the logarithm of the Bayes factor BaF41 testing
H4 : not

�
σ2

1   � � �   σ2
5 or σ2

5   � � �   σ2
1

�
against H1 : σ2

1 � � � � � σ2
5 (note that the

hypotheses are numbered consecutively starting with 1). The log Bayes factor equals
251.33, which means that the evidence in the data in favor of H4 is expp251.33q
times as strong as the evidence in favor of H1. Some log Bayes factors are infinite
because the marginal likelihoods under H2 : σ2

1   � � �   σ2
5 and H3 : σ2

5   � � �   σ2
1 are

approximated as 0. As a result, the logarithms of the Bayes factors BaF23 and BaF32 are
undefined, which is why in the corresponding cells in the table it says NA (for “not
available”).

To run our Shiny application follow these six steps:

1. Download and install R from https://cran.r-project.org/.

2. Launch R.

3. Copy the following R code and paste it into the R console:

install.packages("shiny")

Hit the Enter key and select a mirror. This will install the Shiny package.
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4. Copy the following R code and paste it into the R console:

library(shiny)

Hit the Enter key. This will load the Shiny package.

5. Copy the following R code and paste it into the R console:

runGitHub("BFtestvar", "fboeingmessing")

Hit the Enter key. The Shiny application will open in your browser.

6. When you have completed your analyses you need to stop the application in
order to be able to close R. To do so click on the red “STOP” button in the R
menu bar.

Note that steps 1 and 3 only need to be performed the first time you use the appli-
cation. The R source code of the application is available at
https://github.com/fboeingmessing/BFtestvar.

3.8 Discussion

In this chapter we developed a Bayes factor for testing equality and inequality con-
strained hypotheses on variances. Our method is based on an adjustment of the frac-
tional Bayes factor (O’Hagan, 1995) such that it properly incorporates the parsimony
of inequality constrained hypotheses. Using our adjusted fractional Bayes factor we
can test any combination of equality and inequality constraints on the variances. It is
straightforward to simultaneously test multiple hypotheses. The aFBF then indicates
which hypothesis receives strongest support from the data. In doing so it functions
as Occam’s razor by taking the parsimony of (in)equality constrained hypotheses into
account. The aFBF is fully automatic, which means that the user does not need to
specify a prior distribution under every hypothesis to be tested. The results of the
simulation study indicate that the aFBF is consistent in the sense that it selects the
true hypothesis as the sample size increases. This also holds for instances in which
the true order of the population variances is slightly different from the hypothesized
order. In this case the aFBF chooses the complement over the order constrained hy-
pothesis as the sample size increases. The aFBF can be computed easily and quickly
using our Shiny application.

In the multiplication and the division domain of the Math Garden the variances
increased monotonically across grades as suggested by Aunola et al. (2004). In the
addition and the subtraction domain, however, the variances first decreased from
Grade 1 to Grade 2, followed by an increase over the years. Interestingly, both patterns
are in line with a random slope model of development over time. Our approach can
be used to test these and other variance patterns implied by models of development
over time such as random slope and random quadratic models using cross-sectional
data.

Like many other statistical methods, the aFBF assumes that the data are normally
distributed. However, the normal distribution may not be an appropriate model for
data that contain outliers or depart in other ways from normality (e.g., skewness
and/or kurtosis). The robustness of the aFBF to such violations of normality is an
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important topic for future study. Furthermore, it would be interesting to investigate
how the aFBF behaves under conditions that differ from those in our simulation study.
For example, in the simulation we assumed that the ratio of adjacent population
variances is constant. Real-life psychological phenomena may involve more complex
variance patterns, which is why further research investigating the behavior of the
aFBF under different population variance structures is indicated.

In this chapter we focused on testing variances of independent groups. It appears
natural to also consider the Bayes factor for testing variances of dependent groups
since these are frequently encountered by psychologists. Such a method would be
useful for analyzing repeated measurement data and other types of data where there
is a relationship between the respondents of different groups. Our approach can
be extended to dependent observations using a multivariate normal model Npµ,Σq,
where Σ is the covariance matrix of the dependent measures. Constrained hypotheses
are then formulated on the diagonal elements of this covariance matrix. The additional
challenge in the dependent case is that the constraints on the variances are added to
the constraints that ensure that the covariance matrix is positive definite. This is an
interesting topic for future research.

3.A Fractional Bayes Factor for an Inequality Con-
strained Hypothesis Test

We consider the test of an inequality constrained hypothesis Ht on the variances
of J groups against the unconstrained hypothesis Hu : σ2

1 , . . . , σ
2
J . The inequality

constrained hypothesis can be formulated as Ht : Rtσ
2 ¡ 0, where the rows of Rt

are permutations of p1,�1, 0, . . . , 0q. For example, under H1 : σ2
1   σ2

2   σ2
3 the

matrix is given by R1 �
�
�1 1 0
0 �1 1

�
. The admissible parameter space of the group

variances under Ht and Hu can be written as Ωt �
 
σ2|Rtσ

2 ¡ 0
(

and Ωu � pR�q
J

,
respectively. Note that the likelihood and the noninformative improper prior under
Ht are truncations of the unconstrained likelihood and prior:

ft
�
x|µ,σ2

�
� fu

�
x|µ,σ2

�
IΩt

�
σ2

�
, (3.30)

ft
�
x|µ,σ2
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�
x|µ,σ2

�b
IΩt

�
σ2

�
, and (3.31)

πNt
�
µ,σ2

�
� Ct π

N
u

�
µ,σ2

�
IΩt

�
σ2

�
, (3.32)

where IΩt
�
σ2

�
is an indicator function that equals 1 if σ2 P Ωt and 0 otherwise, and

Ct is a normalizing constant. The FBF for an inequality constrained hypothesis Ht
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against the unconstrained hypothesis Hu can then be written as

BFtu �
mF
t px, bq

mF
u px, bq

�

³
Ωt

³
RJ ftpx|µ,σ

2qπNt pµ,σ
2qdµ dσ2

³
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³
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³
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³
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(3.33)

Note that in the second line the indicator function IΩt
�
σ2

�
in the constrained like-

lihood and prior, ft and πNt , respectively, can be omitted because the integration
region is already restricted to the constrained parameter space Ωt.

3.B Computation of the Marginal Likelihood in the
Adjusted Fractional Bayes Factor

We consider a hypothesis Ht with equality and inequality constraints on the vari-
ances. We have to introduce some additional notation before deriving the marginal
likelihood in the aFBF approach. Under Ht, let there be qE equality constraints and
qI inequality constraints on the variances, where we omitted the hypothesis index t
on qE and qI to simplify the notation. Thus, there are K � J � qE unique variances
under Ht. We denote these K unique variances by σ̃2 �

�
σ̃2

1 , . . . , σ̃
2
K

�1
. The qI in-

equality constraints are formulated on these unique variances. Furthermore let Jk be
the number of groups that share the unique variance σ̃2

k, and let xkj , µkj , and nkj
denote the data, the mean, and the sample size of the jth group sharing the unique
variance σ̃2

k, respectively.

For example, consider the hypothesis H1 : σ2
1 � σ2

2   σ2
3 � σ2

4 on the variances of
J � 4 groups. Under H1 there are qE � 2 equality constraints and qI � 1 inequality
constraint, so that the number of unique variances is given by K � 4 � 2 � 2. We
denote these variances by σ̃2

1 and σ̃2
2 . Then Groups 1 and 2 have unique variance σ̃2

1

and Groups 3 and 4 have unique variance σ̃2
2 . Thus, hypothesis H1 can be written

as H1 : σ̃2
1   σ̃2

2 . Furthermore, we have pJ1, J2q
1 � p2, 2q1. In this notation, x11

, x12
,

x21
, and x22

correspond to the data of Group 1, 2, 3, and 4, respectively, µ11
, µ12

,
µ21 , and µ22 are the means of Group 1, 2, 3, and 4, and n11 , n12 , n21 , and n22 are
the sample sizes of Group 1, 2, 3, and 4.

The marginal likelihood under a constrained hypothesis Ht in the adjusted frac-
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tional Bayes factor is defined by

maF
t px,bq �
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RJ fu
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, (3.34)

where the likelihood and the noninformative prior are used without the inequality
constraints on the unique variances σ̃2, which is part of the definition of the aFBF.
The expressions are given by
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Note that Equation (3.34) is identical to Equation (3.15) except that a tilde is used
for the unique variances which are integrated out.

The constrained parameter space Ωt in the numerator in Equation (3.34) can be
written as

Ωt �
!
σ̃2

��Rt

�
σ̃2

1 , . . . , σ̃
2
K

�1
¡ 0

)
, (3.40)

where the rows of Rt are permutations of p1,�1, 0, . . . , 0q. For example, under
H1 : σ̃2

1   σ̃2
2 the matrix is given by R1 �

�
�1 1

�
. The adjusted constrained param-

eter space Ωat in the denominator in Equation (3.34), which is a crucial part of the
aFBF approach, can be written as

Ωat �
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σ̃2

��Rt
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2
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)
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where the tuning parameters are set to

ak �

�°Jk
j�1 bkjnkj

	
� Jk°Jk
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�
nkj � 1

�
s2
kj

, (3.42)

for k � 1, . . . ,K. This tuning results in equal scale hyperparameters in the automatic
prior for the unique variances. This will be shown after the derivation of the marginal
likelihood.

We first derive the denominator mN
t px

bq of the marginal likelihood in Equation
(3.34). Substituting the expressions for the fraction of the likelihood and the Jeffreys
prior in Equations (3.36) and (3.37) into the denominator of Equation (3.34) gives us
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In the second line we solved the integral with respect to µkj by integrating
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is the inverse of the normalizing constant of this normal distribution. The inte-
grand in the fourth line is a product of kernels of scaled inverse-χ2 distributions

with degrees of freedom parameters νk �
�°Jk

j�1 bkjnkj

	
� Jk and scale parameters

τ2
k �

°Jk
j�1 bkj pnkj�1qs2kj�°Jk
j�1 bkjnkj

	
�Jk

, k � 1, . . . ,K (Gelman et al., 2004). Finally, the probability

that the variances fall in the adjusted parameter space Ωat is based on independent
automatic priors for the variances given by
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for k � 1, . . . ,K.

The expression for the numerator mN
t pxq of the marginal likelihood in Equation

(3.34) is identical to the final expression in Equation (3.43) with all b’s set to 1 and
Ωat replaced by Ωt:
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Jķ

j�1

�
nkj � 1

�
s2
kj

��

�°Jk
j�1

nkj



�Jk

2

�
���

P
�
σ̃2 P Ωt|x

�
.

(3.45)

Subsequently, the marginal likelihood in the aFBF is given by
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Note that if a constrained hypothesis does not contain any inequalities, the ratio of
probabilities in Equation (3.46) is not present.

Finally, we provide a motivation for the specific choice of the tuning parameters.
First we introduce new parameters φk � akσ̃

2
k, for k � 1, . . . ,K, which can be inter-

preted as adjusted variance parameters. In the automatic prior the adjusted variance
is distributed according to
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for k � 1, . . . ,K, which follows automatically from Equations (3.42) and (3.44).
In the first line we used the mathematical result that if σ̃2
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. Note that the scale hyperparameters of the scaled

inverse-χ2 distributions are equal for all k. Subsequently, the automatic prior prob-
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To illustrate the effect of the adjustment we again consider the hypothesisH1 : σ̃2
1  

σ̃2
2 with R1 �

�
�1 1

�
. If we set bkj � 2{nkj , the automatic prior probability that
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because φ1 and φ2 are both distributed as Inv-χ2p2, 1q due to Equation (3.48). This
is desirable because it implies that in the aFBF approach both possible orderings of
the two adjusted variances are equally likely a priori.
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3.C Scale Invariance of the Adjusted Fractional
Bayes Factor

In Appendix 3.B the data and the sample variance of the jth group sharing the unique
variance σ̃2

k were denoted by xkj and s2
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, respectively. Multiplying all observations

in xkj by a constant w results in a sample variance of w2s2
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Next, we consider P
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for the automatic prior and posterior, respectively, for k � 1, . . . ,K. Because the
scale parameters in the above distributions only depend on the scale w through the
factor w2, it automatically follows that the automatic prior probability is invariant of
the scale, that is,
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By following the same steps it can be shown that the posterior probability is also
invariant, that is, P
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. Thus, the marginal likelihood of

the scaled data can be written as
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Since the constant v is the same under all hypotheses, it cancels out in the computation
of the adjusted fractional Bayes factors and the corresponding posterior probabilities
of the hypotheses:

BaFtt1 �
maF
t pwx,bq

maF
t1 pwx,bq

�
vmaF

t px,bq

vmaF
t1 px,bq

�
maF
t px,bq

maF
t1 px,bq

(3.56)

and
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3.D Supplemental Material

Figures 3.10 to 3.14 show the simulation results for the unequal group sizes given in
Table 3.7; all other settings were identical to the simulation with equal group sizes.
The relative group size is constant across conditions: For J � 3 groups relative group
sizes are given by 3{15 � 0.20, 5{15 � 0.33, and 7{15 � 0.47, for group 1, 2, and
3, respectively. In the J � 5 groups case the relative group sizes are 3{25 � 0.12,
4{25 � 0.16, 5{25 � 0.20, 6{25 � 0.24, and 7{25 � 0.28, for group 1, 2, 3, 4, and 5,
respectively.
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Table 3.7: Sample sizes in the simulation with an unbalanced design for J � 3 and
5 groups.

Condition

Number of groups nj 1 2 3 4 5 6 7 8 9 10

n1 3 6 12 30 60 120 300 600 1200 3000
J � 3 groups n2 5 10 20 50 100 200 500 1000 2000 5000

n3 7 14 28 70 140 280 700 1400 2800 7000

n1 3 6 12 30 60 120 300 600 1200 3000
n2 4 8 16 40 80 160 400 800 1600 4000

J � 5 groups n3 5 10 20 50 100 200 500 1000 2000 5000
n4 6 12 24 60 120 240 600 1200 2400 6000
n5 7 14 28 70 140 280 700 1400 2800 7000

Average sample size n 5 10 20 50 100 200 500 1000 2000 5000
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Figure 3.10: Simulation results for a null population in which all population variances
were equal, σ2

1 � � � � � σ2
J , for J � 3 groups (dashed lines) and J � 5 groups (solid

lines). We tested the true hypothesis H0 : σ2
1 � � � � � σ2

J against the two competing
hypotheses H1 : σ2

1   � � �   σ2
J and H2 : not σ2

1   � � �   σ2
J . The plots show the

median log Bayes factors (left-hand column) testing H0 against H1 (black lines) and
H0 against H2 (gray lines) and the median posterior probability of H0 (right-hand
column) as a function of the average sample size n.
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Figure 3.11: Simulation results for an order population in which the structure of
the population variances was σ2

1   � � �   σ2
J , with J P t3, 5u. We considered three

effect sizes: small (dotted lines), medium (dashed lines), and large (solid lines). We
tested the true hypothesis H1 : σ2

1   � � �   σ2
J against the two competing hypotheses

H0 : σ2
1 � � � � � σ2

J and H2 : not σ2
1   � � �   σ2

J . The plots show the median log
Bayes factors (left-hand column) testing H1 against H0 (black lines) and H1 against
H2 (gray lines) and the median posterior probability of H1 (right-hand column) as a
function of the average sample size n. In the log Bayes factors plots the gray lines are
discontinued due to numerical reasons (see text).
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Figure 3.12: Simulation results for a mixed population. For J � 3 groups the structure
of the population variances was σ2

1   σ2
2 � σ2

3 , whereas for J � 5 groups it was σ2
1  

σ2
2 � σ2

3   σ2
4 � σ2

5 . We considered three effect sizes: small (dotted lines), medium
(dashed lines), and large (solid lines). For J � 3 groups we tested the true hypothesis
H1 : σ2

1   σ2
2 � σ2

3 against the two competing hypotheses H0 : σ2
1 � σ2

2 � σ2
3 and

H2 : σ2
1  

�
σ2

2 , σ
2
3

�
. For J � 5 groups we tested the true hypothesis H1 : σ2

1   σ2
2 �

σ2
3   σ2

4 � σ2
5 against H0 : σ2
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5 and H2 : σ2

1  
�
σ2

2 , σ
2
3

�
 

�
σ2

4 , σ
2
5

�
. The

plots show the median log Bayes factors (left-hand column) testing H1 against H0

(black lines) and H1 against H2 (gray lines) and the median posterior probability of
H1 (right-hand column) as a function of the average sample size n.
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Figure 3.13: Simulation results for a near order population in which the structure of
the population variances was σ2

1   � � �   σ2
J   σ2

J�1, with J P t3, 5u. We consid-
ered three effect sizes: small (dotted lines), medium (dashed lines), and large (solid
lines). We tested three hypotheses: H0 : σ2

1 � � � � � σ2
J , H1 : σ2

1   � � �   σ2
J , and

H2 : not σ2
1   � � �   σ2

J . Note that the true hypothesis is the complement H2. The
plots show the median log Bayes factors (left-hand column) testing H2 against H0

(black lines) and H2 against H1 (gray lines) and the median posterior probability of
H2 (right-hand column) as a function of the average sample size n. In the log Bayes
factors plots the gray lines are discontinued due to numerical reasons (see text).



