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Abstract

An important and widely used class of semiparametric models is formed by the varying-

coefficient models. Although the varying coefficients are traditionally assumed to be

smooth functions, the varying-coefficient model is considered here with the coefficient

functions containing a finite set of discontinuities. Contrary to the existing nonparametric

and varying-coefficient estimation of piecewise smooth functions, the varying-coefficient

models are considered here under dependence and are applicable in time series with

heteroscedastic and serially correlated errors. Additionally, the conditional error variance

is allowed to exhibit discontinuities at a finite set of points too. The (uniform) consistency

and asymptotic normality of the proposed estimators are established and the finite-sample

performance is tested via a simulation study.
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1 Introduction

The varying-coefficient models (VCM) form an important class of semiparametric models

(see Hastie and Tibshirani, 1993; Cai et al., 2000) that assume the marginal effects of

covariates to be an unknown function of an observable index variable. Practically, VCMs

are formulated as linear models with coefficients being general functions of the index

variable. Most existing literature assumes the coefficient functions to be continuous

and smooth. In this paper, we however allow coefficient functions to contain a finite

set of discontinuities; additionally, discontinuities can be present also in the conditional

error variance. To the best of our knowledge, VCMs with discontinuities in coefficient

functions have not been investigated before in heteroscedastic and time series setting. For

independent and identically distributed data, Zhu et al. (2014) and Zhao et al. (2016)

suggested methods for estimation of varying-coefficient models with discontinuities.

There is a vast amount of literature on VCMs when coefficients are smooth continuous

functions. Recent works include Hoover et al. (1998), Wu et al. (1998), and Fan and

Zhang (2000) on longitudinal data analysis, Cai et al. (2000) and Huang and Shen (2004)

on nonlinear time series, and Cai and Li (2008) and Sun et al. (2009) on panel data

analysis. Additionally, hybrids of varying-coefficient models have also been developed:

for example, partial linearly varying-coefficient models where some coefficient functions

are constant (Zhang et al., 2002; Fan and Huang, 2005; Ahmad et al., 2005; Lee and

Mammen, 2016), generalized linear models with varying coefficients (Cai et al., 2000),

and varying-coefficient models in which the varying index is latent and estimated as a

linear combination of several observed variables (Fan et al., 2003).

Although very few studies on VCMs allow discontinuities in coefficient functions, lit-

erature on nonparametric estimation of discontinuous regression function is extensive.

The classical estimation procedures usually consist of two stages. The locations of dis-

continuities are first estimated and then a conventional nonparametric estimator, which
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assumes the underlying function to be continuous, is used within each segment between

two consecutive discontinuities to estimate the regression function itself. Examples of

this approach include Müller (1992), Wu and Chu (1993), Kang et al. (2000), and Gijbels

and Goderniaux (2004).

There are other techniques that do not estimate first the locations of discontinuities

in a nonparametric regression; see, for example Godtliebsen et al. (1997) on nonlinear

Gaussian filtering and Spokoiny (1998) and Polzehl and Spokoiny (2000) on adaptive

weights smoothing. Besides these approaches, Gijbels et al. (2007) recently proposed

an estimation method based on three local linear estimators in the framework of fixed

design and homoscedastic errors. At each design point z, they considered local linear

estimates using data from the left-, right-, and two-sided neighborhoods of z. The final

estimate of the conditional mean of the response equals one of these three local linear

estimates chosen by comparing the weighted residual mean squared errors of three local

linear fits. This approach was extended to conditional variance estimation by Casas and

Gijbels (2012).

We generalize the estimation procedure by Gijbels et al. (2007) in two directions.

First, we extend Gijbels et al. (2007) estimation method based on a comparison of the

weighted residual mean squared errors to the VCMs, where discontinuities might occur

only in one, few, or all coefficients. Although this has already been done by Zhao et al.

(2016) in the case of independently and identically sampled observations, we analyze

this method in the context of heteroscedastic and dependent data and provide additional

asymptotic results such as the uniform convergence rate of the coefficient estimates.

Second, as the method is shown to work well only if the conditional variance function of

the error term is continuous, we propose an alternative measure of the three local linear

fits based on the local Wald test statistics such that the proposed method is applicable

even if the conditional variance function of the error term contains discontinuities.
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This paper is structured as follows. In Section 2, the VCM is introduced and the jump-

preserving estimation procedure is introduced based on Gijbels et al. (2007) and Zhao

et al. (2016). In Section 3, we establish the consistency and asymptotic normality of this

estimator. In Section 4, an alternative estimator that does not require the continuity of

conditional error variance is proposed and its asymptotic properties are derived. Finally,

the finite sample properties of the two proposed estimators are investigated by means of

a simulation study in Section 5. Proofs can be found in Appendices A and B.

2 The discontinuous varying-coefficient model

The varying-coefficient regression model takes the following form:

Yi = X>i a(Zi) + εi, i = 1, . . . , n, (1)

where Yi is the response variable, Xi is a p × 1 vector of covariates, Zi is a scalar index

variable, a(·) is a p × 1 vector of unspecified coefficient functions, and εi is an error

term such that E[εi|Xi, Zi] = 0 and E[ε2
i |Xi, Zi] = σ2(Xi, Zi). Note that both Xi and Zi

can contain lagged values of Yi. In this paper, we consider piecewise-smooth coefficient

functions a(·) that can exhibit a finite set of discontinuities located at points {sq}Qq=1,

where the number Q of jumps, the jump locations sq, and the jump sizes dq of the

coefficient functions are all unknown. Contrary to Zhao et al. (2016), we assume that the

conditional variance σ2(z) = E[σ2(X,Z)|Z = z] is not constant, but it is a continuous

function of z in this section. The case with discontinuous σ2(z) will be investigated later

in Section 4.

The semiparametric model (1) has been studied by Zhao et al. (2016) for the inde-

pendent and identically distributed data, and in the present setting, it includes many

popular time-series models. When Xi is a constant, the model is reduced to a nonpara-
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metric jump-preserving model in Gijbels et al. (2007). If all coefficient functions are

constant, the model becomes a linear (possibly autoregressive) model. If the coefficient

functions have the form: a(·) = β1w(·) + β2{1 − w(·)} with w(·) being an unspecified

scalar function, model (1) covers semiparametric transition models such as the one by

Č́ıžek and Koo (2015), who estimated w(·) by a jump-preserving estimation proposed

in this work. Moreover, model (1) includes the threshold autoregressive model and the

smooth transition autoregressive model when w(·) takes a particular parametric form.

To define first the estimator of coefficient functions a(·) analogous to Gijbels et al.

(2007) and Zhao et al. (2016), we let K(c)(·) be a conventional bounded symmetric ker-

nel function with a compact support [−1, 1] and define K(l)(·) and K(r)(·) to be the

corresponding left-sided and right-sided kernels, respectively, given by

K(l)(v) = K(c)(v) · 1 {v ∈ [−1, 0)} and K(r)(v) = K(c)(v) · 1 {v ∈ [0, 1]} , (2)

where 1 {·} denotes the indicator function. Using these kernels, we can define three pairs

of local linear estimators â
(ι)
n (z) and b̂

(ι)
n (z) (ι = c, l, r) of coefficient functions a(·) and its

derivatives a′(·), respectively, at a fixed point z:

[
â(ι)
n (z), b̂(ι)

n (z)
]

= arg min
a,b

n∑
i=1

{
Yi −X>i [a+ b(Zi − z)]

}2
K

(ι)
h (Zi− z), ι = c, l, r, (3)

where K
(ι)
h (·) = h−1

n K(ι)(·/hn), hn > 0 is a bandwidth such that hn → 0 as n→∞, and

the superscript ι = c, l, r indicates whether the conventional, left-sided, or right-sided
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kernel is used. Solving the least-squares minimization problem (3) for ι = c, l, r yields

â(ι)
n (z)

b̂
(ι)
n (z)

 =

 n∑
i=1

 Xi

Xi(Zi − z)


 Xi

Xi(Zi − z)


>

K
(ι)
h (Zi − z)


−1

n∑
i=1

 Xi

Xi(Zi − z)

YiK
(ι)
h (Zi − z). (4)

To measure the quality of each local linear fit, Gijbels et al. (2007) and Zhao et al.

(2016) advocate the use of the weighted residual mean squared error (WRMSE):

Ψ(ι)
n (z) =

∑n
i=1 ε̂

(ι)2

n,i K
(ι)
h (Zi − z)∑n

i=1K
(ι)
h (Zi − z)

, ι = c, l, r, (5)

where the estimated residual ε̂
(ι)
n,i = Yi − X>i {â

(ι)
n (z) + b̂

(ι)
n (z)(Zi − z)}. WRMSE is an

estimator of conditional error variance σ2(z), which is similar to the one proposed in Fan

and Yao (1998) except that the local constant fitting of ε̂
(ι)2

n,i and same bandwidth hn for

the conditional variance are used here. Although employing a different bandwidth for the

conditional variance would improve the finite sample performance, our aim is to compare

performance of the three local estimates of a(z) rather than providing a good estimate

of σ2(z). To avoid technical complexity in the proofs, the same bandwidth is therefore

applied for the coefficient functions and WRMSE estimates.

The WRMSE introduced in (5) can be now used to select the consistent estimator

out of (3) and thus to define the jump-preserving estimator of a(z), which will be proved
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consistent if the conditional error variance σ2(z) is continuous (cf. Zhao et al., 2016):

ǎn(z) =



â
(c)
n (z), if diff(z) ≤ un,

â
(l)
n (z), if diff(z) > un and Ψ

(l)
n (z) < Ψ

(r)
n (z),

â
(r)
n (z), if diff(z) > un and Ψ

(l)
n (z) > Ψ

(r)
n (z),

â
(l)
n (z) + â

(r)
n (z)

2
, if diff(z) > un and Ψ

(l)
n (z) = Ψ

(r)
n (z),

(6)

where diff(z) = Ψ
(c)
n (z) − min{Ψ(l)

n (z),Ψ
(r)
n (z)} and the auxiliary parameter un > 0 is

tending to zero, un → 0 as n → ∞. The intuition behing this proposal is based on the

fact that the conventional local estimate â
(c)
n (z) should be the most precise one as it uses

all observations in the interval [z − hn, z + hn], but it is consistent only if there are no

discontinuities in (z−hn, z+hn). If a(·) is discontinuous at some point of (z−hn, z+hn),

â
(c)
n (z) is generally inconsistent (and the same can be also true in the case of â

(l)
n (z) or

â
(r)
n (z)), which leads to an increase of the corresponding WRMSE value in (5) as we

confirm later in Section 3. Consequently, only a consistent estimator will minimize (5)

asymptotically and will be thus selected in (6). The existence of a consistent estimator

among â
(c)
n (z), â

(l)
n (z), and â

(r)
n (z) can be however assumed as bandwidth hn → 0 as

n→∞ and the interval (z− hn, z+ hn) thus contains at most one point of discontinuity

for any z and a sufficiently large n. See Zhao et al. (2016) for more details.

3 Asymptotic results

To derive the asymptotic properties of the proposed jump-preserving estimator, the as-

sumptions about the data generating process (1) have to be detailed first. Later, the

requirements on the kernel function and bandwidth are specified too.

Let us now define the α-mixing and the assumptions on the model (1). Suppose that
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F ba is the σ-algebra generated by {ξi; a ≤ i ≤ b}. The α-mixing coefficient of the process

{ξi}∞i=−∞ is defined as

α(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F0
−∞, B ∈ F∞m }.

If α(m)→ 0 as m→∞, then the process {ξi}∞i=−∞ is called strong mixing or α-mixing. In

the following assumptions, we additionally denote by f(·, ·) the joint probability density

function of variables Xi and Zi and by fZ(·) the marginal density function of Zi.

Assumption A.

A1. The process {Xi, Zi, εi} is strictly stationary and strong mixing with α-mixing

coefficients α(m), m ∈ N, that satisfy α(m) ≤ Cm−γ with 0 < C < ∞ and

γ > (2δ − 2)/(δ − 2) for some δ > 2.

A2. There is a compact set D = [s0, sQ+1] such that infz∈D fZ(z) > 0. The derivative of

fZ(·) is bounded and Lipschitz continuous for z ∈ D. The partial derivative of the

joint density function f(·, ·) with respect to Z is bounded and continuous uniformly

on the support of X and D except for the points {sq}Q+1
q=0 , at which the left and

right partial derivatives of f(·, ·) with respect to Z are bounded and left and right

continuous, respectively.

A3. Let ϕi represent any element of matrix XiX
>
i , vector Xiεi, or variable ε2

i . For δ

given in Assumption A1,

(i) E|ϕi|δ <∞,

(ii) supz∈D E(|ϕi|δ|Zi = z)fZ(z) <∞,

(iii) for all integers j > 1,

sup
(z1,zj)∈D×D

E(|ϕ1ϕj||Z1 = z1, Zj = zj)fZ1Zj(z1, zj) <∞,
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where fZ1Zj(z1, zj) denotes the joint density of (Z1, Zj).

A4. The variance matrix Ω(z) = E[XX>|Z = z] is bounded and positive defi-

nite uniformly on D except for the discontinuities {sq}Q+1
q=0 , at which Ω−(sq) =

limz↑sq E[XX>|Z = z] and Ω+(sq) = limz↓sq E[XX>|Z = z] are bounded and

positive definite.

A5. The second-order partial derivatives of a(z) are bounded and Lipschitz continuous

on D except for the discontinuities {sq}Q+1
q=0 , at which the left and right second-order

partial derivatives of a(z) are bounded and left and right Lipschitz continuous,

respectively.

A6. The partial derivative of σ2(X,Z) with respect to Z is bounded and continuous on

D.

Assumptions A1–A5 are standard conditions for the VCMs with dependent data (see

e.g. Conditions A.1 and A.2 in Cai et al. (2000) for the local linear estimation in VCMs

and the assumptions in Hansen (2008) for a general nonparametric kernel estimator)

adapted for discontinuities, at which we impose the corresponding conditions for the

left and right limits. Further, Assumption A6 imposes that the conditional variance

σ2(z) = E[σ2(X,Z)|Z = z] is continuous; the case with discontinuous σ2(z) is investigated

in Section 4.

The following assumptions about the kernel K, bandwidth hn, auxiliary parameter

un, and mixing exponent γ are also needed to show the asymptotic results for the jump-

preserving estimator ǎn(z). First, standard assumptions on the kernel and bandwidth

are given. After that, assumptions required by Hansen (2008) in the asymptotic analysis

of the local linear regression estimators under dependence are introduced.
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Assumption B.

