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Samenvatting

Deze dissertatie richt zich op financiële vraagstukken van drie partijen op het
gebied van pensioen, namelijk de beleidsmaker, de pensioenuitvoerder (bijvoor-
beeld een verzekeraar of een pensioenfonds) en de deelnemer. Vanwege zowel
het volatiele karakter van financiële markten als demografische ontwikkelingen
is een herevaluatie van de rol van deze drie genoemde partijen noodzakelijk.
In het bijzonder is er aandacht voor de vraag wie welke risico’s draagt. De
uitkomst van dit onderzoek omvat advies voor deelnemers over het omgaan
met langlevenrisico, een evaluatie van de aantrekkelijkheid van beleggen in lan-
glevenrisico voor investeerders, inzichten in het opstellen van pensioencontracten
door verzekeraars, en voorstellen omtrent regelgeving voor beleidsmakers om een
toekomstbestendig pensioen te creëren.
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Preface

This dissertation examines three stakeholders in pension finance: the indi-
vidual, the policymaker, and the pension provider (e.g., an insurer or a pension
fund). In a setting beset by unforeseen financial market circumstances and de-
mographic changes that disfavor financial security in retirement, a re-evaluation
of these stakeholders’ role is necessary. We explore the regulation and design of
retirement plans by incorporating features that characterize the future retire-
ment landscape, such as the increasing burden of risk borne by the individual,
and the potential involvement of market investors in the provision of retirement
contracts. The implications of our findings encompass guidance for individuals
in managing longevity risk, evaluation of the appeal of longevity risk exposure
to investors, insights on contract design for the pension provider, and proposals
to the policymaker on regulatory measures that foster a sustainable retirement
environment.
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Introduction

Retirement financing is susceptible to financial market fluctuations and evolves
with demographic trends. The anomalous economic situation after the financial
crisis of 2008, coupled with increasing life expectancies, caused the cost of re-
tirement financing to soar, prompting the stakeholders to re-assess their roles.

The employer, for instance, revises the occupational retirement plan to re-
duce pension costs. These changes shift the bulk of financial and biometric risks
onto the individual, who seeks guidance to manage the risks. The individual’s
task is further complicated by the setting where a market for some of the risks,
such as longevity, is not well developed. Overseeing the transition, the policy-
maker is occupied with the regulatory framework re-design in order to better
align the stakeholders’ incentives. This dissertation examines the role of pension
finance stakeholders in a changing retirement landscape. Its findings elucidate
the part that each stakeholder can take on to surmount retirement financing
challenges.

Chapter 1 concerns the policymaker and the employer. It is based on
Boon et al. (2017a). The chapter investigates Defined Benefit (DB) pension
plan investments in relation to regulatory requirements. In DB plans, employ-
ers provide lifelong benefits to their employees and assume most of the risks.
The investments of DB plans are central not only because financial market gains
boost retirement income, but also because they are a source of capital for the
long-term financing of the economy, such as for infrastructure building.

xii
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The enticement of attaining high financial market returns to minimize the
costs of benefit provision could induce a DB plan to take excessive investment
risks. Hence, regulatory intervention is warranted. Evidence on the implication
of regulatory requirements on DB investments to-date focuses only on a hand-
ful of regulatory constraints, and is United-States-centric. By taking advantage
of the heterogeneity of the DB plans’ regulatory framework within the United
States (US), with Canada and the Netherlands, we estimate that while regula-
tory requirements statistically significantly influence DB funds’ risk-taking, the
economic significance of the constraints varies. Risk-based capital requirements
and mark-to-market asset valuation are associated to 7% less risky investments.
In contrast, a 1% higher liability discount rate is related to only 0.8% more
allocation to risky assets on average. Fund characteristics (e.g., proportion of
retirees, value of assets) also possess low economic significance in accounting
for the variation of risk-taking among DB plans. These insights are valuable
to a policymaker who balances the desire to safeguard individuals’ retirement
finances by modulating the plans’ investment risk-taking, and to enable the
plans’ involvement in long-term projects that are essential to economic growth.

Although DB plans constitute the majority of occupational retirement ac-
count in asset value, Defined Contribution (DC) pension plans are becoming
prevalent. In DC plans, the employer’s main role is pared down to satisfying
the statutory rate of contribution to the employee’s retirement account. Invest-
ment management and retirement benefit provision are conducted by a service
provider such as an asset manager or an insurer. This describes the basics of
the 401(k) retirement savings plan in the US and the Personal Pension Schemes
(PPS) in the United Kingdom. An implication of the DB to DC transition is
that individuals no longer have immunity from longevity risk, which has con-
ventionally been borne by the DB plan sponsor.

Chapter 2 explores longevity risk in a DC setup. It is based on Boon et al.
(2017b). Longevity risk is the risk of survival probabilities misestimation. Un-
like mortality risk, this systematic risk cannot be diversified away by pooling.
We contrast two options for individuals to manage the risk: bear the risk as a
collective, or offload it to an insurer by purchasing an annuity.

When offering insurance against a systematic risk, the insurer requires capi-
tal reserve to limit solvency risk. The reserve can be composed of equity capital
solicited from investors, who would be willing to supply capital if compensated
by a longevity risk premium. Alternately, the insurer can accumulate capital
by pricing the annuity above its best estimate cost, but potentially causing in-
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dividuals to shun the annuity for its high price. Thus, the insurer has to ensure
that it is able to financially reward its equity holders, and is precluded from
charging too high of a loading as individuals would rather form a collective
scheme. Existing literature omits the equity holder and assumes that the full
capital reserve is constituted from the loading. This assumption is inconsistent
with estimates indicating that individuals’ willingness to pay to insure against
longevity risk is considerably lower than the level of capital reserve necessary to
provide the contract. We introduce equity holders to reconcile these estimates.

We find that individuals have a slight preference for the collective setup,
even when the annuity is priced at cost. Moreover, an insurer who sells zero-
loading annuities is unable to offer adequate longevity risk premium to its equity
holders. Therefore, collective schemes and an annuity market for longevity-risk-
hedge only are unlikely to co-exist. This conclusion is under the assumption that
the insurer does not take financial market risk and has no advantage in deal-
ing with longevity risk, such as access to reinsurance or product synergy (e.g.,
selling life insurance as it has the opposite exposure to longevity risk). Under
heightened longevity risk, individuals would only prefer annuity contracts if the
insurer curtails its solvency risk.

Even if with respect to longevity risk, a collective solution is preferred, annu-
ities could still prove valuable if they mitigate financial market risks. In Chapter
3, we visit the problem of optimal consumption and investment when there are
interest rate and stock market risks. The chapter is based on Boon and Werker
(2017). Under a Gaussian, mean-reverting interest rate process and constant
equity risk premium, the solution to this problem is known. We present an
equivalent formulation of the problem, and apply it to demonstrate that a vari-
able annuity fails to optimally hedge interest rate risk.

The variable annuity’s deficiency in hedging interest rate risk entails eco-
nomically significant welfare losses that can be overcome by refining the con-
tract definition according to the equivalent formulation. Our revelation guides
insurers to design contracts that individuals have a greater preference for, thus
are willing to pay a higher price for. Additionally, our finding informs the
policymaker who oversees the permissible types of contracts. With the prolif-
eration of DC plans, individuals’ choice of investments and insurance products
are paramount to their welfare in retirement. Encouraging the provision of con-
tracts that improves individuals’ odds of successfully financing their retirement
would be among the policymaker’s many intentions.
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A holistic view is indispensable to address the pension challenge. This dis-
sertation illuminates the role of the policymaker, the insurer and individuals,
and casts insights onto the beleaguered retirement financing situation. The
analyses draw upon past knowledge, and add current trends and innovations to
characterize the prospective retirement environment. It is hoped that the dis-
coveries enhance our understanding of the predicament, and that their policy
implications could assist with tackling it.



CHAPTER 1

Regulation and Pension Fund Risk-Taking

1.1 Introduction

In recent decades, the regulation of financial institutions exhibits the growing
prevalence of risk-based mechanisms. Banks, insurance companies and pension
funds are to comply with directives such as Basel II and III, Solvency II, and
IORP II, respectively, all of which contain elements of risk estimation. Fer-
vent discussions over the effect of risk-based requirements on the institutions’
investments, investment performance, financial market at large, and the possi-
ble diversion of investment capital away from long-term projects surround these
regulatory implementations (European Commission, 2013; Gatti, 2014).

Binding regulatory constraints shape the behavior of financial institutions,
possibly in an undesirable manner (Koehn and Santomero, 1980). For exam-
ple, a non-risk-based solvency requirement reduces the regulated institution’s
optimal investment in risky assets under all financial market situations. In con-
trast, under a risk-based solvency requirement, such as a value-at-risk (VaR)
limit, the investor’s optimal strategy is to take more risk when the potential
losses are biggest (Basak and Shapiro, 2001). This is at odds with the regula-
tory objective of protecting stakeholders in adverse financial market situations.
However, this outcome materializes when the VaR at only the terminal date is

This chapter is based on Boon et al. (2017a).

1



2 Regulation and Pension Fund Risk-Taking

concerned. When the setting is modified to exemplify VaR compliance checks
at intervals that are shorter than the investment horizon, the investor would
optimally insure against all losses instead (Shi and Werker, 2012; Chen et al.,
2017a). Hence, a regulated investor’s optimal behavior possibly depends not
only on the specifics of the requirement, but also on the financial market situa-
tion.

When it concerns pension funds, the balance between regulating risk with-
out overly constraining investments is particularly pertinent. A fund offering
guaranteed nominal or inflation-linked benefits could in theory hedge their li-
abilities by investing their wealth entirely in nominal or inflation-linked bonds
respectively (de Jong, 2008; Bodie, 1990). The positive correlation between eq-
uity returns and wage growth (Sundaresan and Zapatero, 1997; Peskin, 2001;
Lucas and Zeldes, 2006) could justify exposure to more financial market risk if
expected future accruals take salary increases into account. Due to the hike in
the value of liabilities arising from longer life expectancies, in addition to histor-
ically low interest rates, the sustainability of pension plans is under threat. An
appropriate level of investment risk-taking could curb the rising cost of retire-
ment income provision, especially since financial market return is a major in-flow
for pension funds (Aglietta et al., 2012; Bikker et al., 2012; Chambers et al.,
2012).

Defined Benefit (DB) pension plans are an instructive field of investigation
because in contrast to banking and insurance industries, pension regulation is
less harmonized globally. The North American and Dutch pension systems not
only have distinct regulations, but also underwent legislative changes in the re-
cent past (e.g., Pension Protection Act 2006 in the US, Financial Assessment
Framework 2007 in the Netherlands). By relying on the heterogeneity in pen-
sion regulation, we assess the relative extent that regulatory measures and plan
characteristics explain funds’ risky asset allocation.

Existing analyses of DB pension regulation mainly focus on the effect of
the liability discount rate. In the US, public pension funds discount future
retirement payments with the expected rate of investment return, whereas pri-
vate funds apply the corporate bond rate. Pennacchi and Rastad (2011) and
Andonov et al. (2017) point out that among US public funds, those selecting
higher discount rates tend to also choose riskier portfolios.

A related branch of the literature seeks to identify plan characteristics, such
as size, maturity, and inflation indexation of benefits, that influence the plan’s
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asset allocation. For example, larger plans possess more alternative investments
(Chemla, 2004; de Dreu and Bikker, 2012; Dyck and Pomorski, 2016), whereas
plans with a higher share of retirees tend to have more investment risk (Rauh,
2009; Bikker et al., 2012; Andonov et al., 2017).

We estimate that regulatory requirements statistically significantly affect
funds’ exposure to risky assets, and is associated to larger variation in risk-
taking than fund characteristics. Risk-based capital requirements and mark-
to-market (MtM) asset valuation are associated to an average 7% lower risky
investments, whereas the average investment risk variation that is related to
differences in fund characteristics are under 1% (Table 1.2).

Additionally, we find evidence that risk-based solvency requirements are as-
sociated to less risk-taking under all financial market situations, but a non-risk-
based one is related to lower risky investments only during the financial cri-
sis. Besides corroborating the theoretical postulation of Shi and Werker (2012);
Chen et al. (2017a), our inference is consistent with evidence from the insurance
industry that shows that insurers’ demand for risky assets asset is inversely re-
lated to the stringency of binding capital requirements (Becker and Opp, 2014;
Becker and Ivashina, 2015).

The chapter is organized as follows. In Section 1.2, we present the pension
regulatory framework in the US, Canada and the Netherlands and develop our
hypothesis. Section 1.3 describes our data and outlines the methodology. We
discuss the major drivers of pension asset allocation in Section 1.4. Section 1.5
concludes.

1.2 Regulatory Evolution and Hypothesis De-

velopment

In this section, we review the evolution of pension regulation in the US,
Canada and the Netherlands, and discuss the hypotheses concerning the influ-
ence of regulation on DB funds’ risky asset allocation.

1.2.1 Evolution of Pension Regulation

We classify the regulatory requirements into three categories: (1) investment
restrictions, (2) valuation requirements, and (3) funding requirements. Pension
funds are subject to rules that differ not only among countries but also among
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fund types within a country. US and Canadian funds are either public, corpo-
rate or industry, determined by whether the participants work in the public or
private sector. Industry funds are a grouping of funds for individuals working
in a specific industry. In the Netherlands, the distinction of the type of funds
is between corporate and industry only, because Dutch public sector workers
participate in industry funds. Appendix 1.A describes the regulation in more
detail whereas Appendix 1.B presents a summary table.

Canada is the sole country with quantitative investment restrictions. Limits
on investments in foreign assets, real estate and Canadian resource property1

existed until 2010.

MtM valuation of assets and liabilities is mandatory in the Netherlands over
the full sample period, but is only introduced at a later date in Canada (2000
for liabilities, 2011 for assets) and in the US (2006, fair value with smoothing is
allowed for assets).

Due to the convergence to International Accounting Standard (IAS) 19, plan
sponsors in the Netherlands and Canada have been required since 2005 and
2011, respectively, to recognize unfunded liabilities on their balance sheet. US
corporate plans have similar balance sheet recognition requirements that be-
came more stringent in 2006. The Governmental Accounting Standards Board
(GASB) guides but does not dictate the accounting of US public plan sponsors.
Hence, US public plan sponsors are exempt from any recognition requirement.

Full funding has always been required for Canadian funds. For Dutch funds,
a 100% funding requirement was decreed in 1999, but US corporate funds only
followed suit in 2006. If funds fail to meet the minimum funding requirement,
they are required to restore it within a fixed period, called the recovery period,
that varies from three years (the Netherlands) to ten years (Canada). There is
a trend of more stringent minimum funding requirement and recovery period
over the years. As for US public pension plans, there is no minimum funding
requirement, hence also no maximum recovery period.

In addition to the minimum funding requirement, the Netherlands is the
only country among the three with risk-based capital requirements. The capital

1Canadian resource property refers to the right, license or privilege to explore for, drill for

or take petroleum, natural gas or related hydrocarbons in Canada. These quantitative invest-

ment restrictions are set by a federal regulation (Schedule III to the Federal Pension Benefits

Standards Regulations), and adopted by all provinces except Quebec and New Brunswick.
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reserve is calibrated such that the plan is able withstand adverse financial situ-
ations with reasonable confidence (i.e., the probability that the value of assets
falls below the value of liabilities value within a year is under 2.5%).

1.2.2 Hypotheses Development

1.2.2.1 Investment Restrictions

If the investment limits are binding, they lead to lower allocations to those
assets.

1.2.2.2 Valuation Requirements

MtM asset valuation, possibly with smoothing, is the contemporary norm in
DB regulation. Despite that, the virtue of MtM valuation remains contentious.
Proponents argue that it provides a more accurate assessment of the institution’s
risk profile. Opponents claim that it inflates the volatility of the value of assets
and liabilities, due to short-term market fluctuations which do not reflect the
fundamental value of assets (Allen and Carletti, 2008; Plantin et al., 2008). Re-
cent works offer more refined perspectives on the implication of MtM valuation
that depends on the informative content of market prices (Plantin and Tirole,
2015; Otto and Volpin, 2017). We posit that MtM asset valuation could deter a
fund that desires to maintain a stable funding ratio from investing in risky assets.

A complementary regulatory measure to MtM asset valuation is the require-
ment for sponsors to recognize unfunded liabilities on their balance sheets. Such
a rule may compel funds to invest in less risky assets to minimize the sponsor’s
balance sheet volatility (Amir et al., 2010). Allowing for the smoothing of mar-
ket values partially alleviates the concern of artificial volatility.

Besides the asset valuation method, the choice of the liability discount rate
is also crucial (Brown and Pennacchi, 2016). Funds that are allowed to apply
a rate that depends on the riskiness of their investments may be encouraged to
invest more in risky assets in order to justify a higher discount rate that make
them appear better funded (Brown and Wilcox, 2009; Pennacchi and Rastad,
2011; Novy-Marx, 2013; Andonov et al., 2017).

1.2.2.3 Funding Requirements

Pension plans are typically required to meet a minimum funding require-
ment. Minimum funding requirement reduces the regulated institutions’ opti-
mal level of investment risk if it is binding. Furthermore, the worse the finan-
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cial market situation, the more an optimal-behaving investor reduces risk-taking
(Basak and Shapiro, 2001). Thus, we postulate an inverse relationship between
risky asset exposure and a binding minimum funding requirement.

In addition to a minimum funding requirement, Dutch funds face risk-based
capital requirements since 2007. In theory, the implication of risk-based capital
requirements on the investor’s risky asset demand depends on the horizon on
which the VaR limit is defined. If the horizon coincides with the investment hori-
zon, and if financial markets are doing well, the VaR-constrained investor takes
lower risk than an unconstrained investor. When market conditions deteriorate,
the constrained investor would instead take more risk, contrary to the regula-
tor’s objective (Basak and Shapiro, 2001). However, if the VaR is calculated on
a shorter horizon than the investment horizon (i.e., multiple , then the regulated
investor would moderate risk-taking under all financial market situations, for
all except in the final period (Shi and Werker, 2012; Chen et al., 2017a). As
Dutch pension funds’ risk-based capital requirements are determined on an an-
nual horizon, a period much shorter than the funds’ long investment horizon, we
hypothesize that risk-based capital requirements yield less risk exposure under
all market conditions.

1.3 Data Description and Methodology

1.3.1 Data Description

The dataset contains annual information on fund characteristics and asset
allocations of 978 funds from seven developed countries for 1990-2011. It is
provided by CEM Benchmarking Inc. Funds are predominantly from the US
and Canada (59% and 25% of all funds, respectively), whereas the rest are from
Australia, the Netherlands, New Zealand, Sweden, and the United Kingdom.
We focus on three countries: the US, Canada and the Netherlands.

We include only funds that have observations for all the characteristics we
elicit from the data. Our sample comprises 589 funds (377 US, 174 Canadian,
and 38 Dutch funds), amounting to 3,687 observations from 1992-2011. As there
is no particular reason to suspect that funds joining and exiting a sample early
or late would react in a systematically different way to regulation, an unbal-
anced panel is not a drawback to the analysis.

Our sample is representative of DB funds in these countries. As a percentage
of each country’s total DB assets in 2011, the value of the funds’ assets under
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management in the sample is 35% in the US, 32% in Canada, and 30% in the
Netherlands.2 Additionally, the data exhibit no evidence of self-reporting bias
because the difference between the performance of plans that skip reporting for
one year and those that continue reporting is small and not statistically different
from zero (Dyck and Pomorski, 2016).

We consider three risky asset classes: (1) equities, (2) risky fixed income
(mortgages and high yield), and (3) alternatives (commodities, natural re-
sources, infrastructure, real estate, private equity, hedge funds, and tactical
asset allocation).3 These assets are considered risky because the return from
investing in them is more volatile than the yield of a government bond. Our
annual measure of the funds’ risk exposure is the percentage value of their re-
ported investment holding in all risky assets, relative to the total reported value
of assets under management in the same year. This measure of pension risk
extends that of Bodie et al. (1987) and Rauh (2009), who use the percentage of
fund wealth allocated to equities only.4

Table 1.1 presents the summary statistics by country and fund type in 1996
and 2011. US and Canadian public funds more than doubled in size on average.
Maturity, measured by the percentage of retired members, increased on average
by 37% across all categories of funds. The percentage of inflation-indexed con-
tracts decreased for all but US public and Canadian corporate funds. In both
1996 and 2011, North American funds adopted liability discount rates that
were twice as high on average as those of Dutch funds. There is considerable
dispersion of financial returns across countries and types of funds. Dutch funds
outperformed all other funds on average in 2011, but in 1996, their Canadian
counterparts achieved higher average returns.

Figure 1.5.1 indicates that funds’ asset allocation show diverging trends.
Whereas US and Canadian public funds, as well as US industry funds increased
their overall risky asset allocation (by 14.7%, 9% and 11.7% respectively), Cana-
dian corporate and industry funds reduced their risk exposure (by 3% and 2.1%
respectively). US corporate funds also decreased their average allocation to

2Calculated on data from 2011 and information from the Towers Watson Global Pension

Asset Study 2012.
3Real estate includes REITs. Private equity is comprised of venture capital, leveraged

buyout, diversified private equity, and other private equity. Tactical asset allocation refers to

fully funded long-only segregated asset pool dedicated to tactical asset allocation.
4Another measure of pension risk is the “pension beta” introduced by Jin et al. (2006),

and applied by An et al. (2013); Mohan and Zhang (2014). Due to the lack of information on

fund liabilities, we are unable to implement it.
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risky assets by 8.3%, but only half the reduction for Dutch corporate and in-
dustry funds, which declined 22.4% and 16.3% on average. There is a general
trend for North American funds to increase their holdings of alternative assets
and risky fixed income over the sample period, whereas Dutch funds maintain
largely similar exposure to those asset classes over time (Table 1.1).

1.3.2 Explanatory Variables Construction

We consider two categories of explanatory factors: regulatory requirements
and fund characteristics. A summary table of the explanatory variable construc-
tion, and the expected sign of the coefficients based on the hypotheses presented
in Section 1.2.2 is in Appendix 1.C.

1.3.2.1 Regulatory Requirements

Quantitative Investment Restriction is the sum of (100% - the maximum
asset weight permissible in percentages) over all restricted asset classes. The
higher the variable, the more stringent is the investment limit. These limits
existed only prior to 2010 in Canada, and only for alternative assets.5 All US
and Dutch funds have thus a Quantitative Investment Restriction value of zero.

We define three regulatory variables related to valuation requirements. MtM
Asset Valuation is an index measuring the degree of adherence to the unadulter-
ated market value. The base of the index is ternary, as determined by whether
MtM valuation is strictly imposed (1), smoothing is allowed (0.5), or further
discretion is permitted (0). As valuation can be carried out for either funding
or accounting purposes, and since there is a specified rate for each purpose, we
first construct separate indicators for each purpose, and set MtM Asset Valua-
tion as the average of the two.6 For example, US corporate funds use fair value
with smoothing for funding purposes but apply market value with smoothing
for accounting purposes. The index for funding is 0 while the index for account-

5Before 2010, Canada imposed maximum limits on Canadian resource property (15%)

and on the total of real estate and Canadian resource property (25%). We consider the global

restriction. As our data do not contain sufficient granularity on the geographical location of

all investments, we omit the foreign asset investment limit that existed in Canada until 2010.
6We grant equal weights to them because there is no evident justification for either budget-

ing or accounting purposes to be more influential in a fund’s investment decision. Estimates

using only the index for budgeting purposes are of no material difference. The index for ac-

counting purposes is highly correlated with the Minimum Funding Requirement (i.e., both

requirements are adjusted to be more stringent in the same years). When omitting Minimum

Funding Requirement, the estimates using only the index for accounting purposes are also

similar.
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ing is 0.5. Hence, we assign 0.25 to MtM Asset Valuation for US corporate funds.

Liability Discount Rate is the spread between the liability discount rate dis-
closed by the funds and the ten-year government bond yield of the funds’ host
country. This definition accounts for the different interest rate levels in the
countries.

Recognition of Unfunded Liabilities is an index measuring the degree of dis-
closure. The higher its value, the more likely it is that a DB plan has unfunded
liabilities. It is 1 if the liabilities to be recognized on the sponsor’s balance sheet
include expected increase in accrued benefits, 0.5 if only accrued benefits are
taken into account, and 0 otherwise.

Next, we define three variables to reflect funding requirements. Minimum
Funding Requirement is the minimum ratio (in percentages) of the value of
assets over the value of liabilities that a fund has to maintain each year. When
a fund fails to meet the Minimum Funding Requirement, it is required to restore
its funded status within a fixed number of years. The maximum number of years
allowed for the fund to catch up on its funding ratio is defined as the Recovery
Period. A longer Recovery Period implies greater leniency to underfunded DB
plans. This may give funds an incentive to take more risk. Finally, the presence
of Risk-based Capital Requirements is accounted for with an indicator that is
equal to one when risk-based capital reserves are required.

1.3.2.2 Fund Characteristics

To control for the influence of fund characteristics on investments, we in-
clude the percentage of retired members (Maturity), the percentage of inflation-
indexed benefits (Inflation Indexation), the value of assets under management
in billions of US dollar (Size), and the funds’ investment return in the previous
year (Past Investment Return) as explanatory variables.

Funds with fewer retired members, and those that offer more inflation-
indexed contracts, have more incentive to take investment risks (Lucas and Zeldes,
2006; Rauh, 2009; Bikker et al., 2012). Larger funds are able to circumvent the
high costs of investing in more complex asset classes, such as by direct invest-
ment or by negotiation of better terms with an external manager. Hence, they
invest in more alternative assets (Dyck and Pomorski, 2016).

Rauh (2009) and Mohan and Zhang (2014) find that US corporate funds
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with higher past returns tend to invest in more risky assets, a behavior that
they surmise to reflect risk management instead of risk-shifting behavior. In
contrast, US public funds tend to shift risk by increasing investment risk when
prior returns are low (Pennacchi and Rastad, 2011; Mohan and Zhang, 2014).
Besides risk management concerns, past investment returns may affect asset
allocation via the lag in rebalancing, which could for example be induced by
behavioral biases such as investor inertia (Samuelson and Zeckhauser, 1988).
For instance, Dutch pension funds rebalance less than 40% of passive changes in
portfolio allocation due to asset price movements within a quarter (Bikker et al.,
2010) and a year (Bams et al., 2016). Thus, we include the funds’ investment
return lagged by a year.

1.3.3 Econometric Specifications

1.3.3.1 Base Model

We regress the percentage allocation to risky assets on regulatory variables
and fund characteristics as follows:

wi, t = xi, tβ + zi, tγ + ci + ui, t (1.3.1)

The observed portfolio share in an asset class (or subclass) is wi, t. xi, t is
the vector of regulatory requirements. zi, t is the vector of fund characteristics
that control for observable heterogeneity, ci is the unobserved fund-specific ef-
fect and ui, t is the idiosyncratic error. i is the fund index and t is the year index.

Part of the dispersion in risk exposure may be due to regulation and to fund
characteristics, but it may also be attributed to unobserved heterogeneities,
such as funding status (Rauh, 2009; Addoum et al., 2010; Mohan and Zhang,
2014), attitude toward risk and governance (Phan and Hegde, 2013;
Anantharaman and Lee, 2014; Andonov et al., 2016; Bradley et al., 2016),
sponsor characteristics (e.g., profitability, Petersen, 1996; credit ratings, Rauh,
2009; or leverage, Cocco and Volpin, 2007), or other institutional factors (e.g.,
the existence of a pension benefit guaranty fund for corporate funds in the US
and in Ontario, Canada). The fund fixed effect, ci, mitigates the unobservable
cross-sectional heterogeneity. Changes in characteristics such as risk aversion,
governance, and funding status are typically gradual. As the median number of
years that a fund is in the database is only four, a duration that is likely to be
too short for substantial change in the unobserved heterogeneities exemplified,
the fund fixed effect is time-invariant.
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While we address fund effects parametrically, to mitigate time effects, such
as financial market shocks, we make inferences on heterogeneity-robust stan-
dard errors that are clustered by year (Petersen, 2009). We allow residuals to
be correlated across funds in each year to recognize, for instance, that funds do
not rebalance fully (Bams et al., 2016). In a year of outstanding equity market
performance, funds’ equity allocations increase because of higher equity valua-
tions, resulting in positively correlated residuals across funds. Double-clustering
by year and fund would be necessary if we suspect that there exists correlation
among the errors of different funds and different years that fades with time
(Thompson, 2011). Inference with double-clustered standard errors, however, is
of no major difference with that using single-clustered standard errors, except for
risky fixed income.7 The statistical significance of the estimated coefficients is
weaker (Table 1.9) because the tradeoff underlying single- and double-clustering
is lower bias but higher variance of the coefficient estimates (Thompson, 2011).

1.3.3.2 Censored Model

Under the assumption that pension funds do not take leverage,8 a regula-
tory change that makes an asset class more attractive can either prompt funds
to start investing in it (increase on the extensive margin), or encourage funds
already invested in that asset class to increase their allocation (increase on the
intensive margin).

Due to the large proportion of funds holding neither of risky fixed income or
alternatives (75% and 18% of the observations, respectively), Equation (1.3.1)
may understate the effect of regulation because it ignores changes along the ex-
tensive margin. We investigate the extensive margin of risky fixed income and
alternatives with a one-sided censored regression model. Censored regression is
widely adopted in analyses of individual portfolio holdings, for which data cen-
soring at zero is common (Poterba and Samwick, 2003; Rosen and Wu, 2004).

Let wi, t be the observed investment in risky fixed income or alternatives.
We define wi, t = max

{
0, w∗

i, t

}
to reflect the fact that wi, t is censored from

below. w∗
i, t is the unobserved dependent variable in the censored regression

model (Chapter 22 of Greene, 2003):

7For risky fixed income, the coefficients that become statistically insignificant going from

single- to double-clustering have economic significance that are under 1%. Moreover, the

censored regression specification (Section 1.3.3.2) is our preferred model for risky fixed income.

Therefore, single-clustering by year remains our preferred specification overall.
8None of the funds included in this study takes a short position in any of the assets, in

any year.
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w∗
i, t = xi, tβ + zi, tγ + ci + ui, t (1.3.2)

wi, t = max
{

0, w∗
i, t

}

To obtain consistent estimates of the censored regression model with fixed
effects, we apply Honoré’s (1992) least absolute deviation estimator for one-
sided censored variables.9 We present and discuss the average marginal effects
calculated as per Honoré (2008) to facilitate the economic interpretation of the
estimates.

1.3.3.3 Interacted Model

The 2008-09 financial crisis is an opportune case study to evaluate the con-
jecture that a fund’s response to a fixed or VaR-based funding requirements
depends on financial market conditions. In poor financial market situations,
theory suggests that a non-risk-based funding requirement induces funds to fur-
ther reduce their risky asset allocation, but a VaR-based constraint could result
in more risk exposure instead (Basak and Shapiro, 2001). This outcome does
not materialize if the VaR constraint is calculated on a shorter horizon than the
investment’s time period, as is the case with the capital requirements for Dutch
funds (Shi and Werker, 2012; Chen et al., 2017a).

We investigate whether empirics substantiate theory by defining Crisis as
an indicator for the years 2008-09, and including it as a multiplicative inter-
acted term with Risk-based Capital Requirements and with Minimum Funding
Requirement in separate regressions. We focus on the relative difference in risk-
taking by a constrained and unconstrained investor over the crisis and non-crisis
periods.

1.4 Determinants of Risky Asset Allocation

Table 1.2 reports the estimates of specification (1.3.1) while Table 1.3 presents
the censored regression estimates of specification (1.3.2).

9Honoré’s (1992) program is available at http://www.princeton.edu/∼honore/stata/. Last

accessed: 2016-08-05.

http://www.princeton.edu/~honore/stata/
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1.4.1 Regulatory Requirements and Fund Characteristics

While select fund characteristics and regulatory variables have statistically
significant influence on the funds’ investments, Risk-based Capital Requirements
and MtM Asset Valuation stand out in terms of their economic significance.
Risk-based Capital Requirements–unique to the Netherlands since 2007–are as-
sociated to 7.1% lower allocation to overall risky assets, with equities composing
the bulk of the decrease (-6.5%; Table 1.2, columns 1 and 2). Allocation to
risky fixed income is affected to a lesser extent (-0.8% on the extensive margin;
Table 1.3, column 1). Our findings concerning capital requirements and fund
risk-taking are consistent with Becker and Opp (2014), who show that more
stringent capital requirements discourage insurance companies from investing
in that asset.

MtM Asset Valuation closely follows Risk-based Capital Requirements in
the marginal effect on risk-taking. The closer a fund has to adhere to MtM
valuation standards, the less it invests on average in risky assets. If a fund
were previously subject to more discretion than valuation with smoothing, and
is now required to use MtM valuation (i.e., a 0 to 1 change of the variable), it
is estimated to reduce its risky asset allocation by about 6.6% on average, with
equities once again constituting almost all of that reduction (Table 1.2, columns
1 and 2). Alternatives are not sensitive to the MtM requirement because these
assets are subject to considerable discretion in their valuation. For instance,
under the accounting standards FAS 157 and IFRS 13, market-quoted prices or,
if unobtainable, the “best information available” is permissible.

