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Bankruptcy Games with Nontransferable Utility

Bas Dietzenbacher∗†

February 1, 2017

Abstract

This paper analyzes bankruptcy games with nontransferable utility as a general-
ization of bankruptcy games with monetary payoffs. Following the game theoretic
approach to NTU-bankruptcy problems, we study some appropriate properties and the
core of NTU-bankruptcy games. Generalizing the core cover and the reasonable set to
the class of NTU-games, we show that NTU-bankruptcy games are compromise stable
and reasonable stable. Moreover, we derive a necessary and sufficient condition for an
NTU-bankruptcy rule to be game theoretic.

Keywords: NTU-bankruptcy problem, NTU-bankruptcy game, compromise stability,
reasonable stability, game theoretic bankruptcy rule
JEL classification: C71

1 Introduction

A bankruptcy problem is an elementary allocation problem in which claimants have indi-
vidual claims on an estate which cannot be satisfied together. Bankruptcy theory studies
allocations of the estate among the claimants, taking into account the corresponding claims.
In a bankruptcy problem with transferable utility (cf. O’Neill (1982)), the estate and claims
are of a monetary nature. These problems are well-studied, both from an axiomatic perspec-
tive and a game theoretic perspective. We refer to Thomson (2003) for an extensive survey,
Thomson (2013) for recent advances, and Thomson (2015) for an update.

Dietzenbacher, Estévez-Fernández, Borm, and Hendrickx (2016) generalized monetary
bankruptcy problems to bankruptcy problems with nontransferable utility in which individ-
ual utility is represented in incompatible measures. The estate can take a more general shape
and corresponds to a set of feasible utility allocations. Dietzenbacher et al. (2016) analyzed
these NTU-bankruptcy problems from an axiomatic perspective by formulating appropriate
properties for bankruptcy rules and studying their implications. In particular, they focused
on proportionality, equality, and duality in bankruptcy problems with nontransferable utility,
which resulted in the proportional rule and the constrained relative equal awards rule.

Orshan, Valenciano, and Zarzuelo (2003) analyzed NTU-bankruptcy problems from a
game theoretic perspective by introducing an associated NTU-bankruptcy game. As pointed
out by Estévez-Fernández, Borm, and Fiestras-Janeiro (2014), coalitions can attain payoff
allocations outside the estate in this game, which contradicts the original idea of O’Neill
(1982). They redefined NTU-bankruptcy games to stay in line with this original idea about
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TU-bankruptcy games, while focusing on convexity and compromise stability. However, it
turns out that their NTU-bankruptcy game does not straightforwardly generalize the original
TU-bankruptcy game, since the attainable payoff allocations of subcoalitions are explicitly
bounded by individual claims.

This paper introduces a new model for bankruptcy games with nontransferable utility
which both generalizes the model for TU-bankruptcy games and stays in line with the idea
of O’Neill (1982). Focusing on the structure of the core, we analyze NTU-bankruptcy games
along the lines of Curiel, Maschler, and Tijs (1987). Their results imply that TU-bankruptcy
games are compromise stable, i.e. the core equals the core cover, and reasonable stable, i.e.
the core equals the reasonable set. Generalizing the core, the core cover, and the reasonable
set to the class of NTU-games, we show that NTU-bankruptcy games are compromise stable
and reasonable stable as well.

Curiel et al. (1987) also showed that a TU-bankruptcy rule is game theoretic if and only
if it satisfies truncation invariance. This means that there exists a solution for TU-games
which coincides on the class of bankruptcy games with a certain bankruptcy rule if and only
if this bankruptcy rule satisfies truncation invariance. We generalize this characterization to
rules for bankruptcy problems with nontransferable utility.

This paper is organized in the following way. Section 2 provides a formal overview of
notions for bankruptcy games with transferable utility and bankruptcy problems with non-
transferable utility. Section 3 introduces the class of nonnegative games with nontransferable
utility and generalizes some notions from TU-games to NTU-games. Section 4 introduces
and analyzes a new model for NTU-bankruptcy games. In Section 5, we formulate some
concluding remarks and point out some suggestions for future research.

2 Preliminaries

2.1 Bankruptcy Games with Transferable Utility

Let N be a nonempty and finite set of players. An order of N is a bijection σ : {1, . . . , |N |} →
N . The set of all orders of N is denoted by Π(N) and the set of all coalitions is denoted by
2N = {S | S ⊆ N}. A transferable utility game is a pair (N, v) in which v : 2N → R assigns
to each coalition S ∈ 2N its worth v(S) ∈ R such that v(∅) = 0. Let TUN denote the class
of all transferable utility games with player set N . For convenience, we denote a TU-game
by v ∈ TUN .

