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Chapter 0

Introduction

Mechanism design is a field in economics and game theory that takes an engineering

approach to design economic mechanisms or incentives, toward desired welfare objectives,

where players have decentralized information and act in a Bayesian rational way. It has

been studied since 1970s and applied extensively in practice, for example, in designing

auctions as FCC spectrum auctions and Google AdWords auctions. The interface of

mechanism design and computation also promotes innovations in electronic commerce.

In this thesis, I further investigate mechanism design theory for general social choice

problems.

The contents are organized as follows: In chapter 1, I provide an axiomatic charac-

terization of the probability-weighted minimal norm solution for social choice problems

with reference points. In chapter 2, I investigate the problem of characterizing feasibility

conditions for general social choice problems. The examples include voting, auctions

with externalities, combinatorial auctions and exchanges with complementary objects.

In chapter 3, I consider the problem of selecting among ex post efficient solutions for a

two-person bargaining problem, when multiple ex post efficient solutions exist. In chap-

ters 4 and 5, I investigate two specific problems of designing trading mechanisms with

monetary transfers to achieve certain welfare objectives. In chapter 4, I discuss the choice

of information partitions together with a trading mechanism for the seller and the buyer

in order to enlarge the trading surplus. In chapter 5, I consider a revenue-maximizing

problem for a seller who wants to sell two complementary objects, in the presence of

inter-buyer resale.

Chapter 1 provides a characterization of the probability-weighted minimal norm solu-

tion in a Bayesian social choice environment as introduced by Myerson (1979). In such a

problem, incentive compatibility restricts the set of feasible utility allocations. I assume

that there is some socially desirable reference utility allocation, but that this allocation

is unattainable. For example, the allocation in the past may become infeasible when

players receive more information. A problem is: If such a reference allocation is relevant

for the compromise, which allocation will players finally agree on? The proposed solution

prescribes the incentive feasible utility allocation that minimizes a probability-weighted

norm to the interim reference point. The solution is uniquely determined by eight ax-

ioms: an IIA axiom, a Pareto optimality axiom, a symmetry axiom, a fairness axiom, a

splitting types axiom, a scaling axiom, a translation invariance axiom, and a continuity

1



Chapter 0: Introduction

axiom.

Chapter 2 considers the implementability of reduced form allocation rules for social

choice problems with general utility functions and finite types. This class of problems

is motivated by Maskin and Riley (1984), which discusses the optimal auction with

risk averse buyers. Due to general utility functions, the optimal auction problem raises

a reduced form implementation problem: Can a system of interim expected winning

probabilities be generated by a feasible allocation rule? Border (1991) characterizes

the implementability condition for single unit auctions. I consider general social choice

problems and obtain a necessary and sufficient condition for implementability, as well as

a necessary condition with finitely many inequalities. The results in this chapter can be

used to study voting problems, package exchanges with complementary valuations, and

package auctions with risk averse players.

Chapter 3 studies disagreement point monotone bargaining solutions. I consider a

two-person bargaining problem where players’ disagreement payoffs are correlated and

it is common knowledge that players must agree. I investigate the existence of any ex

post efficient utility allocation such that each player’s interim utility is non-constant and

weakly responsive to his disagreement payoff. I establish some impossibility results for

such monotone solutions.

Chapter 4 revisits the bilateral trade problem of Myerson and Satterthwaite (1983).

It investigates how the information structure (i.e. how information is distributed among

players) influences the attainability of ex post efficient allocations. I construct coarser

partitions together with a feasible trading procedure that induces more efficient trade

than the constrained efficient solution of Myerson and Satterthwaite.

Chapter 5 considers the optimal sale of two complementary objects to two buyers

in the presence of resale. It is assumed that it is common knowledge that one buyer

obtaining the bundle is efficient. Assuming full transparency of the seller’s auction

outcome, I show that if buyers use a mediator to maximize the resale surplus in a

sequentially optimal way, then the optimal revenue, as in Myerson (1981), is unattainable.

I introduce a modified Myerson auction (MMA) that requires selling the bundle with

some personalized reserve prices and the seller withholding one object in case these

prices are not met. The revenue from MMA when resale is not allowed serves as an

upper bound of the seller’s revenue.

2



Chapter 1

Characterization of the Minimal Norm Solution

with Incomplete Information

1.1. Introduction

In this chapter, we investigate the problem of an arbitrator trying to select a decision

from a finite set of social alternatives for a group of players, when the arbitrator does not

have information about their preferences except some prior estimate. On the one hand,

the arbitrator has to respect incentive compatibility constraints: Each player must be

incentivized to reveal his true preferences. That the social choice must be made at the

interim stage (i.e. the players know their types but the arbitrator does not) restricts the

set of feasible utility allocations. On the other hand, the players may agree that some

incentive infeasible allocation is a relevant aspiration point. Such a reference point may

be generated by some feasible allocation in the past or in the future. To determine a fair

compromise, the arbitrator has to also respect the players’ aspirations of what they are

entitled to receive.

Consider a bilateral trade example. The seller has value zero for the object and the

buyer’s value can be either 1 or v > 1, with probabilities p = (p, p). In case of no trade,

both players receive zero. In any incentive compatible, individual rational, and ex post

efficient trading mechanism, the object is always being transferred and the buyer pays

the seller a constant price d ∈ [0, 1]. The set of interim utility vectors for the seller and

types 1 and v of the buyer is given by X = {(d, 1 − d, v − d) : d ∈ [0, 1]}. A natural

question is: What would be the fair trading price at the interim stage?

A mediator trying to answer this question, could consider two possible benchmarks:

(i) Taking an ex ante point of view, i.e. the buyer not knowing his value, Nash’s

bargaining solution requires an equal split of V = p+ pv between the two players.

(ii) Taking an ex post point of view, i.e. both players knowing the buyer’s value,

Nash’s solution requires an equal split of 1 or v, depending on the state.

Now consider the interim stage. There are two alternatives to modify Nash’s solution:

(i) The ex ante Nash’s solution used for the seller and both types of the buyer is

given by (V/2, V/2, V/2). This utility vector is infeasible.

(ii) The interim expectation of the ex post Nash’s solution for the seller and each

type of the buyer is given by (V/2, 1/2, v/2). This utility vector is again infeasible.

1
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While such a utility allocation in either (i) or (ii) is infeasible, the players may agree

that it is qualified as a relevant interim reference point, hence, that it should influence

the fair compromise. It turns out that with each of these perspectives in either (i) or

(ii), the solution provided in this chapter (the minimal norm solution) prescribe a price

(p + pv)/2 and the solutions of the two problems are the same. In this case, the seller

and both types of the buyer are indifferent between these reference points. Notice that

an increase in p leads to a higher price and both types of the buyer are worse off.

Apart from this bargaining example, Bayesian social choice problems with reference

points arise more generally in economic environments. An example is the bankruptcy

problem with complete information as in Aumann and Maschler (1985). A man dies and

leaves debts r1, ..., rn totalling more than his estate E. The authors investigate the rules

about how should the estate be divided among n creditors. Now suppose the estate is

indivisible and the creditors may value it differently. Ẽ1, ..., Ẽn are random variables and

each creditor privately observes his value of the estate. A question is: How should the

estate be divided among the creditors under incomplete information?

For social choice problems with complete information, Yu (1973) was the first to pro-

pose a class of Euclidean compromise solutions. Such a solution minimizes the Euclidean

distance between the feasible set and the utopia point of that set.1 It reflects that players

must reach a compromise based on an endogenously determined, but generally infeasible,

ideal point whose coordinates correspond to the maximum feasible payoffs attainable by

the players. Thus, the solution minimizes a measure of the group regret. Voorneveld,

van den Nouweland and McLean (2011) and Conley, McLean and Wilkie (2014) obtain

two characterizations of Yu’s solution. In this chapter, we consider (and axiomatize)

a generalization of Yu’s solution for social choice problems with reference points under

incomplete information.

Each problem (p,X, r) specifies a system of marginal probabilities p = (pi)i∈N with pi

supported by the individual type set Ti for each player i ∈ N . The set of incentive feasible

interim utility allocations X is a convex compact subset in the interim utility space, and

a reference point r is an interim utility allocation outside X, which is further required to

strictly dominate one of the strong Pareto optimal allocations. Then, the minimal norm

solution F selects the unique vector in X that minimizes the total quadratic utility losses

from r weighted by the marginal probabilities p of different types of players. An increase

in the marginal probability of a certain type lowers the utility loss that this type has to

bear.

We characterize the minimal norm solution by eight axioms: independence of ir-

relevant alternatives (IIA), weak Pareto optimality (WPO), symmetry for TU problems

(TU), individual fairness (IF), splitting types (ST), scaling (SCA), translation invariance

1In the utopia point, each coordinate corresponds to the maximal utility that a player can get in the
feasible set.

2
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(T.INV), and feasible set continuity (F.CONT).

The first axiom is similar to Nash’s IIA axiom, except that a feasible set is defined

differently and the disagreement point is replaced by the reference point. Weak Pareto

optimality requires that the solution belongs to the weak Pareto set of the feasible set.

The axiom of symmetry for TU problems requires that if the feasible set induces an ex

ante transfer hyperplane and the interim reference point induces a symmetric reference

point ex ante, then in the solution, the ex ante utilities of the players must be equal. It

reduces to Nash’s symmetry axiom in case of complete information. Individual fairness

requires that all types of the players bear some losses in a TU problem. The axiom of

splitting types, modified from Harsanyi and Selten (1975) and Weidner (1992), requires

that if one problem is derived from another by splitting a type of a player into a twin,

then the new solution is derived from the previous solution by splitting this type. We

use symmetry for TU problems and splitting types to establish a consistency across

problems with different systems of marginal probabilities. Scaling, translation invariance

and feasible set continuity are used by Voorneveld et al. (2011) and Conley et al. (2014)

to characterize the Yu solution.

The remainder of this chapter is organized as follows. Sections 1.2 and 1.3 introduce

social choice problems with reference points and the axioms. Section 1.4 provides the

characterization theorem. Section 1.5 investigates a minimal norm duality and indepen-

dence of the axioms. Section 1.6, discusses the generation of reference points in specific

economic contexts. Section 1.7 reviews the related literature and investigates whether

the minimal norm solution satisfies the axioms in the literature. Section 1.8 concludes.

1.2. The Problem

1.2.1. Bayesian Social Choice Problems with Reference Points

We introduce Bayesian social choice problems of Myerson (1979), in which privately

informed players select some social alternative from a finite set and there are no monetary

transfers. Let N be a finite set of players. For each player i ∈ N , there is a finite type

set Ti. Let T = ×i∈NTi be the product type set, with the common prior π ∈ ∆(T ). We

assume π(t) > 0 for all t ∈ T . Denote T−i = ×j 6=iTj. The conditional belief of player

i with type ti on the set of other players’ types is given by πi(t−i|ti) for all t−i ∈ T−i.
Denote pi,ti the marginal probability of ti, or pi,ti =

∑
t−i∈T−i

π(t), and denote p the

system of the marginals of π. Let T̊ =
⋃
i∈N Ti.

Let D be a nonempty finite set of decisions. The utility function of player i is given

by ui : D× T → R.2 A social choice problem S is given by (π,D, (ui)i∈N). Denote S(π)

2As we mention later, the minimal norm solution is not invariant to positive affine transformations
of the utility functions, which implies the domain of a mechanism cannot be measurable with respect

3
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the set of all such problems by fixing π (and hence N and T ) and varying (D, (ui)i∈N).

Let S ∈ S(π). A mechanism is a function µ : D×T → [0, 1] satisfying
∑

d∈D µ(d|t) =

1 for all t ∈ T . Let M(S) be the set of all mechanisms for S. For any µ ∈ M(S), the

expected utility for type ti ∈ Ti from reporting t̂i ∈ Ti, while the other players report

honestly is given by

Ui(µ, t̂i|ti) =
∑

t−i∈T−i

∑
d∈D

µ(d|t̂i, t−i)ui(d, t)πi(t−i|ti). (1.2.1)

A mechanism µ is incentive compatible (IC) if Ui(µ, ti|ti) ≥ Ui(µ, t̂i|ti), for all t̂i, ti ∈
Ti, and i ∈ N . Denote B(S) the set of all IC mechanisms for S. For µ ∈ B(S), denote

the interim utility of player i by Ui(µ|ti) = Ui(µ, ti|ti).
There are situations where no information transmission is available among the social

planner and the players and decisions must be made under the veil of ignorance. With

such communication constraints, we define a “simple lottery problem” from S, in which

the social planner is constrained to choose from the set of constant mechanisms,

Mc(S) = {µ ∈M(S) : µ(·|t) = δ for all t ∈ T, for some δ ∈ ∆(D)}. (1.2.2)

Any mechanism in Mc(S) is IC, hence, Mc(S) ⊂ B(S).

Every µ ∈ B(S) defines an incentive feasible interim utility vector U(µ) ∈ ×i∈NRTi .

Denote n the dimension of the interim utility space, i.e. n =
∑

i∈N |Ti|. Denote U(S) ⊂
Rn the set of all incentive feasible utility vectors, and by Uc(S) ⊂ Rn the set of all

incentive feasible allocations from all constant mechanisms of S.

For any X ⊂ Rn , the strong (interim) Pareto boundary is given by3

PO(X) = {x ∈ X : for all y ∈ X, y ≥ x implies y = x}. (1.2.3)

Similarly, we define the weak Pareto boundary by

WPO(X) = {x ∈ X : @y ∈ X such that y > x}. (1.2.4)

In some contexts, the players might agree that some infeasible utility allocation is

relevant for a compromise. A reference point is an interim utility allocation r ∈ Rn that

strictly Pareto dominates some strong Pareto allocation. We write R(X) for the set of

all such reference points with respect to X,

R(X) = {r ∈ Rn : ∃x ∈ PO(X) such that r > x}. (1.2.5)

to the equivalent classes of vNM utility functions.
3For x, y ∈ Rn, y ≥ x means yk ≥ xk, for all k = 1, ..., n, and y > x means yk > xk, for all k = 1, ..., n.
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The Problem

That is, a reference point yields strictly higher utilities for all coordinates than some

point on the strong Pareto boundary.

By varying (D, (ui)i∈N), we obtain two classes of interim utility sets generated either

by all social choice problems or by all simple lottery problems, given by4

X (π) = {X : ∃S ∈ S(π) such that X = U(S)},

Xc(π) = {X : ∃S ∈ S(π) such that X = Uc(S)}.

By fixing (N, T ) and varying π, we obtain the classes of interim utility sets generated

by different priors on a common type set. By fixing N and varying (T, π), we obtain

the classes of interim utility sets across different type sets. Our axioms used for the

characterization result allow for this consistency over different type sets.5

1.2.2. The Reduced Problems

Denote Π the set of all prior probabilities by varying (N, T, π). Define

X =
⋃
π∈Π

X (π), Xc =
⋃
π∈Π

Xc(π), and

X0 = {X : X is a polytope in Rn for some finite n}.

In this chapter, we consider X0 as the domain of the feasible sets. On the other

hand, Myerson (1984) requires the domain of the feasible sets to be X . While X is the

most natural domain, the next result shows that X is “coarse” since it is a subset of all

polytopes. As we will mention in Section 1.6, a characterization on X is more difficult

than that on X0.

Lemma 1.1: (i) For every π ∈ Π, Xc(π) contains all polytopes in Rn. That is,

Xc = X0. (ii) X ( X0.

We define a Bayesian social choice problem with the reference point, or a reduced

problem Γ = (p,X, r) by

i. An interim utility space Rn.

ii. p ∈ Rn
++,
∑

j∈Ti pij = 1, for all i ∈ N .6

iii. X ⊂ Rn is a polytope.

iv. r ∈ Rn with r > x for some x ∈ PO(X).

4These classes of interim utility sets implicitly assume a welfarism: Two social choice problems with
the same players, types sets and priors, but with different decision sets and utility functions can generate
the same utility sets. Notice that we do distinguish two utility sets in the same space but with different
priors.

5By fixing (N,T ) and varying π, we may investigate alternative axioms and characterizations.
6We write Rn+,Rn− and Rn++ for the vectors with all coordinates nonnegative, nonpositive, and strictly

positive in Rn.
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This definition implicitly assumes that if two problems have the same marginals and

differ only in the priors, then their solutions are the same. We emphasize that this

reduction is only for simplicity.7 We can instead use some prior π ∈ Π as input of Γ.

Finally, p and X are consistent in the definition, since every polytope X can be generated

by Uc(S) for some S ∈ S(π).

Denote Σ the set of all (reduced) problems. A solution f assigns a unique feasible

utility allocation for each problem,

f : Σ→ X0 such that f(p,X, r) ∈ X, for all (p,X, r) ∈ Σ. (1.2.6)

Notation. Before the formal analysis, we introduce some notation. For any x, y ∈
Rn, define the vector from coordinatewise multiplication x ∗ y ∈ Rn by (x ∗ y)k = xkyk

for all k = 1, ..., n. If xk 6= 0 for all k = 1, ..., n, define the inverse x−1 by (x−1)k = 1/xk,

for all k = 1, ..., n. For X ⊂ Rn and h ∈ Rn, define h ∗X = {h ∗x : x ∈ X}. For y ∈ Rn,

define X + y = {x + y : x ∈ X}. For x, y ∈ Rn, the line through x with direction y is

given by l(x, y) = {x+ αy : α ∈ R}.
For any q ∈ Rn

++, the q-inner product 〈., .〉q : Rn × Rn → R is given by

〈x, y〉q =
∑
i

∑
j

xijqijyij. (1.2.7)

The q-inner product induces the q-norm ‖x‖q =
√
〈x, x〉q. For any closed convex set

X ⊂ Rn and vector r ∈ Rn, define the q-projection of r onto X by

φ(q,X, r) = arg min
x∈X
‖r − x‖q. (1.2.8)

The q-projection is well defined: By the projection theorem for closed convex subsets in

an Euclidean space, the q-projection of r onto X exists and is unique. For r ∈ Rn and

m > 0, the q-normed ball Bq(r,m) is given by {x ∈ Rn : ‖x− r‖q ≤ m}.

1.3. The Axioms

A solution F is the minimal norm solution, if for every problem Γ = (p,X, r) in Σ, it is

the p-projection of r onto X, or

F (Γ) = φ(p,X, r). (1.3.1)

7The information of marginals is sufficient for our characterization result. One consequence of this
definition is that it requires to introduce an axiom of splitting types based on marginal probabilities,
which must be modified from those in Harsanyi and Selten (1975) and Weidner (1992).
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The Axioms

In this section, we provide eight axioms that characterize the minimal norm solution:

An IIA axiom, a weak Pareto optimality axiom, a symmetry for TU problems axiom,

an individual fairness axiom, a splitting types axiom, a scaling axiom, a translation

invariance axiom, and a feasible set continuity axiom.

Axiom 1.1: Independence of Irrelevant Alternatives (IIA). Let Γ = (p,X, r) and

Γ′ = (p,X ′, r) in Σ. If X ⊆ X ′ and f(Γ′) ∈ X, then f(Γ) = f(Γ′).

The first axiom requires that if a feasible set becomes smaller and the solution for

the larger set remains feasible, then it must be chosen in the smaller set. It resembles

Nash’s IIA axiom where the disagreement point is replaced by the reference point. With

our domain, every larger feasible set can be extended trivially from a smaller feasible set

in the interim utility space. The underlying economic environments or incentives do not

restrict the existence of such an extension. This is in contrast to the extension axiom of

Myerson (1984), which is defined on the space of social choice problems. We discuss this

issue in Section 1.7.

The second axiom requires that for each problem, the solution belongs to the weak

Pareto boundary of that problem.

Axiom 1.2: Weak Pareto Optimality (WPO). Let Γ = (p,X, r) in Σ. Then f(Γ) ∈
WPO(X).

The third axiom is a new symmetry axiom introduced in this chapter. First, consider a

complete information problem (e.g. each player’s type set is a singleton) with transferable

utility, defined by the reference point r0 = 0 ∈ RN and the feasible set

X0
w,κ = {x ∈ RN :

∑
i

xi ≤ w and xi ≥ κ for all i ∈ N}, (1.3.2)

for some κ < w < 0. Then, Nash’s symmetry axiom requires that each player obtains

the same utility.

To apply Nash’s symmetry to incomplete information problems, the third axiom

introduces a linear map from a class of interim hyperplane problems to a class of ex ante

transferable utility problems. We call these hyperplane problems (probability-weighted)

TU problems. A problem Γ = (p,X, r) is a p-TU problem, if r = 0 ∈ Rn and X is given

by

Xw,κ = {x ∈ Rn :
∑
i

∑
j

pijxij ≤ w and xij ≥ κ, for all (i, j) ∈ T̊}, (1.3.3)

for some κ ≤ min(i,j) w/pij < w < 0. By varying (w, κ), we have all p-TU problems, and

by varying p, we define the class of TU problems.
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To see that Γ is well-defined, notice that Xw,κ is a polytope and 0 ∈ R(Xw,κ).

As shown below, requiring κ being uniform for all (i, j) ∈ T̊ is such that the ex ante

transferable utility problems are symmetric. Requiring κ < 0 small enough relates to a

larger class of linear problems derived from p-TU problems.8

Axiom 1.3: Symmetry for TU Problems (TU). Let Γ = (p,X, 0) be a p-TU problem.

Then, ∑
j

pijfij(Γ) =
∑
m

pkmfkm(Γ), for all i, k ∈ N. (1.3.4)

Intuitively, the axiom requires that if we define a linear transformation ϕ : Rn → RN

by

(ϕx)i =
∑
j

pijxij, for all i ∈ N, (1.3.5)

then ϕXw,κ = X0
w,κ and ϕr = r0. Then the ex ante utility allocation is symmetric among

the players.

The fourth axiom is a modified form of the individual fairness axiom of Conley et

al. (2014). It requires all types of players bearing some losses in TU problems. As the

hyperplane in a p-TU problem intercepts all axes with strictly negative values, each type

of a player should be given some weight in determining the final allocation. Then, every

type of a player must bear some strictly positive loss.

Axiom 1.4: Individual Fairness (IF). Let Γ = (p,X, 0) be a p-TU problem. Then,

f(Γ) < 0.

The fifth axiom on irrelevant splitting of types was first introduced by Harsanyi and

Selten (1972), which considers an inessential way of transforming a problem. Since our

problems are defined by marginal probabilities rather than priors, we use a modified

version which is implied by their definition.

Definition 1.1: Let Γ = (p,X, r) and Γ′ = (p′, X ′, r′) in Σ, with p,X, r in Rn and

p′, X ′, r′ in Rn+1. Γ′ is obtained from Γ by splitting a type s of player 1 with probability

α ∈ (0, 1), if

i. N ′ = N , T ′i = Ti for all i 6= 1, and T ′1 = (T1 \ {s}) ∪ {a, b}.

ii. p′ij = pij for all j ∈ T ′i , i 6= 1, and p′1j = p1j for all j ∈ T ′1 \ {a, b}, and p′1a = αp1s,

p′1b = (1− α)p1s.

iii. r′ij = rij for all j ∈ T ′i , i 6= 1 and, r′1j = r1j for all j ∈ T ′1 \ {a, b}, and

r′1a = r′1b = r1s.

iv. x′ ∈ X ′ if and only if there exists x ∈ X such that x′ij = xij for all j ∈ T ′i , i 6= 1

and, x′1j = x1j for all j ∈ T ′1 \ {a, b}, and x′1a = x′1b = x1s.

8This requirement is for technical convenience and becomes clear in the proof of Lemma 1.2 (ii).
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This definition is a reduced version derived from a more primitive definition by com-

paring two social choice problems with different priors, as in Weidner (1992). To see it

intuitively, suppose the system of marginals p is derived from a prior π, then Definition

1.1 (ii) is implied by the following operation on the prior,

π′(j, ·) =


π(j, ·) if j ∈ T ′1 \ {a, b},
απ(j, ·) if j = a,

(1− α)π(j, ·) if j = b.

This operation does not affect the utility functions and the conditional beliefs of types a

and b. Hence, both types a and b of player 1 have the same decision problems. Also, the

operation does not affect the utility functions, the conditional beliefs, the decisions of

other types of player 1 and of types of other players. So, these two social choice problems

must generate the same incentive compatible utility allocations, except that the interim

utilities that types a and b receive from x′ will be the same as type s receives from x.

Now the axiom of splitting types is self-explanatory.

Axiom 1.5: Splitting Types (ST). Let Γ = (p,X, r) and Γ′ = (p′, X ′, r′) in Σ. Sup-

pose Γ′ is obtained from Γ by splitting a type s of player 1 with probability α ∈ (0, 1).

Then

f1j(Γ
′) =

{
f1j(Γ) if j ∈ T ′1 \ {a, b},
f1s(Γ) if j ∈ {a, b},

and

fij(Γ
′) = fij(Γ), for all j ∈ Ti, i ∈ N \ {1}.

The following scaling axiom is modified from Voorneveld et al. (2011) and Conley

et al. (2014). It establishes a link between the class of TU problems and a larger class

of linear problems. If a linear problem is derived by scaling a p-TU problem, in which

type j of player i has twice the relative weight of type m of player k as in the original

problem, then the utility loss to type j relative to that of type m should be half the

utility loss to type j relative to that of type m in the original problem.

Axiom 1.6: Scaling (SCA). Let Γ = (p,X, 0) be a p-TU problem. For any h ∈ Rn
++,

define a linear problem h ∗ Γ = (p, h ∗X, 0). Then

hijfkm(Γ)fij(h ∗ Γ) = hkmfij(Γ)fkm(h ∗ Γ), (1.3.6)

for all (i, j), (k,m) ∈ T̊ .

To see h ∗Γ is well defined, notice that h ∗X is a polytope and 0 ∈ R(h ∗X). If each

player’s type set is a singleton, this axiom reduces to the scaling axiom of Voorneveld

et al. (2011), except that they define a hyperplane problem differently and the utopia

point is replaced by the reference point.
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Axiom 1.7: Translation Invariance (T.INV). Let Γ = (p,X, r) in Σ. For any z ∈ Rn,

define Γ + z = (p,X + z, r + z). Then f(Γ + z) = f(Γ) + z.

The last axiom is a mild regularity condition. It states that a small change in the

feasible set does not lead to a drastic change in the solution outcome.

Axiom 1.8: Feasible Set Continuity (F.CONT). Let Γ = (p,X, r) and Γk = (p,Xk, r),

k = 1, 2, ..., be a sequence of problems in Σ, and Xk → X in the Hausdorff metric9. Then,

f(Γk)→ f(Γ).

We now provide some final remarks on these axioms.

IIA is often used in individual and social choice theory, but a solution that satisfies IIA

may violates an axiom of individual monotonicity introduced by Kalai and Smorodinsky

(1975), which requires that if players have more resources to share, all of the players

must be weakly better off. Also, IIA is too strong to be satisfied by any voting rule in

some environment.

WPO is a weak interim welfare criterion. Holmstrom and Myerson (1983) shows that

various concepts of Pareto optimality under uncertainty can be equivalently represented

through measurability restrictions on individual weights in a social welfare function. At

the interim stage, it is natural to require the welfare weights depending only on one’s

own types.

To interpret TU, notice that the arbitrator as an outsider has no private information.

A hyperplane problem and the corresponding ex ante transferable utility problem are

observable equivalent to him, and a symmetry on the set of players applies. ST is a fairly

weak axiom. Since the operation of splitting types is an inessential transformation of a

problem by dividing a type, the arbitrator should not distinguish two problems before and

after the splitting. IF implicitly requires players being treated fairly in a TU problem,

which is probability-weighted symmetric. For the uniform marginal probabilities, IF

requires the solution not to favor a certain type of a player. IF is weaker than symmetry

across all types of the players. SCA and T.INV impose certain ways of comparison of

utilities across types and players. Finally, F.CONT is for technical reasons.

1.4. Characterization

In this section, we provide a characterization of the minimal norm solution. The following

theorem is the main result of the chapter.

9Let X,Y be two nonempty closed subsets in Rn. The Hausdorff metric is given by

h(X,Y ) = max{sup
x∈X

dE(x, Y ), sup
y∈Y

dE(y,X)}, (1.3.7)

where dE is the Euclidean metric on Rn and dE(x, Y ) = miny∈Y dE(x, y).
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Characterization

Theorem 1.1: A solution f satisfies Axioms 1.1-1.8 if and only if f = F .

It is easy to verify that F satisfies IIA, T.INV, F.CONT, and WPO. We use Lemma

1.2 to show that F satisfies the other axioms. The proofs of the lemmas are provided in

Appendix 1.A.

Lemma 1.2: F satisfies TU, IF, SCA, and ST.

The proof that F is the unique solution that satisfies all axioms is divided into

several steps. Denote the normalized p-TU problem Γp = (p,Xp, 0) by Xp = Xw,κ where

(w, κ) = (−|N |,min(i,j)−|N |/pij). Denote the solution to the normalized p-TU problem

by

e = f(Γp). (1.4.1)

f being IF implies e < 0. Lemma 1.3 states that if f is IIA, WPO, and SCA, then

for any linear problem Γ = (p, h ∗ X, 0) scaled from a p-TU problem Γ̃ = (p,X, 0) for

some h ∈ Rn
++,

f(Γ) = φ(pe, h ∗X, 0), (1.4.2)

where

pe = p ∗ (−e)−1. (1.4.3)

Then by TU, ST, and Lemma 1.4, we have for the normalized p-TU problem, e =

(−1, ...,−1). Finally, by IIA and F.CONT, we establish f = F .

Lemma 1.3: Suppose f satisfies IF, IIA, WPO, and SCA. For any p-TU problem

Γ = (p,X, 0) and h ∈ Rn
++, f(h ∗ Γ) = φ(pe, h ∗X, 0).

Lemma 1.4: Suppose f satisfies IF, IIA, WPO, SCA, TU, and ST. Then for the

normalized p-TU problem Γp, f(Γp) = (−1, ...,−1).

Proof of Theorem 1.1. Suppose f is a solution satisfying all the axioms. Fix Γ =

(p,X, r). By T.INV, we can translate the problem to r = 0. Denote y = F (Γ).

Then X and the ball Bp(0, ‖y‖p) has y as the unique point in common. Since both sets

are convex and compact, by a hyperplane separation theorem, there exists a hyperplane

Hλ,w = {x ∈ Rn : 〈λ, x〉p = w} (1.4.4)

that separates X and the ball Bp(0, ‖y‖p), and supports the ball at y. Since Bp(0, ‖y‖p)
is smooth, λ = −y. Furthermore, φ(p,Hλ,w, 0) = y.

Case 1. y < 0. Then λ ∈ Rn
++ and w < 0. Now consider a linear problem h ∗ Γ̃ =

(p, h ∗ X̃, 0), where h = λ−1 and Γ̃ = (p, X̃, 0) is a p-TU problem with w̃ = w and

κ̃ < 0 small enough such that X ⊆ h ∗ X̃. Because h ∗ X̃ ⊂ {x : 〈λ, x〉p ≤ w},
and y ∈ (h ∗ X̃) ∩ Hλ,w, it implies φ(p, h ∗ X̃, 0) = φ(p,Hλ,w, 0) = y. By Lemma 1.4,
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e = (−1, ...,−1) and pe = p. By Lemma 1.3, f(h ∗ Γ̃) = φ(pe, h ∗ X̃, 0) = φ(p, h ∗ X̃, 0).

Since f is IIA, f(Γ) = f(h ∗ Γ̃) = y = F (Γ).

Case 2. y ≤ 0 and yij = λij = 0 for some (i, j) ∈ T̊ . Lemma 1.8 in Appendix 1.A

shows that there exists a sequence Γk = (p,Xk, 0), k = 1, 2, ..., such that yk = F (Γk) < 0

for all k, Xk → X in the Hausdorff metric, and yk → y. Then apply the result in Case

1, f(Γk) = yk = F (Γk). By F.CONT, Xk → X implies that f(Γ) = limk→∞ f(Γk) =

limk→∞ F (Γk) = F (Γ). �

1.5. Discussion

1.5.1. Minimum Norm Duality

We now discuss a minimal norm duality between welfare weights and interim utility for

the minimal norm solution. In a canonical two-person complete information bargaining

problem (X, d) with X being a convex compact subset of R2 and d ∈ X, Harsanyi

(1963) and Shapley (1969) characterize that a feasible allocation x ∈ X is the Nash

solution if and only if there exists a welfare weighting vector λ ∈ R2
++ such that x is

both λ-utilitarian and λ-egalitarian, i.e.∑
i

λixi = max
y∈X

∑
i

λiyi and λ1(x1 − d1) = λ2(x2 − d2). (1.5.1)

For such a λ, the solution is desirable in terms of both efficiency and equity, and hence

λ is a natural weighting vector. Myerson (1984) shows that the set of neutral bargaining

solutions under incomplete information have a similar property. For our social choice

problem with a reference point, a natural question is how to define λ-egalitarian alloca-

tions and whether the weighting vector in our solution has a similar characterization.