B1. The kernel K(c)(·) is a bounded symmetric continuous density function and has a

compact support [−1, 1]. It is chosen so that the following constants are well defined

and finite for j = 0, 1, 2 and ι = c, r, l:

µ
(ι)
j =

∫ 1

−1

vjK(ι)(v)dv, ν
(ι)
j =

∫ 1

−1

vjK(ι)2(v)dv,

c
(ι)
0 =

µ
(ι)
2

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

, and c
(ι)
1 =

−µ(ι)
1

µ
(ι)
2 µ

(ι)
0 − µ

(ι)2
1

. (7)

B2. The bandwidths hn and un satisfy un → 0, hn → 0, and nhn →∞ as n→∞.

B3. Additionally, nh5
n → c̄ ∈ [0,+∞) as n→∞, where c̄ is some non-negative constant.

Assumption C.

C1. The functions K(c)
j (u) = ujK(c)(u) are Lipschitz continuous for all j = 0, 1, 2, 3.

C2. For some ς ≥ 1, the strong mixing exponent γ given in Assumption A1 satisfies

γ >
1 + (δ − 1)(2 + 1/ς)

δ − 2
.

C3. The bandwidth hn satisfies lnn/(nh3
n) = o(1) and lnn/(nθhn) = o(1), where

θ =
γ − 2− 1

ς
− 1 + γ

δ − 1

γ + 2− 1 + γ

δ − 1

.

Before providing the asymptotic properties of the jump-preserving estimator ǎn(z),

we study the behavior of the three local linear estimators (3) in the continuous region
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and in the neighborhoods of discontinuities. The regions of continuity are defined by

D1n = D
(c)
1n = D \

Q+1⋃
q=0

[sq − hn, sq + hn],

D
(l)
1n = D \

Q+1⋃
q=0

[sq, sq + hn], and D
(r)
1n = D \

Q+1⋃
q=0

[sq − hn, sq],

where D = [s0, sQ+1] is a compact region with a positive probability.

Theorem 1. Under Assumptions A1–A6, B, and C, it holds for n→∞ that

sup
z∈D(ι)

1n

∥∥â(ι)
n (z)− a(z)

∥∥ = Op

(√
lnn

nhn

)
, ι = c, l, r.

Theorem 2. If Assumptions A1–A6 and B are satisfied and a fixed point z ∈ D(ι)
1n for

some n ∈ N and ι = c, l, r, it holds that

√
nhn

[
â(ι)
n (z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ(ι)(z)

)
as n→∞, where

Φ(ι)(z) =
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 µ

(ι)
2

fZ(z)
· Ω−1(z)Θ(z)Ω−1(z), (8)

Ω(z) = E[XX>|Z = z], and Θ(z) = E[XX>σ2(X,Z)|Z = z].

Theorem 1 establishes the uniform consistency of the three local linear estimators in

their corresponding continuous regions. Theorem 2 then specifies the asymptotic distribu-

tions of the estimators â
(c)
n (z), â

(l)
n (z), and â

(r)
n (z) in the regions, where a(·) is continuous,

left-continuous, and right-continuous around z, respectively. Since all three local linear

estimators are consistent in their corresponding regions of continuity according to The-

orem 1, it is easy to see that their corresponding WRMSE estimates (5) consistently
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converge to the conditional error variance σ2(z).

Theorem 3. Let Assumptions A1–A6 and B hold. At any point z ∈ D(ι)
1n for some n ∈ N

and ι = c, l, r, the mean squared error in (5) satisfies Ψ
(ι)
n (z) = σ2(z) + op(1) as n→∞.

Such a result does not however hold if the point z is close to a jump, that is, to a point

of discontinuity. If a jump is located in the right neighborhood of z, only the left-sided

local linear estimator â
(l)
n (z) is consistent. Similarly, the right-sided estimator â

(r)
n (z) is

the only consistent estimator of a(z) when there is a jump in the left neighborhood of z.

Consequently, the three WRMSE estimates behave differently near a jump point. The

next theorem describes the asymptotic behavior of WRMSE in a neighborhood of a jump

sq when the conditional error variance σ2(z) is continuous in z (cf. Zhao et al., 2016).

Theorem 4. Let Assumptions A1–A6 and B hold. Then it holds as n→∞ that

(i) for any z = sq + τhn ∈ D with q = 1, . . . , Q+ 1 and τ ∈ [−1, 0),

Ψ(c)
n (z) = σ2(sq) + d>q C

(c)
τ dq + op(1),

Ψ(l)
n (z) = σ2(sq) + op(1),

Ψ(r)
n (z) = σ2(sq) + d>q C

(r)
τ dq + op(1).

(ii) for any z = sq + τhn ∈ D with q = 0, . . . , Q and τ ∈ (0, 1],

Ψ(c)
n (z) = σ2(sq) + d>q C

(c)
τ dq + op(1),

Ψ(l)
n (z) = σ2(sq) + d>q C

(l)
τ dq + op(1),

Ψ(r)
n (z) = σ2(sq) + op(1).

In both cases, dq = limz↓sq a(z) − limz↑sq a(z) and C
(ι)
τ , ι = c, l, r, represents a positive

definite matrix defined in Appendix A, equation (40).
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The above theorem shows that only the left-sided WRMSE is a consistent estimator

of the conditional error variance σ2(z) if a jump in coefficients a(z) occurs in the right

neighborhood of z, while the other two WRMSE estimates contain strictly positive biases,

which do not vanish asymptotically. Similarly, if a jump is in the left neighborhood of

z, only the right-sided WRMSE leads to a consistent estimator of σ2(z). To sum up,

the smallest WRMSE is – at least asymptotically – Ψ
(l)
n (z) when a jump is in a right

neighborhood of z and it is Ψ
(r)
n (z) when a jump is in a left neighborhood of z. Hence,

it is intuitively clear that the jump-preserving estimator ǎn(z) defined in (6) selects the

appropriate local linear estimator at every point z for a sufficiently large n.

Based on this result, we will establish the consistency of ǎn(z) in the continuous

region D1n, in the neighborhoods of discontinuity points D2n, and in the neighborhoods

of discontinuity points excluding small regions around centers and around endpointsD2n,δ.

These regions are defined as follows:

D2n = D ∩
Q+1⋃
q=0

{[sq − hn, sq) ∪ (sq, sq + hn]} and

D2n,δ = D ∩
Q+1⋃
q=0

{[sq − (1− δ)hn, sq − δhn] ∪ [sq + δhn, sq + (1− δ)hn]} (9)

for some δ ∈ (0, 1/2).

Theorem 5. If Assumptions A1–A6, B, and C are satisfied, it holds for n → ∞ and

some δ ∈ (0, 1/2) that

(i)

sup
z∈D1n

‖ǎn(z)− a(z)‖ = Op

(√
lnn

nhn

)
,

(ii)

sup
z∈D2n,δ

‖ǎn(z)− a(z)‖ = Op

(√
lnn

nhn

)
, and
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(iii) for any z ∈ D2n,

ǎn(z) = a(z) + Op

(√
lnn

nhn

)
.

Theorem 5 states that the jump-preserving estimator ǎn(z) is uniformly consistent on

D1n and D2n,δ for some δ ∈ (0, 1/2). At a point z ∈ D2n arbitrarily close to a point of

discontinuity, ǎn(z) is only pointwise consistent.

The jump-preserving estimator ǎn(z) selects consistently (i.e., with probability ap-

proaching to 1) the appropriate local linear estimator on D excluding the jump points,

where each of these local linear estimators is asymptotically normal at any point

z ∈ D \ {sq}Q+1
q=0 according to Theorem 2. The following theorem can therefore establish

the asymptotic normality of the jump-preserving estimator ǎn(z) at z ∈ D \ {sq}Q+1
q=0 (see

also Casas and Gijbels, 2012; Zhao et al., 2016, Theorems 3.1).

Theorem 6. If Assumptions A1–A6, B, and C are satisfied and z ∈ D \ {s0, . . . , sQ+1},

it holds that

√
nhn

[
ǎn(z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ(ι)(z)

)
as n→∞, where Φ(ι)(z) is defined in equation (8) and

ι =


c, if z ∈ D1n,

l, if z ∈ D ∩
⋃Q+1
q=0 [sq − hn, sq),

r, if z ∈ D ∩
⋃Q+1
q=0 (sq, sq + hn].
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4 Discontinuous conditional variance function

In this section, the conditional variance function σ2(z) is also allowed to exhibit discon-

tinuities. For this purpose, we replace Assumption A6 by the following condition.

Assumption A6’. The partial derivative of σ2(X,Z) with respect to Z is bounded and

continuous on D except for the points of discontinuity {s2
q}
Q2+1
q=0 , at which the left and

right partial derivatives of σ2(X,Z) with respect to Z are bounded and left and right

continuous, respectively. Without loss of generality, let {sq}Q+1
q=0 ⊆ {s2

q}
Q2+1
q=0 .

Although Assumption A6’ does not influence the consistency and convergence rates

of the three local estimators (3), it can adversely affect the selection rule (6) based on

a comparison of the three WRMSE estimates. In particular, if σ2(z) exhibits a jump

at (or nearby) sq, the error variances and thus WRMSE estimates are different in the

left and right neighborhoods of the estimation point z. Hence, the limits of Ψ
(c)
n (z),

Ψ
(l)
n (z), and Ψ

(r)
n (z) in Theorem 4 contain different variances – error variance to the left

of sq, to the right of sq, or a combination of those – and it is no longer possible to claim

that Ψ
(l)
n (z) is minimal in Theorem 4(i) or that Ψ

(r)
n (z) is minimal in Theorem 4(ii). In

such cases, the selection method (6) fails to detect and preserve jumps. On the other

hand, if σ2(z) exhibits a jump in the continuity region D1, all local linear estimates are

consistent, but for the reason stated above, the selection method (6) can still fail to select

the best (conventional) estimate. Thus the consistency is not violated, but the variance of

estimates can increase and the asymptotic distribution in Theorem 6 becomes incorrect.

To deal with the discontinuity of σ2(z), we introduce now an alternative jump-

preserving estimator which does not require the continuity of conditional error variance.

Let the left-, right-, and two-sided hn-neighborhood of z be

D(l)
zn = [z − hn, z], D(r)

zn = [z, z + hn], and D(c)
zn = [z − hn, z + hn],

15



respectively. To motivate an alternative to the selection method (6), we first suppose that

sq is in the right neighborhood of z, i.e., sq ∈ D(r)
zn . In such a case, only the left-sided local

linear estimates â
(l)
n (z) and b̂

(l)
n (z) converge to the true parameter values a(l)(z) = a(z)

and b(l)(z) = a′(z), respectively. (We are again implicitly assuming that bandwidth hn is

so small that there is at most one jump in (z − hn, z + hn) for a sufficiently large n.) By

the Taylor expansion and E[εi|Zi] = E[E[εi|Xi, Zi]|Zi] = 0, we have

E[Yi −X>i a(l)(z)|Zi]

= E
[
X>i {a(Zi)− a(l)(z)}|Zi

]
≤ E [‖Xi‖|Zi] E

[
‖a(Zi)− a(l)(z)‖|Zi

]
= O(Zi − z) = O(hn) = o(1).

for Zi ∈ D(l)
zn. On the other hand, the above result does not hold for the limit values of the

right-sided and two-sided local linear estimators, a(c)(z) and a(r)(z), which are different

from a(z). Thus as long as the coefficient functions a(·) are identified and a(ι)(z) 6= a(z),

ι = c, r, it holds for Zi ∈ D(ι)
zn that E[Yi−X>i a(ι)(z)|Zi] = E[X>i {a(Zi)−a(ι)(z)}|Zi] 6= o(1)

in general. Analogous claims can be made if sq is in the left neighborhood of z.

Contrary to (6), the asymptotic conditional mean independence described above is

a property independent of conditional error variance σ2(z). To select the consistent

estimator out of the three local linear estimators (3), we therefore propose to test locally

whether E[ε
(ι)
i |Zi] = 0 for Zi ∈ D(ι)

zn and ι = c, l, r, where ε
(ι)
i = Yi−X>i a(ι)(z):1 rejection

of E[ε
(ι)
i |Zi] = 0 indicates that a given local linear estimator is not consistent and should

not be used in a given neighborhood of z. According to Bierens (1982, Theorems 1 and

2), the conditional mean independence E[ε
(ι)
i |Zi] = 0 is equivalent to zero correlation

between ε
(ι)
i and exp (kZi) for all k ∈ R, or alternatively, to zero correlation between

1 A similar result holds also if the local linear approximation, ε
(ι)
i = Yi −X>i {a(z) + b(z)(Zi − z)},

is used.
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ε
(ι)
i and Zk

i for all k ∈ N ∪ {0}. To design a simple procedure with a good power, we

therefore suggest to test zero correlation between ε
(ι)
i and Zk

i for k = 1, . . . ,m, where m is

a small finite number. Given the specific form of E[ε
(ι)
i |Zi] = E[εi+X

>
i {a(z)−a(ι)(z)}|Zi]

caused by an unaccounted discontinuity in a(z), the cubic polynomial approximates this

expectation well and m = 3 provides a sufficient power to detect its nonlinearity even in

small intervals (z − hn, z + hn); see Section 5.

To test for non-zero correlation of ε
(ι)
i and Zj

i , j = 1, . . . ,m, we propose to regress

the estimated residual ε̃
(ι)
n,i = Yi − X>i â

(ι)
n (z) on ρ

(
Zi−z
hn

)
for Zi ∈ D

(ι)
zn , where ρ(v) =

(1, v, · · · , vm)>. The corresponding ordinary least-squares slope estimates γ̂
(ι)
n (z) will

converge to γ(ι) = 0 under the null hypothesis of E[ε
(ι)
i |Zi] = 0 and to γ(ι) 6= 0 otherwise

(for a sufficiently large m); ι = c, l, r. More specifically, we test significance of the slope

estimates γ̂
(ι)
n (z) that are the minimizers of the following least square problem:

min
γ

n∑
i=1

{
ε̃

(ι)
n,i − ρ>

(
Zi − z
hn

)
γ

}2

K̃
(ι)
h (Zi − z), (10)

where K̃
(ι)
h (·) = h−1

n K̃(ι)(·/hn), K̃(c)(·) is a uniform kernel function on [−1, 1],

K̃(l)(v) = K̃(c)(v) · 1 {v ∈ [−1, 0)} , and K̃(r)(v) = K̃(c)(v) · 1 {v ∈ [0, 1]} .

