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Bas Dietzenbacher∗† Peter Borm∗ Ruud Hendrickx∗

April 25, 2017

Abstract

This paper studies egalitarianism in the context of nontransferable utility games by in-
troducing and analyzing the egalitarian value. This new solution concept is based on an
egalitarian negotiation procedure in which egalitarian opportunities of coalitions are explicitly
taken into account. We formulate conditions under which it leads to a core element and discuss
the egalitarian value for the well-known Roth-Shafer examples. Moreover, we characterize the
new value on the class of bankruptcy games and bargaining games.

Keywords: egalitarianism, NTU-games, egalitarian procedure, egalitarian value, egalitarian
stability, constrained relative equal awards rule
JEL classification: C71, D63

1 Introduction

Since the seminal work of Rawls (1971) in which an egalitarian vision on society is elaborated
and justified, egalitarianism plays a central role in fundamental principles of justice and is widely
applied within several disciplines. Egalitarianism relates to the concept of fairness and may be
referred to as ‘equity’ within economical contexts, in particular welfare economics. Young (1995)
provides a rich survey on equity concepts in both theory and practice.

This paper focusses on egalitarianism in the context of nontransferable utility games. Shapley
and Shubik (1953) introduced this model to extend the standard definition of games by dropping
two substantial restrictions on the nature of utility: linearity and transferability. This means that
the utility level of a player bears no resemblance anymore to the utility level of another player. In
fact, utility measures are incompatible and utility levels are incomparable. In order to still apply
egalitarianism in a nontransferable utility context, we take a solid and deliberate approach using
the zero vector and the utopia vector as reference points.

Applying this approach to nontransferable utility games, we define an egalitarian procedure in
which players iteratively consider their egalitarian opportunities within subcoalitions. We introduce
the egalitarian value as solution concept for nontransferable utility games which takes the result of
this egalitarian procedure into account to prescribe a unique egalitarian allocation for the grand
coalition. The egalitarian value generalizes the nonnegative procedural egalitarian solution for
(nonnegative) transferable utility games of Dietzenbacher, Borm, and Hendrickx (2016), which in
turn coincides with the constrained egalitarian solution of Dutta and Ray (1989) on the class of
convex transferable utility games.

∗CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000
LE Tilburg, The Netherlands
†E-mail: b.j.dietzenbacher@tilburguniversity.edu
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We compare the egalitarian value with other well-known solution concepts for nontransferable
utility games like the Shapley value (cf. Shapley (1969)), the Harsanyi value (cf. Harsanyi (1963)),
and the monotonic solution of Kalai and Samet (1985) using the famous examples introduced by
Roth (1980) and Shafer (1980). It turns out that, contrary to the other solution concepts, the
egalitarian value exactly prescribes the allocation which was proposed by Roth (1980). Moreover,
the egalitarian value neatly follows the line of reasoning stated by Shafer (1980).

Furthermore, on the class of bankruptcy games with nontransferable utility (cf. Dietzenbacher
(2017)), the egalitarian value corresponds to the constrained relative equal awards rule, an egal-
itarian bankruptcy rule introduced by Dietzenbacher, Estévez-Fernández, Borm, and Hendrickx
(2016) which extends the constrained equal awards rule for bankruptcy problems with transferable
utility. On the class bargaining games (cf. Nash (1950)) corresponding to bargaining problems with
the zero vector as disagreement point, the egalitarian value corresponds to the solution introduced
by Kalai and Smorodinsky (1975). For bargaining games with nonzero disagreement point, it is
illustrated that the egalitarian value offers a new, interesting way to solve bargaining problems.

This paper is organized in the following way. Section 2 discusses the modeling of egalitarian-
ism, in particular in the context of nontransferable utility games. Section 3 formally introduces the
egalitarian value and the underlying egalitarian procedure. Section 4 studies the egalitarian value
for the Roth-Shafer examples. In Section 5 and Section 6, the egalitarian value is analyzed on the
class of bankruptcy games and bargaining games, respectively.

2 Egalitarianism and Nontransferable Utility

Egalitarianism is a paradigm of economic thought that favors the idea of equality. Economic
equality, or equity, refers to the concept of fairness in economics and underlies many theories of
distributive justice (cf. Rawls (1971) and Young (1995)). The interpretation of equality, and which
notions should exactly be equated, depends on the underlying model and its characteristics, espe-
cially when the corresponding agents are not identical. In a general payoff space where individual
utility is represented in incompatible measures, egalitarianism cannot be applied straightforwardly.
To do so, it is necessary to impose assumptions which allow to compare utility not only intraper-
sonally, but to some extent also interpersonally.

In a general allocation problem, a natural and helpful operation is normalization. In particular,
zero-normalization requires transforming individual utility such that allocating nothing corresponds
to a utility level of zero. In other words, a payoff of zero utility generates the same well-being for
an involved agent as the event in which the allocation problem does not exist at all. This implies
that, in case of allocating revenues, it is convenient to restrict to feasible payoff allocations that
are nonnegative.

After zero-normalization the zero vector plays a fundamental role. There, agents are comparable
in terms of well-being and the allocation is in that sense egalitarian. The zero vector actually serves
as a benchmark for egalitarian allocations. However, in order to study efficient egalitarianism, this
single point is not sufficient. For this, at least a second reference point is necessary to determine
the direction of other comparable allocations. The maximal individual payoffs within the feasible
allocations, or utopia values, constitute a natural candidate. For, there agents are comparable
in terms of maximal satisfaction on the basis of feasible allocations and the corresponding vector
of utopia values is in that sense egalitarian. The utopia vector relative to the zero vector can
be interpreted as an egalitarian direction. It is important to note that this direction and the
subsequent results are invariant under individual rescaling of utility.
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Let N be a nonempty and finite set of agents called players and let A ⊆ RN+ be a nonempty,
closed, and bounded set of payoff allocations. The vector of utopia values uA ∈ RN+ is given by

uA = (max{xi | x ∈ A})i∈N .

