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A B S T R A C T

In today’s society, the pervasiveness and sales of video games is at an
all-time high. Video games are used in a variety of application scenarios,
from pure entertainment to supporting research, raising social awareness,
and training. Video games are no longer developed only by professional
programmers, but also by experts in other domains. This has made the
problems surrounding the process of game development increasingly ev-
ident. One such problem is the lack of a clear methodology for defining
video games, supported by user-friendly tools. Indeed, the available tools
for making video games are either too specific or too general. When too
specific, the abstractions provided by the tool are so poor that only few
game genres are expressible. When too general the abstractions provided
by the tool are so generic that even expressing simple domain concepts
requires a lot of effort.

These problems lead to the process of developing video games being
a costly one, in terms of time, money, and necessary knowledge. Such
costs negatively affect the development process, and may even lead to the
impossibility to develop certain games. When a solution is offered that
reduces the cost of game development, this will benefit in particular the
developers for whom game development is not their main job.

This thesis starts by analyzing the process of making a video game, and
examines the available tools for making them. It then proposes a solution
to the high costs of making games. This solution comes in the shape of
a programming language that is exclusively focused on the domain of
video games. This language, which we call Casanova 2 (inspired by its
predecessor language Casanova, with which it shares goals and philoso-
phy), is designed to offer abstractions built around the typical aspects of
video games. Casanova 2 is not bound to any video game genre. Due to
the specificity of the domain of game development, and the strong require-
ments it brings with it, the compiler behind the Casanova 2 language is
able to apply code analysis. Together with a series of optimization layers, it
is able to turn complex domain code into a highly-performant executable.
Casanova 2 comes with a series of advantages such as embedded network-
ing, and high-performance encapsulation support, which positively affects
the production of games.

The thesis evaluates Casanova 2 by comparing it with representative lan-
guages, that are often used for video games, on expressiveness, compact-
ness, speed, ease-of-development, and maintainability. It demonstrates that
Casanova 2 is either equivalent to or outranks all competitors in these re-
spects. This warrants the conclusion that Casanova 2 achieves its goal of
offering a game development language that can be successfully used by a
wide variety of developers to build video games.
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1
I N T R O D U C T I O N

In this chapter we discuss traditional games and video games. We discuss
the requirements that define traditional games and show that video games
fulfill such requirements. We show how by means of digital media new
games design opportunities become possible. We discuss the difficulties
arising from the development of video games, and to what extent these
difficulties affect video game developers. This discussion will eventually
lead us to the definition of the problem statement and research questions
of this thesis. We conclude this chapter with the thesis outline.

1.1 traditional games

Before games became digital, they used to be played either indoor, by
means of physical objects, such as chess, or outdoors, as in sports. We re-
fer to these kinds of non digital games as “traditional games”. In Homo
Ludens [51], Johan Huizinga states that games (or playing) are at the foun-
dation of many cultures and societies, as games are a universal part of the
human experience since ancient times up until now. We can find traces of
games in many cultures from the past. Among the oldest games we find:
the Royal Game of Ur [88], a board game from the First Dynasty of Ur,
dated about 2500 BC; Senet (or Senat) [81], a board game from predynas-
tic and ancient Egypt, dated about 3500 BC; and Polo [24], a sport game
designed to develop military skills, for which oldest records were discov-
ered in Persia, dated about 600 BC. Nowadays, pervasiveness of games is
at an all-time hight; games are played by different kinds of players regard-
less of their social status, age, gender, etc.

Among these games we find traditional games such as board games,
sport games, and card games. In the following, we discuss the fundamen-
tal aspects that are common to all traditional games.

1.1.1 Key ingredients of traditional games

A reason for the success of traditional games is associated with their ability
to involve people regardless of age or gender. Such success is based on
three essential ingredients: goals, challenges, rules [84]:

1. Goals: the desired final results that the player plans to achieve. Ac-
cording to Chris Crawford [29] a game without a goal should be
considered a toy rather than a game;

1



2 introduction

2. Challenges: obstacles in a game for the player to overcome, intended
to make a game more difficult, and interesting, or to extend the total
play time;

3. Rules define the dynamics of a game. They can be active or passive.

• Active: any part of the rules system of a game that regulates
interaction that takes place in a game at any time, be it general
or specific;

• Passive: constraints over the game dynamics. Such constraints
can also be used in games to make players more comfortable
with playing the game, or to speed up the learning process of
the game mechanics. For example: by using classic physics as
general rule in a game, players are not required to learn how to
move in the game world; by using specific colors or uniforms
to identify the enemy faction, the game looks less chaotic, etc.

By manipulating the above ingredients we can achieve different flavors.
Such flavors can be combined in order to implement the so-called game
genres [102]. Game genres are used in order to reach different targets of
players [45]. These targets may vary depending on different aspects, such
as the demographics of players, or the desired result of the game experi-
ence. Typical genres of traditional games are billiards, board games, card
games, etc.

1.1.2 Functions/goals

Every game comes with a series of goals. Such goals can be either self
motivated, or provided/enforced externally (by an instructor for example).
When self-motivated, a goal can be the result of a logical or biological
need, or a social factor. For example, the socializing aspect of supporting
a football team.

When the goals are provided externally, the game can become a means
of accomplishing real-life, beneficial objectives, for example set up by an
organization. In order to achieve such goals, a player is subject to a series
of situations that, together with bringing him closer to the goal, become
experiences from which the player can learn new skills or abilities. Games
belonging to this category are typically referred to as serious games. In this
thesis we will focus on the development process of serious games, since
serious games are important in terms of social impact.

In all games, regardless of whether they are self motivated or not, and
serious or not, we can notice a common factor that is the “fuel” that makes
people play them; this fuel is called fun. Without fun it would be very
difficult (maybe even impossible) to manage to achieve the original desired
function of a game. Indeed, according to [70], fun is a characteristic that
every game must have in order to be defined as such.
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1.1.2.1 About serious games

Serious games are the result of a careful mixture of the ingredients intro-
duced in Section 1.1.1. The function of serious games is different from that
of other kinds of games, since they are not only meant for entertaining, but
also for educating, raising awareness, etc. In his book Abt [2] gives a good
definition of what serious games are: “Games may be played seriously or ca-
sually. We are concerned with serious games in the sense that these games have
an explicit and carefully thought-out educational purpose and are not intended
to be played primarily for amusement. This does not mean that serious games are
not, or should not, be entertaining”.

We find traces of serious games in the past. Polo was used by Persians
to teach their soldiers how to fight while riding a horse. Nowadays seri-
ous games are adopted by several organizations to educate or train their
members on subjects such as politics, military skills, etc. [32]

Serious games really became a class of games on their own with the
advent of video games, which are discussed next.

1.2 video games

Next to the concept of traditional game, in recent times the concept of
digital game has appeared. A digital game, or more commonly called video
game, is a game where a user is required to interact with a user interface
presented and handled by a digital computer.

Video games first appeared around the mid 50’s when the first comput-
ers were created. Among all games, OXO, also known as Noughts and
Crosses, is generally considered to be the very first video game in history.
Also known as tic-tac-toe, OXO was the first video game that supported
input and output devices: a phone dial (each number corresponded to a
cell of the game grid) was used for the input, and a CRT monitor for the
output.

1.2.1 What is a video game?

One can ask the question whether the only difference between games
and video games is that video games require the use of digital media.
In the most general sense, the answer is “yes”. However, a digital com-
puter (which is mainly a series of physical devices controlled by software)
opens up a series of new opportunities that traditional games cannot pro-
vide. This is possible due to the fact that the hardware that runs a video
game can be programmed. A video game always consists of a series of
instructions that the computer hardware processes sequentially, in order
to provide a desired experience. The range of achievable experiences is
becoming increasingly immersive as new devices are entering the mar-
ket. For instance, augmented reality devices involve more of the player’s
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senses more pervasively, and are therefore able to achieve deeper levels of
immersion.

In the following we show why video games can be considered actual
games; we do so by showing that video games share the same ingredients
as traditional games.

• Goals: just as with traditional games, all video games have a goal
that entails the final result that the player plans to achieve.

• Challenges: just as with traditional games, with video games there are
obstacles in a game meant to regulate game aspects such as difficulty,
or play time.

• Rules: just as with traditional games, video games are based on rules.
The main difference it that the rules of video games can be atomized.

– Active: in a video game, every game element can be programmed
as to automatically react to a series of user inputs. Reactivity is
one the most important aspects of video games: by mapping
every action of the player to a specific reaction, a feedback loop
chain is set up that eventually will enhance the player’s experi-
ence, as the player will feel as if he or she is an active part of
the game itself

– Passive: a video game can be programmed so to provide a se-
ries of constraints that limit the range of possible actions of the
player. Rules can also be used to make the player feel more
comfortable with the game (for example, by simulating natural
gravity the physics feel comfortable to a player, and by using
particular colors and clothing options for enemies, they become
easily identifiable to the player), or to force the player to follow
the story line, so as to achieve eventually the final goal of the
game.

Video games also come with a series of advantages that cannot be found
in other kinds of games. These advantages are typical of video games
and are possible because of the adoption of digital media. Some of these
advantages are:

• Absence of physical constraints: a video game allows the definition
of worlds or objects that could not exist in real life. For example, a
video game might feature a world in which entities are all subject to
a different gravity than the one we find on earth, or a video game
might feature enormous galaxies made of billions of star systems.

• Control over the flow of time: in a video game time can be pro-
grammed and controlled/processed by the computer. The flow of
time in a game might be dynamically adjusted in order to provide
players with different kinds of experiences. A player has almost no
control over the timings of a game (unless the game rules allow it).
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As result, during the game, time can speed up, slow down, or even
pause.

• Visual effects: the rendering components of a computer make it pos-
sible to visualize on a 2D screen the elements of a video game (in-
cluding their states). Moreover, visual effects can be programmed to
increase the game’s appeal, or to reinforce the player’s involvement.

• Artificial intelligence: a player can be assisted by, or play against,
an artificial intelligence (AI). Typically, this AI, which is previously
programmed by the developers of a video game, is subject to the
game rules and dynamics, and in many cases is programmed to
behave almost as a “real” player.

• Assisted learning curve: a video game can provide tutorials before,
or during, a game. These tutorials, which are typically programmed,
are used to introduce a player to the main aspects of a video game
and to make him focus immediately on the important aspects of a
the game. It is often the case that these tutorials are incremental and
come slowly during the game, as introducing too many aspects of a
complex game might confuse the player.

Just like with traditional games, video games genres are defined by par-
ticular implementations of the above aspects. For example, consider an
economy city builder. An economy city builder game, such as SimCity, a
player is tasked to manage in real-time the micro and macro economy of
a city in order to make it prosper and grow. In such a game we would
typically have:

• big scenarios (possible only due to the absence of physical constraints)
full of cities, each with its own economy and dynamics, possibly con-
trolled by other human players or AIs,

• control over the flow of time in the hands of the player, who can
pause the game, slow it down, or speed it up,

• average rendering effects, as the logic engine (the city simulator) is
the real selling point of games belonging to this category,

• an AI that is specialized on automating processes of macro and mi-
cro economy of the city,

• an assisted learning feature that introduces incrementally the impor-
tant elements of the game.

Such a game could not exist in the form of a traditional game (without
large modifications), because all the above aspects are difficult, if not im-
possible, to reproduce with non-digital components. For example a video
game featuring gigantic artificial cities, made of millions of citizens and
objects, would require enormous spaces, and the manual of such game
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would come with hundreds of pages in order to describe all possible game
features and mechanics.

Video game genres differ from each other a lot. Among such genres
genres we find: Platform games, such as Donkey Kong, Super Mario Bros,
Jumping Flash!; First person shooter games (FPS’s), such as Wolfenstein 3D,
Call of Duty, Half Life; Role-playing video games (RPG’s), such as Diablo,
Dungeon Siege, Baldur’s Gate; Real-time strategy games (RTS’s), such as
Age of Empires, Warcraft, Startcraft; Sport games, such as FIFA, Pro Evolu-
tion Soccer; Music games, such as Rock Band, Guitar Hero, Sing Star; Mas-
sive multiplayer online role-playing games (MMORPG’s), such as Second
Life, Ingress, The Elder Scrolls Online, Final Fantasy XI, EVE Online; etc.
Of course, some of these genres are somehow re-arrangements/evolutions
of the genres of traditional games introduced in Section 1.1.1.

1.2.2 Business impact

It took several years for video games to become a global phenomenon,
since in the beginning video games were mostly used by the scientific
community for experiments. However, slowly, video games started to be
used also for entertainment purposes, in particular when console games
started to become popular. Everything changed in 1972 when Atari pre-
sented the game Pong. Pong is generally considered the first official video
game in history. Pong helped establish the video game industry with great
sales. Indeed, after the great success of Pong, many companies started to
copy it and to present new versions of it. This pushed Atari even more to
produce more innovative games in order to beat the competitors, and so
the modern game industry was born.

This continuous exploration and competition pushed video game com-
panies to study and develop new kinds of video games; part of this explo-
ration was also justified by the advances of computer hardware (one could
even say that hardware advances in personal computers are also partially
caused by the popularity of video games). With more powerful hardware
developers could study and develop new techniques such as better visual
effects, or define more complex artificial intelligence.

As a result, video games have grown to the point that their sales have
surpassed those of music and movies (together) [105]. Mobiles video games
have contributed to this big success: in 2017 alone sales of mobile games
are predicted to exceed 100 billion dollars worldwide [95].

This success can only strengthen the fact that our initial statement (about
the relevance of games as a social phenomenon) cannot be ignored. A
remarkable example of this is Pokemon GO, produced by Nintendo. Poke-
mon GO is a game that requires players to physically move across different
physical locations in order to play the game and thus capture Pokemon.

In Europe it took just a few months to get it to be installed on millions
of devices without any sort of advertisement. Pokemon Go has become so
famous and is played so much that governments limited its usage in many
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public areas, such as museums, religious sites, or hospitals, as players
disrupt, or obstruct the intended activities of such public areas.

1.2.3 Functions/purposes

As stated in Section 1.1.2, video games are mainly played for fun. The
main revenue of video games comes indeed from the entertainment sec-
tor, involving games such as Tetris, Wii Sports, Grand Theft Auto 5, or
Super Mario Bros. Entertainment video games are generally sold more
than traditional games, mainly due to the advantages offered by digital
media. Among those advantages we find: complex story lines that can
take days, or even weeks, to be finished; large worlds to discover; leader-
boards where a player can compare his/her performance with the perfor-
mances of other players playing the same game; relationships that can be
established with other players playing the same game; multiplayer with
players playing the same game in different places across the Internet; etc.

1.2.3.1 Serious games

Video games are also used in serious scenarios. Due to the new advantages
offered by digital media, serious games as a whole are experiencing a new
phase of their historical development. Nowadays, serious video games are
used in many different scenarios such as research, education, healthcare,
defence, art, culture, religion, corporate training and advertising [18, 32,
92].

Besides being successful, because of their realism, and thus for their
ability to connect with real life challenges, nowadays the success of seri-
ous games is also pushed by the adoption of the digital medium, which
can reinforce the overall gaming experience with elements such as pleas-
ant visualizations, audios, automated reward systems, and complex rules
simulating real contexts, and thus the realism of the serious game itself.

Serious games have been used also as frameworks for various kinds
of scientific research, since in research testing and building running exam-
ples are of much importance to validate experiments. Not surprisingly, the
first video games were meant to illustrate scientific results, or research ex-
periments: for example serious video games have been employed to study
possible ways of interaction between human and machine (OXO was the
result of a computer science thesis in the now established research field of
human-computer interaction[32]).

1.3 building video games

After this brief and compact introduction to traditional games and video
games, we can now focus our attention on the subject of this thesis, in
particular, on the building of video games. We will try to understand the
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complexity behind this process in order to figure out the fundamental
aspects that define it.

In the following we start with considering and understanding the fun-
damental processes underlying the main process of developing a video
game. We do so by considering the main professional roles involved in
the process.

1.3.1 On the process of making a video game

The process of developing a video game typically involves many profes-
sional roles with different expertises. In the following we present such
professional roles, which we group under three main categories: design-
ers, artists, and programmers [12]. A visual representation is also provided
(see Figure 1), that explicitly shows the interactions between the following
professional roles.

• Designers are the initial project coordinator when a game is created.
More precisely, designers are responsible for all those components
that make up a game, without actually creating any of these com-
ponents. Designers receive the project of a game to design from a
client. Typically, the request of a game to design follows the trend of
the market. Indeed, the client is in continuous contact with the tar-
get users to understand the market’s necessities. Indeed, if there is a
huge request for a feature, then the client will forward this demand
to the designers during the commission phase of the game.

Typically, designers work very closely to the programmer, as they
have to continuously test the game, with the so called testers in or-
der to determine the effect of the design choices, and to provide
feedback on how to improve the game. Testers, are a group of se-
lected users, but also professionals, tasked to play the game in all its
development phases and to provide feedback to designers, and pro-
grammers, about the functional and non functional aspects of the
game.

• Artists deal with everything related to the game content: visual, au-
dio, etc. They work very closely with designers, as the contents they
make have to be as similar as possible to those envisioned by the
designers.

• Programmers are tasked to implement the designers’ choices into
actual machine instructions and include the artists’ contents in the
game. Since these tasks cover different aspects of a game, they re-
quire different kinds of expertises (typically, provided by different
programmers). The output of this process is the actual game, which
eventually will be played by the target users of the game.

– Contents integration: for this task a programmer is supposed to
provide support to the team in order to make the contents gen-
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Figure 1: A graph describing the interactions among the professional roles in-
volved in the process of developing a video game.

erated by artists accessible within the game, for example by
providing a custom importer and processor for the contents;

– Rendering: for this task a programmer is supposed to write the
code necessary to display all entities of a game and the visual ef-
fects to apply to them, for example by means of custom shaders;

– Logic: for this task a programmer is supposed to provide the
code necessary to implement the aspects that are necessary to
express all the game dynamics: AI, physics, networking, scripts,
I/O controllers, etc. Typically, this task includes also both the
codes provided by the previous two tasks (content integration
and rendering).

Every task mentioned above comes with costs that need to be consid-
ered while developing a video game. These costs become even more in-
cisive if the tools used for performing a specific task are not ideal for it.
Since the areas covered by these tasks differ widely from each other (and
require different expertises), it would be too ambitious to study them all
and solve all their issues at once. Moreover, the designing process, or the
contents generation, of a video game has creativeness as core element,
which makes it difficult to automatize processes such as the verification
of correctness, or the quality, of a solution. In contrast, the programming
process is more disciplined, since its core is based on logic, which can be
automated and for which solutions can be formally verified. For this rea-
son in this thesis we will focus on the programming process, by looking
for the ideal formal/deductive mechanism (in the form of a language) to
express game logic, which at the same time minimizes its development
costs.

The motivation of our choice is also derived from the fact that the devel-
opment of the logic of a game is a pervasive task that permeates the com-
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plete development process of a video game. During development, many
versions are delivered before reaching the final version of the video game.
Between these versions, the logic of the game might be subject to changes
which happen more or less continuously. For example, designers might re-
quire small changes during the development process as response to some
user testing, or might add a completely new game mechanic.

Due to its impact and importance, it makes sense to investigate the pro-
cess of implementing the game logic, to understand its complexity and
possibly find its limits and current issues. We believe that a scientific ap-
proach to solving some of these issues may benefit the whole process of
developing a game.

1.3.2 Technological complexities

At this point we analyze the process of defining the logic of a video game.
The logic of a video game is typically expressed by means of instructions
that we give to the computer to execute. A computer interprets these in-
structions by means of some tools, which we can call software1. Software
typically comes with a series of constraints (for example supported lan-
guages, allowed behaviors, etc.). A developer, while developing the logic
of a video game, must always respect these considerations (for example if
the software supports only a specific language then the instructions must
be written in that specific language).

Since we cannot change the complexity of the intended game design,
as it is imposed by the design of the video game itself, it makes sense to
work on the complexity of the software. We now try to understand more
about video games software complexity.

1.3.2.1 Software complexity

Software in and of itself is a complex structure, to the point that Frederick
P. Brooks discusses software complexity as an essential property that can-
not be ignored; in the following we quote this discussion, which is taken
from the article entitled No Silver Bullet: Essence and Accidents of Software
Engineering, of which we highlight in bold the steps significant for this
section.

1 This is often, in the video game context, more than “just” a compiler of interpreter. See
Chapter 2
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“Digital computers are themselves more complex than most things peo-
ple build: they have very large numbers of states. This makes conceiv-
ing, describing, and testing them hard. Software systems have orders-of-
magnitude more states than computers do.
Likewise, a scaling-up of a software entity is not merely a repetition
of the same elements in larger sizes, it is necessarily an increase in the
number of different elements. In most cases, the elements interact with
each other in some nonlinear fashion, and the complexity of the whole
increases much more than linearly.
The complexity of software is an essential property, not an accidental
one. Hence, descriptions of a software entity that abstract away its com-
plexity often abstract away its essence. For three centuries, mathematics
and the physical sciences made great strides by constructing simplified
models of complex phenomena, deriving properties from the models, and
verifying those properties by experiment. This paradigm worked because
the complexities ignored in the models were not the essential properties
of the phenomena.”
No Silver Bullet: Essence and Accidents of Software Engineering by Frederick P.
Brooks, Jr.

Brooks also discusses that software complexity increases when the amount
of interactions between entities increases. He also suggests a way to limit,
or even solve, such issues and the proposed solution is defined by two
steps: (i) identify the essential properties of the domain touched by the
problem, (ii) find how to express these properties within the software it-
self in the most natural way, in order to hide the complexities underneath
them.

1.3.2.2 Video game software complexity

This discussion applies to video games a fortiori. Indeed, a video game
is a high-level, real-time software application that allows the definition
of entities and their interactions. Typically a video game features lots of
interactions, where an interaction is made up of a piece of code that read-
s/writes the state of an entity. Since every entity of the game can be ob-
served by many modules in the code, all running at the same time, a
change in the state of one entity might potentially trigger such observers.
If the state of an entity changes erroneously, for example, because of an er-
ror in logic, then the possibility to trigger observers that are not supposed
to be activated is high. By accumulating these errors in the long term the
state of the game will become unstable, therefore leading to unexpected
behaviors in game. As a result, finding the origin of the error becomes dif-
ficult, especially if the error becomes visible to the developer after a series
of concatenated chains of errors. Given the combinatorial complexity of
game code with respect to the number of entities and their interactions,
as a game grows in complexity, or dimension, the number of unexpected
behaviors explodes as a consequence.
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In addition, as games might also include non-functional properties, such
as runtime performance, if the software used to develop the video game
is not specifically designed to naturally capture such properties, then the
complexity of related code will dramatically increase even more. This is
due to the fact that these non-functional properties, which are necessary
for the correct function of the game, must be integrated in the game code
by hand by the developer.

For example, high-performance is a non-functional property that is com-
mon to most video games. In a video game like Asteroids shooter (a classic
shooter game, where a player has to shoot and destroy as much asteroids
as possible without being hit by them), the amounts of asteroids and pro-
jectiles might increase significantly during the game; thus the collision de-
tection between asteroids and projectiles is a sensible aspect, which, if not
treated properly, might significantly slow down the game performance. In
a typical optimized solution, the game scene is divided into a grid, where
every cell of the grid might contain projectiles, asteroids, or the player’s
ship. In the optimized solution, checking the collision between a projectile
and the asteroids, requires the projectile to check only those asteroids in
its cell, and those asteroids in the adjacent ones (in a naive implementation
detecting the collision requires every projectile to check all the asteroids in
the game). However, this optimization requires additional code and data
structures, which we would not have in a trivial, but slow, non optimized
implementation. This is due to the fact that the optimization described
above is not mentioned in the original design of the game.

If this solution is implemented natively by the tool then the developer
is only supposed to literally tell the tool what parts of the code require the
collision detection, but if the solution is not supported natively by the tool
then the developer is tasked to: implement the whole optimization, test it,
and maintain it.

As these complexities increase in amount, risks, such as making mis-
takes, or unabeling to maintain the code, become realized problems. In
this thesis we will focus on finding proper solutions to tackle such com-
plexities and in particular, by focusing on those solutions that support
developers with making less mistakes, and writing maintainable and read-
able code.

1.3.3 Video game developers

Making a video game (and software in general) is a time consuming ac-
tivity. Moreover, game code needs to be maintained, upgraded, etc. and
all these activities require time. Thus the longer a video game takes to be
developed, maintained, etc. the higher will be its costs and effort to make.

We find three distinct kinds of video games developers: video games
developers, serious games developers, and researchers. In the following
we introduce these groups and discuss how costs affect their work:
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• The category of entertainment game developers can be divided in
two subcategories: game companies developers and independent de-
velopers. The reason of this division is due to the fact that these two
distinct groups come with totally different budgets and typically dif-
ferent approaches in terms of marketing, game design, etc.

– Game companies typically house a large number of develop-
ers. Their budgets, which are typically huge as well, can afford
games that could take a few years to be developed. As making
money is their main business element, when a design of a game
becomes successful (in terms of sales) the later generations of
games are often simple rearrangements.

– Independent developers (also known as indie developers), typi-
cally feature small or medium-sized groups of developers. They
are known for being innovative (their designs are often experi-
mental), and are typically limited in terms of financial resources.
Unfortunately, this limitation in terms of resources has an im-
mediate effect on the quality and features of their games, so
good products may lack important but hard to build aspects
such as multiplayer, or advanced physics.

• Serious games developers typically are very small or medium-sized
groups of people (sometimes even a single person) specialized in
simulations for purposes other than entertainment, such as educa-
tion, health care, city planning, etc. They are known for having lim-
ited resources [89], since their games do not enjoy the same sales
as those meant purely for entertainment, although their social im-
pact maybe be high nevertheless [71]. In their case costs have an im-
mediate consequence for their productivity and the quality of their
results.

• Researchers typically are small groups of people (sometimes even
a single person) who use video games as frameworks for testing
and simulating their research. It is often the case that researchers
know little about video games development, because their expertise
lies in other areas, such as medicine, social sciences, or engineering.
Unfortunately, researchers do not enjoy big budgets in general, and
typically can invest only small parts of their research budgets into
the development of simulations. As the development phase increases
in complexity the costs increase as well. As a result, the progression
of their research is slowed down, as some scientific results are harder
to obtain if the development of these simulations is slowed down
due to the limited resources.

Since it is clear that costs for making games may be a great obstacle for
making games, it makes sense now to investigate the tools used for mak-
ing video games in order to understand how much these tools keep costs
and complexity in check. In this thesis we will focus on finding proper
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solutions for making game to those developers with limited resources.
Specifically, our target audience will be independent developers, serious
games developers, and researchers

1.3.4 Current approaches

Modern tools for making video games, such as game engines (see Chap-
ter 2.2.4), have an abstraction mismatch with their problem domain: they
are either too specific, or too general. When too specific, a tool comes
with a series of poor primitives that are effective just for limited genres of
games (often at most one game genre is expressible). This limitation makes
such tools not suitable for general game development. On the other end
of the spectrum we find tools that are too general. When too general, a
tool comes with a series of low-level primitives that require developers to
specify a lot of details (often even unrelated to the game itself) to build a
game.

1.4 our focus and problem statement

For all the kinds of tools used for developing video games it seems that
none of them provides a full solution to the problem of minimizing costs
in game development without jeopardizing flexibility of use. This is a
problem for all those categories of developers with limited resources, such
as serious games developers, researchers, and indie developers. What is
missing is a disciplined design that offers both the ease-of-use of highly
specific tools, plus the openness of the general tools, all in one, i.e, a tool
that minimizes the efforts for expressing games and their dynamics, while
not being bound to specific genres. We look for such a tool in the field of
programming languages and their abstractions, instead of purely focusing
on engineering aspects such as libraries and frameworks.

problem statement Our goal is to address the issues that arise from
the above analysis. We can state the general problem statement as fol-
lows: To what extent can a tool be built, which makes the complexities
of general game development manageable for small and medium-sized
teams of developers? We argue that using specific tools and abstractions
designed to naturally capture properties and elements of the domain of
video games, rather than general purpose tools, would reduce the effort
and costs of making games.

research questions The research questions that we endeavor to an-
swer in this thesis are:

1. What are the requirements that an ideal tool for game development
needs to meet?
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2. To what extent can a programming language for game development
be built which meets the identified requirements?

3. How does such a programming language perform in terms of expres-
siveness, speed of execution, and maintainability, when compared to
commonly-used tools for game development?

positive consequences Games and simulations in general may have
a substantial effect on our experiences. Virtual environments give us the
opportunity to experiment with new ways to do research, to provide edu-
cation, and to train and educate people. The fact that costs and efforts tend
to rise considerably with the complexity of simulations, puts a lot of pres-
sure on developers with limited resources. Our contribution to the state of
the art is a reduction of the efforts and costs by supplying a computer lan-
guage specifically aimed at game development. We believe that by empow-
ering video games developers with effective and powerful abstractions (in
our case in the shape of a programming language) for developing their
games, which at the same time minimize the development costs, many
positive consequences might follow, since the development time and costs
are reduced. For example by avoiding to express details unrelated to the
game logic, but necessary to the correct function of adopted tool, devel-
opers can now focus on exploring and researching innovative designs for
connecting people, train students, and so on.

1.5 contribution and thesis outline

In this thesis we explore the process of making the logic of a video game.
We will study how video games are built by exploring the tools used in
game development (Chapter 2). This study will lead us to insight into the
advantages and disadvantages deriving from the usage of such tools. As
we will see none of the tools used in game development offer more than
a difficult trade-off between such advantages and disadvantages when
tackling the complexity of game development.

We then present domain specific languages as a solution that achieves
all the advantages deriving from the usage of the tools typically used for
game development, while at the same time, avoiding many of the common
disadvantages associated with such tools.

In particular we will present a domain specific language called Casanova
2 that is designed around the domain of video games, and the syntax and
semantics of which is built ad-hoc to tackle the complexity of game devel-
opment (Chapter 3). This novel DSL constitutes the first contribution of
this thesis.

Casanova 2 comes with its own compiler, which transform the high-
level, game-specific Casanova 2 code, into a high performance executable
and without any specific intervention from the developers (Chapter 4).
This novel compiler constitutes the second contribution of this thesis.
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The semantic optimizations, which due to the specificity of the domain
significantly improve the runtime performance of Casanova 2 code are
further explored in detail (Chapter 5). This novel optimization constitutes
the third contribution of this thesis.

Programming languages usually come with one or more implicit idioms
for writing good programs. These idioms capture the essence of program-
ming with the language. We will show the idioms of Casanova 2 and will
use them to build actual games (Chapter 6).

We will evaluate Casanova 2 by means of two different types of evalua-
tion (one qualitative, the other quantitative) to measure both the properties
of the language and its attributes (Chapter 7).

Eventually, we will present the open challenges and future opportuni-
ties presented by this work, and draw our conclusions (Chapters 8).

In Appendix A we discuss the experience gathered from the first work-
shop on Casanova 2. In Appendix B we show how Casanova 2 works in
practice by showing how it behaves when used by new developers who
are not confident with it. In Appendix C we introduce the basic concepts
of a multiplayer abstraction built in the Casanova 2 language supported
with a concrete working example.



2
TA X O N O M Y O F G A M E D E V E L O P M E N T A P P R O A C H E S

While it might seem desirable to encode games close to a high-level speci-
fication, the pragmatic reality has not, until very recently, allowed this. In
this chapter we discuss the fundamental aspects that define a game and
show how these aspects have been captured by means of game develop-
ment tools. In particular, we begin with a formal mathematical introduc-
tion to what a game is and how its state changes according to the flow
of time, and provide an example of a game structure (Section 2.1). We
then discuss the issues arising from implementing such formalizations as
a computer program. We present incremental solutions to these issues by
relating each of them to a specific period of historical evolution in com-
puter and programming languages (Section 2.2). Moreover, for each of
these solutions we also discuss advantages and disadvantages deriving
from their usages. Eventually, we propose a solution that solves all the
identified disadvantages, and simultaneously covers all the advantages
(Section 2.3).

Moreover, throughout this chapter we will support the discussion of
each tool by means of one example, a moving particle. This example,
which is on purpose small, in the beginning is explained formally, has
the purpose of showing what kind of considerations and problems devel-
opers are faced with when designing and developing video games. We
will see that the less a tool is suitable for developing games, the more
details and effort it will require to build the example in question.

2.1 what is a game?

A game is any voluntary activity where people interact in order to achieve
some goals within some constraints (described as game rules). The purpose
of a game is to provide tools for the players that allow them to approxi-
mate their challenging expectations. These expectations may be provided
externally, for example by an instructor, or may be self-motivated, like
achieving entertainment[5].

2.1.1 Video Game

Within the panorama of games we find video games. A video game is a
specialized kind of game where the interaction is carried out by means of
electronic devices. Specifically, a video game, which from now on we will
refer to simply as “game”, is a computer program that continuously inter-
acts with hardware components to carry out some game logic. The game
automates the game rules mentioned above, therefore enforcing the struc-

17
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ture of the experience[34]. Moreover, the program also handles rendering,
user input, the flow of time, etc. by providing a real-time experience that
helps users to experience a ”virtual reality“ feeling[90].