Solving the minimization (10) leads to estimate γ̂
(ι)
n (z) = S̃

(ι)−1
n (z)T̃

(ι)
n (z), where

S̃(ι)
n (z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z) and

T̃ (ι)
n (z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
K̃

(ι)
h (Zi − z)ε̃

(ι)
n,i.

In order to test the hypothesis γ(ι) = 0, the Wald test statistics is used here, which

forms an alternative measure Ψ̃
(ι)
n (z) to the WRMSE Ψ

(ι)
n (z) introduced in (5) and pro-
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vides an indication about the dependence between estimated residual and Zi:

Ψ̃(ι)
n (z) =γ̂(ι)>

n (z)

(
S̃

(ι)
n (z)

Ñ
(ι)
n (z)

)
γ̂(ι)>
n (z), (11)

where

ê
(ι)
n,i(z) = ε̃

(ι)
n,i − ρ>

(
Zi − z
hn

)
γ̂(ι)
n (z) and

Ñ (ι)
n (z) =

1

n

n∑
i=1

ê
(ι)2

n,i (z)K̃
(ι)
h (Zi − z).

For this quantity (11), we derive now theorems analogous to Theorems 3 and 4 for

the case of the Wald measure Ψ̃
(ι)
n (z) under the following condition.

Assumption D.

D1. The uniform kernel K̃(c)(·) has support [−1, 1] and the kernel moment matrix M̃ (ι) =∫ 1

−1
ρ(u)ρ>(u)K̃(ι)(u)du, ι = c, l, r, is positive definite.

D2. The number m of powers used in the auxiliary regressions (10) is sufficiently large

such that at least one of the slope coefficients γ(ι), which has its explicit expression

given in equation (68), is non-zero if E[ε
(ι)
i |Zi] 6= 0 for Zi ∈ D(ι)

z .

Theorem 7. Suppose that Assumptions A1–A5, A6’, B, and D hold. At any z ∈ D(ι)
1n

for some n ∈ N and ι = c, l, r, it holds for n→∞ that Ψ̃
(ι)
n (z) = op(1).

Theorem 8. If Assumptions A1–A5, A6’, B, and D are satisfied, the following results

hold as n→∞.
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(i) For any z = sq + τhn ∈ D with q = 1, . . . , Q+ 1 and τ ∈ (−1, 0),

Ψ̃(c)
n (z) = γ(c)>C̃(c)

τ γ(c) + op(1),

Ψ̃(l)
n (z) = op(1),

Ψ̃(r)
n (z) = γ(r)>C̃(r)

τ γ(r) + op(1).

(ii) For any z = sq + τhn ∈ D with q = 0, . . . , Q and τ ∈ (0, 1),

Ψ̃(c)
n (z) = γ(c)>C̃(c)

τ γ(c) + op(1),

Ψ̃(l)
n (z) = γ(l)>C̃(l)

τ γ
(l) + op(1),

Ψ̃(r)
n (z) = op(1).

In both cases, C̃
(ι)
τ , ι = c, l, r, is a positive definite matrix defined in Appendix A, equa-

tion (71), and the explicit form of γ(ι), ι = c, l, r, is given in Appendix A, (68).

Given the above results, we can use the Wald statistics Ψ̃
(ι)
n (z) to again distinguish

which local estimators â
(ι)
n (z) are consistent or inconsistent due to a discontinuity of

coefficient functions, but now without requiring that the conditional variance σ2(z) is

continuous. We thus propose a new jump-preserving estimator ãn(z) of coefficient func-

tions a(z) when the conditional error variance contains a finite set of discontinuities:

ãn(z) =



â
(c)
n (z), if ˜diff(z) ≤ un,

â
(l)
n (z), if ˜diff(z) > un and Ψ̃

(r)
n (z) > Ψ̃

(l)
n (z),

â
(r)
n (z), if ˜diff(z) > un and Ψ̃

(l)
n (z) > Ψ̃

(r)
n (z),

â
(l)
n (z) + â

(r)
n (z)

2
, if ˜diff(z) > un and Ψ̃

(l)
n (z) = Ψ̃

(r)
n (z),

(12)

where the auxiliary parameter un > 0 is again tending to zero with increasing n and
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˜diff(z) = Ψ̃
(c)
n (z) − min{Ψ̃(l)

n (z), Ψ̃
(r)
n (z)}. The consistency and asymptotic normality of

the proposed jump-preserving estimator ãn(z) are established in the following theorems.

Theorem 9. Under Assumptions A1–A5, A6’, B, C, and D, it holds for n → ∞ and

some δ ∈ (0, 1/2) that

(i)

sup
z∈D1n

‖ãn(z)− a(z)‖ = Op

(√
lnn

nhn

)
,

(ii)

sup
z∈D2n,δ

‖ãn(z)− a(z)‖ = Op

(√
lnn

nhn

)
, and

(iii) for any given z ∈ D2n,

ãn(z) = a(z) + Op

(√
lnn

nhn

)
.

Theorem 10. If Assumptions A1–A5, A6’, B, C, and D are satisfied and a point z ∈

D \ {s0, . . . , sQ+1}, it holds that

√
nhn

[
ãn(z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
d−→ N

(
0,Φ(ι)(z)

)
as n→∞, where Φ(ι)(z) is defined in (8) and

ι =


c, if z ∈ D1n,

l, if z ∈ D ∩
⋃Q+1
q=0 [sq − hn, sq),

r, if z ∈ D ∩
⋃Q+1
q=0 (sq, sq + hn].
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5 Simulations

In this section, we first discuss the selection procedure of the smoothing parameters hn

and un. Next, we examine the finite sample properties of the jump-preserving estimators

ǎn(·) defined in (6) and ãn(·) given in (12) using two simulated examples.

Among many bandwidth selection procedures for nonparametric models, we opt for

the cross-validation method similarly to Zhao et al. (2016). When covariates Xi and Zi

do not any contain lagged dependent variables, we select the smoothing parameters by

the leave-one-out cross-validation. The selected smoothing parameters ĥn and ûn are

thus determined by

(ĥn, ûn) = arg min
hn,un

n∑
i=1

[
Yi −X>i ån,−i(Zi)

]2
,

where ån,−i(Zi) represents a jump-preserving estimate ǎn(·) or ãn(·) based on all data

except for the ith observation (Yi, Xi, Zi). If covariates Xi and Zi do contain some lagged

dependent variables with the lags up to order m, we suggest to apply the m-block-out

cross-validation technique:

(ĥn, ûn) = arg min
hn,un

n∑
i=1

[
Yi −X>i ån,−mi(Zi)

]2
,

where ån,−mi(Zi) is computed without using observations {Yi+j, Xi+j, Zi+j}mj=−m (see Pat-

ton et al., 2009, for the data-dependent block-size selection).

To observe the estimation precision both in neighborhoods of change points and over-

all, we evaluate the performance of the proposed estimators via the global mean absolute

deviation of errors (MADE) and local mean absolute deviation of errors (MADElocal):

MADE =
1

ngrid

ngrid∑
j=1

‖̊an(zj)− a(zj)‖1
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and

MADElocal =
1

ngrid

Q∑
q=1

ngrid∑
j=1

‖̊an(zj)− a(zj)‖1 · 1{zj ∈ (sq − 0.1, sq + 0.1)},

where ån(zj) represents one of the considered estimators, {zj}
ngrid

j=1 are the grid points,

and ‖ · ‖1 denotes the absolute value norm.

5.1 Experiment 1: Constant conditional variance function

First, we consider an AR(1) process:2

Xt = a0(Zt) + a1(Zt)Xt−1 + σ(Zt)εt, t = 1, . . . , n, (13)

where the variable Zt is drawn independently from the uniform distribution, Zt ∼ U(0, 1),

the errors are independent standard normal, εt ∼ N(0, 1), and the coefficient functions

a0(Zt) = 1.2 cos(Zt)− 1.68 · 1{Zt < 0.5} − 0.66 · 1{Zt ≥ 0.5} and

a1(Zt) = cos(Zt)− 1{Zt < 0.5} − 0.25 · 1{Zt ≥ 0.5}.

In this first simulation experiment, the variance function is constant: σ2(Zt) = 0.62.

The process (13) is evaluated at two sample sizes n = 300 and n = 600, and for each

sample size, 1000 samples are simulated. We estimate the coefficient functions using

local linear fitting on an equispaced grid of points {zj}
ngrid

j=1 with z1 = 0, zngrid
= 1, and

ngrid = 200. All nonparametric estimators employ the Epanechnikov kernel: K(c)(v) =

0.75(1− v2)1{|v| ≤ 1}.

First, the bandwidth hn is set to 0.54n−1/5 for all three local estimators, and un is se-

2We have also studied the same AR(1) process (13) with coefficients that are functions of time t/n.
Though using a linear time trend t/n as Zt might violate Assumption A1, the simulation results are
similar to the case with a uniformly distributed Zt.
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Figure 1: Homoscedastic model with the fixed bandwidth and n = 600: the solid lines
represent the true coefficient functions, the dashed lines are the average varying coefficient
estimates, and the dotted lines are the 95% confidence bands.23
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Figure 2: Homoscedastic model with the fixed bandwidth: global and local mean absolute
deviations of the estimates. Each plot contains boxplots for (from left to right) the jump-
preserving estimator based on the Wald statistics, the jump-preserving estimator based
on WRMSE, and the conventional estimator.
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lected by cross-validation. Figure 1 provides a graphical presentation of the performance

of the two jump-preserving local linear estimators ǎn(z) (selection using WRMSE) and

ãn(z) (selection using the Wald statistics) and the conventional local linear estimator

â
(c)
n (z) for n = 600. Both jump-preserving estimators track the true coefficient functions

closely, while the conventional local linear estimator is inconsistent around the disconti-

nuity z = 0.5 as the confidence intervals of â
(c)
n (z) do not contain the discontinuity. In

addition, ǎn(z) compared to ãn(z) has a wider confidence interval near the boundaries.

The procedure of selecting the left-sided, right-sided, or conventional local estimators

proposed for ãn(z) in Section 4 still chooses â
(c)
n (z) around the boundary points and is

thus less affected by the boundaries than ǎn(z).

Due to strong boundary effects in ǎn(z), the 1000 global and local MADE values for

each sample size are computed for z ∈ [0.05, 0.95]. The boxplots are shown in Figure

2. The conventional local linear estimator has higher global and local MADE values

compared to the jump-preserving estimators ǎn(z) and ãn(z), where there is no significant

difference in the MADEs of ǎn(z) and ãn(z). Both jump-preserving estimators thus

perform well in the case of the process with homoscedastic error. When the sample size

becomes larger, all global and local MADEs decrease proportionally for all estimators.

Next, we repeat the experiment, but cross-validate both hn and un for each replication;

the results are shown in Figures 3 and 4. The interpretation of the results is similar as

above. The main difference is that the MADE of the conventional local linear estimator

is smaller than before since the bandwidth selected for â
(c)
n (z) is freely chosen and thus

becomes smaller in an attempt to capture the discontinuity as good as possible, while

decreasing the precision in the continuity region. Nevertheless, the discontinuity is not

included in its confidence interval and its performance is still worse than that of the

proposed jump-preserving estimators.
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Figure 3: Homoscedastic model with the cross-validated bandwidth and n = 600: the
solid lines represent the true coefficient functions, the dashed lines are the average varying
coefficient estimates, and the dotted lines are the 95% confidence bands.26
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Figure 4: Homoscedastic model with the cross-validated bandwidth: global and local
mean absolute deviations of the estimates. Each plot contains boxplots for (from left to
right) the jump-preserving estimator based on the Wald statistics, the jump-preserving
estimator based on WRMSE, and the conventional estimator.
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5.2 Experiment 2: discontinuous conditional variance function

Now we consider the same time-varying AR(1) process as in (13), but with a discontinuous

conditional variance function:

σ2(t) = (0.8 · 1{t < 0.5}+ 0.6 · 1{t ≥ 0.5})2 . (14)

The evaluation is performed in the same way as in the previous section.

Figure 5 provides a graphical presentation of the performance of the convetional esti-

mator â
(c)
n (z), jump-preserving estimator ǎn(z) based on WRMSE, and jump-preserving

estimator ãn(z) based on the Wald statistics with a fixed bandwidth hn = 0.54n−1/5,

whereas the results using the cross-validated bandwidth hu and un are presented in Fig-

ure 7. In this case, only the proposed jump-preserving estimators ãn(z) based on the Wald

statistics preserve the discontinuity, whereas â
(c)
n (z) and ǎn(z) are both inconsistent as

their confidence intervals do not contain the discontinuity for z’s near the jump point;

note that this is true even for the jump-preserving method based on WRMSE. The cor-

responding boxplots with MADE are shown in Figures 6 and 8. The proposed estimator

ãn(z) based on the Wald statistics has the lowest global and local MADE values com-

pared to the other jump-preserving estimator ân(z) and to the conventional local linear

estimator ǎn(z). The differences become a bit smaller when we cross-validate both the

bandwidths hn and un (see Figure 8). In both cases, the jump-preserving estimator ãn(·)

in (12) outperforms the existing method ân(·) in (6) in the presence of the discontinuity

of conditional variance function, in particular in terms of MADE.
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Figure 5: Heteroscedastic model with the fixed bandwidth: the solid lines represent the
true coefficient functions, the dashed lines are the average varying coefficient estimates,
and the dotted lines are the 95% confidence bands.29
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Figure 6: Heteroscedastic model with the fixed bandwidth: global and local mean abso-
lute deviations of the estimates. Each plot contains boxplots for (from left to right) the
jump-preserving estimator based on the Wald statistics, the jump-preserving estimator
based on WRMSE, and the conventional estimator.
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Figure 7: Heteroscedastic model with the cross-validated bandwidth: the solid lines
represent the true coefficient functions, the dashed lines are the average varying coefficient
estimates, and the dotted lines are the 95% confidence bands.31
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Figure 8: Heteroscedastic model with the cross-validated bandwidth: global and local
mean absolute deviations of the estimates. Each plot contains boxplots for (from left to
right) the jump-preserving estimator based on the Wald statistics, the jump-preserving
estimator based on WRMSE, and the conventional estimator.
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6 Conclusions

In this paper, we propose estimators for varying-coefficient models with discontinuous

coefficient functions. First, we adapt the local linear estimators of Gijbels et al. (2007)

and Zhao et al. (2016), which select among the left-sided, right-sided, and conventional

local linear estimators by comparing their weighted residual mean squared errors, to the

time series setting. This approach works well when there are no discontinuities in the

conditional error variance. To cope with the discontinuity problem in the conditional

error variance, we propose a different “correctness” measure of the three local linear fits

based on the Wald statistics. In all cases, the asymptotic properties including the uniform

consistency and asymptotic normality are derived for both proposed estimators and their

performance is tested with simulated examples.