Definition 1.2: Let Γ ∈ Σ. (i) x ∈ X is interim λ-utilitarian, if there exists

λ ∈ Rn
++ such that

〈λ, x〉p = max
y∈X
〈λ, y〉p. (1.5.2)

(ii) x ∈ X has interim λ-equal loss, if there exists λ ∈ Rn
++ such that

λij
λkm

=
rij − xij
rkm − xkm

, (1.5.3)

for all (i, j), (k,m) ∈ T̊ .

To see what a λ-equal loss allocation refers to, consider a feasible set X ⊂ R2 with a

reference point r ∈ R(X). A λ-equal loss allocation requires that the players bear losses

proportional to their social weights, i.e. λ1/λ2 = (r1 − x1)/(r2 − x2). Then, the player
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Discussion

with the higher social weight bears more losses.10

With these definitions, we have the following result that characterizes F by a natural

welfare weighting vector.

Proposition 1.1: Let Γ ∈ Σ with F (Γ) < r. Then, y = F (Γ) if and only if there

exists λ ∈ Rn
++ such that y is interim λ-utilitarian and has interim λ-equal loss.

Proof of Proposition 1.1. (Only If) Among the supporting hyperplanes of X at y =

F (Γ), there exists one hyperplane Hλ,w = {x : 〈λ, x〉p = w} with λ = r − y being the

normal vector. From F (Γ) < r, λ ∈ Rn
++. Then y is interim λ-utilitarian and λ-equal

loss.

(If) Suppose there is y′ ∈ X and λ ∈ Rn
++ such that y′ is λ-utilitarian and λ-equal

loss. Then with λ′ = r − y′ = kλ where k = ‖r − y′‖p/‖λ‖p, y′ is also λ′-utilitarian

and λ′-equal loss. Since y′ is λ′-utilitarian, 〈r − y′, x − y′〉p ≤ 0, for all x ∈ X. By the

projection theorem, y′ = y. �

To interpret this result, note that the minimum p-norm from r to X, or

min
x∈X
‖r − x‖p (P)

is equal to the maximum of p-norms from r to hyperplanes separating r and X. Hence,

the dual problem of (P) is given by

max
‖λ‖p=1

(
〈λ, r〉p −max

x∈X
〈λ, x〉p

)
. (D)

By a no duality gap theorem (Luenberger, 1969), when (P) has a solution x∗ = F (Γ),

then the optimal solution λ∗ to (D) is aligned with r−x∗. Define the linear social welfare

function by

SW (λ, x, p) =
∑
i

∑
j

λijpijxij (1.5.4)

for some welfare weights λ ∈ Rn
++. We have

‖r − x∗‖p = 〈λ∗, r〉p − 〈λ∗, x∗〉p = SW (λ∗, r, p)− SW (λ∗, x∗, p). (1.5.5)

The duality pair (x∗, λ∗) allows the following interpretation. First, λ∗ is the only

weighting vector such that x∗ is both interim λ∗-utilitarian and λ∗-equal loss. With such

a natural weighting vector λ∗, the value of the primal problem has a “transferable utility”

10This may counter the intuition that the player with a higher social weight bears less loss. In this
case, two players’ weighted losses are equalized, i.e. λ1(r1 − x1) = λ2(r2 − x2). However, for the λ-
egalitarian criterion in a bargaining problem, a player with a higher weight receives a lower utility gain
and thus is disadvantaged in the solution. Since λ is endogenously determined, the λ-equal loss criterion
is more consistent with the λ-egalitarian criterion.
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interpretation: It is equal to the utility gap between the λ∗-weighted social welfare from

the reference point and the λ∗-weighted social welfare from the optimum.

1.5.2. Independence of Axioms

We investigate the logical independence of the axioms in Theorem 1.1 by considering

that one of the axioms is violated while some other axioms are satisfied. We provide

some counterexamples for some, but not all of the axioms.

Example 1. Let q be a function that associates each system of marginals p with a

system of marginals q(p) such that q(p) and p have the same type sets but q(p) 6= p. For

each Γ ∈ Σ, define

F q(Γ) = φ(q(p), X, r). (1.5.6)

For all q, F q satisfies IIA, WPO, IF, SCA, T.INV, and F.CONT, but F q violates

TU. Depending on q, F q may satisfy ST. For example, for every Γ = (p,X, r) and

Γ′ = (p′, X ′, r′) derived from Γ by splitting type s of player 1, q(p′) is derived from

q(p) by splitting type s of player 1. On the other hand, if q(p) associates with uniform

distributions for all problems, we have the minimal Euclidean distance solution. Then

F q violates TU and ST.

Example 2. For each Γ = (p,X, r), define the nadir point m(X) by mij(X) =

minx∈X xij, for all (i, j) ∈ T̊ . For each Γ ∈ Σ, define

NB(Γ) = arg max
x∈X

∑
i

∑
j

pij(xij −mij(X)). (1.5.7)

Then, NB satisfies WPO, IF, T.INV, and F.CONT. Moreover, NB satisfies TU and ST.

However, NB violates SCA. Voorneveld et al. (2011) observe that the scaling axioms

are special to quadratic norms.

1.5.3. Other Axioms

It is worth noting that F also satisfies the following two properties. The axiom of prior

continuity says that the solution is robust to small changes in priors. Here, N, T and

hence n are fixed.

Axiom 1.9: Prior Continuity (P.CON). Let Γ = (p,X, r) and Γk = (pk, X, r), k =

1, 2..., in Σ and pk → p. Then f(Γk)→ f(Γ).

Finally, we introduce an axiom of reference point convexity. This axiom requires that

for any problem, when a mixture of the original reference point and the solution point

is used to generate a new reference point, the solutions of two problems are the same.

Axiom 1.10: Reference Point Convexity (R.CONV). Let Γ = (p,X, r) in Σ, and for

α ∈ (0, 1], let Γα = (p,X, αr + (1− α)f(Γ)). Then f(Γ) = f(Γα).
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Applications and Examples

The axiom is related to the literature of repeated games with “satisficing” players

(Bendor, Mookherjee and Ray, 1995)11, in which each player’s aspiration level is endoge-

nous and is consistent with his long run average payoff. Each player may adjust his

aspiration level in period 1 based on his aspiration level in period 0 and the personal

payoff experience in period 0.

1.6. Applications and Examples

1.6.1. Social Choice Problems

We now discuss the generation of feasible sets and interim reference points in economic

contexts. A reference point can be generated separately from a social choice problem.

We provide three scenarios in which an interim reference point naturally arises. (i)

Contract obligations, i.e. creditors have debt claims. (ii) Subjective entitlements. When

there is flexibility in a contract, each contracting party may interpret the same term

differently in one’s own favor and believe to be entitled. (iii) Repeated interaction and

dynamic adjustment of aspirations. In a long-run relationship, players may adjust their

aspirations based on past experiences.

Bankruptcy. Suppose two creditors divide the estate. There are two options, either

creditor 1 or 2 obtains the estate. The feasible set is generated by the set of incentive

compatible allocation mechanisms. Each creditor’s interim reference utilities can be

generated by his debt claim. For example, if creditor i has a claim equal to ri, then the

interim reference utility of creditor i with any type is given by ri.

Contracts. Suppose one seller and one buyer trade one object. In period 1, the players

know their private values of the object. Suppose the players can sign a contract at period

0. A flexible contract specifies a range of all potential transaction prices. The players

then trade at one of these prices or there is no trade.12 The feasible set is generated by the

set of incentive compatible trading mechanisms.13 Given the early contract prices, the

seller is entitled with the highest price while the buyer is entitled with the lowest price.

Then these subjective entitlements generate interim reference utilities. For example, the

interim reference utility of each type of the seller is given by the highest price.14

Compromise. Suppose two players vote among three alternatives, L,M and R. Player

1’s preference is given by L �M � R and player 2’s preference is given by R �M � L.

11An action of a player is deemed “satisfactory” if its current payoff exceeds some aspiration level held
by the player.

12Here, the decision set is endogenously determined by a contract.
13This model, adapted to our social choice environment, is different from the model of Hart and Moore

(2008). In their model, there is no incomplete information between the players.
14Hart and Moore (2008) introduces the notion of contracts as reference points. In their model, each

player can aggrieve the other player if the final price diverges from his entitlement.
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Each player receives utilities of 1 and 0 from his best and worst alternative, respectively,

and privately observes his utility between 0 and 1 from alternative M . Players need to

make decisions in period 0 and 1, and the utility shocks are independently distributed

across players and across periods. In period 0, suppose that an equal randomization over

L and R was chosen. In period 1, suppose L is eliminated and the past allocation is now

unattainable. The players then need to select a decision between M and R given the

past experience.

Consuming Public Goods. Suppose two players decide to consume some public good

l ∈ {a, b}. The budget constraint in period 0 is given by paqa + pbqb ≤ m, where pl, ql

are the unit price and the quantity of good l, and m is the budget. Suppose in period

0, the players experienced a consumption bundle (qa0 , q
b
0). In period 1, the prices may

change and the past bundle is not affordable. If player i with type j receives some private

observed utility ulj from consuming one unit of good l, the interim reference utility of

player i with type j is given by uaj q
a
0 + ubjq

b
0.

The above examples require that the reference point has been formed at some earlier

period before the decision making. On the other hand, the reference point can be gen-

erated endogenously by a social choice problem. If X is the set of incentive compatible

utility allocations of some social choice problem, we define the utopia point of X, r∗(X),

by

r∗ij(X) = max
x∈X

xij (1.6.1)

for all (i, j) ∈ T̊ . For r∗(X) /∈ X, we have r∗(X) ∈ R(X).

1.6.2. Illustration of the Minimal Norm Solution

We provide two examples to illustrate the minimal norm solution.

Example 1.1: Let N = {1, 2}, D = {d1, d2}, Ti = {0, 1}, i = 1, 2. (ui)i∈N is given

by

ui(d, ti) 10 11 20 21

d1 0 1 0 0

d2 0 0 0 1

Suppose π(t) = p1,t1 × p2,t2 for all t ∈ T , and p11 > p21.

The example fits a bankruptcy problem: Either creditor 1 or 2 obtains the asset and

in any state, a creditor weakly prefers to obtain the asset. Now suppose each creditor

has an ex ante claim equal to 1. The interim reference point generated by the ex ante

claims is given by r = (1, 1, 1, 1). Notice that it is weakly dominant for a player to

report truthfully.15 The set of IC mechanisms coincides with all constant mechanisms,

X = {(−(1− δ1), δ1,−δ1, 1− δ1) : 0 ≤ δ1 ≤ 1}.
15While we assume that type 0 of a player reports the true type in case of indifference, we may instead

assume that it receives a utility of ε > 0 small from di and the incentive becomes strict.
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First, the ex ante utilitarian rule is the solution to maxx∈X
∑

i

∑
j pijxij, where ties

are broken randomly and fairly. The ex ante utilitarian solution is given by δ1 = 1. The

asset is allocated to creditor 1 for sure and creditor 2 obtains the asset with probability

0. Now F (p,X, r) = (−(1− δ∗1), δ∗1,−δ∗1, 1− δ∗1), where

δ∗1 =
p11

p11 + p21

.

Thus, δ∗1 > 1/2. Creditor 2, whose value is drawn from a less favorable distribution,

receives the asset with a lower but strictly positive probability.

Example 1.2: Let N = {1, 2}, D = {d0, d1}, Ti = {0, 1}, i = 1, 2. (ui)i∈N is given

by

ui(d, ti) 10 11 20 21

d0 1/2 1/2 1/2 1/2

d1 0 1 0 1

Assume π(t) = p1,t1 × p2,t2 for all t ∈ T and for i = 1, 2, (pi0, pi1) = (p, p̄) with p < p̄.

We assume the reference point is endogenously determined by the utopia point of the

interim utility set.

Since the minimal norm program is symmetric with respect to players, the solution

is symmetric.16 We consider symmetric mechanisms. Denote µ(d1|t) = µ1(t) for t ∈ T .

We first use an intuitive technique to find a solution. For t = (0, 0) and t = (1, 1),

choosing d0 or d1 for sure would be social welfare optimal. The question then would

be the probabilities that d0 is chosen if t = (0, 1) and t = (1, 0). Suppose µ1(0, 1) =

µ1(1, 0) = α ∈ [0, 1]. The symmetric interim utility vector is given by

(x, x) = (p
1

2
+ p(1− α)

1

2
, p[α + (1− α)

1

2
] + p). (1.6.2)

It is easy to see that no matter what the other plays, it is a dominant strategy to

report truthfully. One candidate solution mechanism µ∗ is given by

(µ∗1(0, 0), µ∗1(0, 1), µ∗1(1, 0), µ∗1(1, 1)) = (0, p, p, 1). (1.6.3)

To verify it is indeed the solution for the entire problem, let Q = (Q
i
, Qi)i∈{1,2} be

the interim expected probabilities that d1 is chosen. Denote (Q
i
, Qi) = (Q,Q), i = 1, 2.

The set of IC expeceted probabilities is given by

{(Q,Q) : 0 ≤ Q ≤ Q ≤ 1}. (1.6.4)

16Suppose X is symmetric. If there is a asymmetric solution x′ ∈ X, then there is another solution
x′′ ∈ X by interchanging the players’ labels. Since X is convex, 1

2x
′ + 1

2x
′′ ∈ X is also a solution.
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The set of ex post feasible interim allocation probabilities (i.e. there exists a mechanism

µ such that (Q,Q) are the marginals) is given by17

{(Q,Q) : 0 ≤ Q,Q ≤ 1, p̄Q− pQ ≤ p̄2}. (1.6.5)

Denote Q the intersection of these inequalities (Figure 1.1a). Denote (xi0, xi1) = (x, x),

i = 1, 2, then (x, x) = (1
2
(1−Q), 1

2
(1 +Q)). The set of symmetric feasible allocations is

given by

Xs = {(x, x) ∈ R2 : x+ x ≥ 1, 0 ≤ x ≤ 1/2 ≤ x ≤ 1, 2px+ 2p̄x ≤ 1 + p̄2} (1.6.6)

(Figure 1.1b). Denote IC, FE1, and FE2 for the inequalities in (1.6.6).

Q∗

1

10

Q

Q

p

p

Q

a
(0, 1

2)

(1
2 , 1)

Xs

x

x

x∗

b

Figure 1.1

Let rs = (1/2, 1), then the minimal norm solution for (Xs, rs) is given by x∗ = (x∗, x∗) =

(1
2
− 1

2
pp̄, 1 − 1

2
pp̄). The ex post feasibility p̄Q − pQ ≤ p̄2 (FE2) is binding. Finally,

Q∗ = (Q∗, Q
∗
) = (pp̄, 1 − pp̄). It is easy to see that the minimal norm solution is

implemented by the stochastic mechanism given by (1.6.3).

1.7. Comparison to Literature

1.7.1. Complete Information

Yu (1973) considers a class of social choice problems with the endogenous reference points

equal to the utopia points. To formalize such a problem, let N be the set of players, let

ΣN
0 be the set of all nonempty convex compact subsets of RN and let

ΣN = {X ⊆ RN : X = comp(C), for some C ∈ ΣN
0 }, (1.7.1)

where comp(C) = C − RN
+ . A solution f : ΣN → RN is such that for every X ∈ ΣN ,

f(X) ∈ X. The utopia point r∗(X) is defined by r∗i (X) = max{xi : x ∈ X} for all i ∈ N .

17The feasibility condition is given by Proposition 2.2 in Chapter 2.
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The Yu solution is given by

Y (X) = arg min
x∈X

∑
i∈N

(r∗i (X)− xi)2. (1.7.2)

Roth (1977) and Conley et al. (2014) show that there is no solution satisfying Pareto

optimality, symmetry, together with IIA other than the utopia point (u-IIA), translation

invariance and scale covariance. In particular, Roth (1977) shows that the Yu solution

satisfies u-IIA, translation invariance but violates scale covariance.18

Conley et al. (2014) introduces the axiom of proportional losses for a class of trans-

ferable utility problems and the axiom of individual fairness.19 They characterize the

Yu solution with Pareto optimality, symmetry, u-IIA, translation invariance, the propor-

tional losses, individual fairness and feasible set continuity.20 The axioms of SCA, IF,

and F.CONT are modified based on their axioms.

Voorneveld et al. (2011) provides a characterization of the Yu solution, by a con-

sistency axiom, first used by Lensberg (1988). Denote N all nonempty finite subsets

of natural numbers. By varying the number of players, the domain is now given by

Σ̄ = ∪N⊂NΣN .

u-consistency: Let X ∈ ΣN and I ⊆ N , define Xf
I ∈ ΣI by

Xf
I := {x ∈ RI : (x, fN\I(X)) ∈ X}. (1.7.4)

If r∗i (X
f
I ) = r∗i (X) for each i ∈ I, then fi(X

f
I ) = fi(X) for each i ∈ I.

The axiom considers a problem X with N a set of players and I a subset of N . Then,

give players in N \ I their utilities according to f in X and consider a reduced problem

Xf
I for the remaining members in I. The solution f is u-consistent if the prescribed

allocation to each member of I in the reduced problem Xf
I is the same as in the original

game X. Our characterization does not use the u-consistency axiom and instead we use

IF and F.CONT.

Rubinstein and Zhou (1999) considers a choice set X ⊂ RN with an arbitrary refer-

18IIA other than the utopia point: If X and X ′ satisfy r∗(X) = r∗(X ′) and X ⊆ X ′, and if f(X ′) ∈ X,
then f(X) = f(X ′).

Translation Invariance: For any z ∈ RN , if X ′ = X + z, then f(X ′) = f(X) + z.
Scale Covariance: For any h ∈ RN++, if X ′ = h ∗X, then f(X ′) = h ∗ f(X).
19The proportional losses: For any (λ,w) ∈ RN++ × R, let X = {x : λ · x = w} ∩ [r∗(X)− RN++]. For

any h ∈ RN++, if X ′ = h ∗X, then

hi[r
∗
j (X)− fj(X)][r∗i (X ′)− fi(X ′)] = hj [r

∗
i (X)− fi(X)][r∗j (X ′)− fj(X ′)], (1.7.3)

for all i, j ∈ N . Here λ · x denotes the standard inner product.
20Symmetry: For any permutation m of N and x ∈ RN , write m(x)i := xm(i). If for all m, m(X) = X,

then fi(X) = fj(X) for all i, j ∈ N .
Feasible set continuity: f is continuous with respect to the Hausdorff metric on ΣN .
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ence point r ∈ RN . They obtain a characterization of the minimal Euclidean distance

solution by a strong symmetry axiom and an IIA axiom. The strong symmetry axiom

is strictly stronger than Nash’s symmetry axiom, which only applies to the problems

symmetric to the main diagonal.

Strong Symmetry. If X is symmetric with respect to some line l(r, λ), then f(X, r) ∈
l(r, λ).21

Strong symmetry requires that if a feasible set is symmetric with respect a line

through the reference point, then the solution must lie on the line. A justification would

be that the players’ compromises over utility losses from the reference point force only

the “centric” outcomes to be chosen.

1.7.2. Incomplete Information

There is a relatively small literature on two-person bargaining problems with incomplete

information. Harsanyi and Selten (1972) (HS hereafter) first characterizes the generalized

Nash product solution by a set of axioms. Myerson (1984) characterizes the incentive

feasible neutral solution by the axioms of probability invariance, random dictatorship,

and extension. Weidner (1992) characterizes the incentive feasible generalized Nash

product solution by the axioms of HS (1972) and Myerson (1984).

1.7.2.1. The Harsanyi/Selten Solution

Harsanyi and Selten (1972) considers bargaining problems as a class of bases (π,X, 0),

where π ∈ ∆(T ) is the prior, the bargaining set X ⊂ Rn is the convex hull of interim

utility allocations from all strict equilibrium points of an extensive form game22, and

0 ∈ Rn is the disagreement point. Since none of their axioms involves changes in the

disagreement point, we follow HS to abbreviate a problem (π,X, 0) by (π,X). The HS

solution L∗ is defined by for each problem (π,X),

L∗(π,X) = arg max
x∈X

∏
i∈N

∏
j∈Ti

x
pij
ij . (1.7.5)

To compare their axioms with Axioms 1.1-1.8, we introduce their eight axioms (with

a slightly different order).

Irrelevant Alternatives (IIA′). If X ⊆ X ′ and f(π,X ′) ∈ X, then f(π,X ′) = f(π,X).

21We provide a generalized strong symmetry of Rubinstein and Zhou (1999). We say X is p-symmetric
with respect to l(r, λ) if for any z ∈ X, there is z′ ∈ X such that arg minx∈l(r,λ) ‖z − x‖p = 1

2 (z + z′).

p-Symmetry. If X is p-symmetric with respect to some line l(r, λ), then f(X, r) ∈ l(r, λ).
When there is no incomplete information or p = (1, ..., 1), it reduces to strong symmetry.
22An equilibrium point s∗ is strict if when a player ti deviates from equilibrium strategy s∗i (ti) to any

other best reply of s∗−i, then all players’ interim utilities are not affected.
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Pareto Optimality (PO). f(π,X) ∈ PO(X).

The first two axioms are similar to Axioms 1.1-1.2, except that PO is replaced by

WPO. Since the extensive form in HS is fixed, any change in the bargaining set re-

sults from varying utility functions. While it is unclear whether every extension can be

generated in this way, they assume that an arbitrary extension always exists.

Player Symmetry (PS). If (π,X ′) is derived from (π,X) by interchanging two players,

then f(π,X ′) is derived from f(π,X) by interchanging these two players.

Type Symmetry (TS). If (π,X ′) is derived from (π,X) by interchanging two types

of a player, then f(π,X ′) is derived from f(π,X) by interchanging these types of the

player.

PS and TS are the main difference from the axiom of symmetry for TU problems. It

is partly due to the fact that HS define a hyperplane problem (π,X0) by

X0 = {x ∈ Rn
+ : 1 · x ≤ w}, (1.7.6)

while we define a hyperplane problem (π,X1) by

X1 = {x ∈ Rn
+ : 〈1, x〉p ≤ w} (1.7.7)

for w = |N |. However, these two classes of hyperplane problems are closely related.

Applying the HS solution to X0 and X1 gives L∗(π,X0) = p and L∗(π,X1) = (1, ..., 1).

It follows that the HS solution satisfies an axiom of symmetry for TU problems adapted

to bargaining problems.23

Splitting Types (ST′). If (π′, X ′) is derived from (π,X) by splitting a type of a player

with probability α ∈ (0, 1), then f(π′, X ′) is derived from f(π,X) by splitting this type.

Profitability (PRO). f(π,X) > 0.

Linear Invariance (L.INV). For any h ∈ Rn
++, then f(π, h ∗X) = h ∗ f(π,X).

Mixing Probabilities (MIX). If (π,X) and (π′, X) with π, π′ ∈ ∆(T ) have the same

solutions x ∈ X, and if π′′ = απ + (1− α)π′ for some α ∈ [0, 1], then f(π′′, X) = x.

ST′ is defined by the operation on the priors rather than on the marginal proba-

bilities, thus ST is much weaker than ST′. PRO is a requirement of strong individual

rationality. IF is a counterpart to PRO in our problem, except that the disagreement

point is replaced by the reference point. L.INV is another axiom different from ours.

23It is unclear unclear whether we can use this axiom to obtain an alternative characterization of the
HS solution. Instead, we may use PS and TS to obtain an alternative characterization of the minimal
norm solution.
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HS require the solution being invariant to order preserving linear transformations in the

interim utility space. The minimal norm solution violates this axiom.24 Finally, while we

do not use MIX for characterization, it is clear that the minimal norm solution satisfies

this axiom.

1.7.2.2. Myerson’s Neutral Bargaining Solution

Myerson (1984) defines a bargaining problem Γ = (S, d∗) by a social choice problem

S = (π,D, (ui)i∈N) and a disagreement option d∗ ∈ D. Myerson proposes a set-valued

concept that generalizes Nash’s solution, called the neutral bargaining solutions. The

neutral solutions are characterized by a dual system of equations and they have no explicit

formula. Myerson shows that the neutral solutions satisfy a probability invariance axiom

and an extension axiom.

The probability invariance axiom states that only the interim expected utility is

decision-theoretically significant to the problem and that probabilities cannot be mean-

ingfully defined separately from state-dependent utility functions.

Probability Invariance (P.INV). Let S = (π,D, (ui)i∈N) and S̃ = (π̃, D, (ũi)i∈N),

π, π̃ ∈ ∆(T ). If

π̃i(t−i|ti)ũi(d, t) = πi(t−i|ti)ui(d, t) (1.7.8)

for all d ∈ D, t ∈ T , and i ∈ N , then f(S̃, d∗) = f(S, d∗).

Since interim utilities always have probabilities multiplied by utilities, two social

choice problems in the axiom have the same set of mechanisms and each mechanism

generates the same incentive feasible allocation. Note that both the HS solution and the

ex ante utilitarian solution25 violate this axiom. By replacing the disagreement point by

the reference point, the minimal norm solution also violates the axiom.

For the extension axiom, Myerson (1984) requires that any extension in the bargaining

set must result from adding decisions.

Definition 1.3: Let S = (π,D, (ui)i∈N) and S̃ = (π, D̃, (ũi)i∈N). S̃ is an extension

of S, if D̃ ⊇ D and ũi|D×T = ui for all i ∈ N .

Extension. Let S̃ = (π, D̃, (ũi)i∈N) be an extension of S = (π,D, (ui)i∈N). If

f(S̃, d∗) ∈ U(S), then f(S̃, d∗) = f(S, d∗).26

As noted by Myerson (1984), there are social choice problems that give a larger set

of feasible allocations than the original one, but that cannot be constructed from it by

24It is unclear whether any solution among the Myerson’s neutral solutions satisfies the axiom.
25The ex ante utilitarian solution is the solution to maxx∈U(S)

∑
i

∑
j pijxij .

26Myerson’s extension axiom also allows a sequential approximation, which makes it not entirely
comparable to the one here.
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adding new decisions. On the other hand, Lemma 1.1 shows that there are polytopes

that cannot be generated by the incentive compatible allocations of any social choice

problem. Such sets cannot be extensions of any social choice problem trivially. The

following result, which is implied by either Myerson’s comment (1984, p.468) or Lemma

1.1, indicates that compared to our IIA, the definition of Myerson’s extension is very

strong: The utility set generated by an extension of a social choice problem is with

restrictions.

Lemma 1.5: There exist π ∈ Π, S ∈ S(π) and a polytope X ⊂ Rn such that U(S) (
X but X cannot be generated by any extension of S.

Proof. See Appendix 1.A. �

1.8. Conclusion

In this chapter, we characterize the minimal norm solution by a set of axioms. We provide

some examples of social choice problems with reference points to illustrate this solution.

This solution can be further used to study bankruptcy problems, early contracting prob-

lems, or collective repeated consumption choices with incomplete information, where the

reference point is either generated by contract obligations, or entitlements, or repeated

interaction and choice outcomes. We also find that there are many avenues for future

research:

1. The domain of the feasible sets. Myerson (1984) and Weidner (1992) define the

domain of the feasible sets being generated by all social choice problems. If there exists

some social choice problem (π,D, (ui)i∈N) that generates the feasible set X of a p-TU

problem,27 then we can obtain a characterization on this coarser domain.28

2. The probability invariance axiom. The TU axiom is inconsistent with P.INV

because for two problems with different systems of marginals but the same feasible sets,

TU requires the problems having different solutions while P.INV requires them having

the same solutions. On the other hand, the minimal standard-norm solution does satisfy

P.INV.

3. Weak/strong Pareto optimality. For generic utility functions, it can be seen

that the class of choice problems containing nonempty WPO\PO has Lebesgue measure

zero under complete information but has measure strictly positive under incomplete

information. For a complete information problem, by slightly perturbing the players’

utility functions, WPO\PO vanishes. However, with incomplete information, perturbing

27Some examples suggest that there may exist no social choice problem that generates a p-TU feasible
set.

28In this case, IIA is replaced by a modified extension axiom, in which an extension can be obtained by
varying (D, (ui)i∈N ) arbitrarily. This axiom is stronger than IIA but weaker than Myerson’s extension
axiom.
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the players’ utility functions may not eliminate WPO\PO. For example, consider a one-

person problem with T = {t, t′} and D = {d0, d1}. The utility function at d0 and d1 are

(2,−1) and (0, 1). Then, U(S) = conv{(2, 1), (0, 1), (2,−1)}. A two-person example is

Example 2 in Section 1.5. Thus, if |N | ≤ 2, |D| = 2, and if all preference orderings over

D are possible, WPO\PO exists generically. It is unclear whether this result generalizes.

4. The extension axiom. Myerson (1984) constructs extensions by adding decision

options into the original decision set. In general, it is difficult to construct a required

extension with the desirable geometric properties. Characterization of the minimal norm

solution with the extension axiom is left for future work.
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Appendix 1.A Proofs

Proof of Lemma 1.1. First note that for any π ∈ Π, if X = U(S) or X = Uc(S) for

some S ∈ S(π), then X is a polytope. Since D is finite, U(S) is the intersection of

finitely many linear inequalities, i.e. the incentive and feasibility conditions. The latter

conditions imply that U(S) is bounded. Uc(S) is the convex hull of interim utility vectors

at each d ∈ D. Hence in either case, X ∈ X0.

(i) Let π ∈ Π. For any polytope X ⊂ Rn, the set of its extreme points, G, is finite.

For every g ∈ G, define a decision dg such that the interim utility vector at dg is g,

i.e. the utility function is defined by ûi(dg, t) = gi(ti) for all t ∈ T and i ∈ N . Then

X = Uc(S) for S = (π,D, (ui)i∈N) and X ⊆ Xc(π). Hence, Xc = X0.

(ii) Consider the simplest class of one-person social choice problems with T = {a, b},
π = (πa, 1 − πa), πa ∈ (0, 1). The interim utility space is R2. Let X be the line

segment between (0, 1) and (1, 0). We claim that there exists no social choice problem

S = (π,D, u) such that U(S) = X, by varying D and u. Denote ud = (u(d, a), u(d, b))

for d ∈ D.

First notice that |D| ≥ 2. For every d ∈ D, it follows that ud ∈ X, otherwise selecting

d constantly yields an interim utility outside X. Moreover, because mind∈D u(d, t) ≤
x(t) ≤ maxd∈D u(d, t) for all t ∈ T , i.e. every interim utility is bounded by the bounds

of the utility functions, it is necessary that the endpoints (0, 1) and (1, 0) correspond to

the utility functions at some d0, d1 ∈ D.

Now define S0 = (π,D, u) with D = {d0, d1} and u by ud0 = (0, 1) and ud1 = (1, 0).

A simple calculation shows that U(S0) = conv{(0, 1), (1, 0), (1, 1)}. Hence, U(S0) 6= X.

Finally, every S̃ derived from S0 by adding decisions to {d0, d1} and defining utility

functions at such new decisions, U(S̃) must contain U(S0) and U(S̃) 6= X. Hence, there

exists no social choice problem S such that U(S) = X and therefore X ( X0.29 �

Proof of Lemma 1.2. Let λ ∈ Rn
++. Consider the linear problem h ∗ Γ = (p, h ∗ X, 0)

29For this one-person case, a similar reasoning shows that for any polytope X ⊂ R2 with (0, 1) and
(1, 0) being its extreme points and the line segment being part of its northeast boundary, there exists
no social choice problem S such that U(S) = X. For example, X = conv{(0, 1), (1, 0), (−1, 0)} or
X = conv{(0, 1), (1, 0), (0, 0), (−1,−1)}.

Moreover, it can be shown that it is impossible to construct any line segment except that the
new utility functions satisfy u(d0, t) > u(d1, t) for all t ∈ T , or u(d0, t) < u(d1, t) for all t ∈ T , i.e.
(u(d1, a), u(d1, b)) = (1, 2).
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obtained from some p-TU problem Γ = (p,X, 0) with κ ≤ min(i,j) w/pij < w < 0, where

h = λ−1. The relaxed Lagrangian (without any xij ≥ κ) for the minimal norm problem

with multiplier η ≤ 0 is given by

min
x

∑
i

∑
j

pijx
2
ij + η(w −

∑
i

∑
j

λijpijxij).

