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Robust open-loop Nash equilibria in the noncooperative LQ
game revisited�

Jacob C. Engwerda*,†

Department of Econometrics and O. R., Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands

SUMMARY

This paper reconsiders existence of worst-case Nash equilibria in noncooperative multi-player differential
games, this, within an open-loop information structure. We show that these equilibria can be obtained by
determining the open-loop Nash equilibria of an associated differential game with an additional initial state
constraint. For the special case of linear-quadratic differential games, we derive both necessary and sufficient
conditions for solvability of the finite planning horizon problem. In particular, we demonstrate that, unlike
in the standard linear-quadratic differential game setting, uniqueness of equilibria may fail to hold. A both
necessary and sufficient condition under which there is a unique equilibrium is provided. A sufficient exis-
tence condition for a unique equilibrium is derived in terms of a Riccati differential equation. Consequences
for control policies are demonstrated in a simple debt stabilization game. © 2016 The Authors. Optimal
Control Applications and Methods published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decades, there is an increased interest in studying diverse problems in economics,
optimal control theory, and engineering using dynamic games. Particularly, the framework of linear-
quadratic differential games is often used to analyze problems because of its analytic tractability. In
environmental economics, marketing, and macroeconomic policy coordination, policy coordination
problems are frequently modeled as dynamic games (see, e.g., the books and references in [2–6]
and [7]). In optimal control theory, the derivation of robust control strategies (in particular, the H1

control problem) can be approached using the theory of (linear-quadratic zero-sum) dynamic games
(see the seminal work of [8]). In the area of military operations, pursuit-evasion problems and, more
recently, problems of defending assets can also be approached using linear-quadratic modeling tech-
niques (see, e.g., [9–11]). Furthermore, this modeling paradigm has been used in the area of robot
formation and communication networks (see, e.g., [12, 13]).

In this note, we consider the open-loop linear-quadratic differential game. This open-loop Nash
strategy is often used as one of the benchmarks to evaluate outcomes of the game. Another bench-
mark that is often used is the state feedback strategy. Recently, Reference [14] compares both
strategies to see what the loss in performance of players may be using either one of these strategies.
For the scalar game (see the paper for precise details on the game), they find that if there is a large
number of players involved in the game, the ratio of losses for an individual player under a feedback
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and open-loop information structure ranges between
p
2
2

and
p
2. This indicates, that the difference

in performance using either one of the information structures is not dramatic.
The linear-quadratic differential game problem with an open-loop information structure has been

considered by many authors and dates back to the seminal work of Starr and Ho in [15] (see, e.g.,
[16–23] and [4]). In [24], the (regular indefinite) infinite-planning horizon case for affine systems
under the assumption that every player is capable to stabilize the system by his own was stud-
ied. These results were generalized in [25] where it is just assumed that the system as a whole is
stabilizable.

References [26, 27], and [28] considered for a finite planning horizon the corresponding differen-
tial game problem for an open-loop information structure if the system is corrupted by deterministic
noise. They introduced the notion of Nash/worst-case equilibrium to model noncooperative behavior
in an uncertain environment. And showed that, under some assumptions, the problem has a solution.
Implementation of the actions is, however, quite demanding.

In this note, we will relax their equilibrium concept and reconsider the problem from scratch.
Following the standard analysis as presented, for example, in [4, Chapter 7], we will derive here
both necessary and sufficient conditions for existence of equilibria. In particular, the conditions
we obtain here allow for the formulation of sufficient conditions that can be easily implemented
using standard methods. Another consequence of our definition is that we can show that situations
occur where there exist an infinite number of Nash/worst-case equilibria. Necessary and sufficient
conditions are given under which a unique equilibrium occurs.

The outline of the paper is as follows. In Section 2, we introduce the general (nonlinear) problem,
formulate the equilibrium concept, and show that the problem can be reformulated as an associated
extended differential game with an additional initial state constraint. This result is then used in
Section 3 to study the linear-quadratic setting. Furthermore, we present an example where an infinite
number of equilibria exist. Section 4 illustrates in a numerical example which consequences the
explicit consideration of noise by players may have on policy in a multi-country debt stabilization
game. In Section 5, we discuss some obtained results in more detail and raise some issues left for
future research. Finally, in the Appendix, we present the proofs of the main results from Section 3.

2. AN EQUIVALENCE RESULT

In this paper, we consider the problem to find Nash equilibria for a differential game that is subject
to deterministic noise. With u.t/ WD

�
uT1 .t/ � � �u

T
N

�T
, this game is defined by the cost functions

Ji .T; x0; u; w/ WD

Z T

0

gi .x; u/ � w
T .t/Rwiw.t/dt C giT .x.T //: (1)

Here, Rwi is assumed to be positive definite (> 0), i 2 NN §, and x.t/ 2 Rn is the solution of the
differential equation:

Px.t/ D f .x.t/; u.t//CDw.t/; x.0/ D x0: (2)

The function w.:/ 2 W WD Lk2 Œ0; T � is an unknown disturbance. The controls ui .t/ 2 Rmi con-
sidered by player i , i 2 NN , are assumed to be such that the control function u.:/ belongs to
U WD Lm2 Œ0; T �

¶, where m D m1 C � � � C mN . Functions f and gi are such that for all admissible
u; w, and x0, the differential equation and integrals have a well-defined solution.

In this uncertain environment, every player wants to minimize his individual cost function Ji by
choosing ui appropriately. Because all players interact, without making any further specifications,
the outcome of the game cannot be predicted. Preferably, every player will base his action on the
actions taken by the other players in the game and his expectations concerning the disturbance that
will occur. Therefore, depending on the information players have on the game, it is to be expected

§ NN WD ¹1; : : : ;N º
¶This set could be chosen in more general. However, this set suffices for most applications.

© 2016 The Authors. Optimal Control Applications and Methods
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ROBUST OPEN-LOOP NASH EQUILIBRIA 797

that in the end, a set of actions will be chosen from which no individual player has an incentive
to deviate. That is, a so-called set of Nash equilibrium actions will be played. We will analyze
this problem here under the assumption that the game is played under an open-loop information
structure [4, 22]. That is, based on the initial state of the system and system parameters, players will
play actions that are just functions of time having the property that if played simultaneously, they
constitute a Nash equilibrium. So the reaction of players on each other’s action is enforced indirectly.

Inspired by [27], we introduce the next definition of global Nash/worst-case equilibrium.

Definition 2.1
We define the global Nash/worst-case equilibrium in two stages. Consider u 2 U , then

1. Owi .u/ 2W is the worst-case disturbance from the point of view of the i th player against u if

Ji .u; Owi .u// > Ji .u;w/

holds for each w 2W , i 2 NN .
2. Assume for all u 2 U , there exists a worst-case disturbance from the point of view of player
i . The controls

�
u�1 ; : : : ; u

�
N

�
2 U form a global Nash/worst-case equilibrium if for all i 2 NN ,

Ji
�
u�; Owi .u

�/
�
6 Ji

��
ui ; u

�
�i

�
; Owi

�
ui ; u

�
�i

��
holds for each admissible control function

�
ui ; u

�
�i

�
|| and corresponding worst-case distur-

bance Owi
�
ui ; u

�
�i

�
.