Perhaps counter-intuitively, the relation between MtM Asset Valuation and
risky fixed income is statistically insignificant. When it concerns bonds with the
same credit rating as those defining the liability discount rate (e.g., swaps or
high quality corporate bonds), MtM Asset Valuation makes those assets more
appealing because their values are correlated with the value of liabilities. By
investing in more risky fixed income, a fund is able to maintain a more stable
funding ratio while the sponsor can reduce balance sheet volatility. Hence, we
expect a positive association between MtM Asset Valuation and risky fixed in-
come investments. However, this reasoning disregards the credit risk premium
on risky fixed income (Asvanunt and Richardson, 2016), which could weaken
the funds’ desire for such assets, and be the underlying reason for the statisti-
cally insignificant estimate.

Along the extensive margin, we find that a 1% higher Minimum Funding Re-
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quirement is associated with a minute decrease in risky fixed income investments
(8.5 bp, Table 1.3, column 1). Theory suggests that funding requirements, when
binding, reduce the funds’ capacity to invest in risky assets (Basak and Shapiro,
2001). The Minimum Funding Requirement, however, may not be binding for
the majority of funds over a large part of the time horizon because the average
funding status exceed the minimum required level. For example, US private
funds were 102% funded on average between 1992-2007 whereas US state and
local funds have an average funding ratio of 100% (Board of Governors of the
Federal Reserve System, 2016). Similarly, Dutch funds had in 2007 an average
funding ratio of 140% (DNB, 2017).

The subprime crisis that began in late 2007 triggered a downward spiral of
the average funding status. It fell from 101% to 74% between 2007 and 2008
for US private funds and from 92% to 65% for US state and local plans (Board
of Governors of the Federal Reserve System, 2016). The average funding ratio
of Dutch pension funds fell from 150% in June 2007 to about 90% by mid-2008
(De Nederlandsche Bank, 2015). The median funding ratio for Canadian funds
slid from 100% in September 2007 to 72% in early 2009 (Marketwired News,
2015). Exploiting this funding ratio shock induced by the crisis, we refine our
analysis on the funds’ response to Minimum Funding Requirement in Section
1.4.2.

Our estimates concerning the Liability Discount Rate are consistent with the
hypothesis that funds with a higher discount rate also tend to invest in more
risky assets but the marginal effect is small in comparison to other regulatory
requirements. A one standard deviation increase in the liability discount rate
is associated to only 1.3% more risky asset holding (0.878 ×1.46%; Table 1.2,
column 1).

The remaining regulatory requirements have small economic significance.
Prolonging the Recovery Period by an additional year is associated with 0.17%
more investments in overall risky assets, accounted for by higher allocation to eq-
uities (0.44%) (Table 1.2, columns 1 and 2), at the expense of a lower allocation
to alternatives along both the intensive (i.e., -0.26%; Table 1.2, column 4) and
extensive margins (i.e., -0.24%; Table 1.3, column 2). Funds with a longer recov-
ery period may bear more equity risk because they are able to withstand greater
volatility in the value of its assets. Quantitative Investment Restrictions has a
statistically significant association to the sole restricted asset class–alternatives.
A 10% stricter investment limit is correlated to a 0.31-0.36% lower allocation
to alternatives along the intensive and extensive margins (Table 1.2, column 4;
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Table 1.3, column 2).

We confirm that the fund characteristics not only have a statistically signifi-
cant relation with the share invested in risky assets, but also coefficient estimates
of the same signs as those found by other studies. For example, $1 billion more
in asset under the management is associated with 0.2% higher exposure to risky
assets, particularly along the extensive margin of alternatives (i.e., 0.16%; Ta-
ble 1.2, columns 1 and 4). Alternative assets such as private equity are more
attractive for larger funds because these plans are able to invest directly and
avoid costly intermediation (Dyck and Pomorski, 2016).

A 10% increase in retired members is associated with a less than 0.1% re-
duction in equity allocation, slightly lower than the 0.4% estimate of Rauh
(2009) for US corporate funds. Along the extensive margin, funds tend to in-
vest 0.16% more in risky fixed income and 0.84% more in alternatives when
the number of retired members increases by 10% (Table 1.3, columns 1 and 2).
A 1% increase in the portion of members’ benefit that is inflation-indexed is
linked to 0.02% higher allocation to alternatives along the intensive and exten-
sive margins (Table 1.2, column 4; Table 1.3, column 2), and a 0.02% lower
allocation to equities (Table 1.2, column 2). This is consistent with the view
that certain alternative assets, such as real assets, have better inflation-hedging
potential (Fama and Schwert, 1977; Szymanowska et al., 2014) than equities
(Boudoukh and Richardson, 1993; Schotman and Schweitzer, 2000; Ang et al.,
2012).

Past Investment Return has low statistical and economic significance on the
fund risk-taking. A 10% higher investment return in the previous year is syn-
onymous with 0.3% more risk-taking (Table 1.2, column 1). On a sample of
US corporate funds, Rauh (2009) finds that funds invest about 2.2% less in
safe assets such as government debt, cash and insurance if the previous year’s
investment return is 10% higher. Along the extensive margin, a 10% higher
investment return last year is associated with 0.3 bp less investment in alterna-
tives (Table 1.3, column 2).

The majority of documented unobserved variables are fund-specific with the
exception of funds’ participation in a pension benefit protection scheme. The
Pension Benefit Guarantee Corporation (PBGC) covers US corporate and indus-
try funds while the Pension Benefit Guarantee Fund (PBGF) covers Canadian
funds in Ontario. Such insurance schemes create incentives for funds to increase
risk-raking (Sharpe, 1976; Sharpe and Treynor, 1977; Nielson and Chan, 2007;
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Crossley and Jametti, 2013). Due the anonymity of the funds in the database,
which prohibits identification of Canadian funds in Ontario, our best attempt at
investigating this is the inclusion of an indicator for US corporate and industry
funds in Equation (1.3.1). The estimates in Table 1.8 indicate that controlling
for participation in the PBGC is of no material difference to the base specifica-
tion estimates in Table 1.2.

1.4.2 Financial Crisis and Funding Requirements

To investigate whether the fund behavior under non-risk-based and risk-
based funding requirements depends on the financial market condition, we de-
fine Crisis as an indicator for the years 2008-09, and include it in Equation
(1.3.1) as an interacted term with Risk Based Capital Requirements and Mini-
mum Funding Requirements (Table 1.4). Table 1.5 provides the corresponding
results of the censored regressions for risky fixed income and alternatives (Equa-
tion (1.3.2)).

When the financial market is not in crisis, funds facing risk-based capital
requirements invest on average 6.9% less in risky assets (Table 1.4, column 1);
in 2008-09, this relative difference is similar, -7.2%.10 The lower risk-taking is
mostly accounted for by equities.11 Thus, the funds’ response to risk-based sol-
vency requirements is invariant to the financial market situation, a conclusion
that is consistent with Shi and Werker (2012).

The coefficient to the interacted term Risk Based Capital Requirements ×

Crisis is statistically insignificant (Table 1.4). This could be due to policies at
the Dutch funds’ disposal to cope with the funding ratio drop during the cri-
sis (Ponds and Van Riel, 2009). For instance, accrued pension rights and the
indexation of benefits are typically conditional on fund solvency. These flex-
ibilities, which US and Canadian funds do not possess, may mute the effect
of risk-based capital requirements. Additionally, the Dutch pension regulatory
authority introduced broad measures to help funds overcome the crisis-induced
challenges (Broeders et al., 2016). Hence, the funds are not limited to respond-

10(−6.947 − 0.376 − 0.283) − (−0.376) = −7.2. Table 1.4, column 1.
11Out of crisis, the relative difference in allocation to equities between constrained and un-

constrained funds is -6.2%, whereas in crisis, it is (−6.207 − 2.727 + 0.304)−(−2.727) = −5.9%

(Table 1.4, column 2). On the extensive margin, risk-based capital requirements are associated

to less risky fixed income holdings, and estimates are similar to those in the base specification.

The relative difference in risky fixed income exposure between constrained and unconstrained

funds, during crisis and non-crisis periods, is -0.8% and (−0.819 − 0.074 + 0.020) − (0.020) =

−0.9% respectively (Table 1.5, column 10).
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ing to the financial crisis via asset allocation.

Tables 1.6 and 1.7 provide the estimation of the specification with Crisis
and Minimum Funding Requirement interaction. Over the non-crisis period,
the Minimum Funding Requirement has no statistically significant influence on
funds’ overall risky asset investments; during the financial crisis, a 100% mini-
mum funding is associated with 3.6%12 lower investment in risky assets relative
to an unconstrained fund. Funds on average satisfy their respective Minimum
Funding Requirement prior to the crisis but their funding status markedly de-
cline in the years 2007-08. The financial crisis may have led to the Minimum
Funding Requirement that is possibly not binding before 2007 to become bind-
ing.

The same is observed for risky fixed income and alternatives. Out-of-crisis,
the minimum funding requirement has no statistically significant effect on risky
fixed income and alternatives; in-crisis, it is associated with a 2.2% and 4.2%
lower allocation to risky fixed income and alternatives, respectively, compen-
sated by a 2.9% higher allocation to equities (Table 1.6, columns 3, 4 and 2).
Along the extensive margin, the influence of the minimum funding requirement
is associated to a larger difference in risky fixed income allocation when in cri-
sis. A fund facing a 100% minimum funding requirement has on average a
9.4% lower investment in risky fixed income on the extensive margin (Table
1.7, column 1). For alternatives, the effect on the extensive margin is lower
than that on the intensive margin (-2.6%; Table 1.7, column 2). Therefore, in-
vestors optimally take less risk with a binding non-risk-based solvency require-
ment (Basak and Shapiro, 2001). Under a risk-based solvency requirement that
is estimated over a shorter time period than the investment horizon, investors
also optimally have a lower risk exposure (Shi and Werker, 2012; Chen et al.,
2017a).

1.5 Conclusion

In the effort to revise the pension regulatory framework, the implication of
regulatory measures on the plans’ investments is central to the discussion among
stakeholders. We present a detailed analysis of a wide range of regulatory re-
quirements in influencing the asset allocation of DB pension plans in the United
States, Canada and the Netherlands. These nations differ in their regulatory
approaches, and undertook pension reforms in different years.

12(−0.018×100 + 0.851 − 0.018×100) − (0.851) = −3.6. Table 1.6, column 1.
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We find that regulation has at least as much, and for select requirements,
much higher marginal effect on funds’ risk-taking, relative to fund characteris-
tics such as maturity and size. Among the regulatory measures considered, risk-
based capital requirements and MtM asset valuation have the highest economic
significance. They are both associated with 7% lower risky asset allocation,
even after disentangling the coincident effect of the 2008-09 financial crisis on
the funds’ investment risk-taking.

Furthermore, a fund’s response to risk-based capital and minimum fund-
ing requirements depends on the financial market situation. Minimum funding
requirement is associated with lower risky asset exposure during the financial
crisis, when the constraint was likely to have been binding. In contrast, the
relative risk exposure of funds constrained and unconstrained by VaR capital
requirements remains similar in and out of the financial crisis.

Amid concerns that risk-based regulation could lead to excessive risk-taking
during financial market stress, we provide evidence that allays this apprehen-
sion. The relative risk-taking of an investor constrained by a risk-based solvency
requirement and an unconstrained investor is similar in crisis and in non-crisis
periods. Our quantification of the effect of a wide range of regulatory mecha-
nisms on investment risk-taking may inform policymakers who desire to protect
individuals’ financial security in retirement by limiting risk-taking, while allow-
ing fund sponsors to take an appropriate amount of financial risk to curb the
rising cost of pension provision.
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Table 1.1: Summary Statistics

This table provides the summary statistics for returns, asset allocation and
fund characteristics, by country and fund type. The total number of funds and
observations are presented in Panel A. Panels B and C present the following
for 1996 and 2011 respectively: mean (and standard deviation in parenthesis)
of the size in billions of USD, maturity (i.e., the % of retired members), the %
of inflation-indexed contracts, liability discount rate, total annual return, %
allocated to overall risky assets and its subcategories (i.e., equities, risky fixed
income and alternative assets).



20 Regulation and Pension Fund Risk-Taking

Figure 1.5.1: Time Series of Mean Allocation to Risky Assets By
Country and Type of Fund
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Table 1.2: Pension Funds Risky Asset Allocation and Regulation

This table presents the estimates of the regression of the funds’ percentage allocation

to risky assets on regulatory requirements and fund characteristics, with fund fixed

effects (Equation (1.3.1)). We consider overall risky asset investment (column (1)),

and its composing asset classes: equities, risky fixed income (Risky FI) and

alternatives (Alt) (columns (2) to (4)). Section 1.3.1 specifies the assets within each

asset class. Heteroskecasticity robust standard errors that are clustered by Year are

in parentheses.

Dependent variable:

All Equities Risky FI Alt

(1) (2) (3) (4)

Quantitative Investment Restrictions −0.023∗∗ 0.010 −0.002 −0.031∗∗∗

(0.010) (0.017) (0.002) (0.012)

Mark-to-market Asset Valuation −6.612∗∗∗
−6.037∗

−0.342 −0.233

(1.891) (3.224) (0.422) (1.780)

Recognition of Unfunded Liabilities −1.042 −1.921 0.553∗∗ 0.325

(1.197) (1.936) (0.256) (1.917)

Liability Discount Rate 0.878∗∗∗ 0.432 0.110∗ 0.336

(0.197) (0.303) (0.057) (0.240)

Minimum Funding Requirement −0.016 0.008 −0.017 −0.007

(0.020) (0.028) (0.015) (0.017)

Risk-based Capital Requirements −7.118∗∗∗
−6.450∗∗∗

−0.908 0.240

(2.139) (2.200) (0.584) (0.655)

Recovery Period 0.169∗∗∗ 0.437∗∗∗
−0.011 −0.258∗∗∗

(0.045) (0.087) (0.012) (0.086)

Maturity −0.020 −0.096∗∗ 0.014∗∗∗ 0.062∗∗∗

(0.025) (0.039) (0.005) (0.021)

Inflation Indexation 0.007 −0.018∗∗ 0.003 0.022∗∗∗

(0.007) (0.008) (0.004) (0.005)

Size 0.205∗∗∗ 0.003 0.038∗∗∗ 0.164∗∗∗

(0.023) (0.042) (0.005) (0.029)

Past Investment Return 0.032∗ 0.065∗
−0.007 −0.027

(0.017) (0.037) (0.006) (0.028)

Observations 3,687 3,687 3,687 3,687

R2 0.708 0.685 0.679 0.731

Adjusted R2 0.660 0.634 0.627 0.687

F Statistic (df = 11; 3171) 42.71∗∗∗ 66.27∗∗∗ 24.04∗∗∗ 47.87∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.3: Pension Funds Risky Fixed Income and Alternatives Allo-
cation and Regulation, Average Marginal Effect Implied by
the Censored Regression

This table presents the average marginal effects implied by the censored regression

model (Equation (1.3.2)) that regresses risky fixed income (Risky FI) and alternatives

(Alt) on regulatory requirements and fund characteristics. We follow Honoré (2008)

by multiplying the coefficient estimates with the proportion of the observations that

is not censored. The values displayed here allow us to directly interpret the average

economic effect of the censored regression model. For example, if the value of assets

under management increases by $1 billion, we estimate that the fund would increase

its investment into risky fixed income by on average 0.03% (column (1)).

Dependent variable:

Risky FI Alt

(1) (2)

Quantitative Investment Restrictions −0.007∗
−0.036∗∗

Mark-to-market Asset Valuation −0.751 −1.114

Recognition of Unfunded Liabilities 0.507∗∗ 1.642

Liability Discount Rate 0.168∗∗∗ 0.481∗∗

Minimum Funding Requirement −0.085∗∗∗
−0.005

Risk-based Capital Requirements −0.819∗∗∗
−1.452

Recovery Period −0.022∗∗∗
−0.239∗∗∗

Maturity 0.016∗∗ 0.084∗∗

Inflation Indexation 0.003 0.021∗∗

Size 0.027∗∗∗
−0.141∗∗∗

Past Investment Return 0 0.003∗∗∗

Observations 3,687 3,687

Proportion Uncensored 0.25 0.82

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.4: Pension Funds Risky Asset Allocation and Risk-Based Cap-
ital Requirements, Interaction with the Crisis Indicator

This table presents the regression estimates of the funds’ percentage allocation to

risky assets on regulatory requirements and fund characteristics, with fund fixed

effects (Equation (1.3.1)), and the interacted term Risk-based Capital Requirements

× Crisis. We consider overall risky asset investment (column (1)), and its composing

asset classes: equities, risky fixed income (Risky FI) and alternatives (Alt) (columns

(2) to (4)). Section 1.3.1 specifies the assets within each asset class.

Heteroskecasticity robust standard errors that are clustered by Year are in

parentheses.

Dependent variable:

All Equities Risky FI Alt

(1) (2) (3) (4)

Quantitative Investment Restrictions −0.024∗∗ 0.001 −0.002 −0.023∗∗

(0.010) (0.016) (0.002) (0.010)

Mark-to-market Asset Valuation −6.828∗∗∗
−7.618∗∗

−0.315 1.105

(1.967) (3.089) (0.435) (1.635)

Recognition of Unfunded Liabilities −1.033 −1.867 0.553∗∗ 0.282

(1.202) (1.872) (0.256) (1.868)

Liability Discount Rate 0.894∗∗∗ 0.540∗ 0.108∗ 0.245

(0.196) (0.292) (0.060) (0.244)

Minimum Funding Requirement −0.017 −0.001 −0.017 0.001

(0.020) (0.030) (0.015) (0.018)

Risk-based Capital Requirements −6.947∗∗∗
−6.207∗∗

−0.897 0.157

(2.587) (2.698) (0.596) (0.774)

Crisis −0.376 −2.727∗ 0.047 2.305∗∗∗

(0.879) (1.553) (0.140) (0.872)

Recovery Period 0.161∗∗∗ 0.382∗∗∗
−0.010 −0.211∗∗

(0.043) (0.104) (0.013) (0.096)

Maturity −0.021 −0.103∗∗∗ 0.014∗∗∗ 0.068∗∗∗

(0.025) (0.039) (0.005) (0.022)

Inflation Indexation 0.008 −0.015∗ 0.003 0.020∗∗∗

(0.007) (0.008) (0.003) (0.005)

Size 0.206∗∗∗ 0.008 0.038∗∗∗ 0.159∗∗∗

(0.023) (0.042) (0.005) (0.028)

Past Investment Return 0.027 0.033 −0.006 0.0002

(0.022) (0.027) (0.007) (0.018)

Risk-based Capital Requirements × Crisis −0.283 0.304 −0.041 −0.546

(1.889) (1.936) (0.332) (1.055)

Observations 3,687 3,687 3,687 3,687

R2 0.708 0.688 0.679 0.734

Adjusted R2 0.660 0.638 0.627 0.691

F Statistic (df = 11; 3171) 50.87∗∗∗ 285.4∗∗∗ 21.31∗∗∗ 40.82∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.5: Pension Funds Risky Fixed Income and Alternatives Al-
location and Risk-based Capital Requirements, Average
Marginal Effect Implied by the Censored Regression; In-
teraction with the Crisis Indicator

This table presents the average marginal effects implied by the censored regression

model (Equation (1.3.2)) that regresses the percentage allocated to risky fixed

income (Risky FI) and alternatives (Alt) on regulatory requirements and fund

characteristics, and the interacted term Risk-based Capital Requirements × Crisis.

We follow Honoré (2008) by multiplying the coefficient estimates with the proportion

of the observations that is not censored. The values displayed here allow us to

directly interpret the average economic effect of the censored regression model. For

example, if the value of assets under management increases by $1 billion, we estimate

that the fund would increase its investment into risky fixed income by on average

0.03% (column (1)).

Dependent variable:

Risky FI Alt

(1) (2)

Quantitative Investment Restrictions −0.007∗
−0.031∗∗

Mark-to-market Asset Valuation −0.801 0.047

Recognition of Unfunded Liabilities 0.511∗∗ 1.529

Liability Discount Rate 0.173∗∗∗ 0.399∗∗

Minimum Funding Requirement −0.087∗∗∗ 0

Risk-based Capital Requirements −0.819∗∗∗
−1.451

Crisis −0.074 −1.532∗∗∗

Recovery Period −0.024∗∗∗
−0.208∗∗∗

Maturity 0.016∗∗ 0.087∗∗

Inflation Indexation 0.003 0.019∗

Size 0.026∗∗∗
−0.128∗∗∗

Past Investment Return 0 0.002∗∗∗

Risk-based Capital Requirements × Crisis 0.02 −0.531

Observations 3,687 3,687

Proportion Uncensored 0.25 0.82

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.6: Pension Funds Risky Asset Allocation and Minimum Fund-
ing Requirement, Interaction with the Crisis Indicator

This table presents the regression estimates of the funds’ percentage allocation to

risky assets on regulatory requirements and fund characteristics, with fund fixed

effects (Equation (1.3.1)), and the interacted term Minimum Funding Requirement ×

Crisis. We consider overall risky asset investment (column (1)), and its composing

asset classes: equities, risky fixed income (Risky FI) and alternatives (Alt) (columns

(2) to (4)). Section 1.3.1 specifies the assets within each asset class.

Heteroskecasticity robust standard errors that are clustered by Year are in

parentheses.

Dependent variable:

All Equities Risky FI Alt

(1) (2) (3) (4)

Quantitative Investment Restrictions −0.027∗∗∗ 0.005 −0.003 −0.029∗∗

(0.010) (0.017) (0.002) (0.011)

Mark-to-market Asset Valuation −7.223∗∗∗
−6.981∗∗

−0.423 0.182

(1.908) (3.248) (0.399) (1.744)

Recognition of Unfunded Liabilities −0.985 −1.946 0.566∗∗ 0.394

(1.201) (1.869) (0.254) (1.855)

Liability Discount Rate 0.909∗∗∗ 0.516∗ 0.113∗ 0.280

(0.193) (0.296) (0.059) (0.245)

Minimum Funding Requirement −0.018 −0.0002 −0.017 −0.0001

(0.021) (0.029) (0.015) (0.018)

Crisis 0.851 −4.725∗∗∗ 0.389∗∗ 5.187∗∗∗

(0.700) (1.565) (0.197) (1.201)

Risk-based Capital Requirements −6.887∗∗∗
−6.369∗∗∗

−0.865 0.347

(2.169) (2.243) (0.586) (0.690)

Recovery Period 0.152∗∗∗ 0.397∗∗∗
−0.012 −0.233∗∗∗

(0.046) (0.102) (0.012) (0.090)

Maturity −0.024 −0.099∗∗∗ 0.014∗∗ 0.061∗∗∗

(0.025) (0.038) (0.005) (0.020)

Inflation Indexation 0.007 −0.014∗ 0.002 0.019∗∗∗

(0.007) (0.009) (0.004) (0.006)

Size 0.202∗∗∗ 0.014 0.037∗∗∗ 0.151∗∗∗

(0.023) (0.041) (0.005) (0.028)

Past Investment Return 0.026 0.034 −0.006 −0.001

(0.022) (0.027) (0.007) (0.016)

Minimum Funding Requirement × Crisis −0.018∗∗ 0.029∗∗∗
−0.005∗∗∗

−0.042∗∗∗

(0.009) (0.004) (0.002) (0.007)

Observations 3,687 3,687 3,687 3,687

R2 0.708 0.688 0.679 0.734

Adjusted R2 0.660 0.638 0.627 0.691

F Statistic (df = 11; 3171) 50.87∗∗∗ 285.4∗∗∗ 21.31∗∗∗ 40.82∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.7: Pension Funds Risky Fixed Income and Alternatives Al-
location and Minimum Funding Requirement, Average
Marginal Effect Implied by the Censored Regression; In-
teraction with the Crisis Indicator

This table presents the average marginal effects implied by the censored regression

model (Equation (1.3.2)) that regresses the percentage allocated to risky fixed

income (Risky FI) and alternatives (Alt) on regulatory requirements and fund

characteristics, and the interacted term Minimum Funding Requirement × Crisis.

We follow Honoré (2008) by multiplying the coefficient estimates with the proportion

of the observations that is not censored. The values displayed here allow us to

directly interpret the average economic effect of the censored regression model. For

example, if the value of assets under management increases by $1 billion, we estimate

that the fund would increase its investment into risky fixed income by on average

0.03% (column (1)).

Dependent variable:

Risky FI Alt

(1) (2)

Quantitative Investment Restrictions −0.008∗
−0.035∗∗

Mark-to-market Asset Valuation −0.905 −0.738

Recognition of Unfunded Liabilities 0.525∗∗ 1.605

Liability Discount Rate 0.178∗∗∗ 0.419∗∗

Minimum Funding Requirement −0.09∗∗∗ 0

Crisis −0.169∗ 3.207∗∗∗

Risk-based Capital Requirements −0.768∗∗∗
−1.376

Recovery Period −0.028∗∗∗
−0.224∗∗∗

Maturity 0.015∗∗ 0.082∗∗

Inflation Indexation 0.003 0.019∗

Size 0.028∗∗∗
−0.126∗∗∗

Past Investment Return 0 0.002∗∗∗

Minimum Funding Requirement × Crisis −0.004∗∗∗
−0.026∗∗∗

Observations 3,687 3,687

Proportion Uncensored 0.25 0.82

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix to Chapter 1

1.A Overview of the Pension Regulatory Envi-

ronment

1.A.1 The United States

In the US, public and corporate pension funds have their own regulatory
authority. US private plans are either single employer (corporate funds) or
multi-employer (industry funds, also known as Taft-Hartley plans).13 Corpo-
rate funds are subject to strict rules, both for pension plans’ budgeting and
for sponsors’ accounting. Plan budgeting rules impose minimum standards for
funding levels, sponsor contributions, recovery periods, and so on. They are set
federally under the 1974 Employee Retirement Income Security Act (ERISA).
Among ERISA’s many amendments, the 2006 Pension Protection Act (PPA)
introduced major reforms that came into effect in 2008. PPA required corporate
pension plans to target full funding by 2011 (90% before 2008, and a gradual
increase from 90% to 100% between 2008 and 2011). Assets should be valued
on a market-related basis with at most a two-year average of 90-110% of fair
value14 (compared with the previous five-year average of 90-120%). Liabilities
are discounted at corporate bond rates.15 PPA also required quicker remedi-
ation of shortfalls: any funding deficit has to be resolved within a seven-year
period (compared with 30 years previously).

The accounting statements of incorporated companies in the US follow the
rules set by the Financial Accounting Standards Board (FASB). Over the past
decades, the FASB has changed the items that sponsors have to disclose or rec-
ognize, and the permissible recognition method. Three standards were in force
during our study period, FAS 87 (effective 1986), FAS 132 (2004) and FAS 158

13Single-employer plans are retirement plans that are administered by one employer only.

Multi-employer plans are collectively bargained plans maintained by labor unions and more

than one employer. They are managed by a board of trustees with equal representation

of employers and employees. This arrangement is common in industries that are typically

unionized, such as construction, entertainment, trucking, and mining.
14Fair value requires the assessment of the price that is fair between two specific parties.

Market value may meet this criterion, but this is not necessarily the case. In practice, fair

value estimations may be based on market prices if they are available and considered reliable.

Otherwise, they can be based on an estimate derived from multiple permissble methodologies.
15Under PPA, the discount rate for single-employer plans is a two-year average of

investment-grade corporate bonds (i.e., AAA, AA and A). The rates are three-tiered (i.e.,

5, 5-15, and more than 15 years) to match the duration of plans’ liabilities. PPA shortened

the averaging period of the discount rate from four to two years.
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(2006). Under FAS 87, single-employer fund sponsors have to recognize the cost
of providing pensions on their income statement, and to disclose the fair value
of pension assets and the present value of pension obligations in the notes to
the financial statements. While employers are required to compute their plans’
funded status, defined as the fair value of assets less projected benefit obliga-
tion (PBO),16 they do not have to report it on their balance sheet. Only when
the accumulated benefit obligation (ABO)17 exceeds the accrued pension assets
must firms recognize the unfunded ABO. FAS 132 adds the requirement to dis-
close the funds’ investment policy, while FAS 158 made it mandatory to always
recognize the plans’ unfunded liabilities, determined as PBO, on the balance
sheet,18 a stricter requirement than the ABO standard under FAS 87.

US industry funds, in comparison with corporate ones, are subject to more
lenient requirements despite being regulated under the same federal act. His-
torically, industry plans have broad discretion on the valuation assumptions for
plan assets and liabilities, as well as on funding methods. The introduction of
PPA in 2008 preserved and even expanded these flexibilities. For the purpose
of determining annual funding, the only condition on the discount rate is that
it has to be actuarially reasonable. Employer and employee contribution rates
are decided through a collective bargaining process every three to five years.
Due to the lengthy nature of the process, the PPA provides for shortfalls to be
amortized over a period of 15 years (previously 30). Multi-employer plans that
are under 80% funded have to submit a plan for achieving a one-third improve-
ment in the funded level every ten years. On the accounting side, participating
sponsors of industry funds merely have to report the required contributions each
year on their financial statements.

In contrast to their private counterparts, US public funds are subject to much
laxer rules. Accounting and funding standards were set in 1984 in Governmental
Accounting Standards Board (GASB) Statement 25 and in Actuarial Standards
of Practice (ASOP) 27. These standards allow funds’ assets to be valued on an
actuarial basis19 and their liabilities to be discounted using the expected rate

16PBO is the actuarial present value of future pension benefits accrued from past service

years. Future events such as compensation increases, turnover and mortality are taken into

consideration.
17In contrast to PBO, ABO is an estimate of a company’s pension liability under the view

that the plan is terminated on the date the calculation is performed.
18Sponsors of multi-employer plan are required only to report their respective contribution

to the plan.
19Actuarial valuation recognizes realized and/or unrealized gains and losses in the market

value versus book value, typically over a five-year period, rather than immediately.
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of return on pension plan assets.

1.A.2 Canada

In Canada, there is much less regulatory distinction between public and cor-
porate pension funds. All registered pension plans are regulated under both
federal and provincial pension standards. Tax legislation is set at the federal
level whereas minimum standards for funding and other issues are set at the
provincial level.20 Despite having provincial jurisdiction, pension legislation on
design, funding, communication and administration is fairly consistent across
the country (Pugh, 2006). Regulatory harmonization is among the responsibili-
ties of the Canadian Association of Pension Supervisory Authorities (CAPSA).
CAPSA advocates for a funding requirement of 100%, as determined using ac-
tuarially acceptable assumptions (e.g., market value of assets, accrued liability
discounted using Government of Canada bonds). Until 2010, Canadian funds
were prohibited from investing more than 25% of their portfolio in real estate,
and 15% in Canadian resource property.

Canadian private pension plans and their sponsors prepare their financial
statements under the standards set by the Accounting Standards Board of
Canada (AcSB). Between December 1986 and 1999, the effective rules for spon-
sors were set out in Canadian Institute of Chartered Accountants (CICA) 3460,
but many of the key assumptions, such as the liability discount rate, were left
to the plan administrator’s discretion. Effective in 2000, CICA 3461 revoked
some of that discretion. Funds have to discount their liabilities at the AA-rated
corporate bond rate. For asset valuation, funds can choose between market and
market-related value (the latter allows for valuation smoothing). In January
2006, the AcSB announced its decision to converge to the International Finan-
cial Reporting Standards (IFRS). A five-year transition period was planned,
with the compliance to International Accounting Standard (IAS) 19 becoming
effective in January 2011. IAS 19 requires balance sheet recognition of the
present value of estimated total retirement benefits, including future compensa-
tion net of the fair value of pension assets, discounted using the interest rate on
high quality corporate debt. Plan assets are measured at fair market value with
no permissible smoothing. Canadian public pension plans’ sponsors followed
the same set of CICA accounting standards up to 2012.

20An exception is the plans for employees of banks, communications companies etc., who

fall under the 1985 Federal Pension Benefits Standards Act.
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1.A.3 The Netherlands

The Netherlands makes no regulatory distinction between funds covering
public or private sector workers. Prior to 2007, Dutch pension funds were sub-
ject to the Pensions and Savings Act (Pensioen- en Spaarwet, PSW), which
permits several funding methods, some allowing pension costs to be deferred.21

Since 1999, PSW requires a 100% funding ratio at all times. Although there is
no fixed recovery period for underfunding, failure to meet the funding require-
ment invites regulatory scrutiny (Pugh, 2006). Liabilities are discounted using a
fixed actuarial rate of 4% whereas assets are marked-to-market. Since 2003, the
funds’ assets have to be valued at at least 105% of the provision for liabilities,
of which 5% constitutes a risk reserve. Funds are granted up to eight years to
recoup any shortfall on the reserve value. These risk reserves are a precursor to
the risk-based capital requirement.

In 2007, a new statute, the Pension Act (Pensioenwet) was introduced.
It comprises the Financial Assessment Framework (Financieel Toetsingskader,
FTK), which lays down pension funds’ financial requirements. The FTK out-
lines regulations concerning the liability discount rate (i.e., swap rate), and
maintains the requirement for MtM asset valuation, along with 100% minimum
funding. The FTK also sets capital buffers to ensure, with a 97.5% confidence
level, that funds’ assets will not be less than the level of liabilities within a
year. If funds fail to meet the minimum funding or capital requirements, they
are granted a period of three years to meet the minimum solvency requirements
and up to 15 years to recoup the buffer requirements. Among the three countries
under study, only the Netherlands has risk-based capital requirements that are
similar to those that apply in Europe for insurance companies, and are under
discussion for European pension plans (EIOPA, 2012).

