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CHAPTER 1

Introduction

1.1 Robust Optimization

A classical mathematical optimization problem is formulated as:

min
x

f0(x, z)
s.t. fi(x, z) ≤ 0, i = 1, . . . ,m,

(1.1)

where x ∈ Rn1 is the decision vector, z is a problem parameter, and fi(·, ·), i =
0, . . . ,m are real-valued functions. In such a problem, one minimizes the value of
the objective function subject to a number of constraints, parameterized by z, which
may involve parameters of the problem corresponding to a variety of possibilities:
precision of devices (for example, the antenna experiment of Chapter 2), customer
demand forecasts (for example, the lot sizing experiment of Chapter 3), lengths
of procedures (for example, the operating room experiment of Chapter 5), climate
changes (for example, the flood risk management experiment of Chapter 6), vehicle
speeds, concentration of substances, to name only a few. All such values are subject
to uncertainty resulting from

• measurement errors: imprecision of the physical measurement devices such as
thermometers or missing inventory data;

• forecast errors: lack of precise knowledge about future product demand, dis-
count rates, or resource prices;

• implementation errors: imprecision of implementation of devices such as elec-
trical power or metal component lengths;

• reliability of past data (known also as veracity in the Big Data context):
wrongly entered data, missing observations, and other data unreliabilities.

Even very small deviations from assumed parameter values can lead to huge infeasi-
bilities of the problem constraints or to large losses in the objective function value,



2 Introduction

see Ben-Tal et al. (2009). This fact calls for optimization methods able to include
and accommodate for uncertainty. The growing popularity of modelling with ex-
plicit inclusion of uncertainty is illustrated by the number of search hits for ‘robust
optimization’ in the Google Scholar1 database from the subsequent time periods:

Time period Number of publications
1990-1995 314
1995-2000 1110
2000-2005 2810
2005-2010 8100
2010-2015 15600

Robust Optimization (RO) is a modeling paradigm where the way of handling uncer-
tainty is to construct an uncertainty set Z of values of z and to require the problem’s
constraints to hold for all z ∈ Z, and to assume the worst-possible outcome also for
the objective function. The optimization problem is then formulated as:

min
x,t

t

s.t. f0(x, z) ≤ t, ∀z ∈ Z
fi(x, z) ≤ 0, ∀z ∈ Z i = 1, . . . ,m.

(1.2)

Research in RO is primarily concerned with identifying the properties of

• functions f(·, ·) (convex, concave, piecewise linear,...),

• types of parameters z (scalars, vectors, probability distributions),

• types of uncertainty sets Z (box, ellipsoidal, semidefinite-representable...),

such that (1.2) can be reformulated to an equivalent (or approximate) computation-
ally tractable form without the ‘for all’ condition, that is, one that can be solved in
an efficient way. The word ‘efficient’ stands most often for the solution time being
polynomial in the size of the problem input for continuous problems or a ‘reasonable’
solution time for problems with integer variables or nonconvex problems. In this
work, RO is understood as reformulating a constraint

fi(x, z) ≤ 0, ∀z ∈ Z (1.3)

by means of duality to an equivalent system of deterministic constraints (without the
‘∀’ symbol):{

Gi(x,θi) ≤ 0
θi ∈ Θi(x), (1.4)

1As for April 21, 2016.



Robust Optimization 3

where θi is a potential extra variable (where it can be the case that no extra variables
are needed), Gi(·, ·) is a vector-valued function, and Θi(x) is an x-dependent set. The
following example illustrates this notion.

Example 1.1 Suppose the constraint is:

(a+ Pz)Tx ≤ 0, ∀z : ‖z‖∞ ≤ 1, (1.5)

where a,x ∈ Rn, z ∈ Rm, and P ∈ Rn×m. Then, since the dual norm of the∞-norm
is the 1-norm, we have that

sup
z:‖z‖∞≤1

zTP Tx = ‖P Tx‖1,

which implies that (1.5) is equivalent to the following deterministic constraint:

aTx+ ‖P Tx‖1 ≤ 0,

which can be reformulated as a system of linear constraints whose number grows
linearly with m and n.

It should be also noted that another approach is possible, where one begins to solve a
problem with only one scenario z1 ∈ Z. Then, the optimization problem is solved so
that the solution is robust to it. After the optimal solution has been found, another
scenario z2 ∈ Z is determined that violates one or more constraints. In the next
round, a solution is found that is robust to {z1, z2} and the procedure is repeated,
until the solution is robust to all possible scenarios. Such an iterative procedure
is known as the adversarial approach (Bienstock 2007), and even though in certain
applications it might be even more efficient than the reformulation approach, it is
not considered in this thesis.
Having its roots in the paper by Soyster (1973), RO has experienced a dynamic
growth since the late 1990s, after release of the works showing the impact of data
uncertainty and providing tractable reformulations of RO problems: Ben-Tal and
Nemirovski (1998, 2000, 2002) and El Ghaoui and Lebret (1997), El Ghaoui et al.
(1998). The notable contributions of the ‘early period’ of RO (till around 2010) are
Goldfarb and Iyengar (2003), Bertsimas and Sim (2004), Bertsimas et al. (2004),
Calafiore and Campi (2005), Chen et al. (2007). In these papers, robust reformula-
tions are constructed for a number of practically relevant settings.
Since around 2010 till now, next to problem-specific contributions to the field, authors
started to provide unifying treatments of the results obtained up to now. The first
and, up to now, only book in the field of RO - the monograph of Ben-Tal et al. (2009)
- gives a unifying treatment of RO problems in terms of conic duality. Ben-Tal et al.
(2015) provide another way of reformulating robust constraints based on Fenchel
duality. Thanks to these contributions we know that problem (1.2) is tractable, for
example, when:
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• the constraints are linear and the uncertainty sets is an intersection of the
standard, Lorentz, or the positive semidefinite cones (Ben-Tal and Nemirovski
1998),

• the constraints are second-order conic and the uncertainty set is an ellipsoid
(El Ghaoui and Lebret 1997),

• the functions f(x, ·) are concave, and the uncertainty set is described by a finite
set of convex constraints (Ben-Tal et al. 2015).

Next to these developments, there are developments in the field of polynomial opti-
mization (Lasserre 2009), where duality for moment problems is used to construct
either direct reformulations or converging hierarchies of approximations to the case
where f(x, z) is a polynomial and the Z is semi-algebraic, see, for example, the paper
Laraki and Lasserre (2008) or the recent book Lasserre (2015).
A question that still remains to be answered is the following: For what types of
constraints on risk measures can we use the existing derivation techniques to con-
struct a generic framework to obtain their tractable counterparts under distributional
ambiguity?
In Chapter 2 we show how Fenchel duality techniques can be utilized in derivations of
robust counterparts for constraints on risk measures of decision-dependent random
variables, which is relevant to fields such as economics, finance, machine learning,
and engineering. We also show in Chapter 2 how computationally tractable robust
counterparts can be derived for nonlinear risk measures (e.g., variance) of decision-
dependent random variables by exploiting their suitable formulations.
Since its founding, RO has been successfully applied to fields such as: inventory
management (Ben-Tal et al. 2004), facility location (Ordonez and Zhao 2007), net-
work design (Atamtürk and Zhang 2007), finance (Fabozzi et al. 2010, Bertsimas and
Pachamanova 2008), industrial design (Den Hertog and Stehouwer 2002), and many
other fields. For a broad overview of applications of RO, the reader is referred to
Gabrel et al. (2014).
In the following, two sub-fields of RO are introduced that are relevant to this dis-
sertation. In Section 1.2, the Adjustable Robust Optimization (ARO) is introduced
- an extension of RO to multi-stage setting and where the aim is to make the later-
stage decisions dependent on the revealed uncertainties from previous periods in a
computationally tractable way. In Section 1.3, Distributionally Robust Optimization
(DRO) is introduced where the uncertain parameter is the probability distribution
of z. Section 1.4 includes an overview of the research papers included in this thesis.
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1.2 Adjustable Robust Optimization

It is a property of many real-life applications of optimization that the decisions are
made over several time periods, between which more and more of the initially un-
certain input of the problem becomes known. An illustrative two-stage RO problem
can be formulated as:

min
x1,x2

t

s.t. f0(x1,x2, z) ≤ t, ∀z ∈ Z
fi(x1,x2, z) ≤ 0, i = 1, . . . ,m, ∀z ∈ Z,

(1.6)

where x1 is the decision vector implemented at time 1, before the uncertain parameter
z is known, and x2 is the decision vector implemented at time 2, after z becomes
known.
Problem (1.6) imposes rather restrictive limitations for the time 2 decisions x2, since
they are supposed to be determined without any knowledge of z and thus, can turn
out to be rather conservative/suboptimal for particular outcomes of z. To mitigate
this shortcoming, the idea of ARO is to formulate the second stage decisions as a
function of z, and to choose the best ‘response function’. Mathematically, this is
formulated as:

min
x1,x2(·)

t

s.t. f0(x1,x2(z), z) ≤ t, ∀z ∈ Z
fi(x1,x2(z), z) ≤ 0, i = 1, . . . ,m, ∀z ∈ Z.

(1.7)

Now that x2(z) can adjust to z, the optimal value is expected to be better compared
to (1.6). Unfortunately, problem (1.7) is NP-hard in the general case, and the main
task of ARO is to identify ‘how close’ one can get to this ideal solution.
Initially, ARO was developed to solve problems with continuous variables. Ben-
Tal et al. (2004) introduced the concept of using affinely adjustable decision rules
and show how to apply such rules to obtain (approximate) optimal solutions to
multiperiod problems. Their approach has been later extended to other function
classes by Chen et al. (2007), Chen and Zhang (2009), Ben-Tal et al. (2009) and
Bertsimas et al. (2011).
Later, initial developments have been made allowing ARO to (approximately) solve
problems involving adjustable integer variables, as in Bertsimas and Caramanis
(2007), Vayanos et al. (2011), Bertsimas and Georghiou (2015), Bertsimas and Georghiou
(2014), and Hanasusanto et al. (2015a).
The main challenges of ARO are, among others:

• How to provide scalable methods for adjustable integer decisions?
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• How to reduce the computational burden related to the fact that even with
relatively scalable methods, one needs to solve mixed-integer problems?

• What is the impact of including integer adjustability on the here-and-now de-
cisions in important applications of optimization?

In Chapter 3 a novel technique is proposed to construct iteratively improving integer
decisions in multi-stage problems, based on identifying the scenarios for the uncertain
parameter z, for which decisions should be different. In Chapter 5 we study multi-
stage distributionally robust stochastic programming problems with integer recourse,
for which we are able to provide their convex approximations with explicit perfor-
mance bounds. Chapter 5 includes also applied techniques showing how the resulting
problems can be solved in a computationally efficient way. In Chapter 6 we apply
the integer adjustability approach of Chapter 3 to construct adjustable robust water
flood protection strategies in the Netherlands. The numerical results clearly show
that the inclusion of integer adjustability is of great practical importance already
for the here-and-now decisions, which can be better when the future readjustment
possibilities are taken into account.

1.3 Distributionally Robust Optimization

In certain applications, the uncertain parameter z is known to be stochastic and to
require that a constraint holds for all possible outcomes of z ∈ Z where Z is the
support of z, would be (i) too conservative (for example, when the random variable
has Rn as its support), or (ii) impossible to reformulate to a computationally tractable
form.
At the same time, some information is known about the probability distribution P of
z, which gives rise to an entire set Pz of probability distributions Pz satisfying this
information, that is, a set of probability distributions all of which can be true under
what is known. Then, one can consider constraints that use this probabilistic infor-
mation. The two most common constraints are the worst-case expected feasibility
constraints:

EPzf(x, z) ≤ 0, ∀Pz ∈ Pz, (1.8)

where some overload of notation is applied since, strictly speaking, if the uncertain
parameter is Pz, then the constraint should be in the form f(x,Pz) but in this
way we stay consistent with the notation of the later chapters, and the worst-case
chance-constraints:

Pz(f(x, z) > 0) ≤ ε, ∀Pz ∈ Pz. (1.9)
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Note that (1.9) is a special case of (1.8) if the function f(x, z) in (1.8) is an indi-
cator function, but it is often studied separately due to its difficulty and practical
importance.
Research on constraints of types (1.8) and (1.9) goes under the name Distribution-
ally Robust Optimization (DRO), introduced first in Delage and Ye (2010), who
study under what conditions the constraints can be reformulated either exactly, or
to their conservative approximations - systems of constraints such that x satisfying
the conservative approximation also satisfies (1.8) or (1.9).
Information about the distribution of z can be formulated in terms of:

• support: discrete, continuous, bounded, unbounded, etc;

• moments: mean, covariance, higher order moments;

• structural information: symmetry, unimodality, independence of components;

• distance from a known distribution, as measured by means of test statistics or
other probability metrics.

For a broad overview of types of partial information considered in the literature the
reader is referred to Hanasusanto et al. (2015b).
It should be added that both (1.8) and (1.9) have been studied already within the
framework of Stochastic Optimization (SP), see Birge and Louveaux (1997). In the
SP setting, however, the stress has been much more on techniques of bounding the
expectations from above or using sampling techniques ensuring that the constraints
are satisfied with high accuracy. In RO, on the other hand, most of the research
concentrates on using duality to obtain tractable reformulations. In this sense, the
two approaches can be seen as complementary (in very specific cases the difference
can be purely interpretational) and in recent years we can observe their convergence.
DRO is an attractive paradigm for its capacity to minimize/maximize expectations
of the objective functions rather than the worst-case objective function values, as in
problem (1.2). This is because of the fact that optimization is often applied in fields
in which the processes are repeatable, such as inventory management, production,
network flow optimization, where cost/profit in the long run converges to the average.
Up to now, the research community has been able to provide many tractable refor-
mulations mostly for the worst-case expected feasibility constraints (1.8). Delage and
Ye (2010) show that in many practicable situations, worst-case expected feasibility
constraints can be tractable under mean-second order moment uncertainty. Wiese-
mann et al. (2014) proposed a unifying framework for deriving robust counterparts
of problems where the uncertain parameter is the probability distribution, using du-
ality for moment problems. For distance-based uncertainty, Ben-Tal et al. (2013)
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provide such reformulations for discrete probability distributions with uncertainty
sets defined using the so-called ϕ-divergence goodness-of-fit statistics.
Chance constraints, on the other hand, are more difficult as the uncertainty quantifi-
cation problem, that is, the task of determining the worst-case violation probability
of a single constraint becomes NP-hard in even very simple settings (Nemirovski
and Shapiro 2006). In some of the earliest papers El Ghaoui et al. (2003) show
how worst-case constraints on the Value-at-Risk of linear expressions (equivalent to
chance-constraints) can be obtained under uncertainty about the mean and covari-
ance matrix of z. These safe approximations are extended, and several are proposed
in the monograph of Ben-Tal et al. (2009). Under second-order moment information,
Zymler et al. (2011) construct safe approximations of joint chance constraints, where
a number of different constraints is to hold jointly with probability at least 1− ε. A
recent work aiming at providing a more general framework of what is tractable and
what is intractable for joint chance constraints is Hanasusanto et al. (2015b).
Among papers considering uncertainty in terms of distance from a known distri-
bution, Jiang and Guan (2015) show exact reformulations of individual constraints
under the Kullback-Leibler divergence. Esfahani and Kuhn (2014) show how dis-
tributionally robust chance constraints can be approximated under the Wasserstein
distance in a data-driven setting.
The key challenges facing the DRO field are, among other things:

• How to construct tractable uncertainty sets for general functions in a data-
driven setting, both for discrete and continuous probability distributions?

• How to obtain computationally tractable decisions problems that explicitly take
into account the distributional ambiguity?

• What is the value of the additional distributional information that one could
obtain in order to improve the solutions?

In Chapter 2 we show how to construct statistics-based uncertainty sets for discrete
probability measures and how to derive computationally tractable robust counter-
parts of constraints on risk measures of decision-dependent random variables. In
Chapter 4 we consider continuous random variables under mean - mean absolute de-
viation distributional information, which can be easily estimated from the data. We
show how under this information, computationally tractable robust counterparts of
constraints (1.8) and (1.9) can be derived. This information is also used in Chapter
5 where we construct computationally tractable robust counterparts of multi-stage
mixed-integer stochastic programming problems. This approach allows us to explic-
itly evaluate the value of distributional information in the form of tight bounds on
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the worst- and best-case expectations of the objective value under the given distri-
butional information.

1.4 Overview of research papers

The rest of this thesis consists of five self-contained chapters. Here, the contributions
of each chapter are given.
In Chapter 2 an important class of distributionally robust constraints is identified for
which tractable reformulations can be found using Fenchel duality: constraints on
risk measures of decision dependent discrete random variables under statistics-based
uncertainty sets for the probability vector. In particular, we show how to construct
such counterparts for certain nonlinear risk measures. Our integrated framework
covers and extends beyond the numerous existing results in this field.
In Chapter 3 a novel approach is developed for constructing iteratively refinable
integer decisions for multi-stage problems. The idea is to split the uncertainty set
into subsets, each of which is assigned to a different decision. This technique is
based on the observation that after a RO problem is solved, different constraints
are ‘made active’ by different realizations of the uncertain parameter. Theoretical
results are derived that confirm this observation and give guidance on how to split
the uncertainty set. Additionally, this technique can be combined with existing
linear decision rules, allowing to differentiate the affine rules in different parts of the
uncertainty set.
In Chapter 4 we consider distributionally robust constraints of both types under
mean and mean-absolute deviation information about the stochastically independent
components of a random variable. We show that for such a setting, we can leverage
old results from SP on the expectations of convex functions to obtain new, closed-
form equivalent robust formulations of worst-case expected feasibility constraints or
safe approximations of chance constraints. In addition, we identify an important class
of problems where we can relax the assumption on independence of the components
of the random vector. The approach can be used, among others, to enhance the
average-case performance of ARO solutions in situations where there exist multiple
optimal solutions or to solve problems involving implementation error.
In Chapter 5 we combine the distributionally robust and integer adjustable fields,
studying multi-stage stochastic programming problems under distributional uncer-
tainty, under the same distributional information as in Chapter 4. We propose convex
approximations of the problems with integer later-stage variables for which explicit
performance bounds are derived, and show how numerous techniques can be used
to reduce the computational effort related to the distributional uncertainty. This
approach allows for explicit evaluation of the value of distributional information in
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the form of tight bounds on the worst- and best-case expectations of the objective
value under the given distributional information.
Chapter 6 is an application of integer adjustable RO to the problem of optimizing
flood protection measures in the Rhine-Meuse Estuary area in the Netherlands. We
show how explicit inclusion of uncertainty and adjustability can lead to finding better
here-and-now investment decisions and an overall reduction of the investment costs.

1.5 Disclosure

This thesis is based on the following five research papers:

Chapter 2 K. Postek, D. den Hertog and B. Melenberg. Computationally
tractable counterparts of distributionally robust constraints on risk
measures. SIAM Review, 2016.

Chapter 3 K. Postek and D. den Hertog. Multi-stage adjustable robust mixed-
integer optimization via iterative splitting of the uncertainty set.
INFORMS Journal on Computing, 2016.

Chapter 4 K. Postek, A. Ben-Tal, D. den Hertog and B. Melenberg. Robust
counterparts of ambiguous stochastic constraints under mean and
dispersion information. 2015. In second review round for publica-
tion at Operations Research.

Chapter 5 K. Postek, W. Romeijnders, D. den Hertog, and M. van der Vlerk.
Efficient methods for several classes of ambiguous stochastic pro-
gramming problems under mean-MAD information. 2016. CentER
Discussion Paper No. 2016-039. Submitted.

Chapter 6 K. Postek, D. den Hertog, J. Kind, Ch. Pustjens. Adjustable robust
strategies for flood protection. 2016. CentER Discussion Paper No.
2016-038. Submitted.

Each chapter contains ideas and contributions from all its respective authors. In
Chapters 2, 3, 4, and 6 all the sections are written by me and all the experiments
are done by me. In Chapter 5 Sections 5.1, 5.2, 5.5.3, and 5.6 are written by me and
the corresponding experiments are done by me.
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CHAPTER 2

Computationally tractable counterparts of
distributionally robust constraints on risk

measures

2.1 Introduction

Robust Optimization (RO, see Ben-Tal et al. [8]) has become one of the main ap-
proaches to optimization under uncertainty. Since its introduction it has already
found numerous applications. Its paradigm lies in assuming that some or all of the
optimization problem’s parameters are uncertain. For these parameters an uncer-
tainty set is specified. This uncertainty set includes parameter values for which the
solution should be feasible. The robust optimization problem is then solved in such
a way that the solution is best possible for the worst-case parameter values from the
uncertainty set. For an introduction and overview of techniques used in RO, we refer
the reader to the work by Bertsimas and Brown [12] and references therein. A more
recent survey of the developments and applications of RO is Gabrel et al. [25].
A particular application field for RO is keeping risk measures of decision-dependent
random variables below pre-specified limits. Such constraints typically appear in
finance, engineering, and economics. Often, the computation of the value of a risk
measure requires knowledge of the underlying probability distribution, which is usu-
ally estimated. Such an estimate is typically based on a number of past observations.
Due to sampling error, this estimate approximates the true distribution only with a
limited accuracy. A confidence set around the estimate gives rise to a natural uncer-
tainty set of admissible probability distributions (at a given confidence level). The
key difficulty lies in reformulating the problem’s constraints in a way that allows for
the application of efficient optimization algorithms. Such a reformulation is referred
to as a tractable robust counterpart of the constraint (see Ben-Tal et al. [8]). Many
authors study this type of distributional uncertainty and the corresponding tractable
robust counterparts. In Section 2.2 we present a review of existing results. Typically,
they focus on a specific combination of risk measure and uncertainty set.
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In this paper, apart from providing an overview of the results in the literature, we
propose a unified approach to derive computationally tractable robust counterparts
of this kind of constraints. Our approach allows us to deal with many more risk
measure-uncertainty set combinations than have been considered up to now. The
unifying approach of our paper consists of the following three parts.
First, using Fenchel duality and results of Ben-Tal et al. [10] we show that the deriva-
tion of the tractable robust counterpart can be separated in terms of the components
corresponding to the risk measure and the uncertainty set. Therefore, we derive two
types of building blocks: one for the risk measures and another for the uncertainty
sets. The resulting blocks may be combined arbitrarily according to the problem at
hand. This provides the decision maker with a unified structure to reformulate this
type of constraints, allowing to cover many more risk measure-uncertainty set combi-
nations than is captured up to now in the literature. The first building block includes
the following risk measures: negative mean return, Optimized Certainty Equivalent
(with Conditional Value-at-Risk as a special case), Certainty Equivalent, Shortfall
Risk, lower partial moments, mean absolute deviation from the median, standard de-
viation/variance less mean, Sharpe ratio, and the Entropic Value-at-Risk. The second
building block encompasses uncertainty sets built using ϕ-divergences (with the Pear-
son (χ2) and likelihood ratio (G) tests as special cases), Kolmogorov-Smirnov test,
Wasserstein (Kantorovich) distance, Anderson-Darling, Cramer-von Mises, Watson,
and Kuiper tests.
Secondly, we address a common feature rendering many optimization constraints
computationally difficult, namely, nonlinearity of some of the risk measures in the
underlying probability distribution. In our setting, this is the case for the variance,
the standard deviation, the Optimized Certainty Equivalent, and the mean absolute
deviation from the median. To make the use of RO methodology possible, we use
different, equivalent reformulations of such risk measures as infima over relevant
function sets, whose elements are linear in the probabilities. A minmax result from
convex analysis ensures that this operation results in an exact reformulation.
Thirdly, we provide the complexity status (linear, convex quadratic, second-order
conic, convex) of the robust counterparts. This is summarized in Table 2.1, together
with a summary of the results captured in the literature up to now. As illustrated,
our methodology allows for obtaining a tractable robust counterpart for most of the
risk measure-uncertainty set combinations, extending the results in the field.
For several types of risk measures, including the Value-at-Risk, the mean absolute
deviation from the mean, and general-form distortion, coherent and spectral risk
measures, we could not reformulate the relevant constraints into a tractable form
within our framework. Section 2.5 contains a brief discussion of reasons why our
approach is not applicable to such cases.
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We remark that another type of distributional uncertainty in RO problems is uncer-
tainty in the moments of some key random variables, as studied, e.g., by El Ghaoui
et al. [20] and Delage and Ye [18]. However, in our paper we focus on uncertainty in
the discrete probabilities of these random variables.
The composition of the remainder of the paper is as follows. Section 2.2 provides
a survey of the results obtained in the literature so far. Section 2.3 introduces the
definitions and the main tool for deriving the computationally tractable robust coun-
terparts. Section 2.4 lists the risk measures and uncertainty sets for the probability
distribution that we investigate. Sections 2.5 and 2.6 include the results on the
building blocks of the robust counterparts of the constraints on the risk measures.
In Section 2.7, we provide examples of combining the blocks, including a numerical
study. Section 2.8 concludes and lists the potential directions for future research.

2.2 Literature review

In this section we present the results of existing research on deriving tractable forms
of distributionally robust constraints on risk measures, grouped according to the
type of uncertainty sets, which is in line with Table 2.1. To provide the reader with a
better understanding of the literature review, we first present as example a constraint
on the standard deviation.
In our setting, it is assumed that the decisions form a vector w and the decision-
dependent random variable X(w), representing the decision maker’s reward, has
possible outcomes X1(w), . . . , XN(w) with probabilities p1, . . . , pN , respectively. The
probability vector p = [p1, . . . , pN ]T is known to belong to a confidence region P . For
such a random variable, we want its standard deviation not to be greater than β for
all possible probability distributions in P . The constraint is then:√√√√√ N∑

n=1
pn

(
Xn(w)−

N∑
n′=1

pn′Xn′(w)
)2

≤ β, ∀p ∈ P . (2.1)

The key question is whether (2.1) can be reformulated into an equivalent form that
does not have the semi-infinite ‘for all’ form. Such combinations of uncertain discrete
probabilities and risk measures have already been investigated by several authors.
Calafiore [16] studies a portfolio optimization problem with risk defined as the vari-
ance less the mean and mean absolute deviation from the mean, under distributional
uncertainty defined with the use of Kullback-Leibler divergence. He notices that the
step of finding the worst-case probability distribution for a given portfolio can be
conducted efficiently. Combining it with the generation of cutting planes for the gen-
eral robust optimization problem, he proposes an algorithm that finds the optimal
portfolios in polynomial time.
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Jiang and Guan [32] consider ambiguous chance constraints under the Kullback-
Leibler divergence, reducing the robust chance-constrained problem to a problem
under the nominal probability measure, with modified violation probability. In our
setting, these results have applications to constraints on the Value-at-Risk (VaR),
whose equivalence to chance constraints has been noted already by Nemirovski and
Shapiro [39]. Hu and Hong [29] also consider optimization problems with convex
expectation constraints under distributional uncertainty defined with the Kullback-
Leibler divergence. They provide closed-form distributionally robust counterparts of
constraints on expectations of general convex performance measures. Their results
apply, for example, to Conditional Value-at-Risk (CVaR) and, as an approximation,
to VaR. Results of Hu and Hong [29] are partly generalized in Hu et al. [30], who
consider chance-constrained problems with distributional uncertainty sets defined
by general ϕ-divergence functions. They also show that the robust constraints are
equivalent to nominal constraints with modified confidence levels. Another work,
that does not concentrate on risk measures as such, including derivations of tractable
robust counterparts under distributional uncertainty, is Klabjan et al. [33]. In this
work, a lot-sizing problem with uncertainty defined with the χ2-test statistic is solved.
After an appropriate reformulation, the problem solved is a SOCP problem.
Wang et al. [49] derive tractable counterparts of constraints involving linear functions
of the probability vector, with uncertainty defined by the likelihood ratio test. They
also provide various interpretations of the obtained result, for example, from the
Bayesian perspective. Ben-Tal et al. [9] study constraints on general convex functions
under distributional uncertainty defined by ϕ-divergence functions, generalizing the
result of Wang et al. [49]. They derive tractable robust counterparts, showing that
for several of the divergences the resulting constraint allows for a self-concordant
barrier function. Their results, as a specific case, apply to such risk measures as the
negative mean return. Methods for obtaining worst-case probability distributions
under ϕ-divergence uncertainty are given also in Breuer and Csiszár [15].
Wozabal [51] studies portfolio optimization with risk measures such as expectation,
standard deviation less the mean, mean absolute deviation from the median, CVaR,
distortion risk measure, Wang transform, proportional hazards transform, and the
Gini measure, under distributional uncertainty defined with the Wasserstein distance.
Using the so-called subdifferential representation of risk measures, he derives closed-
form worst-case values of risk measures. For the first three risk measures the resulting
worst-case expressions are linear, convex quadratic, or piecewise linear in the decision
variables. Pichler [40] focuses on the worst-case values of general spectral and dis-
tortion risk measures under distributional uncertainty defined with the Wasserstein
distance. He provides expressions for the so-called transport maps that define the
worst-case probability distributions for given values of the decision variables. How-
ever, in a general case these formulas cannot be implemented easily because of their
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nonlinear (nonconvex) forms.
There are also several works studying risk measures or uncertainty sets different from
the ones we consider. Zhu and Fukushima [52] analyze the CVaR under box and el-
lipsoidal uncertainty sets for discrete probabilities. Using the min-formulation for
CVaR from Rockafellar and Uryasev [43] and minmax results from convex analysis,
they show that the problem of minimizing the worst-case CVaR in such a case can be
formulated as LP (for box uncertainty) or SOCP (for ellipsoidal uncertainty). Fertis
et al. [23] study the CVaR under an uncertainty set with a two-stage structure. In
this structure, the uncertainty set is defined as a ball with an arbitrary norm around
a reference probability distribution. This reference probability distribution is allowed
to be a convex combination of a finite number of known probability distributions. In
this way, the authors generalize the results of Zhu and Fukushima [52] to the contin-
uous case, showing that a constraint on the CVaR can be reformulated tractably to
a system of constraints involving dual norms.
Huang et al. [31] propose a framework replacing the standard CVaR by a less conser-
vative measure, namely the Relative Robust CVaR, and show that under a multiple-
expert uncertainty set the resulting optimization problem can be reformulated either
as LP or as SOCP. Mosler and Bazovkin [37] construct a geometrically-based method
for solving robust linear programs with a single distortion risk measure under poly-
topial uncertainty sets. It is not known yet whether their results can be extended to
the statistically-based uncertainty sets for probabilities.
Wiesemann et al. [50] propose a general framework of distributionally robust convex
optimization. They require that the function to be constrained is bilinear in the
decision variables and the random vector, imposing an uncertainty set that must
possess a conic representation, with some regularity conditions. The reformulation
they provide applies to multiple risk measures and conic-representable uncertainty
sets for the probabilities, see Table 2.1 for an overview.
Ben-Tal et al. [10] provide the mathematical framework used in our paper. They
study general nonlinear robust constraints reformulated using Fenchel duality. Re-
sults of their paper allow to obtain tractable constraints for the variance with dis-
tributional uncertainty defined by ϕ-divergences and the Anderson-Darling goodness
of fit tests. In both cases the resulting system of constraints is convex, and for some
of the ϕ-divergence functions it is second-order conic. In our paper we extend their
framework to other types of uncertainty sets and risk measures.
Bertsimas et al. [13] show how in a data-driven setting one can construct uncertainty
sets based on statistical tests such as Kolmogorov-Smirnov, χ2, Anderson-Darling,
Watson and likelihood ratio, used to obtain conservative bounds on the VaR via
CVaR. They utilize a cutting plane algorithm with an efficient method of evaluating
the worst-case values of the decision-dependent random variables.
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Finally, two works, Natarajan et al. [38] and Bertsimas and Brown [11] provide a more
general insight into the relation between robust optimization and risk measurement.
They show that there is a one-to-one relationship between coherent risk measures
(see Artzner et al. [4] for an introduction) and uncertainty sets for general uncertain
parameters in the case of constraints that are linear in this uncertainty.

2.3 Preliminaries

As already introduced in Section 2.2, we study constraints on risk measures of
decision-dependent random variables, where w ∈ RM is the decision vector. The
random variable X(w), representing the decision maker’s reward, and whose risk is
measured, takes a value Xn(w) with probability pn for each n ∈ N = {1, . . . , N}.
The uncertain parameter is the probability vector p = [p1, ..., pN ]T ∈ RN

+ , represent-
ing the discrete distribution of X(w). The reference probability vector, around which
the uncertainty set for p may be specified, is denoted by q ∈ RN

+ .
Let the risk measure of the random variable X(w) under the probability distribution
represented by the vector p be given by F (p,X(w)), with F : RN

+ × RN → R. The
robust constraint on the risk measure that we shall reformulate to a tractable form
is given by:

F (p, w) = F (p,X(w)) ≤ β, ∀p ∈ P , (2.2)

where F : RN
+ × RM → R and P is the uncertainty set for the probabilities defined

as:

P = {p : p = Ap′, p′ ∈ U} , (2.3)

where the set U ⊆ RL
+ is a nonempty, compact convex set, and A ∈ RN×L such that

P ⊆ RN
+ . The formulation of the set P using the matrix A is general and encompasses

cases where the set U has a dimension different from N .

Example 2.1 If the risk measure of the random variable X(w) is the standard de-
viation and the uncertainty set is defined using a ϕ-divergence function around the
reference probability vector q (see Table 2.3), then the constraint is:

F (p, w) = F (p,X(w)) =

√√√√√∑
n∈N

pn

Xn(w)−
∑
n′∈N

pn′Xn′(w)
2

≤ β, ∀p ∈ P ,

with A = I and

P = U =
{
p ∈ RN

+ :
∑
n∈N

pn = 1,
∑
n∈N

qnϕ

(
pn
qn

)
≤ ρ

}
.
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The robust constraint of Example 2.1 is reformulated to a computationally tractable
form in Section 2.7.1.
We now introduce the key theorem used in this paper to construct a unified frame-
work for tackling constraints involving a risk measure and an uncertainty set for
probabilities. First, we give the definition of the conjugate functions and the sup-
port function, adapted to our context. The concave conjugate f∗(·) of a function
f : RN

+ → R is defined as a function f∗ : RN → R ∪ {−∞}:

f∗(v) = inf
p∈RN+

{
vTp− f(p)

}
. (2.4)

The convex conjugate g∗(·) of a function g : RN
+ → R is defined as a function g∗ :

RN → R ∪ {+∞}:

g∗(v) = sup
p∈RN+

{
vTp− g(p)

}
. (2.5)

Remark 2.1 In the above definitions, the domains of f(·) and g(·) are given by RN
+ ,

and the corresponding conjugates are defined as an infimum/supremum over RN
+ ,

instead of RN . Our approach can easily be adapted in a way that fits the standard
definitions by setting the values of f(·) and g(·) equal to −∞ and +∞ outside RN

+ ,
respectively, so that RN

+ is the effective domain.

The indicator function δ(·|U) of a nonempty set U ⊆ RL
+ is defined as

δ(p′|U) =
{

0 if p′ ∈ U
+∞ otherwise,

and the support function δ∗(·|U) : RL → R ∪ {∞} of a nonempty set U ⊆ RL
+ is

defined as a convex conjugate of the indicator function:

δ∗(v|U) = sup
p′∈RL+

(vTp′ − δ(p′|U)) = sup
p′∈U

vTp′. (2.6)

The following theorem, adapted from Ben-Tal et al. [10], is the main tool for deriving
the tractable robust counterparts in this paper.

Theorem 2.1 Let f : RN
+ × RM → R be a function such that f(·, w) is closed and

concave for each w ∈ RM . Consider a constraint of the form:

f(p, w) ≤ β, ∀p ∈ P , (2.7)

where P is defined by (2.3) and where it holds that:

ri(P) ∩ RN
++ 6= ∅. (2.8)
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Then (2.7) holds for a given w if and only if:

∃v ∈ RN : δ∗
(
ATv

∣∣∣U)− f∗(v, w) ≤ β, (2.9)

where δ∗(·|U) is the support function of the set U and f∗(·, w) is the concave conjugate
of f(·, w) with respect to its first argument.

Proof. The proof relies on the Fenchel duality theorem, included as Theorem 2.2 in
Appendix 2.A. Constraint (2.7) is equivalent to:

G(w) = sup
p∈P
{f(p, w)− δ (p |P )} ≤ β.

We have that

G(w) = sup
p∈P
{f(p, w)− δ (p |P )}

= inf
v
{δ∗ (v| P)− f∗(v, w)}

= inf
v

{
δ∗
(
ATv

∣∣∣U)− f∗(v, w)
}
,

where the second equality follows from Fenchel duality. Moreover, due to condition
(2.8) the infimum is attained, see Appendix 2.A. Because of this, the constraint

inf
v

{
δ∗
(
ATv

∣∣∣U)− f∗(v, w)
}
≤ β

is equivalent to (2.9), obtained by removing the inf term. �

We argue in Section 2.4.2 that for the uncertainty sets considered in this paper
condition (2.8) holds under mild conditions on the vector q. For cases where f(·, w)
is not closed or concave, (2.9) is a conservative approximation of (2.7), which follows
from weak Fenchel duality.
Theorem 2.1 allows for a separation of the derivation of two components: (i) the
support function of the uncertainty set U at the point ATv, and (ii) the concave
conjugate of f(·, w). Moreover, it is not necessary to have closed-form formulations
of the two components. For example, if one can express the support function as an
infimum of some convex function over a set of parameter values, then the inf symbol
can be removed after inserting such a formulation into (2.9), due to its position on
the left hand side of the constraint. As we shall see in further sections, we often make
use of this property.
If the function F (·, w) in (2.2) satisfies the concavity assumption with respect to p
and we can obtain its conjugate directly from (2.5), then we can use Theorem 2.1 to
reformulate the semi-infinite constraint (2.2) as a finite constraint of the type (2.9),
setting f(p, w) = F (p, w).
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On the other hand, if the concavity assumption is not satisfied or the standard form of
F (·, w) is too difficult to obtain a tractable conjugate, then we try to choose another
function f(·, ·) such that (2.2) and (2.7) are equivalent, and Theorem 2.1 can be used.

Remark 2.2 The form of the left-hand side in (2.9) is particularly useful when the
conjugate and support functions are not available as closed-form expressions, but
instead, are formulated as supremums and infimums, respectively:

f∗(v, w) = sup
λ∈Λ(v,w)

f(v, w, λ), δ∗(ATv|U) = inf
θ∈Θ(v)

g(v, θ),

where Λ(v, w) ⊆ RnΛ and Θ(v) ⊆ RnΘ. Inserting these formulations into (2.9) yields:

inf
θ∈Θ(v)

g(v, θ)− sup
λ∈Λ(v,w)

f(v, w, λ) ≤ β.

Under the condition that the infimum of the left-hand side is attained, satisfied in
examples considered in this paper, we obtain an equivalent formulation by removing
the inf and sup symbols, including the relevant constraints as:

∃(λ, θ) ∈ RnΛ × RnΘ :


g(v, θ)− f(v, w, λ) ≤ β

λ ∈ Λ(v, w)
θ ∈ Θ(v).

The next section gives the potential choices for the risk measures and the uncertainty
set P .
Additional notation
We distinguish the vectors by using the superscripts and the components of a vector
using subscripts. For example, vik denotes the k-th component of the vector vi.
Also, by the symbol vs:t we denote the subvector of v consisting of the components
indexed s through t. Throughout the paper, 1 denotes a vector of ones, consistent
in dimensionality with the equation at hand, 1k is a vector with ones on its first k
positions and zeros elsewhere , 1−k is defined as the vector 1− 1k, and ek denotes a
vector of zeros except a single 1 as the k-th component.
For formulas such as f(p) = sup

hi(x)≤0, i∈I
g(x, p), we make use of the following layout:

f(p) = sup g(x, p)
s.t. hi(x) ≤ 0, i ∈ I,

in situations where the terms under the sup/inf symbol would make the formulation
difficult to read.
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2.4 Risk measures and uncertainty sets

2.4.1 Risk measures

Risk measures, as concise quantifiers of the riskiness of random variables, can be de-
signed for a great variety of purposes. The most important fields of their application
are finance and economics (see, e.g., Schied and Föllmer [46] and Dowd [19]), linear
regression in statistics (see, e.g., Rockafellar et al. [44]), supply chain management
(see, e.g., Ahmed et al. [3]), engineering (see, e.g., Rockafellar and Royset [42]), and
medicine (see, e.g., Calafiore [17]).
The choice of a risk measure depends on the risk characteristics one is interested
in and is therefore likely to be application-specific. Also, each risk measure has its
implications in terms of the tractable robust counterpart’s complexity, as indicated
in Table 2.1. In Table 2.2 we list a wide range of examples, exhausting a large share
of practical applications. In their formulations, we follow the convention that the
random variable X(w) represents the reward and ‘the smaller the risk measure, the
better’ (as a requirement for risk measures, known as the monotonicity axiom, see
Artzner et al. [4]):

(∀n ∈ N : Xn(w1) ≥ Xn(w2)) ⇒ F (p, w1) ≤ F (p, w2).

As an example, the first risk measure in Table 2.2 is the negative mean return, instead
of its positive counterpart. In the remainder of this section we briefly introduce the
included risk measures according to the aspect of risk they measure.
Some of the risk measures in Table 2.2 quantify the dispersion of the random variable
X(w) around a given ‘central’ level, such as the mean or the median. These risk mea-
sures include the variance, the standard deviation, and the mean absolute deviation
from the median. The difference between, for example, the standard deviation and
the variance lies in contributions made by deviations of different magnitude.
Variance or standard deviation minus the mean multiplied by a constant are popular
in finance as they represent the classical ‘return minus risk’ performance measure, see
Markowitz [36]. The Sharpe ratio (see Sharpe [47]), defined as the proportion of the
mean of the random variable to its standard deviation is also popular in the financial
context as a measure of the assets’ riskiness. Typically, the mean used then is the
mean excess return of an asset above the return of a riskfree asset. The combination
of the standard deviation and the mean can also be used in engineering to ensure
that the value of some random variable is not greater than a prescribed level by at
least ‘some number of standard deviations’.
Lower partial moments are useful when a one-sided deviation of the random variable
around a specified level is important, as can be the case with losses in a financial
setting. Lower partial moments with α = 1 and α = 2 differ in the contribution
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made by deviations of different magnitude. The name ‘lower partial moment’ is
just a convention and one can analyze similarly the upper partial moments of the
variables.
To study not only the deviation around some given level, but the overall riskiness of
a variable X(w) in an economic context, risk measures involving the agent’s utility
function u(·) are used as well. These are (1) the Certainty Equivalent - the negative
of the ‘sure amount for which a decision maker remains indifferent to the outcome
of random variable X(w)’ (see Ben-Tal and Teboulle [7]), (2) the Shortfall risk -
the minimum amount of additional resources needed to make the expected utility of
a decision maker from his portfolio nonnegative, and (3) the Optimized Certainty
Equivalent - representing the optimal allocation of X(w) between present and future
consumption.
Yet another type of risk measures are the tail-oriented risk measures. The most
popular of them, the Value-at-Risk, represents the negative of the left α-th quantile
of the distribution of X(w). A constraint imposed on the VaR is equivalent to a
chance constraint, as noted in Nemirovski and Shapiro [39] and used in Bertsimas
et al. [13], Jiang and Guan [32], Hu and Hong [29], and Hu et al. [30]. However,
efficient optimization of the VaR is difficult unless distributional assumptions are
made. This problem can be mitigated by using instead of it a special case of the
Optimized Certainty Equivalent, the Conditional Value-at-Risk, which represents
the negative of the average of the worst 100α% outcomes of X(w). Nemirovski and
Shapiro [39] have shown the CVaR to be the best conservative convex approximation
of the VaR. In Table 2.2 we use the formulation of CVaR adopted from Rockafellar
and Uryasev [43]. Another advantage of the CVaR compared to the VaR is that it
provides information about the mean of the least 100α% worst positions, instead of
only the largest of them as is the case for the VaR.
Recently, an upper bound on both the VaR and the CVaR has been proposed by
Ahmadi-Javid [2] - the Entropic Value-at-Risk. Its definition in Table 2.2 requires a
separate comment since it does not involve p. Instead, EVaR is defined as a supremum
over probability vectors p̃ in Pq, constructed around a vector q. In this case the vector
q shall be subject to uncertainty within a set Q - see the ‘combined uncertainty set’ in
Table 2.3. We have chosen this formulation to make the notation of the corresponding
function f(p, w) (given in Section 2.5) consistent with the terminology of Theorem
2.1.
Table 2.2 includes also general risk measure classes whose definitions are based on ax-
ioms that risk measures should satisfy. In particular, these are the spectral, coherent,
and convex risk measures, which are increasing classes in the sense of set inclusion.
For a discussion of the differences between these three types of risk measures we refer
the reader to Acerbi [1] and Föllmer and Schied [24].
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Some of the measures in Table 2.2 are specific cases of the other ones: for instance,
the CVaR is an example of an Optimized Certainty Equivalent. Nevertheless, a
distinction has been made because of the popularity of the use of the specific cases.
Also, some results can be obtained only for specific cases and it is important to state
why this is so, and what the consequences are for practical applications.
For a further reference, each of the papers mentioned in Table 2.1 includes also a
discussion of the applications of the relevant risk measures. For a broader overview
of risk measurement and possible choices for risk measures we refer the reader to
Embrechts et al. [21], Dowd [19], and Rockafellar and Royset [42].

2.4.2 Uncertainty sets for the probabilities

Distributional uncertainty has been studied up to now mostly in finance (see, e.g.
Calafiore [16] and other references in Table 2.1), insurance (see, e.g., Klugman et al.
[34]), economics (denoted in this context as ambiguity, see, e.g., Epstein [22]), and
machine learning (see, e.g., Gotoh and Uryasev [27]).
Since some of the uncertainty sets are constructed using information on the outcomes
of an underlying random vector, we assume that Xn(w) corresponds to the outcome
Y n ∈ RMY of some underlying random vector Y . Table 2.3 presents the uncertainty
sets for the discrete probabilities studied in this paper.
We follow the view, motivated in Rühlicke [45], that the formulation of an uncer-
tainty set for a probability distribution should be supported by results in statistics.
For that reason, most of the sets in Table 2.3, including the Pearson, likelihood
ratio, Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, or Kuiper sets,
are constructed using goodness-of-fit test statistics with the corresponding names.
Goodness-of-fit tests are typically used to test the hypothesis that a random sam-
ple with empirical probability distribution p has been sampled from an underlying
distribution q. For that purpose, a test statistic is computed and compared to the
critical value, based on the test type, sample size, and the chosen confidence level
(see, for example, Thas [48]).

Example 2.2 The test statistic corresponding to the Pearson test is given by

D =
∑
n∈N

(pn − qn)2

qn
,

where pn and qn, are the empirical and the postulated (tested) probability of the n-
th outcome, n ∈ N , respectively. If, at the assumed confidence level, it holds that
D > D0, where D0 is the critical level at the given confidence level, the hypothesis
that the given random sample comes from the underlying distribution q, is rejected.
Otherwise, there is no evidence to reject this hypothesis.
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Table 2.2 – Risk measures analyzed in this paper. The term Ep denotes expectation with respect
to the probability measure induced by the vector p and GX(w) denotes the distribution function of
the random variable X(w) as induced by p. We define the left α-quantile of a distribution of X(w)
as G−1

X(w)(α) = inf {κ ∈ R : P (X(w) ≤ κ) ≥ α}. The utility functions u(·) are assumed to be defined
on the entire real line.

Risk measure Formulation F (p, w)

Negative mean return −Ep (X(w))

Standard deviation less the mean
√

Ep(X(w)− EpX(w))2 − αEp (X(w)) , α ≥ 0

Standard deviation
√

Ep(X(w)− EpX(w))2

Variance less the mean Ep(X(w)− EpX(w))2 − αEp (X(w)) , α ≥ 0

Variance Ep(X(w)− EpX(w))2

Mean absolute deviation from the median Ep
∣∣∣X(w)−G−1

X(w)(0.5)
∣∣∣

Sharpe ratio
−Ep(X(w))√

Ep(X(w)−EpX(w))2

Lower partial moment Ep (max {0, κ̄−X(w)}α)

α = 1, 2, κ̄ - any value

Certainty Equivalent (CE)
−u−1 (Epu(X(w)))

u(·) concave, invertible, with − u′(t)
u′′(t) concave

Shortfall risk inf {κ ∈ R : Ep (u(X(w) + κ) ≥ 0}

u(·) concave

Optimized Certainty Equivalent (OCE)
inf
κ∈R
−κ− Ep(u(X(w)− κ)),

u(·) concave, nondecreasing

Value-at-Risk (VaR) −G−1
X(w)(α), 0 < α < 1

Conditional Value-at-Risk (CVaR) inf
κ∈R
−κ− Ep

(
1
α

min {X(w)− κ, 0}
)
, 0 < α < 1

Entropic Value-at-Risk (EVaR)
(see comments in Section 2.4.1)

sup
p̃∈Pq

Ep̃(−X(w)), 0 < α < 1

Pq =
{
p̃ : p̃ ≥ 0, 1T p̃ = 1,

∑
n∈N

p̃n log
(
p̃n
qn

)
≤ − logα

}
Mean deviation from the mean Ep |X(w)− Ep(X(w))|

Distortion risk measures
∫ +∞

0 g
(
1−GX(w)(t)

)
dt, X(w) nonnegative, g : [0, 1]→ [0, 1]

Coherent risk measures sup
p̃∈C

Ep̃(−X(w)), C - set of probability vectors

Spectral risk measures
−
∫ 1

0 G−1
X(w)(t)ψ(t)dt,

ψ(·) nonnegative, non-increasing, right-continuous, integrable
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For examples of ϕ-divergences we refer the reader to Table 2.5 in Appendix 2.C.1. The
Pearson and likelihood ratio sets are specific cases of the ϕ-divergence set (obtained by
choosing the Kullback-Leibler or the modified χ2 divergences, respectively), but have
been distinguished here because of their popularity. The likelihood ratio set, having
some computational and statistical advantages due to its relation to information
theory, is a common choice in studies considering distributional uncertainty, see, for
example, Hu and Hong [29], Hu et al. [30], and Jiang and Guan [32].
The Wasserstein set definition, using the Wasserstein (Kantorovich) distance between
distribution vectors p and q, deserves a separate explanation. The distance between
p and q, defined with the use of the inf term in Table 2.3, can be interpreted as a
minimum transport cost of the probability mass from vector p (supply) to vector q
(demand), where the unit cost between the i-th cell of p and the j-th cell of q is equal
to ‖Y i − Y j‖d, where Y i is the i-th observation of the underlying random variable
Y , as specified in Section 2.3. This type of uncertainty is studied extensively in a
robust setting in Wozabal [51] and the statistical advantages of its use are motivated
in Rühlicke [45].
A separate explanation is also needed for the ‘combined uncertainty set’. This class of
uncertainty sets has been introduced here to derive the tractable robust counterpart
of a constraint on the Entropic Value-at-Risk. Its definition in Table 2.3 says that
PC has a two-stage structure. First, the vector p belongs to a set Pq centered around
a vector q. Then, the vector q is uncertain itself and belongs to a set Q defined
using Q convex inequalities. In this paper we shall assume that Pq is defined as a
ϕ-divergence set around q, as in the first row of Table 2.3.
Some of the formulations in Table 2.3 include explicitly both the vectors p and q

and the others only the vector p (with an abbreviation ‘emp’ next to set name in
the last column of Table 2.3). The former case corresponds to the situation where
the uncertainty set for p is defined with reference to a nominal distribution q that
in principle can be chosen arbitrarily. In such a case, a typical choice for q will be
the empirical distribution. The latter case corresponds to goodness-of-fit tests for
one-dimensional random samples Y 1 ≤ Y 2 ≤ . . . ≤ Y N . There, the nominal measure
q is implicitly defined by the empirical distribution of the sample at hand and cannot
be chosen arbitrarily.
This does not mean that one can use such uncertainty sets only for the case where
Y is one-dimensional. Under the assumption that the dependence structure of the
marginal distributions is unknown, a simple goodness-of-fit test (and hence, an un-
certainty set) can be constructed by applying a given goodness-of-fit test for each
marginal distribution, with modified confidence level. Such an approach is applied,
for example, by Bertsimas et al. [14], including some of the uncertainty sets consid-
ered in Table 2.3.
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For other dependence structures between the marginal distributions, however, con-
struction of credible goodness-of-fit tests is still an area of research. Bertsimas et al.
[13] show how to use the Kolmogorov-Smirnov test for each of the marginal distri-
butions, under the assumption of their independence, to obtain approximations of
constraints on the VaR.
If needed, continuous probability distributions can be transformed to discrete ones
to fit into the framework of our survey, e.g., by dividing the support of a random
variable into cells and using the per-cell probabilities. However, one has to be aware
of potential shortcomings of such an approach in statistical testing, see, for example,
Thas [48].
The choice of an uncertainty set for a particular application is related to the properties
of the problem at hand, such as the dimensionality of data, number of observations,
and properties of the goodness-of-fit test/probability metric on which a given set is
based. Similar to the case of risk measures, the choice of a specific uncertainty set
type has its implications for the complexity of the reformulated problem, see Table
2.1. For an overview and further discussion of statistical tests and probability metrics
we refer the reader to Gibbs and Su [26] and Thas [48].
We now verify under which conditions the uncertainty sets listed in Table 2.3 satisfy
condition (2.8) so that we can apply Theorem 2.1 to derive the tractable robust
counterparts. For the set definitions with no q involved, condition (2.8) holds. For
sets involving a vector q, (2.8) holds if we assume that (i) q ∈ P , and (ii) q ∈ RN

++
(since then the sets ri(P) and RN

++ obviously have a point q in common). Condition
(i) is reasonable since the best estimate of the uncertain probability vector should
also belong to the uncertainty set. For (ii), if there were a scenario j such that
qj = 0, then such a scenario should not be taken into account, since an estimated
probability equal to zero means that the scenario is empirically irrelevant. Thus, the
assumptions (i) and (ii) can be expected to hold in applications of our methodology.

2.5 Conjugates of the risk measures

In Table 2.2 each risk measure corresponds to a specific function F (p, w), defining its
value for w under the probability distribution induced by the vector p. However, not
for all cases it is possible to apply Theorem 2.1 using in the forms presented in Table
2.2. For such cases, we may need an equivalent formulation of the risk measure using
some new function f(p, w), for which the assumptions of Theorem 2.1 are satisfied.
In this section we give the results on concave conjugates f∗(v, w) of such relevant
functions f(p, w) corresponding to the risk measures from Table 2.2. For some cases
we take f(p, w) = F (p, w). For others, such as the Optimized Certainty Equivalent
or the variance, F (p, w) is reformulated to an equivalent form using a new function
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Table 2.3 – Uncertainty set formulations for the probabilities vector p. In each case we assume that
p ≥ 0, 1T p = 1 hold.

Set type Formulation Symbol

ϕ-divergence
∑
n∈N

qnϕ
(
pn
qn

)
≤ ρ Pϕq

Pearson (χ2)
∑
n∈N

(pn−qn)2

qn
≤ ρ PP

q

Likelihood ratio (G)
∑
n∈N

qn log
(
pn
qn

)
≤ ρ PLR

q

Kolmogorov-Smirnov max
n∈N

∣∣pT 1n − qT 1n
∣∣ ≤ ρ PKS

q

Wasserstein (Kantorovich) inf
K:Kij≥0,∀i,j
K1=q,KT 1=p

( ∑
i,j∈N

Kij‖Y i − Y j‖d
)
≤ ρ, d ≥ 1 PW

q

Combined set p ∈ Pq , q ∈ Q = {q : hi(q) ≤ 0, i = 1, ..., Q} PC

Anderson-Darling −N −
∑
n∈N

2n−1
N

(
log
(
pT 1n

)
+ log

(
pT 1−n

))
≤ ρ PAD

emp

Cramer-von Mises 1
12N +

∑
n∈N

(
2n−1
2N − pT 1n

)2
≤ ρ PCvM

emp

Watson 1
12N +

∑
n∈N

(
2n−1
2N − pT 1n

)2
−N

(
1
N

∑
n∈N

pT 1n − 1
2

)2

≤ ρ PWa
emp

Kuiper max
n∈N

(
n
N
− pT 1n

)
+ max
n∈N

(
pT 1n−1 − n−1

N

)
≤ ρ PK

emp

f(p, w) linear in p:
f(p, w) = Z0 +

∑
n∈N

pnZn(w),

for appropriate Z0 and Zn(w). Linearity in p is a desirable property since then the
conjugate f∗(v, w) follows directly from (2.4):

f∗(v, w) =

 −Z0 if Zn(w) ≤ vn, ∀n ∈ N

−∞ otherwise.
(2.10)

Derivations for the risk measures where even the f(p, w) is nonlinear in p are given in
Appendix 2.B. The remainder of this section distinguishes three cases, depending on
the type of the functions F (p, w) and f(p, w): (1) when F (p, w) ≡ f(p, w) is linear
in p, (2) when F (p, w) is nonlinear in p, but f(p, w) is linear in p, and (3) when
both F (p, w) and f(p, w) are nonlinear in p. For each conjugate function we give the
complexity of the system of inequalities in the formulation under the condition that
each Xn(·) is linear.

2.5.1 F (p, w) linear in p

In this subsection we analyze the risk measures for which F (p, w) ≡ f(p, w) is linear
in p.
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Negative mean return. For the negative mean return the function is:

f(p, w) = F (p, w) =
∑
n∈N

pn (−Xn(w)) .

Its concave conjugate is given by formula (2.10) with Z0 = 0 and Zn(w) = −Xn(w).
If each Xn(·) is linear, the inequalities in this formulation are linear in w.
Shortfall risk. In case of the Shortfall risk the constraint itself is imposed on the
variable κ. The constraint to be reformulated is Epu(X(w) +κ) ≥ 0 or, equivalently:

−Epu(X(w) + κ) ≤ 0, ∀p ∈ P .

The function f(p, w) we take is:

f(p, w) = −
∑
n∈N

pnu(Xn(w) + κ).

Its conjugate is given by (2.10) with Z0 = 0 and Zn(w) = −u(Xn(w) + κ). If each
Xn(·) is linear, then, due to the concavity of u(·), the inequalities included in this
formulation are convex in the decision variables.
Lower partial moment. In this case the function is:

f(p, w) = F (p, w) =
∑
n∈N

pn max {0, κ̄−Xn(w)}α .

Its conjugate is given by (2.10) with Z0 = 0 and Zn(w) = max {0, κ̄−Xn(w)}α. If
each Xn(·) is linear, then for α = 1 the inequalities involved are linear, and for α = 2
they are convex quadratic in the decision variables.

2.5.2 F (p, w) nonlinear in p and f(p, w) linear in p

In this subsection we analyze the risk measures for which F (p, w) is nonlinear in p

but f(p, w) is linear in p.
Optimized Certainty Equivalent. For a constraint on the OCE, the constraint
is:

F (p, w) = inf
κ∈R

{
−κ−

∑
n∈N

pn(u(Xn(w)− κ))
}
≤ β, ∀p ∈ P . (2.11)

Due to Lemma 2.2 (see Appendix 2.B.1), for continuous and finite-valued functions
u(·) and compact sets P (being the uncertainty set for probabilities in our case) it
holds that

sup
p∈P

inf
κ∈R

{
−κ−

∑
n∈N

pn(u(Xn(w)− κ))
}

= inf
κ∈R

sup
p∈P

{
−κ−

∑
n∈N

pn(u(Xn(w)− κ))
}
.
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Using this result, the inf term in (2.11) can be removed, and the following constraint,
with κ as a variable, is equivalent to (2.11):

f(p, w) = −κ−
∑
n∈N

pn(u(Xn(w)− κ)) ≤ β, ∀p ∈ P .

This formulation is already in the form of Theorem 2.1 and the concave conjugate
of f(p, w) with respect to its first argument is given by (2.10) with Z0 = −κ and
Zn(w) = −u(Xn(w) − κ). If each Xn(·) is linear, then this formulation involves
convex inequalities in the decision variables. For the Conditional Value-at-Risk, as
a special case of the OCE, we have Z0 = −κ and Zn(w) = − 1

α
min {Xn(w)− κ, 0}.

If each Xn(·) is linear, the inequalities included in this formulation are representable
as a system of linear inequalities in the decision variables.
Certainty Equivalent. For general u(·) the formulation of a conjugate function
would involve inequalities that are nonconvex in the decision variables. If one assumes
that β is a fixed number, then a more tractable way to include a constraint on the
CE:

F (p, w) = −u−1
(∑
n∈N

pnu(X(w))
)
≤ β, ∀p ∈ P

is to multiply both sides by −1, then apply the function u(·) to both sides to arrive
at an equivalent constraint

F̃ (p, w) = −
∑
n∈N

pnu(X(w)) ≤ −u(−β), ∀p ∈ P .

