

Tilburg University

Tracking of Human Motion over Time

Pijl, M.J.

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Pijl, M. J. (2016). Tracking of Human Motion over Time. [s.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420832939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/fe8b8ccb-56fe-4a33-a210-c272cb89a9ee

Tracking of human motion over time

Marten Pijl

Tracking of human motion over time

ISBN: 978-94-6233-492-2

Photo by Eadweard Muybridge

The work described in this thesis has been carried out at the Philips Research
Laboratories in Eindhoven, the Netherlands, as part of the Philips Research
programme.

 Koninklijke Philips N.V., 2016, all right reserved.
All rights are reserved. Reproduction in whole or in part is prohibited without the
written consent of the copyright owner.

Tracking of human motion over time

Proefschrift ter verkrijging van de graad van doctor
aan Tilburg University

op gezag van de rector magnificus,
prof. dr. E. H. L. Aarts,

in het openbaar te verdedigen ten ovenstaan van een
door het college voor promoties aangewezen commissie

in de aula van de Universiteit
op woensdag 14 december 2016 om 14.00 uur

door

Marten Jeroen Pijl

geboren te Noordhorn.

Promotores: prof. dr. E. H. L. Aarts
prof. dr. M. M. Louwerse

Copromotor: dr. ir. J. H. M. Korst

Overige leden van de Promotiecommissie:
prof. dr. ir. C. M. Jonker
prof. dr. ir. J. J. Lukkien
prof. dr. E. O. Postma
prof. dr. W. Van Petegem
prof. dr. B. E. R. de Ruyter

Contents

1 Introduction 1
1.1 Background . 3
1.2 Monitoring human motion . 4
1.3 Sensing . 5
1.4 Privacy and ethical considerations 9
1.5 Analysis of data ordered in time 10
1.6 A model for motion tracking . 19
1.7 Challenges of human motion tracking 23
1.8 Thesis overview . 27

2 Sequence segmentation 29
2.1 Introduction . 29
2.2 Notation . 35
2.3 Dynamic programming optimality without alignment 40
2.4 Error within item boundaries for the L2 error case 44
2.5 Error within item boundaries for the L1 error case 50
2.6 Examples of the L1 and L2 error behavior 58
2.7 Generalization to real-valued durations 59
2.8 Conclusions . 61

3 Activity recognition 63
3.1 Introduction . 63
3.2 Modeling activities . 72
3.3 Activity recognition data collection 81
3.4 Sequence-based activity classification 92
3.5 Session-based online activity classification 102
3.6 Conclusion . 117

4 Prediction of successful participation in a lifestyle activity program 119
4.1 Introduction . 119
4.2 Data analysis . 122
4.3 Dropout prediction . 130
4.4 Results . 137

v

vi Contents

4.5 Conclusions . 141

5 Step detection 145
5.1 Introduction . 145
5.2 Cadence estimation algorithms . 149
5.3 Data collection . 160
5.4 Results . 161
5.5 Conclusion . 164

6 Conclusion 167
6.1 Discussion on human motion tracking 172
6.2 Contributions . 174

Bibliography 175

Acknowledgements 192

1
Introduction

This thesis concerns the analysis of human motion through sensors placed on the
body or in the environment. It is our ability to move around and interact that al-
lows us to have an impact on our environment; it allows us to shape and alter our
environment, and to address our needs through interaction. As a result, there is a
plethora of information to be unlocked by measuring and interpreting human motion,
ranging from low-level mechanical abilities to high-level behavioral intentions. Low-
level measurements might include the speed and distance of a single footstep, while
high-level interpretations might extend activities such as cooking, or running as an
expression of our intent to stay healthy. A lot of the information locked away in our
movements relates to our health - insufficient movement can lead to health problems,
while injury or illness affects how we move.

Unlocking this information is not trivial however, as we need to rely on the inter-
pretation of sensor measurements. While there is a wide variety of sensors that can be
applied to measuring human movements, it is rarely possible to measure the desired
property (e.g., an activity, gait, or posture) directly. Instead, we rely on the interpre-
tation of acceleration signals, signal strengths, and the like. In addition, sensors are
affected by measurement noise or false readings. As a result, obtaining meaningful
interpretations of human motion from sensor data such as acceleration data or camera
images is a major challenge in the field of human motion tracking.

A major part of addressing this challenge is the use of machine learning algo-
rithms to make sense of the data. Algorithms that take the ordering of the sensor data

1

2 Introduction

into account (such as hidden Markov models and Kalman filters) are of particular in-
terest here, as sensor data is generally ordered in time. Machine learning algorithms
can help in recognizing patterns in data, or distinguishing between different activities
or movements.

In addition to machine learning techniques, signal analysis also plays a role in
processing the raw sensor data. This includes removing noise from the sensor mea-
surements, but also the extraction of features which can be used as input for machine
learning algorithms. In the remainder of this thesis, we will use techniques from
fields such as machine learning, data science and signal processing to discuss meth-
ods and applications of tracking and interpreting human motion. In particular, within
this thesis we aim to address the following main research question:

How can segmentation, classification, and regression be applied to problems
that involve the tracking and interpretation of human motion?

To address the research question, we first detail a model based on the three com-
ponents of segmentation, classification and regression. Note that we do not require
each of these three elements to be present in every problem addressed by the model;
for instance, many problems require either a classification approach or a regression
approach.

The model for motion tracking will be introduced in more detail in Section 1.6.
Here, we introduce the segmentation, classification, and regression components of
the main research question as three optimization problems that are often encountered
in human motion tracking. In the remaining chapters of this thesis, we will describe
how these problems can be addressed in the context of a number of practical appli-
cations of human motion tracking. The individual applications are briefly introduced
in Section 1.8; in each chapter, we will address one or more of the components of the
main research question.

To address the problems of segmentation, classification and regression for a num-
ber of applications in human motion tracking, we formulate three research questions
related to the main research question. Through these related research questions, we
aim to in turn address the main research question of this thesis.

• Can activities of daily living (ADL) be unobtrusively tracked and recognized?

• Can analyzing the behavior of people trying to be more physically active help
predict if they will drop out of a lifestyle physical activity program?

• Is it possible to determine (psycho)motor skills such as gait accurately using
wearable sensors?

These related questions were in part inspired by real-life applications of human mo-
tion tracking in the lifestyle and healthcare domains during the work on this thesis.
Within the context of the main research question, we will address these related ques-
tions in the thesis’ upcoming chapters. In the remainder of the introduction, we will

1.1 Background 3

first provide a background and context to the field of human motion tracking, in-
troduce commonly applied methods and techniques, introduce a model for motion
tracking and discuss, and finally discuss the challenges of the field.

1.1 Background
Whether it is a person’s health, mood or state of mind, there is a lot that can be learned
simply through observing someone’s movements. Increasingly, the interpretation of
motion is carried out by computational intelligence systems1 that can be worn on
the body, integrated into the environment or in existing devices like smartphones.
Advantages of using computationally intelligent systems include that they can be
ubiquitous, minimally obtrusive, and detect subtle differences which can be hard to
see with the naked eye. The challenge for such systems is to process the raw sensor
data, and arrive at meaningful interpretations.

While measuring human motion or activities is not an entirely novel topic, im-
provements to sensor hardware over the last few decades have certainly made it
a more practical one. This is in large part due to improvements in miniaturiza-
tion and power consumption, in particular related to the continued development of
microelectromechanical systems (MEMS) and their widespread use in sensor appli-
cations [Shaeffer, 2013]. Miniaturization of sensors means that sensors such as ac-
celerometers and GPS receivers can now be fitted into smaller devices, or are more
easily integrated into existing devices. The best example of this is probably the smart-
phone - it is rare to find one which does not at least include an accelerometer, GPS
and WiFi receiver. Sensors not worn on the body, such as ultrasound or pressure
sensors, are easier to integrate into the environment (that is, they are less obtrusive
and require less space). In all, miniaturization has led to a significant reduction of the
obtrusiveness of sensors as well.

Likewise, improvements in power efficiency imply that sensors can operate for
longer periods of time without recharging or replacing the battery, or can operate at
higher sample frequencies than was previously practically feasible. In some cases,
power consumption has decreased sufficiently that sensors which were previously not
considered for continuous measurements can now feasibly be used - an example of
this is a GPS receiver. In addition, improved power efficiency also benefits miniatur-
ization, as the size of the battery is often a major contributor to the size and weight
of a device.

At the same time, society faces a significant number of healthcare chal-
lenges. Many of these stem from an increasingly ageing population, leading

1While there is no universally agreed-upon definition of computational intelligence, the field gen-
erally focuses on problems that can be solved by humans, but are (traditionally) hard to solve using
computational techniques; for example, problems that are not mathematically well-defined, or are diffi-
cult to model statistically or axiomatically.

4 Introduction

to increasing costs for elderly care, with a smaller working population to sup-
port these costs [WHO, 2011]. Similarly, people increasingly maintain unhealthy
lifestyles [Lim et al., 2010], which can result in conditions such as obesity and car-
diovascular disease. Here, behavior monitoring can play an important role in assisting
with early diagnosis or through monitoring a person’s physical and possibly mental
state.

Despite these challenges, the average life expectancies continue to in-
crease [Mathers et al., 2015]. As we, as a society, grow older, there is the expectation
that the amount of time we are able to retain our independence and maintain a high
quality of life will increase as well. In particular, there is the desire for the elderly
to remain at home, avoiding institutionalization, without feeling that they must rely
on others for their day-to-day activities. To achieve this, it is important to develop
new ways to support the elderly in need of assistance living at home, as well as their
caregivers [Stefanov, 2004].

Apart from assistance, another aspect of remaining healthy and retaining a high
quality of life is timely diagnosis and efficient treatment of diseases, or detecting and
reducing the risk of certain illnesses and conditions. Examples include monitoring or
estimating fall risk, cognitive decline, or detecting when someone is not eating well.
Here, computationally intelligent systems can help in monitoring for these risks and
conditions while maintaining the person’s privacy as much as possible.

In addition, healthcare systems are under pressure due to the increase in people
leading unhealthy lifestyles, typically caused by a lack of sufficient physical exer-
cise [Stevens et al., 2012]. As mentioned, this can lead to a slew of other conditions,
most notably those due to obesity and cardiovascular disease [Must et al., 1999;
Thompson, 2003]. There is also evidence suggesting that for elderly, maintaining
a level of physical activity may be beneficially impact cognitive ability [Kelly et al.,
2014]. Lifestyle activity programs exist to assist participants in changing their habits
and leading a more healthy lifestyle, but even with this additional assistance, staying
motivated is often a major challenge for participants.

1.2 Monitoring human motion
Human motion and activity can be measured and interpreted at a number of levels.
At its most basic level, we can measure properties of a given behavior when it occurs:
how fast do we walk, how long does it take us to stand up, and so on. At a higher level
we could determine to which goal these activities contribute: is someone walking to
the kitchen to get some food, or are they lost? Finally, we can try to make inferences
about the mental state of a person, such as their current motivation or mood.

In this thesis, we attempt to address topics at both the basic and higher levels
of behavior monitoring. Analyzing walking activity is an example of a low-level
behavior. For most people, walking is our primary method of mobility within our

1.3 Sensing 5

environment, and in many cases enables us to perform higher level behaviors. Statis-
tics such as when and how far we are walking are therefore of interest not only for
describing walking behavior itself, but can also help provide insight into higher level
behaviors. That is not to say that investigating walking behavior has no merits on
its own - walking behavior is often related to various health aspects ranging from
leading a healthy lifestyle to cognitive decline.

At a higher level, we can consider activities of daily living (ADL), such as dress-
ing, eating, and so on. Such activities are often composites of several lower-level
activities, and as such are often difficult to capture by any single feature. For ex-
ample, an activity like preparing a meal might be performed very differently by two
different persons, or even by the same person on different days.

Finally, at the highest level of interpretation we can use measured behavior as a
means to glean understanding of the behavioral intentions of people, which drive their
observed behaviors. This often comes down to finding quantifiable values regarding
a person’s behavior, such as the probability they will perform a certain activity, or
a prediction of how often a certain behavior is performed in a period of time. This
generally involves observing (aspects of) a person’s behavior over a longer period of
time, at least compared to the timespan of observing a single activity only.

1.3 Sensing
When it comes to monitoring human motion, there is a wealth of sensors available
that offer a variety of uses for this purpose. Broadly speaking, the set of sensors can
be divided into two categories: environmental sensors and body-worn sensors. Each
category of sensors typically has its own benefits and disadvantages. As a result, the
choice of sensor(s) for a particular behavior monitoring application should not only
be determined based on the behavior to be monitored, but also on the context of the
application itself.

Environmental sensors. The first group, environmental sensors (also called ambi-
ent, pervasive, or ubiquitous sensors), consists of sensors which are placed within an
environment such as a person’s home, workplace, or car. The environmental sensors
can then monitor a user within (most of) this environment. In some cases, a single
sensor is used, but more commonly a network of sensors, is required to adequately
cover the entirety of the environment. Examples of environmental sensors include
cameras, microphones, ultrasound range finders, or simple pressure switches.

Body-worn sensors. The second group consists of body-worn (or wearable) sen-
sors; as the name suggests, these are sensors that are worn on or attached to the body
of the user. Examples of this include inertial measurement units, accelerometers,
and heartrate monitors. Body-worn sensors are usually worn or attached as part of
a unit which not only contains the sensor, but also a microprocessor, power source,

6 Introduction

any additional sensors, and other electronical components such as a wireless inter-
face or memory - such a unit is often referred to as a sensor platform. Due to their
portable nature, these sensor platforms are typically battery powered, and need to be
recharged at regular intervals. The frequency of the recharging cycle depends on the
power efficiency of the sensor platform in question.

Comparing the two groups of sensors, we can identify three major advantages of
environmental sensors compared to wearable sensors. First, environmental sensors
tend to be less obtrusive compared to wearable sensors as they are placed in the
environment rather than on the body. It should be noted though that obtrusiveness in
large part depends on the sensor platform in question; the size (or formfactor), weight
and wearing position can all significantly impact the obtrusiveness of the platform.

Second, environmental sensors have the option of connecting directly to the
power grid, eliminating the need for recharging. Third, environmental sensors do
not depend on the user wearing any special devices, and hence there is no risk of,
for instance, the user forgetting to put on the device in the morning. When using
wearable sensors, the user must generally remember to charge and wear the sensors.
It should be noted that some environmental sensors like RFID systems do require the
user to wear a token for identification.

This also touches upon one of the three major disadvantages of environmental
sensors compared to wearable sensors: environmental sensors often have trouble dis-
tinguishing between different people, or more generally, distinguishing between the
information created by different people. This can lead to odd conclusions in some
cases, for instance, in cases where a second person was not anticipated, a system
may conclude that the user is simultaneously in the living room and the bathroom.
However, when the objective is tracking everyone in the environment rather than a
specific person, the fact that environmental sensors are not bound to a single user
could also be seen as an advantage. Otherwise, coping with this issue requires either
using some sort of token to be worn by the user(s), or using algorithms to try and
distinguish different users (using for example face or speech recognition).

A second disadvantage of environmental sensors is often the difficulty of instal-
lation, particularly if multiple sensors are involved. These sensors often need to be
securely fitted into an existing environment, where their functioning is dependent on
correct placement. In addition, calibration steps may be required after installation of
the sensors in the environment. A final disadvantage is that environmental sensors are
obviously not able to monitor a user outside of the sensors’ observable environment,
whereas a wearable sensor will simply follow the user as they move about.

Hybrid sensors. Arguably, some sensors can be considered hybrids in that they
have properties consistent with both groups. An example is wireless beacons, which
work through triangulation of signal strengths of the wireless connections of mul-
tiple beacons. Such a system both requires several beacons to be installed in the

1.3 Sensing 7

environment, as well as an active receiver to be worn by the user. Technically speak-
ing, GPS can be considered to belong to this category, even though in this case the
environment spans the entire world (as this is the environment covered by the GPS
satellites). Sensors in this group typically share disadvantages of both environmental
sensors and body-worn sensors, but generally offer some other advantages to make
up for this.

For some sensors, it can be debated whether they are hybrid sensors or not. This is
particularly the case for some environmental sensors. For instance, a system of RFID
sensors generally requires a tag to be placed somewhere on the body. However, this
tag can be passive - that is, they do not create any sensor measurements2. In the case
of wireless beacons, an active unit placed on the body is required, making such sensor
systems a more compelling case as a hybrid sensor.