2.1.2 Formal definition of a video game

In order to implement a game, we need a precise and formal detailed
definition of its rules. Without such a definition we will not be able to
“explain” to the machine what it is supposed to do. Therefore, in what
follows we give a “pure” mathematical definition of a game that is tech-
nology independent and helps us to focus on the game definition only.
A game is made up of objects (each represented by a series of numbers),
which we called state. In this formalization we can see a state w(t) as a
vector of all numbers that describe the game at some time t.

w(t) = Ct1,Ct2, . . . ,CtN (1)

The dynamics of the game defines how the state changes over time.
We can represent the evolution of the state by mean of an integrator that
approximates each component of the state at all moments of the duration
of a game1 :

w(T) =

∫t=T
t=0

dw(t)
dt

dt (2)

The integrator above computes the value for all components of the state. In
what follows we see a trivial application of the above integrator to find the
position of a particle, i.e, an entity with simply a position and a velocity,
over time.

As an example consider a state w(t) made up of a particle with velocity
v(t) and position p(t):

w(t) = (p(t), v(t)) (3)

According to (2), for this example computing the value of w(t) requires
first to solve the differential equation:

dwt
dt

=

(
dpt
dt

,
dvt
dt

)
(4)

In this example, the velocity is defined as the rate of change of position
with respect to time, and acceleration is defined as the rate of change of
velocity with respect to time according to Earth gravity:

dpt
dt

= v(t)
dvt
dt

= (0,−9.81, 0) (5)

1 Components of the state might behave as discrete functions, for example a number that
changes according to a timer. To treat such dynamics we treat their functions as piecewise
functions.
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According to (5) at any time t, in this example, integrating the velocity
v(t) gives the position at time t, whereas integrating the gravitational ac-
celeration returns the velocity at time t.

It might seem, at a first glance, from this example that solving the inte-
gral for each component of the state in isolation is sufficient to determine
the value of the state. Unfortunately, this is usually not true. Typically
games come with more complex dynamics: in a game the value of an ob-
ject (the position for example) could be the result of combining different
values of the state. For instance, the movement of a particle in a game
may be subject to friction, or it may be influenced by collisions with other
objects in the game world. Therefore, in most of the cases, since compo-
nents of the state are tightly related to each other (with respect to time)
the derivative of each component of the state depends on many elements
of the state. For these cases the function to integrate is too complex and
requires numerical methods to determine its values over time. In the fol-
lowing we discuss this issue and discuss the solution used for games.

2.1.2.1 Numerical vs. Analytic Solutions

The fact that we are able to model the evolution of the state by means of a
function does not mean that finding an exact solution is possible or simple.
This happens because the functions to integrate for the game will usually
be too complex to allow analytical solutions: analytical solutions work
only for simple models [77]. When the game becomes complex (imagine
a city simulator, or a driving simulator with lots of physics) or the model
is influenced by the user input, then it is not possible to identify a closed
form solution [37].
We need to use numerical methods for solving game model equations such
as the Euler method [8] (which is meant for solving systems of differential
equations), where the initial values are the initial state and the update
describes the changes of the state over a short amount of time.
We can use Euler to find the solution for the evolution of our particle.
Consider (5):

dp(t)
dt

= lim
dt→0

p(t+ dt) − p(t)
dt

= v(t)

dv(t)
dt

= lim
dt→0

v(t+ dt) − v(t)
dt

= (0,−9.81, 0)
(6)

By applying the Euler method to approximate the two limits in (6) we
obtain the following:

p(t+∆t) = p(t) + v(t) ∗∆t v(t+∆t) = v(t) + a(t) ∗∆t (7)

At this point, by taking many steps with small ∆t (and an initial given
value for time t = 0) for every component of the State, we achieved an
approximated solution for the original integral shown in (2).
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Of course this is an approximation. If we need higher precision methods
then we could use better approximation methods such as those in the
Runge-Kutta family[21].

2.1.2.2 Implementable formal specification

We now provide an algorithm that can effectively compute the state at any
time t, given an initial state s0.

With Euler we managed to describe how the dynamics of a game deter-
mine the evolution of the state for a very small amount of time. Unfortu-
nately, if we try to increase such amount of time, then Euler alone is not
enough2[78]. Ideally, we wish to apply Euler, starting from an initial state,
enough times until we reach a cumulative approximation of the state for
the desired time.

For example, if we need the state for a time T , starting from an initial
given state s, we apply once Euler to s for a small step dt and use the
resulted evolved state for all successive applications of Euler. We keep
repeating this operation until the amount of steps is enough to “cover”
the whole desired time T .

We observe from the above example that Euler is used at most once per
step. This is important for us, since we can now define a function loop
that given a state s0 and an amount of time t returns:

• s0 in case t is less or equals to zero (which literally means what is
the next evolution of s0 for a step big 0);

• the application of a new state (obtained by evolving s0 for a very
small amount of time dt according to an Euler step) and an a de-
creased t (from which we remove exactly dt, the amount of time
consumed by the Euler step) to a function φ. φ a high order func-
tion that unfolds a step of loop, by applying an Euler step once.

loopφ(s, t) =

s, if t 6 0

φ(euler_step(s,dt), t− dt), otherwise
(8)

Of course, the above definition does not specify what happens after the
single step of Euler: the φ function. To achieve the desired result, we need
φ to continue with the very same process described by loop itself. This
process, known as recursion, can be explicated by taking the fixpoint of the
loop function[11]. The fixpoint operator will care to reapply loop to itself
so that calling φ effectively calls loop again:

fix loop = loop(fix loop) (9)

In the following, we show how above formalism has been captured,
since the beginning of the game development “era”.

2 Euler is a numerical approximation, small steps made of small amounts of time are neces-
sary so to avoid to end into a wrong state.
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2.2 game development

In the previous section we showed a symbolic representation of the dy-
namics of a moving particle and an equivalent numerical interpretation.
Both descriptions are valid, although they differ in precision. The advan-
tage of using the numerical approach is that we can implement it into a
computer. Research in game development in the past decades was focused
on finding suitable high-level interpretations for numerical solutions that
work for all those “non-functional” pragmatic requirements such as real-
time performance, networking, etc. (all these non-functional requirements
add yet an additional challenge to research) [50]. A way to implement such
high-level interpretations is by means of game making systems. Game
making systems used to build actual games can be seen as ways to encode
abstractions. The various historical game making systems, or game mak-
ing tools, have always been intrinsically linked with the dominant pro-
gramming languages and paradigms that were the most popular at the
time of the tool in question. Each tool, with its language (and therefore
paradigm [100]), imposed a set of limitations that ultimately were lifted
by the next generation of tools [68].

This progression has clearly marched towards finally being able to write
code against the mathematical specification and further away from hard-
ware considerations.

2.2.0.1 Programming paradigms

Historically, as hardware has become increasingly powerful, programming
paradigms less focused on hardware details have become usable in the
practice of game development [75]. Among the possible paradigms used
for making games we find: functional, declarative, object-oriented (OO),
and procedural [36, 49, 62, 74]. By choosing a specific programming paradigm,
game developers have to decide in advance how to design the architec-
ture of the implementation for their games. These designs are shaped by
the features offered by the chosen paradigm(s). For example procedural
programming is “performance-oriented”, OO programming is by some
considered to be cognitively closer to the way humans perceive the real-
world, declarative programming is meant for querying sets of facts and
rules, and functional programming treats “all” computations as mathe-
matical functions. Of course, every paradigm comes with disadvantages,
which should be known in advance. For example procedural program-
ming is not suitable for designing very complex architectures with clear
separation of concerns, OO programming tends to add lots of overhead to
the CPU, declarative programming is confined to query operations only,
and functional programming programs are typically more complex to use,
thus require a bit more of planning before writing the actual implementa-
tions.
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2.2.0.2 The evolution of game making systems

Nowadays, we often see systems for making games that not only support
programming paradigms for dealing with the game specification, but also
provide sophisticated editors for building game content, kinematics, etc.
[14, 29, 55, 57]. A chronological evolution of these systems for making
games (inspired by [39]) is roughly reported in Table 1.

Table 1: Game making systems evolution

Period Design philosophy Languages Paradigms Discussed in

1950s Hand made everything. Assembly,
C

Procedural Section 2.2.1

1980s Game making systems (no pro-
gramming knowledge). User-
derived, drag-and-drop visual
interface engineered for the
rapid prototyping of games.

_ Visual Section 2.2.2

1980s Graphic APIs. Developer ori-
ented tools that provide a series
of domain abstractions to deal
with different hardware sharing
similar functionalities.

HLSL,
GLSL,
PSSL, etc.

Declara-
tive

Section 2.2.3

mid -
1990s

Low-level game engines. Devel-
oper oriented libraries that pro-
vide basic game functionalities
in the shape of composable
and reusable classes (such as
physics, game loop, etc.) used in-
side game code.

C/C++,
Java, C#,
etc.

OO Section 2.2.4

late -
1990s

High-level game engines. Typ-
ically come in the shape of
tools that combine visual inter-
face with actual coding. The vi-
sual interface is meant to deal
with the common tasks of mak-
ing games (assigning path find-
ing properties to game entities,
placing the game models on the
map, defining the characters an-
imations flow, etc.). Code is re-
quired to define special algo-
rithms or game structures that
are difficult to express with just
the visual interface.

SGL,
LUA,
GML,
Python,
Casanova,
etc.

Declarative,
Func-
tional,
OO, Vi-
sual

Section 2.2.4
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The fact that we classify a tool in earlier decades, does not mean that
its philosophy is not used anymore. All the categories of tools and sys-
tems presented in Table 1 are still to some extent in use nowadays, with
a tendency to use elements from older layers embedded into frameworks
made according to the newest layer considerations. It is also worthy of
notice that for many systems (independently of the level of abstraction) to
achieve high performance multiple forms of ad-hoc optimizations have to
be done by hand.

In what follows we discuss the elements of Table 1. In particular, for
each element we discuss the pros and cons of using it, and show how one
would implement the particle example presented in Section 2.1.2.

2.2.1 Assembly language (hand made everything)

Assembly language [17, 22] is the closest language to machine code. As for
machine code, programs written in assembly can directly deal with CPU
components such as registers. The goal of assembly is to provide develop-
ers an abstraction over the binary format of machine code without losing
the ability to directly manipulate hardware components such as the CPU
or memory. This abstraction is achieved since assembly uses mnemonic
operands to implement machine code.

Between the 1950s and the early 1990s most of the games were written
in assembly code. The reason was that most of the games used to run on
consoles, which used to come with limited hardware resources in terms
of storage and computational power. Because of these limitations assem-
bly language used to be the most suitable tool. Assembly instructions are
limited in terms of CPU overhead and can produce high speed programs
that work with limited storage space. Later, as hardware became more so-
phisticated and powerful, games started to feature higher level code such
as C, confining assembly to the graphics and most performance sensitive
code. For example, in Commander Keen the logic is written in C whereas
code for drawing is written in assembly3.

successful examples Among the games written in assembly we
find all those written for the Atari 2600, Apple II, Commodore 64, Atari
800, SEGA Genesis, the SNES, etc. In Figure 2 we provide some screen-
shots of games written in assembly.

Nowadays assembly is rarely used, since dealing with the low-level
hardware components of the computer is achieved by means of standard-
ized libraries. However, we occasionally find some traces of assembly code
in libraries (although this is getting less and less common) from a few
modern game engines.

3 https://github.com/keendreams/keen
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(a) Total carnage (1992) (b) Commander Keen – Keen Dreams
(1993)

(c) Prince of Persia (1989) (d) RollerCoaster Tycoon (1999)

(e) NBA Jam (1993) (f) Combat (1977)

Figure 2: Some assembly games
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particle example - assembly We now show how the “particle” ex-
ample presented in Section 2.1.2 could be have been written in assembly4.
Specifically, since the assembly code necessary to express the dynamics of
our particle is not large, due to the intrinsic verbosity of the language, in
Listing 1 we only present code for the position and velocity update.

advantages The main feature of assembly is the ability to provide
machine instructions to exactly specify all that the hardware must do, in
extreme detail. The absolute control over hardware allows developers to
write code with very high performance. This performance was crucial in
games especially when consoles featured limited amounts of computa-
tional resources.

disadvantages As the code above demonstrates, assembly is very
verbose even to express a very simple operation such as updating the
position of the particle. This is due to the fact that assembly does not pro-
vide effective abstractions for expressing high-level behaviors. By using
assembly, developers are left the only choice of using low-level constructs
that are tightly related to the hardware.

This limited choice pushes developers towards developing code that re-
quires a lot of effort to be coded, as developers have to specify every single
behavior of the hardware, including dealing with CPU registers or other
hardware components. As a result of this, the chances of making mistakes
are significant. Portability is also limited, since the choice of the assembly
version is derived by the chosen hardware and different assembly versions
come with different instruction sets.

Moreover, as CPU’s become more powerful, bigger games and more
complex low-level assembly instruction sets followed. This has slowly
made it impossible to contain development costs without moving to more
advanced tools with more sophisticated abstractions.

2.2.2 Game Creation Systems

A game creation system [30] is an expression tool designed around the do-
main of video games. The goal of a game creation system is to make game
development accessible also to developers with no (or little) knowledge
of computer programming, by simply allowing them to click buttons in a
visual interface to define the entities of a game and their behaviors [23].

Game creation systems started to show off in the early ’80s, when con-
soles and desktop stations started to became widespread. They were an ex-
ploratory parenthesis ahead of its time driven by the excessive low-level of
alternative systems. ConstructionSet-Pinball, Garry Kitchen’s GameMaker,

4 For this example we use the syntax of x86 assembly. The x86 assembly language differs
from other assemblies, like MIPS assembly for example, and is meant for the class of x86

processors.
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Listing 1: Particle velocity and position update in the Assembly lanugage

; 24 : p = p + v * dt;

lea eax, DWORD PTR _dt$[ebp]

push eax

lea ecx, DWORD PTR $T5[ebp]

push ecx

lea ecx, DWORD PTR _v$[ebp]

call Vector2_times ; Vector2::operator*
push eax

lea edx, DWORD PTR $T4[ebp]

push edx

lea ecx, DWORD PTR _p$[ebp]

call Vector2_plus ; Vector2::operator+

mov ecx, DWORD PTR [eax]

mov edx, DWORD PTR [eax+4]

mov DWORD PTR _p$[ebp], ecx

mov DWORD PTR _p$[ebp+4], edx

; 25 : v = v + Vector2(0, -9.81f) * dt;

lea eax, DWORD PTR _dt$[ebp]

push eax

lea ecx, DWORD PTR $T2[ebp]

push ecx

push ecx

movss xmm0, DWORD PTR __real@c11cf5c3

movss DWORD PTR [esp], xmm0

push ecx

movss xmm0, DWORD PTR __real@00000000

movss DWORD PTR [esp], xmm0

lea ecx, DWORD PTR $T3[ebp]

call Vector2 ; Vector2::Vector2

mov ecx, eax

call Vector2_times ; Vector2::operator*
push eax

lea edx, DWORD PTR $T1[ebp]

push edx

lea ecx, DWORD PTR _v$[ebp]

call Vector2_plus ; Vector2::operator+

mov ecx, DWORD PTR [eax]

mov edx, DWORD PTR [eax+4]

mov DWORD PTR _v$[ebp], ecx

mov DWORD PTR _v$[ebp+4], edx
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and Adventure Construction Set (see Figure 3) are examples of such sys-
tems.

(a) ConstructionSet: Pinball (1983) (b) Adventure Construction Set (1984)

(c) Garry Kitchen’s GameMaker (1985)

Figure 3: Some game creation systems

Typically, a game creation system focuses on a single genre of games
plus a restricted set of similar subgenres. This is due to the fact that differ-
ent genres share little logic. Therefore, expressing different game genres by
means of just a visual interface (without the support of any programmable
system) is difficult, if not impossible.

For adventure games we find: the inform language (1996), a text adven-
ture language; Adventure Game Toolkit (1987), a program for adventure
games development; RPG Maker (1995) and The Bard’s Tale Construction
Set(1991), softwares for creating role-playing-games; The 3D Gamemaker
(2001), a software that allows users to make 3D FPS’s and adventure
games; Game-Maker (1991) and Indie game maker (2014), general pur-
pose software tools for game development. These tools are mainly used
by small groups of developers, sometimes even by single developers.

In Figure 4 we find some examples of games made with some game
creation systems. Nowadays game creation systems are used less when
compared to the past. Among the most active creation systems we find
RPG Maker and Indie Game Maker editor.
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(a) Pipemare (Game-Maker) (b) City of Chains (RPG Maker)

(c) Slouching Towards Bedlam (Inform 6)

Figure 4: Games built with game creation systems

advantages By targeting specific game genres, game creation systems
can provide a domain interface that allows developers to effectively build
a game with no knowledge of computer programming. The design of such
visual interfaces is meant to allow developers to quickly prototype and test
games, therefore reducing costs. Fast game prototyping, reduced game de-
velopment costs, and domain interfaces are the main advantages of these
tools.

disadvantages Different games implementing different genres share
little logic (for example, how much can we recycle from a solitary game
into a shooter game?). In order to deal with such differences, different
tools (each targeting specific genres) with ad-hoc interfaces were devel-
oped. Such differences made learning these game creation systems rela-
tively expensive: whenever a developer changes genres he would have to
learn another system. This task is not only time consuming but also is
expensive in terms of effort.

The same issues apply to the customization of games made with such
tools. As games got more and more sophisticated, the necessity for more
powerful and expressive game creation systems piles up. Game creation
systems try to tackle the expressiveness limitations of their visual interface,
by extending/augmenting game creation systems with scripting facilities.
Because of the lack of standardization of such scripting facilities and their
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(a) Quake (1996) (b) Wolfenstein 3D (1992)

Figure 5: Some software rendered games

poor integration in the system (game creation systems are not developed
with scripting on mind), experienced developers prefer to choose more
powerful and standardized tools such as a game engine.

2.2.3 Graphics API

A multimedia API (Application Programming Interface), such as OpenGL
[83] or DirectX [61], is a set of routines, protocols, and tools. These API’s
were introduced in the early ’90s for handling multimedia tasks (such
as GUI, input, etc.) standardized across a variety of hardware platforms.
Through appropriate abstractions developers could access the hardware
of the computer, like the GPU, and make their code portable to different
machines.

A graphics API is the best known example of a multimedia API centered
around rendering tasks. The evolution of graphics API’s on personal com-
puters followed a very fast evolution curve that started in the ’80s. Until
the early ’80s most of the graphics of games were written by manipulat-
ing the VGA (video graphics array) pixel by pixel in assembly or in C.
By providing developers an array that represents the pixels of a monitor,
developers could plot the desired colors into specific pixels (writing into
that memory area would also write to the screen). Further evolutions al-
lowed developers not only to deal with single pixels on the screen but also
to draw textures, introducing the concept of 2.5D games, which featured
3D worlds rendered with no (or very limited) graphical hardware support.
Among these software rendered 2.5D games we find Wolfenstein 3D and
Quake (see Figure 5).

The CPU load of software rendered games was a known issue. As the
necessity of high performance games and advanced 3D graphics started
to become widespread among developers, modern GPU’s came in to help
with graphics acceleration. Thanks to graphics acceleration developers
could finally delegate rendering tasks to the GPU while offloading the
CPU. This made it possible to achieve higher performance, since the GPU
is designed to process graphics commands in parallel and has dedicated
memory. Moreover, this would free the CPU to process game logic such as
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AI, physics, networking, and other tasks, thereby significantly improving
the overall game experience.

graphics api’s for accelerated hardware In the early ’90s, be-
cause of the increasing complexity of GPU’s, a new generation of graphics
API’s (Application Programming Interface) was introduced. The goal of
such API’s was to abstract the complex hardware of modern accelerated
GPU’s in favour of a high-level model of its behavior. Such a model would
help developers with expressing graphics directives with little effort, and
help developers stay focused on the design of graphics effects algorithms
rather than having to think constantly about specific hardware details.

Among such API’s we find IRISGLP, OpenGL (an improved version of
IRISGLP), Glide, and DirectX. Nowadays DirectX and OpenGL are the
most used graphics API for rendering game contents.

ffp (fixed function pipeline) Abstracting the complex hardware
of GPU’s became possible due to the introduction of the so-called FFP
(fixed function pipeline). Fixed functions are a series of functions that
map directly to dedicated drawing logic that can only be used on GPU’s
designed to support them. By editing a set of hardware switches, develop-
ers could customize those functions. However, this customization comes
with some expressiveness limitations, since editing the hardware switches
allows developers to customize single or small groups of instructions but
not the fundamental shape of the underlying algorithms. Moreover, since
the hardware switches are shared among several functions, making pre-
dictions on the algorithms behaviors became complex and hard: changing
just one switch might affect the behavior of the FFP dramatically.

These limitations pushed the community towards the development of
a better abstraction mechanism that would lift the artificial limitations of
the FFP.

shaders To overcome the FFP limitations, customizable pipelines were
made programmable through the system known as “shaders”, or “pro-
grammable pipelines”. By introducing shaders, which are small programs
that are run on the GPU pipline, developers could design their own algo-
rithms and have a clear control over the pipeline process.

With shaders, a developer could manipulate the pipeline in two differ-
ent processing stages: vertex processing and pixel processing (Figure 6).
For vertex processing, the developer has the task of designing an algo-
rithm for placing every game element from model space to world space.
For pixel processing, the developer has the task of designing an algorithm
to draw the game elements that are inside the frustum of the camera to
the screen (pixel by pixel). New shader models have more stages that are
programmable.
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Figure 6: Drawing stages of modern GPU’s

fixed functions vs shaders Fixed functions represent the first at-
tempt to make customizable GPU pipelines by providing developers with
a series of functions that can be customized to specific drawing scenarios.
Shader systems are programmable instead and allow developers to deal
with graphics data (or game geometries) by means of user-defined algo-
rithms that define how those graphics data are transformed and rendered.

particle example - ffp/opengl/c++ In Listing 2 we show a com-
plete solution to the “particle” example presented in Section 2.1.2 written
in C++ and using OpenGL as graphics API with the FFP .

Listing 2: Particle written with C++/OpenGL

#include<GL/glut.h>

#include "math.h"

Vector2 position = Vector2(0, 0), velocity = Vector2(0, 0.0001);

void glutInitRendering() {

glEnable(GL_DEPTH_TEST);

}

void reshaped(int w, int h) {

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(45, 0, 1, 200);

}

void update() {

position = position + velocity;

}

void display() {
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glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glClearColor(0, 0, 1, 0);

glPushMatrix();

glColor3f(0, 1, 1);

glTranslatef(position.x, position.y, 0);

glutSolidSphere(0.1, 23, 23);

glPopMatrix();

update();

glutSwapBuffers();

}

int main(int argc, char **argv) {

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(400, 500);

glutCreateWindow("Bouncing Ball ");
glutInitRendering();

glutDisplayFunc(display);

glutIdleFunc(display);

glutReshapeFunc(reshaped);

glutMainLoop();

}

particle example - shader/opengl/c++ To benefit from shaders,
the previous code requires some adjustments. First we need to define our
vertex and fragment shader. In this example we wish to change the color
of our particle to green and to make it smaller.

• The following vertex shader scales all vertices in x and y direction.

Listing 3: A simple vertex shader

void main(void)

{

vec4 a = gl_Vertex;

a.x = a.x * 0.5;

a.y = a.y * 0.5;

gl_Position = gl_ModelViewProjectionMatrix * a;

}

• The following fragment shader sets to green the color of all pixels
corresponding to the particle on the screen.

Listing 4: A simple fragment shader

void main (void)

{

gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);

}

Once the shaders are defined, we need to load them into a shader object
within the glutInitRendering function.
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Listing 5: Loading the shaders

void glutInitRendering() {

glEnable(GL_DEPTH_TEST);

//SM is properly initialized variable of type glShaderManager

shader = SM.loadfromFile("vertexshader . vs", "fragmentshader . ps");
}

To use the shader object, we need (inside the display function) to call
in order the methods “begin” and “end” of the shader object and to put
the actual drawing calls within these two calls (Listing 6).

Listing 6: Calling the shader

void display() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();

glTranslatef(position.x, position.y, 0);

shader->begin();

glutSolidSphere(1.0,32,32);

shader->end();

glPopMatrix();

update();

glutSwapBuffers();

}

advantages API’s set a new stage in game development, by provid-
ing developers an easier abstraction experience compared to coding ev-
erything in assembly. By means of a shader, for example, customizing
the behavior of the GPU becomes more accessible. Moreover, hardware
considerations are, to some extent, hidden to developers. Indeed, devel-
opers are not required to master memory, CPU vector instructions, etc.
to achieve high performance, since every operation in a shader maps to
complex hardware instructions.

disadvantages API’s provide generic abstractions for game develop-
ment that add a level of complexity to the task of making games. A de-
veloper, in order to make a game, is now also tasked with understanding
and mastering the chosen API, which for many cases comes with its own
domain specific languages for various internal tasks. Moreover, in many
cases, developers are also asked to learn and master other domains, like
math, to effectively use the selected API, thus adding yet another layer of
complexity. For example, when dealing with shaders, math is important
in order to apply any form of visual effects, from basic linear algebra in
vertex transformations to approximation of complex integrals for lighting
computations.
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These layers of complexity make the learning curve of such API’s steep,
further affecting the costs of game development.

2.2.4 Game Engines

A game engine [16] is a tool designed to abstract the development process
of a game and is used to develop games for different platforms such as
consoles, desktop PCs, mobile phones, etc.

The goal of game engines is to provide a series of reusable abstractions
that can be composed in order to provide an effective extension tool that
allows the tackling of a variety of different scenarios. This composition
property, coupled with a relatively low number of abstractions available,
means that we can now effectively face a variety of problems in game
design without having to resort to building everything from the ground
up, or use a broad variety of different tools, one per specific scenario.

Moreover, with the rise of 3D games and the increasing computational
power of hardware in the ’90s, the complexity of games increased. Games
started to implement features such as sophisticated artificial intelligence,
complex rendering effects, and networking, to satisfy consumers’ needs
that added yet a further layer of complexity to the task of developing
video games. Since these complex features were difficult to implement
with traditional tools (due to their limited abstraction capabilities) the ne-
cessity for more expressive tools with higher abstraction, and specifically
targeted to the domain of games mechanisms, became relevant. For this
purpose game engines were developed. Typically a game engine provides
several components, each of which is designed for dealing with specific
game development tasks such as physics, levels editing, rendering, sound,
AI, networking, localization, input, etc.

Game engines became very popular in the mid-1990s after the ground
breaking titles Doom and Quake made their appearance. The success of
Doom and Quake was so dramatic that other developers and companies
wanted to reuse elements of such games for their titles, so Id Software (and
later Epic Games’s with the Unreal series) designed successive versions
of their game codes with reuse and extensibility in mind: first the game
engine is implemented (made of composable and programmable modules)
then the game engine is used to implement the game. Some of the best
known game engines are OGRE, XNA, Blender, Unreal Engine, IdTech,
and Source. In Figure 7 a series of games built with some of these game
engines are shown.

Game engines differ from each other based on the level of detail pro-
vided to developers to control and customize [6]. We group such engines
in the following two categories:

• Low-level engines are engines where a series of libraries are pro-
vided within some frameworks. These frameworks typically provide
developers with basic games abstractions such as the game loop, con-
tents loading facilities, etc. Typically, low-level game engines give the
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(a) Star Wars Jedi Knight: Jedi Academy
(idTech3)

(b) Quake III Arena (idTech3)

(c) Torchlight II (OGRE) (d) Magicka (XNA)

(e) Space Shift(jMonkeyEngine) (f) Half-Life 2 (Source)

Figure 7: Games built with custom engines
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most flexibility and performance, but they are expensive to build and
use, since the developer has to maintain, program, and connect each
component used in the engine. Customization is possible by means
of fully fledged, general purpose programming languages that are
used not only to connect the components but also to define the logic
of the game. XNA [76], Pygame [93], jMonkeyEngine [58], Löve [3],
etc. belong to this group of engines.

• High-level engines are sophisticated game engines that come ready
out of the box. The goal of such engines is to reduce the complexity
of developing games by providing already made components that
do not need developers to adapt them or connect them, since they
are already connected and integrated in the engine. Developers are
only tasked to use such components and compose them, typically
by means of a GUI, to build their games. Customization in high-
level engines is possible, but by mean of general purpose languages
(GPL’s). OGRE [91], Unreal Engine [99], Torque Game Engine [60],
id Tech [86], etc. belong to this group of engines.

particle example - xna/c# We now show a complete solution to
the “particle” example presented in Section 2.1.2 written in a low-level
game engine. Specifically, we use for this sample XNA as game engine.

Listing 7: Particle written in XNA and C#

public class Particle

{

Vector2 particle_position,

particle_velocity = Vector2.One * 100;

Texture2D texture;

public Particle(Texture2D texture)

{ this.texture = texture; }

public void Update(float dt)

{ particle_position = particle_position +

particle_velocity * dt; }

public void Draw(SpriteBatch sprite)

{ sprite.Draw(texture, particle_position, Color.White); }

}

public class MyGame : Game {

...

Particle particle;

protected override void LoadContent()

{

spriteBatch = new SpriteBatch(GraphicsDevice);

particle = new Particle(Content.Load<Texture2D>("circ.png"))

;
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}

protected override void Update(GameTime gameTime)

{

//Logic code goes here...

particle.Update((float)gameTime.ElapsedGameTime.TotalSeconds

);

base.Update(gameTime);

}

protected override void Draw(GameTime gameTime)

{

//Drawing code goes here

GraphicsDevice.Clear(Color.CornflowerBlue);

spriteBatch.Begin();

particle.Draw(spriteBatch);

spriteBatch.End();

base.Draw(gameTime);

}

}

advantages Game engines are a great result of applying software en-
gineering techniques to game development, such as composability and
resuability, for the definition of a series of abstractions all meant to reduce
costs and to support developers into the definition of games and on a
variety of game design problems like defining advanced AI, networking,
content, etc.

disadvantages Despite their power, engines suffer from severe lim-
itations. These limitations are different depending on the architecture of
the engine: low-level and high-level.

Low-level engines lack game-specific facilities to create a game due to
the fact that these engines only offer libraries meant for general usage
(libraries are unaware of the specific context in which they are going to
be used). Building games then requires writing large amounts of complex
game specific code, such as a path finder, optimizations, AI, etc. imple-
mented by means of GPL’s.

High-level engines provide a large amount of existing components that
are a potential fit for many games. Unfortunately, being able to effectively
choose and use a high-level engine requires developers to read large vol-
umes of documentation.

Games that do not fit the standard components implementation can
still be implemented, but this requires customizing components. Typically,
customizing such components is done by means of GPL’s and requires
large amount of complex game specific code.



38 taxonomy of game development approaches

2.3 discussion

In the previous sections we analyzed tools for making games and dis-
cussed their features. Moreover, for every tool we discussed advantages
and disadvantages of its usage. In the following, we provide a summary
of these features. Every item of the table is the result of grouping com-
mon features among the different, previously presented, tools. Indeed, for
every item we also indicate what tools are affected by it.

Code Disadvantage Involved
tools

D1 Verbosity Assembly

D2 Portability Assembly

D3 Learning
curve

API,
Game
engines

D4 Specificity Game
creation
systems

D5 Performance Game
creation
systems

D6 Gluing Game en-
gines

Code Advantage Involved
tools

A1 Writing Game
creation
systems

A2 Reading Game
creation
systems,
API

A3 Optimization Assembly,
Game en-
gines

A4 Interoperability Game en-
gines

A5 Genericity Game en-
gines

Table 2: Disadvantages and advantages of tools for game development

In the following we discuss every disadvantage and advantage intro-
duced in Table 2.

2.3.0.1 Disadvantages

As highlighted by the variety of tools, no solution has so far proven to
be definitive. Nowadays, we see a variety of game development tools
(Unity3D, Unreal Engine, MonoGame, etc.) each specialized, or simply
working better, on specific areas of the game development panorama. This
variety of tools is also motivated by the fact that many of these tools are lit-
tle more than “major rearrangements” of previous tools (see for example
the Unreal Engine series). Each of these rearrangements, which in many
cases is simply the result of engineering trade-offs, has the task of fixing
or compensating limitations of the previous generation. However, the lack
of a disciplined, scientific approach has led to some structural, recurring
issues, which plague multiple systems across different generations. In the
following we describe such issues, presented in Table 2.
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verbosity : the lack of high-level abstraction results into more effort
needed to express certain aspects of a game. This translates into additional
costs to develop a game, as for example more code yields more errors in
logic or runtime errors, less maintainable code, etc. These costs becomes
even more severe when a tool is not meant specifically for game devel-
opment, but is rather meant for generic domains. For example, with a
general purpose language (GPL) expressing game domain specific behav-
iors, such as those depending on the flow of time, will typically require
developers to write complex, possibly nested, state machines. This is a
time-consuming, error-prone task.

lack of portability : a tool that requires developers to include in
their solutions aspects that depend on the adopted hardware, or on some
very tool-specific features, for example, in Unity3D entities in a scene are
accessible through dictionaries, will make such solution dependent on the
given tool. This translates into additional costs when supporting a variety
of systems, as different solutions become necessary to address different
platforms given the same game logic.

steepness of learning curve : a tool for game development that
requires developers to include in their thinking process some considera-
tions, which are not directly related to the game itself, but rather to the
specific tool idioms, will require additional time to develop a game. This
translates into additional costs when developing a game.

lack of customization : some tools come with specific interfaces
that allow the definition of limited game genres (sometimes even one
genre per tool). This lack of customization makes tools bound to specific
genres and add constraints to the design space. As games and their gen-
res evolve in complexity more tools become necessary to express these
changes. Moreover, mixing different genres becomes a challenging issue.

low performance : some tools for game development are meant to
express any sort of game, thus using generic and composable containers
and components (with basic functionalities) to express game entities and
their behaviors. Typically, such components are built in the tool, and in-
stantiated by the game scripts. When a tool starts featuring many of these
components then run-time performance is affected negatively, due to the
impact on cache coherency, virtual tables, etc. caused by abstraction mech-
anisms of modern (OO) languages.

gluing frameworks and libraries : as games evolve in complex-
ity, tools which lack customization facilities become less suitable to express
such games. Thus, in order to deal with this issue, tools end up allowing
third party tools or libraries to interface with them. These third party tools
or libraries, which could be for example a scripting language, might not
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be aware of the tool mechanics or lack smooth integration. Thus develop-
ers are supposed to understand the mechanics of both the external tool
and the main tool for developing the game, in order to effectively use
them, plus a layer of “gluing” facilities which are often complex in them-
selves. This ultimately adds additional costs (complexity along common
boundaries between the different tools, etc.) to the task of making a game.