FOCs give necessary conditions

2pijx̃ij − ηλijpij = 0, for all (i, j) ∈ T̊ .

If η = 0, then x̃ij = 0 for all (i, j) ∈ Π, and x̃ /∈ X. Thus η < 0 and x̃ij = ηλij/2, for all

(i, j) ∈ T̊ .

(i) TU and IF. Set λ = (1, ..., 1), x̃ij = η/2, for all (i, j) ∈ T̊ . All constraints x̃ij ≥ κ

are not binding and F (Γ) = x̃. Thus,
∑

j pijx̃ij = η/2 for all i ∈ N , and F is TU. η < 0

implies F (Γ) < 0. F is IF.

(ii) SCA. For each λ ∈ Rn
++, we only need to show that for the relaxed solution x̃, all

additional constraints λijx̃ij ≥ κ are not binding and thus F (h ∗ Γ) = x̃.

Since x̃ij = ηλij/2, for all (i, j) ∈ T̊ , and 〈λ, x̃〉p = w, we have η = 2w
‖λ‖p and x̃ij =

λijw

‖λ‖p
for all (i, j) ∈ T̊ . Hence

λijx̃ij =
(λij)

2w

‖λ‖p
>

w

pij
≥ min

(k,m)

w

pkm
= κ, (1.A.1)

for all (i, j) ∈ T̊ . F is SCA.

(iii) ST. Let Γ = (p,X, r) and Γ′ = (p′, X ′, r′). Suppose Γ′ is obtained from Γ by

splitting a type s ∈ T1 with α ∈ (0, 1). By definition, F (Γ′) is the solution to

min
x′∈X′

αp1s(r1s−x′1a)2+(1−α)p1s(r1s−x′1b)2+
∑

j∈T1\{s}

p1j(r1j−x′1j)2+
∑
i 6=1

∑
j∈Ti

pij(rij−x′ij)2,

where for every x′ ∈ X ′, there exists x ∈ X such that x′ij = xij for all j ∈ Ti, all i 6= 1, and

x′1j = x1j for all j ∈ T ′1\{a, b}, and x′1a = x′1b = x1s. Hence, Fij(Γ
′) = Fij(Γ) for all j ∈ Ti,

all i 6= 1, and F1j(Γ
′) = F1j(Γ) for all j ∈ T ′1 \{a, b}, and F1a(Γ

′) = F1b(Γ
′) = F1s(Γ). �

We use the following lemma to obtain Lemma 1.3.

Lemma 1.6: Let Γ = (p,X, 0) be a p-TU problem. If f satisfies IIA, SCA, WPO,

and IF, then f(Γ) = αf(Γp) for some α > 0.

Proof of Lemma 1.6. Notice that by SCA, every p-TU problem Γ can be obtained from

some p-TU problem Γκ = (p,Xw,κ, 0) with w = −|N | and some κ ≤ min(i,j)−|N |/pij,
by scaling with h = (β, ..., β) ∈ Rn

++ for some β > 0.
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We only need to show that for any κ < min(i,j)−|N |/pij, the problems Γp and Γκ

have the same solution. First note that Xp ⊂ X−|N |,κ. Notice that WPO(X−|N |,κ) =

PO(X−|N |,κ). By IF and WPO, f(Γκ) ∈ {x : 〈1, x〉p = −|N |, x < 0} ⊂ Xp. By IIA,

f(Γp) = f(Γκ). �

Proof of Lemma 1.3. Let Γ = (p,X, 0) be a p-TU problem and e = f(Γp). By Lemma

1.6, f(Γ) = αe for some α > 0. By IF, e < 0. Now consider λ ∈ Rn
++ and let h = λ−1.

We have

h ∗X = {x ∈ Rn :
∑
i

∑
j

λijpijxij ≤ w and λijxij ≥ κ, for all (i, j) ∈ T̊}. (1.A.2)

Since fij(Γ) = αeij for all (i, j) ∈ T̊ , by SCA,

fij(h ∗ Γ)

fkm(h ∗ Γ)
=
hkmeij
hijekm

=
λijeij
λkmekm

, (1.A.3)

for all (i, j), (k,m) ∈ T̊ . Hence, the solution f(h ∗ Γ) is on the line l(0, λ ∗ e). Because

WPO(h ∗X) = PO(h ∗X), by WPO, f(h ∗ Γ) ∈ l(0, λ ∗ e) ∩ {x : 〈λ, x〉p = w}, which

is a unique point. On the other hand, a similar proof as Lemma 1.2 shows that the

solution φ(pe, h ∗X, 0) is on the line l(0, λ ∗ e). Since φ(pe, h ∗X, 0) is WPO, f(h ∗ Γ) =

φ(pe, h ∗X, 0). �

We use the following lemma to show Lemma 1.4.

Lemma 1.7: Suppose f satisfies IF, IIA, WPO, and SCA. Let Γ = (p,X, 0) be in Σ.

If y = φ(pe, X, 0) < 0, then f(Γ) = y.

Proof of Lemma 1.7. Fix Γ = (p,X, 0). Since f is IF, e = f(Γp) < 0. Let y = φ(pe, X, 0).

Then X and the ball Bpe(0, ‖y‖pe) has y as the unique point in common. Since X and

Bpe(0, ‖y‖pe) are convex and compact, by a hyperplane separation theorem, there exists

Hλ,w = {x : 〈λ, x〉pe = w} that separates X and the ball Bpe(0, ‖y‖pe) and supports the

ball at y, with the normal λ = −y. By assumption of Lemma 1.7, y < 0 and λ ∈ Rn
++.

Construct a linear problem h ∗ Γ̃ = (p, h ∗ X̃, 0), where h−1 = λ ∗ (−e)−1 and Γ̃ =

(p, X̃, 0) is a p-TU problem with w̃ = w and κ̃ < 0 small enough such that X ⊂ h ∗ X̃.

Since f satisfies the axioms of Lemma 1.3, it implies f(h∗ Γ̃) = φ(pe, h∗ X̃, 0) = y. Since

f is IIA and y ∈ X, f(Γ) = f(h ∗ Γ̃) = y. �

Proof of Lemma 1.4. We consider three problems: a p0-TU problem Γ0 with complete

information, a problem Γ obtained by splitting type 1 of player 1 from Γ0, and a p-TU

problem Γp which is an extension of Γ′.
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Let Γ0 = (p0, X0, 0) be the normalized p0-TU problem satisfying N0 = N , T 0
i = {1}

and p0
i1 = 1 for all i ∈ N , and w0 = k0 = −|N |. Then by TU for Γ0,

fi1(Γ0) = −1 for all i ∈ N. (1.A.4)

Now let Γ = (p,X, r) be derived from Γ0 by splitting type 1 of player 1 into a and b

with (α, 1−α). Pick any x0 ∈ X0 and define x1a = x1b = x11, and xi1 = x0
i1 for all i 6= 1.

It is easy to see that

X = {x ∈ R|N |+1 :αx1a + (1− α)x1b +
∑
i 6=1

xi1 ≤ −|N |,

x1a = x1b, and xij ≥ −|N |, for all (i, j) ∈ T̊}, (1.A.5)

and r = (0, ...., 0). Now by ST for Γ0 and Γ, and (1.A.4),

f1a(Γ) = f1b(Γ) = f11(Γ0) = −1, fi1(Γ) = fi1(Γ0) = −1, for all i 6= 1. (1.A.6)

Let Γp = (p,Xp, 0) be the normalized p-TU problem. So X ⊂ Xp. Let e = f(Γp) < 0

and y = φ(pe, X, 0). We claim that y < 0. The relaxed Lagrangian (dropping all

xij ≥ −|N |) with η1 ≤ 0 is given by

min
x

α

−e1a

x2
1a+

1− α
−e1b

x2
1b+
∑
i 6=1

1

−ei1
x2
i1+η1(−|N |−αx1a−(1−α)x1b−

∑
i 6=1

xi1)+η2(x1a−x1b).

FOCs give necessary conditions

2α

e1a

y1a = −η1α + η2,
2(1− α)

e1b

y1b = −η1(1− α)− η2,

2

ei1
yi1 = −η1, i = 2, ..., |N |.

Sum the first two conditions and combine with the third,

α

e1a

y1a +
(1− α)

e1b

y1b =
1

ei1
yi1, (1.A.7)

for all i 6= 1. It is clear that y1a = y1b and η2 6= 0. If η1 = 0, then yi1 = 0 for all i 6= 1 and

y1a = y1b = 0, contradiction. So, η1 < 0 and yi1 < 0 for all i 6= 1. Then, y1a = y1b < 0.

Hence, y < 0.

Now by Lemma 1.7, y < 0 implies f(Γ) = y and therefore y = (−1, ...,−1). By TU

for Γp,

αe1a + (1− α)e1b = ei1 = −1, (1.A.8)
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for all i 6= 1. Combine the conditions above,

α

e1a

+
1− α
e1b

=
1

αe1a + (1− α)e1b

. (1.A.9)

Simplify the condition, we have for any α ∈ (0, 1),

e1a = e1b. (1.A.10)

Finally, we can apply this procedure repeatedly for |T1| > 2 and for all i ∈ N . �

Lemma 1.8: Let Γ = (p,X, 0), y = F (Γ) ≤ 0, and yij = 0 for some (i, j) ∈ T̊ .

There exists a sequence Γk = (p,Xk, 0), k = 1, 2, ..., such that yk = F (Γk) < 0 for all

k = 1, 2, ..., and Xk → X in the Hausdorff metric, and yk → y.

Proof. The proof is similar to Conley et al. (2014). Let λ = −y and T̊0 = {(i, j) ∈ T̊ :

λij = 0}. Since y ≤ 0, we can restrict attention to Γ = (p,X, 0) where X ⊂ Rn
−. To see

this, let X̃ = X ∩Rn
−. Since F satisfies IIA, y ∈ X̃ implies F (p,X, 0) = F (p, X̃, 0). Now

define a sequence λk = λ + 1
k

∑
(i,j)∈T̊0 1ij, k = 1, 2, ..., where 1ij is the vector with 1 on

place (i, j) and 0 otherwise. Let

yk = −〈λk, λ〉p
‖λk‖p

λk. (1.A.11)

Notice that yk < y ≤ 0. Define Xk = conv(X ∪ {yk}) and Γk = (p,Xk, 0). We claim

yk = F (Γk). By the projection theorem, we only need to show 〈−yk, x〉p ≤ 〈−yk, yk〉p for

all x ∈ Xk.

We first claim that 〈λk, x〉p ≤ 〈λk, yk〉p for all x ∈ X. To see this, note that 〈λk, yk〉p =

〈λk, y〉p. Because 〈λ, x〉p ≤ 〈λ, y〉p for all x ∈ X,
∑

(i,j)/∈T̊0 λijpijxij ≤
∑

(i,j)/∈T̊0 λijpijyij.

For (i, j) ∈ T̊0, 1
k
pijxij ≤ 0 = 1

k
pijyij. Hence,

〈λk, x〉p ≤ 〈λk, y〉p = 〈λk, yk〉p, for all x ∈ X. (1.A.12)

Then, since each x ∈ Xk is a convex combination of some x1, ..., xm ∈ X ∪ {yk}, i.e.

x =
∑

m αmxm for some nonnegative (α1, ..., αm) with
∑

m αm = 1, we have 〈λk, x〉p =∑
m αm〈λk, xm〉p ≤

∑
m αm〈λk, yk〉p = 〈λk, yk〉p. Hence, for all x ∈ Xk,

〈−yk, x〉p =
〈λk, λ〉p
‖λk‖p

〈λk, x〉p ≤
〈λk, λ〉p
‖λk‖p

〈λk, yk〉p = 〈−yk, yk〉p. (1.A.13)

�

Proof of Lemma 1.5. Consider the one-person problem in the proof of Lemma 1.1. Let

S = (π,D, u), where D = {d0} and (u(d0, a), u(d0, b)) = (0, 1). Let X be the line segment
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between (0, 1) and (1, 0). From the proof of Lemma 1.1, it follows that there is no exten-

sion S̃ = (π, D̃, ũ) of S such that (i) D̃ = {d0, d1} with (ũ(d1, a), ũ(d1, b)) = (y1, y2) ∈ R2

and (ii) X = U(S̃). Similarly, it is impossible to extend conv{(0, 1), (1, 0), (1, 1)} to

conv{(0, 1), (1, 0), (1, 1), (2,−1)} by adding any d2 into D̃. �
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Chapter 2

Implementation of Vector-Valued Reduced Form

Allocation Rules

2.1. Introduction

Myerson (1981) considers the problem faced by a seller i = 0 who has an object to sell,

and who does not know the value that each risk neutral buyer i ∈ {1, ..., n} might be

willing to pay for the object. Let ti be buyer i’s value and assume t̃i is independently

distributed with a continuous distribution Fi having support Ti, and let T be the set of

vectors of buyers’ values. The seller would like to find some auction procedure which

gives him the highest expected revenue. The seller has to use a feasible allocation rule

q : T → ∆({0, ..., n}), which assigns to every value profile of buyers a lottery determining

the winner of the object. The seller also has to respect the buyers’ incentive constraints.

Using the envelope condition, the expected payment for buyer i can be expressed by

an interim allocation rule Qi : Ti → [0, 1], which assigns to each type of this buyer an

expected probability of winning. Let ψi : Ti → R be the virtual valuation for buyer i

defined as in Myerson (1981).1 This allows one to express the seller’s problem solely in

terms of interim allocation rules, or

max
n∑
i=1

E[ψ̃iQ̃i], (2.1.1)

s.t.(i) Qi is incentive compatible for all i = 1, ..., n,

(ii) (Q1, ..., Qn) can be implemented by some feasible q.

In this chapter, we consider subproblems arise in the context of mechanism design prob-

lems similar to (or more general than) Myerson’s optimal auction problem. Specifically,

we study an implementation problem: Under what conditions can a system of interim

allocation rules (or reduced forms) (Q1, ..., Qn) be generated by some feasible allocation

rule q? In Myerson’s model, since the allocation rule can easily be optimized point-wise

for each type profile, solving the implementation problem is not necessary for finding the

solution to this optimal auction problem.

Now consider the problem of finding a revenue-maximizing auction for n risk averse

buyers as in Maskin and Riley (1984). For each buyer i, a payment schedule (li, wi) :

1ψi(ti) = ti − (1− Fi(ti))/fi(ti) for all ti ∈ Ti.
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Ti → R2 assigns to each type of this buyer a payment to the seller in case of losing and

winning. The seller’s problem can now be expressed as

max
n∑
i=1

E[l̃i(1− Q̃i) + w̃iQ̃i], (2.1.2)

s.t.(i) (Qi, li, wi) is incentive compatible for all i = 1, ..., n,

(ii) (Q1, ..., Qn) can be implemented by some feasible q.

Again, the implementation problem arises in the seller’s problem. Different from the

risk neutral case, the allocation rule cannot easily be optimized point-wise for each type

profile. Hence, finding an optimal solution in terms of an interim allocation rule requires

first solving for its implementability. This implementation problem has been solved by

Border (1991).

Finally, consider a revenue-maximizing problem with two homogenous objects and n

risk averse buyers. A feasible allocation rule assigns each type profile of the buyers a

lottery over the winners of the two objects. For each buyer i, a vector-valued interim

allocation rule (Q1
i , Q

2
i ) : Ti → [0, 1]2 arises, which assigns to each type of this buyer

expected probabilities of winning one object and two objects. For each buyer i, the

expected payment schedule is given by (li, w
1
i , w

2
i ) : Ti → R3, which assigns to each type

of this buyer a payment in case of losing, in case of winning one object, and in case of

winning two objects. The seller’s problem is expressed by

max
n∑
i=1

E[l̃i(1− Q̃1
i − Q̃2

i ) + w̃1
i Q̃

1
i + w̃2

i Q̃
2
i ], (2.1.3)

s.t.(i) (Q1
i , Q

2
i , li,w

1
i , w

2
i ) is incentive compatible for all i = 1, ..., n,

(ii) (Q1
1, Q

2
1, ..., Q

1
n, Q

2
n) can be implemented by some feasible q.

For this optimal auction problem, the interim allocation rule for each player contains

interim expected probabilities for different decision outcomes. Vector-valued reduced

forms appear in the implementation problem.

The above examples show that mechanism design problems naturally give rise to im-

plementation problems. In this chapter, we discuss implementation problems in general

social choice environments.2 We define a social choice problem by a finite set of players

and for each player a finite individual type set, a common prior on the product type set,

a finite set of social alternatives, and a set of players’ utility functions, which depend on

alternatives, monetary transfers, and type profiles. The examples include:

2Note that besides the implementability of allocation rules, we may require the implementability
of payment rules to solve a mechanism design problem, which we do not consider in most part of the
chapter.
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(i) Auctions with externalities (Jehiel, Moldovanu and Stacchetti, 1999), in which a

losing buyer’s valuation is affected by the identity of the winner;

(ii) Package auctions and exchanges with complementary objects (Milgrom, 2007).

In a package exchange problem, the players without cash can only reallocate their initial

assets through random allocation mechanisms;

(iii) Voting schemes where monetary transfers are not possible and players have car-

dinal utility. The players must determine a fair compromise among different alternatives

(Börgers and Postl, 2009).

In this chapter, we provide a necessary and sufficient condition for the implementabil-

ity of vector-valued reduced form allocation rules. We first obtain a general characteriza-

tion of the set of implementable reduced forms by an infinite number of linear inequalities.

Then, we investigate the possibility of characterization by finitely many inequalities. We

obtain a necessary condition by a class of inequalities with integral coefficients. This

class is strictly larger than the class in Border (1991) and in Che, Kim and Mierendorff

(2013). We then provide a condition such that the necessary condition becomes suffi-

cient. For the two-player case, we formulate the implementation problem as a digraph

multicommodity flow problem and establish an equivalence between these two problems.

To deal with multi-unit auctions with group capacity constraints, Che, Kim and Mieren-

dorff (2013) formulate their problem as a digraph single-commodity flow in a different

way. The network flow result in this chapter is complementary to their results.

In many social choice problems, the system of reduced form has no full dimension-

ality. We further provide an implementability condition (and a necessary condition) on

coordinate subspaces and use the necessary condition to study mechanism design prob-

lems without money. As a leading example, we study a package allocation problem as

in Miralles (2012), but with non-additive valuations. There are two players and two

objects. Each player initially owns one object and values two objects as complements.

The players can keep their objects, or allocate both objects to one player, or exchange.

Together with the incentive compatibility condition, we illustrate how the necessary

condition for the implementability can be used to find the upper bound of the ex ante

utilitarian social welfare (or ex ante trading surplus). In such a problem without money,

both the incentive compatibility and the implementability conditions can be binding in

an interim Pareto optimal solution. For this example, since a feasible allocation rule

that implements the upper bound of the ex ante utilitarian welfare exists, the necessary

condition is sufficient for the implementability.

The remainder of the chapter is organized as follows. Section 2.2 formulates the

implementation problem. Section 2.3 provides a characterization for implementability

(Theorem 2.1) and obtains a necessary condition by finitely many inequalities (Corollary

2.1). We provide a condition such that this necessary condition is also sufficient (Theo-

rem 2.2) and also an implementability condition in coordinate subspaces (Theorem 2.3).
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Sections 2.4 uses these implementability conditions to study mechanism design problems

without money. Section 2.5 provides some discussion for mechanism design problems

with general utility functions and the relationship to the implementation problems. Sec-

tion 2.6 concludes.

2.2. The Problem

An implementation problem is given by I = (N,D, (Ti)i∈N , (λi)i∈N). There is a finite

set of players N , |N | ≥ 2, and a finite set of social alternatives D, |D| ≥ 2. Let ∆(D)

be the set of probability distributions over D. For each i ∈ N , Ti is a non-empty finite

set of types, and denote the power set of Ti by 2Ti . For each i ∈ N , λi is a probability

measure on Ti. We assume λi(ti) > 0 for all ti ∈ Ti and i ∈ N . The product type set

is given by T = ×i∈NTi. Let λ be the product measure ×i∈Nλi on T . For each i ∈ N ,

denote T−i = ×j 6=iTj and λ−i(t−i) = ×j 6=iλj(tj). For any A = ×i∈NAi ⊆ T and j ∈ N ,

we write λ(A) as λ(Aj ×A−j) occasionally. For Ai ∈ 2Ti , denote (Ai)
c = Ti \Ai. Denote

by I the set of implementation problems.

Fix an I ∈ I. Define the set of feasible allocation rules by

D0 =

{
q ∈ RD×T

∣∣∣∣ q(d, t) ≥ 0,
∑
d∈D

q(d, t) = 1,∀d ∈ D, t ∈ T
}
.

That is, a feasible allocation rule assigns to each type profile a lottery over social

alternatives. Hence for each type profile, it satisfies a probability simplex condition.

Denote k = |D| × |T | and Rk the Euclidean space that contains D0. Define the set of

systems of reduced forms by

D1 =

{
Q ∈ ×i∈NRD×Ti

∣∣∣∣ Qi(d, ti) ≥ 0,
∑
d∈D

Qi(d, ti) = 1, ∀d ∈ D, ti ∈ Ti, i ∈ N
}
.

That is, a system of reduced forms assigns to each type ti of each player i a lottery

over the set of social alternatives. Denote l =
∑

i∈N(|D| × |Ti|) and Rl the Euclidean

space that contains D1. Now define a linear transformation Λ : Rk → Rl by, for any

x ∈ Rk,

(Λx)i(d, ti) =
∑

t−i∈T−i

x(d, t)λ−i(t−i), (2.2.1)

for all d ∈ D, ti ∈ Ti, and i ∈ N . For q ∈ D0, Λq is the system of interim expected

probabilities generated by the allocation rule q and the belief system λ.

Definition 2.1: Let I ∈ I. A system of reduced forms Q ∈ D1 is implementable if

there exists a feasible allocation rule q ∈ D0 such that Q = Λq.

Denote by D the set of implementable systems of reduced forms. The implementation

34



Characterization

problem (I) studies necessary and sufficient conditions for systems of reduced forms to

be implementable.

2.3. Characterization

Theorem 2.1 obtains a general necessary and sufficient condition for the implementability.

Corollary 2.1 provides a necessary condition with finitely many inequalities with integer

coefficients. For problems with |N | = |D| = 2, Theorem 2.2 shows that the necessary

condition in Corollary 2.1 is sufficient.

Before the statement of the theorems, we introduce some definitions. Let 〈·, ·〉 : Rl ×
Rl → R be the standard inner product. Now define a linear transformation Γ : Rl → Rl

by, for each x ∈ Rl,

(Γx)i(d, ti) = λi(ti)xi(d, ti), (2.3.1)

for all d ∈ D, ti ∈ Ti and i ∈ N . For Q ∈ D1, ΓQ is the interim expected probability

vector Q weighted by the system of marginal probabilities of λ.

2.3.1. Main Results

Theorem 2.1 is the main result of this chapter. For the case |N | = |D| = 2, the result of

Theorem 2.1 was first proved by Strassen (1965). The result follows from the fact that

ΓD is a convex and compact subset in an Euclidean space. Then a standard separation

argument implies that ΓD is the intersection of all supporting half-spaces of the set itself.

Theorem 2.1: Let I ∈ I. Q ∈ D1 is implementable if and only if

〈f,ΓQ〉 ≤ sup{〈f,ΓΛq〉 : q ∈ D0} for all f ∈ Rl. (2.3.2)

Proof. See Appendix 2.A. �

Theorem 2.1 has a social welfare interpretation in terms of utility functions. We

discuss this intuition in detail in Section 2.4.

Notice that D0 is a polytope. By the Krein-Milman theorem, D is the closed convex

hull of images of ext(D0) under Λ, where ext(D0) is the set of extreme points of D0.

Hence, D has finitely many facets. For applications, it is important to characterize these

facets of D. Corollary 2.1 establishes a necessary condition that may lead to such a

nested characterization. If it is also sufficient, then the normal vector of each facet of

ΓD contains entries only from {−1, 0,+1}, and the other conditions with non-integral

coefficients in [−1, 1] are redundant.3

3It is well known that for Ax ≤ b, where A ∈ Rm×n and b ∈ Rm, if A is totally unimodular and b is
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Corollary 2.1: Let I ∈ I. If Q ∈ D1 is implementable, then

〈f,ΓQ〉 ≤ sup{〈f,ΓΛq〉 : q ∈ D0} for all f ∈ {−1, 0,+1}l. (2.3.3)

Corollary 2.1 follows immediately from Theorem 2.1. The first interpretation of

condition (2.3.3) is similar to Theorem 2.1. Alternatively, condition (2.3.3) shows that

if for each player i with type ti and alternative d, the ex ante probability λi(ti)Qi(d, ti)

represents the quantity of a good (i, d, ti), then given any price vector f , the right hand

side is equal to the monetary value of the initial endowment and hence the total budget.

The network flow approach has been used to provide a sufficient condition for the

implementability (Che, Kim and Mierendorff, 2013).4 The following result, based on

Hansel and Troallic (1978), applies a network flow approach to prove that if |N | = |D| =
2, the condition in Corollary 2.1 is sufficient. In Appendix 2.B (Lemma 2.2-2.4), we

discuss the possibility to generalize this result and establish an equivalence between the

implementation problem and a digraph multicommodity network flow problem.

Theorem 2.2: Let I ∈ I with |N | = |D| = 2. Then (2.3.3) is necessary and

sufficient for implementability.

Proof. See Appendix 2.B. �

2.3.2. Results on Coordinate Subspaces

For many economic environments we discuss later, the system of reduced forms has no full

dimensionality. In this subsection, we provide conditions for implementation problems

on coordinate subspaces.

Fix an I ∈ I and some D̃i ⊆ D for each i ∈ N . We choose D̃ = (D̃i)i∈N as a

system of essential alternatives, where D̃i is labelled as the set of essential alternatives

and D̃c
i = D \ D̃i is labelled as the set of inessential alternatives for each i ∈ N . Denote

Rl̃ = ×i∈NRD̃i×Ti , a coordinate subspace of Rl. Denote Rl−l̃ the complementary subspace

of Rl̃. Now define the projection of D onto the coordinate subspace Rl̃ by

PD̃(D) = {QD̃ ∈ Rl̃| ∃QD\D̃ ∈ Rl−l̃ : (QD̃, QD\D̃) ∈ D}. (2.3.4)

Define an implementation problem on the coordinate subspace Rl̃ as follows.

(I-D̃). Let I ∈ I and D̃ = (D̃i)i∈N . For QD̃ ∈ Rl̃, find a feasible solution q ∈ D0

such that (i) there exists Q ∈ D such that q implements Q, and (ii) Q coincides with QD̃

on Rl̃.

integral, then all extreme points of the feasible region are integral.
4Flows in networks are used to model traffic in a road system, circulation with demands, or fluids

in pipes. The problem is to send as many trucks as possible, where roads have limits on the number
of trucks per unit time (maximize the flows). On the other hand, the dual problem is to destroy some
bridges to disconnect all routes while minimizing the cost of destroying the bridges (minimize the costs
of cuts).
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Characterization

Theorem 2.1 implies the following implementability condition for coordinate sub-

spaces.

Theorem 2.3: Let I ∈ I and D̃ = (D̃i)i∈N . Define C̃ = {f ∈ Rl : fi(d, ti) =

0 for all d ∈ D̃c
i , ti ∈ Ti, i ∈ N}. Then,

(i) QD̃ ∈ PD̃(D) if and only if (2.3.2) holds only for all f ∈ C̃.

(ii) If QD̃ ∈ PD̃(D), then (2.3.2) holds for all f ∈ C̃ ∩ {−1, 0,+1}l.

Proof. See Appendix 2.B. �

For certain classes of problems on coordinate subspaces, the linear inequalities given

by {−1, 0,+1}l in Theorem 2.3 (ii) turn out to be necessary and sufficient. In these cases,

we can further investigate whether some subclass of these linear inequalities is redundant.

In Proposition 2.1, Border (1991) shows that for standard single object auctions without

externalities, all inequalities other than the class {0,+1}l are redundant. However, as

soon as we depart from the environment with single object auctions without externalities,

some inequalities other than {0,+1}l are not redundant in general. In Proposition 2.2,

we illustrate this point by a two-person two-alternative voting problem. For illustration,

we consider only symmetric allocation rules and symmetric reduced forms for symmetric

players.

First consider the single object allocation problem in Myerson (1981), with the seller

0 and the bidders {1, ..., n}. Let D̃0 = {∅} and D̃i = {i} for all i ∈ N \ {0}. Then a

system of essential reduced forms is given by (Qi(i, ·))i∈N\{0}.

Proposition 2.1: (Border, 1991) Let N = D = {0, 1, ..., n}, D̃0 = {∅}, and D̃i =

{i} for all i ∈ N \ {0}. Then, (Qi(i, ·))i∈N\{0} is implementable if and only if for all

Ai ∈ 2Ti, i ∈ N \ {0},∑
i∈N\{0}

∑
ti∈Ai

Qi(i, ti)λi(ti) ≤ λ(
⋃

i∈N\{0}

Ai × T−i). (2.3.5)

Proof. See Appendix 2.C. �

The result has the following interpretation. The sum of the ex ante expected proba-

bility of winning of all buyers with types drawn from (Ai)i∈N\{0}, is bounded above by

the ex ante probability that there exists at least one buyer i who draws a type from Ai.

For this allocation problem, all inequalities containing the entry −1 are redundant. In

Appendix 2.C, we show how we can eliminate these redundant inequalities.

Example 2.1: (Border, 1991) Let n = 2. For i = 1, 2, Ti = {0, 1} and λi(0) =

λ0, λi(1) = λ1 = 1 − λ0. In this environment, a symmetric allocation rule requires

q(1, (x, y)) = q(2, (y, x)) for all x, y ∈ {0, 1}. By symmetry, Q1(1, ·) = Q2(2, ·) = Qa.
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From Proposition 2.1, Qa is implementable if and only if

0 ≤ Qa,0, Qa,1 ≤ 1, (2.3.6)

Qa,0λ0 +Qa,0λ0 ≤ 1− λ2
1, (2.3.7)

Qa,1λ1 +Qa,1λ1 ≤ 1− λ2
0, (2.3.8)

Qa,0λ0 +Qa,1λ1 +Qa,0λ0 +Qa,1λ1 ≤ 1, (2.3.9)

and other inequalities are redundant. For λ0 = 1/2, Figure 2.1 illustrates the set of

implementable Qa.

0 1 Qa,0
3
4

3
4

1
Qa,1

Figure 2.1

Consider a two-person two-alternative voting problem. Let N = {1, 2}, D = {0, b},
and D̃i = {b}, i = 1, 2. A system of essential reduced forms is given by (Q1(b, ·), Q2(b, ·)).

Proposition 2.2: Let N = {1, 2}, D = {0, b}, and D̃i = {b}, i = 1, 2. Then

(Q1(b, ·), Q2(b, ·)) is implementable if and only if for all Bi, Bi ∈ 2Ti, Bi ∩ Bi = ∅,
i = 1, 2,

∑
i∈N

∑
ti∈Bi

Qi(b, ti)λi(ti)−
∑
ti∈Bi

Qi(b, ti)λi(ti)

 ≤∑
i∈N

λ(Bi × (B−i)
c). (2.3.10)

Proof. See Appendix 2.C. �

In contrast to Border’s condition, the implementability condition for this voting prob-

lem requires the entry −1 to appear in the linear inequalities. The intuition for this result

is as follows: In Myerson (1981), selecting alternative i with a higher interim expected

probability tightens the (probabilistic) budget for alternative j. Qi(i, ·) and Qj(j, ·) are

competing. In the voting problem, however, selecting alternative b with a higher interim

expected probability for player i relaxes the budget that b can be selected for player j.

Hence, Qi(b, ·) and Qj(b, ·) are of common interest.

Example 2.2: Let T and λ be as assumed in Example 2.1. In this case, a symmetric

allocation rule requires q(b, (x, y)) = q(b, (y, x)) for all x, y ∈ {0, 1}. With symmetry,
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Q1(b, ·) = Q2(b, ·) = Qb. By Proposition 2.2, Qb is implementable if and only if

0 ≤ Qb,0, Qb,1 ≤ 1, (2.3.11)

Qb,0λ0 −Qb,1λ1 +Qb,0λ0 −Qb,1λ1 ≤ 2λ2
0, (2.3.12)

Qb,1λ1 −Qb,0λ0 +Qb,1λ1 −Qb,0λ0 ≤ 2λ2
1, (2.3.13)

and other inequalities are redundant. For λ0 = 1
2
, the set of implementable Qb is illus-

trated in Figure 2.2.