In addition, some sensors can be fit into both the environmental or wearable cat-
egory, depending on their application. An example of this are microphones; these
can either be placed in the environment to detect specific sounds (e.g., running water
in the bathroom, conversation in the living room), or can be worn on the body, for
instance to detect heart rate through acoustics.

In Table 1.1, a list is provided of sensors that may be used in the field of hu-
man motion tracking. It should be noted however that this list is far from exhaustive;
a far larger number of sensors can potentially be employed in this field, or at least
to certain aspects of it. Furthermore, we considered the inclusion of implantable
sensors in the table to be out of scope. The sensors in the table have been broadly
categorized based on their common applications, as either ‘movement and location’,
‘physiological parameters’, or ‘environment and interaction’. Some of the sensors in
the table have their type listed as ‘both’; this indicates that depending on the appli-
cation, the sensor may be used as either a wearable sensor, or as an environmental
sensor. Table 1.1 has primarily been based on the works of Bonato [2010], Lara and
Labrador [2013], Logan et al. [2007], Pantelopoulos and Bourbakis [2009], Patel
et al. [2012], Suryadevara and Mukhopadhyay [2012], Tao et al. [2012], Lus̃trek and
Kaluz̃a [2009], and Ye, Dobson, and McKeever [2012].

Note that Table 1.1 is provided here to provide some background on the common
sensors and modalities one can expect to encounter in the field of human motion
tracking; as this thesis focuses primarily on the application of methods and algorithms
(derived from, for example, the fields of machine learning, signal processing, and
data analytics) to problems of human motion tracking, a critical comparison of the
abilities, advantages and disadvantages of the individual sensing modalities is out of
the scope of this work.

2Strictly speaking, a passive RFID tag refers to the fact that the tag does not require its own power
source.

8 Introduction

Sensor Modality Type

Movement and location
Accelerometer Motion (acceleration) Wearable
Gyroscope Motion (rotation) Wearable
Magnetometer Motion (rotation) Wearable
Inertial measurement unit (IMU) Location, motion Wearable
Flexible Goniometer Motion (angular changes) Wearable
Electromagnetic tracking system Motion Hybrid
Global positioning system (GPS) Location, motion Hybrid
Camera Video Environmental
Infrared sensor Location, motion Environmental
Ultrasound sensor Location, motion Environmental
Radio / WiFi beacons Location, motion Hybrid
Microphone Audio Both

Physiological parameters
Piezoelectric strap / patch Heart rate, respiration, motion Wearable
Spirometer Respiration Wearable
Arm cuff-based monitor Blood pressure Wearable
Photoplethysmography (PPG) Heart rate, respiration Wearable
Pulse oxymeter Oxygen saturation, heart rate Wearable
Galvanic skin response (GSR) Perspiration Wearable
Electrocardiogram (ECG) Heart rate Wearable
Phonocardiograph Heart sounds Wearable
Electroencephalogram (EEG) Brain activity Wearable
Electromyogram (EMG) Activity of skeletal muscles Wearable
Glucose meter Blood sugar levels Wearable

Environment and interaction
Thermometer Temperature (skin or ambient) Both
Hygrometer Humidity Environmental
Barometer / altimeter Pressure (air) Both
Photodetector Light Both
Switch sensor Use of objects Environmental
Motion sensor (accelerometer) Use of objects Environmental
RFID tag Use of objects, location Environmental
Current sensor Electrical current Environmental
Pressure sensor / mat Use of objects, location Environmental
Flow meter Flow of water or gas Environmental
CO2 sensor Levels of CO2 Environmental

Table 1.1: List of common sensor modalities used in human motion tracking, in-
cluding the modalities commonly measured by the sensor, the sensor type (wearable,
environmental, both, or hybrid). Note that the table is not intended to provide an ex-
haustive list of sensors and modalities that might be used in human motion tracking.

1.4 Privacy and ethical considerations 9

1.4 Privacy and ethical considerations
Whenever tracking sensors are used to record data from people, it is important to
consider what effects this could have on their privacy. Often, the data recorded can
hold explicit or implicit clues to their identity, lifestyle, and so on. This is obvious
in the case of for instance audio or video recordings, but other information such as
the places someone visits (for example through GPS, the ethics of which have been
discussed by Michael, McNamee, and Michael [2006]) or movement data from ac-
celerometry can raise privacy concerns for users. Gait information, like other biomet-
ric information such as retina scans and fingerprints, can be used for identification, as
described by Iwama et al. [2012], and as such can potentially be harmful to a person’s
privacy. Even if, for example, fears of widespread gait identification systems seem
unfounded for the foreseeable future, as discussed by Boulgouris, Hatzinakos, and
Plataniotis [2005], the fact that such concerns exist may impact users’ willingness to
adopt a certain solution or technology.

When dealing with any kind of personal or sensitive information, minimizing the
impact on privacy is important, for instance by:

• Ensuring that any sensitive data is handled securely, in particular with regards
to storing and transmitting of the data. This also includes removing any data
which is no longer required for the application to function. Particular care must
be taken with cloud storage in this respect, as it is often unclear where exactly
the data is stored, and whether or not it is completely removed from the cloud.

• Processing sensitive data on the sensor platform itself. For example, if video
data can be analyzed and removed, and only a person’s activity information is
transmitted, this reduces the impact on privacy. In some cases, privacy issues
can be avoided altogether in this fashion (although this does not mean it is
perceived as such by the users).

In the end, when considering the use of any system that may have an impact on
privacy, it is important to weigh these concerns against the potential benefits for the
users whose privacy is impacted. For instance, if a system allows elderly to live in
their own home for a longer period of time, they could perceive this as a benefit that
offsets a loss of privacy.

Ideally, it is the users themselves who need to decide whether the benefits out-
weigh the disadvantages, rather than the decision being made by a third party. In
some cases, this can cause a dilemma when the users of the system are no longer
able to make informed decisions themselves, as can be the case for people with de-
mentia, for example. Such cases show that there is a need for ethical considerations
and discussion in the field of human motion tracking. This also applies to those who
can make informed decisions; as mentioned by McNamee [2005], the use of tracking
technology can simply become a habit over time, with users no longer considering
the potentially harmful effects as they become blasé about the technology’s presence.

10 Introduction

1.5 Analysis of data ordered in time
Regardless of the sensors used, the output generally consists of time-ordered data: a
series of data points ordered by successive points in time. Usually, the data points
are spaced at fixed time intervals, determined by the sample rate of the sensor. Tech-
niques which are common in machine learning and pattern recognition are also often
applied to this type of data - due to its time-ordered nature, techniques which are able
to take the ordering into account are of particular interest here.

An important distinction here is between techniques using online processing and
techniques using offline processing. In online processing, data can be included in a
piece-wise fashion, and the analysis is continuously updated. For offline processing,
the entire set of data over which the analysis is performed must be available before
any analysis can be done. For example, the hidden Markov model and Kalman filter
mentioned in Section 1.5.1 are examples of online methods, while the three algo-
rithms mentioned in Section 1.5.2 are offline.

Prior to any analysis, there is often a process of feature extraction. Here, features
are values derived from the raw signal data; these can be the raw values themselves,
but also aggregate values such as the mean or variance of the raw signal values,
or values obtained after a transformation of the raw signal (for example through a
low-pass filter). Feature selection is often applied to reduce the impact of noise in
the original signal, to remove redundant or unneeded information, or to reduce the
overall dimensionality of the data. Which features are appropriate depends on the
application, and feature extraction is often one of the challenges when applying the
analysis of time-ordered data to a certain problem.

In this section, we discuss a number of techniques commonly used for the anal-
ysis of time-ordered data based on statistical models, machine learning, frequency
analysis, and signal processing. We will briefly summarize each category before dis-
cussing them in more detail. It should be noted that the categorizations made here are
primarily intended to illustrate common techniques in the analysis of time-ordered
data, and as such, the different categories are not free of overlap; for example, fre-
quency analysis is often seen as part of signal processing3, and statistical models can
employ techniques from machine learning. At the end of this section, we discuss
a few notes on model transparency; that is, how easy it is to understand a model’s
behavior.

Statistical models. One way to take advantage of the time-ordered nature is
through the use of statistical models such as (hidden) Markov models and Kalman
filters. These models, also referred to as state-space models, have in common that
they maintain a model state which is updated after each time step. How the model

3More precise names for these categories might be ‘frequency and wavelet analysis’ and ‘time and
space domain signal processing’, respectively.

1.5 Analysis of data ordered in time 11

state changes is determined by the current state, the properties of the model, and the
newly observed data point. In the case of a hidden Markov model for instance, a new
state is chosen using a given transition probability distribution. This transition proba-
bility distribution depends on the current state of the model; generally, each state has
its own probability distribution parameters.

State-space models can be used for regression and classification; regression refers
to determining some numeric value, such as walking speed. Classification refers
to distinguishing between a number of distinct possibilities, for example, between
eating, walking, sleeping. Regression and classification can be achieved by observing
the sequence of model states or examining the likelihood of a given model matching
the sequence of time-ordered data. Another use of such models is forecasting; by
generating additional model states, we can get an estimate of future data points. The
forecasts are less likely to be accurate the further they are projected into the future
however.

Machine learning. Machine learning is a subfield of computer science that encom-
passes the creation and study of algorithms that can learn from previous data (also
called training data), and can then provide predictions or categorizations of new data.
The statistical models described above are examples of machine learning algorithms,
and as such could have been included here; due to their focus on time-ordered data
however, it is worthwhile to discuss them separately in this context. While many
machine learning algorithms do not share this focus, they can still be applied in the
context of human motion tracking, especially when the ordering of the data is less im-
portant or otherwise accounted for. Common machine learning techniques, which we
will discuss in more detail below, include neural networks, naive Bayesian classifiers,
and nearest neighbor classification.

Frequency analysis. Another way to look at time-ordered data is through fre-
quency analysis, which is often useful to find recurring patterns over time in the
data. Common approaches include fast Fourier transforms (FFT) and wavelet analy-
sis, which show the dominant frequencies of the data. Wavelet analysis is somewhat
more involved than FFT, but can also show how the frequency spectrum changes at
different time intervals. Frequency analysis is particularly useful when dealing with
repetitive motions such as walking.

Signal processing. As we are often dealing with raw sensor data, various signal
processing techniques are useful for obtaining relevant features from the data. High
or low-pass filtering is often used as a first step to remove certain frequencies from
the data set. This is because high or low frequencies are often related to noise, or
because for example certain motions stay within the boundaries of some frequency
band. Other scene analysis techniques are also useful for preprocessing or extracting
features, such as obtaining the derivative of a signal or the medians for a certain
window size.

12 Introduction

1.5.1 Statistical models
Statistical models generally refer to models that describe the way data was generated
through a set of probability distributions. More precisely, a statistical model is a
mathematical model for which some variables do not have fixed values, but instead
are given through probability distributions. Often, the parameters of these probability
distributions are unknown, and have to be estimated based on the data and prior
assumptions. A statistical model can also be described as a stochastic model (a model
with one or more random components) that depends on a set of model parameters. As
a result, a statistical model is a non-deterministic model4. For the modeling of data
ordered in time, a type of statistical model called a state-space model is often used,
with notable examples including the hidden Markov model and the Kalman filter.

Specifically, a state-space model is a mathematical model that models a process
as a set of one or more process states. State-space models can be deterministic, but
generally include stochastic variables defined by a set of parameters, and as such tend
to fall under the umbrella of statistical models5. In most state-space models, both the
process outputs (or observations) and the process states are modeled. The probability
of a given observation is influenced by the model’s current state. One of the best-
known state-space models is the hidden Markov model, which uses a finite number
of model states and observations, with a distinct set of observation probabilities for
each state.

In short, the hidden Markov model as introduced by Rabiner [1989] con-
sists of n distinct states U = {U1,U2, · · · ,Un}, and m distinct observations
V = {V1,V2, · · · ,Vm}, where observations are sometimes also referred to as outputs
or emissions. At each discrete time step t, the model is assumed to be in one of the
n possible states; the state at time t is referred to as qt . The model state cannot di-
rectly be observed - hence the term ‘hidden’. At every time step, the model changes
to a new state (which may be the same as the current state), and a new observation
is emitted. The probabilities of the new state and observation are determined by the
transition and observation probability functions a and b respectively:

ai j = P(qt+1 =U j|qt =Ui)

b j(k) = P(Vk|qt =U j)

An important property of the hidden Markov model is that the transition and ob-
servation probability functions rely only on the most recent model state - this is called

4However, this does not necessarily mean that the modeled process must be non-deterministic as
well.

5Admittedly, the terminology can be somewhat confusing. In short, a state-space model with
stochastic variables is a type of statistical model (a stochastic model defined through parameters), which
in turn in a type of mathematical model. A state-space model without stochastic variables (such as finite
state machines) is a type of mathematical model, but not a statistical model - in the context of human
motion tracking however, we are generally interested in the stochastic versions of the state-space model.

1.5 Analysis of data ordered in time 13

the Markov property. This results in computationally efficient methods which allows
some influence of past observations on future model states, but may prove insufficient
in situations where a longer memory is required. Examples of applications of hidden
Markov models in human motion tracking include the work by Mannini and Sabatini
[2012], Karaman et al. [2014], and Viard et al. [2016]. The hidden Markov model is
discussed in more detail in Chapter 3.

Another common state-space model is the Kalman filter [Welch and Bishop,
1995; Meinhold and Singpurwalla, 1983]. Kalman filters are similar to hidden
Markov models in the sense that they both share the concept of hidden states which
are updated each time step based on the previous state, and produce observations
based on their current state. Unlike the finite number of states in hidden Markov
models however, a Kalman filter’s hidden state can be described by a vector of real
numbers, essentially allowing for an infinite number of hidden states. As a tradeoff,
there is no separate probability distribution for generating observations for each state;
all states use the same function for generation observations.

Given a state q and an observation y, a Kalman filter can be described as:

qt = A ·qt−1 +wt−1

yt = B ·qt + vt

where the terms wt and vt represent the state and measurement noise, respectively.
They are assumed to be independent and normally distributed, with covariances given
by Q and R respectively. The matrices A and B have a similar role to the probability
functions a and b for hidden Markov models, in that they determine how the new
states and observations are generated, respectively. Applications of the Kalman filter
in human motion tracking include the work by Wichit and Choksuriwong [2015],
Ligorio and Sabatini [2015], and Auger et al. [2013].

Other examples of statistical models (but not state-space models) used in human
motion tracking include the (Gaussian) mixture model, which uses multiple probabil-
ity density functions to model the underlying statistics of the training observations,
and (linear) regression models, which estimates the coefficients of a (linear) combi-
nation of features related to the desired output (or response).

In general, state-space models such as the hidden Markov model and the Kalman
filter are best applied to problems where a current state will have significant impact
on what the future state will be. Usually, these are problems where sequences of
events follow each other in a somewhat logical (but not necessarily strict) order. In
contrast, in problems where states follow each other without any pattern, or where
different states cannot be distinguished, much of the advantages of such a modeling
approach are lost. In these cases, it may be more beneficial to consider other machine
learning methods such as naive Bayesian classifiers or support vector machines.

The reliance on a natural path through the state-space to take full advantage of
the state-space models described here explains why these models have often been

14 Introduction

applied successfully to problems in fields such as speech and video analysis; the
spoken phonemes often follow a certain pattern (not every phoneme can follow any
other phoneme), and similarly the position of a person in a camera recording will be
constrained by how far a person can move between successive frames.

Other advantages of state-space models include that the models are fairly easy
to interpret once created, and that expert knowledge about the process observed can
easily be applied to the model by for example setting the number of states or by
defining the initial state transition probabilities. However, state-space models also
tend to have large parameter spaces that need to be estimated, which can be a problem
if there is little knowledge about the modeled process available. In addition, the
models are limited to some degree by the Markov property, if the current state of
the modeled process depends on a sequence of previous states, rather than just the
last one. There are several approaches to cope with this however, and in practice the
models can often perform well even if the Markov property is not strictly adhered to.

1.5.2 Machine learning techniques
Machine learning techniques, in general, make use of past observations to derive in-
ferences about the observed data, and as such can make predictions or classifications
about any new observations. The observations used to derive inferences are often
referred to as training examples, as they are used to ‘train’ the machine learning
models. In machine learning, a distinction is often made between supervised and un-
supervised learning. Supervised learning methods make use of labeled training data;
that is, they require information regarding the class or desired output of each train-
ing example. In contrast, unsupervised methods do not require such input, and make
classifications based on other aspects of the data, for example through similarity met-
rics. While the entire range of machine learning algorithms is extensive to say the
least, we will here briefly discuss three of the more common (supervised) algorithms
used in the field of human motion tracking. These include neural networks, naive
Bayesian classification, and the nearest neighbor algorithm.