This constraint is of the same type as the robust constraint for the Shortfall risk.
Therefore, the result for Shortfall risk can be used to obtain the relevant concave
conjugate. In this case one cannot combine the CE with other risk measures via
using the β as a variable.
Mean absolute deviation from the median. The constraint for this risk
measure is given by:

F (p, w) =
∑
n∈N

pn
∣∣∣Xn(w)−G−1

X(w)(0.5)
∣∣∣ ≤ β, ∀p ∈ P .

Because of the median, G−1
X(w)(0.5), the function above is nonlinear in p and its

concavity status is difficult to determine. However, we have:

F (p, w) =
∑
n∈N

pn
∣∣∣Xn(w)−G−1

X(w)(0.5)
∣∣∣ = inf

κ∈R

∑
n∈N

pn |Xn(w)− κ| .

This result is obtained by considering the impact of changing κ on the value of the sum
on the right hand-side, separately for the cases κ > G−1

X(w)(0.5) and κ < G−1
X(w)(0.5).

By formulating F (p, w) as an infimum over linear functions in p, we immediately
know that it is also concave in p. The conditions of Lemma 2.2 (see Appendix 2.B.1)
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are therefore satisfied so that, similar to the Optimized Certainty Equivalent, we
can remove the inf term to study equivalently the robust constraint on the following
function:

f(p, w) =
∑
n∈N

pn |Xn(w)− κ| ,

where κ is a variable. Its conjugate is given by (2.10) with Z0 = 0 and Zn(w) =
|Xn(w)− κ|. If each Xn(·) is linear, the inequalities included in the formulation
above are representable as a system of linear inequalities in the decision variables.
Variance less the mean. The constraint for this risk measure is given by:

F (p, w) =
∑
n∈N

pn

Xn(w)−
∑
n′∈N

pn′Xn′(w)
2

− α
∑
n∈N

pnXn(w) ≤ β, ∀p ∈ P .

Even though this formulation is concave in p, the results obtained in [10] for the
variance in this form are difficult to implement. We propose to use, similar to the
case of mean absolute deviation from the median, the following, well-known fact:

F (p, w) = ∑
n∈N

pn

(
Xn(w)− ∑

n′∈N
pn′Xn′(w)

)2

− α ∑
n∈N

pnXn(w)

= inf
κ∈R

∑
n∈N

pn (Xn(w)− κ)2 − α ∑
n∈N

pnXn(w).
(2.12)

Indeed, the minimized expression is strictly convex in κ. Deriving the first-order
optimality condition results in κ = ∑

n∈N pnXn(w).
The conditions of Lemma 2.2 (see Appendix 2.B.1) are satisfied, thus we can remove
the inf term to study equivalently the robust constraint on the following function:

f(p, w) =
∑
n∈N

pn
(
(Xn(w)− κ)2 − αXn(w)

)
.

Its concave conjugate is given by (2.10) with Z0 = 0 and Zn(w) = (Xn(w)− κ)2 −
αXn(w). The result for the variance is obtained by setting α = 0. If each Xn(·) is
linear, then this formulation involves convex quadratic inequalities in the decision
variables.
Entropic Value-at-Risk. A robust constraint on the EVaR is given by

F (q, w) = sup
p̃∈Pq

Ep̃(−X(w)) ≤ β, ∀q ∈ Q

with
Pq =

{
p̃ : p̃ ≥ 0, 1T p̃ = 1,

∑
n∈N

p̃n log
(
p̃n
qn

)
≤ − logα

}
,

and Q defined as in Table 2.3. The derivation of the concave conjugate with such
a definition is troublesome since the function F (q, w) is formulated as a supremum.
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Because of this we introduce the notion of a combined uncertainty set to include the
formulations of Pq and Q in the definition of a joint uncertainty set for (p, q) and to
construct a relevant matrix AC. Then, the robust constraint on the EVaR is:

f(p, w) =
∑
n∈N

pn (−X(w)) ≤ β, p = ACp′, AC = [I|0N×N ], (2.13)

∀p′ ∈

p′ =
 p

q

 : p′ ≥ 0, 1Tp = 1,
∑
n∈N

pn log
(
pn
qn

)
≤ ρ, q ∈ Q

 .

The function f(p, w) for which the concave conjugate is to be derived, is the same
as for the negative mean return, for which (2.10) holds with Zn(w) = −Xn(w) and
Z0 = 0. What is left, is the derivation of the support function for the uncertainty set
for p′, which is done in Section 2.6. The approach developed here for the EVaR can
also be applied to other types of uncertainty sets Pq.

2.5.3 Both F (p, w) and f(p, w) nonlinear in p

In this subsection we analyze the risk measures for which both F (p, w) and f(p, w)
are nonlinear in p.
Standard deviation less the mean. The constraint on this risk measure is given
by:

F (p, w) =

√√√√√∑
n∈N

pn

Xn(w)−
∑
n′∈N

pn′Xn′(w)
2

− α
∑
n∈N

pnXn(w) ≤ β, ∀p ∈ P .

The function F (p, w) is nonlinear in p and a derivation of its conjugate would be
troublesome. We use the fact that:

F (p, w) = inf
κ∈R

√∑
n∈N

pn(Xn(w)− κ)2 − α
∑
n∈N

pnXn(w).

This formulation follows for the same reason as in the case of variance, since the
minimized expression is an increasing function (square root) of the variance. The
conditions of Lemma 2.2 (see Appendix 2.B.1) are satisfied and, similar to the Opti-
mized Certainty Equivalent, one can remove the inf term to reformulate equivalently
the robust constraint on the following function:

f(p, w) =
√∑
n∈N

pn(Xn(w)− κ)2 − α
∑
n∈N

pnXn(w).
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The function f(p, w) is concave in p and we can use Theorem 2.1. The conjugate of
f(p, w) is equal to:

f∗(v, w) = sup
y
−y

4

s.t.

∥∥∥∥∥∥∥
 Xn(w)− κ(

vn+αXn(w)−y
2

)

∥∥∥∥∥∥∥

2

≤ vn+αXn(w)+y
2 , ∀n ∈ N

vn + αXn(w) ≥ 0, ∀n ∈ N

y ≥ 0.

(2.14)

The derivation can be found in Appendix 2.B. If each Xn(·) is linear, the above
formulation involves second-order conic inequalities in the decision variables. The
result for the standard deviation is obtained by setting α = 0. One can note that
the sup-formulation of the conjugate function fits well into (2.9) since the conjugate
function appears there with a negative sign. Thus, one can omit the sup symbol after
inserting (2.14) into (2.9) and still have an equivalent constraint.
Sharpe ratio. A robust constraint on the Sharpe ratio risk measure is:

F (p, w) =
− ∑

n∈N
pn (Xn(w))√√√√ ∑

n∈N
pn

(
Xn(w)− ∑

n′∈N
pn′Xn′(w)

)2
≤ β, ∀p ∈ P .

The left-hand side function is neither convex, nor concave in the probabilities and
we did not find a more tractable function f(p, w) for it. If one assumes that β is a
fixed number, then the constraint can be reformulated equivalently to:√∑

n∈N
pn(Xn(w)−

∑
n′∈N

pn′Xn′(w))2 − 1
β

∑
n∈N

pn (Xn(w)) ≤ 0, ∀p ∈ P .

This constraint is equivalent to a robust constraint on the standard deviation less
the mean with α = 1/β and the right hand side equal to 0. Thus, the corresponding
result can be used for the conjugate function. In this case one cannot combine the
Sharpe ratio with other risk measures using β as a variable.
In the case of VaR we did not find a formulation of the risk measure that would
allow us to find a closed-form concave conjugate. A similar situation occurred for
the general distortion, spectral, and coherent risk measures. We found the structure
of their definitions intractable unless, for example, a coherent risk measure can be
analyzed using a combined uncertainty set, as in the case of EVaR. The mean absolute
deviation from the mean is nonconvex and nonconcave in the probabilities and for
that reason we could not obtain a closed-form or inf-form for its concave conjugate.
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2.6 Support functions of the uncertainty sets

In this section, the formulations of the support functions are given for the sets U
corresponding to the uncertainty sets listed in Table 2.3. Our results of this section
utilize heavily the property of (2.9), where it is sufficient to have the support function
formulated as an infimum. Then, the inf of the support function symbol can be
dropped after inserting the expression for the support function into (2.9), as explained
in Remark 2.2. We need this property as most of the support functions of the
uncertainty sets have been obtained using the following lemma, taken from [10]:

Lemma 2.1 Let Z ⊂ RL be of the form Z = {ζ : hi(ζ) ≤ 0, i = 1, ..., H}, where
the hi(·) is convex for each i. If it holds that ∩Hi=1ri (domhi) 6= ∅, then:

δ∗ (v|Z) = inf
u≥0

{
H∑
i=1

uih
∗
i

(
vi

ui

)∣∣∣∣∣
H∑
i=1

vi = v

}
,

where we define 0h∗i (vi/0) = limui→0+ uih
∗
i (vi/ui).

For each of the support functions we proceed in the same way. First, we give the
necessary parameters, assuming that A = I and P = U , unless stated otherwise.
Then the support function follows, referring to Appendix 2.C for the derivations.
ϕ-divergence functions. For the uncertainty set defined using the ϕ-divergence
the support function is (see Appendix 2.C.2 for a derivation):

δ∗
(
v
∣∣∣Pϕq ) = inf

u≥0,η

{
η + uρ+ u

∑
n∈N

qnϕ
∗
(
vn − η
u

)}
. (2.15)

This result has also been obtained in [9]. In the general case the right-hand side
expression between the brackets is a nonlinear convex function of the decision vari-
ables. However, for specific choices (see Table 2.5 in Appendix 2.C.1) it can have
more tractable forms - for instance, for the Variation distance it is linear. Result
(2.15) holds also for the Pearson and likelihood ratio sets since they are specific cases
of the ϕ-divergence set.
Kolmogorov-Smirnov. For an uncertainty set defined using the Kolmogorov-
Smirnov test we take a matrix D ∈ R(2N+2)×N and a vector d ∈ R2N+2 whose
components are:

D1n = 1, d1 = 1, ∀n ∈ N

D2n = −1, d2 = −1, ∀n ∈ N

D2+n,i = 1, d2+n = ρ+ qT1n, ∀i ≤ n, n ∈ N

D2+N+n,i = −1, d2+N+n = ρ− qT1n, ∀i ≤ n, n ∈ N ,
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with the other components equal to 0. Under such a parametrization, the support
function is equal to (see Appendix 2.C.3 for a derivation):

δ∗
(
v
∣∣∣PKS

)
= inf

u
uTd

s.t. v ≤ DTu

u ≥ 0.

(2.16)

The optimization problem in (2.16) is linear.
Wasserstein. For an uncertainty set defined using the Wasserstein distance we
take AW = [I |0N×N2 ]. This choice is motivated in the derivation in Appendix 2.C.4.
Also, a matrix D ∈ R(4N+3)×(N2+N) and a vector d ∈ R4N+3 are needed, whose
components are:

D1n = 1, d1 = 1, ∀n ∈ N

D2n = −1, d2 = −1, ∀n ∈ N

D3,Ni+n = ‖Yi − Yn‖d, d3 = ρ, ∀i, n ∈ N

D3+n,n = −1, D3+n,Nn+i = 1, ∀i, n ∈ N

D3+N+n,n = 1, D3+N+n,Nn+i = −1, ∀i, n ∈ N

D3+2N+n,Ni+n = 1, d3+2N+n = qn, ∀i, n ∈ N

D3+3N+n,Ni+n = −1, d3+3N+n = −qn, ∀i, n ∈ N ,

with all other components of D and d equal to 0. The corresponding support function
is equal to (see Appendix 2.C.4 for a derivation):

δ∗
((
AW

)T
v

∣∣∣∣UW
q

)
= inf

u
uTd

s.t. (AW)Tv ≤ DTu

u ≥ 0.

(2.17)

The optimization problem in (2.17) is linear.
Combined set. We assume that the uncertainty set Pq is defined as a ϕ-divergence
set around q (being the Kullback-Leibler divergence for the EVaR). We take a matrix
AC = [I|0N×N ], motivated in the corresponding section of Appendix 2.C.5. The
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support function is equal to (see Appendix 2.C.5 for a derivation):

δ∗
((
AC
)T
v
∣∣∣∣UC

)
= inf

{ui,vi},
i=1,...,Q+3

u1 − u2 + u3ρ+
Q∑
i=1

ui+3h
∗
i

(
vi+3
N+1:2N
ui+3

)

s.t. v1 ≤ u11
v2

1:N ≤ −u21
viN+1:2N = 0, i = 1, 2, 3
vi1:N = 0, i = 4, ..., Q+ 3
v3
N+n + u3ϕ

∗
(
v3
n

u3

)
≤ 0, ∀n ∈ N

Q+3∑
i=1

vi =
(
AC
)T
v

ui ≥ 0, i = 1, ..., Q+ 3.

(2.18)

For all ϕ-divergence functions listed in Table 2.5 the optimization problem in (2.18) is
convex. If the ϕ-divergence is the Variation distance or the modified χ2 distance and
the functions hi(·) are all linear or convex quadratic, then the optimization problem
in (2.18) is linear or convex quadratic, respectively.
Anderson-Darling. For an uncertainty set defined using the Anderson-Darling
test the support function δ∗

(
v
∣∣∣PAD

emp

)
is equal to (see Appendix 2.C.6 for a deriva-

tion):

inf
η,u,{wn+,wn−},n∈N

− ∑
n∈N

(2n−1)u
N

[
2 + log

(
−Nz+

n

(2n−1)u

)
+ log

(
−Nz−n

(2n−1)u

)]
+u (ρ+N) + η

s.t. v ≤ ∑
n∈N

(z+
n 1n + z−n 1−n) + η1

z+
n , z

−
n ≤ 0 ∀n ∈ N

u ≥ 0.

(2.19)

This result has also been obtained in [10]. The optimization problem in (2.19) is
convex.
Cramer-von Mises. For an uncertainty set defined using the Cramer-von Mises
test we use the following parameters:

c = −ρ+ 1
12N +

∑
n∈N

(2n− 1
2N

)2
, b =



−2∑N
j=1

2j−1
N

−2∑N
j=2

2j−1
N

...
−2∑N

j=N
2j−1
N


,
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a matrix E ∈ RN×N such that Eij = N + 1 − max {i, j} for i, j ∈ N and a unique
matrix P such that P TP = E−1. With such a parametrization, the support function
is equal to (see Appendix 2.C.7 for a derivation):

δ∗
(
v
∣∣∣PCvM

emp

)
= inf

z,t,{ui,vi},i=1,...,3
u1 − u2 + 1

4t− u3c

s.t.

∥∥∥∥∥∥∥
 Pz

t−u3
2


∥∥∥∥∥∥∥

2

≤ t+u3
2

z = u3b− v3

u1 − u2 + v3
n − vn ≥ 0, ∀n ∈ N

u1, u2, u3 ≥ 0.

(2.20)

The optimization problem in (2.20) is convex quadratic.
Watson. For an uncertainty set defined using the Watson test we use the following
parameters:

c = −ρ+ 1
12N +

∑
n∈N

(2n− 1
2N

)2
− N

4 , b =



−2∑N
j=1

2j−1
N

+N

−2∑N
j=2

2j−1
N

+ (N − 1)
...

−2∑N
j=N

2j−1
N

+ 1


,

a matrix E ∈ RN×N such that:

Ei,j = N + 1−max {i, j} − (N + 1− i)(N + 1− j)
N

, ∀i, j ∈ N ,

and a matrix P such that P TP = E. With such a parametrization, the support
function is given by (see Appendix 2.C.8 for a derivation):

δ∗
(
v
∣∣∣PWa

emp

)
= inf

z,t,λ,{ui,vi},
i=1,...,3

u1 − u2 + 1
4t− u3c

s.t.

∥∥∥∥∥∥∥
 Pz

t−u3
2


∥∥∥∥∥∥∥

2

≤ t+u3
2

z = u3b− v3

u1 − u2 + v3
n − vn ≥ 0, n ∈ N

u1, u2, u3, t ≥ 0
Eλ = z.

(2.21)

The optimization problem in (2.21) is convex quadratic.
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Kuiper. For the uncertainty set defined using the Kuiper test we take AK =
[I |0N×2] . Also, a matrix D ∈ R(2N+3)×(N+2) and a vector d ∈ R2N+3 are used, whose
components are:

D1,n = 1, d1 = 1, ∀n ∈ N

D2,n = −1, d2 = −1, ∀n ∈ N

D2+n,i = −1, D2+n,N+1 = −1, dn+2 = −n/N, ∀i ≤ n, n ∈ N

DN+2+n,i = 1, DN+2+n,N+2 = −1, dN+2+n = (n− 1)/N, ∀i ≤ n− 1, n ∈ N
D2N+3,N+1 = 1, D2N+3,N+2 = 1, d2N+3 = ρ,

with all other components of the matrix D and vector d equal to 0. Under such a
parametrization, the support function is (see Appendix 2.C.9 for a derivation):

δ∗
((
AK

)T
v
∣∣∣∣UK

emp

)
= inf

u
uTd

s.t.
(
AK

)T
v ≤ DTu

u ≥ 0.

(2.22)

The optimization problem in (2.22) is linear.

2.7 Examples

In this section we present three examples of constraints or problems involving distri-
butional uncertainty. The first example is a simple one where we demonstrate our
unifying approach on a single constraint introduced earlier in the paper. The second
example is in the field of finance and the third one is of industrial type - a data-driven
antenna array design problem. The latter two examples are also studied numerically.

2.7.1 Standard deviation with ϕ-divergence uncertainty set

For a simple exposition of the advantages of our method, we shall derive a tractable
counterpart of the constraint from Example 2.1 (see page 21), where the constraint
is imposed on the standard deviation and the uncertainty set is defined by means of
a ϕ-divergence uncertainty set:√√√√√∑

n∈N
pn

Xn(w)−
∑
n′∈N

pn′Xn′(w)
2

≤ β, ∀p ∈ P ,

with
P =

{
p ≥ 0 :

∑
n∈N

pn = 1,
∑
n∈N

qnϕ

(
pn
qn

)
≤ ρ

}
.

In order to obtain a tractable robust counterpart of the form (2.9), we need to identify:
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i the function f(p, w) corresponding to the standard deviation and derive its
conjugate,

ii the conjugate of the support function of the ϕ-divergence set.

The relevant component for (i) is (2.14), see page 36. For (ii), we refer to (2.15),
page 37.
Inserting the two components into (2.9), we obtain an equivalent constraint:


inf
η,u

η + uρ+ u
∑
n∈N

qnϕ∗
(
vn−η
u

)
s.t. u ≥ 0

vn + αXn(w) ≥ 0, ∀n ∈ N

−


sup
y

− y4

s.t.

∥∥∥∥∥
[

Xn(w)− κ(
vn+αXn(w)−y

2

)
]∥∥∥∥∥

2

≤ vn+αXn(w)+y
2

∀n ∈ N

y ≥ 0


≤ β,

where η, u, v, w, y are the variables. Since the inf appears on the left hand side of
the inequality and the sup is preceded by a negative sign, both can be dropped (see
Remark 2.2), and the resulting equivalent constraint system is:



η + uρ+ u
∑
n∈N

qnϕ
∗
(
vn−η
u

)
+ y

4 ≤ β∥∥∥∥∥∥∥
 Xn(w)− κ(

vn+αXn(w)−y
2

)

∥∥∥∥∥∥∥

2

≤ vn+αXn(w)+y
2 , ∀n ∈ N

vn + αXn(w) ≥ 0, ∀n ∈ N

u, y ≥ 0.

Since the ϕ∗(·) functions are convex, the resulting system of constraints is a system of
convex, second-order conic, and linear constraints. Correspondingly, the complexity
of the combination of the standard deviation and the ϕ-divergence set in Table 2.1
is denoted as CP.

2.7.2 Portfolio management

We consider as first numerical application of our methodology a stylized portfolio
optimization problem. In this problem, the aim is to maximize the (worst-case)
mean return subject to a maximum risk measure level, in both a nominal and robust
setting. We choose the risk measure to be the EVaR for its importance as an upper
bound on both the VaR and the CVaR. Additionally, the use of EVaR allows us to
illustrate the power of our approach to tackle two-layer uncertainty sets.
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2.7.2.1 Formulation and derivations of the robust counterparts

There are M available assets and N joint return scenarios for these assets, where
Y n
i denotes the gross return on the i-th asset in the n-th scenario. The decision

vector w ∈ W =
{
w ∈ RM : 1Tw = 1, w ≥ 0

}
consists of the portfolio weights of

assets where we assume that shortselling is not allowed. The portfolio return in the
n-th scenario is Xn(w) = ∑M

i=1wiY
n
i . The maximum (robust) EVaR level is z. The

nominal optimization problem is then:

max µ

s.t. ∑
n∈N

qn (−Xn(w)) ≤ −µ

sup
p̃∈Pq

∑
n∈N

p̃n (−Xn(w)) ≤ z

w ∈ W ,

(2.23)

where Pq is defined in the row of Table 2.2 corresponding to the EVaR. Problem
(2.23) includes a constraint involving a sup term, which requires a reformulation to
a tractable form. In the terminology of this paper, this constraint is equivalent to a
robust constraint on the negative mean return with uncertainty set Pq defined by the
Kullback-Leibler divergence, and can be reformulated using the results of Sections
2.5 and 2.6.
We proceed to the more difficult and, hence, more illustrative robust problem. It
shows the unifying power of our approach, including the derivation of the support
function of the combined uncertainty set. Moreover, the constraint on the worst-case
portfolio return in the robust problem is of the same type as the constraint on the
risk measure in the nominal problem and, thus, the corresponding reformulation is
also similar.
The uncertainty set for the nominal probability distribution q is defined as the Pear-
son set around a vector r (see Table 2.5):

Q =
{
q ≥ 0 : 1T q = 1,

∑
n∈N

(qn − rn)2

rn
≤ ρQ

}
.

This formulation satisfies the conditions for the set Q in Table 2.3 for the combined
uncertainty set since all the defining constraints can be formulated as constraints on
convex functions in q. The portfolio optimization problem is then:

max µ

s.t.
∑
n∈N

qn (−Xn(w)) ≤ −µ, ∀q ∈ Q (2.24a)

sup
p̃∈Pq

∑
n∈N

p̃n (−Xn(w)) ≤ z, ∀q ∈ Q (2.24b)

w ∈ W .
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We shall reformulate the two constraints in problem (2.24) to their tractable forms
using the results of Sections 2.5 and 2.6.
Constraint (2.24a). This is a robust constraint on the negative mean return
with uncertainty set Q being the Pearson set. The corresponding conjugate function
(page 35) is given by:

f∗(v, w) =

 0 if −Xn(w) ≤ v1
n, ∀n ∈ N

−∞ otherwise.

To obtain the support function of the Pearson set, we combine the result on the
support functions of the ϕ-divergence sets (2.15) (page 37) with the definition of the
modified χ2 distance in Table 2.5 (page 57):

δ∗
(
v1
∣∣∣Pϕq ) = inf

u1≥0,η
η + u1

ρQ +
∑
n∈N

rn max

−1, v
1
n − η
u1

+ 1
4

(
v1
n − η
u1

)2

 .

Inserting the results on the conjugate and the support into (2.9) yields the tractable
robust counterpart of (2.24a):


η + u1ρQ + ∑

n∈N
rn max

{
−u1, v

1
n − η + 1

4
(v1
n−η)2

u1

}
≤ −µ

u1 ≥ 0
−Xn(w) ≤ v1

n, ∀n ∈ N ,

where η, u1, v
1, w are the variables.

Constraint (2.24b). This is a robust constraint on the EVaR with Q defined as
the Pearson set. We shall use the results for the EVaR (page 35) and the combined
uncertainty set (page 39). The conjugate function f∗(v, w) is thus the same as in the
case of (2.24a). For the support function of the combined uncertainty set, we insert
into the formula (2.18) for the support function of a combined uncertainty set the
following components:

i conjugates related to the condition that the components of q should sum up to
1, that is, convex conjugates of h1(q) = 1T q − 1 and h2(q) = 1− 1T q,

ii the convex conjugate of the modified χ2 distance (Table 2.5, page 57), that is,
h∗3(s) = max {−1, s+ s2/4}.
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As a result, δ∗
((
AC
)T
v
∣∣∣∣UC

)
is equal to:

inf
{ui,vi}
i=2,...,7

u2 − u3 − u4 logα+ u5 − u6 + u7

(
ρQ +

∑
n∈N

rn max
{
−1, v

7
N+n
u7

+ 1
4

(
v7
N+n
u7

)2})
s.t. v2

1:N ≤ u21

v3
1:N ≤ −u31

v5
N+1:2N ≤ u51

v6
N+1:2N ≤ −u61

viN+1:2N ≤ 0, i = 2, 3

vi1:N ≤ 0, i = 5, 6, 7

v4
N+n + u4

(
exp

(
v4
n

u4

)
− 1
)
≤ 0, ∀n ∈ N

7∑
i=2

vi =
(
AC)T v

ui ≥ 0, i = 2, . . . , 7.

Inserting the results on the conjugate and the support function into (2.9) yields the
tractable robust counterpart of (2.24b):

u2 − u3 − u4 logα+ u5 − u6 + u7ρQ +
∑
n∈N

rn max
{
−u7, v

7
N+n + 1

4
(v7
N+n)2

u7

}
≤ z

v2
1:N ≤ u21

v3
1:N ≤ −u31

v5
N+1:2N ≤ u51

v6
N+1:2N ≤ −u61

viN+1:2N ≤ 0, i = 2, 3

vi1:N ≤ 0, i = 5, 6, 7

v4
N+n + u4

(
exp

(
v4
n

u4

)
− 1
)
≤ 0, ∀n ∈ N

7∑
i=2

vi =
(
AC)T v

ui ≥ 0, i = 2, . . . , 7

−Xn(w) ≤ vn, ∀n ∈ N ,

with variables ui, vi, i = 2, . . . , 7, v, w. We remark that it was possible to remove
the inf term in the support function formulation due to its position on the left-hand
side of the constraint. All the constraints in the above counterpart are convex in the
decision variables, so in the terminology of Table 2.1 the complexity symbol of the
system would be CP.
Combining the tractable robust counterparts of the constraints (2.24a) and (2.24b)
with the rest of the problem formulation, we obtain that problem (2.24) is equivalent
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to:

max
v,ui,v

i,i=1,...,7
w,η,µ

µ

s.t. η + u1ρQ +
∑
n∈N

rn max
{
−u1, v

1
n − η + 1

4
(v1
n−η)2

u1

}
≤ −µ

u2 − u3 − u4 logα+ u5 − u6 + u7ρQ+

+
∑
n∈N

rn max
{
−u7, v

7
N+n + 1

4
(v7
N+n)2

u7

}
≤ z

v2
1:N ≤ u21

v3
1:N ≤ −u31

v5
N+1:2N ≤ u51

v6
N+1:2N ≤ −u61

viN+1:2N ≤ 0, i = 2, 3

vi1:N ≤ 0, i = 5, 6, 7

v4
N+n + u4

(
exp

(
v4
n

u4

)
− 1
)
≤ 0, ∀n ∈ N

7∑
i=2

vi =
(
AC)T v

−Xn(w) ≤ vn, ∀n ∈ N

−Xn(w) ≤ v1
n, ∀n ∈ N

ui ≥ 0, i = 1, . . . , 7

w ∈ W.

(2.25)

This problem involves linear, convex quadratic, and convex constraints in the decision
variables.

2.7.2.2 Numerical illustration

As a numerical illustration, we use 6 risky assets and 1 riskless asset, with data
obtained from the website of Kenneth M. French.1 The monthly data consists of 360
observations from February 1984 to January 2014.
The nominal distribution of the return scenarios assigns probability rn = 1

360 to each
of the scenarios. We take α = 0.05, which makes the EVaR an upper bound for
the VaR and CVaR at level 0.05. The degree of uncertainty about the distribution
of q in the robust model is defined by ρQ = 0.005. This value has been chosen for
illustration purposes - for high values of ρQ the best worst-case return of portfolios
involving substantial fractions of the risk assets is negative. For that reason, for
higher ρQ, constraints on the EVaR will not be active as the optimal robust portfolio

1Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html. The six risky assets are the ‘6 Portfolios Formed on Size and Book-to-Market
(2 x 3)’. See the file with this name for a detailed description. As the riskless asset, we use the
one-month US Treasury bill rate.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Figure 2.1 – Worst-case EVaR - worst-case mean return efficient frontier in our experiment. The
dots illustrate the worst-case EVaR/mean returns of individual risky assets.

0 0.05 0.1 0.15 0.2 0.25
3

4

5

6

7

8

9

10
x 10

−3

Worst−case monthly EVaR

W
or

st
−

ca
se

 m
ea

n 
m

on
th

ly
 r

et
ur

n

 

 
Efficient frontier
Individual risky assets

will consist of mostly the riskless asset in order to obtain a nonnegative worst-case
return. Since the dataset includes two major crises (the dot.com crisis in 2000 and
the financial crisis of 2007/2008), this indicates that on datasets that include such
periods, portfolios whose key performance measure is the mean return, can be very
conservative in a situation of substantial distributional uncertainty. Note also that
in the case of the constraint on the EVaR, the size of the ‘true’ uncertainty set is
much larger as it has a two layer combined set structure - the first layer defined with
ρQ = 0.005 and the second one with ρ = − log(0.05) ≈ 3.
A potential drawback of this method (historical simulation) is the use a discretized
set of portfolio returns. The actual outcomes of portfolio returns typically will not
coincide with any of the observations used in portfolio construction. Nevertheless,
some authors show that such an approach might yield good results. For instance,
Hanasusanto and Kuhn [28] use a distributional uncertainty set modelled with a χ2

distance in a data-driven dynamic programming setting and show that the decisions
obtained under the assumption of distributional uncertainty of the data-driven sam-
ple of the uncertain parameter value under consideration, exhibit substantial stability
with respect to the sample used.
We solve problem (2.25) for values of z = 0, 0.01, . . . , 0.25. In this way, we obtain
the worst-case EVaR - worst-case mean return frontier. In addition to that, we
compute the worst-case EVaR and worst-case mean return of the risky asset. Figure
2.1 presents both the frontier and the points corresponding to the six individual risky
assets.
As it turns out, there is a single asset that dominates all other five risky assets, and
that lies on the efficient frontier. An implication of this is that for all values of z
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Figure 2.2 – Kernel density plots of the mean return and EVaR value of the nominal and robust
portfolios obtained for z = 0.15.
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the optimal portfolio consists of a mixture of the riskfree asset and this ‘best’ risky
asset. In such a setting, the portfolio optimizer has no incentive to diversify the risk
among the six risky assets.
To compare the performance of robust and nominal portfolios under distributional
uncertainty, we conduct the following bootstrap experiment. We take the nominal
(obtained by solving problem (2.23)) and robust portfolios for the maximum EVaR
value z = 0.15. Then, we sample 500 probability distributions q around the nominal
distribution r as follows: for n = 1, ..., N − 1 the value rn is sampled from a normal
distribution with mean rn = 1

360 and standard deviation
√

ρQ
N2 and the last element is

set qN = 1−∑N−1
n=1 qn. If it holds that q ≥ 0, then the given vector is accepted. Out

of this sample, 85% belonged to Q. For each such q, we compute the EVaR and the
mean return on the nominal and the robust portfolios. Figure 2.2 shows the results
of the experiment.
The portfolios show significant differences in the distribution of their return and the
EVaR value. In the left panel, the nominal portfolio violates the 0.15 upper bound
in a large number of cases, whereas the robust portfolio’s EVaR values oscillate in a
region relatively far from 0.15. At the same time, the robust portfolio does not reveal
any overconservatism - it is possible to find such q and p̃ that the EVaR of the robust
portfolio is equal to 0.15. In the right panel we can see that on average the nominal
portfolio has a significantly higher mean return. The differences between the means
of EVaR and the return distributions are statistically significant at the 99% level.
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2.7.3 Data-driven antenna array design

2.7.3.1 CVaR and variation distance

As next application, we consider the use of CVaR to approximate chance constraints
in a distributionally uncertain antenna design problem. For that, we need the
tractable robust counterpart of the constraint on the CVaR with uncertainty set
P defined with the variation distance (one of the ϕ-divergence measures), see Table
2.5 in Appendix 2.C.1. Such a constraint is given by:

inf
κ
−κ+ 1

α

N∑
n=1

pn max {0, κ−Xi(w)} ≤ β, ∀p ∈ P

where

P =
{
p : p ≥ 0, 1Tp = 1,

∑
n∈N
|pn − qn| ≤ ρ

}
. (2.26)

To construct the robust counterpart we use: (1) the expression for the support func-
tion of P , given in Section 2.6, page 37, with the relevant convex conjugate provided
in Table 2.5 in Appendix 2.C.1; (2) the expression for the concave conjugate of the
risk measure, discussed as a special case of the Optimized Certainty Equivalent in
Section 2.5, page 32. Then, the robust counterpart is given by

−κ+ η + uρ+ ∑
n∈N

qn max{−u, vn − η} ≤ β

vn − η ≤ u, ∀n ∈ N

vn ≥ 1
α

max{0, κ−Xn(w)}, ∀n ∈ N

u ≥ 0.

(2.27)

2.7.3.2 Antenna design

In this section we consider an antenna design problem, adopted from [6]. The setting
of the problem is as follows. There are NA ring-shaped antennas belonging to the
XY plane in R3. The radius of the k-th antenna is defined as k/NA and the diagram
D(ϕ) of the antenna array is defined as a sum of diagrams Dk(ϕ) of the antennas,
with Dk(ϕ) given by:

Dk(ϕ) = 1
2

2π∫
0

cos
(

2πk
NA

cos(ϕ) cos(γ)
)
dγ.

The objective of the problem is to minimize the maximum of the diagram modulus
in the angle of interest 0 ≤ ϕ ≤ 70◦:

max
0≤ϕ≤70◦

∣∣∣∣∣∣
NA∑
k=1

wkDk(ϕ)

∣∣∣∣∣∣ ,
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subject to the restrictions that:

• the diagram in the interval 77◦ ≤ ϕ ≤ 90◦ is nearly uniform:

0.9 ≤
NA∑
k=1

wkDk(ϕ) ≤ 1, 77◦ ≤ ϕ ≤ 90◦

• the diagram in other angles is not too large:∣∣∣∣∣∣
NA∑
k=1

wkDk(ϕ)

∣∣∣∣∣∣ ≤ 1, 70◦ ≤ ϕ ≤ 77◦.

The problem is thus:

min
τ,w

τ

s.t. −τ ≤
NA∑
k=1

Dk(ϕi)wk ≤ τ, 0◦ ≤ ϕi ≤ 70◦

−1 ≤
NA∑
k=1

Dk(ϕi)wk ≤ 1, 70◦ ≤ ϕi ≤ 77◦

0.9 ≤
NA∑
k=1

Dk(ϕi)wk ≤ 1, 77◦ ≤ ϕi ≤ 90◦,

(2.28)

i = 1, . . . , NG, where ϕ1, ..., ϕNG is a ‘fine grid’ of equidistance placed points on
[0◦, 90◦].
However, we assume that a multiplicative implementation error affects the decision
variable related to the k-th antenna:

wk 7→ w̃k = (1 + zk)wk, k = 1, . . . , NA.

The implementation error zk consists of two parts: (1) a general error ζ affecting all
antennas with the same power; (2) an idiosyncratic error δk, specific for each antenna:

zk = ζ + δk,

where ζ and δk are independent, normally distributed with zero means and standard
deviations σ1 and σ2 (σ2 is the same for k = 1, . . . , NA), respectively. This is in line
with the fact that in complex electrical systems, a part of the implementation error
is common for all elements.
Assume there are N past observations of the errors, with the n-th sample denoted as
zn = (ẑ(n)

1 , . . . , ẑ
(n)
NA

). Assume that zn occurs with an uncertain probability, pn, with
nominal value qn = 1/N (each sample having equal probability), for each n ∈ N .
In such a setting, the random variables we consider are the diagrams of the antenna
arrays at angles ϕi, as in the constraints in (2.28). For a given i, the n-th outcome of
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the random antenna array diagram is equal to X i
n(w) = ∑

k(1 + ẑ
(n)
k )wkDk(ϕi), and

its probability of occurrence is pn.
We want each of the constraints in (2.28) to hold with at least probability (1−α)100%
over the sample at hand. For the first constraint in (2.28) this is equivalent to:∑

n:Xi
n(w)≤τ

pn ≥ 1− α, ∀p ∈ P .

This constraint is in fact equivalent to a constraint on the Value-at-Risk, as noted by
[39] and it requires an integer linear programming reformulation. A tractable way to
safely approximate chance constraints is the use of the CVaR. Then, the constraint
is given by{

CVaRp,α(−X i(w)) ≤ −τ ⇔ inf
κ
−κ+

N∑
n=1

pn max
{

0, κ−X i
n(w)

}
≤ −τ

}
, ∀p ∈ P .

We assume P to be specified as a variation distance set around q, as in (2.26). This
choice is motivated by the fact that such P is linearly representable in p and q, and
the resulting robust counterpart is a system of LP-representable constraints. Since
in practice the past samples may be very large, computational tractability is one of
the primary criteria for the set to choose. The other constraints are reformulated in
a similar fashion. In this way, the problem to be solved becomes:

min
τ,w

τ

s.t. CVaRα(τ −∑
k
Dk(ϕi)w̃k) ≤ 0, ∀p ∈ P , 0◦ ≤ ϕi ≤ 70◦

CVaRp,α(∑
k
Dk(ϕi)w̃k + τ) ≤ 0, ∀p ∈ P , 0◦ ≤ ϕi ≤ 70◦

CVaRp,α(1−∑
k
Dk(ϕi)w̃k) ≤ 0, ∀p ∈ P , 70◦ ≤ ϕi ≤ 77◦

CVaRp,α(∑
k
Dk(ϕi)w̃k + 1) ≤ 0, ∀p ∈ P , 70◦ ≤ ϕi ≤ 77◦

CVaRp,α(1−∑
k
Dk(ϕi)w̃k) ≤ 0, ∀p ∈ P , 77◦ ≤ ϕi ≤ 90◦

CVaRp,α(∑
k
Dk(ϕi)w̃k − 0.9) ≤ 0, ∀p ∈ P , 77◦ ≤ ϕi ≤ 90◦,

(2.29)

where i = 1, . . . , NG. We consider NA = 40 antennas and a sample of past N = 200
error vectors sampled with σ1 = 0.005 and σ2 = 0.0025, which implies dominance
of the common error over the idiosyncratic error. In such a setting, we solve the
distributionally robust problem (2.29) with α = 0.1, and uncertainty levels ρ ∈
{0, 0.01, . . . , 0.1}. The value ρ = 0 corresponds to the problem with no distributional
uncertainty. Higher values of ρ would not change the solution as already ρ = 0.1
implies that the constraint on CVaR with α = 0.1 is in fact a constraint that is to
hold for every sampled z(n).
We investigate two questions:
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1. On the given random sample of past errors, what is the impact of distributional
uncertainty on the probability that at least one of the constraints is violated,
for solutions assuming and not assuming distributional uncertainty?

2. How do solutions constructed with and without the assumption on distribu-
tional uncertainty perform out-of-sample, that is, with implementation error
sampled from the original normal distribution?

To study the first question, for each of the solutions we conduct a simulation study
where 105 error scenarios are bootstrapped from the sample in the following fashion.
First, 100 probability distributions p̂ are sampled in such a way that p̂i is sampled
from the normal distribution with mean qi and standard deviation equal to ρ/2 for
i = 1, . . . , N − 1, and pN is defined as p̂N = 1 − ∑N−1

n=1 p̂n. If it holds that p̂ ≥ 0,
the given vector is accepted as the probability distribution. For each probability
distribution we sample subsequently 1000 error scenarios from the sample used to
construct a given solution.
To study the second question, for each solution we sample 105 error vectors from
the normal distribution as the sample drawn used to solve the problem. For both
samples, we compute then the average probability of violating at least one problem’s
constraint.
Table 2.4 presents the results on the optimal value of the objective function and
probabilities of violating at least one constraint. What can be observed is that the
differences in the optimal value of the objective function are relatively small, ranging
from 6.66 for ρ = 0 to 6.85 for ρ = 0.1. At the same time the robust solutions exhibit
much smaller probabilities of at least one constraint being violated. For example, for
the in-sample bootstrap the difference between the nominal solution and the robust
solution with ρ = 0.1 is 35.88% compared to 23.92%.
What is even more interesting is that the robust solutions perform also consistently
better than the nominal solution on out-of-sample implementation errors, with the
biggest difference being 34.70% compared to 42.73%. Comparing the first (ρ = 0)
and the last solution (ρ = 0.1) we see that the worst-case objective value which is
2.85% worse provides probability guarantees better by 33% on the in-sample errors
and by 17% on the out-of-sample errors.

2.8 Conclusions

Constraints on risk measures of decision-dependent random variables under distribu-
tional uncertainty arise in numerous fields, such as economics, finance, and engineer-
ing. In this paper we have reviewed the literature on the problem of reformulating
such constraints into tractable forms. As our contribution, we have provided a unified
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Table 2.4 – Results of the antenna design experiment. ‘In-sample bootstrap’ denotes the probability
of violating at least one constraint when the implementation error is sampled from the sample used
for optimization. Similarly, ‘Out-of-sample bootstrap’ denotes the probability of violating at least
one constraint when the implementation error is sampled from the original normal distribution for
the implementation error.

Measure

ρ Objective value (·10−2) In-sample bootstrap
violation probability (%)

Out-of-sample bootstrap
violation probability (%)

0 (no uncertainty) 6.66 35.88 42.73

0.01 6.66 29.82 41.19

0.02 6.70 28.89 39.49

0.03 6.73 30.90 39.09

0.04 6.76 26.91 37.84

0.05 6.78 27.85 35.95

0.06 6.80 24.87 34.70

0.07 6.81 27.84 35.04

0.08 6.83 26.91 34.97

0.09 6.84 23.96 35.26

0.1 6.85 23.92 35.47

framework for tackling this issue, showing that for many risk measures and statis-
tically based uncertainty sets the constraints’ components corresponding to the risk
measure and to the uncertainty set can be separated. We have also demonstrated
that this framework can be applied to risk measures that are nonlinear in the proba-
bility vector. In this way, for risk measures and uncertainty sets for which we provide
a closed-form tractable robust counterpart and its complexity, our framework covers
the results obtained up to now in the literature (see Table 2.1).
To provide the decision maker with a clear overview of available techniques, we
summarize the complexity results obtained with our framework in combination with
results already obtained in the literature in Table 2.1. These results can provide a
useful guideline for researchers and practitioners of various backgrounds.
There are two issues that we find of particular importance when applying robust
optimization to risk measures. Following the work of Wozabal [51], who analyzes the
Wasserstein distance, it is interesting to investigate whether our framework can be
extended to the case with continuous probability distributions, without converting
continuous probability distributions into discrete ones.
Second, for the risk measures that we have not been able to analyze successfully one
could investigate their sensitivity to the uncertainty considered in this paper. It may
turn out that these risk measures themselves are sufficiently robust or that different
tools are needed to develop computationally tractable robust constraints in terms of
these risk measures.
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Appendices

2.A Fenchel duality

Assume f : RN 7→ R ∪ {−∞} is a closed concave function and g : RN 7→ R ∪ {+∞}
is a closed convex function, with f∗(·) and g∗(·) being their concave and convex
conjugates, respectively. Define the following primal problem

sup {f(x)− g(x) |x ∈ dom(f) ∩ dom(g)} (P)

and its dual problem

inf {g∗(x)− f∗(x) |x ∈ dom(f∗) ∩ dom(g∗)} . (D)

Then, the following theorem holds:

Theorem 2.2 If ri(dom(f)) ∩ ri(dom(g)) 6= ∅, then the optimal values of (P) and
(D) are equal and the minimal value of (D) is attained.
If ri(dom(f∗)) ∩ ri(dom(g∗)) 6= ∅, then the optimal values of (P) and (D) are equal
and the maximal value of (P) is attained.

2.B Conjugates of the risk measures

2.B.1 Necessary lemmas

First result presented here is taken from [41] (see his Corollary 37.3.2). It allows us
to interchange the inf and sup terms in the worst-case formulations of the Optimized
Certainty Equivalent, mean absolute deviation from the median, variance less the
mean, and standard deviation less the mean.

Lemma 2.2 [41, Corollary 37.3.2] Let C and D be nonempty closed convex sets in
Rm and Rn, respectively and let K be a continuous finite concave-convex function on
C ×D. Then, if either C or D is bounded, one has:

inf
v∈D

sup
u∈C

K(u, v) = sup
u∈C

inf
v∈D

K(u, v).

For the derivation of the conjugate function of the standard deviation less the mean
we also need the following results.

Lemma 2.3 Assume that fi(·), i = 1, . . . ,m, are concave, and the intersection of
the relative interiors of the effective domains of fi(·), i = 1, . . . ,m is nonempty, i.e.,
∩mi=1ri(domfi) 6= ∅. Then,(

m∑
i=1

fi

)
∗

(v) = sup
vi,i=1,...,m

{
m∑
i=1

(fi)∗(vi)
∣∣∣∣∣
m∑
i=1

vi = v

}
.
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Lemma 2.4 [41, Theorem 16.3] Let B be a linear transformation from Rn to Rm

and f : Rm → R ∪ {−∞} be a concave function. Assume there exists an x such that
Bx ∈ ri(domf). Then, it holds that:

(fB)∗(z) = sup
y

{
f∗(y)

∣∣∣BTy = z
}
,

where for each z the supremum is attained, and where the function fB is defined by
(fB)(x) = f(Bx).

2.B.2 Standard deviation less the mean

In the case of the standard deviation less the mean we study the function:

f(p, w) =
√∑
n∈N

pn (Xn(w)− κ)2 − α
∑
n∈N

pnXn(w).

As an exception, we define the effective domain of f(p, w) to be:

domf =
{

(p, w) :
∑
n∈N

pn (Xn(w)− κ)2 ≥ 0, w ∈ RM

}
.

For this particular case it is easier to operate in this setting and the results are still
valid in combination with any uncertainty sets. We use Lemmas 2.3 and 2.4 with

f(p, w) = f1(p, w) + f2(p, w), f1(p, w) = −α
∑
n∈N

pnXn(w), f2(p, w) =
√
bTp,

where
b =

[
(X1(w)− κ)2 , . . . , (XN(w)− κ)2

]T
.

We have that

(f1)∗(v1, w) =

 0 for v1
n = −αXn(w), n ∈ N

−∞ otherwise

(f2)∗(v2, w) = sup
{
− 1

4s

∣∣∣∣ bs = v2, s ≥ 0
}
.

Then, substituting v1 = u and s = 1/y, by Lemma 2.3 we obtain:

f∗(v, w) = sup
y
−y

4

s.t. 1
y


(X1(w)− κ)2

...
(XN(w)− κ)2

+ u = v

un = −αXn(w), n ∈ N

y ≥ 0.
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Since the objective in the above formulation is decreasing in y and the left-hand
side of the first constraint is increasing in y, we can change the ‘=’ sign in the first
constraint to ‘≤’ and arrive at the following, equivalent formulation:

f∗(v, w) = sup
y
−y

4

s.t. 1
y


(X1(w)− κ)2

...
(XN(w)− κ)2

 ≤ v − u

un = −αXn(w), n ∈ N

y ≥ 0.

The first constraint can be reformulated using the result of [35] on hyperbolic con-
straints to obtain the following:

f∗(v, w) = sup
y
−y

4

s.t.

∥∥∥∥∥∥∥
 Xn(w)− κ(

vn−un−y
2

)

∥∥∥∥∥∥∥

2

≤ vn−un+y
2 , n ∈ N

vn − un ≥ 0, n ∈ N

un = −αXn(w), n ∈ N

y ≥ 0.

To obtain the final result (2.14) in the main text, the equality constraints are elim-
inated by inserting the equalities involving un into other expressions. This result is
also obtained in Example 28 in [10].

2.C Support functions of the uncertainty sets

2.C.1 Examples of ϕ-divergence functions

One of the types of uncertainty sets for the probabilities is defined using so-called
ϕ-divergence functions. For the statistical background behind this tool we refer the
reader to [9]. Table 2.5, adopted from [9], presents potential choices for the function
ϕ(·) and its conjugate ϕ∗(·). Two specific cases are commonly known. These
are: (1) the Kullback-Leibler divergence which defines an uncertainty set based on
the likelihood ratio statistical test, (2) the modified χ2-distance which defines an
uncertainty set based on the χ2 goodness of fit test, also known as the Pearson test.
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Table 2.5 – Examples of ϕ-divergence functions and their convex conjugate functions. Table is taken
from Ben-Tal et al. (2013).

Name ϕ(t), t ≥ 0 ϕ∗(s)

Kullback-Leibler t log t− t+ 1 es − 1

Burg entropy − log t+ t− 1 − log(1− s), s < 1

χ2 distance 1
t
(t− 1)2 2− 2

√
1− s, s < 1

Modified χ2 distance (t− 1)2

{
−1 s < −2

s+ s2/4 s ≥ −2

Hellinger distance (
√
t− 1)2 s

1−s , s < 1

χ-divergence |t− 1|θ s+ (θ − 1)
( |s|
θ

)θ/(θ−1)

Variation distance |t− 1| max{−1, s}, s ≤ 1

Cressie-Read 1−θ+θt−tθ
θ(1−θ) , t 6= 0, 1 1

θ
(1− s(1− θ))θ/(1−θ) − 1

θ
, s < 1

1−θ

2.C.2 ϕ-divergence

For the ϕ-divergence function the uncertainty region is defined as

Pϕq = {p : p ≥ 0, gi(p) ≤ 0, i = 1, 2, 3} ,

where

g1(p) = 1Tp− 1
g2(p) = −1Tp+ 1
g3(p) = ∑

n∈N
qnϕ

(
pn
qn

)
− ρ.

Now, the convex conjugates of these three functions over the domain p ≥ 0 are
needed.
We begin with the function g1(·):

g∗1(y) = sup
p≥0

{
yTp− 1Tp+ 1

}
= sup

p≥0

{
(y − 1)Tp+ 1

}

=

 1 if y − 1 ≤ 0
+∞ otherwise.

Analogously:

g∗2(y) =

 −1 if y + 1 ≤ 0
+∞ otherwise.
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For the third function the derivation is:

g∗3(y) = sup
p≥0

{
yTp− ∑

n∈N
qnϕ

(
pn
qn

)
+ ρ

}

= sup
p≥0

{ ∑
n∈N

ynpn − qnϕ
(
pn
qn

)}
+ ρ

= ρ+ ∑
n∈N

sup
pn≥0

{
ynpn − qnϕ

(
pn
qn

)}
= ρ+ ∑

n∈N
sup
t≥0

qn {ynt− ϕ (t)}

= ρ+ ∑
n∈N

qnϕ
∗(yn).

Lemma 2.1 gives us:

δ∗
(
v
∣∣∣Pϕq ) = inf

{ui,vi},i=1,2,3

{
u1g

∗
1

(
v1

u1

)
+ u2g

∗
2

(
v2

u2

)
+ u3g

∗
3

(
v3

u3

)
,

∣∣∣∣∣
3∑
i=1

vi = v, ui ≥ 0
}
.

(2.30)

Notice that by Lemma 2.1 we have

u1g
∗
1

(
v1

u1

)
=

 u1 for v1 ≤ u11
+∞ otherwise

u2g
∗
2

(
v2

u2

)
=

 −u2 for v2 ≤ −u21
+∞ otherwise.

From here, we get:

δ∗
(
v
∣∣∣Pϕq ) = inf

{ui,vi},i=1,2,3
u1 − u2 + u3

(
ρ+ ∑

n∈N
qnϕ

∗
(
v3
n

u3

))
s.t. v1 ≤ u11

v2 ≤ −u21
3∑
i=1

vi = v

ui ≥ 0, i = 1, 2, 3.

(2.31)

The equality constraint can be eliminated by inserting v3
n = vn − v1

n − v2
n for each

n ∈ N . We get:

δ∗
(
v
∣∣∣Pϕq ) = inf

u1,u2,u3,v1,v2
u1 − u2 + u3

(
ρ+ ∑

n∈N
qnϕ

∗
(
vn−v1

n−v2
n

u3

))
s.t. v1 ≤ u11

v2 ≤ −u21
ui ≥ 0, i = 1, 2, 3.

(2.32)
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Since the functions ϕ∗(·) are nondecreasing, one can substitute η = u1−u2 to obtain
result (2.15) in the main text.

2.C.3 Kolmogorov-Smirnov

The relevant uncertainty set is:

PKS
q =

{
p : p ≥ 0, 1Tp = 1, max

n∈N

∣∣∣pT1n − qT1n
∣∣∣ ≤ ρ

}
.

Since all the constraints in the definition of PKS
q are linear in p, the Kolmogorov-

Smirnov set can be defined as:

PKS
q = {p : p ≥ 0, Dp ≤ d} ,

where D ∈ R(2N+2)×N , d ∈ R2N+2 with:

D1n = 1, d1 = 1, ∀n ∈ N

D2n = −1, d2 = −1, ∀n ∈ N

D2+n,i = 1, d2+n = ρ+ qT1n, ∀i ≤ n, n ∈ N

D2+N+n,i = −1, d2+N+n = ρ− qT1n, ∀i ≤ n, n ∈ N ,

with the other components equal to 0. The support function is equal to:

δ∗
(
v
∣∣∣PKS

)
= sup

p
vTp

s.t. Dp ≤ d

p ≥ 0.

The final result (2.16) in the main text is obtained via strong LP duality.

2.C.4 Wasserstein

The definition of the Wasserstein set involves a variable matrix K, so that the set
U is actually a set both in K and q. For that reason, we use an extended vector p′
consisting of both these variables and ‘extract’ the vector p out of p′ using a relevant
A matrix. We take the extended vector to be:

p′ =
[
pT , KT

1 , K
T
2 , ..., K

T
N

]T
,

where K1, ..., KN are the subsequent columns of K. A matrix AW such that AWp′ = p

is given by AW = [I |0N×N2 ]. Since the constraints in the definition of PW
q are linear

in (p,K), the Wasserstein set can be defined as:

UW
q = {p′ : p′ ≥ 0, Dp′ ≤ d} ,
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where D ∈ R(4N+3)×N(N+1), d ∈ R4N+3 and their entries are:

D1n = 1, d1 = 1, ∀n ∈ N

D2n = −1, d2 = −1, ∀n ∈ N

D3,Ni+j = ‖Yi − Yj‖d, d3 = ρ, ∀i, j ∈ N

D3+n,n = −1, D3+n,Nn+i = 1, ∀i, n ∈ N

D3+N+n,n = 1, D3+N+n,Nn+i = −1, ∀i, n ∈ N

D3+2N+n,Ni+n = 1, d3+2N+n = −qn, ∀i, n ∈ N

D3+3N+n,Ni+n = −1, d3+3N+n = qn, ∀i, n ∈ N ,

with the other components equal to 0. The support function is equal to:

δ∗
((
AW

)T
v
∣∣∣∣UW

q

)
= sup

p′
vTAWp′

s.t. Dp′ ≤ d

p′ ≥ 0.

From here, the final result (2.17) is obtained via strong LP duality.

2.C.5 Combined set

We substitute p′ =
[
pT , qT

]T
so that p = ACp′, where AC = [I|0N×N ]. The set UC is

then:

UC = {p′ : p′ ≥ 0, gi(p′) ≤ 0, i = 1, 2, 3, hi(q) ≤ 0, i = 1, ..., Q} .

The first three convex functions from formulation of UC are:

g1(p′) = 1Tp− 1
g2(p′) = −1Tp+ 1
g3(p′) = ∑

n∈N
qnϕ

(
pn
qn

)
− ρ.
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The conjugates of the first two have been obtained for the ϕ-divergence set. Thus,
only the third one remains:

g∗3(y) = supp′≥0

{
yTp′ − g3(p′)

}
= supp,q≥0

{
yT1:Np+ yTN+1:2Nq −

∑
n∈N

qnϕ
(
pn
qn

)
+ ρ

}

= supq≥0

{
yTN+1:2Nq + supp≥0

{
yT1:Np−

∑
n∈N

qnϕ
(
pn
qn

)
+ ρ

}}

= supq≥0

{
yTN+1:2Nq + ∑

n∈N
qn supun≥0 {ynun − ϕ (un)}+ ρ

}

= supq≥0

{ ∑
n∈N

qn (yN+n + ϕ∗(yn)) + ρ

}

=

 ρ for yN+n + ϕ∗(yn) ≤ 0 ∀n ∈ N

+∞ otherwise.

Since all hi(·) depend only on q, the support function of UC is given by (Lemma 2.1):

δ∗
((
AC
)T
v
∣∣∣UC

)
= inf u1 − u2 + u3ρ+

Q∑
i=1

ui+3h
∗
i

(
vi+3
N+1:2N
ui+3

)
s.t. v1

1:N ≤ u11
v2

1:N ≤ −u21
viN+1:2N ≤ 0, i = 1, 2
vi1:N ≤ 0, i = 4, ..., Q+ 3
v3
N+n
u3

+ ϕ∗
(
v3
n

u3

)
≤ 0, ∀n ∈ N

Q+3∑
i=1

vi = v

ui ≥ 0, i = 1, ..., Q+ 3.

The only thing left is to remove nonconvexity from the constraint v3
N+n
u3

+ϕ∗
(
v3
n

u3

)
≤ 0.

One can do that by multiplying both sides by u3 to obtain the final result.

2.C.6 Anderson-Darling

The relevant set formulation is (see Table 2.3):

PAD
emp = {p : p ≥ 0, gi(p) ≤ 0, i = 1, 2, 3} ,

where
g1(p) = 1Tp− 1
g2(p) = −1Tp+ 1
g3(p) = −N − ∑

n∈N

2n−1
N

[
log

(
pT1n

)
+ log

(
pT1−n

)]
− ρ.
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It is only necessary to derive the conjugate of g3(·). Let us write g3(·) as:

g3(p) =
∑
n∈N

[
−
[2n− 1

N
log

(
pT1n

)
+ ρ+N

2N

]
−
[2n− 1

N
log

(
pT1−n

)
+ ρ+N

2N

]]
.

By results of [10], it is only needed to derive the convex conjugate of the function

Hn(t) = −2n− 1
N

log (t)− ρ+N

2N , t ≥ 0.

It is given by:

H∗n(s) = sup
t≥0

{
st+ 2n−1

N
log (t) + ρ+N

N

}

=

 −
2n−1
N
− 2n−1

N
log

(
−Ns
2n−1

)
+ ρ+N

2N if s < 0

+∞ otherwise.

Using Lemma 2.1, we obtain:

δ∗
(
v
∣∣∣PAD

emp

)
= inf
{wn+,wn−},n∈N ;
{z+
n ,z
−
n },n∈N ;

u1,u2,u3,v1,v2

− ∑
n∈N

(2n−1)u3
N

[
2 + log

(
−Nz+

n

(2n−1)u3

)
+ log

(
−Nz−n

(2n−1)u3

)]
+u3 (ρ+N) + u1 − u2

s.t. z+
n 1n = wn+, ∀n ∈ N

z−n 1−n = wn−, ∀n ∈ N

v1 ≤ u11
v2 ≤ −u21∑
n∈N

(wn+ + wn−) + v1 + v2 = v

z+
n , z

−
n ≤ 0, ∀n ∈ N

u1, u2, u3 ≥ 0.

We eliminate the equalities involving w+
n and w−n to obtain:

inf
{wn+,wn−},n∈N ,
u1,u2,u3,v1,v2

− ∑
n∈N

(2n−1)u3
N

[
2 + log

(
−Nz+

n

(2n−1)u3

)
+ log

(
−Nz−n

(2n−1)u3

)]
+u3 (ρ+N) + u1 − u2

s.t. v1 ≤ u11
v2 ≤ −u21∑
n∈N

(z+
n 1n + z−n 1−n) + v1 + v2 = v

z+
n , z

−
n ≤ 0, ∀n ∈ N .

u1, u2, u3 ≥ 0.
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In the third constraint it is possible to change the equality into inequality because
of the properties of the other constraints and the ‘objective function’. Also, by the
properties of the formulation above one can substitute η = u1 − u2 and remove the
variables v1, v2. In this way result (2.19) in the main text is obtained.

