

Tilburg University

Simulation Optimization through Regression or Kriging Metamodels

Kleijnen, J.P.C.

Publication date:
2017

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C. (2017). Simulation Optimization through Regression or Kriging Metamodels. (CentER
Discussion Paper; Vol. 2017-026). CentER, Center for Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/c7f60f02-9dc5-41fc-897f-2e58c1824f01

No. 2017-026

SIMULATION OPTIMIZATION THROUGH
REGRESSION OR KRIGING METAMODELS

By

Jack P.C. Kleijnen

16 May, 2017

ISSN 0924-7815
ISSN 2213-9532

Simulation Optimization through
Regression or Kriging Metamodels

Jack P.C. Kleijnen
Tilburg University, Postbox 90153, Tilburg, Netherlands

kleijnen@tilburguniversity.edu

May 16, 2017

Abstract

This chapter surveys two methods for the optimization of real-world
systems that are modelled through simulation. These methods use ei-
ther linear regression metamodels, or Kriging (Gaussian processes). The
metamodel type guides the design of the experiment; this design fixes the
input combinations of the simulation model. These regression models uses
a sequence of local first-order and second-order polynomials– known as
response surface methodology (RSM). Kriging models are global, but are
re-estimated through sequential designs. "Robust" optimization may use
RSM or Kriging, and accounts for uncertainty in simulation inputs.

Keywords: Cross-validation, Robust optimization, Regression analy-
sis, Kriging, Gaussian process, Response surface methodology (RSM), Ef-
ficient global optimization (EGO), Taguchi, Bootstrap, Common random
numbers (CRN), Latin hypercube sampling (LHS), Karush-Kuhn-Tucker
(KKT).

JEL: C0, C1, C9, C15, C44

1 Introduction

In this chapter we survey two methods for simulation optimization (SO) where
SO means optimization of real-world systems modelled through simulation; this
SO may have a single objective or multiple objectives. Examples are the op-
timization of the number of checkout lanes at a specific supermarket, and the
optimization of the order quantities for the many inventory items in such a
supermarket. We may also apply SO to calibrate a simulation model; i.e., to es-
timate the optimal parameter values of the simulation model. For example, Liu
et al. (2017) calibrates an agent-based simulation (ABS) model of an emergency
department while data are scarce.
Actually, there are many SO methods, as this book illustrates. Some SO

methods use metamodels– also called surrogates or emulators– which we define

1

as explicit and relatively simple approximations of the input/output (I/O) func-
tions that are implicitly defined by the given simulation models. Metamodels
treat these simulation models as black boxes; i.e., only the I/O (not the internal
variables) of the simulation model is observed. There are many types of meta-
models; e.g., artificial neural networks (ANNs), radial basis functions (RBFs),
and splines; see Bartz-Beielstein and Zaefferer (2017) and Kleijnen (2015, p. 10).
Moreover, these metamodel types may be combined into a so-called ensemble;
see Bartz-Beielstein and Zaefferer (2017), Friese et al. 2016), and Kleijnen (2015,
p.11). We, however, focus on one of the following two types: (i) first-order and
second-order polynomials– which are linear regression models– that are applied
in response surface methodology (RSM), and (ii) Kriging or Gaussian process
(GP) models. Both types can be extended from single-objective (univariate,
scalar) to multi-objective (multivariate, vector) SO. We provide a state-of-the-
art survey of SO using one of these two types of metamodels. As we stated
above, no metamodels are used by some other SO methods; e.g., evolutionary
methods, artificial ant colonies, and simulated annealing. The advantage of
using metamodels is that they result in more effi cient SO methods. This effi -
ciency is important if the simulation is expensive; i.e., the simulation requires
much computer time to obtain the value of the simulation objective(s) for a
specific combination of simulation inputs or scenario. A first example is the
deterministic simulation of a car-crash model at Ford that required 36 to 160
hours of computer time; see Simpson et al. (2004). A second example is a ran-
dom simulation of a waiting-line system that requires very many "customers"
if we want an accurate estimate of the steady-state mean waiting-time for a
high traffi c rate. A third example is a random "rare event" simulation aimed at
estimating a small probability (such as the probability of a nuclear accident),
so we need an extremely long simulation run (unless we successfully apply im-
portance sampling). Moreover, even if the simulation is cheap (computationally
inexpensive), the number of input combinations may be so big that it becomes
expensive or impossible to simulate all possible combinations; actually, if one
or more inputs are continuous variables, then there are infinitely many combi-
nations. Altogether, metamodels are effi cient and effective, provided they are
"adequate" approximations. An additional advantage of regression and Kriging
metamodels is that they can quantify the uncertainty (measured through the
variance) of their predictors, as we shall see in the next sections.
Note: Regression models have been developed and applied since the 1800s:

Gauss used least-squares (LS) regression. Kriging originated in geostatistics
or spatial data, and was named after the South-African mining engineer Krige
(born 1919); see Cressie (1993). Kriging has also become popular in machine
learning ; see Rasmussen and Williams (2006). Kriging in deterministic simu-
lation or computer experiments started with Sacks et al. (1989). Kriging in
discrete-event simulation got established in Ankenman et al. (2010). Recent
references and software for Kriging in both types of simulation are presented
in Kleijnen (2015, pp. 179—239). Jalali and Van Nieuwenhuyse (2015) claims
that metamodel-based optimization is "relatively common" and that RSM is
the most popular metamodel-based method, while Kriging is popular in theo-

2

retical publications. We note that most simulation models have many inputs,
which leads to the curse of dimensionality ; in such situations we should apply
so-called factor screening before optimization; see Kleijnen (2015, pp. 135—178)
and Kleijnen (2017). Finally, we note that Pontes et al. (2016) optimizes ANNs,
applying full factorial designs and evolutionary operations (EVOP).
As the preceding text illustrates, in this chapter we discuss both determin-

istic simulation and random (or stochastic) simulation. There are various types
of random simulation: discrete-event dynamic systems, agent-based simula-
tion, and stochastic differential equations. Mathematically, these simulations
give random outputs (responses) because these outputs are transformations of
pseudorandom numbers (PRNs); these PRNs are produced by a PRN generator
that uses an initial PRN or seed, which is a special type of simulation input.

SO requires experimentation with the simulation model; i.e., we simulate
different "values" or "levels" for the simulation model’s parameters, input val-
ues, and starting values of the inputs– we use the terminology in Zeigler et al.
(2000); i.e., we must infer the value of a parameter, whereas we can directly
observe the value of an input. For example, in a queueing or waiting-line simu-
lation for a supermarket we may start with an "empty" (no waiting customers)
simulated system, exponential interarrival times with a fixed arrival rate, and
a fixed number of servers with a given "helping" rate and cost per server; our
goal is to estimate the optimal number of servers. The statistical theory on the
design of experiments (DOE) speaks of factors, which have fixed values during
one "run" of the simulation experiment; by definition, DOE determines the in-
put combinations of the experiment. When we experiment, we use a metamodel.
Actually, simulation analysts may not realize that they are using a metamodel;
e.g., if they change only one factor at a time, then they implicitly assume that
the factors do not interact. As we shall see in this chapter, a metamodel is used
to analyze the simulation I/O data; this metamodel also determines the type of
design for the simulation experiment.
Note: Classic or "traditional" DOE and design and analysis of simulation

experiments (DASE) have the following important differences. DOE was devel-
oped for real-world experiments in agriculture, engineering, psychology, etc. In
these experiments it is impractical to investigate “many” factors; i.e., ten fac-
tors seems a maximum. Moreover, it is hard to investigate more than “a few”
levels per factor; five levels seems the limit. Simulation models, however, may
have thousands of factors– each with many values. Consequently, a multitude
of factor combinations may be simulated (also see our comments on "expensive"
and "cheap" simulations). Moreover, simulation is well-suited to “sequential”
designs instead of “one shot” designs, because simulation experiments run on
computers that typically produce output sequentially (apart from parallel com-
puters; see this book and Gramacy (2015)), whereas agricultural experiments
run during a single growing season. Altogether, many simulation analysts need
a change of mindset. We also refer to Sanchez et al. (2012).
In robust optimization (RO) we may try to estimate the optimal combination

of the decision variables of the simulation model while accounting for uncertainty
in the parameters of that model. In this chapter we shall present RO approaches