The first of these, neural networks, have previously been applied to movement
pattern analysis and activity recognition [Bataineh et al., 2016; Toshev and Szegedy,
2014; Du, Wang, and Wang, 2015]. Neural networks are loosely based on the inter-
connected neurons in the brain; each neuron in a neural network accepts weighted
inputs from other neurons, and the weighted sum of these inputs determines whether
or not the neuron ‘activates’. While there are many types of neural networks, as for
example described by Lippmann [1987], one of the more commonly used models is
the multilayer perceptron. In a multilayer perceptron, neurons use non-linear activa-
tion functions, which are often sigmoids. A commonly used sigmoid is for example

f (α) =
1

1+ e−(α−θ)
.

1.5 Analysis of data ordered in time 15

Here, f (α) is the output of the neuron, α is the weighted sum of inputs, and θ is
an internal threshold. The idea behind the non-linear activation functions is to provide
an output close to either 0 (or −1) and 1 for most values of α . Multilayer percep-
trons are structured into at least three layers of neurons, with each layer of neurons
providing the inputs for the neurons in next layer. Multilayer perceptrons are fully
connected; that is, each neuron takes (weighted) inputs from each neuron in the previ-
ous layer. Furthermore, we can distinguish between the input layer (which represent
feature values), one or more hidden layers, and the output layer (representing output
values or classes), in that order. The weights of a neural network can be adjusted
based on training examples through a procedure called back-propagation [Lippmann,
1987]. Apart from movement pattern analysis and activity recognition, neural net-
works have historically seen much use in pattern recognition applications for audio
and video. Over time, other methods have been developed (such as support vector
machines), although there has been renewed interest in back-propagation methods
recently due to the development of deep learning.

The reason for this renewed interest is the excellent performance of deep learning
methods on many machine learning problems considered to be very difficult (such as
image recognition and handwriting recognition). However, at the time of writing it
is still difficult to conclude whether similar advancements will be made on problems
related to human motion tracking, although encouraging results exist [Ronao and
Cho, 2016]. A second strength of deep learning techniques is that they inherently
solve the feature selection problem; the learning process automatically determines
which features are important and which can be ignored. However, deep learning still
suffers from the classic neural network problem that the resulting model is a virtual
black box (see Section 1.5.5). In addition, deep learning methods currently require
specialized hardware for most problems due to their computational demands, and
generally require large sets of data to achieve their state of the art performance.

The second method discussed here, the naive Bayesian classifier, described by for
example McCallum and Nigam [1998], is a relatively straight-forward probabilistic
classifier based on Bayes’ theorem. Applications of the naive Bayesian classifier to
human motion monitoring include the work of Urwyler et al. [2015], Valle, Varas,
and Ruz [2012], and Preis et al. [2012]. The ‘naive’ part of the name refers to the
strong assumption that each feature is conditionally independent. This assumption
rarely, if ever, holds in practice. However, the naive Bayesian classifier often per-
forms well on real-world problems despite this assumption.

Using Bayes’ theorem, the naive Bayesian classifier estimates the conditional
probability P(Ci|x) of a certain output or class Ci ∈ C given a set of input features
denoted by x as

P(Ci|x) =
P(Ci)P(x|Ci)

P(x)
,

16 Introduction

where P(Ci) is the prior probability of Ci, P(x|Ci) is the probability of feature set x
occurring for Ci, and P(x) is the prior probability of x. In practice, the denomina-
tor P(x) is often omitted, as we are generally interested in the relative probabilities
between outputs or classes, and since P(x) does not depend on C, the term becomes
constant.

The strength of the naive Bayesian classifier is that it is both simple and power-
ful [Mitchell, Monaghan, and O’Connor, 2013]; even if features are not conditionally
independent, the method often produces good results. As a result, the model is widely
applied in a variety of contexts. Even so, naive Bayesian classifiers may not be the
best choice when there are strong interactions between the model features.

The third method, the nearest neighbor algorithm, is arguably one of the simplest
classifiers in machine learning: a new observation is assigned the class of its closest
previously observed neighbor. Determining which previous observation is the closest
is generally based on the Euclidian (or L2) distance, although other distance metrics
such as city block (or L1) distance or Hamming distance can be used. Often, the
more general version of the nearest neighbor algorithm is used, the k-nearest neigh-
bor algorithm. Here, the class is assigned based on the k nearest neighbors, usually
through a majority vote6.

The nearest neighbor algorithm is easy to implement and can fit complex problem
spaces, but does have some disadvantages. These include being dependent on the
scaling of the various features, the requirement to retain all previous observations, and
potentially high computational requirements for high numbers of past observations
and features [Kaghyan and Sarukhanyan, 2012]. Even so, the algorithm can perform
well in practice, as has been successfully applied to human motion tracking in for
instance the work by Vögele, Krüger, and Klein [2014], Gupta and Dallas [2014],
Kaghyan and Sarukhanyan [2012], and Mezghani et al. [2008].

Other machine learning algorithms of note in the field of human motion tracking
include support vector machines (SVM) and decision trees, keeping in mind that
many more algorithms exist that can be of use. Support vector machines achieve
non-linear separation of a feature space by mapping the feature space to a higher
dimensionality, and making a linear separation in this hyperspace. Decision trees
construct a number of binary decision rules based on the data features, with each
decision for a new observation leading either to the ‘left’ or ‘right’ of the tree, until a
final node (called a leaf) is reached which assigns its class to the observation.

6For k > 1, this does introduce the additional problem of having to deal with tied votes. Fortunately,
(or perhaps unfortunately) there are many solutions to break ties; for example, selecting a class at
random, reverting back to 1-nearest neighbor, or basing the decision on the average distances for each
class. Of course for binary classes, the issue of ties can simply be avoided by choosing k as odd.

1.5 Analysis of data ordered in time 17

1.5.3 Frequency analysis
One of the most common tools for frequency analysis (also referred to as spectral
analysis) is the fast Fourier transform [Cooley and Tukey, 1965; Cochran et al., 1967].
The fast Fourier transform describes a set of algorithms for transforming discrete data
in the time domain to the frequency domain - this is particularly useful for discovering
periodic components in the sensor data, and in showing the relative strengths of these
components. In motion analysis, periodic elements are fairly frequent; examples
include the footsteps in walking, the days of the week in levels of physical activity,
and so on.

One of the downsides of Fourier transform is that the transformation to the fre-
quency domain removes any temporal resolution from the data. For example, if a
sequence of periodic measurements slowly changes its frequency over time, this is
not reflected in the frequency domain. This is one of the shortcomings that another
popular frequency analysis technique, wavelet transform, attempts to address, as for
example described by Torrence and Compo [1998]. Here, the signal is multiplied by
a wavelet, a wave-like oscillating function, at multiple scales and transposes. As a
result, frequency information can be displayed in multiple time intervals, at multiple
frequency bands. Due to the nature of the transforms, lower frequencies have higher
frequency resolution, but poorer time resolution, compared to higher frequencies.
The results of the wavelet transform also depend on the choice of wavelet (for which
there are many options), and which wavelet to choose is not always obvious.

1.5.4 Signal processing
Signal processing techniques are often used as a preprocessing step, or in other words,
for cleaning up the (sensor) data. In particular, filtering techniques are often applied,
with high-pass and low-pass filters being arguably the most common. These types of
filters are used to remove unwanted frequency components from sensor data; as the
names suggest, high-pass filters only allow frequencies above a certain threshold to
pass, and low-pass filters only allow frequencies below a certain threshold to pass.
Combining the properties of a high-pass and low-pass filter yields a band-pass filter,
which removes all frequencies not within a certain band. In practice, filters are not
ideal, and as such settle for suppressing certain frequencies, while attenuating others.
Apart from band-pass type filters, other filters can for example include derivative
filters, which estimate a derivative of a signal, or squaring filters, which return the
signal squared in a point-wise fashion. Filters are processed in an online fashion; that
is, signal values are added to the filter sequentially, ordered in time.

A major distinction in filters is between finite impulse response (FIR) and infinite
impulse response (IIR) filters. The difference between these two types of filters is that
for a certain value (or impulse) entering the filter, that particular value will eventually
have no impact on the filter output (or response) in the case of a FIR filter, while

18 Introduction

that value will always have some impact on the outcome of the filter in the case
of an IIR filter (although the impact may asymptotically approach zero over time).
FIR filters can generally be implemented through convolution, as further discussed
in Section 5.2.3. Sliding window filters such as moving window integration are an
example of FIR filters. Examples of IIR filters include the moving average filter, and
the Kalman filter7 discussed in Section 1.5.1.

1.5.5 Notes on model transparency
An often not discussed aspect of various modeling techniques is that of model trans-
parency. Model transparency refers to the ease with which one can observe the be-
havior or inner workings of a model - in other words, how easy it is to ‘see what the
model is doing’. There are several benefits to having a high model transparency: first,
it becomes more straightforward to determine the model’s behavior, for example by
observing which aspects are modeled incorrectly and why. Second, one might have
more confidence in a model if one can reason about why it makes certain decisions
based on its inner workings.

In health-related applications model transparency can be particularly important
for this reason; for example, if a model indicates that a person might not be able to
live alone unassisted anymore, healthcare professionals and caregivers might expect
some explanation as to why the model believes this to be the case. While human
adjudication should always be applied when making such decisions, caregivers might
be more receptive to review the current situation if the model can provide a solid
reason as to why they should do so. In many cases, the acceptance of such a model
could be dependent on the level of transparency that the model can provide.

Transparency can vary considerably between different modeling techniques.
Neural networks, in particular, are well-known for being highly opaque (or as it is of-
ten called, being a black box). While it is technically possible to examine the weights
of the individual neurons, the fact that every neuron in each layer is connected to ev-
ery neuron in the next layer makes it highly complicated to derive the model’s inner
workings. In contrast, linear regression is often seen as a highly transparent model,
as the coefficient values directly indicate the contributions of the individual features
to the overall response of the model. A hidden Markov model could be argued to be
somewhere in the middle - while it consists partly of hidden states, the model can
only be in one state at a time, making the modeling process much easier to examine
compared to the interconnected neural networks.

In all, each modeling technique can be argued to provide a certain level of trans-
parency, based on the modeling approach used and the envisioned complexity of the
model (such as the number of hidden states in a hidden Markov model). For any

7The Kalman filter, as the name suggests, can act as an averaging or smoothing filter. As the Kalman
filter is generally used for process modeling, however, it is more appropriately listed as a statistical
modeling technique.

1.6 A model for motion tracking 19

given application, it is important to consider how much transparency would be ex-
pected from a model, and how much a prospective modeling technique could provide.

1.6 A model for motion tracking
In this section we introduce a model for analyzing human motion over time. More
generally, this model can be applied to analysis problems in other fields as well,
provided they also involve data with a time component. Making use of this model,
three common problems are outlined below: segmentation, classification and regres-
sion. Segmentation refers to dividing a sequence of data into a number of smaller
segments based on some criterion, while classification involves assigning a sequence
of data to one of a number of distinct classes, and regression involves assigning a
continuous (often real-valued) value to a sequence. These problems are described in
more detail below.

Before introducing the model, we first briefly discuss how sensors record data
over time. In the majority of cases, sensors produce a series of discrete measurements
as a representation of a continuous process. That is, the actual process measured by
the sensor can be represented as some continuous function, yet the sensor itself only
records samples of this function at certain intervals. An example is an accelerometer;
acceleration continuously acts on the sensor, but is only recorded in a finite number
of samples each time interval, determined by the sensor’s sample rate. How well
this discrete set of samples captures the original process depends on both the process
itself and the sample rate - as is well known, any spectral components higher than the
Nyquist frequency are likely to cause aliasing and loss of information in the discrete
signal [Ifeachor and Jervis, 2002].

While the values of the actual process we are measuring are unknown to us out-
side of the discrete measurement samples that were recorded, and barring any knowl-
edge or assumptions regarding the process itself, the best estimate of the actual value
at an arbitrary time is the value of the closest measurement. As a result, we can view
a series of measurements as a sequence of items with a certain value and duration.
If the sampling interval is fixed (which it commonly is), and the measurements are
equidistant, the durations for each item will be the same. An example of such a
sequence of equidistant measurements is shown in Figure 1.1a.

An alternative approach to sampling sensor data is to only record a measurement
when the value of the actual process changes. This is essentially an event-based
approach; a measurement is recorded whenever the state of the sensor is changed.
Clearly, this is not practical for a continuous process, as values tend to differ for even
the smallest of intervals, but this approach can be applied to processes of a binary or
categorical nature. An example is a simple contact switch: rather than reporting if
the switch is pressed at every time interval, a recording can be made every time the
switch is pressed or released. These type of measurements also fit with the idea of a

20 Introduction

(a) Sequence of discrete measurement samples with a fixed sampling interval.

(b) Sequence of measurement samples obtained through an event-based sampling approach.

Figure 1.1: Examples of measurement sample sequences obtained using either a fixed
sampling interval, or an event-based sampling approach.

sequence of items with a certain value and duration, the duration being determined by
the time until the next event. An example of such a sequence is shown in Figure 1.1b.

Formally, we can describe a series of measurements as a sequence S of
items i= 1,2, . . ., where each item consists of a duration wi and a value hi, with wi > 0
for all i. Here, hi can be a scalar, or a vector of measurements that were recorded si-
multaneously. Note that sequences of items need not necessarily represent sequences
of raw measurement values, but may represent a sequence of one or more features
derived from the original measurements. In theory, a sensor can keep recording in-
definitely, resulting in an infinite number of items. In practice, data is recorded for
only a certain amount of time, or we are only interested in a certain part of the data
that is recorded. We define such a part of the measurement data as a segment.

1.6 A model for motion tracking 21

Definition 1.1 (Segment). A segment j of a sequence S of items i = 1,2, . . ., where
an item i consists of a duration wi and value or height hi, is defined as the inter-
val σ j = [s j,e j). Any item i for which [∑i−1

l=1 wl,∑
i
l=1 wl)∩σ j 6= /0 is at least partially

covered by the segment j. An item is considered fully covered by a segment j if it is
entirely within the interval σ j. If the boundaries s j and e j of a segment both coincide
with item boundaries, the segment is said to be aligned. 2

In most cases, it is convenient to choose segments such that they are aligned,
that is, items are either fully inside the segment, or fully outside of it. Segments
cannot always be selected in such a manner however, especially when segments are
generated through some automated process, such as in the case where segments last
exactly one day. In such cases, one possibility is to split items into multiples with
new durations and the same value, so that for the new set of items, the alignment
requirement is preserved.

Often, we want to select segments such that they provide some meaningful divi-
sion of the data with regards to the problem we wish to analyze. For example, when
counting the number of footsteps of a person over the day, we may wish to partition
the data into segments of walking data, and segments containing other activities. If
there is no ground truth available to determine these segments, we can turn to ma-
chine learning techniques to determine these data segments. In general, we want to
solve the problem of finding a segmentation of our data set which is optimal with
regards to some error criterion.

Problem 1 (Segmentation problem). Given a sequence S of items i = 1, . . . ,n,
find a partitioning of the items i in S into non-overlapping, contiguous seg-
ments j = 1,2, . . . that completely cover all items, such that ∑ j E j is minimal,
where E j is an error criterion for segment j. 2

The nature of the error criterion depends on the application. A very simple exam-
ple of an error criterion is based on the L2 norm; if we let µ j be the weighted mean of
the items in segment j, the L2 error is given by ∑i∈ j wi(hi−µ j)

2. A definition for the
more general Lp error criterion is given in Section 2.2. For the sake of convenience,
we assume here that segment j is aligned. In practice, the error criterion can be much
more complicated, and can be related to a probability estimate or the fit of a model. It
will therefore not always be possible to find the optimal segmentation in reasonable
time. In this case, approximation techniques can be considered. A common variation
of the segmentation problem is the k-segmentation problem, which is discussed in
more detail in Chapter 2. Here, the aim is to partition S into exactly k segments.

A second problem is the classification problem, where we want to assign one
of a distinct set of classes C = {c1, . . . ,cl} to a segment. For example, in human
activity recognition, classes can be eating, sleeping, watching television, and so on.
To assign classes to segments of data, we often create a function or inference model I

22 Introduction

which derives a probability or confidence for each class in C based on a segment of
data σ j, given by p(ci|σ j) = I(σ j). The inference model is often created through
machine learning algorithms, generally by training the model using a separate data
set. Many algorithms do not provide a probability measure for each class directly,
although some, like hidden Markov models, do. In most cases though, it is possible
to adapt these algorithms to provide a probability or confidence measure.