The aforementioned definition reflects the idea that every player wants to secure against a for him
worst-case realization of the disturbance. Matrix Rwi models his expectation about the disturbance
and can be interpreted as a risk aversion parameter. In case he expects that only a small disturbance
Dw.:/ might disrupt the system, he can express this by choosing Rwi large. A Nash/worst-case
equilibrium models then a situation where every player has no incentive to change his policy given
his worst-case expectations concerning the disturbance and the actions of his opponents. Clearly,
in a situation where players can observe the realization of the disturbance and they can adapt their
actions during the game, other solution concepts like the soft-constrained feedback Nash equilibrium
(see, e.g., [4, Chapter 9]) are more appropriate.

Remark 2.2
The definition of global Nash/worst-case equilibrium differs from the definition given by Jank
et al. [27] in that our definition assumes that for all admissible controls u, a worst-case distur-
bance exists. This assumption is not made in [27]. There it is assumed that only for all controls�
ui ; u

�
�i

�
2 U from player i 0s point of view, a worst-case disturbance exists.

Clearly, in case there exists a global Nash/worst-case equilibrium, it is also a Nash/worst-case
equilibrium in the sense defined by Jank et al. Of course the other way around does not necessarily
have to be the case.

Later, we show that global Nash/worst-case equilibria can be identified with open-loop Nash
equilibria of an associated extended game. This makes our definition more practicable. In particu-
lar, this relationship enhances to formulate sufficient existence conditions for the linear-quadratic
differential game, which are numerically more tractable than the conditions given by [27] and [28].
For convenience of notation, we will omit from now on the phrase ‘global’ in our definition, unless
there might be confusion with the definition provided by Jank et al.

Next, Theorem 2.3 shows that Nash/worst-case equilibria can be determined as the open-loop
Nash (OLN) equilibria of an associated extended differential game.

||.v; u�i / equals u where entry ui is replaced by v. To simplify notation, sometimes, the brackets are dropped.

© 2016 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.
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798 J. C. ENGWERDA

Theorem 2.3
u� 2 U with corresponding worst-case disturbances Owi .u�/ is a Nash/worst-case equilibrium for
(1,2) if and only if .u�; Owe.u�// (with Owe.u�/ WD . Ow1.u

�/; � � � ; OwN .u
�/// is an open-loop Nash

equilibrium of the 2N -player differential game:2
64
PNx1.t/
:::
PNxN .t/

3
75 D

2
64
f . Nx1.t/; u/CDw1.t/

:::

f . NxN .t/; u/CDwN .t/

3
75 ; NxT .0/ WD � NxT1 .0/; : : : ; NxTN .0/� D �xT0 ; : : : ; xT0 � ;

where player i likes to minimize his cost function:

NJi .u; w
e/ WD

Z T

0

gi . Nxi .t/; u.t// � w
T
i .t/Rwiwi .t/dt C giT . Nxi .T //;

w.r.t. ui , i 2 NN , and player i , i D N C 1; : : : ; 2N , likes to maximize NJi w.r.t. wi .
Moreover, Ji .u�; Ow.u�// D NJi .u�; Owe.u�// ; i 2 NN .

Proof
) Assume u� is a Nash/worst-case equilibrium. Then, by definition,

�
u�i ; Owi .u

�/
�

constitutes
a saddle-point solution for player i if the other players, j , play u�j . Consequently, (see, e.g.,
[4, Theorem 3.26]),

Ji
�
u�; Owi .u

�/
�
D max

w
min
ui
Ji
��
ui ; u

�
�i

�
; w
�
D min

ui
max
w
Ji
��
ui ; u

�
�i

�
; w
�
: (3)

Next, consider the minimization of NJi
��
ui ; u

�
�i

�
; Owe.u�/

�
w.r.t. ui . Some elementary rewriting

shows that this is equivalent to the minimization of

QJi WD

Z T

0

®
gi
�
xi .t/;

�
ui .t/; u

�
�i .t/

��
� OwTi .u

�/.t/Rwi Owi .u
�/.t/

¯
dt C giT .xi .T //

subject to the system

Pxi .t/ D f
�
xi .t/;

�
ui .t/; u

�
�i .t/

��
CD Owi .u

�/.t/; with xi .0/ D x0:

By (3), this minimum is attained at ui D u�i .
Similarly, we have that the maximization of NJi

�
u�;

�
wi ; Ow

e
�i .u

�/
��

w.r.t. wi is equivalent to the
maximization of

QJi WD

Z T

0

gi .xi .t/; u
�.t// � wTi .t/Rwiwi .t/dt C giT .xi .T //

subject to the system

Pxi .t/ D f .xi .t/; u
�.t//CDwi .t/; xi .0/ D x0:

From (3) again, it follows that this maximum is attained at wi D Owi .u�/. So .u�; Owe.u�// is an
OLN equilibrium for the 2N player differential game.
( Let .u�; we

�

/ be an OLN equilibrium for the 2N player differential game. Then

NJi .u
�; we

�

/ 6 NJi
��
ui ; u

�
�i

�
; we

�

�
for all admissible ui ; (4)

NJi .u
�; we

�

/ > NJi
�
u�;

�
wi ; w

e�

�i

��
for all admissible wi : (5)

Now, consider the maximization of Ji .u�; w/ w.r.t. w subject to the system

Px.t/ D f .x.t/; u�.t//CDw.t/; x.0/ D x0:

© 2016 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.
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ROBUST OPEN-LOOP NASH EQUILIBRIA 799

A simple elaboration of (5) shows that this maximum is attained atw D w�i . So Owi .u�/ D w�i . Now,
let .ui ; u��i / be an arbitrary admissible control and Ow.ui ; u��i // a corresponding worst-case con-
trol. Then, by definition of worst-case control, Ji ..ui ; u��i /; Ow.ui ; u

�
�i // > Ji ..ui ; u

�
�i /; Ow.u

�//.
Therefore, in particular,

Ji
��
ui ; u

�
�i

�
; Ow

�
ui ; u

�
�i

��
> Ji

��
ui ; u

�
�i

�
; Ow.u�/

�
> min

ui
Ji
��
ui ; u

�
�i

�
; Ow.u�/

�
:

From (4), it follows that this last mentioned minimum exists and is attained at u�i . That is,
�
u�; w�i

�
is a Nash/worst-case equilibrium.

Finally, that Ji .u�; Ow.u�// D NJi .u
�; Owe.u�//; i 2 NN , follows by a direct comparison of

both functions. �

Note that in the aforementioned introduced differential game, the initial condition has a special
structure. This usually complicates the analysis.

3. LINEAR QUADRATIC (LQ) NASH/WORST-CASE EQUILIBRIA

In this section, we elaborate the linear-quadratic differential game. This game is defined by the
cost functions

Ji .T; x0; u; w/ WD
1

2

Z T

0

ŒxT .t/; uT.t/�Mi Œx
T .t/; uT .t/�T�wT.t/Rwiw.t/dtC

1

2
xT .T /QiT x.T /;

where Mi D

2
6664
Qi Vi11 � � � � � � Vi1N
V Ti11 Ri1 Vi22 � � � Vi2N

: : :

V Ti1N V Ti2N � � � � � � RiN

3
7775 2 R.nCm/�.nCm/: (6)

Mi is assumed to be symmetric, Ri i > 0 and Rwi > 0, i 2 NN . Note, we do not make definiteness
assumptions on matrices Qi .