Let v ∈ TUN . The marginal vector Mσ(v) ∈ RN corresponding to σ ∈ Π(N) is for all
n ∈ {1, . . . , |N |} given by

Mσ
σ(n)(v) = v({σ(1), . . . , σ(n)})− v({σ(1), . . . , σ(n− 1)}).

Let K(v) ∈ RN for all i ∈ N be given by

Ki(v) = v(N)− v(N \ {i}),

and let k(v) ∈ RN for all i ∈ N be given by

ki(v) = max
S∈2N :i∈S

v(S)−
∑

j∈S\{i}

Kj(v)

 .
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Let v ∈ TUN . The core is given by

C(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀S∈2N :
∑
i∈S

xi ≥ v(S)

}
,

the Weber set (cf. Weber (1988)) is given by

W(v) = Conv {Mσ(v) | σ ∈ Π(N)} ,

the core cover (cf. Tijs and Lipperts (1982)) is given by

CC(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N), k(v) ≤ x ≤ K(v)

}
,

and the reasonable set (cf. Gerard-Varet and Zamir (1987)) is given by

R(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀i∈N : min
σ∈Π(N)

Mσ
i (v) ≤ xi ≤ max

σ∈Π(N)
Mσ
i (v)

}
.

We have C(v) ⊆ W(v) ⊆ R(v) and C(v) ⊆ CC(v) ⊆ R(v). A TU-game v ∈ TUN is called
convex (cf. Shapley (1971) and Ichiishi (1981)) if C(v) = W(v), and compromise stable (cf.
Quant, Borm, Reijnierse, and Van Velzen (2005)) if C(v) = CC(v) and CC(v) 6= ∅. We state
the following result.

Proposition 2.1.
A TU-game v ∈ TUN is convex and compromise stable if and only if C(v) = R(v).

Proof. Assume that v ∈ TUN is convex and compromise stable. Then we have C(v) = CC(v).
Moreover, from convexity we know that minσ∈Π(N)M

σ
i (v) = v({i}) and maxσ∈Π(N)M

σ
i (v) =

v(N) − v(N \ {i}) for all i ∈ N , and we know that ki(v) = v({i}) for all i ∈ N . This
means that minσ∈Π(N)M

σ
i (v) = ki(v) and maxσ∈Π(N)M

σ
i (v) = Ki(v) for all i ∈ N . Hence,

C(v) = CC(v) = R(v).
Assume that C(v) = R(v). Since C(v) ⊆ W(v) ⊆ R(v), this means that C(v) =W(v), so

v ∈ TUN is convex. Since C(v) ⊆ CC(v) ⊆ R(v), this means that C(v) = CC(v), so v ∈ TUN

is compromise stable.

A bankruptcy problem with transferable utility (cf. O’Neill (1982)) is a triple (N,E, c) in
which N is a nonempty and finite set of claimants, E ∈ R+ is the estate, and c ∈ RN+ is

the vector of claims of N on E for which
∑
i∈N ci ≥ E. Let TUBRN denote the class of

all bankruptcy problems with transferable utility with claimant set N . For convenience, we
denote a TU-bankruptcy problem by (E, c) ∈ TUBRN .

Let (E, c) ∈ TUBRN . The corresponding bankruptcy game with transferable utility vE,c ∈
TUN is given by vE,c(S) = max{E−

∑
i∈N\S ci, 0} for all S ∈ 2N . Curiel et al. (1987) showed

that TU-bankruptcy games are convex and compromise stable. Quant et al. (2005) showed
that a convex and compromise stable TU-game is strategically equivalent to a bankruptcy
game.

2.2 Bankruptcy Problems with Nontransferable Utility

Let N be a nonempty and finite set of claimants. For any x, y ∈ RN+ , we denote x ≤ y if
xi ≤ yi for all i ∈ N , and x < y if xi < yi for all i ∈ N . The zero-vector x ∈ RN+ with xi = 0
for all i ∈ N is denoted by 0N . For any E ⊆ RN+ ,
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– the (nonnegative) comprehensive hull is given by comp(E) = {x ∈ RN+ | ∃y∈E : y ≥ x};

– the upper contour set is given by UC(E) = {x ∈ RN+ | ¬∃y∈E,y 6=x : y ≥ x};

– the strong Pareto set is given by SP(E) = {x ∈ E | ¬∃y∈E,y 6=x : y ≥ x};

– the weak Pareto set is given by WP(E) = {x ∈ E | ¬∃y∈E : y > x}.

Note that SP(E) = WP(E) ∩UC(E).