Usually, the inference model does not operate on the raw data directly, but rather
on a set of features derived from the data. In this case, we can represent the clas-
sification process as p(ci|X) = I(X), where X is the set of features derived from
segment j. The behavior of an inference model is often controlled by a set of model
parameters, ρ . These parameters are sometimes included in the classification model,
yielding p(ci|X ,ρ) = I(X ,ρ), although like above, they are often left out of the equa-
tion and assumed implicitly.

The estimated class y j that is assigned to a data segment is generally determined
as the class with the highest probability score, y j = argmaxci

p(ci|σ j). The aim is to
find an inference model such that y j =C j, where C j is the actual class of segment j.

Problem 2 (Classification problem). Given a set Σ of one or more data seg-
ments σ j = [s j,e j) with class C j ∈ {c1, . . . ,cl}, find an inference model I such that
the estimated class y j of σ j, given by y j = argmaxci

p(ci|σ j) and p(ci|σ j) = I(σ j) is
the same as the actual segment class, y j =C j, for all segments σ j ∈ Σ. 2

The problems of classification and segmentation often occur together as a com-
bined problem; for example, when we want to find segments of walking data, we
want to find a segmentation of the data based on a classification outcome. Here, the
segmentation error criterion can be directly linked to the probability metric of the
inference model. In practice, it is generally not possible outside of trivial cases to
find an inference model that correctly classifies every possible data segment. Some
accuracy measure is therefore often established as an indicator of the performance
of a given inference model. This can simply be based on the number of errors made
by the inference model on a given set of data, but more complicated metrics exist as
well.

To obtain measures of accuracy representative of the likelihood of correctly clas-
sifying a previously unseen data instance8, the training set / test set paradigm is gen-
erally used. Here, the available data is divided into a training set that is used to build
the model, and a test set that is used to evaluate the model performance, where the
training set and test set do not overlap. A further alternative, building on the train-
ing set / test set paradigm is n-fold cross validation, where the data is divided into n
(roughly equal-sized) non-overlapping folds. In n rounds, each of the folds is used as

8In other words, a measure of accuracy that is not biased due to possible overfitting of the data.

1.7 Challenges of human motion tracking 23

a test set, with the remaining folds forming a training set. The n-fold cross validation
accuracy is then computed as the weighted average of the accuracies of the individual
rounds.

The third problem, regression, is similar to the classification problem, but differs
in that where classification aims to find one of a distinct set of classes, the regression
problem attempts to assign a continuous numerical, or at least ordinal, value based on
a sequence of data9. This value can be anything from walking distance or heart rate,
to the health of a person expressed in a (set of) numerical value(s). Unlike classifica-
tion, where there are a finite number of classes to choose from, in regression there can
potentially be an infinite number of regression values. The general regression prob-
lem can be divided into the specific cases of time-point regression, where a value is
assigned to each time t ∈ T , and segment regression, where a value is assigned to
each segment.

For a regression model F and segment j, we can derive a value z j

through z j = F(σ j). Similar to classification, features are often derived first from
the raw data to use in the regression model. For regression, machine learning tech-
niques are often used as is the case for classification, although regression usually
requires a different set of algorithms. Examples of common regression techniques
include simple linear regression and Kalman filters.

Problem 3 (Regression problem). Given a set Σ of one or more data seg-
ments σ j = [s j,e j) with property Z j, find a regression model F with z j = F(σ j)
such that z j = Z j, for all segments σ j ∈ Σ. 2

As is the case for the classification problem, finding a regression model where
this holds for all segments is rarely possible in practice. Usually, some error criterion
is used to determine the performance of a regression mode, such as the least squares
method.

1.7 Challenges of human motion tracking
In this section, we discuss a number of the challenges commonly faced when attempt-
ing to address a problem in the field of human motion tracking.

Human variability. In the field of human motion tracking, arguably one of the
biggest challenges stems from the source of our measurements. Different people will
often perform the same task in a different manner, and even for the same individual,
performing the same task twice hardly guarantees an identical result. As a conse-
quence, measurements obtained from tracking humans are often subject to a large

9Although classification and regression are related, it is worthwhile to point out that they are both
fundamentally different problems: regression is concerned with estimation of values on a continuous
(or ordered) scale, while classification is concerned with membership of one of a set of nominal classes.
As such, the regression problem is not a generalization of the classification problem.

24 Introduction

amount of variance. As discussed by Stergiou and Decker [2011], this variability is
present in all biological systems. Rather than being the result of movement errors, a
certain level of variance avoids movements becoming too rigid or too chaotic.

Apart from the natural variability in how actions are performed, we may also see
variation due to the wearing position of a sensor (for example, a change of pants
can influence the measurements obtained from a mobile phone), or due to changes in
habits of a person over time. Naturally, changes in a person’s health or even mood
can also affect how actions are performed, and can be an additional source of errors
over time.

In terms of variability when tracking humans performing actions, Sheikh, Sheikh,
and Shah [2005] identify (in the context of camera images) three important sources:
viewpoint (camera position with regard to the scene), execution rate (speed of per-
forming an activity), and anthropometry (personal characteristics such as height or
gender). While these apply specifically to camera recordings, we can generalize these
sources of variance by extending the ‘viewpoint’ to include sensor (wearing) position
and orientation, and extending ‘execution rate’ to include not only the speed, but also
the order in which actions are performed (which may include components that are en-
tirely missing in some cases). When extended as such, these three sources arguably
capture much of the variation observed when tracking human motion.

As a result, it is important to employ methods that are robust to high levels of
variation in the data observed. One of the benefits of the type of methods described
in Section 1.5 is their ability to generalize from observed data. Methods that fail
when a strict ordering of events is not adhered to, such as finite state machines, are
generally not recommended for applications in this field, at least not without some
additional reasoning to cope with an unexpected sequence of events.

Due to the large amounts of variability we can expect in our measurements, it
is generally not possible to create an application that is 100% accurate in tracking
a user’s movements. As such, it is important to consider the cost of failure of an
application, or in other words, the consequences of misclassification. For example,
a vital signs monitoring system that calls emergency services every other day due to
misclassification is unlikely to be accepted by its users. In contrast, a step counter that
misses a few steps each day is likely to be acceptable for all but the most demanding
of applications.

However, the cost of failure is not simply an equation based on the accuracy of the
application in question; measures can be taken to mitigate these costs. For example,
the vital signs monitor mentioned could include a wearing detection module that will
prevent alarms when the monitor is not worn. In addition, the monitor could include
a button that allows the user to cancel an alarm for some time prior to the actual alarm
being created.

1.7 Challenges of human motion tracking 25

Changes in conditions or environments. When recording data over time, the con-
ditions in which the measurements are recorded may vary or change. This may in-
clude changes in lighting conditions over the day, pieces of furniture being moved
inside the home, or changes in the ambient temperature due to changes in season.
Any system that is to be used in practice needs to be able to cope with such changes,
either automatically or through some assisted recalibration procedure. In addition,
systems that are intended to be used within a certain environment (such as a person’s
home) need to take into account that these environments may differ from user to user.
This is generally less of a problem when employing wearable sensors, but is often
the reason that systems based on environmental sensors require specific installation
or calibration procedures to ensure that the system will work properly (or at all).

To deal with changes in conditions or environments, several techniques have been
devised over the years. Specifically, the issue of changing lighting conditions is
one that is very prevalent in computer vision applications. A common technique
in this field is the use of background subtraction [Sorbral and Vacavant, 2014; God-
behere, Matsukawa, and Goldberg, 2012]; distinguishing between moving objects
(foreground) as opposed to a non-moving background. By maintaining a background
model that can be adjusted over time, changes in lighting conditions can be com-
pensated for. As discussed by Sorbral and Vacavant [2014], there is a multitude of
algorithms available to perform background subtraction.

Outside of the field of computer vision, the counterpart to background subtraction
is sometimes referred to as a baseline model. The aim of a baseline model is to learn
over time the measurements normally observed during some neutral state, often when
the user is at rest. Often, this baseline is modeled as some probability distribution of
measurement values [Kocielnik et al., 2015].

Missing data. Due to the challenges listed above, we can often find ourselves in
a situation where the recorded measurements contain missing data. Missing data
can occur in human motion tracking for a number of reasons, including human error
(forgetting to wear a sensor or to switch on the system), actions being performed
outside of the sensor’s range of view, or artifacts due to motion or loss of contact
with the skin (particularly for sensors measuring physiological signals).

The problem of missing data is not unique to the field of human motion track-
ing, and as such, a number of approaches exist [Saar-Tsechansky and Provost, 2007].
However, there seems to be no single best approach overall, and as a result the choice
of how to handle missing data is often problem-dependent. The most common ap-
proaches are deletion (ignore data with missing measurements), imputation (replace
missing values with new values, often chosen through some distribution), and the
use of algorithms that are robust to missing data (for example, ensemble methods
consisting of multiple partial models).

26 Introduction

Taking advantage of the fact that human motion data is generally ordered in time,
missing measurements can also be approached as a filtering problem; we can impute
the missing measurements with a value based on measurements close to the missing
data point in time. Naturally, this will only work if the missing data points are dis-
tributed somewhat randomly timewise; if there are no actual measurements close in
time, this approach is unlikely to succeed.

Feature selection. Another challenge not unique to the field of human motion
tracking, yet often encountered, is that of feature selection (also called feature en-
gineering). Particularly when trying to assess higher-level activities, it is often not
clear what measurement features to use; generally, the inclusion of too many features
in a classification or regression method will lead to overfitting and reduced perfor-
mance [Gheyas and Smith, 2010].

There are numerous methods to help determine the predictive power of a given
feature; these include statistical testing, measuring information gain, analysis of
model coefficients or weights, automated feature selection methods such as stepwise
selection for linear regression, or dimensionality reduction methods such as principal
component analysis [van der Maaten, Postma, and van den Herik, 2009]. As all of
these methods are by necessity based on some set of prior assumptions however, they
generally only provide a part of the whole picture. It is therefore recommended to try
several of such methods when taking this approach10.

Another approach is to select a classification or regression algorithm that auto-
matically performs feature selection as part of its learning phase. Examples of such
algorithms include LASSO regression, decision tree-based methods such as random
forests and extreme gradient boosting, and deep learning. The advantage of these
methods is that the feature selection problem can be avoided. However, there is a
price to pay for this, often in terms of requiring more data points to achieve compa-
rable results to other methods.

Other challenges. Other challenges that are often encountered in the field of human
motion tracking include distinguishing between the people (and sometimes pets),
challenges related to user adherence, and user acceptance due to obtrusiveness or
privacy. The challenge of distinguishing between people is particularly prevalent
for applications of environmental sensors, where it is often difficult to distinguish be-
tween the user of the application and other people such as family members. Common
solutions include tags or devices worn by the users to identify them to the system, or
the use of computer vision techniques to identify a user. In addition, designing the
application for a specific population (such as elderly living by themselves) can help
in mitigating this challenge as well.

10For example, in Chapter 4, we employ information gain, statistical analysis, and genetic program-
ming for feature selection.

1.8 Thesis overview 27

When using an application over a longer period of time where a degree of user
input is required, adherence can become a challenge, as users may provide input less
frequently over time, or stop doing so altogether. The topic of user adherence is a
field of its own, and as such a full discussion on how to keep users engaged is out of
the scope of this thesis.

Similarly, when designing any application in the field of human motion tracking,
where we often measure personal information, or place sensors in a personal space,
user acceptance due to privacy or sensor obtrusiveness should be considered. As dis-
cussed in Section 1.4, it is important for user acceptance that the perceived benefits
outweigh the burdens placed on the user by the system. As with the topic of ad-
herence, a full discussion of user acceptance strategies is beyond the scope of this
introduction, as these topics are too broad to be captured in a few paragraphs.

1.8 Thesis overview
The remainder of this thesis consists of two parts: the first part concerns the the-
ory of human motion tracking, specifically on the problem of the segmentation of
time series, as introduced in Section 1.6. This part is discussed in Chapter 2, where
we expand upon the model of Section 1.6, and show various properties of optimal
segmentations. The second part of the thesis consists of a number of applications of
human motion tracking, which are discussed in Chapters 3, 4, and 5. The applications
considered in these chapters are: the recognition of activities of daily living (ADL),
prediction of dropout in a lifestyle physical activity program, and cadence estima-
tion. While we will introduce the individual applications in more detail below, they
all share the common thread of measuring and tracking the users’ movement through
the environment, and making an interpretation of their behavior or state based on
the measurements obtained. In the remainder of this section, we will give a brief
introduction to each of the chapters. All studies described in these chapters (and by
extension, in this thesis) have been performed in accordance with the ethical stan-
dards and procedures within Philips Research.

In Chapter 2, we expand upon the model introduced in Section 1.6 and examine
the problem of segmentation of time series. Specifically, the k-segmentation problem
is discussed; this is the problem of segmenting a sequence S into exactly k non-
overlapping, contiguous segments, such that the total error of a given error criterion is
minimized. The chapter includes a formal definition of the k-segmentation problem,
and the dynamic programming algorithm for solving it in polynomial time under the
condition that all segment boundaries coincide with item boundaries; the alignment
requirement. We will prove in Chapter 2 that even if the alignment requirement does
not hold, the dynamic programming algorithm can solve the k-segmentation problem
optimally in polynomial time for the Lp error criteria. In addition, we further refine
this result by showing that for the L1 and L2 error criteria, the segmentation error

28 Introduction

as a function of the coverage of an item contains at most a single maximum, and no
other stationary points.

In Chapter 3, the first research question is addressed: can ADLs be unobtrusively
tracked and recognized? ADLs such as eating, cleaning, and so on, play an important
role in self-care. As such, whether a person can perform ADLs successfully can be
a strong indicator of their ability to live independently. In this chapter, a method
is presented for tracking ADLs in a kitchen environment using information from
a single camera and microphone mounted on the ceiling. Hidden Markov models
are introduced as a means to detect ADLs by modeling each activity as a separate
hidden Markov model. We then examine the effectiveness of this approach using data
recorded in a home-like setting, and investigate the benefits of using a combination
of video and audio data, compared to using only a single modality.

The second research question is discussed in Chapter 4; can analyzing the behav-
ior of people who try to be more physically active help predict if they will drop out of
a lifestyle physical activity program? In this chapter, we make use of a large database
of participants of a lifestyle physical activity program to predict which participants
are likely to drop out of a twelve-week program before the program is complete. The
lifestyle physical activity program aims to slowly increase the daily levels of physical
activity of the participants over twelve weeks by offering feedback using a wearable
activity monitor, and coaching support. We examine how well the database features
are able to distinguish between adherent participants and dropouts, and introduce a
genetic programming approach towards classification of dropouts one week prior to
their dropout day.

Chapter 5 addresses the topic of cadence estimation using a wearable accelerom-
eter; that is, the estimation of the number of steps per minute that a person makes
while walking. Cadence is an important characteristic of a person’s gait; changes in
gait can often be indicative of injury or disease, and as such can provide important
information regarding a person’s health. In addition, cadence estimation is highly
related to step detection, the cornerstone of many pedometers. In this chapter, we
aim to address the final research question: is it possible to determine (psycho)motor
skills such as gait accurately using wearable sensors? To do so, four cadence esti-
mation algorithms for a wearable tri-axial accelerometer are investigated, for both a
wrist-worn position and a pendant (torso) position. The algorithms are investigated
at a variety of different walking speeds, both while walking on a treadmill and under
free-walking conditions.

Finally, a summary of this thesis and the results that have been obtained are pro-
vided in Chapter 6.

2
Sequence segmentation

2.1 Introduction
In this chapter, we address the first component of the model for human motion track-
ing described in the main research question, and defined in Section 1.6; the seg-
mentation of time ordered data into meaningful segments. Often, segmentation is
required to separate the different types of activities within the continuous stream of
time-ordered sensor measurements, or to distinguish between activities of interest
and the background activities that are outside of the application scope. While some
algorithms can perform the segmentation step implicitly, in many cases a segmenta-
tion step is required. For small data sets segmentation can be performed manually,
but for many data sets, we have to rely on algorithmic methods such as described
here.

The topics discussed here can be applied to most types of time ordered data, not
just those regarding human movement. Examples include the analysis of DNA or pro-
tein sequences in the field of genomics [Azad et al., 2002; Churchill, 1989; Gwadera,
Gionis, and Mannila, 2006], and various data mining applications such as text seg-
mentation [Ge, Pratt, and Smyth, 1999] and weather prediction [Gedikli, Aksoy,
Unal, and Kehagias, 2010; Kehagias, Nidelkou, and Petridis, 2006]. Ideally, a good
segmentation should capture segments that are of particular interest for a given ap-
plication, such as segments that match a certain activity, a certain time of day, and so
on.