Furthermore, x.t/ 2 Rn is the solution of the linear differential equation:

Px.t/ D Ax.t/C

NX
iD1

Biui .t/CDw.t/; x.0/ D x0: (7)

From Theorem 2.3, we immediately derive then next Corollary 3.2. In this corollary, we use the
next notation.

Notation 3.1
OENn denotes the block-column matrix containing N blocks of n � n identity matrices and NEi;j

the block-column matrix containing i blocks of n � n zero matrices with block number matrix j
replaced by the identity matrix. Matrices I and 0 (where sometimes we use an index to indicate the
size of these matrices) denote the identity matrix and zero matrix of appropriate size, respectively.
diag.A/N denotes the N �N block diagonal matrix with diagonal entries matrix A.

NAN Ddiag.A/N ; NBiD OENnBi ; NDiD NEN;iD; Nc.t/D OENnc.t/; NMiD

�
NETN;i 0

0 Im

	T
Mi

�
NETNi 0
0 Im

	
;

NQiT D NEN;iQiT
NETN;i and Nx0 D OENnx0:

Corollary 3.2
Assume for all u 2 U , there exists a worst-case disturbance from the point of view of player
i . Then, u� 2 U with corresponding worst-case disturbances Owi .u�/ is a Nash/worst-case equi-
librium for (6,7) if and only if .u�; Ow.u�// is an open-loop Nash equilibrium of the 2N -player
differential game:

PNx.t/ D NAN Nx.t/C

NX
iD1

NBiui .t/C

NX
iD1

NDiwi .t/; Nx.0/ D Nx0;

© 2016 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.
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800 J. C. ENGWERDA

where player i likes to minimize his cost function:

NJi WD
1

2

Z T

0

Œ NxT .t/; uT .t/� NMi Œ Nx
T .t/; uT .t/�T � wTi .t/Rwiwi .t/dt C

1

2
NxT .T / NQiT Nx.T /;

w.r.t. ui , i 2 NN , and player i , i D N C 1; : : : ; 2N , likes to maximize NJi w.r.t. wi . Moreover,
Ji .u

�; Ow.u�// D NJi .u
�; Owe.u�//; i 2 NN .

3.1. Necessary and sufficient conditions

Before we present results for the general case, for didactic reasons, we first consider the next
simplified two-player linear-quadratic differential game.

Consider the case that the system state is described as the outcome of the linear differential
equation:

Px.t/ D Ax.t/C B1u1.t/C B2u2.t/CDw.t/; with x.0/ D x0; (8)

whereas the quadratic cost functional of the two players is given by the following:

Ji .u1; u2; w/ WD
1

2

Z T

0

xT .t/Qix.t/C

2X
jD1

uTj .t/Rijuj .t/ � w
T .t/Rwiw.t/dt

C
1

2
xT .T /QiT x.T /; i D 1; 2:

(9)

Using the shorthand notation Si WD BiR�1i i B
T
i , SDi WD DR

�1
wiD

T , S WD OE2nŒS1 S2� � diag.SDi /,
Q WD diag.Qi /, QT WD diag.QiT /, MQT

T WD ŒI2n QT � and HC for the Moore–Penrose inverse of
matrix H (see, e.g., [29]), the following theorem is proved in the Appendix.

Theorem 3.3
Consider matrix

M WD

2
664

A 0 �.S1 � SD1/ �S2
0 A �S1 �.S2 � SD2/

�Q1 0 �AT 0

0 �Q2 0 �AT

3
775 : (10)

Assume next four Riccati differential equations:

PKi .t/ D �A
TKi .t/ �Ki .t/ACKi .t/SiKi .t/ �Qi ; Ki .T / D QiT ; i D 1; 2 (11)

PLi .t/ D �A
TLi .t/ � Li .t/AC Li .t/SDiLi .t/CQi ; Li .T / D �QiT ; i D 1; 2 (12)

have a symmetric solution Ki .:/; Li .:/, respectively, on Œ0; T �.
Then, the two-player linear-quadratic differential game (8,9) has a Nash/worst-case equilibrium

for every initial state x0 if and only if

with matrix H.T / WD ŒI2n 02n�e
�MT MQT ; H.T /H

C.T /

�
I

I

	
D

�
I

I

	
: (13)

Moreover, if the aforementioned condition (13) applies, with v.t/ WD eM.t�T / MQT ´1, where ´1 WD

HC
�
x0
x0

	
C.I �HCH/q, q 2 R2n is an arbitrary vector, the set of equilibrium actions/worst-case

disturbances are given by the following:

ui .t/ D �R
�1
i i B

T
i
NET4;iC2v.t/ and wi .t/ D R

�1
wiD

T NET4;iC2v.t/; i D 1; 2; respectively:

© 2016 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.
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ROBUST OPEN-LOOP NASH EQUILIBRIA 801

The set of equilibrium actions is unique if matrix H.T / is invertible. In such case, the unique
equilibrium actions can be calculated either from the aforementioned equations or from the linear
two-point boundary value problem Py.t/ DMy.t/, with

NPy.0/C NQy.T / D
�
xT0 x

T
0 0 0

�T
: (14)

Here,

NP WD

�
I2n 02n
02n 02n

	
and NQ WD

�
02n 02n
�QT I2n

	
:

Denoting
�
yT0 .t/; v

T
1 .t/; v

T
2 .t/

�T
WD y.t/, with y0 2 R2n, and vi 2 Rn; i D 1; 2, the equilibrium

actions are the following:

ui .t/ D �R
�1
i i B

T
i vi .t/ and wi .t/ D R

�1
wiD

T vi .t/; i D 1; 2; respectively:

It is well known that one can associate Riccati differential equations with boundary value prob-
lems of the type (14). Furthermore, solutions of these Riccati equations can be used to implement
the open-loop control as a feedback control. Below, in Theorem 3.4, we present a sufficient con-
dition in terms of existence of a solution of a Riccati differential equation for the aforementioned
boundary value problem. In fact, this condition is both necessary and sufficient for existence of the
more general problem where the term of

�
xT0 x

T
0

�
in the initial condition of the boundary value

problem (14) is replaced by
�
xT0 ´

T
0

�
, where both x0 and ´0 are arbitrary vectors. For the readers’

convenience, we included a proof of this result.

Theorem 3.4
Assume the four Riccati differential equations ((11) and (12)) have a solution, and the next
nonsymmetric Riccati differential equation has a solution on Œ0; T �:

PP .t/ D � NAT2 P � P
NA2 C PSP �QI P.T / D QT : (15)

Then, the two-player linear-quadratic differential game ((8) and (9)) has a Nash/worst-case equi-
librium for every initial state x0. Moreover, if the aforementioned condition applies, the unique
equilibrium actions are given by the following:

ui .t/ D �R
�1
i i B

T
i Pi .t/ Nx.t/ and wi .t/ D R

�1
wiD

TPi .t/ Nx.t/; i D 1; 2 respectively;

where
�
P T1 .t/ P

T
2 .t/

�T
WD P.t/; Pi .t/ 2 Rn�2n, solve (15), and Nx.t/ is the solution of

PNx.t/ D
�
NA2 � SP.t/

�
Nx.t/; with Nx.0/ D Nx0:

Proof
First, note that, with P.:/ the solution of (15), matrix U.t/ defined as the solution of the linear
differential equation below exists and is, moreover, invertible on Œ0; T �.