0 1

1

Qb,0
1
2

1
2

Qb,1

Figure 2.2

For each λ0, the corner point (1, 1) is feasible but the corner points (1, 0) and (0, 1)

are ruled out. For λ0 = 1/2, the unique symmetric allocation rule that implements (1
2
, 1)

is given by

q(b, (0, 0)) = 0, q(b, (0, 1)) = q(b, (1, 0)) = q(b, (1, 1)) = 1. (2.3.14)

2.4. Social Choice Problems without Monetary Transfers

In this section, we discuss social choice problems without transfers. We first provide two

examples of such problems: a voting problem and a package allocation problem. We

show that the implementation conditions in Section 2.3 can be used to find the solutions

for certain social welfare objectives in such problems (mechanism design problems). We

delay the discussion of social choice problems with money in Section 2.5.

A social choice problem without monetary transfers is given by S = (I, (vi)i∈N), where

I = (N,D, (Ti)i∈N , (λi)i∈N), and player i ∈ N has a valuation function vi : D × Ti → R
given by vi(d, ti) for d ∈ D and ti ∈ Ti. Notice that we restrict to the class of private

values. We further discuss this assumption in Section 2.5.
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Let S = (I, (vi)i∈N). An allocation mechanism is given by a feasible allocation rule

q : T → ∆(D). Given that the other players always report truthfully, the interim

expected utility of player i with type ti ∈ Ti from reporting t̂i ∈ Ti is given by

Ui(q, t̂i|ti) =
∑

t−i∈T−i

∑
d∈D

q(d, (t̂i, t−i))vi(d, ti)λ−i(t−i). (2.4.1)

We say q is incentive compatible if truth telling by all players is a Bayesian Nash

equilibrium. Denote the interim utility by Ui(q|ti) = Ui(q, ti|ti). If there is some status

quo d∗ ∈ D, it further requires q to satisfy the individual rationality condition, or

Ui(q|ti) ≥ Ui(d∗|ti) for all ti ∈ Ti and i ∈ N . Let M(S) be the set of incentive compatible

(and individual rational if any) mechanisms for S. A mechanism design (MD) problem

(with a linear social welfare function) is selecting some q ∈M(S) to maximize∑
i∈N

∑
ti∈Ti

f̃i(ti)λi(ti)Ui(q|ti), (2.4.2)

for some interim welfare weight system f̃ ∈ ×i∈NRTi
++. In particular, f̃ = (1, ..., 1)

corresponds to the ex ante utilitarian social welfare function.

2.4.1. Bounds on Social Welfare

To see the welfare implication of Theorem 2.1, let S = (I, (vi)i∈N) and fi(d, ti) =

f̃i(ti)vi(d, ti) for all d ∈ D, ti ∈ Ti, and i ∈ N , where f̃ ∈ ×i∈NRTi
++ is a system of

interim welfare weights. Then, the left hand side of (2.3.2) is given by (2.4.2), which

corresponds to the linear social welfare function with interim welfare weights f̃ .

Theorem 2.1 states that the dual variable of reduced form allocation rules is utility

functions. For S = (I, (vi)i∈N), the left hand side of (2.3.2), which corresponds to the

f̃ -weighted linear social welfare from some allocation rule, is bounded above by the

maximal social welfare from all feasible allocation rules. Hence, Theorem 2.1 obtains

the bounds on the social welfare for all linear social welfare functions by fixing (vi)i∈N

and varying f̃ , and the bounds on the social welfare for all MD problems without money

by varying (vi)i∈N and f̃ . For f̃ = (1, ..., 1), it provides an upper bound of the ex ante

utilitarian social welfare for all MD problems without money.

2.4.2. Values and Implementation on Coordinate Subspaces

Let S = (I, (vi)i∈N). The system of valuation functions (vi)i∈N induces a system of

essential decisions D̃ and an implementation problem (I-D̃) in the following two cases:

1. Suppose for all i ∈ N and d ∈ D, vi(d, ti) 6= 0 for some ti ∈ Ti. Then, Qi(d, ·) has

influence on player i’s utility. By the probability simplex condition, for some d0 ∈ D and

all i ∈ N , Qi(d0, ·) = 1−
∑

d6=d0 Qi(d, ·). We can choose d0 as the normalized alternative

and the others as essential alternatives.
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2. Suppose for some i ∈ N and d ∈ D, vi(d, ti) = 0 for all ti ∈ Ti. For such an

alternative d, Qi(d, ·) does not influence player i’s utility and Qi(d, ·) is free. We say d is

irrelevant for player i. Then, we can choose such alternatives as inessential alternatives

for player i.

To illustrate these two cases, we disucss voting problems (Proposition 2.3) and pack-

age allocation problems (Proposition 2.4) in the following subsections. We consider only

symmetric allocation rules and symmetric reduced forms for symmetric players.

2.4.3. Example: Voting

Consider a two-person n + 1-alternative voting problem with N = {1, 2} and D =

{0, 1, ..., n}, n ≥ 1. Suppose for all i ∈ N and d ∈ D, vi(d, ti) 6= 0 for some ti ∈
Ti. Let D̃i = D \ {0}, i = 1, 2. A system of essential reduced forms is given by

(Q1(d, ·), Q2(d, ·))d∈D\{0}. The following condition for voting problems with three or

more alternatives follows from Lemma 2.4 in Appendix 2.B.

Proposition 2.3: Let N = {1, 2}, D = {0, 1, ..., n}, and D̃i = D \ {0}, i = 1, 2. If

(Q1(d, ·), Q2(d, ·))d∈D\{0} is implementable, then for all Bi ∈ 2Ti, i = 1, 2,

∑
d∈D\{0}

∑
i∈N

∑
ti∈Bi

Qi(d, ti)λi(ti)−
∑

ti∈(Bi)c

Qi(d, ti)λi(ti)

 ≤ 2λ(B1 ×B2). (2.4.3)

Proof. See Appendix 2.C. �

In particular, a three-alternative problem corresponds to the compromise problem of

Börgers and Postl (2009). Suppose player 1’s preference is given by 1 � 0 � 2 and player

2’s preference is given by 2 � 0 � 1. Each player receives utility 1 from his best and 0

from his worst alternative. Each player receives ti between 0 and 1 from the alternative

0. The interim utility for player i with type ti is given by Qi(0, ti)ti +Qi(i, ti).

A system of essential reduced forms in the problem of Borgers and Postl is given by

(Q1(0, ·), Q1(1, ·), Q2(0, ·), Q2(2, ·)). Then, it is easy to see that for each player i, replacing

Qi(j, ·) by 1−Qi(i, ·)−Qi(0, ·) in (2.4.3) of Proposition 2.3 provides a necessary condition

for the implementability to the problem of Börgers and Postl (2009).

2.4.4. Example: Package Allocation

Miralles (2012) studies the allocation of two homogeneous objects among a set of players

without money and finds the mechanism that maximizes the ex ante utilitarian welfare.

Since players have additive valuations, Miralles applies Proposition 2.1 separately to each

object. We now consider a related problem with complementary valuations, which forces

the implementability condition to be defined on the set of all social alternatives.
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Let N = {1, 2} and D = {0, 1, 2, b}. Each player has no money and initially owns

one object, or d∗ = 0. For i = 1, 2, the choice i means that player i obtains both objects

and the choice b indicates the exchange of objects. For i = 1, 2, player i has the value of

0 if no object is obtained, i.e. for all d 6= i, b and ti ∈ Ti, vi(d, ti) = 0, and player i has a

complementary valuation for the package, i.e. for all ti ∈ Ti,

vi(b, ti)− vi(j, ti) < vi(i, ti)− vi(0, ti).

For (I-D̃) derived from (I, (vi)i∈N), we have D̃i = {i, b}, i = 1, 2. A system of

essential reduced forms is given by (Q1(1, ·), Q2(2, ·), Q1(b, ·), Q2(b, ·)).

Proposition 2.4: Let N = {1, 2}, D = {0, 1, 2, b}, and D̃i = {i, b}, i = 1, 2.

If (Q1(1, ·), Q2(2, ·), Q1(b, ·), Q2(b, ·)) is implementable, then for all Ai, Bi, Bi ∈ 2Ti,

Bi ∩Bi = ∅, i = 1, 2,

∑
i∈N

∑
ti∈Ai

Qi(i, ti)λi(ti) +
∑
ti∈Bi

Qi(b, ti)λi(ti)−
∑
ti∈Bi

Qi(b, ti)λi(ti)


≤ λ(

⋃
i∈N

Ai × T−i) +
∑
i∈N

λ(Bi × (B−i)
c)− λ

(
(
⋃
i∈N

Ai × T−i)
⋂

(
⋃
i∈N

Bi × (B−i)
c)

)
.

(2.4.4)

Proof. See Appendix 2.C. �

For two-person problems, Proposition 2.4 provides a nested condition based on Propo-

sition 2.1 and 2.2. By setting Bi, Bi = ∅ for i = 1, 2, we have the condition in Proposition

2.1. By setting Ai = ∅ for i = 1, 2, we have the condition in Proposition 2.2.

Example 2.3: Let T and λ be specified as in Example 2.1. In this case, a symmetric

allocation rule requires q(1, (x, y)) = q(2, (y, x)) and q(b, (x, y)) = q(b, (y, x)) for all

x, y ∈ {0, 1}. By symmetry, Q1(1, ·) = Q2(2, ·) = Qa and Q1(b, ·) = Q2(b, ·) = Qb.

From Proposition 2.4, the bound of the set of implementable reduced forms is given by

(2.3.6), (2.3.7), (2.3.8), (2.3.9), (2.3.11), (2.3.12), (2.3.13), and

Qb,0λ0 + 2Qa,0λ0 ≤ 1− λ2
1, (2.4.5)

Qb,1λ1 + 2Qa,1λ1 ≤ 1− λ2
0, (2.4.6)

Qb,0λ0 +Qa,0λ0 +Qa,1λ1 ≤ 1− λ0λ1, (2.4.7)

Qb,1λ1 +Qa,0λ0 +Qa,1λ1 ≤ 1− λ0λ1, (2.4.8)

Qb,0λ0 +Qb,1λ1 + 2Qa,1λ1 + 2Qa,1λ1 ≤ 1. (2.4.9)

Compared to the auction and voting problems, the package exchange problem requires

many more inequalities. These linear inequalities form a 4-polytope. For λ0 = 1/2, the
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system of inequalities is given by

0 ≤ Qa,0, Qa,1 ≤ 3/4,

0 ≤ Qb,0, Qb,1 ≤ 1,

Qa,0 +Qa,1 ≤ 1,

Qb,0 −Qb,1 ≤ 1/2,

Qb,1 −Qb,0 ≤ 1/2,

Qb,0 + 2Qa,0 ≤ 3/2,

Qb,1 + 2Qa,1 ≤ 3/2,

Qb,0 +Qa,0 +Qa,1 ≤ 3/2,

Qb,1 +Qa,0 +Qa,1 ≤ 3/2,

Qb,0 +Qb,1 + 2Qa,0 + 2Qa,1 ≤ 2.

By Fourier-Motzkin elimination,5 we reduce one of the four variables and compute the

projections of this 4-polytope onto the three-dimensional subspaces: (1) (Qb,1, Qa,0, Qa,1),

(2) (Qa,0, Qa,1, Qb,0), (3) (Qa,1, Qb,0, Qb,1), and (4) (Qb,0, Qb,1, Qa,0). These projections

correspond to four 3-polytopes. For λ0 = 1/2, we depict them in Figure 2.3 below.

Figure 2.3

2.4.4.1. Ex Ante Efficient Solutions to Package Allocation Problems

In the package exchange problem, we further assume that the symmetric valuation profile

is given by for each player i = 1, 2,

5The elimination of a set of variables V from a system of linear inequalities refers to the creation of
another system of linear inequalities, but without the variables in V, such that both systems have the
same solutions over the remaining variables.
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0 i j b

ti = 0 0 1 0 x

ti = 1 0 2 0 y

where (x, y) ∈ R2 are parameters. We assume that for any type of a player, the val-

uation of the objects are complementary. We consider four cases where the players

may be better off or worse off from exchanging their own objects, depending on (x, y):

(1, 1), (−1, 1), (1,−1), (−1, 1).

With the necessary condition (2.4.4), we are ready to characterize the bound that

contains the set of incentive feasible interim utility allocations. Now, the (symmetric)

interim utility vector, incentive compatibility and individual rationality conditions are

given by

U0 = Qa,0 + xQb,0 ≥ Qa,1 + xQb,1, (2.4.10)

U1 = 2Qa,1 + yQb,1 ≥ 2Qa,0 + yQb,0, (2.4.11)

U0 ≥ 0, U1 ≥ 0. (2.4.12)

Together with (2.4.4), we have a linear system of six variables,

(Qb,0, Qb,1, Qa,0, Qa,1, U0, U1) ∈ R6.

By Fourier-Motzkin elimination, we reduce the first four variables and obtain the bound

of the interim utility set U(x, y) given by

U(1, 1) = {U ∈ R2
+ : U0 − U1 ≤ 0, U0 + U1 ≤ 2,−5

2
U0 + U1 ≤ 0, U1 ≤

5

4
},

U(−1, 1) = {U ∈ R2
+ : 2U0 − U1 ≤ 0, 2U0 + U1 ≤ 2, U1 ≤

3

2
},

U(1,−1) = {U ∈ R2
+ : −2U0 + U1 ≤ 0, 2U0 + U1 ≤

5

2
, U0 ≤ 1 },

U(−1,−1) = {U ∈ R2
+ : −4

3
U0 + U1 ≤

1

2
, 2U0 − U1 ≤ 0,−2

3
U0 + U1 ≤

2

3
}.

For each constellation of (x, y), the upper bound of the ex ante (utilitarian) efficient

allocations are defined as the solutions to maxU∈U(x,y) U0 +U1. Figure 2.4 illustrates the

bounds of interim utility sets and the corresponding upper bounds of the ex ante efficient

solutions in the interim utility space.

In all cases, (U0, U1) = (1
2
, 1) is incentive feasible, i.e. reallocating the bundle by

tossing a coin. The incentive conditions (2.4.10), (2.4.11), and the feasibility condition

Qb,0 +Qb,1 + 2Qa,0 + 2Qa,1 ≤ 2, (2.4.13)
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are binding. In the cases (−1, 1), (−1,−1), this utility vector is on the strong Pareto set,

but in the cases (1, 1), (1,−1), it is Pareto dominated. This is because in the latter cases,

reporting type 1 is punished more severely by exchanging the objects and this sustains

a better outcome.

Figure 2.4

In the case (1, 1), the ex ante efficient solutions are given by the line segment between

(3
4
, 5

4
) and (1, 1). In the cases (−1, 1), (1,−1), (−1,−1), the solutions are uniquely given

by (1
4
, 3

2
), (5

8
, 5

4
), and (1

2
, 1), respectively. We provide the systems of reduced forms that

implement these utility vectors.

Case (1, 1). The utility vector (3
4
, 5

4
) is implemented by

(Qa,0, Qa,1, Qb,0, Qb,1) = (0,
1

2
,
3

4
,
1

4
).

The feasibility conditions (2.4.13) and Qb,0 −Qb,1 ≤ 1/2 are binding.

Case (−1, 1). The utility vector(1
4
, 3

2
) is implemented by

(Qa,0, Qa,1, Qb,0, Qb,1) = (
1

8
,
1

2
, 0,

1

2
).

The feasibility conditions (2.4.13) and Qb,1 + 2Qa,1 ≤ 3/2 are binding.

Case (1,−1). The utility vector (5
8
, 5

4
) is implemented by

(Qa,0, Qa,1, Qb,0, Qb,1) = (
1

4
,
5

8
,
1

2
, 0).

Now the feasibility condition (2.4.13) and the incentive condition (2.4.10) are binding.

Case (−1,−1). The utility vector (1
2
, 1) is implemented by

(Qa,0, Qa,1, Qb,0, Qb,1) = (
1

2
,
1

2
, 0, 0).

It turns out that all these reduced forms are implementable. Hence, for these cases,

the necessary condition (2.4.4) is necessary and sufficient for the implementability. We
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Chapter 2: Implementation of Vector-Valued Reduced Form Allocation Rules

provide feasible allocation rules that implement these reduced forms in Table 2.1. For

all cases and all type profiles, (q0, q1, q2, qb) are listed. For all cases except (−1,−1), the

solution allocation rule is unique.

(1, 1) 0 1

0 (0, 0, 0, 1) (0, 0, 1
2
, 1

2
)

1 (0, 1
2
, 0, 1

2
) (0, 1

2
, 1

2
, 0)

(−1, 1) 0 1

0 (0, 1
2
, 1

2
, 0) (0, 0, 1, 0)

1 (0, 1, 0, 0) (0, 0, 0, 1)

(1,−1) 0 1

0 (0, 0, 0, 1) (0, 1
4
, 3

4
, 0)

1 (0, 3
4
, 1

4
, 0) (0, 1

2
, 1

2
, 0)

(−1,−1) 0 1

0 (0, 1
2
, 1

2
, 0) (0, 1

2
, 1

2
, 0)

1 (0, 1
2
, 1

2
, 0) (0, 1

2
, 1

2
, 0)

Table 2.1

Observe that in the cases (1, 1) (1,−1), and (−1,−1), the solution allocation rules are

stochastic for asymmetric reports. The result shows that for mechanism design problems

without monetary transfers, some extreme points of the interim utility set correspond to

non-deterministic allocation rules.

2.5. Discussion

In this section, we provide some remarks about the results in Sections 2.3 and 2.4. First,

we consider social choice problems with money and with general utility functions in which

the implementation problems we studied arise. Second, we compare the implementability

of reduced form allocation rules and reduced form values in the literature. Finally, we

investigate reduction of redundant inequalities in a package allocation example.

2.5.1. Non-Quasilinear Utility

A social choice problem with transfers is given by S = (I, (vi)i∈N), where player i ∈ N
has a valuation function vi : D × R × Ti → R given by vi(d,m, ti) for d ∈ D, monetary

payment m ∈ R, and ti ∈ Ti. Fix such an S. An allocation mechanism µ = (q,m) is

given by a feasible allocation rule q : T → ∆(D) together with a set of payment rules

m = (mi)i∈N , where mi : D × T → R for all i ∈ N . Notice that the payment rules

depend on both the reporting profiles and the decisions. Given that the other players

always report truthfully, the interim expected utility of player i with type ti ∈ Ti from

reporting t̂i ∈ Ti is given by

Ui(µ, t̂i|ti) =
∑

t−i∈T−i

∑
d∈D

q(d, (t̂i, t−i))vi(d,mi(d, (t̂i, t−i)), ti)λ−i(t−i). (2.5.1)

For a social choice problem with transfers, a mechanism design problem is defined simi-

larly as that for a social choice problem without transfers.
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There are some classes of social choice problems with money in which the imple-

mentation problems (with or without full dimensionality) arise as subproblems. This

depends on assumptions on the valuation functions and the restriction of payment rules.

We discuss two classes: (1) Quasilinear utility; and (2) Nonlinear utility, deterministic

payments, and no ex post balanced budget.

1. Quasilinear utility. For each player i ∈ N , vi(d,m, ti) = ṽi(d, ti) − m for some

function ṽi : D × Ti → R. For µ = (q,m), we can set mi(d, t) = mi(t) for all d ∈ D,

t ∈ T and i ∈ N . For each player i with type ti, the interim utility from µ is given by

Ui(µ|ti) =
∑
d∈D

Qi(d, ti)ṽi(d, ti)−Mi(ti), (2.5.2)

where

Q = Λq and Mi(ti) =
∑

t−i∈T−i

mi(t)λ−i(t−i). (2.5.3)

This environment is the same as Jehiel, Moldovanu and Stacchetti (1999), when one

buyer imposes an externality on the other buyers in a single-object auction. Notice that

the separability of the expected probabilities and the payments continues to hold when

players have budget constraints. Vohra (2011) uses the reduced form approach to study

the single object auctions with budget-constrained buyers. The condition here can be

used to study the multi-unit auctions with budget-constrained buyers.

2. Non-Quasilinear utility, deterministic payments, and no ex post balanced budget.

We assume each player’s payment rule is deterministic, i.e. for all d ∈ D, t, t′ ∈ T , and

i ∈ N ,

mi(d, t) = mi(d, t
′), if ti = (t′)i. (2.5.4)

In other words, each player’s payment is independent of other players’ reports. For

player i ∈ N with type ti ∈ Ti, the interim expected payment at d ∈ D is given by

Mi(d, ti) = mi(d, t) for all t ∈ T . Hence, for each player i with type ti, the interim utility

from the mechanism µ is given by

Ui(µ|ti) =
∑
d∈D

Qi(d, ti)vi(d,Mi(d, ti), ti), where Q = Λq. (2.5.5)

In this case, the separability of the expected probabilities and the composition of valua-

tion functions and payments holds.

To see that the requirement on no ex post budget balance cannot be dropped, consider

the bilateral trade problem of Myerson and Satterthwaite (1983). Let N = D = {1, 2}
and let T1, T2 be finite subsets of [0, 1]. The seller (player 1) is risk neutral and has linear

utility, i.e. for all m and t1, v1(1,m, t1) = t1−m and v1(2,m, t1) = −m. Now, the buyer
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(player 2) is constant absolute risk averse, i.e. for all m ∈ R and t2 ∈ T2,

v2(2,m, t2) = 1− e−(t2−m) and v2(1,m, t2) = 1− em. (2.5.6)

Assume the payment rule for the buyer is deterministic and is given by (M2(1, ·),M2(2, ·)).
The payment rule for the seller is given by M1(·). An ex post budget balanced payment

rule requires that for all t1 ∈ T1,

M1(t1) = −
∑
t2∈T2

∑
d∈D

q(d, t)M2(d, t2)λ2(t2). (2.5.7)

Hence, if ex post balanced budget is required, the joint feasibility condition on allocation

rules and payment rules becomes a relevant issue.

The deterministic payment is less restrictive in case of independent beliefs than cor-

related beliefs. For example, Maskin and Riley (1984) and Matthews (1983) show that

for a subclass of constant relative risk averse utility functions, the optimal single-unit

auctions have the deterministic payments. Crémer and McLean (1988) shows that for

risk neutral buyers, the optimal single object auctions with correlated beliefs require

correlated payments.

2.5.2. Comparison to Reduced Form Values

Goeree and Kushnir (2013) is the first paper to discuss the implementability of reduced

forms for social choice problems with Quasilinear utility and interdependent values. They

define the reduced form value for each player by taking the sum of interim expected values

(over all alternatives) generated by the products of valuation functions and allocation

probabilities. A system of reduced form values contains one reduced form value function

for each player. In the following discussion, we restrict the comparison to private values.

1. Quasilinear utility. For all i ∈ N , vi(d,m, ti) = ṽi(d, ti)−m for some function ṽi.

Define a linear map Φv : Rk → ×i∈NRTi by, for any x ∈ Rk,

(Φvx)i(ti) =
∑

t−i∈T−i

∑
d∈D

x(d, t)ṽi(d, ti)λ−i(t−i), (2.5.8)

for all ti ∈ Ti and i ∈ N . A system of reduced form values is given by V = (Vi)i∈N ∈
×i∈NRTi . Then, V is implementable if there exists q ∈ D0 such that V = Φvq.

Since a system of reduced form values is a lower-dimensional object than a system

of reduced form allocation rules, Theorem 2.1 implies their Proposition 2.1, by setting

fi(d, ti) = f̃i(ti)ṽi(d, ti) for all d ∈ D, ti ∈ Ti, i ∈ N , for some f̃ ∈ ×i∈NRTi , and then

varying f̃ . In contrast, Theorem 2.1 is obtained from their reduced form value imple-

mentability conditions by further varying valuation functions and hence social choice

problems.
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The advantages of our approach are: (i) Theorem 2.1 does not need any information

on valuation functions and has fewer data as input. Hence, the same condition applies

to all problems; (ii) The set of implementable reduced form allocation rules is easier to

compute, because it does not depend on valuation functions. A disadvantage is that we

have more reduced form variables and thus more linear inequalities. At present, which

model achieves a lower computational complexity remains to be investigated.6

2. Non-Quasilinear utility and deterministic payment rules. Let m = (mi)i∈N be a

system of deterministic payment rules. Define a linear map Φv,m : Rk → ×i∈NRTi by, for

any x ∈ Rk,

(Φv,mx)i(ti) =
∑

t−i∈T−i

∑
d∈D

x(d, t)vi(d,Mi(d, ti), ti)λ−i(t−i), (2.5.9)

for all ti ∈ Ti and i ∈ N .

A system of reduced form utilities is given by U = (Ui)i∈N ∈ ×i∈NRTi . U is imple-

mentable if there exists q ∈ D0 such that U = Φv,mq. Because Φv,m is parameterized by

m, the feasibility condition on U also contains m. In contrast to the reduced form utility

approach, the feasibility condition on Q is parameterized by neither v nor m.

If no balanced budget or only ex ante balanced budget is required, then the reduced

form utility approach requires working with feasibility conditions on allocation rules and

payments simultaneously. On the other hand, the reduced form allocation rule approach

has the advantage of the separation of the feasibility condition on allocation rules and

payments.

2.5.3. Reduction of Inequalities

Border (1991) investigates a further reduction of (2.3.5) in Proposition 2.1, by the class

of the upper contour sets of reduced forms instead of all characteristic functions (all

measurable subsets). For single object auctions without externalities, Border (1991)’s

Proposition 2.3.2 proves that such smaller class is sufficient. For two-alternative voting

problems, we can show that such smaller class is also sufficient, by referring to a proof

of Theorem 4 of Gutmann et al. (1991).

In contrast to single object auctions without externalities or voting problems, we

observe that in the package exchange example, Gutmann et al. (1991)’s approach cannot

be applied here to obtain a further reduction.

To see this, we consider a subclass of inequalities of (2.4.4). Let T1 and T2 be finite

subsets in R. Fix (A1, A2, B1, B2, B2, Q) such that B1 = B2 = ∅ and vary B1. Denote

B1 = B1, B2 = (B2)c. We now compute the boundary subset B1 such that (2.4.4) holds

6In algorithmic mechanism design and computer science literature, some recent papers discuss the
computational complexity of Border’s theorem, e.g. Gopalan, Nisan and Roughgarden (2015).
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with equality. Then, consider

max
B1∈2T1

J (B1) =
∑
i∈N

∑
ti∈Ai

Qi(i, ti)λi(ti) +
∑
t1∈B1

Q1(b, t1)λ1(t1)−
∑

t2∈(B2)c

Q2(b, t2)λ2(t2)

− λ(
⋃
i∈N

(Ai × T−i)
⋃
B1 ×B2)

=
∑
t1∈B1

Q1(b, t1)λ1(t1)− λ(B1 \A1 ×B2 \A2)− λ(
⋃
i∈N

Ai × T−i) (2.5.10)

+
∑
i∈N

∑
ti∈Ai

Qi(i, ti)λi(ti)−
∑

t2∈(B2)c

Q2(b, t2)λ2(t2)

=
∑

t1∈B1\A1

[Q1(b, t1)− λ2(B2 \A2)]λ1(t1) +
∑

t1∈B1∩A1

Q1(b, t1)λ1(t1) + constant.

(2.5.11)

The solution is given by

B∗1(A1, A2, B2, Q) := A∗ ∪ A1, (2.5.12)

where

A∗ = {t1 ∈ T1 : Q1(b, t1) ≥ λ2(B2 \ A2)}. (2.5.13)

Since Q1(b, t1) and A1 can be arbitrary, if A∗ and A1 are “disconnected”, i.e. there

exists t1 ∈ T1 such that

maxA∗ < t1 < minA1, (2.5.14)

then B∗1 may not be of the form {t1 ∈ T1 : Q1(b, t1) ≥ β1} for some β1 ∈ R. For example,

let Q1(b, ·) be strictly increasing in t1. Then,

A∗ ⊂ [(Q1(b, ·))−1(λ2(B2 \ A2)),maxT1]. (2.5.15)

For A1 = {minT1} and A∗ ∪ A1 6= T1, B∗1 is “disconnected”. On the other hand,

Q1(b, ·) is strictly monotone and all its upper contour sets are “connected”.

2.6. Conclusion

In this chapter, we obtain a characterization of the implementability conditions for social

choice problems with vector-valued reduced forms. We provide a necessary and sufficient

condition for the implementability and a necessary condition by a class of finitely many

linear inequalities. We also provide a characterization for the implementability on co-

ordinate subspaces. We then use these conditions to study mechanism design problems

without money given certain welfare objectives. In a two-person two-object allocation

example, we show how the implementability condition can be used to find the bound of
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incentive feasible interim utility allocations and the upper bound of the ex ante utilitarian

social welfare.

The results in this chapter provide an important intermediate step to find the solu-

tions to mechanism design problems for a wide class of social choice environments, when

the ex post allocation rules cannot be easily optimized and the implementation problems

arise as subproblems. These include package allocations with complementary valuations

and auctioning multiple objects with risk averse buyers.

Finally, the implementability condition requires a large number of inequalities and

the reduction of redundant inequalities is still possible for specific problems. As the

cardinalities of the type sets increase, the number of inequalities increases very quickly

and the computational burden becomes a highlighted issue. We leave these interesting

problems for future research.
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Appendix 2.A Proof of Theorem 2.1

Lemma 2.1: (i) D0 is convex and compact.

(ii) Λ : Rk → Rl and Γ : Rl → Rl are continuous.

(iii) D and ΓD are convex and compact.

Proof of Lemma 2.1. (i) D0 is obviously convex. q ∈ D0 if and only if q(·, t) ∈ ∆(D)

for all t ∈ T . Since T is finite, D0 =
∏

t∈T ∆(D) is a product of finitely many compact

subsets ∆(D) ⊂ R|D|. By Tychonoff’s theorem, D0 is compact. (ii) Λ and Γ are linear

maps on finite-dimensional spaces and thus continuous. (iii) By the continuous mapping

theorem, the continuous image of a compact set is compact. Hence D is compact. Since

D0 is convex and Λ is linear, D is convex. A similar analysis implies that ΓD is also

compact and convex. �

Proof of Theorem 2.1. (Only If) Suppose Q ∈ D, then there exists q ∈ D0 that imple-

ments Q. Since q ∈ D0, we have 〈f,ΓQ〉 is bounded above by supq∈D0
〈f,ΓΛq〉, for all

f ∈ Rl.

(If) We show that if Q∗ /∈ D, then Q∗ must violate condition (2.3.2) for some f ∈ Rl.

Now suppose Q∗ /∈ D. λi(ti) > 0 for all ti ∈ Ti and i ∈ N implies ΓQ∗ /∈ ΓD. Since ΓD
is nonempty, closed and convex, by a hyperplane separation theorem, there exists f ∈ Rl

such that 〈f,ΓQ∗〉 > supQ∈D〈f,ΓQ〉, which contradicts to (2.3.2). �

Appendix 2.B Sufficient Condition: A Digraph Multicommodity Flow

Problem

An implementation problem I = (N,D, (Ti)i∈N , (λi)i∈N) with |N | = 2 can be formulated

by constructing a digraph network flow problem. The elements of network flow problems

are given in Appendix 2.D.

(i) If |D| = 2, (I) corresponds to a 1-commodity flow problem. An application

of the max flow-min cut theorem implies (2.3.3) in Corollary 2.1 is sufficient for the

implementability. Moreover, the max flow-min cut theorem provides a much tighter

condition than (2.3.3).
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(ii) If |D| ≥ 3, (I) corresponds to a (|D| − 1)-commodity flow problem. Due to the

lack of max flow-min cut theorems for such problems, it is unclear whether (2.3.3) is

sufficient for the implementability.

We now formulate (I) pinto a multicommodity flow problem. Let D = {0, 1, ..., n}.
First, single out d = 0 and define by change of variables for all d = 1, ..., n,7

Fd(t1, t2) =q(d, (t1, t2))λ(t1, t2), ∀(t1, t2) ∈ T,

ud(t1) =λ1(t1)Q1(d, t1), ∀t1 ∈ T1,

vd(t2) =λ2(t2)Q2(d, t2), ∀t2 ∈ T2.

Lemma 2.2 below shows that (I) is equivalent to the following problem (I1).