29

30 Sequence segmentation

When collecting data for longer periods of time, it can in many cases be expected
that the state of the person (or object) being recorded can change over time. Here, the
state refers to a set of contexts that are relevant to the intended subject of analysis.
For example, when the subject of analysis is measuring a person’s gait (e.g., walking
speed), their state may reflect whether they are walking, running or sitting down.
Often, it is desirable that segment boundaries coincide with changes in state. In
some cases, only measurements taken during particular states will be of interest, or
measurements will be subject to different interpretations depending on the underlying
state. In other cases, the fact that a state change has taken place may be relevant in
itself.

As such, it is often not just the subject of the analysis or interpretation of time
ordered measurement data that is important (e.g., how fast was a person walking?),
but also finding the start (and end) of relevant data segments (e.g., when were they
walking?). This is especially true if prior knowledge of the state the person is in at
a given time is unavailable, or if it is unclear what states would be relevant to the
question at hand. The problem of finding appropriate segments in a series of data
is known as the segmentation problem, sometimes also referred to as change-point
detection.

The k-segmentation problem can be seen as a specific case of the more general
segmentation problem. In particular, the k-segmentation problem seeks to optimally
partition a sequence of items into k separate segments - a formal definition is provided
in Section 2.2. Both the segmentation problem and the k-segmentation problem have
been widely discussed in the literature [Terzi, 2006; Keogh et al., 2001; Bingham,
2010; Lovric, Milanovic, and Stamenkovic, 2014]. The appropriateness of a given
k-segmentation can be determined by defining an error criterion based on a represen-
tative of the given segment (e.g., the segment mean) and the items that make up the
segment. A common example is the L2 error criterion, where the error is determined
as the cumulative Euclidian distance between the segment items and the segment
mean. A k-segmentation which minimizes the total error of all segments is called an
optimal k-segmentation.

It can be argued that the segmentation problem is related to (or even a special case
of) the well-known clustering problem. In the clustering problem, a set of items is
partitioned in such a way that items with similar values are grouped together, accord-
ing to some similarity criterion. In the segmentation problem, it can be argued that
a similar partition is made, based not only on the similarity of the items themselves,
but also on their temporal similarity. A similar comparison is made by Aghabozorgi,
Shirkhorshidi, and Teh [2015], where the authors refer to this type of clustering as
time point clustering, although they note that in contrast to segmentation, not all items
need to be assigned to clusters in time point clustering.

2.1 Introduction 31

Broadly speaking, solutions to the k-segmentation problem can be categorized
as either approximate solutions, or as exact solutions, the latter generally involving
a dynamic programming approach. Bingham [2010] provides a good overview of
many solutions and variations to the segmentation problem. For the general segmen-
tation problem, a further distinction can be made between online and offline algo-
rithms [Keogh et al., 2001]. Here, online algorithms deal with the segmentation of
a stream of data, while offline algorithms operate on a full, finite-length sequence.
As finding an appropriate k-segmentation is challenging when the sequence length is
unknown, the k-segmentation problem generally deals with offline sequence segmen-
tation.

Solutions to the k-segmentation problem. As was (to the best of our knowledge)
first described by Bellman [1961], an exact solution to the k-segmentation problem
can be found in O(n2k) time for a sequence containing n items of unit duration1.
While this is sometimes seen as insufficient for, for instance, data mining problems2,
a number of suggestions for improvements to the running time of dynamic program-
ming approaches have been made, while maintaining the optimality of the resulting
k-segmentation [Kehagias, Nidelkou, and Petridis, 2006; Gedikli et al., 2010; Tatti,
2013]. This is usually achieved through pruning techniques; that is, paths in the
dynamic programming scheme that lead to sub-optimal solutions are identified and
abandoned before they are fully explored.

Approximate solutions to the k-segmentation problem are generally used when
the O(n2k) time complexity of the exact method is too big a limitation for the prob-
lem at hand, and a lower running time is required; often this is the case when the
length or the number of sequences to be processed is extremely large. Approximate
solutions often find applications in the fields of data mining and big data analytics
as a result. Common approximate solutions are the top-down approach where large
segments are repeatedly split in a greedy fashion, or the bottom-up approach where
initially each point is its own segment, and segments are merged greedily [Keogh
et al., 2001; Lovric, Milanovic, and Stamenkovic, 2014]. The top-down algorithm
works by initially considering the entire sequence as a single segment, and consid-
ering every possible segmentation boundary, selecting the segmentation boundary
which minimizes the total error. This process continues recursively until k segments
are found. The bottom-up algorithm works similarly, by recursively merging single-
item segments.

1The notation used in O(n2k) is called the ‘big O’ notation (described by for example Jones and
Pevzner [2004]), and in short, indicates an upper bound on the degree of growth of the computational
load of a function, based on its inputs. In the case of O(n2k), the computational load grows at most
quadratically with the number of items n in a sequence, and linearly with the number of segments k.

2In data mining applications, segmentation is often applied to find more compact representations of
long sequences, for example through linear interpolation or regression of the segment items.

32 Sequence segmentation

Other approximation algorithms include the DNS (Divide & Segment) algorithm
presented by Terzi and Tsaparas [2006], for which the authors provide an approx-
imation error bound. In order to improve on the speed of the dynamic program-
ming algorithm, the DNS algorithm aims to divide the segmentation problem into
smaller sub-problems, and to solve these optimally using dynamic programming.
As such, the sequence is first partitioned into a number of subsequences, and for
each, a k-segmentation and a set of k segment representatives weighted by segment
length is computed using dynamic programming. A final k-segmentation of the orig-
inal sequence is then obtained by using the dynamic programming procedure on the
concatenated subsequence representatives. The running time of the DNS algorithm
is O(n4/3k5/3).

Variations of the k-segmentation problem. A special case of the k-segmentation
problem is referred to as the k,h-segmentation problem. Here, the k segments may
have at most h (with h≤ k) different representations, such as the segment mean or me-
dian. The k,h-segmentation problem was introduced by Gionis and Mannila [2003],
where it was presented along with a number of approximation algorithms for the k,h-
segmentation problem. It can be argued that the k,h-segmentation problem is a more
appropriate representation in case of the classification problem, as described in Chap-
ter 1, where each of the k segments should be classified as one of h possible classes.
Alternatively, as has been remarked by Terzi [2006], the k,h-segmentation problem
can be interpreted as a hidden Markov model discovery problem for a model with h
hidden states, and a total of k−1 state changes for a given sequence of items.

Rather than segmentation on sequences of items with continuous or discrete nu-
meric values, the segmentation problem has also been applied to symbolic sequences.
In symbolic sequences, item values are represented by symbols such as letters or or-
dinals. State-space models, such as hidden Markov models or Markov chains, are
often applied to find segmentations. As noted above, this can be interpreted as solv-
ing a k,h-segmentation problem, or a more general h-segmentation problem when the
number of segments is not defined in advance. In this case, h is given by the number
of states in the state-space model. Examples of such approaches to the segmenta-
tion of symbolic sequences include the work of Ge, Pratt, and Smyth [1999], who
use a hidden Markov model to segment Chinese written text, and Gwadera, Gionis,
and Mannila [2006], who describe the use of tree models (variable length Markov
chains) for symbolic sequence segmentation. Other applications include clustering
approaches to find common events or contexts [Flanagan, Mantyjarvi, and Himberg,
2002; Mannila, Toivonen, and Verkamo, 1997], or the segmentation of DNA se-
quences into genomes or other regions of significance [Azad et al., 2002; Churchill,
1989].

Another variant of the segmentation problem is the monotonic or unimodal seg-
mentation of sequences, described by Haiminen, Gionis, and Laasonen [2008]. A

2.1 Introduction 33

monotonic k-segmentation is a k-segmentation such that each segment representative
has a value of at least the previous segment representative. Similarly, a unimodal
k-segmentation is a k-segmentation where the segment representatives are monoton-
ically increasing until a maximum is reached, after which the segment representa-
tives are monotonically decreasing. The authors describe an exact algorithm for op-
timal monotonic or unimodal k-segmentation based on dynamic programming, with
O(n2k) time complexity, as well as an approximate algorithm with time complexity
of O(n logn).

Chundi and Rosenkrantz [2008] discuss the segmentation of item-set time se-
ries. Here, each item in the time series is represented as a set of discrete values (the
item set) - essentially, this can be seen as a generalization of the symbolic sequence
segmentation problem. An example of such a time series is a corpus of email com-
munications, each of which may contain information regarding the sender, receivers,
message subject, and so on. The contents of a segment are defined by a measure func-
tion, which for example determines that a value in the item set belongs to the segment
if it occurs in at least a certain fraction of the items that make up the segment. The
authors describe a number of optimal k-segmentation algorithms for item-set time
series, for a number of different measure functions. The optimal k-segmentation al-
gorithms are based on dynamic programming, and share the O(n2k) time complexity
of the regular k-segmentation problem.

Considerations of time complexity. As mentioned before, it was shown by Bell-
man [1961] that an optimal solution to the k-segmentation problem can be found in
O(n2k) time for a sequence of n items. The dynamic programming approach used to
solve the k-segmentation problem is discussed later in this chapter.

A more interesting problem in terms of computational complexity is the k,h-
segmentation problem, which as mentioned, is more appropriate for applications
where segments are to be assigned to one of h classes. In this case, the dynamic
programming approach by Bellman [1961] will no longer work, as it is not straight-
forward to choose the h segment representatives in advance for h < k.

The observations on the time complexity for the k,h-segmentation problem have
already been discussed by Gionis and Mannila [2003]. They show that unlike the
k-segmentation problem, the k,h-segmentation problem cannot be solved in polyno-
mial time for sequences of dimensionality two or greater - at least, this has been
shown for the L1 and L2 error criteria3. To see this, consider the special case of the
k,h-segmentation problem, where k is equal to n, the length of the sequence to be
segmented. Essentially, the ordering of the sequence is irrelevant here, as each item
will end up as its own segment. As such, the n,h-segmentation problem is equivalent

3Here, the terms L1 and L2 (also written as L1 and L2) refer to the absolute value norm and the
Euclidean norm, respectively; the Lp naming scheme is derived from the concept of Lp (or Lebesque)
spaces.

34 Sequence segmentation

to the well-known clustering problem. For the L1 and L2 error criteria, this corre-
sponds to the k-median and k-means4 problems, respectively. It is already known that
these problems can be solved in polynomial time for dimensionality one [Megiddo,
Zemel, and Hakimi, 1981], and that they are NP-hard for dimensionality two or
greater [Megiddo and Supowit, 1984].

For sequences of dimensionality one, the time complexity of the k,h-
segmentation problem is currently only known for a number of special cases: the
n,h-segmentation problem, as described above, and the k,k-segmentation problem,
which is equivalent to the regular k-segmentation problem. There currently seems to
be no algorithm to solve the one-dimensional k,h-segmentation problem optimally
in polynomial time for h < k < n. As such, the complexity of the one-dimensional
k,h-segmentation problem remains an open problem.

Item duration and the alignment requirement. So far, the k-segmentation prob-
lem has only been explored for sequences of items of unit duration, or equivalently,
items that are uniformly spaced - in the remainder of this chapter, the items in a
sequence will be represented as consisting of given heights and durations. The differ-
ence between a sequence of (uniformly spaced) items of unit duration and a sequence
of items of non-unit durations is visualized in Figure 2.1. For many applications,
samples might be obtained at irregular intervals, or may retain the same value over a
period of time. These cases can be modeled as each item having a certain (integer or
real-valued) duration. For a sequence of items with non-unit durations, the alignment
requirement need not hold; that is, items need not be part of only a single segment -
or in other words, item boundaries need not coincide with segment boundaries.

For sequences with items of non-unit duration, there is currently no guarantee
that applying the aforementioned dynamic programming will still create an optimal
k-segmentation, as it is limited to only exploring item boundaries and therefore ad-
heres to the alignment requirement. This means that the algorithm may produce
non-optimal segmentations for sequences of items with non-unit durations. Further,
the performance of the many optimized or approximate k-segmentation algorithms
which fully or partially rely on dynamic programming may also be impacted, such as
the algorithms described by Tatti [2013], or Terzi and Tsaparas [2006].

In this chapter, we will show that even for sequences of items with integer or
real-valued durations, or under conditions where the alignment requirement is not
enforced, an optimal k-segmentation can be found through a similar dynamic pro-
gramming approach. The proof for this is given in Section 2.3. In addition, we further
explore the behavior of the L2 segmentation error function for segmentations that do
not adhere to the alignment requirement in Section 2.4. In particular, we show that
for two adjacent segments with items of integer durations, partially covering the same
item, the error as a function of the coverage encounters at most a single maximum,

4Not to be confused with the k-means approximation algorithm.

2.2 Notation 35

(a) Sequence S1 of unit duration items.

(b) Sequence S2 of non-unit duration items.

Figure 2.1: Example of a sequence S1 of items i = 1, . . . ,12 with unit durations, and
a sequence S2 of items i = 1, . . . ,12 with non-unit durations.

or may be monotonically decreasing or monotonically increasing. In Section 2.5, we
show that this also holds for the L1 error criterion. Then, in Section 2.6, a number of
examples of the behavior of the L1 and L2 error functions are shown and discussed.
Finally, generalizations of the findings of Sections 2.4 and 2.5 to sequences of items
with real-valued durations are discussed in Section 2.7.

2.2 Notation
Given a sequence S of items i = 1,2, . . . ,n, where item i is specified by its duration
or width wi, and its height hi, a k-segmentation is a partitioning of the items i into k
non-overlapping, contiguous segments 1,2, . . . ,k that completely cover all items. A
segment j covers the items on the interval [s j,e j) ⊆ [0,W), with W = ∑

n
i=1 wi. By

definition, it holds that s1 = 0, ek =W , and s j+1 = e j for all j = 1,2, . . . ,k−1. For a
visualization of such a sequence, see Figure 2.2.

36 Sequence segmentation

Figure 2.2: Visualization of an example (non-optimal) 3-segmentation of a sequence
of 12 items with durations w1, . . . ,w12 and heights h1, . . . ,h12, divided into three seg-
ments 1, 2 and 3. The dashed, horizontal lines represent the segment means. The
segment boundary between segment 2 and 3 fulfills the alignment requirement, while
the segment boundary between segment 1 and 2 does not.

The L2 error E j of segment j is given by

E j =
n

∑
i=1

xi jwi(hi−µ j)
2,

where xi j is the fraction of item i covered by segment j with 0 ≤ xi j ≤ 1 and
∑

k
j=1 xi j = 1, and µ j denotes the weighted mean µ j = ∑

n
i=1 xi jwihi/∑

n
i=1 xi jwi of the

heights in segment j.
Similarly, the L1 error E j of a segment j is defined as

E j =
n

∑
i=1

xi jwi|hi−m j|.

Here, m j represents the weighted median, which can be found as follows: let σ

represent the sequence of all items at least partially covered by j, ordered with regards
to height, and let the coverage ci of an item i be given by

ci = xi jwi.

For each item i in σ , the height hσ
i and the coverage cσ

i is determined. The weighted
median m j is then determined as the height hσ

l of the first item l in σ for which it
holds that ∑

l
i=1 ci >

1
2 ∑i∈σ ci, or as hl+hl+1

2 if ∑
l
i=1 ci =

1
2 ∑i∈σ ci (see Figure 2.3 for

an example).

2.2 Notation 37

segment 1 segment 2

∑
3

i=1
ci =

1

2

∑
i∈σ

ci

∑
3

i=1
ci >

1

2

∑
i∈σ

ci

m

m’

Figure 2.3: Visualization of the weighted segment medians of a sequence of 10 items,
divided into two segments 1 and 2. The dashed, horizontal lines represent values of
the weighted segment medians, determined from the items marked as gray, for the
cases ∑

l
i=1 ci =

1
2 ∑i∈σ ci for segment 1, and ∑

l
i=1 ci >

1
2 ∑i∈σ ci for segment 2.

More general, we can define the Lp error E j of a segment j as

E j =
n

∑
i=1

xi jwi|hi−µ j|p. (2.1)

Here, µ j does not necessarily represent the mean, but is often more generally called
the representative of segment j. Just as the mean of a segment j minimizes the L2
error E j of that segment, a representative minimizes the Lp error E j of segment j.