The set A is called nontrivial if uA ∈ RN++.
The collection of all coalitions is denoted by 2N = {S | S ⊆ N}. A (nonnegative) nontransferable

utility game is a pair (N,V ) in which V assigns to each nonempty coalition S ∈ 2N \ {∅} a
nonempty, closed, bounded, and comprehensive set of payoff allocations V (S) ⊆ RS+ such that
V (N) is nontrivial. Note that the game is not required to be zero-normalized in the sense that
V ({i}) = {0} for all i ∈ N . Let NTUN denote the class of all such NTU-games with player set N .
For convenience, an NTU-game is denoted by V ∈ NTUN .

In a cooperative game, solutions focus on allocations for the grand coalition while taking the
opportunities of subcoalitions into account. To allow for an appropriate egalitarian comparison of
subcoalitions, it is required to consistently apply a fixed interpretation of egalitarianism. Therefore,
the utopia values of the grand coalition are used as a common benchmark within any subcoalition.
In the context of transferable utility games, the utopia values of all players in the grand coalition
coincide and egalitarianism boils down to equal division. In the next section, egalitarianism is
exploited in the context of nontransferable utility games.

Useful, preliminary notions related to a set of payoff allocations A ⊆ RN+ are

– the comprehensive hull comp(A) = {x ∈ RN+ | ∃y∈A : y ≥ x};

– the weak upper contour set WUC(A) = {x ∈ RN+ | ¬∃y∈A : y > x};

– the weak Pareto set WP(A) = {x ∈ A | ¬∃y∈A : y > x};

– the strong Pareto set SP(A) = {x ∈ A | ¬∃y∈A,y 6=x : y ≥ x}.

Note that SP(A) ⊆WP(A) ⊆WUC(A). The set A ⊆ RN+ is called comprehensive if A = comp(A),
and nonleveled if SP(A) = WP(A).

3 The Egalitarian Value

In this section, we introduce the egalitarian value as an egalitarian solution concept for nontrans-
ferable utility games. The egalitarian value is based on an egalitarian negotiation procedure in
which coalitional opportunities are explicitly taken into account. By applying the utopia values of
the grand coalition as an egalitarian direction in any subcoalition, the procedure starts assigning
to any coalition the maximally feasible egalitarian allocation. Players can fix their allocated payoff
in a coalition if no member is allocated a higher payoff in any other coalition. These players would
still be willing to cooperate within other coalitions provided that they are compensated. Therefore,
they claim their fixed payoff in any coalition and the other members are assigned the maximally
feasible egalitarian allocation. This recursive procedure continues and eventually all players acquire
a claim which is attainable in at least one coalition.

Definition 1 (Egalitarian Procedure).
Let V ∈ NTUN be a nontransferable utility game. The set of 0-egalitarian claimants is given
by PV,0 = ∅. Let k ∈ N. The k-egalitarian distribution is the function χV,k assigning to each
S ∈ 2N \ {∅} the payoff allocation χV,k(S) ∈ RS+ given by

χV,k(S) =
(
γV,k−1
S∩PV,k−1 , λ

V,k(S)u
V (N)

S\PV,k−1

)
,
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where λV,k : 2N \ {∅} → R+ assigns to each S ∈ 2N \ {∅} the scalar λV,k(S) ∈ R+ given by

λV,k(S) =

max
{
t ∈ R+

∣∣∣ (γV,k−1S∩PV,k−1 , tu
V (N)

S\PV,k−1

)
∈ V (S)

}
if
(
γV,k−1
S∩PV,k−1 , 0S\PV,k−1

)
∈ V (S);

0 if
(
γV,k−1
S∩PV,k−1 , 0S\PV,k−1

)
/∈ V (S).

The collection of k-egalitarian admissible coalitions is given by

AV,k =
{
S ∈ 2N \ {∅}

∣∣∣ χV,k(S) ∈WP(V (S)),∀i∈S∀T∈2N :i∈T : χV,ki (T ) ≤ χV,ki (S)
}
.

The set of k-egalitarian claimants PV,k ∈ 2N \ {∅} is given by PV,k =
⋃
S∈AV,k S. The vector of

k-egalitarian claims γV,k ∈ RPV,k+ is for all i ∈ PV,k given by γV,ki = χV,ki (S), where S ∈ AV,k with
i ∈ S.

Later, we show that this procedure is adequately defined. First, we provide an illustrative example.

Example 1.
Let N = {1, 2, 3} and consider V ∈ NTUN given by

V ({1}) =
{
x ∈ R{1}+

∣∣∣ x ≤ 4
}

;

V ({2}) =
{
x ∈ R{2}+

∣∣∣ x ≤ 1
}

;

V ({3}) =
{
x ∈ R{3}+

∣∣∣ x ≤ 0
}

;

V ({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 ≤ 4, x2 ≤ 2
}

;

V ({1, 3}) =
{
x ∈ R{1,3}+

∣∣∣ x1 ≤ 2, x3 ≤ 2
}

;

V ({2, 3}) =
{
x ∈ R{2,3}+

∣∣∣ 2x2 + x3 ≤ 4
}

;

V ({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ 2x1 + 2x2 + x3 ≤ 12
}
.