A bankruptcy problem with nontransferable utility (cf. Dietzenbacher et al. (2016)) is a
triple (N,E, c) in which E ⊂ RN+ is the estate satisfying the following conditions:

– E is nonempty, closed, and bounded;

– E is comprehensive, i.e., E = comp(E);

– E is non-leveled, i.e., SP(E) = WP(E),

and c ∈ UC(E) is the vector of claims. Let BRN denote the class of all bankruptcy problems
with nontransferable utility with claimant set N . For convenience, we denote an NTU-
bankruptcy problem by (E, c) ∈ BRN . Note that 0N ∈ E for all (E, c) ∈ BRN . Moreover,
any TU-bankruptcy problem (E∗, c) ∈ TUBRN can be written as an NTU-bankruptcy prob-
lem (E, c) ∈ BRN with E = {x ∈ RN+ |

∑
i∈N xi ≤ E∗}.

Let (E, c) ∈ BRN . The vector of utopia values uE ∈ RN+ is for all i ∈ N given by

uEi = max {xi | x ∈ E} .

The vector of truncated claims ĉE ∈ RN+ is for all i ∈ N given by

ĉEi = min
{
ci, u

E
i

}
.

Note that (E, ĉE) ∈ BRN for all (E, c) ∈ BRN .

Example 1.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |
x2

1 +2x2 ≤ 36} and c = (3, 24). We have uE = (6, 18), which means that ĉE1 = min{c1, uE1 } =
min{3, 6} = 3 and ĉE2 = min{c2, uE2 } = min{24, 18} = 18.

E

c

x10 1 2 3 4 5 6

x2

6

12

18
uEĉE

4

A bankruptcy rule f : BRN → RN+ assigns to any (E, c) ∈ BRN a payoff allocation

f(E, c) ∈ SP(E) for which f(E, c) ≤ c. A bankruptcy rule f : BRN → RN+ satisfies

truncation invariance if f(E, c) = f(E, ĉE) for all (E, c) ∈ BRN .
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3 Nonnegative Games with Nontransferable Utility

This section introduces nonnegative games with nontransferable utility and generalizes some
notions for TU-games to this new model. Many classes of TU-games are nonnegative, e.g.
cost savings games such as sequencing games and other operations research games, airport
games, simple games, glove games, and bankruptcy games. This lower bound for the worth
of coalitions arises naturally from the assumption that allocating nothing to a player corre-
sponds to a payoff of zero utility, which implies for some allocation problems that negative
utility payoffs do not have any interpretation. Following the same lines of reasoning, this
lower bound can also be applied in the context of NTU-games.

Definition 3.1 (Nonnegative Game with Nontransferable Utility).
A nonnegative game with nontransferable utility is a pair (N,V ) in which N is a nonempty
and finite set of players, and V assigns to each nonempty coalition S ∈ 2N \ {∅} a set of
payoff allocations V (S) ⊂ RS+ satisfying the following conditions:

– V (S) is nonempty, closed, and bounded;

– V (S) is comprehensive, i.e., V (S) = comp(V (S)).

A nonnegative NTU-game (N,V ) is called monotonic if V (S) ⊆ {xS | x ∈ V (T )} for all
S, T ∈ 2N \{∅} with S ⊆ T . Let NTUN

+ denote the class of all monotonic nonnegative NTU-

games with player set N . For convenience, we denote such an NTU-game by V ∈ NTUN
+ .

Note that a nonnegative TU-game v ∈ TUN gives rise to the nonnegative NTU-game V ∈
NTUN

+ with V (S) = {x ∈ RS+ |
∑
i∈S xi ≤ v(S)} for all S ∈ 2N \ {∅}. A solution for

monotonic nonnegative NTU-games F : NTUN
+ → RN+ assigns to any V ∈ NTUN

+ a payoff
allocation F (V ) ∈WP(V (N)).

Let V ∈ NTUN
+ . Similar to Otten, Borm, Peleg, and Tijs (1998), we define the marginal

vector Mσ(V ) ∈ RN corresponding to σ ∈ Π(N) for all n ∈ {1, . . . , |N |} by

Mσ
σ(n)(V ) = max

{
x ∈ R+

∣∣∣ (Mσ
σ(1)(V ), . . . ,Mσ

σ(n−1)(V ), x) ∈ V ({σ(1), . . . , σ(n)})
}
.