PU .t/ D . NA2 � SP.t//U.t/; U.0/ D I:

Furthermore, with V.t/ WD P.t/U.t/, W.t/ WD Œ U T .t/ V T .t/ �T satisfies

PW .t/ D

�
PU .t/

PP .t/U.t/C P.t/ PU .t/

	

D

�
NA2U.t/ � SV.t/�

� NAT2 P.t/ � P.t/
NA2 C P.t/SP.t/ �Q

�
U.t/C P.t/ NA2U.t/ � P.t/SP.t/U.t/

	

D

�
NA2U.t/ � SV.t/

�QU.t/ � NAT2 V.t/

	
DMW.t/;

© 2016 The Authors. Optimal Control Applications and Methods
published by John Wiley & Sons, Ltd.
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whereas NPW.0/C NQW.T / D Œ I2n 02n �
T . With W.0/ D e�MTW.T /, spelling this last equality

yields

Œ I2n 02n �e
�MTW.T / D I2n and �QTU.T /C V.T / D 02n:

Substitution of V.T / from the second into the first equation shows then that
Œ I2n 02n �e

�MT MQTU.T / D I , from which we conclude that H.T / must be invertible. The adver-
tized result follows then by Theorem 3.3. �

Example 3.5
In this example, we present a game that has for every initial state an infinite number of Nash/worst-
case actions. Note that numerical values presented later for QiT are approximations of values that
were obtained after some extensive theoretical calculations.
Consider the scalar game, withA D �3,Bi D D D Qi D 1,R11 D R22 D 1,Rw1 D Rw2 D 1=5,
Q1T D Q2T D 1:014925, and T D 1.

The corresponding Riccati differential equations ((11) and (12)) are

Pki .t/ D 6ki .t/C k
2
i .t/ � 1; ki .1/ D 1:014925I i D 1; 2

Pli .t/ D 6li .t/C 5l
2
i .t/C 1; li .1/ D �1:014925I i D 1; 2:

Elementary analysis shows that all four differential equations have a solution on the time interval
Œ0; 1�.

Matrix H.T /, introduced in (13), equals 2:8647

�
1 1

1 1

	
. Consequently, HC D 0:0873

�
1 1

1 1

	
. It

is easily verified that H.T /HC.T /

�
1

1

	
D

�
1

1

	
. So, by Theorem 3.3, for every x0, this game has

an infinite number of Nash/worst-case actions.

With ´1 WD HC
�
x0
x0

	
C .I �HCH/� D 0:1745

�
1

1

	
x0 C

�
1

�1

	
�; � 2 R, we obtain

v.t/ D eM.t�T / MQT ´1 D Sdiag
�
e2.t�1/; e�2.t�1/; e

p
6.t�1/; e�

p
6.t�1/

�
´2;

where S D

2
664
�1 �5 3 �

p
6 3C

p
6

1 5 3 �
p
6 3C

p
6

�1 �1 1 1

1 1 1 1

3
775 and ´2 D

2
64
.1 � 5q/�2
.�1C q/�2
0:1614x0
0:0157x0

3
75, with q D Q1T and �2 2 R.

So with v3.t/ WD Œ�e2.t�1/; �e�2.t�1/; e
p
6.t�1/; e�

p
6.t�1/� and v4.t/ WD Œe2.t�1/; e�2.t�1/,

e
p
6.t�1/; e�

p
6.t�1/�, equilibrium/worst-case actions are

u�i .t/ D �viC2.t/´2 and w�i .t/ D �5u
�
i .t/; respectively; i D 1; 2:

Notice that using these equilibrium actions, the dynamics of the system are described by the
following:

Px.t/ D �3x.t/ � 0:3228e
p
6.t�1/x0 � 0:0314e

�
p
6.t�1/x0 C w.t/; x.0/ D x0:

That is, all equilibrium actions yield the same closed-loop system.

Remark 3.6
It is easily seen that for the N -player case, Theorem 3.3 applies with

M D

�
NAN �S

�Q �AT N

	
and H.T / D Œ INn 0Nn �e�MT MQT :

Here, S WD OENnŒS1; : : : ; SN � � diag.SDi / and MQT
T WD Œ INn QT �.
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3.2. The general case

In this section, we consider the general linear-quadratic differential game (6) and (7).
To obtain the analogs of the previous sections, first, we rewrite the game from Corollary 3.2 into

its standard form. We consider the 2N -player differential game

PNx.t/ D NAN Nx.t/C

NX
iD1

NBiui .t/C

NX
iD1

NDiwi .t/; Nx.0/ D Nx0;

where player i likes to minimize (w.r.t. ui ) and playerNCi to maximize (w.r.t.wi ) the cost function

NJi WD
1

2

Z T

0

�
NxT .t/; uT .t/ wT .t/

�
NM e
i

�
NxT .t/; uT .t/ wT .t/

�T
dt C

1

2
NxT .T / NQiT Nx.T /; i 2 N:

Here,

NM e
i WD

�
NMi 0

0 � NRwi

	
; i 2 N;

where NRwi is the block diagonal matrix where only block i , which equals Rwi , differs from zero.
As a follow-up on the notation introduced in Notation 3.1, following [4][Exercise 7.5], con-

sider the next shorthand notation. Standard conventions concerning block-matrix addition and
multiplication rules are assumed.

Notation 3.7

G WD

2
64
Œ0 I 0 � � � 0�M1

:::

Œ0 0 � � � 0 I �MN

3
75

2
6666664

0 0 � � � 0
I 0 � � � 0

0 I
: : :

:::
:::
: : :

: : : 0

0 � � � 0 I

3
7777775
D

2
6666664

R11 V122 � � � � � � V12N
V T222 R22 V233 � � � V23N
:::

: : :
: : :

:::
:::

: : :
: : : V.N�1/NN

V TN2N � � � � � � V TNNN RNN

3
7777775
:

We assume throughout that this matrix G is invertible.

B WD Œ NB1; : : : ; NBN �I QB
T WD diag

�
BT1 ; : : : ; B

T
N

�
I Z WD diag

�
V T111; : : : ; V

T
N1N

�
I

Zi WD ŒVi11; : : : ; Vi1N �; i 2 NI QA1 WD NAN � BG�1ZI QS WD BG�1 QBT � diag.SDi /I

QQ WD Q �

2
64
Z1
:::

ZN

3
75G�1ZI QAT2 WD NATN �

2
64
Z1
:::

ZN

3
75G�1 QBT I and QM WD

�
QA1 � QS

� QQ � QAT2

	
:

In the Appendix, we show how one arrives then at corresponding results of the previous section.
Because from a computational point of view, Theorem 3.4 is the most important result from the
previous section; we state this generalization here separately.

Theorem 3.8
Assume next Riccati differential equations

PKi .t/D�A
TKi .t/�Ki .t/AC.Ki .t/BiCVi1i /R

�1
i i .B

T
i Ki .t/CV

T
i1i /�Qi ; Ki .T /DQiT ; i 2N;

PLi .t/ D �A
TLi .t/ � Li .t/AC Li .t/SDiLi .t/CQi ; Li .T / D �QiT ; i 2 N;

have a symmetric solution Ki .:/; Li .:/, respectively, on Œ0; T �.
If the next nonsymmetric Riccati differential equation

PP .t/ D � QAT2 P � P
QA1 C P QSP � QQI P.T / D QT ; (16)
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has a solution on Œ0; T �, the linear-quadratic differential game ((6) and (7)) has a unique Nash/worst-
case equilibrium for every initial state x0.