We have uV (N) = (6, 6, 12). The following table illustrates the egalitarian distribution.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χV,1(S) (4, ·, ·) (·, 1, ·) (·, ·, 0) (2, 2, ·) (1, ·, 2) (·, 1, 2) (2, 2, 4)
χV,2(S) (4, ·, ·) (·, 1, ·) (·, ·, 0) (4, 2, ·) (4, ·, 0) (·, 1, 2) (4, 1, 2)

χV,k(S) (k ≥ 3) (4, ·, ·) (·, 2, ·) (·, ·, 0) (4, 2, ·) (4, ·, 0) (·, 2, 0) (4, 2, 0)

In the first iteration, we have AV,1 = {{1}}, PV,1 = {1}, and γV,1 = (4, ·, ·). In the second iteration,
we have AV,2 = {{1}, {1, 2}}, PV,2 = {1, 2}, and γV,2 = (4, 2, ·). In all subsequent iterations k ≥ 3,
we have AV,k = {{1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}, PV,k = N , and γV,k = (4, 2, 0). 4

Lemma 3.1.
Let V ∈ NTUN and let S ∈ 2N \ {∅}. Then χV,k(S) ∈WUC(V (S)) for all k ∈ N.

Proof. We show the statement by induction on k. Suppose that χV,1(S) /∈WUC(V (S)). Then there
exists an x ∈ V (S) for which x > χV,1(S). Since V (S) is comprehensive, this means that there

exists a y ∈ V (S) with y > χV,1(S) for which y = tu
V (N)
S for some t ∈ R+. Using PV,0 = ∅, this

means that t > λV,1(S), which contradicts the definition of λV,1(S). Hence, χV,1(S) ∈WUC(V (S)).
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Let k ∈ N and assume that χV,k(S) ∈ WUC(V (S)). If S ⊆ PV,k, then χV,k+1(S) = γV,kS ≥
χV,k(S), so χV,k+1(S) ∈ WUC(V (S)). Assume that S 6⊆ PV,k and suppose that χV,k+1(S) /∈
WUC(V (S)). Then there exists an x ∈ V (S) for which x > χV,k+1(S). Since V (S) is comprehen-
sive, this means that there exists a y ∈ V (S) with y ≥ χV,k+1(S) and y 6= χV,k+1(S) for which

y = (γV,k
S∩PV,k , tu

V (N)

S\PV,k) for some t ∈ R+. This means that t > λV,k+1(S), which contradicts the

definition of λV,k+1(S). Hence, χV,k+1(S) ∈WUC(V (S)).

Lemma 3.1 shows that the egalitarian distribution generally assigns an overefficient allocation
to each coalition. Only coalitions which are assigned an efficient allocation can be egalitarian
admissible. There, members fix their allocated payoff and claim it in all further iterations. Efficiency
can only be achieved when it is possible to allocate to the egalitarian claimants which are member
of the coalition their corresponding egalitarian claims. Formally, for all S ∈ 2N \ {∅} and any

k ∈ N, we have χV,k(S) ∈ WP(V (S)) if and only if (γV,k−1
S∩PV,k−1 , 0S\PV,k−1) ∈ V (S). In particular,

this means that the egalitarian distribution assigns in the first iteration an efficient allocation to
each coalition.

To an egalitarian admissible coalition, the egalitarian distribution assigns an efficient allocation
for which no member is allocated a higher payoff in any other coalition. This suggests that the
payoff allocation is an element of the core. The core of any V ∈ NTUN is given by

C(V ) =
{
x ∈ V (N)

∣∣ ∀S∈2N\{∅} : xS ∈WUC(V (S))
}
.

Indeed, for each egalitarian admissible coalition, the corresponding vector of egalitarian claims
is a core element of the induced subgame. For any V ∈ NTUN , the subgame VS ∈ NTUS on
S ∈ 2N \ {∅} is given by VS(R) = V (R) for all R ∈ 2S \ {∅}.

Proposition 3.2.
Let V ∈ NTUN and let k ∈ N. Then γV,kS ∈ C(VS) for all S ∈ AV,k.

Proof. Let S ∈ AV,k. By definition, we have γV,kS = χV,k(S) and χV,k(S) ∈ VS(S). Suppose that

γV,kS /∈ C(VS). Then there exists an R ∈ 2S \ {∅} for which γV,kR ∈ VS(R) \WP(VS(R)). We can
write

γV,kR = χV,kR (S) ≥ χV,k(R).

Since VS(R) is comprehensive, this means that χV,k(R) ∈ VS(R) \WP(VS(R)). This contradicts

Lemma 3.1. Hence, γV,kS ∈ C(VS).

The question arises whether egalitarian admissible coalitions and egalitarian claimants exist in
every nontransferable utility game. Are players always able to acquire an egalitarian claim? The
answer turns out to be affirmative.

Lemma 3.3.
Let V ∈ NTUN and let k ∈ N. Then AV,k ⊆ AV,k+1.
Moreover, if PV,k−1 6= N , then PV,k−1 ⊂ PV,k.

Proof. Let S ∈ AV,k. Then we have χV,k(S) ∈WP(V (S)) and S ⊆ PV,k. We can write χV,k+1(S) =

γV,kS = χV,k(S). This means that χV,k+1(S) ∈ WP(V (S)) and for all i ∈ S we have χV,k+1
i (T ) =

γV,ki ≤ χV,k+1
i (S) for all T ∈ 2N for which i ∈ T , so S ∈ AV,k+1. Hence, AV,k ⊆ AV,k+1.