A k-segmentation is considered optimal if the total error E tot = ∑
k
j=1 E j is min-

imal. The solution to the k-segmentation problem for a given sequence and error
criterion therefore lies in finding the optimal k-segmentation. Let Sopt(k) be the opti-
mal k-segmentation out of all possible k-segmentations S(k) for a given sequence S.
The k-segmentation problem can then be formally described as follows.

Problem 4 (The k-segmentation problem). Given a sequence S consisting of
items i = 1,2, . . . ,n, with each item having of a duration wi and height hi, and
given an integer k and an error criterion E, find the optimal k-segmentation
Sopt(k) = argminS(k) ∑

k
j=1 E j. 2

It is well-known from the literature [Bellman, 1961] that an optimal k-
segmentation can be found in O(n2k) time if the following conditions are met: first,
the error criterion E tot must be decomposable; that is, it must be possible to deter-
mine E tot from the errors E j of the individual segments. This is the case for the L1
and L2 error criteria, where the total error can be found as the sum of the individual
segment errors. Second, it must be possible to determine the error criteria in poly-

38 Sequence segmentation

nomial time. Third, the alignment requirement must hold, meaning that all items are
fully covered by a single segment; that is, xi j = 1 or xi j = 0 for each pair i, j.

To illustrate how an optimal k-segmentation can be found through dynamic pro-
gramming, we can describe the dynamic programming step as follows.

Theorem 2.1 (Optimal k-segmentation through dynamic programming).
Let Sopt([i, j),k) be the optimal k-segmentation on the interval [i, j), let
E tot(Sopt([i, j),k)) be the total error of the optimal k-segmentation on the in-
terval [i, j), and let E([i, j)) be the error of a segment defined on the interval [i, j),
with i < j. For a sequence with total duration W, the optimal k-segmentation up to
duration j ≤W can be found through the following recursive steps.

E tot(Sopt([0, j),k)) = min E tot(Sopt([0, i),k−1))+E([i, j)) (2.2)

E tot(Sopt([0, j),1)) = E([0, j)).

2

In other words, provided that the alignment requirement is adhered to, the op-
timal k-segmentation for S can be found as the optimal k− 1-segmentation on the
items 1, . . . , i, and a single segment containing the items i + 1, . . . ,n. To execute
the recursion in (2.2), a dynamic programming table of size n× k must be con-
structed. The optimal k-segmentation can be found by filling this table for each
entry i, j as minl<i E tot(Sopt([0, l), j− 1))+E([l, i)). The first part of the equation,
E tot(Sopt([0, l), j−1)), can be found from examining the previous column. The sec-
ond part, E([l, i)), needs to be calculated using the error criterion.

However, as also discussed by Terzi [2006], the approach in Theorem 2.1 leads
to a time complexity of O(n2T k), where T is the time needed to evaluate the error
criterion; first, a total of nk table entries must be evaluated. Then, for each entry, the
previous n rows must be examined, and the error criterion must be evaluated once.
For the L1 and L2 error criteria, which can be computed in O(n), this results in a
time complexity of O(n3k), substantially more than the promised time complexity
of O(n2k). However, for the L2 error criterion, it is possible to make use of the
observation that for a segment j defined on [l, l′), E([l, l′)) can be found as

E([l, l′)) = E j =
n

∑
i=1

xi jwi(hi−µ j)
2

=
n

∑
i=1

xi jwih2
i −2µ j

n

∑
i=1

xi jwihi +µ
2
j

n

∑
i=1

xi jwi

=
n

∑
i=1

xi jwih2
i −2

1
Wj

(
n

∑
i=1

xi jwihi

)2

+Wj

(
1

Wj

n

∑
i=1

xi jwihi

)2

=
n

∑
i=1

xi jwih2
i −

1
Wj

(
n

∑
i=1

xi jwihi

)2

2.2 Notation 39

where Wj = ∑
n
i=1 xi jwi, and making use of the definitions of E j and µ j. This means

that, if the alignment requirement is adhered to, only the cumulative sum (cs) and
cumulative sum of squares (css) for all items need to be maintained by the dynamic
programming algorithm, along with the cumulative sum of item durations. That is,
for each item i, Ecs(i) = ∑

i
j=1 w jh j, Ecss(i) = ∑

i
j=1 w jh2

j , and wcs(i) = ∑
i
j=1 w j. For

any segment j defined on [l, i), E([l, i)) can be computed as

E([l, i)) = (Ecss(i)−Ecss(l))−
1

wcs(i)−wcs(l)
(Ecs(i)−Ecs(l))

2 .

As this can be evaluated in linear time, this results in the desired time complexity
of O(n2k).

For the L1 error criterion, it is possible to precompute the medians for each pos-
sible segment in O(n2 logn) time. Assuming a sequence of items is already sorted,
the median of that segment plus an additional item can be found in O(logn) time -
this is the time required for a binary search needed to insert the new item in the sorted
sequence. The median can then be found in constant time. In total, there are n pos-
sible segment starts, each of a potential length of O(n), yielding the total O(n2 logn)
processing time. This does result in a total time complexity of O(n2 logn+ n2k),
which may be larger than O(n2k) if logn > k. However, computing the medians is
often considered as a preprocessing step, and as such not factored into the O(n2k)
time complexity [Terzi, 2006].

The alignment requirement and optimal k-segmentation. In the remainder of
this chapter, it will first be shown in Section 2.3 that for sequences not adherent to
the alignment requirement, an optimal k-segmentation will still be found in O(n2k)
time, using the same algorithmic approach described above. Specifically, it will be
shown that for two adjacent segments partially covering the same item, the Lp error
will be minimal only under conditions where the alignment requirement holds.

We then further explore the behavior of the segmentation error function for seg-
mentations that do not adhere to the alignment requirement, for the L1 and L2 er-
ror criteria specifically. For both error criteria, we can show that for two adjacent
segments partially covering the same item, the error as a function of the coverage
encounters at most a single maximum, or may be monotonically decreasing or mono-
tonically increasing. Apart from a single possible maximum, there are no other sta-
tionary points such as saddlepoints or minima (the absence of minima also directly
follows from the proof in Section 2.3).

We use the second derivative test to show this for the L2 norm in Section 2.4. In
particular, we consider the error as a function of the coverage of a shared item, and
show that the first order derivative of the error function never equals zero unless the
second order derivative is negative for the domain of the error function. For the L1
error, discussed in Section 2.5, the error function is based instead on the number of
subitems of a shared item, that are moved from one segment to another. Here, we

40 Sequence segmentation

Figure 2.4: Visualization of the notation used in Section 2.3.

show that the error function is concave, akin to a descending first order derivative. In
Section 2.6, a few examples of the error function behavior for the L1 and L2 error
criteria are discussed. Finally, some generalizations to the results in Sections 2.4
and 2.5 are briefly discussed in Section 2.7.

2.3 Dynamic programming optimality without alignment
In this section, we will show that for sequences with integer or real-valued durations,
that do not adhere to the alignment requirement, an optimal k-segmentation will still
be found in O(n2k) time, using the same dynamic programming approach described
above. Specifically, it will be shown that for any partial coverage of an item by
two segments, the overall segmentation error for those segments can be improved by
having the item fully covered by one of the segments.

For ease of notation, let S and S′ denote two adjacent segments. Segment S fully
covers n items with heights h1, . . . ,hn and integer durations w1, . . . ,wn. In addition,
S partially covers an item α with height h and duration w. The fraction of α that
is covered by S is denoted as x, with x ∈ [0,1]. The remaining (1− x) fraction of
item α is covered by S′, which additionally covers n′ items with heights h′1, . . . ,h

′
n′

and durations w′1, . . . ,w
′
n′ . An example of such a sequence and segmentation is shown

in Figure 2.4.
LetDp(y,µ) be the distance function for the Lp error norm. The distance function

is defined as follows.

2.3 Dynamic programming optimality without alignment 41

Definition 2.1 (Distance function). For the Lp norm, the distance functionDp(y,µ)
is defined as

Dp(y) = |y−µ|p

where µ is the representative of a given segment. 2

From here on, we will refer to the representatives of segments S and S′ as µ

and µ ′, respectively. The total error E tot over the segments S and S′ can be determined
as the sum of the errors over four separate subsegments, E tot = ES +E1 +E2 +ES′ .
Here, let ES is the error over the fully covered items 1, . . . ,n in segment S, let E1
denote the error over α for the initial xw duration, let E2 denote the error over the re-
maining (x−1)w duration of α , and finally, let ES′ be the error over the items 1, . . . ,n′

in segment S′. As representatives of their respective segments, µ minimizes the er-
ror ES +E1, and µ ′ minimizes the error SS′+E2.

Lemma 2.1 (Subsegment errors). Let E tot = ES + E1 + E2 + ES′ denote the total
error over the segments S and S′. The errors over the individual subsegments ES, E1,
E2, and ES′ can be found as

ES =
n

∑
i=1

wiDp(hi,µ)

E1 = wxDp(h,µ)

E2 = w(x−1)Dp(h,µ ′)

ES′ =
n′

∑
i=1

w′iDp(h′i,µ
′).

Proof. The subsegment errors ES, E1, E2, and ES′ follow directly from Equation 2.1
and Definition 2.1. 2

The proof that the total error E tot can be improved by having the item fully cov-
ered by one of the segments will follow two steps: first, we show that E tot can be
improved or at least maintained by shifting the coverage x, without adjusting the rep-
resentatives µ and µ ′. Second, we show that then adjusting the representatives for
the new coverage will further decrease or maintain the total error.

For the remainder of the proof, we distinguish between three possible cases:
Dp(h,µ) < Dp(h,µ ′), Dp(h,µ) > Dp(h,µ ′), or Dp(h,µ) = Dp(h,µ ′). The latter
case is trivial; regardless of the value of x, the segment representatives µ and µ ′ will
not change, and as such, E tot is identical for all values of x. That is, α will contribute
the same amount to the overall error, regardless of the distribution of coverage over
either segment. We will show this as follows.

42 Sequence segmentation

Lemma 2.2 (Coverage independence under equal representatives). In the case
that Dp(h,µ) = Dp(h,µ ′), the total error E tot does not depend on the coverage x.

Proof. From Lemma 2.1, we have E tot = ES +E1 +E2 +ES′ . Further, we can see
from Lemma 2.1 that ES and ES′ do not depend on x. We then have

E1 +E2 = wxDp(h,µ)+w(x−1)Dp(h,µ ′).

Given that Dp(h,µ) =Dp(h,µ ′), it follows that

E1 +E2 = wxDp(h,µ)+w(x−1)Dp(h,µ)

= wDp(h,µ).

As a result, we can see that none of the terms in E tot = ES +E1 +E2 +ES′ depend
on x, and therefore, that the total error E tot does not depend on x. 2

The other two cases, Dp(h,µ) < Dp(h,µ ′) and Dp(h,µ) > Dp(h,µ ′), can be
proven analogously. Below, we will show the proof for the first of the two cases,
where Dp(h,µ)<Dp(h,µ ′).

Lemma 2.3 (Coverage adjustment). IfDp(h,µ)<Dp(h,µ), then even without ad-
justing the representatives µ and µ ′, the total error E tot can be decreased by having α

be fully covered by segment S, that is, by setting x = 1.
Proof. To see this, we first note that ES and ES′ are not affected by this change, as
they do not depend on the value of x. Further, we have from Lemma 2.1

wxDp(h,µ)+w(x−1)Dp(h,µ)< wxDp(h,µ)+w(x−1)Dp(h,µ ′)

E1 + Ẽ2 < E1 +E2,

where Ẽ2 = w(x−1)Dp(h,µ). The total error Ẽ tot after shifting the coverage of α is
then given as

Ẽ tot = ES +E1 + Ẽ1 +ES′ .

As Ẽ2 < E2, it follows that Ẽ tot < E tot. 2

Similarly, if Dp(h,µ) > Dp(h,µ), the total error can be decreased by shift-
ing α to be fully covered by segment S′. As shown in Lemma 2.2, in the case of
Dp(h,µ) =Dp(h,µ ′), α can be fully covered by either segment without a change in
error.

Changing the coverage of α will in most cases result in a change of the repre-
sentatives µ and µ ′. However, changing the representatives can only further decrease
the error Ẽ tot. Let Ê be the error for the updated representatives. Since the updated
representatives by definition minimize the error within their respective segments, we
can show that Ê tot will not increase the error of Ẽ tot.

2.3 Dynamic programming optimality without alignment 43

Figure 2.5: Example of a sequence and segmentation for which the method described
in Section 2.3 chooses a non-optimal segmentation.

Theorem 2.2 (Optimality without the alignment requirement). Given two seg-
ments S and S′, and an item α which is partially covered by both segments with a
fraction x of its duration covered by segment S, the segmentation error Ê tot after se-
lecting x = 1 if Dp(h,µ) ≤ Dp(h,µ ′) or x = 0 if Dp(h,µ) > Dp(h,µ ′) will be less
than the error E tot of the initial segmentation.
Proof. If we assume the caseDp(h,µ)<Dp(h,µ ′), then from Lemmas 2.3 and 2.1,
as well as the observation that the adjustment of a segment representative minimizes
the error over that segment, we have

ÊS′ ≤ ES′

ÊS + Ê1 + Ê2 ≤ ES +E1 + Ẽ2 < ES +E1 +E2.

As a result, it follows from the definition of E tot that Ê tot ≤ Ẽ tot < E tot. The proof
for the case Dp(h,µ) > Dp(h,µ ′) follows analogously, and the proof for the case
Dp(h,µ) =Dp(h,µ ′) is trivial, as Ê tot = Ẽ tot = E tot. 2

Finding the optimal segmentation. Following the method described in Section 2.3
will not always result in arriving at the optimal segmentation, however. To see this,
consider the following example for the L2 error criterion: let S consist of a single
item of height h1 = 10, let S′ consist of a single item of height h′1 = 8, let α have
height h = 4, and let all items have a uniform duration of one. We then choose the
value of x as x→ 1; that is, x approaches one. We can then determine the segment
means as µ ≈ 10+4

2 = 7 and µ ′ ≈ 8. This sequence is also shown in Figure 2.5.
Given that D2(4,µ) = |4− µ|2 = 9 < D2(4,µ ′) = |4− µ ′|2 = 16, we would

choose to have α be fully covered by segment S (i.e., x = 1). The total error of this
segmentation is then given as E tot = (10− µ)2 +(4− µ)2 +(8− µ ′)2 = 10. How-

44 Sequence segmentation

ever, had we opted to have α fully covered by S′ (i.e., x = 0), we would have found
the segment means as µ = 10 and µ ′ = 4+8

2 = 6, and the resulting total error of the
segmentation would have been E tot = (10−µ)2+(4−µ ′)2+(8−µ ′)2 = 8. Clearly,
having α covered by S′ would have resulted in a better segmentation.

In practice, this does not pose much of a concern. In the worst case, we would
need to examine the error for the two boundary points to find the optimal segmen-
tation, which is preferable to having to explore the potentially infinite amount of
points within the item boundaries. In addition, both points of the item boundaries are
examined anyway in the dynamic programming algorithm, so no adaptations are nec-
essary. However, the above example does indicate that the segmentation error does
not always follow a monotonically increasing or decreasing trend within the item
boundaries. In the remaining sections, we will explore the behavior of the segmenta-
tion error in more detail for the L1 and L2 error criteria specifically. In particular, we
will show that the segmentation error within the boundaries of an item has at most a
single maximum, and no other stationary points.

2.4 Error within item boundaries for the L2 error case
In this section, we further explore the behavior of the segmentation error for the L2
norm specifically when the segment boundary does not align with an item boundary.
Here, the segmentation error E tot(x) is modeled as a function of the fraction of cover-
age x of the item split by the segment boundary. We will show that the segmentation
error as a function of x has at most a single maximum, and no other stationary points,
within the range of valid values for x. In other words, E tot(x) is either monotonically
increasing, monotonically decreasing, or unimodal5.

As before, let S and S′ denote two adjacent segments. Segment S fully covers n
items with heights h1, . . . ,hn and integer durations w1, . . . ,wn. In addition, S partially
covers an item α with height h and duration w. The fraction of α that is covered
by S is denoted as x, with x ∈ [0,1]. The remaining (1− x) fraction of item α is
covered by S′, which additionally covers n′ items with heights h′1, . . . ,h

′
n′ and dura-

tions w′1, . . . ,w
′
n′ .