3

based on either Taguchi or mathematical programming (MP).
Note: Taguchi has been popular in mechanical engineering, since several

decades. In MP, RO is a recent important topic. Taguchi inspired RO through
RSM in Dellino et al. (2010), while Taguchi inspired RO through Kriging in
Dellino et al. (2012) An example of RO in MP is Bertsimas and Mišíc (2017).
An example of RO combining Taguchi and MP is Yanikoglu et al. (2017).
We base this survey on Kleijnen (2017), which is a tutorial based on Kleij-

nen (2015). Actually, Kleijnen (2017) surveys more topics, besides SO; in this
chapter we also survey deterministic simulation, besides random simulation.
Kleijnen (2015) includes hundreds of additional references, and many website
addresses for software.
We organize this chapter as follows. Section 2 summarizes classic linear re-

gression and DOE. Section 3 presents solutions for DASE if the classic statistical
assumptions are violated in practice. Section 4 presents RSM. Section 5 sum-
marizes Kriging and its designs. Section 6 presents SO using Kriging. Section
7 extends RSM and Kriging to RO. We try to use mathematical symbols con-
sistently, but sometimes we ran out of symbols so the context should eliminate
confusion; e.g., r has multiple meanings.

2 Classic linear regression and designs

Because we assume that the readers are familiar with classic linear regression,
we limit our discussion of this regression to definitions of our mathematical
symbols and terminology. We define w = fsim (z, r) where w denotes the scalar
simulation output (e.g., average waiting time), fsim the implicit I/O function
of the simulation model, z the k-dimensional vector with the values of the k
simulation inputs, and r the seed of the PRNs used by the random simulation
model; in deterministic simulation, this special input r vanishes. Usually (but
not in RSM), z is standardized (scaled) such that the resulting input d has
elements either −1 ≤ dj ≤ 1 or 0 ≤ dj ≤ 1 with j = 1, ..., k. We approximate w
= fsim (z,r) by y = fmeta(x) + e where y is the metamodel output, which may
deviate from w so the approximation error e may have µe 6= 0; if µe = 0, then
we call fmeta adequate or valid.
The simplest optimization problem has no input constraints besides simple

box constraints such as 0 ≤ dj ≤ 1; it has continuous inputs, which have no
uncertainty. Moreover, it concerns the expected value of a single output, E(w);
this E(w) may represent the probability of a binary variable such as failure or
success, but excludes quantiles and the mode of the output distribution.

2.1 Classic linear regression

We define the linear regression (meta)model y = XNβ + e where y denotes
the N -dimensional vector with the observations on the dependent (explained)
variable, N =

∑n
i=1mi with n the number of simulated input combinations, mi

the number of replications for combination i (obviously, deterministic simulation

4

implies mi = 1 so N = n), XN is the N×q matrix of independent (explanatory)
regression variables– obviously, XN has mi identical rows, whereas Xn denotes
the corresponding n × q matrix without any identical rows determined by the
n × k design matrix D and the type of regression model (e.g., second-order
polynomial), β denotes the q-dimensional vector with regression parameters
(coeffi cients), and e denotes the N -dimensional vector with the residuals E(y)
− E(w) where w denotes the N -dimensional vector with independent simula-
tion outputs; this independence requires that random simulation does not use
common random numbers (CRN). We also define the q-dimensional row vector
xi = (xi;1, ..., xi;q).
We focus on a special type of linear regression; namely, a second-order poly-

nomial with k simulation inputs, which has an intercept β0, k first-order effects
βj (j= 1, ..., k), k(k−1)/2 two-factor interactions (cross-products) βj;j′ (j < j′),
and k purely quadratic effects βj;j . These interactions mean that the effect of
an input depends on the values of one or more other inputs. A purely quadratic
effect means that the marginal effect of the input is not constant, but either
diminishes or increases. This polynomial is nonlinear in x, and linear in β, so
this polynomial is a linear regression model We assume that interactions among
three or more inputs are unimportant, because such interactions are hard to
interpret and in practice are often unimportant indeed. Of course, we should
check this assumption; i.e., we should "validate" the estimated metamodel (see
Section 3.5).
The ordinary least squares (OLS) estimator of β is β̂ = (X′NXN)

−1
X′Nw,

assuming the inverse of X′NXN exists; e.g., β̂ exists if XN is orthogonal. If
mi is a positive integer constant (say) m, then we may replace w by w with
the n elements wi =

∑m
r=1 wi;r/m and replace XN by Xn. Moreover, β̂ is

the maximum likelihood estimator (MLE) if e is white noise, so e is normally,
independently. and identically distributed (NIID) with zero mean and constant
variance σ2e ; i.e., e ∼ NN (0N , σ

2
eIN×N) where NN stands for N -variate (see

subscript) normally (symbol: N) distributed, 0N for the N -dimensional vector
with zeroes, and IN×N for the N×N identity matrix. If the metamodel is valid,
then σ2e = σ2w. White noise implies that β̂ has the q×q covariance matrix Σβ̂ =
(X′NXN)−1σ2w. Because σ

2
w is unknown, we estimate σ

2
w = σ2e through the mean

squared residuals (MSR) (ŷ−w)′(ŷ−w)/(N−q) with predictor ŷ = XN β̂
′ and

degrees of freedom (DOF) N − q > 0; this inequality is satisfied, even if n = q

but mi > 1 for at least one value of i. This MSR gives the estimator Σ̂β̂ . This

Σ̂β̂ has a main diagonal with the elements s
2(β̂g) (g = 1, ..., q), which give the

square roots s(β̂g). Confidence intervals (CIs) and tests for the individual β̂g
follow from the Student t-statistic with N − q DOF: tN−q = (β̂g − βg)/s(β̂g).
Finally, ŷ = XN β̂

′ implies s2(ŷ|xi) = x′iΣ̂β̂xi. This s2(ŷ|xi) is minimal at the
center of the experimental area.
Given the equality Σβ̂ = (X′NXN)−1σ2w, we may select XN such that we

"optimize" Σβ̂ . Obviously, XN is determined by Xn, mi, and the type of
regression model (e.g., XN may include x2j). DOE does not say much about

5

the selection of mi; typically, DOE assumes mi = 1. If mi = m ≥ 1, then an
orthogonal Xn implies an orthogonal XN (we may specify XN as Xn "stapled"
or "stacked" m times). We shall further discuss mi in Section 3.3. In the
next subsections we shall discuss first-order and second-order polynomials. The
order of these polynomials require designs of a specific resolution (abbreviated
to R). Obviously, Xn is determined by D. To select a specific D with zi;j
standardized such that −1 ≤ di;j ≤ 1, we try to minimize Var(β̂g) (g = 1, ...,
q); other criteria are discussed in Kleijnen (2015, pp. 66—67). We can prove
that this minimization requires an orthogonal XN , which gives Σβ̂ = (NI)−1σ2w

= Iσ2w/N . Because this Σβ̂ is diagonal, the β̂j are statistically independent.