A Proofs of the main results

In this section, we prove the theorems presented in Section 3 and 4. Auxiliary lemmas

are collected in Appendix B. Throughout Appendices A and B, we let C be a generic

positive constant, which may take different values at different places, and write M � 0

if matrix M is positive definite. All limiting expressions including op(·) and Op(·) are

taken for n → ∞, unless stated otherwise. {ξi; a ≤ i ≤ b}. The α-mixing coefficient of

the process {ξi}∞i=−∞ is defined as The dependence on z of the variables introduced in

Appendices A and B is kept implicit in order to shorten the length of proofs.

First, we introduce some notation. Denote

S(ι)
n =

S(ι)
n,0 S

(ι)
n,1

S
(ι)
n,1 S

(ι)
n,2

 , T (ι)
n =

T (ι)
n,0

T
(ι)
n,1

 , and F (ι)
n =

F (ι)
n,0

F
(ι)
n,1

 ,
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where

S
(ι)
n,j =

1

n

n∑
i=1

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, 3, (15)

T
(ι)
n,j =

1

n

n∑
i=1

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)Yi, j = 0, 1, and (16)

F
(ι)
n,j =

1

n

n∑
i=1

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1. (17)

Using the above notation, the local linear estimators of a(·) and a′(·) in (4) can be written

as

β̂(ι)
n =

â(ι)
n (z)

b̂
(ι)
n (z)



=H−1
n

 n∑
i=1

H−1
n

 Xi

Xi(Zi − z)


 Xi

Xi(Zi − z)


>

H−1
n K

(ι)
h (Zi − z)


−1

n∑
i=1

H−1
n

 Xi

Xi(Zi − z)

YiK
(ι)
h (Zi − z)

=H−1
n S(ι)−1

n T (ι)
n , (18)

where Hn is a 2p× 2p diagonal matrix with its first p diagonal elements equal to 1’s and

its last p elements equal to hn’s.

Since the coefficient functions a(z) are twice continuously differentiable except for

the discontinuities {sq}Q+1
q=0 (Assumption A5), it follows from the Taylor expansion for

Zi ∈ D(ι)
zn that

a(Zi) = a(z) + hn

(
Zi − z
hn

)
a′(z) +

h2
n

2

(
Zi − z
hn

)2

a′′(z) + o(Zi − z)2 (19)
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uniformly in z ∈ D(ι)
1n , which implies

T
(ι)
n,0 − F

(ι)
n,0 =

1

n

n∑
i=1

K
(ι)
h (Zi − z)XiX

>
i a(Zi)

= S
(ι)
n,0a(z) + hnS

(ι)
n,1a

′(z) +
h2
n

2
S

(ι)
n,2a

′′(z) + S
(ι)
n,0 · op(h2

n)

and

T
(ι)
n,1 − F

(ι)
n,1 = S

(ι)
n,1a(z) + hnS

(ι)
n,2a

′(z) +
h2
n

2
S

(ι)
n,3a

′′(z) + S
(ι)
n,1 · op(h2

n).

Consequently for β = [a>(z), a′>(z)]>, it holds that

T (ι)
n − F (ι)

n = S(ι)
n Hnβ +

h2
n

2

S(ι)
n,2

S
(ι)
n,3

 a′′(z) +

S(ι)
n,0

S
(ι)
n,1

 · op(h2
n). (20)

Using (18), (20), and Lemma 8(ii), we finally obtain

Hn(β̂(ι)
n − β) =S(ι)−1

n T (ι)
n −Hnβ

=S(ι)−1
n F (ι)

n +
h2
n

2
S(ι)−1
n

S(ι)
n,2

S
(ι)
n,3

 a′′(z) + op(h2
n) (21)

uniformly in z ∈ D(ι)
1n .

Proof of Theorem 1.

According to Lemma 3, the terms S
(ι)
n,j, S

(ι)−1
n , and F

(ι)
n,j uniformly converge on D

(ι)
1n to

their corresponding expected values at rates (nhn/ lnn)−1/2 + hn and (nhn/ lnn)−1/2,

35



respectively. It follows from (21) and Assumptions A2, A3(ii), and A4 that

sup
z∈D(ι)

1n

∥∥∥Hn(β̂(ι)
n − β)

∥∥∥ ≤ sup
z∈D(ι)

1n

∥∥∥S(ι)
n

−1
∥∥∥
 sup
z∈D(ι)

1n

∥∥F (ι)
n

∥∥+ sup
z∈D(ι)

1n

∥∥∥∥∥∥∥
h2
n

2

S(ι)
n,2

S
(ι)
n,3


∥∥∥∥∥∥∥


· max
z∈D(ι)

1n

‖a′′(z)‖+ op(h2
n)

≤C1 ·
sup

z∈D(ι)
1n
‖Ω−1(z)‖

infz∈D fZ(z)

{
1 + Op

(√
lnn

nhn
+ hn

)}

·

[
Op

(√
lnn

nhn

)
+ C2h

2
n

{
sup
z∈D(ι)

1n

‖fZ(z)Ω(z)‖+ Op

(√
lnn

nhn
+ hn

)}]

+ op(h2
n)

≤C3 ·

{
1 + Op

(√
lnn

nhn
+ hn

)}
·Op

(√
lnn

nhn
+ h2

n + h3
n

)
+ op(h2

n)

=Op

(√
lnn

nhn

)
+ Op(h2

n), ι = c, l, r,

where C1, C2, and C3 represent some positive constants and Ω(z) = E[XX>|Z = z]. As

a result, we have

sup
z∈D(ι)

1n

∥∥â(ι)
n (z)− a(z)

∥∥ = Op

(√
lnn

nhn

)
+ Op(h2

n), ι = c, l, r,

and

sup
z∈D(ι)

1n

∥∥∥b̂(ι)
n (z)− a′(z)

∥∥∥ = Op

(
h−1
n

√
lnn

nhn

)
+ Op(hn), ι = c, l, r.

The claim follows by noting that h2
n = o(

√
lnn/(nhn)) by Assumption B3. �
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Proof of Theorem 2.

By the weak convergence results for S
(ι)
n,j and S

(ι)−1
n in Lemmas 1(i) and 1(ii) and equa-

tion (21),

â(ι)
n (z)− a(z) =

[
Ω−1(z)

fZ(z)

(
c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1

)
+
h2
n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
(22)

· (1 + op(1)) + op(h2
n),

where c
(ι)
j and µ

(ι)
j are defined in (7). The stochastic term in (22) can be analyzed in the

following way. Let

U (ι)
n = c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1 =

1

n

n∑
i=1

W
(ι)
i , (23)

where

W
(ι)
i = Xi

[
c

(ι)
0 + c

(ι)
1

(
Zi − z
hn

)]
K

(ι)
h (Zi − z0)εi. (24)

By applying the central limit theorem for strong mixing process (Fan and Yao, 2003,

Theorem 2.21) under the mixing condition in Assumption A1 and the moment condition

in Assumption A3(i),
√
nhnU

(ι)
n is asymptotically normal with mean 0 (due to the law of

iterated expectation) and variance (by Lemma 2)

nhnvar(U (ι)
n ) = fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
+ o(1),

where Θ(z) = E[XX>σ2(X,Z)|Z = z]. As the remaining term in (22) is deterministic,

we obtain

√
nhn

[
â(ι)
n (z)− a(z)− h2

n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)

]
=

Ω−1(z)

fZ(z)

√
nhnU

(ι)
n + op(1),
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where the leading term is asymptotically normal with mean 0 and variance Φ(ι)(z) given

in Theorem 2. �

Proof of Theorem 3.

It follows from the definition of WRMSE Ψ
(ι)
n (z) in (5) that

Ψ(ι)
n (z) =

N
(ι)
n

K
(ι)
n

,

where the denominator

K(ι)
n =

1

n

n∑
i=1

K
(ι)
h (Zi − z) (25)

and the numerator N
(ι)
n , which can be decomposed into three terms, is given by

N (ι)
n =

1

n

n∑
i=1

ε̂
(ι)2
n,i K

(ι)
h (Zi − z)

=
1

n

n∑
i=1

[
Yi −X>i {â(ι)

n (z) + b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=
1

n

n∑
i=1

[
εi +X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=
1

n

n∑
i=1

ε2
iK

(ι)
h (Zi − z)

+
2

n

n∑
i=1

εi

[
X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]
K

(ι)
h (Zi − z) (26)

+
1

n

n∑
i=1

[
X>i {a(Zi)− â(ι)

n (z)− b̂(ι)
n (z)(Zi − z)}

]2

K
(ι)
h (Zi − z)

=N
(ι)
n,1 +N

(ι)
n,2 +N

(ι)
n,3
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with N
(ι)
n,1, N

(ι)
n,2, and N

(ι)
n,3 being the first, second, and third terms in (26), respectively.

According to Lemmas 1(iv) and 1(v), N
(ι)
n,1/K

(ι)
n = σ2(z) + op(1) for z ∈ D(ι)

1n . It remains

to show N
(ι)
n,2 = op(1) and N

(ι)
n,3 = op(1). By the Taylor expansion of a(Zi) and the

weak consistency results for F
(ι)
n,j, â

(ι)
n (z), and b̂

(ι)
n (z) in Lemmas 1(iii), 1(vi), and 1(vii),

respectively, we have

N
(ι)
n,2 =

2

n

n∑
i=1

εi
[
X>i {a(z) + a′(z)(Zi − z) + o(Zi − z)}

−X>i {â(ι)
n (z) + b̂(ι)

n (z)(Zi − z)}
]
K

(ι)
h (Zi − z)

=2{a(z)− â(ι)
n (z)}>F (ι)

n,0 + 2hn{a′(z)− b̂(ι)
n (z)}>F (ι)

n,1 + op(hn)

=2op(1) · op(1) + 2hn · op(h−1
n ) · op(1) + op(hn)

=op(1).
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Similarly by the Taylor expansion of a(Zi), Lemmas 1(i), 1(vi), and 1(vii), and the

boundedness condition on fZ(z)Ω(z) in Assumption A3(ii), it follows that

N
(ι)
n,3 =

1

n

n∑
i=1

[
X>i {a(z) + a′(z)(Zi − z) + o(Zi − z)}

−X>i {â(ι)
n (z) + b̂(ι)

n (z)(Zi − z)}
]2

K
(ι)
h (Zi − z)

={a(z)− â(ι)
n (z)}>S(ι)

n,0{a(z)− â(ι)
n (z)}

+ 2hn{a(z)− â(ι)
n (z)}>S(ι)

n,1{a′(z)− b̂(ι)
n (z)}

+ h2
n{a′(z)− b̂(ι)

n (z)}>S(ι)
n,2{a′(z)− b̂(ι)

n (z)}+ op(hn)

≤op(1) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(1)

+ 2hn · op(1) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(h−1

n )

+ h2
n · op(h−1

n ) ·O
{

sup
z∈D
‖fZ(z)Ω(z)‖+ op(1)

}
· op(h−1

n ) + op(hn)

=op(1).

This completes the proof of Theorem 3. �

Before investigating the limiting behavior of the jump-preserving estimator, we in-

troduce additional notation. For any z = sq + τhn with τ ∈ (−1, 1), we denote random

variables

Ś
(ι)
n,j =

1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, (27)

S̀
(ι)
n,j =

1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z), j = 0, 1, 2, (28)

F́
(ι)
n,j =

1

n

∑
i:Zi<sq

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1, (29)
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and

F̀
(ι)
n,j =

1

n

∑
i:Zi≥sq

Xi

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)εi, j = 0, 1. (30)

Further, let

µ́
(ι)
j,τ =

∫ −τ
−1

ujK(ι)(u)du, µ̀
(ι)
j,τ =

∫ 1

−τ
ujK(ι)(u)du, (31)

Ω−(sq) = lim
z↑sq

E[XX>|Z = z], Ω+(sq) = lim
z↓sq

E[XX>|Z = z], (32)

Ώ
(ι)
−,τ (sq) =

µ́(ι)
0,τΩ−(sq) µ́

(ι)
1,τΩ−(sq)

µ́
(ι)
1,τΩ−(sq) µ́

(ι)
2,τΩ−(sq)

 ,

Ὼ
(ι)
+,τ (sq) =

µ̀(ι)
0,τΩ+(sq) µ̀

(ι)
1,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq) µ̀

(ι)
2,τΩ+(sq)

 ,

a−(sq) = lim
z↑sq

a(z), and a+(sq) = lim
z↓sq

a(z) = a−(sq) + dq.

Without loss of generality, we assume that a(·) is right continuous, i.e., a(sq) = a+(sq)

for q = 0, . . . , Q. By the mean value theorem and boundedness of the (left) partial

derivatives of a(·) (Assumption A5), it holds for Zi ∈ [sq − (1− τ)hn, sq) that

a(Zi) = a−(sq) + O(Zi − sq). (33)

Similarly, we have for Zi ∈ (sq, sq + (1 + τ)hn],

a(Zi) = a+(sq) + O(Zi − sq) = a−(sq) + dq + O(Zi − sq). (34)

Using equations (33) and (34) and the consistency results for F́
(ι)
n,j, F̀

(ι)
n,j, Ś

(ι)
n,j, and S̀

(ι)
n,j in
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Lemmas 4(i) and 4(ii), we have for j = 0, 1,

T
(ι)
n,j =

1

n

n∑
i=1

Xi

[
X>i a(Zi) + εi

](Zi − z
hn

)j
K

(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)a(Zi) + F́

(ι)
n,j

+
1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)a(Zi) + F̀

(ι)
n,j

=
1

n

∑
i:Zi<sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z) {a−(sq) + O(Zi − sq)}+ op(1)

+
1

n

∑
i:Zi≥sq

XiX
>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z) {a+(sq) + O(Zi − sq)}+ op(1)

=Ś
(ι)
n,ja−(sq) + S̀

(ι)
n,j {a−(sq) + dq}+ Op(hn) + op(1)

=fZ(sq)
[{
µ́

(ι)
j,τΩ−(sq) + µ̀

(ι)
j,τΩ+(sq)

}
a−(sq) + µ̀

(ι)
j,τΩ+(sq)dq

]
+ op(1).