2.C.7 Cramer-von Mises

The set definition is:

PCvM
emp =

{
p : p ≥ 0, 1Tp = 1, 1

12N +
∑
n∈N

[2n− 1
2N − pT1n

]2
≤ ρ

}
,

which can be reformulated as PCvM
emp = {p : gi(p) ≤ 0, i = 1, ..., N + 3}, where

g1(p) = 1Tp− 1
g2(p) = −1Tp+ 1
g3(p) = pTEp+ bTp+ c

g3+n(p) = −pT en, ∀n ∈ N ,

where

c = −ρ+ 1
12N +

∑
n∈N

(2n− 1
2N

)2
, b =



−
N∑
j=1

2j−1
N

−
N∑
j=2

2j−1
N

...

−
N∑
j=N

2j−1
N


,

and E ∈ RN×N is a positive definite matrix such that Eij = N + 1 −max {i, j} for
i, j ∈ N .
Contrary to the previous cases, we assume the domains of the functions gi(·) to be RN

and we include the nonnegativity constraints on p as explicit functional constraints
g3+n(p) = −pT en ≤ 0. Then, we derive the conjugates of gi(·) as supremums over
p ∈ RN , which makes the derivation of g∗3(·) easier. The resulting formula for the
support function is equivalent to the formula obtained using the standard assumption
about the domains of gi(·) which, however, would require much more algebra.

Remark 2.3 Positive definiteness of E follows from the following transformations.
Denote by E(k) a matrix for which

E
(k)
ij =

 1 for i, j ≤ k

0 otherwise.
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Consider p ∈ RN . We then have:

pTEp = pT
(

N∑
k=1

E(k)
)
p

=
N∑
k=1

pTE(k)p

=
N∑
k=1

(p1 + · · ·+ pk)2 ≥ 0,

with 0 being attained if and only if p1 = . . . = pN = 0.

It is important to note that the inverse of E has a tridiagonal structure, allowing for
efficient computations.
We proceed to the derivations of the conjugates. These are:

g∗3(y) = sup
p

{
yTp− pTEp− bTp− c

}
= sup

p

{
−pTEp− (b− y)Tp− c

}
= 1

4(b− y)E−1(b− y)− c,

and
g∗3+n(y) = sup

p

{
yTp+ pT en

}
=

 0 if y + en = 0
+∞ otherwise

for all n ∈ N . The support function is equal to:

δ∗
(
v
∣∣∣PCvM

emp

)
= inf
{ui,vi},i=1,...,N+3

u1 − u2 + 1
4u3

(
b− v3

u3

)T
E−1

(
b− v3

u3

)
− u3c

s.t. v1 = u11
v2 = −u21
v3+n = −u3+ne

n, n ∈ N
N+3∑
i=1

vi = v

ui ≥ 0, i = 1, ..., N + 3.

The ‘objective function’ in the above formulation, already convex in its arguments,
can be transformed into a system of linear and second-order conic constraints. Indeed,
one may introduce an extra variable t ≥ 0 such that

u3

(
b− v3

u3

)T
E−1

(
b− v3

u3

)
≤ t ⇔ (u3b− v3)T E−1 (u3b− v3)

u3
≤ t.
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Then, introducing z = u3b−v3 and E−1 = P TP (where P is a N×N matrix because
of the positive definiteness of E) we obtain

(u3b− v3)T E−1 (u3b− v3)
u3

≤ t ⇔ (Pz)T (Pz)
u3

≤ t.

This can be transformed, using the results from [5], to:∥∥∥∥∥∥∥
 Pz

t−u3
2


∥∥∥∥∥∥∥

2

≤ t+ u3

2 .

Implementing this and eliminating the equality constraints by inserting the equalities
involving u3+n into other places yields result (2.20) in the main text.

2.C.8 Watson

The set definition is:

PWa
emp =

p : p ≥ 0, 1Tp = 1, 1
12N +

∑
n∈N

(2n− 1
2N − pT1n

)2
−N

(
1
N

∑
n∈N

pT1n − 1
2

)2

≤ ρ

 ,
where the last constraint can be formulated as in the case of the Cramer-von Mises
set, with parameter values:

c = −ρ+ 1
12N + ∑

n∈N

(
2n−1
2N

)2
− N

4 , b =



−
N∑
j=1

2j−1
N

+N

−
N∑
j=2

2j−1
N

+ (N − 1)
...

−
N∑
j=N

2j−1
N

+ 1


,

and E ∈ RN×N such that Ei,j = N + 1−max {i, j} − (N+1−i)(N+1−j)
N

for all i, j ∈ N .
The matrix E is positive semidefinite with a one-dimensional nullspace, which we
prove in the following remark.

Remark 2.4 Assume p ∈ RN and dn = p1 + . . .+ pn for n ∈ N . We have:

pTEp =
N∑
n=1

(
pT1n

)2
− 1
N

(
N∑
n=1

pT1n
)2

=
N∑
n=1

d2
n −

1
N

(
N∑
n=1

dn

)2

= N

∑N
n=1 d

2
n

N
−
(∑N

n=1 dn
N

)2 ≥ 0,
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where the first equality follows from the definition of PWa
emp and the inequality follows

from the inequality between arithmetic and quadratic means, and 0 is attained if and
only if d1 = . . . = dN , that is, when p2 = p3 = . . . = pN with arbitrary p1.

We proceed to the derivation of the support function g∗3(·). It is:

g∗3(y) = sup
p

{
yTp− pTEp− bTp− c

}
= sup

p

{
−pTEp− (b− y)Tp− c

}
=


1
4(b− y)E†(b− y)− c if (b− y) ∈ ImE
+∞ otherwise,

where E† denotes a pseudo-inverse of E and ImE denotes the subspace spanned
by the columns of E. From here on, the derivation is analogous to the case of the
Cramer-von Mises test, with an extra constraint (b − y) ∈ ImE, implemented as
∃λ s.t. b− y = Eλ.

2.C.9 Kuiper

The Kuiper set is defined by

PK
emp =

{
max
n∈N

(
n

N
− pT1n

)
+ max

n∈N

(
pT1n−1 − n− 1

N

)
≤ ρ

}
.

Using additional variables z1,z2 it can be transformed to

UK
emp =

{
(p, z1, z2) : 1Tp = 1, z1 + z2 ≤ ρ,

max
n∈N

(
n
N
− pT1n

)
≤ z1, max

n∈N

(
pT1n−1 − n−1

N

)
≤ z2

}
.

Thus, we use a vector p′ =
[
pT , z1, z2

]T
and a matrix AK = [I |0N×2 ]. The set UK

emp
is then:

UK
emp = {p′ : p′ ≥ 0, Dp′ ≤ d} ,

where D ∈ R(2N+3)×(N+2), d ∈ R2N+3 are defined by:

D1,n = 1, d1 = 1, ∀n ∈ N

D2,n = −1, d2 = −1, ∀n ∈ N

D2+n,i = −1, D2+n,N+1 = −1, dn+2 = −n/N, ∀i ≤ n, n ∈ N

DN+2+n,i = 1, DN+2+n,N+2 = −1, dN+2+n = (n− 1)/N, ∀i ≤ n− 1, n ∈ N
D2N+3,N+1 = 1, D2N+3,N+2 = 1, d2N+3 = ρ,

with all other components equal to 0. The final form (2.22) in the main text is
obtained via strong LP duality.
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CHAPTER 3

Multi-stage adjustable robust mixed-integer
optimization via iterative splitting of the

uncertainty set

3.1 Introduction

Robust optimization (RO, see Ben-Tal et al. (2009)) has become one of the main ap-
proaches to optimization under uncertainty. One of its applications are multiperiod
problems where, period after period, values of the uncertain parameters are revealed
and new decisions are implemented. Adjustable Robust Optimization (ARO, see
Ben-Tal et al. (2004)) addresses such problems by formulating the decision variables
as functions of the revealed uncertain parameters. Ben-Tal et al. (2004) prove that
without any functional restrictions on the form of adjustability, the resulting prob-
lem is NP-hard. For that reason, several functional forms of the decision rules have
been proposed, with the most popular being the affinely adjustable decision rules.
However, only for a limited class of problems do they yield problems that can be
reformulated to a computationally tractable form (see Ben-Tal et al. (2009)). In
particular, for problems without fixed recourse, where the later-period problem pa-
rameters depend also on the uncertain parameters from earlier periods, it is nontrivial
to construct tractable decision rules. The difficulty level grows even more when the
adjustable variables are binary or integer. Addressing this problem is the topic of our
paper. We propose a simple and intuitive method to construct adjustable decision
rules, applicable also to problems with integer adjustable variables and to problems
without fixed recourse. For problems with fixed recourse our methodology can be
combined with linear decision rules for the continuous decision variables.
The contribution of our paper is twofold. First, we propose a methodology of iterative
splitting of the uncertainty set into subsets, for each of which a scalar later-period
decision shall be determined. A given decision is implemented in the next period if
the revealed uncertain parameter belongs to the corresponding subset. Using scalar
decisions per subset ensures that the resulting problem has the same complexity as
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the static robust problem. This approach provides an upper bound on the optimal
value of the adjustable robust problem. Next to that, we propose a method of
obtaining lower bounds, being a generalization of the approach of Hadjiyiannis et al.
(2011).
As a second contribution, we provide theoretical results supporting the decision of
how to split the uncertainty set into smaller subsets for problems with continuous
decision variables. The theory identifies sets of scenarios for the uncertain parameters
that have to be divided. On the basis of these results, we propose set-splitting
heuristics for problems including also integer decision variables. As a side result, we
prove the reverse of the result of Gorissen et al. (2014). Namely, we show that the
optimal KKT vector of the tractable robust counterpart of a linear robust problem,
obtained using the results of Ben-Tal et al. (2015), yields an optimal solution to the
optimistic dual (see Beck and Ben-Tal (2009)) of the original problem.
ARO was developed to (approximately) solve problems with continuous variables.
Ben-Tal et al. (2004) introduce the concept of using affinely adjustable decision rules
and show how to apply such rules to obtain (approximate) optimal solutions to
multiperiod problems. Affinely adjustable decisions turn out to be very effective for
the inventory management example, which shall be also visible in the results of our
paper. Their approach has been later extended to other function classes by Chen et al.
(2007), Chen and Zhang (2009), Ben-Tal et al. (2009) and Bertsimas et al. (2011b).
Bertsimas et al. (2010) prove that for a specific class of multiperiod control problems
the affinely adjustable decision rules result in optimal adjustable solution. Bertsimas
and Goyal (2010) show that the static robust solutions perform well in Stochastic
Programming problems. Bertsimas et al. (2014) study cases where static decisions
are worst-case optimal in two-period problems and give a tight approximation bound
on the performance of static solutions, related to a measure of non-convexity of a
transformation of the uncertainty set. Goyal and Lu (2014) study the performance
of static solutions in problems with constraint-wise and column-wise uncertainty
and provide theoretical bounds on the adaptivity gap between static and optimal
adjustable solutions in such a setting.
Later, developments have been made allowing ARO to (approximately) solve prob-
lems involving adjustable integer variables. Bertsimas and Caramanis (2007) propose
a sampling method for constructing adjustable robust decision rules ensuring, under
certain conditions, that the robust constraints are satisfied with high probability.
Bertsimas and Caramanis (2010) introduce the term of finite adaptability in two-
period problems, with a fixed number of possible second-period decisions. They also
show that finding the best values for these variables is NP-hard. In a later paper,
Bertsimas et al. (2011a) characterize the geometric conditions for the uncertainty
sets under which finite adaptability provides good approximations of the adjustable
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robust solutions.
Vayanos et al. (2011) split the uncertainty set into hyper-rectangles, assigning to
each of them the corresponding later-period adjustable linear and binary variables.
Contrary to this, our method does not impose any geometrical form of the uncertainty
subsets. Bertsimas and Georghiou (2015) propose to use piecewise linear decision
rules, both for the continuous and the binary variables (for the binary variables, value
0 is implemented if the piecewise linear decision rule is positive). They use a cutting
plane approach that gradually increases the fraction of the uncertainty set that the
solution is robust to, reaching complete robustness when their approach terminates.
In our approach, the decision rules proposed ensure full robustness after each of the
so-called splitting rounds, and the more splitting rounds, the better the value of the
objective function. In a recent paper, Bertsimas and Georghiou (2014) propose a
different type of decision rules for binary variables. Since the resulting problems are
exponential in the size of the original formulation, authors propose their conservative
approximations, giving a systematic tradeoff between computational tractability and
level of conservatism. In our approach, instead of imposing a functional form of the
decision rules, we focus on splitting the uncertainty set into subsets with different
decisions. Also, we ensure robustness precisely against the specified uncertainty set
and allow non-binary integer variables.
Hanasusanto et al. (2015) apply finite adaptability to two-period decision problems
with binary variables. In this setting, the decision maker can choose out of K possible
decisions in the second period when the uncertain parameter value is known. For each
outcome of the uncertain parameter, one of the time-2 decisions must yield a feasible
solution. The optimization variables are the here-and-now decisions taken at period
1, and the set of K decisions for period 2. The resulting problems can be transformed
to MILP problems of size exponential in the number K of possible decisions (in case
of uncertainty in both the objective function and the constraints - for problems with
uncertainty only in the objective the reformulation is polynomial). They also study
the approximation quality provided by such reformulations and complexity issues.
Our approach applies to general multi-period problems and allows also explicitly
non-binary integer variables.
We test our methodology on problem instances from Bertsimas and Georghiou (2015)
and Hanasusanto et al. (2015). The experiments reveal that our methodology per-
forms worse on problems with uncertainty only in the objective function and on small
instances, where the ‘more exact’ approaches of other authors can be solved fast to
optimality. However, as the problems grow in size, it is able to provide comparable
or better results after a significantly shorter computation.
The idea of partitioning the support of random variables in order to improve approx-
imations of the objective function has been subject of intensive study in Stochastic
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Programming (SP). There, the use of partitions is to apply some bounds on the ex-
pectation of a function of a random variable on a per-partition basis, obtaining tighter
bounds in this way. Examples of such partitions are given in Birge and Wets (1986)
and Frauendorfer and Kall (1988). In some cases, similarly to our methodology, these
methods use dual information to decide about the positioning of the partitions (see
Birge and Wets (1986)). For an overview of bounds and their partition-based refine-
ments used in SP we refer the reader to Birge and Louveaux (1997). Despite these
similarities with our approach, our method is different for its focus on the worst-case
outcomes without assuming distributional information.
The composition of the remainder of the paper is as follows. Section 3.2 introduces
the set-splitting methodology for the case of two-period problems with adjustable
continuous variables. Section 3.3 extends the approach to multiperiod problems, and
Section 3.4 extends the multiperiod case to problems with integer decision variables.
Section 3.5 proposes heuristics to be used as a part of the method. Section 3.6
gives three numerical examples, showing that the methodology of our paper offers
substantial gains in terms of the worst-case objective function improvement. Section
3.7 concludes and lists the potential directions for future research.

3.2 Two-period problems

For ease of exposition we first introduce our methodology on the case of two-period
problems with continuous decision variables only. The extension to multi-period
problems is given in Section 3.3, and the extension to problems with integer variables
is given in Section 3.4.

3.2.1 Description

Consider the following two-period optimization problem:

min
x1,x2

cT1 x1 + cT2 x2

s.t. A1(ζ)x1 +A2(ζ)x2 ≤ b ∀ζ ∈ Z,
(3.1)

where c1 ∈ Rd1 , c2 ∈ Rd2 , b ∈ Rm are fixed parameters, ζ ∈ RL is the uncertain
parameter and Z ⊂ RL is a compact and convex uncertainty set. Vector x1 ∈ Rd1 is
the decision implemented at time 1 before the value of ζ is known, and x2 ∈ Rd2 is the
decision vector implemented at time 2, after the value of ζ is known. It is assumed
that the functions A1 : RL → Rm×d1 ,A2 : RL → Rm×d2 are linear. We refer to the
rows of matrix A1 and A2 as aT1,i(ζ) and aT2,i(ζ) respectively, with a1,i(ζ) = P1,iζ

and a2,i(ζ) = P2,iζ, where P1,i ∈ Rd1×L,P2,i ∈ Rd2×L (uncertain parameter can
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contain a single fixed component, which would result in the intercepts of the affine
transformations A1(ζ),A2(ζ).
The static robust problem (3.1) where the decision vector x2 is independent from
the value of ζ makes no use of the fact that x2 can adjust to the revealed ζ. The
adjustable version of problem (3.1) is:

min
x1,x2(ζ),z

z

s.t. cT1 x1 + cT2 x2(ζ) ≤ z, ∀ζ ∈ Z

A1(ζ)x1 +A2(ζ)x2(ζ) ≤ b ∀ζ ∈ Z.

(3.2)

Since this problem is NP-hard (see Ben-Tal et al. (2009)), the concept of linear
decision rules has been proposed. Then, the time 2 decision vector is defined as
x2 = v+V ζ, where v ∈ Rd2 ,V ∈ Rd2×L (see Ben-Tal et al. (2009)) and the problem
is:

min
x1,v,V

z

s.t. cT1 x1 + cT2 (v + V ζ) ≤ z, ∀ζ ∈ Z

A1(ζ)x1 +A2(ζ) (v + V ζ) ≤ b ∀ζ ∈ Z.

(3.3)

In the general case such constraints are quadratic in ζ, because of the term
A2(ζ) (v + V ζ). Only for special cases the constraint system can be rewritten as
a computationally tractable system of inequalities. Moreover, linear decision rules
cannot be used if (part of) the decision vector x2 is required to be integer.
We propose a different approach. Before introducing it, we need to introduce the term
of splitting a set. By splitting a set Z it is understood such a partition Z = Z+∪Z−
that there exist ζ+ ∈ Z+ and ζ− ∈ Z− such that:

ζ+ ∈ Z+ \ Z−, ζ− ∈ Z− \ Z+.

Our idea lies in splitting the set Z into a collection of subsets Zr,s where s ∈ Nr
and ∪s∈NrZr,s = Z (r denotes the index of the splitting round and s denotes the
set index). For each Zr,s a different, fixed time 2 decision shall be determined. We
split the set Z in rounds into smaller and smaller subsets using hyperplanes. In this
way, all the uncertainty subsets remain convex, which is a typical assumption for RO
problems. The following example illustrates this idea.

Example 3.1 We split the uncertainty set Z with a hyperplane gTζ = h into the
following two sets:

Z1,1 = Z ∩
{
ζ : gTζ ≤ h

}
and Z1,2 = Z ∩

{
ζ : gTζ ≥ h

}
.
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Figure 3.1 – Scheme of the first splitting.

Z

Z1,1 Z1,2

x2

x
(1,1)
2 x

(1,2)
2

At time 2 the following decision is implemented:

x2 =


x

(1,1)
2 if ζ ∈ Z1,1

x
(1,2)
2 if ζ ∈ Z1,2

x
(1,1)
2 or x(1,2)

2 if ζ ∈ Z1,1 ∩ Z1,2.

The splitting is illustrated in Figure 3.1. Now, the following constraints have to be
satisfied:  A1 (ζ)x1 +A2 (ζ)x(1,1)

2 ≤ b, ∀ζ ∈ Z1,1

A1 (ζ)x1 +A2 (ζ)x(1,2)
2 ≤ b, ∀ζ ∈ Z1,2.

Since there are two values for the decision at time 2, there are also two ‘objective
function’ values: cT1 x1 + cT2 x

(1,1)
2 and cT1 x1 + cT2 x

(1,2)
2 . The worst-case value is:

z = max
{
cT1 x1 + cT2 x

(1,1)
2 , cT1 x1 + cT2 x

(1,2)
2

}
.

After splitting Z into two subsets, one is solving the following problem:

min z(1)

s.t. cT1 x1 + cT2 x
(1,s)
2 ≤ z(1), s = 1, 2

A1 (ζ)x1 +A2 (ζ)x(1,s)
2 ≤ b, ∀ζ ∈ Z1,s, s = 1, 2.

(3.4)

Since for each s the constraint system is less restrictive than in (3.1), an improvement
in the optimal value can be expected. This is illustrated in Example 3.2.

Example 3.2 Consider the following problem in which there is only a second-stage
decision vector x2 = (x1, x2) and a single dimensional uncertain parameter z ∈ Z =
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[0, 1]:

min − x1 − x2

s.t. (1 + z)x1 ≤ 2 ∀z ∈ Z
(2− z)x2 ≤ 2. ∀z ∈ Z.

Without adjustability we have x1, x2 ≤ 1 and the optimal solution is x1 = x2 = 1,
yielding the optimal value −2. However, if we split the set Z into two parts:

Z1 = [0, 1/2], Z2 = [1/2, 1],

then we get:

min max{−x(1,1)
1 − x(1,1)

2 ,−x(1,2)
1 − x(1,2)

2 }

s.t. (1 + z)x(2,i)
1 ≤ 2 ∀zi ∈ Zi, i = 1, 2

(2− z)x(2,i)
2 ≤ 2. ∀zi ∈ Zi, i = 1, 2.

For this optimization problem the optimal solution is given by x(1,1)
1 = 4/3, x(1,1)

2 = 1,
x

(1,2)
1 = 1, x(1,2)

2 = 4/3, yielding the optimal value −7/3. �

Also, the average-case performance is expected to be better than in the case of (3.1),
due to the variety of time 2 decision variants.
The splitting process can be continued so that the already existing sets Zr,s are split
with hyperplanes. This is illustrated by the continuation of our example.

Example 3.3 Figure 3.2 illustrates the second splitting round, where the set Z1,1 is
not split, but the set Z1,2 is split with a new hyperplane into two new subsets Z2,2

and Z2,3. Then, a problem results with three uncertainty subsets and three decision
variants x(2,s)

2 for time 2. �

In general, after the r-th splitting round there are Nr uncertainty subsets Zr,s and
Nr decision variants x(r,s)

2 . The problem is then:

min z(r)

s.t. cT1 x1 + cT2 x
(r,s)
2 ≤ z(r), s ∈ Nr

A1(ζ)x1 +A2(ζ)x(r,s)
2 ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr = {1, ..., Nr} .

(3.5)

The finer the splitting of the uncertainty set, the lower optimal value one may expect.
In reasonable settings, as the maximum diameter of the uncertainty subsets for a



78 Adjustable robust mixed-integer optimization via splitting

Figure 3.2 – An example of second split for the two-period case.

Z1,1 Z1,2x
(1,1)
2 x

(1,2)
2

Z2,1 Z2,2
Z2,3

x
(2,1)
2 x

(2,2)
2

x
(2,3)
2

given r converges to 0 as r → +∞, it should hold that the optimal value of (3.5)
converges to zadj - the optimal value of (3.2). Indeed, Bertsimas and Caramanis
(2010), who study the question of finding the optimal K variants for the time 2
decision, prove that this is true under the so-called continuity assumption — which,
put into the terminology of this chapter, means that for any ε > 0 and for any z ∈ Z
there exists a δ > 0 and a point (x̄1, x̄2) whose objective is ε-optimal in the sense of
the objective function value for all z′ such that ‖z − z′‖ < δ. That the continuity
assumption is essential for the limit to hold, it is shown in Section VI of their paper.
Determining whether further splitting is needed and finding the proper hyperplanes
are crucial for an improvement in the worst-case objective value to occur. The next
two subsections provide theory for determining (1) how far the current optimum is
from the best possible value, (2) what are the conditions for the split to bring an
improvement in the objective function value.

3.2.2 Lower bounds

As the problem becomes larger with subsequent splitting rounds, it is important to
know how far the current optimal value is from zadj or its lower bound. We use a
lower bounding idea proposed for two-period robust problems in Hadjiyiannis et al.
(2011), and used also in Bertsimas and Georghiou (2015).
Let Z =

{
ζ(1), . . . , ζ(|Z|)

}
⊂ Z be a finite set of scenarios for the uncertain parameter.

Consider the problem

min
w,x1,x

(i)
2 ,i=1,...,|Z|

w

s.t. cT1 x1 + cT2 x
(i)
2 ≤ w, i = 1, ..., |Z|

A1
(
ζ(i)

)
x1 +A2

(
ζ(i)

)
x

(i)
2 ≤ b, i = 1, ..., |Z|,

(3.6)

where each x1 ∈ Rd1 and x(i)
2 ∈ Rd2 , for all i. Then, the optimal value of (3.6) is a
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lower bound for zadj, the optimal value of (3.2) and hence, to any problem (3.5).
Since each scenario in Z increases the size of the problem to solve, it is essential to
include a possibly small number of scenarios determining the current optimal value
of problem (3.5). The next section indicates a special class of scenarios and based on
this, in Section 3.5 we propose heuristic techniques to construct Z.

3.2.3 How to split

In this section, we introduce the key results related to the way in which the uncer-
tainty sets Zr,s should be split. The main idea behind splitting the sets is as follows.
For each Zr,s we identify a finite set Zr,s ⊂ Zr,s of critical scenarios. If Zr,s contains
more than one element, a hyperplane is constructed such that at least two elements
of Zr,s are on different sides of the hyperplane. We call this process dividing the
set Zr,s. This hyperplane becomes also the splitting hyperplane of Zr,s. To avoid
confusion, we use the term split in relation to continuous uncertainty sets Zr,s and
the term divide in relation to the finite sets Zr,s of critical scenarios.

3.2.3.1 General theorem

To obtain results supporting the decision about splitting the subsets Zr,s, we study
the dual of problem (3.5). We assume that (3.5) satisfies Slater’s condition. By result
of Beck and Ben-Tal (2009) the dual of (3.5) is equivalent to:

max
{λ(r,s)}Nr

s=1
,µ(r),

{
{ζ(r,s,i)}Nr

s=1

}m
i=1

− ∑
s∈Nr

m∑
i=1

λ
(r,s)
i bi

s.t. ∑
s∈Nr

m∑
i=1

λ
(r,s)
i a1,i

(
ζ(r,s,i)

)
+ ∑

s∈Nr
µ(r)
s c1 = 0

m∑
i=1

λ
(r,s)
i a2,i

(
ζ(r,s,i)

)
+ µ(r)

s c2 = 0, ∀s ∈ Nr∑
s∈Nr

µ(r)
s = 1

λ(r,s) ≥ 0, s ∈ Nr
µ(r),λ(r) ≥ 0
ζ(r,s,i) ∈ Zr,s, ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(3.7)

Interestingly, problem (3.7) is nonconvex in the decision variables, which is not the
case for duals of nonrobust problems. This phenomenom has been noted already in
Beck and Ben-Tal (2009). Because Slater’s condition holds, strong duality holds, and
for an optimal x(r) to problem (3.5), with objective value z(r), there exist λ(r)

,µ(r), ζ
(r)

such that the dual optimal value is attained and equal to z(r). In the following, we
use a shorthand notation:

x(r) =
(
x1,
{
x

(r,s)
2

}Nr
s=1

)
,λ(r) =

{
λ(r,s)

}Nr
s=1

, ζ(r) =
{{
ζ(r,s,i)

}Nr
s=1

}m
i=1

,µ(r) = (µ(r)
1 , . . . , µ

(r)
Nr

)T .
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A similar approach is applied in the later parts of the paper. For each s ∈ Nr let us
define

Zr,s(λ
(r)) =

{
ζ

(r,s,i) : λ
(r,s)
i > 0

}
,

which is a set of worst-case scenarios for ζ determining that the optimal value for
(3.5) cannot be better than z(r). Since the sets Zr,s(λ

(r)) are defined with respect to
the given optimal dual solution, they are all finite.
The following theorem states that at least one of the sets Zr,s(λ

(r)) for which
|Zr,s(λ

(r))| > 1 must be divided as a result of splitting Zr,s in order for the optimal
value z(r′) of the problem after the subsequent splitting rounds to be better than z(r).

Theorem 3.1 Assume that problem (3.5) satisfies Slater’s condition, x(r) is the opti-
mal primal solution, and λ(r)

µ(r), ζ
(r) is the optimal dual solution. Assume that at a

splitting round r′ > r there exists a sequence of distinct numbers {j1, j2, ..., jNr} ⊂ Nr′
such that Zr,s(λ

(r)) ⊂ Zr′,js for each 1 ≤ s ≤ Nr, that is, each set Zr,s(λ
(r)) remains

not divided, staying a part of some uncertainty subset. Then, it holds that the optimal
value z(r′) after the r′-th splitting round is equal to z(r). �

Proof. We construct a lower bound for the problem after the r′-th round with value
z(r) by choosing proper λ(r′,s),µ(r′), ζ(r′,s,i). Without loss of generality we assume
that Zr,s(λ

(r)) ⊂ Zr′,s for all s ∈ Nr. We take the dual problem of the problem after
the r′-th splitting round in the form (3.7). We assign the following values:

λ
(r′,s)
i =

 λ
(r,s)
i for 1 ≤ s ≤ Nr

0 otherwise

µ(r′)
s =

 µ(r)
s for 1 ≤ s ≤ Nr

0 otherwise

ζ(r′,s,i) =

 ζ̄(r,s,i) if s ≤ Nr, λ
(r,s)
i > 0

any ζ(r′,s,i) ∈ Zr′,s otherwise.

Such variables are dual feasible and give an objective value to the dual equal to z(r).
Since the dual objective value provides a lower bound on the primal problem after
the r′-th round, the theorem follows. �

The above result provides an important insight. If there exist sets Zr,s(λ
(r)) with

more than one element each, then at least one of such sets Zr,s(λ
(r)) should be divided

in the splitting process. Otherwise, by Theorem 3.1, one can construct a lower bound
showing that the resulting objective value cannot improve. On the other hand, if no
such Zr,s(λ

(r)) exists, then splitting should stop since, by Theorem 3.1, the optimal
value cannot improve.
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Corollary 3.1 If for optimal λ(r,s)
,µ(r), ζ

(r) it holds that:∣∣∣∣Zr,s(λ(r))
∣∣∣∣ ≤ 1, ∀s ∈ Nr,

then z(r) = zadj, where zadj is the optimal value of (3.2).

Proof. A lower-bound program with a scenario set Z = ∪s∈NrZr,s(λ
(r)) has an

optimal value at most zadj. By duality arguments similar to Theorem 3.1, the optimal
value of such a lower bound problem must be equal to z(r). This, combined with the
fact that z(r) ≥ zadj gives z(r) = zadj. �

Theorem 3.1 does not tell us which of the sets Zr,s have to be split - it says only
that at least one of Zr,s(λ

(r)) has to be split for which Zr,s(λ
(r)) contains more than

one element. Moreover, if there exists more than one dual optimal λ(r,s), each of
them may imply different sets Zr,s(λ

(r)) to be divided. In other words, conducting a
‘proper’ (in the sense of Theorem 3.1) splitting round with respect to sets Zr,s(λ

(r)),
implied by the given λ(r)

, ζ
(r) could, in the general case, not be ‘proper’ with respect

to sets Zr,s(λ̂(r)) implied by another dual optimal λ̂(r), ζ̂(r). However, such a situation
did not occur in any of the numerical experiments conducted in this paper.
In the following section we consider the question how to find the sets Zr,s(λ

(r)) to
be divided.

3.2.3.2 Finding the sets of scenarios to be divided

In this section we propose concrete methods of identifying the sets of scenarios to
be divided. Such sets should be ‘similar’ to the sets Zr,s(λ

(r)) in the sense that
they should consist of scenarios ζ that are a part of the optimal solution to the
dual problem (3.7). If this condition is satisfied, such sets are expected to result in
splitting decisions leading to improvements in the objective function value, in line
with Theorem 3.1.

Active constraints. The first method of constructing scenario sets to be divided
relies on the fact that for a given optimal solution x1,x

(r)
2 to (3.5), a λ

(r,s)
i > 0

corresponds to an active primal constraint. That means, for each s ∈ Nr we can
define the set:

Φr,s

(
x(r)

)
=
{
ζ : ∃i : aT1,i(ζ)x1 + aT2,i(ζ)x(r,s)

2 = bi
}
.

Though some Φr,s

(
x(r)

)
may contain infinitely many elements, one can approximate

it by finding a single scenario for each constraint, solving the following problem for
each s, i:

min
ζ

bi − aT1,i(ζ)x1 + aT2,i(ζ)x(r,s)
2

ζ ∈ Zr,s.
(3.8)
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If for given s, i the optimal value of (3.8) is 0, we add the optimal ζ to the set
Zr,s(x(r)). In the general case, such a set may include ζ’s for which there exists no
λ

(r,s)
i > 0 being a part of optimal dual solution.

Using the KKT vector of the robust problem. The active constraints ap-
proach may result in having an unnecessarily large number of critical scenarios found.
Therefore, there is a need for a way to obtain the values of λ(r) to choose only the
scenarios ζ(r,s,i) for which it holds that λ(r,s)

i > 0. This requires us to solve the
problem (3.7) by solving its convex reformulation.
Here, we choose to achieve this by removing the nonconvexity of problem (3.7), which
requires an additional assumption that each Zr,s is representable by a finite set of
convex constraints:

Zr,s = {ζ : hr,s,j(ζ) ≤ 0, j = 1, ..., Ir,s} , ∀s ∈ Nr, (3.9)

where each hr,s,j(.) is a closed convex function. Note that this representation allows
for the use of hyperplanes to split, as affine functions are also convex. For an overview
of sets representable in this way we refer to Ben-Tal et al. (2015), mentioning here
only that such formulation entails also conic sets. With such a set definition, by
results of Gorissen et al. (2014), we can transform (3.7) to an equivalent convex
problem by substituting λ(r,s)

i ζ(r,s,i) = ξ(r,s,i). Combining this with the definition of
the rows of matrices A1,A2, we obtain the following problem, equivalent to (3.7):

max
λ(r),µ(r),ξ(r)

− ∑
s∈Nr

m∑
i=1

λ
(r,s)
i bi

s.t. ∑
s∈Nr

m∑
i=1
P1,iξ

(r,s,i) + ∑
s∈Nr

µ(r)
s c1 = 0

m∑
i=1
P2,iξ

(r,s,i) + µ(r)
s c2 = 0, ∀s ∈ Nr∑

s∈Nr
µ(r)
s = 1

λ(r,s) ≥ 0, s ∈ Nr
µ(r) ≥ 0
λ

(r,s)
i hs,j

(
ξ(r,s,i)

λ
(r,s)
i

)
≤ 0, ∀s ∈ Nr, i = 1, . . . ,m, j = 1, ..., Ir,s.

(3.10)

Problem (3.10) is convex in the decision variables - it involves constraints that are
either linear in the decision variables or that involve perspective functions of convex
functions, see Boyd and Vandenberghe (2004). Optimal variables for (3.10), with
substitution

ζ(r,s,i) =


ξ(r,s,i)

λ
(r,s)
i

for λ(r,s)
i > 0

ζ(r,s,i) ∈ Zr,s for λ(r,s)
i = 0,
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are optimal for (3.7). Hence, one may construct the sets of points to be split as:

Zr,s(λ
(r)) =

ξ
(r,s,i)

λ
(r,s)
i

: λ
(r,s)
i > 0

 .
Thus, in order to obtain a set Zr,s(λ

(r)), one needs the solution to the convex prob-
lem (3.10). It turns out that this solution can be obtained at no extra cost apart
from solving (3.5) if we assume representation (3.9) and that the tractable robust
counterpart of (3.5) satisfies Slater’s condition - one can use then its optimal KKT
vector.
The tractable robust counterpart of (3.5), constructed using the methodology of
Ben-Tal et al. (2015), is:

min
z(r),x1,x

(r,s)
2 ,v(s,i,j),u

(s,i)
j

z(r)

s.t. cT1 x1 + cT2 x
(r,s)
2 ≤ z(r), s ∈ Nr∑Ir,s

j=1 u
(s,i)
j h∗s,i,j

(
v(s,i,j)

u
(s,i)
j

)
≤ bi, ∀s ∈ Nr,∀1 ≤ i ≤ m

∑Ir,s
j=1 v

s,i,j = P T
1,ix1 + P T

2,ix
(r,s)
2 , ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(3.11)

Let us denote the Lagrange multipliers of the three subsequent constraint types by
µ(r)
s , λ

(r,s)
i , ξ(r,s,i), respectively. Now we can formulate the theorem stating that the

KKT vector of the optimal solution to (3.11) gives the optimal solution to (3.10).

Theorem 3.2 Suppose that problem (3.11) satisfies Slater’s condition. Then, the
components of the optimal KKT vector of (3.11) yield the optimal solution to (3.10).
�

Proof. The Lagrangian for problem (3.11) is:

L
(
z(r),x(r),v(s),u(s),λ(r),µ(r), ξ(r)

)
= z(r) +∑

s
µ(r)
s

{
cT1 x1 + cT2 x

(r,s)
2 − z(r)

}
+

+∑
s,i
λ

(r,s)
i

(∑
j
u

(s,i)
j h∗s,i,j

(
vs,i,j

u
(s,i)
j

)
− bi

)
+

−∑
s,i

(
ξ(r,s,i)

)T (∑
j
vs,i,j − P T

1,ix1 − P T
2,ix

(r,s)
2

)

We now show that the Lagrange multipliers correspond to the decision variables with
the corresponding names in problem (3.10), by deriving the Lagrange dual problem:
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max
λ(r)≥0,µ(r)≥0,ξ(r)

min
z(r),x(r),

v(s),u(s)

L
(
z(r),x(r),v(s),u(s),λ(r),µ(r), ξ(r)) =

= max
λ≥0,µ≥0,ξ

min
z(r)

(
1−

∑
s
µ

(r)
s

)
z(r) + min

x1

(∑
s
µ

(r)
s c1 +

∑
s,i

P1,iξ
(r,s,i)

)T
x1

+ min
x

(r,s)
2

∑
s

(
µ

(r)
s c2 +

∑
i

P2,iξ
(r,s,i)

)T
x

(r,s)
2

+
∑
s,i,j

min
v(s,i,j),u

(s,i)
j

{
λ

(r,s)
i u

(s,i)
j h∗s,i,j

(
vs,i,j

u
(s,i)
j

)
−
(
ξ(r,s,i))T vs,i,j}}

= max
λ≥0,µ≥0,ξ

{
−
∑
s
µ

(r)
s bi

∣∣∣∣∣1−∑s µ(r)
s = 0,

∑
s
µ

(r)
s c1 +

∑
s,i

P1,iξ
(r,s,i) = 0,

µ
(r)
s c2 +

∑
i

P2,iξ
(r,s,i) = 0, ∀s, λ

(r,s)
i hs,i,j

(
ξ(r,s,i)

λ
(r,s)
i

)
≤ 0 ∀s, i, j

}
Hence, one arrives at the problem equivalent to (3.10) and the theorem follows. �

In fact, Theorem 3.2 turns out to be a special case of a the result of Beck and Ben-Tal
(2009). Due to Theorem 3.2, we know that the optimal solution to (3.10), and thus
to (3.7), can be obtained at no extra computational effort since most of the solvers
produce the KKT vector as a part of output.
As already noted in Section 3.2.3.1, the collections of sets {Zr,s(λ

(r))}Nrs=1 and
{Zr,s(x(r))}Nrs=1 may only be one of many possible collections of sets, of which at least
one is to be divided. This is because different combinations of sets may correspond
to different values of the optimal primal and dual variable values. Hence, there is no
guarantee that even by dividing all the sets {Zr,s(λ

(r))}Nrs=1 or {Zr,s(x(r))}Nrs=1, one
separates ‘all the ζ scenarios that ought to be separated’. However, the approaches
presented in this section are computationally tractable and may give a good practical
performance, as shown in the numerical examples of Section 3.6.

3.3 Multiperiod problems

3.3.1 Description

In this section we extend the basic two-period methodology to the case with more
than two periods, which requires a more extensive notation. The uncertain parameter
and the decision vector are:

ζ =


ζ1
...

ζT−1

 ∈ RL1 × ...× RLT−1 , x =


x1
...
xT

 ∈ Rd1 × ....× RdT .

Value of the component ζt is revealed at time t. The decision xt is implemented
at time t, after the value of ζt−1 is known but before ζt is known. We introduce a
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special notation for the time-dependent parts of the vectors. The symbol xs:t, where
s ≤ t shall denote the part of the vector x corresponding to periods s through t. We
also define L = ∑T−1

t=1 Li and d = ∑T
t=1 dt.

The considered robust multi-period problem is:

min
x

cTx

s.t. A(ζ)x ≤ b, ∀ζ ∈ Z,
(3.12)

where the matrix A : RL → Rm×d is linear and its i-th row is denoted by aTi . In
the multi-period case we also split the set Z into a collection of sets Zr,s where
∪s∈NrZr,s = Z for each r. By Projt(Zr,s) we denote the projection of the set Zr,s
onto the space corresponding to the uncertain parameters from the first t periods:

Projt(Zr,s) = {ξ : ∃ζ ∈ Zr,s, ξ = ζ1:t} .

Contrary to the two-period case, every subset Zr,s shall correspond to a vector x(r,s) ∈
Rd, i.e., a vector including decisions for all the periods.
In the two-period case, the time 1 decision was common for all the variants of decision
variables. In the multi-period notation this condition would be written as x(r,s)

1 =
x

(r,s+1)
1 for 1 ≤ s ≤ Nr − 1. In the two-period case each of the uncertainty subsets
Zr,s corresponded to a separate variant x(r,s)

2 , and given a ζ, any of them could be
chosen if only it held at time 2 that ζ ∈ Zr,s. In this way, it was guaranteed that

∀ζ ∈ Z ∃x(r,s)
2 : A1(ζ)x1 +A2(ζ)x(r,s)

2 ≤ b.

In the multi-period case the main obstacle is the need to establish nonanticipativity
constraints, see Shapiro et al. (2009) for a discussion of nonanticipativity in the
context of Stochastic Programming. Nonanticipativity requires that decisions made
at time t can be based only on information available at that time.
In our context, we have that information about subsequent components of ζ is re-
vealed period after period, whereas at the same time decisions need to be imple-
mented. In general up to time T one may not know to which Zr,s the vector ζ will
surely belong to.
For instance, suppose that at time 1 the decision x1 is implemented. At time 2,
knowing only the value ζ1 there may be many potential sets Zr,s to which ζ may
belong and for which x2 = x

(r,s)
2 - all the Zr,s for which ζ1 ∈ Proj1(Zr,s). Suppose

that a decision x2 = x
(r,s)
2 is chosen at time 2, for some s. Then, at time 3 there

must exist a set Zr,s such that ζ1:2 ∈ Proj2(Zr,s) and for which x1:2 = x
(r,s)
1:2 , so that

its decision for time 3 can be implemented.
In general, at each time period 2 < t ≤ T there must exist a set Zr,s such that
the vector ζ1:t−1 ∈ Projt−1(Zr,s), and for which it holds that x1:t−1 = x

(r,s)
1:t−1, where
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x1:t−1 stands for the decisions already implemented. We propose an iterative splitting
strategy ensuring that this postulate is satisfied.
In this strategy, the early-period decisions corresponding to various sets Zr,s are
identical, as long as it is not possible to distinguish to which of them the vector ζ will
belong. Our strategy facilitates simple determination of these equality constraints
between various decisions and is based on the following notion.

Definition 1 A hyperplane defined by a normal vector g ∈ RL and intercept term
h ∈ R is a time t splitting hyperplane (called later t-SH) if:

t = min
{
u : gTζ = h ⇔ gT1:uζ1:u = h, ∀ζ ∈ RL

}
.

In other words, such a hyperplane is determined by a linear inequality that depends
on ζ1, . . . , ζt, but not on ζt+1, . . . , ζT . We shall refer to a hyperplane by the pair
(g, h).

We illustrate with an example how the first splitting can be done and how the
corresponding equality structure between decision vectors x(r,s) is determined.

Example 3.4 Consider a multi-period problem where T = 3, with a rectangular
uncertainty set containing one dimensional ζ1 and ζ2, as depicted in Figure 3.3. We
split the uncertainty set Z with a 1-SH (g, h). Then, two subsets result:

Z1,1 = Z ∩
{
ζ : gTζ ≤ h

}
and Z1,2 = Z ∩

{
ζ : gTζ ≥ h

}
.

Now, there are two decision vectors x(1,1),x(1,2) ∈ Rd. Their time 1 decisions should
be identical since they are implemented before the value of ζ1 is known, allowing to
determine whether ζ ∈ Z1,1 or ζ ∈ Z1,2. Thus, we add a constraint x(1,1)

1 = x
(1,2)
1 .

This splitting is illustrated in Figure 3.3.
The problem to be solved after the first splitting round is analogous to the two-period
case, with an equality constraint added:

min
z(1),x(1,s)

z(1)

s.t. cTx(1,s) ≤ z(1), s = 1, 2
A (ζ)x(1,s) ≤ b, ∀ζ ∈ Z1,s, s = 1, 2
x

(1,1)
1 = x

(1,2)
1 .

The splitting process may be continued and multiple types of t-SHs are possible.
To state our methodology formally, we define a parameter tmax(Zr,s) for each set
Zr,s. If the set Zr,s is a result of subsequent splits with various t-SH’s, the number
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Figure 3.3 – A multi-period problem after a single splitting with a time-1 splitting hyperplane.
Only information about ζ1 is needed to determine if ζ belongs to Z1,1 or Z1,2 (Round 1).

Start ζ1

ζ2

Round 1

1-SH

Z

x2

Z1,1

x
(1,1)
2

Z1,2

x
(1,2)
2

tmax(Zr,s) denotes the largest t of them. By convention, for the set Z it shall hold
that tmax(Z) = 0. The following rule defines how the subsequent sets can be split
and what the values of the parameter tmax for each of the resulting sets are.

Rule 3.1 A set Zr,s can be split only with a t-SH such that t ≥ tmax(Zr,s). For the
resulting two sets Zr+1,s′ ,Zr+1,s′′ we define tmax(Zr+1,s′) = tmax(Zr+1,s′′) = t. If the
set is not split and in the next round it becomes the set Zr+1,s′ then tmax(Zr+1,s′) =
tmax(Zr,s). �

The next rule defines the equality constraints for the problem after the (r + 1)-th
splitting round, based on the problem after the r-th splitting round.

Rule 3.2 Let a set Zr,s be split with a t-SH into sets Zr+1,s′ ,Zr+1,s′′. Then the
constraint x(r+1,s′)

1:t = x
(r+1,s′′)
1:t is added to the problem after the (r + 1)-th splitting

round.
Assume the problem after splitting round r includes sets Zr,s and Zr,u with a con-
straint x(r,s)

1:ks = x
(r,u)
1:ks , and the sets Zr,s,Zr,u are split into Zr+1,s′ ,Zr+1,s′′ and

Zr+1,u′ ,Zr+1,u′′, respectively. Then, the constraint x(r+1,s′′)
1:ks = x

(r+1,u′)
1:ks is added to the

problem after the (r + 1)-th splitting round. �

The first part of Rule 3.2 ensures that the decision vectors x(r+1,s′),x(r+1,s′′) can
differ only from time period t+1 on, since only then one can distinguish between the
sets Zr,s′ ,Zr,s′′ . The second part of Rule 3.2 ensures that the dependence structure
between decision vectors from stage r is not ‘lost’ after the splitting. Rule 3.2 as a
whole ensures that x(r+1,s′)

1:ks = x
(r+1,s′′)
1:ks = x

(r+1,u′)
1:ks = x

(r+1,u′′)
1:ks .
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Figure 3.4 – Example of second splitting round for the multi-period case. Only information about
ζ1 is needed to determine whether ζ belongs to Z2,1 or Z2,2 (Round 2). However, information about
both ζ1 and ζ2 is needed to distinguish whether ζ belongs to Z2,3 or Z2,4 (Round 2).

1-SH 2-SH

Z1,1

x(1,1)

Z1,2

x(1,2)x
(1,1)
1 = x

(1,2)
1
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x(2,4)

x
(2,1)
1 = x

(2,2)
1 x

(2,2)
1 = x

(2,3)
1 x

(2,3)
1:2 = x

(2,4)
1:2

Round 2

Rules 3.1 and 3.2 are not the only possible implementation of the splitting technique
that respects the nonanticipativity restriction. However, their application in the cur-
rent form does not require the decision maker to compare the sets Zr,s for establishing
the equality constraints between their corresponding decision vectors.
We illustrate the application of Rules 3.1 and 3.2 with a continuation of our example.

Example 3.5 By Rule 3.1 we have tmax(Z1,1) = tmax(Z1,2) = 1. Thus, each of the
sets Z1,1,Z1,2 can be split with a t-SH where t ≥ 1. We split the set Z1,1 with a 1-SH
and the set Z1,2 with a 2-SH. The scheme of the second splitting round is given in
Figure 3.4.
We obtain 4 uncertainty sets Z2,s and 4 decision vectors x(2,s). The lower part of
Figure 3.4 includes three equality constraints. The first constraint x(2,1)

1 = x
(2,2)
1 and

the third constraint x(2,3)
1:2 = x

(2,4)
1:2 follow from the first part of Rule 3.2, whereas the

second equality constraint x(2,2)
1 = x

(2,3)
1 is determined by the second part of Rule 3.2.

The equality constraints imply that x(2,1)
1 = x

(2,2)
1 = x

(2,3)
1 = x

(2,4)
1 .

The problem after the second splitting round is:

min
z(2),x(2,s)

z(2)

s.t. cTx(2,s) ≤ z(2), s = 1, ..., 4
A (ζ)x(2,s) ≤ b, ∀ζ ∈ Z2,s, s = 1, ..., 4
x

(2,1)
1 = x

(2,2)
1

x
(2,2)
1 = x

(2,3)
1

x
(2,3)
1:2 = x

(2,4)
1:2 .



Multiperiod problems 89

Figure 3.5 – Time structure of the decision variants after the second splitting. Dashed horizontal
lines denote the nonanticipativity (equality) constraints between decisions. The figure is motivated
by Figure 3.2 in Chapter 3.1.4 of Shapiro et al. (2009).
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Figure 3.6 – Example of the first two splitting rounds for the multi-period case. Only information
about ζ1 is needed to determine if a point ζ belongs to (i) Z1,1 or Z1,2 (Round 1), (ii) Z2,1 or Z2,2
(Round 2). However, information about both ζ1 and ζ2 is needed to distinguish whether ζ belongs
to Z2,3 or Z2,4 (Round 2).

1-SH 1-SH, 2-SH
Z Z1,1 Z1,2 Z2,1 Z2,2

Z2,3

Z2,4

ζ1

ζ2 Start Round 1 Round 2

The time structure of decisions for subsequent time periods is illustrated in Figure
3.5. Also, Figure 3.6 shows the evolution of the uncertainty set relations with the
subsequent splits.
At time 1 there is only one possibility for the first decision. Then, at time 2 the value
of ζ1 is known and one can determine if ζ is within the set Z1,1 or Z1,2, or both.
If ζ ∈ Z1,1, further verification is needed to determine whether ζ ∈ Z2,1 or ζ ∈ Z2,2,
to choose the correct variant of decisions for time 2 and later.
If ζ ∈ Z1,2, the time 2 decision x(2,3)

2 = x
(2,4)
2 is implemented. Later, the value of

ζ2 is revealed and based on it, one determines whether ζ ∈ Z2,3 or ζ ∈ Z2,4. In
the first case, decision x(2,3)

3 is implemented. In the second case, decision x(2,4)
3 is

implemented.
If ζ ∈ Z1,1 ∩ Z1,2 (thus ζ belongs to the tangent segment of the two sets, see Figure
3.6), then at time 2 one can implement either x(2,2)

2 or x(2,3)
2 = x

(2,4)
2 . It is best to
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choose the decision for which the entire decision vector x(r,s) gives the best worst-case
objective value.
If one chooses x(2,3)

2 = x
(2,4)
2 , then at time 2 it is known whether ζ ∈ Z2,3 or ζ ∈ Z2,4

(or both), and the sequence of decisions for later periods is chosen. If one chooses
x

(2,2)
2 then x(2,2)

3 is implemented. An analogous procedure holds for other possibilities.

In general, the problem after the r-th splitting round has Nr subsets Zr,s and decision
vectors x(r,s). Its formulation is:

min
z(r),x(r,s)

z(r)

cTx(r,s) ≤ z(r), s ∈ Nr
A (ζ)x(r,s) ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr
x

(r,s)
1:ks = x

(r,s+1)
1:ks , s ∈ Nr \ {Nr},

(3.13)

where ks is the number of the first time period decisions that are required to be
identical for decision vectors x(r,s) and x(r,s+1). When Rules 3.1 and 3.2 are applied
in the course of splitting, a complete set of numbers ks is obtained from Rule 3.2 and
at most Nr − 1 such constraints are needed. This corresponds to the sets {Zr,s}Nrs=1
being ordered in a line and having equality constraints only between the adjacent
sets, see Figure 3.4, where after the second splitting round equality constraints are
required only between x(2,1) and x(2,2), x(2,2) and x(2,3), and between x(2,3) and x(2,4).

3.3.2 Lower bounds

Similar to the two-period case, one can obtain lower bounds for the adjustable ro-
bust solution. The lower bound problem differs from the two-period case since the
uncertain parameter may have a multi-period equality structure of the components
that can be exploited.

Let Z =
{
ζ(1), . . . , ζ(|Z|)

}
⊂ Z be a finite set of scenarios for the uncertain parame-

ter. Then, the optimal solution to

min
w,x

(i)
2 ,i=1,...,|Z|

w

s.t. cTx
(i)
2 ≤ w, i = 1, ...,

∣∣∣Z∣∣∣
A
(
ζ(i)

)
x(i) ≤ b, i = 1, ...,

∣∣∣Z∣∣∣
x

(i)
1:t = x

(j)
1:t ∀i,j,t : ζ(i)

1:t = ζ
(j)
1:t

(3.14)

is a lower bound for problem (3.13).
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In the multi-period case it is required that for each decision vectors x(i),x(j) whose
corresponding uncertain scenarios are identical up to time t the corresponding deci-
sions must be the same up to time t as well (nonanticipativity restriction). This is
needed since up to time t one cannot distinguish between ζ(i) and ζ(j) and the deci-
sions made should be the same. The equality structure between the decision vectors
x(i) can be obtained efficiently (using at most |Z| − 1 vector equalities) if uncertain
parameter is one-dimensional in each time period - one achieves it by sorting the set
Z lexicographically.

3.3.3 How to split

3.3.3.1 General theorem

We assume that (3.13) satisfies Slater’s condition. By the result of Beck and Ben-Tal
(2009) the dual of (3.13) is equivalent to:

max − ∑
s∈Nr

m∑
i=1

λ
(r,s)
i bi

s.t.
m∑
i=1

λ
(r,s)
i ai

(
ζ(r,s,i)

)
+ µ(r)

s c+

 ν(r)
s

0

−
 ν

(r)
s−1

0

 = 0, ∀1 < s < Nr

m∑
i=1

λ
(r,1)
i ai

(
ζ(r,1,i)

)
+ µ

(r)
1 c+

 ν
(r)
1

0

 = 0

m∑
i=1

λ
(r,Nr)
i ai

(
ζ(r,Nr,i)

)
+ µ

(r)
Nrc−

 ν
(r)
r,Nr−1

0

 = 0

∑
s∈Nr

µ(r)
s = 1

λ(r),µ(r) ≥ 0
ζ(r,s,i) ∈ Zr,s, ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(3.15)

Because of Slater’s condition, strong duality holds and for an optimal primal solution
x(r) with objective value z(r) there exist λ(r)

,µ(r),ν(r), ζ
(r) such that the optimal value

of (3.15) is attained and is equal to z(r). For each subset Zr,s we define:

Zr,s(λ
(r)) =

{
ζ

(r,s,i) ∈ Zr,s : λ
(r)
s,i > 0

}
.

Then, the following result holds, stating that at least one of the sets Zr,s(λ
(r)), for

which |Zr,s(λ
(r))| > 1, should be split.

Theorem 3.3 Assume that problem (3.13) satisfies Slater’s condition, x(r) is the the
optimal primal solution, and that λ(r)

,µ(r),ν(r), ζ
(r) are the optimal dual variables.
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Assume that at any splitting round r′ > r there exists a sequence of distinct numbers
{j1, j2, ..., jNr} ⊂ Nr′ such that Zr,s(λ

(r)) ⊂ Zr′,js and for each 1 ≤ s ≤ Nr it holds
that Zr′,js results from splitting the set Zr,s. Then, the optimal value z(r′) is the same
as z(r), that is, z(r′) = z(r). �

Proof. We construct a lower bound for the problem after the r′-th round with value
z(r). Without loss of generality we assume that Zr,s(λ

(r)) ⊂ Zr′,s for all 1 ≤ s ≤ Nr.
By Rules 3.1 and 3.2, the problem after the r′-th splitting round implies equality
constraints x(r′,s)

1:ks = x
(r′,s+1)
1:ks , where 1 ≤ s ≤ Nr − 1. Take the dual (3.15) of the

problem after the r′-th splitting round. We assign the following values for λ(r′),µ(r′):

λ
(r′,s)
i =

 λ
(r,s)
i for 1 ≤ s ≤ Nr

0 otherwise

µ(r′)
s =

 µ(r)
s for 1 ≤ s ≤ Nr

0 otherwise

ν(r′)
s =

 ν(r)
s for 1 ≤ s ≤ Nr − 1

0 otherwise

ζ(r′,s,i) =

 ζ̄(r,s,i) if 1 ≤ s ≤ Nr, λ
(r,s)
i > 0

any ζ(r′,s,i) ∈ Zr′,s,i otherwise.

These values are dual feasible and give an objective value to the dual problem equal
to z(r). Since the dual objective value provides a lower bound for the primal problem,
the objective function value for the problem after the r′-th round cannot be better
than z(r). �

Similar to the two-period case, one can prove that if each of the sets Zr,s has at most
one element, then the splitting process may stop since the optimal objective value
cannot be better than z(r).

3.3.3.2 Finding the sets of scenarios to be divided

For the multi-period case, the same observations hold that have been made in the case
of the two-period problem. That is, one may construct sets Zr,s(x(r)) by searching
for the scenarios ζ corresponding to active primal constraints, or sets Zr,s(λ

(r)) by
using the optimal KKT variables of the tractable counterpart of (3.13). The latter
approach is preferred for its inclusion only of the critical scenarios in the meaning of
Theorem 3.3.
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3.4 Problems with integer variables

3.4.1 Methodology

A particularly difficult application field for adjustable robust decision rules is when
some of the decision variables are integer. Our methodology can be particularly useful
since the decisions are fixed numbers for each of the uncertainty subset Zr,s. A general
multiperiod robust adjustable problem with integer and continuous variables can be
solved through splitting in the same fashion as in Section 3.2 and 3.3.
Suppose, taking the notation of Section 3.3, that the indices of components of the
vector x to be integer belong to a set I. Then, the mixed-integer version of problem
(3.13) has only an additional integer condition:

min
z(r),x(r,s)

z(r)

cTx(r,s) ≤ z(r), s ∈ Nr
A (ζ)x(r,s) ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr
x

(r,s)
1:ks = x

(r,s+1)
1:ks , i ∈ Nr \ {Nr}

x
(r,s)
i ∈ Z, ∀s ∈ Nr, ∀i ∈ I.

(3.16)

To obtain lower bounds, we propose the analogues of the strategies given in Sections
3.2.2 and 3.3.2, with the integer condition.

3.4.2 Finding the sets of scenarios to be divided

For mixed integer optimization the available duality tools are substantially weaker
than for problems with continuous variables. One can utilize the subadditive duality
theorems to derive results ‘similar’ to the ones from Sections 3.2.3 and 3.3.3, but
they are not applicable in practice. Two approaches that seem intuitively correct
are: (1) separating scenarios responsible for constraints that are ‘almost active’ for
the optimal solution x(r), (2) separating scenarios found on the basis of the LP
relaxation of problem (3.16). We now discuss these two approaches.

Almost active constraints. In the continuous case, the sets Zr,s(x(r)) were found
by identifying ζ’s generating active constraints for the optimal primal solution. One
can also apply this approach in the mixed-integer case, with a correction due to the
fact that in mixed-integer problems the notion of ‘active constraints’ loses its proper
meaning - in general case the worst-case value of a left-hand side is not a continuous
function of the decision variable x. For that reason, it may happen that:

sup
ζ∈Zr,s

ai(ζ)Tx(r,s) < bi,
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even for constraints that are critical - being elements of a set of constraints prohibiting
the optimal objective value of (3.16) from being better than z(r). However, for each
s ∈ Nr one can define an approximate set Zr,s(x(r)) of ζ’s corresponding to ‘almost
active’ constraints. To find such ζ’s, for a precision level ε > 0 and s ∈ Nr, 1 ≤ i ≤ m

one solves the following problem:

min
ζ

bi − ai (ζ)T x(r,s) − ε

s.t. ζ ∈ Zr,s.
(3.17)

If the result is a nonpositive optimal value, then one can add the optimal solution
ζ to the set Zr,s(x(r)). However, this strategy may be subject to scaling problems
since ε may imply a different degree of ‘almost activeness’ for different constraints.
One may try to mitigate this issue by normalizing the coefficients of each constraint
before solving problem (3.17).