Companies listed on a market in the European Union (EU) have been re-
quired to abide by IAS 19 since 2005. While this standard applies only to
listed companies in the EU, the Dutch government approved a bill in 2005 to
encourage unlisted companies to adopt it as well. Before IAS 19 was adopted,
the Dutch accounting regulation, Raad voor de Jaarverslaggeving RJ 271 (2002
edition) required the previous year’s pension contribution premium to be recog-
nized in the income statement as an operating expense and the previous year’s
premium adjustment paid for salary increments to be shown on the balance

21For example, the (65-x) method allowed salary or other pension increases on past service

benefits to be funded over the remaining years until retirement age, typically 65. This method

allows the deferral of pension costs.
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sheet. Because of the stand-alone nature of Dutch occupational pensions,22 the
employer’s pension liabilities are not easily determined. This is further compli-
cated by policy mechanisms such as conditional indexing, which is difficult to
value. The sponsors of industry funds treat industry plans as DC funds from
an accounting perspective, and recognize only the promised contribution due
each year on their balance sheet. On the contrary, corporations with their own
pension funds have to recognize unfunded pension liabilities on their balance
sheets.

22Dutch occupational pension funds are independent trusts. Since the governing board has

equal representation of employers and unions, the employer does not have exclusive power on

decision-making, and is not solely responsible for any underfunding (Bovenberg and Nijman,

2009).
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1.D Pension Benefit Guarantee Corporation

Table 1.8: Pension Funds Risky Asset Allocation and Regulation: In-
dicator for PBGC Participation

This table presents the estimates of the regression of the funds’ percentage allocation to

risky assets on regulatory requirements and fund characteristics, with fund fixed effects

(Equation (1.3.1)), and an indicator for US corporate and industry funds (PBGC). The

indicator represents funds that are members of the Pension Benefit Guarantee Corporation.

Heteroskecasticity robust standard errors that are clustered by Year are in parentheses.

Dependent variable:

All Equities Risky FI Alt

(1) (2) (3) (4)

Quantitative Investment Restrictions −0.024∗∗ 0.010 −0.003 −0.031∗∗∗

(0.010) (0.017) (0.002) (0.012)

Mark-to-market Asset Valuation −6.707∗∗∗ −6.030∗ −0.456∗ −0.221

(1.789) (3.218) (0.262) (1.782)

Recognition of Unfunded Liabilities −1.058 −1.920 0.534∗∗ 0.327

(1.182) (1.938) (0.241) (1.916)

Liability Discount Rate 0.883∗∗∗ 0.431 0.117∗∗ 0.335

(0.197) (0.302) (0.056) (0.240)

Minimum Funding Requirement −0.136 0.017 −0.161∗ 0.007

(0.111) (0.177) (0.090) (0.074)

Risk-based Capital Requirements −7.322∗∗∗ −6.435∗∗∗ −1.151∗ 0.264

(2.229) (2.282) (0.606) (0.694)

Recovery Period 0.138∗∗∗ 0.440∗∗∗ −0.047∗∗ −0.254∗∗∗

(0.049) (0.092) (0.021) (0.086)

Maturity −0.018 −0.097∗∗ 0.017∗∗∗ 0.062∗∗∗

(0.024) (0.038) (0.005) (0.020)

Inflation Indexation 0.007 −0.018∗∗ 0.002 0.022∗∗∗

(0.007) (0.008) (0.003) (0.005)

Size 0.206∗∗∗ 0.002 0.040∗∗∗ 0.164∗∗∗

(0.023) (0.041) (0.005) (0.029)

Past Investment Return 0.032∗ 0.065∗ −0.006 −0.027

(0.018) (0.037) (0.006) (0.028)

PBGC 13.262 −0.970 15.803∗ −1.570

(10.611) (16.908) (8.674) (7.187)

Observations 3,687 3,687 3,687 3,687

R2 0.708 0.685 0.692 0.731

Adjusted R2 0.661 0.634 0.642 0.687

Residual Std. Error (df = 3170) 6.365 7.372 1.593 5.481

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1.E Double-Clustered Standard Errors

Table 1.9: Pension Funds Risky Asset Allocation and Regulation:
Double-clustered Standard Errors

This table presents the estimates of the regression of the funds’ percentage allocation to

risky assets on regulatory requirements and fund characteristics, with fund fixed effects

(Equation (1.3.1)). Heteroskecasticity robust standard errors that are clustered by Year and

Fund are in parentheses.

Dependent variable:

All Equities Risky FI Alt

(1) (2) (3) (4)

Quantitative Investment Restrictions −0.023 0.010 −0.002 −0.031∗

(0.015) (0.022) (0.004) (0.016)

Mark-to-market Asset Valuation −6.612∗∗∗ −6.037∗ −0.342 −0.233

(2.000) (3.432) (0.646) (1.980)

Recognition of Unfunded Liabilities −1.042 −1.921 0.553 0.325

(1.513) (2.217) (0.338) (2.071)

Liability Discount Rate 0.878∗∗∗ 0.432 0.110 0.336

(0.245) (0.357) (0.071) (0.283)

Minimum Funding Requirement −0.016 0.008 −0.017 −0.007

(0.023) (0.033) (0.016) (0.019)

Risk-based Capital Requirements −7.118∗∗∗ −6.450∗∗ −0.908 0.240

(2.455) (3.016) (0.713) (1.237)

Recovery Period 0.169∗∗∗ 0.437∗∗∗ −0.011 −0.258∗∗∗

(0.058) (0.094) (0.014) (0.090)

Maturity −0.020 −0.096∗ 0.014∗ 0.062∗

(0.032) (0.054) (0.008) (0.037)

Inflation Indexation 0.007 −0.018 0.003 0.022∗∗

(0.012) (0.015) (0.006) (0.010)

Size 0.205∗∗∗ 0.003 0.038∗∗∗ 0.164∗∗∗

(0.039) (0.050) (0.010) (0.062)

Past Investment Return 0.032∗ 0.065∗ −0.007 −0.027

(0.017) (0.037) (0.006) (0.027)

Observations 3,687 3,687 3,687 3,687

R2 0.708 0.685 0.679 0.731

Adjusted R2 0.660 0.634 0.627 0.687

Residual Std. Error (df = 3171) 6.370 7.371 1.627 5.480

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Longevity Risk: To Bear or to Insure

2.1 Introduction

Longevity risk is a looming threat to pension systems worldwide. In contrast
to mortality risk, which is the idiosyncratic risk surrounding an individual’s ac-
tual date of death given known survival probabilities, longevity risk is the risk
of misestimating future survival probabilities.1 This systematic risk can be
distressful for retirement financing because longevity-linked assets are not yet
commonplace (Tan et al., 2015).

The global transition of funded pensions from Defined Benefit (DB) to De-
fined Contribution (DC) plans2 precipitates the need for sustainable means of
managing mortality and longevity risks, which have conventionally been borne
by the DB plan sponsor. The essence of a DC setup grants individuals full free-
dom in managing their retirement capital, which is accumulated at a statutory
rate of saving.

This chapter is based on Boon et al. (2017b).
1Longevity and mortality risks are also referred to as macro- and micro-longevity risks

respectively.
2In 1975, close to 70% of all US retirement assets were in DB plans. In 2015, DB assets

accounted for only 33% of total retirement assets. Over the same period, assets in DC plans

and Individual Retirement Accounts (IRAs) grew from 20% to 59% (Investment Company

Institute, 2016). In the UK, 98% of the FTSE 350 companies offer a DC pension plan in 2017

(Towers Watson, 2017).

40



CHAPTER 2 41

While the optimal, rational individual response to mortality risk in a
frictionless setting is to pool that risk (Yaari, 1965; Davidoff et al., 2005;
Reichling and Smetters, 2015), the corresponding response to longevity risk is
less evident. Individuals could either bear it under a collective arrangement, or
offload it at a cost by purchasing an annuity contract from an equity-backed
insurance company. Both options allow individuals to pool mortality risk, but
entail different implications with regard to longevity risk. We compare these
arrangements to ascertain the option that maximizes individuals’ expected
utility. We also investigate the viability of the annuity market by evaluating
the risk-return tradeoff with respect to longevity risk for the equityholders of
the annuity contract provider.

Since the introduction of Group Self-Annuitization (GSA) by Piggott et al.
(2005), retirement schemes in which individuals bear systematic risks as a col-
lective, but pool idiosyncratic ones have captured the attention of scholars. The
main novelty of our work is to concurrently model individual preferences and
the business of an equityholder-backed annuity provider when longevity risk
exists. Despite equityholders’ critical role in the provision of contracts, com-
parisons of the GSA and annuity contracts that include longevity risk disregard
this aspect (e.g., Denuit et al., 2011; Richter and Weber, 2011; Maurer et al.,
2013; Qiao and Sherris, 2013).

In order to credibly offer insurance against a systematic risk, the annuity
provider requires reserve capital that is constituted from either equity contribu-
tion and/or from contract loading to absorb unexpected shocks.3 Either of these
sources of reserve has a cost. If the annuity provider solicits capital from equi-
tyholders, then it would have to compensate equityholders with a longevity risk
premium. If the provider charges too high a loading, then individuals would pre-
fer the GSA over the annuity contract (e.g., Hanewald et al., 2013; Boyle et al.,
2015).4 Therefore, the existence of an annuity market hinges on the provider’s

3It would be equivalent to consider debt issuance to raise capital, and any dividend pol-

icy other than a one-off dividend payment to equityholders (i.e., any gains before the end

of the investment horizon are re-invested). This is because the Miller-Modigliani proposi-

tions on the irrelevance of capital structure (Modigliani and Miller, 1958) and dividend policy

(Miller and Modigliani, 1961) on the market value of firms hold in our setup, which excludes

taxes, bankruptcy costs, agency costs, and asymmetric information.
4While allocating retirement wealth between the annuity contract and the collective

scheme is conceptually appealing, for the feasibility of a collective scheme, individuals can se-

lect only one option in our setting (e.g., mandatory participation in a collective scheme averts

adverse selection, achieves cost reduction, etc., Bovenberg et al., 2007). Weinert and Gründl
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ability to set a contract price such that all stakeholders are willing to participate
in the market.

Existing estimates on individuals’ willingness to pay to insure against longevity
risk are low. Individuals are willing to offer a premium of between 0.75%
(Weale and van de Ven, 2016) to 1% (Maurer et al., 2013) for an annuity con-
tract that insures them against longevity risk without default risk. In contrast,
the capital buffer that the annuity provider would have to possess to restrain
its default risk is much larger (e.g., about 18% of the contract’s best estimate
value to limit the default rate to 1% in Maurer et al., 2013). These estimates
suggest that the annuity provider has little capacity to compose its reserve cap-
ital only from contract loading, as is commonly assumed (Friedberg and Webb,
2007; Richter and Weber, 2011; Maurer et al., 2013; Boyle et al., 2015). Eq-
uity capital is thus necessary. We attempt to reconcile the gap between the
maximum loading that individuals are willing to pay, and the minimum capital
necessary to provide annuity contracts that individuals are willing to purchase,
by introducing equityholders.

While analyses that incorporate both policy and equityholders exist in insur-
ance (e.g., Filipović et al., 2015; Chen and Hieber, 2016), they are unforeseen
in the literature on the comparison of the GSA with annuity contracts, which
focuses on policyholders only. An exception is Blackburn et al. (2017), who take
the equityholders’ viewpoint when investigating longevity risk management and
the share value of a life annuity provider. Demand for annuities in their model
is determined by an exogenous demand function. Instead, we analyze the policy
and equityholders concurrently when annuity demand is endogenous.

Consistent with the inchoate market for longevity-hedging instruments, we
assume that the annuity provider has no particular advantage in bearing longevity
risk.5 Moreover, the annuity provider is required to maintain the value of its
assets above the value of its liabilities–a plausible regulatory requirement for
such a for-profit entity. In contrast to the literature on collective schemes, which
largely focuses on inter-generational risk-sharing (e.g., issues concerning its fair-

(2017) analyze the optimal share of a default-free nominal annuity and a tontine, a type of col-

lective scheme, whereas Zhang and Li (2017) investigate a contract that is partially-indexed to

longevity risk, that similarly explores a risk-sharing spectrum between the contract provider

and the individual.
5Insurance companies may in practice have a comparative advantage in bearing longevity

risk, such as relying on the synergy of product offerings in terms of risk-hedging (Tsai et al.,

2010), or the potential of life insurance sales in hedging longevity risk (i.e., natural hedging)

(Cox and Lin, 2007; Luciano et al., 2015).
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ness and stability with respect to the age groups, see Gollier, 2008; Cui et al.,
2011; Beetsma et al., 2012; Chen et al., 2017b, 2016), we focus instead on risk-
sharing between individuals and the annuity provider’s equityholders within a
generation.

We begin by assuming that the annuity provider composes its buffer entirely
from equity capital. In return for their capital contribution, equityholders re-
ceive the annuity provider’s terminal wealth as a lump sum dividend. Due to
equity-capital-cushioning, the annuity contract provides retirement benefits that
have a lower standard deviation across scenarios. However, as equity capital is
finite, there is a positive (albeit small) probability that the annuity provider
defaults. We infer the maximum loading that individuals are willing to offer,
and equityholders’ risk-adjusted investment return.

We find that individuals marginally prefer the collective scheme. The Cer-
tainty Equivalent Loading (CEL), i.e., the level of loading on the annuity con-
tract at which individuals would derive the same expected utility under either
option, is slightly negative (i.e., -0.35% to -0.052%; Table 2.3). Furthermore, ex-
posure to longevity risk does not enhance the equityholders’ risk-return tradeoff
if the annuity provider sells zero-loading contracts, because it yields only half
of the Sharpe ratio of an identical investment without exposure to longevity
risk, as well as a negative Jensen’s alpha (Table 2.4). Consequently, the annu-
ity contract would not co-exist with the collective scheme. The implication of
our results would be even stronger if there were frictional costs, e.g., financial
distress, agency, regulatory capital, and double taxation costs, because equity-
holders would require a higher financial return from the capital they provide.

To further comprehend the tradeoff that an individual faces when selecting
a contract, we carry out sensitivity tests with respect to the individual’s charac-
teristics, longevity risk, and the annuity provider’s default risk. Our inference
is robust to the deferral period (Table 2.7), stock exposure (Table 2.8), and pa-
rameter uncertainty surrounding the longevity model’s time trend (Table 2.11).
Situations characterized by extremities can intensify individual preference for
either contract in an intuitive manner. For instance, the annuity contract is
attractive to highly risk-averse individuals because its retirement benefits are
less volatile (Table 2.6). If the equity capital is halved, the annuity provider’s
default risk rises markedly, and the annuity contract becomes less desirable to
individuals (Table 2.9).

Greater uncertainty surrounding longevity evolution generates preference for
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the annuity contract, on the condition that the annuity provider restrains de-
fault risk by raising more equity capital. If, for example, the standard deviation
of the longevity model’s time trend is doubled, risk-averse individuals are will-
ing to pay as much as 3.2% in loading for the annuity contract, but only if the
provider has no default risk (Table 2.13). Under an alternative longevity model,
which exhibits wider variation of survival probabilities at older ages, risk-averse
individuals prefer the collective scheme, but only if the provider’s default risk is
eliminated too (Table 2.15). Despite any positive loading that individuals offer,
none of the cases that we analyze show that the level of loading is sufficient to
compensate equityholders (Tables 2.13 and 2.15). This is because in situations
of heightened longevity risk, the equityholders’ dividend is also more volatile,
which compromises the financial performance of longevity risk exposure. Thus,
there is no compelling support for annuity contract provision when individuals
could form a collective scheme.

We present our model in Section 2.2 and calibrate it in Section 2.3. We first
discuss the baseline case results from the individual’s perspective (Section 2.4),
then from the equityholders’ point of view (Section 2.5). Section 2.6 is devoted to
sensitivity tests on the individuals’ traits, stock exposure, the annuity provider’s
leverage ratio, as well as the longevity model’s attributes. We conclude in
Section 2.7.

2.2 Model Presentation

We devise a model to investigate the welfare of individuals under a collective
retirement scheme and a market-provided deferred variable annuity contract.
The setting comprises a financial market with a constant risk-free rate and
stochastic stock index, homogenous individuals with stochastic life expectancies,
and two contracts for retirement.6 We define and discuss these elements in detail
in this section.

2.2.1 Financial Market

In a continuous-time financial market, the investor is assumed to be able
to invest in a money market account and a risky stock index. The financial
market is incomplete due to the lack of longevity-linked securities. We assume
that annual returns to the risk-free asset are constant, r. The money market

6We abstract from model uncertainty by assuming that the stochastic dynamics underlying

the financial assets and life expectancies are known.
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account is fully invested in the risk-free asset.

The value of the stock index at time t, which is denoted by St, follows the dif-
fusion process, dSt = St (r + λSσS) dt+StσS dZS,t. ZS is a standard Brownian
motion with respect to the physical probability measure, σS is the instantaneous
stock price volatility, and λSσS is the constant stock risk premium.

2.2.2 Individuals

At time t0, individuals who are aged x = 25 either form a collective scheme
or purchase a deferred annuity contract with a lump sum capital that is normal-
ized to one. Both retirement contracts commence retirement benefit payments
at age 66, up to the maximum age of 95, conditional on the individual’s sur-
vival. Individuals’ lifespan is determined by survival probabilities that follow
the Lee and Carter (1992) model.

2.2.2.1 Life Expectancy

We assume that individual mortality rates evolve independently from the
financial market. Although productive capital falls as the population ages, em-
pirical evidence on the link between demographic structure and asset prices is
mixed.7

We adopt the Lee and Carter (1992) model, which is widely used (e.g., by
the US Census Bureau and the US Social Security Administration) and studied.
This is a one-factor statistical model for long-run forecasts of age-specific mor-
tality rates. It relies on time-series methods and is fitted to historical data. The
log central death rate for an individual of age x in year t, log (mx, t)8 is assumed
to linearly depend on an age-specific constant, and an unobserved period-specific
intensity index, kt:

log (mx, t) = ax + bxkt + ϵx, t (2.2.1)

exp (ax) is the general shape of the mortality schedule across age; bx is the rate
of change of the log central death rates in response to changes in kt, whereas

7Erb et al. (1994); Poterba (2001); Ang and Maddaloni (2003); Visco (2006); Schich

(2008b); Arnott and Chaves (2012)
8mx, t is the ratio of Dx, t, the number of deaths of an individual aged x in year t, over

Ex, t, the exposure, defined as the number of aged x individuals who were living in year t.
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the error term, ϵx, t, is normally distributed with zero mean and variance σ2
x.

The Lee and Carter (1992) model is defined for the central death rates, mx, t,
but we apply it to model the annual rate of mortality, qx, t by the approximation
qx, t ≃ 1 − exp (−mx, t). The probability that someone who is aged x at time
t0 is alive in s-year time, spx, is then spx = Πs−1

l=0 (1 − qx+l, t+l). We denote
the conditional probability in year t ≥ t0 that an individual of age x at time
t will survive for at least s more years as sp(t)

x , sp(t)
x = Πs−1

l=0 (1 − qx+l, t) =

exp
(∑s−1

l=0 −mx+l, t

)
.9

While many refinements of Lee and Carter (1992) exist (e.g., the two-
factor model of Cairns et al., 2006b, the addition of cohort effects in
Renshaw and Haberman, 2006), the model is not only reasonably robust to the
historical data used, but also produces plausible forecasts that are similar to
those from extensions of the model (Cairns et al., 2011).

2.2.2.2 Welfare

Individuals maximize expected utility in retirement.10 Benefits from the
retirement contracts constitute the individual’s only source of income. We con-
sider individuals who exhibit Constant Relative Risk Aversion (CRRA), and
evaluate their utility in retirement by Equation (2.2.2).

U (Ξ) =

T̂

tR

e−β(t−t0) Ξ1−γ
t

1 − γ t−t0
p25 dt (2.2.2)

t−t0
p25 = probability that someone who is 25 years old in year t0

is alive in year t ≥ t0

β = subjective discount factor

γ = risk aversion parameter, γ > 1

Ξt = retirement income in year t

tR = retirement year, tR = t0 + 66 − 25

T = year of maximum age, T = t0 + 95 − 25

9This is an exponentiated finite sum of log-normal random variables that has no known

analytical distribution function. Therefore, we resort to simulation for our analysis. Alternate

ways to proceed include quantile estimation of random survival probabilities in Denuit et al.,

2011, or the Taylor series approximation by Dowd et al. (2011).
10We can ignore bequest motives as both contracts provide income only when the individual

is still alive.
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2.2.3 Contracts for Retirement

There are two retirement contracts. The first is a collective pension called
the Group Self-Annuitization (GSA) scheme. The second is a Deferred Variable
Annuity (DVA) contract offered by an annuity provider who is backed by equi-
tyholders. We describe both contracts in this section. Appendix 2.A elaborates
on the rationale of the definition and provision of the contracts.

The contracts specify the distribution of financial and longevity risks be-
tween the stakeholders. As the contracts are intended to underscore longevity
risk, both treat stock market risk identically–the risk is fully borne by the indi-
viduals. The benefits due, henceforth known as entitlements, are fully indexed
to the same underlying financial portfolio called the reference portfolio (e.g., a
portfolio that is 20% invested in the stock index, and 80% in the money market
account). Thus, if the DVA provider adopts the reference portfolio’s investment
policy, the provider is hedged against financial market risk.

Longevity risk distribution, however, distinguishes the two contracts. Under
the GSA, it is shared equally among individuals. Under the DVA, the risk is
borne by equityholders up to a limit implied by their equity contribution, be-
yond which the DVA provider defaults. Both contracts stipulate to distribute
mortality credit according to the survival probabilities, conditional on the date
of contract sale. The DVA provider’s equityholders bear the risk that the sur-
vival probability forecast deviates from the realized values. The provider uses
its equity capital to finance underestimation of longevity, and disburses any sur-
plus arising from overestimation of longevity to its equityholders as a dividend.

Due to the non-existence of financial assets that are associated with longevity
risk, the risk cannot be hedged by the DVA provider. Additionally, we assume
that the number of individuals who either purchase the DVA or participate in
a GSA is large enough such that by the Law of Large Numbers, the proportion
of surviving individuals within each pool coincides with that implied by the
realized survival probabilities, so we can eliminate mortality risk.11

2.2.3.1 Deferred Variable Annuity (DVA)

The DVA contract is parametrized by an actuarial construct called the as-
sumed interest rate (AIR), h = {h (t)}T

t=t
0
. The AIR is a deterministic rate

that determines the cost, A, of a contract sold to an individual who is aged x

11The GSA in our setting is a specific case of the GSA in Piggott et al. (2005). We omit

mortality risk, unlike Piggott et al. (2005) who consider the pooling of this idiosyncratic risk.
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at time t0 as follows:

A (h, F, t0, x) = (1 + F )

T̂

t=tR

t−t0
p(t0)

x exp (−h (t) × (t − tR)) dt(2.2.3)

t−t0
p(t0)

x = conditional probability in year t0

that an individual of age x lives

for at least t − t0 more years

h = AIR

F = loading factor

tR = retirement year

The loading factor, F , is a proportional one-off premium that the DVA
provider attaches to a contract. A contract that is priced at its best estimate
has a loading factor of zero, F = 0.

The DVA contract is indexed to a reference investment portfolio that follows
a deterministic investment policy, θ ≡ {θt}

T
t=t

0
. θt is the fraction of portfolio

wealth allocated to the risky stock index at time t, while the remaining 1 − θt

is invested in the money market account. Let W Ref
t (θ) be the value of the

reference portfolio at time t. The dynamics of the reference portfolio are thus
dW Ref

t = W Ref
t (r + θtλSσS) dt + W Ref

t θtσS dZS,t.

Using an annuitization capital that is normalized to one, the individual pur-
chases A (h, F, t0, x) −1 unit(s) of DVA contract(s), and is entitled to Ξ, for
every year t in retirement, tR ≤ t ≤ T .12

Ξ(h, F, t, x) =
exp (−h (t) × (t − tR))

A (h, F, t0, x)
W Ref

t (θ)

W Ref
t0

(θ)
(2.2.4)

W Ref
t (θ) = value of the reference portfolio at time t

The AIR influences the expectation and dispersion of the benefit payments
over time. For instance, the fund units are front- (back-) loaded (i.e., due in the
earlier (later) years of retirement) under a higher (lower) AIR.13

12The benefits adjust instantaneously with the value of the portfolio to which the con-

tract is indexed. Maurer et al. (2016) make the case for smoothing of the benefits, which is

advantageous to both the policyholder and the contract provider.
13Let r̃ denote the reference portfolio’s expected return, and suppose h is time-invariant.

Then an annuity contract with h = r̃ has a constant expected benefit payment path. When
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We demonstrate in Appendix 2.A that for any given θ, the AIR that maxi-
mizes the individual’s expected utility in retirement is Equation (2.2.5), which
we refer to as the optimal AIR, h∗. h∗ depends on the individual’s preference
and financial market parameters. It serves as the AIR of both the DVA and
GSA.

h∗ (t, θt) = r +
β − r

γ
−

1 − γ

γ
θtσS

(
λS −

γθtσS

2

)
(2.2.5)

The DVA provider merely serves as a distribution platform for annuity con-
tracts. It acts in the best interest of its equityholders, who outlive the indi-
viduals. The equityholders provide a lump sum capital that is proportional to
the value of its estimated liabilities in the year t0.14 At every date t ≥ t0,
the DVA provider’s asset value has to be at least equal to the value of its es-
timated liabilities. In any year t0 ≤ t ≤ T , if the DVA provider fails to meet
the 100% solvency requirement, then the DVA provider defaults. Regulatory
oversight is introduced for the DVA provider, because as a for-profit entity, the
DVA provider may have an incentive to take excessive risk at the individu-
als’ expense (Filipović et al., 2015). We impose a solvency constraint as it is
not only the norm in regulatory regimes for insurers (e.g., Solvency II in the
European Union), but is also shown to be effective in mitigating risk-shifting
(Filipović et al., 2015).

In every year of retirement, the individual receives a benefit that is equal to
the DVA entitlement,

ΞDV A(h∗, F, t, x) = Ξ(h∗, F, t, x) (2.2.6)

conditional on the individual’s survival and the DVA provider’s solvency. Ξ(.)
is Equation (2.2.4) while h∗ is Equation (2.2.5).

In the event of default, the residual wealth of the DVA provider is distributed
among all living individuals, in proportion to the value of their contracts that re-
mains unfulfilled. Equityholders receive none of the residual wealth. We impose
a resolution mechanism that obliges individuals to use the provider’s liquidated
wealth to purchase an equally-weighted portfolio of zero-coupon bonds, of matu-
rities from the year of default if the individual is already retired, or from the year
of retirement, until the year of maximum age. Assuming that the bond issuer

h < r̃, then the expected benefit stream is upward sloping, with increasing variance as the

individual ages. Conversely, when h > r̃, the expected benefit stream is downward sloping,

and the variance is higher during the initial payout phase. Horneff et al. (2010) provide an

exposition on retirement benefits under numerous AIRs and reference portfolios.
14The estimation of the value of liabilities is explained in Appendix 2.B.
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poses no default risk, then the individual has a guaranteed income until death,
but receives no mortality credit. If the individual dies before the maximum age,
the face value of the bonds that mature subsequently is not bequeathed. This
resolution to insolvency is harsh on the individuals because it eliminates the
mortality credit, but it reflects the empirical evidence that individuals substan-
tially discount the value of an annuity that poses default risk (Wakker et al.,
1997; Zimmer et al., 2009).

2.2.3.2 Group Self-Annuitization (GSA)

Similar to the DVA, the GSA is parameterized by the optimal AIR, h∗, and
is indexed to a reference portfolio with the investment policy θ. The aged-x
individual receives A (h∗, 0, t, x)−1 contract(s) for every unit of contribution at
time t. In any year t ≥ tR, the GSA’s entitlement depends on the reference
portfolio’s value at time t, W Ref

t (θ).

The description of the GSA thus far is identical to a DVA contract with
zero loading, F = 0. The GSA’s distinctive feature is that the entitlements are
adjusted according to its funding status. Let the funding ratio at time t, FRt, be
the ratio of the GSA’s value of assets, taking into account the investment return
from the preceding year, over the best estimated value of its liabilities.15 For any
year t in retirement, tR ≤ t ≤ T , the individual is entitled to ΞGSA(h∗, 0, t, x).

ΞGSA(h∗, 0, t, x) = Ξ(h∗, 0, t, x) ×
FRt

1
(2.2.7)

=
exp (−h∗ (t, θt) × (t − tR))

A (h∗, 0, t0, x)
W Ref

t (θ)

W Ref
t0

(θ)
FRt

FRt = Funding Ratio in year t

The first two terms of Equation (2.2.7) are identical to the entitlement for a
DVA contract with zero loading, Equation (2.2.4). The final term of Equation
(2.2.7) represents the adjustment. If FRt is smaller (larger) than 1, then the
GSA entitlement, ΞGSA, is lower (higher) than the DVA entitlement, ΞDV A, in
year t. Equation (2.2.7) ensures that the GSA is 100% funded in any year.

15Estimation of the GSA liabilities is identical to the estimation of liabilities of the DVA

provider. See Appendix 2.B for details.
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2.3 Model Calibration

We consider three groups of individuals, distinguished by their risk aversion
levels, γ = 2, 5, and 8.16 Individuals are otherwise homogenous. They have
an annual subjective discount factor of 3%,17 are aged 25 at time t0 = 0, and
use a lump sum that is normalized to one, to either purchase DVA, or join the
GSA at time t0. Both contracts stipulate payment of annual retirement benefits
from age 66 until age 95, conditional on the individual’s survival in any year,
according to the contract specification in Section 2.2.3.

The portfolio to which the DVA and GSA are indexed is either fully invested
in the money market account (θ = 0), or 20% invested in equities and 80%
in the money market account (θ = 20%). These allocations yield the optimal
AIR range of 3-4% (Table 2.1) that is not only observed in the annuity mar-
ket (Brown et al., 2001), but also typically considered in the related literature
(Koijen et al., 2011; Maurer et al., 2013). In Section 2.6.3, we explore alterna-
tive investment policies and demonstrate that they uphold the same results as
when θ = 0, 20%.

We assume that the DVA provider’s equityholders provide a lump sum cap-
ital at date t0 that is 10% of the contract’s best estimate price. The level of
equity capital contribution is set such that the annuity provider’s leverage ratio
is 90%. It reflects the average leverage ratio of US life insurers between 1998-
2011.18

To provide descriptive calculations on individual welfare under the GSA and
the DVA, we calibrate the financial market and life expectancy models to US
data. These parameters constitute our baseline case.

16Using survey responses from the Health and Retirement Study on the US population,

Kimball et al. (2008) estimate that the mean risk aversion level among individuals is 8.2, with

a standard deviation of 6.8.
17While field experiments reveal a wide range of implied subjective discount factor (e.g.,

see Table 1 in Frederick et al., 2002), we choose a value that is commonly adopted in welfare

analysis. For example, in similar analyses on retirement income, Feldstein and Ranguelova

(2001) and Hanewald et al. (2013) adopt a subjective discount factor of around 2%.
18Leverage Ratio ≡ 1 − Value of Equity/Value of Assets. Based on the A.M. Best data

used in Koijen and Yogo (2015), the leverage ratio of US life insurers between 1998 to 2011 is

91.36% on average. Assuming that assets are composed of premium and equity capital only,

and normalizing Premium = 1, we have Leverage Ratio = 1 − Equity/ (1 + Equity), which we

use to solve for Equity when the Leverage Ratio ≈ 90%.
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2.3.1 Financial Market

We adopt a constant risk-free rate of r = 3.6%. The stock index has an
annualized standard deviation of σS = 15.8%, and an instantaneous Sharpe
ratio of λS = 0.467. This implies that the stock risk premium is λSσS = 7.39%.
These parameters reflect the performance of the market-capitalization-weighted
index of US stocks and the yield on the three-month US Treasury bill over the
recent past.

2.3.2 Life Expectancy

We estimate the Lee and Carter (1992) model using US female death counts,
Dx,t, and the population’s exposure to risk, Ex,t, from 1980 to 2013 from the
Human Mortality Database.19 The mortality rate for age group x in year t

is Dx, t/Ex, t. By relying on population mortality data, we eschew adverse se-
lection that plagues the annuity market, i.e., the individuals who purchase an
annuity typically have a longer average lifespan than the general population
(Mitchell and McCarthy, 2002; Finkelstein and Poterba, 2004).

Estimation of the Lee and Carter (1992) model proceeds in three steps.
First, kt is estimated using Singular Value Decomposition. In the second step,
ax and bx are estimated by Ordinary Least Squares on each age group, x. In
the third step, kt is re-estimated by iterative search to ensure that the predicted
number of deaths coincides with the data. For identification of the model, we
impose the constraints

∑
x bx = 1 and

∑
t kt = 0.