Hence, by Lemmas 4(i), 8(ii), and 9, the local linear estimator in (18) can be expressed

for z = sq + τhn with τ ∈ (−1, 1) as

Hnβ̂
(ι)
n =S(ι)

n

−1
T (ι)
n

=
[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

(1 + op(1))

·


µ́(ι)

0,τΩ−(sq) + µ̀
(ι)
0,τΩ+(sq)

µ́
(ι)
1,τΩ−(sq) + µ̀

(ι)
1,τΩ+(sq)

 a−(sq) +

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)

 dq + op(1)


=

Ip
0p

 a−(sq) +

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

 dq + op(1), (35)
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where Ip is the p× p identity matrix, 0p is the null matrix of size p× p, and

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ

 =
[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)

 . (36)

Note that, according to the definition of the right-sided kernel K(r)(·) in (2), one has

for τ ∈ (0, 1),

µ́
(r)
j,τ =

∫ −τ
−1

ujK(c)(u)1 {u ≥ 0} du = 0, (37)

which implies that Ώ
(r)
−,τ (sq) = 02p and

Ξ
(r)
0,τ

Ξ
(r)
1,τ

 = Ὼ
(r)−1
+,τ (sq)

µ̀(r)
0,τΩ+(sq)

µ̀
(r)
1,τΩ+(sq)

 =

Ip
0p

 (38)

due to Lemma 8(ii). Similarly, for τ ∈ (−1, 0) and the left-sided kernel K(l)(·), we obtain

µ̀
(l)
j,τ = 0, Ξ

(l)
0,τ = 0p, and Ξ

(l)
1,τ = 0p. (39)

Proof of Theorem 4.

In order to prove Theorem 4 for continuous conditional error variance function σ2(z)

(Assumption A6), we analyze the limiting properties of each term of the decomposition

of N
(ι)
n in (26). First, by Lemma 4(iv), N

(ι)
n,1 = fZ(sq)µ

(ι)
0 σ

2(sq) + op(1). Using equations
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(33)–(35), one obtains

N
(ι)
n,2 =

2

n

n∑
i=1

[
a(Zi)− â(ι)

n (z)− hnb̂(ι)
n (z)

(
Zi − z
hn

)]>
XiεiK

(ι)
h (Zi − z)

=
2

n

∑
i:Zi<sq

a(Zi)− a−(sq)︸ ︷︷ ︸
O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq


>

XiεiK
(ι)
h (Zi − z)

+
2

n

∑
i:Zi≥sq

a(Zi)− a−(sq)︸ ︷︷ ︸
dq+O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq


>

XiεiK
(ι)
h (Zi − z)

+ op(1)

=− 2[Ξ
(ι)
0,τdq]

>F́
(ι)
n,0 − 2[Ξ

(ι)
1,τdq]

>F́
(ι)
n,1 − 2[(Ξ

(ι)
0,τ − Ip)dq]>F̀

(ι)
0 − 2[Ξ

(ι)
1,τdq]

>F̀
(ι)
n,1

+ Op(hn) + op(1).
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Hence, N
(ι)
n,2 = op(1) due to the consistency results for F́

(ι)
n,j and F̀

(ι)
n,j in Lemma 4(ii).

Again, it follows from (33)–(35) that

N
(ι)
n,3 =

1

n

n∑
i=1

[
X>i a(Zi)−X>i

{
â(ι)
n (z) + hnb̂

(ι)
n (z)

(
Zi − z
hn

)}]2

K
(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

X>i
a(Zi)− a−(sq)︸ ︷︷ ︸

O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq




2

K
(ι)
h (Zi − z)

+
1

n

∑
i:Zi≥sq

X>i
a(Zi)− a−(sq)︸ ︷︷ ︸

dq+O(Zi−sq)

−Ξ
(ι)
0,τdq −

(
Zi − z
hn

)
Ξ

(ι)
1,τdq




2

K
(ι)
h (Zi − z)

+ op(1)

=d>q Ξ
(ι)
0,τ

>
Ś

(ι)
n,0Ξ

(ι)
0,τdq + 2d>q Ξ

(ι)
0,τ

>
Ś

(ι)
n,1Ξ

(ι)
1,τdq + d>q Ξ

(ι)
1,τ

>
Ś

(ι)
n,2Ξ

(ι)
1,τdq

+ d>q [Ξ
(ι)
0,τ − Ip]>S̀

(ι)
n,0[Ξ

(ι)
0,τ − Ip]dq + 2d>q [Ξ

(ι)
0,τ − Ip]>S̀

(ι)
n,1Ξ

(ι)
1,τdq

+ d>q Ξ
(ι)
1,τ

>
S̀

(ι)
n,2Ξ

(ι)
1,τdq + Op(hn) + op(1)

=d>q

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


> Ś(ι)

n,0 Ś
(ι)
n,1

Ś
(ι)
n,1 Ś

(ι)
n,2


Ξ

(ι)
0,τ

Ξ
(ι)
1,τ

 dq

+ d>q

Ξ
(ι)
0,τ − Ip

Ξ
(ι)
1,τ


> S̀(ι)

n,0 S̀
(ι)
n,1

S̀
(ι)
n,1 S̀

(ι)
n,2


Ξ

(ι)
0,τ − Ip

Ξ
(ι)
1,τ

 dq + Op(hn) + op(1).

It follows from the consistency results for Ś
(ι)
n,j and S̀

(ι)
n,j in Lemma 4(i) that

N
(ι)
n,3 =fZ(sq)d

>
q


Ξ

(ι)
0,τ

Ξ
(ι)
1,τ


>

Ώ
(ι)
−,τ (sq)

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


+

Ξ
(ι)
0,τ − Ip

Ξ
(ι)
1,τ


>

Ὼ
(ι)
+,τ (sq)

Ξ
(ι)
0,τ − Ip

Ξ
(ι)
1,τ


 dq + op(1)

=fZ(sq)d
>
q µ

(ι)
0 C

(ι)
τ dq + op(1),
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where

C(ι)
τ =

1

µ
(ι)
0

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


>

Ώ
(ι)
−,τ (sq)

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


+

1

µ
(ι)
0

Ξ
(ι)
0,τ − Ip

Ξ
(ι)
1,τ


>

Ὼ
(ι)
+,τ (sq)

Ξ
(ι)
0,τ − Ip

Ξ
(ι)
1,τ .

 . (40)

For τ ∈ (0, 1) and ι = c or l, µ́
(ι)
0,τ and µ̀

(ι)
0,τ are nonzero. According to Lemma 10, both

matrices Ξ
(ι)
0,τ and Ξ

(ι)
0,τ − Ip have rank p. Hence, [Ξ

(ι)
0,τ Ξ

(ι)
1,τ ]
> and [Ξ

(ι)
0,τ − Ip Ξ

(ι)
1,τ ]
> have

the same rank p, thus full column rank. By the result that Ώ
(ι)
−,τ (sq) and Ὼ

(ι)
+,τ (sq) are

positive definite for τ ∈ (0, 1) and ι = c or l in Lemma 9, the property that A + B � 0

for any A � 0 and B � 0, and the fact that A>BA � 0 if B � 0 and A has full column

rank, we conclude that matrices C
(c)
τ and C

(l)
τ are positive definite for τ ∈ (0, 1).

For τ ∈ (0, 1) and ι = r, it follows from equation (37): µ́
(r)
j,τ = 0 that

C(r)
τ =

1

µ
(r)
0

Ξ
(r)
0,τ − Ip

Ξ
(r)
1,τ


> µ̀(r)

0,τΩ+(sq) µ̀
(r)
1,τΩ+(sq)

µ̀
(r)
1,τΩ+(sq) µ̀

(r)
2,τΩ+(sq)


Ξ

(r)
0,τ − Ip

Ξ
(r)
1,τ

 .

Since Ξ
(r)
0,τ = Ip and Ξ

(r)
1,τ = 0p (equation (38)), C

(r)
τ is a null matrix for τ ∈ (0, 1).

Similarly, for τ ∈ (−1, 0), we have positive definite matrices C
(c)
τ � 0 and C

(r)
τ � 0

and the null matrix C
(l)
τ = 0p. Combining the limiting results of N

(ι)
n,1, N

(ι)
n,2, N

(ι)
n,3, and

K
(ι)
n (due to Lemma 4(iii)) yields Theorem 4. �
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Proof of Theorem 5.

Following the proof of Theorem 3.2 in Gijbels et al. (2007), we write the jump-preserving

estimator ǎn(z) as

ǎn(z) =â(c)
n (z)1 {An(z)}+ â(l)

n (z)1 {Bn(z)}+ â(r)
n (z)1 {Cn(z)}

+
â

(l)
n (z) + â

(r)
n (z)

2
1 {BCn(z)} ,

in which An(z), Bn(z), Cn(z), and BCn(z) correspond to the inequalities in (6) from

top to bottom, respectively. Apparently, these sets are mutually exclusive, and for any

z ∈ D,

1 {An(z)}+ 1 {Bn(z)}+ 1 {Cn(z)}+ 1 {BCn(z)} = 1. (41)

The rest of the proof is separated into three parts, which correspond to the regions D1n,

D2n,δ for some δ ∈ (0, 1/2), and D2n given in equation (9).

Part (i)

First, we consider z in the continuous region D1n. According to Theorem 1, there exist

a positive integer n(ι) and a positive constant C(ι) > 0 such that for n > n(ι),

sup
z∈D1n

√
nhn
lnn

∥∥â(ι)
n (z)− a(z)

∥∥ ≤ C(ι), ι = c, l, r,

with probability approaching to 1. Take ζ = maxι={c,l,r}C
(ι); for n > maxι={c,l,r} n

(ι), it
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follows that

sup
z∈D1n

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D1n

√
nhn
lnn

∥∥â(c)
n (z)− a(z)

∥∥1 {An(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥1 {Bn(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥â(r)
n (z)− a(z)

∥∥1 {Cn(z)}

+ sup
z∈D1n

√
nhn
lnn

∥∥∥∥∥ â(l)
n (z) + â

(r)
n (z)

2
− a(z)

∥∥∥∥∥1 {BCn(z)}

≤ζ

with probability approaching to 1, which implies that

sup
z∈D1n

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1).

Part (ii)

Next, we prove the uniform consistency for ǎn(z) in the region D2n,δ for some δ ∈ (0, 1/2),

which contains neighborhoods of discontinuities excluding any small regions around cen-

ters of sq and around end points sq − hn and sq + hn. For some δ ∈ (0, 1/2), the region

D2n,δ consists of two disjoint sets:

D́2n,δ = D ∩
Q+1⋃
q=0

[sq − (1− δ)hn, sq − δhn]

and

D̀2n,δ = D ∩
Q+1⋃
q=0

[sq + δhn, sq + (1− δ)hn].

Consider the region D́2n,δ and an arbitrarily small number ε > 0. Any given point z
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in D́2n,δ satisfies z = sq + τhn with τ ∈ [−1 + δ,−δ] and sq is one of {sq}Q+1
q=0 . According

to Theorem 1, for some ζ > 0 and any ε > 0, there exist a positive integer n1 such that

for n > n1,

sup
z∈D́2n,δ

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥ ≤ ζ

with probability larger than 1 − ε. In the following, we show that for any z ∈ D́2n,δ,

there exists another positive integer n3 > 0 such that the difference of ǎn(z) and â
(l)
n (z)

is negligible in probability.

By Theorem 4, for any κ > 0 and ε > 0, there exists an integer nκ(κ) such that for

n > nκ(κ),

Ψ(c)
n (z) > d>q C

(c)
τ dq + σ2(sq)− κ,

Ψ(l)
n (z) < σ2(sq) + κ,

Ψ(r)
n (z) > d>q C

(r)
τ dq + σ2(sq)− κ

with probability larger than 1−ε. For τ ∈ [−1+δ,−δ], matrices C
(c)
τ and C

(r)
τ are positive

definite (see the proof of Theorem 4). Additionally, the continuity of C
(ι)
τ in τ follows

from the continuity of µ́
(ι)
j,τ and µ̀

(ι)
j,τ as functions of the limits of integration. Given the

continuity of C
(ι)
τ and thus of d>q C

(ι)
τ dq, we have for any dq 6= 0,

aτ = inf
τ∈[−1+δ,−δ]

min{d>q C(c)
τ dq, d

>
q C

(r)
τ dq} = min

τ∈[−1+δ,−δ]
min{d>q C(c)

τ dq, d
>
q C

(r)
τ dq} > 0.
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Set κ = aτ
4

. For n > n2 = nκ(
aτ
4

), it follows that

Ψ(c)
n (z)−Ψ(l)

n (z) ≥ min{Ψ(c)
n (z),Ψ(r)

n (z)} −Ψ(l)
n (z)

> aτ − 2κ = aτ −
aτ
2

=
aτ
2
> 0,

and hence,

diff(z) = Ψ(c)
n (z)−min{Ψ(l)

n (z),Ψ(r)
n (z)}

= Ψ(c)
n (z)−Ψ(l)

n (z) >
aτ
2
> 0

with probability larger than 1 − ε. Moreover, since un → 0, for any η > 0 there exists

nη(η) > 0 such that, for n > nη(η), we have |un| < η with probability larger than 1− ε.

Setting η = aτ/4, it follows for n > n3 = max{nη(aτ4 ), n2},

diff(z)− un >
aτ
2
− un >

aτ
2
− aτ

4
=
aτ
4
> 0,

which implies that Conditions An(z), Cn(z), and BCn(z) do not hold, i.e., 1{An(z)} +

1{Cn(z)} + 1{BCn(z)} = 0 with probability larger than 1 − 2ε. Moreover, by equa-

tion (41), we can claim with an arbitrarily high probability that only Condition Bn(z)

is satisfied, which means that â
(l)
n (z) is chosen for n > n3 with probability larger than

1− 2ε. Hence when n > n4 = max{n1, n3},

sup
z∈D́2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D́2n,δ

√
nhn
lnn

∥∥â(l)
n (z)− a(z)

∥∥ ≤ ζ

with probability larger than 1− 3ε, which implies

sup
z∈D́2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1). (42)
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Similarly, for z ∈ D̀2n,δ, one can also show that

sup
z∈D̀2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = sup

z∈D̀2n,δ

√
nhn
lnn

∥∥â(r)
n (z)− a(z)

∥∥+ op(1)

= Op(1). (43)

Combining (42) and (43) gives

sup
z∈D2n,δ

√
nhn
lnn
‖ǎn(z)− a(z)‖ = Op(1).