2.3.0.2 Advantages

The booming success of tools is motivated by some clear advantages that
can be reaped. For many tools these advantages are the reason of their
success, as these advantages reduce the costs of developing a game. We
present these advantage below (they have already been introduced in Ta-
ble 2). The following advantages are scattered among all game develop-
ment tools (and never available all at once in a tool). These advantages
should be taken as a source of inspiration for future generations of game
development tools.

writing : a tool designed around the domain of games typically comes
with some features designed specifically around the definition of some
game aspects. The goal of these features is to speed up the process of ex-
pressing those game aspects by means of appropriate abstractions. These
abstractions are chosen such that less constructs will be needed to express,
for example, a complex decision tree, spatial indexes, etc. As a result, de-
veloping a game becomes less expensive, as less time and effort will be
required.

reading : a tool designed around the domain of games typically comes
with features to capture some specific game aspects. These features posi-
tively affect verbosity, as less idiomatic elements “not-related” to the game
itself become necessary. This in return improves maintainability and read-
ability, as less idiomatic elements are necessary to express games logic. As
a result, developing a game becomes less expensive, since less time and
effort are required.

optimization : a tool designed around the domain of games typically
comes with some features designed around the runtime behavior of some
game aspects. It is often the case that these features are translated automat-
ically by the tool into equivalent, but more efficient, executable artifacts.
For example, a tool might optimize some queries5 in a game by adopting
spatial indexes without the direct developer intervention. As a result, costs
are reduced as these typically complex optimizations are streamlined, and
code retains high performance and remains well readable.

5 “Queries”, throughout this work, refers only to in-memory endomorphisms in the domain
of collections of entities and should not be confused with SQL-style database queries. This
slight misuse of the term queries comes from the fact that game engines share plenty of
architectural considerations from DBMS’s
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interoperability : a tool that allows interoperability with third-party
tools, typically comes with a series of boundaries or requires adapters.
These boundaries or adapters are meant to maintain the original tool iden-
tity even when interfacing it with third-party tools that come with differ-
ent philosophies. As a result, costs are kept in check, since developers can
now focus only on the chosen tool, and its philosophy, instead of breaking
down the program into pieces, where each piece is designed and imple-
mented to include considerations of the different external tools.

genericity : a tool designed around the domain of general game de-
velopment typically comes with a series of building blocks that are de-
signed generic enough to support a variety of specific games. To build a
game, developers are thus only tasked to properly combine such blocks to
achieve the desired result. Since the amount of building blocks to master
is limited and since they tend to be broadly applicable, developers can
focus on the logic of the game and its design, and how to express it to
the lby always using the same set of primitives instead of a separate tool
(and its accompanying building blocks) per game or per genre. Therefore,
the genericity of a general programming language for video game devel-
opment yields less cognitive stress due to a reduction in the number of
building blocks available. Therefore, by means of generic tools for general
game development, developers can focus on the core of the game devel-
opment process which then becomes more efficient, and thus also less
expensive.

2.4 the necessity for a domain specific language

So far, specific problems in games have been tackled with more and more
domain specific tools (DST’s) such as Unity. The limits of such tools were
made less dire with extensibility, usually by means of a general purpose
language (GPL). However these GPL’s lack the domain specific abstrac-
tions of games, leading therefore to highly complex code that is expensive
to maintain and develop. Indeed, modern GPL’s are particularly weak
when dealing with properties typical of the domain of games such as: con-
currency over shared resources among game entities, distributed code in
networked games, efficient event handling, and time manipulation.

In order to continue our search for better abstractions it makes sense
that we now focus on GPL’s in order to augment our domain specific
tools with domain specific languages (DSL’s) [69]. A DSL is a specialized
language [38], typically small and very expressive, aimed at solving only
problems within the chosen domain through an optimal choice of opera-
tors, abstractions, and level of focus. Attention on DSL’s has increased in
recent years, since mapping all the requirements of games with game tools
exclusively is difficult and expensive (this difficulty gets even higher when
variations in the requirements occur often, requiring to break the careful
mixture of GPL code and tool settings found so far). Research in game de-
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velopment is pushing nowadays towards the study of such DSL’s in order
to provide additional support over different game tools. By means of such
DSL’s, game tools (and game development in general) would benefit from
the advantages defined above:

• Writing: a DSL provides domain abstractions that can, for example,
speed-up the developing process of a game and so reducing costs.
This is also due to the fact that complex behaviors or interactions in a
game can be expressed in code with few domain-specific constructs.

• Reading: since the abstractions provided by a DSL are built ad-hoc
around a domain (in our case the one of video games), reading and
maintaining code written with it becomes more intuitive. Moreover,
ad-hoc abstractions make code more compact; this positively affects
readability as less words are necessary to understand complex be-
haviors, leading to more efficient use of the reader short-term mem-
ory[9].

• Optimizations: since a DSL provides abstractions that capture com-
plex domain behaviors or interactions, these abstractions can be used
by the tool supporting the DSL (typically a compiler) to refactor the
code in order to achieve better performance. As an example see how
a DBMS optimizes SQL code (in this case SQL is the DSL and the
DBMS is the supporting tool).

• Interoperability: a DSL is small and built ad-hoc to react to varia-
tions of the domain in question. Thus, when a third party tool or
library needs to interact with the game code, there are two possibili-
ties that preserve the DSL nature and allow such interoperability: (i)
by means of new constructs that capture the fundamental aspects of
the third-party tool or library (these constructs will make sense only
in the context of the DSL in question), or (ii) by a layer that is built
at the compiler level and that acts as an adapter between the DSL
and the third-party tool or library (in this case the compiler should
provide some clear and easy-to-use interface).

• Genericity: a DSL provides a series of generic building blocks de-
signed around a specific domain. These blocks are generic enough
to support the variety of programs of the domain in question. Since
the number of blocks is limited, developers can focus better on the
logic of the program, instead of requiring them to learn different
tools to tackle needs of different programs. This results into less cog-
nitive stress, which eventually leads to more productivity.

Of course by achieving the above advantages, the disadvantages fade
out, as they are (to some extent) complementary to the above advantages.
For this reason we do not discuss them further in this section.

It turns out from this analysis that we need a language to achieve the
advantages and solve the disadvantages presented in Table 2. In particular,
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it turns out that a DSL seems to be a valid solution. In what follows, we
present our solution to this problem. More in detail, we present a concrete
DSL (Casanova 2) and show how our DSL incorporates all the advantages
while avoiding the disadvantages listed in Table 2.





3
T H E C A S A N O VA 2 L A N G U A G E

In this chapter we present our solution to the problem of creating games,
using a tool that avoids the disadvantages listed in Table 2, without sacri-
ficing the advantages listed in the same table.

This solution comes as a series of proper abstractions built ad-hoc around the
domain of games. These abstractions come in the shape of general building
blocks that can be composed into infinite shapes, with structural correct-
ness as the only limitation. The reason for this limitation is the fact that
structural correctness helps developers to avoid errors, such as runtime
errors, logical errors, or compilation errors, by enforcing only composi-
tions between building blocks that are reasonable for the domain. In the
following, we will provide an implementation to these abstractions, which
comes in the shape of a Domain Specific Language (DSL) called Casanova
2. The goal of Casanova 2 is to help game developers in reaching their
goals by substantially reducing development efforts, with a special benefit
for small and medium-seized game development teams.

We begin with a discussion to identifying the complexity of games code
by introducing a case study. We use this case study to identify issues in
the way games are traditionally expressed (Section 3.1). We then introduce
Casanova 2 as a tiny, concurrency-oriented, game-centered language for
describing game logic, and show how the case study is expressed in this
language (Section 3.2). We round off with the conclusions for this chapter
(Sections 3.3).

3.1 technical challenges in games development

In this section we discuss games and their complexity by means of a case
study. We consider an example showing the complex interactions that are
typical for games, in the form of the state of the game and its continuous
and discrete dynamics.

3.1.1 Running example in pseudo-language

The running example we use is a patrol moving through checkpoints. This
example features two sorts of game dynamics in a minimal way: (i) con-
tinuous when the velocity is applied to the position of the patrol at every
game iteration; and (ii) discrete when the patrol chooses the next check-
point after he reaches the current one. The state of the patrol is made up
by the position of the patrol P, and its velocity V.

P is a 2D Vector

V is a 2D Vector

45



46 the casanova 2 language

Checkpoints is a list of 2D Vectors

The logic of the game is given using a pseudo language:

P is integrated by V over dt

V points towards the next checkpoint until

the checkpoint is reached, then becomes

zero for ten seconds (the patrol is idle)

A game is said to run as a sequence of time slices, called “frames.” A
typical game runs at 30 to 60 frames per second. The pseudo code above
describes the logic of the patrol, which runs every frame. The logic shows
a typical dynamic present in any game, which is made up by continuous
components (the update of P in our case) and discrete components (the
update of V). As a result, P changes every frame, while V only changes
upon reaching a checkpoint.

Dynamics such as the one described above are built in games either
with engines or by hand. Game engines often provide already made com-
ponents for typical game dynamics. However, game engines are often dif-
ficult to expand or customize, hence specific behaviors, such as the one
described above, will require developers to implement them by hand (pos-
sibly via a programming language). Thus, we will now focus on the sce-
nario when such dynamics need to be built by hand.

hand made implementations A hand made implementation is used
when developers (who are looking for specific behaviors): (i) want to have
more control over the game implementation, (ii)face the problem that the
support of the underlying platform is poor, or (iii) want to build anything
that is not readily supported by existing libraries or engines.

Hand made implementations raise important issues to be considered
before starting a new project since:

• Games tend to be very large applications. As size increases, the num-
ber of interactions between game entities, or code modules, increases
as well, together with the risk to make mistakes; and

• Hand made optimization adds complexity, because it requires sup-
plementary data structures and may subtly affect the actual game
logic. Optimization may also lead to (i) implementation issues (for
instance some optimization may work only on specific architectures),
and (ii) maintainability issues (any change in the game design should
keep into account its effects on the implementation).

We now present an example of a hand-made implementation of the
patrolling dynamics following the style of [72]:

class Patrol:

enum State:

MOVING

STOP
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public P, V, Checkpoints

private myState, currentCheckpoint, timeLeft

def loop(dt):

P = P + V * dt

if myState == MOVING:

if P == Checkpoints[currentCheckpoint]:

myState = STOP

V = Vector2.Zero

timeLeft = 10

elif myState == STOP:

if timeLeft < 0:

currentCheckpoint += 1

currentCheckpoint %= Checkpoints.length

myState = MOVING

V = Normalize(

Checkpoints[currentCheckpoint] - P))

else

timeLeft -= dt

The loop function implements the patrolling behavior. It takes one argu-
ment, a dt, which represents the delta time elapsed since the last frame.1

The very first line of the loop body implements the position update be-
havior. The velocity behavior depends on whether the patrol is moving or
idle. While moving, we stop the patrol as soon as he reaches the check-
point, and set the wait timer to 10 seconds. If the patrol is idle and the
countdown is elapsed, the next checkpoint is selected. At this point the
patrol points toward the new checkpoint and starts moving again.

3.1.2 Discussion

The patrolling sample illustrates what is often a semantic schism between
design and implementation in games. Deceptively simple problem de-
scriptions turn out to require surprisingly articulated implementations.
Complexity mainly originates from the explicit definition and manage-
ment of a series of spurious variables that are needed to program the logi-
cal flow of the problem but which do not come up in the design. In our
case study, which is trivial, we already have spurious variables: myState
(together with the definition of the state structure) and timeLeft. More-
over, the if/elif structure, the lookup in the array of checkpoints, and the
% operator to avoid out-of-bounds errors, represent yet more noise in the
code, further obfuscating its meaning.

1 The delta time of a game can be either fixed or variable. When fixed, each update moves
all entities by a fixed time period. This can facilitate some tasks such such as the one of
debugging and testing, since every movement is deterministic and thus predictable. When
variable, each update moves all entities by an amount of time that is the time difference
between the last update and the current one. This gives the game an indication on how
long it took to process and draw the game state, and therefore how much the various
entities should “move” on screen for the user to perceive no mismatch between real-time
and game-time.
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In the following, we introduce a game-centered programming language
and discuss how to rebuild the sample above with fewer spurious con-
structs, in a way that is closer to a higher-level, readable description.

3.2 casanova 2

Languages, in general, offer more expressive power than engines, because
of their ability to combine and nest constructs. An engine typically can
be thought of an already made machine that comes with a series of “on-
off” switches and parameters. In order to obtain the desired behavior a
developer has to interact with these switches by turning them on and off
accordingly. However, expressiveness of these engines and customization
are limited, as the amount of possible states is limited by the amount of
available switches. A language is much more expressive than an engine,
since it features a tree of switches, with mutually recursive references:
recursiveness allows the definition of potentially infinite amounts of com-
binations of these switches.

A language specifically designed and built with game programming
in mind can help with common aspects of game development (such as
time, concurrency, and state updates) that regular languages do not en-
compass. In this regard, we present the language Casanova 2, based on
[64], which takes its inspiration from the orchestration model of [73]. We
show how Casanova 2 is designed in particular to express the typical dy-
namics present in games.

3.2.1 The basic idea behind Casanova 2

An abstraction of a game should be able to represent its main elements,
i.e., its state variables and their (discrete and dynamic) interactions and
nothing else (thus no noise). For this purpose, we built an (intentionally)
small programming language of which the main features are state and
rules:

1. The state of a game is represented by a hierarchical type definition.
Each node of the hierarchy is called an entity (besides the root, which
is called world). Each entity contains a series of fields that repre-
sent primitive types, collections, or even references to other entities.
Through access to shared data entities we achieve concurrent coordi-
nation.

2. The logic of each entity is defined as a series of implicitly looping
blocks of declarative code. Each block, called a rule, represents a
specific dynamic of the entity. A rule represents a dynamic, which
can be continuous (simple and effect-free) or discrete (with limited
side-effects, the most important of which is wait).
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3.2.2 The running example in Casanova 2

We can now show how to rewrite the patrol program presented in Section
3.1 using Casanova 2.

Listing 8: Patrol in Casanova 2

world Patrol = {

V : Vector2

P : Vector2

Checkpoints : [Vector2]

rule P = P + V * dt

rule V =

for checkpoint in Checkpoints do

yield ‖checkpoint - P‖
wait P = checkpoint

yield Vector2.Zero

wait 10<s>

}

The first three lines within the definition of Patrol describe the game
state, containing three variables: the velocity V, the position P, and a check-
point list Checkpoints. The next line gives the only continuous dynamic,
namely the rule P which runs once per frame, i.e., at every frame the
position P is integrated by the velocity V over dt (dt is a global value
supplied by the system). The remainder of the definition gives the only
discrete dynamic, namely the rule V, which represents the movement be-
tween checkpoints. The checkpoints are traversed in order, and for each
selected checkpoint checkpoint we change the value of the velocity in or-
der to move the patrol towards it (yield checkpoint - P). Then, we wait
until the patrol reaches the checkpoint (wait P = checkpoint), and once
the checkpoint is reached we stop the patrol, by setting its velocity to 0

(yield Vector2.Zero) for 10 seconds (wait 10<s>). At this point the loop
continues and a new checkpoint is selected. We reiterate the list again once
we have traversed all the checkpoints.

In Casanova 2, as shown in patrol example, a fundamental design aspect
is the interruptibility of any block of code through specific constructs. The
wait construct interrupts for a given amount of time, whereas the yield

construct interrupts but also updates the value of the fields declared on
top of the rule. The yield construct is the only way to produce an ob-
servable side effect. This means that in order to transform the state of a
game developers can only use the yield construct. Moreover, any con-
struct, such as if, for, or while, can be nested or combined with the yield

and wait constructs. Therefore, all such constructs can represent “atomic”
operations, which can be executed all at once, but also “real-time” opera-
tions, which take a (purposefully) much longer time to run to completion.
This matches the human intuition of terms such as “while”, for example
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in the sentence “while these are enemies nearby, do stay under cover”.
Such a mechanism would not be implementable with a “while” loop in a
traditional programming language, but would rather become a cascading
“if-then-else” or a “switch” as in the example above.

Another crucial aspect lies in the controlled propagation of side effects
as a result of the execution of rules. Each rule must exactly define which
fields (of the entity it runs from) it will potentially change. The rule may
only read the other fields, and also the fields of the root entity and child en-
tities. As a consequence, communication between entities follows a strong,
predictable, hierarchical discipline. Compared to raising events, or even di-
rectly writing the fields of child entities, this enforced discipline prevents
all the problems such as “callback hell”, cyclic events, or undesired chains
of events.

3.2.3 Syntax

The syntax of the language (here presented in Backus-Naur form [67]) is
rather brief. It allows the declaration of entities as simple functional types
(records, tuples, lists, or unions). Records may have fields. Rules contain
expressions which have the typical shape of functional expressions in the
study of ML languages, augmented with wait, yield, and queries2 on
lists:

Listing 9: Casanova 2 syntax

<Program> ::=

<moduleStatement> {<openStatement>}

<worldDecl> {<entityDecl>}

<moduleStatement> ::= module id

<openStatemnt> ::= open id

<worldDecl> ::= world id [" ( "<formals>" ) "] =

<worldOrEntityDecl>

<entityDecl> ::= entity id [" ( "<formals>" ) "] =

<worldOrEntityDecl>

<worldOrEntityDecl> ::= " { " <entityBlock> " } "
<entityBlock> ::= {<fieldDecl>} {<ruleDecl>}

<create>

<create> ::= Create " ( " {<formals>} " ) = <expr>
<formals> : := id [ ":" <type>] { "," <formals>}
<fieldDecl> : := id [ ":" <type>]
<ruleDecl> : := rule id { "," id } "=" <expr>
<type> : := int |boolean |float |Vector2

|Vector3 |string |char
|l i s t "<" <type> ">" |<generic>
|<type> "[" "]" |id

<generic> : := " ’ " id
<expr> : := . . . (* typical expressions : let , i f ,

2 To make high order functions (HOF’s), such as map, or filter, simpler to write.
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for , while , new, etc . *)
| wait (<arithExpr> | <boolExpr>)
| yield | <arithExpr> | <boolExpr>
| <l i teral > | <queryExpr> | <seq>

<seq> : := <expr> <expr>
<arithExpr> : := . . . //arithmetic expressions
<boolExpr> : := . . . //boolean expressions
<l i teral > : := . . . //strings , numbers
<queryExpr> : := . . . //query expressions

In the above we omit the trivial expressions grammar, which follows
typical syntaxes such as in C#.

3.2.4 Semantics

The semantics of Casanova 2 are rewrite-based [56], meaning that the cur-
rent game world is transformed into another one with different values for
its fields and different expressions for its rules. Given a game world ω,
the world is structured as a tree of entities. Each entity E has some fields
f1 . . . fn and some rules r1 . . . rm.

E = { Field1 = f1; . . .; Fieldn = fn;

Rule1 = r1; . . .; Rulem = rm }

Each rule acts on a subset of the fields of the entity by defining their new
value after a certain number of steps of the simulation. For simplicity, in
the following we assume that each rule updates all fields simultaneously.

An entity is updated by evaluating, in order, all the rules for the fields,
without guarantees about the order of execution:

tick(e:E, dt) =

{ Field1=tick(f
m
1 , dt); . . .; Fieldn=tick(f

m
n , dt);

Rule1=r
′
1; . . .; Rulem=r ′m }

where

fm1 , . . ., fmn , r ′m = step(fm−1
1 , . . ., fm−1

n , rm)

.

.

f11, . . ., f1n, r ′1 = step(f1, . . ., fn, r1)

We define the step function as a function that recursively evaluates the
body of a rule. The function evaluates expressions in sequential order un-
til it encounters either a wait or a yield statement. It also returns the re-
mainder of the rule body3, so that the rule will effectively be resumed where
it left off at the next evaluation of step:

step(f1, . . ., fn, {let x = y in r ′}) =

step(f1, . . ., fn, r ′[x:=y])

3 Notice that this is not the actual implementation. Specifically, rules can only iterate
through a finite set of subsets of its body, so we can just index (with an integer) the
active subset, instead of representing the remaining code explicitly in memory.
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step(f1, . . ., fn, {if x then r ′ else r ′′; r ′′′})
when (x = true) = step(f1, . . ., fn, {r ′; r ′′′})

step(f1, . . ., fn, {if x then r ′ else r ′′; r ′′′})
when (x = false) = step(f1, . . ., fn, {r ′′; r ′′′})

step(f1, . . ., fn, {yield x; r ′}) = x, r ′

step(f1, . . ., fn, {wait n; r ′})
when (n > 0.0) = f1, . . ., fn, {wait (n-dt); r ′}

step(f1, . . ., fn, {wait n; r ′})
when (n = 0.0) = step(f1, . . ., fn, r ′)

step(f1, . . ., fn, {for x in y:ys do r ′; r ′′})
step(f1, . . ., fn,

{r ′[x:=y];
for x in ys do r ′; r ′′})

step(f1, . . ., fn, {for x in [] do r ′; r ′′})
step(f1, . . ., fn, r ′′)

3.3 summary

The Casanova 2 language is an example of a domain specific language. Its
goal is to abstract the logic of games by means of a series of primitives
and language structures designed to capture properties shared among all
applications in the domain of games.

Casanova 2 comes with syntax and semantics that are built around the
domain of games. This results into games that are closer to their high-level
descriptions. For example, see the short game described in Section 3.3.2,
or the games listed in Appendix B.

In Section 7.2 an evaluation of our language is provided both in terms
of performance and compactness of game code.

A language like Casanova 2 can only be called suitable for its purpose
if it leads to an executable which has high performance. This means that
it needs to be supported by a compiler that is able to create such fast
executables. The compiler of the Casanova 2 language is discussed in the
next chapter.
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C O M P I L E R A R C H I T E C T U R E

In this chapter we discuss a concrete architecture of a compiler that imple-
ments the solution presented in Chapter 3. More precisely, we present a
compiler that not only captures the syntax and semantics of the Casanova
2 language, but which also allows Casanova 2 games to run at high speed
thanks to domain specific optimization. This chapter is divided into three
parts: the first part discusses the compiler architecture and its internals
(Section 4.1), the second part shows the specific generation of the most
pervasive constructs, state machines, at a high performance (Section 4.2),
and the third part shows to what extent the Casanova 2 compiler supports
third party tools and engines (Section 4.3).

4.1 the structure of the casanova 2 compiler

The syntax and semantics described in Chapter 3 are expressed in prac-
tice by means of a concrete architecture. This architecture comes in the
shape of a source-to-source compiler [47]. More precisely the Casanova 2

compiler is a layered compiler, where every layer can be seen as a com-
putational node, and is tasked with performing specific tasks. Besides
capturing the syntax and the semantics of the language, the layers of
the Casanova 2 compiler perform various kinds of transformations and
checks, such as type checking, or generating the state machines for the
bodies of the rules.

This structure is effective since it allows developers, who are developing
a new feature of the language, to work only on one layer at a time, without
breaking the others. Ideally, overlapping between layers should be mini-
mal in order to keep the compiler, and its layers, maintainable. In Figure
8 a diagram shows the structure of the Casanova 2 compiler. In the figure,
every box represents a layer performing a unique task. For example, the
box Code generation transforms the abstract syntax tree (AST) into actual
code, such as C# code. The “arrows” indicate the direction of the various
transformations. For example, the arrow between the Parser and Type

checker indicates that the parsed AST, which is output from the parsing
phase, is given as input to the type checker; the type checker ensures that
all the entities of the parsed AST respect the rules of the Casanova 2 type
system. In the following, the various layers of Figure 8 are explained:

• Source code represents the source Casanova 2 game code.

53
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• Parser transforms the game source code, which is given as a plain
text file, into an abstract1 tree instance, where each node of the tree
denotes constructs occurring in the source code.

• Type checker checks if the structure of the parsed AST is consistent
with the rules of the Casanova 2 type system.

• Query optimization provides specific optimizations over typical pre-
determined query patterns. For example, a query that filters entities
based on a predicate is transformed to perform the filter only if the
entities populating the collection have changed state.

• State machine generation generates a state machine for every rule
present in the source code.

• Semantics domain optimization provides some specific optimizations
over typical structural patterns, which are common and legible into
their more convoluted, but faster, equivalents.

• Code generation transforms the results of all steps into executable
code. The language of the output is determined by the layer, there-
fore making the compiler adaptable. Moreover, this layer is respon-
sible for adapting the resulting code, so as to make it work with
a targeted framework, such as Unity3D. If no target framework is
selected then an executable program (with a built-in game loop) is
generated.

4.2 code generation

Now that we discussed the shape of the Casanova 2 compiler we can
discuss how Casanova 2 programs are executed by the machine. Every
Casanova 2 program is converted into an equivalent one in C#. Currently
the code generation layer supports C#, but in the future we could easily
support more languages, such as JavaScript, to run Casanova 2 directly in
a browser.

The conversion of Casanova 2 constructs into a high-level, mature lan-
guage, such as C#, is an important advantage: it prevents the problems as-
sociated with low-level languages, like Assembly, in the back-end phases
of the implementation process.

Moreover, a significant advantage of using a language such as C# is that
there are different compilers for C# that compile it to different platforms.
This makes Casanova 2 programs portable, since we can use the .Net com-
piler or the Mono compiler to generate assemblies that can run on different

1 The keyword abstract derives from the fact not every detail of the original syntax is rep-
resented explicitly. For example the expression (1 + 2) + 3 is represented by the node
Plus(Plus(1, 2),3). Note that the parentheses are not mentioned. In this cases the parenthe-
ses are the omitted details.
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Figure 8: The structure of the Casanova 2 compiler

platforms, for example .Net can be used to generate games that work on
Windows machines, and same for Mono on Linux based machines.

In the following we discuss how Casanova 2 constructs are interpreted
by our compiler in order to produce an equivalent version of them by
means of a targeted language, in this case C#. In particular, we start this
discussion with the data structures and functions that make up game en-
tities, because entities represent the core of a Casanova 2 program, and
they contain everything we find in a game: from the dynamics to the state
(Section 4.2.1). The state, which is captured by attributes, is discussed in
Section 4.2.2; the dynamics instead, which are captured by rule, are dis-
cussed in Section 4.2.3.

4.2.1 Entities

In Casanova 2, an entity can be a simple entity (in this case we denote
the entity with the keyword entity next to the entity name), or the world
entity (which is denoted with the keyword worldEntity next to the world
entity name).
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Both the world entity and the simple entities, are transformed into C#
classes. For example the following Casanova 2 entities:

worldEntity Scene = {

...

}

entity Player = {

...

}

Are all translated into the following C# classes:

class Scene {

...

}

class Player {

...

}

Casanova 2 also supports inheritance, but only of Casanova 2 entities
that inherit externally imported classes. This form of inheritance can be
very useful when supporting third-party tools. It is common for game
tools and engines to require users to inherit some external class, such as a
class implementing a MonoBehavior of Unity3D.

4.2.2 Attributes

Every entity in Casanova 2 comes with a series of attributes that compose
it. An attribute in Casanova 2 has a name and a type. The type can be
primitive, such as integer, or string, or can be made custom (in this case
a custom type can be either another Casanova 2 entity or an imported
type, such a class type from a third-party library). When transformed to
C#, attributes in Casanova 2 are treated as C# attributes. In the following
an example is provided, where an entity player contains three attributes:
Name of type primitive string, Position of type imported Vector3, and
Faction of type internal Faction.

entity Player = {

Name : string

Position : Vector3

Faction : Faction

}

entity Faction = {

...

}

In this case the attributes of the entity Player are translated into attributes
of a class Player in C#. The same holds for the entity Faction.

class Player = {

String Name;
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Vector3 Position;

Faction Faction;

}

class Faction = {

...

}

4.2.3 Rules

In Casanova 2 a rule expresses the dynamics of one or more entities, by
affecting the state of their attributes. The rules of a Casanova 2 game are
executed in order following a depth-first traversal strategy: starting from
the world entity we first run in order (top-to-down) the world entity rules,
and then we visit its attributes. For each attribute we first check if it is a
Casanova 2 entity, if so then we visit its instance, run its rules in order (top-
to-down), then for each of its attribute we repeat again the same behavior.
We say that a game iteration is completed when starting from the world
entity we stop the above traversal, because we reached the last Casanova
2 instance of the game tree structure. In Figure 9 we show a typical traver-
sal of a Casanova 2 program, where four entities (World, X, Y, and Z) are
traversed and updated. In this case a game iteration is complete after we
run, in order, the rules (starting from the World entity): W1, X1, Y1, and Z1.

Figure 9: An example of a traversal in Casanova 2. In this case, starting from the
World we run the rules of each entity by following in order depth-first
the arrows 1, 2, 3, and 4.

To avoid an instance to be traversed twice in the same frame, we use
the keyword ref. The keyword ref, which is placed next to an attributes
name, is used to denote a virtual reference to a Casanova 2 entity, the log-
ical container of which is stored somewhere else in the game state. In the
following an example is provided. In this example a player is stored logi-
cally in the attribute Players in the worldEntity, but in a turn based game
we might need to track explicitly the current player. Thus, in worldEntity
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we also have an attribute CurrentPlayer that references the current player.
Note the ref keyword next to CurrentPlayer; without it the current player
instance would be updated twice per frame: once when traversing the
players list and another one when traversing the current players attribute.

worldEntity World = {

Players : [Player]

ref CurrentPlayer : Player

...

}

From the point of view of code generation, each rule is transformed into
a method of the entity container class. Each transformed rule receives a
unique id and is run in order by means of an update method belonging
to the entity container class. In the following we show an example of a
ball, to which a gravity force is applied. The entity comes with a series
of attributes: Position, Acceleration, and Velocity. The force behavior
is expressed by 4 rules: the first one (from the top) resets at every frame
the Acceleration vector, the second one adds to Acceleration the force
of gravity, the third one applies to Velocity the current acceleration, and
the fourth one applies to Position the current Velocity. Note how the
order of execution is very important. For example if we swapped the first
two rules, then the ball would not move, since the acceleration would be
equal to zero, when applied to the Velocity.

entity Ball {

Acceleration : Vector3

Velocity : Vector3

Position : Vector3

rule Acceleration = yield Vector3.zero

rule Acceleration =

yield Acceleration + Vector3(0f, -9.8f)

rule Velocity =

yield Velocity + Acceleration * dt

rule Position =

yield Position + Velocity * dt

}

When compiling the Casanova 2 program above, the compiler generates
a class Ball containing the attributes given, but also adds multiple meth-
ods, distinguished by a unique id, one for each of the rules in the entity.
Moreover, an additional method Update is also added to this class. When
called, Update takes care of: (i) calling in order the rules of its instance,
and (ii) traversing in order the attributes of its instance and calling, for
each attribute of type Casanova 2 entity, its Update method. In case an
attribute is a collection of Casanova 2 entities, then the Update method
iterates each entity belonging to the collection, and for each these entities
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the corresponding Update method is called. If an attribute is denoted with
the ref keyword, then the compiler will not generate any update call for
it. In the following we show how the Ball program is compiled to C#.

class Ball {

Vector3 Acceleration;

Vector3 Velocity;

Vector3 Position;

public void Update(float dt){

R0(dt);

R1(dt);

R2(dt);

R3(dt);

// Here we would, in order, iterate and update the

// Casanova 2 attributes belonging to this class

}

public void R0(float dt){

this.Acceleration = Vector3.zero

}

public void R1(float dt){

this.Acceleration = this.Acceleration + Vector3(0f, -9.8f)

}

public void R1(float dt){

this.Velocity = this.Velocity + this.Acceleration * dt

}

public void R1(float dt){

this.Position = this.Position + this.Velocity * dt

}

}

However, not all Casanova 2 constructs can be transformed directly into
C# constructs, or with the minimal adjustments seen so far. In Casanova
2 each rule implements a series of instructions that can be interrupted
whenever necessary. This interruption happens only by means of specific
language constructs, such as wait. Such constructs cannot be found in C#
natively. However, by adopting special constructs for altering the execu-
tion flow of a Casanova 2 rule, it is possible at compiler time to break the
rule into small sequential pieces, each representing specific actions to run
at a specific time. This category of programs are typically referred as to
state machines [41]. A big advantage of a state machine is that it allows to
achieve high-performance, despite the fact that when building state ma-
chines, code typically loses important properties such as readability and
maintainability. However, We can ignore this because the resulting code
is not meant for developers to be consulted, but only for the machine to
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run. In the following we discuss how state machines are treated and trans-
formed by the Casanova 2 compiler.