(I1). Given (ud, vd)
n
d=1 ∈ R|T1|×|T2|×n+ and

∑
t1∈T1 ud(t1) =

∑
t2∈T2 vd(t2), for all d =

1, ..., n, find a feasible solution F ∈ R|T |×n such that for all d = 1, ..., n,

0 ≤
n∑
d=1

Fd(t1, t2) ≤ λ(t1, t2), ∀(t1, t2) ∈ T,∑
t2∈T2

Fd(t1, t2) = ud(t1), ∀t1 ∈ T1,∑
t1∈T1

Fd(t1, t2) = vd(t2), ∀t2 ∈ T2.

Lemma 2.2: Let N = {1, 2}, D = {0, 1, ..., n}, with n ≥ 1, then (I) is equivalent to

(I1).

Proof of Lemma 2.2. For Q ∈ D1 to be implementable, we have for all d = 0, ..., n,∑
t1∈T1

λ1(t1)Q1(d, t1) =
∑
t2∈T2

λ2(t2)Q2(d, t2). (2.B.1)

Then we can restrict attention to all Q ∈ D1 that satisfy this condition. Also notice that

q(0, t) = 1−
n∑
d=1

q(d, t),∀t ∈ T,

Qi(0, ti) = 1−
n∑
d=1

Qi(d, ti),∀ti ∈ Ti, i = 1, 2.

Hence, (I) is equivalent to the following problem (I2).

(I2). Given (Q1(d, ·), Q2(d, ·))nd=1 ∈ R|T1|×|T2|×n+ and (2.B.1), find a feasible solution

7We abuse notation to denote a valuation function by vi and a utility function by ui for player i.
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(q(d, ·))nd=1 ∈ R|T |×n such that for all d = 1, ..., n,

0 ≤
n∑
d=1

q(d, t) ≤ 1,∀t ∈ T,∑
t2∈T2

q(d, t)λ2(t2) = Q1(d, t1),∀t1 ∈ T1,∑
t1∈T1

q(d, t)λ1(t1) = Q2(d, t2),∀t2 ∈ T2.

By change of variables, for d = 1, ..., n, let

q(d, ·)→ Fd, Q1(d, ·)→ ud, Q2(d, ·)→ vd.

It is easy to see that (I2) is equivalent to (I1). �

Now let {1, ..., n} be the commodities and construct a supply digraph Gn = (V,A)

with vertexes

V = ∪nd=1{rd} ∪ T1 ∪ T2 ∪nd=1 {sd}, (2.B.2)

and arcs A from each rd to each t1, from each t1 to each t2, and from each t2 to each sd.

The corresponding demand digraph Hn = (V ′, R) is given by

V ′ = {r1, s1, ..., rn, sn}, (2.B.3)

and R = {(rd, sd)nd=1}, where R contains all source-sink pairs of the commodities. Figure

2.B.1 illustrates (G2, H2) for T1 = {t1, t′1} and T2 = {t2, t′2}.

s1

t′2

t2

s2

r2

r1

t1 t′1

r2 s2

r1 s1

G2 H2

Figure 2.B.1
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Now the capacity function c : A→ R+ is defined by for all d = 1, ..., n,

c(t1, t2) = λ(t1, t2), ∀(t1, t2) ∈ T,

c(rd, t1) = ud(t1), ∀t1 ∈ T1,

c(t2, sd) = vd(t2), ∀t2 ∈ T2.

The demand function φ : R→ R+ is defined by for all d = 1, ..., n,

φ(rd, sd) =
∑
t1∈T1

ud(t1) =
∑
t2∈T2

vd(t2). (2.B.4)

A flow8 f = (fd)
n
d=1 with fd : A→ R+, d = 1, ..., n, satisfies

0 ≤
n∑
d=1

fd(a) ≤ c(a),∀a ∈ A, (2.B.5)∑
a∈δin(k)

fd(a) =
∑

a∈δout(k)

fd(a), ∀k ∈ V, k 6= rd, sd, d = 1, ..., n, (2.B.6)

where δin(k) is the set of arcs entering k and δout(k) is the set of arcs leaving k.

The value of a flow f is given by

val(fd) = fd(δ
out(rd)) = fd(δ

in(sd)), d = 1, ..., n. (2.B.7)

A feasible flow is a flow f with value

val(fd) = φ(rd, sd), d = 1, ..., n. (2.B.8)

The n-commodity flow problem (Gn, Hn, c, φ) is to find a feasible flow. For U ⊆ V ,

denote by cap(δoutA (U)) the total capacity of arcs of A leaving U and by φ(δoutR (U)) the

total demands of arcs of R leaving U .

Lemma 2.3: (I1) has a feasible solution if and only if for the problem (Gn, Hn, c, φ)

there exists a feasible flow.

Proof of Lemma 2.3. (Only If) Suppose (I1) has a solution F ∗. Define f = (fd)
n
d=1 by

fd(t1, t2) = F ∗d (t1, t2), ∀(t1, t2) ∈ T,

fd(rd, t1) = ud(t1),∀t1 ∈ T1,

fd(t2, sd) = vd(t2),∀t2 ∈ T2,

8We abuse notation to denote a flow by f . In other parts in the chapter, f is used as an element of
Rl.
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fd(rj, t1) = 0 if j 6= d,∀t1 ∈ T1,

fd(t2, sj) = 0 if j 6= d,∀t2 ∈ T2.

Then it is easy to see that f is a flow and it is a solution to (2.B.8).

(If) Suppose there exists a flow f ∗ satisfying (2.B.8). For any flow f , val(fd) ≤∑
t1∈T1 ud(t1) =

∑
t2∈T2 vd(t2), for all d = 1, ..., n. Then, f ∗ must satisfy

f ∗d (rd, t1) = ud(t1) =
∑
t2∈T2

f ∗d (t1, t2), ∀t1 ∈ T1,

f ∗d (t2, sd) = vd(t2) =
∑
t1∈T1

f ∗d (t1, t2), ∀t2 ∈ T2,

0 ≤
n∑
d=1

f ∗d (t1, t2) ≤ c(t1, t2), ∀(t1, t2) ∈ T.

Hence, f ∗ restricted to arcs in T is a solution to (I1). �

The following result shows that the cut condition of the multicommodity flow problem

(Gn, Hn, c, φ) is a subclass of linear inequalities in condition (2.3.3). It translates the

proof of sufficiency of condition (2.3.3) in a two-person implementation problem into the

proof of a generalized max flow-min cut theorem in a specific digraph. On the other

hand, there is no existing maximum flow-min cut theorem for digraph multicommodity

flow problems except for some very specific digraphs, see Schrijver (2013).

Lemma 2.4: Let N = {1, 2} and D = {0, 1, ..., n}, n ≥ 1. Consider the n-commodity

digraph flow problem (Gn, Hn, c, φ).

(i) The cut condition

φ(δoutR (U)) ≤ cap(δoutA (U)), for all U ⊆ V, (2.B.9)

is a subclass of (2.3.3), and it is equivalent to∑
d∈D′

[
∑
t1∈B1

ud(t1)−
∑

t1∈T1\B1

ud(t1) +
∑
t2∈B2

vd(t2)−
∑

t2∈T2\B2

vd(t2)] ≤ 2
∑

t1∈B1,t2∈B2

λ(t1, t2),

(2.B.10)

for all D′ ⊆ {1, ..., n}, B1 ⊆ T1, B2 ⊆ T2.

(ii) If the cut condition (2.B.9) is necessary and sufficient for a feasible flow, then

(2.B.9) is necessary and sufficient for the implementability.

Proof of Lemma 2.4. We first prove part (i). To see this, note that for any U ⊆ V ,

φ(δoutR (U)) =
∑
d∈D′

φ(rd, sd) =
∑
d∈D′

∑
t1∈T1

ud(t1), (2.B.11)
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where D′ = {d ∈ {1, ..., n} : rd ∈ U, sd /∈ U}, and

cap(δoutA (U)) =
∑

(rd,t1)∈S1

c(rd, t1) +
∑

(t1,t2)∈S0

c(t1, t2) +
∑

(t2,sd)∈S2

c(t2, sd)

=
∑

(rd,t1)∈S1

ud(t1) +
∑

(t1,t2)∈S0

λ(t1, t2) +
∑

(t2,sd)∈S2

vd(t2), (2.B.12)

where S1 = {(rd, t1) : rd ∈ U, t1 /∈ U}, S2 = {(t2, sd) : t2 ∈ U, sd /∈ U}, S0 = {(t1, t2) :

t1 ∈ U, t2 /∈ U}. Now the cut condition for U becomes∑
d∈D′

∑
t1∈T1

ud(t1) ≤
∑

(rd,t1)∈S1

ud(t1) +
∑

(t2,sd)∈S2

vd(t2) +
∑

(t1,t2)∈S0

λ(t1, t2). (2.B.13)

Let B1 = T1 ∩ U , B2 = T2 ∩ U , D′′ = {d ∈ {1, ..., n} : rd ∈ U, sd ∈ U}, and D′′′ = {d ∈
{1, ..., n} : rd /∈ U, sd /∈ U}. The cut condition for U is rewritten as∑
d∈D′

∑
t1∈T1

ud(t1) ≤
∑

d∈D′∪D′′

∑
t1∈T1\B1

ud(t1) +
∑

d∈D′∪D′′′

∑
t2∈B2

vd(t2) +
∑

t1∈B1,t2∈T2\B2

λ(t1, t2).

(2.B.14)

We claim that the cut condition for every U satisfying D′′ 6= ∅ or D′′′ 6= ∅ is implied by

the cut condition for Ũ derived from U satisfying D̃′ = D′∪D′′∪D′′′ and D̃′′ = D̃′′′ = ∅,
and S̃1 = S1, S̃2 = S2. Let Ũ = {rd}d∈D̃′ ∪ S̃1 ∪ S̃2, B̃1 = B1, and B̃2 = B2. The cut

condition for Ũ is given by∑
d∈D̃′

∑
t1∈T1

ud(t1) ≤
∑
d∈D̃′

∑
t1∈T1\B̃1

ud(t1) +
∑
d∈D̃′

∑
t2∈B̃2

vd(t2) +
∑

t1∈B̃1,t2∈T2\B̃2

λ(t1, t2), (2.B.15)

or ∑
d∈D′

∑
t1∈T1

ud(t1) +
∑

d∈D′′∪D′′′

∑
t1∈T1

ud(t1) ≤
∑

d∈D′∪D′′

∑
t1∈T1\B1

ud(t1) +
∑
d∈D′′′

∑
t1∈T1\B1

ud(t1)

+
∑

d∈D′∪D′′′

∑
t2∈B2

vd(t2) +
∑
d∈D′′

∑
t2∈B2

vd(t2) +
∑

t1∈B1,t2∈T2\B2

λ(t1, t2). (2.B.16)

Notice that ∑
d∈D′′

∑
t1∈T1

ud(t1) > −
∑
d∈D′′′

∑
t1∈B1

ud(t1) +
∑
d∈D′′

∑
t2∈B2

vd(t2) (2.B.17)

implies that the condition for Ũ is tighter than the condition for U . Now the cut condition

(2.B.9) is given by∑
d∈D′

[
∑
t1∈T1

ud(t1)−
∑

t1∈T1\B1

ud(t1)−
∑
t2∈B2

vd(t2)] ≤
∑

t1∈B1,t2∈T2\B2

λ(t1, t2), (2.B.18)

for all D′ ⊆ {1, ..., n}, B1 ⊆ T1, B2 ⊆ T2. Equivalently, (2.B.10) holds for all D′ ⊆
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{1, ..., n}, B1 ⊆ T1, B2 ⊆ T2. Hence, the cut condition corresponds to the condition in

(2.3.3) with all f satisfying fi(d, ti) = fi(d
′, ti) for all d, d′ ∈ {1, ..., n}, ti ∈ Ti, i = 1, 2.

Therefore, (2.B.9) is a subclass of (2.3.3).

(ii) In general, (2.B.9) is only a necessary condition for the existence of a feasible

flow in general digraph multicommodity flow problems, see Schrijver (2013). If (2.B.9)

is also sufficient for the feasibility, then by Lemma 2.3 and Lemma 2.4 (i), (2.B.9) is also

sufficient for the implementability. �

Proof of Theorem 2.2. Let N = {1, 2} and D = {0, 1}. Construct the digraph G1 =

(V,A) with r, s ∈ V (since n = 1, we drop the subscript d = 1 for r1, s1 and all other

variables). For any flow f ,

val(f) ≤ cap(δoutA (U)), ∀U ⊂ V, r ∈ U, s /∈ U. (2.B.19)

In particular,

val(f) ≤ cap(δoutA ({r})) =
∑
t1∈T1

u(t1). (2.B.20)

By Ford-Fulkerson Theorem (Lemma 2.5 in Appendix 2.D) and Lemma 2.3,∑
t1∈T1

u(t1) =
∑
t2∈T2

v(t2) = max
f

val(f) ≤ cap(δoutA (U)), (2.B.21)

for all U ⊂ V , r ∈ U, s /∈ U .

For U = {r} ∪ S1 ∪ S2 where S1 ⊆ T1, S2 ⊆ T2, the cut condition is given by∑
t1∈T1

u(t1) ≤
∑
t1 /∈S1

c(r, t1) +
∑

t1∈S1,t2 /∈S2

c(t1, t2) +
∑
t2∈S2

c(t2, s)

=
∑
t1 /∈S1

u(t1) +
∑

t1∈S1,t2 /∈S2

λ(t1, t2) +
∑
t2∈S2

v(t2). (2.B.22)

The implementability condition is equivalent to

∑
i∈N

∑
ti∈Si

Qi(1, ti)λi(ti)−
∑

ti∈(Si)c

Qi(1, ti)λi(ti)

 ≤∑
i∈N

λ(Si × S−i), (2.B.23)

for all Si ∈ Ti, i = 1, 2.

On the other hand, the condition in Corollary 2.1 is given by (See Proposition 2.2),

∑
i∈N

∑
ti∈Si

Qi(1, ti)λi(ti)−
∑
ti∈Si

Qi(1, ti)λi(ti)

 ≤∑
i∈N

λ(Si × (S−i)
c), (2.B.24)

for all Si, Si ∈ 2Ti , Si∩Si = ∅, i = 1, 2. Hence, (2.B.23) is a subclass of (2.B.24) by setting
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Si = Si and Si = (Si)
c, i = 1, 2. Since (2.B.23) is sufficient for the implementability,

(2.B.24) is also sufficient for the implementability. �

Proof of Theorem 2.3. We define a linear map Λ̃ : Rk → Rl̃ by, for any x ∈ Rk,

(Λ̃x)i(d, ti) =
∑

t−i∈T−i

x(d, t)λ−i(t−i), (2.B.25)

for all d ∈ D̃i, ti ∈ Ti, and i ∈ N . Then

PD̃(D) = Λ̃D0. (2.B.26)

Define a linear map Γ̃ : Rl̃ → Rl̃ by, for each x ∈ Rl̃,

(Γ̃x)i(d, ti) = λi(ti)xi(d, ti), (2.B.27)

for all d ∈ D̃i, ti ∈ Ti, and i ∈ N . Then, a similar step as Theorem 2.1 shows that

PD̃(D) and Γ̃PD̃(D) are convex and compact. A hyperplane separation theorem shows

that QD̃ ∈ PD̃(D) if and only if

〈fD̃, Γ̃QD̃〉 ≤ sup{〈fD̃, Γ̃Λ̃q〉 : q ∈ D0}, for all fD̃ ∈ Rl̃. (2.B.28)

This corresponds to condition (2.3.2) with all f ∈ Rl satisfying fi(d, ti) = 0 for all d ∈ D̃c
i ,

ti ∈ Ti, and i ∈ N . �

Appendix 2.C Proof of Proposition 2.1-2.4

Proof of Proposition 2.1. See Che, Kim and Mierendorff (2013) for a recent proof of the

condition (2.3.5) based on a single-commodity network flow problem. Here we show that

if the necessary condition given by all f ∈ {−1, 0,+1}l is sufficient for the implementabil-

ity, the necessary condition given by all f ∈ {0,+1}l is also sufficient.

Since (Qi(i, ·))i∈N\{0} are essential, by Theorem 2.3, we set f0(d, ·) = 0 for all d ∈ D,

and fi(d, ·) = 0 for all d 6= i, i ∈ N \ {0} in (2.3.3). Denote this subclass of f by C.
For any f̃ ∈ C that satisfies f̃ has some coordinate being −1, i.e. f̃j(j, ·)(t∗) = −1

for some j ∈ N \ {0} and tj = t∗, define f̂ ∈ C by replacing f̂j(j, t∗) = 0 while f̂ = f̃ for

all other coordinates. We show that in (2.3.3), the condition given by f̂ is tighter than

the condition given by f̃ . For every t ∈ T ∗ and f ∈ {−1, 0,+1}l,

max
d∈D
{
∑
i∈N

fi(d, ti)} = max{0, max
i∈N\{0}

fi(i, ti)}. (2.C.1)

Let T ∗ = {t ∈ T : tj = t∗}. For any t ∈ T ∗, d = j is not an optimal solution to (2.C.1)
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given f̃ . Then for each t ∈ T ∗,

max
i∈N
{f̃i(i, ti)} = max

i∈N
{f̂i(i, ti)}. (2.C.2)

Then,

L(f̃) = −Qj(j, t∗)λj(t∗)−
∑
t∈T ∗

max
i∈N
{f̃i(i, ti)}λ(t) +K, (2.C.3)

and

L(f̂) = −
∑
t∈T ∗

max
i∈N
{f̂i(i, ti)}λ(t) +K, (2.C.4)

where

K =
∑
i∈N

∑
ti∈Ti

f̃i(i, ti)Qi(i, ti)λi(ti) +Qj(j, t∗)λj(t∗)−
∑

t∈T\T ∗
max
i∈N
{f̃i(i, ti)}λ(t). (2.C.5)

It is easy to see that L(f̃) ≤ L(f̂) since Qj(j, t∗) ≥ 0. Repeat this procedure and replace

all −1 by 0. This completes the proof. �

For general implementation problems, the extreme allocation rules that generate the

extreme points of the set of implementable reduced forms generalize the “hierarchical

allocation rules” of Border (1991) for single object auctions without externalities.

Definition 2.2: q∗ ∈ D0 is a generalized hierarchical allocation rule, if there exists

f ∈ Rl such that sup{〈f,ΓΛq〉 : q ∈ D0} is attained at q∗.

Denote by h(f) = sup{〈f,ΓΛq∗〉 : q ∈ D0} the value of the support function at

f . The proofs of Propositions 2.2 and 2.4 provide a characterization of the generalized

hierarchical allocation rules for social choice problems in Section 2.4.

In the remainder of the proofs, we represent a vector in {−1, 0,+1}l by a system of

sign functions. For any Ai = (Ai, Ai) ∈ 2Ti × 2Ti such that Ai ∩ Ai = ∅, define a sign

function by χAi
= χAi

− χAi
. Then it is easy to see that if f ∈ {−1, 0,+1}l, then for

i ∈ N , ti ∈ Ti, fi(d, ti) = χAi
(ti) for some Ai.

Proof of Proposition 2.2. The formal proof has been given by Theorem 2.2. We now

compute the hierarchical allocation rules. Let Bi, Bi ∈ 2Ti , Bi ∩ Bi = ∅, i = 1, 2.

Consider f = (f1(b, ·), f2(b, ·)) = (χB1
− χB1

, χB2
− χB2

). For each t ∈ T , consider the

point-wise maximization problem given by

max
q∈D0

∑
i∈N

(χBi
(ti)− χBi

(ti))q(b, t). (2.C.6)

In Table 2A.1, the first two columns denote type profiles, i.e. (1, 1) corresponds to

t ∈ B1 × B2. The third column provides the point-wise solution and the last column is
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the maximum value of this problem. The set of all hierarchical allocation rules with the

normal vector f , denote D∗0(f), is found by combining the solutions for all type profiles

in Table 2A.1.

In this case, for any selection q̃∗ ∈ D∗0(f), the value of the support function at f is

given by ∑
t∈T

∑
i∈N

(χBi
− χBi

)q̃∗(b, t)λ(t) = λ(B1 ×B2) + λ(
⋃
i∈N

Bi × (B−i)
c)

= λ(B1 × (B2)c) + λ((B1)c ×B2).

f1(b, t1) f2(b, t2) q∗(b, t) Value

1 1 1 2

1 0 1 1

1 −1 [0, 1] 0

0 1 1 1

0 0 [0, 1] 0

0 −1 0 0

−1 1 [0, 1] 0

−1 0 0 0

−1 −1 0 0

Table 2A.1

�

Proof of Proposition 2.3. See Lemma 2.4 in Appendix 2.B, by setting |D| = 3. �

Proof of Proposition 2.4. Since (Q1(1, ·), Q2(2, ·), Q1(b, ·), Q2(b, ·)) are essential, by The-

orem 2.3, we set f1(0, ·), f2(0, ·), f1(2, ·), and f2(1, ·) to be 0 in (2.3.3).

max
q∈D0

∑
i∈N

fi(i, ti)q(i, t) +
∑
i∈N

fi(b, ti)q(b, t) = max{0, f1(1, t1), f2(2, t2), f1(1, t1) + f2(2, t2)}.

First notice that a similar argument as Proposition 2.1 implies that we need only to

consider f = (f1(1, ·), f2(2, ·), f1(b, ·), f2(b, ·)) where fi(i, ti) ≥ 0, for all ti ∈ Ti, i = 1, 2.

Let Ai, Bi, Bi ∈ 2Ti , Bi∩Bi = ∅, i = 1, 2. Consider f = (χA1 , χA2 , χB1
−χB1

, χB2
−χB2

).

For each t ∈ T , consider the point-wise maximization problem

max
q∈D0

∑
i∈N

χAi
(t)q(i, t) +

∑
i∈N

(χBi
(ti)− χBi

(ti))q(b, t). (2.C.7)

The solutions are given in Table 2A.2. The first two columns denote type profiles, i.e.

(1, 1, 1, 1) corresponds to (A1 ∩ B1) × (A2 ∩ B2). The third column provides the point-

wise solution and the last column is the point-wise maximum value of this problem. All
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hierarchical allocation rules, or D∗0(f), are found by combining the solutions for all type

profiles.

f1(1, t1) f1(b, t1) f2(2, t2) f2(b, t2) (q∗(1, t), q∗(2, t), q∗(b, t)) Value

1 1 1 1 qb = 1 2

1 1 1 0 q1 + q2 + qb = 1 1

1 1 1 −1 q1 + q2 = 1 1

1 1 0 1 qb = 1 2

1 1 0 0 q1 + qb = 1 1

1 1 0 −1 q1 = 1 1

1 0 1 1 q1 + q2 + qb = 1 1

1 0 1 0 q1 + q2 = 1 1

1 0 1 −1 q1 + q2 = 1 1

1 0 0 1 q1 + qb = 1 1

1 0 0 0 q1 = 1 1

1 0 0 −1 q1 = 1 1

1 −1 1 1 q1 + q2 = 1 1

1 −1 1 0 q1 + q2 = 1 1

1 −1 1 −1 q1 + q2 = 1 1

1 −1 0 1 q1 = 1 1

1 −1 0 0 q1 = 1 1

1 −1 0 −1 q1 = 1 1

0 1 1 1 qb = 1 2

0 1 1 0 q2 + qb = 1 1

0 1 1 −1 q2 = 1 1

0 1 0 1 qb = 1 2

0 1 0 0 qb = 1 1

0 1 0 −1 0 ≤ q1 + q2 + qb ≤ 1 0

0 0 1 1 q2 + qb = 1 1

0 0 1 0 q2 = 1 1

0 0 1 −1 q2 = 1 1

0 0 0 1 qb = 1 1

0 0 0 0 0 ≤ q1 + q2 + qb ≤ 1 0

0 0 0 −1 0 ≤ q1 + q2 ≤ 1, qb = 0 0

0 −1 1 1 q2 = 1 1

0 −1 1 0 q2 = 1 1

0 −1 1 −1 q2 = 1 1

0 −1 0 1 0 ≤ q1 + q2 + qb ≤ 1 0

0 −1 0 0 0 ≤ q1 + q2 ≤ 1, qb = 0 0

0 −1 0 −1 0 ≤ q1 + q2 ≤ 1, qb = 0 0

Table 2A.2

Case 1. t ∈ T ′ = B1×B2. For such a profile, the probability weighted value is 2λ(t).

Case 2. t ∈ T ′′, the intersection of (A1)c× (A2)c and T \ ((B1× (B2)c)∪ (B1)c×B2).

For such a profile, the probability weighted value is 0.

Case 3. t ∈ T \ (T ′ ∪ T ′′). For such a profile, the probability weighted value is λ(t).
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Now, compared to λ(T ) = 1, where each type profile counts once, the support function

counts t ∈ T ′ twice and t ∈ T ′′ zero times. The value of the support function at f is

given by

h(f) = 1 + λ(T ′)− λ(T ′′). (2.C.8)

Denote

TA = (A1)c × (A2)c, TB = (B1 × (B2)c) ∪ ((B1)c ×B2).

Then, T cA = ∪i∈N(Ai × T−i), T ′′ = TA ∩ T cB, and

h(f) =1 + λ(T ′)− λ(TA ∩ T cB) = λ(T ′) + λ((TA ∩ T cB)c) = λ(T ′) + λ(T cA ∪ TB).

Furthermore,

λ(T ′) + λ(T cA ∪ TB) =λ(T cA) + (λ(T ′) + λ(TB))− λ(T cA ∩ TB)

=λ(T cA) + λ(B1 × (B2)c) + λ((B1)c ×B2)− λ(T cA ∩ TB)

≤λ(T cA) + λ(B1 × (B2)c) + λ((B1)c ×B2).

Hence, compared to the conditions in Proposition 2.1 and 2.2, the condition in Proposi-

tion 2.4 is tighter. �

Appendix 2.D Single and Multicommodity Flow Problems

We first introduce a single commodity maximum flow problem. Let G = (V,A) be a

directed graph and let r, s ∈ V be the source and the sink. For any k ∈ V , denote δin(k)

as the set of the arcs entering k and δout(k) the set of arcs leaving k. Let c : A→ R+ be

a capacity function. A function f : A→ R+ is an r − s flow if

0 ≤ f(a) ≤ c(a),∀a ∈ A, (2.D.1)∑
a∈δin(k)

f(a) =
∑

a∈δout(k)

f(a),∀k ∈ V \ {r, s}. (2.D.2)

The value of an r − s flow f is given by

val(f) =
∑

a∈δout(r)

f(a)−
∑

a∈δin(r)

f(a). (2.D.3)

So, the value is the net amount of flow leaving r (δin(r) = ∅). It is also equal to the net

amount of flow entering s.

A set C of arcs is a r − s cut if C = δout(U) for some subset U ⊂ V with r ∈ U and
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s /∈ U . For such a U , let

cap(δoutA (U)) =
∑

a∈δout(U)

c(a). (2.D.4)

The 1-commodity maximum flow problem now is to find an r−s flow of maximum value.

Lemma 2.5: (Ford-Fulkerson, 1956) For any one-commodity flow problem with di-

graph G = (V,A), r, s ∈ V and c : A→ R+, the maximum flow is equal to the minimum

cut, or

max
f : r−s flow

val(f) = min
U : r−s cut

cap(δoutA (U)). (2.D.5)

Now we introduce a multicommodity flow problem. Let G = (V,A) be a supply

digraph with multiple commodities d = 1, ..., n, sources and sinks (rd, sd)
n
d=1, and the

capacity function c : A→ R+. The corresponding demand digraph H = (V ′, R) is given

by V ′ = {r1, s1, ..., rn, sn} and R = {(rd, sd)nd=1}, which contains all source-sink pairs. A

demand function is given by φ : R → R+. A flow f = (fd)
n
d=1 contains fd : A → R+,

d = 1, ..., n, satisfying

0 ≤
n∑
d=1

fd(a) ≤ c(a),∀a ∈ A, (2.D.6)∑
a∈δin(k)

fd(a) =
∑

a∈δout(k)

fd(a),∀k ∈ V, k 6= rd, sd, d = 1, ..., n. (2.D.7)

The value of the flow f is given by

val(fd) = fd(δ
out(rd)) = fd(δ

in(sd)), d = 1, ..., n. (2.D.8)

For U ⊆ V , denote cap(δoutA (U)) the total capacity of arcs of A leaving U , and denote

φ(δoutR (U)) the total demands of arcs of R leaving U . A flow f subject to c with value φ

is called feasible. A problem (G,H, c, φ) is to find a feasible flow.
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Chapter 3

Nonexistence of Monotone Solutions in

Two-Person Bargaining Problems with

Incomplete Information

3.1. Introduction

For bargaining problems between a buyer and a seller with incomplete information,

Myerson and Satterthwaite (1983) shows that if the seller and the buyer have independent

beliefs with a common support, there is no ex post (Pareto) efficient, ex post budget

balanced, individually rational, and incentive compatible trading mechanism. In the ex

ante efficient mechanism that maximizes the trading surplus, each player’s interim utility

is responsive to his valuation of the object.1 However, in this environment, trade is not

always ex post efficient.2 This raises a question: If the disagreement payoffs are private

information for both players and trade is always ex post efficient, does there exist a

trading mechanism that is ex post efficient and responsive to the players’ disagreement

payoffs?

To illustrate this problem, let us consider a simple example. There are two risk

neutral players that jointly produce a private good from complementary inputs, one

from each player. Assume that it is common knowledge that producing the object and

allocating it to one player yields utility 3 for this player and 0 for the other player. The

costs of inputs are privately observed by each player and independently drawn from 0

and 1 with equal probabilities.

For this bargaining problem with incomplete information, several incentive compat-

ible and individually rational solutions have been proposed. The ex ante utilitarian

solution (Myerson and Satterthwaite, 1983), which maximizes the ex ante trading sur-

plus, requires producing the object with probability one and yields interim utility 3/2

for both types of the players. The ex ante utilitarian solution is ex post efficient but

not monotonic with respect to the costs at the interim stage. The generalized Nash so-

1For illustration, suppose the seller and the buyer have independent private values and ṽs, ṽb ∼ U [0, 1].
In the ex ante efficient mechanism, trade occurs if vb > vs + 1/4 and no trade occurs otherwise. The

interim utilities are given by Us(vs) = Us(1) −
´ 1
vs
Qs(x)dx and Ub(vb) = Ub(0) +

´ vb
0
Qb(x)dx, where

Qs(x) = max{0, 34 − x} and Qb(x) = min{1, 14 + x} for x ∈ [0, 1]. Hence, Us is increasing in vs and Ub
is increasing in vb.

2There exists some vb < vs such that trade is inefficient.
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lution (Harsanyi and Selten, 1975, Myerson, 1979), which maximizes the Nash product

weighted by the marginal probabilities of the types, requires producing the object with

a probability less than one and yields interim utility 3/4 for the low type and 3/2 for

the high type of each player.3 The generalized Nash solution is monotonic but not ex

post efficient. Do these drawbacks disqualify these solutions? We show that the answer

is No, because there is no solution that is both ex post efficient and monotone.

Requiring each player’s utility outcome being responsive to his disagreement payoff is

a desirable property. In case of an exchange economy, it requires that a player is rewarded

for having a larger initial endowment. The monotonicity is consistent with but weaker

than an equal sharing of the trading surplus between the players. The players may accept

the monotonicity as an egalitarian criterion. In the axiomatic theory of bargaining, the

Nash solution, the Kalai-Smorodinsky solution, and the egalitarian solution are weakly

responsive to the disagreement payoffs (Thomson, 1987). For bargaining procedures

with complete information, Crawford (1979) studies a class of multistage procedures

where the right to propose a division is auctioned off to players. A prominent aspect of

this procedure is that any change in the status quo is reflected in the final outcome.4

Hence, if there is complete information, the most well-known bargaining solutions are

monotonic in the disagreement payoffs and “disagreement point monotonicity” has even

been proposed as an axiom.

In this chapter, we consider bargaining problems with possibly correlated information

on the disagreement payoffs of the players. When the status quo is always ex post

inefficient, requiring ex post efficiency of the solution implies that the disagreement

is never implemented. The uncertainty of the disagreement payoffs has no material

consequence but it may still have strategic meaning. To characterize such monotonicity

for bargaining with incomplete information, we introduce the following property on utility

outcomes: Each player’s equilibrium interim utility is non-constant and is nondecreasing

in one’s own disagreement payoff throughout the support. We find that if the players’

beliefs are independent, then each player’s interim utility is independent of the type of

this player. Thus, searching for any possibility result of non-constant interim utility must

go beyond independent beliefs.5 In some contexts, the players’ disagreement payoffs are

positively correlated, i.e. either (i) both players face similar outside market conditions

3A random allocation mechanism that implements the generalized Nash solution is as follows: If both
players report 0, then allocate the object to each player with probability 1/2; If only one player reports
1, with probability 1/2, allocate the object to this player, and with probability 1/2, there is no joint
production; If both players report 1, then with probability 1, there is no joint production.