Assume that PV,k−1 6= N . Let S ∈ 2N with S 6⊆ PV,k−1 and (γV,k−1
S∩PV,k−1 , 0S\PV,k−1) ∈ V (S)

be a coalition such that λV,k(S) equals the maximum λV,k(R) over all coalitions R ∈ 2N with

R 6⊆ PV,k−1. Then we have χV,k(S) ∈ WP(V (S)) and χV,ki (T ) ≤ χV,ki (S) for all i ∈ S and all
T ∈ 2N for which i ∈ T . This means that S ∈ AV,k and S ⊆ PV,k. Hence, PV,k−1 ⊂ PV,k.
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Lemma 3.3 shows that the collection of egalitarian admissible coalitions weakly extends in each
iteration and eventually covers all players. The structure of this collection is determined by the
structure of the underlying nontransferable utility game. An NTU-game V ∈ NTUN is called

– superadditive if V (S)× V (T ) ⊆ V (S ∪ T ) for all S, T ∈ 2N \ {∅} for which S ∩ T = ∅;

– ordinal convex (cf. Vilkov (1977)) if V is superadditive and xS∪T ∈ V (S ∪ T ) or xS∩T ∈
V (S ∩ T ) for all S, T ∈ 2N \ {∅} for which S ∩ T 6= ∅ and any x ∈ RN+ for which xS ∈ V (S)
and xT ∈ V (T );

– coalitional merge convex (cf. Hendrickx, Borm, and Timmer (2002)) if V is superadditive and
for all R ∈ 2N \{∅} and S, T ∈ 2N\R \{∅} for which S ⊂ T , and any s ∈ V (S), t ∈ V (T ), and
x ∈ V (S ∪R) for which xS ≥ s, there exists a y ∈ V (T ∪R) for which yT ≥ t and yR ≥ xR;

– balanced (cf. Scarf (1967)) if for all balanced collections B ⊆ 2N \ {∅}, we have x ∈ V (N) if
xS ∈ V (S) for all S ∈ B. Here, a collection of coalitions B ⊆ 2N \ {∅} is called balanced if
there exists a function δ : B → R++ for which

∑
S∈B:i∈S δ(S) = 1 for all i ∈ N .

Greenberg (1985) showed that the core of an ordinal convex game is nonempty. Hendrickx et al.
(2002) and Scarf (1967) showed a similar result for coalitional merge convex games and balanced
games, respectively.

Interestingly, the aforementioned properties of nontransferable utility games each have implications
for the relation of the collections of egalitarian admissible coalitions in two subsequent iterations.

Proposition 3.4.
Let V ∈ NTUN and let k ∈ N.

(i) If V is superadditive, then S ∪ T ∈ AV,k+1 for all S, T ∈ AV,k with S ∩ T = ∅.

(ii) If V is ordinal convex, then S ∪ T ∈ AV,k+1 or S ∩ T ∈ AV,k+1 for all S, T ∈ AV,k.

(iii) If V is coalitional merge convex, then S ∪ T ∈ AV,k+1 for all S, T ∈ AV,k.

(iv) If V is balanced, then N ∈ AV,k+1 if there exists a balanced collection B ⊆ AV,k.

Proof. (i) Assume that V is superadditive. Let S, T ∈ AV,k with S ∩ T = ∅. Then we have

γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since V is superadditive, this means that γV,kS∪T ∈ V (S ∪ T ). From

Lemma 3.1 we know that χV,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )). Since χV,k+1(S ∪ T ) = γV,kS∪T , this
implies that χV,k+1(S ∪ T ) ∈WP(V (S ∪ T )). Hence, S ∪ T ∈ AV,k+1.

(ii) Assume that V is ordinal convex. Let S, T ∈ AV,k with S ∩ T 6= ∅. Then we have

γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since V is ordinal convex, this means that γV,kS∪T ∈ V (S ∪ T )

or γV,kS∩T ∈ V (S ∩ T ). From Lemma 3.1 we know that χV,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )) and

χV,k+1(S ∩ T ) ∈ WUC(V (S ∩ T )). Since χV,k+1(S ∪ T ) = γV,kS∪T and χV,k+1(S ∩ T ) = γV,kS∩T ,
this implies that χV,k+1(S ∪ T ) ∈ WP(V (S ∪ T )) or χV,k+1(S ∩ T ) ∈ WP(V (S ∩ T )). Hence,
S ∪ T ∈ AV,k+1 or S ∩ T ∈ AV,k+1.

(iii) Assume that V is coalitional merge convex. Let S, T ∈ AV,k with S ∩ T 6= ∅, S 6⊆ T and

T 6⊆ S. Then we have γV,kS ∈ V (S) and γV,kT ∈ V (T ). Since V is coalitional merge convex, there

exists a y ∈ V (S ∪ T ) for which yS ≥ γV,kS and yT\S ≥ γV,kT\S , i.e. y ≥ γV,kS∪T . Since V (S ∪ T ) is

comprehensive, this means that γV,kS∪T ∈ V (S ∪T ). From Lemma 3.1 we know that χV,k+1(S ∪T ) ∈
WUC(V (S ∪ T )). Since χV,k+1(S ∪ T ) = γV,kS∪T , this implies that χV,k+1(S ∪ T ) ∈WP(V (S ∪ T )).
Hence, S ∪ T ∈ AV,k+1.
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(iv) Assume that V is balanced. Let B ⊆ AV,k be a balanced collection. Then we have

γV,kS ∈ V (S) for all S ∈ B. Since V is balanced, this means that γV,k ∈ V (N). From Lemma 3.1
we know that χV,k+1(N) ∈WUC(V (N)). Since χV,k+1(N) = γV,k, this implies that χV,k+1(N) ∈
WP(V (N)). Hence, N ∈ AV,k+1.