3.D. SUPPLEMENTAL MATERIAL 87

J � 3

0
10

20
30

40
50

60

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

lo
g(

B
aF

)

log(B20
aF), large

log(B21
aF), large

log(B20
aF), medium

log(B21
aF), medium

log(B20
aF), small

log(B21
aF), small

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

P
aF

(H
2|

x,
 b

)

large
medium
small

J � 5

0
20

40
60

80
10

0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

lo
g(

B
aF

)

log(B20
aF), large

log(B21
aF), large

log(B20
aF), medium

log(B21
aF), medium

log(B20
aF), small

log(B21
aF), small

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

n

P
aF

(H
2|

x,
 b

)

large
medium
small

Figure 3.14: Simulation results for a reverse order population in which the structure
of the population variances was σ2

J   � � �   σ2
1 , with J P t3, 5u. We considered three

effect sizes: small (dotted lines), medium (dashed lines), and large (solid lines). We
tested three hypotheses: H0 : σ2

1 � � � � � σ2
J , H1 : σ2

1   � � �   σ2
J , and H2 : not σ2

1  
� � �   σ2

J . Note that the true hypothesis is the complement H2. The plots show the
median log Bayes factors (left-hand column) testing H2 against H0 (black lines) and
H2 against H1 (gray lines) and the median posterior probability of H2 (right-hand
column) as a function of the average sample size n. In the log Bayes factors plots the
gray lines are discontinued due to numerical reasons (see text).





Chapter 4

Automatic Bayes Factors for
Testing Equality and
Inequality Constrained
Hypotheses on Variances

Abstract

In comparing characteristics of independent populations, researchers fre-
quently expect a certain structure of the population variances. These expec-
tations can be formulated as hypotheses with equality and/or inequality con-
straints on the variances. In this chapter we consider the Bayes factor for test-
ing such (in)equality constrained hypotheses on variances. Application of Bayes
factors requires specification of a prior under every hypothesis to be tested.
However, specifying subjective priors for variances based on prior information
is a difficult task. We therefore consider so-called automatic or default Bayes
factors. These methods avoid the need for the user to specify priors by using
information from the sample data. We discuss three automatic Bayes factors
for testing variances. The first is a balanced Bayes factor with equal priors on
all variances, where the priors are specified automatically using a small share of
the information in the sample data. The second is the fractional Bayes factor,
where a fraction of the likelihood is used for automatic prior specification. The
third is an adjustment of the fractional Bayes factor such that the parsimony of
inequality constrained hypotheses is properly taken into account. The results
of a simulation study indicate that the balanced Bayes factor converges fastest
to a true equality constrained hypothesis, whereas the adjusted fractional Bayes
factor converges fastest to a true inequality constrained hypothesis.

4.1 Introduction

In comparing multiple independent populations, applied researchers commonly focus
on the populations means, while treating the population variances as nuisance pa-

This chapter is under review at Psychometrika (revise and resubmit).
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rameters. However, by disregarding the variances one runs the risk of overlooking
crucial information in the data about the differences in the populations. In fact,
there are often reasons to expect certain relations between the variances of indepen-
dent populations. For example, Arden and Plomin (2006) expected boys to be more
heterogeneous in their intelligence than girls. This expectation can be formalized
in the inequality constrained hypothesis H1 : σ2

1   σ2
2 , where σ2

1 and σ2
2 denote the

population variance of girls and boys, respectively. Potential competing hypotheses
would be H0 : σ2

1 � σ2
2 and H2 : σ2

2   σ2
1 . In another study, Aunola, Leskinen, Lerkka-

nen, and Nurmi (2004) expected that the variance of students’ mathematics abilities
either increases or decreases across grades. These expectations can be translated into
the two competing hypotheses H1 : σ2

1   � � �   σ2
J and H2 : σ2

J   � � �   σ2
1 , where

σ2
j denotes the population variance in grade j and J is the number of grades to be

compared. In an experiment one may expect variances in treatment groups to be
larger than the variance in a control group because subjects may react differently to
a certain treatment (e.g. Grissom, 2000). This suggests testing a hypothesis of the
form H1 : σ2

1   σ2
2 � σ2

3 , where σ2
1 denotes the variance in the control group and

σ2
2 and σ2

3 denote the variance in treatment groups 1 and 2, respectively. We could
test H1 against H2 : σ2

1  
�
σ2

2 , σ
2
3

�
to determine whether there is evidence in favor

of equal treatment group variances. The comma symbol in H2 indicates that there
is no constraint on the relation between σ2

2 and σ2
3 . Another potential competing

hypothesis would be the null hypothesis H0 : σ2
1 � σ2

2 � σ2
3 . In case there is just one

treatment that is administered in two different intensities, one may expect that an
intense treatment results in a larger variance than a mild treatment. This suggests
testing the order constrained hypothesis H3 : σ2

1   σ2
2   σ2

3 , where group 2 undergoes
mild treatment and group 3 intense treatment.

In this chapter we shall be interested in testing T ¥ 2 hypotheses on the variances
of J ¥ 2 independent populations. The hypotheses are of the form

Ht : R
E
t σ

2 � 0^RI
tσ

2 ¡ 0, t � 1, . . . , T, (4.1)

where σ2 �
�
σ2

1 � � � σ2
J

�T
is a J-dimensional vector containing the population

variances. Let qEt and qIt denote the number of equality and inequality constraints
on the variances in σ2 under Ht, respectively. Then RE

t (RI
t ) is a qEt � J (qIt �

J) matrix containing the coefficients for the equality (inequality) constraints on the

variances under Ht and 0 �
�
0 � � � 0

�T
is a qEt -dimensional (qIt -dimensional) vector

of zeroes. We shall consider tests where each row of RE
t and RI

t is a permutation
of t�1, 1, 0, . . . , 0u. Thus, we shall test constraints with equal coefficients for the
variances (e.g. σ2

1   σ2
2), but not constraints of the form 2σ2

1   σ2
2 or σ2

1 � σ2
2   σ2

3 ,
for example. Note that the formulation in Equation (4.1) comprises many more
hypotheses next to the classical null and alternative hypothesis, which are included
as special cases. To our knowledge the multiple testing problem in Equation (4.1) has
not yet been considered in the literature. This is quite surprising given the central
role of variance components in the statistical sciences (see also Carroll, 2003).

In this chapter we shall consider the Bayes factor (Jeffreys, 1961; Kass & Raftery,
1995) for the testing problem formulated in Equation (4.1). The Bayes factor is a
Bayesian hypothesis testing criterion that is becoming increasingly popular. It has
a number of advantages over alternative approaches to hypothesis testing like null
hypothesis significance testing by means of p-values and hypothesis testing by means
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of information criteria like the AIC (Akaike, 1973) and the BIC (Schwarz, 1978): First,
unlike p-values, Bayes factors are able to quantify the evidence in the data in favor
of a hypothesis (including null hypotheses) relative to another hypothesis (Berger &
Sellke, 1987; Wagenmakers, 2007). Second, using Bayes factors it is straightforward to
simultaneously test multiple (non)nested hypotheses (Berger & Mortera, 1999). This
property is not shared by p-values either. Third, Bayes factors are consistent in the
sense that they converge to the true hypothesis as the sample size increases. This also
holds for a true null hypothesis. The AIC, on the other hand, is not consistent (e.g.
O’Hagan, 1995), and p-values are only consistent if the null hypothesis is false. Fourth,
Bayes factors function as Occam’s razor by automatically taking the parsimony of
(in)equality constrained hypotheses as in Equation (4.1) into account. By contrast,
p-values have no inherent mode of taking the parsimony of a hypothesis into account.
The AIC and the BIC are able to incorporate the parsimony introduced by equality
constraints, but not inequality constraints (Mulder et al., 2009). Consequently, they
do not provide a solution to the testing problem in Equation (4.1).

Application of Bayes factors requires the specification of a prior distribution under
every hypothesis to be tested. Often, however, prior information about the parame-
ters is not available or a researcher would like to refrain from adding prior knowledge.
For such situations researchers developed so-called automatic or default Bayes factors.
These methods enable the computation of Bayes factors without having the user spec-
ify proper subjective priors. Automatic Bayes factors have been developed for various
testing problems frequently encountered in practice: Rouder, Speckman, Sun, Morey,
and Iverson (2009) proposed an automatic Bayesian t-test. Klugkist, Laudy, and Hoi-
jtink (2005) presented an automatic Bayes factor for testing inequality constrained
hypotheses on means in ANOVA models. Mulder, Hoijtink, and de Leeuw (2012)
developed Bayes factors for testing (in)equality constraints on means and regression
coefficients in multivariate normal linear regression models. Mulder (2016) applied the
Bayes factor to the problem of testing order constrained hypotheses on correlations.
Recently, Böing-Messing and Mulder (2016) developed automatic Bayes factors for
testing constraints on the variances of two independent populations. In this chapter
we extend their methods to the general case of testing variances of J ¥ 2 independent
populations. Note that the number of possible hypotheses increases considerably with
the number of populations. For example, while in the J � 2 populations case there
are four hypotheses (H0 : σ2

1 � σ2
2 , H1 : σ2

1   σ2
2 , H2 : σ2

2   σ2
1 , and the unconstrained

hypothesis Hu : σ2
1 , σ

2
2), using Equation (4.1) we can formulate dozens of hypotheses

on the variances of J � 3 populations. The number of possible hypotheses quickly
grows larger as the number of populations increases further. This underlines the
importance of generalizing the existing methods to the J ¥ 2 populations case.

In this chapter we will present three different automatic Bayes factors for testing
(in)equality constrained hypotheses on variances as in Equation (4.1). The main idea
of the three methods is to use a small share of the information in the sample data
to automatically specify proper priors. Subsequently, the remaining share is used for
hypothesis testing. This methodology avoids the need for the user to specify proper
subjective priors based on prior information. Note that specifying subjective priors
for variances under multiple (in)equality constrained hypotheses is a difficult task.
In our experience, applied researchers find it difficult to formulate prior distributions
that exactly capture their prior beliefs about the heterogeneity across populations.
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Therefore automatic Bayesian methods are particularly useful in this context. The
Bayes factors will be evaluated based on three criteria: the performance when testing
nested inequality constrained hypotheses, information consistency, and large sample
consistency.

The remainder of this chapter is structured as follows. In the next section we give a
brief introduction to the Bayes factor. Following this, we develop the three automatic
Bayes factors for testing variances. Next, we present the results of three numerical
studies investigating the behavior of the Bayes factors when testing nested inequality
constrained hypotheses, and whether the methods are information consistent and
large sample consistent. After that we illustrate the practical utility of the Bayes
factors by applying them to three exemplary data sets. We conclude the chapter with
a discussion of the proposed methods.

4.2 The Bayes Factor

The Bayes factor is defined as the ratio of the marginal likelihoods under two com-
peting hypotheses Ht and Ht1 :

Btt1 �
mtpxq

mt1pxq
, (4.2)

where mtpxq denotes the marginal likelihood under Ht as a function of the data x ��
xT1 � � � xTJ

�T
. In this chapter we assume that the data xj �

�
x1j � � � xnjj

�T
come from a normal population with mean µj and variance σ2

j :

xij
i.i.d.
� N

�
µj , σ

2
j

�
, i � 1, . . . , nj , j � 1, . . . , J. (4.3)

Before we give the expression for the marginal likelihood under an (in)equality
constrained hypothesis Ht as in Equation (4.1) we need to introduce some additional
notation. Under a hypothesis Ht with qEt equality constraints and qIt inequality
constraints on J population variances there are Kt � J � qEt unique variances which

we denote by σ2
t �

�
σ2

1 � � � σ2
Kt

�T
(note that we omitted the hypothesis index t on

the individual variances to simplify the notation). Furthermore, let Jk be the number
of populations sharing the unique variance σ2

k and let µkj denote the mean of the
jth population sharing the unique variance σ2

k, for j � 1, . . . , Jk and k � 1, . . . ,Kt.

Similarly, let xkj �
�
x1jk � � � xnkj jk

�T
be the vector of nkj observations from the

jth population sharing the unique variance σ2
k. If there are no equality constraints

under Ht we shall omit the subscript j and write µk, xk, and nk instead of µk1
, xk1

,
and nk1

to simplify the notation. In a similar manner, under the null hypothesis where
there is just 1 unique variance we shall omit the subscript k and write σ2, µj , xj ,
and nj instead of σ2

1 , µ1j , x1j , and n1j . Finally, we denote the admissible parameter
space of the unique variances under Ht by Ωt and the vector of the unconstrained
population means by µ.

We illustrate the above notation by means of the hypothesis H1 : σ2
1 � σ2

2   σ2
3 on

the variances of J � 3 populations. Under H1 there is qE1 � 1 equality constraint and
qI1 � 1 inequality constraint, resulting in K1 � 3 � 1 � 2 unique variances denoted
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by σ2
1 �

�
σ2

1 σ2
2

�T
. Population 1 and 2, which have equal variances under H1, share

the unique variance σ2
1 and population 3 has the unique variance σ2

2 . Consequently,
the number of populations sharing the unique variances σ2

1 and σ2
2 is given by J1 � 2

and J2 � 1, respectively. Furthermore, µ �
�
µ11

µ12
µ21

�T
is the vector of the

means of population 1, 2, and 3. Similarly, x �
�
xT11

xT12
xT21

�T
is the vector of the

data from population 1, 2, and 3 with sample sizes of n11
, n12

, and n21
, respectively.

Finally, the admissible parameter space of the unique variances under H1 is given by
Ω1 �

 
σ2

1 : σ2
1   σ2

2

(
.

Using the notation introduced above, the marginal likelihood under an (in)equality
constrained hypothesis Ht is given by

mtpxq �

»
Ωt

»
RJ
ft
�
x|µ,σ2

t

�
πt

�
µ,σ2

t

�
dµ dσ2

t . (4.4)

The expression ft
�
x|µ,σ2

t

�
is the likelihood under Ht, which is given by

ft
�
x|µ,σ2

t

�
�

Kt¹
k�1

Jk¹
j�1

f
�
xkj |µkj , σ

2
k

�
1Ωt

�
σ2
t

�

�
Kt¹
k�1

Jk¹
j�1

nkj¹
i�1

N
�
xijk|µkj , σ

2
k

�
1Ωt

�
σ2
t

�
,

(4.5)

where 1Ωt

�
σ2
t

�
is the indicator function which is 1 if σ2

t P Ωt and 0 otherwise.

The second component of the marginal likelihood in Equation (4.4) is πt
�
µ,σ2

t

�
,

the prior distribution of the model parameters under Ht. Note that we may not use
improper priors. This is because improper priors depend on unspecified constants. As
a consequence, the Bayes factor would depend on a ratio of two unspecified constants
(for details see, e.g., O’Hagan, 1995).

The marginal likelihood mt quantifies how well an (in)equality constrained hy-
pothesis Ht with prior πt is able to predict the observed data (Jeffreys, 1961). Con-
sequently, the Bayes factor Btt1 quantifies how much better Ht is able to predict the
data as compared to Ht1 . The Bayes factor Btt1 can thus be interpreted as a measure
of relative evidence in the data in favor of Ht relative to Ht1 .