4.2.4 Generating state machines for rules’ code

In accordance to the good and established practices of modern (object-
oriented) software engineering, implementations of architectures similar
to Casanova 2 for mainstream engines, such as Unity3D, are based on a
series of nested state machines. Nesting allows some measure of separa-
tion of concerns and code reuse, and is therefore favored Unfortunately,
nesting yields low performance because of repeated state selections, one
per level of nesting.

In contrast, the Casanova 2 compiler produces an inlining of all the
nested state machines into a single state machine with equivalent seman-
tics, but faster runtime. The readability of the produced code is negatively
affected due to the many low-level considerations, and the lack of struc-
tural nesting, which would otherwise help the reader with orienting him-
self in the original Casanova 2 code.

4.2.4.1 Flat vs non-flat state machines

In Figure 10 we show two equivalent state machines. The state machine
in Figure 10a shows a non-flat state machine P which is made up of three
inner state machines: P1, P2, P3. Each of them is running a series of op-
erations, for example P1 runs A, B, and then C. The order of execution is
determined by the arrows. For example an arrow between A and B means:
run B after A is done. When the source of an arrow is a state machine con-
taining other state machines, then the source state machine must finish
first with its internal logic, before continuing with the target of the arrow,
for example, in our case the process C, which is marked with a double
circle (meaning it is the last process of P1), is the last process to run inside
P1 before continuing with P2.

In the following a solution in pseudo code of the state machine in Fig-
ure 10a is provided. As we can see a series of variable (StateP, StateP1,
StateP2, and StateP3) is used to track the state of the program P in order
to select the current process to run. This allows the temporary suspension
of the program, for example due to a wait, and its resuming, without
messing up with its logical execution order.

Every process is run by means of the run_program function. The run_program
function takes as input a program, such as A, or B, and a continuation. The
continuation instructs the given program on how to behave when specific
conditions are met. In our case all continuations are called after the current
program is done. For example the instruction run_program A (on done :

StateP1 is ’B’) means: run program A and when A is done, set the state
StateP1 to ’B’. In all our examples whenever a program ends, its continu-
ation sets the next state machine to run by assigning the appropriate state
variable. This simulates the “arrow behavior” described above.



4.2 code generation 61

(a) A non. flat state machine

(b) The flattened state machine

Figure 10: A comparison of a non-flat state machine and its equivalent one

This mechanism makes our formalism independent from any input pro-
gram. Thus programs, such as A or B, can be made of either simple in-
structions, or complex programs using multiple state machines. What is
common to all these programs is that once they are done, they all call a
continuation that alters that flow of execution of the caller program.

switch StateP:

case ’P1 ’:
switch StateP1:

case ’A’ -> run_program A (on done : StateP1 is ’B’)
case ’B’ -> run_program B (on done : StateP1 is ’C’)
case ’C’ -> run_program C (on done : StateP is ’P2 ’)

case ’P2 ’:
switch StateP2:

case ’M’ -> run_program M (on done : StateP2 is ’N’)
case ’N’ -> run_program N (on done : StateP is ’P3 ’)

case ’P3 ’:
switch StateP3:

case ’Y’ -> run_program Y (on done : StateP3 is ’Z’)
case ’Z’ -> run_program Z (on done : EXIT)

However, the above solution is expensive in terms of memory, since as
the program scales in complexity, the memory needed to track the interme-
diate states increases as well. The same applies even more dramatically to
CPU usage, since every switch requires the CPU to perform comparison
operations which do not scale in terms of performance: more comparisons
yield to more CPU load, and thus less performance.
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Ideally we wish to have fewer variables and fewer state selections in
order to improve the performance. More precisely, we wish to have one
state machine, made of one switch, that captures the complete logical ex-
ecution of the program. In Figure 10b an equivalent solution to the state
machine proposed in Figure 10a is provided. Note that in this new solu-
tion we have only one state machine (P123) containing all the processes
of the non-flat state machine, and where each process of the flat state ma-
chine is connected in the same logical order as in the non-flat version. In
the following a code for this state machine is provided.

switch StateP123:

case ’P1A’ -> run program A (on done : StateP123 is ’P1B’)
case ’P1B’ -> run program B (on done : StateP123 is ’P1C’)
case ’P1C’ -> run program C (on done : StateP123 is ’P2M’)
case ’P2M’ -> run program M (on done : StateP123 is ’P2N’)
case ’P2N’ -> run program N (on done : StateP123 is ’P3Y’)
case ’P3Y’ -> run program Y (on done : StateP123 is ’P3Z’)
case ’P3Z’ -> run program Z (on done : EXIT)

In the code above we managed to reduce the number of switches neces-
sary to track the program state, without losing the logical execution order
of the original program, since every process sets its continuation when
it is done. This code is less readable, as the nested layers are not visible
anymore, but it is faster to run. The compiler of the Casanova 2 language
implements this second choice of state machine, which is implemented by
means of code analysis. Our code analysis, inspects the game code to un-
derstand the nesting layers, and later uses this knowledge to implement a
flat state machine that executes the intended original logic. In the follow-
ing we provide a complete description of this optimization process.

4.2.4.2 Code analysis for state machines generation

At the compiler level every Casanova 2 rule block, which can be made
up of different blocks with different levels of nesting, is interpreted as a
control flow graph, which represents how the program control is passed
between the various different blocks. Consider a Casanova 2 rule and its
corresponding flow graph both depicted in Figure 11a and 11b respec-
tively.

As we can see, every block in Figure 11a has an input and an output. For
example, B1.2 is reachable only by B1, and leaving B1.2 can only bring the
flow to B2. Note also the dashed arrows that appear in the flow graph. A
dashed arrow between two blocks means that changing the control takes
one frame to be completed. This behaviour corresponds in Casanova 2 to
the yield statement, which suspends the execution of the rule, for one
frame, right after updating the targeted attribute(s). By means of the flow
graph analysis we can represent all possible nestings of rules and their
relationships.

We track in a table information about the “follows” relationship between
blocks. We can use this information to tell, when dealing with a sub-block,
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(a) A Casanova 2 rule; on the left its basic
blocks are identified as B1, B1.1, B1.2,
and B2.

(b) The flow graph of the Casanova 2 rule.

Figure 11: A Casanova 2 rule code and its control flow representation.

to whom it is supposed to return the control. For example, in Figure 11a
B2 is the block where any nesting after B1 should eventually jump to. Thus,
before compiling B1.1 and B1.2, B1 should inform the compiler that their
exits must correspond to B2. We can apply this process recursively and
to any level of nesting. As a result, every block is aware of which (other)
block it is supposed to return the control to when it is done.

Moreover, the compiler always adds a last block called EXIT_BLOCK,
which is always targeted when leaving the last instruction of the outer-
most block of a rule. EXIT_BLOCK points to the entry block of its rule.
Block indexes are assigned incrementally, thus the first block is always
indexed as 0 to force the rule to repeat itself after it is done. This allows
interpretation of all instructions (without any modification) with the same
algorithm, since the exit index is always provided as input to the recursive
algorithm.

In the following, we provide the formal rules that show how the Casanova
2 compiler interprets blocks and generates the corresponding state ma-
chine. In general, an expression that has the following shape [[expr]]_exit
=> CODE means: transform expr to CODE; and use _exit as continuation to
when CODE is done.

Moreover, in the following rules the keywords goto and gotoSuspend

are used to simulate the temporal suspensions of Casanova 2 code. More
precisely, a goto X instruction updates the state of the current block to
execute of the current state machine to X, and jumps to the case of the state
machine that corresponds to X; whereas gotoSuspend behaves similarly to
goto, but instead of jumping we return the control to the caller of the
method containing the state machine (in C# we simulate this behaviour
with the return statement).

interpreting a block of instructions We start with the rule
that ignores the first simple expressions of a block followed by a non sim-
ple one. A simple expression is an expression that does not suspend the
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execution of the rule. Note that in the generated code we use _lb* and
goto. _lb will become a new case of the flat state machine, while * denotes
that _lb must be fresh and never used before (same applies for variables,
in the following int x* stands for a fresh variable x with a unique name).
The goto construct instead tells the program to jump to the label indicated
by its value (in this case _lb_Es*).

The first simple rules of a block are collected into one case of the state
machine, whereas the rest is reinterpreted by the compiler into a different
case of the state machine. Note that when reinterpreting the _exit is kept
the same, since all these expressions belong to the same nesting level.
Rest can be none, one, or more expressions (simple or not). We omit

some trivial cases, such as when the block does not contain non-simple
rules, or contains only simple rules, since they are trivial to implement
and follow the same shape as specified below.

Listing 10: Interpreting block of instrutions

JSimpleExpression1
..

SimpleExpressionN

NonSimpleExpression

RestKexit

=>

_lb*:

SimpleExpression1

..

SimpleExpressionN

goto _lb_Es*
_lb_Es*

JNonSimpleExpression
RestKexit

interpreting a while loop A while loop generates a series of fresh
labels, which are used to determine where to goto when evaluating the
condition. If the condition is false then we exit the block, otherwise we
continue with the body of the while. Note that when we interpret the body
B we assign as exit to it the fresh _lb*. This means that when the body is
done it will jump back to _lb* in order to perform the condition check
again.

Listing 11: Interpreting a while loop

Jwhile C do

BK _exit

=>

_lb*:
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if !C then

goto _exit

else goto _else*
_else*:

JBKlb∗

interpreting a collection Iterating a collection resembles a typ-
ical for loop iteration with an index variable, such as for(int i = 0; i

< ..; i++) { .. }. Indeed we iterate the collection until the index has
reached the end. Note, similar to the while loop, when interpreting the
body B we assign to it as exit the label _lb*, where the block following
_lb* performs the availability check of the next item. When all items have
been iterated, control goes to _exit.

Listing 12: Interpreting a collection iteration

Jfor a in A do

BKexit

=>

_for_lb*:

var counter* = -1

if A.length = 0 then

goto _exit

else

var a = A[0]

goto _lb*
_lb*:

counter* ++

if counter* >= A.length then

goto _exit

else

a = A[counter*]

goto _else
_else*:

JBKlb∗

interpreting an if-then-else Interpreting an if-then-else requires
to generate two cases for the state machine: one that deals with the then

body, and the other one with the else body. Both the then and the else
blocks have _exit as label to relinquish control to when they are done.

Listing 13: Interpreting an if-then-else

Jif C then A else BKexit

=>

_lb*:
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if C then goto _then*
else goto _else*

_then*:

JBKexit
_else*:

JCKexit

interpreting an if-then Interpreting an if-then requires to gener-
ate one state machine that deals with the then body. The then block has
_exit as label to go to when it is done.

Listing 14: Interpreting an if-then

Jif C then BKexit

=>

_lb*:

if C then goto _then*
_then*:

JBKexit

interpreting a wait with boolean condition A wait on a
boolean condition keeps checking the condition until it becomes true. When
true we jump to _exit. Note the gotoSuspend construct, which tells the
state machine to resume from this block on next iteration, since the predi-
cate is not true.

Listing 15: Interpreting a boolean guard

Jwait CONDITIONKexit

=>

_lb*:

if !CONDITION then

gotoSuspend _lb*
else

goto _exit

interpreting a wait with a timer A wait on a timer counts down
to 0 before moving the control to exit. As long as the timer is greater than
0 we keep decreasing it by dt and suspend the rule to let other rules
perform their dynamics. Note that before starting to count down we first
store the initial value of the timer in order to not let other rules interfere
with this timer.
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Listing 16: Interpreting a timer

Jwait TIMEKexit

=>

_lb*:

var count_down* = T

goto wait_lb*
_wait_lb*:

if count_down* > 0.0 then

count_down* -= dt

gotoSuspend _wait_lb*
else

goto _exit

updating an attribute When yielding (yield) we first update the
attribute(s) which are affected by the rule in question, then we call gotoSuspend
with exit as label to jump to at the next frame.

Listing 17: Interpreting a yield

[[yield E]] _exit

=>

_lb*:

set E

gotoSuspend _exit

interpreting a rule The operation of interpreting the outermost
block of a rule, denoted with the symbol [J. . .K], generates an extra label
(our _exit_block) that is used to simulate the infinitely repeating loop
behavior of a rule. Note that when interpreting the body of the loop we
use the J. . .K operator that uses the interpretation seen so far.

Listing 18: Generating the exit_block of a Casanova 2 rule

[JAK]

=>

_exit_block:

JAKexit_block

However the above rule tend to generate a large number of labels and
goto’s which can be reduced in order to optimize the structure of the code.
In the following we show two rules that are used in the compiler to reduce
redundant labels and goto.
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optimizing goto The first optimization reduces the number of trivial
goto’s i.e. those goto’s that jump to labels that are declared right after them.
In this case the compiler traverses again the code in search of this pattern,
and whenever we have a match the goto is removed. As a consequence
when the control leaves that case it immediately falls into the next block.

Listing 19: Optimizing goto’s

A

goto _lb
_lb*:

B

=>

A
_lb*:

B

compacting labels The second optimization performed by the com-
piler reduces the amount of consecutive labels into one. When compacting
to one label, the compiler traverses also the sub-blocks in order to change
all the goto using the old labels into goto that reference the compacted
one.

Listing 20: Compacting consecutive labels

_lbx:
_lby:

EXPR

=>

_lbxy:

EXPR[_lbx 7→ _lbxy,
_lby 7→ _lbxy]

discussion With the rules seen so far we managed to convert the body
of rule into a flat state machine, disregarding its complexity and number of
nesting. By manipulating only one state variable, and by using low-level
instructions, such as goto that compile to very few machine operations
(such as a single jump), we achieved a flat state machine that is compu-
tationally efficient. Naturally, the code maintainability of the generated
sources is affected negatively, but this code is not intended to be read
by developers, and is sound because of the rules above: every expression
above has only one unambiguous way of interpretation.
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4.3 supporting third-party tools and engines

Every entity has an update method, which is called by the entity that con-
tains it. What about the world entity? Where is its update called? We can
integrate the call of the world entity into a so called game loop. Such a
game loop can be either provided externally or internally, as shown in Fig-
ure 12. In Figure 12 we show the only two types of game loops supported
by Casanova 2: one provided internally and the other externally.

When the game loop is externally provided, then a layer is necessary
that adapts a Casanova 2 game, to make it work with an external game
engine (see Figure 12a). Otherwise, when there is not an external game
loop, the Casanova 2 compiler generates an ad-hoc game loop that is inde-
pendent from any game engine (see Figure 12b), which keeps polling the
Update method of the world entity every 16 milliseconds. The choice of
16 milliseconds is due to the fact that there is no reason to run the game
loop faster than 60 frames per second, as most monitors have a 60Hz of
refresh rate. This parameter is easily configurable should there be reason
for a higher framerate.

(a) In presence of an external game loop

(b) In absence of an external game loop

Figure 12: Representation of the input and output process of the Casanova 2 com-
piler w.r.t. the presence of external game engines or frameworks.

This mechanism also allows Casanova 2 to be, to some extent, indepen-
dent of specific frameworks (it only depends on C#), since the language
and its games are encapsulated and not aware of how they are used or
where they are included. Indeed, the only adjustment a developer is sup-
posed to make, is to teach the compiler how to interpret the loop of each
external platform, since every platform comes with a different way of
dealing with the game loop: for example the loop of XNA/MonoGame
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is different from the one provided by Unity3D, and is yet again different
from the one found in Unreal Engine. We implemented several examples
of Casanova 2 applications that run on different platforms through the
mechanism presented here, which we discuss in detail in Chapter 7.

proxy system When interfacing with external libraries or frameworks,
such as rendering or physics engines, in order to maintain the Casanova
2 source code independent from the details of these libraries, we need
to use the so-called proxy system. The proxy system acts as an adapter
between the Casanova 2 code and the external libraries and frameworks.
The proxy system allows reuse of Casanova 2 code along with different
libraries and frameworks. This way we can have the same game logic,
written in Casanova 2, used in Unity3D, MonoGame, or Unreal Engine at
the cost of minimal impact on the Casanova 2 sources. The proxies, each
specific for one framework or library, will still need to be written by the
developers in order to successfully connect the Casanova 2 code with the
external library or framework.

In Figure 13 an example of a proxy is provided. In this example a
Casanova 2 program imports an external VisualPatrol, which comes with
two public members: Position and Create. Note that Casanova 2 is not
aware of the concrete implementation behind the VisualPatrol, since in
one case a concrete VisualPatrol is provided by a program that uses the
facilities of XNA framework, whereas in the other case the program uses
facilities from Unity3D.

Figure 13: Casanova 2 code interfacing with two different frameworks, but both
implementing the same proxy, namely VisualPatrol.

A proxy system is meant to generalize over the aspects of the target
library or framework that are needed for the Casanova 2 program. This
then ensures that the Casanova 2 program can remain the same, regardless
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of the external system used. Examples of concrete proxies interfacing a
common library for game development can be found online2.

4.4 summary

In this chapter we discussed the implementation of a compiler for the
Casanova 2 language. In particular, we discussed the structure of this com-
piler, and showed how this compiler interprets Casanova 2 programs, so
as to generate code that exhibits fast runtime performance. Moreover, we
discussed how Casanova 2 programs interoperate with third-party tools
and engines, by means of the so-called proxy system. In next chapter, we
will investigate further the opportunities offered by the domain of games
to improve even even more the performance of Casanova 2 programs.

2 https://github.com/vs-team/casanova-mk2/wiki/Casanova%20Proxy





5
C O M P I L E R O P T I M I Z AT I O N

In this chapter we show a case study on how to improve the performance
of the Casanova 2 language runtime by means of domain specific opti-
mization. Domain specific optimization arises from a series of observa-
tions about recurrent patterns in code that, while being idiomatic and
frequently used by programmers in practice, exhibit undesirable runtime
properties (i.e. they are too slow or use too much used memory). The do-
main specific optimization is applied in the form of a series of heuristics
to recognize such idiomatic code and transform its semantics, to alleviate
the negative properties. The domain specific optimization thus allows pro-
grammers to write clear, readable, intuitive, idiomatic code, but with the
same desirable performance as hand optimized code (which is far more
complicated to handle). A typical example of domain specific optimization
is found in the SQL family of languages.

Specifically, in this chapter we present a solution to the loss of perfor-
mance in games that occurs as a consequence of the encapsulation design
pattern, which is generally used to keep code maintainable.

5.1 maintainability vs . speed

Video games are composed of several inter-operating components, which
accomplish different and coordinated tasks, such as drawing game ob-
jects, running the physics simulation of bodies, and moving non-playable
characters using artificial intelligence. These components are periodically
activated in turn to update the game state and draw the scene. When the
game complexity increases, this leads to an increase in size and complexity
of the components, which, in turn, leads to an increase in the complexity
of developing and maintaining them, and thus an increase in development
costs.

Since a video game, during its development, is in a continuous evolu-
tion, it is often the case that at the end of its development the final design
of the game is quite different from the initial design. If not tackled in
advance this evolution will affect heavily the available resources, as non
maintainable game code will require considerable development time to
be fixed and adapted to design changes. To alleviate such costly changes,
game code should be structured in a way that maintaining or restructuring
it is relatively painless.

According to [13], the typical life cycle of software implemented by
means of a programming language is: (i) building a prototype; (ii) design-
ing a version of which code is readable and maintainable; and eventually
(iii) optimizing (after obtaining confidence with the context and the prob-
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lem) the code from the previous point, to meet any remaining (often non-
functional) requirements.

We can see that this cycle is applicable to game development as well:
(i) building a game prototype is always necessary to become confident with
the context of the problem and the chosen tool; (ii) designing game code that
is maintainable and readable requires developers to abstract the problem
and to focus more on the high-level interactions of the game and its data
structures; and (iii) optimizing is a common process in game development,
for example in the case of performance optimization (which is of high
importance for games).

Regarding designing maintainable game code, this is usually done us-
ing software development techniques. Software development techniques
have been studied to improve software maintainability and tackle com-
plexity [27]. Encapsulation, which consists of isolating a set of data and
operations on those data within a module and providing precise specifica-
tions for the module [52], is an example of a technique aimed at increasing
code maintainability and readability

Indeed developing a game is a highly dynamic process [94] involving a
wide variety of team members with different roles, such as designers, pro-
grammers, artists, etc. Design very often changes during the development
stage, as proven in several examples from the industry, such as Starcraft,
Duke Nuke’em Forever, and Final Fantasy XV [66]. Small changes to the
design translate into considerable amount of code. For example, since a
game may feature many small entities, encapsulation forces those entities
to interact through specific interfaces. In Figure 14 we see an example. In
the upper part of Figure 14 the class A has an explicit reference to an in-
stance of type B. This means that A can interact with, and know everything
about, the internals of B. This entails that whenever a part of B changes, if
A uses that part as well, A needs to change too. In the lower part of Figure
14 an equivalent version to the first one is provided, but in this case the
shared aspects have been encapsulated, and are provided by means of an
interface, to A. This means that A only knows how to access the aspects
of B it needs via the interface IB, and whenever B changes, as long as the
interface IB does not change, A does not need to be notified. Moreover, this
mechanism allows the definition of different implementation of IB (see B1

and B2), which can be used in different situations, without the necessity
to change the code of A.

When calling methods of the interfaces, overhead is added due to dy-
namic dispatching [104]. Such overhead ultimately affects the performance
of games at runtime negatively, so a complete refactoring that accommo-
dates performance becomes necessary. Similar negative effects come from
various design patterns, which all add layers of indirection. These effects
impact negatively cache coherency and force CPU prediction failures [4].

What seems ideal is to have the advantages coming from both stages
(ii) and (iii): game code that is well maintainable and readable, while at
the same time being fast at runtime. To this purpose, we investigated this
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Figure 14: The two diagrams show two versions of code structures: one which
does not use encapsulation, and the other one which uses encapsula-
tion.

problem and developed a solution that allows developers to write encap-
sulated code in Casanova 2, which through extensive automated optimiza-
tion turns source code into a high-performance executable, thereby reliev-
ing developers from refactoring design structures by hand, thus reducing
the chances to make mistakes and the overall game development costs.

We start with a discussion on the focus of this chapter and related works
(Section 5.2). Then we discuss encapsulation and typical complex opti-
mizations, which break encapsulation, by introducing a case study. We
use the case study to identify issues in using both the encapsulated and
the optimized code in Section 5.3. We then introduce our idea for dealing
with encapsulation without losing performance Section 5.4. We use this
idea to propose a concrete implementation, with corresponding seman-
tics, within the Casanova 2 language in Section 5.5. Eventually, in Section
5.6 we discuss the advantages of our technique.

5.2 focus of the work and related works

The focus of this chapter lies exclusively within the restricted, non-general-
purpose field of game development (and its sibling, real-time simulations).
This greatly narrows the scope of the optimization problem, but also
severely constrains the spectrum of possible solutions. To understand this,
consider that on a hand we have the deep complexity of the underlying
mathematics of the physical aspects of the game and the highly concurrent
nature of the discrete logic; on the other hand, we have the fundamental,
pervasive non-functional requirement that no single update/draw cycle
may ever take more than 1/60th of a second in total. Whereas in other
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soft-real-time domains one might occasionally accept a degradation of per-
formance, provided that the variance of the distribution of computational
cycles is acceptably low, the game becomes a clear failure if frames are
regularly delayed.

This very strict performance requirement automatically excludes a large
number of (admittedly beautiful and powerful) frameworks that in and of
themselves would solve many architectural issues that games do need to
face.

The two frameworks that, however, are potentially suitable for our pur-
pose of optimizing the speed of game code (while still retaining encapsula-
tion) are runtime dynamic machinery, and compile-time code generators.

5.2.1 Runtime dynamic machinery

Highly dynamic frameworks typically make use of mechanisms that either
feature large numbers of dynamic/virtual calls, or rely on reflection. The
use of dynamic/virtual calls within a big hierarchy of objects has a dra-
matic impact on performance because it severely disrupts cache coherency
[97]. This is unfortunate, as it rules out the widespread use of design pat-
terns such as decorators, and in the functional programming world the
extensive use of monads.

Reflection mechanisms (for example reflection in .NET [79]) tend to be
even less effective than mechanisms with large amounts of dynamic/vir-
tual calls, as they combine the same number of cache disruptions with the
need to box/unbox everything and constantly check for the correct types
of boxed arguments. Among the frameworks that use this technique, we
find (i) Proxies in C#, an aspects oriented library supported by the .NET
framework, and (ii) netty.io, an event driven framework for networking.
The overhead of these techniques makes it unfortunately very easy to
exceed the maximum allotted time of 1/60th of a second per frame, or
requires to dramatically reduce the number of entities processed by the
game, which in turn results in a poorer game experience.

5.2.2 Compile-time code generators

A more promising venue of investigation is that of compile-time code gen-
erators, which make it possible to implement sophisticated, reusable meta-
patterns such as those discussed above, but without having to rely on
expensive forms of dynamism. Examples of such generators are Haskell
templates, C++ templates, and macros in Lisp. The performance of these
generators is clearly bound to the performance of the underlying language.
Performance is a very strict and stringent requirement within our do-
main of focus, and so this immediately excludes frameworks based on
languages such as Haskell or Java that have less control on performance
because of large amounts of boxing (in Haskell laziness induces boxing
[53]). Other frameworks offer less disciplined meta-structures. For exam-
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ple, C++ templates lack a higher kinded type system that would allow
us to constrain type parameters and get some measure of control on error
messages. While this might seem trivial, C++ templates are very unwieldy
to use and debug because the untyped replacement mechanism generates
pages of errors at the (correct) libraries only because they have been in-
stantiated with the wrong parameters.

Moreover, hybrid frameworks, such as Treecc (an Aspect-Oriented ap-
proach to writing compilers), force patterns on the generated code which
make too much use of polymorphism. This partially defeats the point of
compile-time code generators for games, as it still causes performance is-
sues such as those outlined in [97].

Games choose runtime dynamic machinery via mostly object oriented
design patterns, and reflection when strictly needed. In the following sec-
tion we discuss a short example to explain the problem of encapsulation
in games, and in the end we discuss the advantages and disadvantages of
using encapsulation when designing a game.

5.3 encapsulation in games - an example

To illustrate the discussions hereafter, we now present a game that con-
tains typical elements that are often encountered in game development.
The game consists of a set of planets linked together by routes. A player
can move fleets from his planets to attack and conquer enemy planets.
Fleets reach other planets by using the provided routes. Whenever a fleet
gets close enough to an enemy planet it starts fighting the defending fleets
orbiting the planet. The game can be considered the basis for a typical
Planet Wars strategy game (such as Galcon [40]).

In our running example, we assume that a Route is represented by a data
structure containing (i) the start and end point as references to Planets,
and (ii) a list of Fleets traveling via such route. Planet is a data structure
containing (i) a list of defending Fleets, (ii) a list of attacking Fleets, and
(iii) an Owner. Each fleet has an owner as well. Each data structure contains
a method called Update, which updates the state of its associated object at
every frame. Furthermore, we assume that all the game objects have direct
access to the global game state, which contains the list of all routes in the
game scenario.

According to the definition of encapsulation, data and operations on
them must be isolated within a module and a precise interface must be
provided. Moreover, each entity is responsible for updating its own fields
in such a way that it maintains its own invariant.

5.3.1 Design techniques and operations

In our running example the modules are the Planet and Route classes
defined above, data are their fields. To support encapsulation, in the fol-
lowing implementation each entity is responsible for updating its fields
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with respect to the world dynamics. The operations for each entity are the
following:

Planet: Takes the enemy fleets traveling along its incoming routes,
which are close to the planet, and moves them into the attacking
fleets list;

Route: Removes the traveling fleets, which have been placed in the
attacking fleets of the destination planet from the list of traveling
fleets.

class Route

Planet Start, Planet End,

List<Fleet> TravellingFleets,

Player Owner

void Update()

foreach fleet in TravellingFleets

if End.AttackingFleets.Contains(fleet)

this.TravellingFleets.Remove(fleet)

class Planet

List<Fleet> DefendingFleets,

List<Fleet> AttackingFleets

void Update()

foreach route in GetState().Routes

if route.End = this then

foreach fleet in route.TravellingFleets

if distance(fleet.Position, this.Position) < min_dist &&

fleet.Owner != this.Owner then

this.AttackingFleets.Add(fleet)

An alternative design, which does not use encapsulation, allows the
route to move the fleets close to the destination planet directly into the
attacking fleets by writing into the planet fields. In this scenario the route
is modifying data related to the planet and the route is writing into a
reference to a planet.

class Route

Planet Start, Planet End,

List<Fleet> TravellingFleets

void Update()

foreach fleet in this.TravellingFleets

if distance(fleet.Position, this.Position) < min_dist &&

fleet.Owner != End.Owner then

this.TravellingFleets.Remove(fleet)

End.AttackingFleets.Add(fleet)

5.3.2 Discussion

In our running example a programmer is left with the choice of (i) either
using the paradigm of encapsulation, which improves the understandabil-
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ity of programs and eases their modification [87], or (ii) breaking encap-
sulation by writing directly into the planet fields from an external class,
which, as we will show below, is more efficient but potentially dangerous
[33].

As far as performance is concerned, in the encapsulated version, the
planet queries the game state to obtain all routes of which endpoints are
the planet itself, and for every route selects the enemy traveling fleets that
are close enough to the planet. At the same time, a Route checks the list of
attacking fleets of its endpoints and removes the fleets that are contained
in both lists from the traveling fleets. If we consider a scenario containing
m planets, n routes, and at most k traveling fleets per route, each planet
should check the distance condition for O(nk) ships, thus the overall com-
plexity isO(mnk). The non-encapsulated version checks for each route the
distance for a maximum of k ships and then directly moves those close
to the planet, for which the overall complexity is O(nk). Therefore, the
performance on the non-encapsulated version is better. One could argue
that adding a spatial index in the planet containing the incoming routes
could lead to higher performance, however this would break the SOLID
(Single responsibility, Open-closed, Liskov substitution, Interface segrega-
tion, and Dependency inversion) principle of Design Patterns, as a planet
would contain information on the topology of part of the map. In partic-
ular the Single Responsibility is violated, as the task of the planet is less
deducible.

As far as maintainability is concerned, in a game containing planets,
many entities might need to interact with each planet (such as fleets, up-
grades, and special weapons). Assume that a special action freezes all the
activities of a planet. We have to propagate this behavior into the code
of all the entities in the game that may interact with a planet, disabling
such interactions when the planet is frozen. In the encapsulated version of
the code, such behavior needs only be implemented in one place, namely
in the planet. In the non-encapsulated version, it must be implemented
in each and every entity that may interact with a planet. Moreover, if the
developer forgets to make this change even in just one of the entities,
the game no longer functions correctly; i.e., bugs associated with planets
might actually find their cause in other entities. It is clear that the main-
tainability of the encapsulated version of the code is much better than the
maintainability of the non-encapsulated version.

The main advantage of using encapsulation is related to the maintain-
ability of code, because encapsulated operations that alter the state of an
entity are strictly defined within the entity definition. This helps to reduce
the amount of code to maintain in case the entity changes the normal be-
havior of an entity. In our scenario all the activities that alter the planet
are inside the planet, so if we remove (or disable) a planet then all its
operations are suspended.
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What we desire to achieve is the maintainability of encapsulated game
code, combined with the performance of non-encapsulated code. In the
following sections, we show how this can be achieved with Casanova.

5.4 optimizing encapsulation

In this section we introduce the idea of a code transformation technique
that changes encapsulated programs into semantically equivalent, but more
efficient implementations. In particular, we will discuss the idea behind
how to optimize the lookups of those elements in the game that exhibit
some specific temporal behavior. Moreover, we will discuss where to im-
plement such optimization.

5.4.1 Optimizing lookup

In our running example, the main drawback of the encapsulated version
is that each planet has to check all the fleets to see if they are close enough
to move into the list of attacking fleets. An optimization can be achieved
by maintaining an index FleetIndex in Planet, containing a list of those
Fleets that satisfy the attacking property, i.e., being owned by a different
player and close enough to the planet. When an enemy Fleet is close
enough to a Planet, it is moved into FleetIndex by the Route, which stores
a list of traveling fleets. When FleetIndex changes, it notifies Planet, so
that Planet can update AttackingFleets.

A predicate is a conditional statement based on one or more fields of
an object of a class A. We can generalize the aforementioned situation by
saying that encapsulation suffers from loss of performance whenever an
object B needs to update one of its fields depending on a predicate. B
stores an index IA that is used to keep track of all possible objects of class
A satisfying the predicate. Any object of A has a reference to B and is
tasked with updating the index IA of B. B checks IA every time it needs
to interact with the instances of A satisfying the predicate.