If P T .:/ WD
�
P T1 .:/; : : : ; P

T
N .:/

�
; Pi .:/ 2 Rn�nN , is the solution of (16), the worst-case controls

and corresponding worst-case disturbances are given by the following:

u�.t/ D �G�1.Z C QBTP.t// Nx.t/ and Owi .t/ D R
�1
wiD

TPi .t/ Nx.t/; i 2 N:

Here, Nx.t/ satisfies, with Acl .t/ WD NAN � BG�1.Z C QBTP.t//C diag.SDi /P.t/, the differential
equation PNx.t/ D Acl.t/ Nx.t/I Nx.0/ D Nx0.

Moreover, worst-case expected costs by player i are

Ji D
1

2
NxT0
NCi .0/ Nx0; i 2 N;

where NCi .:/; i 2 N, is the solution of the linear matrix differential equation:

PNCi .t/D�A
T
cl .t/

NCi .t/� NCi .t/Acl .t/�
�
I; �.ZC QBTP.t//TG�T

�
NMi

�
I; �.ZC QBTP.t//TG�T

�T
� P Ti .t/SDiPi .t/;

NCi .T / D NQiT :

Notice that the aforementioned expected worst-case costs will almost never realize for every
player, as only one disturbance signal w.:/ will occur.

4. EXAMPLE

Consider the problem to find equilibrium strategies for the next noncooperative three-player game.
The game might be interpreted as a debt stabilization problem within a two-country setting, where
countries engaged in a monetary union. The model can be viewed as the first extension of the well-
known Tabellini model [30] to a two-country setting, including uncertainty. Within that setting, the
variables xi .t/, introduced later, can be interpreted as the government debt, scaled to the level of
national output, of country i . ui as the primary fiscal deficit, also scaled to output, whereas the
monetary financing undertaken by the central bank, measured as a fraction of aggregate output,
will be denoted by uE . It is assumed that uncertainty is caused by some outside factor that will
hit the economies of both countries in the same way. This is modeled by incorporating into the
system a disturbance variable w.t/. All parameters, below, are assumed to be positive. The welfare
loss-function of country i; i D 1; 2, and central bank respectively are modeled by the following:

J1.u1.:// D
1

2

Z T

0

u21.t/C ˇ1x
2
1.t/ � rw1w

2.t/dt; (17)

J2.u2.:// D
1

2

Z T

0

u22.t/C ˇ2x
2
2.t/ � rw2w

2.t/dt; (18)

JE .uE .:// D
1

2

Z T

0

u2E .t/C ˇE .!x1.t/C .1 � !/x2.t//
2 � rwEw

2.t/dt: (19)

Here, rwi models the expectation by different players how strong the disturbance will hit the
economies. The evolution of debt in both countries over time is assumed to be described by the
differential equations:�
Px1.t/
Px2.t/

	
D

�
˛1 0

0 ˛2

	 �
x1.t/

x2.t/

	
C

�
1

0

	
u1.t/C

�
0

1

	
u2.t/C

�
��1
��2

	
uE .t/C

�
1

1

	
w.t/: (20)
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With

A WD

�
˛1 0

0 ˛2

	
I B1 WD

�
1

0

	
I B2 WD

�
0

1

	
I BE WD �

�
�1
�2

	
I B WD ŒB1 B2 BE �I D WD

�
1

1

	
I

Q1 WD

�
ˇ1 0

0 0

	
I Q2 WD

�
0 0

0 ˇ2

	
I and QE WD ˇE

�
!2 !.1 � !/

!.1 � !/ .1 � !/2

	
;

this model fits then into our framework.
Now, choose x1.0/ D 0:7, x2.0/ D 1:5, ˛1 D 0:03, ˛2 D 0:08, �1 D 1, �2 D 0:5, ˇ1 D 0:04,

ˇ2 D 0:08, ˇE D 0:04, ! D 0:3 and a time horizon of T D 5. This models a case where country
2 has initially an approximately twice as higher debt than country 1. Because financial markets are
less sure whether country 2 will be able to pay its future debts than in the case of country 1, country
2 has to pay much higher interest payments on debt than country 1. The model specifies, moreover,
that country 1 is less willing to use its fiscal instrument in reducing debt than country 2. The central
bank is assumed to be concerned approximately twice as much about debt in country 2 than debt in
country 1. Furthermore, monetary instruments are twice as much effective when used in country 1
than in country 2.

To see the effect of taking into account disturbance expectations in this model, we simulated two
cases. The first case, visualized in Figure 1, models the case that players expect no serious distur-
bances will affect the economies in the nearby future. This is modeled by choosing the risk aversion
parameters rwi large. In this experiment, we choose rw1 D rwE D 10 and rw2 D 15. The second
simulation, visualized in Figure 2, considers a case where fiscal players do expect disturbances will
affect their economy in the nearby future, and the central bank shares this view. The risk aversion

Figure 1. Debt and policies for the benchmark parameters with rw1 D rwE D 10andrw2 D 15. That is,
almost no disturbance expected. Actual w.:/ D 0.

Figure 2. Debt and policies for the benchmark parameters with expected disturbance: rw1 D rwE D
1andrw2 D 1:5. Actual w.:/ D 0.
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parameters rwi are chosen in these experiments rw1 D rwE D 1 and rw2 D 1:5. To determine the
equilibrium strategies, we use Theorem 3.4.

The first thing we verified is whether (11) and (12) have a solution. To that end, notice that,
because Qi are semi-positive definite, (11) will always have a solution, whatever T is. So only
existence of a solution of (12) had to be checked. Next, the Nash/worst-case open-loop equilibrium
strategies for fiscal players and the central bank were calculated using Theorem 3.4. These strategies
are plotted both for the ‘almost noise-free expectations’ and the ‘noisy expectations’ scenario in
Figure 1(b) and (b), respectively. Notice that these strategies will be played, because of the assumed
open-loop information structure of the game, whatever the realization of the noise w.:/ will be.
In Figures 1(a) and 2(a), we plotted the realization of debt if actually no noise occurs during the
planning horizon Œ0; T � in both scenarios, that is, under the assumption that w.:/ D 0.

As one might expect, fiscal instruments are much more aggressively used by country 2 than in
country 1 in order to reduce its debt. Including disturbance expectations shows that in particular,
both countries react by a more aggressive fiscal policy. Although fiscal player 2 expects less distur-
bances will hit the economy than the other players do, we observe that its response in policy terms
is much higher. This leads to a significant reduction of its final debt compared with the ‘noise-free
expectations’ case.

So including model uncertainty has a stabilizing effect in this model.

5. CONCLUDING REMARKS

In this paper, we considered the finite planning horizon open-loop differential game that is disrupted
by deterministic noise. We showed that Nash/worst-case equilibria for this game can be found by
determining the open-loop Nash equilibria of an associated extended differential game that has an
additional restriction on its initial state. More specifically, we showed that Nash/worst-case equilib-
ria can be calculated from a ‘virtual’ differential game where with every player, a ‘nature’ player is
introduced that tries to maximize the performance criterion with respect to the disturbance.