To facilitate interpretation, one may compute the posterior probabilities of the hy-
potheses under investigation using the marginal likelihoods and the prior probabilities
of the hypotheses P pH1q, . . . , P pHT q. The prior probabilities quantify the likelihood
of the hypotheses before observing any data. A widely accepted default choice is to
set equal prior probabilities P pH1q � � � � � P pHT q � 1{T (e.g. Berger & Mortera,
1999; Hoijtink, 2011; Mulder et al., 2012). After observing the data, the posterior
probabilities of the hypotheses are obtained by updating the prior probabilities with
the marginal likelihoods according to

P pHt|xq �
mtpxqP pHtq°T

t1�1mt1pxqP pHt1q
, (4.6)

for t � 1, . . . , T . The resulting posterior probabilities P pH1|xq, . . . , P pHT |xq quantify
the likelihood of the hypotheses after observing the data.
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4.3 Automatic Bayes Factors

In the previous section we saw that in order to quantify the relative evidence in the
data between the hypotheses of interest one needs to specify a proper prior for the
free parameters under each hypothesis. However, specifying priors for the population
variances under all hypotheses to be tested is a difficult task from a practical point
of view. For this reason we shall focus on automatic Bayes factors which can be
computed without needing to formulate proper subjective priors.

4.3.1 Balanced Bayes Factor

The main idea of the balanced Bayes factor (BBF) is to use information from the
sample data to construct a proper prior in an automatic fashion such that it is bal-
anced. We use the term “balanced” following Jeffreys (1961), who referred to an
unconstrained prior for an effect as balanced if the prior probability of a positive
effect is equal to the prior probability of a negative effect. The automatic prior in the
BBF is based on a similar idea, namely, that every possible ordering of the popula-
tion variances is equally likely a priori (similar as in Mulder, Hoijtink, and Klugkist
(2010) for population means and regression coefficients). This balanced prior for the
population variances contains minimal information and has a scale hyperparameter
that is automatically determined by the sample data to avoid the need for subjective
prior information. To obtain this balanced prior we proceed as follows. First, we fit a
null model with a common variance to a small part of the sample data. The latter is
obtained by taking a small fraction of the likelihood as suggested by O’Hagan (1995)
in his fractional Bayes factor methodology. Next, we obtain the marginal posterior of
the common variance based on this small fraction of the likelihood. We shall choose
the fraction of the likelihood such that this marginal posterior contains minimal in-
formation (details will be discussed below). Finally, this posterior is used as prior for
each unique variance under the constrained hypotheses. Note that under this prior
different orderings of the variances are equally likely because every unique variance
has the same prior.

The technical details of our approach to constructing the automatic balanced prior
in the BBF are as follows. First, we assume H0 : σ2

1 � . . . � σ2
J � σ2. We then obtain

a proper posterior by updating the noninformative Jeffreys prior on µ and σ2 with a
fraction of the likelihood under H0:

πB0
�
µ, σ2

��xb�9
�

J¹
j�1

f
�
xj |µj , σ

2
�bj�

πN0
�
µ, σ2

�
, (4.7)

where πN0
�
µ, σ2

�
9 σ�2 is the Jeffreys prior under H0, and we use the superscript B

to refer to the BBF. The expression f
�
xj |µj , σ

2
�bj

denotes a fraction of the likelihood
of the data from population j under H0 (inspired by the fractional Bayes factor of
O’Hagan, 1995). It is obtained by raising the likelihood of population j to the power
of bj P r0, 1s. The exponent bj is a population-specific fraction that controls how much
information (in terms of the number of observations) is contained in the fraction of the
likelihood of population j (Berger & Pericchi, 2001; De Santis & Spezzaferri, 2001).

We use the notation xb, where b �
�
b1 � � � bJ

�T
, to indicate that the posterior in
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Equation (4.7) contains a fraction of the information in the complete sample data.
The larger the b’s, the more information from the likelihood (i.e. from the sample
data) is contained in the posterior.

In the next step we integrate µ out of the joint posterior to obtain the marginal
posterior of σ2:

πB0
�
σ2

��xb� � »
RJ
πB0

�
µ, σ2

��xb� dµ � Inv-χ2
�
σ2|ν, τ2

�
, (4.8)

where

ν �

�
J̧

j�1

bjnj

�
� J and τ2 �

°J
j�1 bjpnj � 1qs2

j�°J
j�1 bjnj

	
� J

. (4.9)

Here Inv-χ2
�
ν, τ2

�
is the scaled inverse-χ2 distribution with degrees of freedom pa-

rameter ν ¡ 0 and scale parameter τ2 ¡ 0 (Gelman et al., 2004), and s2
j �

1
nj�1

°nj
i�1pxij � x̄jq

2 is the sample variance of xj .

We then define the prior on the unique variances σ2
t �

�
σ2

1 � � � σ2
Kt

�T
under an

(in)equality constrained hypothesis Ht as

πBt
�
σ2
t

��xb� � 1

PB pσ2
t P Ωt|xbq

Kt¹
k�1

πB0
�
σ2
k

��xb�1Ωt

�
σ2
t

�
, (4.10)

where

PB
�
σ2
t P Ωt

��xb� � »
Ωt

Kt¹
k�1

πB0
�
σ2
k

��xb� dσ2
t (4.11)

is the prior probability that the inequality constraints on the unique variances hold.
In Equation (4.10) its inverse acts as a normalizing constant. The prior in Equation
(4.10) is referred to as balanced because it implies that every possible ordering of
variances is equally likely a priori. For example, under H1 : σ2

1   σ2
2   σ2

3 the prior
probability PB in Equation (4.11) equals 1{6 because all 3! � 6 orderings of 3 variances
are equally likely a priori.

The prior in Equation (4.10) must not be too vague or else Bartlett’s phenomenon
is induced (e.g. Bartlett, 1957; Jeffreys, 1961; Liang et al., 2008; Lindley, 1957).
On the other hand, the prior should not be too informative either because then it
would dominate the data. A widely accepted principle that provides a solution to this
problem is to let the prior contain minimal information (e.g. Berger & Pericchi, 1996;
O’Hagan, 1995; Spiegelhalter & Smith, 1982). We can make the scaled inverse-χ2 prior
in Equation (4.8) contain minimal information by setting the degrees of freedom to 1.
This can be achieved by setting the fractions to bj � p1 � 1{Jq{nj , for j � 1, . . . , J .

This gives us degrees of freedom of ν �
�°J

j�1 bjnj

	
� J �

�°J
j�1p1� 1{Jq

	
� J �

1 regardless of the sample sizes n1, . . . , nJ . Note that the scale parameter τ2 in
Equation (4.9) can be interpreted as a weighted average of sums of squares across all
populations.

The unconstrained mean vector µ is common under all hypotheses, which is why
we use the noninformative Jeffreys prior πN pµq � C for it (Jeffreys, 1961), where C
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is an unspecified normalizing constant (see, e.g., O’Hagan, 1995). The joint balanced
prior on the means and the variances under Ht is then given by

πBt
�
µ,σ2

t

��xb� � πBt
�
σ2
t

��xb�πN pµq. (4.12)

Eventually, we define the marginal likelihood under a constrained hypothesis Ht

based on the balanced prior as

mB
t px, bq �

»
Ωt

»
RJ
ft
�
x|µ,σ2

t

�
πBt

�
µ,σ2

t

��xb� dµ dσ2
t . (4.13)

After some algebra (see Appendix 4.A), this expression can be written as

mB
t px, bq

� C
PB

�
σ2
t P Ωt|x

�
PB pσ2

t P Ωt|xbq

�
ντ2

� νKt
2 Γ

�ν
2

	�Kt
π�

°Kt
k�1

��°Jk
j�1

nkj



�Jk




2

�
Kt¹
k�1

Jk¹
j�1

n
� 1

2

kj

�

Kt¹
k�1

Γ

�
�ν �

�°Jk
j�1 nkj

	
� Jk

2

�
�

ντ2 �
Jķ

j�1

�
nkj � 1

�
s2
kj

��
ν�

�°Jk
j�1

nkj



�Jk

2

,

(4.14)

where C is the unspecified normalizing constant from the Jeffreys prior on the means,
Γp�q is the gamma function, and s2

kj
is the sample variance of the data from the jth

population sharing the unique variance σ2
k. Furthermore,

PB
�
σ2
t P Ωt|x

�
�

»
Ωt

Kt¹
k�1

Inv-χ2

�
�σ2

k

����� ν �
�
Jķ

j�1

nkj

�
� Jk,

ντ2 �
°Jk
j�1

�
nkj � 1

�
s2
kj

ν �
�°Jk

j�1 nkj

	
� Jk

�
dσ2

t

(4.15)

is the posterior probability that the inequality constraints on the unique variances
hold. Note that the unspecified constant C cancels out in the computation of Bayes
factors. The integral in Equation (4.15) cannot be computed analytically, but it can
be approximated numerically using Monte Carlo methods (see Appendix 4.C).

At this point it is important to note that the BBF is scale invariant, that is, it
does not depend on the scale of the outcome variable. This is an important property
in theory as well as in practice. For example, in testing hypotheses on the variances
of exam scores the evidence should not depend on whether exams are rated on a scale
from 0 to 10 or 0 to 100. To show that the BBF is scale invariant we can proceed as
follows. Let wxkj be the rescaled data of the jth group sharing the unique variance
σ2
k, where w is a constant. Then the sample variance of wxkj is given by w2s2

kj
. If

we substitute s2
kj

in Equation (4.14) with w2s2
kj

, it can be shown that the marginal
likelihood based on the rescaled data is equal to a hypothesis-independent constant
times the marginal likelihood based on the original data. The hypothesis-independent
constant cancels out in the computation of Bayes factors and posterior probabilities
of the hypotheses. Thus, the Bayes factors and posterior probabilities based on the
rescaled data are equal to those based on the original data, which shows that the BBF
is scale invariant.
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4.3.2 Fractional Bayes Factor

The next automatic Bayes factor we consider is the fractional Bayes factor (FBF)
introduced by O’Hagan (1995). The FBF is a general method for Bayesian hypothesis
testing and model selection. The main idea is to use a fraction of the information in the
data to automatically specify a prior and to subsequently use the remaining fraction
for hypothesis testing. A key difference from the BBF is that the automatic prior
implied by the FBF is not balanced because it is concentrated around the likelihood.
In this section we apply the FBF for the first time to the problem of testing hypotheses
on J ¥ 2 variances. Furthermore, we propose a generalization of the original FBF
based on the use of population-specific fractions. This was also suggested by De Santis
and Spezzaferri (2001) for testing means. We use the superscript F to refer to the
FBF.

In the FBF approach the marginal likelihood under hypothesis Ht is defined as
(O’Hagan, 1995)

mF
t px, bq �

³
Ωt

³
RJ ft

�
x|µ,σ2

t

�
πNt

�
µ,σ2

t

�
dµ dσ2

t³
Ωt

³
RJ ft px|µ,σ

2
t q
b
πNt pµ,σ

2
t q dµ dσ

2
t

. (4.16)

Here πNt
�
µ,σ2

t

�
is the noninformative Jeffreys prior on the population means and

variances given by

πNt
�
µ,σ2

t

�
� Ct

Kt¹
k�1

σ�2
k 1Ωt

�
σ2
t

�
, (4.17)

where Ct is an unspecified normalizing constant (see, e.g., O’Hagan, 1995). The

expression ft
�
x|µ,σ2

t

�b
is the likelihood under Ht to the power of b, a key part of the

FBF methodology. The fraction b is a proportion that determines how much of the

information in the likelihood (in terms of observations) is contained in ft
�
x|µ,σ2

t

�b
.

Note that b is the same under all hypotheses. This is because b effectively divides the
likelihood into a training fraction and a test fraction (see, e.g., Gilks, 1995), and the
size of these two fractions should be constant across hypotheses.

Choosing the fraction b is a crucial step in the application of the FBF. A popular
and widely accepted approach is setting b � m0{n, where m0 is the size of a minimal
training sample and n is the sample size (e.g. Berger & Mortera, 1999; O’Hagan,
1995). This way the information in the data that is used for hypothesis testing
is maximal. The use of different fractions for different parts of the likelihood has
been recommended in the literature to avoid consistency issues (e.g. De Santis &
Spezzaferri, 2001). We therefore use population-specific fractions bkj � m0{nkj �
2{nkj , where m0 � 2 because we need two observations from each population for the
automatic prior under the unconstrained hypothesis to be proper. The fraction of the
likelihood is then given by

ft
�
x|µ,σ2

t

�b
�

Kt¹
k�1

Jk¹
j�1

f
�
xkj |µkj , σ

2
k

�bkj 1Ωt

�
σ2
t

�
, (4.18)

where we slightly abuse notation by using the vector of population-specific fractions b
as a superscript. Plugging the expression above into Equation (4.16), it can be shown
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(see Appendix 4.B) that the marginal likelihood is equal to

mF
t px, bq �
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�
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t P Ωt|x

�
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Jķ

j�1

bkj
�
nkj � 1

�
s2
kj

� �°Jk
j�1

bkj
nkj



�Jk

2

,

(4.19)

where

PF
�
σ2
t P Ωt

��xb�
�

»
Ωt
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�σ2
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Jķ
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� Jk

�
dσ2

t

(4.20)

is the prior probability that the inequality constraints on the unique variances hold.
The expression for the posterior probability that the inequality constraints hold is
identical to Equation (4.20) with all b’s equal to 1, that is,

PF
�
σ2
t P Ωt|x

�
�

»
Ωt

Kt¹
k�1

Inv-χ2

�
�σ2

k

�����
�
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� Jk,

°Jk
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�
nkj � 1

�
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kj�°Jk

j�1 nkj

	
� Jk

�
dσ2

t .

(4.21)
As for the BBF, the integrals in Equations (4.20) and (4.21) can be approximated
using Monte Carlo methods (see Appendix 4.C). Furthermore, it can be shown that
the FBF is scale invariant using the same approach as for the BBF (see Section 4.3.1).

4.3.3 Adjusted Fractional Bayes Factor

In testing equality constrained hypotheses, the FBF functions as Occam’s razor by
taking the parsimony introduced by equality constraints into account. However, it has
been shown that the FBF may not function as Occam’s razor when testing inequality
constrained hypotheses (Böing-Messing & Mulder, 2016; Mulder, 2014b). If an in-
equality constrained hypothesis is strongly supported by the data, both the likelihood
and the fraction of the likelihood are concentrated in the inequality constrained pa-
rameter space. As a result, the marginal likelihood under the inequality constrained
hypothesis is approximately equal to the marginal likelihood under the unconstrained
hypothesis. Consequently, the fractional Bayes factor for testing the inequality con-
strained hypothesis against the unconstrained hypothesis is approximately equal to
1 (as will be illustrated in the next section). Thus, the Bayes factor is indecisive
even though the data strongly support the more parsimonious inequality constrained
hypothesis. In this section we present an adjustment of the FBF such that it properly
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takes the parsimony of inequality constrained hypotheses into account. We shall refer
to this method as the adjusted fractional Bayes factor (aFBF). We use the superscript
aF to refer to the aFBF.

In the aFBF approach we define the marginal likelihood under hypothesis Ht as

maF
t px, bq �

³
Ωt

³
RJ fu

�
x|µ,σ2

t

�
πNu

�
µ,σ2

t

�
dµ dσ2

t³
Ωat

³
RJ fu px|µ,σ

2
t q
b
πNu pµ,σ

2
t q dµ dσ

2
t

. (4.22)

where we use the same population-specific fractions b as in the FBF, that is, we
set bkj � 2{nkj . The formulation above features two differences from the marginal
likelihood in the FBF approach in Equation (4.16). First, in the denominator we
integrate the variances over an adjusted parameter space Ωat given by

Ωat �
!
σ2
t

��RI
t

�
a1σ

2
1 � � � aKtσ

2
Kt

�T
¡ 0

)
, (4.23)

where a1, . . . , aKt are tuning parameters given by

ak �

�°Jk
j�1 bkjnkj

	
� Jk°Jk

j�1 bkj
�
nkj � 1

�
s2
kj

, (4.24)

for k � 1, . . . ,Kt. The reason for this particular choice of tuning parameters will be
explained later.

The second difference in Equation (4.22) is that we use the unconstrained like-
lihood and Jeffreys prior instead of the inequality constrained likelihood and Jef-
freys prior under Ht. The unconstrained Jeffreys prior is given by πNu

�
µ,σ2

t

�
�

Ct,u
±Kt
k�1 σ

�2
k . Using the unconstrained likelihood and Jeffreys prior is necessary

to ensure that we integrate over the complete adjusted parameter space Ωat in the
denominator in Equation (4.22). If we use the unconstrained Jeffreys prior in the de-
nominator we also need to use it in the numerator to make sure that the unspecified
normalizing constant cancels out. Despite this adjustment, it is important to note
that the numerator in the aFBF is still equal to the marginal likelihood under Ht

based a noninformative improper prior, similar as in the original FBF.
The final expression for the marginal likelihood in the aFBF approach is identical

to that of the FBF given in Equation (4.19), except that the prior probability that
the inequality constraints hold is given by
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(4.25)

where the two integrals are equal due to the mathematical result that if
σ2 � Inv-χ2

�
ν, τ2

�
, then aσ2 � Inv-χ2

�
ν, aτ2

�
. As with the BBF and FBF, the
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integrals above can be approximated using Monte Carlo methods (see Appendix 4.C).
Furthermore, the aFBF is scale invariant for the same reason that the BBF and the
FBF are.