Moreover, these β̂j have the same variance; namely, σ2w/N . So we can rank the
explanatory variables in order of importance, using either β̂g or tN−q with βg
= 0 (so tN−q = β̂g/s(β̂g)); usually, we do not hypothesize that the intercept β0
is zero.
Note: If all β̂g are independent, then the full regression model with q effects

and the reduced model with nonsignificant effects eliminated have identical val-
ues for those estimated effects that occur in both models. If not all β̂g are inde-
pendent, then so-called backwards elimination of nonsignificant effects changes
the values of the remaining estimates.

2.2 R-III designs for first-order polynomials

If a first-order polynomial is an adequate metamodel, then changing one factor
at a time gives unbiased β̂j (j = 1, ..., k). However, these β̂j do not have
minimum variances; a R-III design does minimize these variances because this
design gives an orthogonal XN , as we shall see in this subsection. Furthermore,
we can prove that Var(β̂j) is minimal if we simulate only two levels per factor,
as far apart as the experimental area allows (in either a one-factor-at-a-time or
a R-III design); see Kleijnen (2015, pp. 44—49).
R-III designs are also known as Plackett-Burman (PB) designs. A subclass

are fractional-factorial two-level R-III designs, denoted by 2k−pIII with integer p
such that 0 ≤ p < k and 2k−p ≥ 1 + k: we first discuss these 2k−pIII designs.
Any 2k−p design is balanced ; i.e., each input is simulated n/2 times at its lower
value (say) Lj and at its higher value Hj . Furthermore, such a design gives an
orthogonal Xn. This design may be saturated : N = q (with N =

∑n
i=1mi, n =

2k−p, and q = 1 + k). A saturated design implies that the MSR is undefined
(because N − q = 0). To solve this problem, we may obtain replications for
one or more combinations of this design; e.g., the combination at the center of
the experiment where dj = 0 if dj is quantitative and dj is randomly selected as
−1 or 1 if dj is qualitative with two levels. A simple algorithm for constructing
2k−pIII designs is given in Kleijnen (2015, pp. 53—54).
Whereas 2k−pIII designs have n equal to a power of 2, there are also PB designs

with n a multiple of 4; e.g., 8 ≤ k ≤ 11 implies n = 12 (whereas 212−8III implies n
= 16). If 8 ≤ k < 11, then we do not use n−(k+1) columns ofD. Actually, there

6

are PB designs for 12 ≤ n ≤ 96; for 12 ≤ n ≤ 36 these designs are tabulated
in Montgomery (2009, p. 326) and Myers et al. (2009, pp. 165). Like 2k−pIII

designs, these PB designs are balanced and they give an orthogonal Xn.

2.3 R-V designs for two-factor interactions

A R-V design enables unbiased β̂j and β̂j;j′with j < j′. Obviously, q equals
1 + k + k(k − 1)/2. The DOE literature gives tables for generating 2k−pV

designs. Unfortunately, these designs are not saturated at all; e.g., the 28−2V

design implies n = 64 � q = 37. Rechtschaffner designs, however, do include
saturated R-V designs; see Kleijnen (2015, pp.62—63). We shall use R-V designs
in the next subsection.

2.4 CCDs for second-order polynomials

A CCD or central composite design enables unbiased β̂j and β̂j;j′with j ≤ j′. A
CCD consists of three subdesigns: (i) a R-V design; (ii) the central combination
0′k; (iii) the 2k axial combinations– which form a star design– with dj = c and
dj′ = 0 where j′ 6= j, and dj = −c and dj′ = 0. Obviously, c 6= 1 implies five
values per input, whereas c = 1 implies three values per input. The usual choice
of c is not 1. The "optimal" choice of c assumes white noise, which does not
hold in practice so we do not detail this choice. Finally, if c ≤ 1, then −1 ≤ di;j
≤ 1; else −c ≤ di;j ≤ c.

A CCD gives a non-orthogonal Xn; e.g., any two columns corresponding
with β0, βj;j , and βj′;j′ are not orthogonal. A CCD is rather ineffi cient (i.e.,
n � q); yet, CCDs are popular in DOE, especially in RSM (see Section 4).
For further discussion of CCDs and other types of designs for second-degree
polynomials we refer to Kleijnen (2015, pp. 64—66), and Myers et al. (2009, pp.
296—317). A more effi cient modified CCD is derived in Kleijnen and Shi (2017).

3 Classic assumptions vs. simulation practice

The classic assumptions stipulate a single type of output (univariate output)
and white noise; see Section 2. In simulation practice, however, the simulation
model often has a multivariate output and no white noise– as we discuss now.

3.1 Multivariate simulation output

We assume that for v-variate simulation output with v ≥ 1 we use v univariate
polynomials of the same order (e.g., second-order), so y(l)= XNβ

(l) + e(l) with
l = 1, . . . v where y(l) corresponds with output type l; XN is the N × q matrix
for metamodel l; β(l) is the vector with the q regression parameters for meta-
model l; and e(l) is the N -dimensional vector with the residuals of metamodel
l. Obviously, e(l) has variances that may vary with l (e.g., the variances differ

for simulated inventory costs and service percentages), and e(l)i and e(l
′)

i are not

7

independent (they are different transformations of the same PRNs). Neverthe-
less, it can be proven that the best linear unbiased estimator (BLUE) of β(l) is
the OLS estimator computed per output: β̂(l)= (X′X)

−1
X′w(l). Furthermore,

CIs and tests for the elements in β̂(l) use the classic formulas in the preceding
section. We are not aware of any general designs for multivariate output. For
further discussion of multivariate output we refer to Kleijnen (2015, pp. 85—88).

3.2 Nonnormal simulation output

The normality assumption often holds asymptotically ; i.e., if the simulation run
is long, then the sample average of the autocorrelated observations is nearly
normal. Estimated quantiles, however, may be very nonnormal, especially in
case of an "extreme" (e.g., 99%) quantile. The t-statistic (used in the CIs) is
quite insensitive to nonnormality. Whether the actual simulation run is long
enough to make the normality assumption hold, is always hard to know. There-
fore it seems good practice to test whether the simulation output has a Gaussian
probability density function (PDF). For these tests we may use various residual
plots and goodness-of-fit statistics; e.g., the chi-square statistic. These tests
assume that the outputs are IID. We may therefore obtain "many" (say, 100)
replications for a specific input combination (e.g., the base scenario). However,
if the simulation is expensive, then these plots are too rough and these tests
have no power.
Obviously, deterministic simulation does not give a normally distributed w.