Note that the conditions on V imply that this maximum exists. As in the context of TU-
games, the marginal contribution of a player in a certain order can be interpreted as its max-
imal payoff when joining its predecessors, which have already been allocated their marginal
contributions. Inspired by Borm, Keiding, McLean, Oortwijn, and Tijs (1992), we define
K(V ) ∈ RN for all i ∈ N by

Ki(V ) = max
{
xi
∣∣ x ∈ V (N), xN\{i} ∈ UC(V (N \ {i}))

}
,

and k(V ) ∈ RN for all i ∈ N by

ki(V ) = max
S∈2N :i∈S

sup
{
x ∈ R+

∣∣ (x,KS\{i}(V )) ∈ V (S)
}
.

Note that the conditions on V imply that these maxima exist. As in the context of TU-games,
Ki(V ) can be interpreted as the maximal payoff of player i ∈ N within an allocation of V (N)
which is stable against a coalitional deviation of the other players together. Moreover, ki(V )
can be interpreted as the minimal right of player i ∈ N , the maximal payoff which can be
obtained within some coalition S ∈ 2N , with i ∈ S, when each other member j ∈ S \ {i} is
allocated Kj(V ).
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Using these notions, we can generalize the core, the core cover, and the reasonable set to
the context of NTU-games. Let V ∈ NTUN

+ . The (strong) core is defined by

C(V ) =
{
x ∈ V (N)

∣∣ ∀S∈2N\{∅} : xS ∈ UC(V (S))
}
,

the core cover is defined by

CC(V ) = {x ∈ SP(V (N)) | k(V ) ≤ x ≤ K(V )} ,

and the reasonable set is defined by

R(V ) =

{
x ∈ SP(V (N))

∣∣∣∣ ∀i∈N : min
σ∈Π(N)

Mσ
i (V ) ≤ xi ≤ max

σ∈Π(N)
Mσ
i (V )

}
.

Lemma 3.1.
Let V ∈ NTUN

+ . Then C(V ) ⊆ CC(V ).

Proof. Let x ∈ C(V ). For all i ∈ N , we can write

xi ≤ max{xi | x ∈ C(V )} = max{xi | x ∈ V (N),∀S∈2N\{∅} : xS ∈ UC(V (S))}
≤ max{xi | x ∈ V (N), xN\{i} ∈ UC(V (N \ {i}))} = Ki(V ).

Suppose that there exists an i ∈ N for which xi < ki(V ). Let S ∈ 2N with i ∈ S be such that
(ki(V ),KS\{i}(V )) ∈ V (S). Then xS ≤ (ki(V ),KS\{i}(V )) and xS 6= (ki(V ),KS\{i}(V )).
Since V (S) is comprehensive, this means that xS /∈ UC(V (S)). This contradicts that x ∈
C(V ), so k(V ) ≤ x ≤ K(V ). Hence, x ∈ CC(V ).

Definition 3.2 (Compromise Stability).
An NTU-game V ∈ NTUN

+ is called compromise stable if C(V ) = CC(V ) and CC(V ) 6= ∅.

Contrary to TU-games, the following example shows that the generalized reasonable set
does not necessarily contain the core of an NTU-game.

Example 2.
Let N = {1, 2, 3} and consider the game V ∈ NTUN

+ which is for all S ∈ 2N \ {∅} given by

V (S) =


{
x ∈ RS+

∣∣ x2
1 + x2

2 ≤ (9− x3)2, x3 ≤ 9
}

if S = N ;{
x ∈ RS+

∣∣ x1 + x2 ≤ 4
}

if S = {1, 2};
0S otherwise.

All marginal vectors are presented below.

σ Mσ
1 (V ) Mσ

2 (V ) Mσ
3 (V )

(1, 2, 3) 0 4 5
(1, 3, 2) 0 9 0
(2, 1, 3) 4 0 5
(2, 3, 1) 9 0 0
(3, 1, 2) 0 9 0
(3, 2, 1) 9 0 0

This means that the reasonable set is given by

R(V ) = {x ∈ SP(V (N)) | 0 ≤ x1 ≤ 9, 0 ≤ x2 ≤ 9, 0 ≤ x3 ≤ 5} .

One can verify that (2, 2, 9− 2
√

2) ∈ C(V ) \ R(V ). Hence, C(V ) 6⊆ R(V ). 4
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Although the reasonable set does not necessarily contain the core, the minimal and maxi-
mal marginal contributions can still be considered as reasonable bounds for payoff allocations.
For that reason, we introduce the notion of reasonable stability to describe games for which
the core and the reasonable set coincide.

Definition 3.3 (Reasonable Stability).
An NTU-game V ∈ NTUN

+ is called reasonable stable if C(V ) = R(V ).