Furthermore, Lemma 3.3 also shows that in each iteration of the egalitarian procedure, at least
one extra player acquires an egalitarian claim as long as the collection of egalitarian admissible
coalitions does not cover all players. The egalitarian procedure reaches a steady state when all
players are egalitarian claimants. This means that the number of iterations needed to converge to
a steady state is bounded by the number of players. Example 1 shows that this bound is tight.

Definition 2.
Let V ∈ NTUN be a nontransferable utility game. The iteration nV ∈ {1, . . . , |N |} is given by

nV = min{k ∈ N | PV,k = N}. The vector of egalitarian claims γ̂V ∈ RN+ is given by γ̂V = γV,n
V

.

The collection ÂV ⊆ 2N \ {∅} is given by

ÂV =
{
S ∈ 2N \ {∅}

∣∣∣ γ̂VS ∈ V (S),∀T∈2N\{∅}:γ̂VT ∈V (T ) : S 6⊂ T
}
.

The set of strong egalitarian claimants DV ∈ 2N is given by DV =
⋂
S∈ÂV S and consists of all

players which are member of all inclusion-wise maximal egalitarian admissible coalitions.

The egalitarian value is a solution concept which takes both the set of strong egalitarian
claimants and the vector of egalitarian claims into account to prescribe a payoff allocation for
the grand coalition. The egalitarian claims can be interpreted as aspiration levels for such an al-
location. The egalitarian value first allocates to all strong egalitarian claimants their claims, and
then allocates to all other players their claims. The possibly resulting infeasibility is modeled as a
bankruptcy problem in which the egalitarian claims are adopted.

A bankruptcy problem with nontransferable utility (cf. Dietzenbacher et al. (2016)) is a triple
(N,E, c) in which E ⊆ RN+ is a nonempty, closed, bounded, nontrivial and comprehensive estate

and c ∈WUC(E) is a vector of claims. Let BRN denote the class of all such NTU-bankruptcy prob-
lems with player set N . For convenience, an NTU-bankruptcy problem is denoted by (E, c) ∈ BRN .
The constrained relative equal awards rule CREA : BRN → RN+ assigns to any (E, c) ∈ BRN the
payoff allocation

CREA(E, c) =
(
min

{
ci, α

E,cuEi
})
i∈N ,

where αE,c = max{t ∈ [0, 1] | (min{ci, tuEi })i∈N ∈ E}. Note that CREA(E, c) ∈WP(E).

A solution for nontransferable utility games f : NTUN → RN+ assigns to any V ∈ NTUN a
payoff allocation f(V ) ∈ WP(V (N)). Taking the egalitarian claims and the set of strong egali-
tarian claimants into account, the egalitarian value is a solution for nontransferable utility games
which uses the constrained relative equal awards rule to prescribe a payoff allocation for the grand
coalition. In Section 5, we further elaborate on the choice of this specific bankruptcy rule.

Definition 3 (Egalitarian Value).
The egalitarian value Γ : NTUN → RN+ is for all V ∈ NTUN given by

Γ(V ) =


(
γ̂VDV ,CREA

({
x ∈ RN\D

V

+

∣∣∣ (γ̂VDV , x) ∈ V (N)
}
, γ̂VN\DV

))
if
(
γ̂VDV , 0N\DV

)
∈ V (N);(

CREA
({
x ∈ RDV+

∣∣∣ (x, 0N\DV ) ∈ V (N)
}
, γ̂VDV

)
, 0N\DV

)
if
(
γ̂VDV , 0N\DV

)
/∈ V (N).
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Note that, on the class of (nonnegative) transferable utility games, the egalitarian value coincides
with the procedural egalitarian solution (cf. Dietzenbacher et al. (2016)) if the latter is nonnegative.

Example 2.
Let N = {1, 2, 3} and consider V ∈ NTUN as in Example 1. We have nV = 3, γ̂V = (4, 2, 0),

ÂV = {N}, and DV = N . Consequently, Γ(V ) = (4, 2, 0). 4

As in Example 2, an interesting situation arises when the grand coalition is egalitarian admis-
sible. Then, all players are strong egalitarian claimants, no infeasibility results, and the egalitarian
value assigns to all players their egalitarian claims. Moreover, from Proposition 3.2 we know that
the egalitarian value leads to a core element. Therefore, such nontransferable utility games are
called egalitarian stable.

Definition 4 (Egalitarian Stability).

A nontransferable utility game V ∈ NTUN is called egalitarian stable if ÂV = {N}.

We know that egalitarian stability is a sufficient condition for nontransferable utility games to
contain the egalitarian value in the core. The following example shows that this condition is not
necessary.

Example 3.
Let N = {1, 2, 3} and consider V ∈ NTUN given by

V ({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ N ;

V ({1, i}) =
{
x ∈ R{1,i}+

∣∣∣ x1 ≤ 4, xi ≤ 4
}

for i ∈ {2, 3};

V ({2, 3}) =
{
x ∈ R{2,3}+

∣∣∣ x2 ≤ 0, x3 ≤ 0
}

;

V ({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x1 + x2 + x3 ≤ 6
}
.

We have uV (N) = (6, 6, 6). The following table illustrates the egalitarian distribution in the first
iteration of the egalitarian procedure.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χV,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) (4, 4, ·) (4, ·, 4) (·, 0, 0) (2, 2, 2)

In the first iteration, we have AV,1 = {{1, 2}, {1, 3}}, PV,1 = N , and γV,1 = (4, 4, 4). This means

that nV = 1, γ̂V = (4, 4, 4), ÂV = {{1, 2}, {1, 3}}, and DV = {1}. Consequently,

Γ(V ) =
(

4,CREA
({
x ∈ R{2,3}+

∣∣∣ x2 + x3 ≤ 2
}
, (·, 4, 4)

))
= (4, 1, 1).