Actually, the white-noise assumption concerns e in the metamodel, not w in
the deterministic or random simulation model. Given mi ≥ 1 replications (i =
1, ..., n), we obtain wi =

∑mi

r=1wi;r/mi and the corresponding êi = ŷi − wi.
For simplicity of presentation, we assume that mi is a constant m. If wi;r has
a constant variance σ2w, then wi also has a constant variance; namely, σ

2
w =

σ2w/m. Unfortunately, even if wi has a constant variance σ
2
w and is independent

of wi′ with i 6= i′ (no CRN), then Σê = [I − X(X′X)−1X′]σ2w so ê does not
have IID components; so, the interpretation of the popular plot with estimated
residuals is not straightforward.
We may apply normalizing transformations; e.g., log(w) may be more nor-

mally distributed than w. Unfortunately, the metamodel now explains the be-
havior of the transformed output– not the original output; also see Kleijnen
(2015, p. 93).
A statistical method that allows nonnormal random simulation output w is

distribution-free bootstrapping or nonparametric bootstrapping. We denote the
original observations by w, and the bootstrapped observations by w∗. We assume
that these w are IID; indeed, wi;1, ..., wi;mi are IID because the mi replications
use nonoverlapping PRN streams. We resample– with replacement– these mi

observations such that the original sample sizemi remains unchanged; obviously,
mi � 1. We apply this resampling to each combination i. The resulting w∗i;1, ...,
w∗i;mi

give the average w∗i , which give the n-dimensional vector w∗. For simplic-
ity’s sake, we now assume mi = m > 1, so the bootstrapped OLS estimator of β

8

is β̂∗ = (X′X)
−1

X′w∗. To reduce sampling error, we select a bootstrap sample
size (say) B, and repeat this resampling B times; e.g., B is 100 or 1,000.This B
gives β̂∗b with b = 1, ..., B. For simplicity’s sake, we focus on βq (last element of
β). To compute a two-sided (1−α) CI, the percentile method computes the α/2
quantile (or percentile) of the empirical density function (EDF) of β̂∗q obtained

through sorting the B observations on β̂∗q;b. This sorting gives the order statis-
tics, denoted by the subscript (·) where– for notational simplicity– we assume
that Bα/2 is integer so the estimated α/2 quantile is β̂∗q;(Bα/2). Analogously we

obtain β̂∗q;(B[1−α/2]). These two quantiles give a two-sided asymmetric (1 − α)

CI: β̂∗q;(Bα/2) < βq < β̂∗q;(B[1−α/2]). We shall mention more bootstrap examples,
in later sections.

3.3 Heterogeneous variances of simulation outputs

In practical random simulations, Var(wi) changes as xi changes (i = 1,. . . , n).
In some applications, however, we may hope that this variance heterogeneity
is negligible. Unfortunately, Var(wi) is unknown so we must estimate it. The
classic unbiased estimator is s2(wi) =

∑mi

r=1(wi;r − wi)2/(mi − 1). This s2(wi)
itself has a high variance. To compare the n estimators s2(wi), we can apply
many tests; see Kleijnen (2015, p. 101).
If we either assume or find variance heterogeneity, then we may still use OLS.

Actually, β̂ is still unbiased, but Σβ̂ becomes (X′nXn)
−1

X′nΣwXn(X′nXn)
−1

where for simplicity’s sake we assume mi = m so Σw is the n × n diagonal
matrix with the main-diagonal elements Var(wi)/m.
The DOE literature ignores designs for heterogeneous output variances. We

propose classic designs with mi such that we obtain approximately constant
s2(wi)/mi (i = 1, ..., n). Therefore we initially take a pilot sample of size m0

≥ 2 for each combination, which gives (say) s2i (m0). Next we select a number
of additional replications m̂i −m0 with

m̂i = m0 × nint
[

s2i (m0)

mini s2i (m0)

]
(1)

where nint [x] denotes the integer closest to x. Combining the m̂i replications
of the two stages gives wi and s2(wi). This wi gives β̂, while s2(wi) gives the
diagonal matrix Σ̂w with main-diagonal elements s2i (m̂i)/m̂i. This Σ̂w gives
Σ̂β̂, which– together with tm0−1– gives a CI for β̂j .
Actually, (1) gives the relative number of replications m̂i/m̂i′ . To select

absolute numbers, we recommend the rule in Law (2015, p. 505) with a relative
estimation error (say) ree:

m̂ = min

[
r ≥ m :

tr−1;1−α/2
√
s2i (m)/r

|w(m)| ≤ ree
1 + ree

]
. (2)

9

3.4 Common random numbers

Random simulation often uses CRN; actually, CRN are the default in software
for discrete-event simulation. If mi = m„then we can arrange the simulation
output wi;r (i = 1, ..., n; r = 1, ..., m) into a matrix W = (w1, ..., wm) with wr

= (w1;r, ..., wn;r)′. Obviously, CRN create correlation between wi;r and wi′;r.
Moreover, different replications use nonoverlapping PRN streams so wi;r and
wi;r′ with r 6= r′– or the n-dimensional vectors wr and wr′– are independent.
CRN are meant to reduce Var(β̂g) and Var(ŷ); unfortunately, CRN increase the
variance of the estimated intercept. For details on the effective usage of CRN
we refer to Law (2015, pp. 592-604).
To compute β̂, we do not use W, but the vector w with N =

∑n
i=1mi

elements. To compute Σ̂β̂ in case of CRN, we use the non-diagonal matrix Σ̂w.

Unfortunately, this Σ̂w is singular ifm ≤ n; ifm > n, then we may compute CIs
for β̂j from tm−1. An alternative method requires only m > 1, and computes

β̂r = (X′nXn)
−1

X′nwr(r = 1, ...,m). (3)

We again focus on a single element of this β̂r; namely, element g (g = 1, ...,
q). Obviously, β̂g;r and β̂g;r′ with r 6= r′ and r′ = 1, ..., m are IID with

variance Var(β̂g). The m replications give β̂g =
∑m
r=1β̂g;r/m and s2(β̂g) =∑m

r=1(β̂g;r − β̂g)2/[m(m− 1)]; together they give tm−1 = (β̂g − βg)/s(β̂g).
Unfortunately, we cannot apply this alternative when estimating a quantile

instead of a mean. We then recommend distribution-free bootstrapping; see
Kleijnen (2015, p. 99, 110). Furthermore, mi is not a constant if we select mi

such that wi has the same– absolute or relative– width of the CI around wi;
see again (2). We must then adjust the analysis; see Kleijnen (2015, p. 112).