Based on this equivalence result we derived for the linear-quadratic differential game both nec-
essary and sufficient conditions for Nash/worst-case equilibria along the lines, these conditions are
obtained for the noise-free case. The only difficulty arises in the extra condition that is imposed on
the initial state of the extended system. In an example, we showed that, different from the noise-free
case, in the linear-quadratic case, multiple equilibria may occur. As a result of the analysis, we could
also easily establish both necessary and sufficient conditions for existence of a unique equilibrium.

Implementation of the equilibrium actions seems to be computationally less demanding than equi-
librium actions derived in a similar setting by Jank et al. [26–28]. In an example, we illustrated its
use. The example shows that the consideration of model uncertainty in a debt stabilization game
leads to a more active control pursued by players in the short run, which has a stabilizing effect on
closed-loop response. It supports the intuition that if players incorporate a worst-case realization of
disturbances into their policy making, they will respond by implementing a policy that is, particu-
larly in the short run, more directed to the realization of the goals expressed in the cost functional
with respect to the state variables, this, because they expect ‘nature’ will try to manipulate the state
variables as worse as possible from their cost functional point of view. So if debt stabilization is the
major issue, policy is directed more towards achieving this goal in order to mitigate the attempts by
‘nature’ to destabilize debt.

On a theoretical level, open issues that remain to be settled are how these results can be used to
arrive at both necessary and sufficient conditions for existence of Nash/worst-case equilibria for an
arbitrary planning horizon Œ0; tf �, where tf ranges between 0 and T . In the noise-free case, neces-
sary and sufficient conditions for solvability of this problem can be formulated in terms of existence
to a set of coupled Riccati differential equations. Unfortunately, due to the initial state restrictions
for the extended system, such a generalization for the disturbed game is less obvious. Clearly, as we
did here, by, for example, ignoring this restriction and assuming that the corresponding ‘noise-free’
Riccati differential equations have a solution, one easily obtains a set of sufficient conditions for
the existence to the problem. However, the question remains how far these conditions are necessary
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too. Probably, the presented conditions will also help to solve the corresponding infinite-planning
horizon problem.

From a practical applications point of view, the assumption that for all admissible controls there
exists for all players a worst-case disturbance signal is in most cases not too unrealistic. For, if
such a signal does not exist for some players for some admissible control, this probably implies
in most cases that the corresponding worst-case cost for that player is infinite. Therefore, likely,
this control will not be a Nash/worst-case equilibrium. But, one should be cautious, as maybe no
equilibrium might exist under such conditions. It seems that cases like this can be easily incorporated
within the current framework as long as no equilibrium occurs where some players have infinite
cost. Concerning the technical assumptions imposed in the theorems in Chapter 3, we recall from
[4][p.269] that the assumption that Riccati equations ((11) and (12)) have a solution is usually
satisfied if the game has an equilibrium. Moreover, in case the nonsymmetric Riccati equation (15)
has no solution, one can relapse to Theorem 3.4 to decide whether a solution exists and, if so, find
its solution. Similar remarks apply for the general case. Finally, the results presented here for the
linear-quadratic case may be useful too to analyze the same problem setting under the additional
assumption that the underlying system is described by a set of linear differential-algebraic equations.
Settings that often naturally occur when considering linearized models of systems.

APPENDIX

Proof of Theorem 3.3
First, notice that for a fixed u 2 U , the maximization of Ji w.r.t. w is an affine linear-quadratic

control problem. As we assumed (12) has a solution, this control problem has a unique solution
(see, e.g., [4][Theorem 5.11]). This implies that for all u 2 U , there exists a unique worst-case
disturbance from the point of view of player i .

By Corollary 3.2, the two-player linear-quadratic differential game ((8)–(9)) has a Nash/worst-

case equilibrium for every initial state x0 if and only if with Nx.t/ WD

�
x1.t/

x2.t/

	
; NA2 WD

�
A 0

0 A

	
;

NBi WD

�
Bi
Bi

	
; ND1 WD

�
D

0

	
; ND2 WD

�
0

D

	
; NQ1 WD

�
Q1 0

0 0

	
; NQ2 WD

�
0 0

0 Q2

	
; NQ1T WD�

Q1T 0

0 0

	
; and NQ2T WD

�
0 0

0 Q2T

	
; the next four-player game has a Nash equilibrium for every

initial state x0.

PNx.t/ D NA2 Nx.t/C NB1u1.t/C NB2u2.t/C ND1w1.t/C ND2w2.t/; with Nx.0/ D Nx0 WD

�
x0
x0

	
(21)

and cost functional for the players given by the following:

Ji .u1; u2; wi / D
1

2

Z T

0

´
NxT .t/ NQi Nx.t/C

2X
jD1

uTj .t/Rijuj .t/

� wTi .t/Rwiwi .t/

μ
dt C

1

2
NxT .T / NQiT Nx.T /;

(22)

and JiC2.u1; u2; wi / D �Ji .u1; u2; wi /; i D 1; 2.
Unfortunately, the initial state of this extended system cannot be arbitrarily chosen. Therefore, we

cannot use directly existing results on open-loop LQ games to derive both necessary and sufficient
existence conditions for a Nash equilibrium. However, we can follow the lines of the proof for the
standard case (see, e.g., proof of [4, Theorem 7.1]) to obtain these conditions.

Suppose that
�
u�i .:/; w

�
i .:/

�
is a Nash equilibrium. Then, by the maximum principle, the

Hamiltonian
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Hi D
1

2

�
NxT NQi Nx C u

T
1 Ri1u1 C u

T
2 Ri2u2 � w

T
i .t/Rwiwi .t/

�
C  Ti

�
NA2 Nx C NB1u1 C NB2u2 C ND1w1 C ND2w2

�
is minimized by player i w.r.t. ui , i D 1; 2, and

HiC2 D
1

2

�
� NxT NQi Nx � u

T
1 Ri1u1 � u

T
2 Ri2u2 C w

T
i .t/Rwiwi .t/

�
C  TiC2

�
NA2 Nx C NB1u1 C NB2u2 C ND1w1 C ND2w2

�
is minimized by player i C 2 w.r.t. wi , i D 1; 2. This yields the necessary conditions

u�i .t/ D �R
�1
i i
NBTi  i .t/ and w�i .t/ D �R

�1
wi
NDT
i  iC2.t/; i D 1; 2;

where the 2n-dimensional vectors  i .t/ satisfy

P i .t/ D � NQi Nx.t/ � NA
T
2  i .t/;  i .T / D

NQiT Nx.T /;

P iC2.t/ D NQi Nx.t/ � NA
T
2  iC2.t/;  iC2.T / D �

NQiT Nx.T /; i D 1; 2;

and

PNx.t/ D NA2 Nx.t/ � NS1 1.t/ � NS2 2.t/ � NSD1 3.t/ �
NSD2 4.t/;

with NxT .0/ D
�
xT0 xT0

�
. Here, NSi WD

�
Si Si
Si Si

	
, NSD1 WD

�
SD1 0

0 0

	
, and NSD2 WD

�
0 0

0 SD2

	
.