Note that Γ(V ) ∈ C(V ). 4

In Example 3, the sets of payoff allocations V ({1, 2}) and V ({1, 3}) are not nonleveled. We
want to note that, for nontransferable utility games V ∈ NTUN for which V (S) is nonleveled for all
S ∈ 2N \ {∅}, egalitarian stability is a necessary and sufficient condition to contain the egalitarian
value in the core. The question arises which nontransferable utility games are egalitarian stable.
From Proposition 3.4 we know that coalitional merge convex games are egalitarian stable. In the
next sections we show that the Roth-Shafer examples, bankruptcy games and bargaining games
are all egalitarian stable as well.
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4 Roth-Shafer Examples

In this section, we study the egalitarian value for the examples introduced by Roth (1980) and Shafer
(1980). These examples initiated an interesting and extensive discussion on the interpretation of
solutions for nontransferable utility games. Along the lines of this discussion, we compare the
egalitarian value with the Shapley value (cf. Shapley (1969)), the Harsanyi value (cf. Harsanyi
(1963)), and the monotonic solution of Kalai and Samet (1985). For more details, we refer to
Harsanyi (1980), Aumann (1985), Hart (1985), Roth (1986), and Aumann (1986).

Example 4 (cf. Roth (1980)).
Let N = {1, 2, 3} and consider Vp ∈ NTUN which is for all p ∈ (0, 12 ) given by

Vp({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ N ;

Vp({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 ≤ 1
2 , x2 ≤

1
2

}
;

Vp({i, 3}) =
{
x ∈ R{i,3}+

∣∣∣ xi ≤ p, x3 ≤ 1− p
}

for i ∈ {1, 2};

Vp({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x ∈ comp(conv({( 1
2 ,

1
2 , 0), (p, 0, 1− p), (0, p, 1− p)}))

}
,

where conv(A) denotes the convex hull of the set A ⊆ RN+ . We have uVp(N) = ( 1
2 ,

1
2 , 1 − p). The

following table illustrates the egalitarian distribution in the first two iterations of the egalitarian
procedure.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χVp,1(S) 0 0 0 ( 1

2 ,
1
2 , ·) (p, ·, 2p(1− p)) (·, p, 2p(1− p)) λVp,1(N)uVp(N)

χVp,2(S) 1
2

1
2 0 ( 1

2 ,
1
2 , ·) ( 1

2 , ·, 0) (·, 12 , 0) ( 1
2 ,

1
2 , 0)

In the first iteration, we have AVp,1 = {{1, 2}}, PVp,1 = {1, 2}, and γVp,1 = ( 1
2 ,

1
2 , ·). In the second

iteration, we have AVp,2 = {{3}, {1, 2}, {1, 2, 3}}, PVp,2 = N , and γVp,2 = ( 1
2 ,

1
2 , 0). This means

that nVp = 2, γ̂Vp = ( 1
2 ,

1
2 , 0), ÂVp = {N}, and DVp = N . Consequently, Γ(Vp) = ( 1

2 ,
1
2 , 0).

Besides, the Shapley value equals ( 1
3 ,

1
3 ,

1
3 ), and the Harsanyi value and the monotonic solution

both equal ( 1
2 −

1
3p,

1
2 −

1
3p,

2
3p). Note that, contrary to the egalitarian value, these solutions do not

belong to the core. Roth argues that the payoff allocation ( 1
2 ,

1
2 , 0) is the unique outcome of this

game which is consistent with the hypothesis that the players are rational utility maximizers, since
this payoff allocation is strictly preferred by both player 1 and 2, and it can be achieved without
player 3. The egalitarian value perfectly matches this idea. 4

Example 5 (cf. Shafer (1980) and Hart and Kurz (1983)).
Let N = {1, 2, 3} and consider Vε ∈ NTUN which is for all ε ∈ [0, 16 ) given by

Vε({i}) =
{
x ∈ R{i}+

∣∣∣ x ≤ 0
}

for i ∈ {1, 2};

Vε({3}) =
{
x ∈ R{3}+

∣∣∣ x ≤ ε} ;

Vε({1, 2}) =
{
x ∈ R{1,2}+

∣∣∣ x1 + x2 ≤ 1− ε
}

;

Vε({i, 3}) =
{
x ∈ R{i,3}+

∣∣∣ xi + x3 ≤ 1
2 + 1

2ε, xi ≤ ε
}

for i ∈ {1, 2};

Vε({1, 2, 3}) =
{
x ∈ R{1,2,3}+

∣∣∣ x1 + x2 + x3 ≤ 1
}
.
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We have uVε(N) = (1, 1, 1). The following table illustrates the egalitarian distribution in the first
two iterations of the egalitarian procedure.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
χVε,1(S) 0 0 ε ( 1−ε

2 , 1−ε2 , ·) (ε, ·, ε) (·, ε, ε) ( 1
3 ,

1
3 ,

1
3 )

χVε,2(S) 1−ε
2

1−ε
2 ε ( 1−ε

2 , 1−ε2 , ·) ( 1−ε
2 , ·, 0) (·, 1−ε2 , 0) ( 1−ε

2 , 1−ε2 , ε)

In the first iteration, we have AVε,1 = {{1, 2}}, PVε,1 = {1, 2}, and γVε,1 = ( 1−ε
2 , 1−ε2 , ·). In the

second iteration, we have AVε,2 = {{3}, {1, 2}, {1, 2, 3}}, PVε,2 = N , and γVε,2 = ( 1−ε
2 , 1−ε2 , ε).