For the sake of notational convenience, it will be assumed that, apart from w, all
other durations are of unit length, that is, wi = 1 for all i = 1, . . . ,n, and w′i = 1 for
all i = 1, . . . ,n′. For integer-valued durations, these assumptions can be made without
loss of generality; for every item with duration wi, it would be possible to replace this
item with wi new items of unit duration, with the same height hi, and adjust n and n′

accordingly. A further generalization to items with real-valued durations is discussed
in Section 2.7. It is also assumed that, apart from the boundary between S and S′,
they both fulfill the alignment requirement. These requirements are not necessary
(see Section 2.7), but do simplify notation considerably.

5That is, monotonically increasing for x ≤ m for some value m, and monotonically decreasing
for x > m.

2.4 Error within item boundaries for the L2 error case 45

A visualization of two segments S and S′, and their boundary on the item α of
height h and duration w, is shown in Figure 2.4.

Lemma 2.4 (Mean). For any value of x, the fraction of item α covered by segment S,
the mean µ(x) of S can be expressed as µ(x) = µ + δ (x), where µ is the mean for
items 1, . . . ,n, and δ (x) is given by

δ (x) =
wx

n+wx
(h−µ), (2.3)

and the mean µ ′(x) of segment S′ can be expressed as µ ′(x) = µ ′ + δ ′(x),
with µ ′ = 1

n′ ∑
n′
i=1 h′i, and

δ
′(x) =

w(1− x)
n′+w(1− x)

(h−µ
′).

Proof. Let ν = ∑
n
i=1 hi. Then, assuming the items 1, . . . ,n are of unit duration, it

can be seen from the definition of the mean that µ = ν

n , and µ(x) = ν+wxh
n+wx . As we

have µ(x) = µ +(µ(x)−µ), it follows that

δ (x) = µ(x)−µ =
wxh

n+wx
− wxν

(n+wx)n
=

wx
n+wx

(h−µ).

The proof for µ ′(x) is analogous.
2

The L2 error for S and S′ can then be expressed as follows:

Lemma 2.5 (Error). The L2 error E(x) for segment S is given by

E(x) = E +
nwx

n+wx
(h−µ)2, (2.4)

and, analogously, the error E ′(x) for segment S′ is given by

E ′(x) = E ′+
n′w(1− x)

n′+w(1− x)
(h−µ

′)2 (2.5)

with E = ∑
n
i=1(hi−µ)2, and E ′ = ∑

n′
i=1(h

′
i−µ ′)2.

Proof. Following the L2 error definition for segment S,

E(x) =
n

∑
i=1

(hi−µ−δ (x))2 +wx(h−µ−δ (x))2. (2.6)

Making use of the equality ∑
n
i=1(hi−µ) = 0, expanding the first term of (2.6) gives

n

∑
i=1

(hi−µ−δ (x))2 =
n

∑
i=1

((hi−µ)2 +δ (x)2) = E +nδ (x)2. (2.7)

46 Sequence segmentation

The second term in (2.6) can be rewritten using the definition of δ (x), which yields

wx(h−µ−δ (x))2 = wx(h−µ− wx
n+wx

(h−µ))2 =
n2wx

(n+wx)2 (h−µ)2.

Combining this result with (2.7), (2.6) can be rewritten as

E(x) = E +
nw2x2

(n+wx)2 (h−µ)2 +
n2wx

(n+wx)2 (h−µ)2.

With some further simplification, this results in (2.4). The proof of (2.5) can be
obtained analogously. 2

The total error of both segments E tot(x) = E(x)+E ′(x) is then given as

E tot(x) = E +E ′+
nwx

n+wx
(h−µ)2 +

n′w(1− x)
n′+w(1− x)

(h−µ
′)2.

The total error E tot(x) can be considered as a twice differentiable function of x on the
interval [0,1], in which E and E ′ are constant terms. Any stationary points on (0,1)
can then be found by setting the first order derivative of E tot(x) equal to zero (as the
first derivative is fully defined over the interval [0,1]). The second derivative test can
then be used to determine if the stationary point in question is a maximum (if less
than zero), minimum (if greater than zero), or an inflection point (if equal to zero,
indicating a possible saddlepoint). We will show that on the domain of E tot(x), the
only stationary points are maxima, by proving that minima and inflection points can
not exist on the interval (0,1).

The first-order derivative of E tot(x) can, after some math, be found as

d
dx

E tot(x) =
w(h−µ)2n2

(n+wx)2 −
w(h−µ ′)2n′2

(n′+w(1− x))2 . (2.8)

Equating this to zero yields, after some more math, two solutions, as the following
lemma states.

Lemma 2.6 (Zero derivative). The two values of x for which the first order deriva-
tive of the total error E tot given in (2.8) equals zero are given by

x1 =
n
(

w(h−µ)+n′((h−µ)+(h−µ ′))
)

w
(

n(h−µ)−n′(h−µ ′)
) (2.9)

x2 =
n
(

w(h−µ)+n′(µ ′−µ)
)

w
(

n(h−µ)+n′(h−µ ′)
) . (2.10)

2.4 Error within item boundaries for the L2 error case 47

Proof. To find the values of x for which d
dx E tot(x) = 0, (2.8) gives

w(h−µ)2n2

(n+wx)2 =
w(h−µ ′)2n′2

(n′+w(1− x))2 .

Combining both fractions and leaving out the common denominator results in

w(h−µ)2n2(n′+w(1− x))2 = w(h−µ
′)2n′2(n+wx)2(

(h−µ)n(n′+w(1− x))
)2

=
(
(h−µ

′)n′(n+wx)
)2

.

Since the result is a statement of the form A2 = B2, this yields two possible solutions,
A = B or A =−B. As a result, we have

(h−µ)n(n′+w(1− x))+(h−µ
′)n′(n+wx) = 0 (2.11)

or
(h−µ)n(n′+w(1− x))− (h−µ

′)n′(n+wx) = 0. (2.12)
By moving x to one side of the equation in (2.11) and (2.12), the expressions for x1
and x2 given in (2.9) and (2.10), respectively, can be obtained.

2

Note that x1 is undefined when n(h− µ) = n′(h− µ ′), and x2 is undefined
when n(h−µ) =−n′(h−µ ′).

The second derivative of E tot(x) can be found as

d2

dx2 E tot(x) =−2w2
(

(h−µ ′)2n′2

(n′+w(1− x))3 +
(h−µ)2n2

(n+wx)3

)
. (2.13)

Inserting the two points for which d
dx E tot(x) = 0 into (2.13) results, after some math,

in the following two second order derivatives. For x1 in (2.9), the second order deriva-
tive can be obtained as

2w2(n(h−µ)−n′(h−µ ′))4

n(h−µ)n′(h−µ ′)(w+n+n′)3 . (2.14)

And for x2 in (2.10), the derivative can be obtained as

− 2w2(n(h−µ)+n′(h−µ ′))4

n(h−µ)n′(h−µ ′)(w+n+n′)3 . (2.15)

Note that the second derivatives are undefined if h = µ or h = µ ′. From
Lemma 2.5, it can be seen that under these conditions, E(x) = E or E ′(x) = E ′,
respectively, and that there is no lower error than for x = 1 or x = 0. In this case, the
error is monotonically increasing as x is decreased or increased, respectively.

First, we will examine the existence of any inflection points in the interval (0,1).
In other words, x1 or x2 must be on the interval (0,1), with a zero second order
derivative. It is fairly straightforward to show that such points do not exist, as detailed
below.

48 Sequence segmentation

Lemma 2.7 (Inflection point). For points x1 defined by (2.9) and x2 defined
by (2.10) where the first derivative of E tot(x) is equal to zero, it holds that x1 is
not on the interval (0,1), or is not an inflection point. Similarly, it holds that x2 is not
on the interval (0,1), or is not an inflection point.
Proof. By definition, x1 or x2 are inflection points if the second order derivative is
equal to zero. From (2.14) and (2.15), we can see that the second order derivative is
zero if and only if n(h− µ) = n′(h− µ ′) for x1, and n(h− µ) = −n′(h− µ ′) for x2.
From (2.9), however, we can see that x1 is undefined if n(h− µ) = n′(h− µ ′), and
from (2.10), we can see that x2 is undefined if n(h−µ) =−n′(h−µ ′). Therefore, x1
and x2 are not in the interval (0,1). 2

Second, we will show that no minimum exists on the interval (0,1) through proof
by contradiction. Assuming that a minimum does exist on the interval (0,1), and
therefore the second derivative must be positive, it can be seen that the expression
((h> µ)∧(h> µ ′))∨((h< µ)∧(h< µ ′)) must hold for (2.14). Similarly, for (2.15),
it holds that (µ < h < µ ′)∨ (µ ′ < h < µ). It will now be shown that under these
conditions, there are no points in the interval (0,1) for which the first derivative
equals zero.

Lemma 2.8 (Local minimum, case 1). For the first solution for which the deriva-
tive of E tot(x) equals zero, x1, given by (2.9), it holds that either x1 is not in the
interval (0,1), or the second order derivative is not positive at x1.

Proof. First assume that x1 ∈ (0,1). It can be shown that this leads to a contradiction.
For the first condition, (h > µ)∧ (h > µ ′), observe that the numerator in (2.9) is
positive. As the assumption is that x1 > 0, it follows that the denominator is positive
as well. Using this observation and the assumption that x1 < 1, it follows from (2.9)
that

wn(h−µ)−wn′(h−µ
′)> wn(h−µ)+nn′((h−µ)+(h−µ

′))

−wn′(h−µ
′)> nn′(h−µ)+nn′(h−µ

′)

(w+2n)h < (w+n)µ ′+nµ. (2.16)

From (2.16), it can be seen that if µ ≥ µ ′, it is possible to substitute µ ′ in (2.16)
for µ , yielding h < µ , contradicting the condition (h > µ)∧ (h > µ ′). Alternatively,
if µ ′ > µ , it follows that h < µ ′, also contradicting our initial condition. Hence,
under the first condition, there are no points in the interval (0,1) for which the first
derivative equals zero and the second derivative is positive.

2.4 Error within item boundaries for the L2 error case 49

For the second condition, (h< µ)∧(h< µ ′), a contradiction can be found in sim-
ilar fashion. As under this condition the denominator in (2.9) is negative, it follows
that

wn(h−µ)−wn′(h−µ
′)< nw(h−µ)+nn′((h−µ)+(h−µ

′)),

which results in
(w+2n)h > (w+n)µ ′+nµ.

Using similar reasoning as for the first condition, it can be seen that for both µ ≥ µ ′

and µ ′ > µ , the condition (h < µ)∧ (h < µ ′) is contradicted. 2

Lemma 2.9 (Local minimum, case 2). For the second point for which the deriva-
tive of E tot(x) equals zero, x2 given in (2.10), it holds that either x2 is not on the
interval (0,1), or the second order derivative is not positive at x2.

Proof. From the requirement that x2 is in (0,1), assume that 0 < x2 < 1. For the
first condition, (µ < h < µ ′), x2 < 1 can be rewritten as

wn(h−µ)+wn′(h−µ
′)> wn(h−µ)+nn′(µ ′−µ)

w(h−µ
′)> n(µ ′−µ)

h > µ
′− n

w
(µ−µ

′). (2.17)

As µ ′− n
w(µ − µ ′) > µ ′ in (2.17) under the first condition (µ < h < µ ′), it holds

that h > µ ′, which contradicts this condition.
For the second condition, (µ ′ < h < µ), it follows that

wn(h−µ)+wn′(h−µ
′)< wn(h−µ)+nn′(µ ′−µ)

which results in
h < µ

′− n
w
(µ ′−µ).

Since (µ ′ < h < µ), this yields h < µ ′, contradicting the second condition. 2

Using these results, it can then be shown that E tot(x) has at most one maximum
in the interval (0,1).

Theorem 2.3 (Stationary points for the L2 error criterion). For two adjacent
segments S and S′, with n the number of items completely covered by S (excluding α)
and µ the mean of S, and n′ the number of items completely covered by S′ (exclud-
ing α) and µ ′ the mean of S′, and an item α partially covered by S and S′ with
duration w and height h, and the error function E tot(x) given by

E tot(x) = E +E ′+
nwx

n+wx
(h−µ)2 +

n′w(1− x)
n′+w(1− x)

(h−µ
′)2,

where x ∈ [0,1], the error function E tot(x) has at most one maximum in the inter-
val [0,1], and no other stationary points.

50 Sequence segmentation

Proof. The proof directly follows from Lemmas 2.7, 2.8 and 2.9. As there cannot
exist two maxima on the interval [0,1] without also a minimum existing, it follows
that there can be at most a single maximum. 2

It can also be noted that (for the L2 norm) the above can serve as an alterna-
tive proof to Theorem 2.2; as there exist no minima on the interval [0,1], it follows
that E tot(x) can not be less than its value at one of the item boundaries; that is, either
at x = 0 or x = 1.

2.5 Error within item boundaries for the L1 error case
In this section we will show that, like for the L2 error norm, the behavior of the
segmentation error E tot(x) will show at most a single maximum inside of the item
boundaries, and no other stationary points. Here, E tot(x) is the segmentation error as
a function of the coverage x of an item split by a segment boundary. To show this,
once again two adjacent segments S and S′, and an item α placed in between both
segments, are considered. Initially, let α be fully covered by S′. By incrementally
moving part of this item from one segment to the other through subitems, it will be
demonstrated that at most a single maximum can be encountered.

Once again, let S and S′ denote two adjacent segments. Segment S fully covers n
items with heights h1, . . . ,hn and integer durations w1, . . . ,wn. S′ covers n′ items with
heights h′1, . . . ,h

′
n′ and durations w′1, . . . ,w

′
n′ . In addition, S′ fully covers an item α

with height h and duration w, where α is also adjacent to segment S. For ease of no-
tation, assume that each item covered by S and S′ is split into wi subitems of unit du-
ration and height hi. Furthermore, the assumption is made that, apart from their com-
mon segment boundary, S and S′ adhere to the alignment requirement. The heights
of the items fully covered by S and S′, ordered by height and excluding item α , are
denoted as a = a1, . . . ,an for items covered by S and b = b1, . . . ,bn′ for items covered
by S′, where n = ∑i∈S wi and n′ = ∑i∈S′ wi.

Apart from the above assumption that the items in S and S′ can be split into
subitems of unit duration, a number of further assumptions are made. First, assume
that α can be split into an even number of subitems of unit duration (w is even),
and that α is initially fully covered by S. Second, for notational convenience of the
median, also assume n and n′ are even. Further, the initial heights for each of the
segments S and S′ (a1, . . . ,an and b1, . . . ,bn′ , respectively) are in ascending order -
note that the subitems of α are not included in a or b. These assumptions can be
made without loss of generality, and are further discussed in Section 2.7.2.

Given the above assumptions, the initial median of segment S can be found as

m0 =
1
2

a n
2
+

1
2

a n
2+1.

2.5 Error within item boundaries for the L1 error case 51

(a) Initial, unordered sequence of two segments S and S′, and item α , where α is initially
assumed to be completely assigned to S′.

(b) The original items in the segments are ordered in a and b. Item α is initially fully covered
by S′.

(c) Incrementally, subitems of α are moved from segment S to segment S′.

Figure 2.6: Visualization of the notation used in Section 2.5 with n = n′ = 5.

52 Sequence segmentation

Part of the coverage of α is then moved from S′ to S incrementally. At each increment,
two of the subitems are moved from segment S′ to S. The number of times that a
subitem of α was moved from S′ to S is denoted with x. In general, the median of
segment S when x subitems of α have been moved to S is denoted as mx, and the
median of segment S′ when x subitems of α have been removed from S′ as m′x. We
will prove that for all even values of x, the L1 error as a function of x is concave6, and
therefore has at most a single mode (that is, x has at most a single maximum, and no
other stationary points). For an example of the notation used, see Figure 2.6.

Depending on the value of the initial median, m0, there are a number of cases to
be considered with regard to the L1 error for segment S. If m0 = h, then regardless of
the number of subitems of α added to S (given by x), there will be no difference in
error as the median will remain equal to h. This leaves two non-trivial cases, m0 < h
and m0 > h, which will be discussed below. A similar set of cases can be defined for
segment S′, with the non-trivial cases m′0 < h and m′0 > h.

The error of both segments S and S′ depends on x, the number of subitems of α

moved from S′ to S. Let E tot
2x = E2x +E ′2x be the error of segments S and S′ together

when 2x subitems of α have been moved from segment S′ to segment S. To show
that E tot

2x is a concave function, we must show that

E tot
2x ≥

E tot
2(x+1)+E tot

2(x−1)

2
, (2.18)

per the definition of a concave function. To see this, image that E tot
2x <

E tot
2(x+1)+E tot

2(x−1)
2 ; in

this case, a line can be drawn between E tot
2(x+1) and E tot

2(x−1) that contains a point at po-
sition 2x greater than E tot

2x , invalidating the notion of concavity. We can rewrite (2.18)
as E tot

2(x+1)−E tot
2x ≤ E tot

2x −E tot
2(x−1). Therefore, E tot

2x is concave if the following holds.