4In contrast, Rubinstein (1982)’s bargaining procedure requires that a slight increase in a sufficiently
low status quo does not affect the outcome.

5In Myerson and Satterthwaite’s environment, the correlation between players’ beliefs might overcome
the impossibility result. By extending the full extraction of surplus result in Crémer and McLean (1988)
to a continuum of states, McAfee and Reny (1992) shows that for a broad class of correlated beliefs,
there exists some ex post efficient and individually rational mechanism, provided that ex post budget
balance is replaced by ex ante budget balance.
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or (ii) they have been in some agreement in which they share some common interest.

In other contexts, the players’ disagreement payoffs can be negatively correlated; for

example, when the players play a zero-sum game in case of conflict.

With positively correlated beliefs, it is not obvious that a better outside option will

improve one’s interim expected utility in an ex post efficient mechanism. After all, a

player who draws a higher disagreement payoff has a more pessimistic belief on the

other’s disagreement payoff and his interim expected utility may hence turn out to be

lower. With negatively correlated beliefs, a player with a better disagreement payoff is

more optimistic and the interim expected utility is more likely to be higher. However,

we find this is not the case even for negatively correlated beliefs, provided that trade

is always ex post efficient. The main results show that for finite type sets, incentive

compatible, ex post efficient and monotone solutions do not exist for both positively and

negatively correlated beliefs, if (i) The support of beliefs contains two types for each

player, and (ii) The beliefs have uniform marginal probabilities.

Myerson (1979, 1985) implicitly mentions the tradeoff between ex post efficiency and

interim monotonicity. Myerson (1979) considers a two-person public project example

with one-sided private information, where building the project is always ex post efficient.

He shows that the incentive compatible generalized Nash solution yields a monotone

but inefficient utility allocation. Myerson (1985) considers a version of Akerlof’s lemon

problem, in which only the seller has private information related to the quality of the

object. The buyer always values the object higher than the seller and trade is always ex

post efficient. Myerson shows that for one of the neutral bargaining solutions he propose,

the seller’s interim utility is also monotone but the outcome is ex post inefficient. This

chapter develops Myerson’s observations into more general impossibility results for two-

sided uncertainty and correlated beliefs. The implications are twofold. First, it reflects

a conflict of ex post efficiency and interim utility monotonicity: Either the players have

to forgo some gains from agreement or they have to accept a constant division even if

their outside options turn out to be different. Second, it provides a theoretical model for

why the breakdown of an obviously beneficial agreement is observed so often in the lab

(Roth, 1995).

Our model relates to Börgers and Postl (2009), which considers a modified Myer-

son and Satterthwaite environment where (i) players’ ordinal preferences are common

knowledge while cardinal preferences are private information, and (ii) there is no status

quo. While our assumption on players’ ordinal preferences is similar to Börgers and Postl

(2009), we consider a different assumption on the cardinal preferences. It is worth to

notice while the two models differ in the assumptions on the supports for private values,

the models have the same set of decisions options and the same feasibility problem. In

both models, to characterize the set of incentive compatible mechanisms, the same feasi-

bility problem arises. While the ex ante utilitarian solution in Börgers and Postl (2009)
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is still open, the ex ante utilitarian solution in the model of this chapter is trivial.

The remainder of this chapter is as follows. Section 3.2 introduces the model. Sections

3.3 and 3.4 discuss efficiency and monotonicity separately. Section 3.5 characterizes the

non-constant ex post efficient solutions. Section 3.6 discusses the ex post properties and

the model with more than two players. Section 3.7 concludes.

3.2. Model

Two players have the opportunity to jointly produce one unit of a private good from

complementary inputs, one from each player. The set of social alternatives is D =

{d0, d1, d2}. The choice d0 is the disagreement point, in which case players i = 1, 2

receive payoffs t = (t1, t2) ∈ T ⊂ R2. For i = 1, 2, the choice di means that producing

the object and allocating it to player i, which yields utility Vi > 0 for player i and 0 for

the other player. We assume that (V1, V2) are commonly known by the players and that

each player i privately observes his own disagreement payoff ti. The players bargain over

which decision to select and randomization is allowed. We now introduce the model’s

assumptions.

Assumption 3.1: (t̃1, t̃2) has a joint probability density f : T → R++, where T =

S × S and either (i) S = [0, 1] and f is a continuous density function, or (ii) S =

{s1, ..., sn} ⊂ [0, 1] for some n ≥ 2.

In Section 3.6, we discuss other support assumptions.

Assumption 3.2: f(s, s′) = f(s′, s), for all s, s′ ∈ S.

For i = 1, 2, denote fi(ti) the marginal probability of player i, or
´
S
f(t)dtj, for j 6= i,6

and fj(tj|ti) the conditional probability of player i, or f(t)/fi(ti). Independent beliefs

correspond to f(t) = f1(t1)f2(t2) for all t ∈ T . Denote F the set of beliefs satisfying the

assumptions 3.1 and 3.2.

Assumption 3.3: For i = 1, 2, player i has a von Neumann-Morgenstern utility

function ui : ∆(D)×S → R given by ui(q, ti) = q0ti+qiVi, where q = (q0, q1, q2) ∈ ∆(D),

and V1 = V2 = V .

We assume the players have private values on their disagreement payoffs. V1 = V2 is

a normalization. Since a player has a vNM utility function, we can normalize his utility

from the best alternative to V and the worst alternative to 0. Then, the symmetric

supports in Assumption 3.1 require some interpersonal comparison of utilities.

We say q ∈ ∆(D) is ex post (Pareto) efficient at t ∈ T if there exists no q′ ∈ ∆(D)

such that ui(q, ti) ≤ ui(q
′, ti), with at least one inequality strict. q ∈ ∆(D) is ex post

6Here we use the integral symbol for both continuous and finite supports.
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utilitarian efficient at t ∈ T if q is a solution to maxu1(q, t1)+u2(q, t2). We now introduce

the final assumption in this chapter.

Assumption 3.4: V > 2.

Note that Assumption 3.4 implies that for every t ∈ T , every q′ ∈ ∆(D) with q′0 > 0

is ex post Pareto dominated: there exists q ∈ ∆(D) with q0 = 0 such that ui(q
′, ti) <

ui(q, ti), i = 1, 2. Hence, ex post Pareto efficiency and ex post utilitarian efficiency

coincide in our model, which requires that for each state, d0 is selected with probability

0. The linearity of the utility functions then implies that an increase in q1 requires the

same decrease in q2 and the transfer rate is 1:1 for the players. This feasibility constraint

mimics a balanced budget constraint in the quasilinear case, except that transfers are

now bounded. In Börgers and Postl (2009), it is assumed that V = 1. In that case, the

status quo is not always ex post inefficient, which is similar to the support condition of

Myerson and Satterthwaite (1983).

A random allocation mechanism is given by q : T → ∆(D). If player i = 1, 2 reports

t̂i instead of his true type ti, while the other player is honest, then i’s interim expected

utility is given by7

Ui(q, t̂i|ti) =

ˆ
S

ui(q(t̂i, tj), ti)fj(tj|ti)dtj. (3.2.1)

We say q is incentive compatible (IC) if truthful reporting by both players constitutes

a Bayesian equilibrium. Denote the interim utility under truthful reporting by Ui(q|ti) =

Ui(q, ti|ti). We say q is individually rational (IR) if Ui(q|ti) ≥ ti, for all ti ∈ S, i = 1, 2.

q is ex post efficient (EFF) if q1(t) + q2(t) = 1, for all t ∈ T . Notice that if q is ex post

efficient, then q is fully determined by q1.

In general, a mechanism may be asymmetric among players. Since our environment

is symmetric, i.e. it has symmetric beliefs and symmetric utility functions of players,

Lemma 3.1 shows that we can restrict our attention to symmetric mechanisms (SYM),

where q1(s, s′) = q2(s′, s), q0(s, s′) = q0(s′, s), for all s, s′ ∈ S.

Lemma 3.1: Let f ∈ F . Consider any asymmetric mechanism q. If q satisfies

IC, IR and Ui(q|ti) is (weakly) increasing in ti on S for i = 1, 2, then there exists a

symmetric mechanism q̃ that satisfies IC, IR and Ui(q̃|ti) is (weakly) increasing in ti on

S for i = 1, 2.

Proof. Define q∗ = (q0, q2, q1). Then, q∗ is also IC and IR. Since q, q∗ are IC, IR, and the

integral operator is linear, q̃ = 1/2q+1/2q∗ is IC, IR and SYM. Since for i = 1, 2, Ui(q|ti)
and Ui(q

∗|ti) are (weakly) increasing in ti on S, Ui(q̃|ti) = 1/2Ui(q|ti) + 1/2Ui(q
∗|ti) is

(weakly) increasing in ti on S. �

7For a pair of types (ti, tj), the first coordinate in q corresponds to player i. For a pair of types
without specifying players i and j, the first coordinate in q corresponds to player 1.
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In the remainder of this chapter, we say a mechanism is feasible if it satisfies incentive

compatibility, individual rationality, and symmetry. The (symmetric) constant solution

is defined by q(t) = (0, 1/2, 1/2) for all t ∈ T . We say a feasible mechanism q is interim

utility equivalent to the constant solution if Ui(q|ti) = V/2, for all ti ∈ S, i = 1, 2.

3.3. Existence of Efficient Solutions

In Myerson and Satterthwaite (1983), the status quo (no trade) is ex post efficient for

some states of the world. In their case, there does not exist any incentive compatible,

individually rational, budget balanced, and ex post efficient mechanism. In our model,

the Myerson and Satterthwaite impossibility does not arise, because the constant solution

is ex post efficient.

Lemma 3.2: Let f ∈ F . There exists a feasible and ex post efficient mechanism.

Notice that there may exist other feasible and ex post efficient mechanisms. To see

the multiplicity, suppose f(t) = 1 for all t ∈ [0, 1]2. Consider a class of feasible and ex

post efficient mechanisms given by

q1(t) =
1

2
+

1

2‖h‖∞
h(t1 − t2) for all t ∈ [0, 1]2, (3.3.1)

where

(i) h : [−1, 1]→ R is continuous, and

(ii) h(x) = h(x+ 1) for all x ∈ [−1, 0], and

(iii) h(x) = −h(−x) for all x ∈ [−1, 0], and

(iv) ‖h‖∞ = maxx∈[−1,1] h(x).

Then, such a mechanism is a solution to

ˆ 1

0

q1(t)f2(t2)dt2 =
1

2
, for all t1 ∈ [0, 1], (3.3.2)

ˆ 1

0

q2(t)f1(t1)dt1 =
1

2
, for all t2 ∈ [0, 1]. (3.3.3)

To see the result intuitively, notice that for each reporting profile, the mechanism pre-

scribes a fair lottery plus a probability premium determined by the difference of the

players’ reports. The condition (ii) is used for incentive compatibility while the condi-

tions (iii) and (iv) are required by ex post feasibility. Player 1 receives the same utility

by reporting 1 or 0, and the expected value of the premium (multiplied by 2‖h‖∞) is

given by ˆ 1

0

h(1− x)dx =

ˆ 1

0

h(−x)dx =

ˆ 1/2

−1/2

h(x)dx = 0. (3.3.4)
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Similarly, for any other report in [0, 1], the expected value of the premium is also zero.

Hence, player 1 is indifferent among all reports.8

3.4. Existence of Monotone Solutions

For this bargaining problem, we introduce an interim monotonicity property: At the

interim stage, each player’s interim expected utility is (i) non-constant and (ii) nonde-

creasing everywhere in his disagreement payoff.

Definition 3.1: Let f ∈ F and let q be a feasible mechanism. We say q is interim

monotone (I-M) if, (i) for i = 1, 2 and all u ∈ R, the event {ti ∈ S : Ui(q|ti) = u} has

a probability measure less than 1, and (ii) for i = 1, 2, Ui(q|t′i) ≤ Ui(q|ti) for all t′i ≤ ti,

ti, t
′
i ∈ S.

We discuss the extension to the ex post utility profile and ex post monotonicity in

Section 3.6. Notice that for α ∈ [0, 1/2), the lottery mechanism q(t) = (1− 2α, α, α) for

all t ∈ T , which is independent of reports, yields an interim monotone allocation. The

following result is immediate.

Lemma 3.3: Let f ∈ F . There exists a feasible and interim monotone mechanism.

3.5. The Impossibility Results

In Sections 3.3 and 3.4, we have shown that there exist (i) some feasible and ex post effi-

cient solution which is not interim monotone, and (ii) some feasible and interim monotone

solution which is not ex post efficient. In this section, we show that the incompatibility

of efficiency and interim monotonicity holds for all independent beliefs and for a broad

class of correlated beliefs.

3.5.1. Independence

The example in Section 3.3 illustrates that the set of feasible and ex post efficient mech-

anisms can be quite large for independent beliefs. However, the next result shows that

all these mechanisms yield the same interim utility.

8There exists another class of asymmetric solutions. For a ∈ [−1, 1], define

qa1 (t) = 1
2 (1 + a− 2a(t1 + t2) + 4at1t2).

Then, qa is a solution to this problem. To see the intuition, let a = 1. If player 2 reports t2 > 1/2, then
to maximize q1, player 1 will report 1. If player 2 reports t2 < 1/2, then player 1 will report 0. Hence, a
higher report may increase or decrease the probability of winning for player 1. For player 2 with types
uniformly distributed on [0, 1], the mechanism ensures that player 1 is indifferent between these reports.
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Proposition 3.1: Let f ∈ F and let the beliefs be independent. If a feasible mech-

anism is ex post efficient, then it is interim utility equivalent to the constant solution.

Proof. Let q be a feasible and ex post efficient solution. q0(t) = 0 for all t ∈ T implies that

for i = 1, 2, ui(q(t̂i, tj), ti) = ui(q(t̂i, tj), t
′
i), for all tj, t̂i, ti, t

′
i ∈ S. Independence implies

fj(tj|ti) = fj(tj), for all tj, ti ∈ S. Thus, for all t̂i, ti, t
′
i ∈ S, Ui(q, t̂i|ti) = Ui(q, t̂i|t′i). IC

implies Ui(q|·) is a constant and by SYM, it is V/2. �

Notice that ex post efficiency and independence imply that a player’s disagreement

payoff has neither payoff consequences nor strategic consequences. In other words, a

player’s interim utility from any report is independent of his true type.

Proposition 3.1 is robust to an increase in the number of players. Let N be a finite

set of players, |N | ≥ 3, and assume that the assumptions from Section 3.2, appropriately

modified, continue to hold. A similar analysis shows that if V > |N |, the impossibility

result remains true.

3.5.2. Correlation

Proposition 3.1 implies that any possibility result for interim non-constant solutions

requires correlated beliefs. In this subsection, we obtain an impossibility result for two

classes of correlated beliefs on finite supports. Firstly, this result holds if only two values

are possible. Secondly, it holds if the beliefs have the uniform marginals.

Proposition 3.2: Let S = {0, 1}. If a feasible mechanism is ex post efficient, then

it is interim utility equivalent to the constant solution.

Proof. Let q be a feasible and ex post efficient solution. Consider IC for player 1 of type

s ∈ S (multiplied by f1(s)/V ),∑
t2∈S

f(s, t2)q1(s, t2) ≥
∑
t2∈S

f(s, t2)q1(s′, t2), for s′ 6= s. (3.5.1)

In other words, for s′ 6= s,

f(s, s)(q1(s, s)− q1(s′, s)) ≥ f(s, s′)(q1(s′, s′)− q1(s, s′)). (3.5.2)

By SYM and EFF, q1(s, s′) = 1 − q2(s, s′) = 1 − q1(s′, s) and q1(s, s) = q1(s′, s′) = 1/2.

For q1(s, s′) < 1/2, IC for type s is violated. For q1(s, s′) > 1/2, IC for type s′ is violated.

Hence, q1(s, s′) = q1(s′, s) = 1/2. Each player’s interim utility must be a constant. �

Intuitively, in case of reporting profile (1, 1) or (0, 0), the winning probability for

each player is 1/2. In case of reporting profile (0, 1) or (1, 0), one of the players must be

rewarded with a winning probability more than 1/2. Suppose the player who reports 1
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is rewarded. Then, it is a dominant strategy for any player to report 1. Hence, there

exists no mechanism that rewards one player while punishes the other in case the players

make different reports.

This result is independent of positively and negatively correlated beliefs. It counters

the intuition that having negatively correlated beliefs makes it easier to have a monotone

solution.

Proposition 3.3: Let S = {s1, ..., sn}, n > 2, and∑
t2∈S

f(t) = 1/n, for all t1 ∈ S, (3.5.3)∑
t1∈S

f(t) = 1/n, for all t2 ∈ S. (3.5.4)

If a feasible mechanism is ex post efficient, then it is interim utility equivalent to the

constant solution.

Proof. Let q be a feasible and ex post efficient solution. IC for player 1 of type s ∈ S
(multiplied by f1(s)/V ) is the same as (3.5.1). SYM implies q1(s, s′) = q2(s′, s) for all

s, s′ ∈ S. EFF implies q2(s, s′) = 1 − q1(s, s′), and q1(s, s) = 1/2 for all s, s′ ∈ S, Sum

over n× (n− 1) inequalities for all s′ ∈ S and all s ∈ S, we have

2
∑
s∈S

f(s, s)q1(s, s) +
1

2

∑
s∈S

∑
t2 6=s

f(s, t2)[q1(s, t2) + q1(t2, s)]

≥
∑
s∈S

f(s, s) +
∑
s∈S

∑
t2 6=s

f(s, t2)q1(s, s) +
n∑
k=1

[
∑

t2 6=sk+1

f(sk, t2)−
∑
t2 6=sk

f(sk+1, t2)]q1(sk+1, sk)

=
∑
s∈S

f(s, s) +
1

2

∑
s∈S

∑
t2 6=s

f(s, t2) +
n∑
k=1

[f1(sk)− f1(sk+1)]q1(sk+1, sk), (3.5.5)

where sn+1 := s1 and the last equality uses the fact that∑
t2 6=sk+1

f(sk, t2)−
∑
t2 6=sk

f(sk+1, t2) =
∑

t2 6=sk+1

f(sk, t2) + f(sk, sk+1)−
∑
t2 6=sk

f(sk+1, t2)− f(sk, sk+1)

= f1(sk)− f1(sk+1). (3.5.6)

Equivalently,

0 ≥
n∑
k=1

[f1(sk)− f1(sk+1)]q1(sk+1, sk). (3.5.7)

Because f1(sk) = f1(sk+1) for all k = 1, ..., n,

n∑
k=1

[f1(sk)− f1(sk+1)]q1(sk+1, sk) = 0. (3.5.8)
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Hence, all 2n× (n− 1) inequalities are binding. Each player’s interim utility must be a

constant. By SYM, this constant is V/2. �

The class of correlated beliefs with the uniform marginals is not too “small” com-

pared to the class of independent beliefs, in terms of the number of free parameters in

beliefs. For beliefs without restrictions, the probability simplex condition implies the

total degrees of freedom are n2 − 1. For the class of independent beliefs,

f1(s1), ..., f1(sn−1), f2(s1), ..., f2(sn−1),

are 2(n− 1) parameters. The degrees of freedom are given by

n2 − 1− 2(n− 1).

For the class of correlated beliefs with the uniform marginals,

f(s1, s1), ..., f(s1, sn−1), ..., f(sn−1, s1), ..., f(sn−1, sn−1),

are (n− 1)2 parameters. The degrees of freedom are given by

n2 − 1− (n− 1)2.

For n = 3, the two classes of beliefs have the same degrees of freedom. For n > 3, the

class of independent beliefs has larger degrees of freedom.

The class of symmetric beliefs with uniform marginals corresponds to n × n doubly

stochastic matrices satisfying symmetry, by multiplying n for each f(t) in (3.5.3). The

Birkhoff theorem shows that the set of n × n doubly stochastic matrices is the convex

hull of the set of n× n permutation matrices.9

An increase in the number of types introduces more variation in the beliefs and may

expand the set of feasible outcomes. However, Proposition 3.3 shows that if beliefs

have uniform marginals, pooling all incentive constraints of a player altogether makes

all such constraints binding. The impossibility result holds again for both positively and

negatively correlated beliefs.

Remarks. In Propositions 3.2 and 3.3, ex post efficiency is indispensable for our

results. We consider two ways to relax it to ε-ex post inefficiency, for ε > 0 small.

We may define a feasible mechanism q as ε-ex post inefficient, if {t ∈ T : q0(t) > 0}
has Lebesgue measure ε (on R2). Alternatively, we may require q to satisfy q0(t) = ε

for all t ∈ T . For the second definition, even in case of independent beliefs, interim

monotonicity is easily reconciled with other constraints. A solution mechanism is simple:

q = (ε, 1/2− ε/2, 1/2− ε/2). In this case, each player i gets εti + (1− ε)V/2 for all type

profiles.

9Katz (1970) shows that the set of n × n symmetric doubly stochastic matrices is the convex hull
of the set of all matrices of form 1

2 (P + P>), where P is an n × n permutation matrix and P> is its
transpose.
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3.6. Extensions

3.6.1. Ex Post Properties

We now consider stronger solution concepts by requiring a mechanism being robust

to beliefs. We say a mechanism q is dominant strategy incentive compatible (DSIC),

if truthful reporting by both players constitutes a dominant strategy equilibrium, or

ui(q(ti, tj), ti) ≥ ui(q(t
′
i, tj), ti) for all ti, t

′
i, tj ∈ S, i = 1, 2.

In many contexts, the players may compare their utility outcomes after they know

the state. To describe such ex post utility comparison, we introduce an ex post mono-

tonicity property. At the ex post stage, the expected utility is (i) non-constant and (ii)

nondecreasing everywhere in disagreement payoff.

Definition 3.2: Let f ∈ F and let q be a feasible mechanism. We say q is ex post

monotone (EP-M) if, (i) for i = 1, 2 and all u ∈ R, the event {t ∈ T : ui(q(t), ti) = u}
has a probability measure (on R2) less than 1, and (ii) if for i = 1, 2, ui(q(ti, t

′
j), t

′
i) ≤

ui(q(ti, tj), ti) for all t′i ≤ ti, tj ≤ t′j, and ti, t
′
i, tj, t

′
j ∈ S.

By definition, ex post non-constant is necessary for interim non-constant and ex post

(interim) monotonicity, while ex post monotonicity is neither necessary nor sufficient for

interim monotonicity without further specifying beliefs.10

Ex post monotonicity also implies that for all states in which one player has a higher

disagreement payoff, he receives weakly more than the other player. An example is the

ex post Egalitarian solution: for i = 1, 2 and all t ∈ T , ui(q(t), ti) = ti + (V − ti − tj)/2.

In Proposition 3.4 below, we find that if strong conditions such as dominant strategy

incentive compatibility or ex post monotonicity are required, we have impossibility results

on the ex post non-constant solutions.11

Proposition 3.4: Let f ∈ F . If a feasible mechanism is (i) ex post efficient and

dominant strategy incentive compatible, or (ii) ex post efficient and ex post monotone,

then it is the constant solution.

Proof. (i) Take t′i > ti. DSIC implies ui(q(ti, tj), ti) ≥ ui(q(t
′
i, tj), ti), for all tj,∈ S. By

EFF, ui(q(ti, tj), ti) ≥ ui(q(t
′
i, tj), ti) = ui(q(t

′
i, tj), t

′
i), for all tj ∈ S, and ui(q(t

′
i, tj), t

′
i) ≥

ui(q(ti, tj), t
′
i) = ui(q(ti, tj), ti), for all tj ∈ S. Hence, ui(q(ti, tj), ti) = ui(q(t

′
i, tj), t

′
i), for

all tj ∈ S. By SYM and EFF, q1(t) = q2(t) = 1/2 for all t ∈ T .

10It is worth noting that de Clippel (2012) introduces the following interim egalitarian criterion, which
is much stronger that I-M because the latter requires the interim surplus to be equalized across players
and types and thus the interim utility is a positive affine transformation of disagreement payoffs, i.e. a
feasible mechanism q is interim egalitarian, if for all t1, t2, U1(q|t1)− t1 = U2(q|t2)− t2.

11Recent papers show that an interim utility of any Bayesian mechanism can by obtained with a
dominant strategy mechanism with the same ex ante social surplus, in a linear IPV environment (Manelli
and Vincent, 2010; Gershkov, Goeree, Kushnir, Moldovanu and Shi, 2012). Because we do not allow
transfers, the equivalence does not apply in our environment.
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(ii) Take t′i > ti. By EP-M and EFF, for all tj ∈ S, ui(q(ti, tj), ti) ≤ ui(q(t
′
i, tj), t

′
i) =

ui(q(t
′
i, tj), ti). Notice that ui(q(ti, tj), ti) = V qi(ti, tj) is bounded everywhere and inte-

grable, Ui(q|ti) ≤
´
S
ui(q(t

′
i, tj), ti)fj(tj|ti)dtj = Ui(q, t

′
i|ti). By IC, it implies Ui(q|ti) ≥

Ui(q, t
′
i|ti). Hence, ui(q(ti, tj), ti) = ui(q(t

′
i, tj), t

′
i) for almost all tj ∈ S. By SYM,

q1(t) = q2(t) = 1/2, a.e. t ∈ T . �

To interpret part (ii) of Proposition 3.4, notice that for i = 1, 2, ex post monotonicity

requires that the probability of player i obtaining the object is nondecreasing in player i’s

report, given any report of the other player. Hence, player i has incentive to overreport.

The result immediately follows a lack of incentive compatibility for the ex post Egalitarian

solution, which is ex post efficient and ex post monotone.

3.6.2. Three Players

We now discuss how the results change if there are more than two players. For the case

of correlated beliefs, we provide a three-player example where Proposition 3.2 does not

generalize.

Example 3.1: Suppose V > 3 and f : {0, 1}3 → R++ satisfies the following condi-

tions:12

(i) f010 = f001 = f100, f011 = f110 = f101, fi(0) = fi(1), i = 1, 2, 3,

(ii) f000 > f011, f111 > f100,

(iii) 1
3
f000 + f001 <

1
3
f111 + f110,

(iv) f110 > f100.

Then there exists a feasible and ex post efficient mechanism that delivers an interim

monotone utility.

Proof. Let q : {0, 1}3 → ∆({0, 1, 2, 3}) be the mechanism given by,

q(0, 0, 0) = q(1, 1, 1) = (0,
1

3
,
1

3
,
1

3
), q(1, 1, 0) = q(0, 0, 1) = (0,

1

2
,
1

2
, 0), (3.6.1)

q(1, 0, 0) = q(0, 1, 1) = (0, 0,
1

2
,
1

2
), q(1, 0, 1) = q(0, 1, 0) = (0,

1

2
, 0,

1

2
).

It is easily shown that given conditions (i)-(iv) on the beliefs, q is feasible, EFF and

I-M.13 �
12For simplicity, denote fxyz = f(x, y, z) for x, y, z ∈ {0, 1}.
13The incentive condition for player 1 with type 0 and 1 (multiplied by f1(0) and f1(1)),

f000
1
3 + f001

1
2 + f010

1
2 ≥ f001

1
2 + f010

1
2 + f011

1
3 , and

f101
1
2 + f110

1
2 + f111

1
3 ≥ f100

1
3 + f101

1
2 + f110

1
2 .

The interim monotonicity requires

1
3f000 + f001 <

1
3f111 + f110.
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Intuitively, a player is punished if he is the only person who reports 1 or 0. He will

be rewarded if he belongs to the majority. The beliefs assumption allows the mediator

to better identify which player is more likely to be a deviator.

Condition (ii) ensures incentive compatibility. For a player with type 0, if the other

two players draw (0, 1) or (1, 0), then a deviation to report 1 will not change his allocation.

If the others draw (0, 0), the deviation loses an allocation probability of 1/3. If the others

draw (1, 1), the deviation wins an allocation probability of 1/3. The profitability of the

deviation depends on the likelihoods of (0, 0, 0) and (0, 1, 1). A similar analysis applies

to a player with type 1. Condition (iii) ensures interim monotonicity. The condition

implies a higher ex ante utility of type 1 compared to type 0. If condition (iv) holds, q

is individually rational.

A one-parameter family of beliefs is as follows. For some ε ∈ (0, 1
12

], let

f000 =
1

2
− 4ε, f111 =

1

2
− 5ε, f100 = ε, f110 = 2ε, (3.6.2)

For each player i, the interim utility vector is given by

(Ui(0), Ui(1)) = (
1

3
V (1− 2ε),

1

3
V (1 + 2ε)). (3.6.3)

As ε→ 0, the beliefs become almost perfectly correlated and the mechanism q remains

a solution. In case ε = 0, condition (iii) is violated. Hence, the existence of a monotone

solution does not satisfy a continuity in beliefs.

The result shows that varying the number of players expands the support of beliefs,

the set of allocation rules, and hence the set of interim utility outcomes.

3.6.3. A Triangular Support

Instead of assuming the unit square support for the beliefs, we may consider a triangular

support T = {t ∈ R2 : t1 > 0, t2 > 0, t1 + t2 < 1}, and the joint density f is continuous

and strictly positive on the support. Then it remains true that at all states, the status

quo is ex post Pareto dominated for V > 2. With this support assumption, the previous

results on correlated beliefs may no longer hold. First, a distribution with uniform

marginals cannot have an everywhere positive density on the triangle support. Second,

a player with a type greater than 1/2 knows that the other player’s type is lower than

1/2.

The individual rationality requires

V ( 1
3f000 + f001) ≥ 0, and V ( 1

3f111 + f110) ≥ fi(1) = f111 + f101 + f110 + f100.
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3.7. Conclusion

In this chapter, we study a bargaining problem with incomplete information when the

status quo is ex post inefficient for all states of the world. We discuss the existence

of ex post efficient and monotone bargaining solutions, for which each player’s interim

utility is responsive to his disagreement payoff. The assumption on the ex post inefficient

status quo makes Myerson and Satterthwaite’s impossibility not to arise, for example,

the constant mechanism is a solution. However, if non-constant solutions are considered,

tensions between efficiency and monotonicity arise, since a mechanism must now satisfy:

(i) incentive compatibility, (ii) feasibility and efficiency, i.e. any punishment for a player

must be fully translated into rewards for the other, and (iii) some variation in utility

allocation.

For independent beliefs, we obtain an impossibility result. For correlated beliefs on

finite supports, we obtain an impossibility result for two classes of beliefs. In particular,

we show that if the support contains only two points for each player, the impossibil-

ity result holds for all beliefs. We also find that if stronger solution concepts such as

dominant strategy incentive compatibility or ex post weak monotonicity are required, a

stronger nonexistence result holds.

We also study how the results change when there are more than two players. With

independent beliefs, the impossibility result remains true irrespective of the number of

players. With correlated beliefs, we provide an example of the positive result for three

players. The implications are twofold: (i) An increase in the number of players enlarges

the set of mechanisms such that an efficient and monotone solution arises.14 In case of

two players, it is difficult for the arbitrator to identify a deviator if their reports are not

aligned, even if beliefs are correlated. In case of three players, the arbitrator can reward

the majority. (ii) It suggests an empirical prediction: In the negotiations where trade is

always ex post efficient and the players’ outside options are correlated, the fully efficient

outcome is more likely to arise for large groups than for small groups.15

14Here we consider only the grand coalition and the single player coalitions.
15Isaac, Walker and Arlington (1994) studies some experiments on voluntary contribution mechanisms

and provides some evidence that a group’s ability to provide the efficient level of a pure public good is
positively related to group size.
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Chapter 4

Efficient Mechanisms for Bilateral Trading

4.1. Introduction

Myerson and Satterthwaite (1983) (MS thereafter) introduces a bilateral trade problem

in which a seller has an indivisible object to sell and a buyer wants to buy it. The

seller and the buyer have private information on their values of the object, which are

independently drawn from a common support. The authors prove the nonexistence

of an incentive compatible, individually rational, balanced budget, and ex post efficient

trading mechanism in this environment. They also study the optimal trading mechanism

that maximizes the ex ante trading surplus. In their context, each player observes his

private value perfectly. However, for many other contexts, there is some intermediary

that controls the information that is accessible to the players, and the players only have

coarse information when making a decision.