Part (iii)

For z ∈ D2n \ D2n,δ, we can show the consistency of ǎn(z) analogously to the proof of

Part (ii). Since there is no unique strictly positive lower bound aτ exists, the result is

not uniform with respect to z on D2n \D2n,δ. �

Proof of Theorem 6.

We showed in the proof of Theorem 5 that the jump-preserving estimator ǎn(z) picks con-

sistently the correct local estimator for z ∈ D \ {sq}Q+1
q=0 . By Theorem 2, each local linear

estimator is asymptotically normal in the regions, where it is selected. Consequently,

ǎn(z) is asymptotically normal for z ∈ D \{sq}Q+1
q=0 with distribution given in Theorem 6.

A detailed argument is given in the proof of Theorem 3.1 of Casas and Gijbels (2012). �

Proof of Theorem 7.

Recall that the estimated residual used in Theorems 7–10 is ε̃
(ι)
n,i = Yi − X>i â

(ι)
n (z) and

the kernel K̃ refers to the uniform kernel. Let us denote

Ñ (ι)
n =

1

n

n∑
i=1

ê
(ι)2
n,i K̃

(ι)
h (Zi − z),
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T̃ (ι)
n =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ε̃

(ι)
n,iK̃

(ι)
h (Zi − z),

T̃
(ι)
n,2 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(Zi)− â(ι)

n (z)}K̃(ι)
h (Zi − z),

S̃(ι)
n =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (44)

W̃
(ι)
n,1 =

1

n

n∑
i=1

ε2
i K̃

(ι)
h (Zi − z), (45)

W̃
(ι)
n,2 =

1

n

n∑
i=1

XiX
>
i K̃

(ι)
h (Zi − z), (46)

W̃
(ι)
n,3 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (47)

W̃
(ι)
n,4 =

1

n

n∑
i=1

XiεiK̃
(ι)
h (Zi − z), and (48)

W̃
(ι)
n,5 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z), (49)

where ρ(u) = (1, u, . . . , um)> and ê
(ι)
n,i = ε̃

(ι)
n,i− ρ>((Zi− z)/hn)γ̂

(ι)
n . Further, we define the

population counterparts of some of the above kernel weighted averages:

f(z) = E[X>|Z = z], µ̃
(ι)
0 =

∫ 1

−1

K̃(u)du, m̃(ι) =

∫ 1

−1

ρ(u)K̃(u)du, and

M̃ (ι) =

∫ 1

−1

ρ(u)ρ>(u)K̃(u)du. (50)

With the help of the above notation, we write γ̂
(ι)
n in (10) as

γ̂(ι)
n (z) = S̃(ι)−1

n T̃ (ι)
n = S̃(ι)−1

n (W̃
(ι)
n,5 + T̃

(ι)
n,2). (51)

By Lemma 5(vi), W̃
(ι)
n,5 = op(1). To show T̃

(ι)
n,2 = op(1) by the consistency results for

â
(ι)
n (z) and W̃

(ι)
n,3 in Lemmas 1(vi) and 5(iv), respectively, the Taylor expansion of a(Zi)

for Zi ∈ [z− hn, z] : z ∈ D(l)
1n, Zi ∈ [z, z+ hn] : z ∈ D(r)

1n , or Zi ∈ [z− hn, z+ hn] : z ∈ D(c)
1n
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is used along with the boundedness of a′(·) (Assumption A5):

T̃
(ι)
n,2 =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(z)− â(ι)

n (z) + O(hn)}K̃(ι)
h (Zi − z)

=W̃
(ι)
n,3[a(z)− â(ι)

n (z) + O(hn)]

=
{
fZ(z)m̃(ι)f(z) + op(1)

}
· op(1) = op(1). (hn → 0)

As T̃
(ι)
n = W̃

(ι)
n,5+T̃

(ι)
n,2 = op(1) by Lemma 5(vi), the consistency result for S̃

(ι)
n in Lemma 5(i)

and the invertibility conditions for its population counterparts in Assumptions A2 and

D1 imply

γ̂(ι)
n =

M̃ (ι)−1

fZ(z)
op(1) = op(1). (52)

Further, for Zi ∈ [z−hn, z] : z ∈ D(l)
1n, Zi ∈ [z, z+hn] : z ∈ D(r)

1n , or Zi ∈ [z−hn, z+hn] :

z ∈ D(c)
1n , the squared error from the local mth polynomial fitting of ε̃

(ι)
n,i equals

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a(Zi)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a(Zi)− â(ι)

n (z)] + 2εiX
>
i

{
a(Zi)− â(ι)

n (z)
}

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
εi

=ε2
i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a(z) + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a(z) + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a(z) + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi

uniformly in i ∈ N by the Taylor expansion of a(·). To analyze each term of Ψ̃
(ι)
n (z) in
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(11), let us first look at Ñ
(ι)
n . By Lemma 5 and (52), we have after substitution for ê

(ι)2
n,i

Ñ (ι)
n =

1

n

n∑
i=1

ê
(ι)2
n,i K̃

(ι)
h (Zi − z)

=W̃
(ι)
n,1 + γ̂(ι)>

n S̃(ι)
n γ̂

(ι)
n + [a(z)− â(ι)

n (z)]>W̃
(ι)
n,2[a(z)− â(ι)

n (z)](1 + O(hn))

+
(
−2γ̂(ι)>

n W̃
(ι)
n,3 + 2W̃

(ι)>
n,4

)
[a(z)− â(ι)

n (z)](1 + O(hn))− 2γ̂(ι)>
n W̃n,5

=fZ(z)µ̃
(ι)
0 σ

2(z) + op(1)fZ(z)M̃ (ι)op(1) + op(1)fZ(z)µ̃
(ι)
0 Ω(z)op(1)

− 2op(1)fZ(z)m̃(ι)f(z)op(1) + 2op(1)op(1)− 2op(1)op(1)

=fZ(z)µ̃
(ι)
0 σ

2(z) + op(1). (53)

Combining equations (52) and (53), Lemma 5(i), and Assumption D1 finally yields

Ψ̃(ι)
n (z) =op(1)

M̃ (ι)−1

fZ(z)
(1 + op(1))

(
fZ(z)M̃ (ι) + op(1)

fZ(z)µ̃
(ι)
0 σ

2(z)

)

· M̃
(ι)−1

fZ(z)
(1 + op(1))op(1)

=op(1).

�

Proof of Theorem 8.

For any z = sq + τhn with τ ∈ (−1, 1), let

´̃S(ι)
n =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (54)

`̃S(ι)
n =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
ρ>
(
Zi − z
hn

)
K̃

(ι)
h (Zi − z), (55)

´̃W
(ι)
n,1 =

1

n

∑
i:Zi<sq

ε2
i K̃

(ι)
h (Zi − z), `̃W

(ι)
n,1 =

1

n

∑
i:Zi≥sq

ε2
i K̃

(ι)
h (Zi − z), (56)
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´̃W
(ι)
n,2 =

1

n

∑
i:Zi<sq

XiX
>
i K̃

(ι)
h (Zi − z), `̃W

(ι)
n,2 =

1

n

∑
i:Zi≥sq

XiX
>
i K̃

(ι)
h (Zi − z), (57)

´̃W
(ι)
n,3 =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (58)

`̃W
(ι)
n,3 =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
X>i K̃

(ι)
h (Zi − z), (59)

´̃W
(ι)
n,4 =

1

n

∑
i:Zi<sq

XiεiK̃
(ι)
h (Zi − z), `̃W

(ι)
n,4 =

1

n

∑
i:Zi≥sq

XiεiK̃
(ι)
h (Zi − z), (60)

´̃W
(ι)
n,5 =

1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z), and (61)

`̃W
(ι)
n,5 =

1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
εiK̃

(ι)
h (Zi − z). (62)

Further, we define the population counterparts of the above kernel weighted averages:

f−(sq) = lim
z↑sq

E[X>|Z = z], f+(sq) = lim
z↓sq

E[X>|Z = z] (63)

´̃µ
(ι)
0,τ =

∫ −τ
−1

K̃(u)du, `̃µ
(ι)
0,τ =

∫ 1

−τ
K̃(u)du, (64)

ḿ(ι)
τ =

∫ −τ
−1

ρ(u)K̃(u)du, m̀(ι)
τ =

∫ 1

−τ
ρ(u)K̃(u)du, (65)

Ḿ (ι)
τ =

∫ −τ
−1

ρ(u)ρ>(u)K̃(u)du, and M̀ (ι)
τ =

∫ 1

−τ
ρ(u)ρ>(u)K̃(u)du. (66)

Again, we use decomposition T̃
(ι)
n = W̃

(ι)
n,5 + T̃

(ι)
n,2 as in (51). By the consistency results

for ´̃W
(ι)
n,5 and `̃W

(ι)
n,5 in Lemma 6(vi),

W̃
(ι)
n,5 = ´̃W

(ι)
n,5 + `̃W

(ι)
n,5 = op(1) + op(1).

55



By (33)–(35) and the consistency results for ´̃W
(ι)
n,4 and `̃W

(ι)
n,4 in Lemma 6(v), we obtain

T̃
(ι)
n,2(z) =

1

n

n∑
i=1

ρ

(
Zi − z
hn

)
X>i {a(Zi)− â(ι)

n (z)}K̃(ι)
h (Zi − z)

=
1

n

∑
i:Zi<sq

ρ

(
Zi − z
hn

)
X>i [a(Zi)− a−(sq)︸ ︷︷ ︸

O(hn)

−Ξ
(ι)
0,τdq]K̃

(ι)
h (Zi − z)

+
1

n

∑
i:Zi≥sq

ρ

(
Zi − z
hn

)
X>i [a(Zi)− a−(sq)︸ ︷︷ ︸

dq+O(hn)

−Ξ
(ι)
0,τdq]K̃

(ι)
h (Zi − z)

=− ´̃W
(ι)
n,4

(
Ξ

(ι)
0,τdq + O(hn)

)
− `̃W

(ι)
n,4

(
(Ξ

(ι)
0,τ − Ip)dq + O(hn)

)
=− fZ(sq)

(
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq + op(1).

Hence, it follows from the consistency results for S̃
(ι)
n = ´̃S

(ι)
n + `̃S

(ι)
n in Lemma 6(i) that

γ̂(ι)
n = γ(ι) + op(1), (67)

where

γ(ι) =−
(
Ḿ (ι)

τ + M̀ (ι)
τ

)−1 (
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq

=− M̃ (ι)−1
(
ḿ(ι)
τ f−(sq)Ξ

(ι)
0,τ + m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)

)
dq. (68)

Next, for Zi < sq and |Zi − z| ≤ hn, the squared error ê
(ι)2
n,i equals by the Taylor

expansion of a(·) and the boundedness of its derivatives (Assumption A5)

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a−(sq) + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a−(z) + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a−(sq) + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi
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uniformly in i ∈ N, and by the same argument for Zi ≥ sq and |Zi − z| ≤ hn,

ê
(ι)2
n,i =ε2

i +

{
γ̂(ι)>
n ρ

(
Zi − z
hn

)}2

+
{
X>i [a−(sq) + dq + O(hn)− â(ι)

n (z)]
}2

− 2γ̂(ι)>
n ρ

(
Zi − z
hn

)
X>i [a−(sq) + dq + O(hn)− â(ι)

n (z)]

+ 2εiX
>
i

{
a−(sq) + dq + O(hn)− â(ι)

n (z)
}
− 2γ̂(ι)>

n ρ

(
Zi − z
hn

)
εi

uniformly in i ∈ N. For the term Ñ
(ι)
n of Ψ̃

(ι)
n (z) in (11), it now follows after substituting

the above expressions for ê
(ι)2
n,i and using equations (33)–(35) that

Ñ (ι)
n =

1

n

∑
i:Zi<sq

ê
(ι)2
n,i K̃

(ι)
h (Zi − z) +

1

n

∑
i:Zi≥sq

ê
(ι)2
n,i K̃

(ι)
h (Zi − z)

= ´̃W
(ι)
n,1 + `̃W

(ι)
n,1 +

[
γ̂(ι)>
n S̃(ι)

n γ̂
(ι)
n + d>q Ξ

(ι)>
0,τ

´̃W
(ι)
n,2Ξ

(ι)
0,τdq

+ d>q (Ξ
(ι)
0,τ − Ip)>

`̃W
(ι)
n,2(Ξ

(ι)
0,τ − Ip)dq + 2γ̂(ι)>

n
´̃Wn,3Ξ

(ι)
0,τdq

+ 2γ̂(ι)>
n

`̃Wn,3(Ξ
(ι)
0,τ − Ip)dq − 2d>q Ξ

(ι)>
0,τ

´̃W
(ι)
n,4 − 2d>q (Ξ

(ι)
0,τ − Ip)>

`̃W
(ι)
n,4

]
· (1 + O(hn))− 2γ̂(ι)>

n
´̃Wn,5 − 2γ̂(ι)>

n
`̃Wn,5.

By (67) and Lemma 6, we thus have

Ñ (ι)
n =fZ(sq)

{
´̃µ

(ι)
0,τσ

2
−(sq) + `̃µ

(ι)
0,τσ

2
+(sq) + σ(ι)2

e,τ (sq)
}

+ op(1), (69)

where

σ(ι)2
e,τ (sq) =γ(ι)>M̃ (ι)γ(ι) + d>q Ξ

(ι)>
0,τ

´̃µ
(ι)
0,τΩ−(sq)Ξ

(ι)
0,τdq

+ d>q (Ξ
(ι)
0,τ − Ip)> `̃µ

(ι)
0,τΩ+(sq)(Ξ

(ι)
0,τ − Ip)dq

+ 2γ(ι)>ḿ(ι)
τ f−(sq)Ξ0,τdq + 2γ(ι)>m̀(ι)

τ f+(sq)(Ξ
(ι)
0,τ − Ip)dq.
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Since the term above can be rewritten as

σ(ι)2
e,τ (sq) =

∫ −τ
−1

∫
(x>Ξ0,τdq + γ(ι)>ρ(u))2K̃(u)

f(x, sq)

fZ(sq)
dxdu

+

∫ 1

−τ

∫
(x>[Ξ0,τ − Ip]dq + γ(ι)>ρ(u))2K̃(u)

f(x, sq)

fZ(sq)
dxdu, (70)

it is clearly non-negative.