In other words, if the problem has an open-loop Nash equilibrium, then, with Qy.t/ WD�
NxT .t/;  T1 .t/; : : : ;  

T
4 .t/

�T
, the differential equation

PQy.t/ D

2
66664
NA2 � NS1 � NS2 � NSD1 �

NSD2
� NQ1 � NA

T
2 0 0 0

� NQ2 0 � NAT2 0 0
NQ1 0 0 � NAT2 0
NQ2 0 0 0 � NAT2

3
77775 Qy.t/ (23)

with boundary conditions NxT .0/ D
�
xT0 xT0

�
;  1.T / � NQ1T Nx.T / D 0;  2.T / � NQ2T Nx.T / D

0;  3.T / C NQ1T Nx.T / D 0; and  4.T / C NQ2T Nx.T / D 0 has a solution. Next, split  Ti DW�
 Ti1  

T
i2

�
. Some detailed inspection of (23) shows that  12 D  21 D  32 D  41 D 0,  31 D

� 11 and 42 D � 22. So we conclude that if the problem has an open-loop Nash equilibrium, then
with yT .t/ WD

�
xT1 .t/ x

T
2 .t/  

T
11.t/  

T
22.t/

�
, the next linear two-point boundary value problem

has a solution for every x0.

Py.t/ DMy.t/; with NPy.0/C NQy.T / D
�
NxT0 0 0

�T
: (24)

Some elementary rewriting shows that the aforementioned two-point boundary value problem (24)
has a solution for every initial state x0 if and only if

. NP C NQeMT /y.0/ D
�
NxT0 0 0

�T
;

or, equivalently,

. NPe�MT C NQ/eMT y.0/ D ŒxT0 x
T
0 0 0�

T ; (25)

is solvable for every x0.
Denoting ´ WD eMT y.0/ and Œ W1 W2 � WD

�
I2n 02n

�
e�MT , the question whether (25) is

solvable for every x0 is equivalent with the question whether�
W1 W2
�QT I2n

	
´ D

�
Nx0
0

	
(26)
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has a solution for every x0. An elementary analysis shows that (26) has a solution for every x0 if
and only if, with H.T / WD

�
I2n 02n

�
e�MT

�
I2n QT

�T
,

H.T /´1 D Nx0 (27)

has a solution for every x0. This last problem is equivalent with the problem under which conditions

the matrix equationH.T /X D

�
I

I

	
has a solutionX . From this, one directly obtains condition (13)

(see, e.g., [29, Exercise 10.49]).
If (13) holds, all solutions of (27) are

´1 D H
C Nx0 C .I �H

CH/q; where q is an arbitrary vector:

From (26), it follows that the set of points ´ yielding a consistent initial boundary value problem are

´ D Œ I2n; QT �
T ´1:

The ´ corresponding consistent initial state of the boundary value problem is y0 D e�MT ´. The
solution of the initial boundary value problem is then

y.t/ D eMty0 D e
M.t�T /´ D eM.t�T /

�
I2n
QT

	
´1:

Using the definition of y.t/ in terms of the state and co-state variables yields then the corresponding
equilibrium controls:

ui .t/ D �R
�1
i i
NBTi

�
 i1.t/

 i2.t/

	
D �R�1i i B

T
i  i i .t/ D �R

�1
i i B

T
i
NET4;iC2e

M.t�T /

�
I2n
QT

	
´1.t/and

(28)

wi .t/D�R
�1
wi
NDT
i

�
 iC21.t/

 iC22.t/

	
DR�1wiD

T i i .t/DR
�1
wiD

T NET4;iC2e
M.t�T /

�
I2n
QT

	
´1.t/; iD1; 2:

(29)

"( part" By assumption, the Riccati differential equations ((11) and (12)) have a solution on
Œ0; T �. Because H.T / satisfies (13), it is clear from the ‘) part’ of the proof that the two-point
boundary value problem (14) has for every x0 a consistent initial value y0 yielding a unique solution
for the boundary value problem. Assume y0 is with a x0 consistent initial value of the bound-
ary value problem. Denote the solution y.t/ of this two-point boundary value problem (14) by�
xT1 .t/; x

T
2 .t/;  11.t/;  22.t/

�T
, where the dimension of xi and  i is n. Now, consider

mi .t/ WD  i i .t/ �Ki .t/xi .t/ and miC2.t/ WD � i i .t/ � Li .t/xi .t/; i D 1; 2:

Then, mi .T / D 0. Furthermore, differentiation of m1.t/ gives

Pm1.t/D P 11.t/ � PK1.t/x1.t/�K1.t/ Px1.t/ D�Q1x1.t/ � A
T 11.t/ � Œ�A

TK1.t/ �K1.t/A

CK1.t/S1K1.t/ �Q1�x1.t/ �K1.t/ŒAx1.t/ � S1 11.t/ � S2 22.t/C SD1 11.t/�

D�ATm1.t/ �K1.t/S1K1.t/x1.t/CK1.t/S1Œm1.t/CK1.t/x1.t/�

CK1.t/S2Œm2.t/CK2.t/x2.t/�CK1.t/SD1 Œm3.t/C L1.t/x1.t/�

D�ATm1.t/CK1.t/ŒS1m1.t/CS2m2.t/CSD1m3.t/�CK1.t/ŒS2K2.t/x2.t/CSD1L1.t/x1.t/�:

Next, consider

u�i .t/ D �R
�1
i i B

T
i .Ki .t/xi .t/Cmi .t// and w�i .t/ D �R

�1
wiD

T .Li .t/xi .t/CmiC2.t// i D 1; 2:

By [4, Theorem 5.11], the minimization w.r.t. u1 of J1
�
u1; u

�
2 ; w

�
1 ; w

�
2

�
WD

1

2

Z T

0

°
NxT.t/ NQi Nx.t/Cu

T
1.t/R11u1.t/Cu

�T

2 .t/R12u
�
2.t/�w

�T

1 .t/Rw1w
�
1 .t/

±
dtC

1

2
NxT.T / NQiT Nx.T /;
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where PNx.t/ D NA2 Nx.t/C NB1u1.t/C NB2u�2.t/C
P2
iD1
NDiw

�
i .t/; with Nx.0/ D Nx0 D ŒxT0 ; x

T
0 �
T , has

a unique solution. This solution is Nu1.t/ D �R�111 NB
T
1 .
NK1.t/ Nx.t/C Nm1.t//; where NK1.t/ solves the

Riccati differential equation:

PNK1.t/ D � NA
T
2
NK1.t/ � NK1.t/ NA2 C NK1.t/ NS1 NK1.t/ � NQ1; with NK1.T / D NQ1T

and Nm1.t/ solves the linear differential equation:

PNm1.t/ D . NK1.t/ NS1 � NA
T
2 / Nm1.t/ �

NK1.t/. NB2u
�
2.t/C

2X
iD1

NDiw
�
i .t//; Nm1.T / D 0: (30)

It is easily verified that NK1.t/ WD

�
K1.t/ 0

0 0

	
solves the Riccati differential equation, where K1.t/

solves (11). Using this in (30) shows that Nm1.t/ D

�
Qm1.t/
0

	
, where Qm1.t/ solves the differential

equation

PQm1.t/ D .K1.t/S1 � A
T / Qm1.t/ �K1.t/.B2u

�
2.t/CDw

�
1 .t//; Qm1.T / D 0: (31)