The estimated model is used for forecasting by assuming an ARIMA(0, 1, 0)
time series model for the mortality index kt.

kt = c + kt−1 + δt (2.3.1)

δ ∼ N
(
0, σ2

δ

)

Forecasts of the log of the central death rates for any year t′, t′ ≥ t, are
given by Et [log (mx, t′)] = ax + bxk̂t′ , with k̂t′ = (t′ − t) c + kt. The realized log
of the mortality rate incorporates the independently and identically normally
distributed error terms ϵx ∼ N

(
0, σ2

x

)
and δ ∼ N

(
0, σ2

δ

)
, where ϵx, t1

and δt2

19This fitting period is selected using the method of Booth et al. (2002). It involves defin-

ing fitting periods starting from the first year of data availability till the last year of data

availability, and progressively increasing the starting year. A ratio of the mean deviance of

fit of the Lee and Carter (1992) model with the overall linear fit is computed for these fitting

periods. The period for which this ratio is substantially smaller than that for periods starting

in previous years is chosen as the best fitting period.
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are uncorrelated for any t1, t2 ∈ [t0, T ] and x. Therefore, the conditional ex-
pected forecast error of log (mx, t) is zero.

We estimate that ĉ = −1.047, which implies a downward trend for kt, while
the estimate of σδ is σ̂δ = 1.744. In Figure 2.3.1, we present the estimates
for ax, bx and σx. ax is increasing in age. Estimates for bx suggest that the
change in the sensitivity of age groups to the time trend, k, is not monotone
across ages. As for σx, it decreases in age non-monotonically until around age
85. With these estimates, 83.8% of the variation in the data is explained.

In Figure 2.3.2, we display a fan plot of the fraction of living individuals by
age, between 25 and 95, with the population at age 25 normalized to one. The
maximum and minimum realizations have a wide range. At its widest at age
88, the difference is as large as 30%.
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Figure 2.3.1: Lee and Carter (1992) Mortality Model Parameter Es-
timates

The top panel shows the estimates for ax, the middle panel displays the esti-
mates for bx, whereas the bottom panel presents the estimates of σx, for the
Lee and Carter (1992) model as specified by Equation (2.2.1). The calibration
sample is the US Female Mortality data from 1980 to 2013, from the Human
Mortality Database. The estimate of c is −1.047 and that of σδ is 1.744. 83.8%
of variation of the sample is explained by these estimates.
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Figure 2.3.2: Lee and Carter (1992)Baseline Case: Fan Plot

This figure presents the fan plot of the simulated fraction of living individuals
(i.e., the population of 25-year-olds is normalized to one) over 10,000 replications
when longevity is modeled according to Lee and Carter (1992), using estimates
in Figure 2.3.1. Darker areas indicate higher probability mass.
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2.3.3 Contract Characteristics

In order to develop intuition and grasp the contracts’ definition, we discuss
the characteristics of the GSA and the DVA under the calibrated parameters.
Table 2.1 presents the optimal AIRs as given by Equation (2.2.5), and evaluated
at the parameters outlined in Sections 2.3.1 and 2.3.2.
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Table 2.1: Baseline Case: Optimal AIR, h∗ (%)

This table shows the optimal AIR, Equation (2.2.5), of the DVA and GSA con-
tracts by the individuals’ risk aversion parameter, γ. The underlying portfolio
to which the contracts are indexed is either 100% invested in the money market
account (θ = 0), or 20% in the risky stock index and 80% in the money market
account (θ = 20%).

θ γ

(%) 2 5 8

0 3.31 3.50 3.54
20 4.00 4.48 4.48

Figure 2.3.3 is a box plot of the benefits that individuals receive under the
DVA and the GSA. The median benefits of both contracts grow along the re-
tirement horizon because the optimal AIR is lower than the constant financial
market return. For the DVA, the median value is also the maximum, because
the surplus from life expectancy misestimates belongs to the equityholders.

The GSA yields more instances of positive than negative adjustments to
benefits that are 1.5-time larger than the range between its 75th and 25th per-
centiles. We infer this from the relative density of “+” symbols above and under
the box (Figure 2.3.3, top panel). When the individual attains the maximum
age of 95, benefits as large as 25% more than the median could occur. In con-
trast, in the worse scenario at the same age, the reduction in benefits relative to
the median is 12.5% at most. This asymmetric effect on benefits arises from the
non-linearity of the Lee and Carter (1992) model. For error terms of the same
magnitude (i.e., {ϵx, t}

T
t=t0

in Equation (2.2.1) and {δt}
T
t=t0

in Equation (2.3.1),
for any x ∈ Z ∩ [25, 95]), overestimation of the log of the central death rates
generates a larger entitlement adjustment than underestimation does. When
the DVA provider defaults, the individual is at risk of receiving a much lower
benefit. The worst case under the GSA entails up to a 30% lower benefit relative
to the median at the maximum age.

The box plots indicate that while both contracts offer comparable benefits at
the median, those of the GSA have higher standard deviations across scenarios
due to the entitlement adjustments, but upward adjustments are more prevalent
than downward ones. The DVA offers less volatile benefits, but is susceptible
to severe low benefit outcomes when the provider defaults. These are the main
features that the individuals weigh in utility terms.
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Figure 2.3.3: Baseline Case: Box Plots of GSA and DVA Benefits

The figure presents the box plot of benefits, for the GSA (top panel), and the
DVA (bottom panel), for an individual with a risk aversion level of γ = 5, at ages
66, 80 and 95. The underlying portfolio is invested in the money market account
only. The line in the middle of the box is the median, while the edges of the box
represent the 25th and 75th percentiles. The height of the box is the interquartile
range, i.e., the interval between the 25th and 75th percentiles. The “+” symbols
represent data points that are 1.5 times larger than the interquartile range.
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2.4 The Individual’s Perspective

We investigate two settings distinguished by the existence of stock market
risk. In both, there is longevity risk, but in one instance, there is no investment
in the stock market, θ = 0, and so the financial return is constant at r, whereas in
the other, θ = 20% is invested in the risky stock index while the remaining 80%
is allocated to the money market account. All results are based on simulations
with 500,000 replications unless specified otherwise. The code that produces all
figures and estimates in Sections 2.4 to 2.6 are available from the authors upon
request.

2.4.1 Cumulative Default Rate

We measure the DVA provider’s default rates with the Cumulative Default
Rate, an estimate of the probability that the DVA provider defaults during the
individuals’ planning horizon.

Let Dt be the indicator function that the DVA provider has defaulted in any
year t′, t0 < t′ ≤ t ≤ T . For example, if the DVA provider defaults in the year
t∗, then Dt = 1 for t ≥ t∗ and Dt = 0 for t < t∗. Additionally, Dt0

≡ 0 because
the contracts are sold at their best estimate price, and the equity contribution
is non-negative.

The marginal default rate in year t, d (t) is the probability that the annuity
provider defaults in year t, conditional on not having defaulted in previous years.

d (t) = Marginal Default Rate in year t

=
E [Dt]

1 − E [Dt]
(2.4.1)

We define the Cumulative Default Rate as

Cumulative Default Rate = 1 − ΠT
t=t0

(1 − d (t)) (2.4.2)

d (t) = Equation (2.4.1)

The default rates in the baseline case are at most 0.01% (Table 2.2). As
the AIR determines whether the bulk of benefits are due earlier or later in
retirement, when combined with the fact that longevity forecast errors are larger
at longer horizons, the DVA provider’s default rates are inversely related to the
AIRs. A higher AIR results in a payment schedule with benefits mostly due
earlier in retirement. As such, the longevity estimates are accurate when most
of the benefits are paid. Conversely, if the AIR is low, benefit payments are
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deferred to the end of retirement, when life expectancies are most vulnerable
to forecasting errors. Therefore, for a fixed level of equity capital, the DVA
provider is less susceptible to defaults when the AIR is higher.20 For the risk
aversion levels γ = 2, 5, 8, the optimal AIR is increasing in γ (Table 2.1), hence
the default rates are decreasing in γ (Table 2.2) for both θ = 0, 20%. Similarly,
the default rates are lower when θ = 20% than when θ = 0% for all levels of γ

because the optimal AIRs are higher under θ = 20%.

Table 2.2: Baseline Case: Cumulative Default Rates (%)

This table displays the Cumulative Default Rates, Equation (2.4.2), of the DVA
provider who sells zero-loading variable annuity contracts with a 40-year deferral
period, and has equity capital valued at 10% of the liabilities in the year that
the contract was sold. The underlying portfolio to which the DVA and GSA are
indexed is either fully invested in the money market account (θ = 0), or 20% in
the stock index, and 80% in the money market account (θ = 20%).

θ γ

(%) 2 5 8

0 0.0102 0.0084 0.0082
20 0.0070 0.0038 0.0038

2.4.2 Individual Preference for Contracts

We quantify the individuals’ preference for the contracts via the Certainty
Equivalent Loading (CEL). This is the level of loading on the DVA (i.e., F in
Equation (2.2.3)), that equates an individual’s expected utility under the DVA
and the GSA. The CEL satisfies Equation (2.4.3). A positive (negative) CEL
suggests that the individual prefers the DVA (GSA).

20From the regulator’s perspective, the notion of an annual probability of default, instead

of a cumulative one may be more salient. We explore the “Maximum Annual Conditional

Probability of Default”, defined as
max

{t = t0, . . . , T }
d (t), and find that the maximum annual

default rate in the baseline case is 0.0008%. This suggests that the 10% buffer capital is

sufficient to restrict default rates of DVA providers who are exposed to only longevity risk to

existing regulatory limits (e.g., Solvency II for insurers in Europe).
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E

[
U

(
ΞDV A|F =0

1 + CEL

)]
= E

[
U
(
ΞGSA

)]
(2.4.3)

ΞDV A|F =0 = Retirement benefits, Equation (2.2.6),

of a DVA with zero loading, F = 0

ΞGSA = Retirement benefits, Equation (2.2.7),

of a GSA

U (.) = Utility function, Equation (2.2.2),

Confidence intervals for the CELs are estimated via the Delta Method, for
which more details are in Appendix 2.C.

Table 2.3 presents the CEL in the baseline case. The CELs are negative for
all risk aversion levels. This implies that individuals prefer the GSA over the
DVA, but only marginally. If the DVA contracts were to be sold at a discount
of between 0.052% and 0.350%, then individuals would be indifferent between
the two contracts. The CEL is increasing in the risk aversion level, γ. This
is because more risk-averse individuals have greater preference for the DVA
benefits’ lower standard deviation across scenarios.

Table 2.3: Baseline Case: Certainty Equivalent Loading (CEL) (%)

This table presents the CEL, Equation (2.4.3), by the risk aversion levels (γ).
Individuals aged 25 purchase either the DVA or join the GSA with a lump sum
capital normalized to one. The reference portfolio is either fully invested in the
money market account (θ = 0), or is θ = 20% invested in the stock index and
80% in the money market account. The expected utilities to which the CELs are
associated are computed over individuals’ retirement between ages 66 and 95.
The equityholder’s capital is 10% of the present value of liabilities at the date
when the contract is sold. The default rates that ensue at this level of equity
capitalization are shown in Table 2.2. The 99% confidence intervals estimated
by the Delta Method are in parentheses.

θ γ

(%) 2 5 8

0
-0.350 -0.200 -0.055

[-0.362, -0.339] [-0.211, -0.188] [-0.067, -0.044]

20
-0.349 -0.200 -0.052

[-0.361, -0.338] [-0.216, -0.184] [-0.088, -0.016]
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2.5 The Equityholders’ Perspective

To evaluate the equityholders’ risk-return tradeoff on longevity risk expo-
sure, we consider the Sharpe ratio and the Jensen’s alpha of providing capital
to the annuity provider, against those of investing the same amount of capital
in the reference portfolio over the same time period.21 As in Section 2.4, the
annuity provider offers contracts at zero loading.

Equityholders contribute 10% of the DVA provider’s best estimate value of
liabilities at time t0, and receive the terminal wealth of the annuity provider,
W (A)

T , as a dividend. When the value of liabilities is normalized to one, the con-
tinuously compounded annualized return of capital provision in excess of the
risk-free rate of return is R(Aexs) = log

(
W (A)

T /0.1
)

/ (T − t0) − r. We evaluate

the equityholders’ profitability via the Sharpe ratio, SR = E
[
R(Aexs)

]
/σ(Aexs),

and we compute the Sharpe ratio’s confidence intervals in accordance with
Mertens (2002).

The Jensen’s alpha, α, is given by Equation (2.5.1) (Jensen, 1968).

R(Aexs) = α + βR(Sexs) + u (2.5.1)

R(Sexs) is the annualized return of the stock index in excess of the return
on the money market account, and u is the error term. We estimate Equation
(2.5.1) by Ordinary Least Squares. α assesses the investment performance of
providing capital to the annuity provider, relative to that of the market portfo-
lio, on a risk-adjusted basis. A positive α suggests that longevity risk exposure
enhances the equityholders’ risk-return tradeoff. When θ = 0, β = 0 due to
the assumption that the mortality evolution is uncorrelated with the financial
market dynamics. If in Equation (2.5.1), R(Aexs) is replaced by the annualized
return in excess of the risk-free rate of return for the reference portfolio, then
α = 0 and β = θ. This is because the reference portfolio has identical financial
market risk exposure as capital provision, but is not exposed to longevity risk.

21The stochastic discount factor, {Mt}T
t=t0

, that follows dMt/Mt = −r dt − λS dZS, t,

allows us to price any contingent claim exposed to stock market risk only: If Xt is a (ran-

dom) cash flow generated by a contingent claim at time t, then its price at time t0 is

Et0

[
´ T

t=t0
(Mt/Mt0 ) Xt dt

]
. However, when such pricing is carried out for claims due on

a long horizon, and the market price of stock risk (i.e., the Sharpe ratio) exceeds its volatility,

the price depends on extreme sample paths along which the claim’s return explodes (Martin,

2012). As the claims are susceptible to severe underpricing when the Monte Carlo repli-

cation sample size is small, we refrain from valuing contingent claims when comparing the

equityholders’ investment opportunities.
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When θ = 0, the annualized excess return of capital provision is between
−0.008 and −0.007%, and the standard deviation is 3.9% (Table 2.4, top panel).
Relative to the zero excess return from investing in the money market account,
equity capital provision is inferior, but the difference is economically insignifi-
cant. When θ = 20%, investing in the DVA provider yields an expected excess
return of 1.44% (Table 2.4, bottom panel). This is of no material difference
with the expected excess return on the identical financial market portfolio,
i.e., θλSσS − θ2σ2

S/2 = 1.43% when θ = 20%. However, the standard devi-
ation of excess returns is considerably higher when equityholders are exposed
to longevity risk (i.e., ≈ 5%, Table 2.4, bottom panel), than when their invest-
ment is subject to stock market risk only (i.e., θσS = 3.17% with θ = 20%).
Consequently, investing in the financial market only is associated with a Sharpe
ratio that is around 50% higher than the Sharpe ratio of providing capital
to the DVA provider (i.e., 0.29 in Table 2.4, bottom panel, as compared to
λS − θσS/2 = 0.4522 when θ = 20%). Thus, if equityholders were risk-neutral,
then the excess returns imply that they would be indifferent between either
investment opportunity. If equityholders were risk averse, then by the Sharpe
ratio, investing in longevity risk worsens the equityholders’ risk-return tradeoff
when the annuity provider sells the contracts at zero loading. The negative
Jensen’s alpha of -0.0001 corroborates this inference. Any positive loading is
infeasible, because it intensifies individuals’ preference for the GSA. Therefore,
the annuity provider is incapable of adequately compensating its equityholders
for exposure to longevity risk.

22This is the discrete Sharpe ratio, which is the parameter we estimate using simulation

replications, as opposed to the instantaneous Shape ratio, λS (Nielsen and Vassalou, 2004).
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Table 2.4: Baseline Case: Equityholders’ Investment Performance
Statistics

This table displays the equityholders’ mean annualized return in excess of the
risk-free rate of return (E

[
R(Aexs)

]
, %), standard deviation of annualized excess

return (σ(Aexs) , %), the Sharpe ratio (SR) and Jensen’s alpha (E [α], %), Equa-
tion (2.5.1), of capital provision to the DVA provider. The underlying portfolio
is either invested in the money market account only (θ = 0, top panel), or is 20%
invested in the risky stock index, and 80% invested in the money market account
(θ = 20%, bottom panel). The 99% confidence intervals are in parentheses.

θ = 0

Statistic
γ

2 5 8

E
[
R(Aexs)

]
-0.008 -0.007 -0.007

(%) [-0.010, -0.006] [-0.009, -0.005] [-0.008, -0.005]
σ(Aexs) 3.96 3.91 3.89

(%) [3.95, 3.40] [3.90, 3.91] [3.88, 3.90]

SR
-0.002 -0.0017 -0.0017

[-0.0056, 0.0016] [-0.0054, 0.0019] [-0.0053, 0.0020]
E [α] -0.0001 -0.0001 -0.0001
(%) [-0.0001, -0.0001] [-0.0001, -0.0001] [-0.0001, -0.0001]

θ = 20%

Statistic
γ

2 5 8

E
[
R(Aexs)

]
1.44 1.44 1.44

(%) [1.44, 1.44] [1.44, 1.45] [1.44, 1.45]
σ(Aexs) 5.04 4.95 4.95

(%) [5.03, 5.06] [4.94, 4.96] [4.94, 4.96]

SR
0.29 0.29 0.29

[0.29, 0.29] [0.29, 0.29] [0.29, 0.29]
E [α] -0.0001 -0.0001 -0.0001
(%) [-0.0001, -0.0001] [-0.0001, -0.0001] [-0.0001, -0.0001]

The box plot in Figure 2.5.1 indicates that the medians of the excess re-
turns from either investing in the DVA provider, or in the portfolio having the
same investment policy as the DVA contract reference portfolio are compara-
ble. While excess returns on the financial market only are less volatile across
scenarios, their maximum is lower than the best excess returns attainable via
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capital provision. Therefore, longevity risk exposure allows the equityholders to
achieve higher excess returns in the best scenario, but entails greater downside
risk due to the possible default of the DVA provider.

Figure 2.5.1: Box Plot of Equityholders’ Annualized Excess Return
(%): θ = 20%

This figure presents the box plot of the equityholders’ annualized return in excess
of the risk-free rate (%), from either capital provision to the DVA provider (left),
or investing in the reference portfolio (right). The reference portfolio is 20%
invested in the risky stock index and 80% in the money market account. The line
in the middle of the box is the median, while the edges of the box represent the
25th and 75th percentiles. The height of the box is the interquartile range, i.e.,
the interval between the 25th and 75th percentiles. The “+” symbols represent
data points that are 1.5 times larger than the interquartile range.
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2.6 Sensitivity Analysis

In this section, we carry out sensitivity analyses on the individual charac-
teristics, stock exposure, the annuity provider’s leverage, and the magnitude
of longevity risk. These features influence the annuity provider’s default rate
and/or the volatility of the GSA benefits across scenarios and they subsequently
alter the appeal of the GSA and the DVA to individuals.
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2.6.1 Level of Risk Aversion

Individuals’ preference for a GSA or a DVA is determined not only by the
average level of benefits, but also by the risk on those benefits. We expect more
risk-averse individuals to prefer the DVA for the benefits lower volatility, as long
as the default rates entailed by their respective optimal AIRs are not too high.
We consider highly risk-averse individuals with γ = 10, 15, and 20.

The optimal AIRs (Table 2.5) for highly risk-averse individuals and the an-
nuity provider’s default rates (Table 2.6, top panel) are comparable to those in
the baseline case. Yet, in contrast to that case, the CELs are positive (Table 2.6,
middle panel). This suggests that individuals who are highly risk-averse prefer
the DVA over the GSA, and are willing to pay a one-time loading of between
0.003% and 0.62% for the DVA. Despite that, when the annuity provider charges
a loading equal to the CEL, equityholders attain Sharpe ratios that remain in-
ferior to the 0.45 ratio of investing in the reference portfolio, and non-negative
Jensen’s alphas that are economically insignificant (Table 2.6, bottom panel).

Table 2.5: Highly Risk-Averse Individuals: Optimal AIR, h∗ (%)

This table shows the optimal AIR, Equation (2.2.5), of the DVA and GSA for
individuals with risk aversion levels of γ = 10, 15, and 20. All other parameters
are identical to those in the baseline case.

θ γ

(%) 10 15 20

0 3.56 3.58 3.59
20 4.44 4.25 4.04
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Table 2.6: Highly Risk-Averse Individuals: Cumulative Default Rates
(%), Certainty Equivalent Loading (CEL) (%) and Invest-
ment Performance Statistics

This top panel displays the Cumulative Default Rates, Equation (2.4.2), of
the annuity provider. The middle panel shows the CEL, Equation (2.4.3), for
individuals with risk aversion levels of γ = 10, 15, and 20. The bottom panel
shows the Sharpe ratio (SR) and Jensen’s alpha, Equation (2.5.1), when the
loading is set at the CEL estimates in the middle panel. All other parameters
are identical to those in the baseline case. The 99% confidence intervals are in
parentheses.

Cumulative Default Rates (%)
θ γ

(%) 10 15 20

0 0.0106 0.0104 0.0104
20 0.0056 0.0064 0.0086

Certainty Equivalent Loading, CEL (%)
θ γ

(%) 10 15 20

0
0.037 0.250 0.410

[0.025, 0.049] [0.233, 0.268] [0.356, 0.458]

20
0.003 0.340 0.620

[-0.062, 0.069] [0.095, 0.577] [0.087, 1.145]

Sharpe Ratio and Jensen’s alpha: Loading = CEL
θ

Statistic
γ

(%) 10 15 20

0
SR

-0.0002 0.0083 0.0146
[-0.0039, 0.0034] [0.0046, 0.0119] [0.0110, 0.0183]

E [α] 0 0.0003 0.0005
(%) [-0.0000, -0.0000] [0.0003, 0.0003] [0.0005, 0.0005]

20
SR

0.292 0.3062 0.3171
[0.2920, 0.2920] [0.3062, 0.3062] [0.3171, 0.3171]

E [α] 0 0.0005 0.0009
(%) [0.0000, 0.0000] [0.0005, 0.0005] [0.0009, 0.0009]
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2.6.2 Length of the Deferral Period

As the accuracy of longevity forecast depends on its horizon, the preference
for either contract may be sensitive to the age when the individual annuitizes.
In the baseline case, individuals are aged 25 when purchasing a DVA contract or
participating in the GSA. As retirement benefit payments commence at age 66,
the deferral period is 40 years. Here, we shorten the deferral period by consid-
ering the situations where individuals decide between the DVA and the GSA at
ages 45 and 65 instead (i.e., deferral periods of 20 years, and a year respectively).

When the deferral period is shorter, survival probability forecasts are more
accurate. Thus, we expect smaller differences in the average level and standard
deviation of benefits between contracts. However, this does not necessarily im-
ply that the CEL estimates would be closer to zero, because the time-preference
discounting, as governed by the subjective discount factor, β in Equation (2.2.2),
plays a larger role when retirement is imminent. Therefore, while the difference
between the benefits would be smaller, the effect in terms of utility would be
greater.

Table 2.7 reveals that for individuals with risk-aversion levels of γ = 5, 8,
the effect due to shorter time-discounting dominates the more accurate survival
probability forecast; the CEL estimates are negative and more economically sig-
nificant than those in the baseline case (Table 2.3). Thus, despite the smaller
threat that longevity risk poses due to more accurate survival probability fore-
cast, the imminence of retirement induces greater preference for the GSA.

The least risk-averse individual, γ = 2, also has a stronger preference for
the GSA than in the baseline case when the deferral period is 20 years, but this
observation reverses when the deferral period is only one year. Thus, apart from
when the individual is less risk-averse and purchases an immediate annuity, the
baseline results hold.



68 Longevity Risk: To Bear or to Insure

Table 2.7: Deferral Period: Certainty Equivalent Loading (CEL) (%)

This top panel displays the CEL, Equation (2.4.3), for individuals aged 45 at
annuitization, whereas the bottom panel corresponds to the CELs for individ-
uals aged 65 at that time. All other parameters are identical to those in the
baseline case. The 99% confidence intervals estimated by the Delta Method are
in parentheses.

20-year Deferral
θ γ

(%) 2 5 8

0
-0.380 -0.260 -0.150

[-0.386, -0.367] [-0.271, -0.252] [-0.161, -0.142]

20
-0.370 -0.270 -0.180

[-0.391, -0.350] [-0.293, -0.244] [-0.219, -0.140]

One-year Deferral
θ γ

(%) 2 5 8

0
-0.270 -0.230 -0.190

[-0.274, -0.266] [-0.234, -0.226] [-0.198, -0.190]

20
-0.260 -0.220 -0.190

[-0.262, -0.254] [-0.222, -0.213] [-0.192, -0.182]

2.6.3 Stock Market Risk Exposure

Both the GSA and the DVA contracts offer the AIR that maximizes indi-
viduals’ expected utility given a fixed proportion invested in the stock index,
θ, which we set to either 0% or 20%. We demonstrate that the implication of
the baseline case, where individuals marginally prefer the GSA, holds as long
as the allocation to the stock index corresponds to an optimal AIR with similar
default rates as those in the baseline case.

We consider four alternative exposures to the stock index. The first three are
constant allocations over the planning horizon: θ1 = 40%, θ2 = 60%, θ3 = λS

γσS
.

θ3 corresponds to the individual’s optimal exposure to stocks (Appendix 2.A).
For the least risk-averse individual (γ = 2), θ3 is 147.2%. The moderately risk-
averse individual (γ = 5) optimally invests 58.9% in the stock index whereas
the most risk-averse individual (γ = 8) optimally invests 36.8% in stocks.
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The fourth exposure that we consider, θ4 = {θ4, x}95
x=25, is an age-dependent

allocation that begins with around 90% allocation to stocks at age 25, and
gradually diminishes to a minimum of about 30% post-retirement, until the
maximum age (Figure 2.6.1, top panel). This glidepath allocation is based on
the 2014 Target-Date Fund industry average (Yang et al., 2016). A decreas-
ing exposure to stocks as the individual grows older is consistent with popular
financial advice (Viceira, 2001). In theory, when the investment opportunity
set is constant, horizon-dependent investment strategies are optimal in situa-
tions where, for instance, the individual receives labor income (Viceira, 2001;
Cocco et al., 2005), or where the individual’s risk aversion parameter is time
dependent (Steffensen, 2011). For all θs, the optimal AIR is set according to
Equation (2.2.5), and summarized in Table 2.8. For the age-dependent θ4, the
optimal AIR also varies over the individual’s life-span (Figure 2.6.1, bottom
panel).



70 Longevity Risk: To Bear or to Insure

Figure 2.6.1: Glidepath Allocation to the Stock Index, θ4 and the
Optimal AIR (%)

The top panel shows the age-dependent allocation to stocks, defined on the in-
dustry average of Target-Date Funds in the US in 2014 (Yang et al., 2016). The
bottom panel displays the corresponding age-dependent optimal AIR, Equation
(2.2.5), when the allocation to the stock index is θ4.
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For all θi, i = 1, 2, 3, 4, the optimal AIRs that correspond to these levels of
stock investments (Table 2.8) are higher than those in the baseline case (Table
2.1), where θ = 20%. Due to the inverse relationship between the default rate
and the AIR, the default rates are smaller than those in the baseline case. The
positive CEL estimates in Table 2.8 imply that when investing according to θi,
i = 1, 2, 3, 4, individuals prefer the GSA to a similar extent as in the baseline
case.
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Table 2.8: Exposure to Stock Market Risk: Certainty Equivalent
Loading (CEL) (%)

The table displays the the optimal AIR, h∗ (θi), Equation (2.2.5), the Cumula-
tive Default Rates, Equation (2.4.2), and the CEL, Equation (2.4.3), when the
underlying portfolio is θi invested in the stock index and 100−θi invested in the
money market account, for i = 1, 2, 3, 4. Estimates are calculated on 5 million
replications. All other parameters are identical to those in the baseline case.
The 99% confidence intervals estimated by the Delta Method are in parentheses.

θ1 = 40%
Statistics γ

(%) 2 5 8

h∗ (θ1) 4.59 5.06 4.72
Default Rates 0.0034 0.0020 0.0030

CEL
-0.340 -0.211 -0.080

[-0.344, -0.336] [-0.227, -0.195] [-0.218, 0.058]

θ2 = 60%
Statistics γ

(%) 2 5 8

h∗ (θ2) 5.08 5.24 4.26
Default Rates 0.0025 0.0021 0.0039

CEL
-0.344 -0.189 0.104

[-0.348, -0.340] [-0.222, -0.155] [-0.032, 0.240]

θ3 = λS

γσS
, optimal exposure

Statistics γ

(%) 2 5 8

θ3 147.2 58.9 36.8
h∗ (θ3) 0.0060 0.0052 0.0047

Default Rates 0.0003 0.0019 0.0026

CEL
-0.332 -0.186 -0.031

[-0.342, -0.321] [-0.235, -0.137] [-0.106, 0.043]

θ4 = glidepath
Statistics γ

(%) 2 5 8

θ4 Figure 2.6.1, top panel
h∗ (θ4) Figure 2.6.1, bottom panel

Default Rates 0.0052 0.0020 0.0022

CEL
-0.341 -0.307 -0.563

[-0.345, -0.336] [-0.390, -0.224] [-0.773, -0.352]
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2.6.4 Level of Equity Capital

Individuals’ preference for the DVA depends on the provider’s default rates
which are determined by the level of the provider’s capital buffer. We inves-
tigate the implication that the DVA provider’s default rates has on individual
preference by increasing the baseline case’s leverage ratio by one standard de-
viation, comparable to halving the baseline case equity capital to 5%.23

When the equity capital is 5% of the value of liabilities instead of 10%, the
default rates rise from 0.004-0.01% to 4.96-6.78% (Tables 2.2 and 2.9). The
CELs that accompany these high rates are economically significantly negative.
For example, when θ = 20%, the most risk averse individual (γ = 8) is essen-
tially indifferent between the DVA and GSA in the baseline case, but now values
the DVA much less, CEL = -24% (Table 2.9).

While the CELs in the baseline case are similar for θ = 0 and θ = 20%,
they are noticeably more negative for θ = 20% when the annuity provider
has higher leverage. The amplified preference for the GSA in the presence of
stock market risk is due to the resolution when a default occurs. When the
annuity provider defaults, individuals recover the provider’s residual wealth to
purchase an equally weighted portfolio of bonds that mature in every remaining
year of retirement until maximum age. This implies that individuals forgo
mortality credit. In the case when θ = 20%, individuals additionally relinquish
all potential reward from investing in the stock market. Relative to having
the underlying portfolio fully invested in the money market account, when only
mortality credit is lost, the consequence of default is more severe when the
underlying portfolio is invested in the stock market. Therefore, in Table 2.9,
the CELs when θ = 20% are considerably more negative than those when θ = 0.

23The standard deviation of US life insurers’ leverage ratio between 1998-2011 is 3.7%

whereas the average is around 90% (A.M. Best data from Koijen and Yogo, 2015). Using

the definition of Leverage Ratio ≡ 1 − Value of Equity/Value of Assets, the assumption that

Value of Assets = Premium Collected + Value of Equity, and that the Premium Collected is

normalized to 1, a 93.7% leverage ratio is equivalent to an equity capital of around 5%.
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Table 2.9: Lower Annuity Provider Buffer Capital: Default Rates (%)
and Certainty Equivalent Loading (CEL) (%)

This top panel displays the Cumulative Default Rates, Equation (2.4.2), of the
annuity provider, whereas the bottom panel shows the CEL, Equation (2.4.3),
when the level of equity capital is 5% of the present value of liabilities at the
date of contract sale. All other parameters are identical to those in the baseline
case. The 99% confidence intervals for the CEL are in parentheses.

Cumulative Default Rates (%)
θ γ

(%) 2 5 8

0 6.7826 6.4874 6.4092
20 5.6558 4.9730 4.9634

Certainty Equivalent Loading, CEL (%)
θ γ

(%) 2 5 8

0
-3.4 -5.5 -9.4

[-3.5, -3.4] [-5.6, -5.5] [-9.5, -9.3]

20
-5.6 -12.9 -24.0

[-5.7, -5.5] [-13.2, -12.7] [-24.3, -23.6]

When the annuity provider is more leveraged, the increased occurrence of
defaults adversely affects the equityholders’ excess return and its standard de-
viation, and makes exposure to longevity risk even less attractive for both θ = 0
and θ = 20%. When θ = 0, excess returns on the equityholders’ investment
is negative (Table 2.10, top panel). When the underlying portfolio is θ = 20%
invested in the stock market, higher leverage yields an excess return of 1.3%,
lower than the 1.44% excess return of the baseline case (Tables 2.10 and 2.4,
bottom panels). Due to the higher frequency of defaults, the standard deviation
of excess return is around twice that of the baseline case (7.6% vs. 3.9% for
θ = 0; 9% vs. 5% for θ = 20%; Tables 2.4 and 2.10). As a result, the Sharpe
ratio is halved whereas the Jensen’s alphas are more negative than those in the
baseline case.
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Table 2.10: Lower Annuity Provider Buffer Capital: Equityholders’
Investment Performance Statistics

This table displays the equityholders’ mean annualized return in excess of the
risk-free rate of return (E

[
R(Aexs)

]
, %), standard deviation of annualized excess

return (σ(Aexs) , %), the Sharpe ratio (SR) and Jensen’s alpha (E [α], %), Equa-
tion (2.5.1), of capital provision to the DVA provider, when the level of equity
capital is 5% of the present value of liabilities at the date of contract sale. The
underlying portfolio is either invested in the money market account only (θ = 0,
top panel), or is 20% invested in the risky stock index, and 80% in the money
market account (θ = 20%, bottom panel). The 99% confidence intervals are in
parentheses.