This means that nVε = 2, γ̂Vε = ( 1−ε
2 , 1−ε2 , ε), ÂVε = {N}, and DVε = N . Consequently, Γ(Vε) =

( 1
2 −

1
2ε,

1
2 −

1
2ε, ε).

Besides, the Shapley value equals ( 5
12 −

5
12ε,

5
12 −

5
12ε,

2
12 + 10

12ε), and the Harsanyi value and the
monotonic solution both equal ( 1

2 −
5
6ε,

1
2 −

5
6ε,

10
6 ε). Note that, contrary to the egalitarian value,

these solutions do not belong to the core. Shafer argues that it is unreasonable to allocate at least
1
6 to player 3, independent of ε and especially in the case ε = 0. The egalitarian value seamlessly
connects with this idea. 4

5 Bankruptcy Games

In this section, we analyze the egalitarian value on the class of bankruptcy games with nontrans-
ferable utility. For any bankruptcy problem (E, c) ∈ BRN for which the estate E is nonleveled, the
corresponding bankruptcy game (cf. Dietzenbacher (2017)) V E,c ∈ NTUN is for all S ∈ 2N \ {∅}
given by

V E,c(S) =

{
{x ∈ RS+ | (x, cN\S) ∈ E} if (0S , cN\S) ∈ E;

0S if (0S , cN\S) /∈ E.

The core of a bankruptcy game is given by C(V E,c) = {x ∈WP(E) | x ≤ c}.

In the next theorem, we show that bankruptcy games are egalitarian stable, which means that
the egalitarian value assigns to all players their egalitarian claims without having to rely on the
constrained relative equal awards rule in its definition. Interestingly, we show that the egalitarian
value for bankruptcy games corresponds to the constrained relative equal awards rule for the
underlying bankruptcy problem. This illustrates the strong connection between the egalitarian
value and the constrained relative equal awards rule. Besides, it justifies the use of the latter in
the definition of the egalitarian value for nontransferable utility games which are not egalitarian
stable.

Theorem 5.1.
Let (E, c) ∈ BRN be a bankruptcy problem with nontransferable utility such that E is nonleveled.
Then Γ(V E,c) = CREA(E, c).

Proof. First, we show that γ̂V
E,c ≤ c. Suppose that there exists an i ∈ N for which γ̂V

E,c

i > ci. Let

k ∈ N such that i ∈ PV E,c,k \ PV E,c,k−1 and let S ∈ AV E,c,k such that i ∈ S. Since c ∈WUC(E)

and E is nonleveled, we have γ̂V
E,c

i /∈ V E,c({i}), so S 6= {i}. We have χV
E,c,k(S) ∈WP(V E,c(S)),

i.e. (
λV

E,c,k(S)u
V E,c(N)

S\PV E,c,k−1
, γV

E,c,k−1
S∩PV E,c,k−1

)
∈WP(V E,c(S)).

Since E is nonleveled, this means that(
λV

E,c,k(S)u
V E,c(N)

S\PV E,c,k−1
, γV

E,c,k−1
S∩PV E,c,k−1

, cN\S

)
∈ SP(E).
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Since E is comprehensive, we have(
λV

E,c,k(S)u
V E,c(N)

S\(PV E,c,k−1∪{i})
, γV

E,c,k−1
S∩PV E,c,k−1

, ci, cN\S

)
∈ E \ SP(E).

Since E is nonleveled, we have(
λV

E,c,k(S)u
V E,c(N)

S\(PV E,c,k−1∪{i})
, γV

E,c,k−1
S∩PV E,c,k−1

)
∈ V E,c(S \ {i}) \WP(V E,c(S \ {i})).

Since we know from Lemma 3.1 that χV
E,c,k(S \ {i}) ∈WUC(V E,c(S \ {i})), we can write

χV
E,c,k

S\(PV E,c,k−1∪{i})
(S \ {i}) = λV

E,c,k(S \ {i})uV
E,c(N)

S\(PV E,c,k−1∪{i})

> λV
E,c,k(S)u

V E,c(N)

S\(PV E,c,k−1∪{i})

= χV
E,c,k

S\(PV E,c,k−1∪{i})
(S).

This contradicts that S ∈ AV E,c,k. Hence, γ̂V
E,c ≤ c.

Suppose that c ∈ E. Then we have χV
E,c,nV

E,c

(N) ≤ γV
E,c,nV

E,c

= γ̂V
E,c ≤ c. From Lemma

3.1 we know that χV
E,c,nV

E,c

(N) ∈ WUC(E). Since E is nonleveled, this means that γ̂V
E,c

= c,

ÂV E,c = {N}, and DV E,c = N . Consequently, Γ(V E,c) = c = CREA(E, c).

Now suppose that c /∈ E. First, we show that χV
E,c,1(S) ≤ αE,cuES for all S ∈ 2N \ {∅}.

Suppose there exists an S ∈ 2N \ {∅} for which χV
E,c,1

i (S) > αE,cuEi for some i ∈ S. Then we

have χV
E,c,1(S) ∈WP(V E,c(S)) and χV

E,c,1(S) = λV
E,c,1(S)uES > αE,cuES ≥ CREAS(E, c). Since

E is nonleveled, this means that (χV
E,c,1(S), cN\S) ∈ WP(E). Moreover, (χV

E,c,1(S), cN\S) ≥
CREA(E, c) and (χV

E,c,1(S), cN\S) 6= CREA(E, c). Since E is nonleveled, this contradicts that

CREA(E, c) ∈WP(E). Hence, χV
E,c,1(S) ≤ αE,cuES for all S ∈ 2N \ {∅}.