3.5 Validation of metamodels

We discuss various validation methods (which we may also use to compare
first-order against second-order polynomials, or linear regression against Krig-
ing metamodels). One method uses R2 =

∑n
i=1(ŷi − w)2/

∑n
i=1(wi − w)2 =

1−
∑n
i=1(ŷi −wi)2/

∑n
i=1(wi −w)2 where w =

∑n
i=1wi/n and mi ≥ 1. If n =

q (saturated design), then R2 = 1– even if E(êi) 6= 0. If n > q and q increases,
then R2 increases– whatever the size of |E(êi)| is; because of possible overfitting,
we may therefore use the adjusted R2: R2adj = 1− (1−R2)(n− 1)/(n− q). Un-
fortunately, we do not know critical values for R2 or R2adj . We might either use
subjective lower thresholds, or estimate the distributions of these two statistics
through distribution-free bootstrapping; see Kleijnen (2015, p. 114).
Actually, we prefer cross-validation over R2 or R2adj . Suppose again that

mi = m ≥ 1, so we replace w by w in OLS. In cross-validation, we delete
I/O combination i to obtain (X−i,w−i) where we suppress the subscript n of
X. Next we compute β̂−i = (X′−iX−i)

−1
X′−iw−i (i = 1, ..., n). This gives

ŷ−i = x′iβ̂−i. We may "eyeball" the scatterplot with (wi, ŷ−i), and decide

10

whether the metamodel is valid. Regression software may use a shortcut to
avoid the n recomputations in cross-validation.
In random simulation we have an alternative for this scatterplot; namely,

the Studentized prediction error

t
(i)
m−1 =

wi − ŷ−i√
s2(wi) + s2(ŷ−i)

(4)

where s2(wi)= s2(wi)/m and s2(ŷ−i)= x′iΣ̂β̂−i
xi with Σ̂β̂−i

= s2(wi)(X
′
−iX−i)

−1.

We reject the metamodel if maxi |t(i)m−1| > tm−1;1−[α/(2n)] where we use the
Bonferroni inequality ; i.e., we replace α/2 by α/(2n). so we control the experi-
mentwise or familywise type-I error rate α.

Cross-validation affects not only ŷ−i, but also β̂−i (see above). We may be
interested not only in the predictive performance of the metamodel, but also in
its explanatory performance; i.e., do the n estimates β̂−i remain stable?
Related to cross-validation are diagnostic statistics; e.g., the prediction sum

of squares (PRESS): [
∑n
i=1(ŷ−i − wi)2/n]1/2. We may apply bootstrapping to

estimate the distribution of the various validation statistics; see Kleijnen (2015,
p. 120).
If the validation suggests am unacceptable fitting error e, then we may con-

sider various transformations. For example, we may replace y and xj by log(y)
and log(xj) (j = 1, ..., k) so that the first-order polynomial approximates relative
changes through k elasticity coeffi cients. If we assume that fsim is monotonic,
then we may replace w and xj by their ranks: rank regression. In the preceding
subsections, we also considered transformations that make w better satisfy the
assumptions of normality and variance homogeneity; unfortunately, different
objectives of a transformation may conflict with each other.
In Section 2 we discussed designs for low-order polynomials. If such a de-

sign does not give a valid metamodel, then we do not recommend routinely
adding higher-order terms: these terms are hard to interpret. However, if the
goal is better prediction, then we may add higher-order terms; e.g., a 2k design
enables the estimation of the interactions among three or more inputs. How-
ever, adding more terms may lead to overfitting; see our comment on R2adj .
Adding more explanatory variables is called stepwise regression, whereas elimi-
nating nonsignificant variables is called backwards elimination, which we briefly
discussed in the Note in Section 2.1.

4 Response surface methodology

RSM designs and analyzes a sequence of local experiments, and has gained a
good track record; see Kleijnen (2015, p. 244), Law (2015, pp. 656—679), and
Myers et al. (2009). We assume that before we apply RSM, we have identified
the important inputs and their experimental area (RSM and screening may be
combined; see Kleijnen (2015, p. 245)).

11

4.1 Classic RSM

The objective of RSM is to minimize E(w|z) where w denotes the simulation
output and z denotes the k-dimensional vector with the original (nonstandard-
ized) inputs. We start RSM with a given input combination or "point" in the
k-dimensional search space; e.g., the combination currently used in practice. In
the neighborhood of this point we fit a first-order polynomial, assuming white
noise; however, RSM allows Var(w) to change in a next step. Unfortunately,
there are no general guidelines for determining the appropriate size of the lo-
cal area in each step. To estimate the local first-order polynomial in z with
first-order effects γ (the standardized effects would be β), we use a R-III design
(see Section 2.2). To quantify the adequacy of this estimated polynomial, clas-
sic RSM computes R2 (see Section 3.5). In the next steps we use ∇(ŷ), which
denotes the gradient implied by this estimated first-order polynomial; so, ∇(ŷ)
= γ̂−0 where −0 means that the intercept γ̂0 is removed from the vector with
the estimates γ̂ of γ. This ∇(ŷ) implies the steepest descent direction. We take
a step in that direction, trying intuitively selected values for the step size. After
a number of such steps, w will increase (instead of decrease) because the local
first-order polynomial becomes inadequate. When such deterioration occurs, we
simulate the n > k combinations of the R-III design– but now centered around
the best combination found so far. We re-estimate the polynomial and in the
resulting new steepest-descent direction we again take several steps. Obviously,
a plane (implied by a first-order polynomial) cannot adequately represent a
hill top when searching to maximize w or– equivalently– minimize w. So, in
the neighborhood of the latest estimated optimum we now fit a second-order
polynomial, using a CCD (see Section 2.4). Next we use the derivatives of this
polynomial to estimate the optimum; we may apply canonical analysis to ex-
amine the shape of the estimated optimal subregion: does this subregion give a
unique minimum, a saddle point, or a ridge with stationary points? To escape
from a possible local optimum, we restart the search from a different initial lo-
cal area– if time permits. While applying RSM, we should not eliminate inputs
with nonsignificant effects in a local first-order polynomial: these inputs may
become significant in a next local area.

4.2 RSM with adapted steepest descent

Assuming white noise, the adapted steepest descent (ASD) direction accounts
for Σγ̂ , as follows. We write

Σγ̂ = (Z′NZN)−1σ̂2w =

[
a b′

b C

]
σ̂2w

where σ̂2w is the MSR, a a scalar, b a k-dimensional vector, and C a k×k matrix
such that Σγ̂−0 = Cσ̂2w. The predictor variance Var(ŷ|z) increases as z moves
away from the local area where ∇(ŷ) is estimated; actually, Var(ŷ|z) is minimal
at z = −C−1b. ASD means that the new simulated combination is

z =−C−1b−lC−1γ̂−0 γ̂−0.

12

where C−1b is the point where the local search starts, l is the step size, γ̂−0
is the classic steepest descent direction, and C−1γ̂−0 γ̂−0 is the adapted direction.
If C is diagonal, then the higher the variance of an estimated input effect is,
the less the search moves into the direction of that input. It can be proven
that ASD is scale-independent. Experimental results imply that ASD performs
“better”than steepest descent.

4.3 RSM for simulation with multiple outputs

In practice, simulation models have multiple responses types (see Section 3.1).
For such situations the RSM literature offers several approaches, but we focus
on generalized RSM (GRSM), which solves the following constrained nonlinear
random optimization problem:

minz E(w(1)|z)

E(w(l
′)|z) ≥ cl′ (l′ = 2, . . . , v) (5)

Lj ≤ zj ≤ Hj with j = 1, . . . , k.

GRSM combines classic RSM and interior point methods developed in MP.
GRSM avoids creeping along the boundary of the feasible area that is deter-
mined by the constraints on the random outputs and the deterministic inputs,
so GRSM moves faster to the optimum. GRSM is scale independent. For details
we refer to Kleijnen (2015, pp. 253—258).
Because GRSM may miss the true optimum, we can test the first-order nec-

essary optimality or Karush - Kuhn - Tucker (KKT) conditions. To test these
conditions, we may use parametric bootstrapping that samples w∗ from the as-
sumed distribution; namely, a multivariate normal distribution with parameters
estimated from the original w. Details are given in Kleijnen (2015, pp. 259—266).