By equations (67)–(69) and Lemma 6(i), we conclude that

Ψ̃(ι)
n (z) =γ(ι)>C̃(ι)

τ γ(ι) + op(1),

where

C̃(ι)
τ =

(
M̃ (ι)

´̃µ
(ι)
0,τσ

2
−(sq) + `̃µ

(ι)
0,τσ

2
+(sq) + σ

(ι)2
e,τ (sq)

)
. (71)

By the positive definiteness of M̃ (ι) (Assumption D1) and non-negative σ
(ι)2
e,τ (sq) from

(70), we claim that C̃
(ι)
τ � 0 for any τ ∈ (−1, 1) and ι = c, l, r. According to Assumption

D2, some elements of γ(ι), ι = c, l, are non-zero for τ ∈ (0, 1). Hence, the limits of Ψ̃
(c)
n (z)

and Ψ̃
(l)
n (z) are strictly positive, i.e., γ(ι)>C̃

(ι)
τ γ(ι) > 0 for τ ∈ (0, 1) and ι = c, l. For

τ ∈ (0, 1) and ι = r, we have ´̃µ
(ι)
0,τ = 0 and ḿ

(r)
τ = 0. By the expressions of γ(ι) in

(68) and the fact (38), Ξ
(r)
0,τ = Ip for τ ∈ (0, 1), we conclude that γ(r) = 0 and hence

γ(r)>C̃
(r)
τ γ(r) = 0. Similarly for τ ∈ (−1, 0), we have γ(c)>C̃

(c)
τ γ(c) � 0, γ(r)>C̃

(r)
τ γ(r) � 0,

and γ(l)>C̃
(l)
τ γ(l) = 0 due to equation (39), Ξ

(l)
0,τ = 0p. �

Proof of Theorem 9.

Being based on the results of Theorems 7 and 8, it follows the same steps as in the proof

of Theorem 5. �
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Proof of Theorem 10.

Being based on the results of Theorems 7 and 8, it follows the same steps as in the proof

of Theorem 6. �

B Some auxiliary lemmas

Lemma 1. Suppose Assumptions A and B hold. For any z ∈ D(ι)
1n and ι = c, l, r, it holds

as n→ +∞ that

(i) S
(ι)
n,j = µ

(ι)
j fZ(z)Ω(z) + op(1) with j = 0, 1, 2, 3,

(ii) S
(ι)−1
n =

f−1
Z (z)

µ
(ι)
0 µ

(ι)
2 − µ

(ι)2
1

 µ
(ι)
2 −µ(ι)

1

−µ(ι)
1 µ

(ι)
0

⊗ Ω−1(z)(1 + op(1)),

(iii) F
(ι)
n,j = op(1) with j = 0, 1,

(iv) K
(ι)
n = µ

(ι)
0 fZ(z) + op(1),

(v) N
(ι)
n,1 = µ

(ι)
0 fZ(z)σ2(z) + op(1),

(vi) â
(ι)
n (z) = a(z) + op(1),

(vii) b̂
(ι)
n (z) = a′(z) + op(h−1

n ),

where the above objects are defined in (15)–(17), (25), and (26).

Proof. By Assumptions A1–A3 and B1–B2, the conditions for the weak law of large

number for kernel estimators in Hansen (2008) are satisfied. Applying Theorem 1 in

Hansen (2008) leads to

S
(ι)
n,j = E[S

(ι)
n,j] + op(1).
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After a change of variable (ż = z + vhn) and the Taylor expansion of the density f in

which it partial derivatives with respect to Z are uniformly bounded due to Assumption

A2, the expectation of S
(ι)
n,j equals

E[S
(ι)
n,j] =E

[
XiX

>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)

]

=
1

hn

∫ ∫
ẋẋ>

(
ż − z
hn

)j
K(ι)

(
ż − z
hn

)
f(ẋ, ż)dżdẋ

=

∫ ∫
ẋẋ>vjK(ι)(v)f(ẋ, z + vhn)dẋdv

=

∫
vjK(ι)(v)dv · fZ(z) ·

∫
ẋẋ>

f(ẋ, z)

fZ(z)
dẋdv + O(hn)

=µ
(ι)
j fZ(z)Ω(z) + O(hn),

where Ω(z) = E(XX>|Z = z). This concludes part (i). Part (ii) the follows trivially by

part (i), Lemma 7(i): µ
(ι)
0 µ

(ι)
2 −µ

(ι)2
1 6= 0, the full rank conditions for Ω(z) in Assumption

A4, and fZ(z) > 0 in Assumption A2. Similarly to part (i), one can easily show (iii)–(v).

Finally, using (21), parts (i)-(iii), and Assumption A5, we have

∥∥∥Hn(β̂(ι)
n − β)

∥∥∥ ≤∥∥S(ι)−1
n F (ι)

n

∥∥+

∥∥∥∥∥∥∥
h2
n

2
S(ι)−1
n

S(ι)
n,2

S
(ι)
n,3

 a′′(z)

∥∥∥∥∥∥∥+ o(h2
n)

=

∥∥∥∥Ω−1(z)

fZ(z)

(
c

(ι)
0 F

(ι)
n,0 + c

(ι)
1 F

(ι)
n,1

)
(1 + op(1))

∥∥∥∥
+

∥∥∥∥h2
n

2

(
c

(ι)
0 µ

(ι)
2 + c

(ι)
1 µ

(ι)
3

)
a′′(z)(1 + op(1))

∥∥∥∥+ o(h2
n)

≤op(1) + Op(h2
n) ‖a′′(z)‖+ o(h2

n)

=op(1),

where c
(ι)
0 and c

(ι)
1 are defined in (7). This completes the proofs of (vi) and (vii). �
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Lemma 2. Under Assumptions A and B, it holds as n→ +∞ that

(i) hnvar(W
(ι)
1 )→ fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
,

(ii) hn
∑n−1

j=1 |cov(W
(ι)
1 ,W

(ι)
j+1)| = o(1), and

(iii) nhnvar(U
(ι)
n )→ fZ(z)Θ(z)

[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
,

where U
(ι)
n and W

(ι)
i are given in (23)–(24), Θ(z) = E(XX>σ2(X,Z)|Z = z), and c

(ι)
j

and ν
(ι)
j are defined in equation (7).

Proof. By conditioning on (X1, Z1), a change of variables, and the Taylor expansion,

hnvar(W
(ι)
1 ) =hnE

[
X1X

>
1 σ

2(X1, Z1)

{
c

(ι)
0 + c

(ι)
1

(
Z1 − z
hn

)}2

K
(ι)2
h (Z1 − z)

]

=

∫ ∫
xx>σ2(x, z + hnu)

(
c

(ι)2
0 + 2c

(ι)
0 c

(ι)
1 u+ c

(ι)2
1 u2

)
K(ι)2(u)

× f(x, z + hnu)dudx

=fZ(z)Θ(z)
[
c

(ι)2
0 ν

(ι)
0 + 2c

(ι)
0 c

(ι)
1 ν

(ι)
1 + c

(ι)2
1 ν

(ι)
2

]
+ O(hn)

due to Assumptions A2, A5, and A6. Since part (iii) follows trivially from (i) and (ii) by

nhnvar(U (ι)
n ) =

hn
n

var

(
n∑
i=1

W
(ι)
i

)

=hnvar(W
(ι)
1 ) + 2hn

n−1∑
j=1

(
1− j

n

)
cov(W

(ι)
1 ,W

(ι)
j+1),

it remains to prove (ii). To this end, let cn →∞ be a sequence of positive integers such

that cnhn → 0. We write

hn

n−1∑
j=1

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣ =hn

cn∑
j=1

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣+ hn

n−1∑
j=cn

∣∣∣cov(W
(ι)
1 ,W

(ι)
j+1)

∣∣∣
=J1,n + J2,n.
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We complete the proof by showing that J1,n = o(1) and J2,n = o(1).

First, for j ≤ cn, by conditioning on Z1 and Zj+1 and Assumption A3(iii), we have,

|cov(W
(ι)
1 ,W

(ι)
j+1)| ≤ C1E

(
|X1X

>
j+1ε1εj+1|K(ι)

h (Z1 − z)K
(ι)
h (Zj+1 − z)

)
≤ C2E

(
|X1X

>
j+1ε1εj+1|

∣∣Z1 = z, Zj+1 = z
)

(fZ1Zj+1
(z, z) + O(hn))

≤ C3,

for positive constants C1, C2, C3, which implies that J1,n ≤ hncnC = o(1) by the choice

of cn. Next, let W
(ι)
j,m be the m-th element of W

(ι)
j . Using Davydov’s inequality (Fan and

Yao, 2003, Proposition 2.5 with p = q = δ), one has

|cov(W
(ι)
1,l ,W

(ι)
j+1,m)| ≤ Cα1−2/δ(j)

(
E|W (ι)

1,l |
δ
)1/δ (

E|W (ι)
j+1,m|δ

)1/δ

. (72)

By conditioning on Z1 and Assumptions A2 and A3(ii),

E|W (ι)
1,l |

δ ≤ C1E[|X1,lε1|δK(ι)δ
h (Z1 − z)]

≤ C2h
1−δ
n {E[|X1,lε1|δ

∣∣Z1 = z](fZ(z) + O(hn))}

≤ C3h
1−δ
n . (73)

for some C1, C2, C3 > 0. It follows from equations (72), (73), and Assumption A1 that

J2,n = hn

n−1∑
j=cn+1

|cov(W
(ι)
1 ,W

(ι)
j+1)|

≤ C1hnh
2(1−δ)/δ
n

∞∑
j=cn+1

α1−2/δ(j)

≤ C2h
2/δ−1
n

∞∑
j=cn+1

j−(2−2/δ)

≤ C3h
2/δ−1
n c2/δ−1

n = o(1),
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where constants C1, C2, C3 > 0 and the last inequality follows from the fact that

∞∑
j=k+1

j−τ ≤
∫ ∞
k

x−τdx =
k1−τ

τ − 1
.

�

Lemma 3. Under Assumptions A, B, and C, we have for n→ +∞ and ι = c, l, r,

sup
z∈D(ι)

1n

∥∥∥S(ι)
n,j − µ

(ι)
j fZ(z)Ω(z)

∥∥∥ = Op

(√
lnn

nhn

)
+ O(hn) for j = 0, 1, 2, 3,

sup
z∈D(ι)

1n

∥∥∥F (ι)
n,j

∥∥∥ = Op

(√
lnn

nhn

)
for j = 0, 1,

and

fZ(z)S(ι)
n

−1
=

 µ
(ι)
2 Ω−1(z) −µ(ι)

1 Ω−1(z)

−µ(ι)
1 Ω−1(z) µ

(ι)
0 Ω−1(z)


µ

(ι)
0 µ

(ι)
2 − µ

(ι)2
1

{
1 + Op

(√
lnn

nhn

)
+ O(hn)

}

uniformly for z ∈ D(ι)
1n.

Proof. By Assumptions A, B, and C, the conditions for weak uniform convergence result

for kernel estimators over expanding sets in Hansen (2008) are satisfied. First, we consider

case ι = c, which uses both left and right neighborhoods. For the continuous region

D
(c)
1n =

⋃Q
q=0(sq +hn, sq+1−hn), we apply Theorem 2 in Hansen (2008) on each subregion

(sq + hn, sq+1 − hn):

sup
z∈(sq+hn,sq+1−hn)

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥ = Op

(√
lnn

nhn

)
.

Notice the expanding sets considered in Hansen (2008) are allowed to grow to infinity

63



slowly, as n → ∞, while the subregion (sq + hn, sq+1 − hn) expands to a bounded set

(sq, sq+1). Taking the maximum over all subregions yields

sup
z∈D(c)

1n

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥ ≤(Q+ 1) ·max

q
sup

z∈(sq+hn,sq+1−hn)

∥∥∥S(c)
n,j − E(S

(c)
n,j)
∥∥∥

=Op

(√
lnn

nhn

)
.

Since E(S
(c)
n,j) = µ

(c)
j fZ(z)Ω(z) + O(hn), which is shown in the proof in Lemma 1, we have

sup
z∈D(c)

1n

∥∥∥S(c)
n,j − µ

(c)
j fZ(z)Ω(z)

∥∥∥ =Op

(√
lnn

nhn

)
+ O(hn).

Although Theorem 2 in Hansen (2008) originally excludes the case of one-sided kernel,

his theorem is still applicable for one-sided kernel by taking ‘one-sided’ covering sets Aj,

which boosts the size of covering by a constant multiplier 2p, instead of ‘two-sided’ Aj in

his proof. Then, by similar argument as for S
(c)
n,j, one can prove the uniform consistency

results for S
(l)
n,j and S

(r)
n,j.

Analogously, we can apply Theorem 2 in Hansen (2008) to F
(ι)
n,j with ι = c, l, r,

where the uniform convergence rates stays equal to Op(
√

lnn/(nhn)) since E(F
(ι)
n,j) = 0. �

Lemma 4. Suppose Assumptions A and B hold. For any z = sq + τhn with τ ∈ (−1, 1)

and ι = c, l, r, we have as n→ +∞,

(i) Ś
(ι)
n,j = fZ(sq)Ω−(sq)µ́

(ι)
j,τ +op(1) and S̀

(ι)
n,j = fZ(sq)Ω+(sq)µ̀

(ι)
j,τ +op(1) for j = 0, 1, 2;

(ii) F́
(ι)
n,j = F̀

(ι)
n,j = op(1) for j = 0, 1;

(iii) K
(ι)
n = fZ(sq)µ

(ι)
0 + op(1);
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(iv) further, if the derivative of σ2(x, z) with respect to z is continuous and bounded on

the complete D, N
(ι)
n,1 = fZ(sq)µ

(ι)
0 σ

2(sq) + op(1),

where the above terms are defined in (27)–(32).