Note that reasonable stability is stronger than marginal convexity (cf. Hendrickx, Borm,
and Timmer (2002)), which requires that Mσ(V ) ∈ C(V ) for all σ ∈ Π(N). Moreover, in
view of Proposition 2.1, reasonable stability is equivalent to the combination of convexity
and compromise stability on the class of TU-games.

4 Bankruptcy Games with Nontransferable Utility

This section introduces and analyzes a new model for bankruptcy games with nontransferable
utility. Orshan et al. (2003) introduced a first model for NTU-bankruptcy games. As
pointed out by Estévez-Fernández et al. (2014), coalitions can attain payoff allocations
outside the estate in this game, which contradicts the original idea of O’Neill (1982). They
redefined NTU-bankruptcy games to stay in line with this original idea about TU-bankruptcy
games. However, the following example shows that their NTU-bankruptcy game does not
straightforwardly generalize the original TU-bankruptcy game.

Example 3.
Let N = {1, 2, 3} and consider the TU-bankruptcy problem (E, c) ∈ TUBRN in which E = 4
and c = (1, 2, 3). The corresponding TU-bankruptcy game vE,c ∈ TUN is presented below.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vE,c(S) 0 0 1 1 2 3 4

Consider coalition {2, 3}. A straightforward generalization to an NTU-bankruptcy game

V E,c ∈ NTUN
+ would prescribe V E,c({2, 3}) = {x ∈ R{2,3}+ | x2 + x3 ≤ 3}. However, the

NTU-bankruptcy game (N,WE,c) introduced by Estévez-Fernández et al. (2014) assigns the
set of payoff allocations WE,c({2, 3}) = {x ∈ RN | x2 + x3 ≤ 3, x1 = 1, x2 ≤ 2, x3 ≤ 3},
which is essentially different due to the upper bound on the payoff of player 2. 4

Next, we introduce a model for NTU-bankruptcy games which generalizes TU-bankruptcy
games and simultaneously stays in line with the original idea of O’Neill (1982).

Definition 4.1 (Bankruptcy Game with Nontransferable Utility).
Let (E, c) ∈ BRN be a bankruptcy problem with nontransferable utility. The corresponding
bankruptcy game with nontransferable utility V E,c ∈ NTUN

+ is for all S ∈ 2N \ {∅} defined
by

V E,c(S) =

{
{x ∈ RS+ | (x, cN\S) ∈ E} if (0S , cN\S) ∈ E;

0S if (0S , cN\S) /∈ E.

Note that V E,c(S) is indeed nonempty, closed, bounded and comprehensive for all S ∈
2N \ {∅}, since E is nonempty, closed, bounded and comprehensive. Moreover, V E,c is
monotonic and V E,c(N) = E. As in TU-bankruptcy games, coalitions can attain the payoff
allocations within the estate in which the other players are allocated their claims.
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Example 4.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |
x2

1+2x2 ≤ 36} and c = (3, 24) as in Example 1. We have V E,c({1}) = 0, V E,c({2}) = [0, 13 1
2 ],

and V E,c(N) = E. 4

Contrary to the models of Orshan et al. (2003) and Estévez-Fernández et al. (2014),
every subgame of the new bankruptcy game is a bankruptcy game too, as is the case for TU-
bankruptcy games. For any NTU-game V ∈ NTUN

+ , the subgame VS ∈ NTUS
+ on coalition

S ∈ 2N \ {∅} is defined by VS(R) = V (R) for all R ∈ 2S \ {∅}.

Proposition 4.1.
Each subgame of a bankruptcy game is a bankruptcy game as well.

Proof. Let (E, c) ∈ BRN and let S ∈ 2N \ {∅}. Then V E,c(S) is nonempty, closed, bounded
and comprehensive. Moreover, V E,c(S) is non-leveled since E is non-leveled and compre-
hensive, and cS ∈ UC(V E,c(S)) since c ∈ UC(E). This means that (V E,c(S), cS) ∈ BRS .
For all R ∈ 2S \ {∅}, we can write

V V
E,c(S),cS (R) =

{
{x ∈ RR+ | (x, cS\R) ∈ V E,c(S)} if (0R, cS\R) ∈ V E,c(S);

0R if (0R, cS\R) /∈ V E,c(S)

=

{
{x ∈ RR+ | (x, cS\R, cN\S) ∈ E} if (0R, cS\R, cN\S) ∈ E;

0R if (0R, cS\R, cN\S) /∈ E

=

{
{x ∈ RR+ | (x, cN\R) ∈ E} if (0R, cN\R) ∈ E;

0R if (0R, cN\R) /∈ E

= V E,c(R)

= V E,cS (R).

Hence, V E,cS ∈ NTUS
+ is a bankruptcy game.