Similar as in the FBF (cf. Equation (4.20)), the scale parameters of the scaled
inverse-χ2 distributions in the second line of Equation (4.25) are functions of the
sample variances s2

kj
. However, unlike in the FBF, the scale parameters also depend

on the tuning parameters ak. The idea behind the aFBF is to choose the tuning
parameters such that scale parameters are independent of the sample variances. One
such choice is the expression in Equation (4.24), which is just the inverse of the scale
parameters in the first line of Equation (4.25). This particular choice for the tuning
parameters gives us scale parameters equal to 1 for all variances. As a result, every
possible ordering of variances is equally likely a priori (similar as in the BBF). For
example, under H1 : σ2

1   σ2
2   σ2

3 we have akσ
2
k

��xb � Inv-χ2p1, 1q, for k � 1, 2, 3,
where the degrees of freedom are equal to νk � bknk � 1 � 2{nk � nk � 1 � 1.
Consequently, all 6 possible orderings of the 3 variances are equally likeliy a priori.
In particular, the prior probability that the inequality constraints under H1 hold is
equal to P aF

�
a1σ

2
1   a2σ

2
2   a3σ

2
3 |x

b
�
� 1{6.

4.4 Performance of the Bayes Factors

In this section we present the results of three numerical studies evaluating the au-
tomatic Bayes factors based on three criteria: the performance when testing nested
inequality constrained hypotheses, information consistency, and large sample consis-
tency.

4.4.1 Testing Nested Inequality Constrained Hypotheses

To illustrate the testing behavior of the three automatic Bayes factors for inequal-
ity constrained hypotheses in particular, we test the order constrained hypothesis
H1 : σ2

1   σ2
2   σ2

3 against the unconstrained hypothesis Hu : σ2
1 , σ

2
2 , σ

2
3 . The top

row of Figure 4.1 shows the BBF (solid line), the FBF (dashed line), and the aFBF
(dotted line) of H1 against Hu for common sample sizes of n1 � n2 � n3 � n � 5 (left

plot) and n � 20 (right plot) and sample variances of
�
s2

1 s2
2 s2

3

�T
�

�
1 s s2

�T
.

We let s2 go from expp0q � 1 to expp10q � 22026.47. Thus, the larger s2, the larger
the size of the order effect. Note that setting s2

2 � s results in equal sample variance
ratios of s2

2{s
2
1 � s2

3{s
2
2 � s. For the BBF we set bk � p1 � 1{3q{n, whereas for the

FBF and the aFBF we set bk � 2{n.

Now, according to the Occam’s razor principle H1 should be favored over Hu if
the constraints under H1 are supported by the data since H1 is more parsimonious
than Hu (in the sense that the admissible parameter space under H1 is a subset of the
unconstrained space under Hu). It can be seen, however, that the FBF approaches
1 as s2 grows very large. This means that the FBF is undecided about H1 and Hu

despite the fact that the data strongly support H1, which suggests that the FBF does
not function as Occam’s razor in this case. This can be explained as follows. From
the definition of the marginal likelihood in Equation (4.16) it follows that the FBF of
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Figure 4.1: The BBF (solid line), FBF (dashed line), and aFBF (dotted line) testing
H1 : σ2

1   σ2
2   σ2

3 against Hu : σ2
1 , σ

2
2 , σ

2
3 (top row), H2 :  H1 (middle row), and

H0 : σ2
1 � σ2

2 � σ2
3 (bottom row). The Bayes factors are plotted for common samples

sizes of n1 � n2 � n3 � n � 5 (left column) and n � 20 (right column) and sample

variances of
�
s2

1 s2
2 s2

3

�T
�

�
1 s s2

�T
, where s2 P rexpp0q, expp10qs. For the BBF

we set bk � p1� 1{3q{n, whereas for the FBF and the aFBF we set bk � 2{n.
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H1 against Hu can be written as

BF1u �
PF

�
σ2

1   σ2
2   σ2

3 |x
�

PF pσ2
1   σ2

2   σ2
3 |x

bq
Ñ

1

1
� 1, (4.26)

where PF
�
σ2

1   σ2
2   σ2

3 |x
�

and PF
�
σ2

1   σ2
2   σ2

3 |x
b
�

are the posterior and the prior
probability that the inequality constraints under H1 hold, respectively. Now, for very
large effects both probabilities converge to 1, which results in a Bayes factor that
converges to 1.

The BBF and the aFBF do not converge to 1 but to a value strictly larger than
1 as s2 goes to infinity. The explanation for the BBF and the aFBF converging to
constants greater than 1 is similar. First, similar to the FBF, it holds that

BB1u �
PB

�
σ2

1   σ2
2   σ2

3 |x
�

PB pσ2
1   σ2

2   σ2
3 |x

bq
Ñ

PB
�

1{6
� 6� PB

�

(4.27)

and

BaF1u �
P aF

�
σ2

1   σ2
2   σ2

3 |x
�

P aF pa1σ2
1   a2σ2

2   a3σ2
3 |x

bq
Ñ

1

1{6
� 6. (4.28)

For the BBF, the posterior probability converges to PB
�

� 0.45 for n � 5 and
PB

�

� 0.50 for n � 20 as the effect size increases (it does not converge to 1 due to
prior shrinkage). The prior probability always equals 1{6 since in the BBF approach
the prior is the product of three identical distributions, such that each of the 6 possible
orderings of the 3 variances is equally likely a priori. Consequently, the BBF converges
to 6�PB

�

� 2.69 for n � 5 and 6�PB
�

� 3.00 for n � 20 as the effect size increases.
In the aFBF approach the posterior probability goes to 1 as the effect size increases,
and the tuning parameters a1, a2, a3 adapt to the sample sizes and sample variances
such that the prior probability always equals 1{6. As a result, the aFBF converges
to 6. Thus, contrary to the FBF, the BBF and the aFBF function as Occam’s razor
by favoring the more parsimonious inequality constrained hypothesis H1 over the
unconstrained hypothesis Hu if the former is strongly supported by the data.

4.4.2 Information Consistency

A Bayes factor for an unconstrained hypothesis against the null hypothesis is called
information consistent if it goes to infinity as the effect size goes to infinity, while
keeping the sample size fixed. The Bayes factor is called information inconsistent if it
converges to a constant in the limit. A well-known example of information inconsis-
tency is the Bayes factor based on Zellner’s g-prior (Zellner, 1986; Berger & Pericchi,
2001). Information (in)consistency when testing inequality constrained hypotheses
was first considered by Mulder (2014a) for testing means. To our knowledge infor-
mation (in)consistency has never been investigated when testing variances. Here we
evaluate information consistency for two different tests on variances: (i) testing an
inequality constrained hypothesis against its complement and (ii) testing an inequal-
ity constrained hypothesis against the null hypothesis. We will call the Bayes factor
B12 (B10) of an inequality constrained hypothesis H1 : RI

1σ
2 ¡ 0 against H2 :  H1

(H0 : σ2
1 � � � � � σ2

J) information consistent if B12 Ñ 8 (B10 Ñ 8) as each element
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in ξ̂ � RI
1

�
log

�
σ̂2

1

�
� � � log

�
σ̂2
J

��T
goes to infinity, while keeping the sample size

fixed. If the Bayes factor converges to a constant B�
12   8 (B�

10   8) instead, then
it is referred to as information inconsistent.

First, we investigate information consistency when testing an inequality con-
strained hypothesis against its complement. The middle row of Figure 4.1 shows
the logarithm of the BBF, the FBF, and the aFBF of H1 : σ2

1   σ2
2   σ2

3 against

H2 :  H1 as ξ̂ �
�
log

�
s2

2{s
2
1

�
log

�
s2

3{s
2
2

��T
increases from

�
0 0

�T
to

�
5 5

�T
. The

results indicate that the FBF and the aFBF are information consistent, whereas the
BBF is information inconsistent. As the effect size increases, the BBF converges to a
constant BB

�

12 � expp1.40q � 4.05 for n � 5 and BB
�

12 � expp1.61q � 5.00 for n � 20.
This behavior of the BBF can be explained by the fact that the posterior probability
that the inequality constraints under H1 hold converges to PB

�

� 0.45 for n � 5
and PB

�

� 0.50 for n � 20 (as was found in Section 4.4.1), which implies that the
probability that the inequality constraints under H1 do not hold (as is stated in H2)

converges to 1 � PB
�

� 0.55 for n � 5 and 1 � PB
�

� 0.50 for n � 20. The BBF

of H1 against H2 thus converges to BB
�

12 � BB
�

1u

L
BB

�

2u � PB
�

1{6

M
1�PB

�

5{6 , which equals

4.05 for n � 5 and 4.99 for n � 20. Note that H1 is more parsimonious than H2

because H1 covers 1{6 of the unconstrained parameter space while H2 covers 5{6 of
the unconstrained space. The results show that the aFBF indicates stronger evidence
in favor of the more parsimonious hypothesis H1 than the FBF. This again illustrates
that the aFBF functions as Occam’s razor whereas the FBF does not.

Next, we investigate information consistency when testing the order constrained
hypothesis H1 : σ2

1   σ2
2   σ2

3 against the null hypothesis H0 : σ2
1 � σ2

2 � σ2
3 . The

bottom row of Figure 4.1 shows the logarithm of the Bayes factor B10 as a function
of the effect size s2. The results indicate that the FBF and the aFBF are information
consistent since for these two Bayes factors the evidence in favor of H1 goes to infinity
as the size of the order effect increases. The BBF, on the other hand, does not
show information consistent behavior in this case either. Again, the aFBF indicates
stronger evidence in favor of H1 than the FBF.

The inconsistent behavior of the BBF illustrates that it may not provide a good
quantification of the relative evidence in the data between (in)equality constrained
hypotheses in the case of small samples and large effects.

4.4.3 Large Sample Consistency

We next present the results of a simulation study investigating the performance of
the three automatic Bayes factors as a function of the sample size. In particular,
we are interested in whether the Bayes factors show consistent behavior in the sense
that the posterior probability of the true hypothesis converges to 1 as the sample size
increases.

Simulation Setup

In this simulation we tested hypotheses on the variances of J � 4 populations. We
used a simulation design with two factors. The first factor is the pattern of the
population variances. We considered five different variance patterns, referred to as
null pattern, order pattern, mixed pattern, near order pattern, and reverse order
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Table 4.1: Overview of population variances
used in the simulation study.

Pattern σ2
1 σ2

2 σ2
3 σ2

4

Null 1.00 1.00 1.00 1.00
Order 1.00 1.36 1.84 2.50
Mixed 1.00 1.00 1.58 2.50
Near order 1.36 1.00 1.84 2.50
Reverse order 2.50 1.84 1.36 1.00

pattern. An overview of the variance patterns is given in Table 4.1. In the null pattern
we set all population variances equal to 1. In the order pattern the variances follow
an increasing order. The magnitude of the order effect is given by the ratio of the
largest to the smallest population variance. Empirical findings indicate that a ratio
of σ2

4{σ
2
1 � 2.50 can be considered a medium effect in the psychological sciences (see,

e.g., Ruscio & Roche, 2012, Table 2). We determined σ2
2 and σ2

3 such that the ratio
of adjacent population variances is constant, that is, σ2

2{σ
2
1 � σ2

3{σ
2
2 � σ2

4{σ
2
3 � 1.36.

In the mixed pattern the structure of the variances is σ2
1 � σ2

2   σ2
3   σ2

4 . The near
order pattern is similar to the order pattern with the difference that the variances
of populations 1 and 2 are interchanged. Finally, in the reverse order pattern the
variances are ordered as σ2

4   σ2
3   σ2

2   σ2
1 . The second factor in our simulation

study is the size of the samples drawn from the four populations. We drew samples of
common size n1 � � � � � n4 � n P t5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000u.

In each of the 5 � 11 � 55 conditions we drew 1000 samples xpmq ��
x
pmq
1 � � � x

pmq
J

�T
, m � 1, . . . , 1000. Here x

pmq
j �

�
x
pmq
1j � � � x

pmq
njj

�T
, where x

pmq
ij

is distributed as in Equation (4.3). We specified the population variances according
to Table 4.1 and set all population means equal to 0 (note that the three Bayes factors
do not depend on the sample means, cf. Equations (4.14), (4.19), and (4.25)). In each
of the 1000 samples per condition we tested four hypotheses using the three different
Bayes factors:

H0 : σ2
1 � � � � � σ2

4 ,

H1 : σ2
1   � � �   σ2

4 ,

H2 : σ2
1 � σ2

2   σ2
3   σ2

4 ,

H3 :  pH0 _H1 _H2q.

(4.29)

Here H3 is the complement which comprises all possible hypotheses except H0, H1,
and H2. Note that the marginal likelihood under H3 is equal to the marginal like-
lihood under the hypothesis H4 :  H1 because the probability of the event that two
or more variances are exactly equal is 0. Furthermore, note that for the near order
and the reverse order pattern the true hypothesis is contained in the complement
H3 (cf. Table 4.1). In each sample we then used the marginal likelihoods under all
four hypotheses to compute the posterior probability of the true hypothesis Ht as
P
�
Ht|x

pmq
�
� mt

�
xpmq

� L°3
t1�0mt1

�
xpmq

�
, where we assumed equal prior probabil-

ities of the hypotheses. Eventually, we computed the expected posterior probability
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of Ht as P̄ pHt|xq �
1

1000

°1000
m�1 P

�
Ht|x

pmq
�
.

Results

Figure 4.2 shows the simulation results for the five variance patterns. The plots
show the expected posterior probability of the true hypothesis Ht, t � 0, 1, 2, 3, as
a function of the common sample size n for the BBF (solid line), the FBF (dashed
line), and the aFBF (dotted line). Overall, the results indicate that the three Bayes
factors are consistent: As the sample size increases, the expected posterior probability
of the true hypothesis approaches 1. It appears that the BBF converges fastest to a
true hypothesis if two or more population variances are equal (see the null and the
mixed pattern in Figures 4.2a and 4.2c, respectively), whereas the FBF and the aFBF
converge fastest to the true hypotheses if none of the population variances are equal
(see the order patterns in Figures 4.2b, 4.2d, and 4.2e). Furthermore, it can be seen
that the FBF and the aFBF behave similarly. The FBF converges slightly faster to a
true null hypothesis (see Figure 4.2a), whereas the aFBF converges somewhat faster
to a true inequality constrained hypothesis (see Figures 4.2b and 4.2c).

Under the null pattern (Figure 4.2a), sample sizes of 10 (BBF) and 20 (FBF,
aFBF) result in posterior probabilities of the true null hypothesis H0 of at least 0.8.
Under the order pattern (Figure 4.2b) we need considerably larger samples sizes of
1000 (BBF) and 500 (FBF, aFBF) to obtain posterior probabilities of the true order
constrained hypothesis H1 of at least 0.8. Under the mixed pattern (Figure 4.2c),
sample sizes of 100 (BBF) and 200 (FBF, aFBF) are sufficient for reaching values of
at least 0.8 for the true mixed hypothesis H2. Under the near order pattern (Figure
4.2d) we need sample sizes of 1000 (BBF, FBF, aFBF), whereas under the reverse
order pattern (Figure 4.2e) considerably smaller sample sizes of 200 (BBF) and 100
(FBF, aFBF) result in posterior probabilities of the true complement hypothesis H3

of at least 0.8.