θ = 0

Statistic
γ

2 5 8

R(Aexs) -0.085 -0.085 -0.085
(%) [-0.089, -0.082] [-0.088, -0.082] [-0.088, -0.082]

σ(Aexs) 7.59 7.56 7.55
(%) [7.57, 7.61] [7.54, 7.58] [7.53, 7.57]

SR
-0.011 -0.011 -0.011

[-0.015, -0.008] [-0.015, -0.008] [-0.0145, -0.008]
E [α] -0.0009 -0.0009 -0.0009
(%) [-0.0009, -0.0009] [-0.0009, -0.0009] [-0.0009, -0.0009]

θ = 20%

Statistic
γ

2 5 8

R(Aexs) 1.28 1.29 1.29
(%) [1.28, 1.28] [1.29, 1.30] [1.29, 1.30]

σ(Aexs) 9.45 9.22 9.22
(%) [9.42, 9.47] [9.20, 9.25] [9.19, 9.24]

SR
0.136 0.1401 0.140

[0.132, 0.139] [0.137, 0.143] [0.137, 0.143]
E [α] -0.0009 -0.0009 -0.0009
(%) [-0.0009, -0.0009] [-0.0009, -0.0009] [-0.0009, -0.0009]
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2.6.5 Longevity Risk

We investigate the effect of longevity risk on individual preference between
the GSA and DVA via three other scenarios. We introduce parameter uncer-
tainty surrounding the drift of the longevity time trend, increase the standard
deviation of the longevity time trend error terms, and adopt the Cairns et al.
(2006b) longevity model in replacement of the Lee and Carter (1992) model.

2.6.5.1 Drift Parameter Uncertainty

One way to depict the challenge of accurately estimating future survival
probabilities is to introduce parameter uncertainty on the estimate of the drift
term, c in Equation (2.3.1).

The maximum likelihood estimate for the drift term of the longevity model
is normally distributed, ĉ ∼ N

(
c, σ2

c

)
. Based on the sample used for the model

calibration, we obtain ĉ = −1.0689 and σ̂c=0.0521. Without parameter un-
certainty, the best m-year-ahead forecast at time t is k̂t+m = mĉ + kt. To
incorporate parameter uncertainty, we draw cl from the distribution N

(
ĉ, σ̂2

c

)

for the lth simulation replication. The time trend governing longevity is thus
kt+m, l = mcl + kt, l +

∑m
i=1 ϵδ, l, ϵδ, l ∼ N

(
0, σ̂2

δ

)
, while the best m-year-ahead

forecast relies on ĉ as cl is unobserved, i.e., k̂t+m, l = mĉ + kt, l.

In Figure 2.6.2, we plot the mean, 5th and 95th percentiles of the GSA funding
ratio prior to entitlement adjustments, with and without parameter uncertainty
(Figure 2.6.2). The GSA funding ratio reflects the entitlement adjustments.
For instance, if the funding ratio is 1.02, then the GSA offers a benefit that
is 2% higher than the entitlement in that year. Figure 2.6.2 suggests that
parameter uncertainty has a faint effect on the benefits. The average entitlement
adjustments are comparable to when the drift term is known with certainty. The
only noticeable difference is that with parameter uncertainty, the 5th and 95th

percentiles are slightly farther apart in the final years of retirement.
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Figure 2.6.2: Drift Parameter Uncertainty: GSA Funding Ratio

This figure presents the mean, 5th and 95th percentiles of the funding ratio of a
GSA prior to entitlement adjustments, for when longevity is modeled according
to Lee and Carter (1992). When there is no parameter uncertainty surrounding
the drift term of the longevity time trend, c = ĉ. When there is parameter
uncertainty, c ∼ N

(
ĉ, σ̂2

c

)
. The GSA is composed of individuals with a risk-

aversion level of γ = 5 and the underlying portfolio is fully invested in the money
market account. All other parameters are identical to those in the baseline case.
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When there is uncertainty around the drift parameter, the DVA is disadvan-
taged by a higher default probability. However, the GSA’s appeal also dimin-
ishes as entitlement adjustments have a wider variation, especially toward the
end of retirement (Figure 2.6.2). Neither of these drawbacks is sufficiently deci-
sive to sway individual preferences. Therefore, the CELs deviate only marginally
from those in the baseline case (Table 2.11).
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Table 2.11: Drift Parameter Uncertainty: Cumulative Default Rates
(%) and Certainty Equivalent Loading (CEL) (%)

The top panel presents the Cumulative Default Rates, Equation (2.4.2), of the
annuity provider when there is parameter uncertainty surrounding the drift
term of the longevity model’s time trend. The bottom panel displays the CEL,
Equation (2.4.3). All other parameters are identical to those in the baseline case.
The 99% confidence intervals estimated by the Delta Method are in parentheses.

Cumulative Default Rates (%)
θ γ

(%) 2 5 8

0 0.0174 0.0144 0.0140
20 0.0066 0.0030 0.0030

Certainty Equivalent Loading, CEL (%)
θ γ

(%) 2 5 8

0
-0.351 -0.193 -0.045

[-0.362, -0.339] [-0.205, -0.182] [-0.056, -0.033]

20
-0.345 -0.194 -0.046

[-0.356, -0.333] [-0.210, -0.178] [-0.089, -0.004]

2.6.5.2 Standard Deviation of the Time Trend Errors

We consider another prospect of longevity evolution with the longevity time
trend errors that has twice the standard deviation estimated from historical mor-
tality data, i.e., σδ of Equation (2.3.1) is replaced by 2σδ = 3.488. At a higher
time trend standard deviation, the survival probabilities not only become more
variable, but their conditional probabilities also decline (Denuit, 2009). Higher
variability of survival outcomes is unfavorable both to the GSA participants,
who bear larger variations in benefits, and to the DVA contractholders, due
to the greater probability of default. On average, the entitlement adjustments
under increased longevity risk are positive and higher than those in the baseline
case, but there is also a wider variation in entitlement adjustments that rises in
age (Figure 2.6.3).
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Figure 2.6.3: Doubled Longevity Time Trend Error Standard Devia-
tion: GSA Funding Ratio

This figure presents the mean, 5th and 95th percentiles of the funding ratio of a
GSA prior to entitlement adjustments, for when longevity is modeled according
to Lee and Carter (1992). Parameters for the longevity model are either those
in Figure 2.3.1 (σδ), or with the standard errors of the time trend error terms
doubled (2σδ). Individuals have a risk-aversion level of γ = 5 and the underlying
portfolio is fully invested in the money market account. All other parameters
are identical to those in the baseline case.
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The default rates are considerably higher when the longevity time trend
standard deviation is doubled (i.e., 3.39-5.17%, Table 2.12). Consequently, in-
dividuals prefer the GSA to a large degree (Table 2.13, top panel).
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Table 2.12: Doubled Longevity Time Trend Error Standard Deviation:
Cumulative Default Rates (%)

This table displays the Cumulative Default Rates, Equation (2.4.2), of the an-
nuity provider when the standard deviation to the longevity model time trend
error term is doubled. All other parameters are identical to those in the baseline
case.

θ γ

(%) 2 5 8

0 5.1650 4.8704 4.8008
20 4.0596 3.4066 3.3928

Two factors govern individual preference. The first is the effect on the level
and standard deviation of benefits; the second is the annuity provider’s higher
default risk due to less accurate longevity forecasts. To separately identify the
two effects, we eliminate default risk by assuming a sufficiently high level of
equity capital. In the absence of default, the least risk-averse individual (i.e.,
γ = 2) marginally prefers the GSA, to a similar extent as she did in the base-
line case (Table 2.13, middle panel). Thus, the least risk-averse individual’s
preference is invariant to the size of the standard deviation of the error terms,
as long as the provider’s default risk is unaffected. As for the more risk-averse
individuals (i.e., γ = 5, 8), they prefer the DVA with no default risk and are
willing to offer between 0.2% and 3.2% in loading for it. Thus, a higher stan-
dard deviation to the longevity time trend errors transpires to more volatile
GSA benefit payment, making the GSA less appealing to individuals overall.
However, individuals who are at least moderately risk-averse would prefer the
DVA only if the annuity provider’s default risk were eliminated.

Despite the seemingly high loading that the annuity provider could charge on
a DVA contract with no default risk, the loading is insufficient to yield equity-
holders a Sharpe ratio superior to the 0.45 ratio of investment without longevity
risk exposure (Table 2.13, bottom panel). The Jensen’s alpha is positive but
economically insignificant. Therefore, longevity risk exposure does not improve
the equityholders’ risk-return tradeoff.
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Table 2.13: Doubled Longevity Time Trend Error Standard Deviation:
Certainty Equivalent Loading (CEL) (%) and Investment
Performance Statistics

The top panel presents the CEL, Equation (2.4.3), when the standard deviation
of the longevity time trend error terms is doubled, and the equity capital is
10% of the value of liabilities on the contract’s date of sale. The middle panel
displays the CEL in the same setting as in the top panel, but with the equity
capital raised sufficiently to eliminate default risk. The bottom panel shows the
Sharpe ratio (SR) and Jensen’s alpha (α), Equation (2.5.1), when the loading is
set at the CEL estimates in the middle panel. All other parameters are identical
to those in the baseline case. The 99% confidence intervals are in parentheses.

CEL (%): With Default Risk
θ γ

(%) 2 5 8

0
-2.5 -3.2 -5.0

[-2.5, -2.5] [-3.2, -3.1] [-5.1, -4.9]

20
-3.9 -7.7 -15.9

[-3.9, -3.8] [-7.8, -7.5] [-16.4, -15.5]

CEL (%): No Default Risk
θ γ

(%) 2 5 8

0
-0.4 0.2 0.7

[-0.4, -0.4] [0.1, 0.2] [0.7, 0.7]

20
-0.3 3.2 3.2

[-0.4, -0.3] [2.1, 4.2] [3.1, 3.4]

Sharpe Ratio and Jensen’s Alpha: No Default Risk, Loading = CEL
θ

Statistic
γ

(%) 2 5 8

0
SR

0.0046 0.0164 0.0263
[0.0009, 0.0082] [0.0127, 0.0200] [0.0226, 0.0299]

E [α] 0 0.0001 0.0002
(%) [0.0000, 0.0000] [0.0001, 0.0001] [0.0002, 0.0002]

20
SR

0.4243 0.4397 0.4397
[0.4243, 0.4243] [0.4397, 0.4397] [0.4397, 0.4397]

E [α] 0.0001 0.0005 0.0005
(%) [0.0001, 0.0001] [0.0005, 0.0005] [0.0005, 0.0005]
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2.6.5.3 Alternate Longevity Model

We next explore the choice of the longevity model by replacing the
Lee and Carter (1992) model with the Cairns et al. (2006b) model, which pro-
duces a wider range of survival probabilities at old age. We calibrate the
Cairns et al. (2006b) model over the same sample of mortality data as that
in Section 2.3.2. Figure 2.6.4 presents the fan plot of the simulated fraction of
living individuals under the Cairns et al. (2006b) model. The maximum range
of the fraction of 25-year-olds still alive at older ages is 45% (i.e., at age 91),
50% more than the maximum range under the Lee and Carter (1992) model
(i.e., 30% interval at age 88; Figure 2.3.2). This wider range translates into
greater variability in benefits for the GSA, and higher default rates for the DVA
provider.

Figure 2.6.4: Cairns et al. (2006b) Mortality Model: Fan Plot

This figure presents the fan plot of the simulated fraction of living individuals
(i.e., the population of 25-year-olds is normalized to one) over 10,000 replications
when longevity is modeled according to the Cairns et al. (2006b) model. The
model is calibrated on US female death counts from 1980 to 2013 taken from
the Human Mortality Database. Darker areas indicate higher probability mass.
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With either the Lee and Carter (1992) or the Cairns et al. (2006b) model,
the rise in GSA benefits with age is accompanied by more uncertainty surround-
ing the benefits. However, the Cairns et al. (2006b) model produces greater un-
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certainty as the individual ages, as seen by comparing the top panels in Figures
2.3.3 and 2.6.5. This generates greater individual preference for the DVA under
the Cairns et al. (2006b) model.
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Figure 2.6.5: Cairns et al. (2006b) Mortality Model: Box Plots of
GSA and DVA Benefits

The figure presents the box plots of benefits for the GSA (top panel) and the
DVA (bottom panel), for an individual with a risk aversion level of γ = 5, at
ages 66, 80 and 95. The underlying portfolio is invested in the money market
account only. The line in the middle of the box is the median, while the edges
of the box represent the 25th and 75th percentiles. The height of the box is the
interquartile range, i.e., the interval between the 25th and 75th percentiles. The
“+” symbols represent data points 1.5 times larger than the interquartile range.
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For a fixed level of equity capital, the Cairns et al. (2006b) model yields
higher default rates because of the heightened uncertainty surrounding old age
survival. If we maintain the baseline case’s 90% leverage ratio, the default
rates under the Cairns et al. (2006b) model are between 0.48% to 2.21% (Ta-
ble 2.14), substantially higher than the at-most 0.01% default rates when the
Lee and Carter (1992) model is adopted (Table 2.2). Consequent to more de-
faults, individuals have a lower preference for the DVA (Table 2.14, bottom
panel), as the CEL estimates are more negative than those in the baseline
case (Table 2.3). Therefore, individuals prefer the DVA contract under the
Cairns et al. (2006b) model only if the associated default risk is curtailed. Re-
gardless of whether equityholders provide enough capital to eliminate default
risk, the Sharpe ratio of equity provision is lower than the ratio of abstaining
from longevity risk exposure. The Jensen’s alpha of equity provision is positive
but economically insignificant.

Table 2.14: Cairns et al. (2006b) Mortality Model with Default: Cu-
mulative Default Rates (%) and CEL (%)

The top panel presents the Cumulative Default Rates, Equation (2.4.2), whereas
the bottom panel displays the CEL, Equation (2.4.3), when life expectancy
follows the Cairns et al. (2006b) model, calibrated to the same sample as the
Lee and Carter (1992) model. All other parameters are identical to those in the
baseline case. The 99% confidence intervals are in parentheses.

Cumulative Default Rates (%)
θ γ

(%) 2 5 8

0 2.2120 1.8082 1.7120
20 0.9676 0.4808 0.4756

CEL (%)
θ γ

(%) 2 5 8

0
-0.950 -0.660 -0.975

[-0.970, -0.930] [-0.690, -0.630] [-1.025, -0.924]

20
-0.877 -0.503 -1.515

[-0.906, -0.847] [-0.571, -0.436] [-1.763, -1.268]

Additionally, the choice of the longevity model underlies the inference of
Maurer et al. (2013). While we find that individuals marginally prefer the GSA,



CHAPTER 2 85

Maurer et al. (2013) observe the opposite (positive CEL for the contract indexed
to longevity; Table 7 of Maurer et al., 2013). When we assume that no default
occurs, as do Maurer et al. (2013), we are able to reconcile our results to theirs.
For instance, individuals who are moderately risk-averse to risk-averse, γ = 5
and 8, prefer the DVA; Table 2.15, top panel. The most risk-averse individual
is willing to pay as much as 1% in loading to shed longevity risk. Despite
that, when the annuity provider sets the loading to be equal to the CEL, the
accompanying Sharpe ratio remains inferior to the Sharpe ratio of investing in
only the financial market, i.e., 0.45 when θ = 20%, whereas the Jensen’s alpha is
positive but economically insignificant (Table 2.15, bottom panel). Therefore,
while individual preference is sensitive to the choice of the longevity model,
the extent that individuals are willing to pay to insure against longevity risk is
insufficient to entice equityholders to gain longevity risk exposure.
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Table 2.15: Cairns et al. (2006b) Mortality Model with No Default:
Certainty Equivalent Loading (CEL) (%) and Investment
Performance Statistics

The top panel presents the CEL, Equation (2.4.3), when life expectancy fol-
lows the Cairns et al. (2006b) model, calibrated to the same sample as the
Lee and Carter (1992) model. The bottom panel shows the Sharpe ratio (SR)
and Jensen’s alpha (α), Equation (2.5.1), when the loading is set at the CEL
estimates in the top panel. Equity capital is sufficiently high such that no de-
fault occurs. All other parameters are identical to those in the baseline case.
The 99% confidence intervals are in parentheses.

CEL (%)
θ γ

(%) 2 5 8

0
-0.089 0.528 1.019

[-0.099, -0.079] [0.519, 0.537] [1.011, 1.028]

20
-0.092 0.461 0.874

[-0.101, -0.082] [0.448, 0.475] [0.835, 0.913]

Sharpe Ratio and Jensen’s Alpha: No Default Risk, Loading = CEL
θ

Statistic
γ

(%) 2 5 8

0
SR

0.0206 0.0481 0.0701
[0.0170, 0.0242] [0.0444, 0.0517] [0.0665, 0.0738]

E [α] 0.0001 0.0002 0.0002
(%) [0.0001, 0.0001] [0.0002, 0.0002] [0.0002, 0.0002]

20
SR

0.4337 0.4362 0.4379
[0.4337, 0.4337] [0.4362, 0.4362] [0.4379, 0.4379]

E [α] 0.0001 0.0001 0.0002
(%) [0.0001, 0.0001] [0.0001, 0.0001] [0.0002, 0.0002]

2.7 Conclusion

We investigate longevity risk management in retirement planning in the pres-
ence of two alternatives: individuals participate in a collective scheme that ad-
justs retirement income according to longevity evolution, or purchase a variable
annuity contract offered by an equityholder-backed annuity provider. Our model
features the perspective of not only the individuals, who evaluate their welfare
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in retirement, but also of the equityholders, who weigh their risk-return tradeoff
from longevity risk exposure.

Due to the entitlement adjustments arising from errors in survival probabil-
ity forecasts, the collective scheme provides more volatile benefits than those of
an annuity contract. However, the collective scheme also offers a slightly higher
average level of benefits, because for errors of the same magnitude, over- and
under-estimating the log central death rates produce asymmetric effects.

The annuity contract provider relies on limited equity capital to subsume
forecasting errors, and so is subject to default risk. Although the annuity con-
tract shields individuals from downward entitlement adjustments up to a limit,
it deprives individuals of any upward adjustments, as these gains belong to the
equityholders.

We find that individuals marginally prefer the collective scheme over the an-
nuity contract priced at its best estimate. This implies that the annuity provider
is unable to charge a positive loading on the contract, subsequently failing to
compensate its equityholders who bear longevity risk. Therefore, when individ-
uals have the choice to form a collective scheme, the annuity provider who has
no advantage at managing longevity risk, and who has to fully hedge financial
market risk would not exist in equilibrium. Our finding is robust to numerous
individual characteristics, stock market risk exposure, and heightened uncer-
tainty surrounding life expectancy.

The results advocate for collective mechanisms in pension provision, which
exist in a handful of countries (e.g., Collective Defined Contribution in the
Netherlands, Target Benefit Plans in Canada). The pressing issue of population
aging, and the gradual maturation of the longevity risk derivatives market, is
likely to spur reform. For example, the US Chamber of Commerce (2016) rec-
ommends new plan designs to enhance the private retirement system. Collective
schemes may serve as a benchmark that the annuity contract has to match or
surpass with respect to the individuals’ expected utility.

A limitation of our work is the exclusion of channels that may reduce the in-
surer’s effective longevity exposure, such as synergies in product offering (e.g.,
natural hedging of longevity risk via the sale of annuities and life insurance
contracts; Wong et al., 2017), access to reinsurance (Baione et al., 2016) and
shadow insurance (Koijen and Yogo, 2016b). There are also alternative res-
olution mechanisms in the case of default, and other factors that may influ-



88 Longevity Risk: To Bear or to Insure

ence annuitization decisions, such as bequest motives, medical expenses, so-
cial security, uninsurable income, etc. (Lockwood, 2012; Pashchenko, 2013;
Peijnenburg et al., 2017; Ai et al., 2016; Yogo, 2016). Examining these features
in future research would enrich our knowledge of retirement planning.



CHAPTER 2 89

Appendix to Chapter 2

2.A Rationale of the Contract Definition

The DVA and GSA contracts are not only modeled along the variable annu-
ity contracts studied in the literature (Koijen et al., 2011; Maurer et al., 2013),
but are also relatable to an individual’s optimal consumption and investment.

The problem of optimal consumption and investment is composed of two
separate parts: the allocation of initial wealth over each retirement year, and
the investment strategy. Aase (2015) shows that for an expected-CRRA-utility-
maximizing individual facing mortality and stock market risks, the optimal al-
location of initial wealth decays geometrically in the retirement horizon. The
AIR in our setting represents precisely this rate of decay.

When individuals are subject to longevity risk, its existence would not change
the optimal wealth and asset allocation; what would complicate the solution is
the ability to react to longevity evolution (Huang et al., 2012). We, however,
assume that the contract’s parameters are deterministic (i.e., fixed in the year
when it is sold, and the incorporation of new information thereafter is prohib-
ited). Therefore, by an appropriate choice of the AIR, h∗, the contract described
by Equations (2.2.3) and (2.2.4) coincides with the optimal decumulation path
of the individual.

We next solve the utility maximization problem, (2.A.1), to obtain the op-
timal AIR and investment strategy for a contract defined by Equations (2.2.3)
and (2.2.4).

At time t0, the individual purchases the maximum number of variable annu-
ity contracts affordable with a lump sum capital normalized to one. The annuity
contract commences benefit payment in year tR, until the year T , conditional on
the individual’s survival. In the financial market setting as described in Section
2.2.1, with a deterministic fraction of wealth θ = {θt}

T
t=t0

invested in the risky
stock index, and 1 − θ invested in the money market account, the value of the
reference portfolio evolves according to dWt/Wt = (r + θtλσS) dt + θtσS dZS, t.
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max
{θt, h (t, θt)}

T
t=tR

Et0
[U (Ξ)] (2.A.1)

= Et0

[
ˆ T

tR

e−β(t−t0) Ξ1−γ
t

1 − γ

(
Πt

s=t0 1p(s)
x+(s−t0)

)
dt

]

Ξt =

⎧
⎨

⎩

1
A(h) exp (−h (t, θt) (t − tR)) Wt

Wt0

0

if alive in year t

otherwise

A (h) =
ˆ T

tR

exp (−h (t, θt) (t − tR)) ×

Et0

[(
Πt

s=t0 1p(s)
x+(s−t0)

)]
dt

h (t, θt) = AIR

β = subjective discount factor

γ = risk aversion parameter

Wt = value of the reference portfolio with

the investment policy θ

Et0

[
Πt

s=t0 1p(s)
x+(s−t0)

]
= t−t0

p(t0)
x

A (h) is the cost per unit of a zero-loading contract. It is straightforward to
verify that the contract has a present expected value of one for any h ∈ RT −tR ,
and thus satisfies the budget constraint. Given any θ, the first order condition,
∂Et0

[U (Ξ)] /∂h = 0 yields the optimal AIR, Equation (2.A.2).

h∗ (t, θt) = r +
β − r

γ
−

1 − γ

γ
θtσS

(
λS −

γθtσS

2

)
(2.A.2)

r = constant short rate

β = subjective discount factor

γ = risk aversion parameter

θt = fraction of wealth allocated to the stock index

at time t, tR ≤ t ≤ T

σS = standard deviation governing the stock index’s dynamics

λS = instantaneous Sharpe ratio of the stock index

Equation (2.A.2) is composed of the risk-free rate, the difference between the
subjective discount factor and the risk-free rate, adjusted by the risk aversion
parameter, and a term concerning the exposure to the stock index, weighted by
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the risk aversion level.

If the returns on the investment were constant at r (e.g., either θ = 0 or
σS = 0), for any given level of risk aversion, γ, the shape of the optimal con-
sumption path depends on the relative magnitude of β and r. An individual who
discounts future consumption at a higher rate than the constant interest rate
(i.e., β > r, an impatient individual) prefers a downward sloping consumption
path whereas a more patient person (i.e., β < r) optimally chooses an upward
sloping path. When θ ̸= 0 and σS ̸= 0, then the risk aversion level, the stan-
dard deviation and the market price of stocks also have a role in determining
the optimal consumption path.

The first-order condition corresponding to the allocation to the stock index,
∂Et0

[U (Ξ)] /∂θ = 0, implies the optimal allocation to the risky asset:

θ∗ =
λS

γσS
(2.A.3)

The optimal allocation to the stock index, θ∗, is independent of time and
wealth, and is identical to the optimal investment policy of Merton (1969).

The variable annuity contract provides the optimal decumulation path when
the AIR is set to h∗ (t, θ∗

t ). By prohibiting the incorporation of new information
into the contract definition after its date of sale (i.e., enforcing deterministic,
but possibly time-varying contract parameters), longevity risk does not influ-
ence the optimal AIR and the optimal portfolio choice.

The conception of the GSA as a collective justifies the assumption that it
prioritizes individual welfare (i.e., maximizes individuals’ expected utility in
retirement). Therefore, the GSA offers an AIR that is in the best interest
of the individuals, without conflict among its stakeholders. As for the annuity
provider, such contracts are also conceivable. For instance, Froot (2007) suggests
that insurers should shed all liquid risks for which they have no comparative
advantage to outperform (e.g., financial market risk), and devote their entire
risk budget to insurance risks (e.g., longevity risk). The selling of variable
annuities without any financial guarantee achieves precisely this goal. Besides,
Gatzert et al. (2012) demonstrate that if an insurance company sets contract
parameters for a participating life insurance contract such that they maximize
the contract’s value (e.g., expected utility) to the individual, the individual may
be willing to pay more for the contract. Therefore, the provision of contracts
defined according to Equations (2.2.3) and (2.2.4) under either a cooperative
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setup or by a for-profit entity is plausible.

2.B Definition of the Book Value of Liabilities

Suppose that the DVA provider or the GSA administrator issues contract(s)
to a cohort who is aged x at time t0, promising entitlements of ΞK(h∗, F, t, x),
K ∈ {DV A, GSA}, in every year t, tR ≤ t ≤ T , conditional on the individual’s
survival. The estimate of the entity’s book value of liabilities at time t, t0 ≤

t ≤ T , is:

Lt ≡ΞK(h∗, F, t, x)
ˆ T

s=max{tR, t}
exp (−h∗ (s, θ) (s − t)) ×

s−tp
(t)
x+t−t0

ds (2.B.1)

s−tp
(t)
x+t−t0

= conditional probability in year t that a living individual

of age x + t lives for at least s − t more years

h∗ (t, θ) = Optimal AIR, Equation (2.2.5)

ΞK(h∗, F, t, x) = benefit at time t for contract K ∈ {GSA, DV A}

=

{
Equation (2.2.6)

Equation (2.2.7)

if K = DV A

if K = GSA

2.B.1 Illustration of the Case with No Risk

To motivate the definition of Equation (2.B.1), let us consider a three-period
case (t = t0, t1, t2) in the absence of stock market and longevity risks. Assume
that the individual buys exactly one unit of the retirement contract at retire-
ment in year t0, lives with certainty to collect the benefits in year t1 = t0 + 1,
and dies with certainty before the year t2 = t1 + 1. Suppose that the reference
portfolio is fully invested in the money market account, earning an interest rate
that is constant at 2%. Furthermore, we adopt a constant AIR, h = 3%, and
zero contract loading, F = 0. As there is no uncertainty in this example, Equa-
tion (2.B.1) should yield precisely the value of liabilities at time t.

By definition of the DVA contract, there are two payments to be made: one
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in the year t0 and another in the year t1. The payment in t0 is:

Ξ (h, 0, t0, x) = 1 ×
W Ref

t0

W Ref
t0

e−h×(t0−t0)

= 1

The second payment, in present value at time t1 is:

Ξ(h, 0, t1, x) = 1 ×
W Ref

t1

W Ref
t0

e−h×(t1−t0)

=
W Ref

t0
e0.02

W Ref
t0

e−h

= e−h+0.02

= e−0.01 (2.B.2)

Discounting Equation (2.B.2) by the constant interest rate, we obtain the
present value at time t0, of the payment due at time t1:

P Vt0
[Ξ(h, 0, t1, x)] = Ξ(h, 0, t1, x)e−0.02×(t1−t0)

= e−0.01−0.02

= e−0.03

The present value of liabilities at time t0 is

Ξ (h, 0, t0, x) + P Vt0
[Ξ(h, 0, t1, x)] = 1 + e−0.03 (2.B.3)

It remains to show that Equation (2.B.1) yields Equation (2.B.3):

Lt = Ξ(h, 0, t1, x) ×
(

e−h×0
0p(t)

t + e−h×1
1p(t)

t

)

= 1 ×
(
1 + e−h

)

= 1 + e−0.03

2.B.2 Illustration of the General Case

We price the liabilities of the pension provision entity by constructing a repli-
cating portfolio for its contractual obligation. We demonstrate that the price of
the portfolio that replicates all the cash flows of an annuity contract is Equation
(2.B.1).
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In the setting with longevity but no mortality risk, we consider the liability
associated with a contractholder who purchased 1/A unit(s) of contracts when
aged x in the year t0 = 0, retired in the year t = tR, while being subject to
unknown survival probabilities throughout the horizon, until the maximum age
in the year t = T , when death is certain.

The pension provision entity is contractually obliged to make annual benefit
payments from the individual’s retirement in the year t = tR until he or she
attains maximum age in the year t = T , conditional on her survival. Let W Ref

t

be the price at time t of the reference portfolio to which the benefits are indexed,
t ∈ [t0, T ].

Absent longevity risk, by purchasing the sum of all the units of the reference
portfolio in Column (2) of Table 2.16 at time t, the annuity provider would be
able to fulfill its contractual obligation with certainty. For instance, to meet the
payment at time tR, the annuity provider purchases 1/

(
AW Ref

t0

)
e−h×0

tR−tp
(t0)
x

units of the reference portfolio at time t0. When longevity risk is absent, the
conditional expectation, made at time t0, of the individual’s survival in year tR

coincides with the realized survival probability, i.e., tR−tp
(t0)
x = tR−tpx. The

value of this portfolio will evolve along with the financial market, to be worth

exactly 1
A

W Ref
tR

W Ref
t0

× ΠtR−1
l=t0 l−t0

p(l)
x+l−t0

, the payment due at time tR. By the same

reasoning for the rest of the entries in Column (2), Equation (2.B.4) is thus the
total units of the reference portfolio to be held at any time t, such that the
pension provision entity fully hedges financial market risk.

ˆ T

s=max{tR, t}

1
A

1

W Ref
t0

e−h(s−tR)
s−tp

(t)
x+t−t0

ds (2.B.4)

Equation (2.B.4) is an estimate of the liabilities at time t, in terms of the
units of reference portfolio. Each unit is worth W Ref

t at time t. To obtain the
value of liabilities, we take the portfolio’s corresponding value:

W Ref
t ×

ˆ T

s=max{tR, t}

1
A

1

W Ref
t0

e−h(s−tR)
s−tp

(t)
x+t−t0

ds (2.B.5)

As Ξ(h, F, t, x) = W Ref
t /

(
AW Ref

t0

)
e−h(t−tR) by definition, we can substi-

tute it into Equation (2.B.5) to get
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Table 2.16: Future Cash Flow and the Best Replicating Portfolio of
the Pension Provision Entity

This table shows the value of entitlements due in each year of retirement until maximum age (column (1)), and the
corresponding Best Replicating Portfolio in units of the reference portfolio (column (2)). The Best Replicating Portfolio is

the conditional expectation of the benefits in future value.

Time
Benefits in Future Value

Best Replicating Portfolio (constructed at time t)

Units of the Reference Portfolio to purchase at time t

(1) (2)

tR
1
A

W Ref
tR

W Ref
t0

e−h(tR−tR) ×ΠtR−1
l=t0 1px+l−t0

1
A

1
W Ref

t0

e−h(tR−tR)
tR−tp

(t)
x+t−t0

tR + 1 1
A

W Ref
tR+1

W Ref
t0

e−h(tR+1−tR) ×ΠtR

l=t0 1px+l−t0

1
A

1
W Ref

t0

e−h(tR+1−tR)
tR+1−tp

(t)
x+t−t0

tR + 2 1
A

W Ref
tR+2

W Ref
t0

e−h(tR+2−tR) ×ΠtR+1
l=t0 1px+l−t0

1
A

1
W Ref

t0

e−h(tR+2−tR)
tR+2−tp

(t)
x+t−t0

...
...

...

T 1
A

W Ref
T

W Ref
t0

e−h×(T −tR) ×ΠT −1
l=t0 1px+l−t0

1
A

1
W Ref

t0

e−h(T −tR)
T −tp

(t)
x+t−t0
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Lt := Ξ(h∗, F, t, x)
ˆ T

s=max{tR, t}
exp (−h∗ (s, θ) (s − t)) ×

s−tp
(t)
x+t−t0

ds (2.B.6)

Equation (2.B.6) is identical to Equation (2.B.1).

When there is longevity risk, the Best Replicating Portfolio is identical to
column (2) of Table 2.16, but this best estimate may not necessarily provide the
exact cash flow to meet the annuity provider’s contractual obligations because
the realized survival probability may deviate from its conditional expectation
made at time t, which then triggers the provider’s default.