The remainder of this section studies the relationship between the core, the core cover,
and the reasonable set of NTU-bankruptcy games. For this, we need to find expressions for
the upper and lower bounds of the core cover and the reasonable set. A useful observation
for this analysis is that bankruptcy games are invariant under claim truncation.

Lemma 4.2.
Let (E, c) ∈ BRN . Then V E,c = V E,ĉ

E

.

Proof. Let S ∈ 2N \ {∅}. If ĉEN\S = cN\S , then clearly V E,c(S) = V E,ĉ
E

(S). Suppose that

ĉEN\S 6= cN\S . Then there exists an i ∈ N \ S for which ĉEi = uEi < ci. This means that

(0S , cN\S) /∈ E, so V E,c(S) = 0S . Since E is non-leveled, we have V E,ĉ
E

(S) = {x ∈ RS+ |
(x, ĉEN\S) ∈ E} = 0S if (0S , ĉEN\S) ∈ E. Hence, V E,c(S) = V E,ĉ

E

(S).

For any bankruptcy game V E,c ∈ NTUN
+ , we define the vector m(E, c) ∈ RN+ by

mi(E, c) = max{x ∈ V E,c({i})} for all i ∈ N . Together with the vector of truncated claims,
this vector appears to play a central role in the bounds of the core cover of bankruptcy
games.
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Lemma 4.3.
Let (E, c) ∈ BRN . Then

(i) K(V E,c) = ĉE;

(ii) k(V E,c) = m(E, c).

Proof. (i) From Lemma 4.2 we know that V E,c = V E,ĉ
E

, so K(V E,c) = K(V E,ĉ
E

). Let

i ∈ N . We have (ĉEi , x) ∈ E for all x ∈ V E,ĉ
E

(N \ {i}), so (ĉEi , x) ∈ V E,ĉ
E

(N) for all

x ∈ SP(V E,ĉ
E

(N \ {i})). This implies that Ki(V
E,ĉE ) ≥ ĉEi . Suppose that Ki(V

E,ĉE ) > ĉEi .

Let x ∈ UC(V E,ĉ
E

(N \ {i})) be such that (Ki(V
E,ĉE ), x) ∈ V E,ĉ

E

(N). Since V E,ĉ
E

(N)

is comprehensive, we have (ĉEi , x) ∈ V E,ĉ
E

(N), so x ∈ V E,ĉ
E

(N \ {i}). This means that

(ĉEi , x) /∈ SP(V E,ĉ
E

(N)) and x ∈ SP(V E,ĉ
E

(N \ {i})). Since V E,ĉ
E

(N) is non-leveled, we

have (ĉEi , x) /∈ WP(V E,ĉ
E

(N)). This means that there exists a y ∈ V E,ĉ
E

(N) for which

y > (ĉEi , x). Since V E,ĉ
E

(N) is comprehensive, we have (ĉEi , yN\{i}) ∈ V E,ĉ
E

(N). This

means that yN\{i} ∈ V E,ĉ
E

(N \{i}), which contradicts that x ∈ SP(V E,ĉ
E

(N \{i})). Hence,

Ki(V
E,c) = Ki(V

E,ĉE ) = ĉEi .

(ii) Let i ∈ N . We can write

ki(V
E,c) ≥ sup

{
x ∈ R+ | x ∈ V E,c({i})

}
= max

{
x ∈ V E,c({i})

}
= mi(E, c).

Suppose that we have ki(V
E,c) > mi(E, c) = max{x ∈ V E,c({i})}. Let S ∈ 2N with i ∈ S

be such that (ki(V
E,c),KS\{i}(V

E,c)) ∈ V E,c(S). Then we know from Lemma 4.2 and (i)

that (ki(V
E,ĉE ), ĉES\{i}) ∈ V

E,ĉE (S). This means that (ki(V
E,ĉE ), ĉES\{i}, ĉ

E
N\S) ∈ E, which

implies that ki(V
E,ĉE ) ∈ V E,ĉE ({i}). This contradicts that ki(V

E,ĉE ) > mi(E, c). Hence,

ki(V
E,c) = ki(V

E,ĉE ) = mi(E, c).

From Lemma 3.1 and Example 2 we know that, contrary to TU-games, the core cover
is not necessarily contained in the reasonable set of an NTU-game. Surprisingly, for the
reasonable set of an NTU-bankruptcy game we find the same upper bound and lower bound
as for its core cover, which means that the core cover and the reasonable set of an NTU-
bankruptcy game still coincide.

Lemma 4.4.
Let (E, c) ∈ BRN and let i ∈ N . Then

(i) max
σ∈Π(N)

Mσ
i (V E,c) = ĉEi ;

(ii) min
σ∈Π(N)

Mσ
i (V E,c) = mi(E, c).