4.5 Example Applications

4.5.1 Example 1: Data From Weerahandi (1995)

Weerahandi (1995) considered a hypothetical study with four treatment groups. The
sample sizes and sample variances are shown in Table 4.2 (Example 1). In practice
such a decreasing pattern of sample variances could emerge, for example, if the groups
receive a new drug in a decreasing dosage. Patients may respond quite differently to
a new drug, especially if the dosage is high. As a result, the variance is larger in
groups receiving higher dosages. To check this we shall test the following constrained
hypotheses on the group variances: H0 : σ2

1 � � � � � σ2
4 , H1 : σ2

4   � � �   σ2
1 , and

H2 :  pH0 _ H1q. The results for the three Bayes factors are shown in Table 4.3
(Example 1). The posterior probabilities of the hypotheses were computed assuming
equal prior probabilities. It can be seen that the BBF favors H0. The FBF and the
aFBF, on the other hand, favor H1, with the aFBF indicating considerably weaker
evidence in favor of H0 and H2. Overall, the results are in line with the findings
of the simulation study, where the BBF provides stronger evidence in favor of the
null hypothesis, whereas the FBF and the aFBF yield stronger evidence in favor of
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Figure 4.2: Results of a simulation study comparing the performance of the three
automatic Bayes factors in testing variances of four populations. We considered five
different patterns of the population variances: (a) σ2

1 � � � � � σ2
4 , (b) σ2

1   � � �   σ2
4 ,

(c) σ2
1 � σ2

2   σ2
3   σ2

4 , (d) σ2
2   σ2

1   σ2
3   σ2

4 , and (e) σ2
4   � � �   σ2

1 . In
each of the five cases we drew 1000 samples of size n1 � � � � � n4 � n. In each
sample we then tested four hypotheses: H0 : σ2

1 � � � � � σ2
4 , H1 : σ2

1   � � �   σ2
4 ,

H2 : σ2
1 � σ2

2   σ2
3   σ2

4 , and H3 :  pH0 _ H1 _ H2q. Eventually, we computed
the expected posterior probability of the true hypothesis P̄ pHt|xq across the 1000
samples. The plots show P̄ pHt|xq as a function of the common sample size n.
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(e) Reverse order

Figure 4.2 (continued)

inequality constrained hypotheses. The fact that the FBF and the aFBF support the
order constrained hypothesis H1 despite the small sample sizes is due to the large
effect size of s2

1{s
2
4 � 3.61{0.30 � 11.93. Comparing the logarithm of this effect size

with the results in the bottom row of Figure 4.1 indicates that the preference of the
BBF for the null hypothesis may be a result of information inconsistency: From the
plots it can be seen that for an effect size of logp11.93q � 2.48 the BBF already shows
information inconsistent behavior. This suggests relying on the results of the FBF or
the aFBF, which indicate evidence in favor of the order constrained hypothesis H1

stating that the heterogeneity of the responses increases with the dosage.

Table 4.2: Samples sizes and sample variances for three examples.

Example Group n s2

Example 1

1 Treatment 1 6 3.61
2 Treatment 2 8 2.89
3 Treatment 3 5 0.79
4 Treatment 4 7 0.30

Example 2
1 Controls 17 15.52
2 Tourette’s patients 17 20.07
3 ADHD patients 17 38.81

Example 3

1 male leader, appointed at random 30 3.46
2 female leader, appointed at random 30 1.32
3 male leader, appointed on ability 30 3.20
4 female leader, appointed on ability 30 2.10
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Table 4.3: Results for three examples. The posterior probabilities of the
hypotheses were computed assuming equal prior probabilities. In some
cases the posterior probabilities do not sum to 1 due to rounding.

Example Bayes factor P pH0|xq P pH1|xq P pH2|xq P pH3|xq

BBF 0.74 0.23 0.04 —
Example 1 FBF 0.12 0.72 0.17 —

aFBF 0.04 0.91 0.05 —

BBF 0.35 0.48 0.14 0.03
Example 2 FBF 0.28 0.40 0.25 0.07

aFBF 0.24 0.43 0.28 0.06

BBF 0.37 0.62 0.00 —
Example 3 FBF 0.16 0.82 0.03 —

aFBF 0.12 0.86 0.02 —

4.5.2 Example 2: Attentional Performances of Tourette’s and
ADHD Patients

Silverstein, Como, Palumbo, West, and Osborn (1995) conducted a study comparing
attentional performances of 17 Tourette’s and 17 ADHD patients with those of a
group of 17 controls. Participants were shown 120 strings of 12 letters. Each string
contained either a T or an F at a random position, the remaining 11 letters were
random letters other than T and F. Each string was presented for 55 milliseconds.
After each presentation, participants had to indicate as quickly as possible whether
the string contained a T or an F. After completion of the 120 strings the accuracy
of the respondents was computed as the percentage of correct answers. Table 4.2
(Example 2) shows the sample variances of the accuracies in the three groups.

Psychological research has frequently found ADHD patients to be more hetero-
geneous in their attentional performances than unaffected controls (see, e.g., Kofler
et al., 2013; Russell et al., 2006). The heterogeneity of attentional performances of
Tourette’s patients as compared to unaffected controls is less well-documented. Given
this information, we shall test the following hypotheses to investigate whether there is
evidence that Tourette’s patients (group 2) are as heterogeneous in their attentional
performances as either unaffected controls (group 1) or ADHD patients (group 3):
H1 : σ2

1 � σ2
2   σ2

3 and H2 : σ2
1   σ2

2 � σ2
3 . We shall compare H1 and H2 to the

competing hypotheses H0 : σ2
1 � σ2

2 � σ2
3 and H3 :  pH0 _ H1 _ H2q. The results

are shown in Table 4.3 (Example 2). It can be seen that the three automatic Bayes
factors produce similar results. In particular, the three Bayes factors favor H1, which
states that Tourette’s patients are as heterogeneous as unaffected controls, and both
groups are less heterogeneous than ADHD patients. However, while we can rule out
the complement H3, the posterior probabilities indicate some evidence in favor of
H0 and H2. It can be seen that the aFBF provides somewhat stronger evidence in
favor of the inequality constrained hypotheses than the FBF. This behavior was also
observed in the numerical studies in Section 4.4.
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4.5.3 Example 3: Influence of Group Leaders

Lucas (2003) investigated the influence of group leaders on subordinate group mem-
bers. He was interested in whether a leader’s influence depends on the leader’s gender
and the way the leader was appointed. The author considered two types of appoint-
ment: Either the leader was chosen at random or based on ability. Lucas conducted
a 2 � 2 factorial experiment with 30 participants in each condition. Influence of the
group leader was measured as the number of times (in 10 trials) that a participant
changed his/her opinion to match the group leader’s opinion. Table 4.2 (Example 3)
shows the sample variances of the counts in the four experimental groups.

Research on gender differences suggests that the variability is greater for male
leaders than for female leaders (e.g. Lehre et al., 2009). Due to a lack of theoretical
underpinning we shall assume that there is no effect of appointment type. These
expectations correspond to the hypothesis H1 : σ2

2 � σ2
4   σ2

1 � σ2
3 . We shall test

H1 against the competing hypotheses H0 : σ2
1 � � � � � σ2

4 and H2 :  pH0 _ H1q.
The results of the test are shown in Table 4.3 (Example 3). It can be seen that H1

receives strongest support from all three automatic Bayes factors. While there is some
evidence in favor of H0 (especially for the BBF), the complement H2 can be ruled
out given posterior probabilities close to 0.

4.6 Conclusion

In this chapter we presented three automatic Bayes factors for testing (in)equality
constrained hypotheses on variances. We first introduced the balanced Bayes fac-
tor, which is based on identical automatic priors for the unique variances under each
hypothesis. The hyperparameters of this prior are determined automatically using
information from the sample data. The second Bayes factor is the fractional Bayes
factor of O’Hagan (1995), which we derived for testing (in)equality constrained hy-
potheses on variances. We proposed a generalization of the fractional approach using
population-specific fractions instead of a common fraction. The third Bayes factor we
presented is an adjustment of the fractional Bayes factor such that the parsimony of
inequality constrained hypotheses is incorporated. The three Bayes factors are fully
automatic in the sense that there is no need for the user to specify priors under all
hypotheses to be tested. Instead, the user only needs to provide the sample sizes and
sample variances.

Results of numerical studies indicated that the FBF does not properly function
as Occam’s razor because it does not favor a parsimonious inequality constrained
hypothesis that is supported by the data over the more complex unconstrained hy-
pothesis. The BBF and the aFBF, on the other hand, always behaved as Occam’s
razor when testing inequality constrained hypotheses. Furthermore, the results indi-
cated that the BBF is information inconsistent when testing (in)equality constrained
hypotheses on variances. The FBF and the aFBF, on the other hand, showed in-
formation consistent behavior. Based on these findings we recommend the aFBF for
quantifying the relative evidence in the data between multiple constrained hypotheses
on variances when prior information about the magnitude of the effects is unavailable.
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4.A Computation of mB
t px, bq

The final expression for the marginal likelihood under an (in)equality constrained
hypothesis Ht in the balanced Bayes factor can be derived as follows:
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where in the third line we may drop the indicator function because the integration
region for the variances is already restricted to Ωt, and the integrand in the fifth
line is a product of kernels of scaled inverse-χ2 distributions with degrees of freedom

parameters νk � ν�
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4.B Computation of mF
t px, bq

In the fractional Bayes factor the marginal likelihood under an (in)equality con-
strained hypothesis Ht is defined as
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We first derive the denominator:
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The expression for the numerator in Equation (4.31) is identical to the final ex-
pression in Equation (4.32) with all b’s equal to 1, that is,
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The final expression for the marginal likelihood in Equation (4.31) is then given by
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4.C Computing the Probability That σ2
t P Ωt

The integrals in Equations (4.15), (4.20), and (4.25) can be approximated numerically
using the following Monte Carlo approach. For the BBF and the FBF, we first
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2psq
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, for s � 1, . . . , S, and νk and τ2

k are as in Equations (4.15) and (4.20),
respectively. An approximation of the probability that the inequality constraints on
the unique variances hold is then given by the proportion of draws that fall in Ωt,
that is,
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Chapter 5

Bayes Factors for Testing
Inequality Constrained
Hypotheses on Variances of
Dependent Observations

Abstract

In statistical practice variances are commonly treated as nuisance parame-
ters. Often, however, there are patterns of interest not only in the (conditional)
means, but also in the variances. In fact, there are often reasons to expect a
certain pattern of the variances of dependent observations. For example, in a re-
peated measures study one may expect the variability of the outcome to increase
over time because subjects react differently to a certain treatment. Such expec-
tations can be formulated as inequality constrained hypotheses on the variances
of the dependent observations. Currently, no methods exist for testing such hy-
potheses in a direct manner. In this chapter we develop a Bayes factor for testing
inequality constrained hypotheses on the variances in the multivariate normal
linear model, which is often used to model dependent observations. Application
of Bayes factors requires specification of a prior distribution under every hypoth-
esis to be tested. We make use of the encompassing prior approach in which
priors under inequality constrained hypotheses are formulated as truncations of
the prior under the unconstrained hypothesis. Our method is fully automatic
in the sense that it does not require specification of subjective priors.

5.1 Introduction

In analyzing their data researchers commonly focus on measures of central tendency
such as means and regression coefficients. Measures such as variances that capture the
heterogeneity of observations are usually regarded as nuisance parameters. However,
in order to fully understand the patterns that are present in the data it is of vital
importance to carefully model and interpret the variability of the observations (e.g.

115
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Carroll, 2003). In fact, the heterogeneity of the observations can be a core aspect of
a study (e.g. Aunola et al., 2004; Hultsch et al., 2002; Lehre et al., 2009). In this
chapter we focus on the heterogeneity of dependent observations.

There are often reasons to expect certain patterns in the heterogeneity. For ex-
ample, in a repeated measures study investigating the effect of a certain treatment
one may expect the variability of the outcome to increase over time because subjects
may respond differently to the treatment (e.g. Böing-Messing, van Assen, Hofman,
Hoijtink, & Mulder, 2017). Such an expectation can be formulated as an inequality
constrained hypothesis of the form H1 : σ2

1   � � �   σ2
p, where p is the number of mea-

surement occasions and σ2
j is the variance of the jth measurement, for j � 1, . . . , p. To

test H1 we need a hypothesis it can be compared to. A natural competitor is the com-
plement of H1 given by H2 :  σ2

1   � � �   σ2
p, which may also be written as H2 :  H1

in short. The complement entails all possible hypotheses on the p variances except H1.
In another example, Aunola et al. (2004) hypothesized that the variability of math
performances either increases or decreases across grades. An increase might occur
because children with high mathematical potential improve their performances faster
than children with low mathematical potential. A possible reason for a decrease is that
systematic instruction at school helps children with low mathematical potential catch
up. These two competing expectations can be expressed as inequality constrained hy-
potheses H1 : σ2

1   � � �   σ2
p and H2 : σ2

p   � � �   σ2
1 , where p is the number of grades

and σ2
j is the variance in grade j, for j � 1, . . . , p. Another conceivable competitor is

the complement of H1 and H2 given by H3 :  
�
σ2

1   � � �   σ2
p _ σ

2
p   � � �   σ2

1

�
.

In this chapter we use the multivariate normal linear model with p� p covariance
matrix Σ to model the dependent observations. We shall be concerned with testing

T ¥ 2 inequality constrained hypotheses on the variances σ2 �
�
σ2

1 � � � σ2
p

�T
of the

dependent observations located on the main diagonal of Σ. In general, the hypotheses
are of the form

Ht : Rtσ
2 ¡ 0, t � 1, . . . , T, (5.1)

where Rt is a qt � p matrix containing the coefficients for the qt inequality con-

straints on the variances under Ht and 0 �
�
0 � � � 0

�T
is a qt-dimensional vector

of zeroes. We shall test hypotheses for which each row of Rt is a permutation of
t�1, 1, 0, . . . , 0u. That is, we consider hypotheses with equal coefficients on the vari-
ances (e.g. H1 : σ2

1   σ2
2   σ2

3 , for which R1 �
�
�1 1 0
0 �1 1

�
). We do not impose any

constraints on the covariances and regression coefficients in the multivariate normal
linear model, which is why these parameters are omitted from the formulation of
the hypotheses in Equation (5.1). Note that we reverse common statistical practice
by focusing on the variances, while treating the regression coefficients as nuisance
parameters.

In this chapter we shall take a Bayesian approach to the testing problem in Equa-
tion (5.1) using the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995), which is a
Bayesian hypothesis testing and model selection criterion. Bayes factors have been
developed for a variety of testing problems frequently encountered in practice. For
example, Klugkist, Laudy, and Hoijtink (2005) developed a Bayes factor for testing in-
equality constrained hypotheses on the means in AN(C)OVA models. Mulder (2014)
proposed Bayes factors for testing inequality constrained hypotheses on means and
regression coefficients in the multivariate normal linear model. Gu, Mulder, Deković,
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and Hoijtink (2014) developed an approximate Bayesian procedure for testing inequal-
ity constrained hypotheses on regression coefficients in a structural equation modeling
framework. Mulder (2016) proposed Bayes factors for testing inequality constrained
hypotheses on correlations. Recently, Böing-Messing et al. (2017) applied the Bayes
factor to the problem of testing inequality constrained hypotheses on the variances
of independent observations. In this chapter we extend this literature by developing
Bayes factors for testing inequality constrained hypotheses on variances of dependent
observations.

The Bayes factor is particularly suited for our problem of testing T ¥ 2 inequality
constrained hypotheses on the variances of dependent observations for a number of
reasons. First, using Bayes factors it is straightforward to simultaneously test multi-
ple (non)nested hypotheses. Second, Bayes factors are able to quantify the evidence
in favor of the hypotheses under investigation. Third, our Bayes factor is consistent in
the sense that it is guaranteed to select the true hypothesis as the sample size goes to
infinity (this will be explained later). Fourth, Bayes factors have an inherent Occam’s
razor mechanism that automatically takes the parsimony introduced by inequality
constraints into account when evaluating the hypotheses (e.g. Kass & Raftery, 1995).
On the other hand, classical information criteria such as the AIC (Akaike, 1973) and
the BIC (Schwarz, 1978) are not suitable for testing hypotheses formulated accord-
ing to Equation (5.1) for two reasons: First, contrary to the BIC, the AIC is not
consistent (e.g. O’Hagan, 1995). Second, neither the AIC nor the BIC are able to
take the parsimony of inequality constrained hypotheses into account. This is because
both the AIC and the BIC measure the complexity of a hypothesis by the number
of unknown parameters. This, however, is not a suitable measure when testing in-
equality constrained hypotheses. For example, under both the inequality constrained
hypothesis H1 : σ2

1   � � �   σ2
p and the unconstrained hypothesis Hu : σ2

1 , . . . , σ
2
p ¡ 0

there are p unknown variance parameters. However, H1 is more parsimonious than
Hu because the admissible parameter space under H1 is smaller in the sense that it
is a subset of the unconstrained parameter space under Hu.