4.4 RSM for practical random simulations

In practice, random simulations have outputs with variances that change with
the input combinations, and with positive correlations if CRN are applied (also
see Section 3). Consequently, OLS does not give the BLUE. We assume a con-
stant number of replications somi = m (i = 1, . . ., n), which is realistic if CRN
are applied. Using replication r, we then compute γ̂r; see (3). So, replication r
gives an estimator of the steepest descent direction– if a first-order polynomial
is used– or the optimum input combination– if a second-order polynomial is
used. Together, the m replications give an estimator of the accuracy of this
estimated direction or optimum. If we find this accuracy too low, then we may
simulate additional replications so m increases. Unfortunately, we have not yet
any experience with this simple sequential approach for selecting m.
If mi � 1, then we can apply distribution-free bootstrapping to examine

the statistical properties of γ̂ and the resulting steepest descent direction and
optimum (see Section 3.2). Kleijnen (2015, pp. 251—252) further discusses RSM
for random simulation, including trust regions.

13

5 Kriging metamodels and their designs

Kriging assumes a global experimental area, which is larger than the local areas
in RSM with its sequence of low-order polynomial metamodels (see Section 4).
Because we assume that many readers are not familiar with the basics of Kriging,
we detail various types of Kriging. We use the same symbols as above, unless
Kriging traditionally uses different symbols.

5.1 Ordinary Kriging in deterministic simulation

Ordinary Kriging (OK) is popular and successful in practical deterministic sim-
ulation. OK assumes y(x) = µ + M(x) where µ is the constant mean E[y(x)]
and M(x) is a zero-mean Gaussian stationary process, which has covariances
that depend only on the distance between the input combinations x and x′.
We call M(x) the extrinsic noise (to be distinguished from "intrinsic" noise in
stochastic simulation; see Section 5.3). Let X denote the n × k matrix with
the n old combinations xi (i = 1, ..., n) of the k simulation inputs, where the
original inputs zi are standardized to obtain xi (unlike DOE, Kriging does not
use the symbol D for the design matrix). The best linear unbiased predictor
(BLUP) for the new combination (say) x0 is the weighted average of the n old
outputs ŷ(x0) =

∑n
i=1λiwi = λ′w. Because this ŷ(x0) is unbiased, x0 = xi

implies that the predictor is an exact interpolator : ŷ(xi) = w(xi). The "best"
ŷ(x0) minimizes the mean squared error (MSE), which equals Var[ŷ(x0)]; see
(8) below. Altogether, the optimal λ is given by the next equation where the
n × n matrix with the covariances between the metamodel’s old outputs yi is
denoted by ΣM = (σi;i′) = (Cov(yi, yi′)) (i, i′ = 1, ..., n), the n-dimensional
vector with the covariances between the metamodel’s new output y0 and yi is
σM (x0) = (σ0;i) = (Cov(y0, yi)), and 1n is the n-dimensional vector with ones:

λ′o=[σM (x0)+1n
1− 1′nΣ−1M σ(x0)

1′nΣ−1M 1n
]′Σ−1M . (6)

The weight λi;0 in λo decreases with the distance between x0 and xi (so λ is

not a constant vector, whereas β in linear regression is). Substitution of λo into
ŷ(x0) = λ

′w gives the BLUP; namely,

ŷ(x0) = µ+ σM (x0)
′Σ−1M (w−µ1n). (7)

Obviously, ŷ(x0) varies with σM (x0), whereas µ, ΣM , and w remain fixed.
Note: The gradient ∇(ŷ) follows from (7); see Lophaven et al. (2002, Eq.

2.18). Sometimes we can also compute ∇̂(w) and estimate a better OK model;
see Kleijnen (2015, pp. 183—184).
Instead of the symbol Var(yi) = σi;i = σ2i = σ2 we use the classic Kriging

symbol τ2 in

Var[ŷ(x0)] = τ2 − σM (x0)
′Σ−1M σM (x0) +

[1− 1′nΣ−1M σM (x0)]
2

1′nΣ−1M 1n
. (8)

14

This equation implies Var[ŷ(x0)] = 0 if x0 = xi. Experimental results suggest
that Var[ŷ(x0)] has local maxima at x0 approximately halfway between old input
combinations (also see Section 6). Kriging gives bad extrapolations compared
with interpolations (linear regression also gives minimal Var[ŷ(x0)] at the center
of the experimental area; see Section 4.2).
Obviously, the correlation matrix R = (ρi;i′) equals τ−2ΣM ; furthermore,

ρ(x0) = τ−2σM (x0). There are several types of correlation functions; see Kleij-
nen (2015, pp.185—186). Most popular is the Gaussian correlation function:

ρ(h) =
k∏
j=1

exp
(
−θjh2j

)
= exp (−

k∑
j=1

θjh
2
j) (9)

with distance vector h = (hj) where hj = |xg;j − xg′;j | and g, g′ = 0, 1, ..., n.
Obviously, we need to estimate the (hyper)parameters ψ = (µ, τ2, θ′)′ with θ

= (θj). The most popular criterion is maximum likelihood (ML) (but OLS and
cross-validation are also used). The computation of the ML estimator (MLE)
ψ̂ is challenging, so different ψ̂ may result from different software packages or
from different starting values for the same package; see Erickson et al. (2017).
Plugging ψ̂ into (7) gives ŷ(x0, ψ̂). Obviously, ŷ(x0, ψ̂) is a nonlinear pre-

dictor. In practice, we plug ψ̂ into (8) to obtain s2[ŷ(x0, ψ̂)]. To obtain a
symmetric (1 − α) CI for w(x0), we use zα/2 (standard symbol for the α/2

quantile of N(0, 1)) and get ŷ(x0, ψ̂) ± zα/2s[ŷ(x0, ψ̂)]. There is much software
for Kriging; see the many publications and websites in Kleijnen (2015, p. 190).

5.2 Designs for Kriging in deterministic simulation

There is an abundant literature on various design types for Kriging in deter-
ministic simulation. Examples of these designs are orthogonal array, uniform,
maximum entropy, minimax, maximin, integrated mean squared prediction er-
ror, and "optimal" designs; see Kleijnen (2015, p. 198). However, the most
popular space filling design uses Latin hypercube sampling (LHS). LHS assumes
that the metamodel is more complicated than a low-order polynomial, but LHS
does not assume a specific type of metamodel (e.g., OK, detailed in Section 5.1).
LHS standardizes input xj so 0 ≤ xj ≤ 1 (j = 1, ..., k). If xj is uncertain

(as in RO), then LHS assumes that xj has a given PDF; else, LHS assumes
that xj has a uniform PDF so xj ∼ U(0, 1). LHS divides the range of xj into n
mutually exclusive and exhaustive intervals (or classes) of equal probability; if xj
∼ U(0, 1), then the length of these intervals is 1/n; if xj has a PDF with a mode
(e.g., a triangular PDF), then the length is smaller near this mode. LHS samples
one value in each interval without replacement, so xj has n different values. LHS
may be further refined, leading to maximin LHS, nearly-orthogonal LHS, etc.;
see Kleijnen (2015, p. 202).
Whereas DOE makes n increase with k (e.g., n = 2k−p), LHS does not

impose such a relationship. Nevertheless, if n is "small" and k is "large", then
LHS covers the input space so sparsely that the fitted Kriging model may be

15

inadequate. A well-known rule-of-thumb for LHS in sensitivity analysis through
Kriging is n = 10k. For SO, however, we replace one-shot designs by sequential
designs that are customized for the given simulation model; i.e., we learn about
fsim as we collect I/O data; see Section 6).