2.C Delta Method

We apply the Delta Method (Theorem 5.5.4 of Casella and Berger, 2002) to
estimate the variance of the CELs, which is used to compute their confidence
intervals.

Consider the function g (x, y) = (x/y)1/(γ−1) −1. By the definition of Equa-
tion (2.4.3), CEL = g

(
U
(
ΞGSA

)
, U
(
ΞDV A

))
. We estimate the CEL by plug-

ging the expected utility into g (.), g
(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDV A

)])
. Theo-

rem 5.5.24 of Casella and Berger (2002) suggests the following estimate for its
variance:

Var
{

g
(
E0

[
U
(
ΞGSA

)]
, = g2

xVar
(
U
(
ΞGSA

))
+ g2

yVar
(
U
(
ΞDV A

))
+

E0

[
U
(
ΞDV A

)])}
2gxgycov

(
U
(
ΞGSA

)
, U
(
ΞDV A

))
(2.C.1)

gx = gx

(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDV A

)])

gy = gy

(
E0

[
U
(
ΞGSA

)]
, E0

[
U
(
ΞDV A

)])

gx and gy denote the first partial derivative of g (.) with respect to x and to y

respectively. Var
(
U
(
ΞK
))

for K ∈ {GSA, DV A} and cov
(
U
(
ΞGSA

)
, U
(
ΞDV A

))

are estimated by the sample variance and sample covariance.



CHAPTER 3

Variable Annuity and Interest Rate Risk

3.1 Introduction

The intertemporal consumption and investment problem in a complete mar-
ket seeks a consumption stream that maximizes an individual’s expected utility,
through the support of an investment policy that hedges time-variation of the
opportunity set. In a frictionless financial market, an underwriter of insurance
contracts that cede financial risks to policyholders (e.g., unit-linked contracts;
GDV, 2016) could in principle, embed this knowledge in the contract design at
no cost. This is because the underwriter merely executes the investment pol-
icy such that the individual receives the optimal income stream with respect
to financial risks. This paper shows that an exemplar of such a contract–the
variable annuity–precludes the optimal hedge of interest rate risk.

Annuities are contracts that specify periodic payments from the underwriter
to the policyholder. A nominal annuity provides a level payment stream deter-
mined on the prevailing term structure of interest rate, hence the policyholder
is vulnerable to interest rate risk only at the annuitization date. In contrast,
a variable annuity (VA) offers payments that are determined on a wider set of
financial assets, exposing the policyholder to other financial market risks in ad-
dition to interest rate risk, at all payment dates.1 The objective of maximizing

This chapter is based on Boon and Werker (2017).
1We consider a VA without any guarantees on investment returns or death benefits.
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the policyholder’s expected utility from consuming the VA’s payment is analo-
gous to that of the intertemporal consumption and investment problem.

Various scholars point out that the solution to the intertemporal consump-
tion and investment problem is equivalent to the solution from a two-stage
problem that first solves for the optimal division of initial capital over the con-
sumption horizon, and then finds the optimal investment policy for each portion
of divided capital (Brennan and Xia, 2002; Wachter, 2002; Sharpe, 2007). In the
presence of interest rate risk, we prove this equivalent formulation, and apply it
to demonstrate that the VA fails to optimally hedge interest rate risk at every
consumption date.

With a unique reference portfolio prescribing payments at all consumption
dates, the VA confers a poorer tradeoff between the expected level and volatility
of consumption relative to the optimal solution, even when the VA is specified
to maximize the policyholder’s expected utility. Hence, the policyholder expe-
riences a utility loss. This outcome is of no gain to the underwriter, who serves
only as an administrator with regard to financial risks.

This chapter overlaps with two strands of work. Technical aspects draw
from the literature on optimal investment and consumption, and on intertem-
poral hedging when investors face a time-varying investment opportunity set.
Objective-wise, it pertains to the design of financial and insurance contracts.

Numerous investigations on consumption and investment when there is in-
terest rate risk postulate an individual who maximizes the expected utility de-
rived from wealth at the end of the planning horizon only (Sørensen, 1999;
Bajeux-Besnainou et al., 2003). Insights from this case is relevant because the
intertemporal consumption problem can be regarded as a series of terminal
wealth utility maximization problems. By adopting a Gaussian interest rate
term structure model, we follow these works and their extensions.2

Merton (1969) and Samuelson (1969) are the pioneers who investigate the
setting where individuals derive utility from intertemporal consumption. Un-
der independent and identically distributed returns and constant relative risk

Ledlie et al. (2008) define the types of guarantees, and present an overview of the global

variable annuities market.
2The extensions include the increment of the number of state variables affecting the in-

vestment opportunity set (e.g., Lioui and Poncet, 2001 consider general, multi-dimensional

state variables), and the generalization of the interest rate model (e.g., Korn and Kraft, 2002

assume the extended Vasicek model, and allow the market price of interest rate risk to vary).
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aversion (CRRA), they show that the optimal investment strategy is constant
over time. When the investment opportunity set is time-varying (e.g., interest
rate follows the Vasicek (1977) model), Merton (1971, 1973) demonstrate that
the optimal dynamic investment portfolio has a time-dependent component to
hedge against shifts in the opportunity set.

Contemporary efforts also incorporate mortality risk (Yaari, 1965; Hakansson,
1969; Fischer, 1973; Richard, 1975), that is the risk of an individual’s uncertain
time of death given known survival probabilities. Mortality risk differs from
longevity risk, which is the risk surrounding the misestimation of survival prob-
abilities. Even if the VA poses a drawback, it is hasty to omit it from retirement
planning because its major advantage stems from mortality risk pooling.3 If the
mortality credit gain is sufficiently large to offset the loss from imperfect hedging,
then the VA maintains its merit in retirement planning. For instance, assuming
constant interest rates, Horneff et al. (2010) show that a VA’s mortality credit
more than compensates for its rigid payout path. We eschew a direct welfare
comparison of the gains from mortality credit and the loss from deficient hedg-
ing by observation that the VA, being a contract that segregates the treatment
of financial and biometric risks, allows us to propose a refinement with regard to
its financial risk component only, while preserving its mortality-pooling merit.
Therefore, we abstain from mortality and longevity risks, and focus on financial
risks only.4

As the mitigation of interest rate risk is invaluable to retirement planning,
there exists many studies that incorporate interest rate risk in that context, that
adopt either the perspective of the individual (Bodie et al., 2004; Horneff et al.,
2008; Koijen et al., 2011; Horneff et al., 2015; Chang and Chang, 2017), or that
of the pension plan administrator (Boulier et al., 2001; Vigna and Haberman,
2001; Cairns et al., 2006a; Hainaut and Devolder, 2007; Han and Hung, 2012;
Guan and Liang, 2014).

3Besides that, the VA underwriter’s default risk and the incentives provided by the tax

system (Brown et al., 1999) also play a role in any comprehensive evaluation of the VA.
4Where appropriate, we make remarks on the inclusion of mortality risk when individuals

are homogeneous, which is straightforward as long as the risk is uncorrelated with financial

market risks, and it does not entail defaults of the VA underwriter, e.g., because the pool of

policyholders is large such that their aggregate realized mortality rate coincides with the known

mortality rate. The first assumption is tenable as there lacks consensus on the association of

demographic structure with asset prices (Erb et al., 1994; Poterba, 2001; Ang and Maddaloni,

2003; Visco, 2006; Schich, 2008b; Arnott and Chaves, 2012). If individuals are heterogeneous,

then the incorporation of mortality risk becomes complex, as its distribution among policy-

holders is unspecified. Heterogeneous policyholders within the pool bear different investment

risks, so the mortality credit depends on past financial market returns, and is risky.
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Among these strands of works, our analytical objective and methodology re-
semble Brennan and Xia (2002) and Munk and Sørensen (2004). They analyze
the optimal consumption and portfolio allocation over a finite-horizon, when
interest rates follow the Vasicek (1977) model, and when individuals exhibit
CRRA. The economic implication of our findings, however, relates to unit-linked
contract design. This literature predominantly focuses on the VA guarantee, and
either takes the underwriter’s point of view (Bacinello and Persson, 2002), or
assumes a constant interest rate (Boyle and Tian, 2008, 2009; Branger et al.,
2010; Bernard et al., 2011; Aase, 2015; Kaltepoth, 2016). In contrast, we ex-
amine the policyholder’s stance in a setting with interest rate risk, when she is
presented with a VA with no guarantee,.

Due to the changing investment opportunities arising from interest rate
risk, our article also relates to the literature on intertemporal hedging. The
source of time-variation that scholars have considered is not limited to only
time-variation of interest rates, but also that of stock and inflation risk premia
(Kim and Omberg, 1996; Wachter, 2002; Sangvinatsos and Wachter, 2005;
Munk, 2008), and volatility (Brandt, 1999; Chacko and Viceira, 2005; Gomes,
2007). Although the optimal intertemporal hedge demand depends largely on
model assumptions,5 the welfare loss for failing to hedge intertemporally is
often large, and increases in the investor’s horizon (Sangvinatsos and Wachter,
2005). Therefore, when the individual derives utility from consumption over
a long horizon, it is plausible that impaired intertemporal hedging would also
generate considerable welfare cost.

Individuals suffer substantial utility loss from deficient intertemporal inter-
est rate risk hedge under the VA. We estimate that they require between 7-19%
more initial wealth to purchase a VA that would yield the same expected utility
as a contract that provides the optimal outcome with respect to financial risks
(Figure 3.5.1). The utility loss is more severe for lengthier consumption hori-
zons, lower subjective discount factor, higher instantaneous standard deviation
of the interest rate, lower mean reversion rate and lower level of mean reversion
(Figures 3.5.1, 3.6.1 and 3.6.2).

The ascend of Defined Contribution (DC) pension plans as the predomi-

5Brandt (1999); Ang and Bekaert (2002) find a small intertemporal hedge demand,

whereas Brennan et al. (1997); Barberis (2000); Campbell and Viceira (1999) estimate the

demand to be large.
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nant type of retirement plan6 necessitates the provision of financial and in-
surance contracts to assist individuals with managing financial, mortality and
longevity risks. Due to the mounting challenge of hedging liabilities associated
to financial guarantees, insurers are more inclined to offer unit-linked contracts
such as the VA (Antolín et al., 2011; Goecke, 2013; Koijen and Yogo, 2016a;
International Monetary Fund, 2017). Our revelation can improve the design of
these contracts.

We present our setup in Section 3.2, then prove the equivalent formulation
in Section 3.3. Next, we introduce the VA, and derive its optimal parameters
in Section 3.4. In Section 3.5, we evaluate individual welfare under the optimal
solution and under the VA with financial market parameters calibrated to US
data. We investigate the sensitivity of the welfare losses with respect to the
model parameters in Section 3.6. Section 3.7 concludes.

3.2 Setting

3.2.1 Financial Market

We consider a frictionless and complete financial market in continuous time.
The planning horizon is of length T − t0, indexed by t0 + u, for u ∈ [0, T − t0],
whereas the financial market is composed of an instantaneous risk-free asset, a
risky stock index, and a constant τ -maturity bond fund, 0 < τ ≤ T − t0 . Ex-
pected returns on these securities are determined by the stochastic discount fac-
tor of the economy, Mt0+u, that has the dynamics dMt0+u = −rt0+uMt0+u du+
φSMt0+u dZS, t0+u +φrMt0+u dZr, t0+u. ZS and Zr are one-dimensional Brown-

ian motions defined on a complete, filtered probability space,
(

Ω, {Fu}T
u=t0

, P
)

.
The correlation between ZS and Zr is ρSr. φS and φr are the constant load-
ings on the stochastic innovations in the economy that determine the securities’
market price of risk, λS and λr .7

Following Vasicek (1977), we assume that the instantaneous risk-free asset,

6In 1975, close to 70% of all US retirement assets were in Defined Benefit (DB) plans. In

2015, DB assets accounted for only 33% of total retirement assets. Over the same period, assets

in DC plans and Individual Retirement Accounts (IRAs) grew from 20% to 59% (Investment

Company Institute, 2016). In the UK, 98% of the FTSE 350 companies offer a DC pension

plan in 2017 (Towers Watson, 2017).

7In particular, ρ =

[
1 ρSr

ρSr 1

]
, φ = (φS , φr)′, and λ = (λS , λr)′ = −ρφ. The

standard Brownian motion with respect to the risk-neutral probability measure, Q, is ZQ =

(ZQ
S

, ZQ
r ), with ZQ

S, t
= ZS, t + λSt and ZQ

r, t = Zr, t + λrt.



102 Variable Annuity and Interest Rate Risk

whose rate at time t0 + u is denoted by rt0+u, follows the Ornstein-Uhlenbeck
process, drt0+u = κ(µr − rt0+u) du + σr dZr, t0+u. κ is the rate of conver-
gence of rt0+u to the long-term average value of the interest rate, µr. σr

is the instantaneous volatility of the interest rate. The money market ac-
count, mt0+u, accrues at the rate rt0+u, hence is governed by the dynamics
dmt0+u = rt0+umt0+u du. The stock index, denoted by St0+u, follows the dif-
fusion process dSt0+u = (rt0+u + λSσS)St0+u du + σSSt0+u dZS, t0+u. σS is the
instantaneous stock price volatility whereas λSσS is the constant equity risk
premium.8

The stochastic discount factor implies that the price of a zero-coupon bond
with t years to maturity at time t0 +u is P t

t0+u = exp (A(t) − B(t)rt0+u), where

A(t) = µ∗
r [B (t) − t] −

σ2
r

4κ2

[
2 (B (t) − t) + κB (t)2

]

µ∗
r = µr − λrσr/κ, and B(t) = (1 − exp (−κt)) /κ.9 By Itô’s Lemma, the

dynamics of the zero-coupon bond price is

dP t
t0+u = [rt0+u − λrσrB(t)]P t

t0+u du − σrB(t)P t
t0+u dZr, t0+u

Additionally, with the one-factor interest rate model, any fixed-income secu-
rity, including bonds of any maturity, can be replicated with a dynamic in-
vestment strategy involving a single, long-lived, arbitrary bond, and the money
market account. In particular, to replicate a bond of maturity t, we invest
θt0+l = −B(t − l)/B (τ) in the constant τ -maturity bond fund, and 1 − θt0+l in
the money market account at any date l ∈ [0, t − t0]. Therefore, it suffices to
include only a constant τ -maturity bond fund among the available bonds.

3.2.2 Individuals

Individuals exhibit CRRA, are endowed with initial wealth Wt0
, and derive

utility from consumption over a finite horizon. We introduce another time in-
dex, t0 + h, h ∈ [0, T − t0], for the consumption horizon. The reason for the
VA’s suboptimality hinges on the distinction of the consumption horizon from

8Evidence for predictability of the equity risk premium is mixed, e.g.,

Bossaerts and Hillion (1999); Ang and Bekaert (2007); Welch and Goyal (2008). We

concentrate on the setting where changes in the interest rate term structure underlie the

time-variation in the investment opportunity set.
9Refer to Brennan and Xia (2002) for the derivations. µ∗

r is interpretable as the long-run

mean of the interest rate under the risk-neutral measure.
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the planning horizon that is indexed by t0 + u, u ∈ [0, T − t0].

Let Ct0+h be the individual’s consumption at time t0 + h. The individual
derives utility from consumption according to Equation (3.2.1), and has no
bequest motives.

U
(

{Ct0+h}T −t0

h=0

)
=
´ T −t0

0 e−βh u (Ct0+h) dh (3.2.1)

β = subjective discount factor

γ = risk aversion parameter

Ct0+h = consumption in year t0 + h

where

u (Ct0+h) =

⎧
⎨

⎩

C1−γ
t0+h

1−γ

log (Ct0+h)

γ > 0, γ ̸= 1

γ = 1

3.3 Optimal Consumption and Investment Prob-

lem

3.3.1 General Formulation

The optimal consumption and investment problem is the maximization of
the individual’s conditional expected utility over the consumption horizon by
choosing the consumption and the investment policy, subject to a dynamic bud-
get equation. Merton (1973) solves the problem by dynamic programming.
Brennan and Xia (2002) and Munk and Sørensen (2004) apply the martingale
method (Karatzas et al., 1987; Cox and Huang, 1989) to formulate it as a static
variational problem as given by Equations (3.3.1) and (3.3.2). They first derive
the optimal consumption, and then deduce the investment policy which exists
due to completeness of the financial market.

sup
{Ct0+h}T −t0

h=0

Et0

[
U
(

{Ct0+h}T −t0

h=0

)]
(3.3.1)

subject to Et0

⎡

⎣
T −t0
ˆ

0

Ct0+h
Mt0+h

Mt0

dh

⎤

⎦ ≤ Wt0
(3.3.2)
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Theorem 1. (Brennan and Xia, 2002; Munk and Sørensen, 2004) The optimal

consumption at time t0 + h, for any h ∈ [0, T − t0], t0 ∈ [0, T ], that solves

(3.3.1) and (3.3.2) is

C∗
t0+h = Wt0

X∗
t0

(h, T − t0) Y ∗
t0+h (h) (3.3.3)

where

X∗
t0

(h, t) ≡
exp

(
− β

γ h
)
Et0

[(
Mt0+h

Mt0

)1− 1
γ

]

´ t
0 exp

(
− β

γ l
)
Et0

[(
Mt0+l

Mt0

)1− 1
γ

]
dl

(3.3.4)

Y ∗
t0+u (h) ≡

(
Mt0+u

Mt0

)− 1
γ

Et0

[(
Mt0+h

Mt0

)1− 1
γ

] (3.3.5)

The first term of Equation (3.3.3) is the initial wealth; the second term rep-
resents the division of initial wealth over the consumption horizon indexed by
h; the third reflects the return of an investment portfolio. This three-term rep-
resentation alludes to the two-stage formulation in which the individual selects
X∗

t0
and Y ∗

t0
.

A crucial remark on C∗
t0+h is that although it is indexed only on h, its third

component, Y ∗
t0+u (h), varies along the planning horizon, u as well. The VA,

which we introduce in Section 3.4, despite also having a three-term represen-
tation as in Equation (3.3.3), is suboptimal because the investment portfolio
depends only on the planning but not the consumption horizon. This con-
straint induces an incompatibility between the goals of optimally allocating
initial wealth to each consumption period, and attaining the desired exposure
to financial risks.

The optimal consumption path, C∗
t0+h , is feasible in that it can be financed

by the dynamic investment policy in Theorem 2.

Theorem 2. (Theorem 4 of Brennan and Xia, 2002) The optimal investment

policy for problem (3.3.1) and (3.3.2) is

{
θ∗

t0+u (h)
}h

u=0
=

{
θ∗

S, t0+u (h) , θ∗
B, t0+u (h)

}h

u=0

where
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θ∗
S, t0+u (h) = −

φS

γσS
(3.3.6)

θ∗
B, t0+u (h) =

φr

γσrB (τ)
+
(

1 −
1
γ

)
B̂ (h − u)

B (τ)
(3.3.7)

B̂ (h − u) =

h−u
ˆ

0

X∗
t0

(l, h − u) B (l) dl (3.3.8)

X∗
t0

(h, t) = Equation (3.3.4)

Equations (3.3.6) and (3.3.7) resemble the optimal investment policy of
Merton (1973). The proportion of investment in the risky stock index is constant
over the planning and consumption horizons. The investment in the constant
maturity bond fund consists of two terms, which Merton (1971) names as the
speculative and the hedging term. The constant terms in θ∗

S and θ∗
B are the

speculative demand. They depict the relation between the portfolio choice and
the expected excess return on the available securities. Both speculative terms
are rising in the assets’ expected excess return, and are inversely related to the
individual’s risk aversion level.

The second term of Equation (3.3.7) represents the hedge demand for bonds,
through which the individual attempts to hedge against unfavorable and unex-
pected evolution of interest rates. The hedge demand rises in the individual’s
risk aversion level. Its presence underlies the dependance of Y ∗

t0
in Equation

(3.3.3) on both the consumption horizon, h, and the planning horizon, u. It
implies that the optimal interest rate risk hedge is only attainable when the
investment policy varies with both u and h. The relevant hedge portfolio is a
weighted-average of bonds with maturities of every consumption date. The set
of weights, X∗

t0
, is identical to the allocation of initial wealth over the consump-

tion horizon.

The log utility individual, who has γ = 1, has no hedge demand. The defi-
nition of the VA’s reference portfolio that varies with only u does not constrain
her decision. Therefore, she suffers no utility loss if presented with a VA. The
infinitely risk averse individual, who has γ → ∞, has no speculative demand.

We pursue this line of thought in the next sub-section: The intertemporal
consumption and investment problem can be interpreted as a series of terminal
wealth problems, one for every consumption date. Furthermore, the optimal
investment policy with intertemporal consumption (Theorem 2) is a weighted



106 Variable Annuity and Interest Rate Risk

average of the optimal strategies of the same series of terminal wealth problems
(Theorem 4).

3.3.2 Two-Stage (2S) Formulation

We decompose the utility-maximization problem (3.3.1) and (3.3.2) into two
stages (2S), as per the “Lockbox Separation” of Sharpe (2007). The individual
divides initial wealth into a series of “lockboxes” that is devoted to consump-
tion at a specific date, and that follows a deterministic investment strategy that
varies by both the planning and consumption horizons.

On each consumption date, the appropriate box is unlocked and the value
of the box, including the financial market gains is consumed. In the absence
of interest rate risk, Sharpe (2007) shows the separation of the optimal invest-
ment strategy into a series of static strategies that finances consumption at each
date. Assuming that interest rate risk exists, we demonstrate that the separa-
tion holds with dynamic investment strategies.

At time t0, the individual determines the fraction of initial wealth, Wt0
, to

place in each lockbox. The lockboxes are indexed by the consumption horizon,
h ∈ [0, T − t0]. Let

{
X2S

t0
(h, T − t0)

}T −t0

h=0
denote the fraction of initial wealth

reserved for consumption at date t0 + h, conditional on information at time t0.
It satisfies the constraint

´ T −t0

h=0 X2S
t0

(h, T − t0) dh = 1. Each lockbox is worth
Wt0

X2S
t0

(h, T − t0) at time t0.

Lockbox h is indexed to a reference investment portfolio that evolves with
the planning horizon.10 For every consumption date h, there is a dedicated
reference portfolio whose value at time t0 +u is W̃ 2S

t0+u (h), u ∈ [0, h]. W̃ 2S
t0+u (h)

follows an investment policy,
{

θ2S
t0+u (h)

}h

u=0
=
{

θ2S
S, t0+u (h) , θ2S

B, t0+u (h)
}h

u=0
that varies with h and u. θ2S

S, t0+u (h) is the proportion of W̃ 2S
t0+u (h) invested

in the risky stock index, θ2S
B, t0+u (h) is the proportion invested in the constant

maturity bond fund, while the residual, 1 − θ2S
S, t0+u (h) − θ2S

B, t0+u (h) is invested
in the money market account at time t0 + u.

10This is a generalization of the term “reference portfolio” in Chapter 2, which follows

an investment policy that is dependent only on the planning horizon, u, but not on the

consumption horizon, h.
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The dynamics of W̃ 2S
t0+u (h) with respect to the planning horizon, u, is

dW̃ 2S
t0+u (h)

W̃ 2S
t0+u (h)

=
(
rt0+u + θ2S

S, t0+u (h) λSσS − θ2S
B, t0+u (h) λrσrB (τ)

)
du +

θ2S
S, t0+u (h) σS dZS, t0+u −

θ2S
B, t0+u (h) σrB (τ) dZr, t0+u (3.3.9)

The 2S formulation comprises three sets of series of the allocation of wealth,
{

X2S
t0

(h, T − t0)
}T −t0

h=0
; the reference portfolio,

{{
Y 2S

t0+u (h)
}h

u=0

}T −t0

h=0
; and the

investment policies,
{{

θ2S
t0+u (h)

}h

u=0

}T −t0

h=0
. At time t0 + h , the individual

consumes C2S
t0+h. This is the accrued value of the portion of initial wealth that

is reserved for consumption at that date–the value of the “lockbox”–when it has
been invested according to the investment policy of its reference portfolio since
time t0.

C2S
t0+h = Wt0

X2S
t0

(h, T − t0) Y 2S
t0+h (h) (3.3.10)

Y 2S
t0+u (h) ≡

W̃ 2S
t0+u (h)

W̃ 2S
t0

(h)
(3.3.11)

The three-term representation of Equation (3.3.10) not only resembles the op-
timal consumption, Equation (3.3.3), but also has identical interpretation.

For any given series of investment policies for the lockboxes, there is an op-
timal division of initial wealth. The first stage of 2S is to seek this optimal
division of initial wealth. The second stage regards every date t0 + h as a stan-
dalone utility maximization problem in which the individual derives utility from
consumption only at date t0 + h, by selecting the reference portfolio investment
policy. The solution to this terminal wealth problem in our setting is known
(Sørensen, 1999).

Under the 2S formulation, we have two static variational problems that we
solve by dynamic programming. We first seek the optimal division of initial
wealth for any investment policy. After obtaining the optimal division rule to
any given investment policy, we find the optimal investment policy. The first
stage is formulated as (3.3.12) and (3.3.13), and solved in Theorem 3. The sec-
ond stage is formulated as (3.3.15) and (3.3.16). Theorem 4 presents its solution.
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The first stage of the 2S problem is

sup{
X2S

t0
(h, T − t0)

}T −t0

h=0

Et0

[
U
({

C2S
t0+h

}T −t0

h=0

)]
(3.3.12)

subject to

T −t0
ˆ

h=0

X2S
t0

(h, T − t0) dh = 1 (3.3.13)

C2S
t0+h = Equation (3.3.10)

dW̃ 2S
t0+u (h)

W̃ 2S
t0+u (h)

= Equation (3.3.9) with

{
θ2S

t0+u (h)
}h

u=0
given.

Theorem 3. The optimal division of initial capital,
{

X2S
t0

(h, T − t0)
}T −t0

h=0
,

that solves (3.3.12) and (3.3.13) is

exp
(

− β
γ h
)
Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

´ T −t0

0 exp
(

− β
γ l
)
Et0

[(
Y 2S

t0+l (l)
)1−γ

] 1
γ

dl

(3.3.14)

where Y 2S
t0+h (h) = Equation (3.3.11).

Proof. Appendix 3.D.

Fixing a h ∈ [0, T − t0], the second stage of the 2S formulation is

sup
{

θ2S
t0+u (h)

}h

u=0

Et0

[
U
(
W̃ 2S

t0+h (h)
)]

(3.3.15)

dW̃ 2S
t0+u (h)

W̃ 2S
t0+u (h)

= Equation (3.3.9) (3.3.16)

Theorem 4. (Sørensen, 1999) For any h ∈ [0, T − t0], the optimal investment

policy for the portion of capital reserved for consumption at horizon h, at time

t0 + u, u ∈ [0, h], conditional on time t0, that solves (3.3.15) and (3.3.16) is

{
θ2S

t0+u (h)
}h

u=0
=

{
θ2S

S, t0+u (h) , θ2S
B, t0+u (h)

}h

u=0

where

θ2S
S, t0+u (h) = −

φS

γσS
(3.3.17)

θ2S
B, t0+u (h) =

φr

γσrB (τ)
+
(

1 −
1
γ

)
B (h − u)

B (τ)
(3.3.18)



CHAPTER 3 109

The optimal investment in the stock index, and the speculative demand for
the constant maturity bond fund are constant and identical to those in the
general formulation (Equations (3.3.6) and (3.3.7)). The optimal investment
policies of the general and the 2S formulations differ only in the hedge demand
of the constant maturity bond fund. The bond hedge demand in the general
formulation, Equation (3.3.7), is a weighted average of that in the 2S formula-
tion, Equation (3.3.18). B̂ (h − u) in Equation (3.3.8) defines the weights.

3.3.3 Equivalence of the General and 2S Formulations

We demonstrate the equivalence of the consumption paths in the general
formulation, C∗

t0+h (Section 3.3.1), and in the 2S formulation, C2S
t0+h (Section

3.3.2). They are each composed of three terms

CK
t0+h = Wt0

XK
t0

(h, T − t0) Y K
t0+h (h) (3.3.19)

K ∈ {∗, 2S}

For K = ∗, X∗
t0

(h, T − t0) = Equation (3.3.4) and Y ∗
t0+h (h) = Equation (3.3.5).

For K = 2S, X2S
t0

(h, T − t0) = Equation (3.3.14) and Y 2S
t0+h (h) = Equation (3.3.11).

Even if the consumption paths share the mathematical form of Equation (3.3.19),
it is not evident that C∗

t0+h = C2S
t0+h. We prove this by showing that X∗

t0
(h, T − t0) =

X2S
t0

(h, T − t0) and Y ∗
t0+h (h) = Y 2S

t0+h (h), for all h ∈ [0, T − t0].

Lemma 5. X∗
t0

(h, T − t0) = X2S
t0

(h, T − t0).

Proof. Appendix 3.E. The proof involves a straightforward derivation of the
conditional expectations in Equations (3.3.4) and (3.3.14).

As
{

Y K
t0+u (h)

}h

u∈0
is a random variable, demonstrating that Y ∗

t0+h (h) =
Y 2S

t0+h (h) is more involved. We achieve this in Lemma 6, where we show that
for any given h ∈ [0, T − t0], the terms share the same dynamics over u ∈ [0, h],
and verify that they have the same starting values, Y ∗

t0+0 (h) = Y 2S
t0+0 (h).

Lemma 6. For any h ∈ [0, T − t0] and u ∈ [0, h],

dY ∗
t0+u (h)

Y ∗
t0+u (h)

=
dY 2S

t0+u (h)
Y 2S

t0+u (h)
(3.3.20)

Additionally, Y ∗
t0+0 (h) = Y 2S

t0+0 (h).

Proof. Appendix 3.F. In the proof of Equation (3.3.20), we derive the expres-
sions of dY K

t0+u (h) /Y K
t0+u (h) for K ∈ {∗, 2S} by applications of Itô’s Lemma,
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deduce the investment policy for the portfolio whose value has the same dynam-
ics as dY ∗

t0+u (h) /Y ∗
t0+u (h), and show that this investment portfolio coincides

with that of 2S in Theorem 4.

Theorem 7. For all h ∈ [0, T − t0], C∗
t0+h = C2S

t0+h. The general and two-stage

formulations of the optimal consumption and investment problem yield identical

consumption paths.

Proof. This follows from the definition of C∗
t0+h and C2S

t0+h in Equation (3.3.19),
Lemmas 5 and 6.

We focus on the 2S formulation for subsequent analysis.

3.4 Variable Annuity

The VA customizes the expected level and volatility of payments in two
parameters: the assumed interest rate (AIR) and the reference portfolio invest-
ment policy. This two-pronged approach adheres closely to the intertemporal
consumption and investment problem, which we show in Section 3.3.3 to be
equivalent to the 2S formulation that first solves for the optimal division of cap-
ital over the consumption horizon, and then finds the optimal investment policy
for each portion of divided capital.

The AIR is a deterministic rate that dictates the division of initial capital,
Wt0

over the consumption horizon, h ∈ [0, T − t0]. Let at0
= {at0

(h)}T −t0

h=0

denote the AIR conditional on information at time t0. The per unit cost of a
VA is11

At0

(
{at0

(h)}T −t0

h=0

)
=

T −t0
ˆ

0

exp (−at0
(h) × h) dh (3.4.1)

The VA is indexed to a reference investment portfolio that is of value W̃ V A
t0+u

at time t0 + u. Together with the AIR, the reference portfolio determines the
expectation and dispersion of the VA payments.12 The VA reference portfolio

11As we assumed that individuals have a certain lifetime, the VA has no mortality credit.

See Charupat and Milevsky (2002) for the definition of a VA with mortality credit. Blake et al.

(2003) define an Equity-Linked-Annuity (ELA) as an annuity contract offering payments in-

dexed to an equity investment portfolio, and an Equity-Linked-Income-Drawdown (ELID) as

the ELA’s counterpart without mortality credit. The contract we describe here is an ELID.
12Let r̃ denote the reference portfolio’s expected return, and suppose that the AIR is time-

invariant. Then an annuity contract with AIR = r̃ has a constant expected payment path.

When AIR < r̃, then the expected payment stream is upward sloping, with increasing riskiness
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follows the investment policy that varies with the planing horizon, u, but is inde-
pendent of the consumption horizon, h,

{
θV A

t0+u

}T −t0

u=0
=
{

θV A
S, t0+u, θV A

B, t0+u

}T −t0

u=0
.

Unlike the 2S, for which there is one reference portfolio for each consumption
date, the VA has a unique reference portfolio for all t0 +h. The independence of
the VA’s reference portfolio from the consumption horizon, h, is the reason for
its suboptimality. The dynamics of W̃ V A

t0+u with respect to u is Equation (3.4.2).

dW̃ V A
t0+u

W̃ V A
t0+u

=
(
rt0+u + θ2S

S, t0+uλSσS − θ2S
B, t0+uλrσrB (τ)

)
du +

θ2S
S, t0+uσS dZS, t0+u − θ2S

B, t0+uσrB (τ) dZr, t0+u (3.4.2)

An individual with an initial capital worth Wt0
, who fully annuitizes at time

t0, consumes the VA payment, CV A
t0+h at time t0 + h

CV A
t0+h = Wt0

exp (−at0
(h) × h)

At0

(
{at0

(h)}T −t0

h=0

)Y V A
t0+h (3.4.3)

Y V A
t0+h ≡

W̃ V A
t0+h

W̃ V A
t0

(3.4.4)

The three-term composition of Equation (3.4.3) is reminiscent of the 2S
consumption path, Equation (3.3.10). The second term represents the allocation
of initial capital over the consumption horizon, whereas the final term reflects
the return on the reference portfolio.