To apply Bayes factors, a prior distribution needs to be specified under every
hypothesis to be tested. The prior distributions contain the information about the
model parameters that is available before observing the data. In this chapter we use
the encompassing prior approach (Berger & Mortera, 1999; Klugkist et al., 2005) to
specify priors under inequality constrained hypotheses when prior information about
the magnitude of the variances is absent. We proceed as follows. First, we propose
an unconstrained proper prior for the covariance matrix in the multivariate normal
linear model based on the following considerations: If prior information is absent,
then all possible orderings of the variances should be equally likely a priori and the
contribution of the prior to the posterior should be negligible (i.e. the prior should be
vague). We then formulate priors under competing inequality constrained hypotheses
as truncations of the unconstrained prior in the respective inequality constrained pa-
rameter spaces. For the regression coefficients we shall use a noninformative improper
prior. We may so do so since the regression coefficients are nuisance parameters that
are common under all hypotheses, which means that the undefined constants in the
improper prior cancel out when computing the Bayes factors (e.g. Jeffreys, 1961).

The remainder of this chapter is structured as follows. In the next section we
describe the multivariate normal linear model that is used throughout this chapter
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and we propose an unconstrained prior on the model parameters. Following this, we
give a brief introduction to the Bayes factor. We then develop a Bayes factor for
testing inequality constrained hypotheses on the variances in the multivariate normal
linear model using the encompassing prior approach. Next, we present results of a
simulation study investigating how the Bayes factor depends on the sample size when
different hypotheses are true. Subsequently, we illustrate the use of the Bayes factor
by applying it to an empirical data set about reading recognition in children. We con-
clude the chapter with a discussion of our approach to testing inequality constrained
hypotheses on the variances of dependent observations.

5.2 Model and Unconstrained Prior

In this chapter we shall be concerned with testing inequality constrained hypotheses
on the variances in the multivariate normal linear model

yi � B
Txi � ei, i � 1, . . . , n, (5.2)

where yi �
�
yi1 � � � yip

�T
is a p-dimensional vector of correlated dependent vari-

ables, xi �
�
1 xi1 � � � xi,k�1

�T
is a k-dimensional vector of independent variables,

and ei � Npp0,Σq. The unknown parameters in this model are

B �

�
��

β01 � � � β0p

...
. . .

...
βk�1,1 � � � βk�1,p

�
�� and Σ �

�
��
σ2

1 � � � σ1p

...
. . .

...
σp1 � � � σ2

p

�
�� . (5.3)

We shall be interested in testing inequality constrained hypotheses on the variances on
the main diagonal of Σ, where the hypotheses are formulated according to Equation
(5.1). Note that there are no restrictions on the regression coefficients in B and the
covariances in Σ.

The model in Equation (5.2) can be written more compactly as

Y �XB �E, (5.4)

where Y �
�
y1 � � � yn

�T
, X �

�
x1 � � � xn

�T
, and E �

�
e1 � � � en

�T
. The

unconstrained likelihood for n observations is then given by

fupY |X,B,Σq � p2πq�np{2 |Σ|�n{2 exp
�
� 1

2 tr
�
Σ�1pY �XBqT pY �XBq

��
� p2πq�np{2 |Σ|�n{2 exp

�
� 1

2 trpΣ�1Sq
�

exp
�
� 1

2 pβ � β̂q
T
�
Σb pXTXq�1

��1
pβ � β̂q

	
,

(5.5)

where b denotes the Kronecker product, β is the vectorization of B, β̂ is the vector-
ization of the least squares estimate B̂ � pXTXq�1XTY , and

S � pY �XB̂qT pY �XB̂q, (5.6)

is the error sum of squares and cross products matrix.
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A common choice for the unconstrained prior on the covariance matrix Σ is a
conjugate inverse-Wishart prior:

πupΣq �W�1
p pΣ|Λ, νq, (5.7)

where Λ ¡ 0 is the p � p prior scale matrix (Λ ¡ 0 means that Λ must be positive
definite) and ν ¡ p � 1 are the prior degrees of freedom. We do not test hypothe-
ses on any elements of the coefficient matrix B. This means that B is a nuisance
parameter that is common under all inequality constrained hypotheses to be tested
on the variances. In this case we may use the standard noninformative Jeffreys prior
πN pBq � C for the coefficient matrix, where C is an unspecified normalizing constant
that cancels out in the computation of Bayes factors (e.g. Jeffreys, 1961; O’Hagan,
1995). The joint unconstrained prior on Σ and B is then given by

πupB,Σq � πN pBqπupΣq � C πupΣq. (5.8)

Note that this specification assumes that B and Σ are independent a priori, which
is common when using noninformative improper priors (e.g. Jeffreys, 1961). Up-
dating the prior in Equation (5.8) with the likelihood in Equation (5.5) results in a

normal-inverse-Wishart posterior Nkp
�
β
��β̂,ΣbpXTXq�1

�
W�1
p pΣ|Λ�S, ν�n� kq

(a derivation is given in Appendix 5.A). From this it follows that the marginal un-
constrained posterior distribution of Σ is given by

πupΣ|Y q �W�1
p pΣ|Λ� S, ν � n� kq. (5.9)

Note that in order for this inverse-Wishart distribution to exist, the regressor matrix
X must have full rank k and the sample size n must be greater than p� k � ν � 1.

5.3 Bayes Factors for Testing Variances

5.3.1 The Bayes Factor

The Bayes factor for testing hypothesis Ht against a competing hypothesis Ht1 is
defined as the ratio of the marginal likelihoods under the two hypotheses:

Btt1 �
mtpY q

mt1pY q
, (5.10)

where mtpY q is the marginal likelihood for observed data Y under hypothesis Ht

with inequality constraints formulated according to Equation (5.1). The marginal
likelihood is given by

mtpY q �

»
Ωt

»
Rkp

ftpY |X,B,ΣqπtpB,Σq dB dΣ, (5.11)

where Ωt �
 
Σ : Rtσ

2 ¡ 0^Σ ¡ 0
(

is the parameter space of Σ that is admis-
sible under Ht and πtpB,Σq is the prior on B and Σ under Ht. Furthermore,
ftpY |X,B,Σq � fupY |X,B,Σq1ΩtpΣq, where 1ΩtpΣq is an indicator function that
equals 1 if Σ P Ωt and 0 otherwise (i.e. the likelihood under Ht is a truncation of
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the unconstrained likelihood in Equation (5.5)). The marginal likelihood can be in-
terpreted as a weighted average likelihood in the parameter space that is admissible
under Ht, where the weights are given by the prior. In this way the marginal likeli-
hood quantifies how likely it is that the data were generated under Ht. The Bayes
factor, as a ratio of marginal likelihoods, then tells us whether it is more likely that
the data were generated under Ht or Ht1 . If Btt1 ¡ 1 (Btt1   1), then there is evidence
in favor of Ht (Ht1). A Bayes factor of, say, 10 indicates that the evidence in favor of
Ht is 10 times as strong as the evidence in favor of Ht1 (e.g. Jeffreys, 1961).

To facilitate the interpretation, in particular if there are more than two hypotheses
under investigation, one can compute the posterior probabilities of the hypotheses
using their marginal likelihoods and prior probabilities. The prior probabilities of
the hypotheses, denoted by P pH1q, . . . , P pHT q, quantify how likely each hypothesis is
before observing any data (the prior probabilities must sum to 1). If prior information
about the hypotheses is weak, then it is customary to specify equal prior probabilities
P pH1q � � � � � P pHT q � 1{T . The posterior probabilities of the hypotheses are
obtained by updating the prior probabilities using the marginal likelihoods:

P pHt|Y q �
mtpY qP pHtq°T

t1�1mt1pY qP pHt1q
, t � 1, . . . , T. (5.12)

The posterior probabilities P pH1|Y q, . . . , P pHT |Y q then quantify how likely each
hypothesis is after observing the data (the posterior probabilities necessarily sum to
1).

5.3.2 Encompassing Prior Approach

From Equation (5.11) it can be seen that a prior πtpB,Σq on the coefficient and the
covariance matrix needs to be specified in order to compute the marginal likelihood
under hypothesis Ht. In this chapter we shall use the encompassing prior approach
(Berger & Mortera, 1999; Klugkist et al., 2005) to specify priors under competing
inequality constrained hypotheses on the variances in the multivariate normal lin-
ear model. The encompassing prior approach is a popular approach to computing
Bayes factors between inequality constrained hypotheses. The starting point is the
specification of an unconstrained (or encompassing) prior under the unconstrained
hypothesis Hu : σ2

1 , . . . , σ
2
p ¡ 0. Inequality constrained hypotheses are nested in the

unconstrained hypothesis in the sense that Ωt � Ωu � tΣ : Σ ¡ 0u. We may therefore
specify priors under inequality constrained hypotheses as truncations of the uncon-
strained prior in the respective constrained subspaces. In this way, the problem of
specifying a prior under each inequality constrained hypothesis simplifies to specifying
one unconstrained prior.

The unconstrained prior πupB,Σq on the coefficient and the covariance matrix
was given in Equation (5.8). The prior under an inequality constrained hypothesis Ht

is formulated as a truncation of the unconstrained prior in the admissible parameter
space Ωt � Rkp:

πtpB,Σq �
1

P pΣ P Ωt|Huq
πupB,Σq1ΩtpΣq, (5.13)
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where

P pΣ P Ωt|Huq �

»
Ωt

πupΣq dΣ (5.14)

is the prior probability that the inequality constraints on the variances on the main
diagonal of Σ hold under Hu, with πupΣq as in Equation (5.7). The prior probability
quantifies the complexity of an inequality constrained hypothesis relative to the un-
constrained hypothesis, where a large prior probability indicates high complexity. In
Equation (5.13) the inverse 1{P pΣ P Ωt|Huq acts as a normalizing constant.

If prior information about the covariance matrix is weak, we recommend spec-
ifying the prior scale matrix of the unconstrained prior on Σ in Equation (5.7) as
Λ � diagpε, . . . , εq, for a small positive ε. This choice can be considered objec-
tive for two reasons: First, under this setting all possible orderings of the variances�
σ2

1   � � �   σ2
p

�
, . . . ,

�
σ2
p   � � �   σ2

1

�
are equally likely a priori. As was argued by

Mulder, Hoijtink, and Klugkist (2010), such a specification is desirable when testing
inequality constrained hypotheses and prior information is weak. Second, the contri-
bution of the prior to the posterior scale matrix is negligible (in Equation (5.9) it can
be seen that the posterior scale matrix is given by Λ�S � S). As an uninformative
choice for the prior degrees of freedom we recommend setting ν � p, the smallest
possible integer value. Then the prior contains minimal information in the sense that
the contribution of the prior to the number of observations in the posterior is minimal.

Using the priors in Equations (5.8) and (5.13), it can be shown that the Bayes
factor of an inequality constrained hypothesisHt against the unconstrained hypothesis
Hu is given by

Btu �
P pΣ P Ωt|Y , Huq

P pΣ P Ωt|Huq
, (5.15)

where

P pΣ P Ωt|Y , Huq �

»
Ωt

πupΣ|Y q dΣ (5.16)

is the posterior probability that the inequality constraints on the variances on the
main diagonal of Σ hold under Hu, with πupΣ|Y q as in Equation (5.9). A proof is
given in Appendix 5.B. The posterior probability quantifies the fit of an inequality
constrained hypothesis relative to the unconstrained hypothesis, where a large pos-
terior probability indicates a good fit. From Equation (5.15) it can be seen that the
proposed Bayes factor automatically functions as Occam’s razor by taking the fit and
the complexity of inequality constrained hypotheses into account. The Bayes factor
between two inequality constrained hypotheses Ht and Ht1 is given by

Btt1 �
Btu
Bt1u

�
P pΣ P Ωt|Y , Huq{P pΣ P Ωt|Huq

P pΣ P Ωt1 |Y , Huq{P pΣ P Ωt1 |Huq
. (5.17)

Note that the posterior probability of an inequality constrained hypothesis Ht can be
computed using the Bayes factors against the unconstrained hypothesis according to
P pHt|Y q � BtuP pHtq

L�°T
t1�1Bt1uP pHt1q

�
.

An important property of the proposed Bayes factor in Equation (5.17) is that it
is consistent in the sense that the posterior probability of the true hypothesis tends
to 1 as the sample size tends to infinity. This can be explained as follows: Suppose
the true values of the variances lie in the admissible parameter space Ωt of hypothesis
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Ht. Then, as the sample size increases, the unconstrained posterior of Σ concentrates
in Ωt, so that the probability P pΣ P Ωt|Y , Huq tends to 1. This implies that if Ht1

with admissible parameter space Ωt1 is a competing hypothesis that does not overlap
with Ht (in the sense that Ωt X Ωt1 � H), then P pΣ P Ωt1 |Y , Huq tends to 0. From
Equation (5.17) it can be seen that the Bayes factor of Ht against Ht1 tends to infinity
in this case (note that the prior probabilities P pΣ P Ωt|Huq and P pΣ P Ωt1 |Huq are
constants that do not depend on the data). As a result, the posterior probability of Ht

tends to 1, which implies that the Bayes factor in Equation (5.17) is consistent. The
same argument applies in the case where there are multiple competing hypotheses
that do not overlap with Ht. To ensure that the Bayes factor behaves consistently
it is advisable to specify the hypotheses such that they do not overlap and cover the
entire unconstrained parameter space (in the sense that Ω1 Y � � � Y ΩT � Ωu).

The probabilities in Equations (5.14) and (5.16) can be approximated numerically
by drawing a large sample from the respective inverse-Wishart distribution and then
computing the proportion of draws that fall in the admissible parameter space Ωt.
For example, to compute the posterior probability in Equation (5.16) we first sample
Σpmq � W�1

p pΛ � S, ν � n � kq, for m � 1, . . . ,M , where M is the number of

draws and Σpmq is the mth draw. Then P pΣ P Ωt|Y , Huq �
1
M

°M
m�1 1Ωt

�
Σpmq

�
.

Generating random draws from an inverse-Wishart distribution can for example be
done in R (R Core Team, 2015) using the riwish() function from the MCMCpack
package (A. D. Martin, Quinn, & Park, 2011).

5.4 Performance of the Bayes Factor

We conducted a simulation study investigating the performance of the Bayes factor
in testing inequality constrained hypotheses on the variances in a 4 � 4 covariance
matrix. Our focus of interest was the effect of the sample size on the evidence in favor
of the true hypothesis as indicated by the Bayes factor and the posterior probability
of the true hypothesis.

In our simulation design there were two factors. The first was the structure of
the population covariance matrix. We used two population covariance matrices, one
in which the variances followed an increasing order σ2

1   σ2
2   σ2

3   σ2
4 and another

in which the order of the first two variances was interchanged, that is, σ2
2   σ2

1  
σ2

3   σ2
4 . To determine the population covariance matrices we used the separation

strategy of Barnard, McCulloch, and Meng (2000), in which the covariance matrix
is decomposed as Σ � DCD, where D � diagpσ1, . . . , σpq is a p � p matrix with
the standard deviations on the main diagonal and C ¡ 0 is a p � p correlation
matrix. For our simulation study we specified the population standard deviations as
follows. First, we set σ1 � 1 and σ4 � 1.58. Research on heterogeneity of variances
in the psychological sciences indicates that the resulting population variance ratio
of σ2

4{σ
2
1 � 1.582{12 � 2.5 can be considered a medium effect (Ruscio & Roche,

2012, Table 2). The intermediate population standard deviations were specified as

σ2 � σ
1{3
4 � 1.16 and σ3 � σ

2{3
4 � 1.36, which resulted in constant ratios of adjacent

standard deviations of σ2{σ1 � σ3{σ2 � σ4{σ3 � 1.16. We then defined two diagonal
matrices D1 � diagpσ1, σ2, σ3, σ4q and D2 � diagpσ2, σ1, σ3, σ4q, where the standard
deviations on the main diagonal of D1 follow an increasing order, and in D2 the
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first two standard deviations are interchanged. For the correlation matrix C we used
a compound symmetry structure in which we set all off-diagonal elements equal to
ρ � 0.3, which is considered a medium correlation in the social sciences (Cohen, 1992).
Eventually, we computed the population covariance matrices as

Σ1 �D1CD1 �

�
���

1.00 0.35 0.41 0.47
0.35 1.36 0.47 0.55
0.41 0.47 1.84 0.64
0.47 0.55 0.64 2.50

�
��� (5.18)

and

Σ2 �D2CD2 �

�
���

1.36 0.35 0.47 0.55
0.35 1.00 0.41 0.47
0.47 0.41 1.84 0.64
0.55 0.47 0.64 2.50

�
��� . (5.19)

The second factor in our simulation study was the sample size n P t5, 10, 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000u.