5.4.2 Optimizing temporal/local predicates

If we take into consideration the fact that predicates belong to (potentially
hundreds or thousands) entities in a simulation that exhibit similar behav-
iors (ships, bullets, asteroids, etc.) [28], we can expect that some predicates
will exhibit some sort of temporal locality on their values. We can group
those predicates, and their respective blocks of code, and apply an opti-
mization that (i) keeps their code block inactive in a sleeping collection,
and (ii) activate only those blocks of which the predicate has changed. In
general, this would yield a higher performance without asking developers
to write the optimization code themselves.
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5.4.3 Language level integration

The process described above can be automated at the compiler level as
a code transformation, since the index creation and management always
follows the same pattern, and thus the compiler itself can create and up-
date the required data structures. Casanova 2, which is a game develop-
ment oriented language, ensures that variables are only changed through
specific statements; this makes it possible for the Casanova 2 compiler
to identify patterns in code that are suitable for this optimization. The
Casanova 2 compiler optimizes the encapsulated implementation by cre-
ating and maintaining the required indices. This way the code written by
the programmer will keep the benefits of readability and maintainability
that encapsulated code holds, without suffering from loss of performance
or the necessity to break encapsulation to manage the optimization data
structures. In the next session we present the compiler architecture and
the transformation rules.

5.5 implementation details

Most games represent simulations of some sort. A property of simulations
is a certain temporal locality of behaviors [28]. This translates to the fact that
some predicates tend to have a high chance of no value change between
frames.

To reduce the amount of interactions with the supporting data struc-
tures, and to achieve better performance, we optimize those predicates
that exhibit temporal locality, selected based on manual annotations.

We will refer to a predicate on fields that exhibit temporal locality as
Interesting Conditions (ICs). These predicates are stored in a data structure
called the Interesting Condition Data Structure (ICDS).

ICs are used to identify, which blocks of code can be suspended and
resumed with little overhead. We use ICs at compile time to generate code
that is able (through the support of specific data-structure) to suspend and
wake up with little overhead. This is schematically shown in Figure 15.

Figure 15: System Configuration
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5.5.1 Casanova 2 rule

In Casanova 2 the state of a game changes only upon the execution of
a rule. A rule is a block of code acting on a subset of the entity fields
called domain, which has at least one yield statement and zero or more
wait statements. The former updates the value of the fields of an entity,
the latter suspends the evaluation of the rule until its condition is met,
temporally affecting the fields update. The rule body is re-executed once
the end is reached.

An example of a rule that illustrates the wait statement (which specifies
that a shield is repaired when it gets damaged) is the following :

rule Shields =

wait Shields <= 0

wait ShieldReloadTime

yield 100

5.5.2 Compilation - Recognizing ICs in Casanova 2

From here on we will refer to the wait predicate as an IC, since its value
affects the update of an entity with respect to the flow of time.

We also include query conditions in our IC taxonomy. We can think of
a query as an entity containing a list of valid query elements that satisfy the
where condition. An element adds itself to the valid query elements only if
it satisfies the query where condition (this is done by adding to its rules a
rule that starts with a wait on the query condition and ends with a yield

that appends itself to the valid query elements).
An example of a rule with a query (which selects ships that are not

destroyed) is the following:

rule Ships = yield [from s in Ships do

where s.Life > 0

select s]

The effect of a yield is to suspend the execution of the rule for one frame
and to assign the selected query elements to the selected field. To achieve
the optimization as described in the previous section, the compiler uses an
optimization analyzer (composed by a code analyzer and a code generator
as shown in Figure 15(h)), which requires the identification of ICs in code.
This is discussed next.

Casanova 2 allows interaction with external libraries and frameworks
such as the .NET framework. Because the analyzer cannot infer the tempo-
ral behavior of external libraries, we add the restriction that an IC must be
fully dependent on Casanova 2 data types. The restriction is necessary be-
cause the analysis will lead to alterations in the structure of the game code
and field creation, update, and access. Given the informal considerations
above, we introduce the following definitions:

• A suspendable statement is either a wait or a yield;
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• A suspendable rule is a rule containing a suspendable statement. A
suspendable rule is interesting (ISR) if the wait argument is an IC or
a yield on a query.

• An atomic rule is a rule that does not contain suspendable statements.

We now present two algorithms that respectively check if a predicate is
affected by an atomic rule (Algorithm 1) and to build the ICDS (Algorithm
2). For brevity we do not present the procedure to check if a rule is an ISR,
which can be done by simply traversing the syntax tree of the rule body.

Algorithm 1 Check if a predicate is affected by an atomic rule

function Atomic(p)
E is the set of entities.
DFA← ∅
for e ∈ E do
R is the set of rules in e
for r ∈ R do

if r is an atomic rule then
for f ∈ r.domain do
DFA∪ {(e, f)}

end for
end if

end for
end for
D← set of (entity, field) in the predicate p.
return ∃x ∈ D : x ∈ DFA.

end function

Algorithm 2 ICDS construction

function buildICDS( )
ICDS← ∅
E is the set of entities.
for e ∈ E do
R is the set of rules in e
for r ∈ R do

if r is an ISR then
p is the first interesting condition of r
if not Atomic(p) then
ICDS∪ {(e, r.index, r.domain,p)}

end if
end if

end for
end for
return ICDS

end function
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Given a Casanova 2 program, we build the ICDS data structure as fol-
lows: we iterate over every entity; for every rule in each entity, if the rule
is suspendable, interesting and the predicate does not contain fields that
are affected by an atomic rule, we add the entity, the rule index, the rule
domain, and the predicate to the ICDS (See Figure 15(c)).

5.5.3 Run-time efficient sleep/wake-up system

We use the data structure generated by the analyzer to produce two dis-
tinct kinds of rules: atomic rules (see Figure 15(b)) that are run every frame,
and suspendable rules (see Figure 15(g)). Every suspendable rule depends
on an IC. Because of the property of temporal locality of rules that contain
ICs, they do not need to run at every frame. Therefore the game program
should activate and deactivate rules as needed at run time. The game
needs to: (i) activate a suspendable rule when its IC changes value, and
(ii) deactivate a suspendable rule when its IC is not satisfied (i.e., when it
is false). The game keeps a rule active as long as the evaluation of its IC
is true. Suspendable rules differ from classic atomic rules in Casanova 2

since suspendable rules may become inactive, i.e., they do not run during
every update in the game loop.

We define the Object Set (OBS) as the set of pairs made of an instance
of an entity and its field, that appear as arguments in an IC. Information
used to build an OBS is collected by using the ICDS. The idea behind
the optimization is that, whenever the field of an element of OBS changes
during the game loop (see Figure 15(f)), we activate the corresponding
Interesting Suspendable Rule (ISR) R by triggering it (see Figure 15(e)).

We implement the previous behavior by means of dictionaries that keep
track of the dependencies among OBS and R. We use dictionaries in this
implementation since they exhibit the best asymptotic complexity with
respect to the following operations: check, add, remove, and iterate. From
now on we will refer to one of these dictionaries as a Dictionary of Entity-
Predicates (DEP).

We use the static information from the ICDS (see Figure 15(c)) to refer
to the appropriate dictionary, based on the shape of the IC, to generate
unique names for dictionaries. For every field in the predicate, we combine
the name of the type of the object containing the field, the name of the field
itself, the entity containing the ISR, and the ISR index.

As key we use a pair made of the reference to the object containing the
field of the IC and the field itself. As value we store a collection of pairs
made of the instance of the entity containing the ISR and the ISR index.
We use a collection because it might be the case that one or more instances
of the same entity type are pending on the same specific object field. In
the example below the rule in E waits on a field X in the world, and the
world contains a collection of instances of E. When X changes, all the rules
of each instance of E waiting for X must be resumed.

world W =
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X : int

L : List<E>

rule X =

wait 10

yield X + 1

...

entity E =

...

rule Y =

wait world.X % 2 = 0

...

An entry of the dictionary in the example would be (world,X), (L[0],rule

Y).

5.5.4 Suspendable rules instantiate, destroy, and update

In order to maintain the suspendable rules we identify three stages that
represent the life cycle of a suspendable rule:

• On creation: when we instantiate an element of which a field ap-
pears in one of the OBS pairs, we use the instance and the field itself
as a key to populate all its DEPs with an empty collection as value.
When we instantiate an entity of which rules are targeted by an IC,
we add the pair made of the entity instance and each targeted rule
as a value in its DEPs;

• On destroy: when an instance appears either as a value or a key in
one of DEPs, we remove all the occurrences of the instance in DEPs;

• On update: when a field of an IC changes we notify the entities
pending on it. After generating the IC data structure, we can safely
refer to the dictionaries relying on the fact that the generated code is
sound and will not produce errors at run-time. As a consequence of
a notification, the ISRs involved in the notification will be activated
during the next frame (if they were inactive). We add them to a
collection representing the active rules of the entity containing the
involved ISRs (see Figure 15(d)). We group instances of the same
target type into the same collection to achieve better performance
(we iterate the active rules all at the same time per type instead of
iterating them while iterating each entity). We store a collection in
the world that contains per entity all the suspended rules that are
run during a game iteration.

Rules in Casanova 2 are translated at compile time into a series of
switches without nesting within functions that return void. ISRs return
Done when the evaluation of their IC is false (stay inactive) or Working

when the evaluation of their IC is true (go active) or we are still busy
with the execution of the block after the IC. When a suspendable rule gets
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suspended, i.e., its evaluation returns Done, we simply remove it from the
active rules collection (see Figure 15(a)).

5.5.5 Query interpretation

We transform a query into semantically equivalent code where every en-
tity appearing in the from expression (source) adds or removes itself from
an index stored in the entity containing the query (target). We add or re-
move a source entity in the target index only if the condition is true. This
is done by generating a rule that waits for the condition to be true in the
target entity. Applying our optimization to queries means that we do not
need to iterate conditions every frame: we keep the rule suspended until
the condition changes its value.

5.5.6 Examples

In the following we present three code snippets, and discuss briefly how
they are interpreted by the aforementioned approach.

example 1 The first snippet below, a suspended rule update, presents
the entity E, which contains a rule that waits until the condition C be-
come true and a rule that updates C every five seconds. C is an interesting
condition and changes only occasionally, thus the associated rule, which
updates F, can benefit from optimization.

entity E =

F : T

C : bool

rule F =

wait C

B

rule C =

wait 5.0f

yield not C

example 2 The second snippet, an atomic rule update, behaves simi-
larly to the previous one, except that C changes every frame. In this case
C is an interesting condition, but the rule that changes F will not benefit
from the optimization as C changes constantly.

entity E =

F : T

C : bool

rule F =

wait C

B

rule C = yield not C
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example 3 In the third snippet, a suspended query rule update, F is
updated by selecting those elements in Elems (a collection of elements of
type S) that satisfy a condition C. C is a field in S which changes every five
seconds.

entity E =

F : [T]

Elems : [S]

rule F =

[for e in Elems do

where e.C

select e]

entity S =

C : bool

rule C =

wait 5.0f

yield not C

Our compiler analyses the query above so as to generate a rule in S that
adds this to the collection Elem in F, but only when the condition C is
true. If the value contained in C exhibits some temporal locality then the
compiler will optimize the new generated rule so as to check the value of
C only when C is updated.

entity E =

F : [T]

Elems : [S]

entity S =

ref SourceE : E

C : bool

rule SourceE.F =

wait C

yield this @ SourceE.F

5.6 summary

Game developers often have to choose between maintainability of their
code and speed of execution, a choice that more often than not flavours
speed over maintainability. By using encapsulation, game code may be
written in a maintainable way, but compilation of encapsulated code in
general-purpose languages often leads to slower games. We proposed a
solution to the loss of performance in encapsulated programs using au-
tomated optimization at compile-time. In this chapter, we presented an
implementation of this solution in the Casanova 2 language. In Section 7.2
an evaluation of Casanova 2 is provided both in terms of performance and
compactness of game code.
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D E S I G N I N G G A M E S W I T H C A S A N O VA 2

In this chapter we discuss how to design and make games in Casanova
2. We begin with an introduction of the basis ingredients for making
games in Casanova 2 (Section 6.1). These ingredients are meant to intro-
duce the fundamental elements that are necessary when designing a game
in Casanova 2. We then use these elements to describe a general design
for building real-time strategy games (Section 6.2). Eventually, we use this
design to implement a concrete real-time strategy game (Section 6.3).

6.1 casanova 2 games basis ingredients

Casanova 2 is a language designed to capture common aspects of video
games by providing domain specific constructs. By composing these con-
structs it is possible to encode different programs for different video games.

The space of encodable programs is gigantic in scope, and a program-
ming language typically narrows this scope by coming up with a limited
amount of constructs and their combinations. This narrowing function
of programming languages is needed to make the problem of encoding
programs tractable in practice by human programmers, but of course it
comes at a cost. While some programs become easy and clear to express
in a given language, many more programs cannot be encoded easily and
sometimes cannot be encoded at all. A language such as Casanova 2 covers
well the expression of some specific programs, but does so at the expense
of others.

We now turn our attention to informally estimating what sort of nar-
rowing function is performed by Casanova 2 on the domain of encodable
programs. This means identifying the idioms that Casanova 2 proposes
and implicitly tries to enforce. These idioms encompass all those programs
and functionalities that are “easy to write”. The collection of these idioms
defines a path of least resistance for making games in Casanova 2, leading
to fundamental design guidelines of games built with the language. The
idiom of Casanova 2 is based on the fundamental concepts of entities, at-
tributes, and rules. Entities and attributes represent the static structure of
a game, i.e., the rigid elements of a game that do not change during its life
time. Rules represent the dynamic parts of a game, i.e., the moving parts
of a game that continuously change during its life time.

6.1.1 Entities

In Casanova 2, the scene of a game, which is made up of a structured col-
lection of elements, is captured by the so-called game entities. Game entities
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are always grouped into a graph structure, the entry point of which is an
entity called worldEntity. We can think of the worldEntity as the entry
point of a game, which contains all the visible and abstract elements of
the game. Visible entities are the concrete parts of the game, which typi-
cally appear in the early stages of the game design. Among these visible
entities we can find entities such as a soldier, a rock, a car. Abstract enti-
ties are those elements in a game that we typically cannot see, since they
work in the background. For example, an abstract entity might be used to
perform some background operation, such as a battle entity instantiated
to referee a fight between two players. Abstract entities are less intuitive
than the visible ones, since they might not be explicitly part of the design
itself.

In the following code listing we introduce a game, which is made of an
outer container Galaxy (the root of this game structure), a visible Player

entity, a visible Planet entity, and an abstract Link entity, which will be
used to connect two different planets (in this case a player can travel the
galaxy only through links).

worldEntity Galaxy = {

...

}

entity Player = {

...

}

entity Planet = {

...

}

entity Link = {

...

}

6.1.2 Attributes

Every entity is made of a series of characterizing attributes that specify
how data is stored. When an entity is instantiated, space is reserved in
memory to store the values of its attributes. The values of the attributes of
an entity are called state of the entity. The state of the game is then the union
of all states of all entities populating the game.

Every attribute can either be a primitive value, such as a number, or a
reference to a derived type, such as a Casanova 2 entity or an external im-
ported class. Primitive types are typically atomic, whereas derived types
are compositions of other types.

When referencing a Casanova 2 entity, the developer must distinguish
whether the attribute is a foreign or a primary reference. Primary refer-
ences represent the “is composed of” relationship, whereas foreign refer-
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ences represent the “knows about” relationship. This distinction is impor-
tant for the compiler, to avoid an entity to be updated more than once per
frame in the presence of cyclical references, and for the developer, to distin-
guish dependencies and structure. By default all attributes in Casanova 2

are primary. If a developer wants to declare an attribute as foreign then he
has to add the keyword ref next to the attributes’ name. As in the database
literature [31], a foreign reference is used to declare a weak link between
two entities, whereas a primary reference is used to distinguish unam-
biguously an entity from another. For example the position of a planet is
primary, whereas its owner could be foreign, since a planet can be owner-
less.

Attributes are the only way in Casanova 2 to simulate containment of
entities (if B is logically contained in A, then A must have an attribute
of type B). Moreover, by default every entity (except for the world en-
tity) has a foreign and implicit attribute that references the world entity,
since referencing the world entity explicitly is not possible in Casanova 2.
This constraint enforces the meaning of the world entity, which represents
something intrinsic and always available in the game to every other entity.

In the following code listing we continue building upon the example
given in the previous section to show how attributes can be used to deter-
mine the structure of entities and their logical organization. In this exam-
ple the player(Player), the collection of available planets ([Planet]), and
the collection of the allowed links between planets are all stored in the
Galaxy world entity.

Every planet has at least an optional Owner, a Name, and a Position.
When conquered, a planet changes its owner, to reference the player who
just conquered it. Note that Owner in Planet is marked as ref, which
means that Owner is a foreign attribute, thus is just used to establish the
link between the player and the planet, because the owner is not a part of
the planet itself.

Every link is directed and connects two planets by two foreign refer-
ences, each per planet.

worldEntity Galaxy = {

MainPlayer : Player

Planets : [Planet]

Link : [Link]

...

}

entity Player = {

Name : string

...

}

entity Planet = {

ref Owner : Option<Player>

Position : Vector3

Name : string
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...

}

worldEntity Link = {

ref From : Planet

ref To : Planet

...

}

As for entities, attributes not only capture visible aspects of a game,
but also the invisible or abstract ones. An example of a visible aspect of a
game, which is captured by an attribute, is the number of current lives of
a player. The number of current lives of a player is typically displayed on
the screen and stored inside the players entity.

...

entity Player = {

Lives : int

...

}

Another example of a game aspect captured by an attribute, but this
time abstract, is the time it takes for a player’s ship to move from one
planet (CurrentPlanet) to another (Destination), after the engine is started
(when EngineStarted is true). In this case, the attribute (TimeLeftToArrive)
is an abstract concept, internal to the ship, meant to internally simulate the
travelling time.

...

entity Ship = {

EngineStarted : bool

TimeLeftToArrive : float

...

ref Destination : Option<Planet>

ref CurrentPlanet : Planet

...

}

6.1.3 Rules

So far we discussed the capturing of game elements, by means of entities,
and how to fill them with data, by means of attributes. Without any sort
of dynamic logic the game state will never change, thus it would keep the
same values for ever. But a game is a dynamic system where all entities
move, and interact with each other. Thus, to achieve such dynamism we
need to change the state of the entities populating the game.

In Casanova 2, the state of an entity can only be changed by means of a
rule. Indeed, rules are the only machinery able to perform the dynamics
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of a game. Every rule belongs to one instance of a game entity, and is
defined inside the entity declaration of such instance. Thus, the moment
an instance disappears from the game state, the associated rules will stop
affecting the game state. A rule has a limited effect, which means that it
can change limited portions of the game state. Indeed, when defining a
rule we must also declare what attributes of what entities are affected by
the rule.

The dynamics of a rule are expressible via a block of code, which can
be executed either atomically, or discretely.

When atomic, the code of a rule is executed all at once without interrup-
tions. Continuous rules capture those aspects of a game that are always
true and cannot be interrupted, such as gravity, or the current financial
value of a city in a city simulation game.

In the previous example, we could define a rule that applies contin-
uously a velocity to the ship’s position. In this case the rule affects the
Position attribute of its instance (our ship) by applying, every frame, the
current Velocity.

...

entity Ship = {

...

Position : Vector3

Velocity : Vector3

rule Position = yield Position + Velocity * dt

...

}

When discrete, the flow of a rule is not continuous. Thus, it can be inter-
rupted, for example to wait for an external condition to happen. Discrete
rules capture those aspects of a game that takes a long time and vari-
ous real-time decisions to complete, and thus need intermediate steps, the
completion time of which may be unknown or might take some time, to be
completed such as spawning an entity, a timer, or behaviors that require
synchronization between two different entities.

Be means of discrete rules we are able to define a rule that waits for the
ship to have a targeted planet, and once the engine is started it sets up the
velocity and the arrival timer. Once the ship is arrived the timer and the
velocity are set to zero. Note the second discrete rule, in the following code
listing, which is working in strict synchronization with the first one. This
rule keeps decreasing the arrival timer by dt whenever the arrival timer
is greater than zero (this rule is actually simulating a countdown behav-
ior). Without this rule, the first discrete rule would end up in a starvation
situation.

...

entity Ship = {

EngineStarted : bool

TimeLeftToArrive : float
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ref Destination : Option<Planet>

ref CurrentPlanet : Planet

Velocity : Vector3

rule TimeLeftToArrive, Velocity =

wait EngineStarted && Destination.IsSome

yield GetTime(Destination.Value, CurrentPlanet),

GetVelocity(Destination.Value, CurrentPlanet)

wait TimeLeftToArrive < 0

yield 0, Vector3.zero

rule TimeLeftToArrive =

wait TimeLeftToArrive > 0

yield TimeLeftToArrive - dt

...

}

So far we have seen the fundamental idioms that compose any Casanova
2 game. By composing them and following the good practices suggested
above, we can build different kinds of games. In order to show the quality
of our idioms and their generality in practice, we now show a concrete
example of a game design captured by means of our Casanova 2 idioms.
More precisely, we will discuss the real-time-strategy (RTS) game genre,
and will provide a concrete example of its implementation.

6.2 building rts games in casanova 2

In the video game industry real time strategy (RTS) games are one of the
most popular genre [25]. Moreover, RTS games are used as frameworks
for many different kinds of serious scenarios, such AI simulations [20],
simplified military simulations [19], and learning [82].

Thus, because of its relevance, especially for the serious games scenario,
in this section we will focus our attention on the development of games
belonging to this genre in Casanova 2.

We will use this section to show to what extent the idioms presented in
the previous section are good at capturing complex game designs. We will
first discuss a general taxonomy for RTS games (Section 6.2.1) and show
how Casanova 2 idioms cover such taxonomy (Section 6.2.2). Then we will
use the implemented taxonomy to build a concrete game (Section 6.3).

The game discussed in this section is based on the design of an already
existing video game called Galaxy Wars, a real-time space strategy game.
This design of such game is discussed in Section 6.3.
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6.2.1 An analysis of RTS games

Implementing an RTS requires writing code for all of the common game el-
ements such as units, battles, movement, production, resources gathering,
statistics, etc.

We identify the common game elements of an RTS by mean of a tax-
onomy [1]. In this paper a design pattern which we call RAA1 (resource,
actors, action) is introduced for representing RTS’. In particular the design
effectively describes any RTS game in terms of:

• Resource, which is any kind of game statistic. A statistic might repre-
sent a numerical value of a battle, or the cost to deploy a unit, etc.

• Actor, which is any kind of game element that contains resources.
We distinguish different entities by their resources and actions.

• Action, which describes an interaction, is used to describe the flow
of resources among entities.

Whereas the definition of action given above covers generic types of inter-
actions (like the attack of a ship, or the percentage of construction) special
attention should be given to the specific sorts of actions that are common
to all RTS games. We identified these special actions in terms of: creation,
deletion, and strategy update:

• Creation An entity is created after some conditions in the game world
are met. A condition could be for example the player who decides
to create a fleet to attack an enemy player, an automated spawner
that after a certain amount of time creates a unit, etc. Furthermore,
the creation of an entity typically consumes some game resources
of the player. If the resources are not enough then creation will be
postponed or not allowed at all.

• Deletion Analogous to creation, an entity is deleted after some condi-
tions in the game are met. A condition could be for example during a
battle the life of the entity is lower or equal to zero. Entities removed
from the game world are not able to interact with other entities.

• Strategy update During the life time of an entity it often happens in
an RTS that the entity changes its behavior. For example a resource
gatherer unit mainly collects resources, but if necessary it can also
attack; a fleet moving around the world might eventually end up
in the local fleets of a planet or take part in a battle. All these ac-
tions differ from each other, indeed their logics affect different sets
of resources even though the entity remains the same.

1 In the original manuscript this taxonomy is called REA [1], but to avoid ambiguity with
the definitions of Casanova 2, we will refer to resources as resources, entities as actors,
and actions as actions.
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Next, we discuss how express the just introduced taxonomy in the
Casanova 2 language.

6.2.2 Abstracting RTS games in Casanova 2

In this section we show how Casanova 2 can implement the RAA pattern,
and also extend it with the special actions (CDU): creation, deletion, and
strategy update. More specifically, for each element of this pattern we
will provide an abstraction that captures it by means of some Casanova 2

constructs.

6.2.2.1 Resources

Resources can be modelled as a Casanova 2 entity with no rules, and
a field for each of the resources used in the RAA pattern. In a game we
might have different resource entities for different groups of resources. We
define a resource entity by first defining its name ResourceName and then
by listing the resources contained in it. A resource in Casanova is a field
and it is defined as a tuple Resource * Type where the first item refers to
the field name while the latter refers to the field type. In the following code
listing we show a generalized description for a generic resource entity.

entity ResourcesName =

R1 : T1
R2 : T2
...

Rn : Tn

6.2.2.2 Actors

RAA entities can be modelled directly as Casanova entities. An actor will
contain the Resources (of type ResourcesName) and a series of rules that
will act as the constant, mutable, and threshold actions of RAA.

entity Actor =

Resources : ResourcesName

//constant actions

//mutable actions

//threshold actions

6.2.2.3 Actions

Following the RAA pattern, we divide the actions into 3 categories: (i) con-
stant transfer, (ii) mutable transfer, and (iii) threshold transfer. We model
RAA transfers as rules in Casanova.

An action in RAA simply connects a source and a target. In Casanova
the source is the action/rule container while the target is an entity con-
taining a field that refers to the source. The target checks the source ref-
erence whenever it needs to interact with it. More specifically, the source
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resources are read by the target actor periodically to locally update their
fields. The resources to transfer generated by actions are stored inside the
source entity of the same actor. We refer to the resources to transfer as
Transfers in Casanova. The definition of the actions will be shown in the
following items.

• Constant transfer A constant transfer simply adds the resources of
the source actor to the resources of the target. The following rule,
which is contained in the source actor, updates the Transfers when-
ever a condition is met, restrictions is a predicate that specifies
a condition to apply the action. The rule waits one frame, to ensure
that the target actor reads the change, before resetting the Transfers.

enity SourceActor =

Resources : ResourcesName

...

rule Resources.Transfers =

wait restrictions

yield Some(some_resources)

yield None

Every time some Transfers are produced the target actor reads them
and updates its resources accordingly. We use the same restriction

as in the source entity to ensure that the generated Transfers belong
to that specific target instance. We assume for brevity that we have a
+ operator for the entity Resources, which behaves like a vector sum,
to be used by the aggregate function sum in the query.

enity TargetActor =

Resources : ResourcesName

ref Source : SourceActor

...

rule Resources =

wait Source.Transfers.IsSome & restrictions

yield Resources + Source.Transfers.Value

• Mutable transfer In the mutable transfer the resources are moved
from the source to the target. A transfer can be also negative in
RAA. In case of negative transfers we simply swap the logic so the
source implement the behavior of the target and vice-versa. The
rule of the mutable transfer behaves almost the same as for the
continuous transfer. The only difference is that in the source to-
gether with setting the Transfers by an amount some_resources

we also remove the same some_resources from the source resources.
Again, we assume for brevity that we have a - operator for the en-
tity Resources, which behaves like a vector difference, to be used by
the aggregate function diff in the query. In the following we use a
Resources\{Transfers}; this is shortcut to say select all the attributes
in Resources which are not in Transfers.
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enity SourceActor =

Resources : ResourcesName

...

rule Resources.Transfers, Resources\{Transfers} =

wait restrictions

yield Some(some_resources), Resources\{Transfers} -

some_resource

yield None

• Threshold transfer The threshold transfer is a constant or a mu-
table transfer that executes the resources transfer, as in the exam-
ples above, until a certain threshold_condition is satisfied. Once we
meet the threshold_condition a series of output values are yielded
and then reset. For this kind of action we need to extend the source
entity definition with additional fields to store the output of the rule.

enity SourceActor =

Resources : ResourcesName

Output0 : Option<T0>

Output1 : Option<T1>

...

Outputn : Option<Tn>

...

rule Resources.Transfers, Output0, ..., Outputn =

.| threshold_condition ->

yield None, Some value0, ..., Some valuen
yield None, None, ..., None

.| _ ->

wait restrictions

yield Some(some_resources), Output0, ..., Outputn
yield None, Output0, ..., Outputn

6.2.2.4 Creation

Creation of an entity always follows some event. In Casanova we can com-
bine the creation expression with action. This is allowed since inside a
rule in Casanova statements are run imperatively. The following shows a
generalization for the creation of an object after an action is run. An entity
of type SomeEntity is spawned after an action is run.

enity SourceActor =

OutputObject : [SomeEntity]

...

rule Resources.Transfers, SomeObject =

// an action

yield Resources.Transfers, [new SomeEntity(some_parameters)]
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6.2.2.5 Deletion

If an instance O is about to get destroyed, all instances I’s that share
some logic with O must be notified that O is about to get destroyed. An
instance of I knows that O is about to get destroyed when O is moved into
a special field called DestroyedO. O is moved into DestroyedO for a cer-
tain amount of time before we reset the DestroyedO field. In the following
code SourceActor contains, besides the usual fields, also a reference to an
object O of type Object and the DestroyedO, which is an option of type
Object. Below, Option<T> is either one T, or none. It is a safer alternative
to nullable values, coming from the world of functional programming.

enity SourceActor =

ref DestroyedO : Option<Object>

O : Option<Object>

...

rule O, DestroyedO =

wait restrictions

let acc = O

yield None, Some acc

6.2.2.6 Strategy update

An entity moves according to some logic. In this case we can apply a
constant transfer to for example update an entity position according to its
velocity. An entity might change its behavior according to some conditions.
For example a fleet might change from travelling to attacking. This kind
of behavior might resemble the strategy pattern and in Casanova we im-
plement it by explicitly moving the moving object from a container of type
F into an other container of type T. T and F share some information like
physical information, graphics, etc. but differ in terms of behavior. We can
generalize the movement behavior by combining the above actions. We
start with the definition of an entity MovingActor which is an entity that
moves the position of its instance according to its velocity.

enity MovingActor =

Resources : ResourcesName

rule Resources.Position = yield Resources.Position +

Resources.Velocity * dt

//.. other rules and fields

An entity ActionActor is an entity that shares some structure with the
MovingActor entity (for example the position or the velocity) but imple-
ments different rules.

enity ActionActor =

Resources : ResourcesName

rule Resources.Position = // move around a target for example

rule Resources.Life = // remove life if the entity is hit

//.. other rules and fields
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A SourceActor is an entity that contains among its fields a MovingActor

and an ActionActor field. SourceActor combines the actions described
above so that when an entity of type MovingActor needs to behave like an
ActionActor we use the deletion pattern to move the MovingActor into a
temporary location, so as to give time to notify all the entities, and then
we assign it to ActionActor. The code below shows this solution.

enity SourceActor =

AActor : Option<ActionActor>

ref AActorToDestroy : Option<ActionActor>

MActor : Option<MovingActor>

rule AActor, AActorToDestroy = // deletion logic code

rule MActor =

wait AActorToDestroy.IsSome

yield Some(new MActor(AActorToDestroy.Value.Resources))

Next, we show how the just described Casanova 2 model effectively
expresses an RTS. We do so by introducing a concrete case study and then
its implementation in Casanova 2, which uses the just described model of
an RTS game.

6.3 implementation of a case study

We now implement a strategy game based on an already existing strategy
game called Galaxy Wars game by means of the RAA pattern and the
Casanova 2 language.

Galaxy wars (GW) is an RTS game published in 2012 inspired by the
popular board game Risk. Galaxy wars has been used as a case study
in related research [63]. The gameplay revolves around strategic choices,
where timing, battles, and resource management are key elements to pre-
vail against the opponents. The elements of Galaxy Wars that follow the
RAA pattern are: fleet, planet, statistic, and link. Resources are statistics, the
actors are fleets, planets, and links. The possible actions are movement, fight,
and upgrade. In GW most of the entities are static. An actor that can be
created and deleted is fleet. A fleet is spawned after a player decides to
send some units to a planet. A fleet is disposed after either it has reached
its destination, or it has lost a battle. Moreover, the fleet actor is the only
actor which might change its strategy/behavior during its lifetime (a fleet
can either travel along a link or fight in a battle).

With the following code, which is complete, we wish to illustrate how
little code is needed to implement such a game in Casanova 2, and how
generic such code can be2.