Proof. (i) From Lemma 4.2 we know that V E,c = V E,ĉ
E

, so maxσ∈Π(N)M
σ
i (V E,c) =

maxσ∈Π(N)M
σ
i (V E,ĉ

E

). Let σ̂ ∈ Π(N) be such that σ̂(|N |) = i. We have (x, ĉEi ) ∈ E

for all x ∈ V E,ĉE (N \ {i}), so (M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(|N |−1)(V

E,ĉE ), ĉEi ) ∈ V E,ĉE (N). This

implies that maxσ∈Π(N)M
σ
i (V E,ĉ

E

) ≥ ĉEi . Suppose that maxσ∈Π(N)M
σ
i (V E,ĉ

E

) > ĉEi . Let

σ̂ ∈ Π(N) be such that M σ̂
i (V E,ĉ

E

) = maxσ∈Π(N)M
σ
i (V E,ĉ

E

). Let n ∈ {2, . . . , |N |} be such

that σ̂(n) = i. Then we have (M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n)(V

E,ĉE )) ∈ V E,ĉE ({σ̂(1), . . . , σ̂(n)}),
which means that(

M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n)(V

E,ĉE ), ĉEσ̂(n+1), . . . , ĉ
E
σ̂(|N |)

)
∈ E.
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Since E is comprehensive, we have(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−1)(V

E,ĉE ), ĉEσ̂(n), . . . , ĉ
E
σ̂(|N |)

)
∈ E \ SP(E).

Since E is non-leveled, we have(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−1)(V

E,ĉE ), ĉEσ̂(n), . . . , ĉ
E
σ̂(|N |)

)
∈ E \WP(E).

This means that there exists a y ∈ E for which

y >
(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−1)(V

E,ĉE ), ĉEσ̂(n), . . . , ĉ
E
σ̂(|N |)

)
.

Since E is comprehensive, we have(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−2)(V

E,ĉE ), yσ̂(n−1), ĉ
E
σ̂(n), . . . , ĉ

E
σ̂(|N |)

)
∈ E.

This means that(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−2)(V

E,ĉE ), yσ̂(n−1)

)
∈ V E,ĉ

E

({σ̂(1), . . . , σ̂(n− 1)}),

which contradicts that M σ̂
σ̂(n−1)(V

E,ĉE ) equals

max
{
x ∈ R+

∣∣∣ (M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−2)(V

E,ĉE ), x) ∈ V E,ĉ
E

({σ̂(1), . . . , σ̂(n− 1)})
}
.

Hence, maxσ∈Π(N)M
σ
i (V E,c) = maxσ∈Π(N)M

σ
i (V E,ĉ

E

) = ĉEi .

(ii) Let σ̂ ∈ Π(N) be such that σ̂(1) = i. We can write

M σ̂
i (V E,c) = max

{
x ∈ R+ | x ∈ V E,c({i})

}
= max

{
x ∈ V E,c({i})

}
= mi(E, c).

This implies that minσ∈Π(N)M
σ
i (V E,c) ≤ mi(E, c). Suppose that minσ∈Π(N)M

σ
i (V E,c) <

mi(E, c). From Lemma 4.2 we know that V E,c = V E,ĉ
E

, so minσ∈Π(N)M
σ
i (V E,c) =

minσ∈Π(N)M
σ
i (V E,ĉ

E

). Let σ̂ ∈ Π(N) be such that M σ̂
i (V E,ĉ

E

) = minσ∈Π(N)M
σ
i (V E,ĉ

E

).
Let n ∈ {2, . . . , |N |} be such that σ̂(n) = i. Then we have(

M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−1)(V

E,ĉE ),mi(E, c)
)
/∈ V E,ĉ

E

({σ̂(1), . . . , σ̂(n)}),

which means that(
M σ̂
σ̂(1)(V

E,ĉE ), . . . ,M σ̂
σ̂(n−1)(V

E,ĉE ),mi(E, c), ĉ
E
σ̂(n+1), . . . , ĉ

E
σ̂(|N |)

)
/∈ E.

Since E is comprehensive, we know from (i) that (mi(E, c), ĉ
E
N\{i}) /∈ E, which contra-

dicts that mi(E, c) ∈ V E,ĉ
E

({i}). Hence, minσ∈Π(N)M
σ
i (V E,c) = minσ∈Π(N)M

σ
i (V E,ĉ

E

) =
mi(E, c).