In total there were 2 (covariance matrices)�11 (sample sizes) � 22 conditions. In
each condition we drew 1000 samples of size n from N4p0,Σ1q and N4p0,Σ2q, respec-
tively. In each sample we modeled the data as Y � XB � E ��
1 � � � 1

�T �
β01 β02 β03 β04

�
�E and tested the inequality constrained hypoth-

esis H1 : σ2
1   σ2

2   σ2
3   σ2

4 against its complement H2 :  H1. Specifically, we com-
puted the logarithm of the Bayes factor (also referred to as the weight of evidence) in
favor of the true hypothesis as well as the posterior probability of the true hypothesis
assuming equal prior probabilities. Note that for data sampled from a multivariate
normal distribution with covariance matrix Σ1 the true hypothesis is H1, whereas for
data sampled under Σ2 the complement H2 is true. In computing the log Bayes fac-
tors and posterior probabilities we specified the hyperparameters of the unconstrained
prior on the covariance matrix in Equation (5.7) as Λ � diag

�
10�6, 10�6, 10�6, 10�6

�
and ν � p � 4.

The top row of Figure 5.1 shows the simulation results for the covariance matrix
Σ1, in which the variances were ordered as σ2

1   σ2
2   σ2

3   σ2
4 (see Equation (5.18)).

The top left plot shows the median of the 1000 log Bayes factors in favor of the true
hypothesis H1 (solid line) as well as the 2.5% and 97.5% quantiles (dashed lines) as a
function of the sample size n. It can be seen that the evidence in favor of H1 increased
monotonically with the sample size. The variability of the evidence (as indicated by
the quantiles) was largest for sample sizes up to 20. The log Bayes factor always
selected the true hypothesis (i.e. it was always greater than 0) for sample sizes of
200 and above. The lines are discontinued because for large samples the posterior
probability that the inequality constraints under H1 do not hold was approximated
as 0, so that the log Bayes factor was infinite (cf. Equation (5.17)). The top right
plot in Figure 5.1 shows the median of the 1000 posterior probabilities of the true
hypothesis H1 as well as the 2.5% and 97.5% quantiles as a function of the sample
size n. The results confirmed the findings from the log Bayes factor analysis: The
evidence in favor of the true hypothesis H1 increased monotonically with the sample
size and there was considerable variability in the evidence for sample sizes up to 20.
It can be seen that a sample size of 20 was sufficient to obtain a median posterior
probability of H1 above 0.8. The fact that the posterior probability approached 1
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Figure 5.1: Results of a simulation study testing the inequality constrained hypothesis
H1 : σ2

1   σ2
2   σ2

3   σ2
4 against its complement H2 :  H1. The plots in the top

(bottom) row show the results for a population covariance matrix Σ1 (Σ2) in which
the variances are ordered as σ2

1   σ2
2   σ2

3   σ2
4 (σ2

2   σ2
1   σ2

3   σ2
4) (see Equations

(5.18) and (5.19)). Note that for Σ1 (Σ2) the true hypothesis is H1 (H2). The plots in
the left-hand column show the median log Bayes factor in favor of the true hypothesis
(solid line) as well as the 2.5% and 97.5% quantiles (dashed lines) as a function of
the sample size n. The lines are discontinued due to numerical reasons (see text).
The plots in the right-hand column show the median posterior probability of the true
hypothesis as well as the 2.5% and 97.5% quantiles.
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as the sample size increased illustrates that the Bayes factor is consistent (as was
explained in Section 5.3.2).

The bottom row of Figure 5.1 shows the simulation results for the covariance
matrix Σ2, in which the variances were ordered as σ2

2   σ2
1   σ2

3   σ2
4 (see Equation

(5.19)). The bottom left plot shows the results for the log Bayes factor in favor of
the true hypothesis H2. The lines are discontinued for reasons analogous to those in
the top left plot. The results differ from those shown in the top left plot in three
important ways: First, larger samples were required to obtain decisive evidence in
favor of H2. Second, it can be seen that the median log Bayes factor first decreased
slightly until a sample size of 50 was reached, after which it increased monotonically.
Third, there was more variability in the evidence, which can be seen from larger
differences between the 97.5% and 2.5% quantiles. All three patterns were caused by
the fact the true order of the variances in the population (σ2

2   σ2
1   σ2

3   σ2
4) differed

from H1 : σ2
1   σ2

2   σ2
3   σ2

4 only in the order of one pair of variances. As a result, it
was difficult for the log Bayes factor to detect the true hypothesis if the sample size
was small. Nevertheless, the log Bayes factor always selected the true hypothesis H2

for sample sizes of 2000 and above. The same patterns were present in the results for
the posterior probability of the true hypothesis shown in the bottom right plot. It
can be seen that larger samples were necessary to obtain decisive evidence in favor of
H2, that the median posterior probability of H2 first decreased, and that there was
substantial variability for sample sizes up to 500. A sample size of 200 was required
to obtain a median posterior probability of the true complement above 0.8. Again,
we see consistent behavior in that the posterior probability of the true hypothesis
approached 1 as the sample size increased.

5.5 Example Application: Reading Recognition in
Children

We applied the Bayes factor to an empirical data set discussed in Vermunt and Magid-
son (2005). The outcome of interest in this data set was reading recognition in chil-
dren as measured by the Reading Recognition subtest of the Peabody Individual
Achievement Test (Dunn & Markwardt, 1970). The Reading Recognition subtest
measures a child’s word recognition and pronunciation ability. The subtest was ad-
ministered four times at two-year intervals to a sample of 405 children. The data
set contained the following background variables, which we used as covariates: the
child’s gender, the mother’s age, the child’s age, the child’s cognitive stimulation at
home, and the child’s emotional support at home. Following Aunola et al. (2004),
we hypothesized that the variability of reading recognition performances either in-
creased or decreased over time. This corresponds to the two inequality constrained
hypotheses H1 : σ2

1   σ2
2   σ2

3   σ2
4 and H2 : σ2

4   σ2
3   σ2

2   σ2
1 , where σ2

j is the
variance of the jth measurement. We tested these hypotheses against their comple-
ment H3 :  pH1 _H2q to take into account that the data might support neither H1

nor H2.

We fitted a multivariate normal linear model to the 233 complete cases with read-
ing recognition as the 4-dimensional dependent variable and the background variables
as independent variables (only main effects). The maximum likelihood estimate of
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the covariance matrix was given by

Σ̂ � S{n �

�
���

0.50 0.38 0.38 0.39
0.38 0.84 0.74 0.77
0.38 0.74 1.06 0.92
0.39 0.77 0.92 1.28

�
��� . (5.20)

It can be seen that the point estimates of the variances follow an increasing order. Fur-
thermore, note that the sample variance ratio of σ̂2

4{σ̂
2
1 � 1.28{0.50 � 2.57 indicates a

medium effect (similar to the effect size of σ2
4{σ

2
1 � 2.5 used in the simulation study).

To determine the evidence in the data in favor of H1, H2, and H3, we computed the
Bayes factors between the hypotheses and the posterior probabilities of the hypothe-
ses. We specified the hyperparameters of the unconstrained prior on the covariance
matrix as Λ � diag

�
10�6, 10�6, 10�6, 10�6

�
and ν � p � 4 (as we did in the simula-

tion study). The resulting Bayes factors were given by B12 � 8, B13 � 1456.49, and
B23 � 0.00. The Bayes factors B12 and B23 were infinite and 0, respectively, because
the posterior probability that the variances follow a decreasing order as stated in H2

was approximated as 0. The results show that hypothesis H1 stating an increase in
variance received very strong support, while there was no support for either H2 or
H3. This can also be seen from the posterior probabilities of the hypotheses, which
were given by P pH1|Y q � 1.00, P pH2|Y q � 0.00, and P pH3|Y q � 0.00 (assuming
equal prior probabilities). Considering the Bayes factors and posterior probabilities
of the hypotheses, we ruled out H2 and H3 and concluded that the variances of read-
ing recognition performances increased over time. Following Aunola et al. (2004), a
possible explanation for such an increase in the variances is that children with high
reading skills increased their reading recognition performances more over time than
children with low reading skills.

5.6 Conclusion

In this chapter we developed a Bayes factor for testing inequality constrained hypothe-
ses on the variances of dependent observations. We applied the encompassing prior
approach, in which priors under inequality constrained hypotheses are formulated as
truncations of the prior under the unconstrained hypothesis. This approach to prior
specification has two main advantages: First, the problem of specifying a prior un-
der every inequality constrained hypothesis to be tested simplifies to specifying one
unconstrained prior. This is a useful property in practice, since in our experience
researchers find it difficult to formulate subjective priors on (co)variances, in partic-
ular under inequality constrained hypotheses. We used a conjugate inverse-Wishart
distribution with noninformative hyperparameters as the unconstrained prior on the
covariance matrix. With this specification the Bayes factor is fully automatic in the
sense that there is no need to specify a subjective prior under any hypothesis. The
second advantage of the encompassing prior approach is that Bayes factors between
inequality constrained hypotheses can be computed straightforwardly by sampling
from the prior and the posterior distribution of the covariance matrix and computing
the proportion of draws that satisfy the inequality constraints. Our Bayes factor is
consistent in that it is guaranteed to select the true hypothesis as the sample size
increases.
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In our simulation study we considered a limited number of factors and conditions.
Future research may examine the Bayes factor’s behavior under different dimensions
p, additional orderings and ratios of population variances, different magnitudes and
structures of correlations, and additional hypotheses that are tested. Furthermore, it
would be interesting to investigate relations between the multivariate normal linear
model and other models of development over time. For example, in a random slope
model the variance can either decrease over time, increase over time, or first decrease
and then increase (e.g. Snijders & Bosker, 2012). The Bayes factor we presented in
this chapter could be used to test such patterns in the variances of repeated measures.
A natural extension of the testing problem we considered is to allow for equality
constraints between the variances (e.g. H : σ2

1 � σ2
2   σ2

3). Here the challenge is to
incorporate the equality constraints when computing the marginal likelihoods under
competing hypotheses. The separation strategy of Barnard, McCulloch, and Meng
(2000) could be a useful approach to modeling the covariances in the multivariate
normal linear model when equality constraints are imposed on the variances. Based
on our findings in this chapter we expect that the Bayes factor provides a solution to
this intricate testing problem.

5.A Posterior Distribution of B and Σ

The joint unconstrained posterior distribution of the coefficient matrix B and the
covariance matrix Σ is given by

πupB,Σ|Y q 9 fupY |X,B,ΣqπupB,Σq

9 |Σ|�n{2 exp
�
� 1

2 pβ � β̂q
T
�
Σb pXTXq�1

��1
pβ � β̂q

	
exp

�
� 1

2 trpΣ�1Sq
�
|Σ|�pν�p�1q{2 exp

�
� 1

2 trpΣ�1Λq
�

9
��Σb pXTXq�1

���1{2
exp

�
� 1

2 pβ � β̂q
T
�
Σb pXTXq�1

��1
pβ � β̂q

	
|Σ|�pν�n�k�p�1q{2 exp

�
� 1

2 tr
�
Σ�1pΛ� Sq

��
,

(5.21)

which can be recognized as a normal-inverse-Wishart distribution
Nkp

�
β
��β̂,Σ b pXTXq�1

�
W�1
p pΣ|Λ � S, ν � n � kq. From this it follows that the

marginal unconstrained posterior distribution of Σ is given by πupΣ|Y q �
W�1
p pΣ|Λ � S, ν � n � kq. Note that the model assumes that rankpXq � k and

that n ¡ p� k � ν � 1.
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5.B Bayes Factor of Ht Against Hu

The Bayes factor of an inequality constrained hypothesis Ht against the unconstrained
hypothesis Hu is given by

Btu �
mtpY q

mupY q
�

³
Ωt

³
Rkp ftpY |X,B,ΣqπtpB,Σq dB dΣ³

Ωu

³
Rkp fupY |X,B,ΣqπupB,Σq dB dΣ

�

³
Ωt

³
Rkp fupY |X,B,ΣqP pΣ P Ωt|Huq

�1πupB,Σq1ΩtpΣq dB dΣ³
Ωu

³
Rkp fupY |X,B,ΣqπupB,Σq dB dΣ

�
1

P pΣ P Ωt|Huq

»
Ωt

»
Rkp

fupY |X,B,ΣqπupB,Σq³
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Rkp fupY |X,B,ΣqπupB,Σq dB dΣ

dB dΣ

�
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P pΣ P Ωt|Huq
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Rkp

πupB,Σ|Y q dB dΣ

�
1

P pΣ P Ωt|Huq

»
Ωt

πupΣ|Y q dΣ �
P pΣ P Ωt|Y , Huq

P pΣ P Ωt|Huq
,

(5.22)

where in the third line we may omit the indicator function because the integration
region is already restricted to the constrained parameter space Ωt. A derivation of
the posterior distribution πupB,Σ|Y q is given in Appendix 5.A.



Chapter 6

Epilogue

In this dissertation we argued that variances are more than just nuisance parameters
and that by disregarding the variability of observations one runs the risk of over-
looking important information in the data. We provided numerous examples where
specific relations between variances could be expected based on theoretical consider-
ations or findings from previous research. For example, in the illustrative example
in Section 2.6.1, research on gender differences suggested that boys are more variable
in their intellectual abilities than girls. In the examples in Sections 3.3/3.6 and 5.5,
theoretical considerations suggested that the variability of educational performances
either increases or decreases over time. In Section 4.5.2 it was expected, based on
previous research, that ADHD patients are more variable in their intellectual perfor-
mances than unaffected controls and that Tourette’s patients are either as variable
as ADHD patients or unaffected controls. Such expectations were translated into
hypotheses with equality and/or inequality constraints on the variances. Two com-
peting hypotheses we frequently considered were the null hypothesis stating equality
of variances and the complement of a set of hypotheses.

We used the Bayes factor to test equality and inequality constrained hypotheses
on variances. Application of Bayes factors requires a prior distribution of the model
parameters under every hypothesis to be tested. In this dissertation we developed
Bayes factors based on automatic priors, which circumvent the need for the user
to manually specify subjective priors. In Chapters 2, 3, and 4 we proposed Bayes
factors for testing variances of independent observations. Here we used information
from the sample data to specify proper priors in an automatic fashion. The priors
were specified such that they contain minimal information, which avoids the Jeffreys–
Lindley paradox (Jeffreys, 1961; Lindley, 1957) when testing hypotheses with equality
and inequality constraints on the variances. The Bayes factor in Chapter 5 was based
on a default unconstrained prior where the hyperparameters were specified such that
the prior was uninformative when testing inequality constrained hypotheses on the
variances of dependent observations.

Our Bayes factors have the following desirable properties when testing (in)equality
constrained hypotheses on variances. First, the Bayes factors are able to quantify
the evidence in the data in favor of the hypotheses under investigation. Second,
it is straightforward to test multiple (non)nested hypotheses simultaneously. The

129



130 CHAPTER 6. EPILOGUE

Bayes factors then indicate which hypothesis receives strongest support from the data.
Third, results from simulation studies indicated that the Bayes factors are consistent
in the sense that they select the true hypothesis as the sample size increases. In Chap-
ter 5 consistency of the Bayes factor for testing variances of dependent observations
was explained theoretically based on the behavior of the posterior distribution for
large samples. Fourth, our Bayes factors function as Occam’s razor by automatically
taking the parsimony introduced by inequality constraints between variances into ac-
count. Note that this did not hold for the fractional Bayes factor in Chapters 2 and
4 if there was very strong evidence in favor of an inequality constrained hypothesis.
Fifth, our Bayes factors are fully automatic, which means that users do not need to
specify any prior distributions themselves.

The Bayes factors we proposed in this dissertation use normal distributions to
model the data. The normal distribution, however, may not be a suitable model for
data that depart in important aspects from normality. Such deviations from normal-
ity include outliers, skewness, and kurtosis. More research is needed to investigate
how robust the proposed Bayes factors are to violations of normality. Moreover, fur-
ther research is indicated to examine the Bayes factors’ behavior under conditions
different from those we considered in our simulation studies. Additional simulations
might consider different numbers of populations (or dimensions in the case of depen-
dent observations), different structures of population variances, and different effect
sizes. Furthermore, in the case of dependent observations it would be interesting to
investigate the behavior of the Bayes factor under different correlation matrices (dif-
ferent correlations in the compound symmetry structure and/or different correlation
structures).