3.4.1 Optimal Variable Annuity

We define the optimal VA contract, VA*, as the VA that maximizes the
individual’s conditional expected utility, by choice of the AIR and the reference
portfolio’s investment policy. In particular, VA* is the solution to

sup
{at0

(h)}T −t0

h=0 ,
{

θV A
t0+u

}T −t0

u=0

Et0

[
U
({

CV A
t0+h

}T −t0

h=0

)]
(3.4.5)

CV A
t0+h = Equation (3.4.3)

dW̃ V A
t0+u

W̃ V A
t0+u

= Equation (3.4.2)

as the individual ages. Conversely, when AIR > r̃, then the expected payment stream is

downward sloping, and the risk is higher during the initial payout phase. Horneff et al. (2010)

expound on VA payments under numerous time-invariant AIRs and reference portfolios.
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Similar to the utility-maximization problem of the 2S, we have two static
variational problems that we solve by dynamic programming. We first find the
optimal AIR taking the investment policy,

{
θV A

t0+u

}T −t0

u=0
as given. Then with the

optimal AIR, a∗
t0

(h), we solve for the VA* investment policy.

3.4.1.1 Optimal AIR

Derivation of the optimal AIR is similar to solving for the optimal division
of initial wealth under 2S, as formulated in (3.3.12) and (3.3.13), because the
AIR has the same role. The problem statement is

sup
{at0

(h)}T −t0

h=0

Et0

[
U
({

CV A
t0+h

}T −t0

h=0

)]
(3.4.6)

CV A
t0+h = Equation (3.4.3)

dW̃ V A
t0+u

W̃ V A
t0+u

= Equation (3.4.2) with

{
θV A

t0+u

}T −t0

u=0
is given

Theorem 8. The optimal AIR, a∗
t0

that solves (3.4.6) is a∗
t0

(0) = 0, and for

h ∈ (0, T − t0],

a∗
t0

(h) =
β

γ
−

1 − γ

γ

gV A (t0, h)
h

(3.4.7)

where gV A (t0, h) = Equation (3.C.2).

Proof. Appendix 3.G.

a∗
t0

(h) is a linear combination of the conditional expectation and variance of
the log ratios of the reference portfolio value contained in gV A (t0, h), and the
individual’s subjective discount factor, weighed by her risk aversion level. The
definition of gV A (t0, h) in Equation (3.C.2) implies

exp
(
−a∗

t0
(h) h

)
= exp

(
−

β

γ
h

)
Et0

[(
Y V A

t0+h

)1−γ
] 1

γ

(3.4.8)

Substituting Equation (3.4.8) into Equations (3.4.1) and (3.4.3), we have
that a VA with a∗

t0
(h) pays at each consumption date,
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CV A
t0+h = Wt0

XV A
t0

(h, T − t0) Y V A
t0+h (3.4.9)

where

XV A
t0

(h, T − t0) ≡
exp

(
− β

γ h
)
Et0

[(
Y V A

t0+h

)1−γ
] 1

γ

´ T −t0

0 exp
(

− β
γ l
)
Et0

[(
Y V A

t0+l

)1−γ
] 1

γ

dl

(3.4.10)

=
exp

(
−a∗

t0
(h) × h

)

At0

(
{at0

(h)}T −t0

h=0

)

Y V A
t0+h = Equation (3.4.4)

3.4.1.2 Optimal Investment Policy

To obtain the optimal VA investment policy, we consider the VA that adopts
the optimal AIR and solve the following

sup{
θV A

t0+u

}T −t0

u=0

Et0

[
U
({

CV A
t0+h

}T −t0

h=0

)]
(3.4.11)

CV A
t0+h = Equation (3.4.9)

Theorem 9. The investment policy for the optimal VA,
{

θV A∗
t0+u

}T −t0

u=0
=

{
θV A∗

S, t0+u, θV A∗
B, t0+u

}T −t0

u=0

(if it exists) satisfies, for all u ∈ [0, T − t0], the following extremum condition

ˆ T −t0

u
F
(

l, t0, {yi (l)}7
i=1

)
GL

(
u, t0, T ; θV A∗

t0+u

)
dl = 0 (3.4.12)

for both L ∈ {S, B}, where

GS

(
u, t0, T ; θV A

t0+u

)
= λSσS − θV A

S, t0+uσ2
Sγ + θV A

B, t0+uρSrσrσSB (τ) γ +

(1 − γ) ρSrσrσS

ˆ T −t0

u
B (n − u) dn (3.4.13)

GB

(
u, t0, T ; θV A

t0+u

)
= −λrσrB (τ) − θV A

B, t0+uσ2
r B2 (τ) γ +

θV A
S, t0+uρSrσrσSB (τ) γ −

(1 − γ) σ2
r B (τ)

ˆ T −t0

u
B (n − u) dn (3.4.14)

F
(

l, t0, {yi (l)}7
i=1

)
is Equation (3.H.2).
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Proof. Appendix 3.H.

The complication of solving (3.4.11) lies in the constraints being integrals of
the state equations, i.e., they are path-dependent. We do not obtain

{
θV A∗

t0+u

}T −t0

u=0

explicitly. The extremum condition (3.4.12) is composed of a system of non-
linear equations indexed by u ∈ [0, T − t0]. We estimate

{
θV A∗

t0+u

}T −t0

u=0
by nu-

merically solving the system of simultaneous equations in Section 3.5.

3.5 Utility Loss of a Variable Annuity

We compare the individual’s expected utility when consuming according to
2S and to VA* based on financial market parameters calibrated on US data.
The base case adopts the set of financial market parameters in Section 3.5.1,
is composed of individuals with a 45-year long consumption horizon (e.g., to
exemplify the situation of a 65-year-old in year t0 who lives with certainty until
age 110 in year T ), and possess risk aversion levels γ = 2, 3, . . . , 9, 10.

3.5.1 Model Calibration

To provide descriptive numerical examples, we calibrate the financial market
to monthly yields of US government bonds with maturities of three months, one
year, five and ten years from August 1971 to December 2014.13 As for the
stock return, we use the monthly return on the CRSP value-weighted stock
return, including dividends, on the NYSE, AMEX, and NASDAQ.14 We apply
the Kalman filtering approach and describe its setup in Appendix 3.I. Table 3.1
presents the estimated parameters and their standard errors obtained by the
outer product of gradients.

13The choice of maturities is identical to de Jong (2000). He justifies exclusion of bond

yields with maturity under 3 months by their exceptionally large one-period change, and

those with maturity over 10 years due to the scarcity of bond data, which result in inaccurate

interpolation. Yields for bonds of maturities 1, 5, and 10 years are from Gürkaynak et al.

(2007), whereas yields for the 3-month Treasury bills are from the Federal Reserve Bank of

St. Louis (FRED).
14CRSP and FRED data are monthly. To reconcile these with the daily data from

Gürkaynak et al. (2007), we take the observation on the last day of the month.
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Table 3.1: Estimates of Model Parameters

Maximum likelihood parameter estimates of the interest rate and the stock re-
turn, obtained by implementing the Kalman filter on monthly US government
bond yields of 3-month, 1, 5, and 10-year maturities, and the return on the
CRSP value-weighted stock index, from August 1971 till December 2014. Stan-
dard errors are by the outer product of gradients.

Parameter Estimate Standard Error

Stock Return Process: dSt0+u = (rt0+u + λSσS)St0+u du + σSSt0+u dZS, t0+u

σS 0.158 0.004
λS 0.467 0.164

Short Rate Process: drt0+u = κ(µr − rt0+u) du + σr dZr, t0+u

µr 0.036 0.043
κ 0.067 0.003
σr 0.017 0.001
λr -0.350 0.177

Stochastic Discount Factor Process:
dMt0+u = −rt0+uMt0+u du + φSMt0+u dZS, t0+u + φrMt0+u dZr, t0+u

ρSr 0.120 0.049
φS -0.516
φr 0.412

The estimated mean-reversion coefficient of the interest rate, κ, is 0.067. It
implies a half-life of log (2) /0.067 ≈ 10 years. This slow rate of mean reversion
indicates that the fitted term-structure is rather flat. We estimate σr to be
1.7%. Our estimates of κ and σr are similar to the estimates of 0.06 and of
1.4% respectively by de Jong (2000). The market price of interest rate risk is
negative and significant, which means that the bond risk premium is positive,
and all bonds yield a Sharpe ratio of −λr = 0.35. The expected excess return on
a constant maturity three-month zero-coupon bond fund is 15 bps, and that for
a one-, five- and ten-year constant maturity bond fund is 0.5%, 2.5% and 4.3%,
respectively. The standard deviation of return to the three-month, one-, five-
and ten-year constant maturity bond funds are 0.4%, 1.6%, 7.0% and 12.1%
respectively. Additionally, the estimates for the bond yield measurement errors
are small (i.e., of magnitudes 10−5 to 10−6).

As for the stock index, we find an annualized stock index volatility of close
to 16%, as do Brennan and Xia (2002), but our estimate for the stock index
Sharpe ratio is higher at 0.47, relative to 0.34 in Brennan and Xia (2002). The
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estimated stock risk premium is λSσS = 7.39%. The stock index is positively
correlated with the nominal interest rate, in contrast to the negative correla-
tion estimates of Brennan and Xia (2002); Munk et al. (2004), but aligned with
Campbell (1987); Fama and French (1989); Shiller and Beltratti (1992).

3.5.2 Estimation of Utility Loss

3.5.2.1 Certainty Equivalent Wealth Loading (CEWL)

We evaluate individual welfare under 2S and VA* using the Certainty Equiv-
alent Wealth Loading (CEWL). The CEWL is the proportional loading on the
initial wealth that the individual requires to purchase a VA* that yields the
same expected utility as with the 2S. It satisfies Equation (3.5.1). A positive
CEWL suggests that the individual prefers the 2S over the VA*. An individual
who is indifferent between the 2S and the VA* has a CEWL of zero.

Et0

[
U
(
(1 + CEWL) CV A∗

)]
= Et0

[
U
(
C2S

)]
(3.5.1)

CV A∗ = Equation (3.4.9),

where
{

θV A
t0+u

}T −t0

u=0
=
{

θV A∗
t0+u

}T −t0

u=0

C2S = Equation (3.3.10)

In particular,

CEWL =

(
Et0

[
U
(
C2S

)]

Et0
[U (CV A∗)]

) 1
1−γ

− 1 (3.5.2)

To obtain the VA* investment policy for individuals with risk aversion levels
γ = 2, . . . , 10, we solve Equation (3.4.12) for L ∈ {S, B} numerically with
the financial market parameters of Table 3.1. We then compute the CEWL by
Equation (3.5.2).

3.5.2.2 Discussion of the CEWL

In the base case, individuals require 7-19% more initial wealth under the
VA* than the 2S to attain the same expected utility (Figure 3.5.1, top panel,
45-year horizon).

The utility loss under the VA* is due to the VA’s restriction that the ref-
erence portfolio investment policy depends only on the planning horizon. By
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definition of XK
t0

, for K ∈ {2S, V A} (Equations (3.3.14) and (3.4.10)), the al-
location of initial wealth over the consumption horizon is determined by the
investment policy via the conditional expected return on the reference portfo-
lio. The individual with VA* faces the constraint that changing the investment
policy for any date ũ along the planning horizon modifies the allocation of ini-
tial wealth to not only the consumption date, h, that coincides with ũ, but also
to all other consumption dates. In contrast, the 2S allows the individual to
customize the investment policy by the planning and the consumption horizons.
This feature is essential to achieve the optimal allocation of initial wealth and
optimal investment risk exposure.

The U-shaped curve in Figure 3.5.1 suggests that individuals who are least
and most risk-averse have a higher CEWL than an individual who is moder-
ately risk-averse. This non-monotonicity stems from a dichotomy between the
objectives of optimally allocating the initial wealth and optimally choosing the
level of investment risk under the VA.

To illustrate, consider an individual with high γ. She is risk averse and reluc-
tant to substitute consumption intertemporally. Regardless of the investment
opportunities, this individual desires a constant expected consumption growth
rate, which is attainable if she consumes the long-run average return of the refer-
ence portfolio, and reserve an appropriate portion of wealth that adjusts for risk
of each consumption date. Given that the individual is risk averse, this means
allocating more wealth for consumption dates farther in the future, when the
cumulative financial market performance has higher variability. Another way
to mitigate the investment risk associated to distant consumption dates is to
decrease investment risk in those periods. Yet, under the base case parameters,
decreasing investment risk for the farther future entails a lower VA* allocation
of initial wealth to those consumption dates as well.15 This is incompatible with
the individual’s coincident desire to reserve more initial wealth for consumption
at the end of the horizon. Therefore, she suffers substantial utility loss.

When it concerns a less risk averse individual, an analogous argument ap-
plies. This individual is willing to take higher investment risk, and prefers to
allocate less wealth to consumption dates farther in the future, because the VA*
payment on those dates have more time to accrue gains from the financial mar-
ket. However, for the parameters that we consider, a higher allocation of initial

15Due to the absence of an analytical solution for the VA* investment policy, we are unable

to generalize the relation between the VA* investment policy and the allocation of initial

wealth over the horizon. This relation is dependent on the financial market parameters.
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wealth to the nearer consumption dates is feasible by decreasing investment risk.
The individual is also confronted with the opposing actions necessary to attain
the optimal allocation of initial wealth and investment risk exposure.

The moderately risk averse individual has a lower CEWL relative to indi-
viduals with more extreme risk aversion levels. She is willing to take some
investment risk, and prefers a comparatively uniform allocation of initial wealth
over the consumption horizon. Therefore, the VA* yields moderate utility loss.
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Figure 3.5.1: CEWL by Risk Aversion Level: Consumption Horizon
and Subjective Discount Factor

This figure presents the CEWL by the individual’s risk aversion level, γ

that ranges from 2 to 10, when the consumption horizon is 25 and 45 years
(top panel), and when the individual’s subjective discount factor is either
δ = 0, 0.03, or 0.05 (bottom panel).
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3.6 Robustness

We investigate the sensitivity of the CEWL with respect to parameters that
characterize individual preference (i.e., length of the consumption horizon, sub-
jective discount factor), and those governing the term structure of the stochastic
interest rates (i.e., volatility, mean reversion level, rate of mean reversion, inter-
est rate level on the date of annuitization relative to the mean reversion level).
For the sensitivity with respect to the interest rate model parameters, we com-
pare the CEWLs under the base case parameters in Table 3.1 to the CEWLs in
two other situations, where each of the parameter is unilaterally either doubled
or halved.

The magnitude of interest rate risk underlies the CEWL’s sensitivity with
respect to the interest rate model parameters. When interest rate risk is high,
the ability to optimally hedge the risk is more valuable. The 2S consequently
becomes more desirable. Hence, we first make a few remarks on the influence
that select Vasicek (1977) model parameters have on the conditional variance
of the interest rate.

The variance for the short rate process following the Vasicek (1977) model
at time t + u, conditional on time t, t ∈ [t0, T ], for u ∈ [0, T − t0] is

Vart [rt+u] =
σ2

r

2κ
(1 − exp (−2κu)) (3.6.1)

As Vart [rt+u] is increasing in u and σr when κ > 0, we postulate and confirm
that the CEWL is higher when the consumption horizon is longer (Figure 3.5.1;
top panel), and when the instantaneous volatility is higher (Figure 3.6.1; top
panel).

We also observe that a lower subjective discount factor corresponds to a
higher CEWL (Figure 3.5.1; bottom panel). This is because the individual
with δ = 0 regards consumption in the farther future as equally important as
consumption at present. As interest rate risk increases in the horizon, this in-
dividual suffers a larger utility loss when unable to optimally hedge it, relative
to an individual who prefers to consume more now than later (i.e., δ > 0).

The effect of κ on the interest rates’ conditional volatility depends on the
horizon, u, and κ. For a horizon and a mean reversion rate that are greater than
zero, u, κ > 0, which is the relevant case to consider in the present retirement
context, Vart [rt+u] is decreasing in κ (Proof in Appendix 3.J). When κ is larger,
interest rates converge sooner to their mean reversion level. For instance, in the
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base case, the interest rate’s half-life is around 10 years, but at 2κ, the half-life
reduces to 30 months only (i.e., log (2) / (2 × 0.067) ≈ 2.25 years). Having any
deviation of the interest rate from its mean reversion level be resolved sooner is
akin to having lower interest rate risk. Thus, the CEWL is inversely related to
κ (Figure 3.6.1; bottom panel).

The top panel of Figure 3.6.2 shows that the CEWL is decreasing in µr. µr

influences the reference portfolio’s expected returns but not interest rate risk
(Equation (3.6.1)). Hence, an individual consuming C2S has an investment pol-
icy that is independent of µr (Equations (3.3.17) and (3.3.18)). Suppose µr is
decreased. The individual with 2S maintains the same investment policy as it
remains optimal. To cope with the lower level of expected return, she reserves
a larger proportion of initial wealth for consumption at later dates.

In contrast, the individual with a VA* alters the investment policy in re-
sponse to a decrease in µr. A lower µr amplifies the extent of the opposing
adjustments on the investment policy that is necessary for her to attain the
desired allocation of initial wealth over the consumption horizon, and the op-
timal investment risk exposure. Take the case of a risk averse individual. Her
rational response to a lower µr is to either allocate more initial wealth to fu-
ture consumption dates, bear more investment risk, or both. Under the base
case parameters, the desired adjustment to initial wealth allocation is possible
by making riskier investments. The higher financial market risk exposure ne-
cessitated under either response is at odds with the individual’s risk aversion.
Consequently, she experiences larger utility loss when µr is lower.

As with µr, r0 also has an inverse relationship with the CEWL (Figure
3.6.2; bottom panel). The implication of doubling and halving r0 has a similar
underlying explanation as with perturbing µr. However, the CEWL difference
between the perturbed and the base case is smaller than when µr is perturbed by
the same magnitude. This is because the effect on r0 is transient–r0 eventually
converges to µr.
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Figure 3.6.1: CEWL by Risk Aversion Level: Perturbed σr and κ

This figure presents the CEWL by the individual’s risk aversion level, γ that
ranges from 2 to 10, for the base case and when either σr (top panel) or κ

(bottom panel) of the Vasicek (1977) short rate process is doubled or halved
relative to its value in the base case.
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Figure 3.6.2: CEWL by Risk Aversion Level: Perturbed µr and r0

This figure presents the CEWL by the individual’s risk aversion level, γ that
ranges from 2 to 10, for the base case and when either µr (top panel) or r0

(bottom panel) of the Vasicek (1977) short rate process is doubled or halved
relative to its value in the base case.
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3.7 Conclusion

We demonstrate the equivalence of the solution to the optimal consumption
and investment problem when interest rate risk exists, with the outcome of a
two-stage problem that chooses the allocation of initial capital over the con-
sumption horizon, and the investment policy for each portion of the divided
capital. We apply the equivalent formulation to demonstrate that the VA en-
tails sizable welfare losses due to the contract’s inability to optimally hedge
interest rate risk of every consumption date. We illustrate the economic impli-
cation of our revelation with a VA, but we emphasize its relevance to unit-linked
contracts. Generalizing the contract unit’s definition to allow its dependance
on both the planning and consumption horizons improves the policyholder’s
welfare.
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Appendix to Chapter 3

3.A Et0

[
(Mt0+h/Mt0)

1− 1
γ

]

Define

Γ ≡ φ2
r + φ2

S + 2ρSrφrφS (3.A.1)

For all h ∈ [0, T − t0], Mt0+h/Mt0
is log-normally distributed, hence

Et0

[(
Mt0+h

Mt0

)1− 1
γ

]
= exp

{(
1 −

1
γ

)
Et0

[
log
(

Mt0+h

Mt0

)]
+

1
2

(
1 −

1
γ

)2

Vart0

[
log
(

Mt0+h

Mt0

)]}

= exp

{(
1 −

1
γ

)
×

(
Et0

[
log
(

Mt0+h

Mt0

)]
+

1
2

(
1 −

1
γ

)2

Vart0

[
log
(

Mt0+h

Mt0

)])}

= exp
{(

1 −
1
γ

)
gSDF (t0, h)

}
(3.A.2)

gSDF (t0, h) ≡ Et0

[
log
(

Mt0+h

Mt0

)]
+

1
2

(
1 −

1
γ

)
Vart0

[
log
(

Mt0+h

Mt0

)]
(3.A.3)

Et0

[
log
(

Mt0+h

Mt0

)]
≡ (µr − rt0

) B (h) − h

(
µr +

Γ
2

)
(3.A.4)

Vart0

[
log
(

Mt0+h

Mt0

)]
≡ h

(
Γ +

σr

κ

(σr

κ
− 2 (φr + ρSrφS)

))
+

B (h)
2σr

κ

(
φr + ρSrφS −

σr

κ

)
+

σ2
r

2κ3
(1 − exp (−2κh)) (3.A.5)

3.B Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

By the log-normality of Y 2S
t0+h (h),
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Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

= exp

{
1
γ

(1 − γ)Et0

[
log
(
Y 2S

t0+h (h)
)]

+

1
2γ

(1 − γ)2 Vart0

[
log
(
Y 2S

t0+h (h)
)]
}

= exp

{(
1
γ

− 1
)

×

(
Et0

[
log
(
Y 2S

t0+h (h)
)]

+

1
2

(1 − γ) Vart0

[
log
(
Y 2S

t0+h (h)
)]
)}

= exp
{(

1
γ

− 1
)

g2S (t0, h)
}

(3.B.1)

g2S (t0, h) ≡ Et0

[
log
(
Y 2S

t0+h (h)
)]

+
1
2

(1 − γ) Vart0

[
log
(
Y 2S

t0+h (h)
)]

(3.B.2)

Et0

[
log
(
Y 2S

t0+h (h)
)]

≡
hΓ
γ

(
1 −

1
2γ

)
+ B (h) rt0

+ (h − B (h)) ×

[
µr +

σr

κ

(
1 −

1
γ

)2 (σr

κ
− φr − ρSrφS

)]
−

σ2
r

4κ3

(
1 −

1
γ

)2

(1 − exp (−2κh)) (3.B.3)

Vart0

[
log
(
Y 2S

t0+h (h)
)]

≡
h

γ2

(
Γ +

σr

κ

(σr

κ
− 2 (φr + ρSrφS)

))
+

B (h)
2σr

κγ2

(
φr + ρSrφS −

σr

κ

)
+

σ2
r

2κ3γ2
(1 − exp (−2κh)) (3.B.4)

Γ is defined in Equation (3.A.1).
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3.C Et0

[(
Y V A

t0+h

)1−γ
] 1

γ

Et0

[(
Y V A

t0+h

)1−γ
] 1

γ

= exp
{(

1
γ

− 1
)

gV A (t0, h)
}

(3.C.1)

gV A (t0, h) ≡ Et0

[
log
(
Y V A

t0+h

)]
+

1
2

(1 − γ) Vart0

[
log
(
Y V A

t0+h

)]
(3.C.2)

Let
{

θV A
t0+u

}T −t0

u=0
=
{

θV A
S, t0+u, θV A

B, t0+u

}T −t0

u=0
denote the VA’s reference port-

folio investment policy, conditional on time t0.

Et0

[
log
(
Y V A

t0+h

)]
≡ hµr + B (h) (rt0

− µr) +

λSσS

ĥ

0

θV A
S, t0+l dl − λrσrB (τ)

h
ˆ

0

θV A
B, t0+l dl −

σ2
S

2

h
ˆ

0

θV A2

S, t0+l dl −
σ2

r B2 (τ)
2

h
ˆ

0

θV A2

B, t0+l dl +

ρSrσrσSB (τ)

h
ˆ

0

θV A
S, t0+lθ

V A
B, t0+l dl (3.C.3)

Vart0

[
log
(
Y V A

t0+h

)]
≡

σ2
r

κ2

[
h − 2B (h) +

1
2

B(2h)
]

+

σ2
S

h
ˆ

0

θV A2

S, t0+l dl + σ2
r B2 (τ)

h
ˆ

u

θV A2

B, t0+l dl −

2ρSrσrσSB (τ)

ĥ

0

θV A
S, t0+lθ

V A
B, t+l dl +

2ρSrσrσS

ĥ

0

θV A
S, t0+l exp (−κ (h − l)) dl −

2σ2
rB (τ)

h
ˆ

0

θV A
B, t0+l exp (−κ (h − l)) dl (3.C.4)

Γ is defined in Equation (3.A.1).
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3.D Proof of Theorem 3

Proof. Append the constraint by the Lagrange multiplier λ.

L
({

C2S
t0+h

}T −t0

h=0
, λ
)

= Et0

[
U
({

C2S
t0+h

}T −t0

h=0

)]
+

λ

⎛

⎝1 −

T −t0
ˆ

0

X2S
t0

(h, T − t0) dh

⎞

⎠

=

T −t0
ˆ

0

e−βh
Et0

[
C2S1−γ

t0+h

]

1 − γ
+

λ

T − t0
−

λX2S
t0

(h, T − t0) dh

=

T −t0
ˆ

0

e−βh

1 − γ
×

Et0

[(
Wt0

X2S
t0

(h, T − t0) Y 2S
t0+h (h)

)1−γ
]

+

λ

T − t0
− λX2S

t0
(h, T − t0) dh

=

T −t0
ˆ

0

F
(
t0, h, X2S

t0
(h, T − t0) , λ

)
dh

where

F
(
t0, h, X2S

t0
(h, T − t0) , λ

)
≡

e−βh

1 − γ

(
Wt0

X2S
t0

(h, T − t0)
)1−γ

×

Et0

[(
Y 2S

t0+h (h)
)1−γ

]
+

λ

T − t0
− λX2S

t0
(h, T − t0)

The Lagrangian attains its extremal(s) when the Euler Equation, (3.D.1),
holds (Kamien and Schwartz, 2012).

∂F

∂X2S
t0

(h, T − t0)
−

∂

∂h

∂F

∂X2S′

t0
(h)

= 0 (3.D.1)

X2S′

t0
(h) denotes the derivative of X2S

t0
(h, T − t0) with respect to the consump-

tion horizon h. As ∂F/∂X2S′
t0

(h) = 0, Equation (3.D.1) is satisfied when

∂F/∂X2S
t0

(h, T − t0) = 0

where
∂F

∂X2S
t0

(h, T − t0)
= e−βhW 1−γ

t0

(
X2S

t0
(h, T − t0)

)−γ
Et0

[(
Y 2S

t0+h (h)
)1−γ

]
− λ
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∂F/∂X2S
t0

(h, T − t0) = 0 implies that

X2S
t0

(h, T − t0) = λ− 1
γ e− β

γ hW
1−γ

γ

t0
Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

(3.D.2)

We recover the Lagrange multiplier by substituting Equation (3.D.2) into
the budget constraint, (3.3.13).

λ− 1
γ =

1
´ T −t0

0 e− β
γ lW

1−γ
γ

t0
Et0

[(
Y 2S

t0+l (l)
)1−γ

] 1
γ

dl

(3.D.3)

The proof is complete by substitution of Equation (3.D.3) into Equation (3.D.2).

3.E Proof of Lemma 5

Proof. It suffices to show that ∀h ∈ [0, T − t0],

Et0

[(
Mt0+h

Mt0

)1− 1
γ

]
= Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

(3.E.1)

By comparison of Et0

[
(Mt0+h/Mt0

)1− 1
γ

]
as defined in Appendix 3.A, and the

expression for Et0

[(
Y 2S

t0+h (h)
)1−γ

] 1
γ

in Appendix 3.B, we verify that Equation
(3.E.1) holds.

3.F Proof of Lemma 6

Proof.
{

Y K
t0+u (h)

}h

u=0
is the present value at time t0 + u, of the reference port-

folio associated to the portion of wealth reserved for consumption at time t0 +h

for K ∈ {∗, 2S}. When K = 2S, by definition of Y 2S
t0+u (h) in Equation (3.3.11),

Y 2S
t0+u (h) =

W̃ 2S
t0+u (h)

W̃ 2S
t0

(h)

This implies Y 2S
t0+u (h) has the same dynamics as W̃ 2S

t0+u (h) with respect to u.

W̃ 2S
t0+u (h) is invested according to

{
θ2S

t0+u (h)
}h

u=0
=
{

θ2S
S, t0+u (h) , θ2S

B, t0+u (h)
}h

u=0
,

and its dynamics evolve according Equation (3.3.9). Hence,

dY 2S
t0+u (h)

Y 2S
t0+u (h)

=
dW̃ 2S

t0+u (h)
W̃ 2S

t0+u (h)
= Equation (3.3.9)
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Next, for K = ∗, in the complete financial market and in the absence of
arbitrage, the unique stochastic discount factor in our setting allows us to deduce
Y ∗

t0+u (h) as follows

Y ∗
t0+u (h) = Et0+u

[
Y ∗

t0+h (h) ×
Mt0+h

Mt0+u

]

= Et0+u

⎡

⎣
(

Mt0+h

Mt0

)− 1
γ

Et0

[(
Mt0+h

Mt0

)1− 1
γ

]−1
Mt0+h

Mt0+u

⎤

⎦

= Et0+u

[
M

1− 1
γ

t0+hM
1
γ

t0
M−1

t0+u

]
Et0

[(
Mt0+h

Mt0

)1− 1
γ

]−1

= M
1
γ

t0
Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

M
−1+1− 1

γ

t0+u

]
Et0

[(
Mt0+h

Mt0

)1− 1
γ

]−1

=
(

Mt0+u

Mt0

)− 1
γ

Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

]
×

Et0

[(
Mt0+h

Mt0

)1− 1
γ

]−1

(3.F.1)

The final term of Equation (3.F.1) is a constant with respect to u, and serves to
normalize the value of Y ∗

t0+0 (h). The next part of the proof showing that the
random variables have the same starting values, Y ∗

t0+0 (h) = Y 2S
t0+0 (h), clarifies

this point. As this term does not have a role in the dynamics of Y ∗
t0+u (h) with

respect to u, we focus on the first two terms, which we denote as Ỹ ∗
t0+u (h).

Ỹ ∗
t0+u (h) ≡

(
Mt0+u

Mt0

)− 1
γ

Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

]
(3.F.2)

dY ∗
t0+u (h)

Y ∗
t0+u (h)

=
dỸ ∗

t0+u (h)
Ỹ ∗

t0+u (h)

We define

Nu ≡

(
Mt0+u

Mt0

)− 1
γ

Vu (h) ≡ Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

]

and write Equation (3.F.2) as Ỹ ∗
t0+u (h) = NuVu (h). We apply Itô’s Lemma to
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obtain the dynamics of Nu and Vu (h) with respect to u.

dNu

Nu
=

1
γ

rt0+u +
1

2γ

(
1 +

1
γ

)
Γ du +

−
φS

γ
dZS, t0+u −

φr

γ
dZr, t0+u (3.F.3)

dVu (h)
Vu (h)

=
(

1 −
1
γ

)
rt0+u +

1
2γ

(
1 −

1
γ

)
Γ du +

(
1 −

1
γ

)2

σrρSrφrφSB (h − u) dZr, t0+u (3.F.4)

Γ = Equation (3.A.1)

With Equations (3.F.3) and (3.F.4), along with the Vasicek short rate model
drt0+u = κ (µr − rt0+u) du + σr dZr, t0+u, we apply Itô’s Lemma once again to
f (x, y) = xy, with x = Nu and y = Vu (h) to obtain

dỸ ∗
t0+u (h)

Ỹ ∗
t0+u (h)

= rt0+u +
1
γ

Γ +

(
1 −

1
γ

)
σrB (h − u) (φr + ρSrφS) du −

φS

γ
dZS, t0+u −

[
φr

γ
+
(

1 −
1
γ

)
σrB (h − u)

]
dZr, t0+u (3.F.5)

Γ = Equation (3.A.1)

We have thus far derived dY ∗
t0+u (h) /Y ∗

t0+u (h) and dY 2S
t0+u (h) /Y 2S

t0+u (h). To
show their equivalence, we deduce the investment policy implied by Equation
(3.F.5) by equating the diffusion terms of Equations (3.3.9) and (3.F.5). A nec-
essary and sufficient condition for Y ∗

t0+u to have the same dynamics as Y 2S
t0+u is

that the implied investment policy is identical to Equations (3.3.17) and (3.3.18),
and that the investment policy yields identical drift terms for Equations (3.3.9)
and (3.F.5).

Equating the diffusion terms of Equations (3.3.9) and (3.F.5),

θ2S
S, t0+u (h) σS = −

φS

γ

−θ2S
B, t0+u (h) σrB (τ) = −

[
φr

γ
+
(

1 −
1
γ

)
σrB (h − u)

]
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we obtain the investment policy as given by Equations (3.3.17) and (3.3.18).
Next, by substituting Equation (3.3.17) and (3.3.18) into the drift terms of
Equation (3.3.9), we get

rt0+u + 1
γ Γ + . . .

(
1 − 1

γ

)
σrB (h − u) (φr + ρSrφS) (3.F.6)

Equation (3.F.6) is identical to the drift term of Equation (3.F.5). Therefore,
the dynamics of the processes Y ∗

t0+u (h) and Y 2S
t0+u (h) are identical.