KKT vector of the LP relaxation. Another approach for problems with in-
teger variables, less sensitive to scaling issues, is to determine the sets Zr,s(λ

(r))
corresponding to the LP relaxation of problem (3.16). This approach is expected to
perform well in problems where the optimal mixed integer solution is close to the
optimal solution of the LP relaxation.

Changing an integer variable by 1. Another possibility for checking the ‘tight-
ness’ of a given constraint is to check whether changing the value of one (or several)
of the discrete decision variables makes the constraints not hold.
The following example shows how an efficient split can be obtained by means of
searching for the worst-case realizations of the uncertain parameter for the LP relax-
ation of the problem.

Example 3.6 Consider the following two-stage problem, where there is only a second-
stage decision vector x = (x1, x2, x3) and a single-dimensional uncertain parameter
z ∈ Z = [0, 1]:

min x3

s.t. zx1 ≤ x3 ∀z ∈ Z
(1− z)x2 ≤ x3 ∀z ∈ Z
x1 + x2 = 1
x ∈ {0, 1}2 × R.

One can see this as a problem of choosing exactly one (since x1 + x2 = 1) of the two
possible ways, represented by binary choice variables x1, x2, from point A to point
B, one of them having uncertain length z and the other 1 − z. Without splitting,
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there are two optimal solutions (x1, x2, x3) = (0, 1, 1) and (x1, x2, x3) = (1, 0, 1), with
worst-case route length 1.
The continuous relaxation problem has optimal solution (x1, x2, x3) = (1/2, 1/2, 1/2),
with optimal value 1/2. The two worst-case realizations of the uncertain parameter
for the constraints in the continuous relaxation are z = 0 and z = 1. If one splits the
uncertainty set separating these two points:

Z1 = [0, 1/2], Z2 = [1/2, 1],

then the problem becomes:

min max{x(1,1)
3 , x

(1,2)
3 }

s.t. zx(1,i)
1 ≤ x

(1,i)
3 ∀z ∈ Zi, i = 1, 2

(1− z)x(1,i)
2 ≤ x

(1,i)
3 ∀z ∈ Zi, i = 1, 2

x
(1,i)
1 + x

(1,i)
2 = 1 i = 1, 2

x(1,1),x(1,2) ∈ {0, 1}2 × R.

The optimal solution to this problem is given by x(1,1)
2 = (1, 0, 1/2), x(1,2)

2 = (0, 1, 1/2),
with optimal value 1/2. �

3.4.3 Problems with constraint-wise uncertainty

Some optimization problems involve constraint-wise uncertainty, that is, ζ can be
split into disjoint blocks in such a way that the data of each uncertain constraint
depends on a separate block of ζ, and the uncertainty set Z is a direct product
of uncertainty sets corresponding to the constraints (see Ben-Tal et al. (2004)). A
special case are problems where uncertainty is present only in the objective func-
tion. Though in most applications this is not the case, this issue deserves a separate
treatment. From Ben-Tal et al. (2004) we know that for problems with continuous
decisions and constraint-wise uncertainty the optimal value obtained with adjustable
decisions is equal to the one obtained with the static robust solution. However, in
problems with integer decisions, adjustability may still yield an improvement in the
objective function.
Up to now, we have proposed splitting the sets Zr,s by means of dividing a set
Zr,s containing at least two critical scenarios belonging to Zr,s. However, in case
of constraint-wise uncertainty it will hold that for each constraint there is only one
worst-case scenario, corresponding to a different block of ζ. Thus, splitting the
uncertainty sets in order to separate the worst-case scenarios belonging to the same
uncertainty subset cannot be applied. In such a situation, one has to resort to ad-hoc
methods of finding another critical scenario within Zr,s, which may depend on the



96 Adjustable robust mixed-integer optimization via splitting

properties of the problem at hand. We present such a heuristic approach in the route
planning experiment of Section 3.6.3.

3.5 Heuristics

In this section we propose heuristics for choosing the hyperplanes to split sets Zr,s
(by splitting their corresponding sets Zr,s) in the (r + 1)-th splitting round, for
constructing the lower bound scenario sets Z, and for deciding when to stop the
splitting algorithm.
From now on we fix the optimal primal solution after the r-th splitting round x(r) and
the sets Zr,s, making no distinction between the sets Zr,s(x(r)) obtained by using the
optimal KKT vector of the problems’ LP relaxations and the sets Zr,s(λ

(r)) obtained
by searching constraint-wise for scenarios that make the constraints (almost) active.
We only consider splitting of sets Zr,s for which |Zr,s| > 1.

3.5.1 Choosing the t for the t-SHs

In multi-period problems one must determine the t for the t-SH, and this choice
should balance two factors. Intuitively, the set Zr,s should be split with a t ≥
tmax(Zr,s) for which the components ζt are most dispersed over ζ ∈ Zr,s. On the
other hand, choosing a high value of t in an early splitting round reduces the range
of possible t-SHs in later rounds because of Rule 3.1.
We propose that each Zr,s is split with a t-SH for which the components ζt show
biggest dispersion within the set Zr,s (measured, for example, with variance) and
where tmax(Zr,s) ≤ t ≤ tmax(Zr,s) + q, with q being a predetermined number. If the
dispersion equals 0 for all tmax(Zr,s) ≤ t ≤ tmax(Zr,s) + q then we propose to choose
the smallest t ≥ tmax(Zr,s) such that the components ζt show a nonzero dispersion
within Zr,s.

3.5.2 Splitting hyperplane heuristics

In this subsection we provide propositions for constructing the splitting hyperplanes.

Heuristic 3.1 The idea of this heuristic is to determine the two most distant sce-
narios in Zr,s and to choose a hyperplane that separates them strongly.
Find the ζ(a), ζ(b) ∈ Zr,s maximizing

∥∥∥ζ(i)
1:t − ζ

(j)
1:t

∥∥∥
2

over ζ(i), ζ(j) ∈ Zr,s. Then, split
the set Zr,s with a t-SH defined by:

gj =

 ζ
(a)
j − ζ

(b)
j if j ≤ t

0 otherwise
, h =

gT
(
ζ(a) + ζ(b)

)
2 .
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If (3.8) or (3.17) is used to find critical binding scenarios, then these problems could
have multiple binding scenarios. Then, the separation of optimal facets may yield
better results than of a single ζ found to be optimal for (3.8), (3.17). Then, the
heuristic would separate the two most distant facets with, for example, their bisector
hyperplane.

Heuristic 3.2 The idea of this heuristic is to divide the set Zr,s into two sets whose
cardinalities differ by as little as possible.
Choose an arbitrary normal vector g for the t-SH. Then, determine the intercept term
h such that the term ||Z−r,s| − |Z

+
r,s|| is minimized, with

Z−r,s = Zr,s ∩
{
ζ : gTζ ≤ h

}
, Z+

r,s = Zr,s ∩
{
ζ : gTζ ≥ h

}
.

The best h can be found using binary search.

Heuristic 3.3 The idea of this heuristic is to split the set Zr,s with a hyperplane,
and to manipulate the late period decisions while keeping the early-period decisions
fixed, in such a way that the maximum worst-case ‘objective function’ for the two sets
is minimized. We describe it for the multi-period case.
Choose an arbitrary normal vector g for the t-SH. For a given intercept h define the
two sets:

Zh−r+1,s = Zr,s ∩
{
ζ : gTζ ≤ h

}
, Zh+

r+1,s = Zr,s ∩
{
ζ : gTζ ≥ h

}
.

For a fixed g we define the following function (note that the formulation only includes
the constraints related to the given s):

τ(h) = min
x(r,s′),x(r,s′′),w

w

s.t. cT1 x1 + cT2 x
(r,s′)
2 ≤ w

cT1 x1 + cT2 x
(r,s′′)
2 ≤ w

A1(ζ)x1 +A2(ζ)x(r,s′)
2 ≤ b, ∀ζ ∈ Zh−r+1,s

A1(ζ)x1 +A2(ζ)x(r,s′′)
2 ≤ b, ∀ζ ∈ Zh+

r+1,s

x
(r,s′)
1:tmax(Zr,s) = x

(r,s′′)
1:tmax(Zr,s) = x

(r,s)
1:tmax(Zr,s).

(3.18)

Equality constraints ensure that the decision variables related by equality constraints
to other decision vectors stay with the same values (not to lose the feasibility of the
decision vectors for sets Zr,p, where p 6= s). The aim is to minimize τ(h) over
the domain of h for which both Zh−r+1,s and Zh+

r+1,s are nonempty. Function τ(h) is
quasiconvex in h, which has been noted in a different setting in Bertsimas et al.
(2010).
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3.5.3 Constructing the lower bound scenario sets

The key premise is that the size of the set Z(r) (the lower bound scenario set after the
r-th splitting round) should be kept limited since each additional scenario increases
the size of the lower bound problem. Hence, it is important that the limited number
of scenarios covers set Z well.

Summing the scenario sets. One approach is to use Z(r) = ∪s∈NrZr,s after each
splitting round, since Zr,s approximates the set of the scenarios that are part of the
current dual optimal solution, yielding a bound on the optimal value of the objective
function.
To reduce the size of Z(r), we propose that Z contains at most k elements of each
Zr,s, where k is a predetermined number. This approach implies that the lower
bound sequence

{
w(r)

}
, where w(r) is the optimal value of the lower bound problem

after the r-th splitting round, needs not be nondecreasing in r.

Incremental building of a scenario set. To ensure a nondecreasing lower bound
sequence, one can construct the sets incrementally, starting with Z(1) after the first
splitting round and enlarging it with new scenarios after each splitting round. We
describe a possible variant of this idea for the multi-period case.
Assume that problem (3.14) has been solved after the r-th splitting round, the lower-
bounding scenario set is Z(r), the optimal value of the lower-bounding problem is w(r),
and x(i), i = 1, . . . , |Z(r)|, are the decision vectors from the lower bound problem after
the r-th splitting round. Suppose that after the (r + 1)-th splitting round there is a
candidate scenario ζ ′ ∈ Zr+1,s for being added to the lower-bound scenario set Z(r+1).
Then, scenario ζ ′ is added if (1) there is no 1 ≤ i ≤ |Z(r)| such that A(ζ ′)

(
x(i)

)
≤ b,

(2) there exists no x(ζ′) such that the optimal value to the problem:

max
κ,x(ζ′)

κ

s.t. cTx(ζ′) ≤ w(r) − κ
A(ζ ′)x(i) ≤ b, ∀i
x

(ζ′)
1:t = x

(i)
1:t ∀1 ≤ i ≤ |Z(r)|, ∀t : ζ ′1:t = ζ

(i)
1:t ,

is nonnegative. Condition (1) excludes the case when there exists already ζ(i) ∈ Z(r)

whose corresponding decision vector x(i) is robust to ζ ′. Condition (2) excludes the
case when it is possible to construct a decision vector for ζ ′ satisfying the nonantic-
ipativity constraints in relation to decision vectors corresponding to ζ ∈ Z(r), and
yielding an objective value cTx(ζ′) ≤ w(r). Such a scenario brings no value as it is
known that a lower bound obtained using ζ ′ in addition to Z(r) would be at most
equal to the lower bound obtained using only Z(r).
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Simple heuristic. We propose also an approach that combines approximately the
properties of the two propositions above and is fast at the same time. The idea is to
build up the lower-bounding set iteratively and add from each Zr,s the k scenarios
whose sum of distances from the elements of Z(r−1) is largest. The distance between
two vectors is measured by the 2-norm.

3.5.4 Stopping the algorithm

As the splitting continues, the computational workload related to solving the split
problem grows because of the number of variables and uncertainty subsets. We
propose three stopping rules for the splitting method: (1) when the objective value
is closer to the lower bound than a predetermined threshold level, (2) when the limit
of total computational time is reached, (3) when the maximum number of splitting
rounds is reached.

3.6 Numerical experiments

3.6.1 Capital budgeting

The first numerical experiment involves no fixed recourse and is the capital budgeting
problem taken from Hanasusanto et al. (2015). In this problem, a company can
allocate an investment budget of B to a subset of projects i ∈ {1, . . . , N}. Each
project i has uncertain costs ci(ζ) and uncertain profits ri(ζ), modelled as affine
functions of an uncertain vector ζ of risk factors. The company can invest in a
project before or after observing the risk factors ζ. A postponed investment in
project i incurs the same costs ci(ζ), but yields only a fraction θ ∈ [0, 1) of the
profits ri(ζ).
The problem of maximizing the worst-case return can be formulated as:

max R

s.t. R ≤ r(ζ)T (x+ θy), ∀ζ ∈ Z

c(ζ)T (x+ y) ≤ B, ∀ζ ∈ Z

x+ y ≤ 1
x,y ∈ {0, 1}N ,

where the decisions xi and yi attain value 1 if and only if an early or late investment
in project i is undertaken, respectively. The uncertainty set is Z = [−1, 1]F , where
F is the number of risk factors.
We adopt the same random data setting as Hanasusanto et al. (2015). In all instances
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Table 3.1 – Results of Hanasusanto et al. (2015) for the capital budgeting problem. K is the number
of time-2 decision variants allowed and N is the number of projects. The columns are (1) - percentage
of instances solved to optimality within 2h, (2) - average solution time of the instances solved within
2h, (3) - average objective improvements (including the suboptimal solutions from Gurobi for the
instances not solved within 2h.

K = 2 K = 3 K = 4

N (1) (%) (2) s (3) (%) (1) (%) (2) s (3) (%) (1) (%) (2) s (3) (%)

5 100 ¡1 48.67 100 1 68.71 100 36 79.50

10 100 4 59.34 74 1210 86.91 0 - 102.48

15 100 512 63.69 0 - 91.75 0 - 106.93

20 2 5232 64.78 0 - 93.20 0 - 108.61

25 0 - 64.85 0 - 93.72 0 - 109.10

30 0 - 64.98 0 - 94.08 0 - 109.42

we use F = 4. The project costs and profits are modelled as:

ci(ζ) = (1 + ΦT
i ζ/2)c0

i , ri(ζ) = (1 + ΨT
i ζ/2)r0

i , i = 1, . . . , N.

Parameters c0
i and r0

i are the nominal costs and profits of project i, whereas Φi and
Ψi represent the i-th rows of the factor loading matrices Φ,Ψ ∈ RN×4 as column
vectors. The nominal costs c0 are sampled uniformly from [0, 10]N , and the nominal
profits are set to r0 = c0/5. The components in each row of Φ and Ψ are sampled
uniformly from the unit simplex in R4. The investment budget is set to B = 1T c0/2,
and we set θ = 0.8. Table 3.1 gives the results of Hanasusanto et al. (2015), who
apply a K-adaptability approach and sample 100 instances for each combination of
N and K (the number of time-2 decision variants) and try to solve it to optimality
within a time limit of 2h per instance.
We sample 50 instances for each N and conduct 8 splitting rounds for N = 5, 10,
6 for N = 15, 20 and 4 for N = 25, 30 (for smaller problems one can allow more
splitting rounds to obtain better objectives and still operate within reasonable time
limits). To split the uncertainty sets we use the worst-case scenarios coming from the
optimal KKT vector of the LP relaxation of the robust MILP problems (see Section
3.2.3.2). In each splitting round we split all subsets Zr,s for which |Zr,s| > 1. The
splitting hyperplanes are constructed using Heuristic 3.1 (see Section 3.5.2). The
upper bound scenario sets are constructed according to the ‘simple heuristic’ (see
Section 3.5.3) with k = 2. The after-splitting robust MILP problems are solved with
Gurobi precision set to 0.5%. All problems were formulated using CVX package and
solved with Gurobi solver on an Intel Core 2.66GHz computer.
Apart from the worst-case results, for each instance we conduct a simulation study
by sampling from [−1, 1]4 uniformly 500 scenarios of the risk factors’ values and
computing the objective function values obtained using the static robust solution
and our splitting-based adjustable solution.
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Table 3.2 – Our results for the capital budgeting problem. ‘Splitting rounds’ denotes the number of
splitting rounds conducted. ‘Initial gap’ is the optimality gap for the static robust solution and the
lower bound obtained after the first splitting round. ‘Final gap’ is the optimality gap computed with
the objective value and lower bound after the last splitting round. ‘Average case improvement’ denotes
the increase of the average-case objective value obtained with the adjustable decisions, relative to the
one yielded by the static solution. The relative optimality gaps are computed as (UB−LB)

0.5(UB+LB) ∗ 100%,
where LB is the objective function value and UB is the upper bound value.

Splitting
rounds

N Obj improvement (%) Initial gap (%) Final gap (%)
Average

case
improvement (%)

Mean time (s)

8 5 57.89 106.09 39.00 12.11 5.40

10 93.81 100.15 27.68 20.36 26.81

6 15 102.63 100.00 24.29 23.13 4.72

20 107.81 100.00 22.24 24.79 5.43

4 25 105.33 100.00 23.48 24.30 3.96

30 106.88 100.00 22.93 24.80 6.54

Table 3.2 gives the results of our methodology. All the instances have been solved
fast, with the largest average time equal to 26.81s. We remark here that, typically
for problems with binary variables, the distribution of the solution times is heavy-
tailed, and whereas most of the instances are solved within 2-3s, some instances take
much more time and influence the average times in this way. Our methodology per-
forms worse on the small instances, which the ‘more exact’ method of Hanasusanto
et al. (2015) can solve efficiently in short time. For larger instances our improve-
ments in the objective value are close to the best values of Hanasusanto et al. (2015)
for larger instances N = 20, 25, 30 - ours being 107.81, 105.33, 106.88% versus their
108.61, 109.10, 109.42%, respectively.
We also compare the running time performance of our method to the results of
Hanasusanto et al. (2015) though we should mention that the main objective of
Hanasusanto et al. (2015) was to find the best solution using a fixed number of time
2 policies. For larger instances (N ≥ 15) the results of Hanasusanto et al. (2015) are
based on suboptimal solutions from Gurobi obtained after 2 hours of computation
per instance (see Table 3.1), whereas our method uses on average less than 27s per
instance, with most of the mean times being less than 7s. Upon request, we obtained
the Gurobi output of Hanasusanto et al. (2014). It reveals that in majority of
instances studied by them, the objective value obtained by the solver after 60s is
within 5% of the end objective value obtained after the time limit of 7200s, given in
Table 3.1.
The right part of Table 3.2 gives the average-case improvements obtained using the
adjustable decisions. The improvements are significantly smaller than the worst-case
improvements, stabilizing around the level of 25% for larger N .
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Figure 3.7 – Capital budgeting problem. Plots of initial and final upper bound on the worst-case
objective function values and the initial and final worst-case objective function values (average over
all problem instances for each N).
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Figure 3.7 shows the average (over problem instances for given N) improvements of
the worst-case objective functions and the upper bounds for all N . One can see that
the relative gap between the upper bound values and the worst-case objective values
decreases significantly with the number N of projects.
We summarize now the results of the first numerical example. Hanasusanto et al.
(2015) give good worst-case objective value improvements with a small number of
time-2 decision variants (at most 4) after a longer computation time, whereas our
splitting method gives such improvements after a short computation time, but with
more time-2 decision variants. For example, 9 splitting rounds typically result in a
division of the uncertainty set Z into more than 10 parts, each with a corresponding
time-2 decision variant. Thus, our methodology is preferred when it is the computa-
tion time, and not the number of decision variants, that is to be kept low.

3.6.2 Lot sizing

As the second numerical experiment we consider a multi-stage lot sizing problem
taken from Bertsimas and Georghiou (2015). The problem entails a single product,
T time periods, and the following parameters:

• ζt, where t = 1, . . . , T , is the uncertain demand in period t

• lt, where t = 2, . . . , T , is the lowest possible demand in period t

• ut, where t = 2, . . . , T , is the highest possible demand in period t

• cyn , where n = 1, . . . , N , is the per product unit of buying a fixed quantity qn
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• cx is the ordering cost per product unit for purchases that are delivered in the
subsequent period

• ch is the holding cost per product unit

• xtot,t, where t = 2, . . . , T , is the cumulative orders limit up to time period t.

The variables are:

• It, where t = 1, . . . , T , is the level of available inventory after period t

• xt, where t = 1, . . . , T − 1 is the product amount ordered in period t, after
ζ1, . . . , ζt is known, and delivered in period t+ 1, at unit price cx

• ynt, where n = 1, . . . , N , t = 2, . . . , T , is a binary decision made after ζ1, . . . , ζt
is known, whether to buy a fixed quantity qn of the product in time period t,
delivered in the same time period.

The difference between the ordering decisions xt and ynt is thus that xt stands for
continuous ordering decisions that result in products being delivered with a delay of
one time period, and ynt stands for a fixed-size product amount delivered immediately.
The problem is to minimize the worst-case combined ordering and holding costs
(referred later to as the ‘total cost’), subject to cumulative ordering constraints:

min z

s.t.
T∑
t=2

(
cxxt−1(ζ1:t−1) + chIt(ζ1:t) +∑N

n=1 cynqnynt(ζ1:t)
)
≤ z, ∀ζ ∈ Z

It(ζ1:t) = It−1(ζ1:t−1) + xt−1(ζ1:t−1) +∑N
n=1 qnynt(ζ1:t)− ζt

0 ≤ xt−1(ζ1:t−1)
0 ≤ It(ζ1:t)
t−1∑
j=1

xj(ζ1:j) ≤ xtot,t


∀t = 2, . . . , T,
∀ζ ∈ Z

ynt(ζ1:t) ∈ {0, 1} , ∀n, t

xt(ζ1:t) ≥ 0, ∀t,
(3.19)

where
Z = {ζ : ζ1 = 1, lt ≤ ζt ≤ ut, t = 2, . . . , T} .

The above problem is transformed by eliminating the variables It for t = 2, . . . , T .
The adjustable variables are xt, allowed to depend on ζ1:t for t = 1, . . . , T − 1 and
ynt, allowed to depend on ζ1:t for t = 2, . . . , T .
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Table 3.3 – Results of Bertsimas and Georghiou (2015) for the lot sizing problem. The relative
optimality gaps are computed as (UB−LB)

0.5(UB+LB) ∗ 100%, where UB is the objective function value and
LB is the lower bound value. ‘Nonadaptive gap’ denotes the relative optimality gap computed for
the solution where the integer decisions are static and the linear decision rules are implemented for
the continuous decision variables. ‘PBt(1) gap’ denotes relative optimality gap computed for the
solution obtained using the binary adjustability technique used by the authors and where the linear
decision rules are implemented for the continuous decision variables. 1% and 5% at the top of the
Table are two variants of solver precision used when solving the MILP problems.

1% optimality 5% optimality

N T PBt(1) gap (%) Nonadaptive
gap (%) Mean time (s) PBt(1) gap (%) Nonadaptive

gap (%) Mean time (s)

2

2 0 17.6 0.1 0.6 17.6 0.4

4 24.2 68.6 50.6 27.3 68.6 45.5

6 37.4 62.0 4833.8 38.9 62.1 956.8

8 37.9 84.4 27531.1 38.0 84.4 19573.1

10 39.7 89.9 35716.6 42.0 89.9 31464.1

3

2 0 27.6 0.1 1.2 27.6 0.1

4 17.2 73.3 3381.8 23.9 73.3 781.6

6 34.5 66.2 9181.0 38.4 66.1 3298.1

8 37.6 83.4 28742.7 38.1 83.7 21885.5

10 - 89.7 - 41.1 90.7 39141.5

Problem parameters are sampled as in Bertsimas and Georghiou (2015). Ordering
costs are chosen from cx ∈ [0; 5] and cyn ∈ [0; 10], separately for all n = 1, . . . , N ,
such that cx < cyn . In this way, the per-item costs of the fixed-size lots of products
is always higher than of the product amounts ordered in continuous decisions, and
hence, the only advantages of fixed-size lots are in their immediate delivery.
Holding costs are elements of ch ∈ [0; 10] with the fixed ordering quantities set
to qn = 100/N for all n = 1, . . . , N . The cumulative ordering budget is set to
xtot,t = ∑t−1

s=1 x̄s for t = 2, . . . , T , with x̄t ∈ [0; 100] and the lower and upper bounds
for the demand are sampled uniformly as lt ∈ [0; 25] and ut ∈ [75; 100], t = 2, . . . , T .
We assume that the initial inventory level I1 equals zero. Table 3.3 gives the results
obtained by Bertsimas and Georghiou (2015) using their methodology of piecewise
linear decision rules for the decision variables.
We sample and solve 50 instances of the problem for N = 2, 3 and T = 2, 4, . . . , 10.
Since qn = 100/N for all n and the splitting method facilitates the use of integer
non-binary variables, we may substitute the N binary decision variables for each
period by a single integer variable: zt(ζ1:t) = ∑N

n=1 ynt(ζ1:t) for all t = 2, . . . , T , such
that 0 ≤ zt(ζ1:t) ≤ N for all t. To see that this is possible, consider a fixed time
period t and assume w.l.o.g. that cy1 ≤ . . . ≤ cyN . We know that if at the optimal
solution exactly zt of the variables y1t, . . . , yNt have value 1, those will be the variables
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Figure 3.8 – N = 3. The ordering cost of the fixed-size lots at time t at the optimal solution is a
convex, piecewise linear function of zt.
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corresponding to the zt smallest cyn ’s:

min
ynt

{
N∑
n=1

cynqnynt

∣∣∣∣∣ N∑n=1
ynt = zt

}
= min

ynt

{
100
N

N∑
n=1

cynynt

∣∣∣∣∣ N∑n=1
ynt = zt

}
= 100

N

zt∑
n=1

cyn

= 100
N

max
n∈{1,...,N}

{
cyn(zt − (n− 1)) +

n−1∑
k=1

cyk

}
.

(3.20)

The last equality follows from the fact that when cy1 ≤ . . . ≤ cyN , then the sum of
zt smallest cyn is a convex piecewise linear function of zt, which can be reformulated
as a maximum over N linear functions of zt, see Figure 3.8. For that reason, the
obtained formulation can substitute the component ∑N

n=1 cynqnynt in the objective
function of (3.19) without losing the problem’s convexity.
Since problem (3.19) involves fixed recourse only, we study also the impact of using
linear decision rules for the continuous variables xt(ζ1:t). In such case we set xt(ζ1:t)
to be an affine function of ζ1, . . . , ζt:

xt(ζ1:t) = αt,0 +
t∑

j=1
αt,jζj, ∀t = 1, . . . , T − 1,

where αt,j are then treated as decision variables implemented in period t.
Each problem instance is solved in four ways: 1) applying static decisions to all vari-
ables 2) applying linear decision rules to the continuous variables and static decisions
to the integer variables 3) applying only the splitting methodology to all variables
4) applying the splitting methodology to all variables, combined with linear decision
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rules for the continuous decisions (the parameters αt,j can also differ after splitting
of the uncertainty set).
For each instance we conduct 4 splitting rounds. For splitting we use the worst-case
scenario sets obtained using optimal KKT vectors from the robust counterpart of the
LP relaxation of the problem (see Sections 3.2.3.2 and 3.3.3.2). In each splitting round
we split all subsets Zr,s for which |Zr,s| > 1. Time periods t for the t-SHs are chosen
according to the biggest variance of uncertain demands from subsequent periods with
q = 2 (see Section 3.5.1). Splitting hyperplanes are constructed using Heuristic 3.1
(see Section 5.2). The scenario sets for the lower bound problems are constructed
according to the ‘simple heuristic’ (see Section 3.5.3) with k = 2. For T = 2, 4 the
lower bound scenario sets include also all vertices of the uncertainty set Z. The
after-splitting robust MILP problems are solved with Gurobi precision (the relative
duality gap when the solver stops) equal to 0.1%. All problems were formulated using
CVX package and solved with Gurobi solver on an Intel Core 2.66GHz computer.
Tables 3.4 and 3.5 give our results for N = 2 and N = 3, respectively. All method-
ologies offer substantial improvements in the objective value compared to the static
robust solution. Also, combination of our splitting methodology with linear decision
rules (S+LDR) gives a strong combined effect - the objective value improves signif-
icantly more than using any of the methods S or LDR separately - by as much as
64.82% for N = 3, T = 10, compared to 53.21% for LDR and 21.42% for S. For T = 2
the linear decision rules cannot bring any improvement because x1 is a scalar. One
can observe that for problems with larger T our methodology gives better objective
improvements. Also, the relative optimality gaps decrease significantly in all cases,
mostly due to improvements in the objective function. All problems have been solved
fast, with the maximum mean time equal to 55.82s.
We compare now our results to those of Bertsimas and Georghiou (2015). The main
difference between the methods lies in the fact that decision rules proposed by Bert-
simas and Georghiou (2015) satisfy the problem’s constraints with a high probability
(99%), obtained using Hoeffding bounds, whereas our methodology ensures 100% ro-
bustness by design. Comparing the numbers from Tables 3.3 (column ’PBt(1) gap’),
3.4, and 3.5 (columns ’Final gap (%) - S+LDR’), one can see that our methodology
performs worse in terms of the final optimality gap. For example, for N = 2, T = 4
our result is 39.16% compared to their 24.2% for N = 2, T = 4. This can be partly
explained by the difference between the types of robustness, and also by different
way of choosing the scenarios for the lower bounding problems. On the other hand,
our method provides significantly faster computation times which, combined with
full robustness, may be an appealing property. In particular, this is visible on larger
instances, with our mean solution times being significantly lower, e.g., our 55.82s
compared to 39141.5s for N = 3, T = 10.
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Table 3.4 – Our results for the lot sizing problem for N = 2. LDR stands for the solution with linear
decision rules for the continuous decision variables and static decisions for the integer variables, S
stands for only our splitting methodology applied to all variables, S+LDR stands for a combination
of set splitting with linear decision rules for the continuous variables. ‘Objective improvement’ is the
decrease in the average worst-case objective value reduction, relative to the static robust solution.
Optimality gaps are computed as in Table 3.3. ‘Initial gap’ is the optimality gap for the static robust
solution and the lower bound obtained after the first splitting round. ‘Final gap’ is the optimality
gap computed with the objective value and lower bound after the last splitting round. The asterisk
indicates the fact that for T = 2, 4 the lower bound scenario sets include also all vertices of the
uncertainty set Z. All the static robust problems were solved in less than 2s.

Objective improvement (%) Initial gap (%) Final gap (%) Mean time (s)

T LDR S S+LDR LDR S S+LDR S S+LDR

2 0 11.39 11.38 51.02∗ 51.02∗ 15.49∗ 15.51∗ 2.36 2.77

4 31.64 28.07 42.32 85.78∗ 52.46∗ 57.34∗ 34.04∗ 5.67 7.69

6 43.77 30.29 54.94 113.14 69.22 87.51 47.39 5.64 10.09

8 48.91 26.32 61.01 125.59 78.73 107.17 54.68 7.54 15.03

10 52.09 22.43 64.21 134.65 86.16 121.02 61.85 9.23 24.23

Table 3.5 – Our results for the lot sizing problem for N = 3. Terminology is the same as in Table
3.4.

Objective improvement (%) Initial gap (%) Final gap (%) Mean time (s)

T LDR S S+LDR LDR S S+LDR S S+LDR

2 0 22.94 22.94 61.90∗ 61.90∗ 17.64∗ 17.64∗ 2.25 2.61

4 32.66 31.70 47.22 95.06∗ 62.30∗ 65.09∗ 39.14∗ 5.24 7.39

6 43.99 29.41 56.86 118.38 78.36 96.55 54.14 5.85 9.80

8 50.14 25.13 62.05 129.06 85.27 113.58 61.48 7.11 14.18

10 53.21 21.42 64.82 136.55 92.22 125.08 68.88 9.18 55.82
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Table 3.6 – Lot sizing problem. Average-case performance of the solutions obtained using the three
methodologies in comparison to the static robust solution. ‘Average-case improvement’ is the average
reduction of the total cost, relative to the total costs obtained with the static solution for the given
demand scenario.

Average-case improvement (%)

N = 2 N = 3

T LDR S S+LDR LDR S S+LDR

2 0.00 18.55 18.55 0.00 14.59 14.13

4 21.87 22.91 31.90 24.51 26.51 37.65

6 30.80 23.24 41.02 33.69 22.72 45.81

8 35.23 20.00 48.05 40.94 18.83 51.56

10 39.67 16.95 51.68 43.79 15.78 55.07

In addition to the worst-case results, for each solved instance we conduct a simulation
study. In each of them we sample uniformly 500 demand scenario realizations l ≤
drealized ≤ u and compute the average total costs incurred by each of the four solutions.
Table 3.9 gives the results on average-case improvements relative to the static robust
solution. The table shows that our method not only offers substantial improvements
on the worst-case basis, but also in terms of the average-case total cost, in particular
when combined with the linear decision rules for the continuous variables.
To sum up the results of this numerical example, the main benefits of our approach
have been: 1) fast computation time even for large problems, corresponding to the
number of splitting rounds (the more splitting rounds, the better the improvement
in the objective, but also the longer computation time), 2) substantial improvements
in the objective function value, 3) robustness to the entire uncertainty set after each
splitting round.

3.6.3 Route planning

We consider another numerical example from Hanasusanto et al. (2015), the route
planning problem, where the uncertainty occurs only in the objective function. On
this example, we shall see that our methodology depends heavily on having multiple
uncertain constraints that give rise to different worst-case scenarios for the uncertain
parameter.
The problem at hand is a shortest path problem that is defined on a directed, arc-
weighted graph G = (V,A,w) with nodes V = {1, . . . , N}, arcs A ⊆ V × V , and
weights wij(ξ) ∈ R+, (i, j) ∈ A. We assume that the arc weights wi,j are functions of
an uncertain parameter vector ζ that is only known to reside in an uncertainty set
Z. The goal is to determine the shortest worst-case path from a start node b ∈ V
to a terminal node e ∈ V , b 6= e, before the value of ζ is known. Hanasusanto et al.
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(2015) consider the number of possible paths to be fixed and equal to K.
In our setting, we begin with the following robust problem, equivalent to having a
single path. The binary variable xij is equal to 1 if arc (i, j) is a part of the path
from b to e:

min
z,x

z

s.t. ∑
(i,j)∈A

wij(ζ)xij ≤ z, ∀ζ ∈ Z

xij ∈ {0, 1}, (i, j) ∈ A∑
(j,l)∈A

xjl ≥
∑

(i,j)∈A
xij + I(j = b)− I(j = e), ∀j = 1, . . . , N,

(3.21)

where I(·) is the indicator function. In our method the set Z is split into subsets, to
each of which a separate route vector x(r,s) shall correspond. That is, when ζ ∈ Zr,s,
then the corresponding path vector x(r,s) is chosen. Such a problem has the property
that finding the optimal path for each Zr,s can be solved as a separate optimization
problem, solving thus Nr smaller problems instead of one large problem.
As visible in (3.21), there is only one uncertain constraint in this problem. For
that reason, we use in this case the sets Zr,s(x(r,s)) obtained by searching for the
critical scenarios based on the primal solution x(r). However, as there is only one
uncertain constraint, solving problem (3.17) for this constraint results in only one
critical scenario ζ. However, we need at least two distinct scenarios to be divided
with a splitting hyperplane.
We propose, for a given subset Zr,s with the corresponding optimal solution vector
x(r,s), to choose the second member of Zr,s(x(r,s)) according to the following proce-
dure:

1. Find an alternative route from b to e that uses at most bθ1Tx(r,s)c arcs from
the path corresponding to x(r,s), where 0 ≤ θ ≤ 1 denotes the fraction of the
arcs from the ‘old’ path allowed to use. Denote the new alternative vector by
x̃(r,s).

2. Find the worst-case scenario ζ̃ corresponding to x̃(r,s) and add it to Zr,s(x(r,s)).
If no feasible x̃(r,s) exists, take ζ̃ to be the scenario that minimizes the uncertain
distance corresponding to path x(r,s) (in contrast to the worst-case scenarios,
which maximize the uncertain distance corresponding to path x(r,s)).

We consider three values for θ: 0, 0.5, and 0.9. and adopt the same data setting as
Hanasusanto et al. (2015). Table 3.7 presents the improvement results obtained by
Hanasusanto et al. (2015). We sample 40 problem instances and, for each instance, we
allow 90s for the subsequent splitting rounds, with at most 10s for each optimization
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Table 3.7 – Results of Hanasusanto et al. (2015) for the route planning problem. K is the number
of time-2 decisions, B denotes the size of the uncertainty set, and N is the number of nodes. The
columns are (1) - percentage of instances solved to optimality within 2h (%), (2) - average solution
time of the instances solved within 2h (in seconds), (3) - average objective improvements (%).

B = 3 B = 6

K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

N (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

20 100 8 8.31 97 463 10.26 51 1103 10.70 100 7 6.07 97 428 10.23 55 795 11.79

25 99 168 9.49 31 1273 12.06 6 2851 12.81 99 197 8.39 38 1771 13.36 7 3208 15.48

30 69 1131 9.51 6 1563 12.79 0 - 13.94 67 1372 9.06 6 1537 14.61 0 - 17.38

35 17 2335 9.97 0 - 13.70 0 - 15.20 16 2819 9.90 0 - 15.86 0 - 19.20

40 6 2949 9.94 0 - 13.74 0 - 15.28 5 2888 10.36 0 - 16.47 0 - 19.84

45 0 - 9.46 0 - 13.39 0 - 15.19 0 - 10.67 0 - 16.78 0 - 20.32

50 0 - 9.38 0 - 13.31 0 - 15.14 0 - 10.71 0 - 16.73 0 - 20.30

problem to solve. Afterwards, we allow a solution time of 60s for each problem. For
splitting the uncertainty subsets we use Heuristic 3.1.
Table 3.8 presents the results on the improvement in the objective function value.
One can see that the method of Hanasusanto et al. (2015) performs significantly
better than our approach, with the difference growing with N and the number K of
possible time-2 decisions they use. For example, whereas for problems with B = 3
and N = 20 we obtain improvement of 5.50% compared to their 8.31% for K = 2
and 10.70% for K = 4, for problems with B = 6 and N = 50 we get 6.70% and they
obtain 20.30% for K = 4. Additionally, one can see that our approach performs best
for θ = 0, decreasing with larger values of θ.
The big difference between the performances of our methodology and the one of
Hanasusanto et al. (2015) is most likely due to the fact that their methodology opti-
mizes the fixed number of K of decisions. This is implicitly equivalent to optimizing
the division of the uncertainty set into K regions corresponding to K possible deci-
sions (each possible time 2 decision has its ‘share’ of the uncertainty set on which it
is at least as good as the other decision). On the other hand, in our methodology
the splits are chosen in a relatively simple manner, by means of heuristics, which in
this particular case do not perform very well if it is even not known exactly which
scenarios should be separated by the splitting hyperplane. The impact of the differ-
ence of allowed solution time - 7200s by Hanasusanto et al. (2015) and average time
of 184s in our case - is not expected to be substantial as Hanasusanto et al. (2015)
report that in their case the terminal solution was attained typically after 60s.

Remark 3.1 The results of the route planning experiment leads to a remark that in
fact, the methodology of Hanasusanto et al. (2015) could be used to construct ‘best’
splitting hyperplanes in multiperiod problems with only binary decision variables. In
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Table 3.8 – Our results for the route planning problem. Average solution time over all instances
was equal to 184s.

Improvement (%)

θ = 0 θ = 0.5 θ = 0.9

N B = 3 B = 6 B = 3 B = 6 B = 3 B = 6

20 5.50 3.91 4.29 3.88 1.65 2.80

25 6.15 5.01 4.44 4.27 2.63 3.18

30 6.26 5.12 4.18 5.44 1.78 2.73

35 6.34 6.01 4.39 5.73 2.02 3.21

40 5.68 6.90 4.09 5.89 1.07 3.65

45 5.28 7.96 3.76 5.35 1.79 2.38

50 5.45 6.70 2.79 5.18 0.61 2.85

such a case, in case of splitting Heuristic 3.3 (see Section 3.5.2), one would no
longer keep the normal vector g of the hyperplane fixed, but would optimize it jointly
with h. This, however, would only be possible for problems where the methodology
of Hanasusanto et al. (2015) is applicable, i.e., to problems with adjustable binary
variables.

3.6.4 Inventory management - continuous decisions

From the results of Section 3.6.2 it is clear that a substantial gain of the splitting
methodology is in splitting w.r.t. the continuous variables alone. For that reason, in
this section we consider an experiment in which only continuous decision variables
are used.
The problem studied is the same as in Section 3.6.2, but without the integer decisions
ynt. Since the integer decisions ynt have played a substantial role in feasibility of the
solutions in Section 3.6.2 (meeting the demand, since the inventory level is assumed
to be nonnegative) simply leaving them out would lead to many of the problem
instances being infeasible. For that reason, we set the new upper bounds on the total
orders equal to xtot,t := 3xtot,t for all time periods t, i.e., we set them to be three
times larger.
Also, since problems with continuous variables only are solved fast, we set the maxi-
mum number of splits to 10 and q = 1 (see Section 3.5.1). We solve the problem for
T ∈ {6, 8, 10}. Out of 50 problem instances, 28 turned out to be feasible.
There results are presented in Table 3.9 and there are two interesting phenomena
that can be observed. First of all, in column 7 it can be observed that there is no
optimality gap for the solutions S+LDR. However, looking at the columns 1 and 3,
we can see that in fact the solutions LDR and S+LDR provided the same objective
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Table 3.9 – Results for the inventory experiment with continuous variables only. Terminology is the
same as in Table 3.4.

Objective improvement (%) Initial gap (%) Final gap (%)

T LDR S S+LDR LDR S S+LDR

6 63.37 34.97 63.37 118.72 35.14 71.96 0

8 71.46 30.66 71.46 139.11 47.36 104.11 0

10 76.23 26.61 76.23 151.10 56.19 124.77 0

function values, i.e., that linear decision rules are optimal for the problem at hand
and no splitting is needed if they are used. As we can see, however, the fact that
they are optimal is only visible from the lower bounds obtained for S+LDR, i.e.,
after several splitting rounds where many uncertainty scenarios have been added to
the scenario set and the lower-bound problem has been used. Thus, despite the fact
that with linear decision rules the splitting cannot improve the objective, it can help
to obtain a scenario set giving the best possible lower bounds.
Second, to compare the gain obtained by splitting itself, it is instructive to compare
the objective improvements for solutions S, e.g., in Table 3.4 with the objective
improvements in column S in Table 3.9. The objective improvements are 29.41, 25.13,
21.42 vs 34.97, 30.66, 26.61, respectively. Therefore, one can say that compared to
Section 3.6.2, there is more gain here due to the splitting. However, it might not
be reasonable to generalize this conclusion to say that in problems with continuous
variables only the gain is always larger.

3.7 Conclusions

In this paper we have introduced the method of iterative splitting of the uncertainty
set for multi-period robust mixed-integer linear optimization problems. We have
provided theory on how to determine efficiently which scenarios of the uncertain
parameter are more important to be separated than others and how to obtain lower
bounds for the adjustable worst-case value. Based on these theoretical results, we
have proposed several heuristics for each part of the method.
Our approach can be used to a variety of problems. In particular, this applies to
problems with a non-fixed recourse and adjustable integer variables (also non-binary),
where implementation of other decision rules may not be possible or may involve large
computational effort. For adjustable continuous variables in the non-fixed recourse
setting, our method bypasses the challenge of dealing with interactions of uncertain
parameters, as would be the case with linear or polynomial decision rules.
For fixed recourse problems the splitting method can be combined with other decision
rules, such as linear decision rules, allowing them to take different forms over differ-
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ent parts of the uncertainty set. The second numerical experiment reveals that such
a combination gives a strong joint effect. Our iterative method guarantees robust-
ness of the decisions to the entire uncertainty set after each of the splitting rounds.
Thus, depending on time constraints, the decision maker can set how many splitting
rounds to conduct, with each additional round costing additional effort but bringing
potentially extra improvements in the objective value.
Numerical experiments conducted on problems from Bertsimas and Georghiou (2015)
and Hanasusanto et al. (2015) have shown our methodology to perform well on prob-
lems involving non-constraint-wise uncertainty. In both cases was our method outper-
formed on small problem instances. However, as the problems grow, our methodology
was giving comparable results after only a fraction of the computation time of other
authors.
We give now potential directions for further research. First, more theoretical results
can be obtained regarding the choice of best splits of the uncertainty sets, and in
particular, the ‘best’ distribution of the splits in time. Secondly, it is important to
obtain better lower bound values, possibly by combining our method with results of
other authors, e.g., Kuhn et al. (2011). Last, it is interesting to investigate whether
our method, combined with the results of Ben-Tal et al. (2015), can be used efficiently
in multistage nonlinear robust optimization problems.
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A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Mod-
eling and Theory. SIAM, Philadelphia, 2009.

Ph. Vayanos, D. Kuhn, and B. Rustem. Decision rules for information discovery in multi-
stage stochastic programming. In 2011 50th IEEE Conference on Decision and Control
and European Control Conference (CDC-ECC), pages 7368–7373, 2011.

http://www.optimization-online.org/DB_FILE/2014/12/4706.pdf
http://www.optimization-online.org/DB_FILE/2014/12/4706.pdf


CHAPTER 4

Robust optimization with ambiguous stochastic
constraints under mean and dispersion

information

4.1 Introduction

Consider an optimization problem with a constraint

f(x, z) ≤ 0,

where x ∈ Rnx is the decision vector, z ∈ Rnz is an uncertain parameter vector,
and f(·, z) is assumed to be convex for all z. There are three principal ways to
address such constraints. One of them is Robust Optimization. In this approach, U
is a user-provided convex compact uncertainty set and the constraint is to hold for
all z ∈ U , i.e., x is robust feasible if:

sup
z∈U

f(x, z) ≤ 0. (4.1)

The key issue in this approach is to reformulate (4.1) to an equivalent, computation-
ally tractable form (Ben-Tal and Nemirovski (1998), Ben-Tal et al. (2009, 2015)).
In the other approaches, which go under the name of Distributionally Robust Opti-
mization (DRO), z is a random parameter vector whose distribution Pz belongs to
a set P (the so-called ambiguity set). A typical example for P is a set of all distri-
butions with given values of the first two moments. In such a setting, there are two
principal constraint types: the worst-case expected feasibility constraints:

sup
Pz∈P

EPzf(x, z) ≤ 0, (4.2)

and chance constraints:

sup
Pz∈P

Pz (f(x, z) > 0) ≤ ε. (4.3)
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For constraint (4.2) the key challenge is, for a given ambiguity set P , to obtain a
tractable exact form of the worst-case expectation, or a good upper bound. Con-
straint (4.2) is also used in the construction of safe approximation of the ambigu-
ous chance constraint (4.3), where by a safe approximation is meant a system S of
computationally tractable constraints, such that x feasible for S is also feasible for
constraint (4.3).
In this paper, we consider problems with ambiguity sets consisting of distributions
having given mean-dispersion measures. The literature of this type of problem started
with the paper by Scarf (1958). Under mean-variance information, Scarf derived the
exact worst-case expectation formula for a single-variable piecewise linear objective
function used in the newsvendor problem. Later, his result has been extended to
more elaborate cases of inventory and newsvendor problems by, e.g., Gallego (1992),
Gallego et al. (2001), and Perakis and Roels (2008). In a paper by Popescu (2007), it
has been proved that for a wide class of increasing concave utility functions the prob-
lem of maximizing the worst-case expected utility under mean-variance distributional
information reduces to solving a parametric quadratic optimization problem.
In a broader context, the idea of constructing an approximation of the worst-case
expectation of a given function by a discrete distribution falls into the category
of bounding strategies based on distributional approximation, see Edirisinghe (2011)
who provide a broad overview of results obtained in this field. Rogosinsky (1958) and
Karr (1983) show that the worst-case probability distributions corresponding to the
moment problems are discrete, with a number of points corresponding to the number
of moment conditions. Shapiro and Kleywegt (2002) develop a duality theory for
stochastic programs where the saddle points are also vectors of discrete probabilities.
Dupačová (1966) and Gassmann and Ziemba (1986) give convex upper bounds on
the expectation of a convex function under first-moment conditions over a polyhedral
support, based on the dual of the related moment problem. Birge and Wets (1987)
and Edirisinghe and Ziemba (1994b) extend this approach to distributions with un-
bounded support. Dulá (1992) provide a bound for the expectation of a simplicial
function of a random vector using first moments and the sum of all variances. His
approach is extended by Kall (1991) demonstrating that the related moment prob-
lems can be solved using nonsmooth optimization problems with linear constraints.
Other notable works in this field include Frauendorfer (1988), Edirisinghe and Ziemba
(1992), and Edirisinghe and Ziemba (1994a). For a general discussion we refer the
reader to Edirisinghe (2011) and references therein.
Despite numerous works, to the best of our knowledge, no closed-form tight up-
per bounds are known on the expectations of general convex functions under mean-
variance information. Surprisingly, already in 1972 a result of Ben-Tal and Hochman
(1972) was available, providing exact upper and lower bounds on the expectation of
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a general convex f(x, ·) for the case where P consists of all distributions of compo-
nentwise independent z with known supports, means, but with another dispersion
measure: the mean absolute deviation from the mean (MAD).
The information about the supports, means, and MADs of the zi’s, can easily be
obtained from past data, making the method suitable for data-driven settings. More-
over, the MAD has several desirable properties from an application’s point of view,
for example, its suitability to situations when the deviations of zi are small. Some
properties of the MAD and exact formulas for its value for several known distribu-
tions are given in Appendix 4.D. Several practical advantages of using the MAD as a
dispersion measure are given in the paper by El Amir (2012) and references therein.
Our contributions can be summarized as follows:

• We propose a new method of optimizing the exact worst-case-expected perfor-
mance under mean-MAD information in problems involving constraints (4.2)
with both convex and concave f(x, ·), or a mixture of these.

• We derive new safe tractable approximations of chance constraint (4.3) un-
der mean-MAD information. These results apply to the case of independent
random variables zi.

• In problems where the random variables are linearly aggregated, i.e.

f(x,aTz) or f(a(x)Tz),

we derive upper bounds which do not require the independence of the random
variables and which are computationally tractable.

• The above results are used to treat problems in which convexity in the uncertain
parameter (usually an intractable case in classical RO) appears. This occurs,
for example as a result of applying linear decision rules or when the uncertainty
is due to implementation error.

• Moreover, in case of existence of multiple RO-optimal solutions, we show that
the proposed approach can be used as a second-stage method of improving the
average performance of the RO solutions.

• Our numerical study shows that minimization of sup
Pz∈P

EPzf(x, z) over x using

mean-MAD information can also lead to a downward shift of inf
Pz∈P

EPzf(x, z),
compared to the solution obtained by classical RO.

We mention that there are alternative ways of specifying the set P , for example,
as sets of distributions deviating from a known distribution according to a certain
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distance measure (see for example Ben-Tal et al. (2013)). For a broad overview
of types of ambiguity sets we refer the reader to Postek et al. (2015) and Hana-
susanto et al. (2015). There are cases of such alternative settings for which exact
reformulations are possible both for the expected feasibility constraints and for the
chance constraints. For the first case, examples of such settings are given in Ben-Tal
et al. (2013), Wiesemann et al. (2014) and Esfahani and Kuhn (2015). Settings in
which exact reformulations are possible for individual chance constraints are given,
for example, in Calafiore and El Ghaoui (2006) and Jiang and Guan (2016).
Approximation results or efficient solution methods when the components of the
random vector z are not independent, are obtained for limited classes of function
f(x, z) in Delage and Ye (2010), Goh and Sim (2010), and Zymler et al. (2013).
Chen et al. (2007) propose to use so-called forward and backward deviations as char-
acteristics of the moment generating functions of random variables to approximate
chance constraints.
Wiesemann et al. (2014) have recently introduced a class of quite general ambiguity
sets for which they derive computationally tractable counterparts of (4.2) for specific
cases of f(x, ·). However, in their framework the components of z are unrestricted
in their dependence, and taking their independence into account is not straightfor-
ward. In Appendix 4.C, we illustrate the marked difference between theirs and our
robust counterparts when f(x, z) = exp(xTz) where, without the assumption of in-
dependence, one has to reformulate a robust constraint that is strictly convex in the
uncertain parameter. In Section 4.4.4 we provide a numerical comparison of their
and our method on an example where both approaches can be applied without the
independence assumption.
The remainder of the paper is structured as follows. In Section 4.2, we describe the
mean-MAD results of Ben-Tal and Hochman (1972), providing statistical background
on estimation of the relevant parameters. In Section 4.3, we show how the mean-
MAD results can be used to optimization problems involving stochastic constraints
(4.2), including numerical examples. In Section 4.4 we outline the result for the
case of linearly aggregated random variable. Section 4.5 includes new results on safe
tractable approximations of chance constraints (4.3), illustrated also with a numerical
study. Section 4.6 concludes the paper.

4.2 Expectation of a convex function of a random variable

4.2.1 Introduction

In this section we introduce the results of Ben-Tal and Hochman (1972) on exact
upper and lower bounds on the expected value of a convex function of a componen-
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twise independent z = (z1, . . . , znz)T . From now on we drop the subscript z from
Pz and the probability distribution applies to z. The pieces of partial distributional
information on zi’s constituting the ambiguity sets in Ben-Tal and Hochman (1972)
are:

1. support including intervals: supp(zi) ⊆ [ai, bi], where −∞ < ai ≤ bi < ∞, i =
1, . . . , nz. Ben-Tal and Hochman (1972) show also that their bounds hold in
cases where ai = −∞ and/or bi = +∞. We illustrate this in Remark 4.3. In
the remainder of the paper, however, we concentrate on the bounded case, with
RO applications in mind,

2. means: EP(zi) = µi,

3. mean absolute deviations from the means (MAD): EP|zi − µi| = di. The MAD
is known to satisfy the bound (Ben-Tal and Hochman (1972), Lemma 1):

0 ≤ di ≤ di,max = 2(bi − µi)(µi − ai)
(bi − ai)

, i = 1, . . . , nz, (4.4)

4. probabilities of zi’s being greater than or equal to µi: P(zi ≥ µi) = βi. For
example, in the case of continuous symmetric distribution of zi we know that
βi = 0.5. This quantity is known to satisfy the bounds:

di
2(bi − µi)

= β
i
≤ βi ≤ βi = 1− di

2(µi − ai)
, i = 1, . . . , nz. (4.5)

Using these building blocks, we define two types of ambiguity set P :

• the (µ, d) ambiguity set, consisting of the distributions with known (i), (ii), and
(iii) for each zi:

P(µ,d) = {P : supp(zi) ⊆ [ai, bi], EP(zi) = µ, EP |zi − µi| = di, ∀i, zi ⊥⊥ zj , ∀i 6= j} ,
(4.6)

where zi ⊥⊥ zj denotes the stochastic independence of components zi and zj,

• the (µ, d, β) ambiguity set, consisting of the distributions with known (i), (ii),
(iii), and (iv) for each zi:

P(µ,d,β) =
{
P : P ∈ P(µ,d), P(zi ≥ µi) = βi, ∀i

}
. (4.7)

In the following, we present the results of Ben-Tal and Hochman (1972) on max
P∈P(µ,d)

EPf(z),

max
P∈P(µ,d,β)

EPf(z) and min
P∈P(µ,d)

EPf(z), min
P∈P(µ,d,β)

EPf(z), where f : Rnz → R is convex.

We note that in the case of concave f(·) the upper bounds become lower bounds and
vice versa.
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4.2.2 One-dimensional z

We begin with the simpler and more illustrative case of one-dimensional random
variable z. For that reason, we drop the subscript i.
Upper bounds. Ben-Tal and Hochman (1972) shows that:

max
P∈P(µ,d)

EPf(z) = p1f(a) + p2f(µ) + p3f(b), (4.8)

where:

p1 = d

2(µ− a) , p2 = 1− d

2(µ− a) −
d

2(b− µ) , p3 = d

2(b− µ) . (4.9)

Hence, the worst-case distribution is a three-point distribution on {a, µ, b}. The same
bound holds for the (µ, d, β) ambiguity set.

Remark 4.1 A special case of (4.9) is the upper bound on f(z) when only the in-
terval [a, b] and the mean µ are known. Such a bound is known as the Edmundson-
Madansky bound (Edmundson 1956, Madansky 1959):

max
P∈P(µ)

EPf(z) = b− µ
b− a

f(a)+µ− a
b− a

f(b) where P(µ) = {P : supp(z) ⊆ [a, b], EPz = µ} .

(4.10)

Indeed, inserting the biggest possible value of MAD (see (4.4)) equal to dmax = 2(b−
µ)(µ− a)/(b− a) into (4.9) yields the probability of outcome µ equal to 0. �

Lower bounds. To obtain a closed-form lower bound on EPf(z), additional
information is needed in the form of the parameter β. Then, it holds that:

min
P∈P(µ,d,β)

EPf(z) = βf

(
µ+ d

2β

)
+ (1− β)f

(
µ− d

2(1− β)

)
. (4.11)

In case β is not known, Ben-Tal and Hochman (1972) shows that:

min
P∈P(µ,d)

EPf(z) = min
β≤β≤β

{
βf

(
µ+ d

2β

)
+ (1− β)f

(
µ− d

2(1− β)

)}
, (4.12)

where the minimization over β is a convex problem in β and for a strictly convex
f(·) there is a unique optimal solution.

Remark 4.2 In case of no knowledge about d, the lower bound is obtained at d∗ = 0,
which corresponds to the well-known Jensen bound (Jensen 1906). �
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Remark 4.3 In case where a = −∞ and/or b = +∞, bounds can still be obtained
under additional conditions, namely that the limits lim

t→±∞
f(t)/t exist and are finite,

with the ‘+’ corresponding to b = +∞, and the ‘−’ corresponding to a = −∞. We
illustrate this on the example a ∈ R, b = +∞. Assume that lim

t→+∞
f(t)/t = γ. We

then have:

max
P∈P(µ,d)

EPf(z) = max
P∈P(µ,d,β)

EPf(z) = lim
b→∞

{
d

2(µ−a)f(a) +
(

1− d
2(µ−a) −

d
2(b−µ)

)
f(µ) + d

2(b−µ)f(b)
}

= d
2(µ−a)f(a) +

(
1− d

2(µ−a)

)
f(µ) + d

2γ,

and for the lower bound we have:

min
P∈P(µ,d)

f(z) = d

2γ + f

(
µ− d

2

)
.

The lower bound for the (µ, d, β) ambiguity set is the same as (4.11). �

4.2.3 Multidimensional z

Upper bounds. For nz > 1, the worst-case probability distribution under (µ, d)
information is a componentwise counterpart of (4.9):

pi1 = di
2(µi − ai)

, pi2 = 1− di
2(µi − ai)

− di
2(bi − µi)

, pi3 = di
2(bi − µi)

, i = 1, . . . , nz.

(4.13)

The worst-case expectation of f(z) is obtained by applying the bound (4.8) for each
zi, i.e., by enumerating over all 3nz permutations of outcomes ai, µi, bi of components
zi. It holds then that (Ben-Tal and Hochman 1972):

max
P∈P(µ,d)

EPf(z) =
∑

α∈{1,2,3}nz

nz∏
i=1

piαif(τ 1
α1 , . . . , τ

nz
αnz

), (4.14)

where

τ i1 = ai, τ i2 = µi, τ i3 = bi for i = 1, . . . , nz. (4.15)

Again, the same upper bound holds for the (µ, d, β) ambiguity set.
Lower bounds. Similar to the one-dimensional case, the closed-form lower bound
under (µ, d) information requires known β = (β1, . . . , βnz)T :

min
P∈P(µ,d,β)

EPf(z) =
∑

α∈{1,2}nz

nz∏
i=1

qiαif(υ1
α1 , . . . , υ

nz
αnz

), (4.16)

where β = (β1, . . . , βnz)
T ,β = (β1, . . . , βnz)T and

qi1 = βi, qi2 = 1− βi, υi1 = µi + di/2βi, υi2 = µi − di/2(1− βi). (4.17)
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If β is unknown, the bound is obtained by minimization:

min
P∈P(µ,d)

EPf(z) = inf
β≤β≤β

∑
α∈{1,2}nz

nz∏
i=1

qiαif(υ1
α1 , . . . , υ

nz
αnz

). (4.18)

In the multidimensional case, minimization over β is a nonconvex problem - it is only
convex in βi when other βj, j 6= i are fixed. A statistical procedure for estimating
the parameters µ, d, and β is provided in Appendix 4.A.