Our approach to testing inequality constrained hypotheses on the variances in
the multivariate normal linear model in Chapter 5 can be extended in multiple ways.
First, a natural extension is to enable both equality and inequality constraints between
the variances. In such a testing problem the challenge is to include the equality con-
straints in the computation of the marginal likelihoods under competing hypotheses.
The separation strategy of Barnard, McCulloch, and Meng (2000) might be a useful
approach to achieve this. Here the covariance matrix is decomposed into standard
deviations and correlations. Priors can then be formulated on the unique standard
deviations using a balanced approach with equal priors on the standard deviations or
a fractional approach by means of the (adjusted) fractional Bayes factor. As a second
extension, one might consider including time-varying covariates in the multivariate
normal linear model, which is relevant in repeated measurement studies (e.g. Mulder
et al., 2009). A third extension would be testing variances in MAN(C)OVA models.
These models commonly assume homoscedasticity, which means that each multivari-
ate population has the same covariance matrix. Hypotheses can then be formulated
on the common variances. The assumption of homoscedasticity can be relaxed by
allowing different populations to have separate covariance matrices. In this case hy-
potheses can be formulated on variances within and across covariance matrices of
different populations. A fourth potential extension would be testing (in)equality con-
strained hypotheses on variances in generalized multivariate regression models. One
such model is the seemingly unrelated regressions model of Zellner (1962), which dif-
fers from the standard multivariate regression model in that each dependent variable
may have a separate regressor matrix.
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Further directions for future research in the area of testing hypotheses on variances
are conceivable. First, one might consider using informative priors when testing
variances. Here the difficulty is to elicit priors under competing hypotheses based
on prior information about the variances that is available before observing the data.
This is particularly challenging under equality and inequality constrained hypotheses
on variances. Second, in normal linear regression one might consider modeling the
mean as well as the variance as a function of predictors (e.g. Harvey, 1976; Polasek,
Liu, & Jin, 1998). Different sets of predictors could be used for the mean and the
variance, based on which variables researchers expect these to depend on. Hypotheses
could then be formulated on the regression coefficients for the variance. For example,
if a researcher expects males to be more variable than females, the corresponding
hypothesis would be that the regression coefficient of the predictor “gender” for the
variance is greater than 0 (if male is coded as 1). Third, variability could also be
investigated in distributions other than the normal. For example, in generalized
linear models the interest could focus not only on the mean but also on the dispersion
parameter. Here the approach of Smyth (1989) might prove useful, where the mean
as well as the dispersion is modeled as a function of (potentially different) predictors.
Similar to the normal case above, researchers could then formulate hypotheses on
the regression coefficients for the dispersion. A fourth direction would be testing
hypotheses on variance components in random effects models. For example, Mulder
and Fox (2013) proposed Bayes factors for testing hypotheses on variance components
in random intercept models. This work could be extended to more general random
effects models such as random slopes models. Based on the findings in this dissertation
I expect that the Bayes factor provides a solution to the testing problems outlined
above.

A software application for computing the adjusted fractional Bayes factor was
presented in Chapter 3. In the future it would be valuable to also make software
available for computing the fractional Bayes factor and the balanced Bayes factor
from Chapters 2 and 4, as well as the Bayes factor for testing variances of depen-
dent observations from Chapter 5. Here it would be useful to combine all four Bayes
factors in one user-friendly package in R (R Core Team, 2015). Major parts of the
computer code for such a package are already available since all computations in this
dissertation were carried out in R. Currently, many separate software packages exist
for testing (in)equality constrained hypotheses using Bayes factors. Some examples
include BIEMS for testing (in)equality constrained hypotheses on means and regres-
sion coefficients in the multivariate normal linear model (Mulder et al., 2012), BIG for
computing the approximate Bayes factor presented in Gu et al. (2014), and BOCOR
for testing inequality constrained hypotheses on correlations (Mulder, 2016). In the
long run it would be useful to combine all these different approaches in one software
program for testing (in)equality constrained hypotheses. A challenge would be that
the existing packages are written in different programming languages. Nevertheless,
such a unifying program would be a valuable resource for applied researchers to test
specific expectations about various parameters.
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Summary

Statistical models commonly consist of two types of parameters. On the one hand,
there are mean parameters that describe the average in a population of subjects (e.g.,
students) on a measure of interest (e.g., intelligence). Suppose the average intelligence
quotient (IQ) in some population of students is 105. Not all students have an IQ of
exactly 105. Instead, the IQ varies from student to student; some students have an
IQ above 105, others below 105. In statistical models, this variability is captured
by variance parameters. A small variance means that the members of a population
have similar values close to the average on the measure of interest, whereas a large
variance indicates that the values deviate a lot from the population’s average. Note
that mean as well as variance parameters are unknown quantities. It is the objective of
statistical analyses to provide information on these parameters based on data coming
from subjects in the population under study.

When statistical models are applied in practice, researchers are commonly inter-
ested in the mean parameters describing the average in the population under study.
For example, one might be interested in the average intelligence in a population of stu-
dents. The information that is expressed by variance parameters is often disregarded
in practice. In fact, some of the most common statistical models (e.g., ANOVA)
assume homogeneity of variances. This assumption states that the variances of dif-
ferent populations (e.g., male and female students) are equal. However, psychological
research has shown that the assumption of homogeneity of variances often is not ten-
able and that frequently there is evidence that variances are not equal. For example,
psychological studies have found males to be more variable than females on a variety
of measures (e.g., intelligence).

Often there are reasons to expect that certain populations of subjects are less
variable or more variable than other populations. Alternatively, one might expect
two or more populations two be equally variable. Such expectations can be expressed
as hypotheses with equality and inequality constraints on the variances of the popu-
lations. For example, based on theoretical considerations and/or previous research,
one might expect male students to be more variable than female students on a partic-
ular outcome measure (e.g., intelligence). This expectation can be formulated as an
inequality constrained hypothesis on the variances of the two populations of students:
“The variance of male students is greater than the variance of female students.” Here
the inequality constraint is expressed by the phrase ‘is greater than.’ There are two
potential competing hypotheses in this example: “the variance of male students is less
than the variance of female students” and “the variances of male and female students
are equal.” Equality and inequality constrained hypotheses can also be formulated
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on the variances of more than two populations. For example, when investigating the
variability of students’ academic performances, one might hypothesize that “the vari-
ance in grade 1 is less than the variance in grade 2, which is less than the variance in
grade 3.” In other words, one might expect that the variance increases across grades.
When there are more than two populations under investigation, we may also combine
equality and inequality constraints (e.g., “variance 1 and variance 2 are equal and
variance 3 is greater than variances 1 and 2”).

To test their hypotheses, researchers collect data on subjects from the populations
under study. The question is then which hypothesis is most supported by the data. In
this dissertation we use the Bayes factor to test (in)equality constrained hypotheses on
variances and quantify the support in the data in favor of competing hypotheses. The
Bayes factor is a hypothesis testing approach from an area called Bayesian statistics.
The defining characteristic of Bayesian statistics is that there are two sources of
information about model parameters such as variances: the sample data and the prior
distribution (called prior in short). The prior is a probability distribution describing
what is known about the model parameters before collecting any data (e.g., from
previous research). In other words, the prior describes which values are likely for
the parameters before we can look at the data. In Bayesian hypothesis testing by
means of the Bayes factor, a prior needs to be specified under each hypothesis to
be tested. Thus, for the example of comparing the variances of male and female
students, a prior needs to be specified under each of the two inequality constrained
hypotheses and under the equality constrained hypothesis. In practice, however, prior
information about the magnitude of variances is often unavailable or researchers would
like to refrain from adding prior information to the analysis (e.g., to “let the data
speak for themselves”). For such situations statisticians devised so-called default or
automatic Bayes factors. In these methods, the priors are specified in an automatic
fashion without the user needing to provide any prior information. Often, information
from the sample data is used to automatically specify the priors.

In this dissertation, we develop automatic Bayes factors for testing equality and
inequality constrained hypotheses on variances. In Chapter 2, we consider the problem
of testing (in)equality constrained hypotheses on the variances of two independent
populations. Populations are independent if there is no relation between subjects from
different populations. Throughout this dissertation we assume that the outcome of
interest (e.g., intelligence) is normally distributed in the populations under study. In
Chapter 2 we are concerned with testing the following three hypotheses: “the variance
of population 1 is less than the variance of population 2,” “the variance of population 1
is greater than the variance of population 2,” and “the variances of populations 1 and 2
are equal.” We present three automatic Bayes factors for this multiple hypothesis test.
The first is the fractional Bayes factor (FBF) introduced by O’Hagan (1995). The
FBF is a general approach to Bayesian hypothesis testing and model selection that
implicitly specifies priors in an automatic fashion using information from the sample
data. In this dissertation we apply the FBF for the first time to the problem of testing
(in)equality constrained hypotheses on variances. It is shown that the FBF may not
properly take the parsimony of inequality constrained hypotheses into account. Note
that inequality constrained hypotheses are more parsimonious than unconstrained
hypotheses because the former allow fewer values of the variances. For example,
the inequality constrained hypothesis “the variance of male students is greater than
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the variance of female students” excludes the possibility that the variance of male
students is less than the variance of female students. The FBF does not properly take
the parsimony of inequality constrained hypotheses into account because the implicit
automatic prior favors those inequality constraints that are likely according to the
data. The fact that the FBF may not incorporate the parsimony due to inequality
constraints is a problem because in hypothesis testing one should accept the most
parsimonious hypothesis that is in line with the data (this principle is also referred
to as Occam’s razor).

As a solution to the problem, we propose two automatic Bayes factors that take
the parsimony of inequality constrained hypotheses into account when testing two
variances. The first is a balanced Bayes factor (BBF), which is based on identical
priors on the two variances. The priors are specified in an automatic fashion using
information from the sample data. An important characteristic of the BBF is that
the two possible orderings of the two variances (variance 1 is less than variance 2,
variance 1 is greater than variance 2) are equally likely according to the prior. This
ensures that the BBF properly incorporates the parsimony of inequality constrained
hypotheses. However, the fact that the same prior is used for the two variances results
in shrinkage in the sense that this implies evidence for the hypothesis stating equality
of variances. The second solution we present is an adjusted fractional Bayes factor
(aFBF). In this approach we adjust the FBF such that the two possible orderings of
the two variances are equally likely a priori (as in the BBF). Contrary to the BBF,
the aFBF is not affected by shrinkage. In a simulation study the FBF, BBF, and
aFBF showed similar behavior, with the aFBF providing slightly stronger evidence
in favor of a true inequality constrained hypothesis than the FBF and BBF. Note
that a hypothesis is true if it correctly describes the relation between the variances
of the populations. We demonstrate the practical utility of the three Bayes factors in
two real data examples dealing with the variability of intelligence in children and the
precision of burn wound assessments.

In Chapter 3, we extend the aFBF to the problem of testing (in)equality con-
strained hypotheses on the variances of more than two populations. We first apply
the standard FBF to the special case of testing an inequality constrained hypothe-
sis on the variances of three populations. This test reveals that the FBF may not
properly incorporate the parsimony of inequality constrained hypotheses in the case
of more than two populations either. As with the FBF for testing two variances in
Chapter 2, this happens because the implicit automatic prior in the FBF approach
favors those inequality constraints that are likely according to the data. Next, we
develop the aFBF for the general case of testing hypotheses with equality and in-
equality constraints on the variances of more than two populations. An application of
this extended aFBF to the test of an inequality constrained hypothesis on three vari-
ances shows that it takes the parsimony introduced by the inequality constraints into
account. As for the case of testing two variances in Chapter 2, this is due to the fact
that in the aFBF approach all possible orderings of the variances are equally likely a
priori. The results of a simulation study indicate that the aFBF is large sample con-
sistent, which means that it is able to detect the true hypothesis if the sample is large
enough (i.e., if we have enough data). An application of the aFBF to real data from
the Math Garden online learning environment (https://www.mathsgarden.com/) re-
vealed strong evidence that the variability of students’ multiplication and division



142 SUMMARY

abilities in elementary school increases across grades. We conclude this chapter with
a presentation of a user-friendly software application for computing the aFBF. The
only input that is required from the user is the data and the hypotheses to be tested.

In Chapter 4, we extend the FBF and BBF from Chapter 2 to the case of testing
(in)equality constrained hypotheses on more than two variances. As the BBF for test-
ing two variances in Chapter 2, the extended BBF is based on identical priors for all
variances. We present a detailed comparison of the performance of the extended FBF
and BBF as well as the extended aFBF from Chapter 3. First, we illustrate that the
BBF and aFBF incorporate the parsimony of inequality constrained hypotheses when
testing more than two variances, whereas the FBF may not do so. Next, we examine
whether the three Bayes factors are information consistent when testing inequality
constrained hypotheses. Loosely speaking, a Bayes factor is information consistent
in this setting if the evidence in favor of an inequality constrained hypothesis keeps
increasing as the inequality effect in the data increases (while keeping the sample
size fixed). Numerical analyses indicated that the FBF and aFBF are information
consistent, whereas the BBF showed information inconsistent behavior. The third
property we investigate is large sample consistency. The results of a simulation study
indicated that all three Bayes factors are large sample consistent. The BBF provided
stronger evidence in favor of a true equality constrained hypothesis than the FBF
and aFBF. This is due to the identical priors on the variances in the BBF approach,
which imply evidence in favor of equality of variances. The FBF and aFBF yielded
stronger evidence in favor of a true inequality constrained hypothesis than the BBF.
We illustrate the use of the three Bayes factors by applying them to hypothetical data
from an experimental study and real data from two studies investigating attentional
performances of Tourette’s and ADHD patients and the influence of group leaders,
respectively.

In Chapter 5, we consider the problem of testing inequality constrained hypotheses
on the variances of dependent populations. Populations are dependent if there is a
relationship between subjects from different populations or if the same subjects are
surveyed multiple times. In this chapter we focus on inequality constrained hypotheses
and exclude equality constraints for reasons of technical complexity. We use the
so-called encompassing prior approach to specify priors under competing inequality
constrained hypotheses. The first step in this approach is to define a prior under
the unconstrained hypothesis that does not impose any constraints on the variances.
Subsequently, the prior under an inequality constrained hypothesis is defined as a
truncation of this unconstrained prior in the region that is admissible under the
respective hypothesis. For example, consider the inequality constrained hypothesis
“the variance of population 1 is less than the variance of population 2.” We first
specify a prior on the two variances that does not involve any constraints. Note that
under this unconstrained prior the variances may take on any possible combination
of values. That is, under the unconstrained prior variance 1 may be less than or
greater than variance 2. The prior under the inequality constrained hypothesis is then
proportional to the unconstrained prior in the region where variance 1 is less than
variance 2 and it is 0 where variance 1 is greater than variance 2. With this approach to
specifying priors, Bayes factors between competing inequality constrained hypotheses
can be computed using the probabilities that the inequality constraints hold before
and after observing the data. An important property of our Bayes factor based on
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the encompassing prior approach is that it is large sample consistent. Furthermore,
it is fully automatic in the sense that the user does not need to manually specify any
prior. We conclude this chapter with an application of our Bayes factor to real data
from a study investigating reading ability in children, which was measured four times
in the same children at two-year intervals. Our analysis revealed strong evidence that
the variance of children’s reading ability increases over time.
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There are often reasons to expect  
certain relations between the variances 
of multiple populations. For example, 
in an educational study one might  
expect that the variance of students’ 
performances increases or decreases 
across grades. Alternatively, it might be 
expected that the variance is constant 
across grades. Such expectations can  
be formulated as equality and  
inequality constrained hypotheses on 
the variances of the students’ perfor-
mances. In this dissertation we develop 
automatic (or default) Bayes factors for 
testing such hypotheses. The methods 
we propose are based on default priors 
that are specified in an automatic fashion 
using information from the sample 
data. Hence, there is no need for the 
user to manually specify priors under 
competing (in)equality constrained  
hypotheses, which is a difficult task in 
practice. All the user needs to provide is 
the data and the hypotheses. Our Bayes 
factors then indicate to what degree  
the hypotheses are supported by 
the data and, in particular, which  
hypothesis receives strongest support.