Proof. After a change of variable and the Taylor expansion, we have

E[Ś
(ι)
n,j] =E

[
XiX

>
i

(
Zi − z
hn

)j
K

(ι)
h (Zi − z)

∣∣∣∣Zi < sq

]

=

∫ ∫ −τ
−1

xx>ujK(ι)(u)f(x, sq + (τ + u)hn)dudx

=

∫ −τ
−1

ujK(ι)(u)du · lim
z↑sq

fZ(z)

∫
xx>

f(x, z)

fZ(z)
dx+ O(hn)

=µ́
(ι)
j,τfZ(sq)Ω−(sq) + O(hn)

due to Assumption A2. The convergence of Ś
(ι)
n,j to its expectation follows again by

applying Theorem 1 of Hansen (2008), which is allowed due to Assumptions A and B.

The convergence results for S̀
(ι)
n,j and (ii)–(iv) can be proven in a similar manner. �

Lemma 5. Suppose Assumptions A, B, and D1 hold. It holds for n→ +∞ and ι = c, l, r,

(i) S̃
(ι)
n = fZ(z)M̃ (ι) ⊗ Ω(z) + op(1) and S̃

(ι)−1
n =

M̃ (ι)−1

fZ(z)
(1 + op(1));

(ii) W̃
(ι)
n,1 = fZ(z)µ̃

(ι)
0 σ

2(z) + op(1);

(iii) W̃
(ι)
n,2 = fZ(z)µ̃

(ι)
0 Ω(z) + op(1);

(iv) W̃
(ι)
n,3 = fZ(z)m̃(ι) ⊗ Ω(z) + op(1);

(v) W̃
(ι)
n,4 = op(1);

(vi) W̃
(ι)
n,5 = op(1),

where the above terms are defined in (44)–(50).
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Proof. This lemma is analogous to Lemma 1 and the results follow by direct applications

of Theorem 1 in Hansen (2008). �

Lemma 6. Suppose Assumptions A, B, and D1 hold. For any z = sq + τhn with τ ∈

(−1, 1) and ι = c, l, r, we have as n→ +∞,

(i) ´̃S
(ι)
n = fZ(sq)Ḿ

(ι)
τ + op(1) and `̃S

(ι)
n = fZ(sq)M̀

(ι)
τ + op(1);

(ii) ´̃W
(ι)
n,1 = fZ(sq)´̃µ

(ι)
0,τσ

2
−(sq) + op(1) and `̃W

(ι)
n,1 = fZ(sq)`̃µ

(ι)
0,τσ

2
+(sq) + op(1);

(iii) ´̃W
(ι)
n,2 = fZ(sq)´̃µ

(ι)
0,τΩ−(sq) + op(1) and `̃W

(ι)
n,2 = fZ(sq)`̃µ

(ι)
0,τΩ+(sq) + op(1);

(iv) ´̃W
(ι)
n,3 = fZ(sq)ḿ

(ι)
τ f−(sq) + op(1) and `̃W

(ι)
n,3 = fZ(sq)m̀

(ι)
τ f+(sq) + op(1);

(v) ´̃W
(ι)
n,4 = `̃W

(ι)
n,4 = op(1);

(vi) ´̃W
(ι)
n,5 = `̃Wn,5 = op(1),

where the above terms are defined in (54)–(66).

Proof. This lemma is similar to Lemma 4. The results follow mainly by applying

Theorem 1 in Hansen (2008). �

Lemma 7. Under Assumption B1, we have

(i) µ
(ι)
0 µ

(ι)
2 − µ

(ι)2
1 > 0, ι = c, l, r;

(ii)

µ́
(ι)
0,τ µ́

(ι)
2,τ − µ́

(ι)2
1,τ



> 0, if ι = c and τ ∈ (−1, 1),

> 0, if ι = l and τ ∈ (−1, 1),

> 0, if ι = r and τ ∈ (−1, 0),

= 0, if ι = r and τ ∈ [0, 1);
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(iii)

µ̀
(ι)
0,τ µ̀

(ι)
2,τ − µ̀

(ι)2
1,τ



> 0, if ι = c and τ ∈ (−1, 1),

= 0, if ι = l and τ ∈ (−1, 0],

> 0, if ι = l and τ ∈ (0, 1),

> 0, if ι = r and τ ∈ (−1, 1),

Proof. Here, we prove part (ii) only and (i) and (iii) can be shown analogically. Suppose

that U has a density K(ι)(·). We have

var(U |U < −τ) =E[{U − E(U |U < −τ)}2|U < −τ ]

=E(U2|U < −τ)− {E(U |U < −τ)}2

=

∫ −τ
−1

u2 K(ι)(u)∫ −τ
−1

K(ι)(u)du
du−

{∫ −τ
−1

u
K(ι)(u)∫ −τ

−1
K(ι)(u)du

du

}2

=

∫ −τ
−1

u2K(ι)(u)du∫ −τ
−1

K(ι)(u)du
−

{∫ −τ
−1

uK(ι)(u)du∫ −τ
−1

K(ι)(u)du

}2

=
µ́

(ι)
2,τ

µ́
(ι)
0,τ

−
µ́

(ι)2
1,τ

µ́
(ι)2
0,τ

.

By Assumption B1 and definitions of K(r)(·) and K(l)(·) in (2),

µ́
(ι)
0,τ µ́

(ι)
2,τ − µ́

(ι)2
1,τ = µ́

(ι)2
0,τ var(U |U < −τ)



> 0, if ι = c and τ ∈ (−1, 1),

> 0, if ι = l and τ ∈ (−1, 1),

> 0, if ι = r and τ ∈ (−1, 0),

= 0, if ι = r and τ ∈ [0, 1).

�
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Lemma 8. Let X be a symmetric matrix given by

X =

A B>

B C

 .

Then

(i) X is positive definite if and only if A and the Schur complement of A, C−BA−1B>,

are both positive definite.

(ii)

X−1

A
B

 =

Ip
0p

 ,

where Ip is the p× p identity matrix and 0p is the null matrix of size p× p, if A, B

and C are p× p matrices.

Proof. Part (i) is one of the fundamental results of Schur complement, where the proof

can be found in Zhang (2005, Theorem 1.12). For part (ii), since X−1X = I2p, we have

X−1X

Ip
0p

 = I2p

Ip
0p


⇔ X−1

A B>

B C


Ip

0p

 =

Ip 0p

0p Ip


Ip

0p


⇔ X−1

A
B

 =

Ip
0p

 .

�

Lemma 9. Under Assumptions B1 and A4,
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(i) the variance matrix

Ώ
(ι)
−,τ (sq) =

µ́(ι)
0,τΩ−(sq) µ́

(ι)
1,τΩ−(sq)

µ́
(ι)
1,τΩ−(sq) µ́

(ι)
2,τΩ−(sq)


is



positive definite, if ι = c and τ ∈ (−1, 1),

positive definite, if ι = l and τ ∈ (−1, 1),

positive definite, if ι = r and τ ∈ (−1, 0),

a null matrix, if ι = r and τ ∈ [0, 1);

(ii) the variance matrix

Ὼ
(ι)
+,τ (sq) =

µ̀(ι)
0,τΩ+(sq) µ̀

(ι)
1,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq) µ̀

(ι)
2,τΩ+(sq)


is



positive definite, if ι = c and τ ∈ (−1, 1),

a null matrix, if ι = l and τ ∈ (−1, 0],

positive definite, if ι = l and τ ∈ (0, 1),

positive definite, if ι = r and τ ∈ (−1, 1);

(iii) for τ ∈ (−1, 1) and ι = c, l, r, the variance matrix Ώ
(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq) is positive

definite.

Proof. By Assumptions B1 and A4, µ́
(ι)
0,τΩ−(sq) is positive definite except for ι = r and
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τ ∈ [0, 1) when it equals the null matrix. Also, the Schur complement of µ́
(ι)
0,τΩ−(sq) is

µ́
(ι)
2,τΩ−(sq)− µ́(ι)

1,τΩ−(sq)µ́
(ι)−1
0,τ Ω−1

− (sq)µ́
(ι)
1,τΩ−(sq) =

(
µ́

(ι)
2,τ −

µ́
(ι)2
1,τ

µ́
(ι)
0,τ

)
Ω−(sq),

which is also positive definite by Lemma 7 and Assumption A4 except for the case of

ι = r and τ ∈ [0, 1) when it equals the null matrix. After applying Lemma 8(i), the

proof of part (i) is complete. Similarly, one can prove (ii). The claim (iii) then follows

immediately from (i) and (ii). �

Lemma 10. Under Assumptions B1 and A4, for ι = l, r, c,

(i) rank
(

Ξ
(ι)
0,τ

)
= p, if µ̀

(ι)
0,τ > 0;

(ii) rank
(

Ξ
(ι)
0,τ − Ip

)
= p, if µ́

(ι)
0,τ > 0,

where the matrix Ξ
(ι)
0,τ is defined in (36).

Proof. Using Lemma 9(iii) and the properties of a positive definite matrix, matrix

Ώ
(ι)
−,τ (sq)+Ὼ

(ι)
+,τ (sq) is non-singular and its inverse is also positive definite. By Lemma 9(ii)

and the fact that AB � 0 if A � 0 and B � 0, the matrix

Ξ(ι)
τ =

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq) � 0
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if µ̀
(ι)
0,τ > 0. Since

Ξ
(ι)
0,τ =[Ip 0p]

Ξ
(ι)
0,τ

Ξ
(ι)
1,τ


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

µ̀(ι)
0,τΩ+(sq)

µ̀
(ι)
1,τΩ+(sq)


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq)

Ip
0p


and the property of positive definite matrix that A>BA � 0 if B � 0 and A has full

column rank, we conclude that Ξ
(ι)
0,τ � 0. Hence Ξ

(ι)
0,τ has full rank, i.e., rank

(
Ξ

(ι)
0,τ

)
= p,

which completes the proof of (i).

To show (ii), we write

Ip − Ξ
(ι)
0,τ =[Ip 0p]

{
I2p −

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ὼ
(ι)
+,τ (sq)

}Ip
0p


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1 {
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)− Ὼ

(ι)
+,τ (sq)

}Ip
0p


=[Ip 0p]

[
Ώ

(ι)
−,τ (sq) + Ὼ

(ι)
+,τ (sq)

]−1

Ώ
(ι)
−,τ (sq)

Ip
0p

 .

By similar arguments as in part (i) and Lemmas 9(i) and 9(iii), it follows that Ip−Ξ
(ι)
0,τ � 0.

As a result, Ip − Ξ
(ι)
0,τ has the full rank just as matrix Ξ

(ι)
0,τ − Ip. �

References

Ahmad, I., S. Leelahanon, and Q. Li (2005). Efficient estimation of a semiparametric
partially linear varying coefficient model. The Annals of Statistics 33, 258–283.

71



Bierens, H. J. (1982). Consistent model specification tests. Journal of Economet-
rics 20 (1), 105 – 134.

Cai, Z., J. Fan, and R. Li (2000). Efficient estimation and inferences for varying-coefficient
models. Journal of the American Statistical Association 95 (451), 888–902.

Cai, Z., J. Fan, and Q. Yao (2000). Functional-coefficient regression models for nonlinear
time series. Journal of the American Statistical Association 95 (451), 941–956.

Cai, Z. and Q. Li (2008). Nonparametric estimation of varying coefficient dynamic panel
data models. Econometric Theory 24 (5), 1321–1342.

Casas, I. and I. Gijbels (2012). Unstable volatility: the break-preserving local linear
estimator. Journal of Nonparametric Statistics 24 (4), 883–904.

Fan, J. and T. Huang (2005). Profile likelihood inferences on semiparametric varying-
coefficient partially linear models. Bernoulli 11 (6), 1031–1057.

Fan, J. and Q. Yao (1998). Efficient estimation of conditional variance functions in
stochastic regression. Biometrika 85 (3), pp. 645–660.

Fan, J. and Q. Yao (2003). Nonlinear Time Series: Nonparametric and Parametric
Methods. Springer Series in Statistics. New York: Springer-Verlag.

Fan, J., Q. Yao, and Z. Cai (2003). Adaptive varying-coefficient linear models. Journal
of the Royal Statistical Society Series B 65 (1), 57–80.

Fan, J. and J. Zhang (2000). Two-step estimation of functional linear models with appli-
cations to longitudinal data. Journal of the Royal Statistical Society Series B 62 (2),
303–322.

Gijbels, I. and A.-C. Goderniaux (2004). Bandwidth selection for change point estimation
in nonparametric regression. Technometrics 46, 76–86.

Gijbels, I., A. Lambert, and P. Qiu (2007). Jump-preserving regression and smoothing
using local linear fitting: A compromise. Annals of the Institute of Statistical Mathe-
matics 59 (2), 235–272.

Godtliebsen, F., E. Spjotvoll, and J. S. Marron (1997). A nonlinear gaussian filter applied
to images with discontinuities. Journal of Nonparametric Statistics 8 (1), 21–43.

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent
data. Econometric Theory 24 (3), 726–748.

Hastie, T. J. and R. J. Tibshirani (1993). Varying-coefficient models. Journal of the
Royal Statistical Society Series B 55, 757–796.

72



Hoover, D. R., J. A. Rice, C. O. Wu, and L.-P. Yang (1998). Nonparametric smoothing
estimates of time-varying coefficient models with longitudinal data. Biometrika 85,
809–822.

Huang, J. Z. and H. Shen (2004). Functional coefficient regression models for non-linear
time series: A polynomial spline approach. Scandinavian Journal of Statistics 31 (4),
515–534.

Kang, K.-H., J.-Y. Koo, and C.-W. Park (2000). Kernel estimation of discontinuous
regression functions. Statistics & Probability Letters 47, 277–285.

Lee, E. R. and E. Mammen (2016). Local linear smoothing for sparse high dimensional
varying coefficient models. Electronic Journal of Statistics 10 (1), 855–894.

Müller, H.-G. (1992). Change-points in nonparametric regression analysis. The Annals
of Statistics 20, 737–761.

Patton, A., D. N. Politis, and H. White (2009). Correction to “automatic block-length
selection for the dependent bootstrap”. Econometric Reviews 28, 372–375.

Polzehl, J. and V. G. Spokoiny (2000). Adaptive weights smoothing with applications
to image restoration. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 62 (2), 335–354.

Spokoiny, V. (1998). Estimation of a function with discontinuities via local polynomial
fit with an adaptive window choice. Ann. Stat. 26 (4), 1356–1378.

Sun, Y., R. J. Carroll, and D. Li (2009). Semiparametric estimation of fixed-effects
panel data varying coefficient models. In Q. Li and J. S. Racine (Eds.), Nonparametric
Econometric Methods, Volume 25 of Advances in Econometrics, pp. 101–129. Emerald
Group Publishing Limited.
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