4.3 Robust counterparts of expected feasibility constraints

4.3.1 Reformulations

In this section we demonstrate how the results of Ben-Tal and Hochman (1972) can
be used to solve problems

Val = min
x

max
P∈P

EPf(x, z), (4.19)

where f(·, z) is convex. When f(x, ·) is convex and P = P(µ,d), the exact solution of
the inner problem is given due to the Ben-Tal and Hochman (1972) upper bound:

gU(x) =
∑

α∈{1,2,3}nz

nz∏
i=1

piαif(x, τ 1
α1 , . . . , τ

nz
αnz

), (4.20)

with piαi , τ
i
αi

defined as in (4.13) and (4.15). As we can see, gU(·) in (4.20) inherits
the convexity in x from f(·, z) and its functional form depends only on the form of
f(., z).
When f(x, ·) is concave and P = P(µ,d,β), the exact solution of the inner problem is
given due to the Ben-Tal and Hochman (1972) lower bound:

gL(x) =
∑

α∈{1,2}nz

nz∏
i=1

qiαif(x, υ1
α1 , . . . , υ

nz
αnz

), (4.21)

with qiαi , υ
i
αi

defined by (4.17).
For the case of convexity (concavity) of f(x, ·), a lower bound on EPf(x, z) is given
by gL(x) (gU(x) respectively). The upper and lower bound give a closed interval
in which Val lies. That is, for the convex case it is guaranteed that Val lies in the
interval [gL(x), gU(x)] and in the concave case in the interval [gU(x), gL(x)]. The
above result applies also to the case of the ambiguous constraints (4.2).
There are two difficulties associated with the bounds (4.20) and (4.21). One is
the computational difficulty: when nz is large, formulas (4.20) and (4.21) include
an exponential number of terms. Second is the independence assumption on zi’s:
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when the independence hypothesis is rejected, the solutions obtained using (4.20)
and (4.21) might underperform significantly. In Section 4.4 we discuss a wide class
of functions f(x, z) for which both of these difficulties are alleviated. Here, we
discuss cases where these difficulties are not present or can be alleviated using existing
techniques.
Dimensionality.

• In certain applications the number nz of random variables is small (less than
10).

• An important special case is when f(x, z) is a sum of functions

f(x, z) =
nc∑
j=1

f (j)
(
x, z(j)

)
,

where f (j) (x, ·) have small numbers nj of uncertain variables.

• An important special case is the function f(x, z) = exp(xTz). Upper bounds
on moment generating functions E exp(xTz) are a key tool in constructing safe
tractable approximations of chance constraints. As we show in Section 4.5, the
properties of the exp(·) allow for a simple, closed-form formula for its worst-
case expectation under (µ, d) information and for which the number of terms
is linear in nz.

• If the dimensionality remains an issue, for problems with linear and piecewise
linear f(x, ·) one can use, for example, the Stochastic Decomposition method
(Higle and Sen 1996) where scenarios (in our case support points) are added it-
eratively until the current model is a good enough approximation of the original
model. In cutting-plane methods, the verification of the ambiguous constraint
can exploit the tree-structure of the worst-case distribution support. In this
tree structure, each outcome of z1 leads to 3 (or 2 for the concave case) out-
comes of z2, each of these leads to another 3 outcomes of z3 etc. Then, one can
determine if the constraint holds already after investigating the first few layers
of the tree, which may lead to a verification of much less than all 3nz scenarios.
Other approximate approaches are the sample average approximation (Shapiro
et al. 2009) or the scenario reduction technique (Dupačová et al. 2003).

Dependence.
If the random uncertain vector z contains dependent components, it can be de-
composed by means of factor analysis, for example, based on Principal Component
Analysis (see Jolliffe (2002)), into linear combinations of a limited number of uncor-
related factors. For example, in a situation of portfolio optimization problem with
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25 assets, it is natural to decompose them into 3-4 uncorrelated risk factors (see, for
example Baillie et al. (2002)), whose empirical distribution provides information also
about their support, means, and MADs. Even though uncorrelatedness can be much
weaker than independence, such a technique is often a practical solution.

4.3.2 The use of the Ben-Tal and Hochman (1972) bounds in some general
applications

In this section we present three cases where the reformulations of the worst-case
expected feasibility constraints presented in Section 4.3.1 can be used.
Average-case enhancement of RO solutions. The first application lies in finding
worst-case-optimal solutions with good average-case performance to the following RO
problem:

min
x,t

t

s.t. sup
z∈Z

f(x, z) ≤ t,

sup
z∈Z

gi(x, z) ≤ 0, i = 1, . . . ,m.

(4.22)

It happens frequently that there exist multiple optimal solutions to (4.22), see Iancu
and Trichakis (2013), De Ruiter et al. (2016). Whereas the worst-case performance
of such solutions is the same, their average-case performance may differ dramatically.
For that reason, once the optimal value t for (4.22) is known, a second optimization
step may be used to select one of the optimal solutions to provide good average-case
behavior. Since the results of Ben-Tal and Hochman (1972) provide exact bounds
on the worst-case expectations, they can be used in such a step. In the following, we
describe such a two-step procedure:

1. Solve problem (4.22) and denote its optimal value by t.

2. Solve the following problem, minimizing the worst-case expectation of the ob-
jective value, with the worst-case value of f(x, z) less than or equal to t:

min
x,u

u

s.t. sup
P∈P

EPf(x, z) ≤ u

sup
z∈Z

f(x, z) ≤ t,

sup
z∈Z

gi(x, z) ≤ 0, i = 1, . . . ,m.

(4.23)

In case of multiple optimal solutions to (4.22), the two-step procedure is expected
to select the optimal solution with good average-case performance for its focus on



Robust counterparts of expected feasibility constraints 127

the worst-case expectation among the best worst-case solutions. If the uncertainty
is present only in the constraints involving functions gi(·, ·), a similar two-step ap-
proach can be designed to maximize the worst-case expected slack in the worst-case
constraints in (4.22), see Iancu and Trichakis (2013). We note that following the
theory of Iancu and Trichakis (2013), there might exist multiple optimal solutions
to (4.23) and one may need to include another ‘enhancement step’ to choose among
them.
An alternative approach to enhancing robust solutions is to sample a number S of
scenarios for z to find a solution that optimizes the average of the objective value
over the sample.1 This approach, however, has as shortcoming that the outcome
might depend on the choice of sample size S and the sample itself. For that reason,
the DRO methods can provide a good alternative to enhancing the quality of RO
solutions. In our paper, we test the application of the (µ, d) bounds to enhance
average-case performance in an inventory management problem in Section 4.3.4.
Implementation error. The second application we consider is when the decision
variables cannot be implemented with the designed value due to implementation error
in the following problem:

min
x,t

t

s.t. f(x) ≤ t,

gi(x) ≤ 0, i = 1, . . . ,m.

(4.24)

In case of the existence of an additive implementation error z the implemented value
is x = x+z, where x is the designed value and z = (z1, . . . , znx)T is the error. Then,
the problem becomes:

min
x,t

t

s.t. sup
z∈Z

f(x+ z) ≤ t,

sup
z∈Z

gi(x+ z) ≤ 0, i = 1, . . . ,m.

(4.25)

Since f(x) is convex in x, in (4.25) the function f(x+z) is convex in z. For that rea-
son, optimization of the worst-case value of the objective function could be difficult, as
typically RO techniques rely on the constraint being concave in the uncertain param-
eter (see Ben-Tal et al. (2009, 2015)). Therefore, optimizing the worst-case values of
convex constraints under implementation error is a problem leading to computational
intractability, apart from special cases such as linear constraints (see Ben-Tal et al.

1As a special case, one can choose only one scenario, corresponding to the nominal values of the
uncertain parameters (Iancu and Trichakis 2013).
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(2015)) or (conic) quadratic constraints with simultaneously diagonizable quadratic
forms defining the constraint and the uncertainty set for the error (see Ben-Tal and
den Hertog (2011)).
Because of the above, it may be an alternative to optimize the worst-case expectation
of the objective function, for which our DRO method applies under the corresponding
distributional assumptions on z, i.e., that the ambiguity set for the distribution of z
is P(µ,d). Then, the problem becomes:

min
x,t

t

s.t. sup
P∈P

EPf(x+ z) ≤ t,

sup
z∈Z

gi(x+ z) ≤ 0, i = 1, . . . ,m.

(4.26)

The first constraint in (4.26) is convex in z and one can apply the reformulation
(4.20). For (4.26) to be tractable, the functions gi(x + z) need to be affine in z
or belong to one of the special cases considered in Ben-Tal and den Hertog (2011).
Similarly, one can reformulate a problem where multiplicative error occurs, i.e., where
x = (x1z1, . . . , xnxznx)T .
Convex constraints and linear decision rules. The third application of our
DRO approach comes when the constraints of a problem are convex in z as a result
of applying linear decision rules. To show how such a situation occurs, we consider
a two-stage RO problem:

min
x1,x2,t

t

s.t. sup
P∈P

EPf(x1,x2(z), z) ≤ t

sup
z∈Z

gi(x1,x2(z), z) ≤ 0, i = 1, . . . ,m,

(4.27)

where x1 ∈ Rnx1 is implemented at before z is known (time 1) and x2 ∈ Rnx2 is
implemented after z is known (time 2), i.e. x2 = x2(z). In such cases, it is possible
to define the time-2 decisions as a linear function x2(z) = v + V z of the uncertain
parameter z (see Ben-Tal et al. (2004)), to provide adjustability of decisions at time
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2.2 The problem is then:

min
x1,v,V ,t

t

s.t. sup
P∈P

EPf(x1,v + V z, z) ≤ t

sup
z∈Z

gi(x1,v + V z, z) ≤ 0, i = 1, . . . ,m.

(4.28)

Since f(x1,x2(z), z) is convex in x2, the first constraint in (4.28) may also be convex
in z. In such a case, a further reformulation of problem (4.27) can be conducted as
in Section 4.3.2. We combine linear decision rules with (µ, d) information in the
inventory problem of Sections 4.3.3 and 4.3.4.

4.3.3 Application 1: Inventory management - average case performance

Introduction. In this section we consider an application of the (µ, d) method to
minimization of the average-case costs in inventory management. The main research
questions are:

1. How does minimizing the worst-case expectation affect the best-case expecta-
tion under the given distributional assumptions?

2. What is the average-case performance of solutions minimizing the worst-case
expectation compared to the robust solutions, minimizing the worst-case out-
come of the objective values?

To answer them, we adapt the numerical example from Ben-Tal et al. (2005) with
a single product and where inventory is managed periodically over T periods. At
the beginning of each period t the decision maker has an inventory of size xt and he
orders a quantity qt for unit price ct. The customers then place their demands zt.
The retailer’s status at the beginning of the planning horizon is given through the
parameter x1 (initial inventory). Apart from the ordering costs, the following costs
are incurred over the planning horizon:

• holding cost ht max {0, xt+1}, where ht are the unit holding costs,

• shortage costs pt max {0, xt+1}, where pt are the unit shortage costs.

2One may also use other decision rules. However, we limit ourselves to the analysis of the linear
case as the linear decision rules are very often a powerful enough tool, see Bertsimas et al. (2011).
Moreover, the (non)convexity of the problem resulting from application of linear decision rules is
easy to verify, see Boyd and Vandenberghe (2004).
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Inventory xT+1 left at the end of period T has a unit salvage value s. Also, one must
impose hT − s ≥ −pT to maintain the problem’s convexity. Practical interpretation
of this constraint is that in the last period it is more profitable to satisfy the customer
demand rather than to be left with excessive amount of inventory. The constraints
in the model include:

• balance equations linking the inventory in each period to the inventory, order
quantity, and demand in the preceding period,

• upper and lower bounds on the order quantities in each period Lt ≤ qt ≤ Ut,

• upper and lower bounds on cumulative order quantities in each period L̂t ≤∑t
τ=1 qτ ≤ Ût.

With ordering decisions q(z) = (q1, q2(z1), . . . , qT (zT−1))T , where zt = (z1, . . . , zt)T ,
the objective function value for a given demand vector z is

f(q(z), z) =
T∑
t=1

(
ctqt(zt−1) + ht max

{
xt+1(zt), 0

}
+ pt max

{
−xt+1(zt), 0

})
− smax

{
xT+1,0(zT )

}
.

The optimization problem to be solved is given by the following, two-variant for-
mulation where the minimized quantity is the worst-case value or the worst-case
expectation of the objective function:

min
q(·),u

u

s.t. sup
P∈P

EP or sup
z∈Z

f(q(z), z) ≤ u

xt+1(zt) = xt(zt−1) + qt − zt, t = 1, . . . , T
Lt ≤ qt(zt−1) ≤ Ut, t = 1, . . . , T
L̂t ≤

t∑
τ=1

qτ (zτ−1) ≤ Ût, t = 1, . . . , T,

(4.29)

where Z is the uncertainty set for z and P is the ambiguity set of probability dis-
tributions with support being a subset of Z. The objective function in (4.29) has
the sum-of-maxima form which typically is problematic in RO due to the difficulty of
maximizing a convex function. It is of no concern as the Ben-Tal and Hochman (1972)
results only require that the function at hand is convex in the uncertain parameter.
We assume that the uncertainty set Z is Z = Z1 × . . . × ZT , where Zt = [at, bt],
t = 1, . . . , T , which corresponds to z being a random variable with independent
components. The worst-case form of problem (4.29) has to be solved by enumerating
all vertices of the uncertainty set Z. For the worst-case expectation form of (4.29) we
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Table 4.1 – Ranges for parameter sampling in the inventory experiment.

Parameter Range Parameter Range

at [0, 20] x1 [20, 50]

bt [at, at + 100] Lt 0

ct, pt [0, 10] Ut [50, 70]

ht [0, 5] L̂t 0

s 0 Ût 0.8
∑T

t=1 Ut

assume that µt = at+bt
2 , and that dt = EP|zt − µt| = θ(bt − at), yielding the following

ambiguity set:

P(µ,d) = {P : supp(P) ⊂ [a, b], EPz = µ, EP |z − µ| = d, zi ⊥⊥ zj ∀i 6= j} ,

where a = (a1, . . . , aT )T , b = (b1, . . . , bT )T , µ = (µ1, . . . , µT )T , d = (d1, . . . , dT )T .
The ordering decisions are assumed to be linear functions of the past demand:
qt+1(zt) = qt+1,0 + ∑t

j=1 qt+1,jzj and require that qt+1(zt) ≥ 0 for all z ∈ Z, for
t = 2, . . . , T + 1. We solve the following two variants of problem (4.29):

• RO solution - the objective function in (4.29) is preceded by supz∈Z ,

• (µ, d) solution - the objective function in (4.29) is preceded by supP∈P(µ,d)
EP.

We conduct an experiment with T = 6 and 50 problem instances. We set θ = 0.25,
corresponding to the mean absolute deviation of the uniform distribution. The ranges
for the uniform sampling of parameters are given in Table 4.1.
Upper and lower bounds for the expectation of the objective function. We

consider now the first research question of this section. For each inventory problem
instance and the optimal solution q(·), we compute the following quantities:

• the worst-case expected cost under (µ, d) information: supP∈P(µ,d)
EPf(q(z), z)

• the best-case expected cost infP∈P(µ,d,β) EPf(q(z), z) with three possibilities for
the skewness of the demand distribution, i.e., with βt = β ∈ {0.25, 0.5, 0.75},
corresponding to left-skewness, symmetry, and right-skewness of the demand
distribution in all periods, respectively.

The two values provide us with information about the interval within which the ex-
pected objective function value lies under three different assumptions on the parame-
ter β. Additionally, for each solution we compute the worst-case cost supz∈Z f(q(z), z)
to verify how the minimization of the worst-case expectation affects the worst-case
performance of the solution.
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Table 4.2 – Results of the inventory management - worst-case costs and ranges for the expectation
of the objective over P(µ,d,β). All numbers are averages.

Objective type β
Minimum cost

RO (µ, d)

Worst-case value - 1950 2384

Expectation range 0.25 [1255,1280] [1004,1049]

Expectation range 0.5 [1223,1280] [970,1049]

Expectation range 0.75 [1230,1280] [994,1049]

Table 4.2 presents the results. As can be expected, the RO solution yields the best
worst-case value of 1950 which is far better than the (µ, d) solution, whose worst-case
value is 2384. Rows 2 to 4 show that the (µ, d) solution not only yields better upper
bounds on the expected value of the solution, but also leads to an improvement of
the best-case expectation for all β. For example, for β = 0.5 the interval for the
expected cost related to the RO solution is given by [1255, 1280], whereas for the
(µ, d) solution it is [970, 1049]. That means that the worst-case expectation obtained
by the (µ, d) solution is better than the worst-case expectation obtained by the RO
solution.
Simulation results. We now answer the second research question by conducting a

simulation study. Since the solutions are obtained with different objective functions,
comparing their average-case performance in a ‘fair’ way is difficult. We compare
their performance using two samples of demand vectors ẑ:

• uniform sample - demand scenarios ẑ are sampled from a uniform distribution
on Z,

• (µ, d) sample - demand scenarios ẑ are sampled from a distribution P̂ ∈ P(µ,d).
That is, first, a discretized distribution P̂ ∈ P(µ,d) is sampled using the hit-
and-run method. This method is implemented here as follows. For the [0, 1]-
interval we construct a grid of 50 equidistant points. For a fixed (µ, d) the
set of probability masses assigned to these points satisfying the µ and d values
is a polytope. We sample 10 probability distributions uniformly from this
polytope with the classical hit-and-run method (mixing algorithm) of Smith
(1984), where we choose the starting point to be the analytic center of the
polytope and we use only every 20th vector sampled with the mixing algorithm.
Then, each component of the vector ẑ is sampled randomly from a randomly
chosen distribution P̂.

For each instance, we sample 104 demand scenarios, with both of the sampling meth-
ods. Table 4.3 presents the results. The averages of the objective function values
over the two sample types over all instance are put in bold. For example (row 1),
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Table 4.3 – Simulation results for the first inventory problem. Numbers in brackets denote the %
change compared to the RO solution.

Objective type Demand sample type Cost

RO (µ, d)

Objective mean Uniform sample 1230 994 (-19.6%)

Objective standard deviation Uniform sample 157 259 (+65%)

Objective mean (µ, d) sample 1246 1003 (-19.5%)

Objective standard deviation (µ, d) sample 160 265 (+65.6%)

Figure 4.1 – Empirical cumulative distribution functions of the total costs of the solutions under
the uniform sample (left) and (µ, d) sample (right). Aggregated from all problem instances.
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the (µ, d) solutions perform better on average in the uniform sample, with values
994 and 1230, respectively. A similar observation holds for the (µ, d) sample (row
3). In Figure 4.1 we present a comparison of the empirical cumulative distribution
functions of the total costs incurred by the RO and (µ, d) solutions. In both samples
we can see that the costs of the RO solution stochastically dominate over the ones
from the (µ, d) solutions. Thus, we conclude that the (µ, d) solutions are superior to
the RO solution.

4.3.4 Application 2: Inventory management - enhancement of RO solu-
tions

With the good average-case performance of the (µ, d) solutions in the previous ex-
periment, we investigate now the following question: can the (µ, d) method be used
to enhance the average-case performance of RO solutions? That is, is it possible,
in cases where there are multiple optimal solutions to the RO problem, to find the
worst-case optimal solution that has a better average cost than the initial worst-case
optimal solution? To verify this, for each of the problem instances of the previous
subsection we apply the two-step procedure of Section 4.3.2.
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Table 4.4 – Results of the inventory management - enhancement of RO solutions example. All
numbers are averages. Numbers in brackets denote the % change compared to the initial solution
with no enhancement (first column).

Objective type Cost

Enhancement type - (µ, d) Sample Nominal

Objective mean Uniform sample 1230 1168 (-5.04%) 1168 (-5.04%) 1180 (-4.06%)

Objective standard deviation Uniform sample 157 158 (+0.63%) 156 (-0.63%) 161 (+2.54%)

Objective mean (µ, d) sample 1246 1172 (-5.93%) 1172 (-5.93%) 1184 (-4.97%)

Objective standard deviation (µ, d) sample 160 161 (+0.62%) 160 (0.00%) 164 (+2.50%)

We consider three enhancement types, corresponding to three different objective
functions:

• (µ, d) enhancement: min supP∈P(µ,d)
EPf(q(z), z),

• sample enhancement: min 1
S

∑S
j=1 f(q(ẑj), ẑj), where ẑj are S = 200 demand

scenarios sampled uniformly from Z,

• nominal enhancement: min f(q(µ),µ) considered by Iancu and Trichakis (2013).

Table 4.4 presents the results. In the uniform sample (row 1) the (µ, d)-enhanced
solution yields an average cost of 1168, compared to 1230 for the non-enhanced
solution, that is 5.04% less. For the (µ, d) sample (row 3) the corresponding number
is 5.93%. The nominal enhancement turns out to be slightly worse than the (µ, d)
and sample enhancements, compare e.g. the means 1180 and 1168 for the uniform
sample and the higher standard deviations of the nominal enhancement.
In Figure 4.2 we present the empirical cumulative distribution functions of the non-
enhanced and (µ, d)-enhanced solutions in a sample problem in the uniform demand
sample. In this plot, it is clear that the total cost incurred by the non-enhanced
solutions stochastically dominates the one from the (µ, d) enhanced solutions.

4.4 Extension - aggregated random vectors

4.4.1 Introduction

Up to now, we have been deriving exact worst-case expectations which (i) relied on
the assumption of independence of the components of z, and (ii) resulted in bounds
involving 3nz terms. In this section, we consider practically relevant cases where both
of these difficulties can be alleviated.
In many cases, uncertainty appears in a linearly aggregated way such as y = aTz or
y(x) = a(x)Tz. Then, instead of considering the worst-case expectation of f(x,aTz)
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Figure 4.2 – Empirical cumulative distribution functions of the total costs in simulation in the
uniform demand sample for the non-enhanced RO solution and the (µ, d)-enhanced RO solution.
Aggregated from all problem instances.
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or f(a(x)Tz) (or, more generally, ∑i f(x,aTi z) or ∑i f(ai(x)Tz)), it is possible
to consider the worst-case expectations of f(x, y), where y is a single-dimensional
ambiguous random variable equal either to aTz or to a(x)Tz while the uncertainty
is still specified in terms of the entire vector z. Without loss of generality, we assume
that the support of z is given by ‖z‖∞ ≤ 1.

4.4.2 Fixed vector a

We begin our analysis with the case where the vector a is not dependent on the
decision variables, motivated by the following example.

Example 4.1 In the inventory problem of Section 4.3.3 the holding and backlogging
costs at time t + 1 depend on the state of inventory xt+1. If the ordering decisions
qt(zt−1) are static (non-adjustable), then:

xt+1 = x1 +
t∑

s=1
qs −

t∑
s=1

zs = x1 +
t∑

s=1
qs − 1Tzt,

and the aggregated random variable is y = 1Tzt not depending on the decision vari-
ables qt. �

In order to use the results of Ben-Tal and Hochman (1972) to construct the worst-case
expectation of f(x, y), we need to extract the distributional information on y = aTz

from the information on z. Then, we have that

supp(aTz) = [min
z
aTz,max

z
aTz] = [−‖a‖1, ‖a‖1]

EP
(
aTz

)
= aTµ.

(4.30)
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As for the MAD M(aTz), only upper bounds on M(aTz) can be obtained in terms of
information on z. Nevertheless, any upper bound on M(aTz) will generate an upper
bound on EPf(x, y) due to the fact that the Ben-Tal and Hochman (1972) upper
bound (4.8) is a nondecreasing function of d, as stated by the following Proposition.

Proposition 4.1 The worst-case expectation (4.8) is a nondecreasing function of d.

Proof. The worst-case expectation (4.8) is:

F (d) = d

2(µ− a)f(a) +
(

1− d

2(µ− a) −
d

2(b− µ)

)
f(µ) + d

2(b− µ)f(b).

We have

F ′(d) = 1
2(µ− a)f(a)−

(
1

2(µ− a) + 1
2(b− µ)

)
f(µ) + 1

2(b− µ)f(b) ≥ 0.

Multiplying the last inequality by 2(b− µ)(µ− a)/(b− a) and using

µ = b− µ
b− a

a+ µ− a
b− a

b

we obtain the inequality:

b− µ
b− a

f(a) + µ− a
b− a

f(b) ≥ f

(
µ− a
b− a

b+ b− µ
b− a

a

)
,

which is valid by convexity of f(·). �

In the following, we present four ways to obtain upper bounds on the MAD M(aTz).
The first three of them do not use the assumption of independence of the components
of z and are hence computable in polynomial time. The last one, on the other hand,
requires the independence of zi’s, but the computation involving 3nz terms can be
done in a pre-processing step, without affecting the size of the optimization problem.

No independence - simple bounds. Two upper bounds that we use here are:

EP

∣∣∣y − aTµ∣∣∣ = EP|
nz∑
i=1

aizi −
nz∑
i=1

aiµi| ≤
nz∑
i=1

EP |aizi − aiµi| =
∑
|ai|di = |a|Td,

(4.31)

which gives the following ambiguity set for the distribution of y:

Pdy =
{
Py : supp(Py) ⊆ [−‖a‖1, ‖a‖1|], EPyy = aTµ, EPy |y − aTµ| ≤ |a|Td

}
,

(4.32)



Extension - aggregated random vectors 137

and the second bound, based on the covariance matrix Σz, is

EP

∣∣∣y − aTµ∣∣∣ ≤ √E (y − aTµ)2 =
√
E (aTz − aTµ)2 =

√
Var(aTz) =

√
aTΣza,

(4.33)

which gives the following ambiguity set for the distribution of y:

PCov
y =

{
Py : supp(Py) ⊆ [−‖a‖1, ‖a‖1|, EPyy = aTµ, EPy |y − aTµ| ≤

√
aTΣza

}
.

(4.34)

Ben-Tal and Hochman (1972) bounds obtained using ambiguity sets (4.32) and (4.34)
do not require the components of z to be independent and require only three terms,
thus using (4.32) :

sup
Py∈Pdy

EPqf(x, y) ≤ |a|Td
2(aTµ+ ‖a‖1)f(x,−‖a‖1) +

+
(

1− |a|Td
2(aTµ+ ‖a‖1) −

|a|Td
2(‖a‖1 − aTµ)

)
f(x,aTµ) +

+ |a|Td
2(‖a‖1 − aTµ)f(x, ‖a‖1).

Since a does not depend on x, the resulting expression is convex in x.

No independence - exact bound using Wiesemann et al. (2014). It is also
possible to obtain an exact upper bound on the MAD of y using the results of
Wiesemann et al. (2014), which requires, though, solving an optimization problem.
We present it on the example of (µ, d) information about z but it can also use the
mean-covariance and some other types of information on z. The problem to solve is:

sup
P∈P

EP

∣∣∣aTz − aTµ∣∣∣ . (4.35)
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It can be proved (see Appendix 4.F to this paper) using Theorem 1 of Wiesemann
et al. (2014) that (4.35) is equivalent to:

min
φ1,φ2≥0,w,β,κ

w

s.t. bTβ + κ ≤ w

cTφ1 − aTµ ≤ κ

cTφ2 + aTµ ≤ κ

CTφ1 +ATβ = a

CTφ2 +ATβ = −a
DTφ1 +BTβ = 0
DTφ2 +BTβ = 0,

(4.36)

where A,B ∈ R2nz×nz , b ∈ R2nz , C,D ∈ R6nz×nz , and c ∈ R6nz are defined as:

A =

 I

0

 , B =

 0

I

 , b =

 µ

d

 , C =



I

−I

I

−I

0

0


, D =



0

0

−I

−I

I

−I


, c =



1

1

µ

−µ

1

0


.

The optimal value to (4.36) is thus a tight upper bound on the MAD of z and at
least as good as bound (4.31). With the optimal value to (4.36), one can construct an
ambiguity set similar to (4.32) and analogously, build up the worst-case expectation
corresponding to it. This MAD bound and the one of (4.31) are identical if, for
example, µi = µj and di = dj for all i 6= j.
In this way, the method of Wiesemann et al. (2014) can be used to enhance our
method for aggregated random variables. Building up the upper bound on the MAD
of aTz via problem (4.36) is preferable to bound (4.31) if the need to solve the
optimization problem is not burdensome.

Independence - 3nz terms in a pre-processing step. As a last bound, we note
that the function |aTz − aTµ|, whose expectation is equal to M(aTz) is convex in
z. This means that its worst-case expectation can be computed using Ben-Tal and
Hochman (1972):

EP

∣∣∣y − aTµ∣∣∣ ≤ sup
P∈P

EP

∣∣∣y − aTµ∣∣∣
= ∑
α∈{1,2,3}nz

nz∏
i=1

piαi |a
Tz(α)− aTµ|,

(4.37)
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with z(α) = (τ 1
α1 , . . . , τ

nz
αnz

) as in (4.15). This gives rise to another ambiguity set,
which can be constructed analogously to (4.32). The computation in (4.37) can
be conducted before the optimization problem is set up. Therefore, optimization
problem involving constraint f(x,aTz) is easier than would be the case if formula
(4.20) of Section 4.3.1 were used.

4.4.3 Vector a(x) depends on x.

We assume that a(x) is a linear vector-valued function of x and the function whose
worst-case expectation we seek is f(a(x)Tz), where f(·) is convex and y(x) =
a(x)Tz. This assumption also holds for the inventory problem of Section 4.3.3.

Example 4.2 Using linear decision rules qt+1(zt) = qt+1,0 + ∑t
j=1 qt+1,jzj for the

ordering decisions, the state of inventory at time t+ 1 is

xt+1 = x1 +
t∑

s=1

qt,0 +
t∑

j=1
qt,jzj

− t∑
j=1

zt = x1 +
t∑

s=1
qt,0 +

t∑
s=1

 t∑
j=s+1

qj,s − 1
 zs.

Therefore, in each time period the aggregated random variable is ∑t
s=1

(∑t
j=s+1 qj,s − 1

)
zs,

which indeed depends on the decision variables. �

Similarly to the previous case, one can consider the worst-case expectation of f(y(x))
where y(x) = a(x)Tz, which for the set (4.32) is:

sup
Py(x)∈Py(x)

EPy(x)f(y(x)) ≤ |a(x)|Td
2(a(x)Tµ+ ‖a(x)‖1)f(−‖a(x)‖1) +

+
(

1− |a(x)|Td
2(a(x)Tµ+ ‖a(x)‖1) −

|a(x)|Td
2(‖a(x)‖1 − a(x)Tµ)

)
f(a(x)Tµ)

+ |a(x)|Td
2(‖a‖1 − a(x)Tµ)f(‖a(x)‖1) (4.38)

This expression is not neccessarily convex in x. However, for the important special
case where µ = 0, satisfied for example, if z is considered to be a distortion with
expected value 0 such as the white noise in signal processing, (4.38) can be bounded
as follows:

sup
Py(x)∈Pd

y (x)
EPy(x)f(y(x)) ≤

(
1−

∑
i |ai(x)|di
‖a(x)‖1

)
f(0) +

∑
i |ai(x)|di

2‖a(x)‖1
(f(−‖a(x)‖1) + f(‖a(x)‖1))

=
(∑

i |ai(x)|(1− di)
‖a(x)‖1

)
f(0) +

∑
i |ai(x)|di

2‖a(x)‖1
(f(−‖a(x)‖1) + f(‖a(x)‖1))

≤ max
i

(1− di)f(0) + max
i
di

(
1
2f(−‖a(x)‖1) + 1

2f(‖a(x)‖1)
)
. (4.39)

Quality of the bound (4.39) depends now on the dispersion of the MADs di - if they
are equal, the second inequality is tight. Tractability of (4.39) depends on convexity
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of the sum

f(−‖a(x)‖1) + f(‖a(x)‖1), (4.40)

which turns out to be the case, as the following proposition shows.

Proposition 4.2 For affine a(x) and convex f : R→ R, the function f(−‖a(x)‖1)+
f(‖a(x)‖1) is convex.

Proof. Define g(t) = f(t) + f(−t) for t ∈ R+ and h(x) = ‖a(x)‖1. Then we have
that:

f(−‖a(x)‖1) + f(‖a(x)‖1) = g(h(x)).

The function g(h(x)) is convex if g(t) is convex and nondecreasing and h(x) is convex.
Convexity of h(x) is clear as it is a norm of an affine function of x. Also, convexity
of g(·) follows from convexity of f(·). We need to show that g(·) is nondecreasing,
i.e., that

g(t+ α) ≥ g(t), ∀t ≥ 0, α ≥ 0.

Consider the subgradients v1 ∈ ∂f(−t) and v2 ∈ ∂f(t). By properties of subgradients
we have that

v1 ≤
f(t)− f(−t)

2t ≤ v2.

From this, it follows that for α ≥ 0:

g(t+ α) = f(−t− α) + f(t+ α)
≥ f(−t) + sup

v∈∂f(−t)
(−αv) + f(t) + sup

v∈∂f(t)
(αv)

≥ f(−t) + (−αv1) + f(t) + (αv2)
= g(t) + α(v2 − v1)
≥ g(t).

�

With respect to the efficient implementation, it can be added that due to f(−t)+f(t)
being nondecreasing on the nonnegative ray we have:

f(−‖a(x)‖1) + f(‖a(x)‖1) ≤ 0 ⇔


f(−1Tw) + f(1Tw) ≤ 0
w ≥ a(x)
w ≥ −a(x),

where w is an additional analysis variable.
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4.4.4 Inventory experiment revisited - independent demand

In this section we re-visit our inventory experiment using the results for aggregated
random vectors of the previous section. The inventory experiment can be studied in
this way, since the objective function is:

T∑
t=1

(
ctqt(zt−1) + ht max

{
xt+1(zt), 0

}
+ pt max

{
−xt+1(zt), 0

})
,

where we dropped the first term as we assumed in the numerical experiment that the
salvage value is zero, i.e., s = 0. The objective consists of T terms

ft(q, z) = ctqt(zt−1) + ht max
{
xt+1(zt), 0

}
+ pt max

{
−xt+1(zt), 0

}
, (4.41)

that depend on the state of inventory xt+1 each. Therefore, in line with Examples 4.1
and 4.2, we can use our results for aggregated random variables to build worst-case
expectations of ft(q, z) and to use them in the optimization problem.
Since the methods of this section are also aimed at an alleviation of the independence
assumption and the piecewise linear objective function is tractable using the results of
Wiesemann et al. (2014), we compare our solutions also to Wiesemann et al. (2014),
whose results do not rely on the independence assumption either. We note here that
to use their results to obtain an exact reformulation, we need to formulate the sum-
of-maximums objective function as a maximum of linear functions which leads to
2T terms. For the case where the independence assumption is satisfied, we refer the
reader to Appendix 4.C where the difference between their and our reformulations is
illustrated.
In the following, we consider seven solutions to the same 50 instances as in Sections
4.3.3 and 4.3.4. The first four solutions consider the ordering decisions to be static:

• S-1: using Ben-Tal and Hochman (1972) to evaluate the true worst-case expec-
tation of the objective with 3T terms in the problem formulation.

• S-2: using the aggregated random variables y = 1Tz for which an upper bound
on the MAD is computed under the independence assumption with (4.37) (T
terms in the problem formulation).

• S-3: using the methodology of Wiesemann et al. (2014) (2T terms in the prob-
lem formulation).

• S-4: using ambiguity set (4.32) without the independence assumption on zi’s
(3T terms in the problem formulation).

The other three solutions consider the ordering decisions to be linear functions of
past demand:
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Table 4.5 – Results of the inventory management with aggregated random vectors - worst-case
costs and ranges for the expectation of the objective over P(µ,d,β) (with independence assumption in
computing the bounds). The lower bounds of the intervals are obtained ex-post using Ben-Tal and
Hochman (1972) results, after the solutions are found. All numbers are averages.

β
Cost expectation range

S-1 S-2 S-3 S-4 LDR-1 LDR-2 LDR-3

0.25 [1093,1175] [1124,1205] [1131,1190] [1131,1190] [1004,1049] [1058,1093] [1058,1092]

0.5 [1038,1175] [1065,1205] [1061,1190] [1061,1190] [970,1049] [1029,1093] [1028,1092]

0.75 [1079,1175] [1117,1205] [1106,1190] [1106,1190] [994,1049] [1047,1093] [1047,1092]

• LDR-1: using Ben-Tal and Hochman (1972) to evaluate the true worst-case
expectation of the objective with 3T terms.

• LDR-2: using methodology of Wiesemann et al. (2014), (2T terms in the prob-
lem formulation).

• LDR-3: using approximation (4.39) to obtain upper bound on the worst-case
expectation of the objective (3T terms in the problem formulation).

Table 4.5 presents the worst-case and best-case expectations for all 7 solutions, com-
puted under the assumption of independence of zi (in the same way as in the main
experiment). For the solutions with static decisions we can see that the new solu-
tions S-2 and S-4 based on the aggregation technique are only slightly worse than
the original solution based on Ben-Tal and Hochman (1972) bound with 3T terms.
For example, their worst-case expectations are 1205 and 1190, respectively, whereas
solution S-1 yields 1175, which makes them only 2% worse than the exact formula-
tion.
For the solutions with linear decision rules, we see that the expectation intervals
overlap for β = 0.5 and β = 0.75. The worst-case expectation of the new LDR-3
solution is 1092, whereas for the old S-1 solution it is 1049. That is, the new solution
is about 4% worse than the exact formulation LDR-1.
We observe that the intervals obtained by our aggregated solutions are very similar to
the ones obtained by the methodology of Wiesemann et al. (2014), compare solutions
S-3 vs S-4 and LDR-2 vs LDR-3. Solutions S-3 and S-4 are identical for all instances
since our aggregation technique is exact in this case, just as the method of Wiesemann
et al. (2014) - this is because in each case, the mean of the uncertain demand is in
the middle of the support and the proportion of the MADs of zt’s to the support
intervals’ widths is the same for all t, see the description of the setting in Section 4.3.3.
However, the similarity of the intervals for LDR-2 and LDR-3 comes as a surprise
since bound (4.39) is just an approximation, whereas the method of Wiesemann et al.
(2014) is exact and involves 2T terms in the problem formulation (their results rely
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Table 4.6 – Simulation results for the inventory problem with aggregation technique. Numbers in
brackets denote the % change compared to the S-1/LDR-1 solution, respectively.

Objective type Sample Cost

S-1 S-2 S-3 S-4 LDR-1 LDR-2 LDR-3

Mean Uniform 1088 1182 (+8.6%) 1109 (+1.9%) 1109 (+1.9%) 994 1051 (+5.7%) 1049 (+5.5%)

Standard deviation Uniform 317 325 (+2.5%) 321 (+1.36%) 321 (+1.36%) 259 252 (−2.7%) 251 (−3.1%)

Mean (µ, d) 1094 1124 (+2.7%) 1115(+1.9%) 1115(+1.9%) 1003 1056 (+ 5.5%) 1018 (+1.5%)

Standard deviation (µ, d) 325 333 (+2.5%) 328 (+0.9%) 328 (+0.9%) 265 257 (−3.0%) 224 (−15.5%)

on formulating the objective as a maximum over a finite number of affine functions,
which for our sum-of-max objective requires 2T terms to consider all cases).
Table 4.6 presents the results of simulation in the same setting as in Table 4.3, with
demands from different periods being independent. As we can see, the new S-2, S-4
and LDR-3 solutions perform slightly worse on average than the exact S-1 and LDR-
1 solutions. An important observation, however, is that the solution LDR-2 based
on the rather conservative MAD bound performs better than the exact S-1 solution
which utilizes static decisions.
We can see that the solutions S-3 (Wiesemann et al. 2014) and S-4 (using (4.31)) are
indeed the same since the simulation results are identical for both. Comparing the
solutions LDR-2 (Wiesemann et al. 2014) and LDR-3 (using (4.39)) we see that de-
spite the similarity of intervals in Table 4.5 the solutions do differ, since the obtained
results are not the same. The large difference between the two for the (µ, d) sample
(means 1056 and 1018, respectively) is a sample-specific issue and, having repeated
the experiment in multiple samples, we conclude that the two solutions give very
similar results on average.
To conclude on the results of this section, we can say that for problems with aggre-
gated random variables aTz our approach is preferable if there is no assumption of
independence of z and (i) the need to compute the exact worst-case MAD of aTz
via solving problem (4.36) would be too burdensome, or (ii) the complexity of the
function f(x,aTz) is not tractable in the sense of requirements of Wiesemann et al.
(2014). In other cases, it is preferable either to estimate the exact worst-case MAD
of aTz via (4.36) or to apply the results of Wiesemann et al. (2014) directly. For the
case of a(x)Tz, our method is preferable if there is no assumption of independence
of z and the complexity of the function f(a(x)Tz) is not tractable in the sense of
requirements of Wiesemann et al. (2014). Otherwise, the approach of Wiesemann
et al. (2014) is preferred.
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4.4.5 Inventory experiment revisited - dependent demand

In the previous subsection the solutions were evaluated using demand samples in
which the demands from subsequent periods were independent. One may ask: how
do the solutions perform when the realized demand sample exhibits some dependence
pattern?
To investigate this, we run an experiment where the demands z are sampled using
copulas that couple a multivariate distribution function to its marginal distributions.
Separating the dependence structure between random variables from their marginal
distributions makes them a premier tool for simulating correlated random variables
when particular marginal distributions are desired (Sklar 1959). In our case, we want
the marginal distributions to come from our (µ, d) sample (results for the uniform
marginals are very similar).
In our experiment, we use the T -dimensional Gaussian copula3 and assume that the
dependence between the zi’s follows an autocorrelative pattern where the correlations
between the random variables used in the copula from periods t1 and t2 is equal to
ρ|t1−t2|, where ρ ∈ {0.1, 0.2, . . . , 0.9}, that is, for the copula sampling we use the
correlation matrix: 

1 ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 1 ρ1 ρ2 ρ3 ρ4

... . . . ...
ρ5 ρ4 ρ3 ρ2 ρ 1


.

For conciseness, we focus only on the LDR-1 and LDR-3 solutions under (µ, d) sample.
Figure 4.3 presents the results, with the respective means and standard deviations
plotted against the correlation strength ρ. The left panel shows that as the degree
of correlation among the demands increases with ρ (on the horizontal axis), the
mean costs obtained by solution LDR-3 approaches the one of LDR-1 and eventually
becomes smaller, with the crossing point approximately around ρ = 0.6. In the right
panel we see that the standard deviation of the costs obtained by LDR-3 is is smaller
than the one of LDR-1 for all values of ρ.
These results provide a strong argument that the LDR-3 solution, though being
constructed on the basis of approximation (4.39) and not assuming the independence
of zi’s might be better than LDR-1 solution based on the full (µ, d) information in
situations when the realized demand exhibits dependence among its components
from different periods. More generally, this indicates that the solutions based on

3We use the MATLAB function copularnd(). As this function simulates only the CDFs of the
marginal distributions, we need to convert them into the respective uniform and (µ, d) sample by
inverting their distribution functions.
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Figure 4.3 – Results of the simulation experiment for inventory solutions LDR-1 and LDR-3 with
dependent (µ, d) demand sample. The left panel involves results on the means and the right panel
on the standard deviations.
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aggregated random vectors, while being less computationally burdensome than the
‘exact solutions’ can yield better performance when the true random variables deviate
from the independence assumption.

4.5 Safe approximations of chance constraints

4.5.1 Introduction

In this section we show how the results of Ben-Tal and Hochman (1972) can be used
to construct safe tractable approximations of scalar chance constraints:

P
(
aT (z)x > b(z)

)
≤ ε, ∀P ∈ P(µ,d), where [a(z); b(z)] = [a0; b0]+

nz∑
i=1

zi[a0
i ; b0

i ].

(4.42)

Without loss of generality we assume that the components zi have a support contained
in [−1, 1] and mean 0:

P(µ,d) = {P : supp(zi) ⊆ [−1, 1], EPzi = 0, EP|zi| = di, i = 1, . . . , nz, zi ⊥⊥ zj , ∀i 6= j} .

To construct the safe tractable approximations, we use the mathematical framework
of Ben-Tal et al. (2009). In this framework, the key step consists of bounding from
above the moment-generating function of zi, i = 1, . . . , nz:

EP exp(wzi) =
∫

exp(wzi)dPi(zi)

and then using the resulting bound in combination with the Markov inequality to
obtain upper bounds on the probability P(aT (z)x > b(z)) - often referred to as the
Bernstein approximation.
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A strong motivation for using the ambiguity set P(µ,d) is due to the fact that a tight
explicit bound on EP exp(wTz) is obtained easily in this setting by the Ben-Tal and
Hochman (1972) results described in Section 2. Indeed, due to the independence of
z1, . . . , znz we have:

sup
P∈P(µ,d)

EP exp(zTw) =
nz∏
i=1

sup
P∈P(µ,d)

EP exp(ziwi)

=
nz∏
i=1

(
di
2 exp(−wi) + di

2 exp(wi) + (1− di) exp(0)
)

=
nz∏
i=1

(di cosh(wi) + 1− di) . (4.43)

The worst-case expectation is evaluated separately for each component of z, avoiding
the computational burden of summation of 3nz terms as in (4.14). In Appendix 4.C
we show that in the setting of Wiesemann et al. (2014) without independence of
zi’s, obtaining the tight upper bound on exp(wTz) requires solving an optimization
problem involving an uncertain constraint on a convex function. This requires an
exponential number of constraints for an exact reformulation.

4.5.2 Safe approximations - results

We now show how (4.43) can be used to obtain safe approximations of (4.42). First,
we present two simple safe approximations in order of increasing tightness. Later,
we show that the (µ, d) information is particularly suitable for obtaining even tighter
safe approximations, based on the exponential polynomials.
The first approximation requires the use of Theorem 2.4.4 of Ben-Tal et al. (2009),
repeated in Appendix 4.B.1.

Theorem 4.1 If for a given vector x there exist u,v ∈ Rnz+1 such that (x,u,v)
satisfies the constraint system

(ai)Tx− bi = ui + vi, 0 ≤ i ≤ nz

u0 +
nz∑
i=1
|ui| ≤ 0

v0 +
√

2 log(1/ε)
√

nz∑
i=1

σ2
i v

2
i ≤ 0,

(4.44)

where

σi = sup
t∈R

√
2 log (di cosh(t) + 1− di)

t2
, (4.45)
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then x is feasible to (4.42), that is, constraint system (4.44) is a safe approximation
of (4.42). Moreover, (4.44) is the robust counterpart of the following robust constraint

aT (z)x ≤ b(z), ∀z ∈ U , where [a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi[a0
i ; b0

i ], (4.46)

and

U =

z ∈ Rnz :
√√√√ nz∑
i=1

z2
i

σ2
i

≤
√

2 log(1/ε), −1 ≤ zi ≤ 1, i = 1, . . . , nz

 .
Proof. The proof follows the steps leading to Theorem 2.4.4 from Ben-Tal et al.
(2009). First, we need to find scalars µ−i , µ+

i , σi, where i = 1, . . . , nz such that:
1∫
−1

exp(tzi)dPi(zi) ≤ exp
(

max{µ−i , µ+
i }+ σ2

i

2

)
, ∀t ∈ R, ∀P ∈ P(µ,d).

By (4.43) we have sup
P∈P(µ,d)

{
1∫
−1

exp(tzi)dPi(zi)
}

= di cosh(t) + 1− di. Thus, for each i

we need to find µ−i , µ
+
i , σi such that:

di cosh(t) + 1− di ≤ exp
(

max{µ−i t, µ+
i t}+ σ2

i t
2

2

)
, ∀t ∈ R.

Setting µ−i = µ+
i = 0, we then need σi such that

di cosh(t) + 1− di ≤ exp
(
σ2
i t

2

2

)
, ∀t ∈ R ⇔

⇔ σ2
i ≥ gi(t) = 2

t2
log (di cosh(t) + 1− di) , ∀t ∈ R.

Thus, we look for the maximum value of gi(t) over the real axis. From the definition
of gi(t) we know that it is finite, nonnegative, and differentiable everywhere except
for 0. By de l’Hôpital rule we have that lim

t→0
gi(t) = di. It holds that lim

t→±∞
gi(t) = 0.

The value of σi can be obtained by means of a numerical analysis. Figure 4.4 presents
the plot of σ2

i as a function of di.
From here, by inserting the values µ−i = µ+

i = 0, and σi into Theorem 2.4.4 of Ben-
Tal et al. (2009) (see Appendix 4.B.1), we obtain that robust constraint (4.46) with
U defined as above, is a safe tractable approximation of chance constraint (4.42). By
the same theorem, it holds that (4.44) is the robust counterpart of (4.46). �

Constraint system (4.44) involves only linear and second-order conic constraints,
making it highly tractable even for large-dimensional problems.
The second safe approximation is tighter and relies on the somewhat more compli-
cated mathematical machinery of Ben-Tal et al. (2009).
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Figure 4.4 – Plot of σ2
i as a function of di.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

di

σ
2 i

Theorem 4.2 If there exists α > 0 such that (x, α) satisfies the constraint

(a0)Tx−b0+α log
(
nz∑
i=1

(
di cosh

(
(ai)Tx− bi

α

)
+ 1− di

))
+α log(1/ε) ≤ 0, (4.47)

then x satisfies constraint (4.42). That, is (4.47) is a safe approximation of (4.42).

Proof. See Appendix 4.B.2. �

Similar to Theorem 4.1, one can construct an explicit convex uncertainty set U for
which (4.47) is the robust counterpart of (4.46) corresponding to U . Constraint (4.47)
is convex in (x, α), being a sum of a linear function and nz perspective functions of the
convex log-sum-exp function, see Boyd and Vandenberghe (2004). For that reason, it
can be handled with convex optimization algorithms such as Interior Point Methods.

4.5.3 Towards better safe approximations - exponential polynomials

Ben-Tal et al. (2009) discuss the fact that the bounds obtained using a single expo-
nential function can still be improved by, instead of the moment-generation function,
constructing the worst-case expectation of exponential polynomials:

γ(s) =
L∑
ν=0

cν exp{ωνs}, (4.48)

to bound the probability of constraint violation, where cν , ων , ν = 0, . . . , L are com-
plex numbers and

γ(·) is convex and nondecreasing, γ(s) ≥ 0, γ(0) ≥ 0, γ(s)→ 0, s→ −∞.
(4.49)

The worst-case expectation of the exponential polynomial γ(s), similar to the worst-
case expectation of the moment-generating function (4.43), can then be used to obtain
better upper bounds on P

(
aT (z)x > b(z)

)
. In fact, the bound found in Theorem 4.2
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is obtained using a special case of (4.48), where L = 0, c0 = ω0 = 1. The difficulty of
using general polynomials (4.48) lies in the (un)availability of tight, computationally
tractable upper bounding function Ψ(w) on (4.48):

EPγ

(
w0 +

nz∑
i=1

wizi

)
≤ Ψ(w), ∀P ∈ P .

In the following, we show that under (µ, d) information, the result of Ben-Tal and
Hochman (1972) can be easily applied in this case as well. Indeed, the corresponding
supremum over P(µ,d) is given by:

Ψ(w) = sup
P∈P(µ,d)

EPγ
(
w0 +

nz∑
i=1

ziwi

)
=

L∑
ν=0

cν exp{ωνw0}
nz∏
i=1

(di sinh(ωνwi) + 1− di) .
(4.50)

Now, we can use Proposition 4.3.1 from Ben-Tal et al. (2009) to obtain the following
result.

Theorem 4.3 Consider an exponential polynomial γ(s) satisfying (4.49), the corre-
sponding function Ψ(w) and the set Γε such that:

Γε = {x : ∃α > 0 : Ψ(αw) ≤ ε} , wi = (ai)Tx−bi, i = 1, . . . , nz. (4.51)

Then, any x ∈ clΓε is also feasible for the chance constraint (4.42).

Proof. See Appendix 4.B.3. �

It is also important to note that constraint (4.51) is convex representable in (x, α).
Theorem 4.3 extends the results of Ben-Tal et al. (2009), which provides a safe
approximation using only known supports and means of the components zi.

4.5.4 Safe tractable approximations - simple experiment

We illustrate now the differences between (i) the power of the three approximations
of the previous sections, and (ii) knowing and not knowing the MAD. We consider
here the following problem from Section 4.3.6.2 of Ben-Tal et al. (2009):

max
x0

x0

s.t. sup
P∈P(µ,d)

P
(
x0 +

nz∑
i=1

xizi > 0
)
≤ ε

xi = 1, i = 1, . . . , nz.

(4.52)

We solve this problem using all three safe tractable approximations of the chance
constraint, for two different cases:
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Table 4.7 – Maximum values of x0 in problem (4.52), depending on the safe tractable approximation
used, probability bound, and the assumptions on the knowledge about d.

ε Maximum x0

Safe approximation Theorem 1 Theorem 2 Theorem 3

10−1 Unknown d -24.28 -24.21 -20.43

d = 0.5 -17.16 -17.14 -14.48

10−2 Unknown d -34.34 -34.13 -30.55

d = 0.5 -24.27 -24.20 -21.69

10−3 Unknown d -42.05 -41.67 -38.34

d = 0.5 -29.73 -29.60 -27.25

• no information about d - which corresponds to setting di = 1, i = 1, . . . , nz (the
largest possible value for di, see Remark 4.1, about the Edmundson-Madansky
bound when d is maximum possible),

• knowing that di = d = 0.5, i = 1, . . . , nz.

We consider three probability levels: ε ∈ {10−1, 10−2, 10−3} and nz = 128. Whereas
safe approximations corresponding to Theorems 1 and 2 are well-defined by the the-
orems, we need to choose the exponential polynomial used in the approximation of
Theorem 3. As Ben-Tal et al. (2009), we use the polynomial

γd,T (s) = exp(s)χc∗(s),

where
χc∗(s) =

d∑
ν=0

(c∗ν exp(ıπνs/T ) + c∗ν exp(−ıπνs/T ))

is an optimal solution of the best uniform approximation problem:

c∗ ∈ argmin
{

max
−T≤s≤T

|exp(s)χc(s)−max{1 + s, 0}| : 0 ≤ χc(s) ≤ χc(0) = 1, ∀s ∈ R
}

and exp(s)χc(s) is convex nondecreasing on [−T, T ], with parameter values d = 11
(‘degree of approximation’ of the function max{1 + s, 0}), T = 8 (‘window width’ on
which the function max{1 + s, 0} is approximated).
Table 4.7 presents the results. First, for all safe approximations and all security lev-
els, one can observe a substantial value of having the information about parameters
di. For example, for ε = 0.01 and safe approximation according to Theorem 3, the
optimal solution obtained without knowledge of d is −30.55, whereas the correspond-
ing number for known d = 0.5 is −21.69. A similar pattern can be observed for other
values of ε and other approximations.
Secondly, one can see the increasing power of the safe tractable approximations that
use exactly the same information. For example, for ε = 10−3 and d = 0.5 the
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subsequent optimal values are −29.73, −29.60 and −27.25. For all values of ε and
d there is a bigger difference between the second and third tractable approximation
than between the first and second.
This example illustrates the extra power due to the knowledge of d, giving a strong
reason to estimate this quantity in order to obtain better chance constraint approx-
imations. Also, the difference between the quality of safe tractable approximations
of Theorems 1, 2, and 3 illustrates that the power of exponential polynomial-based
approximations make them an attractive tool if the parameters a, b, µ, and d can be
estimated with sufficient precision.

4.5.5 Antenna array - chance constraints

Here we consider an application of our safe tractable approximations to scalar chance
constraints to an antenna design problem under implementation error uncertainty.
Antenna is a device for sending and receiving electromagnetic signals. The signal
emitted by an antenna corresponds to a function called diagram. An antenna array
is a system of several antennas whose diagram is the sum of the diagrams of the
individual components. In designing the antenna array the engineer can amplify the
power sent to each of the antennas so as to obtain an array whose diagram satisfies
some desired properties. For more information we refer the reader to Section 3.3 of
Ben-Tal et al. (2009).
In our example, the setting is as follows. There are n = 40 ring-shaped antennas
belonging to the XY plane in R3. The radius of the k-th antenna is defined as k/n
and the diagram D(ϕ) of the antenna array is defined as a sum of diagrams Dk(ϕ)
of the antennas:

Dk(ϕ) = 1
2

2π∫
0

cos
(

2πk
40 cos(ϕ) cos(γ)

)
dγ, k = 1, . . . , 40.

The objective of the problem is to minimize the maximum of the diagram modulus
in the sidelobe angle 0 ≤ ϕ ≤ 70◦:

max
0≤ϕ≤70◦

∣∣∣∣∣
n∑
k=1

xkDk(ϕ)
∣∣∣∣∣ ,

where xk are the decision variables - the amplification weights, subject to the restric-
tions that:

• the diagram in the interval 77◦ ≤ ϕ ≤ 90◦ is nearly uniform:

77◦ ≤ ϕ ≤ 90◦ ⇒ 0.9 ≤
∑

xkDk(ϕ) ≤ 1,
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• the diagram in other angles is not too large:∣∣∣∣∣
n∑
k=1

xkDk(ϕ)
∣∣∣∣∣ ≤ 1, 70◦ ≤ ϕ ≤ 77◦.

We assume that the implementation error affects the weight of the k-th antenna in
the following fashion:

xk 7→ x̃k = (1 + zkρ)xk, k = 1, . . . , n,

where zk, k = 1, . . . , n, are independent random variables with supports contained
in [−1, 1], with mean 0 and MAD equal to d:

P = {P : supp(zi) ⊂ [−1, 1], EP(zi) = 0, EP|zi| = d, zi ⊥⊥ zj, ∀i 6= j} .

The problem to be solved is:

min
τ,x

τ

s.t. P (∑Dk(ϕi)x̃k ≤ τ) ≥ 1− ε, ∀P ∈ P , ∀0 ≤ ϕi ≤ 70◦

P (∑Dk(ϕi)x̃k ≥ −τ) ≥ 1− ε, ∀P ∈ P , ∀0 ≤ ϕi < 70◦

P (∑Dk(ϕi)x̃k ≤ 1) ≥ 1− ε, ∀P ∈ P , ∀70◦ ≤ ϕi < 77◦

P (∑Dk(ϕi)x̃k ≥ −1) ≥ 1− ε, ∀P ∈ P , ∀70◦ ≤ ϕi ≤ 77◦

P (∑Dk(ϕi)x̃k ≤ 1) ≥ 1− ε, ∀P ∈ P , ∀77◦ ≤ ϕi ≤ 90◦

P (∑Dk(ϕi)x̃k ≥ 0.9) ≥ 1− ε, ∀P ∈ P , ∀77◦ ≤ ϕi ≤ 90◦,

(4.53)

where ϕ1, ..., ϕN is a ‘fine grid’ of equidistant points in [0◦, 90◦].
In the numerical experiment we set N = 400, d = 0.5. The chance constraints are
reformulated using the ball-box uncertainty set of Theorem 1. We solve the problem
in the following settings:

• nominal solution, with ρ = 0 (no implementation error),

• robust solutions where both ε and ρ can get values in {0.001, 0.01, 0.05}.

In total, we obtain 10 solutions. For each of them we report the optimal (worst-case)
objective value. Next to that, we conduct a simulation study for each solution, where
the realized error magnitude ρ̂ can take the values in {0.001, 0.01, 0.05}. In this study,
for each solution we sample 104 scenarios of the implementation error ẑ ∈ [−1,−1]n
and we report on:

• the percentage of samples for which at least one of the constraints of the prob-
lem (4.53) is violated,
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Table 4.8 – Minimum worst-case τ∗ and mean simulated values of τ̂ for each of the solutions. ε and
ρ denote the parameter values used in problem (4.53) to obtain a given solution, and ρ̂ denotes the
error magnitude of the given sample of 104 implementation error vectors z.

ε - 0.001 0.01 0.05

ρ 0 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05

Worst-case τ × 10−2 - 2.68 5.86 8.12 34.05 5.77 7.92 16.04 5.68 7.71 11.80

Average τ̂ × 10−2
ρ̂ = 0.001 4270 5.64 7.66 31.91 5.59 7.53 14.70 5.54 7.38 10.84

ρ̂ = 0.01 42706 7.03 7.78 31.91 6.96 7.65 14.70 6.91 7.51 10.85

ρ̂ = 0.05 213534 14.00 8.61 31.91 13.73 8.46 14.94 13.64 8.36 11.12

Table 4.9 – Empirical probabilities of violating at least one constraint. ‘Violation probability (%)’
denotes the percentage of simulated implementation error vectors for which at least one of the con-
straints of the problem (4.53) has been violated.