2 The complete working version of the this game can be found at https://github.com/

vs-team/casanova-mk2/blob/master/Unity/Tutorials/-GalaxyWars/Assets/World.cnv,
or can be requested to the author. Note that to run this game the Unity3D framework
must be installed in the computer

https://github.com/vs-team/casanova-mk2/blob/master/Unity/Tutorials/- Galaxy Wars/Assets/World.cnv
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Tutorials/- Galaxy Wars/Assets/World.cnv
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6.3.1 The world entity

We begin by defining the structure of the world entity. The world contains
the collection of Planets in the map, the collection of Links connecting
the planets, the collection of Players, and a Controller that manages the
input controller and provides facilities like: the current selected planet,
whether a mouse button is down, etc.

worldEntity GalaxyWars =

Planets : [Planet]

Links : [Link]

Players : [Player]

Controller : Controller

//rules

6.3.2 Resources

The resources are all those elements that influence the game dynamics. In
Galaxy Wars the resources are:

• the players statistics (attack, defense, production, research)

• the planets statistics

• the fleets statistics

• the fleets stationed in a planet

• the fleets moving around the map

We use the properties below to model the statistics of the entities: player,
planet, and fleet. We use these statistics to amplify or reduce the amount
of resources to transfer, thus to alter the impact of the effects of the entity
container.

entity GameStatistics =

Attack : float32

Defence : float32

Production : float32

Research : float32

6.3.3 Actors

Actors, or entities, represent the resource containers in Galaxy Wars. The
entities in Galaxy Wars are:

• Planet which represents the container of stationed fleets. Each planet
has its own statistics. Statistics affect: the attack and velocity of outgo-
ing fleets, the local production of fleets, and the defense capabilities
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• Link which is a directed connection between two planets. Links are
used by fleets to move around the map

• Fleet which represents the armies of a player. A fleet is made up of
ships, and statistics are assigned to every fleet. A fleet might behave
differently depending on its current task. Therefore, we distinguish
two different kinds of fleet, each of which inherits a base fleet and is
able to accomplish a specific task. The kind of fleets that we identi-
fied are:

– AttackingFleet, which is a fleet capable of carrying out fighting
tasks;

– AttackingFleetToMerge, which represents a special attacking
fleet which has just conquered a planet and thus has to be
added to the planet stationary fleets (together with the other
allied attacking fleets who participated in the battle);

– TravelingFleet, which represents a fleet traveling along a link;

– LandingFleet, which represents a special traveling fleet which
is about to land on the destination planet;

• Battle which carries out the fighting task on a planet

• Player which is the owner of entities in a game. Every player belongs
to a faction. Factions differ from each other based on their statistics.
During the game, the statistics of a player can be changed by means
of upgrades

6.3.4 Fields

In addition to the resources defined above, additional data fields are used
in every entity to support the internal logic of each entity. In what follows
we go through each entity and for each entity list its fields.

6.3.4.1 Planet

Each planet has its own statistics, the number of stationed fleets, the in-
coming fleets, an owner, a link to a (possible battle), the landing fleets, an
info about whether it is selected, an info about whether it has just been
right-click selected, and its position.

entity Planet =

Statistics : GameStatistic

LocalFleets : int

InboundFleets : [Fleet]

ref Owner : Option<Player>

Battle : Option<Battle>

LandingFleets : [LandingFleet]

Seleted : bool

RightSelected : bool
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Position : Vector3

6.3.4.2 Link

Moreover, its source and destination, a link made up of a collection of
traveling fleets.

entity Link =

ref Source : Planet

ref Destination : Planet

TravellingFleets : [TravellingFleet]

6.3.4.3 Fleet

A Fleet has statistics, the number of ships, a ref to the link on which it is
traveling, an owner, a destroyed flag, and the position.

entity Fleet =

Statistics : GameStatistic

Ships : int

ref Link : Link

ref Owner : Player

Destroyed : bool

Position : Vector3

• AttackingFleet An attacking fleet is a specialized fleet that contains
a ref to the actual fleet and a reference to its battle.

entity AttackingFleet =

ref MyFleet : Fleet

ref MyBattle : Battle

• AttackingFleetToMerge An attacking fleet to merge is a specialized
fleet that contains a ref to the actual fleet and a reference to the
attacking fleet with which it has to join.

entity AttackingFleetToMerge =

ref MyFleet : Fleet

ref FleetToMergeWith : AttackingFleet

• TravelingFleet Is a specialized fleet that contains a reference to the
actual fleet, the destination planet, and the velocity.

entity TravelingFleet =

MyFleet : Fleet

ref Destination : Planet

Velocity : Vector3

• LandingFleet Contains the reference to the actual fleet.

entity LandingFleet =

MyFleet : Fleet
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6.3.4.4 Battle

A battle is made up of the planet where the battle is taking place, a col-
lection of attacking fleets, the losses of the hosting planet, the losses of
the attacking fleets, the just destroyed attacking fleets, and the just arrived
attacking fleets that have to be grouped into the attacking fleets.

entity Battle =

ref MySource : Planet

AttackingFleets : [AttackingFleet]

DefenceLost : Option<int>

AttackLost : Option<int>

FleetsToDestroyNextTurn : [AttackingFleet]

FleetsToMerge : [AttackingFleetToMerge]

6.3.4.5 Player

A player is made of the statistics of its faction and his display name.

entity Player =

Statistics : GameStatistic

Name : string

6.3.5 Actions

Actions are the only way, according to RAA, to exchange resources like
the amount of attacks in a battle, the number of fleets to produce, etc. In
Galaxy Wars we identified three kind of actions: battle, production and
upgrade.

6.3.5.1 Battle

A Battle action involves a planet MySource and a series of AttackingFleets.

• Attack In this design only one selected attacking fleet at a time
can attack MySource, namely the fleet which is at the head of the
AttackingFleets collection. Every few milliseconds damage is com-
puted and stored in the Battle entity. Before computing the amount
of damage, we check that there are still fleets in the AttackingFleets

collection.

entity Battle =

...

rule AttackLost, DefenceLost =

yield None, None

wait 1.0f

if AttackingFleets.Count > 0 then

yield

// amount of losses based on the

// statistics of both the attacking

// fleet and the planet
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The amount of damage represents the damage that has to be applied
to both the selected attacking fleet and the defending planet. This
damage will always be applied since every instance of AttackingFleet
and Planet involved in a battle keeps updating the number of fleets.

entity AttackingFleet =

...

rule MyFleet.Ships =

wait MyBattle.AttackLost.IsSome &&

MyBattle.AttackingFleets.Head = this

yield MyFleet.Ships - MyBattle.AttackLost

entity Planet =

...

rule LocalFleets =

wait Battle.IsSome && Battle.DefenceLost.IsSome

yield LocalFleets - Battle.DefenceLost.Value

• Attacking fleet selection A random selection is used to allow all
attacking fleets to attack the planet.

entity Battle =

...

rule AttackingFleets =

.| AttackingFleets.Count <= 1 => yield AttackingFleets

.| _ =>

wait Random.Range(1.0f, 2.0f)

yield AttackingFleets.Tail @ [AttackingFleets.Head]

• Ownership We change the owner of a planet when at the end of a
battle the attacker list is not empty. When we change the owner we
also update the number of LocalFleets, by adding all the fleets that
share the same new owner and that are attacking the planet.

entity Planet =

...

rule Owner, LocalFleets =

if Battle.IsSome &&

LocalFleets = 0 &&

Battle.AttackingFleets.Count > 0 then

let new_owner = Battle.AttackingFleets.Head.MyFleet.Owner

let fleets_to_add =

Battle.AttackingFleets

.Where(f => f.MyFleet.Owner = new_owner &&

f.MyFleet.Ships > 0)

.sum(f => f.MyFleet.Ships)

yield Some new_owner, fleets_to_add

6.3.5.2 Production

The spawning of a new fleet follows a simple schema: if a battle is ongoing
on a planet then production is interrupted and the planet keeps polling
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the battle in order to update its local fleets; if the planet is neutral (it is not
possessed by any player) then production does not take place; eventually
if the planet is not neutral and there is no ongoing battle then we wait
some time, which depends on the production statistics of both the player
and the planet, and then we add a new fleet to the local fleets.

entity Planet =

...

rule Owner, LocalFleets =

.| Battle.IsSome => yield LocalFleets

.| Owner.IsNone => yield 0

.| _ =>

wait T //time depending on the owner statistics

//and the planet production statistics

yield LocalFleets + 1

6.3.5.3 Upgrade

When the planet is selected and a key associated to an upgrade is pressed,
we: (i) wait some time (depending on various stats), and then (ii) we up-
grade the selected statistic. If the planet is neutral then its statistics are
kept to 1.

entity Planet =

...

rule Statistics.STAT =

.| Owner.IsNone -> yield 1

.| _ ->

wait IsSelected && KeyPressed(STAT_KEY)

wait //time depending on the owner

//and the planet research

yield max(MAX_STAT, Statistics.STAT + 1)

6.3.6 Creation

In Galaxy Wars we create entities when: (i) a battle is about to start, and
(ii) when a fleet is spawned.

6.3.6.1 Battle

On a planet a battle is created either when the planet is neutral and a fleet
is approaching the planet; or the planet is not neutral, there are no battles
ongoing on the planet, and an enemy fleet is approaching the planet.

entity Planet =

...

rule Battle =

let exits_an_enemy_fleet =

LandingFleets.Count = InboundFleets.Count |> not

if (Owner.IsNone && Battle.IsNone && exits_an_enemy_fleet) ||
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(Owner.IsSome && exits_an_enemy_fleet) then

yield Some (new Battle(this))

wait Battle.AttackingFleets.Count <= 0

yield None

6.3.6.2 Fleet

We consume all local fleets of a planet and move them through the link
when the source planet is selected (and its fleets are greater than 0) and
the destination planet is selected as well.

entity Link =

...

rule TravellingFleets, Source.LocalFleets =

wait Source.Selected && Destination.RightSelected &&

Source.Owner.IsSome && Source.Battle.IsNone &&

Source.LocalFleets > 0

yield new TravellingFleet(Destination) :: TravellingFleets, 0

In the following the selection logic of a planet is presented. Note the
function IsMouseOver, which might vary depending on the adopted ren-
dering framework, for example, when using Unity3D IsMouseOver be-
comes a property, which returns a data of type bool, and is exposed by the
proxy attached to the planet. IsMouseOver in this case would be internally
managed and updated by the proxy itself.

entity Planet =

...

rule Selected =

wait Input.GetMouseButtonDown(0) &&

not (Input.GetKey(KeyCode.LeftShift) ||

Input.GetKey(KeyCode.LeftControl))

yield IsMouseOver(Position)

rule RightSelected =

wait Input.GetMouseButtonDown(0) &&

(Input.GetKey(KeyCode.LeftShift) ||

Input.GetKey(KeyCode.LeftControl))

if IsMouseOver(Position) then

yield true

yield false

6.3.7 Deletion

Analogously to creation, in Galaxy Wars the entities which might be dis-
posed during a game are battles and fleets.
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6.3.7.1 Battle

The logic of the deletion of a battle is tightly related to the logic of its
creation. In the previous subsection a battle is disposed only when the
amount of AttackingFleets is equal to 0.

6.3.7.2 Fleet

The general logic of deletion of a fleet is as follows: if the fleet has no
ships then it has to be destroyed. In code, a fleet destroys itself when the
number of its Ships is less or equal to zero.

entity Fleet =

...

rule Destroyed =

wait Ships <= 0

yield true

Fleets can be specialized for fighting, traveling, or landing during their
lifetime.

• Fighting If during a battle the attacker manages to conquer the
planet then all the attacking fleets that share the same owner of the
just conquered planet have to be destroyed.

entity AttackingFleet =

...

rule MyFleet.Destroyed =

wait (MyBattle.MySource.Owner.IsSome &&

MyFleet.Owner = MyBattle.MySource.Owner)

yield true

They are then filtered from the attacking fleets collection and moved
into FleetsToDestroyNextTurn. We move such fleets to destroy in a
different collection so their logic will not affect the logic of the battle.
Fleets to be destroyed stay in the list exactly one frame.

entity Battle =

...

rule FleetsToDestroyNextTurn =

yield

[for f in AttackingFleets do

where (MySource.Owner.IsSome &&

f.MyFleet.Owner = MySource.Owner))

select f]

Fleets that have not managed to conquer the planet, but which have
been destroyed, are filtered from the attacking list collection.

entity Battle =

...

rule AttackingFleets =

yield
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[for f in AttackingFleets do

where (not f.MyFleet.Destroyed) &&

not FleetsToDestroyNextTurn.Contains(f)

select f]

• Landing A landing fleet is a travelling fleet which is about to land
and which owner is the same as its destination planet. In order to
not add twice the ships of the landing fleet to the local fleets of
the destination planet, a landing fleet stays exactly one frame in the
game.

entity LandingFleet

...

rule MyFleet.Destroyed = yield true

New landing fleets are continuously added to the local fleets.

entity Planet

...

rule LocalFleets =

yield LandingFleets.Sum(f => f.MyFleet.Ships) +

LocalFleets

• Traveling When a traveling fleet has reached its destination, the fleet
is automatically filtered by the link.

entity Link =

...

rule TravellingFleets =

yield

[for f in TravellingFleets do

where (f.MyFleet.Destroyed |> not &&

Vector3.Distance(f.MyFleet.Position,

Destination.Position) >

Destination.MinApproachingDist)

select f]

6.3.8 Strategy update

An entity during its life cycle might change its behavior based on its state.
An example of this kind of behavior in Galaxy Wars could be identified
in the fleet entity. For example an attacking fleet behaves different from a
moving fleet. In Casanova 2 we distinguish these two cases by means of
two different entities that share some common properties, but implement
different rules.

6.3.8.1 Inbound Fleets

When a fleet, travelling along a link, is approaching its destination, the
planet has to choose whether to: (i) add the fleet to the planet’s local fleets
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(see production of a planet above), or (ii) add the fleet to a battle. To im-
plement the just described scenario we start with the definition of a buffer
to place in the Planet entity called InboundFleets. The InboundFleets of
a planet represents all fleets that are approaching the planet.

entity Planet =

...

rule InboundFleets =

yield [for l in world.Links do

where (l.Destination = this)

for f in l.TravellingFleets do

where (Vector3.Distance(f.MyFleet.Position, Position) <=

MinApproachingDist)

select f.MyFleet]

InboundFleets acts like a dispatcher. When a fleet enters the InboundFleets
collection, other entities are able to consume it for their internal logic. To
avoid entities to consume twice the same fleet, fleets in InboundFleets

last for one frame before being disposed. When an entity consumes an
inbound fleet it decides what behaviors to apply to the selected fleet. This
is done by assigning the fleet to an other instance, of different type, which
contains the fleet but provides new rules.

6.3.8.2 Attacking fleets to merge

Fleets that come from the same link and that share the same owner have to
be joined. To do so, every enemy inbound fleet that shares the same source
link of a fleet stored in AttackingFleets is selected and converted into an
AttackingFleetToMerge. Eventually all the fleets of type AttackingFleetToMerge
are stored into FleetsToMerge for one frame.

entity Battle =

...

rule FleetsToMerge =

yield

[for i_f in MySource.InboundFleets do

for a_f in AttackingFleets do

where (not a_f.MyFleet.Destroyed &&

i_f.Link = a_f.MyFleet.Link)

select (new AttackingFleetToMerge (i_f, a_f))]

When we create an attacking fleet to merge the reference to the actual
attacking fleet is stored in the FleetToMergeWith of the attacking fleet
to merge. An attacking fleet iterates every frame all the attacking fleets
of its battle and selects those fleets to merge whose FleetToMergeWith

is the attacking fleet in question. After selection, the number of ships of
the selected attacking fleets to merge is added to the local fleets of the
attacking fleet.

entity AttackingFleet =

...

rule MyFleet.Ships =
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yield MyBattle.FleetsToMerge

.Where(f => f.FleetToMergeWith = this)

.sum(f.MyFleet.Ships)

+ MyFleet.Ships

6.3.8.3 Attacking fleet

A battle entity selects the enemy fleets from the inbound fleets of its
MySource field and adds them to its AttackingFleets every frame, as long
as the selected fleets are not in FleetsToMerge. Before adding the inbound-
ing attacking fleets, every inbound enemy fleet is converted to an attacking
fleet.

entity Battle =

...

rule AttackingFleets =

yield

[for f in MySource.InboundFleets do

let is_ship_to_merge = FleetsToMerge.Contains(f)

where is_ship_to_merge &&

(MySource.Owner.IsNone ||

not (f.Owner = MySource.Owner))

select new AttackingFleet(f, this)]

The moment a fleet becomes an attacking fleet and is added to the AttackingFleet
collection the new attack logic can be run.

6.3.8.4 Landing fleet

Finally, A planet selects all allied fleets among its inbound fleets and adds
them to the LandingFleet collection every frame, so the planet can later
add those fleets to its local fleets. Before adding the inbound allied fleets,
every fleet is converted to an inbound fleet.

entity Planet

...

rule LandingFleets =

if Owner.IsSome then

yield

[for inbound_fleet in InboundFleets do

where (inbound_fleet.Owner = Owner)

select (new LandingFleet(inbound_fleet))]

else yield []

6.4 summary

In this section we showed the idioms of the Casanova 2 language, which
help developers with designing and building games in practice. Moreover,
we presented a detailed and extensive example of the implementation of
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a game in Casanova 2. This game has been used to show not only the im-
plementation details necessary to implement a video game in Casanova 2,
but also to give the reader the idea of how complex behaviors are encoded
in Casanova 2, in an idiomatic fashion.



7
E VA L U AT I O N

This chapter discusses the evaluation we made of Casanova 2 to ensure
that it fulfills the requirements defined in Section 2.3. We present two dif-
ferent kinds of evaluation, one analytical based on the observation of some
objective properties which are not directly measurable, and one quantita-
tive based on direct measurements. We have chosen these two kinds of
evaluation, to measure the attributes of the Casanova 2 language from
different perspectives: (i) the analytical evaluation discusses features of
Casanova 2 related to the experience of using it in practice; whereas (ii)
the quantitative evaluation discusses the attributes of Casanova 2 with re-
spect to other representative languages used for game development, such
as performance and amount of code needed to encode game aspects.

7.1 analytical evaluation

In Section 2.4 we discussed the advantages that result from the adoption
of doman specific languages (DSL’s) for developing video games. How-
ever, the discussion was not centered around Casanova 2. In the following
we get back to those advantages, but this time we present them with spe-
cific focus on Casanova 2. In the following subsections we discuss how the
features provided by the Casanova 2 language realize the advantages in-
troduced in Section 2.4. Specifically, the features that that we will discuss
are: writing, readability, optimization/performance, interoperability, and
genericity.

7.1.1 Ease of writing

A fundamental requirement for a DSL is that it allows the definition of
programs belonging to its domain. Being a DSL, Casanova 2 comes with
a series of domain abstractions that cover typical aspects of game devel-
opment such as the flow of time, suspensions, and rules. Among these
abstractions we find constructs such as wait, rule, world, dt, etc. When
compared to other tools for game development, these Casanova 2 abstrac-
tions offer a clear advantage in terms of development time and compact-
ness. This is due to the fact that Casanova 2 abstractions capture complex
behaviors of games, which by means of a GPL would require considerable
time to be expressed and tested, as most of the constructs of a general
purpose language (GPL) are generic and for general usage. For example,
to implement a rule the body of which is suspendable in Casanova 2 a
developer would write the rule body in an imperative fashion, but with
the possibility to use keywords such as wait that allow the suspension of

113
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statements. In contrast, to simulate a suspendable rule in a GPL, a series
of switches, each expressing the various nested steps, would be necessary.
Suspending a rule by means of these switches would require the devel-
oper to set up by hand how and where to resume the next iteration. Some
GPLs come with higher level constructs and helpers for concurrent behav-
ior, such as coroutines. However, even in this case additional code that
coordinates such mechanisms is necessary. All this code makes the pro-
gram harder to maintain, since lots of spurious aspects must be encoded
which are not directly related to the game design, but are still necessary
to maintain and emulate temporal behaviors.

This lack of noise in the code is visible in different games written in
Casanova 2, examples of which we find in Chapter 6 and in Appendix B.
The measurements allow us to conclude that Casanova 2 offers evident ad-
vantages in terms of development time and compactness of the resulting
game code.

7.1.2 Readability

Being easy to write is not a sufficient requirement for a DSL, since the
development of a game is a dynamic process made up of several phases
in which, before achieving the final goal, the code might change. During
these phases it is important for the code to be readable, in order to be
maintainable. In order to be readable the DSL itself must provide con-
structs, in the shape of domain abstractions, that facilitate this property,
which help developers understand their own code and to map it to the
design elements present in the game.

Indeed, capturing typical aspects of video games with specific language
abstractions, positively affects compactness: by means of one abstraction
we can express many concrete and complex behaviors. Casanova 2 cap-
tures, by means of domain specific abstractions, the typical aspects of
games such as the flow of time, suspensions, and rules.

As a game requires less and less unrelated considerations hard-coded in
the game code, the final game code becomes more readable and maintain-
able. This is due to the fact that when dealing with game code developers
will find more and more considerations (in the form of Casanova 2 instruc-
tions) that are directly mapped to elements present in the game design.

This property is also backed up by the quantitative evaluation carried
our in Section 7.2.3. Moreover, a preliminary experiment to measure the
readability of Casanova 2 code has been carried out during a workshop
session on Casanova 2. A description of the workshop is summarized
in Appendix A. Results of this preliminary work show that Casanova 2

code is readable by senior developers who never developed games using
Casanova 2 before.

In conclusion, Casanova 2 code is highly readable, and therefore main-
tainable. As the quantitative evaluation in Section 7.2.3 will show, this
result holds even when compared to other tools for game development.



7.1 analytical evaluation 115

7.1.3 Optimizations/Performance

A DSL for games that is readable, and allows the definition of compact
programs, should also hide considerations that are not part of the game
design, since such considerations might affect the readability of the code.
In games it is often the case that developers have to consider in their
code non-functional requirements, such as performance, which are not
part of the game design itself. Therefore, a DSL for games should be able to
capture such requirements without the direct intervention of developers,
thus without affecting the readability of the original input code.

Due to the specificity of the application domain and of the provided
Casanova 2 abstractions, the Casanova 2 compiler (as discussed in Chap-
ter 4 and 5) is able to effectively use code analysis techniques and to apply
them to generate code that exhibits fast runtime execution, without the di-
rect intervention of the developer to encode faster algorithms by hand. For
example, by using statements that suspend the execution of blocks of code,
such as wait or yield, the Casanova 2 compiler is able to identify those
parts of the code that need to be suspended, and to use this information
to generate a more efficient (yet equivalent) version.

Another example is provided by the encapsulation optimization dis-
cussed in Chapter 5. This optimization allows developers to write pro-
grams that exhibit high encapsulation without losing performance at run-
time, because of the many messages passed between the different, encap-
sulated, interacting entities in a program. This is possible because the
Casanova 2 compiler transforms the input program into an equivalent
version where a source entity updates directly a target entity, instead of
asking the target entity to update itself with new data from the source en-
tity. As this reduces the number of communications, the overall runtime
performance is improved.

This property has been measured with two scenarios where we com-
pared the performance of Casanova 2 games against the performance
of equivalent implementations, but written with other representative lan-
guages used in game development.

The results of these experiments, which are found in Section 7.2.2, show
that Casanova 2 supports the making of games that exhibit high-performance
at runtime.

7.1.4 Interoperability

Being a DSL does not guarantee the fact that Casanova 2 can tackle all the
aspects of game development, such as rendering, content management, etc.
Casanova 2 should support interoperability in order to be able to delegate
such tasks, which are not integrated in Casanova 2, to existing tools.

Casanova 2 allows interoperability due to the architecture of its compiler.
Specifically, Casanova 2 offers a layered compiler that allows developers
to extend it whenever needed. For example, the last layer transforms the
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intermediate code, generated during the various compilation stages, into
an equivalent version but written in a different language; if a developer
needs to target new engines or platforms, he/she will only need to adapt
the last layer to include the rules of how to translate the intermediate code
into the target language.

The Casanova 2 compiler also allows Casanova 2 programs to interface
with other game engines or frameworks without the necessity of a pre-
defined layer in the compiler that regulates the interaction. This can hap-
pen in two different ways: either by referencing the library directly in the
Casanova 2 game code, or by means of the so-called proxy system. The
proxy system acts as an adapter between the targeted framework and the
Casanova 2 code.

To support this property, and more specifically to show that Casanova 2

can interoperate with external libraries or frameworks, in the following we
show different examples of frameworks that interoperate with Casanova 2

code. The choice of these frameworks is derived from the fact that we want
to show how even if the frameworks implement different architectures, we
can still connect Casanova 2 code to them, since Casanova 2 is framework
independent.

In order to show that Casanova 2 achieves interoperability, in the follow-
ing we show three applications of Casanova 2 with different frameworks:
MonoGame, Unity3D, and Lego mindstorms V3. For all the three exam-
ples we used the proxy system to interface Casanova 2 code with the
external framework.

7.1.4.1 MonoGame

MonoGame is a low-level framework for general game development, which
is nowadays used by many developers. MonoGame is an open source
framework based on XNA (another widely used tool for game develop-
ment, which has been discontinued). It is mainly used for 2D games, and
was the first engine supported in Casanova 2. Among the first applica-
tions made with MonoGame and Casanova 2, we find the first version of
the Dyslexia game (Figure 21a), used as research tool at Tilburg University

As MonoGame comes with its own game loop, the Casanova 2 compiler
processes Casanova 2 code and generates C# code that is later included
in a MonoGame project. Once included, the Casanova 2 game is then run
inside the MonoGame framework. Casanova 2 code then interacts with
MonoGame facilities through the proxy system (see Section 4.3).

7.1.4.2 Unity3D

Dealing only with low-level game engines such as MonoGame by itself
does not guarantee that Casanova 2 is also suitable for interoperating with
more complex and higher-level engines. Therefore, to assess that Casanova
2 is suitable for interoperating with complex and high-level game engines,
we tested Casanova 2 together with the Unity3D engine.
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We chose the Unity3D engine, since it is widely used by the game de-
velopment community, and is becoming a standard for many game devel-
opment contexts. Among the examples of Casanova 2 and Unity3D games
we find all the games discussed in Appendix B, and those implemented in-
ternally within our research team (see Figure 16). The examples in Figure
16 are demonstrations of simulations implemented in Unity3D for demo
purposes. Specifically, the demo in Figure 16a shows how to simulate com-
plex physics in Casanova 2 through an asteroids field simulation, whereas
the demos in Figures 16b and 16c show how to handle the user’s input in
Casanova 2, and eventually the demo in Figure 16d shows an AI control-
ling a patrol’s behavior in Casanova 2.

Figure 16: Some Casanova 2 games internally produced

As Unity3D comes with its own game engine, the Casanova 2 compiler
processes Casanova 2 code and generates C# code that is then run by
the Unity3D engine. Casanova 2 code interacts with Unity3D through the
proxy system, similarly to MonoGame.

7.1.4.3 Lego mindstorms V3

We also explored usages of Casanova 2 with other frameworks that are
not meant for game development such as the Lego mindstorms V3. Lego
mindstorms V3 is not a game engine, but it exhibits similarities to the
game development field, such as concurrency, and manipulation of behav-
iors depending on time. Lego mindstorms is a kit that contains software
and hardware meant to create and customize robots. We successfully man-
aged to run a Casanova 2 program to steer a robot (see Figure 17).

As Lego mindstorms is only meant to be controlled remotely, the Casanova
2 code is run inside a local game loop built ad-hoc by the Casanova 2 com-
piler. Casanova 2 code interacts with the remote elements of the robot
through the proxy system.
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Figure 17: A Casanova 2 running a Lego mindstorms V3 program

From these experiences we conclude that Casanova 2 is suitable for
interoperating with a high variety of front-ends, whether it is low-level
(MonoGame), high-level (Unity3D), or outside the realm of games alto-
gether (Mindstorms).

7.1.5 Genericity

Interoperability by itself does not guarantee that we can actually develop
any possible video game. It is up to the Casanova 2 language to ensure
the possibility to generically build all sorts of games. Indeed, the build-
ing blocks of Casanova 2, i.e., its syntax and semantics, are designed to
support the definition of games regardless of their genre or structure. The
genericity of these building blocks has been assessed by a series of games
made with the Casanova 2 language. In the following we list some of these
games:

• Galaxy wars, a real time strategy game

• Zombie shooter, an “escape the city”, multiplayer shooter game

• Dyslexia, a game for detecting dyslexia in children

• 3D asteroid shooter, a 3D asteroids shooter game

• Contact, a multiplayer game for studying the evolution of language

It is worth noticing that most of the games, and samples, made with the
Casanova 2 language were developed by bachelor students of computer
science, who learned Casanova 2 specifically to produce these games. A
detailed explanation of these games and a discussion of the developers
and their background can be found in Appendix B.

on junior game developers During the year 2016 we tested Casanova
2 usability by asking junior developer to build games with it. These tests,
besides showing us that it is possible to implement different kinds of
games, showed us that the language syntax is mature enough to allow
junior developers with little knowledge of the language to successfully
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build games. Examples of the games built and a description of the devel-
opers’ background can be found in Appendix B.

on senior game developers Moreover, we also made an investiga-
tion on the perceived quality of Casanova 2 by expert game developers.
This experiment, which took the shape of a workshop at the University of
Amsterdam, showed us that while Casanova 2 is missing some important
technological aspects, such as a real-time debugger, it is still usable by
expert developers. Casanova 2 is appreciated by expert developers, and
the perceived advantages of the language overlap with what we expect
to be the strong points of Casanova 2. More details regarding this work-
shop, and the questionnaire we gave to the participants, can be found in
the Appendix A. Due to the relatively low number of participants at the
workshop, it does not make sense to statistically analyze their answers to
the questionnaire we provided, though we can still convey our impression
of their responses.

7.2 quantitative analysis

In this section we discuss the quantitative analyses of attributes of Casanova
2 which are important for game development. We will present such at-
tributes by comparing them against other representative languages used
for game development. The attributes that we will discuss in the following
section are performance and code length. These two attributes are impor-
tant since a game must run fast and at the same time its code should be
compact and readable in order to remain maintainable.

In section 7.2.1, we discuss the set up and criteria used to evaluate
Casanova 2. Sections 7.2.2 and 7.2.3 report on the evaluation of the pro-
gram’s performance and compactness/readability respectively.

7.2.1 Set up and goal of the evaluation scenarios

In evaluating Casanova 2, we consider performance and readability as
most crucial evaluation criteria.

performance Performance is a fundamental indicator of the feasi-
bility of a programming language that needs to be used in a resource-
conscious scenario such as games, since every feature in a game comes
with a series of costs in terms of CPU cycles. As a game starts includ-
ing more and more features, the demands on the CPU increase as well.
As the game grows more complex, eventually the CPU stops being suf-
ficiently powerful to render one frame in the time needed for a smooth
experience. Games are real-time applications, thus high-performance is
required in order to keep the overall game experience immersive. When
high performance is affected negatively, for example, because of the pres-
ence of complex features, the developers have to choose between either
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removing the involved features (or reduce them in effect), or re-factoring
the involved features in order to (if possible) achieve higher-performance.
The first option has an evident negative effect on the game design, since
fewer initial design considerations will appear in the final version of the
game. The second option has as problem that, due to the fact that it is
accompanied by an increase in code size and complexity, maintainability
of the code is affected negatively.

readability Every feature in a game needs to be written by means
of some code. As the number of features increases the code to express
them increases as well. When a language is not suitable to “naturally”
express some features, the amount of code necessary to express them be-
comes very large, since every “hard to express” feature (and each of its
sub-aspects) will require lots of awkward, verbose code. As an immediate
effect of such increase in code size is that game code becomes less readable.
When readability is affected negatively as an immediate effect we have that
maintainability is affected negatively as well. This has an cascading effect
on other important aspects in game development, such as debugging and
adding new features to the game, since they now will become more com-
plex and will take more time to implement. Thus, readability of the code
of a game is an important attribute that has to be watched closely in order
to preserve the feasibility of the game development process.

Ideally what we would like to achieve is a game of which the code is not
only maintainable and compact, but also of high performance. The goal
of this quantitative evaluation is to find whether Casanova 2 allows the
definition of programs that exhibit high performance, and which code is
at the same time readable and concise.

tested languages We have chosen four comparison languages which
represent various development styles and which are all used in practice for
building games. We have chosen a variety of languages which all exhibit
various mixtures of performance and succinctness, with the goal of test-
ing Casanova 2 as a language that captures the useful attributes of these
languages in game development. We have mostly focused on those lan-
guages which are used for building game logic, and we have shied away
from considering languages such as C++, which are used for building en-
gines or libraries [46], as Casanova 2 is not in direct competition with
them and therefore a comparison would be meaningless. Three of the
chosen languages are dynamically typed programming languages: Lua,
JavaScript, and Python, which have as their main selling points simplicity
and immediacy [48]. The fourth chosen language is C# because of its good
performance and relative simplicity when compared to C++.

The four languages mentioned above are all used when discussing the
general performance and code length of Casanova 2 programs (scenario 1).
However, C# is the only language used in the second part of the evaluation
(scenario 2), since it is the only language (among the ones described above)
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that, according to the first part of this evaluation, has a performance profile
comparable to that of Casanova 2.

set up We tested the two evaluation variables of Casanova 2, perfor-
mance and readability, using two different scenarios. In Section 7.2.3 we
discuss the performance results in each of these scenarios, in Section
7.2.2 the readability results. For the two evaluation variables, we compare
Casanova 2 programs with equivalent ones written in other languages.

Scenario 1 simulates a scenario featuring ten thousands patrols mov-
ing in different directions. The number of patrols is large in order to sim-
ulate the crowded scenes of a typical video game. The choice of the patrol
is derived from the fact that patrols offer discrete dynamics, which we
often find in games, such as waiting until the next checkpoint is reached.
Thus, the combination of thousands of entities all performing complex, in-
tertwined, and nested behaviors offer an interesting benchmark scenario
from both perspectives: performance, since a high amount of entities featur-
ing complex interactions stress the CPU , and code length, since defining
complex operations that exhibit nesting behavior can require lots of code
which amount can increase dramatically when the support of the chosen
tool is limited.