Suppose the intermediary can release less information to the players compared to the

MS information structure. What is the optimal information structure and the trading

procedure consistent with this information structure that maximizes the ex ante trading

surplus? If we look at broader classes of trading environments, for which classes is the

MS information structure (not) optimal? In this chapter, we provide a partial answer

to the first question, by showing that the MS information structure is not optimal. We

show that there exist some coarser partitions (for both the seller and the buyer) such

that we can find a trading mechanism that attains a higher ex ante trading surplus than

the optimal mechanism of the MS.

There are at least two countervailing effects when we vary the information partitions.

A pair of finer partitions increases the possibility of efficient information aggregation and

efficient trade, and thus the ex ante trading surplus. However, the finer partitions worsen

the individual rationality and the incentive compatibility constraints, and thus restrict

the set of feasible trading outcomes. If the second effect dominates the first, then coarse

partitions increase the ex ante trading surplus.

That a coarse information structure may increase the ex ante social welfare has been

noticed by Hirshleifer (1971). In the context of an exchange economy for risk, he assumes

that the players are risk averse and that the endowments of wealth from different states

differ across the players. If the players trade in complete markets for contingent claims ex

ante, then they will share some of the risk. If the players perfectly learn the state before
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they trade, then there will be no trade at all. The no trade allocation is ex ante Pareto

dominated by the allocation of risk with no information. In his model, the decisions are

made either ex ante or ex post. This differs from mechanism design environments where

the decisions are made at the interim stage.

Bergemann and Pesendorfer (2007) considers the problem of designing information

structures and auctions. The seller aims to choose the accuracy by which bidders learn

their values and the auction to maximize his revenue. They show that an optimal

information structure that maximizes the seller’s revenue exists, which is represented by

monotone partitions being asymmetric across players. Bergemann, Brook and Morris

(2015) characterizes the information structure which minimizes the seller’s revenue for

any value distribution, in a first-price auction. In these auction models, coarser partitions

of the buyers always lower the ex ante social welfare.

The chapter also relates to the recent literature on Bayesian persuasion. Kamenica

and Gentzkow (2011) considers a problem of a sender who commits to a signal structure

in order to persuade the receiver to take the sender’s preferred action. The authors

characterize the optimal signal for any given set of preferences and prior beliefs. Roesler

and Szentes (2016) considers a problem where the buyer designs his own information

structure in order to induce the seller to charge his preferred price. The buyer can

choose a costless, unbiased signal about his true value. The seller makes a take-it-or-

leave-it offer to the buyer, knowing the joint distribution of the buyer’s value and signal

but not their realizations. Compared to theirs, our model is a classical mechanism design

problem with two-sided incomplete information.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

model. Section 4.3 presents the main results. Section 4.4 concludes.

4.2. Model

In Myerson and Satterthwaite (1983), the seller (player 1) owns an indivisible object and

the buyer (player 2) wants to buy it. Each player i = 1, 2 has a value ṽi distributed

according to a c.d.f. Fi(·) with continuous and positive density fi(·) over the support

[0, 1]. The players’ values are assumed to be independent. The players are risk neutral

and have quasi-linear utility given by u1(q,m, v1) = −qv1+m, and u2(q,m, v2) = qv2−m,

where q ∈ [0, 1] is the probability of trade, m ∈ R is the monetary payment from the

buyer to the seller, and vi is the value of player i.

In the MS information structure, each player knows his own value at the time of

bargaining, but considers the other’s value as random. For player i, a partition (of [0, 1])

is defined by a family of sets Ti such that (i) ∅ /∈ Ti, and (ii)
⋃
A∈Ti A = [0, 1], and (iii)

if A ∈ Ti and B ∈ Ti, then A ∩ B = ∅. For vi ∈ [0, 1], denote ti(vi) be the element of
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Ti that contains vi and denote t̃i the corresponding signal induced by ṽi. A partition Ti

is monotone if for each A ∈ Ti, A is convex. A partition Ti is said to be finite if Ti is a

finite set.

For each player i with type ti ∈ Ti, his conditional belief on vi is given by Fi(vi|ti) =

λ(ṽi ≤ vi, t̃i = ti)/λ(t̃i = ti), where λ is the Lebesgue measure. Denote E(ṽi|ti) =´ 1

0
vidFi(vi|ti).
For the players, a pair of partitions is given by T = (T1, T2). The MS information

structure T = (T 1, T 2) is then given by ti(vi) = vi, for all vi ∈ [0, 1], i = 1, 2. We say T

is coarser than T if T1 and T2 are partitions and Ti 6= T i for some i.

For a pair of partitions T , a direct mechanism is given by µ = (q,m) : T → [0, 1]×R.

The allocation rule q assigns to each type profile a probability of trade and the payment

rule m assigns to each type profile a monetary payment from the buyer to the seller.

Given the other player reports truthfully, the interim expected utility of player i with

type ti ∈ Ti from reporting t′i ∈ Ti is given by

Ui(µ, t
′
i|ti) =

ˆ 1

0

ˆ 1

0

ui(µ(t′i, tj(vj)), vi)dFi(vi|ti)dFj(vj). (4.2.1)

We say that µ is incentive compatible if truth telling by both players is a Bayesian

equilibrium. For an incentive compatible mechanism µ, denote the interim utility by

Ui(µ|ti) = Ui(µ, ti|ti). µ is individually rational if Ui(µ|ti) ≥ 0, for all ti ∈ Ti, i = 1, 2.

For any T , a mechanism is T -feasible if it is incentive compatible and individual rational.

Let M(T ) be the set of T -feasible mechanisms.

A mechanism µ = (q,m) is ex post efficient, if for all v ∈ [0, 1]2,

q(t1(v1), t2(v2)) =

{
0 if v1 ≥ v2,

1 otherwise.

A mechanism µ is (constrained) ex ante efficient if

µ ∈ arg max
µ′∈M(T )

2∑
i=1

E[Ui(µ
′|t̃i)]. (4.2.2)

That is, µ yields the highest ex ante trading surplus. We say an allocation rule q is

ex ante efficient if µ = (q,m) is ex ante efficient. The efficiency loss of µ is given by the

ratio of the ex ante trading surplus from µ to that from the ex post efficient allocation.

Myerson and Satterthwaite (1983) shows that the presence of private information

and voluntary participation implies the impossibility of ex post efficiency. Intuitively,

the seller types with high reservation values and the buyer types with low reservation

values have little incentive to participate in a trading mechanism at the interim stage.

To induce them to participate, the third party must pay them some incentive costs.

In an ex post efficient mechanism, the incentive costs are so large such that voluntary
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participation is not attainable without any subsidy from the third party.

Lemma 4.1: (Myerson-Satterthwaite) (i) There exists no T -feasible and ex post effi-

cient mechanism. (ii) Suppose v1 + F1(v1)
f1(v1)

and v2 − 1−F2(v2)
f2(v2)

are strictly increasing. Let

c1(v1, α) = v1 + α
F1(v1)

f1(v1)
, c2(v2, α) = v2 − α

1− F2(v2)

f2(v2)
. (4.2.3)

Then there exists some α ∈ (0, 1) such that

qα(v1, v2) =

{
0 if c1(v1, α) ≥ c2(v2, α),

1 otherwise.
(4.2.4)

is ex ante efficient.

The parameter α reflects the Lagrangian multiplier of the individual rationality con-

straint of the players. A larger α implies a higher shadow price and hence a larger

incentive distortion. For ṽ1, ṽ2 ∼ U [0, 1], α = 1
3

and the ex ante efficient allocation rule

is given by

qα(v1, v2) =

{
0 if v1 ≥ v2 − 1

4
,

1 if v1 < v2 − 1
4
,

(4.2.5)

The MS solution yields the ex ante trading surplus 0.14. The efficiency loss is 15.6% and

the probability of no trade is 71.9%.

4.3. Results

The following result shows that even if we consider coarser partitions than those in MS,

ex post efficiency is not possible. The reason is as follows: A pair of coarse partitions

requires that at least one player will receive a coarse signal with positive probability.

Then, for a T -feasible mechanism, there exists an event such that either (i) the mechanism

requires no trade while trade is efficient, or (ii) the mechanism requires trade while no

trade is efficient. In other words, any pair of coarser partitions aggregates information

inefficiently with positive probability.

Proposition 4.1: If T is a pair of monotone partitions, there does not exist a T -

feasible mechanism that is ex post efficient.

Proof. Consider at least player 1 has a coarser partition T1 with element E1 = [a1, b1] for

some a1 < b1. Let l be the unique line segment (E1 × [0, 1]) ∩ {v ∈ [0, 1]2 : v1 = v2} and

let [a2, b2] be its projection on T2. Then a2 = a1 and b2 = b1. Let A = [a1, b1]× [a2, b2].

For every E2 ∈ T2, the convexity of E2 implies that E2 is either a singleton or an interval

being closed, or open, or half open. Hence, E2 is measurable. We have two cases.
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Case 1. There exists an element E2 ∈ T2 such that p(([0, 1]×E2)∩A) > 0, where p is

the Lebesgue measure in R2. Denote A2 = ([0, 1]×E2)∩A. Then, {v ∈ [0, 1]2 : v1 = v2}
separates A2 into A21 = {v ∈ A2 : v2 > v1} and A22 = {v ∈ A2 : v2 < v1}, with

p(A21) > 0, and p(A22) > 0. On the other hand, an allocation rule q(t1, ·) must be

measurable with respect to T2, for all t1 ∈ T1. So, the decision q is constant on E1×E2,

which implies q is constant on A2, or q(A21) = q(A22). This contradicts to ex post

efficient q∗(A21) = 1 6= 0 = q∗(A22).

Case 2. For each element E2 ∈ T2, p(([0, 1]×E2)∩A) = 0. For every E2∩ [a2, b2] 6= ∅,
E2 ∩ [a2, b2] is a singleton. Then player 2 must perfectly observe v2 for some [c2, d2] ⊂
(a2, b2), c2 < d2. Ex post efficiency requires q([a1, b1], v2) ∈ {0, 1} for all v2 ∈ [c2, d2].

Then, there exists B2 ⊆ [c2, d2] such that q([a1, b1], v2) = χB2(v2) for all v2 ∈ [c2, d2].

Since q([a1, b1], ·) is Lebesgue measurable on [c2, d2], B2 is a measurable subset. Let

A2 = [a1, b1]×B2.

If p(A2) > 0. then {v ∈ [0, 1]2 : v1 = v2} separates A2 into A21 = {v ∈ A2 : v2 > v1}
and A22 = {v ∈ A2 : v2 < v1}, with p(A21) > 0, p(A22) > 0. A similar analysis as Case

1 implies inefficiency occurs with positive probability.

If p(A2) = 0, then C2 = [a1, b1]× ([c2, d2] \B2) satisfies p(C2) > 0. A similar analysis

as before implies inefficiency occurs with positive probability.

Finally, for an element with half-open or open intervals of T1, the analysis is similar

to the closed interval case above, since they differ only in zero measure events. �

Proposition 4.2 below is the main result of this chapter.

Proposition 4.2: Assume ṽ1, ṽ2 ∼ U [0, 1]. There exists a pair of partitions T and

a T -feasible mechanism (q,m) that yields a higher ex ante trading surplus than the MS

ex ante efficient mechanism.

Proof. We provide an example of such an information structure and the corresponding

mechanism. Let y = 0.166 and z = 0.606. Consider a pair of finite monotone partitions

T = (T1, T2) given by

T1 = {[0, y], (y, z], (z, 1]} and T2 = {[0, 1− z], (1− z, 1− y], (1− y, 1]}.

We denote these elements of partitions (or types) by ti, t̂i, ti for i = 1, 2. For this T ,

we define the mechanism (q,m) as follows.

The allocation rule q is given by Figure 4.1a). The horizontal axis is the seller’s value

and the vertical axis is the buyer’s value. By construction, the lowest type of the seller

(and the highest type of the buyer) always trade. The highest type of the seller (and the

lowest type of the buyer) trade with a strictly positive probability.

The payment rule m is given by Figure 4.1b). Let x = 0.197. The payment rule

requires: (i) In case of trade and the report profile is not (t1, t2) or (t1, t2), the buyer
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pays the seller 1/2. (ii) In case of trade and the report profile is (t1, t2), then the buyer

pays the seller x; if the report profile is (t1, t2), then the buyer pays the seller 1− x. (iii)

In case of no trade, there is no payment.

0 1

1

1 0 0

1 1 0

1 1 1

1− z

1− y

y z

a) Allocation rule q

0 1

1

x 0 0

1
2

1
2

0

1
2

1
2

1− x

1− z

1− y

y z

b) Payment rule m

Figure 4.1

It is easy to check that such a mechanism is T -feasible. The ex ante trading surplus

from this scheme is 0.159.1 The efficiency loss is 4.6% and the probability of no trade is

51%. �

The driving forces for this result are as follows. First, note that such a mechanism

(q,m) is not T -feasible, because in that case, the individual rationality condition for the

seller with v1 = z is violated, or

−y + y(1− x) < 0. (4.3.1)

For the partitions T , this condition is replaced by

−yE(ṽ1|(z, 1]) + y(1− x) ≥ 0. (4.3.2)

Hence, a coarser partition relaxes the individual rationality constraint for the seller with

higher values. Instead of perfectly observing his value and opting out with probability

one, the seller with a value in [z, 1] is only informed his conditional expected value, hence

he has more incentive to participate. A similar analysis applies to the buyer.

1The ex ex ante trading surplus is given by

ˆ 1

0

ˆ 1

0

(v2 − v1)1{v2 > v1}f1(v1)f2(v2)dv1dv2

=
1

2
− 1

2
y2 − 1

2
(z2 − y2)z − 1

2
(1− z)2(z − y)− 1

2
y(1− z2)− 1

2
(1− y)2(1− z).
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Second, for the partitions in MS, the incentive compatibility condition for the seller

with v1 = z is given by

−z · z + z
1

2
≥ −y · z + y(1− x). (4.3.3)

For the partitions T , this condition is replaced by

−zE(ṽ1|(y, z]) + z
1

2
≥ −yE(ṽ1|(y, z]) + y(1− x). (4.3.4)

A coarser partition relaxes the incentive constraint for the seller with a value equal to z

and thus also for the seller with a value lower than z. A similar analysis applies to the

buyer.

Hence, T generates new utility allocations that are not attainable under T . On

the other hand, T eliminates some utility allocations that were attainable under T . The

players must bear some losses in the ex ante trading surplus from aggregating information

imprecisely. These two effects finally determine the gains in the ex ante trading surplus

from a coarser information structure.

4.4. Conclusion

In this chapter, we show that the original information partition in MS is not the optimal

information partition that maximizes the ex ante trading surplus. With uniform priors,

we construct a pair of coarser partitions and a feasible mechanism that outperforms the

ex ante efficient solution of the MS information partition.

The main message is that if the mechanism designer can control the information

structure of the players2, the original information partition from MS will not arise. The

result has implications in practice. Firstly, there are many situations such that a player

has only access to coarse information about his own preferences. For a one-to-one match-

ing market, the value from matching a partner will be fully revealed after a match. For

experience goods, a buyer usually has a rough idea about the consumption experience

at the time of purchase. Secondly, some intermediaries indeed have some control over

players’ information. Two-sided platforms, such as B2C platforms and dating websites,

provide users access to a substantial number of opportunities in which they are inter-

ested. Before matching with their trading partners, a buyer has to decide how much and

what to search about his value for the good, and a seller has to decide how much to learn

about his outside option. For an isolated pair of partners, the profit-maximizing platform

may concern whether the existing trading partners benefit from coarser information on

2Hurkens and Vulkan (2006) shows that games with exogenous information structures that have a
unique Nash equilibrium are robust to endogenization of the information structures. Hence, such games
can be analyzed using an exogenous information structure even when they in fact describe economic
situations where information gathering seems natural.
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their matching values and outside options.3

It remains to be investigated whether coarsening the partition of only one player can

improve efficiency. For one-side uncertainty on the buyer’s value, the answer is no. An

ex post efficient mechanism exists in the case that the buyer perfectly knows his value4

but not in the case with coarse partitions.

Finally, we notice that in contrast to the MS environment, in the auction environment

of Myerson (1981), coarser information always reduces ex ante efficiency. It is because

misallocation of the object must occur with positive probability under coarser partitions.

A natural question then arises: Start from the players perfectly knowing their private

values and consider a pair of coarser partitions, is the result in this chapter specific for the

bargaining problem of the MS? Does it remain true for other classes of mechanism design

problems than MS? Characterization of all classes of such problems is an interesting

question and left for future work.

3Hagiu and Jullien (2011) studies how intermediaries can use information on consumers characteris-
tics in order to affect matching between firms and consumers. They study the sources of an intermedi-
ary’s incentives not to optimize the search process by which consumers find the stores (sellers) that the
intermediary provides access to.

4For illustration, assume v1 = a ∈ (0, 1) and ṽ2 ∼ U [0, 1], ex post efficiency requires the seller posts
a price a and the buyer accepts or rejects such a price.
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Chapter 5

Bounds on Revenue of Auctions with Two

Complements and Resale

5.1. Introduction

In this chapter, we consider a seller’s revenue maximization problem with two comple-

mentary objects, for example, spectrum licenses. In practice, large companies might

value multiple licenses to serve large geographical locations more than the sum of the

values of the separate licenses because the marginal cost of serving a larger area can

be lower. The auctions widely used by the governments, e.g. simultaneous ascending

auctions (SAA),1 may suffer from an exposure problem: Bidders face the risk of paying

too much for part of a package of licenses when the rest of the package is won by other

bidders. The exposure problem2 generates inefficient outcomes.3 For illustration, con-

sider a seller who wants to allocate two licenses A and B efficiently. Bidder 1 values the

packages (A,B,AB) as complements, (1, 2, 6), while bidder 2 values them as substitutes,

(4, 4, 4). In an SAA, bidder 2 demands at least one unit until the prices reach (4, 4). But

then bidder 1 would better not win AB at such prices.

Inefficient initial allocation of spectrum resources introduces resale opportunities. A

private seller may organize his own auction to sell its spectrum holdings. Unlike the

auctioning of government-owned assets, revenue maximization, rather than efficiency, is

a private seller’s objective. In this case, a revenue-maximizing auction (Myerson, 1981)

may lead to splitting licenses among buyers inefficiently and neither buyer obtains the

synergy. A natural question then is: Given a resale market among the buyers, can the

initial seller obtain the revenue that he could get if such resale would be banned?

1Vickrey auctions are often considered as a means of efficiently allocating spectrums. However, due
to its complexity of pricing rule and other several drawbacks (Milgrom, 2004), it is rarely observed in
practice.

2Szentes and Rosenthal (2003) mentions various measures used to soften exposure problems: in
spectrum auctions the simultaneous designs typically involve ascending prices, which allow bidders time
to assess gradually the likelihood of successfully acquiring various combinations of spectrum blocks; and
provisions for bid withdrawals are often included.

3Consider the Netherlands DCS-1800 auction in 1998. Eighteen lots were offered for sale. Two of
the lots were designed to be large enough that a new entrant could use them to establish a new wireless
telephone business. Alternatively, a new entrant who acquired perhaps four or six small licenses could
combine them to support entry. The smaller licenses would therefore likely be complements for the new
entrants, but substitutes for the incumbents. Finally, the final prices per unit of bandwidth for the two
large lots were more than twice as high as for any of the sixteen smaller lots. The entrants, willing to
pay high prices for large spectrums, were reluctant to bid for small spectrums.
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While resale can restore full efficiency when there are no market frictions, Myerson

and Satterthwaite (1983) shows that, if resale takes place under incomplete information

and players’ beliefs have overlapping supports, then no resale mechanism can produce the

efficient outcome. Cramton, Gibbons and Klemperer (1987), on the other hand, shows

that if players have relatively symmetric ownerships, then efficient resale is possible. In

this chapter, we investigate a resale market with possibly symmetric ownerships and

study its effects on the seller’s revenue.

To motivate our model, consider the following example. Assume that the seller

has two identical objects which he himself does not value. Buyer i = 1, 2 attaches a

value equal to i for a single unit, and this is common knowledge. While buyer 1 has

additive values for the units, buyer 2 values the units as complements with his value

of the bundle being t̃2, which is uniformly distributed on [4, 6]. If resale is impossible,

Myerson’s optimal auction asks buyer 2 to report a price and the bundle is allocated to

this buyer if the reported price is higher than 4.5. Otherwise, the seller splits the units

between the buyers at prices equal to the single unit values, so 1 and 2. Hence, the

maximal expected revenue is 4.125.

Now assume that buyer 1 can sell his unit to buyer 2 after the seller’s auction. To

implement the expected revenue 4.125, the adjustment to Myerson’s auction is simple:

The seller splits the units with a price of 2 to buyer 2 and a price of 2.125 to buyer 1.

Since there is no new information, buyer 1 will resell his unit to the other at a price

equal to 2.5. Buyer 2 accepts if t2 − 2.5 ≥ 2. The cutoff value in allocation is exactly

4.5. Notice that buyer 1 receives a total utility of zero since the trading surplus and

the utilities of seller and buyer 2 are the same as before.4 The example illustrates that

the Myerson revenue is implementable if one buyer has additive values with complete

information and the other has complementary values, given a monopoly resale market.

But what would happen if buyer 1 also has complementary values for units?

To answer this question, we consider a two-buyer two-object environment in which

the buyers have one-dimensional private information on the bundle. The Vickrey auction

allocates the bundle to one of the two buyers ex post efficiently and serves as a lower

bound for the seller’s revenue. The Myerson auction splits licenses among the buyers

with positive probability. We assume fully transparent auction outcomes, i.e. both

the bids and the allocation of the objects are announced publicly. At the resale stage,

a mediator offers a resale mechanism that maximizes the surplus of the initial buyers

given the auction outcome. We find that the Myerson revenue is unattainable and the

maximal revenue is bounded above by the revenue from a modified Myerson auction

(MMA). This auction requires selling the bundle with personalized reserve prices and

the seller withholding one object in case the reserve prices are not met.

4Alternatively, with probability 1/4, buyer 1 does not sell the object and loses 9/8, and with proba-
bility 3/4, he sells and gains 3/8.
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Several papers discuss single object auctions followed by resale under complete infor-

mation. For asymmetric independent private values (IPV) bidders, Gupta and Lebrun

(1999) shows that revenue ranking between the first and second price auctions depends

on how the surplus is divided in the resale market. Haile (2003) considers a model

with bidders having only noisy information regarding their true values, which are re-

vealed to them only after the auction. There is again no general revenue ranking. A

second strand of literature investigates single object auctions followed by resale under

uncertainty. Ausubel and Cramton (1999) introduces the concept of “perfect resale”, by

assuming that all gains from trade are exhausted in resale. They characterize the optimal

auction with perfect resale and IPV bidders, and find that it is optimal to assign goods

to those with the highest values. Their result continues to hold in the multi-unit case.

Hafalir and Krishna (2008) investigates the first price auction with resale for asymmetric

IPV bidders, where the winner can resell the object to the loser through a monopoly

offer. They find that the outcome of this game yields a higher seller’s revenue than the

efficient outcome in the second price auction.

Zheng (2002) is the first paper to consider optimal sale of one object with resale and

without any restrictions on the number of periods, i.e. the current owner in each round

can choose the current auction and cannot control future resale. The paper shows that

under some conditions the seller can still achieve the Myerson revenue. Zhang and Wang

(2015) considers one regular buyer with private values and one publicly known value

buyer, with resale structured by a stochastic ultimatum game where the probabilities of

being the proposer determines the buyers’ bargaining powers. They find that the seller’s

revenue is increasing in the publicly known value buyer’s bargaining power in the resale

market. Myerson revenue is attainable only if this buyer has full bargaining power.

There are only a few papers that discuss auctioning complementary objects with

resale.5 In a framework introduced by Leufkens, Peeters, and Vermeulen (2006), Xu,

Levin, and Ye (2015) studies sequential second price auctions followed by resale for two

complements and two bidders. Very different from our setting, they assume that no

bidder knows his valuation for the second object during the first auction, while it is

common knowledge that winning the first auction increases this valuation by a factor.

They find that if the loser of the first item makes an offer to the winner, a monotone

equilibrium exists and the expected revenue to the seller can either increase or decrease

5For multi-unit auctions without resale, Ausubel and Cramton (1998) observes that bidders may
have an incentive to reduce demand, i.e., to bid for fewer units than they actually want, in order to
pay a lower price for the objects they do win. Bukhchandani and Huang (1989) analyzes a multi-unit
discriminatory or uniform price auction with common values and resale. They examine the information
linkage between auction and resale through announced bids. Hafalir and Kurnaz (2015) considers multi-
unit discriminatory auctions with resale where symmetric IPV bidders have single-unit demands. When
the winner (which turns out to be unique in a symmetric equilibrium) uses the optimal mechanism in
the resale stage, there may not exist a symmetric and monotone equilibrium if there are more than two
units.
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with resale.

This chapter contributes to the literature in several aspects. First, we investigate

the optimal auction with two complements and one-dimensional private values, where

inefficient splits open the possibility of resale. Compared to previous works, we introduce

an extreme resale procedure: a centralized market in which the third party organizes

resale mechanisms for the buyers. Second, this chapter establishes the impossibility of

obtaining the Myerson revenue. In contrast to single object models, we find that the

two-object models make the rule of selecting the re-seller after splits a crucial modeling

assumption. Since there is no natural generalization of the winner’s optimal mechanism

to two-object case, we conjecture that unattainability of the Myerson revenue remains

to hold for other reasonable resale markets, which might indicate an intrinsic difference

between one and two object environments.

The chapter is organized as follows. Section 5.2 introduces the model. Section 5.3

introduces the Vickrey and Myerson auctions. Section 5.4 investigates resale games. It

provides the solution to the mediator’s problem and the solution to the seller’s problem.

Theorem 5.1 is the main result of this chapter. Section 5.5 discusses some other resale

market. Section 5.6 concludes.

5.2. Model

The seller has two identical units for sale, to which he attaches value 0. There are two

(initial) buyers. Each buyer i = 1, 2 has a value of ai for a single unit and a value

ti ∈ [ti, ti] for the bundle. We assume that the values a1 and a2 are commonly known

with 0 < a1 < a2, and that ti is private information of buyer i. We assume t̃i, i = 1, 2, are

independently distributed according to Fi with absolutely continuous density fi > 0 on

[ti, ti]. Denote Ti = [ti, ti] and T = T1×T2. We assume Fi is regular: Ji(ti) = ti− 1−Fi(ti)
fi(ti)

is strictly increasing in ti. We also assume the following support condition throughout.

Assumption 5.1: t1 > a1 + a2 and t2 > 2a2.

This condition states that bundling is always more efficient than splitting the objects

among the buyers. If the condition is not satisfied, then a buyer who obtains the bundle

may find it profitable to resell one unit to the other buyer. Assumption 5.1 is stronger

than that each buyer values two units as complements.6 Denote a12 = a1 + a2.

Let D0 = {0, 01, 02, 1, 2, s} be the set of all partitions of the objects, i.e. either the

seller keeps both objects (d = 0), or the seller splits with buyer i (d = 0i), or one buyer

gets the bundle (d = i), or the buyers split the objects (d = s).

6If buyer 1 only has small complementarity, or t1 ∈ [2a1, a1 + a2), then our main result (Theorem
5.1) may not hold. We further discuss this point after Theorem 5.1.
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Assumption 5.2: The seller can commit to not resell any unit after the initial sale.

The assumption is strong since if the seller himself initially withholds some unit(s),

he has an incentive to resell.7 So we assume that the resale takes place only among the

buyers. If Assumption 5.2 holds, then d = 0 and 01 are redundant, i.e. 0 and 01 are

chosen with zero probability by a revenue-maximizing seller. This is because 0 and 01

are always dominated by 02 for the seller’s revenue, and since the seller can implement

02 whenever he wants. Hence, throughout this chapter, we restrict our attention to

D1 = {02, 1, 2, s}.
For the seller, a direct mechanism (auction) is given by (q,m) : T → ∆(D1)×R2. The

allocation rule q contains the allocation of objects among the players for each reporting

profile, and the payment rule m = (m1,m2) specifies the payments from the buyers to the

seller for each reporting profile. Denote by ∆(Ti) the set of all probability distributions

on Ti. A behavioral reporting strategy for buyer i is given by σi : Ti → ∆(Ti) satisfying´
Ti
σi(t̂i|ti)dt̂i = 1, for all ti. Here σi(ti) can be degenerate with one or more mass points

and the integral abuses notation.8

Definition 5.1: An auction (q,m) is BNE-feasible, if it has at least one BNE.

Denote M0 the set of BNE-feasible auctions and denote A0 = {q : (q,m) ∈ M0} the

set of BNE-feasible allocation rules, which consists of final allocation rules that the seller

can implement if resale between the players would be forbidden.

5.3. The Vickrey and Myerson Auctions

From Assumption 5.1, the ex post efficient allocation rule qe requires that for all t ∈ T ,

if ti > tj, then buyer i obtains the bundle and ties are broken randomly fairly. Any

splitting or withholding is inefficient. In this setting, the Vickrey auction is simple: the

buyers simultaneously report their values for the bundle and if ti > tj, then buyer i wins

the bundle and pays tj to the seller. The truthful equilibrium of the Vickrey auction

provides a lower bound on the seller’s revenue.9

7In two period models without discounting, we may assume that if resale is between the seller and
the initial buyers and only the seller can sell, then further resale among the initial buyers are impossible.
If the seller cannot commit to not resell, then the seller can simply wait until the second period and then
sell both units. If the seller is further assumed to have to sell at least one unit in the first period, then
after selling one unit, given Assumption 5.1, selling the additional unit to the winner maximizes the
seller’s revenue. In the final allocation, the seller’s withholding one unit is implemented with probability
0 but the buyers’ splits can be implemented with a positive probability. Whether the seller’s revenue is
higher or lower than that in Theorem 5.1 is ambiguous.

8Instead of restricting buyers’ action sets to type sets, the seller may allow buyer i to choose actions
from some abstract set Ai where T ⊆ Ai. However, given our assumption on the disclosure rule, using
other action sets does not expand the seller’s implementable outcomes. This is because if players ran-
domize over actions in equilibrium, the seller can incorporate such randomization and offer an outcome
equivalent direct mechanism. It is unclear whether the claim generalizes to other disclosure rules.

9When resale is possible, truthful reporting may no longer be a dominant strategy equilibrium action.
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The Myerson auction (MA) is defined as the incentive compatible and individually

rational auction that maximizes the seller’s revenue, when resale (by the seller and among

the buyers) is forbidden. The allocation rule from the MA is the Myerson allocation rule.

Denote by R0 the revenue from the MA.

In the remainder of the chapter, we assume the following,

Assumption 5.3: Ji(ti) = ti − 1
fi(ti)

< a12, i = 1, 2.

This assumption requires that Ji(ti) is not too large such that the virtual valuation

of the bundle for a buyer with the lowest type falls below the virtual valuation of splits

(e.g. a12).10 For Ji strictly increasing and Ji(ti) > a12, there is a unique x∗i ∈ (ti, ti) such

that Ji(x
∗
i ) = a12.

Proposition 5.1: The Myerson auction (q∗,m∗) is given by11

q∗(t) =

{
δi if Ji(ti) > max{Jj(tj), a12},
δs if a12 > maxi Ji(ti),

and for i = 1, 2,

m∗i (t) = tiq
∗
i (t) + aiq

∗
s(t)−

ˆ ti

ti

q∗i (tj, xi)dxi. (5.3.1)

Proof. See Appendix 5.A. �

The Myerson auction requires that the seller never keeps an object. One source

of inefficiency is that the buyers split the two objects for some states. With positive

probability, the buyers’ values lie in the region where a12 > maxi J(ti) but maxi ti > a12.

The objects then fail to be allocated to the buyer with the higher complementarity.

Another source of inefficiency is that some buyer with a higher virtual value (rather

than true value) obtains the bundle. If beliefs are symmetric, i.e. F1 = F2, the second

inefficiency vanishes.

5.3.1. The Modified Myerson Auction

For the seller, a natural response to avoid resale after splits is to avoid splitting altogether.

We define the modified Myerson auction (MMA) as the auction that maximizes the

seller’s revenue given that splitting is chosen with probability zero. This auction will

play an important role for our analysis of resale. Denote

A1 = {q|q(t) ∈ ∆(D1), q(t) 6= ds for almost all t ∈ T}, (5.3.2)

10If Assumption 5.3 does not hold, i.e. if for at least one of the buyers the virtual value is always
higher than a12, the problem is trivial because the optimal auction always sells two units as a bundle.

11δd denotes that decision d is chosen with probability 1. δi denotes i 6= j being chosen with probability
1.
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and denote by R1 the maximal revenue from M1 = {(q,m) ∈M0|q ∈ A1}.