ε - 0.001 0.01 0.05

ρ 0 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05

Violation probability (%)
ρ̂ = 0.001 100 0.00 0.00 0.00 0.02 0.00 0.00 0.18 0.00 0.00

ρ̂ = 0.01 100 84.39 0.00 0.00 84.87 0.00 0.00 85.67 0.20 0.00

ρ̂ = 0.05 100 99.57 63.89 0.00 99.66 62.97 0.03 99.61 67.35 0.43

• the perturbed objective function value τ̂ = max
0◦≤ϕi≤70◦

|∑ x̂kDk(ϕi)|.

Results are given in Tables 4.8 and 4.9. The nominal solution becomes senseless
already with the implementation error ρ̂ = 0.001. At the same time, the robust
solutions yield good performance even with the largest ρ̂, both in terms of the τ̂

values and the percentage of drawings for which at least one constraint is violated.
The difference between the nominal and robust solutions can be seen in Figures 4.5
and 4.6, where the diagrams are plotted for the situations (i) with no implementation
error, and (ii) with a single sample of implementation error ρ̂ = 0.001. In both cases,
the solutions yield good ‘desired’ diagrams in the no-error case. However, in the
situation with implementation error (lower panels), the robust solution still ‘fits’ into
the desired bounds, which is completely not the case for the nominal solution.

4.6 Summary

In this paper, we have considered two types of ambiguous stochastic constraints
- expected feasibility constraints and chance constraints. In contrast to previous
research, which employs the variance as a dispersion measure, we use the mean ab-
solute deviation. This allows us to use the 1972 results of Ben-Tal and Hochman
(1972) on tight upper and lower bounds on the expectation of a convex function
of a random variable, and thus, to provide tractable exact robust counterparts for
expected feasibility constraint and to obtain safe tractable approximations of am-
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Figure 4.5 – Nominal solution - diagram plots. Upper panel - situation without implementation
error. Lower panel - implementation error, single trajectory.
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Figure 4.6 – Robust solution - diagram plots. Upper panel - situation without implementation
error. Lower panel - implementation error, single trajectory.
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biguous chance constraint. Numerical examples show the proposed methodology to
perform well and, in particular, to offer substantial improvements in the worst-case
expected performance and probabilistic guarantees on constraints’ feasibility. In par-
ticular, for the worst-case expected feasibility constraints we identify an important
class of functions for which we can relax the assumption of independence of random
variables needed by Ben-Tal and Hochman (1972), and for which we construct highly
computationally tractable approximations. Numerical experiments show that these
approximations yield good practical performance and can be preferred in settings
where the independence assumption on the random variables does not hold.

Appendices

4.A Estimating µ, d, and β

As the bounds on the expectation of a random variable depend on the parameters a,
b, µ, d, and β, it is necessary to know or estimate these parameters, and decide ‘how
much information is actually available’. Here, we provide the reader with a simple
procedure to achieve this.
First of all, it is necessary to verify the independence of the components of z. This can
be achieved using the nonparametric tests of Pinkse (1998) and Ghoudi et al. (2001).
If the independence hypothesis is rejected, factorization techniques mentioned in
Section 4.3.1 can be used to decompose the random variable into a combination of
factors.
Assuming that the independence holds or is achieved by factorization, we operate
here with the one-dimensional case for z, and the multi-dimensional case follows
straightforwardly due to the independence of the components of z. Appendix 4.D
describes the properties of the MAD in relation to the variance and formulas for the
MAD of several important classes of probability distribution.
First, we introduce estimators of µ, d, and β and discuss their asymptotic properties.
Based on these results, we provide a procedure that can be used to assess whether the
amount of information available is sufficient to use the results for the (µ, d) ambiguity
set or the (µ, d, β) ambiguity set.
Let z(1), . . . , z(n) be a random sample of the values of z. We assume the interval [a, b]
to be fixed by the user. As estimators for µ, d, and β we consider

• µ̂ = z̄ = 1
n

∑n
i=1 zi, the sample mean;

• d̂ = 1
n

∑n
i=1 |zi − z̄|, the sample MAD;
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• β̂ = 1
n

∑n
i=1 1z̄,∞(zi), the sample analogue of β.

Let θ̂ =
(
µ̂, d̂, β̂

)>
and θ = (µ, d, β)T . Then we have

√
n(θ̂ − θ) =

√
n

1
n

n∑
i=1

ψ̃(zi) + op(1),

with ψ̃(z) = (ψ̃µ(z), ψ̃d(z), ψ̃β(z))T defined by

ψ̃µ(z) = z − µ,

ψ̃d(z) = 2
(

(z − µ) + ([z1(µ,∞)(z)− zβ]− 1
2d)− µ(1(µ,∞)(z)− β)

)
,

ψ̃β(z) = (1(µ,∞)(z)− β)− (z − µ)p(µ),

where p(µ) stands for the density function of z evaluated at µ, assuming that P
represents a continuous distribution (in which case p(·) is assumed to be continuous
in a neighborhood of µ). The expression for ψ̃µ(z) is standard. The expression ψ̃d(z)
is based on Gastwirth (1974). The expression ψ̃β(z) follows from arguments presented
in Gastwirth (1974). As a consequence, we find for the limit distribution of θ̂:

√
n(θ̂ − θ)→d N(0, cov(ψ̃)). (4.54)

The asymptotic covariance matrix cov(ψ̃) = E(ψ̃(z)ψ̃(z)T ) can be estimated consis-
tently by

ĉov(ψ) = 1
n

n∑
i=1

̂̃
ψ(zi)

̂̃
ψ(zi)T ,

with ̂̃
ψ(zi) obtained from ψ̃(zi) by replacing µ, d, and β by their estimates µ̂, d̂, and

β̂, and where p(·) is replaced by some (appropriately chosen) consistent estimator
p̂(·).

We now proceed to the proper estimation of the parameters of the distribution of z.
The parameters satisfy the bounds

a ≤ µ ≤ b, 0 ≤ d ≤ dmax, β ≤ β ≤ β,

with
rβ = β − β = 4− 1

2
d(b− a)

(µ− a)(b− µ) .

We can estimate dmax consistently by d̂max (by estimating µ by µ̂) and rβ consistently
by r̂β (by estimating µ by µ̂ and d by d̂). If d̂max is not significantly different from 0,
then there is not much empirical support for assuming that we ‘know’ d. Similarly,
if r̂β is not significantly different from 0, then there is not much empirical support
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for assuming that we ‘know’ β. The (asymptotic) accuracy of d̂max and r̂β can
easily be quantified using the ‘delta method’, resulting in

√
n
(
d̂max − dmax

)
→d

N(0, σ2
dmax) and

√
n (r̂β − rβ)→d N(0, σ2

rβ
).4 With these definitions, we present now

our procedure for estimation of the information basis for the use of the bounds:

1. Estimate µ by µ̂, and quantify the accuracy of the latter (using the limit distri-
bution given in (4.54)). Decide whether the accuracy is high enough to proceed
under the assumption of a ‘known’ µ. If so, go to step 2.

2. Test the hypothesis H0 : dmax = 0 against H1 : dmax > 0, using as test statistic
d̂max/

√
σ̂dmax/n. This is a one-sided test. If H0 is rejected (H1 accepted), go to

step 3.

3. Estimate d by d̂, and quantify the accuracy of the latter (using the limit distri-
bution given in (4.54)). Decide whether the accuracy is high enough to proceed
under the assumption of a ‘known’ d. If so, go to step 4.

4. Test the hypothesis H0 : rβ = 0 against H1 : rβ > 0, using as test statistic
r̂β/

√
σ̂rβ/n. This is a one-sided test. If H0 is rejected (H1 accepted), go to step

5.

5. Estimate β by β̂, and quantify the accuracy of the latter (using the limit distri-
bution given in (4.54)). Decide whether the accuracy is high enough to proceed
under the assumption of a ‘known’ β.

It may turn out that credible information is available only about the support, or
support and the mean of z. In the first case, when only the support-including interval
[a, b] is known, a larger sample is needed to estimate other parameters. In case the
support [a, b] and µ are known, one may use the results of Edmundson-Madansky
for the upper bound (see Remark 4.1) and Jensen for the lower bounds (see Remark
4.2).

4.B Safe approximations of chance constraints

In this Appendix we list the relevant results from Ben-Tal et al. (2009) used to prove
Theorems 4.1 and 4.2, and 4.3 adopted to the notation of this paper.

4The ‘delta method’ yields σ2
dmax

= r2var(ψ̃µ), with r = ∂dmax
∂µ = 2(b+a−2µ)

b−a . Similarly, we have

σ2
rβ

= sT cov((ψ̃µ, ψ̃d)T )s, with s = ∂rβ
∂(µ,d)T =

(
−d(b−a)(b+a−2µ)

2((µ−a)(b−µ))2 ,− b−a
2(µ−a)(b−µ)

)T
.
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4.B.1 Safe approximation in Theorem 1

In the proof of Theorem 4.1 the following result is used.

Theorem 4.4 (Ben-Tal et al. (2009), Theorem 2.4.4) Assume that:

P.1. zi, i, . . . , nz are independent random variables such that supp(zi) ⊆ [a−i , a+
i ],

i = 1, . . . , nz,

P.2. the distributions Pi of the components zi are such that∫
exp(ts)dPi(s) ≤ exp

(
max{µ+

i t, µ
−
i t}+ 1

2σ
2
i t
)
, ∀t ∈ R, (4.55)

with known constants µ−i ≤ µ+
i .

Then, the robust constraint

aT (z)x ≤ b(z), ∀z ∈ U , where [a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi[a0
i ; b0

i ], (4.56)

and

U =


z ∈ Rnz : ∃u ∈ Rnz :

µ−i ≤ zi − ui ≤ µ+
i , i = 1, . . . , nz√

nz∑
i=1

u2
i

σ2
i
≤
√

2 log(1/ε)

a−i ≤ zi ≤ a+
i , i = 1, . . . , nz


,

is a safe approximation of (4.42). Moreover, x satisfies (4.56) if and only if there
exist u,v ∈ Rnz+1 such that x,u,v satisfy the following set of constraints::

(ai)Tx− bi = ui + vi, i = 0, . . . , nz
u0 +

nz∑
i=1

max
{
a+
i ui, a

−
i ui

}
≤ 0

v0 +
nz∑
i=1

max
{
µ+
i vi, µ

−
i vi

}
+
√

2 log(1/ε)
√

nz∑
i=1

σ2
i v

2
i ≤ 0.

4.B.2 Safe approximation in Theorem 2

The proof of Theorem 4.2 relies on the following result from Ben-Tal et al. (2009).

Theorem 4.5 (Ben-Tal et al. (2009), Proposition 4.2.2) Assume that the dis-
tribution P of the random perturbation z is such that

log
(
E exp

(
wTz

))
≤ Φ(w),
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where w = (w1, . . . , wnz) for some known convex function Φ(·) that is finite every-
where and satisfies Φ(0) = 0. Then, any (w0,w) feasible for

inf
β>0

{
w0 + βΦ

(
β−1w

)
+ β log(1/ε)

}
≤ 0

is feasible for the chance constraint

P
(
w0 +

nz∑
i=1

wizi > 0
)
≤ ε.

Proof.[Theorem 4.2.] We show that the function Φ(w):

Φ(w) = log(Ψ(w)), Ψ(w) = sup
P∈P(µ,d)

EP exp(wTz) =
nz∏
l=1

(di cosh(wi) + 1− di) .

satisfies the conditions of Theorem 4.5. Indeed, from Ben-Tal and Hochman (1972)
we know that Ψ(w) gives a tight upper bound on EP exp(wTz). Also, the function
Φ(w) is convex as it is the log-sum-exp function, see Boyd and Vandenberghe (2004),
and it holds that Φ(0) = 0. Thus, it is sufficient to substitute

wi := (ai)Tx− bi, i = 0, . . . , nz,

to arrive at constraint (4.47) from Theorem 4.2. �

4.B.3 Safe approximation in Theorem 3

Theorem 4.3 follows from the following result from Ben-Tal et al. (2009):

Theorem 4.6 (Ben-Tal et al. (2009), Proposition 4.3.1) Consider a generat-
ing function γ(s) satisfying (4.49). Let Ψ(w) be a finite convex function satisfying

Ψ(w) ≥ EP

(
γ

(
w0 +

nz∑
i=1

wizi

))
, Ψ(w + t[−1, 0, . . . , 0])→ 0, when t→∞.

Then, the inequality
inf
β>0

(
βΨ(β−1w)− βε

)
≤ 0

is a safe approximation of the chance constraint

P
(
w0 +

nz∑
i=1

wizi > 0
)
≤ ε.

Proof.[Theorem 4.3.] The result follows from using Ψ(w) defined as in (4.50). This
function clearly satisfies the conditions of Theorem 4.6. Then, the only remaining
part is substituting the relevant terms for wi, i = 0, . . . , nz. �
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4.C Expectation of exp(wTz) without independent components

We now consider obtaining an upper bound on exp(wTz) using the results of Wiese-
mann et al. (2014), where the components of the random variable z are not assumed
to be independent. For that reason, the distributional uncertainty set is given by:

P ′ = {P : supp(zi) ⊆ [−1, 1], EPzi = 0, EP|zi| = di, i = 1, . . . , nz} .

To obtain the worst-case expectation, one needs to solve the following problem:

min
t

t

s.t. EP exp(zTw) ≤ t, ∀P ∈ P ′
(4.57)

The uncertainty set for the distributions P in their framework is:

P ′ =

P :
EP


 I

0

 z +

 0

I

u
 =

 0

d


P((z,u) ∈ C) = 1

 , (4.58)

where C = {(z,u) : −1 ≤ z ≤ 1, u ≥ z, u ≥ −z, u ≤ 1, u ≥ 0}. Then,
the problem to solve is equivalent to:

min
κ,λ≥0,β1,β2,t

t

s.t. βT2 d+ 1T (κ− λ) ≤ t

zTβ1 + uTβ2 + 1T (κ− λ) ≥ exp(zTw), ∀(z,u) ∈ C

(4.59)

The last line of (4.59) involves a constraint on the function exp(zTx) over C. Since
exp(zTx) is strictly convex in z, an equivalent reformulation of such a constraint
would have to take into account all 3nz vertices of C. The number 3nz comes from
the fact that per component, the uncertainty set is a triangle Ci = {(zi, ui) : −1 ≤
zi ≤ 1, ui ≥ zi, ui ≥ −zi, ui ≤ 1} .

4.D Properties of the MAD

In this Appendix we provide some properties of the MAD and the formulas for several
well-known probability distributions, based on Ben-Tal and Hochman (1985).
If we denote by σ2 the variance of the random variable z, whose distribution is known
to belong to the set P(µ,d) (see 4.6), then it holds that:

d2

4β(1− β) ≤ σ2 ≤ d(b− a)
2 .
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In particular, since
d2 ≤ 4β(1− β)σ2 ≤ σ2,

it holds that d ≤ σ. For a proof, we refer the reader to Ben-Tal and Hochman (1985).
For several specific distibutions, an explicit formula for d is available:

• Uniform distribution on [a, b]:

d = 1
4(b− a)

• Normal distribution N(µ, σ2):

d =
√

2
π
σ

• Gamma distribution with parameters λ and k (for which µ = k/λ):

d = 2kk
Γ(k) exp(k)

1
λ
.

Ben-Tal and Hochman (1985) provide an explicit formula for the MAD for general
stable distributions. A stable distribution is defined via its location parameter κ, scale
parameter D > 0, measure of skewness −1 ≤ λ ≤ 1, and characteristic exponent
0 < α ≤ 2. Important distributions belonging to this class are, for example, the
normal and Cauchy distributions. The characteristic function of a stable distribution
is given by

log Ψz(t) = logE exp(ıtz) = ıκt−D|t|α
(

1 + ıλsign(t) tan
(1

2πα
))

.

Stable distributions are are the only possible limiting laws for sums of independent
identically distributed random variables. For properties of the stable distributions
we refer the reader to Ben-Tal and Hochman (1985), who prove that for 1 < α ≤ 2
the MAD of a stable random variable is given by:

d = D1/αH(λ, α),

where

H(λ, α) = 2
π

Γ(1− 1/α)
(1 + A2)(α−1)/2a (cos ((1− 1/α) arctanA) + A sin ((1− 1/α) arctanA)) ,

and A = λ tan
(

1
2απ

)
. In case of α ≤ 1 the mean of the random variable z does not

exist.
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4.E Worst-case expectations: synthesis of antenna array

In this companion we illustrate the use of the (µ, d) results in the context of incor-
poration of the implementation error in problems with nonlinear constraints. We
consider the antenna design problem from Section 7.1.2 of Ben-Tal et al. (2009). We
first introduce some necessary properties of antenna design.
The directional distribution (radiation pattern) of energy sent by a single antenna
can be described in terms of an antenna diagram which is a complex-valued function.
Its interpretation (in polar coordinates) is that the modus of the diagram stands for
the amplitude of the radiation intensity at a given (fixed) distance whereas the angle
of the complex number stands for the wave length (frequency). The modulus of the
diagram can be changed by the amount of power allocated to the given antenna. If
a device consists of more than one antenna, its diagram is a sum of the diagrams of
the particular antennas. Therefore, it is possible to manipulate the power allocated
to multiple antennas so that the diagram of an entire device is as close to (some)
desired function as possible.
In this problem, n harmonic oscillators are placed at the points ki, k = 1, . . . , n,
with i being the unit vector in the direction of the x-axis in R3. The objective is to
concentrate the energy sent by the antennas within a certain region of the 3-D space,
defined using the angle that 3-D directions make with the x axis. The diagram of
the k-th antenna sent in direction e is given by:

Dk(ϕ) = exp (2πı cos(ϕ)k/λ) ,

where ϕ is the angle between direction e and the direction i of the X-axis, λ is
the wavelength, and ı is the imaginary unit. With complex weights vector x =
(x1, . . . , xn) ∈ Cn, the diagram of the antenna array is the sum of diagrams of the
antennas:

D(ϕ) =
n∑
k=1

xkDk(ϕ).

Energy sent by an antenna in the direction given by an angle ϕ from the x-axis is
proportional to the L2 norm of the diagram. The objective is to send as much energy
as possible into the region ϕ ∈ [0,∆] by minimizing the weighted L2 norm of the
diagram D(·) in the sidelobe angle (SA) ∆ ≤ ϕ ≤ π:

‖D(·)‖SA =
 1

1 + cos(∆)

π∫
∆

|D(ϕ)| sin(ϕ)dϕ
1/2

.

The quantity ‖D(·)‖SA can also be formulated as ‖Ax‖ where A ∈ Cn×n is such
that

A = H1/2, H ∈ Cn×n : Hpq = 1
1 + cos ∆

π∫
∆

Dp(ϕ)Dq(ϕ) sin(ϕ)dϕ.
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For the problem to be bounded, a normalization restriction is added: < (D(0)) ≥ 1,
where <(·) and =(·) are the real and imaginary parts of a complex number. Weights
xk represent the electric power sent to each of the antennas and as such, are subject
to implementation error. We assume that the weights xk are distorted by the relative
implementation error ηk ∈ C in the following fashion:

xk 7→ (1 + ηk)xk.

We assume that the real and imaginary parts of the implementation error are inde-
pendent random variables with supports included in the interval [−ρ, ρ], with mean
0 and MAD equal to θρ:

P = {P : supp(=(ηk)), supp(<(ηk)) ⊂ [−ρ, ρ], EP<(ηk) = EP<(ηk) = 0,
EP|=(ηk)| = EP|<(ηk)| = θρ, =(ηk) ⊥ <(ηk), k = 1, . . . , n} .

The optimization problem is:

min
τ,x

τ

s.t. sup
P∈P

EP‖Ax(η)‖ ≤ τ

<
(

n∑
k=1

xk(1 + ηk)Dk(0)
)
≥ 1, ∀η ∈ supp(η),

(4.60)

where x(η) = [x1(1+η1), . . . , xn(1+ηn)]T , supp(η) = supp(η1)× . . .×supp(ηn). The
second constraint in the problem can be reformulated as a deterministic constraint:

<
(

n∑
k=1

xkDk(0)
)
≥ 1 + ρ

n∑
k=1
|< (xkDk(0))|+ ρ

n∑
k=1
|= (xkDk(0))| .

We solve problem (4.60) with n = 5 antennas, wavelength λ = 8 and ∆ = π/6 in two
ways:

• nominal: in this case we assume ρ = 0 (no implementation error)

• robust: we assume ρ = 0.01 (that is, implementation error of 1%) and
θ = 0.5.

To compare the nominal and robust solutions, we sample uniformly 104 random
perturbations η̂ from the set E(ρ̂) = {η : −ρ̂ ≤ <(ηk),=(ηk) ≤ ρ̂, k = 1, . . . , n},
with ρ̂ ∈ {0.01, 0.03, 0.05, 0.1} and compute the value ‖D(·)‖SA for x(η̂). Since the
normalization condition may not hold with perturbation, we normalize the diagrams
D(·) in such a way that |D(0)| = 1. Table 4.10 presents the results.
The nominal solution performs well only in case of no implementation error, yielding
an average value of 0.204, compared to 0.260 for the robust solution. However, already
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Table 4.10 – Results of the antenna design experiment. The numbers in the columns are the
mean values of simulated ‖D(·)‖SA (to be minimized in the optimization problem). The numbers in
brackets are standard deviations.

Simulated ‖D(·)‖SA

Solution Nominal Robust

ρ̂ = 0 0.204 (0.00) 0.260 (0.00)

ρ̂ = 0.01 0.424 (0.19) 0.262 (0.00)

ρ̂ = 0.03 1.107 (1.41) 0.278 (0.01)

ρ̂ = 0.05 1.223 (1.32) 0.308 (0.03)

ρ̂ = 0.1 1.277 (1.78) 0.424 (0.13)

with the relative implementation error equal to 1%, the robust solution performs
significantly better, yielding an average value 0.262 (st. dev. 0.0016), compared
to 0.424 (0.19) for the nominal solution. This relationship grows even bigger for
larger error values, compare 1.277 (1.78) to 0.424 (0.13) in case of 10% relative
implementation error. This illustrates that the (µ, d) results provide a good way of
tackling the implementation error in nonlinear constraints in a distributionally robust
way.

4.F MAD of aTz using the results of Wiesemann et al. (2014)

Problem (4.35) is equivalent, in line with the methodology of Wiesemann et al. (2014),
to:

sup
P(z,u)∈P ′

EP(z,u) max{aTz − aTµ,−aTz + aTµ} (4.61)

where

P ′ =

P : EP (Az +Bu) = b

P((z,u) ∈ C) = 1

 , C = {(z,u) : Cz +Du ≤ c} ,

where the vector u ∈ Rnz consists of components ui, each of which is an auxiliary
analysis variable corresponding to the MAD of zi. The first (moment condition) in
the definition of P ′ should ensure that the first moment of z is equal to µ and the
first moment of u is equal to d. We define thus:

A =

 I
0

 , B =

 0

I

 , b =

 µ
d

 .
The second (support) condition in the definition of P ′ should ensure that the support
of z is the unit box and that u indeed corresponds to the deviation of u. We need
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to ensure thus that:

‖z‖∞ ≤ 1, u ≥ z − µ, u ≥ µ− z, u ≥ 0, u ≤ 1,

where the last condition ensures boundedness of C, required by Wiesemann et al.
(2014). We ensure these conditions by setting:

C =



I

−I

I

−I

0

0


, D =



0

0

−I

−I

I

−I


, c =



1

1

µ

−µ

1

0


.

Wiesemann et al. (2014) prove (Theorem 1 in their paper) that under mild conditions
satisfied in our case, (4.61) is equivalent to the following LP:

min
φ1,φ2≥0,w,β,κ

w

s.t. bTβ + κ ≤ w

cTφ1 − aTµ ≤ κ

cTφ2 + aTµ ≤ κ

CTφ1 +ATβ = a

CTφ2 +ATβ = −a
DTφ1 +BTβ = 0
DTφ2 +BTβ = 0.

(4.62)
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CHAPTER 5

Efficient methods for several classes of ambiguous
stochastic programming problems under

mean-MAD information

5.1 Introduction

In practice, many decision makers are faced with uncertainty in some parameters of
their model. Consider, for example, customer demand in production planning, supply
of renewable energy in unit commitment problems, the precision of physical devices
in engineering design, and the return on investment in finance. In these problems,
the information on the uncertain parameter, based on e.g. historical data or expert
opinions, can either be limited or extensive. In the latter case, uncertainty is typically
modelled using random parameters with known probability distributions, whereas in
the former case the distributions are ambiguous, i.e. only partly known (Knight 1921).
In this paper, we address mathematical optimization problems where (some of) the
parameter distributions are ambiguous. One of our main contributions is that for
such problems we provide efficient solution methods that are easy to implement using
off-the-shelf software.
If the uncertain random parameters are revealed gradually over time, then we can
model the decision problem as a multi-stage stochastic programming (SP) problem
(see, e.g., the textbooks Birge and Louveaux (1997), Prékopa (1995), Shapiro et al.
(2009)) in which the planning horizon consists of multiple time stages. Under the
assumption that the probability distributions of the uncertain random parameters are
known, the problem is to determine so-called here-and-now decisions implemented
before (some of) these uncertain parameters are revealed and new decisions have
to be made. This process repeats itself over several stages and the objective is to
minimize the sum of the here-and-now costs and the expected future costs, taking the
distributions of the uncertain random parameters and the decisions in later stages
into account.
We, however, assume in line with practical experience that only limited information



172 Efficient methods for SP problems under mean-MAD information

on the distributions of the uncertain random parameters is available, and instead
of minimizing the expected costs, we take a distributionally robust (ambiguous) ap-
proach and minimize the worst-case expected costs over all possible (or admissible)
probability distributions.
Early contributions to the minimization of worst-case expectations are the works
of Scarf (1958) and Žáčková (1966). In the SP literature it has been referred to
as minimax problems, and is mainly considered within the framework of generalized
moment problems (Kemperman 1968), where the objective is to determine the worst-
case expectation of a given function under conditions on some (generalized) moments
of the uncertain random parameters. For a discussion on cases in which exact bounds
or approximation procedures are available, we refer to Edirisinghe (2011).
Moreover, Shapiro and Kleywegt (2002) and Shapiro and Ahmed (2004) use duality to
show that distributionally robust SP problems can be equivalently reformulated as a
standard SP problem in which the probability distributions of the random parameters
are known. The difference with our approach is that we can utilize the explicitly
known worst-case distributions under the given distributional information, instead
of using duality.
Recently, distributional uncertainty has gained the attention of the Robust Optimiza-
tion (RO) community. They treat the sets of admissible probability distributions as
uncertainty sets and use conic duality (see the references above and also, e.g., Isii
(1963), Shapiro (2001), and Ben-Tal et al. (2015)) to derive equivalent, computa-
tionally tractable forms of constraints on the worst-case expectation. Prominent
examples of this approach are the papers of Delage and Ye (2010) and Wiesemann
et al. (2014), who provide also good surveys of the existing approaches.
Despite these developments, solving distributionally robust SP problems remains
challenging for several reasons. First, it may be hard to determine the worst-case
probability distribution (maximizing the expected costs), even for given here-and-
now decisions. Second, it may be computationally intractable to determine optimal
here-and-now decisions taking into account all decisions in future time stages under
all possible realizations of the uncertain parameter. Third, the problem may con-
tain integer decision variables, and fourth, solving the problem may require special
purpose algorithms that are not available in standard software packages.
In this paper we overcome these four challenges for a large class of distributionally
robust SP problems. In the remainder of this introduction we discuss each of these
major challenges separately.
In our setting, the first challenge (evaluating the worst-case expectation) is void
because of the particular distributional information we use — the supports, means,
mean absolute deviations from the means (MADs), and the probability that a given
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variable is at least equal to its mean, which are easy to estimate using e.g. the
procedures given in in Postek et al. (2015). Under such distributional information,
we can use a result of Ben-Tal and Hochman (1972), to prove that the worst-case and
best-case marginal distributions are discrete with at most three possible realizations
if the distributionally robust SP problem only contains continuous decision variables.
The well-known Edmundson-Madansky upper bound (Edmundson 1956) and Jensen
lower bound (Jensen 1906) are similar in spirit to the results we use. The main
difference between our results and the work of e.g. Shapiro and Kleywegt (2002)
and Shapiro and Ahmed (2004) is that in our case we obtain simple worst-case
and best-case distributions that are the same for every here-and-now decision. This
indeed simplifies matters considerably: the problem becomes much more tractable
and from the practical perspective it is much more intuitive that the distributions do
not depend on the (initial) decisions. Our approach is applicable only if the random
parameters are stochastically independent. This is obviously a restrictive assumption
but an advantage of our approach is that it can exploit this property.
The difference between the worst-case and best-case expectations of the objective
gives an easy-to-calculate upper bound on the value of distributional information
(VDI); see e.g. Delage et al. (2015). The VDI is related to the value of the stochastic
solution (VSS) introduced by Birge (1982). However, the VSS measures the added
value of solving the stochastic problem instead of its deterministic version, whereas
the VDI measures the added value of (or the willingness to pay for) knowing the
probability distributions of the random parameters. The VDI is particularly relevant
in a data-driven environment where it can be used to assess the costs of gathering
more data.
If all worst-case distributions are discrete with three possible realizations (as we will
find), then the distributionally robust SP problem reduces to a standard SP problem
with 3n realizations (or scenarios) of the joint distribution of the n random param-
eters. This exponential number of scenarios explains the second major challenge
(computational tractability): it is the reason why the problem is computationally
intractable from an RO point of view. For this reason, the problem is often approx-
imated by imposing decision rules on future decisions as a function of the revealed
random parameters; see Garstka and Wets (1974) for the first contribution in the SP
literature. In the RO literature Ben-Tal et al. (2004) first formulated the decision
rules as affine functions of the revealed parameters, and their approach has been
extended to other function classes by e.g. Chen and Zhang (2009), Ben-Tal et al.
(2009) and Bertsimas et al. (2011). From an SP perspective, however, dealing with
3n scenarios is not unusual and there exist many solution methods to (approximately)
solve such problems. In Section 5.4 we give a brief overview of these methods. In
particular, in Appendix 5.B we present a particularly efficient implementation of such
methods tailored to the problem at hand.
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The third major challenge (inclusion of integer variables) is relevant since many deci-
sion problems require integer decision variables to be modelled realistically. Consider
e.g. unit commitment decisions in electric power generation (see e.g. Römisch and
Schultz (1996), Bertsimas et al. (2013) and many others) or lot sizing decisions in
inventory control (see, e.g., Postek and den Hertog (2016)). Within the SP literature,
stochastic mixed-integer programming (SMIP) problems have been studied by e.g.
Laporte and Louveaux (1993), Carøe and Schultz (1999), and Ahmed et al. (2004),
(see also the surveys by Schultz (2003), Klein Haneveld and van der Vlerk (1999), and
Sen (2005)), while in the RO literature systematic approaches have been developed
to allow for integer decision variables in future time stages; see e.g. Bertsimas and
Georghiou (2015), Hanasusanto et al. (2015), and Postek and den Hertog (2016).
For SMIP problems the main difficulty is that due to the integer variables in future
time stages, the optimal objective value is generally not convex in the uncertain
parameter. For this reason, van der Vlerk (2004), Klein Haneveld et al. (2006),
Romeijnders et al. (2015), and Romeijnders et al. (2016b) have proposed convex
approximations for several classes of SMIP problems. For these approximations er-
ror bounds have been derived that depend on the total variations of the probability
density functions of the random parameters in the model. We use the idea of con-
vex approximations to provide a framework for solving a large class of two-stage
distributionally robust SMIP problems in which the distributions of some random
parameters are known and others are ambiguous. We derive error bounds for two ap-
proximations of which one is obtained by (incorrectly) assuming that the worst-case
distributions are the same as in the continuous distributionally robust SP case, i.e.,
assuming convexity. In Section 5.5 we apply this framework to an operating room
scheduling problem.
In that section we carry out numerical experiments on an inventory control problem
as well. Dealing with the fourth major challenge (ease of implementation), we show
that we can obtain good solutions using off-the-shelf software, despite the exponential
number of scenarios. Moreover, we show that for problems of realistic size we may
obtain exact optimal solutions, using the specific structure of the problem to speed
up existing algorithms. Furthermore, we provide additional managerial insights (i)
by calculating the VDI, (ii) by graphically depicting the so-called Pareto-stripe, an
extension of the Pareto curve, which shows the tradeoff between various types of
objectives, and (iii) by comparing various approaches from the SP and RO literature.
To summarize, we provide a framework for solving distributionally robust SP prob-
lems, satisfying the following properties:

1. the required parameters of the independent probability distributions in the
ambiguity set can be estimated from data;
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2. there is a simple worst-case distribution that is the same for all here-and-now
decisions;

3. future decisions depend on the observed value of the uncertain parameter;

4. the solution method is able to accommodate for integer decision variables in
two-stage problems;

5. the value of distributional information can be quantified;

6. the solution method is easy to implement using off-the-shelf software and known
SP techniques.

The structure of our paper is as follows. In Section 2.1 we introduce our approach for
two-stage continuous problems and we extend it to the multi-stage setting in Section
2.2. Section 5.3 includes our new theoretical results on convex approximations of
two-stage stochastic programs with integer decision variables. In Section 5.4 we dis-
cuss general techniques helpful in dealing with the number of scenarios which grows
exponentially with the dimension of the vector of uncertain parameters. In Section
5.5 we present three numerical experiments involving operating room planning and
inventory management. Each of the experiments illustrates our approach for a par-
ticular class of distributionally robust SP problems: two-stage problems problems
with continuous and with integer variables, and a continuous multi-stage problem.

5.2 Distributionally robust SP problems

In this section we describe our approach for solving distributionally robust SP prob-
lems in case all decision variables are continuous. For ease of exposition, we first
consider two-stage problems in Section 5.2.1; multi-stage problems are discussed in
Section 5.2.2. Although the results in this section appear to be known in the SP
literature (Ben-Tal and Hochman 1976), we are the first — to our knowledge — to
make these results explicit in a multi-stage setting.

5.2.1 Two-stage problems

The distributionally robust SP problem that we consider is

inf
x∈X

sup
Pz∈Pz

EPz [c>x+ v(x, z)], (5.1)

where X = {x ∈ Rn1
+ : Ax = b} represents the set of feasible first-stage solutions,

Pz is the ambiguity set for probability distributions, and v(x, z) is the second-stage
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value function defined as a function of the first-stage variables x and the random
parameters z = (ξ, ω):

v(x, z) = inf
y∈Y

{
q(ξ)>y : Wy = h(ω)− T (ω)x

}
.

Here, y are the second-stage (or recourse) variables and Y ⊂ Rn2
+ is a polyhedral set.

The second-stage costs q(ξ), the technology matrix T (ω), and the right-hand side
h(ω) depend on the random vector z = (ξ, ω). We assume that q, T , and h are affine
functions of z and that all components of z are independent. Thus, in particular,
q(ξ) is independent from T (ω) and h(ω). Moreover, since the recourse matrix W is
deterministic, we say that the problem has fixed recourse (see, e.g., Shapiro et al.
(2009)).
In problem (5.1), the here-and-now decisions x have to be made while the parameter
z is unknown, and after the uncertain parameter z is revealed we are allowed to take
recourse actions y to compensate for possible violations of the constraints T (ω)x =
h(ω). The objective is to minimize the sum of the direct costs c>x and the worst-case
expected costs supPz∈Pz EPz [v(x, z)].
Here, the ambiguity set Pz is defined as

Pz =
{
Pz : supp(zi) ⊆ [ai, bi], EPz [zi] = µi, EPz |zi − µi| = di, Pz{zi ≥ µi} = βi,

zi ⊥ zj, i 6= j
}
,

(5.2)

where zi ⊥ zj means that zi and zj are stochastically independent. Postek et al.
(2015) explain procedures to estimate these parameters from historical data and the
conditions on a, b, µ, d, β such that Pz is non-empty. Throughout this paper we refer
to the ambiguity set Pz in (5.2) as a (µ, d, β) ambiguity set.

Example 5.1 Consider an inventory manager who needs to order a specific amount
x of products. Later, when the uncertain customer demand z is known, he can order
an additional amount y of the products, however, at unknown but likely higher prices.
The objective of the manager is to minimize the expected total cost. However, due to
lack of knowledge on the true distribution, he chooses the ‘safe option’ and minimizes
the worst-case expected cost over the set Pz of distributions that can be ‘true’ based
on the data.

5.2.1.1 Worst-case expectation

Problem (5.1) is difficult to solve because the worst-case probability distribution
Pz ∈ Pz may depend on the first-stage decision x ∈ X, and we need to optimize over
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x. However, for the (µ, d, β) ambiguity set Pz in (5.2), the worst-case distribution
Pz̄ turns out to be the same for every first-stage decision so that the distributionally
robust SP problem in (5.1) reduces to

inf
x∈X

EPz̄ [c>x+ v(x, z̄)],

where each component of z̄ follows a known discrete distribution with at most three
realizations. This result is summarized in Proposition 5.1 below. Its proof combines
the fact that the second-stage value function v(x, z) is convex in ω and concave in ξ

(see, e.g., Fiacco and Kyparisis 1986) with results from Ben-Tal and Hochman (1972),
who provide closed-form expressions for the worst-case expectations maximizing and
minimizing the expectations of convex and concave functions.

Proposition 5.1 The two-stage distributionally robust SP problem

inf
x∈X

sup
Pz∈Pz

EPz

[
c>x+ inf

y∈Y

{
q(ξ)>y : Wy = h(ω)− T (ω)x

}]
with (µ, d, β) ambiguity set Pz for z = (ξ, ω) ∈ Rnξ × Rnω as defined in (5.2) is
equivalent to

inf
x∈X

EPz̄

[
c>x+ inf

y∈Y

{
q(ξ̄)>y : Wy = h(ω̄)− T (ω̄)x

}]
,

where the worst-case random vector z̄ = (ξ̄, ω̄) ∈ Rnξ × Rnω has independent compo-
nents with marginal distributions

P
{
ξ̄i = µi −

di
2(1− βi)

}
= 1− βi, and P

{
ξ̄i = µi + di

2βi

}
= βi, i = 1, . . . , nξ,

and

P
{
ω̄i = anξ+i

}
=

dnξ+i

2(µnξ+i − anξ+i)
, P

{
ω̄i = bnξ+i

}
=

dnξ+i

2(bnξ+i − µnξ+i)
,

P
{
ω̄i = µnξ+i

}
= 1−

dnξ+i

2(µnξ+i − anξ+i)
−

dnξ+i

2(bnξ+i − µnξ+i)

for i = 1, . . . , nω.

Proof. See Appendix 5.A. �

Since the worst-case distribution Pz̄ has finite support, we can enumerate all K =
2nξ × 3nω scenarios of z̄ and rewrite the distributionally robust SP problem in (5.1)
as

inf
x∈X

sup
Pz∈Pz

EPz [c>x+ v(x, z)] = inf
x∈X

EPz̄ [c>x+ v(x, z̄)]

= inf
x∈X

K∑
k=1

pk[c>x+ v(x, z̄k)],
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where pk denotes the probability of scenario z̄k, k = 1, . . . , K. The latter problem
can be rewritten in its deterministic equivalent form, yielding

inf
x∈X,yk∈Y

{
c>x+

K∑
k=1

pkq(ξ̄k)yk : Wyk = h(ω̄k)− T (ω̄k)x, k = 1, . . . , K
}
.

Remark 5.1 Note that the worst-case expectation of the random vector ω does not
require information on parameter β, i.e. in case one deals with uncertainty in the
constraints of the problems only, it suffices to estimate the parameter a, b, µ, and
d of the probability distribution ω. This means that having the knowledge on β does
not change the worst-case expectation value. An even more striking fact is that if β
is known, the three point worst-case distribution of ω may not satisfy this probability
bound, i.e., it may hold that P(ω̄i ≥ µnξ+i) < βnξ+i for some 1 ≤ i ≤ nω. This
is because the worst-case probability bound is tight but it need not be attained, see
Ben-Tal and Hochman (1972).

5.2.1.2 Best-case expectation

Similar as for the worst-case expectation we can obtain the best-case expectation
over all probability distributions in the (µ, d, β) ambiguity set Pz by using results
of Ben-Tal and Hochman (1972). Again, the best-case distribution P

¯
z is a discrete

distribution with at most three realizations per component that does not depend on
the first-stage decision x.

Proposition 5.2 The two-stage distributionally robust SP problem

inf
x∈X

inf
Pz∈Pz

EPz

[
c>x+ inf

y∈Y

{
q(ξ)>y : Wy = h(ω)− T (ω)x

}]

with (µ, d, β) ambiguity set Pz for z = (ξ, ω) ∈ Rnξ × Rnω as defined in (5.2) is
equivalent to

inf
x∈X

EP
¯
z

[
c>x+ inf

y∈Y

{
q(

¯
ξ)>y : Wy = h(

¯
ω)− T (

¯
ω)x

}]
, (5.3)

where the best-case random vector
¯
z = (

¯
ξ,

¯
ω) ∈ Rnξ×Rnω has independent components

with marginal distributions

P
{
¯
ξi = ai

}
= di

2(µi − anξ+i)
, P

{
¯
ξi = bi

}
= di

2(bi − µi)
,

P
{
¯
ξi = µi

}
= 1− di

2(µi − ai)
− di

2(bi − µi)
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for i = 1, . . . , nξ and

P
{

¯
ωi = µnξ+i −

dnξ+i

2(1− βnξ+i)

}
= 1− βnξ+i, P

{
¯
ωi = µnξ+i +

dnξ+i

2βnξ+i

}
= βnξ+i.

for i = 1, . . . , nω.

Proof. See Appendix 5.A. �

Notice that since v(x, z) is concave in ξ and convex in ω the worst-case distribution of
ξ has the same structure as the best-case distribution of ω and vice versa. Moreover,
we can derive the deterministic equivalent form of (5.3) analogous to that of the
worst-case expectation.
Best-case expectation is a useful complement to the worst-case expectation since
they bound the actual expected costs in the stochastic program, which is unknown
since the probability distribution of the random vector of parameters z is unknown.
The difference between the worst-case and best-case expectation can be interpreted
as an upper bound on the value of distributional information (VDI, Delage et al.
(2015)), i.e. the amount we are willing to pay for complete knowledge of the prob-
ability distribution of z. We illustrate this concept in the numerical experiments of
Section 5.5.

5.2.2 Multi-stage problems

We consider now the general multi-stage linear problem. For ease of exposition we
limit ourselves to the uncertainty in the constraints driven by random vector z = ω.
The results, however, extend easily to the case including also uncertainty in the cost
vector driven by a random vector ξ, as in the two-stage problem (5.1).
Here, xt ∈ Rnt

+ denote the decision vectors implemented at time t = 1, 2, . . . , T .
The uncertain parameter z ∈ Rnz has a corresponding structure z = (z1, . . . , zT−1),
zt ∈ Rnz,t for t = 1, . . . , T − 1, with nz = ∑T−1

t=1 nz,t. The time sequence of decisions
and uncertainty revealing is

x1 → z1 → x2 → z2 → . . . → zT−1 → xT .

Since all random parameters are independently distributed, our formulation of the
multi-stage case has a nested form as in Shapiro et al. (2009). The problem to solve
at time t = 1 is:

inf
x1∈X1

{
c>1 x1 + sup

Pz1∈Pz1
EPz1v2(x1, z1)

}
, (5.4)
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where X1 = {x1 ∈ Rn1
+ : A11x1 = b1} and the ambiguity set Pzt , t = 1, . . . , T − 1, is

defined as

Pzt = {Pzt : supp(zti) ⊆ [ati, bti], EP(zti) = µti, EP |zti − µti| = dti, ∀i,

zti ⊥ zt,j, ∀i 6= j, } .

The value function vt(xt−1, zt−1), t = 2, . . . , T − 1 is defined as the optimal value of
the optimization problem to solve at time t:

vt(xt−1, zt−1) = inf
xt∈Xt

{
c>t xt + sup

Pzt∈Pzt
EPztvt+1(xt, zt)

}
, (5.5)

where Xt = {xt ∈ Rnt
+ : ∑t−1

s=1Ats(zt−1)xs + Attxt = bt(zt−1)} and vT (xT−1, zT−1) is
the optimal value of the optimization problem at stage T :

vT (xT−1, zT−1) = inf
xT∈XT

{
c>T xT

}
, (5.6)

with XT = {xT ∈ RnT
+ : ∑T−1

s=1 ATs(zT−1)xs + ATTxT = bT (zT−1)}. At each stage t
the objective function consists of a linear component involving the decisions xt and
(with the exception of stage T ) the worst-case expected value of the optimal value of
the problem to be solved at the next stage. At each stage, a system of constraints is
to hold that involves the decision vectors x1, . . . , xt, and the coefficients Ats(·), and
bt(·) which depend on the outcome of the uncertain parameter zt−1, observed before
xt is implemented. We assume that the functions Ati(·), and bt(·) are linear. The
assumption that matrices Att, t = 1, . . . , T are fixed is the multi-stage equivalent of
the two-stage fixed recourse restriction.
In the two-stage case of Section 5.2.1, in order to reformulate problem (5.1) to the
closed-form equivalent, the function v(x, ·) has to be convex. A similar property is
needed here to reformulate the multi-stage problem to a closed form and holds for the
functions vt(xt−1, ·); moreover, at each time t the decision maker is solving a convex
problem in the decision variables, as stated by the following proposition, leading to
a tractable convex optimization problem.

Proposition 5.3 Functions vt(xt−1, zt−1) and vT (xT−1, zT−1) are convex in zt−1, t =
2, . . . , T −1 and zT−1, respectively, and the optimization problems (5.5) and (5.6) are
convex in xt for t = 1, . . . , T − 1 and in xT , respectively.

Proof. See Appendix 5.A. �

Proposition 5.3 implies that we can use the results of Ben-Tal and Hochman (1972)
to give a closed form of the multi-stage problem (5.4). We do this by recursively
inserting the worst-case distributions of zt from Proposition 5.1, considering the
problem at stages t = T − 1, T − 2, . . . , 2. The final result is stated in the following
proposition.
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Figure 5.1 – Scenario tree for the worst-case distribution of z̄ ∈ R2 in the multi-stage setting
z̄ = (z̄1, z̄2) ∈ R2.

Time stage
1

2

3

Now

b1µ1a1

b2µ2a2b2µ2a2b2µ2a2

Proposition 5.4 Distributionally robust SP problem formulated in (5.4), (5.5), and
(5.6) is equivalent to the following problem:

inf
x1∈X1

{
c>1 x1 + EPz̄1v2(x1, z̄1)

}
, (5.7)

where

vt(xt−1, zt−1) = inf
xt∈Xt

{
c>t xt + EPz̄tvt+1(xt, z̄t)

}
, t = 1, . . . , t− 1, (5.8)

where the worst-case distributions Pz̄t are defined as in Proposition 5.1, and vT (xT−1, zT−1)
is given by (5.6).

Formulations (5.7) and (5.8), together with the final-stage problem (5.6) constitute
a single big optimization problem with a tree structure. In this structure, the first-
stage problem refers via v2(x1, z̄

k), k = 1, . . . , 3nz,1 to 3nz,1 second-stage problems,
each of which links to 3nz,2 stage 3 problems, and so on. This corresponds to the
tree structure of the worst-case distribution of the uncertain parameter, depicted in
Figure 5.1.

Remark 5.2 As mentioned in the beginning of this section, it is possible, similar
as in the two-stage case, (i) to consider also uncertainty in the objective function
coefficients c2, . . . , cT since the solutions of the optimization problems at each stage
are concave in c2, . . . , cT , respectively; (ii) to construct a closed form of the problem
in which the best-case expectation is minimized with respect to the distribution of
parameter z = (ξ, ω).

5.3 Two-stage mixed-integer recourse models

Mixed-integer recourse models arise when the optimization problem involves integer
decision variables. The advantage of incorporating such variables in the model is that
they may be used to model e.g. indivisibilities or on/off decisions, the disadvantage
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however is that solving the model becomes much more complicated because generally
the second-stage value function is non-convex. In the distributionally robust context
of this paper, this implies that the result of Ben-Tal and Hochman (1972) cannot
be applied directly. Nevertheless, their result may be of use when we consider two-
stage mixed-integer recourse models where some of the distributions of the random
parameters in the model are known and others are unknown. The key observation in
the underlying analysis is that under specific conditions the expected value function
of a mixed-integer recourse model allows for a good convex approximation.

5.3.1 Problem formulation

Consider a two-stage mixed-integer recourse model with second-stage value function
v(x, z) defined as

v(x, z) = inf
y

{
q(ξ)>y : Wy = h(ω)− T (ω)x, y ∈ Zp+ × Rn2−p

+

}
,

where the vector z = (ξ, ω) represents the random parameters in the model. Similar
to (5.1) we assume that q, h, and T are affine functions of these parameters. The
distributionally robust mixed-integer recourse model that we consider in this section
is

inf
x∈X

sup
Pz∈Pz

EPz [c>x+ v(x, z)], (5.9)

where Pz represents the (µ, d, β) ambiguity set and X = {x ∈ Rn1
+ : Ax = b}.

Since v(x, z) is concave in ξ for fixed x and ω, it follows from the same reasoning
as in Section 5.2.1 that Pξ̄ defined in Proposition 5.2 is the worst-case distribution
of ξ. However, v(x, z) is in general not convex in ω, so that the result of Ben-Tal
and Hochman (1972) cannot be applied to derive the worst-case expectations with
respect to the distribution of ω. Nevertheless, we are able to use the result if some
of the distributions of the random parameters are known and the other distributions
are contained in a (µ, d, β) uncertainty set. For ease of exposition we assume in this
section that the distribution of the right-hand side random vector h(ω) is fully known,
whereas only limited information is available on the distribution of the technology
matrix T (ω), i.e. Pω ∈ Pω. Moreover, we assume that h(ω) is independent from
T (ω). Furthermore, since we already discussed the worst-case distribution of ξ we
assume that the second-stage costs parameters q are deterministic. For notational
convenience, we drop the dependence of h and q on ω and ξ, respectively, and write
T as a function of z instead of ω.
Under these assumptions, the distributionally robust mixed-integer recourse model
in (5.9) reduces to

inf
x∈X

sup
Pz∈Pz

EPz [c>x+Q(x, z)], (5.10)
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where Q is defined for every realization of z as

Q(x, z) = EPh

[
inf
y

{
q>y : Wy = h− T (z)x, y ∈ Zp+ × Rn2−p

+

}]
. (5.11)

This expected value function Q is key to solving (5.10), since if Q is convex in z,
then we may apply the result of Ben-Tal and Hochman (1972) to obtain the worst-
case distribution Pz̄ of z. For example, Klein Haneveld et al. (2006) show that
under specific conditions on h the expected value function Q of a simple integer
recourse model is convex in the tender variables u := T (z)x, and thus indeed also
convex in z. In general, however, Q(x, ·) is not convex, but it may allow for a good
convex approximation Q̂(x, ·). By replacing Q by Q̂ we obtain an approximation of
(5.10) for which the objective is convex in z, and thus Pz̄ defined in Proposition 5.2
is its worst-case distribution. We derive error bounds on the optimality gaps of the
approximating solutions that depend on ‖Q−Q̂‖∞, the maximum difference between
Q and Q̂.
In Section 5.3.2 we discuss the case where the simple integer recourse function Q

is convex in z, and in Section 5.3.3 we derive the error bounds for using convex
approximations Q̂ for the general two-stage mixed-integer case. In the remainder of
this section we briefly survey literature on convex approximations for mixed-integer
recourse models and their corresponding error bounds; see also Romeijnders et al.
(2014) for an overview.
Klein Haneveld et al. (2006) derived the first error bound for so-called α-approximations
of simple integer recourse models which decreases with the total variations |∆|fi of
the marginal probability densities functions fi of the right-hand side random vari-
ables hi. For example for normally distributed random variables this implies that the
error bound decreases if the variances of the random variables increase. A similar
error bound is obtained by Romeijnders et al. (2015, 2016b) for two different types
of convex approximations for totally unimodular integer recourse models. The latter
convex approximation is generalized by Romeijnders et al. (2016a) to the general
two-stage mixed-integer case. The error bound corresponding to this convex approx-
imation is asymptotic in nature: it converges to zero if all total variations of the
probability density functions of the random variables in the model converge to zero.

5.3.2 Simple integer recourse models

The one-sided simple integer recourse model, introduced in Louveaux and van der
Vlerk (1993), is a special case of (5.10) for which a closed-from expression for the
second-stage value function can be obtained. The expected value function Q is given
by

Q(x, z) =
m∑
i=1

EPhi

[
qi dhi − Ti(z)xe+

]
, x ∈ Rn1 , (5.12)
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where dse+ := max{0, dse}, s ∈ R and Ti(z) is the i-th row of the matrix T (z). Inter-
estingly, Klein Haneveld et al. (2006) show that this simple integer recourse function
Q may be convex in the tender variables u = T (z)x, and thus in z, if the underlying
random vector h is continuously distributed and every marginal probability density
function fi can be expressed as

fi(s) = Hi(s+ 1)−Hi(s), s ∈ R, (5.13)

for some cumulative distribution function Hi with finite mean. This implies that
under these conditions the worst-case distribution Pz̄ of z can be derived using the
results of Ben-Tal and Hochman (1972) (this worst-case distribution is the same for
every first-stage decision x).

Proposition 5.5 Consider the distributionally robust simple integer recourse model

inf
x∈X

sup
Pz∈Pz

EPz [c>x+Q(x, z)], (5.14)

where Q is defined in (5.12), X = {x ∈ Rn1
+ : Ax = b}, and the ambiguity set Pz

for the distributions Pz of z is defined analogously to (5.2). Then, if each random
variable hi has a pdf fi satisfying (5.13), then the optimization problem in (5.14) is
equivalent to

inf
x∈X

EPz̄ [c>x+Q(x, z̄)],

where the worst-case distribution Pz̄ of z is defined analogously as in Proposition 5.1.
�

In case a marginal density function fi does not satisfy (5.13) a natural approach is
to approximate it by a density function f̂i that is approximately the same as fi, but
does satisfy (5.13), yielding a convex approximation Q̂ of Q. This is the main idea
behind the so-called α-approximations derived in Klein Haneveld et al. (2006), and
their generalization to complete integer recourse models by van der Vlerk (2004).
For these convex approximations upper bounds on ‖Q − Q̂‖∞ have been derived.
Accordingly, in the next section we assume that a convex approximation Q̂ and
corresponding upper bound on ‖Q− Q̂‖∞ are available.

5.3.3 Convex approximations

Again consider the general distributionally robust two-stage mixed-integer recourse
model defined in (5.10):

η∗ := inf
x∈X

sup
Pz∈Pz

EPz [c>x+Q(x, z)], (5.15)
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where the expected value function Q, defined in (5.11), is generally non-convex. We
assume that Q allows for a good convex approximation Q̂ for which ‖Q − Q̂‖∞ is
small. Then, we may approximate (5.15) by replacing Q by Q̂, obtaining

η̂ := inf
x∈X

sup
Pz∈Pz

EPz [c>x+ Q̂(x, z)] (5.16)

= inf
x∈X

EPz̄ [c>x+ Q̂(x, z̄)], (5.17)

where the equality in (5.17) follows from applying the result of Ben-Tal and Hochman
(1972) to the convex objective in (5.16). The approximating problem is a convex op-
timization problem for which the distributions of the random parameters are known.
It can be solved efficiently using existing solution methods from SP; see Section 5.4.
To guarantee the quality of the approximate solution x̂ obtained from solving the
optimization problem in (5.17), we derive an error bound on the optimality gap
G(x̂)− η∗, where G(x̂) represents the objective value of the solution x̂:

G(x) := sup
Pz∈Pz

EPz [c>x+Q(x, z)], x ∈ X. (5.18)

In fact, we show that |η̂ − η∗| ≤ ‖Q − Q̂‖∞ and G(x̂) − η∗ ≤ 2‖Q − Q̂‖∞; see
Theorem 5.1 below.
Interestingly, we may approximate the optimization model in (5.17) by replacing Q̂
by the original mixed-integer recourse function Q to obtain the approximating model

η̃ = inf
x∈X

EPz̄ [c>x+Q(x, z̄)]. (5.19)

This model indirectly approximates the original mixed-integer recourse model (5.15),
but it can also be derived directly from (5.15) by assuming that Pz̄ is the worst-
case distribution in that model. However, using the interpretation of an indirect
approximation via the convex approximating model in (5.17), we can derive an error
bound for the approximate solution x̃ obtained from solving (5.19).

Theorem 5.1 Consider the distributionally robust mixed-integer recourse model de-
fined in (5.15) and let Q̂ be any convex approximation of the mixed-integer expected
value function Q defined in (5.11). Let x̂ and x̃ denote optimal solutions of the
approximating models defined in (5.17) and (5.19), respectively. Then,

1. |η̂− η∗| ≤ ‖Q− Q̂‖∞ and G(x̂)− η∗ ≤ 2‖Q− Q̂‖∞,

2. 0 ≤ η∗− η̃ ≤ 2‖Q− Q̂‖∞ and G(x̃)− η∗ ≤ 2‖Q− Q̂‖∞.

Furthermore, since the upper bound on G(x̃)−η∗ holds for every convex approximation
Q̂, it actually holds for the best convex approximation:

G(x̃)− η∗ ≤ 2 inf
Q̂
{‖Q− Q̂‖∞ : Q̂ is convex}.
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Proof. See Appendix 5.A. �

From a computational point of view, the approximating model in (5.17) is easiest to
solve since it is a convex optimization model. The approximating model in (5.19)
is a non-convex two-stage mixed-integer recourse model for which the distributions
of the random parameters are known. The latter is the main advantage of this
approximating model over the original distributionally robust model in which the
worst-case distribution of Pz̄ still has to be determined and may possibly be different
for every first-stage decision x. Nevertheless, solving (5.19) can be a very challenging
task. The error bound for this approximating model, however, is the same as for
the convex approximating model in (5.17). The fact that the optimality gap of
G(x̃)− η∗ does not depend on the particular Q̂ implies that even if no good convex
approximation Q̂ of Q is known, we might still approximate the distributionally
robust mixed-integer recourse model in (5.15) by assuming that Pz̄ is the worst-case
distribution of z. If a good convex approximation Q̂ of Q is available, then we can
use it in the convex approximating model (5.17).

5.4 Stochastic programming models with exponentially many scenarios

In Sections 5.2 and 5.3 we have shown how to reduce a distributionally robust op-
timization problem to an SP problem for which the distributions of the random
variables in the model are known. In particular, in case all decision variables are
continuous, we need to solve a continuous stochastic programming model

inf
x∈X

{
c>x+ EPz̄ [v(x, z̄)]

}
, (5.20)

where the joint distribution of z̄ has exponentially many scenarios in the number of
random parameters. From a robust optimization point of view this means that the
problem in (5.20) is intractable. Indeed, Dyer and Stougie (2006) show that these SP
problems are #P -hard. Nevertheless, there has been a vast amount of work in the
SP literature that deals with this kind of problems, yielding efficient (approximate)
solution methods to these problems, in particular for two-stage problems.
In this section we first discuss so-called simple recourse problems in Section 5.4.1
and we show that for stochastic programming models with such structure, the size
of (5.20) does not increase exponentially in the number of random parameters. In
Section 5.4.2 we discuss techniques from the SP literature to solve two-stage and
multi-stage stochastic programming problems with exponentially many scenarios.

5.4.1 Simple recourse models

In this section we consider so-called simple recourse models introduced by Wets
(1983), where the recourse matrixW = [Im,−Im] with Im denoting them-dimensional
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identity matrix. For this model, the second-stage value function is given by

v(x, z) = inf
y+,y−

{
(q+(ξ))>y+ +(q−(ξ))>y− : y+−y− = h(ω)−T (ω)x, y+, y− ∈ Rm

+

}
,

with the conventional indices ‘+’ and ‘−’ representing the surplus and the shortage,
respectively. We can obtain an exact expression for this second-stage value function,
using among others the separability of the second-stage problem:

v(x, z) =
m∑
i=1

(
q+
i (ξ)(hi(ω)− Ti(ω)x)+ + q−i (ξ)(hi(ω)− Ti(ω)x)−

)
,

where Ti(ω) denotes the i-th row of T (ω), and (hi(ω)−Ti(ω)x)+ and (hi(ω)−Ti(ω)x)−
denoting the nonnegative and the nonpositive parts of hi(ω) − Ti(ω)x, respectively.
Suppose that only the right-hand side random vector h is random, then if we drop
the dependence of h on z, (5.20) reduces to

inf
x∈X

{
c>x+

m∑
i=1

EPh̄i

[
q+
i (h̄i − Tix)+ + q−i (h̄i − Tix)−

]}
, (5.21)

where Ph̄i is the worst-case distribution of hi as defined in Proposition 5.1. Since it is a
three-point distribution, the size of the problem in (5.21) only increases linearly in m.
The key observation here is that due to the separability of the second-stage problem
the simple recourse model in (5.21) only involves the m marginal distributions Ph̄i ,
each with three scenarios, instead of the joint distribution Ph̄ with 3m scenarios.
In case there is also uncertainty in the technology matrix T , the simple recourse
problem is not completely separable in the random parameters. However, we show
in the operating room experiment of Section 5.5.1 that we can use the structure of
the problem to substantially speed up the existing algorithms.