It remains to show that Y ∗
t0+0 (h) = Y 2S

t0+0 (h). We demonstrate that

Et0

[
(Mt0+h/Mt0

)1− 1
γ

]−1
in Equation (3.F.1) serves to normalize the value of

Y ∗
t0+u (h) to 1 when u = 0. Consider a h ≥ u.

Ỹ ∗
t0

(h) = Et0

[
Ỹ ∗

t0+u (h)
Mt0+u

Mt0

]

= Et0

[(
Mt0+u

Mt0

)− 1
γ

Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

]
Mt0+u

Mt0

]

= Et0

[
Et0+u

[(
Mt0+h

Mt0+u

)1− 1
γ

](
Mt0+u

Mt0

)1− 1
γ

]

=
(

1
Mt0

)1− 1
γ

Et0

[(
1

Mt0+u

)1− 1
γ

Et0+u

[
(Mt0+h)1− 1

γ

]
(Mt0+u)1− 1

γ

]

=
(

1
Mt0

)1− 1
γ

Et0

[
Et0+u

[
(Mt0+h)1− 1

γ

]]

= Et0

[(
Mt0+h

Mt0

)1− 1
γ

]

Hence, when u = 0,

Y ∗
t0

(h) = Ỹ ∗
t0

(h)Et0

[(
Mt0+h

Mt0

)1− 1
γ

]−1

= 1

Furthermore, Y 2S
t0

(h) = W̃ 2S
t0

(h) /W̃ 2S
t0

(h) = 1. Therefore, the random vari-

ables,
{

Y K
t0+u (h)

}h

u∈0
, K ∈ {∗, 2S}, have the same values at time t0.

3.G Proof of Theorem 8

Proof. We apply the Calculus of Variations (Gelfand and Fomin, 1963;
Kamien and Schwartz, 2012) to solve (3.4.6). We substitute the definition of the
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utility function, Equation (3.2.1), and of the VA payments, Equation (3.4.3),
into the objective function.

Et0

[
U
({

CV A
t0+h

}T −t0

h=0

)]
= Et0

⎡

⎣
T −t0
ˆ

0

e−βh CV A
t0+h

1−γ

1 − γ
dh

⎤

⎦

= Et0

[ T −t0
ˆ

0

e−βh

1 − γ
×

⎛

⎝Wt0

exp (−at0
(h) × h)

At0

(
{at0

(h)}T −t0

h=0

)Y V A
t0+h

⎞

⎠
1−γ

dh

]

=
1

1 − γ

T −t0
ˆ

0

e−βh

⎛

⎝Wt0

exp (−at0
(h) × h)

At0

(
{at0

(h)}T −t0

h=0

)

⎞

⎠
1−γ

×

Et0

[(
Y V A

t0+h

)1−γ
]

dh (3.G.1)

=
W 1−γ

t0

1 − γ

T −t0
ˆ

0

⎛

⎝ exp (−at0
(h) × h)

At0

(
{at0

(h)}T −t0

h=0

)

⎞

⎠
1−γ

×

exp
{

−βh + (1 − γ) gV A (t0, h)
}

dh (3.G.2)

=
W 1−γ

t0

1 − γ

T −t0
ˆ

0

⎛

⎝ 1

At0

(
{at0

(h)}T −t0

h=0

)

⎞

⎠
1−γ

×

exp {−h (β + (1 − γ) at0
(h)) +

(1 − γ) gV A (t0, h)
}

dh

=
W 1−γ

t0

1 − γ
Iγ−1

1 I2 (3.G.3)

where we obtain Equation (3.G.2) from Equation (3.G.1) by substituting Et0

[(
Y V A

t0+h

)1−γ
]
,

which is derived by a similar manner as we obtained Equation (3.C.1). I1 and
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I2 are two functionals defined as

I1 ≡ At0

(
{at0

(h)}T −t0

h=0

)
(3.G.4)

=

T −t0
ˆ

0

F1 (h) dh

F1 (h) ≡ exp (−at0
(h) × h)

I2 ≡

T −t0
ˆ

0

F2 (h) dh (3.G.5)

F2 (h) ≡ exp {−h (β + (1 − γ) at0
(h)) +

(1 − γ) gV A (t0, h)
}

gV A (t0, h) = Equations (3.C.2)

We re-write Problem (3.4.6) as the maximization of the functional J over
the set of functions at0

(h), for h ∈ [0, T − t0].

sup
{at0

(h)}T −t0

h=0

J
[
{at0

(h)}T −t0

h=0

]
(3.G.6)

J
[
{at0

(h)}T −t0

h=0

]
≡

W 1−γ
t0

1 − γ
Iγ−1

1 I2

I1 = Equation (3.G.4)

I2 = Equation (3.G.5)

Using Lagrange multipliers λ1 and λ2, we formulate the constrained Problem
(3.G.6) as an unconstrained problem.

sup
{at0

(h)}T −t0

h=0

J
[
{at0

(h)}T −t0

h=0

]
+ λ1

⎛

⎝I1 −

T −t0
ˆ

0

F1 (h) dh

⎞

⎠+

λ2

⎛

⎝I2 −

T −t0
ˆ

0

F2 (h) dh

⎞

⎠ (3.G.7)

The Euler equation and the first-order condition with respect to the Lagrange
multipliers imply the following:

W 1−γ
t0

1 − γ

[
(γ − 1) Iγ−2

1 I2S (F1, a) + Iγ−1
1 S (F2, a)

]
= 0

W 1−γ
t0

Iγ−2
1

1 − γ
[(γ − 1) I2S (F1, a) + I1S (F2, a)] = 0 (3.G.8)

(γ − 1) I2S (F1, a) + I1S (F2, a) = 0 (3.G.9)
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a ≡ {at0
(h)}T −t0

h=0 and the Euler formula, for k = 1, 2, is

S (Fk, a) ≡
∂

∂t

∂Fk

∂a′
−

∂Fk

∂a

a′ is the derivative of at0
(h) with respect to h. To proceed from (3.G.8) to

(3.G.9) , we divide both sides of the equality by W 1−γ
t0

Iγ−2
1 / (1 − γ) > 0. As nei-

ther F1 nor F2 is a function of a′, S (F1, a) = hF1 and S (F2, a) = (1 − γ) hF2.

By substitution of S (Fk, a), for k = 1, 2, Equation (3.G.9) becomes

(γ − 1) I2hF1 + I1 (1 − γ) hF2 = 0

hI1F2 = hI2F1 (3.G.10)

Equation (3.G.10) is trivially satisfied for h = 0. For h ∈ (0, T − t0], we seek
the function a = at0

(h) which satisfies I1F2 = I2F1. Notice that if F1 = F2,
then I1F2 = I2F1.

F1 = F2

exp (−at0
(h) × h) = exp

(
−h (β + (1 − γ) at0

(h)) + (1 − γ) gV A (t0, h)
)

−at0
(h) × h = −h (β + (1 − γ) at0

(h)) + (1 − γ) gV A (t0, h)

Rearranging, for h ∈ (0, T − t0],

a∗
t0

(h) =
β

γ
−

1 − γ

γ

gV A (t0, h)
h

(3.G.11)

The right limit of Equation (3.G.11), limh+→0 a∗
t0

(h) does not exist. As Equa-
tion (3.G.10) is trivially satisfied at h = 0, we impose a∗

t0
(h) ≡ 0.

3.H Proof of Theorem 9

Proof. A VA contract with the optimal AIR provides payment according to
Equation (3.4.9) at time t0 + h. The expected utility from consuming the full
amount of benefit at each date is
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Et0

[
U
(
CV A

)]
= Et0

⎡

⎣
T −t0
ˆ

0

e−βh

(
Wt0

XV A
t0

(h, T − t0) Y V A
t0+h

)(1−γ)

1 − γ
dh

⎤

⎦

=
W 1−γ

t0

1 − γ
×

T −t0
ˆ

0

e−βh
(
XV A

t0
(h, T − t0)

)1−γ
Et0

[(
Y V A

t0+h

)1−γ
]

dh

=
W 1−γ

t0

1 − γ

⎛

⎝
T −t0
ˆ

0

e− β
γ h Et0

[(
Y V A

t0+h

)1−γ
] 1

γ

dh

⎞

⎠
γ

(3.H.1)

=
W 1−γ

t0

1 − γ
×

⎛

⎝
T −t0
ˆ

0

exp
(

−
βh

γ
+

1 − γ

γ
gV A (t0, h)

)
dh

⎞

⎠
γ

Equation (3.H.1) is obtained by substitution of the definition of XV A
t0

(h, T − t0)
as given by Equation (3.4.10).

Define

F
(

u, t0, {yi (u)}7
i=1

)
≡ exp

(
−

βu

γ
+

1 − γ

γ
gV A (t0, u)

)
(3.H.2)

gV A (t0, u) as given in Equation (3.C.2), is composed of Equations (3.C.3) and
(3.C.4), and can be expressed as

gV A (t0, u) ≡ u

(
µr +

(1 − γ) σ2
r

2κ2

)
+ B (u)

(
rt0

− µr −
(1 − γ) σ2

r

κ2

)
+

(1 − exp (−2κu))
(1 − γ) σ2

r

4κ3
+ λSσSy1 (u) −

λrσrB (τ) y2 (u) −
γσ2

S

2
y3 (u) −

γσ2
rB2 (τ)

2
y4 (u) +

γρSrσrσSB (τ) y5 (u) + (1 − γ) ρSrσrσSy6 (u) −

(1 − γ) σ2
r B (τ) y7 (u) (3.H.3)

where we set
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y1 (u) =

u
ˆ

0

θV A
S, t0+l dl (3.H.4)

y2 (u) =

u
ˆ

0

θV A
B, t0+l dl (3.H.5)

y3 (u) =

u
ˆ

0

θV A2

S, t0+l dl (3.H.6)

y4 (u) =

u
ˆ

0

θV A2

B, t0+l dl (3.H.7)

y5 (u) =

u
ˆ

0

θV A
S, t0+lθ

V A
B, t0+l dl (3.H.8)

y6 (u) =

u
ˆ

0

θV A
S, t0+lB (u − l) dl (3.H.9)

y7 (u) =

u
ˆ

0

θV A
B, t0+lB (u − l) dl (3.H.10)

Hence, solving Problem (3.4.11) is equivalent to finding an extremum to the
functional

´ T −t0

0 F
(

u, t0, {yi (u)}7
i=1

)
du over the set of functions that depends

on the planning horizon, u,
{

θV A
t0+u

}T −t0

u=0
=
{

θV A
S, t0+u, θV A

B, t0+u

}T −t0

u=0
, subject to

Equations (3.H.4) to (3.H.10).

inf
{

θV A
t0+u

}T −t0

u=0

T −t0
ˆ

0

F
(

u, t0, {yi (u)}7
i=1

)
du (3.H.11)

subject to Equations (3.H.4) to (3.H.10) (3.H.12)

This is an optimal control problem with integral state equations. We proceed
by following Kamien and Muller (1976).

We append Equations (3.H.4) to (3.H.10) to the objective function with
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Lagrange multipliers {λi (u)}7
i=1, and obtain the Lagrangian

L
(

{yi (u)}7
i=1 , {λi (u)}7

i=1

)
=

T −t0
ˆ

0

F
(

u, t0, {yi (u)}7
i=1

)
du +

T −t0
ˆ

0

λ1 (u)

⎛

⎝
û

0

θV A
S, t0+l dl − y1 (u)

⎞

⎠ du +

T −t0
ˆ

0

λ2 (u)

⎛

⎝
û

0

θV A
B, t0+l dl − y2 (u)

⎞

⎠ du +

+ . . . +

T −t0
ˆ

0

λ6 (u)

⎛

⎝
û

0

θV A
S, t0+lB (u − l) dl − y6 (u)

⎞

⎠ du +

T −t0
ˆ

0

λ7 (u) ×

⎛

⎝
û

0

θV A
B, t0+lB (u − l) dl − y7 (u)

⎞

⎠ du (3.H.13)

By changing the order of integration of every appended constraint, we express
Equation (3.H.13) as

L
(

{yi (u)}7
i=1 , {λi (u)}7

i=1

)
=

T −t0
ˆ

0

H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)
du −

T −t0
ˆ

0

7∑

i=1

λi (u) yi (u) du (3.H.14)
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H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)
is the Hamiltonian given by

H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)
≡ F

(
u, t0, {yi (u)}7

i=1

)
+

θV A
S, t0+u

T −t0
ˆ

l=u

λ1 (l) dl + θV A
B, t0+u

T −t0
ˆ

l=u

λ2 (l) dl +

θV A2

S, t0+u

T −t0
ˆ

l=u

λ3 (l) dl + θV A2

B, t0+u

T −t0
ˆ

l=u

λ4 (l) dl +

θV A
S, t0+uθV A

B, t0+u

T −t0
ˆ

l=u

λ5 (l) dl +

θV A
S, t0+u

T −t0
ˆ

l=u

λ6 (l) B (l − u) dl +

θV A
B, t0+u

T −t0
ˆ

l=u

λ7 (l) B (l − u) dl (3.H.15)

By Theorem 1 of Kamien and Muller (1976), the condition for L
(

{yi (u)}7
i=1 , {λi (u)}7

i=1

)

to be stationary is

∂H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)

∂θV A
L, t0+u

= 0 for L∈ {S, B} (3.H.16)

∂H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)

∂yi (u)
= λi (u)

for i=1, 2,. . ., 7 (3.H.17)

for all u ∈ [0, T − t0]. We have

∂H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)

∂θV A
S, t0+u

=

T −t0
ˆ

l=u

λ1 (l) dl + 2θV A
S, t0+u

T −t0
ˆ

l=u

λ3 (l) dl +

θV A
B, t0+u

T −t0
ˆ

l=u

λ5 (l) dl +

T −t0
ˆ

l=u

λ6 (l) B (l − u) dl (3.H.18)
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∂H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)

∂θV A
B, t0+u

=

T −t0
ˆ

l=u

λ2 (l) dl + 2θV A
B, t0+u

T −t0
ˆ

l=u

λ4 (l) dl +

θV A
S, t0+u

T −t0
ˆ

l=u

λ5 (l) dl +

T −t0
ˆ

l=u

λ7 (l) B (l − u) dl (3.H.19)

Moreover,

∂H
(

u, {yi (u)}7
i=1 , {λi (u)}7

i=1

)

∂yi (u)
=

∂F
(

u, t0, {yi (u)}7
i=1

)

∂yi (u)

=
1 − γ

γ

∂gV A (t0, u)
∂yi (u)

×

F
(

u, t0, {yi (u)}7
i=1

)
(3.H.20)

By substituting Equation (3.H.20) into Equation (3.H.17), we recover the La-
grange multipliers. For i = 1, 2, . . . , 7,

λi (u) =
1 − γ

γ

∂gV A (t0, u)
∂yi (u)

F
(

u, t0, {yi (u)}7
i=1

)
(3.H.21)

We substitute Equation (3.H.21) for i = 1, 3, 5, 6 in Equation (3.H.18), whereas
in Equation (3.H.19), we substitute Equation (3.H.21) for i = 2, 4, 5, 7. By
Equation (3.H.16), for all u ∈ [0, T − t0], and both L ∈ {S, B},

ˆ T −t0

u
F
(

l, t0, {yi (l)}7
i=1

)
GL

(
u, t0, T ; θV A

t0+u

)
dl = 0 (3.H.22)

where

GS

(
u, t0, T ; θV A

t0+u

)
= λSσS − θV A

S, t0+uσ2
Sγ + θV A

B, t0+uρSrσrσSB (τ) γ +

(1 − γ) ρSrσrσS

ˆ T −t0

u
B (n − u) dn (3.H.23)

GB

(
u, t0, T ; θV A

t0+u

)
= −λrσrB (τ) − θV A

B, t0+uσ2
r B2 (τ) γ +

θV A
S, t0+uρSrσrσSB (τ) γ −

(1 − γ) σ2
rB (τ)

ˆ T −t0

u
B (n − u) dn (3.H.24)
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3.I Setup of the Kalman Filter

To estimate the financial market parameters, we adopt the Kalman filtering
approach. This involves expressing the model in state space form, upon which
the Kalman filter is applied to obtain the log-likelihood function to be maxi-
mized. The Kalman filter is a widely adopted method for the estimation of fi-
nancial market parameters (e.g., Campbell and Viceira, 2001; Brennan and Xia,
2002; Munk et al., 2004; Koijen et al., 2010).

There are two unobserved state variables, the short rate and the log returns
to the stock index. The yields of the bonds of four different maturities (i.e., 3
months, 1, 5 and 10 years), and the log returns to the stock index constitute
the measurement equations.

Let Ft be an element of the sequence forming a filtration on the states of
the world, Ω, in the probability space (Ω,F,P) on which the financial market is
defined. The short rate process, r, is discretized as rt+∆t = µr

(
1 − e−κ∆t

)
+

e−κ∆trt + w1, t, w1, t =
´ t+∆t

t e−κ(t−l)σr dZr,l, which implies

rt+∆t|Ft ∼ N

(
µr

(
1 − e−κ∆t

)
+ e−κ∆trt,

σ2
r

2κ

(
1 − e−2κ∆t

))

The stock index diffusion process is discretized as

log
(

St+∆t

St

)
=
(

rt + λSσS −
σ2

S

2

)
∆t + w2, t

w2, t ∼ N
(
0, σ2

S∆t
)
.16

The discretized short rate and log of the stock index diffusion processes define
the state equation:

[
rt+∆t

log
(

St+∆t

St

)
]

=

[
e−κ∆t 0

∆t 0

][
rt

log
(

St+∆t

St

)
]

+

[
µr

(
1 − e−κ∆t

)

∆t
(

λSσS − σ2
S

2

)
]

+

[
w1, t

w2, t

]
(3.I.1)

wt = (w1, t, w2, t) ∼ N (0, Q).

Q =

[
σ2

r

2κ

(
1 − e−2κ∆t

)
ρ̄

ρ̄ σ2
S∆t

]

16Confer Appendix B of Bolder (2001) for details on the derivation.
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, ρ̄ = cov (w1, t, w2, t) = σrσSρSr/κ
(
1 − eκ∆t

)
.17

The observation equation is composed of bond yields of maturities 3 months,
1, 5 and 10 years (i.e., n = 4 in (3.I.2)) and the return on the stock index.

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

z(t, T1)
z(t, T2)

...
z(t, Tn)

log
(

St

St−∆t

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

B(t, T1)
T1−t 0

B(t, T2)
T2−t 0

...
...

B(t, Tn)
Tn−t 0

0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

[
rt

log
(

St

St−∆t

)
]

+

⎡

⎢⎢⎢⎢⎢⎢⎣

− A(t, T1)
T1−t

− A(t, T2)
T2−t
...

− A(t, Tn)
Tn−t

0

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎣

v1, t

v2, t

...
vn, t

vn+1, t

⎤

⎥⎥⎥⎥⎥⎥⎦
(3.I.2)

z(t, T ) = − log [P (t, T )] / (T − t) is the yield on a bond of maturity T − t;
v = (v1, v2, . . . , vn, vn+1), v ∼ N (0, R), R is an (n + 1) × (n + 1) positive semi-
definite matrix with zeros on the last row and last column because we assume
that stock return is observed without measurement error.18

17The derivation of ρ̄ is provided in Section 3.I.1.
18If vn+1,t ̸= 0 and w2,t ̸= 0, then they are unidentified; we are unable to determine the

measurement error from the innovation of the latent state.
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3.I.1 Derivation of ρ̄

We have w1, t =
´ t+∆t

t e−κ(t−l) σr dZr, l, w2, t =
´ t+∆t

t σS dZS, l, and the
correlation between Zr, t and ZS, t is ρSr.

ρ̄ = cov (w1, t, w2, t)

= E [w1, tw2, t] − E [w1, t]E [w2, t]

= E [w1, tw2, t]

= E

⎡

⎣
t+∆t
ˆ

t

e−κ(t−l) σr dZr, l ×

t+∆t
ˆ

t

σS dZS, l

⎤

⎦

= E

⎡

⎣
t+∆t
ˆ

t

e−κ(t−l) σrσS d ⟨Zr, ZS⟩l

⎤

⎦

= E

⎡

⎣
t+∆t
ˆ

t

e−κ(t−l) σrσSρSr dl

⎤

⎦

= σrσSρSrE

⎡

⎣
t+∆t
ˆ

t

e−κ(t−l) dl

⎤

⎦

=
σrσSρSr

κ

(
1 − eκ∆t

)

3.J Sign of the derivative of Vart [rt+u] with re-

spect to κ

Lemma 10. For any t ∈ [0, T ], when {rt+u}T −t
u=0 follows the Vasicek (1977)

model and u, κ > 0, ∂Vart [rt+u] /∂κ < 0.

Proof. By Equation (3.6.1),

∂Vart [rt+u]
∂κ

=
σ2

r u

κ
exp (−2κu) −

σ2
r

2κ2
(1 − exp (−2κu)) (3.J.1)

As σr > 0 and κ > 0, we divide Equation (3.J.1) by σ2
r /κ > 0. ∂Vart [rt+u] /∂κ <

0 if and only if

u exp (−2κu) −
1
2κ

(1 − exp (−2κu)) < 0

exp (−2κu) (2κu + 1) < 1
1

e2κu
<

1
1 + 2κu

(3.J.2)
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The inequality Equation (3.J.2) is valid if and only if e2κu > 1 + 2κu,
∀u, κ > 0. This holds by a known result of the exponential function. Therefore,
∂Vart [rt+u] /∂κ < 0, ∀u, κ > 0.

3.K Mortality Credit

We assess the magnitudes of the utility loss due to a VA*’s impaired interest
rate risk hedge and the utility gain from mortality credit, assuming that only
the VA* offers mortality credit while the 2S does not.

We assume that the VA* underwriter has no default risk and determines the
mortality credit based on the Society of Actuaries (SoA) 2014 mortality tables
for male and female healthy annuitants. The SoA construct these tables using
the actual mortality experience of uninsured private retirement plans. As the
SoA mortality rates are defined up till age 120, we extend the horizon of the
base case by 10 years as well. We estimate the CEWL (Equation (3.5.2)) for
the base case parameters.

Figure 3.K.1 shows the CEWL by the individual’s risk aversion level. When
there is no mortality credit, all individuals prefer the 2S. Our reasoning on
the positive relation between the consumption horizon and the CEL in Section
3.6 applies to the observation that the estimated CEWLs in Figure 3.K.1 are
higher than those in the base case. When the VA offers mortality credit, only
highly risk-averse individuals prefer the 2S over VA*. Furthermore, due to
the higher mortality rates for males relative to those for females, which yields
higher mortality credit for males than females, preference for the VA* is greater
for males than it is for females. The utility gain from the default-free VA*’s
mortality credit compensates for the utility loss from the contract’s impaired
interest rate risk hedge when individuals are not overly risk-averse.
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Figure 3.K.1: CEWL with Mortality Credit

This figure presents the CEWL by the individual’s risk aversion level, γ that
ranges from 2 to 10, when a default-risk-free VA* provides mortality credit
that is determined according to the Society of Actuaries 2014 Mortality Tables
for male and female healthy annuitants. All other parameters are identical to
those in the base case.
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Conclusion

The rising cost of retirement financing that is attributable to lengthier life
expectancies and the financial market situation have prompted the stakeholders
to re-evaluate their roles. In response, employers transfer the management of
financial and biometric risks onto individuals, who are compelled to shoulder
greater responsibility for their financial security in retirement. Insurers are cop-
ing with the challenge of offering contracts with financial return guarantees by
turning their attention to unit-linked contracts, while the policymaker is tasked
with revising the regulation that would shape the future retirement environment.

This dissertation explicates the roles of individuals, the policymaker and the
insurer in the creation of sustainable retirement solutions. We demonstrate the
dominance of regulatory requirements in determining DB pension plans’ invest-
ment risk-taking in Chapter 1. Our estimate of the extent that rules and plan
characteristics account for the variation of investment risk among DB plans can
inform the policymaker. In Chapter 2, we contrast two ways for individuals
to manage longevity risk, and evaluate the longevity risk premium. We then
turn to focus on financial market risk in Chapter 3, in which we illustrate that
the variable annuity is unable to optimally hedge interest rate risk. Numerous
points for the policymaker’s consideration arise from our investigation.

A retirement system is sustainable only when the stakeholders’ incentives
are compatible. This dissertation attempts to better comprehend of the roles
of each stakeholder in the changing landscape. The insights garnered are hoped
to contribute toward nurturing a resilient retirement system.
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Résumé en Français

Le financement des régimes de retraite est soumis aux fluctuations des marchés
financiers et aux évolutions démographiques. La situation économique après la
crise financière de 2007-2009, couplée à un allongement de l’espérance de vie,
provoque une envolée du coût du financement des régimes de retraite incitant
les acteurs à réévaluer leurs rôles.

L’employeur, par exemple, remanie son régime de retraite professionnel pour
gérer ses coûts. Ces changements transfèrent à l’individu la majeure partie des
risques financiers et biométriques. Chargé de la refonte du système, le législa-
teur doit réorganiser le cadre règlementaire pour une meilleure harmonisation
des intérêts de toutes les parties prenantes. La présente thèse examine le rôle des
acteurs du financement des régimes de retraite dans un monde en évolution : le
législateur, l’individu et l’assureur. Elle clarifie la réponse apportée par chaque
partie prenante pour relever les défis du financement des régimes de retraite.

Le Chapitre 1 concerne le législateur et l’employeur. Il étudie les investisse-
ments des régimes de retraite à prestations définies (PD) par rapport à la règle-
mentation en matière d’investissement, de valorisation et de comptabilité. Dans
le cadre des régimes PD, les employeurs assurent une rente à vie à leurs salariés
et assument la plupart des risques. Les investissements des régimes PD font
l’objet d’une grande attention, non seulement car les gains financiers stimulent
le revenu de retraite, mais aussi car ils constituent une source de capital pour le
financement à long terme de l’économie, pour la construction d’infrastructures
par exemple.
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La compensation du coût des prestations versées par des rendements fi-
nanciers élevés pourrait, en théorie, induire un comportement plus risqué des
promoteurs de régimes. Une intervention règlementaire est donc justifiée. Il
convient alors d’étudier l’impact des exigences règlementaires sur les investisse-
ments des régimes PD. À ce jour, la littérature traite strictement d’une poignée
de contraintes règlementaires et se focalise sur les états-Unis. L’exploitation de
l’hétérogénéité du cadre règlementaire relatif aux régimes PD aux états-Unis, au
Canada et aux Pays-Bas révèle que les exigences règlementaires influencent de
façon statistiquement significative la prise de risque des fonds PD. Cela étant, la
portée économique de ces contraintes varie. Les exigences de fonds propres liées
aux risques et l’évaluation à la valeur de marché sont associées à une baisse de
7 % des investissements risqués. Par contraste, le taux d’actualisation du passif
a une influence moindre ; par exemple, un taux d’actualisation du passif plus
élevé de 1 % est associé à une hausse de seulement 0,8 % en moyenne des act-
ifs à risque. Comme pour le taux d’actualisation du passif, les caractéristiques
des fonds (par ex., part des retraités, valeur des actifs) ont également un faible
impact économique sur la variation de la prise de risque des régimes PD.

Par ailleurs, l’étude révèle que pour les contraintes de solvabilité – l’un des
principaux mécanismes employés, c’est-à-dire soit une exigence minimale de
financement soit des exigences de fonds propres liées aux risques –, le comporte-
ment du fonds dépend de la situation des marchés financiers. Une exigence
de solvabilité fondée sur une évaluation du risque est associée à une moindre
prise de risque par un fonds règlementé, quelles que soient les conditions du
marché. Un niveau de financement minimal défini, en revanche, est associé à
des investissements moins risqués pendant la crise financière uniquement. Ces
informations sont utiles pour un législateur, qui compense le besoin de protéger
les individus par une modulation de la prise de risque des investissements, sans
pour autant décourager les investissements de régimes PD dans des projets à
long terme essentiels à la croissance économique.

Si les régimes PD représentent, en valeur d’actifs, la majorité des comptes de
retraite professionnels, les régimes de retraite à cotisations définies (CD) enreg-
istrent une croissance progressive mais régulière. Dans le cadre des régimes CD,
le rôle de l’employeur est réduit au versement du taux de base de cotisations sur
le compte de retraite du salarié. La gestion des investissements et le versement
des prestations de retraite sont réalisés par un prestataire de services, gestion-
naire de fonds ou assureur par exemple. C’est sur ce système que reposent le
plan d’épargne-retraite 401(k) aux états-Unis et les régimes de retraite complé-
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mentaire individuels (Personal Pension Schemes, PPS) au Royaume-Uni. Con-
séquence pour les individus du passage d’un régime PD à un régime CD, ils
ne sont plus protégés contre le risque de longévité, auparavant classiquement
assumé par le promoteur du régime PD. Le risque de longévité est lié à une
mauvaise estimation des probabilités de survie. Ce risque systématique ne peut
pas être diversifié par une mutualisation. Les individus assument le risque ou le
transfèrent, en en supportant le coût, à un assureur.

Le Chapitre 2 étudie le risque de longévité dans le cadre du régime CD. Il
présente les différences entre deux options de gestion du risque à la disposition
des individus : supporter le risque collectivement ou s’en décharger auprès d’un
assureur par l’achat d’une annuité. Le capital de l’assureur peut être composé
de fonds propres recueillis auprès d’investisseurs et/ou du produit de la vente de
l’annuité à un prix supérieur à son meilleur prix de valorisation. Chaque source
de capital est assortie de conséquences spécifiques. Les actionnaires souhaitent
être rémunérés par une prime de risque de longévité. À l’opposé, la demande
des individus pour ce contrat est déterminée par la comparaison de leur niveau
de bien-être avec un régime collectif et avec un contrat d’annuités. L’assureur
doit donc garantir sa capacité à rémunérer ses actionnaires, sans pour autant
trop augmenter le chargement pour les individus, afin d’éviter qu’ils ne forment
un régime collectif. La littérature existante omet l’actionnaire, considérant que
la totalité du capital « tampon » est constituée par le chargement payé par les
individus. Cette hypothèse est incohérente avec les estimations indiquant que
la volonté des individus à payer pour s’assurer contre le risque de longévité est
nettement plus faible que le niveau de fonds propres nécessaires pour fournir le
contrat (par ex., un manque à gagner de 17 % de la valeur du contrat). Les ac-
tionnaires doivent donc être pris en compte pour faire concorder ces estimations.

L’étude révèle que les individus ont une légère préférence pour l’organisation
collective. En conséquence, le prestataire de contrat ne peut pas proposer une
prime de risque de longévité à ses actionnaires. Dans ce cadre, pour couvrir le
risque de longévité, les régimes collectifs et un marché des annuités ont peu de
chances de coexister si l’assureur ne tire pas d’avantage à traiter ce risque, au
moyen de la réassurance ou de la synergie entre les produits par exemple (par
ex., la vente d’assurances vie, qui présentent une exposition inverse au risque de
longévité). Les résultats de l’étude prônent la mise en place de régimes collectifs.
Même si, vis-à-vis du risque de longévité, une solution collective est privilégiée,
les annuités pourraient néanmoins s’avérer utiles si elles permettent d’atténuer
les risques des marchés financiers.
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Le Chapitre 3 porte sur le problème du niveau optimal de consommation et
d’investissement face aux risques liés aux fluctuations des taux d’intérêt et au
marché des actions. Une modélisation des taux d’intérêt à l’aide d’un processus
gaussien de retour à la moyenne offre la solution à ce problème. Une formulation
équivalente de ce problème est présentée et appliquée pour démontrer qu’une
annuité variable ne parvient pas à couvrir de façon optimale le risque de taux
d’intérêt. Avec un portefeuille indiciel unique, l’annuité variable ne peut pas
simultanément couvrir le risque de taux d’intérêt à chaque période de consom-
mation.

La perte de bien-être en résultant est importante sur le plan économique et
s’avère d’autant plus grave quand le niveau de retour à la moyenne du taux
d’intérêt est bas ou quand les taux d’intérêt sont plus fluctuants. La formula-
tion alternative propose une amélioration éliminant cet inconvénient de l’annuité
variable. Cette présentation peut orienter les assureurs dans l’élaboration de
contrats plus appréciés des individus, pour lesquels ces derniers seront alors plus
enclins à payer un prix plus important. De plus, elle apporte des informations au
législateur qui supervise les types de contrats autorisés. Les régimes CD étant
de plus en plus courants, le choix des individus en matière d’investissements et
de produits d’assurance est d’une importance capitale pour leur bien-être à la re-
traite. Favoriser l’offre de contrats augmentant les possibilités pour les individus
d’améliorer le financement de leur retraite devrait faire partie des nombreuses
intentions du législateur.

Une vision holistique est indispensable pour relever le défi des retraites. La
présente thèse fait la lumière sur les rôles des législateurs, assureurs et individus,
et fournit des informations sur les pressions exercées sur le financement des
retraites. S’appuyant sur les connaissances passées, les analyses intègrent les
tendances et innovations actuelles pour caractériser l’environnement futur de la
retraite. Ces découvertes devraient favoriser la compréhension de cette situation
délicate et, grâce à leurs implications, l’élaboration de politiques permettant de
l’affronter.
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