5.3 Kriging in random simulation

Ankenman et al. (2010) develops stochastic Kriging (SK), adding the intrinsic
noise term εr(xi) for replication r (r= 1, ...,mi) at combination xi (i = 1, ..., n).
After averaging over these mi replications, SK uses the formulas for OK but re-
places w by w andM(xi) byM(xi) + ε(xi) where ε(xi) ∼ N(0,Var[εr(xi)]/mi)
and ε(xi) is assumed to be independent of M(x). Obviously, Σε is diagonal if
no CRN are used (CRN and mi = m would give Σε = Σε/m; however, we
assume no CRN in this subsection). To estimate Var[ε(xi)], SK may use ei-
ther s2(wi) or another Kriging model for Var[ε(xi)]– besides the Kriging model
for the mean E[yr(xi)]; see Kleijnen (2015, p.208). We use the symbol ψ+ε to
denote ψ augmented with Var[εr(xi).
An alternative for SK is hetGP developed in Binois et al. (2016. This

alternative assumes mi ≥ 1, whereas SK assumes mi � 1. Whereas SK gives
a biased ψ̂+ε because SK fits Kriging models for the mean and the intrinsic
variances independently, hetGP couples these models through a joint likelihood
for ψ+ε that is optimized in one shot. This alternative requires computational
time of the same order as SK does.

6 Kriging for optimization

Kriging is used by effi cient global optimization (EGO), which is a popular se-
quential method that balances local and global search; i.e., EGO balances ex-
ploitation and exploration. We present only the basic EGO-variant for determin-
istic simulation; also see the classic EGO reference, Jones et al. (1998). There
are many more variants, for deterministic and random simulations, constrained
optimization, multi-objective optimization including Pareto frontiers, RO, the
"excursion set" or "admissible set", estimation of a quantile, and Bayesian ap-
proaches; see Kleijnen (2015, p. 267—269).
Note: Moghaddam and Mahlooji (2017) replaces EGO by particle swarm

optimization (PSO), still using Kriging. Havinga et al. (2017) adapts EGO,
and uses RBFs (instead of Kriging) for RO.
In this basic variant we consider the best output observed (simulated) so

far. To select a new combination x0, we consider both ŷ(x0) and s2[ŷ(x)] (we
suppress ψ̂); e.g., if x0 and x′0 have ŷ(x0) = ŷ(x′0) and s

2[ŷ(x0)] > s2[ŷ(x′0)],
then we explore x0 because x0 has a higher probability of improvement (lower
w). We know that s2[ŷ(x0)] increases as x0 lies farther away from xi; see (8).
Actually, we estimate the maximum of the expected improvement (EI), which is
reached if either ŷ(x0) is much smaller than fmin or s2[ŷ(x0)] is relatively large

16

so ŷ(x0) is relatively uncertain. More precisely, we start with a pilot sample–
typically selected through LHS– which results in (X,w), Next we find fmin =
min1≤i≤n w(xi). We also fit a Kriging metamodel ŷ(x). Together, this gives
EI(x) = E[max (fmin − ŷ(x), 0)]. Jones et al. (1998) derives the EI estimator

ÊI(x) = (fmin − ŷ(x)) Φ

(
fmin − ŷ(x)

s[ŷ(x0)]

)
+ s[ŷ(x0)]φ

(
fmin − ŷ(x)

s[ŷ(x0)]

)
(10)

where Φ and φ denote the cumulative distribution function (CDF) and the PDF
of N(0, 1). Using (10), we estimate xopt , which denotes the x that maximizes

ÊI(x). To find this estimate x̂opt , we may use a (relatively large) set of candidate
points selected through LHS (say) Xcand; we do not simulate these candidates,
but we find the candidate with the highest ÊI(x) with x ∈ Xcand. Next we use
this candidate x̂opt as the simulation input combination, and obtain w(x̂opt).
Then we fit a new Kriging model to the augmented I/O data. We update n, and
return to (10)– until we satisfy a stopping criterion; e.g., ÊI(x̂opt) is “close”to
0 or the computer budget is exhausted.
As an alternative for the various EGO variants we now consider the con-

strained optimization problem in (5), augmented with constraints fg for z (e.g.,
budget constraints) and the constraint that z must belong to the set of non-
negative integers N. To solve this problem, we may apply Kriging and integer
mathematical programming (KIMP), which combines (i) sequentialized designs
to specify the next combination (like EGO does); (ii) Kriging to obtain explicit
functions for E(w(l)|z) with l = 1, ..., v (like EGO); (iii) integer nonlinear pro-
gramming (INLP) to estimate the optimal solution from these explicit Kriging
models (without using an EI variant, unlike EGO). Experiments with KIMP
and OptQuest suggest that KIMP requires fewer simulated combinations and
gives better estimated optima.

7 Robust optimization

The estimated optimum (see the preceding two sections) may turn out to be
inferior because this optimum ignores uncertainties in some of the simulation
inputs. Taguchi emphasizes that in practice some inputs of a manufactured
product (e.g., a car) are under complete control of the engineers (the car’s de-
sign), whereas other inputs are not (the driver). Taguchi therefore distinguishes
between (i) controllable or decision variables, and (ii) noncontrollable or envi-
ronmental noisy (or random) factors. We sort the k simulation inputs such that
the first kC inputs are controllable, and the next kNC inputs are noncontrol-
lable. We let zC and zNC denote the vector with the kC controllable and the
kNC noncontrollable original (nonstandardized) inputs z.

Taguchi assumes a single output (say) w, focusing on its mean E(w) and
its variance; obviously, this variance is caused by zNC so σ2(w|zC) > 0. For
brevity’s sake we denote σ2(w|zC) by σ2w. Taguchi combines these two outputs
into a scalar loss function such as the signal-to-noise or mean-to-variance ratio

17

E(w)/σ2w; see Myers et al. (2009, pp. 486—488). We, however, prefer to use
E(w) and σ2w separately ; obviously, σ

2
w has the same scale as E(w) has. We can

then use constrained optimization; i.e., given an upper threshold cσ for σ2w, we
try to solve minzC E(w|zC) such that σ2w ≤ cσ. Constrained optimization is
also discussed in Myers et al. (2009, p. 492).
Taguchi’s worldview is successful in production engineering, but statisti-

cians criticize his statistical techniques. Moreover– compared with real-life
experiments– simulation experiments have more inputs, more input values, and
more input combinations (see again Section 1). Myers et al. (2009, pp. 502—
506) combines Taguchi’s worldview with the statisticians’RSM (see Section 4).
Whereas Myers et al. (2009) assumes that zNC has ΣNC = σ2wI, we assume
a general ΣNC . Whereas Myers et al. (2009) superimposes contour plots for
E(w|zC) and σ(w|zC) to estimate the optimal zC , we use MP. This MP, however,
requires specification of the threshold cσ. In practice, managers may find it hard
to select a specific value for cσ, so we may try different cσ values and estimate
the corresponding Pareto-optimal effi ciency frontier. To estimate the variability
of this frontier that results from the estimators of E(w|zC) and σ(w|zC), we may
use bootstrapping. Instead of RSM combined with MP we may apply Kriging
with MP. Details are given in Kleijnen (2015, pp. 273—284).
Finally, we summarize RO in MP ; see again Bertsimas and Mišíc (2017).