Consequently, Nu1.t/ D �R�111 B
T
1 .K1.t/ Nx1.t/C Qm1.t//; where Nx1.t/ is the optimal control implied

solution of the differential equation:

PNx1.t/ D .A � S1K1/ Nx1.t/ � S1 Qm1.t/C B2u
�
2.t/CDw

�
1 .t/ with Nx1.0/ D x0: (32)

Substitution of u�2.t/ and w�1 .t/ into (31) and (32) shows that the variables Qm1 and Qx satisfy

PQm1.t/ D .K1.t/S1 � A
T / Qm1.t/CK1.t/.S2.K2.t/x2.t/Cm2.t//

C SD1.L1.t/x1.t/Cm3.t///; Qm1.T / D 0;

PNx1.t/ D .A � S1K1.t// Nx1.t/ � S2.K2.t/x2.t/Cm2.t//

� SD1.L1.t/x1.t/Cm3.t// � S1 Qm1.t/; Nx1.0/ D x0:

It is easily verified that a solution of this set of differential equations is given by Qm1.t/ D m1.t/ and
Nx1.t/ D x1.t/. Because its solution is unique, this implies that Nu1.t/ D u�1.t/ or stated differently,

J1
�
u�1 ; u

�
2 ; w

�
1 ; w

�
2

�
6 J1

�
u1; u

�
2 ; w

�
1 ; w

�
2

�
; for all u1:

Similarly, it can be shown that the corresponding inequalities for the cost functions for the other
players apply, which shows that

�
u�1 ; u

�
2 ; w

�
1 ; w

�
2

�
is a Nash equilibrium for the extended game.

So by Corollary 3.2, these strategies yield a Nash/worst-case equilibrium. Notice,  i i .t/ D
Ki .t/xi .t/ C mi .t/ D �.Li .t/xi .t/ C miC2.t//. This observation directly yields the stated
equilibrium strategies.

Finally, the fact that equilibrium strategies are unique if H.T / is invertible follows directly from
(27) as the set of all equilibrium strategies satisfy (28) and (29).
Outline Proof Theorem 3.8

Here, we sketch the main points in arriving at the generalization of Theorems 3.3 and 3.4. Fol-
lowing [4][Exercise 7.5], consider the next shorthand notation. Standard conventions concerning
block-matrix addition and multiplication rules are assumed again.

Ge WD

2
64
Œ0 I 0 � � � 0� NM e

1
:::

Œ0 0 � � � 0 I � NM e
2N

3
75

2
6666664

0 0 � � � 0
I 0 � � � 0

0 I
: : :

:::
:::
: : :

: : : 0

0 � � � 0 I

3
7777775
D

2
6666664

R11 V122 � � � V12N 0

V T222
: : : � � �

:::
:::

:::
: : : V.N�1/.N�1/N

:::

V TN2N � � � V T
N.N�1/N

RNN 0

0 � � � � � � 0 Rw

3
7777775
;
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where Rw D diag.Rwi /. We assume that this matrix Ge is invertible.

Be WD Œ NB1; : : : ; NBN ; ND1; : : : ; NDN �I QB
eT WD diag

�
NBT1 ; : : : ;

NBTN ;
NDT
1 ; : : : ;

NDT
N

�
I

QBe
T

i WD block-column i of QBe
T

I

Ze WD

2
64
Œ0 I 0 � � � 0� NM e

1
:::

Œ0 0 � � � 0 I � NM e
2N

3
75
2
6664
I

0
:::

0

3
7775D

�
diag.V T111; : : : ; V

T
N1N /

0Nk�Nn

	
I

Zei WD ŒI 0 � � � 0�
NM e
i

�
0

I

	
D

2
4 0.i�1/n�Nn 0.i�1/n�m
Vi11 � � � Vi1N 0n�m

0.N�i/n�Nn 0.N�i/n�m

3
5 ; i 2N; ZiCN WD �Zi ; i 2NI

QQe
i WD

NEN;iQi
NETN;i �Z

e
i G

e�1Ze; i 2 NI QQe
iCN WD �

QQe
i ; i 2 NI QQe WD

h
QQeT

1 � � �
QQeT

2N

iT
I

QSei WD B
eGe

�1 QBe
T

i I
QSe WD

h
QSe
T

1 � � �
QSe
T

2N

i
I

QAe WD NAN � B
eGe

�1

ZeI and QAe
T

2N2
WD NAT

2N2
�

2
64
Ze1
:::

Ze2N

3
75Ge�1 QBeT :

Then, with

QM e WD

"
QAe � QSe

� QQe � QAe
T

2N2

#
;

along the lines of [4][Exercise 7.5] and the aforementioned proof of Theorem 3.3, we have that the
general linear-quadratic differential game ((6) and (7)) has a solution iff the next generalization of
the two-point boundary value problem (23) has a solution:

PQye.t/ D QM e Qye.t/; where Qye
T

D
h
NxT Q e

T

1 � � �
Q e
T

2N

iT
;

with boundary conditions Nx.0/ D Nx0; Q ei .T / � NQiT Nx.T / D 0; i 2 N and Q ei .T /C NQiT Nx.T / D

0; i D N C1; : : : ; 2N . Moreover,Ge
h
u�

T

1 � � �u
�T

N w�
T

1 � � �w
�T

N

iT
D �ŒZe QBe

T
� Qye.t/. A spelling

of this two-point boundary value problem shows then, along the lines of the proof of Theorem 3.3,
that it has a solution iff the next two-point boundary value problem has a solution:

PQy.t/ D QM Qy.t/; where Qy D Œ NxT Q T1 � � � Q 
T
N �
T ;

with boundary conditions Nx.0/ D Nx0; Q i .T / � NQiT Nx.T / D 0; i 2 N. Furthermore,

Ge
h
u�

T

1 � � �u
�T

N w�
T

1 � � �w
�T

N

iT
D �

�
Z QBT

0 �diag.DT /

	
Qy.t/:

From this, the generalization of Theorem 3.3 readily follows.
Following the lines of the proof of Theorem 3.4, one arrives then directly at the results presented

in Theorem 3.8.
The corresponding worst-case cost advertized in this Theorem results by direct substitution of the

worst-case actions into Ji . To illustrate this, we elaborate later the case for J1. Using the advertized
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differential equations for C1.t/, it follows that

2J1 D

Z T

0

Œ NxT .t/ uT .t/� NM1Œ Nx
T .t/ uT .t/�T � wT1 .t/Rw1w1.t/dt C Nx

T .T / NQ1T Nx.T /

D

Z T

0

NxT .t/
�
ŒI; �.Z C QBTP.t//TG�T � NM1ŒI; �.Z C QB

TP.t//TG�T �T

�P T1 .t/SD1P1.t/
�
Nx.t/dt C NxT .T / NQ1T Nx.T /

D

Z T

0

NxT .t/
�
�ATcl .t/C1.t/ � C1.t/Acl .t/ �

PC1.t/
�
Nx.t/dt C NxT .T / NQ1T Nx.T /

D �

Z T

0

d

dt

®
NxT .t/C1.t/ Nx.t/

¯
dt C NxT .T / NQ1T Nx.T / D Nx

T .0/C1.0/ Nx.0/:
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