Next, define HE,c ∈ 2N \ {∅} by

HE,c =
{
i ∈ N | CREAi(E, c) = αE,cuEi

}
.

We have χV
E,c,1(HE,c) ∈WP(V E,c(HE,c)) and

χV
E,c,1(HE,c) = λV

E,c,1(HE,c)uEHE,c = αE,cuEHE,c = CREAHE,c(E, c).

This means that HE,c ∈ AV E,c,1 and HE,c ⊆ PV E,c,1. Moreover, γV
E,c,1

HE,c
= CREAHE,c(E, c).

Now, we have

χV
E,c,nV

E,c

(N) ≤ γV
E,c,nV

E,c

= γ̂V
E,c

≤
(
CREAHE,c(E, c), cN\HE,c

)
= CREA(E, c).

From Lemma 3.1 we know that χV
E,c,nV

E,c

(N) ∈WUC(E). Since CREA(E, c) ∈WP(E) and E is

nonleveled, this means that γ̂V
E,c

= CREA(E, c), ÂV E,c = {N}, and DV E,c = N . Consequently,
Γ(V E,c) = CREA(E, c).
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6 Bargaining Games

In this section, we analyze the egalitarian value on the class of bargaining games. A (nonnegative)
bargaining problem (cf. Nash (1950)) is a triple (N,F, d) in which F ⊆ RN+ is a nonempty, closed,

bounded, nontrivial and comprehensive feasible set and d ∈ F is a disagreement point. Let BGN

denote the class of all such bargaining problems with player set N . For convenience, a bargaining
problem is denoted by (F, d) ∈ BGN . For all (F, d) ∈ BGN , we denote Fd = {x ∈ F | x ≥ d}. Kalai
and Smorodinsky (1975) introduced the solution KS : BGN → RN+ assigns to any (F, d) ∈ BGN

the payoff allocation
KS(F, d) =

(
1− βF,d

)
d+ βF,duFd ,

where βF,d = max{t ∈ [0, 1] | (1− t)d+ tuFd ∈ F}. Note that KS(F, d) ∈WP(F ).

Any bargaining problem (F, d) ∈ BGN gives rise to the corresponding bargaining game V F,d ∈
NTUN which is for all S ∈ 2N \ {∅} given by

V F,d(S) =

{
F if S = N ;

{x ∈ RS+ | x ≤ dS} if S ∈ 2N \ {∅, N}.

The core of a bargaining game is given by C(V F,d) = {x ∈WP(F ) | x ≥ d}. Note that bargaining
games are coalitional merge convex, which implies that bargaining games are egalitarian stable and
that the egalitarian value leads to a core element.

Theorem 6.1.
Let (F, d) ∈ BGN be a bargaining problem such that d = 0N . Then Γ(V F,d) = KS(F, d).

Proof. Since d = 0N , we have Fd = F and KS(F, d) = βF,duF . In the first iteration of the
egalitarian procedure, we have

χV
F,d,1(S) =

{
λV

F,d,1(N)uF if S = N ;

0S if S ∈ 2N \ {∅, N},

where λV
F,d,1(N) ∈ R+ is such that λV

F,d,1(N)uF ∈ WP(F ). This means that N ∈ AV F,d,1,

PV
F,d,1 = N , and γV

F,d,1 = λV
F,d,1(N)uF , which implies that nV

F,d

= 1, γ̂V
F,d

= λV
F,d,1(N)uF ,

ÂV F,d = {N}, and DV F,d = N . Consequently, Γ(V F,d) = λV
F,d,1(N)uF . Since both Γ(V F,d) ∈

WP(F ) and KS(F, d) ∈ WP(F ), the assumptions on F imply that λV
F,d,1(N) = βF,d. Hence,

Γ(V F,d) = KS(F, d).

Theorem 6.1 shows that the egalitarian value corresponds to the solution of Kalai and Smorodin-
sky (1975) if the disagreement point of the underlying bargaining problem equals the zero vector.
The following example shows that the egalitarian value corresponds to a new solution for bargaining
problems for which the disagreement point is nonzero.
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Example 6.
Let N = {1, 2} and consider the bargaining problem (F, d) ∈ BGN in which F = {x ∈ RN+ |
x21 + 2x2 ≤ 36}. If d = (0, 6), the egalitarian value and the solution of Kalai and Smorodinsky
(1975) are illustrated as follows.

F

x10 1 2 3 4 5 6

x2

6

12

18
uF

Γ(V F,d)

d

uFd

KS(F, d)

If d = (0, 13 1
2 ), the egalitarian value is of a different nature.

F

x10 1 2 3 4 5 6

x2

6

12

18
uF

Γ(V F,d)
d

uFdKS(F, d)

4

Following our interpretation of egalitarianism, individual utility is normalized such that allocat-
ing nothing corresponds to a utility level of zero. Together with the utopia vector, the zero vector
forms a benchmark for egalitarian allocations. For bargaining games, it can be shown that the
egalitarian value prescribes the maximally feasible egalitarian allocation as long as this allocation
is stable, i.e. as long as the corresponding payoff is for each player at least the payoff within the
disagreement point. If the maximally feasible egalitarian allocation is not stable, some players
claim their disagreement payoff and the egalitarian value prescribes the maximally feasible egal-
itarian allocation for the other players. In this way, the egalitarian value constitutes an efficient
and stable solution for bargaining problems. Future research could further study the interpretation
and axiomatic significance of this new egalitarian solution concept.
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