If MP ignores the uncertainty in the coeffi cients of the MP model, then the
resulting so-called nominal solution may easily violate the constraints in the
given model. RO may give a slightly worse value for the goal variable, but RO
increases the probability of satisfying the constraints; i.e., a robust solution is
immune to variations of the variables within the so-called uncertainty set U .
Yanikoğlu et al. (2016) derives a specific U for the unknown PDF of zNC that is
compatible with the given historical data on zNC . RO in MP develops a compu-
tationally tractable robust counterpart of the original problem. Compared with
the output of the nominal solution, RO may give better worst-case and average
outputs.

References:

Ankenman, B., B. Nelson, and J. Staum (2010), Stochastic Kriging for sim-
ulation metamodeling. Operations Research, 58, no. 2, pp. 371—382
Bartz-Beielstein, T. and M. Zaefferer (2017), Model-based methods for con-

tinuous and discrete global optimization. Applied Soft Computing, 55, pp.
154—167
Bertsimas, D. and V.V. Mišíc (2017) Robust Product Line Design. Opera-

tions Research, 65, no. 1, pp. 19—37
Binois, M., R.B. Gramacy and M. Ludkovskiz (2016), Practical heteroskedas-

tic Gaussian process modeling for large simulation experiments. ArXiv, 17 Nov
2016
Cressie, N.A.C. (1993), Statistics for spatial data, revised edition. Wiley,

New York
Dellino G, Kleijnen JPC, Meloni C (2010) Robust optimization in simulation:

18

Taguchi and response surface methodology. Int J Prod Econ 125(1):52—59
Dellino G, Kleijnen JPC, Meloni C (2012) Robust optimization in simulation:

Taguchi and Krige combined. INFORMS J Comput 24(3):471—484
Erickson, C.B., S.M. Sanchez, and B.E. Ankenman (2016), Comparison of

Gaussian process modeling software. WSC 2016 Proceedings, pp. 3692—3693
Friese, M., T. Bartz-Beielstein, and M. Emmerich (2016), BUILDING EN-

SEMBLES OF SURROGATES BY OPTIMAL CONVEX COMBINATION.
Conference paper
Gramacy, R.B. (2015), laGP: large-scale spatial modeling via local approx-

imate Gaussian processes in R. Journal of Statistical Software (available as a
vignette in the laGP package)
Havinga J., A. H. van den Boogaard, and G. Klaseboer (2017), Sequential

improvement for robust optimization using an uncertainty measure for radial
basis functions. Structural and Multidisciplinary Optimization, 55, pp. 1345—
1363
Jalali H. and I. Van Nieuwenhuyse (2015), Simulation optimization in inven-

tory replenishment: a classification. IIE Transactions, 47, no. 11, pp. 1217—1235
Jones, D.R., M. Schonlau, and W.J. Welch (1998), Effi cient global optimiza-

tion of expensive black-box functions. Journal of Global Optimization, 13, pp.
455—492
Kleijnen, J. P. C. (2015), Design and analysis of simulation experiments,

second edition. Springer
Kleijnen, J. P. C. (2017), Design and analysis of simulation experiments:

tutorial. Invited chapter for Advances in Modeling and Simulation: Seminal
Research from 50 Years of Winter Simulation Conferences, edited by A. Tolk, J.
Fowler, G. Shao, and E. Yucesan, Springer (preprint: CentER Discussion Paper
Series No. 2017-018)
Kleijnen, J. P. C. and W. Shi (2017), Sequential probability ratio tests:

conservative and robust. CentER Discussion Paper; Vol. 2017-001, Tilburg:
CentER, Center for Economic Research
Law, A.M. (2015), Simulation modeling and analysis, 5th edition. McGraw-

Hill, Boston
Liu, Z., D. Rexachs, F. Epelde, and E. Luque (2017), A simulation and

optimization based method for calibrating agent-based emergency department
models under data scarcity. Computers & Industrial Engineering, 103, pp. 300—
309
Lophaven, S.N., H.B. Nielsen, and J. Sondergaard (2002), DACE: a Matlab

Kriging toolbox, version 2.0. IMM Technical University of Denmark, Kongens
Lyngby
Moghaddam„S. and H. Mahlooji (2017), A new metamodel-based method

for solving semi-expensive simulation optimization problems, Communications
in Statistics - Simulation and Computation, in press
Montgomery, D. C. (2009). Design and Analysis of Experiments; 7th Edi-

tion, Wiley, Hoboken, NJ
Myers, R.H., D.C. Montgomery, and C.M. Anderson-Cook (2009), Response

19

Surface Methodology: Process and Product Optimization Using Designed Exper-
iments; Third Edition. Wiley, New York
Pontes, F.J., G.F. Amorim, P.P. Balestrassi, A.P. Paiva, and J.R. Ferreira

(2016), Design of experiments and focused grid search for neural network para-
meter optimization. Neurocomputing, 186, pp. 22-34
Rasmussen, C.E. and C. Williams (2006), Gaussian processes for machine

learning. MIT, Cambridge
Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989), Design and

analysis of computer experiments (includes comments and rejoinder). Statistical
Science, 4, no. 4, 1989, pp. 409—435
Sanchez SM, Lucas TW, Sanchez PJ, Nannini CJ, Wan H (2012) Chapter 12:

designs for large-scale simulation experiments, with applications to defense and
homeland security. In: Hinkelmann K (ed) Design and analysis of experiments,
volume 3, special designs and applications. Wiley, New York, pp 413—442
Simpson T.W., A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, R-J. Yang

(2004), Approximation methods in multidisciplinary analysis and optimization:
a panel discussion. Structural and Multidisciplinary Optimization, 27, no, 5, pp.
302—313
Yanikoğlu, I., den Hertog, D. & Kleijnen, J. P. C. (2016), Robust dual-

response optimization. IIE Transactions: Industrial Engineering Research and
Development, 48, no. 3, pp. 298—312
Zeigler B.P., H. Praehofer, T.G. Kim (2000), Theory of Modeling and Sim-

ulation, 2nd Edition. Academic, San Diego

20

	2017-026 voorkant
	CentER DP Kleijnen 16 May 2017
	Introduction
	Classic linear regression and designs
	Classic linear regression
	R-III designs for first-order polynomials
	R-V designs for two-factor interactions
	CCDs for second-order polynomials

	Classic assumptions vs. simulation practice
	Multivariate simulation output
	Nonnormal simulation output
	Heterogeneous variances of simulation outputs
	Common random numbers
	Validation of metamodels

	Response surface methodology
	Classic RSM
	RSM with adapted steepest descent
	RSM for simulation with multiple outputs
	RSM for practical random simulations

	Kriging metamodels and their designs
	Ordinary Kriging in deterministic simulation
	Designs for Kriging in deterministic simulation
	Kriging in random simulation

	Kriging for optimization
	Robust optimization