Proposition 5.2: The modified Myerson auction (q∗∗,m∗∗) is given by

(i) If maxi Ji(ti) < a2, then,

q∗∗(t) =

{
δi if Ji(ti) > max{Jj(tj), a2},
δ02 if a2 > maxi Ji(ti),

and

m∗∗i (t) = tiq
∗∗
i (t) + a2q

∗∗
02(t)1{i=2} −

ˆ ti

ti

q∗∗i (xi, tj)dxi. (5.3.3)

(ii) If maxi Ji(ti) > a2, then,

q∗∗(t) = δi if Ji(ti) > Jj(tj),

and

m∗∗i (t) = tiq
∗∗
i (t)−

ˆ ti

ti

q∗∗i (xi, tj)dxi. (5.3.4)

The revenue from the MMA is strictly lower than that from the MA, i.e. R1 < R0.

Proof. See Appendix 5.A. �

In Proposition 5.2 (i), the MMA requires that the objects to be allocated the buyer

with the highest virtual valuation, given that the alternative of splits is eliminated. It

is implemented by a generalized second price auction for the bundle with reserve bid a2,

personalized reserve prices ri = J−1
i (a2), i = 1, 2, and the following payment rule:

mi(b) =


J−1
i (max{a2, bj}) if bi > max{a2, bj},
a2 if max{b1, b2} < a2 and i = 2,

0 otherwise.

The buyers bid their virtual valuations in equilibrium. In case of winning the bundle,

buyer i’s payment does not depend on his own bid and will be at least ri > ti. In case

no buyer bids above a2, the seller sells one object to buyer 2 for a price of a2. Thus, the

seller may withhold one unit with positive probability. In Proposition 5.2(ii), the lowest

virtual valuations of the bundle are sufficiently high and the modified Myerson auction

always sells both units. Note that the MMA is ex post efficient if beliefs are symmetric.

Compared to the MA, all types of the buyers in the MMA are weakly better off. This

is because q∗∗i (t) ≥ q∗i (t) for all t ∈ T and the lowest types always receive zero. Hence

for the buyers, the MMA interim Pareto dominates the MA. The seller is strictly worse

off. The effect on the social surplus is ambiguous.

Example 5.1: Suppose a1 = 1, a2 = 2, t̃1 ∼ U [4, 8], and t̃2 ∼ U [5, 9]. Then

J1(t1) = 2t1 − 8 and J2(t2) = 2t2 − 9. A1 holds since J1(4) < J2(5) < 3. Moreover,

max{J1(4), J2(5)} < 2, hence we are in case (i) of Proposition 5.2. The reserve prices

are given by r1 = 5 and r2 = 5.5.
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5.4. Resale

Now we are moving to the case with resale possibility. In case the seller splits with

buyer 2 (d = 02), given Assumption 5.2, no resale occurs. Hence, we restrict attention

to D = {1, 2, s}. To specify the degree of transparency after the auction, let Si be the

set of possible messages that the seller can send to buyer i. Throughout this chapter,

we assume high transparency of the auction outcome. That is, each buyer observes the

“bids” (or reports) as well as the decision. Since they know the payment rule, it is not

needed to tell them the payments. Formally, Si = T × D and ηi(t̂, d) = (t̂, d) for all t̂

and d. The information disclosure rule is given by η = (η1, η2). A system of posterior

beliefs µ = (µ1, µ2) is given by µi : T ×D → ∆(Tj), where µi is the belief of buyer i’s on

buyer j’s type given the reports and the decision.

The resale market is centralized and organized by a strategic mediator, whose ob-

jective is to maximize the total expected surplus of the buyers. We assume that this

mediator also observes the auction outcome. Hence, the mediator chooses the resale

procedure given the initial decision d and the belief system µ. While the mediator relies

on type reports in the seller’s auction to update beliefs, in the resale procedure, he “ask”

for type reports again.

A resale mechanism is given by (φ, p) : T → ∆(D)× R2, where the reallocation rule

φ assigns to each reporting profile a vector of reallocating probabilities of the objects,

and the payment rule p = (p1, p2) assigns to each reporting profile the payments from

the initial buyers to the mediator. Given such a resale mechanism, we assume that the

buyers participate in the resale voluntarily, and the buyers simultaneously make reports

to the mechanism, which determines the final allocation. The mediator runs no budget

deficit ex post and the buyers must balance the budget themselves.

5.4.1. Resale Games

Let the seller’s auction (q,m) ∈ M0 be given and consider the resale game G(q,m).

The timeline of this game is as follows. (i) The buyers make reports to the seller’s

auction. (ii) The outcome (t̂, d) is publicly announced. (iii) The mediator chooses a

resale mechanism. (iv) The buyers make reports to the mediator. (v) The reports

determine the final outcome.

Formally, a strategy α for the mediator specifies a resale mechanism α(h) for all

h = (t̂, d). For each buyer i = 1, 2, a strategy (σi, βi) specifies the first period reports

σi(hi) ∈ ∆(Ti) for all hi = ti and the second period reports βi(hi) ∈ ∆(Ti) for all

hi = (ti, t̂, d, (φ, p)).

Definition 5.2: Let (q,m) ∈ M0. A PBE of G(q,m) contains a strategy profile

e∗ = (σ∗, α∗, β∗) and a belief system µ∗ satisfying:

94



Resale

(i) Given µ∗, every i and hi = (ti, t̂, d, (φ, p)),

β∗i (hi) ∈ argmax
si∈∆(Ti)

Ui(si|hi, µ∗). (5.4.1)

(ii) Given µ∗, β∗ and every h = (t̂, d),

α∗(h) ∈ argmax
(φ,p)∈Φ(h,µ∗)

∑
i

E[Ui(t̃i|h, (φ, p), µ∗, β∗], (5.4.2)

where Φ(h, µ∗) is the set of incentive compatible, individual rational and ex post balanced

budget resale mechanisms in the usual sense, and Ui(ti|h, (φ, p), µ∗, β∗) is the continuation

payoff of buyer i with type ti from (φ, p) assuming both buyers follow β∗.

(iii) Given µ∗, α∗, β∗, every i and ti,

σ∗i (ti) ∈ argmax
si∈∆(Ti)

Ui(si|ti, µ∗, α∗, β∗). (5.4.3)

(iv) Given e∗ and every (t̂, d), F̃ := µ∗(t̂, d) satisfies the following requirements (1)-

(3):

(1) F̃ = (F̃1, F̃2) are statistically independent, where f̃i is the density (if any) of F̃i

supported by Ei and E = E1 × E2. This follows from the fact that σ∗ is independent.

(2) If t̂ is in the support of σ∗, then

f̃i(ti|t̂i, e∗) =
σ∗i (t̂i|ti)fi(ti)´

Ti
σ∗i (t̂i|x)fi(x)dx

. (5.4.4)

(3) If t̂ is not in the support of σ∗, then the players must form beliefs after such

off-path histories. Any restriction on the beliefs does not affect our results, because our

analysis is based on the equilibrium paths and the results are robust to the specifications

of off-path beliefs.

Definition 5.3: Let (q,m) ∈M0. G(q,m) is feasible, if it has at least one PBE.

We say an auction (q,m) is feasible if G(q,m) is feasible and denote M the set of all

feasible auctions. For (q,m) ∈M , a final allocation rule generated by a PBE (e∗, µ∗) of

G(q,m) is given by o : T → ∆(D1). Note that M ⊆M0. For (q,m) ∈M , G(q,m) has a

BNE and hence it satisfies incentive compatibility and individual rationality associated

with the BNE-feasible auctions. On the other hand, some BNE-feasible auction with

resale may have no PBE. A direct consequence is that the maximal revenue with resale

is not higher than the maximal revenue without resale.

Finally, we introduce the notion of a resale-proof equilibrium for a given resale game.

Definition 5.4: Let G(q,m) be a feasible resale game. A PBE (e∗, µ∗) is resale-
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proof, if resale does not arise on any equilibrium path.

5.4.2. Optimal Resale Mechanisms

Let G(q,m) be a feasible resale game and let (e∗, µ∗) be a PBE of this game. We provide

a characterization of the solutions to the mediator’s problem for each equilibrium path

of this game. First note that due to the equilibrium play, the equilibrium beliefs may

be no longer regular: They can be absolutely continuous with respect to the Lebesgue

measure or have atoms or a mixture of absolutely continuous parts and atoms. Also, the

supports may not be convex and virtual valuations may not be monotone.12 For these

cases, while complete characterization of the mediator’s solutions can be difficult, we can

obtain necessary conditions for the solutions.

A public history (t̂, d) is an equilibrium path, if e∗ induces (t̂, d) with positive prob-

ability. We first establish that if (t̂, s) is an equilibrium path, then irrespective of the

equilibrium beliefs F̃ , an ex post efficient, individually rational and balanced budget

resale mechanism exists. Since this mechanism yields the highest social surplus, α∗(t̂, s)

must be utility-equivalent to this efficient mechanism. In this case, splits are chosen with

zero probability.

To construct such a mechanism given F̃ and d = s, we introduce a class of modified

Vickrey-Clarke-Groves (MVCG) mechanism, which requires the player with a higher

report obtains the bundle and for each reporting profile, a player pays the difference

between the expected VCG payments of the two players (up to a constant). In contrast

to VCG mechanisms, the class of MVCG mechanisms depends on the beliefs F̃ .

Let (qe, pv) be the VCG mechanism defined by the efficient allocation rule qe and the

payments from the buyers to the mediator,

pvi (t) = tj1{ti>tj} +
1

2
tj1{ti=tj}, for all t ∈ E, i = 1, 2. (5.4.6)

The interim expected payment from the VCG mechanism (qe, pv) is given by13

P v
i (ti) =

ˆ
Ej

pvi (t)dF̃j(tj), for all ti ∈ Ei, i = 1, 2. (5.4.8)

12In non-absolutely continuous cases, F̃i can be decomposed into an absolutely continuous part G̃i(x)
with support E′i ⊂ Ei and a singular part with mass points {xik} ⊂ Ei, where

dF̃i(x) =

(
1−

∑
k

αik

)
g̃i(x)dx+

∑
k

αikδxik
(dx). (5.4.5)

13For beliefs not absolutely continuous, we have

P vi (ti) =

(
1−

∑
k

αjk

) ˆ
E′

j

pvi (ti, x)g̃j(x)dx+
∑
k

αjkp
v
i (ti, xjk). (5.4.7)
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The class of MVCG mechanisms {(qe, p∗(·|π))} is parameterized by the constants

π = (π1, π2), π1 + π2 = 0, with the payments given by

p∗i (t|π) = P v
i (ti)− P v

j (tj)− πj, for all t ∈ E, i = 1, 2. (5.4.9)

It is easy to see that an MVCG is ex post efficient, ex post budget balanced, and

incentive compatible. Following Krishna and Perry (2000) and Kos and Manea (2009), we

show that an individually rational MVCG mechanism exists, which implies the following

result.

Lemma 5.1: Let G(q,m) be a feasible resale game and let (e∗, µ∗) be a PBE. If (t̂, s)

is an equilibrium path, then α∗(t̂, s) implements splits with zero probability.

Proof. See Appendix 5.A. �

We now establish that for i = 1, 2, if (t̂, i) is an equilibrium path, then irrespective

of the equilibrium beliefs, the re-seller’s virtual cost (the re-seller’s inflated value of the

bundle due to incentive distortion) is always higher than the virtual valuation of splits.

Hence, any resale mechanism with the highest social surplus again requires splits to be

chosen with zero probability. α∗(t̂, i) must be utility-equivalent to such a mechanism.

Lemma 5.2: Let G(q,m) be a feasible resale game and let (e∗, µ∗) be a PBE. For i =

1, 2, if (t̂, i) is an equilibrium path, then α∗(t̂, i) implements splits with zero probability.

Proof. See Appendix 5.A. �

5.4.3. The Solution to The Seller’s Problem

We are able to establish the following impossibility result on the Myerson revenue. With

optimal resale mechanisms, the seller’s revenue is bounded above by the revenue from

the MMA in Proposition 5.2. If prior beliefs are symmetric, this bound is tight. If beliefs

are asymmetric, it is unclear whether the revenue can be strictly lower.

Theorem 5.1: Let R∗ be the maximal revenue from all feasible auctions.

(i) If F1 6= F2, then R∗ ≤ R1 < R0.

(ii) If F1 = F2, then R∗ = R1 < R0.

Proof. (i) By Lemma 5.1 and 5.2, for any feasible resale game G(q,m) and its PBE

(e∗, µ∗), if (t̂, s) or (t̂, i) is an equilibrium path, then splits cannot arise with positive

probability in a final allocation on this path. Hence, the final allocation rule o must

satisfy o(t) 6= ds for almost all t ∈ T . Now, the set of feasible final allocation rules, or

A = {o|o is generated by a feasible G(q,m) with some PBE (e∗, µ∗)} (5.4.10)
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is a subset of A1 in (5.3.2). Moreover, besides the incentive compatibility and the indi-

vidual rationality associated with the static mechanisms, a PBE of a feasible resale game

requires sequential rationality constraints at the resale stage.

Recall that R1 is the maximal revenue from {(q,m) ∈M0|q ∈ A1}. Then the revenue

ranking R∗ ≤ R1 holds, because A ⊆ A1 and the seller’s revenues are the same for the

two allocation rules o ∈ A and q ∈ A1 satisfying o = q while leaving ti, i = 1, 2, the

same expected utilities. The proof is complete if R1 < R0, which has been proven in

Proposition 5.2.

(ii) If F1 = F2, then consider the MMA as the seller’s auction. Truthful reports are

part of a resale-proof equilibrium: For every equilibrium path (t̂, i), the mediator puts

probability one on t̂i > t̂j. For every off-equilibrium path (t̂, d), the mediator may again

put probability one on t̂i > t̂j. Hence, for all public histories, no resale mechanism will

be offered. Hence, R∗ = R1. �

Proposition 5.3: Let the MMA be the seller’s auction.

(i) If F1 6= F2, then truthful reports are not part of a resale-proof equilibrium.

(ii) If F1 = F2, then truthful reports are part of a resale-proof equilibrium.

Proof. (i) Suppose truthful reports are part of a resale-proof equilibrium. F1 6= F2

implies that there exists at least one i such that on the equilibrium path (t̂, i), t̂j > t̂i

occurs with positive probability. The mediator puts mass point on t̂. An optimal resale

mechanism sets a constant trading price between t̂j and t̂i, independent of reports. Both

players will accept this price and the resale occurs, which contradicts to resale-proofness.

(ii) has been shown by Theorem 5.1(ii). �

The result in Proposition 5.3(i) does not rule out the possibility that the MMA has

some untruthful reporting equilibrium that implements R1.

If beliefs are symmetric, the MMA is a solution to the seller’s problem while there

exist other auctions that yield the same revenue. For example, we may define a second

price auction for the bundle with some reserve price. If both bids are below the reserve,

then sell one object to buyer 2 at price a2. The advantage of this auction is that for any

beliefs, its truthful equilibrium is resale-proof.14

Theorem 5.1 may not hold if t1 > a12 is replaced by 2a1 < t1 < a12. In this

case, on the equilibrium path after buyer i obtains the bundle, splits may have the

highest virtual valuation for some type profiles. The mediator may implement splits

with positive probability. On the other hand, the optimal resale mechanism may remove

some inefficiency. In this case, whether the Myerson revenue is attainable is unclear.

14However, such truthful equilibrium must yield a revenue lower than R1. Similar to the MMA, it
does not rule out the possibility that this auction has some other equilibrium with equilibrium resale
that implements R1.
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5.5. Other Resale Market

Theorem 5.1 depends on the assumptions that (i) the buyers have symmetric bargaining

powers15 and (ii) they move simultaneously at the resale stage. In this case, Theorem

5.1 shows that the seller’s revenue is strictly lower than the Myerson revenue. In this

section, we show that this result is not specific for sequentially optimal centralized resale

markets. Other resale markets with simultaneous moves may lead to multiple equilibrium

outcomes, with some of them having low revenue for the seller.

In order to focus on the inefficiency caused by splits and characterize the equilibria

explicitly, we assume that the buyers have symmetric prior beliefs F1 = F2 = F on [t, t]

in the remainder of this section. Denote Re the revenue from the truthful BNE of the

Vickrey auction. Without resale possibility, the seller can guarantee Re by running either

one of the following auctions:

(FPA) If buyer i bids above the reserve price r = t and is the high bidder, he wins

the bundle and pays his own bid. If no buyer meets the reserve, the seller withholds

both objects.16

(MFPA) If buyer i bids above the reserve price r = t and is the high bidder, he wins

the bundle and pays his own bid. If no buyer meets the reserve, the buyers split the

objects with the prices equal to (a1, a2).

Now suppose the resale market is organized by the McAfee bidding procedure (M)

introduced in McAfee (1992). At d = i, the re-seller i sets an ultimatum price for the

bundle. At d = s, the two buyers simultaneously submit their bids for buying the other’s

unit, i.e. [0,∞). The high bidder wins the other’s unit and pays his own bid to the other

bidder. Ties are broken randomly.

We observe that compared to FPA, allowing the possibility of splits in MFPA intro-

duces multiple equilibria and a possibly lower revenue than Re. We mention the following

result without proof.

(Multiple Efficient Outcomes) Suppose

a2 < t− 1

2

(
t−
ˆ t

t

[F (x)]2dx

)
. (5.5.1)

(i) In FPA-M, there exists a resale-proof and efficient equilibrium outcome in which

both buyers bid for the bundle as in a single object first price auction. The seller’s

revenue is R2.

(ii) In MFPA-M, the resale-proof outcome of FPA-M remains an equilibrium out-

15That is, the buyers’ welfare weights are equal in the mediator’s problem. It remains to be investi-
gated whether the seller obtains a higher or lower revenue if the buyers’ weights are asymmetric.

16For simplicity, we assume that the bid is 0 when it is below the reserve.
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come. Moreover, there exists another efficient equilibrium outcome in which both buyers

always bid below the reserve and split. The resale is efficient. The seller’s revenue is a12.

Hence, the efficient allocation can be implemented both without equilibrium resale

and with equilibrium resale. The efficient allocation does not have to be implemented

with zero probability of resale. For single unit auctions, we are not aware of any similar

results.

The multiplicity of efficient equilibria suggests a coordination problem between the

buyers.17 For the buyers, the low revenue outcome interim Pareto dominates the resale-

proof outcome. That is, all types of the buyers are better off in the low revenue outcome

at the beginning of the seller’s auction. Hence, the low revenue outcome is more likely

to be played by the buyers. For the seller that maximizes the revenue given efficiency,

eliminating splits from the set of decision options avoids the multiplicity and guarantees

the efficient revenue.18

It is worth to note that Assumption 5.1 implies that splits are always inefficient and

there is no reason for the seller to allow splits in the first place. However, consider

an alternative environment where splitting is efficient for some valuation profiles, for

example,

t < a12 < t+ ε for some ε > 0 small.

In this environment, an efficient allocation requires some splits for the lower values. We

find that the previous analysis remains true. For such a case, completely eliminating

splits has a second-order loss in the efficiency but a first-order gain in the revenue.19

5.6. Conclusion

In this chapter, we investigate the optimal selling procedure for two complementary

objects, when inter-buyer resale cannot be prohibited. We assume that the buyers have

independent private values on the bundle and that one buyer acquiring the bundle is

efficient. Assuming that the auction bids and the allocation of objects are publicly

observable, we discuss the seller’s attainable revenue, assuming that a mediator chooses

17McAfee and McMillan (1992) note that in practice a bidding ring’s own “knockout auction” often
happens after rather than before the legitimate auction. Garratt, Troger and Zheng (2009) construct
a family of non-value-bidding equilibria for an English auction that allows inter-bidder resale, for inde-
pendent private value environments.

18Notice that the multiplicity of equilibria does not only arise for this resale game but it may arise
in any of feasible resale games. If the seller’s move is taken into account, then the equilibria must be
selected in a way that maximizes the seller’s revenue to ensure the equilibrium existence.

19Consider the seller runs FPA with r = a12, or (ii) MFPA with r = a12. For some parameters, the
game MFPA-M has multiple equilibrium outcomes. It is also unclear whether the seller can eliminate
the multiple outcomes without eliminating splits.
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a resale procedure that maximizes the buyers’ surplus.

We characterize the modified Myerson auction (MMA) that completely eliminates

splits, which is a natural response to prevent resale. It requires selling the bundle with

two personalized reserve prices, and selling one object to the buyer with the higher single

unit value in case no buyer bids above his reserve price. We show that, in case of resale,

the Myerson revenue is unattainable, and the maximal revenue is bounded above by the

revenue from the modified Myerson auction. Hence, this chapter provides an example of

resale markets where symmetric bargaining powers of buyers and simultaneous bidding

in the resale market are conducive to a low revenue at the auction stage.

This chapter is related to Ausubel and Cramton (1999), which characterizes the

optimal mechanisms when the resale market is perfect in the sense that any inefficiency

will be corrected in the resale market. Given such a perfect resale market, they find that

the seller should induce an efficient allocation directly in the initial market. In contrast,

our impossibility result on the Myerson revenue does not rely on a resale market to be ex

post efficient. Instead, we find that if the inefficiency of a social alternative is commonly

known by the resale participants and their bargaining powers are symmetric, then it will

be corrected. In case of optimal resale mechanisms, a perfect resale market followed by

splits exists and is implemented by a modified VCG mechanism.

Many interesting points have not been discussed in this chapter. We assume that the

level of post-auction transparency is given rather than being chosen by the seller. Hence,

our model provides a lower bound for the seller’s performance. With moderate degrees

of transparency, each buyer observes the outcome of the initial allocation, his own bid,

and payment. In this case, post-auction beliefs are no longer common knowledge and the

mediator may even require players to report their beliefs. With a minimal transparency,

we have private winners and payments, where each buyer observes his own bid, his own

winner identity and payment. In this case, there is no public history for the players to

coordinate and organize the resale followed by splits. Calzolari and Pavan (2006) studies

revenue maximizing auctions with resale and allows the seller to disclose information to

the re-seller. They find that it is impossible to maximize revenue with a deterministic

selling procedure (also see Bergemann and Pavan (2015) for a survey). We leave these

cases for future research.
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Appendix 5.A Proofs

Proof of Proposition 5.1. Let (q,m) ∈M0 and Ui(t̂i; ti) = (Q0i(t̂i)+Qs(t̂i))ai+Qi(t̂i)ti−
M̄i(t̂i), where Qd is the expected probability that d is chosen, and M̄i is the expected

payment for buyer i = 1, 2. As Lemma 5.2 in Myerson (1981), (q,m) is incentive com-

patible if and only if for each i, Qi is nondecreasing and Ui(ti) = Ui(ti) +
´ ti
ti
Qi(x)dx.

The interim expected payment of buyer i is given by

M̄i(ti) = (Q0i(ti) +Qs(ti))ai +Qi(ti)ti −
ˆ ti

ti

Qi(x)dx− Ui(ti). (5.A.1)

The expected revenue for the seller,
∑

iE[M̄i(t̃i)] is given by

E[v(d, t̃)qd(t̃)]−
∑
i

Ui(ti), (5.A.2)

where the sum of buyers’ virtual valuations v(d, t) for d ∈ D0 is given by

v(0, t) = 0, v(0i, t) = ai, v(s, t) = a12, v(i, t) = Ji(ti), for all t ∈ T . (5.A.3)

Setting Ui(ti) = 0, i = 1, 2, leaves no rent for the buyers with the lowest types. The

maximization requires the objects to be allocated in a way that pointwise maximizes the

sum of buyers’ virtual valuations. Because Ji, i = 1, 2 is regular, it follows that q∗i (t) is

nondecreasing in ti for all tj ∈ Tj. Now Q∗i is nondecreasing implies q∗ is indeed incentive

compatible. �

Proof of Proposition 5.2. The seller’s problem is similar to Proposition 5.1 except d = s

is eliminated. Then d = 02, which was dominated by d = s, now may have the highest

sum of virtual valuations, i.e. a2 among all decisions for some t ∈ T . In either case (i)

or (ii), q∗∗i is nondecreasing in ti for all tj ∈ Tj. Hence q∗∗ is incentive compatible. �

Proof of Lemma 5.1. (qe, pv) is efficient and dominant strategy incentive compatible.

The ex post surplus is
∑

i p
v
i (t) = maxi ti− a12 ≥ 0, for all t ∈ E. Thus, this mechanism

runs an ex ante surplus,

E[
∑
i

pvi (t̃)]− a12 ≥ 0. (5.A.4)
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Then, if F̃ is absolutely continuous or discrete, by Theorem 2 of Krishna and Perry (2000)

and Theorem 5.1 of Kos and Manea (2009), there exists an efficient and individually

rational mechanism that balances the budget. Now suppose F̃i is general. Consider

the modified VCG mechanisms (qe, p∗(·|π)) parameterized by π = (π1, π2) satisfying

π1 + π2 = 0.

The interim pavements for pv and p∗(·|π) differ up to constants and thus (qe, p∗(·|π))

is incentive compatible as well. Also, (qe, p∗(·|π)) is balanced budget. Finally, because

(qe, pv) runs an ex ante surplus, there exists (π∗1, π
∗
2) such that

E[P ∗j (t̃j|π∗)] + π∗j ≥ ai, for j = 1, 2. (5.A.5)

Hence (qe, p∗(·|π∗)) is also individually rational. �

Proof of Lemma 5.2. Denote ci = inf{ti : F̃i(ti) > 0} and ci = sup{ti : F̃i(ti) < 1} and

similarly for j. If the gains from resale are common knowledge, i.e. cj > ci, then the

problem is simple, i.e. the players trade at a price equal to (cj − ci)/2. We focus on the

case with no common known gains from resale.

i. Suppose F̃i is absolutely continuous on [ci, ci] and f̃i > 0, and this also holds for

j. The mediator’s problem is similar to Myerson and Satterthwaite (1983). For any

incentive compatible, individually rational, and budget balanced (φ, p) ∈ Φ(t̂, i, µ∗), by

the envelope theorem Ui(ti) = Ui(ci) +
´ ci
ti

Ψi(x)dx and Uj(tj) = Uj(cj) +
´ tj
cj

Ψj(x)dx,

where Ψi,Ψj are the expected probabilities of resale. Then (φ, p) is individually rational

if and only if20

Ui(ci) + Uj(cj) ≥ a12. (5.A.6)

The mediator’s problem is given by

max
(φ,p)∈Φ(t̂,i,µ∗)

ˆ
E

t1φ1(t) + t2φ2(t) + a12φs(t)dF̃ (t). (5.A.7)

By the ex post balanced budget, the sum of ex ante expected payments,
∑

iE[Pi(t̃i)], is

zero, and we have

Ui(ci) + Uj(cj) =

ˆ
E

∑
d∈{i,j,s}

ṽ(d, t)φd(t)dF̃ (t), (5.A.8)

where

ṽ(i, t) = ti +
F̃i(ti)

f̃i(ti)
, ṽ(j, t) = tj −

1− F̃j(tj)
f̃j(tj)

, ṽ(s, t) = a12, (5.A.9)

20Notice that Ui(ti)− ti is decreasing in ti and Uj(tj)− aj is increasing in tj . Hence, the individual
rationality condition for ti = ci and tj = cj implies the condition holds strictly for other types.
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for all t ∈ E. Combine with ps(t) = 1−
∑

i pi(t) for all t ∈ E, we rewrite (5.A.6) as

ˆ
E

[ṽ(i, t)− a12]φi(t) + [ṽ(j, t)− a12]φj(t)dF̃ (t) ≥ 0. (5.A.10)

Let λ ≥ 0 be the Lagrange multiplier for (5.A.10), then we have

(1 + λ)

ˆ
E

[ti +
λ

1 + λ

F̃i(ti)

f̃i(ti)
− a12]φi(t) + [tj −

λ

1 + λ

1− F̃j(tj)
f̃j(tj)

− a12]φj(t)dF̃ (t) + a12.

(5.A.11)

For ti > a12, at least buyer i (the re-seller) has a virtual cost always higher than the

virtual valuation of splits, or

J̃i(ti) = ti +
λ

1 + λ

F̃i(ti)

f̃i(ti)
− a12 > 0, (5.A.12)

for all ti ∈ Ei.
Following Myerson (1981), let h̃i(x) = J̃(F̃−1

i (x)) and H̃i(x) =
´ x

0
h̃i(z)dz. The

convex hull of H̃i is given by

G̃i(x) = min{wH̃i(x1)+(1−w)H̃i(x2) : w, x1, x2 ∈ [0, 1], wx1+(1−w)x2 = x}, (5.A.13)

with derivative g̃i(x) = G̃′i(x). The ironed virtual cost is defined by J̄i(ti) = g̃(F̃i(ti)). We

have two cases: (i) J̃i(ti) is nondecreasing on [ci, ci + ε). For x around 0, G̃i(x) = H̃i(x)

and g̃i(x) = h̃i(x) and J̄i(ci) = J̃i(ci) > 0. (ii) J̃i(ti) is decreasing on [ci, ci + ε). For x

around 0, G̃i(x) < H̃i(x). An ironed region is given by [ci, c
∗
i ] for some c∗i > ci. For all x

in this region, J̄i(x) = J̄i(ci) < J̃i(ci). But

ˆ c∗i

ci

J̄i(ci)dF̃i(x) =

ˆ c∗i

ci

J̃i(x)dF̃i(x) > 0. (5.A.14)

In both cases, for all x ∈ Ei, J̄i(x) ≥ J̄i(ci) > 0.

ii. Suppose F̃i : R → [0, 1] is not absolutely continuous, supported by Ei ⊆ [ci, ci].

Player i’s generalized virtual cost can be defined by Monteiro and Svaiter (2010). We

replace the Lebesgue measure by the bounded signed measure ν such that ν([ci, ci]
c) = 0

and

ν((−∞, x]) =

ˆ x

−∞
(ti − a12)dF̃i(ti) +

ˆ x

−∞

λ

1 + λ
F̃i(ti)χEi

(ti)dti. (5.A.15)

Let Hν(x) = ν((−∞, x]). Denote Γ = {(y, z) ∈ R2 : y+zF̃i(x) ≤ Hν(x), for all x ∈ R}.
Define ϕ : R→ R the generalized convex hull of Hν by

ϕ(x) = sup{y + zF̃i(x) : (y, z) ∈ Γ}, (5.A.16)
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and li(x) : [ci, ci]→ R the generalized virtual valuation of Hν by

li(x) = inf{z : y + zF̃i(x) = ϕ(x), ∃(y, z) ∈ Γ}. (5.A.17)

Theorem 4 in Monteiro and Svaiter (2010) shows that li is nondecreasing and for every

nondecreasing and measurable function gi : [ci, ci]→ R,

ˆ
[ci,ci]

gi(ti)dν(ti) =

ˆ
[ci,ci]

gi(ti)li(ti)dF̃i(ti). (5.A.18)

Now we need to show that li(x) ≥ 0 for almost all x ∈ [ci, ci]. First, ti−a12 ≥ 0 implies ν

is a nonnegative measure and Hν(·) is a nondecreasing function. (Hν(ci), 0) ∈ Γ implies

ϕ(x) ≥ Hν(ci) for all x ≥ ci and ϕ(ci) = Hν(ci).

Case 1. If ci is an atom, then F̃i(ci) > 0. By Proposition 4 in Monteiro and Svaiter

(2010),

l(ci) =
ϕ(ci)− ϕ(ci−)

F̃i(ci)− F̃i(ci−)
=

ϕ(ci)

F̃i(ci)
> 0, (5.A.19)

where ϕ(ci−) = min{0, Hν(ci)} = 0.

Case 2. If ci is not an atom, F̃i(x) > 0, for all x ∈ (ci, ci + ε1], ε1 > 0 small. Fix

an x in this interval, let (y, z) ∈ R2 be such that (i) y + zF̃i(x) = ϕ(x) and (ii) z < 0.

Note that Hν(ci) ≤ ϕ(x) ≤ Hν(x) and Hν(·) is nondecreasing on (ci, x]. For z < 0,

y + zF̃ (·) is a nonincreasing function on (ci, x]. Then, there exists ε2 ∈ (0, ε1) such that

y + zF̃i(x) > Hν(x), for x ∈ [ci, ci + ε2]. Hence, (y, z) /∈ Γ.

To summarize, li is nondecreasing on [ci, ci], and li(x) ≥ 0 for almost all x ∈ [ci, ci+ε],

ε > 0 small. The optimal resale mechanism selects splits with zero probability. �
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