5.4.2 Stochastic Programming approaches

The fact that the size of the problem grows exponentially in the number of random
parameters is common in SP, and many SP approaches are aimed at reducing the
number of scenarios. In this section we survey some relevant SP literature.
One of the most frequently used solution methods is the sample average approxima-
tion (SAA), discussed in e.g. Shapiro et al. (2009). The idea of this method is to
replace the original worst-case distribution of z̄ in (5.20) by a sample zs, s = 1, . . . , Ns,
where Ns is much smaller than the number of scenarios of z̄, yielding

inf
x∈X

{
c>x+ 1

Ns

Ns∑
s=1

v(x, zs)
}
. (5.22)

If the sample size Ns is small, then the approximation in (5.22) is easier to solve than
the original model in (5.20). We may solve (5.22) for several different samples of z̄
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yielding (possibly) different first-stage solutions x, and use an out-of-sample test to
determine the best among them. In the operating room experiment of Section 5.5.1
we show that the SAA method may give near-optimal solutions.
Alternatively, we may use other approaches to reduce the number of scenarios. For
example, Dupačová et al. (2003) and Heitsch and Römisch (2003) do so by combining
similar scenarios. Pflug (2001) uses the Wasserstein metric to construct a discrete
probability distribution (with few scenarios) that minimizes the distance between the
original and approximating distribution. His method can also be applied to multi-
stage stochastic programming models. Approximations relying on a reduced scenario
set are justified by stability results of e.g. Römisch (2003) which shows that a small
change in the distributions of the random parameters only result in a small change
in the optimal first-stage solutions.
For two-stage stochastic programming models with only a modest number of scenarios
efficient solution methods are available. Most of them rely on decomposition of the
problem and are variants of the L-shaped algorithm of van Slyke and Wets (1969);
see e.g. Ruszczyński (1986) and Higle and Sen (1991) for well-known examples. We
refer to Zverovich et al. (2012) for a recent survey comparing several decomposition
methods. Although multi-stage stochastic programming models are considerably
more difficult to solve than two-stage models, several solution methods do exist.
For the interested reader we mention progressive hedging (Rockafellar and Wets
1991), nested Benders’ decomposition (Birge 1985), and stochastic dual dynamic
programming (Pereira and Pinto 1991).
So far we have only discussed how to obtain a first-stage solution. However, when this
solution is obtained by solving an approximation of the original stochastic program-
ming problem, then we may use sampling to assess the quality of the solution; see e.g.
the Multiple Replications Procedure (MRP) of Bayraksan and Morton (2009). Dif-
ferent sampling methods, such as Latin Hypercube sampling, may be used to reduce
the bias and sample variance of the optimality gap of the approximating solution.
We use the MRP to assess the quality of a surgery-to-OR assignment in the operating
room experiment of Section 5.5.2.

5.5 Numerical experiments

In this section we present three numerical experiments to illustrate the advantages
of the approach developed. The first experiment, a modified version of the operating
room (OR) scheduling problem of Denton et al. (2010), illustrates (i) how to reduce
the computational effort related to the exponential number of scenarios by using
SP techniques and exploiting the problem’s properties and (ii) the differences in the
performance of distributionally robust solutions compared to other methods used in
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OR management.
The second experiment, related also to OR management and involving integer re-
course variables shows (i) how the novel theoretical results of Section 5.3 can be used
to construct intuitive convex approximations of this integer recourse model, (ii) how
to solve it efficiently, and (iii) how to use additional existing techniques to obtain
better bounds on the performance of the optimal solutions.
In the third and last experiment, which is a continuation of the inventory management
experiment from Postek et al. (2015), we show (i) how our approach is applied to
multi-stage problems, (ii) how feasible decisions can be constructed for uncertainty
realizations not belonging to the discrete worst-case support, and (iii) we provide
managerial insights regarding the value of distributional information and the trade-
off between worst-case objective value and worst-case expected objective value.

5.5.1 Operating room scheduling under uncertainty

We apply the method proposed in Section 5.2.1 to the OR scheduling problem in-
troduced by Denton et al. (2010). In this problem, surgeries with random durations
have to be assigned to ORs before the durations of these surgeries are known. Fixed
costs are incurred for every OR that is opened, and for each OR overtime costs are
incurred if the actual total duration of the surgeries exceeds a regular work day of
T minutes. Contrary to Denton et al. (2010), we assume that the probability dis-
tributions of the surgery durations are (partially) unknown and, hence, we minimize
the total worst-case expected costs using the result of this paper. We carry out nu-
merical experiments to show that for problem instances with 10 or 15 surgeries as
in Denton et al. (2010), we are able to obtain the optimal surgery-to-OR allocation
with reasonable computational effort.
In Section 5.5.1.1 we define the OR scheduling problem and list the various solution
methods we use and which are detailed in Appendix 5.B. In Section 5.5.1.2 we carry
out the numerical experiments.

5.5.1.1 Problem formulation

The OR scheduling problem can be formulated as a two-stage recourse model, where
in the first stage we have to determine how many ORs to open and the assignment of
the surgeries to the ORs. With N denoting the number of surgeries that have to be
performed, we define yij for every i, j = 1, . . . , N , as a binary variable equal to 1 if
surgery j is assigned to the i-th OR, and 0 otherwise. Thus, we assume that there N
ORs available. Accordingly, we define xi for every i = 1, . . . , N , as a binary variable
equal to 1 if the i-th OR is opened, and 0 otherwise. Furthermore, for every opened
OR we incur fixed costs cf and for every minute of overtime exceeding a regular
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workday of T minutes we incur variable costs cv per OR. Let z represent the random
vector of surgery durations and θi the minutes of overtime in the i-th OR. Then,
in case the surgery durations z would be deterministic the OR scheduling problem
reads

min
x,y,θ

N∑
i=1

cfxi +
N∑
i=1

cvθi

s.t.
N∑
i=1

yij = 1, j = 1, . . . , N, (5.23)

yij ≤ xi, i, j = 1, . . . , N, (5.24)

θi ≥
N∑
j=1

zjyij − Txi, i = 1, . . . , N, (5.25)

xi ∈ {0, 1}, yij ∈ {0, 1}, θi ≥ 0, i, j = 1, . . . , N. (5.26)

Constraint (5.23) means that every surgery j is assigned to exactly one OR, constraint
(5.24) models that surgery j can only be assigned to the i-th OR if it is opened, and
constraint (5.25) defines θi as the minutes of overtime for the i-th OR.
We let X denote the set of feasible first-stage decisions x and y satisfying (5.23),
(5.24), and (5.26). In addition, we assume that X includes several symmetry breaking
constraints introduced in Denton et al. (2010). For example, we assume without loss
of generality that x1 ≥ · · · ≥ xN . Moreover, if the surgeries j1 and j2 with j1 < j2
are of the same type, then we assume that surgery j1 (j2) is assigned to OR k1 (k2),
with k1 ≤ k2, respectively:

i∑
k=1

yk,j1 ≥
i∑

k=1
yk,j2 , i = 1, . . . , N.

Similar as Denton et al. (2010) we assume that the surgery durations z are random
and unknown when the surgery-to-OR assignment has to be made. Contrary to this
reference, however, we assume that the distribution Pz of the random vector z is
unknown and belongs to a (µ, d, β) ambiguity set Pz as defined in Section 5.2.1. The
objective is to find a surgery-to-OR assignment, i.e., to determine (x, y) ∈ X, that
minimizes the worst-case expected total costs. Given a first-stage decision (x, y) ∈ X
and a realization z of surgery durations, the number of minutes of overtime in the
i-th OR is

θi(x, y, z) =
( N∑
j=1

zjyij − Txi
)+
. (5.27)

The OR scheduling problem minimizing worst-case expected costs is thus given by

min
(x,y)∈X

sup
Pz∈Pz

{ N∑
i=1

cfxi + cvEPz

[ N∑
i=1

( N∑
j=1

zjyij − Txi
)+]}

. (5.28)
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Since the objective function in (5.28) is convex in z for every (x, y) ∈ X, we can use
the result of Ben-Tal and Hochman (1972) to obtain the worst-case distribution Pz̄
as defined in Proposition 5.1, and thus the optimization problem in (5.28) reduces
to

min
(x,y)∈X

{ N∑
i=1

cfxi + cvEPz̄

[ N∑
i=1

( N∑
j=1

z̄jyij − Txi
)+]}

. (5.29)

The optimization problem in (5.29) is a two-stage recourse model with binary first-
stage variables and continuous second-stage variables, and where the random vector
z̄ of surgery durations has 3N scenarios. In fact, this problem has the simple recourse
structure discussed in Section 5.4.1. However, contrary to Section 5.4.1, here the
randomness is in the technology matrix and not in the right-hand side, so that the
number of scenarios does not necessarily reduce to 3N as in Section 5.4. Nevertheless,
we will use the structure of the problem to deal with exponentially many scenarios.
We use several solution methods to solve the optimization problem in (5.29). The first
is a Sample Average Approximation (SAA) method, see Shapiro et al. (2009), which
is very easy to implement in practice. The second method (LDR-WCEC: Linear
Decision Rules - Worst-Case Expected Cost) uses linear decision rules (LDR) for the
overtime costs θi so that the optimal surgery-to-OR assignment in this approximating
optimization problem can be obtained very fast. The drawback of these two methods
is that they only yield an approximate solution to (5.29). Therefore we also use an L-
shaped algorithm, see van Slyke and Wets (1969), which yields the optimal solution to
(5.29). The challenge of this exact algorithm is to deal with an exponential number of
scenarios. In Appendix 5.B, we discuss the SAA and LDR-WCEC methods, and the
L-shaped algorithm for this OR experiment. There, we also present several ideas to
deal with the exponential number of scenarios, speeding up computations for the L-
shaped algorithm considerably. In Section 5.5.1.2 we carry out numerical experiments
and find, among others, that the SAA method yields near-optimal solutions within
reasonable time limits.

5.5.1.2 Numerical experiments

In this section we carry out numerical experiments on problem instances of similar
size as in Denton et al. (2010), i.e. with N = 10 and N = 15. In all experiments
we assume that cf = 1 and cv = 0.333 or cv = 0.0833, similar as in Denton et al.
(2010). To obtain the parameters of the (µ, d, β) ambiguity set Pz we use data on the
surgery duration distributions given in Gul et al. (2011). In this reference, estimates
of surgery duration distributions are given for several types of surgeries. We use these
estimates to compute µ, d, a, b, and β, where a and b represent the 0.1% and 99.9%
quantile of the distribution. In Table 5.1 the data of the four types of surgeries that
we consider in our experiments are given.
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Table 5.1 – OR experiment - parameters of the surgery duration distributions (Gul et al. 2011).

Surgical group µ a b d β

Oral Maxillofacial procedure 36.00 2.2 307.2 22.3 0.34

Pain Medicine 20.93 2.3 125.3 10.6 0.37

Ophthalmology 41.63 11.9 125.5 12.6 0.42

Urology 138.16 37.7 433.1 43.3 0.42

For all four combinations of N and cv we generate 50 problem instances by randomly
sampling with equal probabilities N surgery types from Table 5.1. We only report
results for N = 15, since results for N = 10 are similar. For every problem instance
we use the SAA method with Ns = 1000, the LDR-WCEC method, and the L-shaped
algorithm to obtain surgery-to-OR assignments (x, y). In addition, we also obtain
(x, y) ∈ X minimizing the best-case expected costs (min-BCEC) using a similar L-
shaped algorithm as for minimizing the worst-case expected costs, and we obtain the
surgery-to-OR assignment (x, y) ∈ X minimizing the worst-case costs (min-WC). For
all these first-stage solutions (x, y), we calculate the fixed costs (FC), the worst-case
expected costs (WCEC), the best-case expected costs (BCEC), the expected costs
(EC), the worst-case costs (WCC) over the support:

Z = [a1, b1]× . . .× [aN , bN ],

and the running time (RT) of the algorithm in seconds. Here, the fixed costs (FC)
represent the number of opened ORs since cf = 1. Moreover, the expected costs
(EC) are estimated using a sample of 100,000 from the surgery duration distributions
given in Gul et al. (2011). Furthermore, to facilitate comparison with their results,
the worst-case costs (WCC-τ), depending on a parameter τ , are calculated using the
same uncertainty set as in Denton et al. (2010):

Z =
{
z ∈ RN

+ : zj ∈ [ai, bi] ∀j,
N∑
j=1

zj − aj
bj − aj

≤ τ
}
.

Here, τ is a parameter representing how many surgeries can attain their maximum
duration. The averages of these performance measures over the 50 problem instances
are given in Table 5.2.
We conclude from Table 5.2 that the SAA method and the L-shaped algorithm yield
very similar results. This implies that, although the SAA solution does not necessarily
minimize the worst-case expected costs, its solution is (near-)optimal. Moreover, the
surgery-to-OR assignment obtained using linear decision rules for minimizing worst-
case expected costs (LDR-WCEC) is more stable since the worst-case costs with τ = 2
and τ = 4 is much smaller. However, in expectation this LDR-WCEC solution is not



Numerical experiments 193

Table 5.2 – OR experiment - average values of the performance measures over 50 problem instances
with N = 15 and cv = 0.333. For every solution, we report the fixed costs (FC), the worst-case
expected costs (WCEC), the best-case expected costs (BCEC), the expected costs (EC), the worst-
case costs (WCC), and the running time (RT) of the algorithm in seconds.

Solution method FC BCEC EC WCEC WCC-1 WCC-2 WCC-4 RT (in seconds)

min-BCEC 2.50 2.69 3.11 4.66 3.00 15.49 30.50 8.06

SAA-WCEC 3.28 3.28 3.41 4.27 3.36 14.62 28.89 63.26

L-shaped-WCEC 3.30 3.30 3.42 4.25 3.37 14.73 29.30 167.19

LDR-WCEC 8.08 8.08 8.09 8.08 8.08 8.70 10.56 1.40

min-WC 8.98 8.98 8.99 8.98 8.98 8.98 9.12 0.29

good for these problem instances. This is because the number of ORs that are opened
in this solution, i.e. the fixed costs (FC), are much larger than for the min-BCEC,
SAA, and the L-shaped approaches. We observe in Table 5.2 that the fixed costs are
smallest for the min-BCEC solution. This is as expected since the solution minimizes
the best-case expectation corresponding to surgery duration distributions for which
the longest possible surgery durations are smaller than for the worst-case expectation.
Because fewer ORs are opened for this solution, its worst-case expectation is larger
than for the L-shaped algorithm and SAA method. On average however, i.e. sampling
from the estimated surgery duration distributions of Gul et al. (2011), the min-BCEC
solution performs better. Comparing the running times of the algorithms we observe
that the LDR-WCEC, min-BCEC and min-WC methods run within several seconds,
whereas the SAA method and L-shaped algorithm require on average one minute and
almost three minutes, respectively. Given that the SAA method can be implemented
more efficiently than in our experiments (using e.g. a decomposition algorithm) and
that the L-shaped algorithm minimizes the exact worst-case expected costs under 3N
scenarios, these methods run within reasonable time limits.

Table 5.3 – OR experiment - average values of the performance measures over 50 problem instances
with N = 15 and cv = 0.0833. Terminology as in Table 5.2.

Solution method FC BCEC EC WCEC WCC-1 WCC-2 WCC-4 RT (in seconds)

min-BCEC 2.1 2.4 2.53 2.9 2.34 5.51 9.69 4.57

SAA-WCEC 2.08 2.42 2.53 2.89 2.32 5.31 10.2 30.93

L-shaped-WCEC 2.08 2.42 2.53 2.89 2.33 5.34 10.2 24.7

LDR-WCEC 3.34 3.4 3.45 3.69 3.35 6.05 9.85 0.65

min-WC 8.44 8.44 8.44 8.44 8.44 8.44 8.65 0.45

In Table 5.3 the results for N = 15 and cv = 0.0833 are given. Comparing to the
previous case with cv = 0.333, we observe that on average the number of opened ORs
is smaller than in Table 5.2 since the per minute overtime costs are smaller. Moreover,
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the LDR-WCEC solution does not have as large worst-case expected costs, but the
approximation is still not very good in expectation. Furthermore, the difference
between the optimal worst-case expected costs and optimal best-case expected costs,
displayed in bold face in Tables 5.2 and 5.3, is smaller now. Since this difference yields
an upper bound on the value of distributional information of the surgery durations,
we conclude that for cv = 0.333 we would be willing to spend more time and effort
to better estimate the distributions of the surgery durations.
Finally, we report on the efficiency of our tailored implementation of the L-shaped
algorithm, as described in Appendix 5.B.3. To illustrate the reductions in the number
of scenarios that need to be used by our L-shaped algorithm, we computed the average
number of scenarios that had to be evaluated per L-shaped iteration over all 50 runs.
The results are given in Table 5.4 and we can see that on average we need between
5% and 15% of the scenarios if the number of surgeries is 10 and less than 1% of the
scenarios in case N = 15.

Table 5.4 – OR experiment - average numbers of scenarios to evaluate per iteration in the L-shaped
algorithm.

Experiment N cv Evaluations Evaluations/3N × 100%

1 10 0.333 2833 4.80

2 10 0.0833 7146 12.10

3 15 0.333 8509 0.059

4 15 0.0833 25685 0.179

5.5.2 Numerical experiments for two-stage ambiguous integer recourse
models

In this section we again consider the OR scheduling problem of Section 5.5.1. How-
ever, here we assume that overtime wages are paid in full hours: if the overtime in a
given OR is only a few minutes, then still its OR staff has to be paid a full hour of
overtime work. In addition we assume that there is uncertainty in the regular work
day duration T . This duration may be interpreted as the effective time spent on
performing surgeries and may be smaller (or larger) than the targeted 480 minutes
due to inefficiency (or efficiency) of the OR staff.
In Section 5.5.2.1 we show that this problem can be modelled as a distributional
robust integer recourse model of Section 5.3, and we derive a convex approximation
for this problem. In Section 5.5.2.2 we evaluate this convex approximation using
numerical experiments.
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5.5.2.1 Problem definition and convex approximation

Since we do not have detailed information about the efficiency of the OR staff, we
assume that for every OR i the duration of a regular work day equals T+εi, where the
probability distribution Pεi of εi belongs to a (µ, d, β)-uncertainty set with E[εi] = 0.
Moreover, contrary to Section 5.5.1, we assume that the probability distributions of
the surgery durations z are known, for example based on historical data. Under these
assumptions, the problem can be cast into the framework of Section 5.3, where the
distributions of the surgery durations z are known and the distributions of the work
day durations (T + εi)xi are contained in a (µ, d, )

¯
ambiguity set. Again, letting X

denote all feasible surgery-to-OR assignments (x, y), the optimization problem we
consider is given by

inf
(x,y)∈X

{
N∑
i=1

cfxi+ sup
Pε∈P(µ,d)

{
EPε

[
EPz

[
N∑
i=1

60cv


( N∑
j=1

zjyij − (T + εi)xi
)
/60


+ ]]}}

.

Here, all durations are in minutes and the round-up operator ensures that overtime
wages are paid in full hours.
Because of the round-up operator, the objective function is not convex in ε and thus
the results of Ben-Tal and Hochman (1972) cannot be applied. This means that we
do not know the worst case distribution of Pε. In fact, the worst-case distribution may
be different for every surgery-to-OR assignment (x, y) ∈ X. Following Section 5.3,
we define the expected value function Q as

Q(x, y, ε) = EPz

[
N∑
i=1

60cv


( N∑
j=1

zjyij − (T + εi)xi
)
/60


+ ]
,

and we consider its convex approximation

Q̂(x, y, ε) = EPz

[ N∑
i=1

cv

( N∑
j=1

zjyij − (T + εi − 30)xi
)+]

.

Here, we simultaneously relax the integrality of the overtime hours and subtract 30
minutes from the work day duration (if the i-th OR is opened). The rationale of
doing so is that on average we have to pay approximately 30 minutes of additional
overtime if overtime is paid in full hours.
For the convex approximating model with Q replaced by Q̂ we can apply the results
from Section 5.3 to conclude that the worst-case distribution equals Pε̄ for every
(x, y) ∈ X. The approximating model becomes

inf
(x,y)∈X

{ N∑
i=1

cfxi + EPε̄ [Q̂(x, y, ε̄)]
}

= inf
(x,y)∈X

{ N∑
i=1

cfxi + EPε̄

[
EPz

[ N∑
i=1

cv

( N∑
j=1

zjyij − (T + εi − 30)xi
)+]]

. (5.30)
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This model can be solved e.g. using SAA yielding an approximating surgery-to-OR
assignment (x̂, ŷ).

5.5.2.2 Numerical experiments

For our numerical experiments we consider the same setting as in Section 5.5.1. That
is, the fixed costs for opening an OR are normalized, i.e. cf = 1, and we consider
two different cases for the overtime costs: cv = 0.0333 and cv = 0.00833. Moreover,
we only consider the types of surgeries presented in Table 5.1. For every OR i, we
assume that the ambiguity set of Pεi is defined by ai = −60, bi = 60, µi = 0, di = 30,
and βi = 0.5. This means that the regular work day duration T + εi will be between
420 and 540 minutes (i.e. 7 and 9 hours).
To solve the convex approximating model in (5.30) we use SAA with sample size N̂s

to obtain an approximating surgery-to-OR assignment. We repeat this procedure ten
times, obtaining ten possibly different surgery-to-OR assignments, and use an out-
of-sample test of size 10,000 to obtain the best among them. We let (x̂, ŷ) denote this
surgery-to-OR assignment. Contrary to Section 5.5.1 we are not able to determine the
optimal surgery-to-OR assignment. That is why we have to use a different approach
to determine the quality of the solution (x̂, ŷ). It turns out that using the maximum
difference between the expected value function Q and its convex approximation Q̂,
as suggested in Theorem 5.1 yields error bounds that are too large for this particular
problem. That is why we instead use a combination of the Multiple Replications
Procedure (MRP) discussed in e.g. Bayraksan and Morton (2009) and total variation
error bounds. In Appendix 5.C.1 we discuss this approach in more detail. The result
is an (approximate) 95% confidence interval on the optimality gap of (x̂, ŷ).

Table 5.5 – Integer OR experiment - numerical results for the integer OR problem with N = 15
over 10 problem instances, where the surgery types are randomly generated based on Table 5.1, and
cv = 0.0333. Here, N̂s denotes the sample size used to obtain the approximating solution, and FC
denotes the fixed costs of this solution. Next, ELB OBJ VAL gives an expected lower bound on the
optimal objected value, and next we have an (approximate) 95% confidence interval on the absolute
optimality gap and an upper bound on the relative optimality gap. Finally, RT denotes the average
running time in seconds of solving the SAA of the convex approximating model with a sample size
of N̂s.

N̂s FC ELB OBJ VAL 95% CI OPT GAP REL OPT GAP RT (in sec)

10 2.8 3.40 [0,0.214] 6.38% 1.16

100 3.0 3.40 [0,0.086] 2.52% 11.5

1000 3.0 3.40 [0,0.067] 1.98% 143.5

The results in Tables 5.5 and 5.6 are obtained by solving 10 problem instances with
cv = 0.0333 and cv = 0.00833, respectively, and N = 15 surgeries, each randomly
selected from Table 5.1. We obtained three approximating surgery-to-OR assignment
by solving the SAA of (5.30) with sample size N̂s = 10, 100, and 1000. As can be
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Table 5.6 – Integer OR experiment - numerical results for the integer OR problem with N = 15
over 10 problem instances, where the surgery types are randomly generated based on Table 5.1, and
cv = 0.00833. Terminology the same as in Table 5.5.

N̂s FC ELB OBJ VAL 95% CI OPT GAP REL OPT GAP RT (in sec)

10 2.8 3.41 [0,0.243] 6.68% 1.43

100 2.9 3.41 [0,0.093] 2.72% 9.98

1000 3.0 3.41 [0,0.074] 2.20% 176.5

observed in the tables, the computation time required to obtain these surgery-to-OR
assignments increases in the sample size N̂s. As expected, the quality of the surgery-
to-OR assignments also increases in the sample size since the relative optimality
gap (REL OPT GAP) decreases from approximately 6% for N̂s = 10 to 2% for
N̂s = 1000. This difference is not caused by the number of ORs that is opened in the
two different cases but rather by the different surgery-to-OR assignments. Overall
we conclude that the 95% confidence intervals on the optimality gap are surprisingly
small compared to the expected lower bound on the objective value for N̂s = 1000, in
particular since these distributionally robust integer problems are extremely hard to
solve and we are not able to calculate the optimal solution. We would like to stress
that the values in Tables 5.5 and 5.6 are upper bounds on the optimality gap that
hold with high probability. The actual value of the optimality gaps might be even
smaller. In Appendix 5.C.1 more details can be found on how the confidence interval
on the optimality gap is obtained.

5.5.3 Inventory experiment

5.5.3.1 Introduction

Our final experiment concerns a multi-stage problem - an inventory management
example adapted from Ben-Tal et al. (2005), used also in Postek et al. (2015), com-
prising a single product with inventory managed over T stages. At the beginning
of each stage t the decision maker has an inventory of size It and he orders a quan-
tity xt for unit price ct. The customers then place their demands zt. The retailer’s
status at the beginning of the planning horizon is given by the parameter I1 (initial
inventory). Apart from the ordering cost, the following costs are incurred over the
planning horizon: (i) holding cost ht(It+1)+, where ht is the unit holding cost, (ii)
shortage cost st(−It+1)+, where st is the unit shortage cost.
Inventory It+1 left at the end of stage T has a unit salvage value s. Also, one must
impose ht− s ≥ −st to maintain the problem’s convexity. A practical interpretation
of this constraint is that in the last stage it is more profitable to satisfy the customer
demand rather than to be left with an excessive amount of inventory. The constraints
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Table 5.7 – Inventory experiment - ranges for parameter sampling in the
inventory experiment.

Parameter Range Parameter Range Parameter Range

at [0, 20] Lt 0 Ût 0.8
∑T

t=1 Ut

bt [at, at + 100] Ut [50, 70] ht [0, 5]

ct, st [0, 10] L̂t 0 I1 [20, 50]

in the model include (i) balance equations linking the inventory in each stage to the
inventory, order quantity, and demand in the preceding stage, (ii) upper and lower
bounds on the order quantities in each stage Lt ≤ xt ≤ Ut, (iii) upper and lower
bounds on the cumulative order quantity up to stage L̂t ≤

∑t
τ=1 xτ ≤ Ût.

The problem to solve without uncertainty in the demand is

min
x

T∑
t=1
{ctxt + ht(It+1)+ + st(−It+1)+}

s.t. It+1 = It + xt − zt, t = 1, . . . , T
Lt ≤ xt ≤ Ut, t = 1, . . . , T
L̂t ≤

t∑
τ=1

xτ ≤ Ût, t = 1, . . . , T.

(5.31)

To model uncertainty about demands z = (z1, . . . , zT ), we assume that Z is the
support defined as Z = Z1 × . . . × Zt, where Zt = [at, bt], t = 1, . . . , T , which
corresponds to z being a random variable with independent components. For the
ambiguity set of the uncertain demand distribution, we set µt = (at + bt)/2, EP|zt −
µt| = (bt − at)/4, and P(zt ≥ µt) = β for t = 1, . . . , T . We use the same 50 problem
instances with T = 6 as Postek et al. (2015); the ranges for the uniform sampling of
parameters are given in Table 5.7.
Our goal is to obtain and compare decisions corresponding to various solution ap-
proaches for this multi-stage problem with distributional uncertainty. Among others,
there are two questions related to a multi-stage problem in such a setting: (i) what
should be the minimized objective criterion?; and (ii) how to make the later-stage
decisions adjust to the observed demands?
With respect to the first question, we propose to minimize either the worst-case
expectation as the most pessimistic value in our setting, or the best-case expecta-
tion as the most optimistic one. The closed-form formulation of the worst-case and
best-case expectations of the objective function in (5.31) can be evaluated using the
methodology of Section 5.2.2.
The second issue – adjustability of decisions – is important as (i) in this way the
later-stage decisions can be better for each outcome of the uncertainty, (ii) the best
here-and-now decisions can be different if later-stage adjustability is accounted for.
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Adjustability is typically achieved by formulating the later-stage decisions as func-
tions (decision rules) of the realized demand and then, optimizing the parameters of
these functions as decision variables
A simple and common choice for the decision rules is to define them as linear functions
xt+1 := xn+1,0 + ∑t

j=1 xn+1,jzj, where t = 1, . . . , T , of the observed uncertainties.
However, as affinity may be too restrictive, we propose also piecewise-linear decision
rules obtained by interpolating the decisions in the finite worst-case (or bast-case)
support, described in detail in Appendix 5.D.1. If the coefficients of the decision
rules are determined before the planning horizon and they are not altered later, we
denote this approach by evaluation.
Alternatively to fixing the decision rules and not changing them later, it is possible,
having found the optimal solution and implemented the initial decision x1 and ob-
served z1, to solve a new optimization problem where new decisions (and decision
rules) for stages 2, . . . , T are determined. In contrast to the evaluation approach, we
denote it as reoptimization.
In this setting, we consider three solutions:

• minimizing the worst-case expectation with linear decision rules (results are
taken from Postek et al. (2015)). We denote this approach as L-WCE (‘L’
stands for ‘linear’ and ‘WCE’ for ‘worst-case expectation’);

• minimizing the worst-case expectation using the piecewise-linear decision rules
of Appendix 5.D.1. We denote this approach as PL-WCE (‘PL’ stands for
‘piecewise-linear’);

• minimizing the best-case expectation using the piecewise-linear decision rules
of Appendix 5.D.1. We denote this approach as PL-BCE-β (‘BCE’ for ‘best-
case expectation’ and β is the skewness parameter for each t as defined in (5.2),
which we assume to be the same for all t = 1, . . . , T ).

5.5.3.2 Intervals for the expected value of total cost

Due to the distributional uncertainty in our problem, it is not possible to know the
exact value of the expected total cost incurred over the planning horizon. However,
due to the convexity of the objective function in z it is possible to evaluate both the
worst-case and the best-case expectations of the total cost, which gives an interval
for the expectation of the objective. Such intervals allow us to compare the three
solutions with respect to (i) optimality: minimizing expected costs, lower values are
preferable, (ii) range: the narrower an interval, the less ambiguity about the ‘true’
expected cost.
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Table 5.8 – Inventory experiment - evaluation intervals - ranges for the expectation of the objective
over Pz (‘expectation range’ is computed for a given solution using the upper and lower bound results
of Ben-Tal and Hochman (1972) under given assumptions) and worst-case cost (‘worst-case value’
is the maximum total cost obtained for the single worst-case scenario out of Z). All numbers are
averages over the 50 instances.

Objective type β
Solution

L-WCE PL-WCE PL-BCE-0.25 PL-BCE-0.5 PL-BCE-0.75

Expectation range 0.25 [1004, 1049] [973,1007] [940, 1178] [976, 1133] [1087, 1228]

Expectation range 0.5 [970, 1049] [943,1007] [1009, 1178] [908, 1133] [978, 1228]

Expectation range 0.75 [994, 1049] [960,1007] [1157, 1178] [986, 1133] [905, 1228]

Worst-case value - 2384 2358 2628 2553 3005

Intervals for solutions in the evaluation approach. Table 5.8 presents the
results on the performance of the three solutions. The PL-WCE solution achieves
a better worst-case (maximum total cost over the entire support) objective value
(2358 versus 2384), and for each β the upper and lower endpoints of the interval for
PL-WCE are smaller than upper and lower endpoints of the interval for L-WCE, for
example, [943, 1007] versus [970, 1049] for β = 0.5. This provides strong evidence
that restricting the decision rules to linear functions can have a negative effect on
the quality of the solution as measured by the objective function.
We now compare the widths of the intervals corresponding to different solutions,
which is our proxy for the value of distributional information and the ‘riskiness’ of
each solution. We observe that PL-BCE solutions give expectation intervals that are
overall much more dispersed than the PL-WCE solutions, compare e.g. [908, 1133]
(width 225) and [943, 1007] (width 64) in the third row. On average, the inter-
vals corresponding to the PL-BCE solutions are 5 times wider than the ones from
PL-WCE solutions. This indicates that minimization of the worst-case expectation
(pessimistic approach) may have a ‘compressing’ impact on the expectation interval,
whereas the solutions obtained by minimizing the best-case expectation (optimistic
approach) come with a much wider range.
With respect to the value of distributional information (VDI), we can approximate
it as follows on the example of the PL-WCE solution. The width of the interval
is for β = 0.5 is given by 1007 − 943 = 64 which is the VDI. This value, divided
by the upper bound on the worst-case performance yields 64/1007× 100% ≈ 6.35%
– it is the remaining relative uncertainty about the objective expectation. It is
questionable whether profits can be gained by knowing or gathering exact data on
the distribution since (i) computational handling of this extra information in the
optimization problem would be significantly more complicated, (ii) the resulting more
precise expectation value would be much more sensitive to estimation errors.
Intervals for solution values in the reoptimization approach. We also con-
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Table 5.9 – Inventory experiment - reoptimization intervals. All numbers are averages over the 50
instances. Terminology as in Table 5.8.

Objective type β
Solution

L-WCE PL-WCE PL-BCE-0.25 PL-BCE-0.5 PL-BCE-0.75

Expectation range 0.25 [972, 1011] [965,1007] [940, 1040] [975, 1037] [995, 1038]

Expectation range 0.5 [941, 1011] [933,1007] [938, 1040] [903, 1037] [933, 1038]

Expectation range 0.75 [955, 1011] [952,1007] [982, 1040] [942, 1037] [905, 1038]

sider the intervals for the objective function value assuming that the decision maker
can reoptimize the solution over time, described in more detail in Appendix 5.D.2.
The results are given in Table 5.9. Compared to Table 5.8, it is clear that for each
solution and each value of β the corresponding upper and lower bounds of the in-
tervals are not larger than the ones from Table 5.8 (compare for example the lower
endpoints for L-WCE). Partly due to this change, the intervals obtained for various
solutions become more similar.

5.5.3.3 Simulation study

Apart from simply knowing the intervals to which the expected total costs are guar-
anteed to belong, one may be interested in the performance of the three solutions in
a ‘reasonable’ simulation setting. Since we do not know the exact distributions of
the uncertain random parameters, we use the following two distributions to sample
from:

• uniform sample: demand scenarios ẑ are sampled from a uniform distribution
on the support Z;

• (µ, d) sample: demand scenarios ẑ are sampled from a randomly sampled dis-
tribution P̂ ∈ Pz – the details of the sampling methodology are given in Ap-
pendix 5.D.3.

As the (µ, d) sample involves the distributional uncertainty, it is ‘broader’ than the
uniform sample, i.e. it encompasses more than one possible choice for the probability
distribution out of the given ambiguity set.
Evaluation. Table 5.10 presents the results in the evaluation approach. The PL-
WCE solution again gives better values than L-WCE, both in terms of the mean
values - an improvement of 2.81% on the uniform sample, and the standard devi-
ations of the objective function value - for example, an improvement of 3.01% on
the (µ, d) sample. Interesting results are also obtained for the PL-BCE solutions:
on the (µ, d) sample they perform better than the L-WCE and PL-WCE solutions,
despite their focus on the best-case expectation. Also, the PL-BCE solutions provide
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Table 5.10 – Inventory experiment - evaluation simulation results. Numbers in brackets denote the
% change compared to the L-WCE solution. All numbers are averages over all 50 problem instances.

Value Sample Solution

L-WCE PL-WCE PL-BCE-0.25 PL-BCE-0.5 PL-BCE-0.75

Mean Uniform 994 966 (−2.81%) 1019 (+2.54%) 999 (+0.54%) 1026 (+3.29%)

Standard deviation Uniform 259 251 (−3.08%) 272 (+5.09%) 255 (−1.45%) 286 (10.49%)

Mean (µ, d) 1003 971 (−3.19%) 976 (−2.66%) 962 (−4.00%) 986 (−1.60%)

Standard deviation (µ, d) 265 257 (−3.01%) 241 (−8.83%) 223 (−15.62%) 248 (−6.40%)

Table 5.11 – Inventory experiment - reoptimization simulation results. Numbers in brackets denote
the % change compared to the L-WCE solution. All numbers are averages over all 50 instances.

Value Solution

L-WCE PL-WCE PL-BCE-0.25 PL-BCE-0.5 PL-BCE-0.75

Mean value 977.8 972.8 (−0.5%) 986.6 (+0.90%) 974.5 (−0.34%) 980.6 (+0.29%)

Standard deviation 251.2 257.5 (+2.51%) 272.6 (+8.51%) 237.7 (−5.34%) 236.0 (−6.03%)

substantial decreases in the standard deviation of the estimator of the expected total
costs compared to the other solutions.
Reoptimization. We also consider the reoptimization version of our experiment
where we use 500 demand samples from the (µ, d) distributions (we do not report
on the results for the uniform sample as they are nearly the same). Table 5.11
presents the results. The means of the simulated total cost are almost the same for
all solutions, differing by less than 1%. This small difference is in line with the results
of the previous subsection where the intervals in the reoptimization experiment turn
out to be similar as well.
Choosing the right solution. The results of this and the previous subsection give
rise to the question whether any of the three solutions is preferable to others. We
suggest that this choice depends on three factors: (i) risk-aversion of the decision
maker, (ii) amount of computational power available, and (iii) possibility (or not) to
re-optimize.
For a risk-averse decision maker, the PL-WCE solution is more flexible (the implied
decision rule is piecewise-linear instead of linear) than the L-WCE and gives better
worst-case expected performance in evaluation settings, as shown in Table 5.8. On
the other hand, it requires a larger computational effort (second criterion) as each
worst-case demand scenario requires a separate ordering trajectory. The number of
optimization variables in the problem with L-WCE decisions equals T (T + 1)/2 (one
variable for time 1 decisions, 2 for time 2 decisions, etc.) whereas for PL-WCE this
number equals (3T−1)/2 (enumerating all the 3T trajectories and elimination of some
double-counted decisions through the nonanticipativity constraints). With respect to
the third criterion, if reoptimization is possible, then we see that the differences
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between the three solutions are very small.

5.5.3.4 Pareto stripe

A common tool in decision support is the Pareto curve, illustrating a tradeoff between
two criteria. It is obtained by finding, for fixed bounds on one objective (for exam-
ple, the worst-case cost over the entire demand support), the minimum of another
objective (for example, the mean cost). A strong feature of our approach is that
it allows to evaluate both the worst-case and the best-case expectation of a convex
function. That is, for a given bound on the worst-case value of the total cost, we
are able to identify the entire interval for the expected cost. This gives rise to an
extension of the Pareto curve, denoted as the Pareto stripe, which in our case depicts
how a bound on the worst-case cost affects (i) the best(worst)-case expectation, (ii)
the value of distributional information, as measured by the width of this interval.
Mathematically, the Pareto stripe is obtained by minimizing, for a given (fixed) upper
bound C ∈ R on the worst-case value of the objective function:

sup
z∈Z

{
T∑
t=1

(
ctxt + ht(It+1)+ + st(−It+1)+

)}
≤ C, (5.32)

the worst-case expectation (or the best-case expectation) by means of the PL-WCE
solution (PL-BCE solution, respectively, with different possible values for the skew-
ness β).
The left panel in Figure 5.2 presents such a stripe for a single problem instance. An
interesting feature is that the best-case expectations obtained for various values of
parameter β need not preserve any monotonicity relation. For example, the best-
case expectation when β = 0.75, obtained for the worst-case bound C of around 2400
(horizontal axis) is the highest of all, but is smaller than best-case expectations for
β = 0.25 and β = 0.5 when the worst-case bound C is 3000.
The right panel in Figure 5.2 presents the Pareto stripe aggregated over all 50 problem
instances. For orientation, we note that the rightmost value of the continuous black
curve in the right panel of Figure 5.2 corresponds to the first row of Table 5.8,
whereas the rightmost value of the horizontal axis is the worst-case objective value
of PL-WCE solutions from Table 5.8. Figure 5.2 provides an assessment of the
value of distributional information. We observe that as the bound on the worst-case
performance (horizontal axis) grows, the width of the Pareto stripe increases slightly,
corresponding to a growth in the VDI (width of the interval compared to its upper
bound value) from about 7% to about 11%.
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Figure 5.2 – Inventory experiment - upper (WCE) and lower (BCE) bounds on the expectation
of the objective function values for a single problem instance (left panel) and aggregated over all
50 instances (right panel). The best-case expectations (lower bounds) have been computed for
β ∈ {0.25, 0.5, 0.75}.
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5.6 Conclusion

In this paper we have considered stochastic programming problems with distribu-
tional ambiguity. We have shown that under mean - MAD distributional information,
the problem admits a closed form reformulation as the corresponding worst-case dis-
tributions consist of 3 points per component and is independent from the first stage
decisions. This holds both for two-stage and multi-stage continuous models. We have
proposed methods to deal with the exponential number of scenarios that perform well
in the numerical experiments. For two-stage problems with integer recourse variables,
we show how good convex approximations can be derived that have a provable per-
formance guarantee. Our numerical experiments entailing operating room scheduling
and inventory management provide also simple yet powerful managerial insights such
as (i) the easy-to-calculate value of distributional information (difference between the
worst- and best-case expectation under the given information) and (ii) the Parieto
stripe, which shows how the interval containing the true expected objective function
changes relative to a bound on a certain performance measure. Overall, we have
proposed a practical framework of solving a wide class of problems that can easily
be implemented in a variety of real-world applications.
Appendices

5.A Proofs

Proof.[Proposition 5.1] For simplicity, assume first that nω = 1 and nξ = 0. Since
v(x, z) is a convex function of z then by result of Ben-Tal and Hochman (1972) we
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have that:

sup
Pz1∈Pz1

EPz1v(x, z1) = (5.33)

= d1

2(µ1 − a1)v(x, a1) +
(

1− d1

2(µ1 − a1) −
d1

2(b1 − µ1)

)
v(x, µ1) + d1

2(b1 − µ1)v(x, b1),

that is, the worst-case expectation of v(x, z) is achieved by a three-point distribution
with support {a1, µ1, b1} and probabilities di/2(µi−ai), 1−di/2(µi−ai)−di/2(bi−µi)
and di/2(bi − µi), respectively. For nz ≥ 2 we observe that due to the independence
of zi’s we have:

Pz = Pz1 × . . .× Pznω ,

where

Pzi = {Pzi : supp(zi) ⊆ [ai, bi], EP(zi) = µ, EP |zi − µi| = di} , i = 1, . . . , nω.

Therefore, we can apply formula (5.34) component-wise w.r.t. z:

sup
Pz∈Pz

EPzv(x, z) = sup
Pz1∈Pz1

EPz1

{
sup

Pz2∈Pz2
EPz2

{
. . . sup

Pznz ∈Pznω
EPznω v(x, (z1, . . . , znω)) . . .

}}
.

Therefore, the support of the worst-case distribution of z is a product of the worst-
case distributions of zi, equal to Z, and the probability of a single zk is equal to the
product of the worst-case probabilities of the respective components of zk, as defined
in Proposition 5.1. A similar argument holds for the worst-case expectation w.r.t. ξ
and since it is assumed that the components of ω and ξ are mutually independent,
the claim follows. �

Proof.[Proposition 5.2.] The proof is analogous to Proposition 5.1, therefore, we
only consider the case nω = 1 and nξ = 0. Since v(x, z) is a convex function of z
then by result of Ben-Tal and Hochman (1972) we have that:

inf
Pz1∈Pz1

EPz1v(x, z1) = (5.34)

= (1− β1)v(x, µ1 − d1/2(1− β1)) + β1v(x, µ1 + d1/2β1),

that is, the best-case expectation of v(x, z) is achieved by a two-point distribution
with support {µ1 − d1/2(1 − β1), µi + d1/2β1} and probabilities (1 − βi) and βi,
respectively. �

Proof.[Proposition 5.3.] Consider first problem (5.6) solved at time T . The problem
is linear, hence convex in xT and by Fiacco and Kyparisis (1986) it holds that the
optimal value of (5.6) is convex in xT−1 and zT−1. Next, consider the problem to
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solve at time T − 1:

inf
xT−1

{
cTT−1xT−1+ (5.35)

sup
PzT−1∈PzT−1

EPzT−1
vT (xT−1) :

T−2∑
s=1

AT−1s(zT−2)xs + AT−1T−1xT−1 = bT−1(zT−2)

 .
Since vT (xT−1, zT−1) is convex in xT−1, the objective function in (5.35) is also convex
in xT−1 and, since the remaining constraints are linear in xT−1, the problem is convex
in xT−1. Again, by Fiacco and Kyparisis (1986) it holds that vT−1(xT−2, zT−2) is
convex in zT−2 and xT−2. The same argument is applied recursively to time stages
T − 1, T − 2, . . . , 2 which proves the claim. �

Proof.[Theorem 5.1.] Let x∗ denote an optimal solution to the optimization problem
in (5.10). Then,

η∗ ≤ G(x̂) = sup
Pz∈Pz

EPz

[
cT x̂+Q(x̂, z)

]}
≤ sup

Pz∈Pz
EPz

[
cT x̂+ Q̂(x̂, z)

]}
+ ‖Q− Q̂‖∞

= η̂ + ‖Q− Q̂‖∞.

Here, the first inequality holds since x̂ is not necessarily optimal in the original model.
Similarly, we have

η̂ ≤ sup
Pz∈Pz

EPz

[
cTx∗ + Q̂(x∗, z)

]}
≤ sup

Pz∈Pz
EPz

[
cTx∗ + Q̂(x∗, z)

]}
+ ‖Q− Q̂‖∞

= η∗ + ‖Q− Q̂‖∞.

Combining η∗ ≤ η̂+ ‖Q− Q̂‖∞ and η̂ ≤ η∗ + ‖Q− Q̂‖∞ yields the first inequality in
(i). Furthermore, using G(x̂) ≤ η̂ + ‖Q − Q̂‖∞ and η̂ ≤ η∗ + ‖Q − Q̂‖∞, it follows
that

G(x̂) ≤ η∗ + 2‖Q− Q̂‖∞,

and from this the second inequality in (i) follows immediately.
Further, observe that η̃ is a lower bound for η∗ since Pz̄ is not necessarily the worst-
case distribution in model (5.10), and thus 0 ≤ η∗ − η̃. Next, let Q̂ be a convex
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approximation of Q. Then, the remaining inequalities in (ii) follow directly from

η∗ ≤ G(x̃) = sup
Pz∈Pz

EPz

[
cT x̃+Q(x̃, z)

]
≤ sup

Pz∈Pz
EPz

[
cT x̃+ Q̂(x̃, z)

]
+ ‖Q− Q̂‖∞

= EPz̄

[
cT x̃+ Q̂(x̃, z̄))

]
+ ‖Q− Q̂‖∞ (5.36)

≤ EPz̄

[
cT x̃+Q(x̃, z̄)

]
+ 2‖Q− Q̂‖∞

= η̃ + 2‖Q− Q̂‖∞.

where the first inequality holds since x̃ is not necessarily optimal in model (5.10),
and where we apply the result of Ben-Tal and Hochman (1972) in (5.36). �

5.B Solution methods for the OR experiment of Section 5.5.1

In this appendix we discuss several solution methods for solving the OR scheduling
problem.

5.B.1 SAA method

The main difficulty in solving the problem in (5.29) is to deal with the 3N scenarios
of the surgery durations z̄. A well known approach in the SP literature to circumvent
this difficulty is to use sampling to approximate z̄ by a random vector having fewer
scenarios. Thus, we sample Ns scenarios from the worst-case distribution Pz̄ to obtain
the sample zs, s = 1, . . . , Ns. Then, letting θi,s denote the minutes of overtime in the
i-th OR under scenario s, we can derive a large-scale deterministic equivalent MILP
formulation:

(DEF ) min
x,y,θ

N∑
i=1

cfxi + 1
Ns

Ns∑
s=1

N∑
i=1

cvθi,s

s.t. θi,s ≥
n∑
j=1

zsjyij − Txi, i = 1, . . . , N, s = 1, . . . , Ns,

(x, y) ∈ X, θi,s ≥ 0, i = 1, . . . , N, s = 1, . . . , Ns.

This deterministic equivalent formulation contains N + N2 binary variables, cor-
responding to x and y, and N × Ns continuous variables, corresponding to θ. In
the numerical experiments in Section 5.5.1.2 we solve this MILP for Ns = 1000 and
N = 10 or N = 15 using Gurobi. For these parameters the number of binary variables
in the deterministic equivalent formulation is small so that the MILP can be solved
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within reasonable time limits. Of course, using decomposition algorithms, such as for
example an L-shaped algorithm, we may solve this model faster. However, we prefer
to use the current method to show that good solutions may be obtained (for problems
of reasonable size) using this straightforward, easy-to-implement algorithm.

5.B.2 Linear decision rules

Another way to deal with the 3N scenarios is to use linear decision rules for the
overtime costs θi. Instead of using the exact expression for θi, given in (5.27), we
approximate θi by an affine function θ̂i of z̄:

θ̂i(z) = ui +
N∑
j=1

vij z̄j. (5.37)

Here, ui and vij denote the coefficients of the linear decision rule θ̂i. These coef-
ficients are determined here-and-now, i.e. at the same time as the surgery-to-OR
assignment (x, y). Hence, the first-stage decision variables in the resulting (approx-
imating) optimization problem are (x, y) ∈ X and the coefficients u and V , where
u = (u1, . . . , uN)> and V is a matrix containing the elements vij for i, j = 1, . . . , N .
The approximating optimization problem using θ̂i instead of θi is given by

(LDR) min
x,y,u,V

N∑
i=1

cfxi + cvEPz̄

[ N∑
i=1

θ̂i(z̄)
]

s.t. θ̂i(z̄) ≥
N∑
j=1

z̄jyij − Txi, z̄ ∈ Z, i = 1, . . . , N, (5.38)

θ̂i(z̄) ≥ 0, z̄ ∈ Z, i = 1, . . . , N, (5.39)
(x, y) ∈ X.

Here, constraints (5.38) and (5.39) make sure that for every i = 1, . . . , N the ap-
proximation θ̂i(z̄) for the overtime costs is non-negative and at least as large as the
actual overtime costs θi(z̄) for all 3N possible realizations of z̄. Moreover, using the
linear decision rule in (5.37), the expected overtime costs in the objective of (LDR)
become

cvEPz̄

[ N∑
i=1

θ̂i(z̄)
]

= cvEPz̄

[ N∑
i=1

(
ui +

N∑
j=1

vij z̄j

)]

= cv
N∑
i=1

(
ui +

N∑
j=1

vijµj

)

= cv
N∑
i=1

ui + cv
N∑
i=1

N∑
j=1

vijµj.
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The optimization problem (LDR) can thus be rewritten as

(LDR) min
x,y,u,V

cf
N∑
i=1

xi + cv
N∑
i=1

ui + cv
N∑
i=1

N∑
j=1

vijµj

s.t. ui +
N∑
j=1

vij z̄j ≥
N∑
j=1

z̄jyij − Txi, z̄ ∈ Z, i = 1, . . . , N,

(5.40)

ui +
N∑
j=1

vij z̄j ≥ 0, z̄ ∈ Z, i = 1, . . . , N,

(5.41)
(x, y) ∈ X.

Observe that this is a MILP with only a small number of decision variables, but
with exponentially many constraints, since (5.40) and (5.41) are defined for every
z̄ ∈ Z, and z̄ is a discrete random vector with 3N realizations. However, since the
convex hull of Z is a box uncertainty set, we can use standard techniques from Robust
Optimization (Ben-Tal et al. 2009) to obtain the robust counterpart of this problem.

5.B.3 Adjusted version of the L-shaped algorithm

The L-shaped algorithm solves the optimization problem in (5.29) exactly. In this
section we discuss our tailored implementation of the L-shaped algorithm, see e.g.
van Slyke and Wets (1969). In this algorithm we approximate the expected overtime
costs

Q(x, y) = cvEPz̄

[ N∑
i=1

( N∑
j=1

z̄jyij − Txi
)+]

, (x, y) ∈ X,

by an artificial decision variable η ≥ 0. Using optimality cuts of the form

η ≥ πkx+ λky + βk, k = 1, . . . , K,

where πk and λk are row vectors and βk is a constant, the variable η will represent
a lower bound of Q(x, y).
At every iteration k, we solve the master problem

(MPk) min
x,y,η

cf
N∑
i=1

xi + η

s.t. η ≥ πlx+ λly + βl, l = 1, . . . , k − 1,
(x, y) ∈ X, η ≥ 0,
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which includes all optimality cuts of previous iterations, to obtain the current solution
(xk, yk, ηk). For this current solution, we evaluate Q(xk, yk). Note that ηk is a lower
bound of Q(xk, yk) and that if Q(xk, yk) = ηk, then (xk, yk) is the optimal solution
to (5.29). In general, we stop the algorithm if Q(xk, yk) − ηk < ε for some small
number ε. If this optimality criterion does not hold, then we derive an optimality
cut η ≥ πkx+ λky + βk and solve the master problem MPk+1.
The challenge in this algorithm is to evaluate Q(xk, yk) and to derive an optimality
cut η ≥ πkx + λky + βk, dealing with the 3N scenarios of the random vector z̄. We
only discuss why Q(xk, yk) may be evaluated fast, despite this exponential number
of scenarios. For similar reasons we may derive optimality cuts in an efficient way.

5.B.3.1 Evaluation of Q(xk, yk)

In this section we discuss the evaluation of Q(xk, yk). For convenience we drop the
index k and use (x, y) to refer to the current solution. We speed up the evaluation
of Q(x, y) in two different ways. First, by using the simple recourse structure of the
problem, and second by using an efficient data structure for the scenarios.
Since the operating room scheduling problem can be modeled as a simple integer
recourse model with uncertainty in the technology matrix, we can use the results of
Klein Haneveld and van der Vlerk (2006) to evaluate Q(x, y) faster. Similar as in
Section 5.2 this is possible since we are not dealing with the joint distribution of z̄
but with several marginal distributions of total surgery durations in operating rooms.
To show this more formally, we first introduce additional notation.
Let Ji = {j : yij = 1} denote the set of surgeries carried out in the i-th OR with
Ni := |Ji| denoting the number of surgeries. Moreover, let ζ i denote the subvector of
z̄ containing these Ni surgeries. That is, ζ i contains the j-th component of z̄ if and
only if j ∈ Ji. Then, by separability of the expected overtime costs,

Q(x, y) = EPω∗

[ N∑
i=1

Qi(x, y)
]

=
N∑
i=1

EPζi

[( N∑
j=1

ζ ijyij − Txi
)+]

.

Since the marginal distribution of ζ i has 3Ni realizations, it follows immediately that
it suffices to compute overtime costs for ∑N

i=1 3Ni ‘scenarios’. For example, if Ni = 1
for all i = 1, . . . , N , i.e. if in every OR only a single surgery is carried out, then this
number reduces to 3N , whereas if Ni = N , then it equals 3N .
The second way to speed up computations is based on the following two special cases,
which we consider for the i-th OR only. If overtime costs are zero for every scenario,
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then Qi(x, y) = 0, and if overtime costs are positive for all scenarios, then

Qi(x, y) = EPζi

[( N∑
j=1

ζ ijyij − Txi
)+]

=
∑
j∈Ji

(
µjyij − Txi

)
.

The first case hold if ∑j∈Ji bj ≤ T and the second case if ∑j∈Ji aj > T .
The main idea for a general approach, exploiting these special cases, is to iteratively
condition on surgery durations ζ il until one of the two special cases applies, i.e. until
overtime costs corresponding to all scenarios under consideration are either all zero
or all positive. In this way we do not necessarily have to compute all overtime costs
for each scenario.
An alternative interpretation of the same idea is to assume that the random vector
ζ i is ordered chronologically, meaning that the first component of ζ i corresponds to
the surgery that is carried out first and the last component of ζ i corresponds to the
surgery that is carried out last. Thus, surgery durations are revealed gradually over
time, and we may represent this process by a scenario tree, see e.g. Figure 5.1. This
scenario tree represents all possible realizations of surgery durations at every stage
l = 0, . . . , Ni, where stage l corresponds to the situation where the first l surgery
durations have been observed (i.e. the first l surgeries have been carried out). For
example, at the root node in stage 0, no surgery durations are observed yet, whereas
in the leave nodes at stage Ni all surgery durations are completely specified.
We iteratively construct the scenario tree, keeping track of the probability p(n) of
reaching each node n, and the total surgery duration D(n) of all surgeries carried
out before reaching node n. For every such node n at stage l, we compute whether

(i) D(n) +
Ni∑

j=l+1
bj ≤ T,

and

(ii) D(n) +
Ni∑

j=l+1
aj > T.

If (i) holds, then the average overtime costs q(n) over all scenarios corresponding to
subleaves of node n equal zero. If (ii) holds, then

q(n) = D(n) +
Ni∑

j=l+1
µj,

and if (i) and (ii) both do not hold, then we expand the scenario tree, creating three
subnodes of n at stage l+ 1, by conditioning on the three possible realizations of the
(l + 1)-th surgery duration. We repeat this process until all nodes are evaluated. In
practice much fewer evaluations than 3Ni will be required, as shown in Table 5.4 in
the main part of the paper.
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5.C Error bounds for the integer experiment of Section 5.5.2

5.C.1 General description

In this appendix we discuss how we obtain the error bounds in Tables 5.5 and 5.6 of
Section 5.5.2. This error bound is derived by combining the Multiple Replications
Procedure (MRP) of Bayraksan and Morton (2009) and the total variation error
bounds discussed in Section 5.3. To our knowledge, this is the first attempt to
combine these two approaches. Moreover, it may be interesting to apply this error
bound to other applications involving integer decision variables and uncertain random
parameters.

5.C.2 A straightforward error bound

Before we derive this error bound, we first discuss why direct application of the error
bound of Section 5.3 is not sufficient to obtain a tight bound.
Let (x̂, ŷ) denote the optimal surgery-to-OR assignment in (5.30) and let η∗ denote the
optimal objective value of the original problem. Then, by Theorem 5.1 in Section 5.3
and defining

G(x̂, ŷ) :=
N∑
i=1

cf x̂i + sup
Pε∈Pε

EPεQ(x̂, ŷ, ε), (5.42)

we have

G(x̂, ŷ)− η∗ ≤ 2‖Q− Q̂‖∞ := 2 sup
x,y,ε
|Q(x, y, ε)− Q̂(x, y, ε)|.

We can obtain an upper bound on |Q(x, y, ε) − Q̂(x, y, ε)| by straightforward ap-
plication of the total variation error bounds derived in Romeijnders et al. (2016b).
However, this bound depends significantly on the surgery-to-OR assignment (x, y).
For example, if every surgery is carried out in a separate OR then the bound reduces
to

|Q(x, y, ε)− Q̂(x, y, ε)| ≤ 1
2

N∑
j=1

60cvh(60|∆|fj), (5.43)

where fj is the marginal density of the random surgery duration zj in minutes, and
h(t) = t/8 if t ≤ 4 and h(t) = 1 − 2/t, otherwise. The value of 60 is present in the
error bound since overtime wages are paid in full hours (of 60 minutes). In contrast,
if all surgeries are carried out in a single OR, then the error bound reduces to

|Q(x, y, ε)− Q̂(x, y, ε)| ≤ 30cvh(60|∆|ḡ), (5.44)

where ḡ is the marginal density of the sum of all surgery durations.
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For the numerical experiments in Section 5.5.2, the bound in (5.43) is much larger
than the bound in (5.44). Both, however, are by definition larger than the upper
bound on G(x̂, ŷ)− η∗. This implies that the error bound 2‖Q− Q̂‖∞ may too large
for practical purposes. However, at the same time we do not expect such an extreme
surgery-to-OR assignment (x, y) as in (5.43) to be optimal. This is relevant, since
for computing a valid error bound we only require the difference between Q and Q̂

in the approximating solution (x̂, ŷ) and the optimal solution (x∗, y∗). The problem,
however, is that we do not know the optimal solution (x∗, y∗). Thus, although we do
know the approximating solution (x̂, ŷ), to obtain a valid upper bound we need to
take into account the worst-case surgery-to-OR assignment.