From Lemma 4.3 and Lemma 4.4 we know that the core cover and the reasonable set of a
bankruptcy game coincide. From Lemma 3.1 we know that the core is contained in the core
cover, which means that the core of a bankruptcy game is also contained in its reasonable
set. Next, we generalize the result for TU-bankruptcy games which states that the core of a
bankruptcy game coincides with its core cover and its reasonable set.
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Theorem 4.5.
Every bankruptcy game is compromise stable and reasonable stable.

Proof. Let (E, c) ∈ BRN . From Lemma 4.3 and Lemma 4.4 we know that CC(V E,c) =
R(V E,c), so it suffices to show that CC(V E,c) 6= ∅ and C(V E,c) = CC(V E,c). From Lemma
4.3 we know that CC(V E,c) = {x ∈ SP(E) | m(E, c) ≤ x ≤ ĉE}. Since c ∈ UC(E), we have
m(E, c) ∈ E, ĉE ∈ UC(E), and m(E, c) ≤ ĉE . This means that there exists an x ∈ SP(E)
for which m(E, c) ≤ x ≤ ĉE , so CC(V E,c) 6= ∅.

Let x ∈ CC(V E,c). Then we have x ≤ ĉE ≤ c. Suppose that x /∈ C(V E,c). Then
there exists an S ∈ 2N \ {∅} for which xS /∈ UC(V E,c(S)). This means that there exists a
y ∈ V E,c(S) for which y ≥ xS and y 6= xS . Then we have (y, cN\S) ∈ E. Since x ≤ (y, cN\S),
this means that x /∈ SP(E), which contradicts that x ∈ CC(V E,c). Hence, x ∈ C(V E,c) and
we have CC(V E,c) ⊆ C(V E,c). From Lemma 3.1 we know that C(V E,c) ⊆ CC(V E,c), so
C(V E,c) = CC(V E,c).

Using Lemma 4.3, Lemma 4.4, and Theorem 4.5, we derive a compact expression for the
core of a bankruptcy game.

Corollary 4.6.
Let (E, c) ∈ BRN . Then C(V E,c) = {x ∈ SP(E) | x ≤ c}.

In other words, all bankruptcy rules assign to each bankruptcy problem a core element
of the corresponding bankruptcy game. This means that a solution for NTU-games cor-
responds on the class of bankruptcy games to a bankruptcy rule if and only if it assigns
to any bankruptcy game a core element. The other way around, the question arises under
which conditions a bankruptcy rule corresponds to a solution for NTU-games on the class of
bankruptcy games. Such a bankruptcy rule is called game theoretic.

Definition 4.2 (Game Theoretic Bankruptcy Rule).
A bankruptcy rule f is called game theoretic if there exists a solution F : NTUN

+ → RN+ for

which f(E, c) = F (V E,c) for all (E, c) ∈ BRN .

Similar to bankruptcy rules for TU-bankruptcy problems, a necessary and sufficient con-
dition for an NTU-bankruptcy rule to be game theoretic is to satisfy truncation invariance.

Theorem 4.7.
A bankruptcy rule is game theoretic if and only if it satisfies truncation invariance.

Proof. Let f be a game theoretic bankruptcy rule. Let (E, c) ∈ BRN . From Lemma 4.2 we

know that V E,c = V E,ĉ
E

. We can write

f(E, c) = F (V E,c) = F (V E,ĉ
E

) = f(E, ĉE).

Hence, f satisfies truncation invariance.

Let f be a bankruptcy rule satisfying truncation invariance. Let F : NTUN
+ → RN+ be a

solution such that F (V E,c) = f(V E,c(N),K(V E,c)) for any bankruptcy game V E,c ∈ NTUN
+ .

Let (E, c) ∈ BRN . From Lemma 4.3 we know that K(V E,c) = ĉE . We can write

f(E, c) = f(E, ĉE) = f(V E,c(N),K(V E,c)) = F (V E,c).

Hence, f is game theoretic.
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5 Concluding Remarks

A solution for NTU-games corresponds on the class of bankruptcy games to a bankruptcy
rule if and only if it assigns to any bankruptcy game a core element. The compromise value
for NTU-games (cf. Borm et al. (1992)) and the MC-value for monotonic NTU-games (cf.
Otten et al. (1998)) are such solutions. Future research could study the interpretation and
axiomatic significance of these and other corresponding bankruptcy rules in more detail.

The other way around, a bankruptcy rule is game theoretic if and only if it satisfies
truncation invariance. The constrained relative equal awards rule (cf. Dietzenbacher et al.
(2016)) is such a bankruptcy rule. Future research could study the corresponding solutions
for NTU-games in order to further extend the relation between NTU-bankruptcy problems
and NTU-games.
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