Scenario 2 simulates a generic game in which one thousand entities
are spawned every 5 seconds (initially the game starts with 10000 entities).
When spawned every entity stays inactive for a random amount of time
(between 5 and 10 seconds) before getting activated. When activated, the
entity starts moving for a random period of time (between 4 and 8 sec-
onds), and eventually when this time is elapsed the entity gets destroyed.

This simulation is built to get a systematic evaluation of the proposed
approach to the encapsulation optimization discussed in Chapter 4 for
both performance and code length: performance, since a scenario is built to
test the performance of the fast wakeup collection1 (entities stay inactive
for a few seconds before getting activated) against a continuously polling
solution that checks the states changes, and code length, since building such
optimization by hand requires a considerable amount of code, which we
do not find in the game description, that with Casanova 2 comes “for-free”
due to the compiler analysis.

7.2.2 Performance

Performance is a fundamental indicator of the feasibility of a program-
ming language that needs to be used in a resource-conscious scenario such

1 For this evaluation additional conditions are added (with different timers) to each entity, in
order to make the simulation dynamics more articulated and “heavy” in terms of amount
of code to run.
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Table 3: Performance comparison

Language Time per frame

Casanova 2 0.07ms

C# 0.12ms

JavaScript 24.07ms

Lua 20.90ms

Python 20.15ms

as games. In particular, we observe that, in many cases, programming lan-
guages for games offer a difficult either-or choice between simplicity and
performance. In the following, we show how Casanova 2 code can achieve
high runtime performance, by means of a series of evaluations on resource-
consuming game scenarios. We will use the outcome of these evaluations
to compare the performance of Casanova 2 code against the performance
of other representative languages used in game development.

More specifically, in this section we discuss the performance of Casanova
2 by means of two different scenarios. In the first one we show the per-
formance of Casanova 2 and its constructs against other representative
languages used in game development, which we used idiomatically. This
evaluation shows how by translating the bodies of Casanova 2 rules into
the flat state machines introduced in Section 4.2.4.1 we can achieve high-
performance at run-time. The second evaluation presents the performance
gained at runtime by Casanova 2 games when switching on, in the com-
piler, the optimization introduced in Section 5.

7.2.2.1 Scenario 1

In this scenario we made an effort towards implementing the sample by us-
ing coroutines and generators [65] whenever available, in order to express
the game logic in an idiomatic style for each of the tested languages. In
order to compare the language functionality, we are only running the logic
of the game and we do not execute any other unrelated components, such
as the graphics engine, which might otherwise pollute the outcome of our
evaluation. The code samples can be found on [codeplexSource]. For this
first scenario we used Casanova 2 with the compiler introduced in Chapter
4, without the extra optimizations that were introduced in Chapter 5.

results We have generated tens of thousands of entities in a loop that
simulated a hundred thousand frames. This corresponds roughly to half
an hour of play time on a reasonably crowded scene. The results are sum-
marized in Table 3.

As we can see from the table, the performance of Casanova 2 is of the
same order as C#, and is multiple orders of magnitude faster than that of
the scripting languages. In this simple but populated scenario, the lim-
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its of Lua, Python, and JavaScript, deriving from the high cost of dy-
namic lookup, are clearly shown. For example in a statement such as
s.p.x.a.b() there are 4 lookups, each of which will first check the ex-
istence of the attribute, and then proceed to actually dereference the at-
tribute. In addition, all languages idiomatically implement state machines
by means of coroutines and generators. The techniques abundantly use
virtual calls, which add overhead at the expense of performance.

The big advantage of Casanova 2 is that it uses all the static information
available, in order to avoid work at runtime while still offering expressive
and concise constructs. For this reason, code such as yield a, b, c trans-
lates directly into assignments, while retaining higher level semantics.

In Figure 18 a detailed comparison between the code of the Casanova 2

program and the equivalent Python implementation is provided. We chose
only Python for a detailed comparison, because as all three dynamics lan-
guages roughly exhibit similar verbosity and performance. Furthermore
Python shares profiling tools with C# and Casanova 2 via Visual Studio,
therefore a closer performance evaluation is possible.

Every node of the flow graph in Figure 18 represents a computational el-
ement of the running example (for example Patrol Update represents the
code that takes care of calling the rules, or methods in case of Python, that
modify the velocity and the position of the patrol). Moreover, every node
comes with two tables each representing the performance of that specific
computational element in Casanova 2 and Python respectively. Every ta-
ble comes with a series of records each representing various aspects such
as total execution time in seconds, and total percentage of time spent in
this node. Note that each item comes with an inclusive (incl) and exclu-
sive (excl) measure: inclusive means that its amount includes not only the
time spent in the current node, but also the time spent in all the children
of this node; exclusive means that its amount does not include the time
spent in the children of this node, but only the time spent in the current
node. For example in the node Update Patrol consider the CNV table:
18 ms excl represents the total time that the program spent in this node;
7.83% excluded (excl) represents the total percentage time the program
spent in this node; and 53.58% incl represents the total percentage time
the program spent in this node and in its children.

We notice that Casanova 2 is in general faster than Python, due to the
fact that Casanova 2 is compiled whereas Python is interpreted. Thus, op-
timization techniques, such as resolving call addresses at compile time, or
inlining instructions, typical of statically compiled languages, do not ap-
ply to interpreted languages, such as Python. This translates into code that
is generally less performant. Moreover, by adopting flat state machines to
capture interruptible code blocks, note this is possible only because of our
code analysis done at compile time, we avoid the typical overhead deriv-
ing from using design patterns (such as the strategy pattern) for capturing
abstract behavior (such as coroutines). Indeed, in Python, to suspend and
later resume a piece of code, a supporting data structure is necessary in
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the form of a coroutine to emulate this behavior. However, this comes at
a cost, since lots of virtual calls and dynamic dispatching are necessary in
order to maintain the coroutine generic with respect to a concrete imple-
mentation. We can see in Figure 18 the cost of using coroutines in Python
by looking at the node called Next (at the bottom of the figure). This node
takes care of moving the iteration from one coroutine state to another. As
we can see this computational element consumes about 30% of the total
spent time just for switching between one state of the program and an-
other, whereas in Casanova 2 changing from one state to another requires
the program to just set one single integer variable: the next state.

Figure 18: Performance comparison between Casanova 2 (Cnv) and Python (Py).
In the figure, for each operation/processing module, the runtime is
given (in ms), and the percentages of total execution time spent in it, or
in it and in its children, expressed as excl and incl, respectively.

However, being statically compiled does not provide such an obvious
advantage since languages, such as C# still run slow, because of their gen-
erality and incapacity of applying domain specific optimization, such as
the one proposed in Section 4.2.4.1. Indeed, just like in Python, coroutines
in C# use the same philosophy (both are based on the strategy pattern),
which translates into additional resources to maintain and update the data
structures necessary to support the coroutine and therefore allow blocks
of code to suspend.
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In the following we discuss the second scenario, which evaluates the
performance of the optimization over encapsulated code introduced in
Chapter 4.

7.2.2.2 Scenario 2

In the second scenario, we discuss the performance of two compilation
outputs of Casanova 2 against an equivalent implementation in the C# lan-
guage. The first compilation output is generated by the standard Casanova
2 compiler, whereas the second compilation output is generated by an al-
ternative version of the Casanova 2 compiler, which implements the opti-
mization technique introduced in Chapter 4. Moreover, in this evaluation
we also discuss the performance of the two different generated outputs
against an idiomatic, but equivalent, implementation in the C# language.
We also run the code with two different game engines, namely Unity3D
and MonoGame, both using .Net but of different versions. The reason of
this choice is derived from the fact that we want to show the generality
of our optimization, no matter the concrete implementation or framework
running it.

results For each output we measure the time (in milliseconds) that it
takes to fully complete the logic of a single frame (i.e., updating all the
entities in the game). We did not include the time it takes to render the
game screen, since rendering is not affected by our optimization, though
it might affect the performance measure and add unwanted noise.

Table 4 shows the performance results of our scenario. As we can see for
both frameworks (Unity3D and Monogame) the performance of our opti-
mized Casanova 2 code is higher than the one running the non-optimized
version and the idiomatic C# implementation. Using Unity3D the opti-
mized code is one order of magnitude faster with respect to the non-
optimized code. Using MonoGame the optimization is linearly faster. The
difference is due to the implementation of the game loop in the underlying
frameworks.

Table 4: Running time comparison

Platform Language Optimized Performance

Monogame
Casanova 2 No 0.0159 ms

Casanova 2 Yes 0.0098 ms

C# - 0.0147 ms

Unity3D
Casanova 2 No 0.0257 ms

Casanova 2 Yes 0.0085 ms

C# - 0.1642 ms

In Chapter 4 we discussed the preconditions for a condition to become
interesting. This is important, since the data structure supporting our opti-
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mization adds runtime overhead, and thus should only be used when the
overhead is lower than the gained performance. Therefore, all attributes
involved in the condition should exhibit some sort of temporal locality in
order to benefit from our optimization.

Specifically, if the behavior of inappropriately optimized entities is not
coherent with respect to the flow of time (in our case every entity would
get activated too soon), the cost of entering and exiting the data structure
implementing the fast-wake-up mechanism becomes too high, to the point
that the performance gained is less than the costs, and therefore overall
performance. To support this observation, in the following we discuss this
with concrete numbers.

We made a series of variations to our initial scenario, to test the per-
formance of our optimized code with different activation times. The ac-
tivation times that we are going to test are: between 5 and 30 seconds,
between 10 and 30 seconds, and between 15 and 30 seconds. We chose
5 seconds as the lowest activation time, since below this amount the per-
formance of our optimized code is always worse than the non-optimized
code. For this scenario, when activation time is below 5 seconds the con-
dition stops being interesting. Moreover, for every scenario we tested a
different number of initial entities (besides the 1000 entities added every 5

seconds). This increase in number of entities should add some dynamism
to the application, as more entities will interact with the fast-wake-up data
structure. Thus, by means of the Visual Studio profiler we can measure
the costs of interactions between the different game entities and the fast-
wake-up data structure. The initial number of entities in question are: 500,
1000, 3000, and 5000 entities. For this scenario, we used the MonoGame
framework with .Net 4.5.

The results of this scenario are summarized in Figures 7.4, 7.5, 7.6, and
7.7. As we can see the optimized version performs better when the activa-
tion time of each entity is greater than 5 seconds. However, performance
decreases when the scene becomes too crowded.
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When the number of initial entities is greater than 5000 or the minimum
activation time is too low (less than 5 seconds) the number of interactions
with our fast-wake-up data structure becomes too high. After profiling the
code with the above setup, we observed that activating the suspended
entities costs less than 0.1% of the total amount of execution time of the
application. Instead, handling the activated entities requires an increasing
amount of resources.

In our implementation, all activated entities are stored in a dictionary,
to speed up the check of whether an entity is activated or not. However
adding, removing, and iterating the active entities come at a cost. The costs
associated to these operations are: adding costs O(1), but O(N) in case of
a collision or in case we exceed the underlying arrays capacity; removing
costs O(1), but O(N) in case of a collision; and iterating all entities costs
O(N). Thus, the more entities enter or exit the dictionary the higher will
be the chance of a collision, thus the higher will be the costs. In our con-
crete implementation a method called UpdateSuspendedRules takes care of
handling the activated entities, and to deactivate them whenever needed.
In Table 5 we show the impact of the UpdateSuspendedRules method with
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respect to the initial amount of entities and their deactivation time. In this
comparison we also added 1 second of minimum activation time to show
the impact of interacting often with the dictionary.

Table 5: CPU activity of the UpdateSuspendedRules method in Casanova 2.
Minimum
deactivation
time
(seconds)

Percentage of CPU activity in
UpdateSuspendedRules

Initial
amount 500

Initial
amount
5000

1 1.76% 1.97%

5 1.35% 1.67%

10 1.27% 1.43%

15 0.85% 1.32%

As we can see the total percentage of execution time decreases as the
activation time increases and the total amount of initial entities decreases.
Indeed, as the amount of entities interacting with the dictionary decreases
(either because the activation time of the entities is longer, or the number
of entities interacting with our dictionary is less) the performance gets
higher.

We also provide a detailed evaluation of this scenario in Table 6. In this
table we find the exact measures of this evaluation (grouped by initial
amount of entities and their minimum deactivation time). In each cell, on
the lower left we find the total time that the optimized code took to com-
plete the simulation (every simulation takes 2000 frames to finish, with a
dt of 0.016 seconds), whereas on the upper right we find the total time
that it took the non-optimized code to complete the same simulation.

Table 6: Detailed performance evaluation of the same running example run by
Casanova 2 with and without optimization. For all the averages the
amount of squared mean distance is less that 1.0E-3.

Minimum
deactivation
time
(seconds)

Optimization
enabled

Total average execution time (ms)

Initial
amount
500

Initial
amount
1000

Initial
amount
3000

Initial
amount
5000

5 yes 0.629 0.693 0.973 1.365

5 no 0.641 0.695 0.995 1.347

10 yes 0.689 0.738 1.080 1.465

10 no 0.689 0.759 1.087 1.49

15 yes 0.718 0.780 1.148 1.618

15 no 0.740 0.819 1.198 1.644
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As we can see the performance of our optimization, when the deacti-
vation time is below 5 seconds, is almost the same as the non-optimized
version. This is due to the high number of interactions between the active
entities and the fast-wake-up data structure. However, above 5 seconds
the performance of the optimized solution is greater than the standard
Casanova 2 solution. This is due to the fact that entities stay deactivated
for a longer period of time, and so their rules are not uselessly polled at
every frame.

Our solution still exhibits good performance when the total number of
entities interacting with the fast-wake-up data structure is greater than
5000. Moreover, we observe that, above this number, the performance of
our solution decreases, due to accumulated costs of entering and exiting
the fast-wake-up data structure. However, in a game it is difficult to find
5000 entities exhibiting temporal locality behavior. Most of game entities
in a game are dynamic, and our optimization is meant for those that ex-
hibit continuous and stable behavior. Thus, choosing the rules that exhibit
some temporal locality, is a delicate task that should be derived from in-
game observations. In the future we could delegate this task to a tool that
analyses the game entities’ behavior.

We also experimented for different settings the optimized implementa-
tion of the running example to test possible limitations of the data struc-
ture supporting our optimization. More precisely, we tried to fix the initial
size of our dictionary to 10000 to reduce the number of possible collisions.
Moreover, we also changed the fast-wake-up collection from dictionary to
a sorted dictionary so as to have a constant addition and deletion time of
log(N). However, in both scenarios we did not observe significant changes
in the results.

7.2.3 Readability

Building a video game requires encoding its design into a concrete pro-
gram by means of some programming language. Every program allows
many different encodings which all correctly represent the original design.
These encodings vary in terms of variables names, structure of algorithms,
structure of classes, etc. These encodings, while equivalent in the sense of
all implementing the same design, are not all equal. When we consider
readilibity in this evaluation, we first focus on how they range along a
spectrum of complexity: some are simpler, while others are more com-
plex. Developers always try to achieve those encodings that are optimal
in terms of simplicity in order to keep the encoding simple and therefore
cheap to maintain and extend. However, measuring whether an encoding
is optimal is not possible in a fully mechanical, objective way. For exam-
ple, Kolmogorov complexity is the common approach to discuss program
complexity, but there exists no way to determine Kolmogorov complexity
for practical programs [59].
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Therefore, we are forced to resort to a series of heuristics to define some
measure that we believe correlates with simplicity.

Ideally, a language should allow the definition of compact programs
with the lowest amount of visible information that is not related to the
problem, and with the highest amount of high-level information that is
affine to the problem.

In this evaluation we used (i) the number of lines of a program as a
metric to measure its length, but also (ii) the number of syntagms (i.e.
the number of distinct keywords and operators) necessary to write the
program [35].

i We counted the number of lines of each source implementing our
running examples, thereby assessing the size of the implementation,
with the assumption that a bigger sample corresponds to more com-
plexity.

ii We counted the syntagms of each source implementing our run-
ning examples, with the assumption that a higher count corresponds
to more knowledge required from the developer. Indeed, mental
lookups of the sort “what does this operator do?” add overhead to
our mind, and this makes the program harder to understand.

When combining these two metrics we can effectively measure the com-
plexity of a program: a program is readable when we have both few lines
of code and a low number of syntagms.

It must be noted that some languages, which look compact at a first
sight, come with a series of constructs that are difficult to manipulate and
hard to understand. Indeed, when pushed to its limits, succinctness can
damage readability of a programming language by ending up with the
so-called “line noise” [44]. So, even if a program turns out to be short, this
is not a guarantee that it is also readable.

In the following we show the results of our scenarios. We will assess
the readability of the two scenarios introduced previously (Section 7.2.1).
In the first one we show the readability of Casanova 2 and its constructs
against other representative languages used in game development, which
we used idiomatically. This evaluation shows how domain specific syn-
tax and semantics can help keep code compact. The second evaluation
presents the readability gained by Casanova 2 programs, against an id-
iomatic implementation in C#, by adopting the compiler optimization in-
troduced in Chapter 5.

7.2.3.1 Scenario 1

For this evaluation we have taken the running example used in the first sce-
nario of the performance evaluation section. The purpose of this scenario
is to test how discrete and continuous dynamics in Casanova 2 can be ex-
pressed naturally within a block of code without any sort of adjustment,
nor the need for special constructs. This is the reason why in Casanova 2
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Table 7: Syntax comparison between the program written in Casanova 2 and the
others written with the other tested languages.

Language Syntagms Lines of code Total words

Casanova 2 47 31 104

C# 61 69 269

JavaScript 52 41 257

Lua 47 45 249

Python 50 34 214

we find constructs for the manipulation of the flow of time in the program,
which are natively and fully integrated in the language itself. This results
in coherent syntax and semantics that can naturally express continuous
and discrete dynamics. In the following we show the results of this choice
and its impact in terms of readability and maintainability of Casanova 2

programs.

results The results of this test are summarized in Table 7. As we can
see, Casanova 2 resulted in significantly less lines of code and syntagms,
especially with respect to C# (the only other language with comparable
high performance).

These positive results for the Casanova 2 language are only possible
because every its construct is designed to capture typical aspects of game
development. For example, a rule (which represents a behavior of which
the execution is repeated every time we reach the end of its block) can be
suspended at any moment during a game. Now consider the following
code in Casanova 2, which represents a suspendable rule containing two
nested for loops:

rule ... =

for x in [1..10] do

wait 10<s>

let z = random(0, 10)

for y in [1..z] do

...

In the code above we have a for loop that at every iteration waits 10

seconds before recurring with the inner for loop.
When comparing the implementation above to others made with lan-

guages that do not natively support suspension of code, the resulting
source will include low-level considerations, such as state machines, that
will negatively affect the complexity and thus the readability of the code.

Indeed, if we would express the above code in C# then we would need
a state machine capable of expressing the for loops, and the wait behav-
ior. Moreover, since in the code above the variable z, which is a random
number between 0 and 10, is used after its declaration in the inner for
loop statement, the state machine would need a mechanism to store and
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propagate the intermediate generated variables, and make them available
to the various blocks, or cases, of the state machine. As one can imagine
this solution is not trivial to implement, and the reason is derived from
the fact that C# was not designed to tackle this kind of issue as part of its
idioms.

The other tested languages, such as Lua, come close to the code above,
as Table 7 shows. However, these languages trade their generality for a
loss of performance, since they translate the code above into a series of dy-
namic bindings represented with data structures each requiring a runtime
representation (each binding binds the current block of instructions with
its continuation).

7.2.3.2 Scenario 2

For this evaluation we have measured the lines of code and syntagms of
the second scenario discussed in the performance evaluation.

More specifically, in this section we compare the code written in Casanova
2 against the output of the compiler, which is written in C#, and an equiva-
lent version written in C# that does not include the optimization described
in Chapter 5. For this scenario, it is important to focus on how much code
a developer would write by hand in order to achieve comparable perfor-
mance as in the optimized version, when such optimization is not sup-
ported natively by the language.

results Table 8 shows the code length for each implementation. Casanova
2 game code needs about half the lines of code compared to the idiomatic
C# implementation. The intermediate code that the Casanova 2 compiler
creates (which is C# code) is considerably longer due to the presence of
support data structures. With increasing code complexity, we may expect
the original Casanova 2 code to remain compact, while the generated code
will increase rapidly in size, with additional data structures and associ-
ated logic code. Note that the intermediate code that does not include the
optimization discussed in Chapter 5 is longer than the idiomatic C# imple-
mentation. This is due the presence of the state machines that the compiler
generates to represent the rules bodies. Indeed, each rule is translated into
a switch, for which the different cases capture the various blocks of a rule.
Moreover, every construct in Casanova 2 that manipulates the execution
flow of a rule is mapped to a series of constructs, such as return or goto,
in the intermediate code.

As we can see from the results in the above table, the number of lines of
code belonging to the Casanova 2 version that includes the optimization
discussed in Chapter 5 is considerably longer than the other implemen-
tations. This is due to the fact that the optimization itself comes with a
series of additional data structures, of which the manipulation is not triv-
ial. Indeed, at every game iteration the world entity (after traversing all
the entities) has to go through all the suspended rules that are active in
that frame, and to run them all. When, after the execution of an active
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Table 8: Code lines comparison for a single player game

Original language Generated language Optimized code Lines

Casanova 2 - - 45

Casanova 2 C# No 139

Casanova 2 C# Yes 327

C# - - 88

rule, the rule is done with its execution (i.e., it needs to get deactivated)
the world entity will also be tasked to remove it from the active rules list.

Moreover, when an attribute is involved in an interesting condition, even
more additional code is necessary. This code has to deal with the possi-
ble activation of the rules that contain interesting conditions that depend
on the attribute in question. This gives an idea of how much more code
should be directly written in C# to support such an optimization. No ad-
ditional code needs to be included, since the compiler will add it automat-
ically, as discussed in Chapter 5.

7.3 summary

In this chapter we evaluated Casanova 2 with respect to the run-time per-
formance and readability of its programs. For each of these evaluations we
compared Casanova 2 against other tools for game development. Each of
these tools is selected based on: (i) its relevance for the evaluation, and (ii)
its representativeness in the community of video games development. The
collected evidence shows that Casanova 2 is better than other representa-
tive languages used in game development in both readability and runtime
performance.

We also discussed an analytical evaluation of Casanova 2, where we
showed that Casanova 2 implements all the requirements, introduced in
Section 2.3, that define the qualities that a language for game development
should have. Moreover, as Casanova 2 is meant to work with any tool
for game development, we presented a series of case studies where we
showed Casanova 2 working with other third-party tools.

Casanova 2 works properly with other frameworks, is compact and
maintainable, and has a compiler that produces fast runtime game code.
In conclusion, Casanova 2 is a suitable language for game development
that satisfies all requirements introduced in Section 2.4.
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C O N C L U S I O N

This chapter provides a conclusive answer to the problem statement and
research questions introduced in Section 1.4. Section 8.1 discusses the
three research questions: what are the requirements for an ideal game de-
velopment tool, to what extent a language can capture such requirements,
and how such language performs in the reality of game development; Sec-
tion 8.2 answers the problem statement, which discusses to what extent
a tool that is built specifically for the domain of games can improve the
process of making video games; Section 8.3 discusses future work; Section
8.4 adds the final remarks for this thesis.

8.1 answer to research questions

The three research questions stated in Section 1.4 are now answered, in
Sections 8.1.1, 8.1.2, and 8.1.3 respectively.

8.1.1 Game development tools requirements

The first research question reads:

Research question 1: What are the requirements that an ideal tool
for game development needs to meet?

The answer to the first research question is derived from Chapter 2.
Specifically, in Section 2.3 we introduced a series of advantages and disad-
vantages which an ideal tool for game development needs to meet. Such
advantages and disadvantages are derived from an analysis of the tools
used in game development and from their evolution. In conclusion, the
answer to the first research question is that an ideal tool for game devel-
opment should:

• come with features to speed up the development process and to
contain the complexity of game code,

• present its features in a way tuned to the domain of games, to make
game code readable and therefore more maintainable,

• come with a series of already built-in strategies for increasing game
code runtime performance, without the direct intervention of the
developer,

• be able to interoperate with already existing tools and libraries avail-
able on the market, since some of these tools might come with closed
solutions to some specific problems, and

135
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• be able to build generic game genres, without any preference to a
specific one.

At the same time such an ideal tool should avoid disadvantages that are
inherent to several other game development tools. These disadvantages,
which could be seen as antagonistic to the advantages above, are identi-
fied as: verbosity of programs, lack of portability, steepness of learning
curve, lack of customization, low-performance, and gluing frameworks
and libraries to compensate for a lack of fundamental design concepts, or
constructs, in the adopted tool.

8.1.2 Implementing game development tools requirements

The second research question reads:

Research question 2: To what extent can a programming language
for game development be built, which meets the identified require-
ments?

The answer to the second research question is derived from Chapters
2, 3, 4, 5, and 6. In Section 2 we identified DSL’s as a solution to the lim-
itation imposed by GPL’s used in game development tools, in order to
tackle all those issues that are not (properly) tackled natively. In Chapter
3 we presented a concrete DSL called Casanova 2, which is aimed at re-
ducing the complexity of making games. Casanova 2 comes with its own
syntax and semantics that are designed around the common aspects of the
video games domain. In Chapter 4 we presented a compiler that, together
with ensuring structural correctness of Casanova 2 games, also translates
Casanova 2 games code into executable programs with fast runtime per-
formance. In Chapter 5 we further explored the opportunities offered by
the underlying domain of video games to improve the performance of
Casanova 2 games. In Chapter 6 we showed what a complete game looks
like in Casanova 2. In particular, we showed that when embracing the
requirements discussed in Section 8.1.1 at language level, the resulting
games code is simple, compact, and readable.

8.1.3 Evaluation of the DSL

The third research question reads:

Research question 3: How does such a programming language per-
form in terms of expressiveness, speed of execution, and maintain-
ability, when compared to commonly-used tools for game develop-
ment?

The answer to the third research question is given in Chapter 7. In this
chapter we discussed the features and attributes of the Casanova 2 lan-
guage by means of two different evaluations: a qualitative and a quantita-
tive one, respectively.
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In the qualitative evaluation we discussed the requirements specified in
Section 8.1.1. For each of these requirements, we discussed how Casanova
2 accomplishes them by means of practical examples. In the quantita-
tive evaluation we discussed the performance and readability attributes
of Casanova 2 by a quantitative analysis, and we compared them with
those produced by other representative tools used in game development.
Casanova 2 was shown to outperform all compared tools and languages
with respect to runtime performance, and compactness of its program’s
code.

8.2 answer to problem statement

The problem statement reads:

Problem statement: To what extent can a tool be built, which makes
the complexities of general game development manageable for small
and medium-sized teams of developers?

Our main goal in this thesis is to reduce the complexity of game code.
We introduced domain specific abstractions for game development, and built
programming tools that implement those abstractions. These abstractions assist
developers in reaching their goals by substantially reducing development
efforts, with a special benefit for smaller development teams that work
on serious games. We wrap these abstractions in the concrete shape of a
programming language.

A programming language suited for game development should always
keep in mind the requirements discussed in Section 8.1.1. In this thesis
we propose a programming language, called Casanova 2, which is aimed
at achieving such requirements. Casanova 2 is a language specifically de-
signed for building computer games, and it offers a solution to the high
development costs and complexity of games.

Being tailored to the specific domain of games makes Casanova 2 capa-
ble of expressing properties that are common to the design of games, such
as time flow, suspensions, games entities, etc. As an immediate result the
resulting Casanova 2 code is similar to how we think of a game from a
mathematical perspective (see Section 2.1). Moreover, Casanova 2 guaran-
tees non-functional requirements (performance being the central one) as
it comes with a series of built-in optimizations that do not require the
developers’ direct intervention.

Casanova 2 does not trade its advantages for expressive power. The
language is not bound to specific genres, and is shown to be effective in
the hands of a broad spectrum of developers.

We have shown these properties by means of a mixture of extensive
benchmarks which compare Casanova 2 sources with equivalent sources
written in typical programming languages, but also by means of actual
game development activities performed by different developers, from ju-
nior to senior.
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We consider Casanova 2 particularly suitable for smaller development
teams, which are willing to trade some of flexibility and execution speed
of general programming languages, such as C#, for speed and ease of
development and maintainability of code.

Therefore, in answer to the problem statement, we state that Casanova 2

is a suitable language for game development that offers a significant step
forward for developers in achieving a more efficient process of translating
a game design into an actual, working game.

8.3 future work

Casanova 2 comes with a series of features that have proven to be conve-
nient for video game developers. However, a modern language for game
development, such as Casanova 2, should also be flexible (which entails
being useful in a broad range of contexts) and extensible (adaptable be-
yond the limitations of its original design). In order to be flexible and
extensible, it is important that the compiler architecture is constructed in
a way that is open to changes and extensions. This is not entirely the case
for the current version of the Casanova 2 compiler.

Therefore, we are focusing our research efforts on the definition of a
meta-compiler that supports the automatic creation of a compiler for any
of a general class of programming languages. Preliminary results show
that it is possible to implement an equivalent version of the Casanova 2

compiler in the meta-compiler, with less effort and lines of code when
compared to the traditional hard-coded implementation.

This meta-compiler, once finished will allow us to experiment with
adding new features to Casanova 2, without the need to make time-consuming
changes to the existing compiler. Such features encompass networking ca-
pabilities, a dedicated debugger, and compilation towards different target
languages.

Of these new features, networking capabilities are, in our view, the most
important, and should be added to Casanova 2 soon. We already did some
preliminary experiments in this regard, of which the results are reported
in Appendix C.

8.4 the future of game development

Where once games were meant almost exclusively for entertainment, nowa-
days the applicability of games has expanded beyond that, and increas-
ingly professionals who are not game developers themselves see a need or
use for the development of a game for a particular purpose within their
own knowledge domain. As such professionals usually do not have the
budget to let their envisioned games be developed by dedicated game
developers, they are in need of a game development approach that pro-
vides them with the ability to develop all kinds of games with compact,
readable, and maintainable code that translates into fast executables. For
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this purpose, general programming languages are unsuitable as they are
hard to learn and use, while most game development tools are limited to
particular genres and produce relatively slow executables.

This is where domain-specific languages come in. A good DSL for game
development provides a programming paradigm that is tuned to the de-
velopment of games, allowing the developer to focus on the high-level
game concepts (regardless of the game genre), safe in the knowledge that
the DSL itself will take care of the concepts common to most games, and
will produce fast executables. Casanova 2 is such a DSL.

Considering that games are ubiquitous nowadays, and are increasingly
seen as playing a role in training, education, research, and social interac-
tion, there is a clear need for Casanova 2 and its ilk. The existence of such
a language may help in lifting the application of games in a variety of
domains beyond the level of mere aspiration.
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C A S A N O VA 2 Q U E S T I O N N A I R E

In this appendix chapter we discuss the experience gathered from the first
workshop on Casanova 2. The workshop was held during the GameOn
conference in Amsterdam on December 2015. A group of about 12 devel-
opers attended the workshop, which took about 3 hours. During the work-
shop the participants were invited to build themselves some samples in
Casanova 2. All the materials used for workshop were provided through
an on-line repository on Github (https://github.com/vs-team/casanova-
mk2/wiki/Workshop).

a.1 questions

At the end of workshop the participants attend a short survey. The goal of
this survey was to understand the background of the participants, to un-
derstand whether the participants appreciated Casanova 2, and what are
advantages and disadvantages of Casanova 2 observed by the participants.

In the following we provide the questions of this survey, and for each
question we provide a motivation on why we chose it:

Q1 : What is the best feature of Casanova?

This open question is meant to investigate the observed and under-
stood the advantages of Casanova 2 by the participant. It is also
meant to investigate whether the observed and understood advan-
tages coincide (or at least partially overlap) with the features that
characterize Casanova 2.

Q2 : What is missing?

This open question is meant to investigate the observed missing fea-
tures of the Casanova 2. Answers deriving from this question might
help us with choosing future features to implement.

Q3 : Would you consider using Casanova in your daily work?

This closed question is meant to understand whether the observed,
and understood, features of Casanova 2 are convincing enough to
make new developers choosing for it.

Q3.1 : If yes, for what kind of games?

This closed question is meant to investigate possible and future
applications of Casanova 2.

Q4 : What computer languages do you use professionally?
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This open question is meant to investigate the professional develop-
ing background of the participant.

Q5 : Which systems or tools have you used to make games?

This open question is meant to investigate the professional gaming
background of the participant.

Q6 : What does the following code do? (answer: the color toggles be-
tween red and green ever second)

This closed question is meant to understand whether the participant
understood the basic mechanics of the Casanova 2 (including its syn-
tax).

Q7 : What does the following code do? (when the cube is selected
it get scaled up until a countdown is over. Then the cube is de-
stroyed)

This closed question is more difficult than the previous one, and is
meant to strengthen the answer of the previous question.

a.2 grouped answers

In the following the grouped answers given by the participants are pro-
vided.

Q1 : What is the best feature of Casanova?

– Apparent simplification of threaded code execution

– Effective coding

– The coroutine like way of coding

– Interruptible statements

– Wait + condition seems elegant

– Abstraction of time behavior

– Casanova constructs more closely match a designer’s intention

– A good environment for game development

Q2 : What is missing?

– Debugger

– Too little info to answer

– Too early to sya

– More precise parse errors notification

– Automatic generation of proxies for my custom entities

– A back end that compiles into C#/JavaScript/Python

– Do not know
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Q3 : Would you consider using Casanova in your daily work?