5.C.3 Multiple Replications Procedure

To avoid this problem we will apply the Multiple Replications Procedure (MRP)
described in e.g. Bayraksan and Morton (2009). This method cannot be readily
applied since it requires us to determine the worst-case probability distribution in
the integer model, but combined with the total variation error bound it will yield
a much tighter (probabilistic) bound. Below we describe the main outline of the
approach.
To assess the quality of the approximating solution we will use (an adjusted version) of
the Multiple Replications Procedure (MRP) described in e.g. Bayraksan and Morton
(2009). The goal is to evaluate G(x̂, ŷ)− η∗, where G is defined in (5.42). Since Q is
not convex in ε we cannot use the results of this paper to determine the worst-case
distribution of ε. That is why we approximate Q by Q̂ and obtain

G(x̂, ŷ) =
N∑
i=1

cf x̂i + sup
Pε∈Pε

{
EPε

[
Q̂(x̂, ŷ, ε) +

(
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

)]}

≤
N∑
i=1

cf x̂i + sup
Pε∈Pε

EPεQ̂(x̂, ŷ, ε) + sup
Pε∈Pε

EPε

[
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

]
= Ĝ(x̂, ŷ) + sup

Pε∈Pε
EPε

[
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

]
,

where Ĝ equals G with Q replaced by Q̂. Since Q̂ is convex in ε it follows that Pε̄
is the worst-case distribution of ε in Ĝ. This implies that Ĝ(x̂, ŷ) does not contain
any optimization problem and that it can easily be estimated using (Monte Carlo)
sampling.
To eliminate the supremization of Pε over P(µ,d) in η∗ we assume that Pε̄ is the
worst-case distribution, so that we obtain a lower bound η̃ for η∗, see Theorem 5.1
in Section 5.3. To obtain η̃ we still have to minimize over all feasible surgery-to-OR
assignments (x, y) ∈ X. However, the MRP is able to deal with such problems.
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Combining both results we obtain an upper bound on the optimality gap:

G(x̂, ŷ)− η∗ ≤ Ĝ(x̂, ŷ)− η̃ + sup
Pε∈Pε

EPε

[
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

]
.

We will use the MRP to bound Ĝ(x̂, ŷ)− η̃ and we use a total variation error bound
for the last term. This bound may be much tighter than the previous total variation
bound, since we only have to compute the difference between Q and Q̂ for a fixed
surgery-to-OR assignment (x̂, ŷ).

5.C.4 Total variation bounds

In this section we consider the total variation error bounds mentioned in the previous
sections. Suppose that a feasible surgery-to-OR assignment (x, y) is given and assume
for the moment that ε is fixed. We consider

Q(x, y, ε)− Q̂(x, y, ε) = cv
N∑
i=1

ψi(x, y, ε),

where

ψi(x, y, ε) = EPz

[
60

( N∑
j=1

zjyij − (T + εi)xi
)
/60


+

−
( N∑
j=1

zjyij−(T+εi−30)xi
)+
]
.

Obviously, if xi = 0, then yij = 0 for all j = 1, . . . , N , so that ψi(x, y, ε) = 0. If
not, then let Ji denote the set of surgeries that are carried out in OR i, i.e. j ∈ Ji if
and only if yij = 1. Then, define ξi as the total surgery duration in the i-th OR in
minutes:

ξi =
N∑
j=1

zjyij =
∑
j∈Ji

ωj.

Using this definition, and defining si = (T + εi)xi = T + εi, the expression for ψi
reduces to

ψi(x, y, ε) = EPξi

[
60
⌈
ξi − si

60

⌉+

−
(
ξi − si + 30)+

]
.

Applying the total variation error bound yields

ψi(x, y, ε) ≤ 30h(60|∆|gi), (5.45)

where |∆|gi is the total variation of the probability density function gi of the total
surgery duration ξi in the i-th OR. Thus,

Q(x, y, ε)− Q̂(x, y, ε) ≤ 1
2cv

N∑
i=1

60h(|∆|gi)xi. (5.46)
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Here, we add xi in the expression to ensure that ψi(x, y, ε) = 0 if xi = 0. Observe
that if each surgery is carried out in a separate OR, that in this case gi = fi for
every i = 1, . . . , N and we obtain the bound given in (5.43). On the other hand, if all
surgeries are carried out in a single OR, then we obtain the bound in (5.44). Since
the bound in (5.46) holds independent of the value of ε, we conclude that

sup
Pε∈Pε

EPε

[
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

]
≤ sup

Pε∈Pε
EPε

[1
2cv

N∑
i=1

60h(|∆|gi)x̂i
]

= 1
2cv

N∑
i=1

60h(|∆|gi)x̂i. (5.47)

This error bound may be much smaller than the one described in (5.43). For one,
since x̂i may be zero for many ORs. In addition, gi is the pdf of the sum of several
independent random variables, and increasing the number of surgeries in the i-th OR
will decrease the total variation of gi.

5.C.4.1 Tighter total variation error bounds

The error bounds in Tables 5.5 and 5.6 are still even tighter than the one in (5.47).
Surprisingly, we derive these bounds by applying the result of Ben-Tal and Hochman
(1972) once more.
First, consider again

ψi(x, y, ε) = Eξi

[
60
⌈
ξi − si

60

⌉+

−
(
ξi − si + 30

)+
]
,

where si = T + εi and observe that its underlying value function equals zero if
ξi ≤ si − 30. For this reason, omitting the technical details, we show that for fixed
si = T + εi ∈ R,

ψi(x, y, ε) ≤ 30h
(

60|∆|gi
(

[si − 30,+∞)
))

= 30h
(

60|∆|gi
(

[T + εi − 30,+∞)
))
,

where gi([T + εi− 30,+∞)) denotes the total variation of gi on the interval [T + εi−
30,+∞). This bound is tighter than the one in (5.45) and is attained if εi → −∞.
Since the bound is non-increasing in εi, we may conclude that for every εi ∈ [ai, bi],

ψ(x, y, ε) ≤ 30h
(

60|∆|gi
(

[T + ai − 30,+∞)
))
,

and thus

sup
Pε∈Pε

EPε

[
Q(x̂, ŷ, ε)− Q̂(x̂, ŷ, ε)

]
≤ 1

2

N∑
i=1

60cvh
(

60|∆|gi
(

[T + ai − 30,+∞)
))
x̂i.
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However, we may obtain a tighter bound if the bound on ψ(x, y, ε) is convex in εi
for εi ∈ [ai, bi] since it allows us to apply the result of Ben-Tal and Hochman (1972)
in a surprising way. For example, if for all opened ORs i, the bounds are convex for
εi ∈ [ai, bi], then

sup
Pε∈Pε

EPε

[
Q(x̂, ŷ, ε)−Q̂(x̂, ŷ, ε)

]
≤ 1

2EPε̄

[ N∑
i=1

60cvh
(

60|∆|gi
(

[T+ ε̄i−30,+∞)
))
x̂i

]
.

(5.48)

Of course, the bound h(60|∆|gi([T+εi−30,+∞)) is in general not convex, but it may
be in special cases. Notice, for example, that h is linear on [0, 4] so that the bound
is convex if |∆|gi([t + εi − 30,+∞)) is convex in εi ∈ [ai, bi] and this total variation
is small enough. In our numerical experiments, gi is the pdf of the sum of several
independent lognormal random variables, so that by the Central Limit Theorem, it
is approximately normally distributed. Since a normal density function has a convex
decreasing right tail it may satisfy the requirements. In our numerical experiments
we check numerically for every opened OR i whether convexity holds; if not then we
replace ε∗i by ai in the error bound of (5.48).

5.D Inventory experiment

5.D.1 Decisions for uncertainty realizations outside the finite worst-case
support

In this Appendix, we provide a detailed procedure to obtain a sequence of feasible
decisions for arbitrary outcome of uncertainty ẑ, based on the solution to worst-case
expectation version of problem (5.7) with 3T points in the support. The idea is to
use the solutions x1, x2, ... to (5.7) and the convexity of the feasible set of (5.7) to
construct a feasible sequence of decisions for all stages. In this setting, the later-stage
decisions become piecewise-affine functions of the observed uncertainties.
The way we accomplish this is the following. Each realization of ẑ is a convex com-
bination of some of the elements zt of the discrete worst-case distribution support.
For a given component ẑt ∈ R we define that (i) if ẑt ∈ [at, µt] then ẑt is formulated
as a convex combination of at and µt, (ii) if ẑt ∈ [µt, bt] then ẑt is formulated as a
convex combination of µt and bt. Then, for each realization ẑt we obtain a unique
set of coefficients of the convex combination. A way to implement feasible decisions
corresponding to an arbitrary realization ẑt is to use the same convex combination
coefficients with respect to decision vectors corresponding to the uncertainty realiza-
tions in the support of the worst-case distribution of z, illustrated in Figure 5.3.
The following example illustrates this idea mathematically.
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Figure 5.3 – Piecewise linear decision rules. Having the defined the decisions for at, µt, and bt, the
decision for points outside {at, µt, bt} are convex combinations of the decisions for at, µt or µt, bt.

Demand

Decision

at µt bt

Example 5.2 Imagine a problem instance where T = 2 and z ∈ R belongs to a (µ, d)
ambiguity set with a = 0, µ = 1, and b = 2 and the realized uncertainty is ẑ = 0.5.
Then we can see that ẑ ∈ [a1, µ1]. So, we have that ẑ is a convex combination of a1,
and µ1. Indeed, take

ẑ = λa1 + (1− λ)µ1.

Since each of the points a, µ has its own stage 2 decision, let us denote them as x2(a)
and x2(µ):

x2(ẑ) = λx2(a) + (1− λ)x2(µ).

Note that such a policy is feasible for ẑ because:

A2,1(a)x1 + A2,2x2(a) = b2(a), A2,1(µ)x1 + A2,2x2(µ) = b2(µ) ⇒
⇒ A2,1(λa1 + (1− λ)µ1)x1 + A2,2x2(λa1 + (1− λ)µ1) = b2(λa1 + (1− λ)µ1)

by linearity of A2,1(·) and b2(·).

More formally, the decisions are implemented as:

x(ẑ) =
∑

κ∈{1,2}nz
λ(κ)x(z(κ)),

where x(z(κ)) is the sequence of decisions related to the demand trajectory z(κ) in
the worst-case support, defined as:

z(κ) =


z1(κ1)

...
zT−1(κT−1)

 , κ =


κ1
...

κT−1

 z(κt) =


zt1(κt1)

...
ztnz,t(κt,nz,t)

 , κt =


κt1
...

κtnz,t


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and

ztj(1) =

 atj if ẑtj ≤ µtj

µtj otherwise,

ztj(2) =

 µtj if ẑtj ≤ µtj

btj otherwise.

and λ(κ) are unique coefficients such that:

ẑ =
∑

κ∈{1,2}nz
λ(κ)z(κ),

where

λ(κ) =
T−1∏
t=1

λt(κt), λt(κt) =
nz,t∏
j=1

λtj(κtj), λtj(1) =


ẑtj−atj
µtj−atj if ẑtj ≤ µtj
ẑtj−µtj
btj−µtj otherwise,

and λtj(2) = 1− λtj(1). In this way the resulting decision always satisfies the prob-
lem’s constraints for a given realization of the uncertain parameter.

5.D.2 Reoptimization to compute the intervals of Section 5.5.3.2

We explain the computation of the ends of the intervals using reoptimization on the
example of computing the lower bound for the PL-WCE solutions. The question
corresponding to computation of the lower end of the interval is: what is the ex-
pected total cost if the true demand distribution is the best-case distribution, but
the decision maker assumes all the time that it is the worst-case distribution?
To answer it, for each of the 2T best case demand trajectories we compute the order-
ing decisions in a reoptimizing fashion. That is, at time 1 decisions are determined
such that the worst-case expectation is minimized. The corresponding time 1 deci-
sion is implemented. At time 2 it turns out that the demand in time 1 was one of the
demands belonging to the best-case support {µ1 − d1/2(1− β1), µ1 + d1/2β1} of z1.
In this situation, decisions for stages 2-6 are constructed (thus, a new optimization
problem is solved) that minimize again the worst-case expectation and the corre-
sponding time 2 decision is implemented. At time 3 it turns out that the demand
at time 2 belonged to the support {µ2 − d2/2(1− β2), µ2 + d2/2β2} of the best-case
distribution and so on. In the end, for each of the 2T demand trajectories in the
support of the best-case distribution, a corresponding decision trajectory is obtained
and the objective function values for each of the best-case trajectories are weighted
with the corresponding best-case probability.
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5.D.3 Simulating the (µ, d) sample

The (µ, d) sample in the inventory experiment is constructed as follows. First, a
discretized distribution P̂ ∈ Pz is sampled using the hit-and-run method (Smith
1984). The hit-and-run method is implemented as follows. For the [0, 1] interval
(from which the demands on the relevant support intervals are sampled using the
inverse transform) we construct a grid of 51 equidistant points. For a fixed (µ, d)
the set of probability masses for the points of the grid satisfying the µ and d values
constitutes a polytope. We sample 10 probability distributions uniformly from this
polyhedron by iteratively choosing a random direction and sampling uniformly a
point on the segment of the line along this direction belonging to the polytope.
Then, we sample the demand in each period in two steps, by sampling first one of
the distributions, and then by sampling a point in the [0, 1] interval with the given
distribution.
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V. Zverovich, C. I. Fábián, E. F. D. Ellison, and G. Mitra. A computational study of a solver
system for processing two-stage stochastic LPs with enhanced Benders decomposition.
Mathematical Programming Computation, 4:211–238, 2012.



CHAPTER 6

Adjustable robust strategies for flood protection

6.1 Introduction

Managing flood risks is of vital importance for the Netherlands, a country which is for
two-thirds flood prone. The areas at risk are protected by a large flood protection
system, with dike rings consisting of dikes, dams, dunes, high grounds, and other
water defense structures. Each year, about 1 billion euro is spent to maintain and
improve this system.
Improving the flood defenses is necessary when flood protection standards are no
longer met. This can be caused by for example a general deterioration of the flood
defense, climate change but also because of changing protection standards. In the
recent years, and within the context of the Dutch Delta Program, the Netherlands
has been in the process of revising all its legal flood protection standards (Van Alphen
2015), since part of the old standards was still based on the advice of the first Delta
Commission, installed after the last great flood disaster in the Netherlands of 1953
(Van Dantzig 1956).
In the Delta program, a novel, optimizing cost-benefit analysis (CBA) using opera-
tions research techniques was used to derive economically efficient (‘optimal’) flood
protection standards, in which the discounted total cost of expected long-run invest-
ment and remaining flood damages was minimized (Brekelmans et al. 2012, Kind
2014, Eijgenraam et al. 2014, 2016). This CBA assumed dike reinforcements as flood
protection measure and determined the optimal timing and size of the reinforce-
ments, from which subsequently optimal flood protection standards were derived.
It turned out that although the optimal timing and size of the reinforcements were
dependent on the climate scenario assumed, the optimal standards were not. The
optimal standards, however, are very sensitive to assumptions on e.g. the economic
scenario, discount rate, investment costs and flood damages (Gauderis et al. 2013).
The updated standards, accepted by the Dutch government on July 5, 2016, are based
on considerations over equity (a maximum tolerable probability for all individuals
to lose his/her life because of flooding), efficiency (CBA) and social disruption (Van
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der Most et al. 2014). After the new flood protection standards become legally
binding from 2017 and onwards, regional delta programs have the task of developing
more detailed flood risk management strategies to meet those new flood protection
standards. Those strategies are not necessarily restricted to dike reinforcements, but
other measures are also considered.
In the lower reaches of the Rhine and Meuse rivers, the regional Delta Program
Rhine Estuary - Drechtsteden studies alternatives to dike reinforcements, such as
water storage, channel deepening, storm surge barriers, and room for the river mea-
sures - alternatives which lower (design) water levels and hence reduce the need to
reinforce and heighten the dikes (Jeuken et al. 2013). To aid the regional program in
developing and evaluating combined strategies, including proposal for timing of the
investments, a ‘planning kit’ was developed (Kind et al. 2014). It turned out there
was a large number of strategies possible and it was practically infeasible to find an
optimal strategy by trial and error, even if uncertainties in climate scenarios were
not considered.
There are two important challenges remaining in designing the optimal flood risk
management strategies. First, it is important to incorporate climate change related
uncertainties in the analysis explicitly. In the previous approaches, sensitivity anal-
ysis was used to show robustness, that is, the performance of the given solution was
tested against different realizations of the uncertainty. Such an approach may (i) take
a lot of computation time and for each scenario requires a detailed specification of the
parameter evolution and (ii) may be infeasible already at the implementation stage -
because parameter values different from the assumed ones are revealed between the
decision-making moment and the implementation moment. This raises the challenge
of robustness to parameter uncertainty. Second, it is important that the solutions are
adjustable to the revealed values of uncertainties as opposed to static solutions. The
static solutions, where the later-stage decisions do not adapt to the true outcome of,
say, sea level rise speed in the first 30 years, may prove to be over-conservative and
expensive. This raises the challenge of adjustability to revealed uncertainties.
In this paper, we develop a mathematical optimization model to determine optimal
adaptation strategies that addresses both of the challenges above. This model is
general and applicable in any area, and in our experiment we apply it to the Rhine
Estuary area, where it improves upon the planning kit of (Kind et al. 2014). The issue
of climate change related uncertainties is addressed by using Robust Optimization
(RO, see Ben-Tal et al. (2009)). In this approach, instead of specifying a precise
climate change trajectory, an uncertainty set of ‘possible outcomes’ of the unknown
parameters is specified. Then, the problem is solved in such a way that the constraints
(requirements) are satisfied by the decisions for every outcome of uncertainty within
the uncertainty set.
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The strict requirement that the decisions are feasible for all allowed outcomes of un-
certainty makes RO the preferred methodology for safety-related optimization prob-
lem such as flood prevention. For an introduction and overview of techniques used
in RO, we refer the reader to the work by Ben-Tal et al. (2009), Bertsimas et al.
(2011a), Gabrel et al. (2014) and references therein.
In order to allow the later-stage decisions adapt to the revealed uncertainties from
earlier stage, we resort to an extension of RO - the Adjustable Robust Optimization
(ARO). There, apart from requiring the constraints to hold for all outcomes of the
uncertainty, the later stage decisions are formulated as functions of the uncertainties
revealed before they are implemented, and the way these decisions adapt (‘shape of
the reaction’) is also optimized.
ARO was initially developed to solve problems with continuous decision variables in
Ben-Tal et al. (2004) where the concept of using affinely adjustable decision rules
was introduced, extended later by Chen et al. (2012), Chen and Zhang (2012), Ben-
Tal et al. (2009), and Bertsimas et al. (2011b). In the flood protecting problem,
however, most of the decisions are binary variables determining whether and when a
given measure (dike heightening, etc.) is applied. The first applications of ARO to
integer recourse problems were Bertsimas and Caramanis (2007, 2010), and Vayanos
et al. (2011), where the idea was to simply divide the uncertainty set into a dense grid
of points and allow a different decision for each of them. Bertsimas and Georghiou
(2015, 2014), and Hanasusanto et al. (2014) proposed to use specific decision rules for
the integer variables whose ‘shape’ is optimized. However, these methodologies do
not scale well with the size of the problem, which makes their application to problems
like ours impossible.
The approach used in our paper is to construct multi-period adjustable integer deci-
sions by means of multi-stage splitting of the uncertainty set into subsets. This is the
approach taken in Postek and den Hertog (2016) and Bertsimas and Dunning (2016)
where, having determined the splits of the uncertainty set, a different constant deci-
sion is applied for each part of the uncertainty set. The essence of this approach lies
in determining the conditions that a splitting needs to satisfy in order to improve on
the decisions’ adaptivity. Since, however, in the model we consider it is not possible
to determine the structure of the splits using the methods proposed by Postek and
den Hertog (2016), our splitting strategy of the uncertainty set is pre-determined.
The structure of this paper is as follows. Section 6.2 gives the generic mathematical
formulation of our problem without parameter uncertainty and adjustability. Section
6.3 defines how multi-stage parameter uncertainty is modeled and the corresponding
adaptive decisions are constructed. Section 6.4 presents the results of numerical
experiments for the Rhine - Meuse Estuary - Drechtsteden area.
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6.2 Deterministic model

We consider the problem of constructing an optimal flood protection strategy. The
aim of the strategy is to create a schedule when to take various measures that min-
imizes the present value of the measures’ costs such that at each time moment and
at each dike segment, the flood protection standards are satisfied. Hence, cost effec-
tiveness is applied.
We assume that the flood protection system consists of Ns dike segments. The flood
protection standards can be formulated in terms of relative dike height requirements
- the height of the dike compared to the water level. The relative dike height can be
improved by one of Nh dike heightenings of size h ∈ H, and Nm large-scale measures
such as, for example, changing the discharge distribution of a river (directing it via
other river segments in the delta). Whereas a dike heightening affects only the relative
dike height at a single segment, the large-scale measures affect more than one segment
and its impact may differ throughout the time horizon after its implementation. We
denote by am,s,τ,t the impact of implementing large-scale measure m at time τ on
the relative dike height at segment s at time t ≥ τ . The flood protection standard
requires that at each dike segment s and each time t ∈ {0, 1, . . . , T} the relative dike
height is higher than or equal to the requirement ns,t.
We define decision variables xt,s,h ∈ {0, 1} indicating whether the h-th dike height-
ening has been implemented at dike segment s at time t, and yt,m ∈ {0, 1} indicating
whether large-scale measure m is implemented at time t. We denote the cost of dike
heightening h for segment s by ps,h, the cost of measure m by pm, and we assume an
inter-period discount rate 0 ≤ d ≤ 1.
In this setting, the objective is to minimize the total discounted costs and the opti-
mization problem is:

min
x,y

T∑
t=1

1
(1 + d)t


Ns∑
s=1

Nh∑
h=1

ps,hxt,s,h +
Nm∑
m=1

pmyt,m


s.t.

t∑
τ=0


Nh∑
h=1

hxτ,s,h +
Nm∑
m=1

am,s,τ,tyt,m

 ≥ ns,t, ∀s, t (6.1a)

Nh∑
h=1

xt,s,h ≤ 1, ∀t, s (6.1b)

Lk(x,y) ≤ 0, ∀k = 1, . . . , K (6.1c)
xt,s,h, yt,m ∈ {0, 1}, ∀t, s, h,m,

where the constraints are:

(6.1a) relative dike height constraint at segment s at time t - the total impact of the
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dike heightenings and the large-scale measures up to time t accommodates for
the requirement ns,t,

(6.1b) for each dike segment s and time t, only one of Nh heightenings is implemented,

(6.1c) K linear constraints - these may involve, for example (i) conditions how many
times can a given large-scale measure be taken, (ii) which measures cannot be
taken together, (iii) redundant constraints which the solution must satisfy and
which improve the solution time.

6.3 Modeling uncertainty and adjustability

6.3.1 Introduction

In the previous section we considered the relative dike height requirements ns,t to be
a deterministic quantity known in advance. In fact, ns,t is based on the protection
standards but also on the sea level rise:

ns,t = ns,0 + βs
t∑

τ=1
rτ ,

where ns,0 is the initial requirement, rτ is the sea level rise in time period [τ − 1, τ ],
and βs is the sensitivity of the dike segment s to the sea level rise - for example,
sensitivity βs of dike segments closer to the sea is higher than the dike segments
situated higher along the rivers.
In this setting, the realized sea level rise may turn out to be different from the
predicted values. Using only the forecast values of the sea level rise may lead to the
solution becoming infeasible if small deviations from the given values occur (Ben-
Tal et al. 2009). Secondly, even if the solution stays feasible, the future decisions
are fixed and do not adjust to the outcomes of the uncertain sea level rise from the
earlier periods. In the following, we discuss in detail the uncertainty structure w.r.t.
the sea level rise and then develop the adjustable robust version of the deterministic
model of Section 6.2.

6.3.2 Uncertainty structure

We divide the time horizon into intervals with points 0 = t0 < t1 < t2 < . . . < tJ−1 <

tJ = T and assume that in each of the intervals [tj−1, tj], j = 1, . . . , J the sea level
rise is equal to rj which value is known only at time tj. In this way (i) we allow the
dynamics of the sea level rise to differ over time, (ii) it is possible to readjust the
decisions at time points t1, . . . , tJ−1 after the value of the respective sea level rise is
known.
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Example 6.1 Suppose that T = 10, and we define J = 3 with t1 = 3 and t2 = 6.
We then have that the time horizon is divided into intervals: [0, 3], [3, 6] and [6, 10].
At time points t1 and t2 decisions can be readjusted, based on the revealed sea level
rise speed in the periods [0, 3] and [3, 6], respectively.

We assume that in each of the intervals [tj−1, tj] the sea level rise belongs to an
interval

rj ∈ Rj = [(1− ρ)rj, (1 + ρ)rj], j = 1, . . . , J,

where rj is the forecast value and parameter 0 ≤ ρ ≤ 1 specifies the degree of
uncertainty about rj. For simplicity, we assume that rj = r for all j.
Let us denote the vector of uncertain sea level rises by r = (r1, r2, . . . , rJ) and assume
that the sea level rise speed (the sea level grows linearly throughout the interval) is
constant in each of the intervals [tj−1, tj]. Then, we model the relative dike height
requirement as:

ns,t(r) = ns,0 + βs

 ∑
j:tj≤t

rj + t− tj(t)
tj(t)+1 − tj(t)

rj(t)

 , (6.2)

where ns,0 is the initial requirement in period 1, rj the rise of the sea level throughout
the interval [tj−1, tj], and j(t) = min {j : tj ≥ t}, that is, j(t) is the smallest j such
that t belongs to the interval [tj, tj+1]. Formula (6.2) means that the requirement
ns,t(r) is equal to the sum of the initial requirement, the sea level rises from all the
full intervals that passed until time t and the sea level rise in the interval containing
t up to this time moment, multiplied by the sensitivity βs.

6.3.3 Adjustability of decisions - applicability of adaptive splitting

Adjustability of integer decisions consists in its essence in splitting the uncertainty
set into subsets and designing different later-stage decisions for each of these subsets.
For example, one splits the set R1 into two sets R1

1 = [(1 − ρ)rj, z] and R2
1 =

[z, (1 + ρ)rj], such that R1
1 ∪ R2

1 = R1 Then, at time t1 when rj is observed and
it is known whether it holds that r1 ∈ R1

1 or r1 ∈ R2
1. Then, one can differentiate

the decisions implemented from time tj on, whereas there can be only one possible
decision implemented before tj, since it is not known yet what r1 is.
One of the crucial questions in this setting is how to choose the point z where the
sets Rj are split. Postek and den Hertog (2016) provide theoretical results on how
to do it. This approach relies on the observation that for different constraints in the
problem, different scenarios rj are the worst-case scenarios, i.e., maximizing the left
hand side. They prove that in order to improve on the worst-case objective function,
these scenarios need to end up in different subsets R1

1 and R2
1 as a result of the
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splitting procedure. The splitting procedure is then applied iteratively, resulting in
a more and more adjustable decision structure.

Remark 6.1 Here, we make an important distinction that by the worst-case scenario
we mean a realization of the uncertain parameter within the specified uncertainty set
that is least favorable to the given set of decisions. This should be opposed to the
‘worst scenarios’ considered in the water management community, corresponding to
a specific sea level rise trajectory prescribed by, for example, the government.

In the specific problem we consider, this method cannot be applied as (i) all the
constraints of the problem depend on the uncertain parameter r in the same way,
that is, the highest the sea level rise, (ii) the uncertainty set is a box, i.e. we have
that R = R1 × . . .×RJ . Combination of these two factors leads to the conclusions
that it is always a single scenario r that maximizes the right-hand side term ns,t(r) in
the safety requirement constraint. This claim is proved in the later part of this paper
as Proposition 6.1 and it implies that we need (i) another methodology of choosing
how to split the uncertainty set R than the one of Postek and den Hertog (2016), (ii)
a different objective than simply the worst-case cost over the entire uncertainty set
(total cost of the objective assuming that the flood protection policy is feasible for
all r ∈ R. In the following subsections we outline the adjustability structure of our
choice and demonstrate mathematically the need for a different objective function,
which shall be the so-called average worst-case objective.

6.3.4 Adjustability of decisions - our approach

As for the splitting methodology, we assume that at t1, t2, . . . , tj, depending whether
the realized value rj is such that rj ∈ R1

j = [(1− ρ)rj, rj] or rj ∈ R2
j = [rj, (1 + ρ)rj],

different decisions can be implemented in the periods to come. We choose to split
the uncertainty sets R2

j at points rj for its simplicity and lack of theoretical reasons
justifying another splitting structure.
In other words, before time t1 there is only one decision scenario to be implemented.
From time t1 and before t2 there are two decision possibilities, between t2 and t3 four,
and so on. This gives rise to the tree decision structure given in Figure 6.1.
As shown in Figure 6.1, J − 1 split points result in a decision tree with 2J−1 paths -
sequences of arrows from time 0 to T . We enumerate the paths using (J − 1)-tuples
α ∈ {1, 2}J−1 which is illustrated by the following example.

Example 6.2 In Figure 6.1, α = (2, 2, 1) corresponds to the decision paths that
branches ‘up’ at times t1 and t2, and then ‘down’ at time t3.
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Figure 6.1 – Adjustability scheme when J = 4. At times points t1, t2, t3 it turns out whether the
sea level rise belonged to [(1−ρ)rj , rj ] (symbolized by the dark gray part of the box) or [rj , (1+ρ)rj ]
(symbolized by the light gray part of the box).
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We define that for each of the decision paths for the entire planning horizon [0, T ]
there is a separate decision vector xt,s,h,p(α) and yt,m,p(α), where t = 0, . . . , T . Each
of the decision paths is then uniquely identified with a trajectory of the sea level rise
r:

αj =

 1 if rj ∈ R1
j

2 if rj ∈ R2
j

, j = 1, . . . , J − 1.

In a similar way, we construct multi-period uncertainty sets for r uniquely identifiable
with α’s as:

R(α) = Rα1
1 ×Rα2

2 × . . .×R
αJ−1
J−1 ×R

αJ−1
J−1 ×RJ .

The relation between the decisions xt,s,h,p(α) and yt,m,p(α) and the uncertainty sets
R(α) is that we require each of the decision paths to satisfy the relative dike re-
quirement for each r belonging to an uncertainty set corresponding to that path
(adjustable robust version of constraint (6.1a)):

t∑
τ=0


Nh∑
h=1

hxτ,s,h(α) +
Nm∑
m=1

am,s,t,τyt,m(α)

 ≥ ns,t(r), ∀s, t ∀r ∈ R(α). (6.3)

However, as some of the decision paths from 0 to T coincide up to a certain time
point, it is necessary to include nonanticipativity constraints, ensuring that decisions
corresponding to paths that are the same up to some point, are also the same, to
prevent that decisions are based on information not available yet. These constraints
can be formulated as:

xt,s,h(α′) = xt,s,h(α′′), yt,m(α′) = yt,m(α′′), ∀t : t < tj, α′1:j = α′′1:j, (6.4)

where α1:j denotes a subvector of vector α consisting of its first j components.
Nonanticipativity constraints are illustrated by the following example.

Example 6.3 In the scheme of Figure 6.1 we have that the paths corresponding to
the two top branches of the tree correspond to α′ = (2, 2, 2) and α′′ = (2, 2, 1). Thus
we have that 2 is the largest j such that it holds that α′1:j = α′′1:j. This, combined with
(6.4) implies that xt,s,h,p(2, 2, 2) = xt,s,h,p(2, 2, 1) and yt,m,p(2, 2, 2) = yt,m,p(2, 2, 1) for
t < t2.

6.3.5 Objective function

In the deterministic problem (6.1) there is only a single decision path and no uncer-
tainty so that the objective function is simple and corresponds to the total discounted
costs of the measures taken.
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In the adjustable case, however, each of the paths α yields a different decision path
that has a different total cost C(α):

C(α) =
T∑
t=0

1
(1 + d)t


Ns∑
s=1

Nh∑
h=1

ps,hxt,s,h(α)ps,h +
Nm∑
m=1

pmyt,m(α)

 ,
and the objective function of the entire problem should somehow take into account
the costs related to all the paths. A typical choice in Robust Optimization is to
consider the worst-case cost as the objective function - in our case, the cost of the
most expensive decision path. Suppose that indeed, for fixed t = (t1, . . . , tJ−1) we
minimize the worst-case objective, i.e. the value of the objective function under the
assumption that the worst-possible realization r ∈ R is realized. The optimization
problem is then:

min
x,y

max
α∈{1,2}nz

C(α)

s.t.
t∑

τ=0


Nh∑
h=1

hxτ,s,h(α) +
Nm∑
m=1

am,s,τ,tyt,m(α)

 ≥ ns,t(r), ∀s, t ∀v ∈ R(α)

(6.5a)

ns,t(r) = ns,0 + βs

 ∑
j:tj≤t

rj + t− tj(t)
tj(t)+1 − tj(t)

rj(t)

 (6.5b)

xt,s,h(α′) = xt,s,h(α′′), yt,m(α′) = yt,m(α′′), ∀t : t < tj, α′1:j = α′′1:j
(6.5c)

Nh∑
h=1

xt,s,h(α) ≤ 1, ∀t, s, ∀α (6.5d)

Lk(x(α),y(α)) ≤ 0, ∀k = 1, . . . , K, ∀α (6.5e)
xt,s,h(α), yt,m(α) ∈ {0, 1}, ∀t, s, h,m, ∀α. (6.5f)

Let us denote by WC(t) the optimal value to (6.5) for a given t. There is no adjusta-
bility if J = 1 and we denote the objective value in this case by WC.
As the following Proposition shows, it is not possible that WC(t) is better than WC.

Proposition 6.1 For every t it holds that WC(t) = WC.

Proof. It follows easily that WC(t) ≤WC from the fact that every feasible solution
to the problem with J = 1 is also feasible to the problem with J > 1. Assume there
exists t such that WC(t) < WC. We have that the optimal solution corresponding
to α∗ = (2, 2, . . . , 2) is feasible for every

R((2, 2, . . . , 2)) = [r1, (1 + ρ)r1]× [r2, (1 + ρ)r2]× . . .× [rJ−1, (1 + ρ)rJ−1]×RJ .



Modeling uncertainty and adjustability 235

However, since the only constraint dependent on r is (6.5a), and its left hand side
depends monotonically on components of r, we have that the optimal solution cor-
responding to α∗ is feasible for all R(α), α ∈ {1, 2}J−1, and hence, for the entire
uncertainty set:

R = [(1−ρ)r1, (1+ρ)r1]× [(1−ρ)r2, (1+ρ)r2]× . . .× [(1−ρ)rJ−1, (1+ρ)rJ−1]×RJ .

In other words, decisions feasible for the uncertainty set being a product of the
‘worse subintervals’ for rj (containing the higher values) is feasible also for the ‘better
intervals’ and hence, for the entire uncertainty set. But this implies that the decision
sequence corresponding toα∗ is also feasible for problem with J = 1 (no adjustability)
and, at the same time, gives a better objective value than WC. This is a contradiction
with the assumption that WC is the best objective value for problem with J = 1. �

Proposition 6.1 shows that no improvement in the objective value is possible if the
objective is the worst-case cost. More generally, it can be proven in a similar fashion
that no adjustability schemes can lead to an improvement of the worst-case formu-
lation. A simple consequence of this fact is, as we have already signalized, that the
methods of adaptive splits of Postek and den Hertog (2016), in which the division
of the uncertainty set R is determined on the basis of solutions, cannot be applied.
It is exactly for that reason that in our application the splits of the uncertainty sets
[(1− ρ)rj, (1 + ρ)rj] into halves [(1− ρ)rj, rj] and [rj, (1 + ρ)rj] is pre-determined.
As a consequence, we propose that instead of the worst-case cost of a decision path,
the objective function is the average of the costs associated with all the paths:

1
2J−1

∑
α∈{1,2}J−1

C(α).

The weights 1/2J−1 correspond to the fact that each of the uncertainty subsets R(α)
has the same volume and that we assume both parts to be evenly likely (which
happens if the underlying probability distribution is uniform). Secondly, due to the
fact that each C(α) plays a role, it is almost sure that for the uncertainty subsets
with smaller sea level increase, smaller later-stage investments are needed to meet the
safety standards. In this way, we can expect increasing J to lead to better optimal
values.
In the end, the adjustable problem we consider is:

min
x(α),y(α)

1
2J−1

∑
α∈{1,2}J−1

C(α)

s.t. (6.5a) - (6.5f).
(6.6)
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Figure 6.2 – The Rhine - Meuse Estuary - Drechtsteden area. Thick lines stand for the dike
segments, numbers denote the dike rings - areas surrounded by dikes or high grounds from all sides.

6.4 Numerical experiment

6.4.1 Region

In our numerical experiment we consider the Rhine - Meuse Estuary - Drechtsteden
area illustrated in Figure 6.2, consisting of Ns = 150 dike segments. For each dike
segment Nh = 22 dike heightenings are possible of size {0.1, 0.2, . . . , 2.0, 2.5, 3.0m}.
Also there are Nm = 14 large scale water measures:

1. Replacement of the Measlantbarrier. This storm surge barrier is located
at Hoek van Holland in the Nieuwe Waterweg. This barrier together with dikes
and dunes protects the province Zuid-Holland against floods from sea. The
storm surge barrier protects against high water and can be closed in emergen-
cies. This measure can be implemented only from 2070 on.

2. Improving the Maeslantbarrier before 2070 and its replacement in 2070.

3. Change the river discharge distribution via the IJssel river. When
the discharge via the Lek river becomes greater than 8000m3/s, more water is
discharged via the IJssel river.

4. Change the river discharge distribution via the Waal river. When the
discharge via the Lek river becomes between 8000m3/s and 16000m3/s, more
water is discharged via the Waal river.
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5. High water level Waal. When the discharge of the Rhine is above 16000m3/s,
more water will be discharged via the Waal river.

6. Robert Koning. In this measure extra space for the Merwede is created with
a flood channel through the Land of Heusden and Altena. It is a green river,
called Robert Koning, that is used when water levels exceed a certain height.
It is expected that these high water levels occur once every 100 years.

7. Room for the River packages (4 measures). There are several measures
that dig off areas around the river Merwede. The four measures that can be
taken are the measures RvR klein 01, RvR klein 02*, MW007, and MW42 3.
Two packages (RvR klein 01 and RvR klein 02*) combine several measures that
dig off areas around Merwede.

8. Grevelingen. With this measure the possibility is created to store water at
the Grevelingen lake.

9. Spaargaren 1. In this measure the seaside is closed by sluices at the Maes-
lantbarrier.

10. Spaargaren 2. Around the Nieuwe and Oude Maas rivers, sluices close the
seaside with extra discharge capacity.

11. Spaargaren 3. The sluices close the seaside around the Nieuwe and Oude
Maas rivers as Spaargaren 2, but without extra discharge capacity.

The big measures are illustrated in Figure 6.3.

6.4.2 Piping problem

An additional trait of the problem we consider is the so-called piping problem affecting
some of the dike segments. If groundwater flows wash away the sand below a dike,
a pipe through the dike can arise (Deltares 2014). The flood probability increases
enormously and the piping problem needs to be solved instantly in order to reduce
the flood probability significantly. This issue cannot be addressed by lowering the
water level, but only by strengthening the dikes. Let us denote by Sp the set of dike
segments for which the piping problem exists.
The piping problem enters our problem in a way that for each s ∈ Sp it holds that
(i) every dike heightening h ∈ H and (ii) solving the piping problem, have a fixed
cost component cfs which is the same for both ps,h and rs, such that:

ps,h = cfs + pvs,h rs = cfs + rvs ,
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Figure 6.3 – The Rhine - Meuse Estuary - Drechtsteden area with some of the large-scale measures.
The box includes measures considered in the planning kit of Kind et al. (2014).

where pvs,h is the variable cost of dike heightening depending on h ∈ H, rs is the total
cost of solving the piping problem, and rvs is the remaining cost of solving the piping
problem for dike segment s.
In our optimization model, we incorporate the piping issue in such a way that we
assume that the piping problem, for dike segments s for which it exists, is solved at
time t = 0. Thus, the fixed cost rs is incurred at t = 0 for each s ∈ Sp. In order
to avoid double-counting of the fixed cost at t = 0 we assume that the cost of dike
heightening h (if implemented) is equal to pvs,h for that time period.
Since the total cost of solving the piping problem are relatively large compared to
the cost of dike heightenings, in our numerical results we shall report on the total
cost both with and without the cost of solving the piping problem.

6.4.3 Research questions and numerical results

The particular research questions that we subsequently answer in the coming sections,
are as follows:

1. What is the nominal (nonrobust) solution and what the dangers are if uncer-
tainty w.r.t. sea level rise is present?

2. What are the (adjustable) robust solutions, how do they change as more ad-
justability is allowed in the model?

3. How do the robust solutions differ from the nominal solution?
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4. How do the robust solutions change when either the discount rate d or the the
uncertainty level ρ changes?

5. How do the robust solutions change when an adjustability scheme different
to that of Section 6.3 is applied? This question is considered, for reasons of
brevity, in Appendix 6.A.

In our numerical experiment, the planning horizon is 2020 - 2200, with the possibility
to implement decisions every 10 years, which gives 19 decision stages in total. When
talking about the results, we shall often refer by t = 0 to year 2020, t = 1 to year
2030 and so on.
In our numerical experiment, we shall consider equidistant splitting points (if any
adjustability is present) tj, j = 1, . . . , J − 1, to be defined as

tj = jW,

where W is the length of the interval between tj−1 and tj as measured in the ‘big’
time intervals of 10 years, chosen to be independent from j. In this way, W = 3
corresponds to differentiating the decisions every 3 · 10 = 30 years. We solve the
optimization model for different values of J − 1 and W .
The sensitivities βs and initial dike shortages ns,0 are estimated from the data. For
the robust models we assume that there is ρ = 40% uncertainty about the sea level
rise speed, motivated by the Dutch KNMI uncertainty intervals for sea level rise
speed.1 We also solve a nonrobust (nominal) model where ρ = 0%. The discount
rate is assumed to be equal to d = 5.5%. We assume that a dike segment should not
be heightened more often than once in 30 years, which we denote as the frequency
constraint.
Due to the size of the model and the number of binary variables, it is not expected
that it is solved to full optimality within reasonable time limits. However, a particular
feature of the model is that once the decisions w.r.t. the large-scale measures are
fixed, the optimization problem related to the dike heightenings per each dike segment
can be solved separately. For that reason, each time we reach the sub-optimal solution
to the entire optimization model, we run an extra step consisting in re-optimization
of the dike decisions, calling it the dike reoptimization step.
The optimization model formulation has been coded using the C++ language and is
solved with the Gurobi solver (Gurobi Optimization 2015). For each instance with
givenW and J we set time limit of 10h and the MIP optimality gap to 0.1%. Problems
have been implemented using 16-core computing nodes of the Lisa computing cluster
at SURF SARA computing center in Amsterdam.

1See the document (in Dutch) ‘Zeespiegelveranderingen in de toekomst’, at http://www.knmi.
nl/kennis-en-datacentrum/achtergrond/zeespiegelveranderingen-in-de-toekomst.

http://www.knmi.nl/kennis-en-datacentrum/achtergrond/zeespiegelveranderingen-in-de-toekomst
http://www.knmi.nl/kennis-en-datacentrum/achtergrond/zeespiegelveranderingen-in-de-toekomst
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Table 6.1 – Results for the nominal solution. ‘Obj value’ - the optimal value (in millions of euros)
of the optimization problem without piping cost; ‘Opt. gap’ - the MIP optimality gap after 10 hours
of computation with dike reoptimization (without dike reoptimization); ‘Dike cost t = 0’ - total cost
of dike heightenings implemented at t = 0

Nominal

Obj value Opt. gap Obj value + piping Dikes cost t = 0

1004.71 0.1% (0.1%) 3607.50 587.93

Table 6.2 – Implementation schedules of the used large-scale measures for the nominal solution.

Measure Implementation year

Replacing the Maeslantbarrier 2180

Grev100 2090

MW42 3 2060

MW007 2020

6.4.3.1 Nominal solution and its shortcomings

Table 6.1 presents the results for the nominal solution, i.e. assuming that there is
no uncertainty about the sea level rise, and Table 6.2 presents the corresponding
implementation schedule of the large-scale measures. We observe that the model
has been solved nearly to optimality, attaining the total cost of 1004 (excluding the
piping cost). Of all the variable cost, the largest share are the here-and-now dike
heightening cost, 587. We can clearly see that the fixed cost of solving the piping
problem (2602) dominate the cost of the entire solution, as they raise the total cost
to the level of 3607.
Regarding the large-scale measures, in Table 6.2 we observe that only four of them
are used: ‘Replacing the Maeslantbarrier’, ‘Grev100’, ‘MW42 3’ and ‘MW007’. This
gives an indication that not all of the measures are relevant and are worth maintaining
their readiness to use. This indication shall be confirmed in later experiments.
To investigate ‘how bad the nominal solution can become’, we check first for how
many dikes and when are the safety standards violated if the sea level rise turns out
to be the worst +40% value taken into account for the robust solutions. It turns out
that throughout the planning horizon, the safety requirements are violated for 123
out of 150 dike segments. Figure 6.4 includes the histogram of the first time moments
that for these 123 segments the safety standards are violated. We see that there is a
‘peak’ of the frequency of dike violations in time frame 2040-2080. On average, the
first violation occurs in year 2087.
As an additional illustration of the advantages of taking into account the robustness
and adjustability, we provide one more experiment. In this experiment, we shall
begin with the nominal solution and re-optimize its decisions in the subsequent time
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Figure 6.4 – Histogram of the first time moments of safety standards’ violation for the 123 dike
segments for which there is a violation (out of the total number of 150 dike segments), with +40%
sea level rise increase compared to the nominal scenario.
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periods to match the worst +40% value, so that it can be considered as an ‘on-the-
spot fixing’ of the nominal solution. To be precise, the procedure is as follows.

1. At time t = 0 an optimal strategy is constructed with the assumption of no
uncertainty in the sea level rise (using thus ρ = 0) and the here-and-now
decisions are implemented.

2. However, at t = 1 the sea level rise between t0 and t1 turns out to be the highest
possible one with +40% and at time t1 a new strategy is constructed (using
again ρ = 0) for time horizon [t1, T ] and the here-and-now decisions for t1 are
implemented.

3. Step 2 is repeated in time periods [t1, t2], [t2, t3],. . ., [tJ−1, tJ ].

It is important to note that in this experiment it is possible (and it will occur) that
for certain dikes segments the safety standards are violated. Another issue is that
the constraint that a dike segment is heightened at most once in 30 years might not
be possible to be satisfied.
Indeed, we observe that the problem to solve becomes infeasible in period t = 9 (year
2110), due to the necessity to increase the height of certain dikes immediately while
not allowed because of the frequency constraint. Strikingly, already the solution of
the optimization problem solved at t = 1 (year 2030, the ‘on-the-spot fixing’ model
is still feasible) involves a major increase in the total cost - a value of 1686, 68% up
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Figure 6.5 – Increase of the total cost when the optimal solution is re-optimized due to the high-
est possible sea level rise realization. The continuous line corresponds to the case with frequency
constraint (model infeasible in 2110) and without these constraints after 2020.
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compared to the value ‘promised’ by the nominal solution in Table 6.1. The evolution
of the optimal cost from the optimization problem solved at each stage is given by
the continuous line in Figure 6.5.
Because it is not possible to ‘keep fixing the nominal solution’ without heightening
the dikes more often than once in 30 years, we implemented also a variant of this
test without the frequency constraint at stages later than t = 0. It turns out that
the total cost is equal to 1227, that is, 22% higher (see Figure 6.5) than assumed in
Table 6.1. Also, in the course of such a strategy, 7 of the 14 large-scale measures are
used - an increase from 4 measures assumed in the initial solution.
From this test we see that in presence of uncertainty, even if the nominal solution is
allowed to be ‘fixed’ later on, the cost of this fixing may be substantial. As we shall
see in the section to come, the total cost of the ‘fixed’ solution is higher than the cost
of the robust solution, i.e., the one that takes uncertainty into account at the very
beginning.

6.4.3.2 Robust solutions

Having studied the disadvantages of the nominal solution, we turn to the (adjustable)
robust solutions with sea level rise uncertainty ρ = 40%. We begin the discussion of
the results with the changes in the large-scale measures implementations for different
solutions. We show the solutions for the nominal model and the robust models for
W = 2 with zero and two splits in Table 6.3. We see from it (second row) that
for the non-adjustable solution the measure ‘RvR kl01’ is not used at all, whereas
for the adjustable solution its year of implementation varies between 2090 and 2130.
The most stable measures are ‘MW42 3’ implemented by all solutions in 2050, and
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Table 6.3 – Implementation schedules of the used large-scale measures for the nominal solutions
and for the robust solutions with W = 2 and J − 1 ∈ {0, 2}. There is only one scenario for the
nominal solution and for the robust solution with J − 1 = 0 (no adjustability) and four scenarios for
J − 1 = 2.

Nominal J − 1 = 0 (no adjustability) W = 2 and J − 1 = 2

Scenario - - 1 2 3 4

Replacing the Maeslantbarrier 2180 2150 2110 2110 2110 2100

RvR kl01 - - 2110 2130 2100 2090

Grev100 2090 2070 2080 2080 2080 2070

MW42 3 2060 2050 2050 2060 2050 2050

MW007 2020 2020 2020 2020 2020 2020

‘MW007’ which is implemented right away at the beginning of the planning horizon
at 2020.
The cost and dike heightening implementation characteristics of the robust solutions
are given in Table 6.4 (including also the nominal solution for ease of comparison)
and we comment on it in a column-by-column basis, beginning the discussion on the
example of models with W = 2, comparing it later to the nominal solution. Note
that for all values of W the first row (solution with J − 1 = 0) is the same - this is
because this is the solution with no adjustability.
In the first column, we can see that, as the degree of adjustability grows with the
number of splits, the objective function value decreases. Already for one split we
observe a drop of −3.73%, equivalent to approximately 45 million euro. For most
adjustable solutions in Table 6.4 with three splits we have a decrease in the average
worst-case cost at the level of −6.35%. The second columns provides the information
about the remaining optimality gap of the MIP solver. For example, for three splits
we can observe a remaining optimality gap 0.43% which without the reoptimization
step would have been equal to 0.52%. Roughly speaking, this means that there is
uncertainty whether the given solution can be improved by another 4.4 million euro.
In the third column the objective value of the optimization problem is added to the
fixed cost of solving the piping problem, which dominate the cost structure. We
can see that then, the relative improvements in the total cost due to adjustability
oscillate between 1–2%.
The fourth and fifth columns provide information about the worst-case cost for the
best and the worst α. That is, they provide the range to which the worst-case cost
fall depending on the trajectory of the sea level rise. For the no adjustability case
there is no gap between the two as there is only one scenario. But already for the
single split solution, we can see that the ‘best scenario’ gives worst-case cost of 1106
compared to 1206 of the worst scenario. The difference between the two, equal to 100
million euro, informs us about the uncertainty in the total cost due to uncertainty
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about the sea level growth. This difference takes about 100/1200 ≈ 8.3% of the
total variable cost for J − 1 = 1. For the three splits solution we can see that the
difference between the worst and best scenarios is even bigger, with values 1044 and
1207, respectively.
An important observation is that the worst-case scenario cost does not change that
much for different number of splits, showing that minimization of the average worst-
case objective does not lead to the minimization of the optimistic scenarios at the
expense of much bigger riskiness, so that their average would go down.
The last three columns inform on the changes in the here-and-now dike heightening
decisions. We can see that with adjustability, the decisions are different for 11-
12 dike segments, with the average difference oscillating between 0.1–0.2m. The
resulting change in the here-and-now dike heightening cost is equally small, compare
for example (last column) 606 for three splits and 606 for no split.
With respect to the impact of different values of W we can observe that W = 2 and
W = 3 provide slightly higher improvements in the total cost than W = 4. This can
be linked to the fact that if the first differentiation of the total costs is done only
after 40 years, then the only later-stage decisions that different for scenarios α are
the ones with discount factor at least 1.055−40 ≈ 0.1175. That is, the differentiation
of decisions comes ‘too late’ to lead to substantial changes in the total cost.

6.4.3.3 Comparison of the robust and nominal solutions

As for the nominal solution, we can clearly see in Table 6.4 that the objective function
value in the first column is significantly smaller than for the robust models: compare
1004 for the nominal solution to 1201 for the robust solutions without adjustability.
We note however, that if the nominal solution is to be fixed ‘on the spot’ later, the
cost grows sharply beyond the cost of the worst scenarios for the robust solution, as
illustrated in Figure 6.5.
Due to lack of the need to accommodate for the uncertain sea level rise, the here-and-
now investment decisions for the dikes differ for 20 dike segments, with the average
difference of 0.19m (lower heightenings), with a total cost of 587 at t = 0, instead of
606 for the robust solution - about 3% less than the robust solution. In Table 6.3 we
see that the nominal solution applies all the large-scale measures at least as late as
the robust solutions.
Overall, we can say that incorporating 40% uncertainty in the sea level rise leads
only to an about 4% increase of the expected total worst-case cost (when the fixed
piping costs are included, about 12% when only variable costs are considered), and
a 3-4% change in the here-and-now cost. These numbers seem to be rather small
compared to the guarantees gained - recall what happens if the nominal solution is
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to be fixed later.

6.4.3.4 Robust solutions when the key parameters change

Conclusions of the experiments up to now rely on the value of the two crucial pa-
rameters: (i) the discount rate d, and (ii) the uncertainty parameter ρ, whose values
can be seen as somewhat arbitrary. We want to validate our results by considering
the model with changes in these parameters and investigate what happens to the
results of Table 6.4 if we change the discount rate from 5.5% to 2.5%, or change
the uncertainty about the sea level rise from 40% to 60%. To make this comparison
concise, we focus only on the models with W = 3. Table 6.6 presents the results.
In the first part of the table we can see the solutions for the changed discount rate.
Lower discount rate implies that (i) the overall discounted cost grows higher, (ii) the
cost of later-stage decisions grow relatively to the here-and-now decisions and hence,
adjustability should become more important. This is indeed visible, for example, in
the number of the dike segments for which the adjustable solutions involve different
here-and-now decisions, which is 14 for a single split and 22 for two splits. This
contrasts with the case d = 5.5% for which only 11–12 dike segments required different
decisions because of the adjustability. Surprisingly, the adjustable decisions in this
case require smaller here-and-now investment cost, which is reflected in the last
column.
Also, we would like to highlight here the impact of the discount rate itself - the
nonadjustable solutions of the first part of Table 6.6 implies a different here-and-now
decision for 43 dike segments compared to the nonadjustable solution of Table 6.4,
with an average difference of 0.42m, typically implying a larger here-and-now height-
ening. This is logical as with the lower discount rate, the here-and-now decisions
become relatively cheaper.
The second part of the table includes the solutions for ρ = 60%. Here, only four dike
segments require a different here-and-now decision when adjustability is applied.
Also, in the last column we see that in this setting the cost of the here-and-now dike
heightening decisions are lower - 620 of J − 1 = 1 compared to 632 of J − 1 = 0.

6.4.3.5 Numerical experiment - results overview

Here, we summarize the conclusions of the numerical experiment of Section 6.4 in-
cluding direct links to the tables and figures. These are as follows:

• not taking the uncertainty into account and assuming a ‘moderate’ sea level
rise speed leads to solutions for which the safety standards are mostly violated
within the period of about 40 years (see Figure 6.4) if the worst-case happens;

• not taking the uncertainty into account and assuming a ‘moderate’ sea level,
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combined with ‘on the spot’ fixing of the situation leads to rapidly growing to-
tal cost of the solution and/or violating some of the constraints (safety require-
ments and frequency constraints, stating how often can a single dike segment be
heightened), see Figure 6.5. In fact, the total cost of the ‘on the spot problem
fixing’ strategy are higher than the maximum cost of the strategy taking into
account robustness from the very beginning;

• considering 40% uncertainty in the sea level rise results in less than 10% differ-
ence in the expected total project cost (see Table 6.4), equivalent to about 130
million euro;

• adjustability allows for lower-cost solutions particularly when the realized un-
certain sea level rise in the early periods is low, see Tables 6.4 and 6.6;

• adjustability and here-and-now decisions for dike segments play a much more
important role when the discount rate is low (see the first part of Table 6.6,
where 22 dikes require a different here-and-now decision, compared to 10 dike
segments in Table 6.4);

• only a small part of the large-scale measures (5 out of 14) are used by the
optimal solutions and their moment of implementation is relatively stable (see
Table 6.3);

• a different set splitting strategy for adjustability (see Appendix 6.A), based on
sums of sea level increase, does not change the solutions significantly.

6.5 Conclusion

In this paper we have considered the problem of finding the optimal flood protection
strategy in a long-term horizon. In particular, the aim was to address two challenges:
(i) one related to explicitly taking into account of the uncertainty related to the future
sea level rise and (ii) the second one, requiring the future decisions to adjust to the
revealed uncertainties from earlier periods. Both challenges have been addressed by
applying the tools of integer-adjustable robust optimization as proposed in Postek
and den Hertog (2016).
The numerical experiments reveal that taking uncertainty into account early leads to
solutions that, compared to the nominal solutions based on ‘moderate’ sea level rise
scenario, do not require expensive adjustments at later time stages, if the uncertainty
deviates from the moderate scenario. At the same time, adjustability of decisions
ensures that cheaper decisions are made when the realized uncertainty is low.
Also, taking into account uncertainty results in different here-and-now decisions for
some of the dike segments, which facilitate better adjustments in the future. This
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becomes even more important when the assumed discount rate is low (and the relative
costs of the later-stage decisions are higher). In the end, we conclude that only a
small part of the available large-scale measures are used in the optimal solutions.
Regarding future research, it is important to consider the problem of finding an
optimal solution on a larger-scale region including also dike segments whose safety
standards are driven by the (uncertain) river flow rather than by the sea. Further-
more, the model can be extended by taking into account costs arising in case a certain
area is flooded.
Appendix

6.A Experiment - alternative splitting proposal

The results for the adjustable robust solutions up to now have been based on the
splitting methodology presented in Section 6.3. In it, we have been differentiating the
decisions based on whether r1 fell into the upper or lower half of the corresponding
interval, and the same for the later rj.
Alternatively, one can argue that the splitting (adjustability) at time tj should be
based on the outcome of the sum ∑j

s=1 rs. This is because the total water level
depends on the sum of the sea level rises in the subsequent time periods rather than
on each of them separately. Each of the uncertainty subsets R(α) is identified then,
instead with the sequence of inequalities in the following sequence (as in Section 6.3)

r1 (≥ or ≤) r̄1, r1 (≥ or ≤) r̄2, r3 (≥ or ≤) r̄2, . . .

with the sequence of inequalities in the following sequence:

r1 (≥ or ≤) r̄1, r1 +r2 (≥ or ≤) r̄1 + r̄2, r1 +r2 +r3 (≥ or ≤) r̄1 + r̄2 + r̄2, . . .

Again, the objective function is a weighted average of the cost corresponding to each
of the 2J−1 scenarios. However, in this setting it is no longer true that all uncertainty
subsets R(α) are equally probable if one assumes uniform probability distribution of
r overR instead, the volume of each of the uncertainty subsets needs to be computed.
In other words, with J − 1 = 2 the probability of the scenario α = (2, 2) is equal to
the proportion p(α) of the volume of the polytope

R(α) = {r : (1− ρ)r̄j ≤ rj ≤ (1 + ρ)r̄j, j = 1, 2, 3, r1 ≥ r̄1, r1 + r2 ≥ r̄1 + r̄2, }

to the volume of the entire uncertainty set R. We have computed these proportions
p(α) using a Monte Carlo simulation and we note here only that these proportions
(probabilities) give relatively more weight to the extreme uncertainty subsets - the
ones where the sums of sea level rises is consistently in the ‘lower part’ or ‘upper
part’, respectively.
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The results of the experiment with a changed splitting strategy are given in the last
part of Table 6.6. Obviously, since the objective function is weighted with different
probabilities than in the original case, we should rather compare the new splitting
strategy based on the last five columns. Regarding the worst-case costs in the worst
and best scenario, they are nearly the same as the ones for W = 3 in Table 6.4,
with the worst-scenario only slightly better than in Table 6.4. This difference is most
likely accountable to the new probabilities assigning more weight to the extreme
scenarios. We also observe that the number of dikes with different t = 0 decisions is
rather stable, between 6 and 9. Overall, we conclude that in this parameter setting a
different splitting strategy does not lead to significantly different solution, especially
in the first time period.
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