Q3.1 : If yes, for what kind of games?

– Language education games

– Educational games

– Education on game programming

– Puzzle learning for learning math

Q4 : What computer languages do you use professionally?

Q5 : Which systems or tools have you used to make games?

Q6 : What does the following code do? (answer: the color toggles be-
tween red and green ever second)



146 casanova 2 questionnaire

Q7 : What does the following code do? (when the cube is selected
it get scaled up until a countdown is over. Then the cube is de-
stroyed)

results As a result, it turns out that Casanova 2 is appreciated by the
experts who attended the workshop, although most of the participants
would like to spend more time experimenting with the language. More-
over, all participants understood the advantages derived from the use of
Casanova 2 such as compactness, readability, etc.

a.3 discussion

Casanova 2 is appreciated by expert game developers (see questionnaire),
who not only understood the advantages deriving from using Casanova
2, but also would use Casanova 2 in their everyday and professional lives.
This questionnaire was not interesting to us only from the point of view
of the appreciation level of Casanova 2; it also showed us that some im-
port aspects are missing and felt by the expert developer. We are already
planning to implement some of these aspects, such as a debugging facility,
in on of the next development stages of Casanova 2.
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C A S A N O VA 2 G A M E S

In this appendix we show how Casanova 2 works in real life. More specif-
ically, we will show, and discuss, how Casanova 2 behaves when used by
new developers who are not confident with it. We will do so by asking
developers with no knowledge of Casanova 2 to build video games (our
running examples). Moreover, by means of these games we wish to show
how Casanova 2 provides a framework that is suitable for building video
games not limited to specific genres.

In the following, we discuss these games and for each of them we will
discuss its design, the technological choices made by the developers, and
eventually our final observations.

b.1 groups and games description

Every group is composed of third year bachelor students in computer
science and who chose Casanova 2 as subject to work with

b.1.1 Group 1

The first group is made of 4 students from the Rotterdam University of
Applied Sciences. Before starting their work, the students received a short
training on Casanova 2. After the tutorial, the students worked on a total
of 2 games. The genres of games the students worked on are a strategy
game, and a first person shooter game.

b.1.1.1 Game 1 - a strategy game

The first game the students made is a strategy games, inspired by the open
source and online game Galaxy Wars1. In Figure 19 you find a screenshot
of the game made by the students.

technological choices The students used Casanova 2 for devel-
oping the logic of the game, whereas Unity3D for: including the game
contents, and rendering.

our observations The game took the students a few weeks to be
completed. When compared to the original game (the original Galaxy
Wars logic was written in F#), the Casanova 2 code made by the students
is more compact in terms of lines number.

1 http://galaxywarsthegame.com/
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(a) A strategy game made by a group of
students

Figure 19: A strategy game made by a group of students

results The main mechanics we find in the original Galaxy Wars, ex-
pect for the networking (which is not supported in Casanova 2 yet), can
be found also in the version made by the students. In conclusion, we can
say that it is possible for novice programmers to make strategy games in
Casanova 2.

b.1.1.2 Game 2 - a shooter game

The second game the students made, right after they previous one, is a first
person shooter. The game belongs to the survival genre, where a group of
players try to survive in a city overrun by enemy zombies by escaping
from it on a virtual car.

technological choices As for the previous game, the students
chose Casanova 2 for developing the logic of the game, and Unity3D for:
including the game contents, and renderings. Moreover, the game was
developed so to be played inside a virtual reality lab (supplied with 360

degree projection), in order to let all the players play together in the same
room. To simulate the weapons used in game, wired hand gestures con-
trollers were used; while for driving the car the students used a USB racing
wheel.

our observations As observed before, when mastered, Casanova 2

speeds up the development process of a game. It took a short time (about
7 weeks) to implement the main functionalities of the game. Thus, leaving
the students plenty of time for designing and implementing new addi-
tional features to include in the game. The main difficulties, we observed,
encountered by the students are connecting and testing the external con-
trollers and connecting the game to the virtual reality lab.

Moreover, it worth to acknowledge the fact that for this specific game,
little technical support was provided. The students, all by themselves: de-
signed and implemented the game, found suitable external controllers and
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connected them to Casanova 2, connected the game to the augmented re-
ality lab, etc.

results The game was completed in about 2 month and a half, and
tested in the virtual reality laboratory together with all the external de-
vices (steering wheel and gestures controllers). In conclusion, we can say
that it is possible for novice programmers to make first person shooter
games in Casanova 2.

b.1.2 Group 2

The second group is made of one student from Inholland University of
Applied Sciences. As for Group 1, before starting with making games, the
student received a short training on Casanova 2. After the tutorial, the
students worked on a series of games, for a total of 6 games (5 of which
are more simulations than fully fledged games), to run on a web browser.

b.1.2.1 Game 1 - tutorials

The games the student made vary from each other, since they are meant as
examples for a tutorial in Casanova 2. The samples and games the student
made are: a ship flying in the open space, a basket ball field simulation,
a snowflake field, a flocking system, a series of controllable and moving
patrols, and eventually an asteroids shooter game. In Figure 20 you find
the just introduced samples.

Each sample comes with a predefined learning goal that a new user,
who is starting to study Casanova 2, would get:

• Moving ship, introduces the basics of Casanova 2;

• Basket ball field, teaches about interoperability with third-party tools;

• Snowflake field, introduces intermediate aspects of Casanova 2, such
as how to manipulate entities in collections;

• Flocking, introduces advanced aspects of Casanova 2, such as how
to build a physics system;

• Controllable patrols, introduces advanced integration aspects of Casanova
2, such as how to capture and propagate a click on a game element
from Unity3D to Casanova 2;

• Asteroids shooter, sums up the acquired knowledge so far and puts
it into the development of a fully fledged game that includes (to-
gether with the game dynamics) a menu system, audio effects, a
scoring system, etc.
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(a) Moving ship (b) Basket ball field (c) Snowflake field

(d) Flocking (e) Controllable patrols (f) Asteroids shooter game

Figure 20: A series of tutorials made by a student during his internship

technological choices As for the previous group, the student chose
Casanova 2 for developing the logic of the samples, and Unity3D for: in-
cluding the game contents, renderings, and running the simulations and
games on a web browser.

our observations In about three months the student managed to
implement, and comment (for the tutorial) all the 6 samples and games.
As noticed with the previous group, the language was not difficult to
use; most of the difficulties encountered by the student were related to
other kinds of complexities, not related to the language itself, such as
understanding the physics behind the flocking simulation.

results All the samples were completed on time and are fully working
and available via web browser on https://github.com/vs-team/casanova-
mk2/wiki/Casanova Samples and Demos. In conclusion, we can say that
it is possible for novice programmers to implement samples for tutorials
on Casanova 2 and a space shooter.

b.2 discussion

This collection of empirical evidences give a strong indication that Casanova
2 is suitable for making at least the games shown in this appendix chap-
ter: first person shooter games, strategy games, space shooter games, and
tutorial samples. Moreover, as observed previously, Casanova 2 code is
compact and is understandable by novice developers to the point that
novice developers managed in short time to implement different kinds of
games.

Casanova 2 has been used also for making a series of applications used
as part of teaching and research projects. A notable application is a game
for detecting dyslexia in children (see Figure 21a). Another notable ap-
plication is a game for studying the evolution of languages (see Figure
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(a) A game for detecting dyslexia in
children

(b) A game for studying the evolu-
tion of a language

Figure 21: Some Casanova 2 games

21b). Both games have been used as a tool for research and features some
articulated animations and state machines.

The collected results so far are preliminary (more running examples and
users are needed to strengthen our observations), however these results
are already interesting and promising.
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C A S A N O VA 2 N E T W O R K I N G , A P R E L I M I N A RY W O R K

In this appendix chapter we introduce the basic concepts of the implemen-
tation of multiplayer game development for Casanova 2. This implemen-
tation aims to relieve the programmer of the complexity of hard-coding
the network implementation for an online game, while preserving game
code compactness and maintainability. Typical networking implementa-
tions break encapsulation as what to send over the network is dependent
on the game logic, thus small changes in the game structure could affect
heavily the networking layer.

We show that code analysis is required to generate the appropriate net-
work primitives to send and receive data. Finally, we present a simple
multiplayer game to show a concrete example.

c.1 introduction

Adding multi-player support to games is a highly desirable feature. By
letting players interact with each other, new forms of gameplay, coopera-
tion, and competition emerge without requiring any additional design of
game mechanics [43]. This allows a game to remain fresh and playable,
even after the single player content has been exhausted. For example, con-
sider any modern AAA (AAA refers to games with the highest develop-
ment budgets[103]) game such as Halo 4. After months since its initial
release, most players have exhausted the single player, narrative-driven
campaign. Nevertheless the game remains heavily in use thanks to multi-
player modes, which in effect extended the life of the game significantly.
This phenomenon is even more evident in games such as World of Warcraft
or EVE, where multiplayer is the only modality of play and there is no
single-player experience.

challenges Multi-player support in games is a very expensive piece
of software to build. Multiplayer games are under strong pressure to have
very good performance[26]. Performance is both in terms of CPU time, and
in bandwidth used. Also, games need to be very robust with respect to
transmission delays, packets lost, or even clients disconnected. To make
matters worse, players often behave erratically. It is widespread practice
among players to leave a competitive game as soon as their defeat is appar-
ent (a phenomenon so common to even have its own name: “rage quitting”
[54]), or to try to abuse the game and its technical flaws to gain advantages
or to disrupt the experience of others.

Networking code reuse is quite low across titles and projects. This comes
from the fact that the requirements of every game vary significantly: from
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turn-based games that only need to synchronize the game world every
few seconds, and where latency is not a big issue, to first-person-shooter
games where prediction mechanisms are needed to ensure the smooth
movement of synchronized entities, to real-time-strategy games where
thousands of units on the screen all need to be synchronized across game
instances [85]. In short, previous effort is substantially inaccessible for new
titles. Encapsulation suffers from this ad-hoc nature of the implementation
of the networking layer in multiplayer games. Indeed managing the infor-
mation about game updates over a network requires each game entity to
interface the game logic code with network connection and socket objects,
data transmission method calls such as send and receive, and support
data structures to manage traffic and track the status of common proto-
cols. This happens because each game entity must provide the following
functionality in order to work in a multiplayer game:

• Update the logic in the fashion of a singleplayer counterpart.

• Choose what data is necessary to send over the network and create
the message containing this information.

• Choose what data can be lost and what data must always be received
by the other clients.

• Periodically check if incoming messages contain information that
needs to be read and to specific updates.

Combining these requirements together within the same entity breaks
encapsulation because now the logic of the entity and lots of spurious
details only relevant to the networking implementation are mixed together,
resulting in a highly noisy program. Maintenance then becomes very hard,
as every change in the game logic must also be reflected in the networking
implementation.

existing approaches Networking in games is usually built with ei-
ther very low-level or very high-level mechanisms. Very low-level mech-
anisms are based on manually sending streams of bytes and serializing
only the essential bits of the game world, usually incrementally, on un-
reliable channels (UDP). This coding process is highly expensive because
building by hand such a low-level protocol is difficult to get right, and
debugging subtle protocol mismatches, transmission errors, etc. will take
lots of development resources. Low-level mechanisms must also be very
robust, making the task even harder.

High-level protocols such as RDP, reflection-based serialization, or frame-
work such as Pastry, netty.io, can also be used. These methods greatly
simplify networking code, but are rarely used in complex games and sce-
narios. The requirements of performance mean that many high-level pro-
tocols or mechanisms are insufficient, either because they are too slow
computationally (especially when the rely on reflection or events) or be-
cause they transmit too much data across the network.
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c.1.1 Motivation

To avoid the problems of both existing approaches, we propose a mid-
dle ground. We observe that networking fundamental abstractions upon
which the actual code and protocols are built do not vary substantially be-
tween games, even though the code that needs to be written to implement
them does. The similarity comes from the fact that the ways to serialize,
synchronize, and predict the behaviour of entities are relatively standard
and described according to a limited series of general ideas. The difference,
on the other hand, comes from the fact that low-level protocols need to be
adapted to the specific structure of the game world and the data structures
that make it up. Until now, common primitives have not been syntactically
and semantically captured inside existing domain-specific languages for
game development[15]. Using the right level of abstraction, these general
patterns of networking can be captured, while leaving full customization
power in the hand of the developer (to apply such primitives to any kind
of game).

c.1.2 Related works

In the following we discuss some existing networking tools used in game
development and we highlight some issues that arise from their use.

the real time framework (rtf) RTF [42] is a middleware built for
C++ to relieve the programmer from dealing with data compression. It is
more flexible than solutions based on game engines or hand-made imple-
mentations, since it automates the process of data transmission. Moreover,
it supports distributed server management. Unfortunately, this solution
has several flaws:

• All entities must inherit from the class Local and the semantics of the
position is pre-determined, often clashing with rendering or physics;

• Platform independence requires that the programmer uses RTF prim-
itive types;

• Data transmission automation requires that all game entities inherit
the class Serializable;

• Being a middleware, RTF is not aware of what games are going to
use it (every game comes with different data structures). Thus, the
developer is tasked to include in his code also logic to update the
RTF layer, in order to keep the game updated over the network.

network scripting language (nsl) NSL [80] provides a language
extension based on a send-receive mechanism. Moreover it provides a
built-in client side prediction (a feature missing in existing highly concur-
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rent and distributed languages such as Stackless Python [96] and Erlang
[7]), which is periodically corrected by the server.

unreal engine/unity engine Unreal Engine [99] and Unity En-
gine [98] are commercial game engines supporting networking. Both Unity
and Unreal Engine use a client-server approach. In Unreal Engine the
server contains the “true” game state, and the clients contain a “dirty”
copy, which is validated periodically. It is possible to define entities (ac-
tors in Unreal Engine jargon) that are replicated on the clients. Whenever
a replicated actor changes on the server, this change is also reflected on the
clients. Additional customization can be achieved through Remote proce-
dure calls (RPC’s) of three kinds:

• The function is called on the server and executed on the client. This is
used for game element that do not affect gameplay, such as creating
a particle effect when a weapon is fired;

• The function is called on the client and executed on the server. This is
useful for events that affect the other clients and should be validated
by the server;

• The function is executed in multi-cast, meaning that the server calls
the function and that it is executed on both the server and all the
clients.

The Unity Engine uses a similar approach based on networking compo-
nents, synchronized at every frame, and RPC’s to define custom synchro-
nization events.

Unfortunately, customization comes at the cost of the level of detail that
developers must face. Using RPC’s require a deep knowledge of the en-
gine and writing lots code.

c.2 networking architecture

In this section we introduce a small example that addresses the require-
ments of designing a multiplayer game. We then present an architecture
that aims to fulfill these requirements.

c.2.1 The master/slave network architecture

We choose to implement the networking layer in Casanova 2 by using a
peer-to-peer architecture for the following reasons:

• Server-client architectures are more reliable but suitable only for spe-
cific genres of games (mostly Shooter games), while other genres,
such as Real-time strategy games or Online Role Playing Games use
p2p architecture.
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• We do not have to write a separate logic for an authoritative game
server, which has to validate the actions of clients.

Casanova will provide a generic tracking server, which is run separately
from the main program. The tracking server is a thin service that connects
players participating in a single game, and helps with forwarding the net-
work traffic through NATs.

Each client maintains a local copy of the world entity and has direct
control over a single portion of it. Instances belonging to such portion are
seen as master by this player, who is always allowed to directly change the
state of the master instances without having to validate this state change
by synchronizing with other players through the network.

Each client also maintains a portion of the world that is not directly
under his control. Instances belonging to such portion are seen as slave by
this player, who is only allowed to predict the local state of the instances
and, whenever he receives an update from their masters, must correct this
prediction according to the data contained in the received messages. The
slave part of the world is thus maintained passively by the client: the only
active part is predicting the evolution of the entity state and correcting it
whenever he receives an update by its master.

For this purpose we extend the syntax of Casanova rules by allowing
them to be marked with the modifiers master and slave. These rules are
executed respectively on master and slave entities. Note that it is still possi-
ble not to mark a rule with these modifiers, which means that the rule is al-
ways executed independently of the fact that the entity is either master or
slave on that particular client. We also allow to mark a rule as connecting

and connected. These rules are triggered only once respectively when a
new client connects and when the clients detect a new connection.

Casanova also provides primitives to send (reliably or unreliably) and
receive data. A schematic representation of this architecture can be seen
in Figure 23.

(a) Unknown correct game state when P3

joins the game.
(b) Networking game state seen from the

point of view of P1. P2 is partially syn-
chronized, P4 is fully synchronized,
and P3 is a new client that is late and
is still sending its data

Figure 22: Representation of the game world in a networking scenario
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Figure 23: master/slave architecture

Note the aim of this architecture is to provide language-level primitives
to describe the networking logic. This means that the compiler will be
able to generate code compatible with low level network libraries that pro-
vide transmission functions over the network channel without having to
change Casanova code in the program. In our implementation we chose
the .NET library Lidgren, which is widely used also in commercial game
engines, such as Unity3D and MonoGame, but nothing prevents the com-
piler to be expanded in order to target other similar libraries for other
languages, such as jgroups [10].

c.2.2 Case study

Let us consider a simple shooter game where each player controls a space
ship. Players can move forward, backward, and rotate the ship to change
direction. Moreover, they can use the ship lasers to shoot other players. If
a laser hits an enemy ship we increase the player’s score. Designing such
a game requires to address the following issues, depicted by the schematic
representation in Figure 22:

1. Each player must maintain a local version of the game state (world).
In order to avoid to flood the network with messages, all the copies
are not fully synchronized at each frame, thus they are slightly dif-
ferent and each client knows the latest version of only part of the
copy.

2. A player connecting to an existing game must be able to receive the
latest update of the game state and send the new ship he will control
to existing players in the game.
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3. A player already connected to the game must detect a new connec-
tion and send his master portion of the game state.

4. Each player must be able to control only one ship at a time. This
means that the part of the game logic that processes the input and
modify the spatial data of the ship (position and rotation) should
only be executed on the ship controlled by the player and not on the
local copies of other players’ ships. This means that each player sees
as master only one ship instance.

5. Each player must send the updated state of the ship he controls to
the other players after executing the local update. To achieve better
performance over the network, the data is not sent at every update,
but with a lower frequency.

6. Each player must receive the updated state of slave ships controlled
by other players. In this phase we must take into account that, as
explained above, not every update is sent so the player should “pre-
dict” what will happen during the game frames in which he does
not receive an update.

c.2.3 Implementation

Each of the scenarios described above requires specific language exten-
sions. This extensions identify connection, ownership (master/slave), and
various send and receive primitives. In this section we introduce each
primitive by using a multiplayer game example 1. We now give an imple-
mentation of the shooter game presented above and using the extended
version of Casanova 2 with network primitives.

The world contains a list of ships controlled by each player.

world Shooter = {

Ships : [Ship]

...

}

Each Ship contains a position, a rotation, a collection of shot projectiles,
and the score.

entity Ship = {

Position : Vector2

Rotation : float32

Projectiles : [Projectile]

Score : int

...

}

Each Projectile contains its position and velocity.

1 The game source code and executable can be found at https://github.com/vs-team/

casanova-mk2/wiki/Networking-extension

https://github.com/vs-team/casanova-mk2/wiki/Networking-extension
https://github.com/vs-team/casanova-mk2/wiki/Networking-extension


160 casanova 2 networking , a preliminary work

entity Projectile = {

Position : Vector2

Velocity : Vector2

...

}

connection When a player connects we must consider two different
situations: (i) a player is already in the game and must send the current
game state to the connecting players, and (ii) the player who is connect-
ing needs to send the ship he will instantiate and control (its initial state).
Both the players in the game and the connecting one must receive the
game states that are sent. For this purpose we introduce two additional
modifiers, connecting and connected, that can be added to rule declara-
tions to mark their role in the multiplayer logic.

Connecting: A rule marked with connecting is executed once when
a player joins the game. In our example the player should send his ini-
tial state (the created ship) to the other players. We use the primitive
send_reliable because we must be sure that eventually all players will
be notified of the ship creation.

world Shooter = {

...

rule connecting Ships =

yield send_reliable Ships

}

Connected: A rule marked with connected is run whenever a new
player joins the game. When this occurs, each player sends its ship. The
system will take care to send only the ship controlled locally by the player
itself for each player. The rule will use the send_reliable primitive for the
same reason explained in the previous point.

world Shooter = {

...

rule connected Ships =

yield send_reliable Ships

}

c.2.4 Master updates

As explained above, each client manages a series of local game objects
(called master objects) that are under its direct control. The other clients
read passively any update done on those instances and update their re-
mote copy (slave objects) accordingly. We mark rules affecting the behaviour
of master objects as master. In our example the following situations are
run as master: (i) synchronizing the ships among players, (ii) updating the
ship and projectiles spatial data, and (iii) creating and destroying projec-
tiles.
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• Each player is tasked to maintain the list of Ships in the world. This
requires to receive the updated list from other players and to store
the new value in a master rule. Indeed the world is a special case of
an entity that is shared among players, and not directly owned by
somebody. Each ship contained in that list and received from other
players will be treated appropriately as slaves, while the only one
owned by the current player will be under his direct control. In this
rule we use let!, which is an operator that waits until the argument
expression returns a result and then binds it to the variable. The rule
uses receive_many, which receives and collects the list of sent ships
by the other players.

world Shooter = {

...

rule master Ships =

let! ships = receive_many()

yield Ships @ ships

}

• The master version of the ship update reads the input of the player
and moves (or rotates) the ship if the appropriate key is pressed.
Note that this part must be executed only on a master object, because
we want to allow each player to control only the ship it owns and
instantiates at the beginning of the game. Below we show just the
rule to move forward, the other movement and rotation rules are
analogous. We use an unreliable send because it is acceptable to lose
an update of the position during a certain frame: shortly after there
will be a new update.

entity Ship = {

...

rule master Position =

wait world.Input.IsKeyDown(Keys.W)

let vp = new Vector2(Math.Cos(Rotation),

Math.Sin(Rotation)) * 300.0f

let p = Position + vp * dt

yield send p

}

We do the same for projectiles, except the projectile position is contin-
uously updated and synchronized over the network without having
to wait that a key is pressed.

• Creating a new projectile happens when the player shoots. A ship
keeps track of the projectiles it has shot so far, and adds a new one
to the list of the existing projectiles. The updated list is sent to all
players with the new instance of the projectile. As explained in Sec-
tion C.2, we only send the new projectiles and not the whole list.

entity Ship = {
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...

rule master Projectiles =

wait world.Input.IsKeyDown(Keys.Space)

let vp = new Vector2(Math.Cos(Rotation),

Math.Sin(Rotation)) * 500.0f

let projs = new Projectile(Position, vp) :: Projectiles

yield send_reliable projs

wait not world.Input.IsKeyDown(Keys.Space)

}

Filtering the colliding projectiles and updating the score is run as a
master rule. The rule computes the set difference between the ship
projectiles and the colliding projectiles and updates the list of projec-
tiles, sending them through the network as well. Even in this case,
the network layer sends only the information about the projectiles to
remove. Note that the score is managed by each player locally, as it
does not require to be synchronized (we do not print the other play-
ers’ scores. Doing so would indeed require to also send the score).

entity Ship = {

...

rule master Projectiles, Score =

let collidingProjs =

[for p in Projectiles do

let ships =

[for s in Ships do

where s <> this and

Vector2.Distance(p.Position,s.Position) < 100.0f

select s]

where ships.Count > 0

select p]

let newProjectiles = Projectiles - collidingProjs

yield send_reliable newProjectiles,

Score + collidingProjs.Count

}

c.2.5 Managing remote instances

The game objects that were not instantiated by a client, but received from
another client, are slave objects and must be synchronized differently than
master objects. For this purpose, a rule can be marked as slave. In our
example we use slave rules in the following situations: (i) synchronizing
other players’ ships and projectiles spatial data, and (ii) projectiles instan-
tiated by other players.

• Every remote projectile and ship is synchronized locally by a rule,
which tries to receive a message containing updated special data.
Below we provide the code to update the position of the ship, the
synchronization of other spacial data is analogous.
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Table 9: Code lines comparison for a multiplayer game

Language Lines

Casanova 126

C# 1257

entity Ship = {

...

rule slave Position = yield receive()

}

• When a projectile is instantiated remotely, we have to receive it and
add it to the list of projectiles. We use receive_many because the new
projectiles are added to a list. This case also supports the situation
where a ship could shoot multiple projectiles at the same time.

entity Ship = {

...

rule slave Projectiles =

let! projs = receive_many()

yield projs @ Projectiles

}

c.3 a preliminary evaluation

Compactness is an important aspect of a language that determines the
maintainability of code written with it. Our proposal for a networking in
Casanova 2 shows an interesting measure in terms of compactness. When
comparing the Casanova 2 game code of the networked game presented
in Section C.2.2 (figure 24 show this game in action and played by two
clients) with an equivalent hand-made implementation written in C#, the
difference is one order of magnitude (see Table 9).

Figure 24: A multiplayer Casanova 2 game made with the monogame framework
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c.4 discussion

Writing networking code by hand is a daunting and expensive task as seen
in the tables 9 and 8. To achieve the desired behavior, lots of code is neces-
sary that will lead to a code that is less readable and maintainable. With
our proposal the Casanova 2 is not affected by networking considerations,
but rather the code remains compact, readable, and maintainable. These
results are even more remarkable if we consider the fact that networking
in games is known to be complex and typically require lots of verbose
code. Our solution provides good primitives for networking, which pre-
serve code encapsulation because they do not require polling the identity
of an entity with network specific information that it is not related to the
game logic of the entity itself. Of course networking does impact the logic
of the entity, but this should be reflected by minimal code adjustments.
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36. Jasmina Marić. Web Communities, Immigration and Social Capital. Promotor: H.J.
van den Herik. Co-promotores: R. Cozijn, M. Spotti. Tilburg, 18 November 2014.

37. Pauline Meesters. Intelligent Blauw. Promotores: H.J. van den Herik, T.A. de Roos.
Tilburg, 1 December 2014.

38. Mandy Visser. Better use your head. How people learn to signal emotions in social
contexts. Promotores: M.G.J. Swerts, E.J. Krahmer. Tilburg, 10 June 2015.

39. Sterling Hutchinson. How symbolic and embodied representations work in concert.
Promotores: M.M. Louwerse, E.O. Postma. Tilburg, 30 June 2015.

40. Marieke Hoetjes. Talking hands. Reference in speech, gesture and sign. Promotores:
E.J. Krahmer, M.G.J. Swerts. Tilburg, 7 October 2015

41. Elisabeth Lubinga. Stop HIV. Start talking? The effects of rhetorical figures in health
messages on conversations among South African adolescents. Promotores: A.A.
Maes, C.J.M. Jansen. Tilburg, 16 October 2015.

42. Janet Bagorogoza. Knowledge Management and High Performance. The Uganda
Financial Institutions Models for HPO. Promotores: H.J. van den Herik, B. van der
Walle, Tilburg, 24 November 2015.

43. Hans Westerbeek. Visual realism: Exploring effects on memory, language produc-
tion, comprehension, and preference. Promotores: A.A. Maes, M.G.J. Swerts. Co-
promotor: M.A.A. van Amelsvoort. Tilburg, 10 Februari 2016.

44. Matje van de Camp. A link to the Past: Constructing Historical Social Networks
from Unstructured Data. Promotores: A.P.J. van den Bosch, E.O. Postma. Tilburg, 2

Maart 2016.
45. Annemarie Quispel. Data for all: Data for all: How professionals and non-professionals

in design use and evaluate information visualizations. Promotor: A.A. Maes. Co-
promotor: J. Schilperoord. Tilburg, 15 Juni 2016.



46. Rick Tillman. Language Matters: The Influence of Language and Language Use on
Cognition Promotores: M.M. Louwerse, E.O. Postma. Tilburg, 30 Juni 2016.

47. Ruud Mattheij. The Eyes Have It. Promoteres: E.O. Postma, H. J. Van den Herik,
and P.H.M. Spronck. Tilburg, 5 October 2016.

48. Marten Pijl, Tracking of human motion over time. Promotores: E. H. L. Aarts, M. M.
Louwerse Co-promotor: J. H. M. Korst. Tilburg, 14 December 2016.

49. Yevgen Matusevych, Learning constructions from bilingual exposure: Computa-
tional studies of argument structure acquisition. Promotor: A.M. Backus. Co-promotor:
A.Alishahi. Tilburg 19 december 2016.

50. Karin van Nispen. What can people with aphasia communicate with their hands? A
study of representation techniques in pantomime and co-speech gesture. Promotor:
E.J. Krahmer. Tilburg, 19 December 2016.

51. Adriana Baltaretu. Speaking of landmarks. How visual information inuences ref-
erence in spatial domains. Promotores: A.A. Maes and E.J. Krahmer. Tilburg, 22

december 2016.
52. Mohamed Abbadi. Casanova 2, a domain specific language for general game de-

velopment. Promotores: A.A. Maes, T. Cortesi, and P. Spronck. Co-promotor: G.
Maggiore. Tilburg, 10 march 2017.


	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Traditional games
	1.1.1 Key ingredients of traditional games
	1.1.2 Functions/goals

	1.2 Video games
	1.2.1 What is a video game?
	1.2.2 Business impact
	1.2.3 Functions/purposes

	1.3 Building video games
	1.3.1 On the process of making a video game
	1.3.2 Technological complexities
	1.3.3 Video game developers
	1.3.4 Current approaches

	1.4 Our focus and problem statement
	1.5 Contribution and thesis outline

	2 Taxonomy of game development approaches
	2.1 What is a game?
	2.1.1 Video Game
	2.1.2 Formal definition of a video game

	2.2 Game development
	2.2.1 Assembly language (hand made everything)
	2.2.2 Game Creation Systems
	2.2.3 Graphics API
	2.2.4 Game Engines

	2.3 Discussion
	2.4 The necessity for a domain specific language

	3 The Casanova 2 language
	3.1 Technical challenges in games development
	3.1.1 Running example in pseudo-language
	3.1.2 Discussion

	3.2 Casanova 2
	3.2.1 The basic idea behind Casanova 2
	3.2.2 The running example in Casanova 2
	3.2.3 Syntax
	3.2.4 Semantics

	3.3 Summary

	4 Compiler architecture
	4.1 The structure of the Casanova 2 compiler
	4.2 Code generation
	4.2.1 Entities
	4.2.2 Attributes
	4.2.3 Rules
	4.2.4 Generating state machines for rules' code

	4.3 Supporting third-party tools and engines
	4.4 Summary

	5 Compiler optimization
	5.1 Maintainability vs. speed
	5.2 Focus of the work and related works
	5.2.1 Runtime dynamic machinery
	5.2.2 Compile-time code generators

	5.3 Encapsulation in games - an example
	5.3.1 Design techniques and operations
	5.3.2 Discussion

	5.4 Optimizing encapsulation
	5.4.1 Optimizing lookup
	5.4.2 Optimizing temporal/local predicates
	5.4.3 Language level integration

	5.5 Implementation Details
	5.5.1 Casanova 2 rule
	5.5.2 Compilation - Recognizing ICs in Casanova 2
	5.5.3 Run-time efficient sleep/wake-up system
	5.5.4 Suspendable rules instantiate, destroy, and update
	5.5.5 Query interpretation
	5.5.6 Examples

	5.6 Summary

	6 Designing games with Casanova 2
	6.1 Casanova 2 games basis ingredients
	6.1.1 Entities
	6.1.2 Attributes
	6.1.3 Rules

	6.2 Building RTS games in Casanova 2
	6.2.1 An analysis of RTS games
	6.2.2 Abstracting RTS games in Casanova 2

	6.3 Implementation of a case study
	6.3.1 The world entity
	6.3.2 Resources
	6.3.3 Actors
	6.3.4 Fields
	6.3.5 Actions
	6.3.6 Creation
	6.3.7 Deletion
	6.3.8 Strategy update

	6.4 Summary

	7 Evaluation
	7.1 Analytical evaluation
	7.1.1 Ease of writing
	7.1.2 Readability
	7.1.3 Optimizations/Performance
	7.1.4 Interoperability
	7.1.5 Genericity

	7.2 Quantitative analysis
	7.2.1 Set up and goal of the evaluation scenarios
	7.2.2 Performance
	7.2.3 Readability

	7.3 Summary

	8 Conclusion
	8.1 Answer to research questions
	8.1.1 Game development tools requirements
	8.1.2 Implementing game development tools requirements
	8.1.3 Evaluation of the DSL

	8.2 Answer to problem statement
	8.3 Future work
	8.4 The future of game development

	Appendix
	A Casanova 2 questionnaire
	A.1 Questions
	A.2 Grouped answers
	A.3 Discussion

	B Casanova 2 games
	B.1 Groups and games description
	B.1.1 Group 1
	B.1.2 Group 2

	B.2 Discussion

	C Casanova 2 networking, a preliminary work
	C.1 Introduction
	C.1.1 Motivation
	C.1.2 Related works

	C.2 Networking architecture
	C.2.1 The master/slave network architecture
	C.2.2 Case study
	C.2.3 Implementation
	C.2.4 Master updates
	C.2.5 Managing remote instances

	C.3 A preliminary evaluation
	C.4 Discussion

	Bibliography
	Declaration