Theorem 2.4 (Stationary points for the L1 error criterion). For all values of
x ∈ [1, . . . , w

2 − 1], E tot
2x is concave. That is, E tot

2(x+1) − E tot
2x ≤ E tot

2x − E tot
2(x−1). As a

result, E tot
2x is at most unimodal; as such, E tot

2x has at most a single maximum, and no
other stationary points. 2

Theorem 2.4 can be proven by showing that if the error functions for either seg-
ment are concave, then the overall error function E tot

2x is also concave.

Lemma 2.10 (Concavity by sum of errors). If E2(x+1) − E2x ≤ E2x − E2(x−1) and
E ′2(x+1)−E ′2x ≤ E ′2x−E ′2(x−1), then E tot

2(x+1)−E tot
2x ≤ E tot

2x −E tot
2(x−1).

Proof. This follows from the general observation that if A ≤ C and B ≤ D,
then A + B ≤ C + D. Alternatively, the observation that the sum of two concave
functions is also concave can be used. 2

6For a concave function, it holds that for a line between any two points underneath or on the curve,
all points on the line are also underneath or on the curve.

2.5 Error within item boundaries for the L1 error case 53

From here, the case m0 < h will be considered, out of the two cases m0 < h
and m0 > h. The proof will be shown to be analogous for m0 > h in Section 2.7.2.
Since it is assumed that m0 < h, and all items adding to S are of height h, mx ≤ h for
any value of x.

2.5.1 Concavity of the error function for the first segment
To show E2(x+1)−E2x ≤ E2x−E2(x−1) for segment S, the error E2x must first be deter-
mined at each step. To do so, two cases must be distinguished: m2x < h and m2x = h.
Note that since m0 < h, it holds that m2x ≤ h, so there is no need to consider the
case m2x > h.

For m2x < h, it holds that

E2x =

n
2+x

∑
i=1

(m2x−ai)+
n

∑
i= n

2+x+1
(ai−m2x)+

2x

∑
i=1

(h−m2x)

E2x =−
n
2+x

∑
i=1

ai +
n

∑
i= n

2+x+1
ai +2xh. (2.19)

Note that the number of items covered by S is n+ 2x, and that the absolute-value
operators in the error equation can be eliminated by observing a1, . . . ,a n

2+x ≤ m2x,
and a n

2+x+1, . . . ,an ≥ m2x. To see this, consider the following: since m0 < h
and m0 =

1
2 a n

2
+ 1

2 a n
2+1, any item of height h that has been moved from S′ must have

been inserted after a n
2

in the list of items a ordered by height, since a n
2
≤ a n

2+1 and
their weighted sum is less than h. Similarly, if m2x < h, then any items of height h
are inserted after a n

2+x, which as a result is the first term of the median equation,
yielding a1, . . . ,a n

2+x ≤ m2x. a n
2+x+1 is then either the second term of the median

equation, or is at least equal to the second term of the median equation, resulting
in a n

2+x+1, . . . ,an ≥ m2x.
For the case that m2x = h, however, a different definition is required, as the as-

sumption that any item of height h that has been moved from S′ to a must have
been inserted after a n

2
may no longer be valid. Therefore, a value q is chosen such

that a1, . . . ,aq < h, and aq+1, . . . ,an ≥ h. The error E2x can then be expressed as:

E2x =
q

∑
i=1

(m2x−ai)+
n

∑
i=q+1

(ai−m2x)+
2x

∑
i=1

(h−m2x)

E2x =−
q

∑
i=1

ai +
n

∑
i=q+1

ai +(2q−n)h. (2.20)

Note that in this case, the error E2x no longer depends on x; since the subitems that are
moved from S′ are of the height m2x = h, the error for these items is equal to 0, and
as a result the overall error for S does not depend on the number of items of height h.

Since the definition of E2x depends on whether m2x < h holds or not, there are
three possible scenarios when considering the difference between the errors given

54 Sequence segmentation

as E2(x+1)−E2x; for each of these scenarios, we require a separate computation of
the error differences. The scenarios are: (1) m2x≤m2(x+1) < h, (2) m2x <m2(x+1) = h,
and (3) m2x = m2(x+1) = h. Below, it will be shown for each of these scenarios what
the difference in error will be.

Lemma 2.11 (Error difference, case 1). Given m2x ≤m2(x+1) < h, the difference in
error E2(x+1)−E2x is given as 2(h−a n

2+x+1).
Proof. From (2.19), we have

E2(x+1)−E2x =−
n
2+x+1

∑
i=1

ai +
n

∑
i= n

2+x+2
ai +2(x+1)h

−

(
−

n
2+x

∑
i=1

ai +
n

∑
i= n

2+x+1
ai +2xh

)
=−a n

2+x+1−a n
2+x+1 +2h

= 2(h−a n
2+x+1). (2.21)

2

Lemma 2.12 (Error difference, case 2). Given m2x < m2(x+1) = h, the difference in
error E2(x+1)−E2x is equal to 0.
Proof. Let q be such that a1, . . . ,aq < h, and aq+1, . . . ,an ≥ h. Using the fact
that m2x < m2(x+1) = h, it can be determined that q = n

2 + x through the definition of
the median. To see this, consider that since m2x < h, the first term of m2x, a n

2+x must
be smaller than h. Since m2(x+1) = h, and at least two items of height h are present,
the first term of m2(x+1) must be equal to h. Therefore, it must hold that a n

2+x+1 ≥ h,
and q = n

2 + x.
From (2.19) and (2.20), we have

E2(x+1)−E2x =−
q

∑
i=1

ai +
n

∑
i=q+1

ai +(2q−n)h

−

(
−

n
2+x

∑
i=1

ai +
n

∑
i= n

2+x+1
ai +2xh

)

=−
n
2+x

∑
i=1

ai +
n

∑
i= n

2+x+1
ai +(2(

n
2
+ x)−n)h

+

n
2+x

∑
i=1

ai−
n

∑
i= n

2+x+1
ai−2xh

= 0. (2.22)

2

2.5 Error within item boundaries for the L1 error case 55

Lemma 2.13 (Error difference, case 3). Given m2x = m2(x+1) = h, the difference in
error E2(x+1)−E2x is equal to 0.
Proof. From (2.20), we have

E2(x+1)−E2x =−
q

∑
i=1

ai +
n

∑
i=q+1

ai +(2q−n)h

=−

(
−

q

∑
i=1

ai +
n

∑
i=q+1

ai +(2q−n)h

)
= 0. (2.23)

2

To next show the first part of Lemma 2.10, E2(x+1)−E2x− (E2x−E2(x−1)) ≤ 0,
once again a number of possibilities must be considered. Here, the four possible sce-
narios are: (1) m2(x+1) < h, (2) m2(x+1) = h and m2x < h, (3) m2x = h and m2(x−1) < h,
and (4) m2(x−1) = h. Since the initial assumption is that m0 < h, and only add items
of height h to S, for all x it follows that m2x ≤ m2(x+1).

Next we show that the first part of Lemma 2.10 holds for each of the scenarios.

Lemma 2.14 (Error concavity for segment 1). For all values of x, it holds
that E2(x+1)−E2x− (E2x−E2(x−1))≤ 0.
Proof. To prove this, it must be shown that the lemma holds for all four possible
cases: (1) m2(x+1) < h, (2) m2(x+1) = h and m2x < h, (3) m2x = h and m2(x−1) < h,
and (4) m2(x−1) = h.

(1): m2(x+1) < h. From (2.21), it follows that

E2(x+1)−E2x− (E2x−E2(x−1)) = 2(h−a n
2+x+1)−2(h−a n

2+x)

= 2(a n
2+x−a n

2+x+1)≤ 0.

(2): m2(x+1) = h and m2x < h. From (2.21) and (2.22), and the observation
that a n

2+x < h (since m2x < h), it follows that

E2(x+1)−E2x− (E2x−E2(x−1)) = 0−2(h−a n
2+x)≤ 0.

(3): m2x = h and m2(x−1) < h. From (2.22) and (2.23), and since m2(x+1) = h, it
can be seen that

E2(x+1)−E2x− (E2x−E2(x−1)) = 0−0≤ 0.

(4): m2(x−1) = h. From (2.23), and since m2(x+1) = m2x = h, it can be seen that

E2(x+1)−E2x− (E2x−E2(x−1)) = 0−0≤ 0.

2

56 Sequence segmentation

2.5.2 Concavity of the error function for the second segment
In a similar manner, it can be shown that the error function E ′2x for segment S′ is
concave. As was the case for segment S, there are once more two cases for the
median m′2x that must be distinguished between: m′2x < h and m′2x = h. Here, the
implicit assumption is made that m′w < h - the proof for the opposite case can be done
analogously, as discussed in Section 2.7.2. Given that m′w < h, for any x, it follows
that m′2x ≤ h, and m′2x ≤ m′2(x−1).

For the case m′2x < h, the error E ′2x can be defined in similar fashion as described
in Section 2.5.1.

E ′2x =

n′
2 +

w
2−x

∑
i=1

(m′2x−bi)+
n′

∑
i= n′

2 +
w
2−x+1

(bi−m′2x)+
w−2x

∑
i=1

(h−m′2x)

E ′2x =−
n′
2 +

w
2−x

∑
i=1

bi +
n′

∑
i= n′

2 +
w
2−x+1

bi +(w−2x)h. (2.24)

For the case m′2x = h, a value q′ is once again defined such that b1, . . . ,bq′ < h,
and bq′+1, . . . ,bn′ ≥ h. Then, the error can be defined as follows:

E ′2x =
q′

∑
i=1

(m′2x−bi)+
n′

∑
i=q′+1

(bi−m′2x)+
w−2x

∑
i=1

(h−m′2x)

E ′2x =−
q′

∑
i=1

bi +
n′

∑
i=q′+1

bi +(2q′−n′)h. (2.25)

Like before, there are again three possible scenarios for the difference in errors
E ′2(x+1)−E ′2x. The three scenarios are: (1) m′2(x+1) ≤ m′2x < h, (2) m′2(x+1 < m′2x = h,
and (3) m′2(x+1) = m′2x = h. For each of these scenarios, the error can once again be
determined as:

Lemma 2.15 (Error difference, case 1). Given m′2(x+1) ≤m′2x < h, the difference in
error E ′2(x+1)−E ′2x can be determined as 2(b n′

2 +
w
2−x−h).

Proof. From (2.24), it can be seen that

E ′2(x+1)−E ′2x =−
n′
2 +

w
2−x−1

∑
i=1

bi +
n′

∑
i= n′

2 +
w
2−x

bi +(w−2x+2)h

−

− n′
2 +

w
2−x

∑
i=1

bi +
n′

∑
i= n′

2 +
w
2−x+1

bi +(w−2x)h

= 2(b n′

2 +
w
2−x−h). (2.26)

2

2.5 Error within item boundaries for the L1 error case 57

Lemma 2.16 (Error difference, case 2). Given m′2(x+1 < m′2x = h, the difference in
error E ′2(x+1)−E ′2x is equal to 0.
Proof. Let q′ be such that b1, . . . ,bq′ < h, and bq′+1, . . . ,bn′ ≥ h. Using sim-
ilar reasoning as described in Lemma 2.12, along with the observation that we
have m′2(x+1) < m′2x = h, it can be determined that q′ = n′

2 + w
2 − x−1. Using (2.24)

and (2.25), the difference in error can then be found as

E ′2(x+1)−E ′2x =−
n′
2 +

w
2−x−1

∑
i=1

bi +
n′

∑
i= n′

2 +
w
2−x

bi +(w−2x+2)h

−

(
−

q′

∑
i=1

bi +
n′

∑
i=q′+1

bi +(2q′−n′)h

)

=−
n′
2 +

w
2−x−1

∑
i=1

bi +
n′

∑
i= n′

2 +
w
2−x

bi +(w−2x+2)h

+

n′
2 +

w
2−x−1

∑
i=1

bi−
n′

∑
i= n′

2 +
w
2−x

bi− (2(
n′

2
+

w
2
− x−1)−n′)h

= 0. (2.27)

2

Lemma 2.17 (Error difference, case 3). Given m′2(x+1) = m′2x = h, the difference in
error E ′2(x+1)−E ′2x is equal to 0.
Proof. From (2.25), it follows that

E ′2(x+1)−E ′2x =−
q′

∑
i=1

bi +
n′

∑
i=q′+1

bi +(2q′−n′)h

−

(
−

q′

∑
i=1

bi +
n′

∑
i=q′+1

bi +(2q′−n′)h

)
= 0. (2.28)

2

To show that the second part of Lemma 2.10 holds, or in other words, that it holds
that E ′2(x+1)−E ′2x ≤ E ′2x−E ′2(x−1), this must once again be proven for four possible
scenarios: (1) m′2(x−1) < h, (2) m′2(x−1) = h and m′2x < h, (3) m′2x = h and m′2(x+1) < h,
and (4) m′2(x+1) = h. Below, it will be shown that for all four scenarios, it holds
that E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1))≤ 0.

58 Sequence segmentation

Lemma 2.18 (Error concavity for segment 2). For all values of x, it holds
that E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1))≤ 0.
Proof. To show this, it must be proven that this holds for all four possible
cases of median values: (1) m′2(x−1) < h, (2) m′2(x−1) = h and m′2x < h, (3) m′2x = h
and m′2(x+1) < h, and (4) m′2(x+1) = h.

(1): m′2(x−1) < h. From (2.26), it follows that

E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1)) = 2(b n′
2 +

w
2−x−h)−2(b n′

2 +
w
2−x−1−h)

= 2(b n′
2 +

w
2−x−b n′

2 +
w
2−x−1)≤ 0.

(2): m′2(x−1) = h and m′2x < h. From (2.26) and (2.27), it follows that

E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1)) = 2(b n′
2 +

w
2−x−h)−0≤ 0.

Note that here, q′ = n′
2 + w

2 − (x−1)+1.
(3): m′2x = h and m′2(x+1) < h. From (2.26) and (2.27), it follows that

E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1)) = 0−0≤ 0.

(4): m′2(x+1) = h. From (2.27), it follows that

E ′2(x+1)−E ′2x− (E ′2x−E ′2(x−1)) = 0−0≤ 0.

2

By combining the results of Lemmas 2.14 and 2.18, it follows that Lemma 2.10
holds, and as a result, the main Theorem 2.4.

2.6 Examples of the L1 and L2 error behavior
In this section, we briefly discuss some examples of the behavior of the error func-
tions discussed in Sections 2.4 and 2.5. In Figure 2.7, the normalized segmentation
errors are shown for a sequence of items for all possible 2-segmentations. This also
includes the segmentations that ignore the alignment requirement. In particular, Fig-
ure 2.7a shows the normalized error for the L2 norm, while Figure 2.7b shows the
normalized error for the L1 norm. Here, we have chosen to use the normalized error
rather than the actual error for visibility reasons; the normalization step consists of
scaling the error between zero and one.

For both of the simulated examples in Figure 2.7, we can see that the normalized
error functions indeed have at most a single maximum between each pair of item
boundaries, and that the minimum values indeed correspond to the item boundaries.
We can also note that for the L2 error criterion in Figure 2.7a, the error function shows
a smooth curve between item boundaries, while the L1 error function in Figure 2.7b
appears to be piece-wise linear. This is not surprising considering the nature of the

2.7 Generalization to real-valued durations 59

(a) Example of the normalized segmentation error for the L2 error criterion on a 2-
segmentation.

(b) Example of the normalized segmentation error for the L1 error criterion on a 2-
segmentation.

Figure 2.7: Examples of the behavior of the L2 and L1 error functions when consid-
ering a 2-segmentation of the provided items, also including potential segmentations
ignoring the alignment requirement. The segmentation error for a specific segmenta-
tion boundary is shown by the blue lines.

median function, where values tend to ‘jump’ to a new median as the item coverages
shift, in contrast to the smoother changes we would observe in the mean function.

2.7 Generalization to real-valued durations
In this section, it is briefly discussed how the proofs given in Sections 2.4 and 2.5
can be extended to sequences of items with real-valued durations, and discuss some
of the initial assumptions made in the proofs.

60 Sequence segmentation

2.7.1 Generalizations for the L2 error case
If the assumption is made that the durations wi are allowed to have arbitrary real-
valued durations, this introduces some additional notation. In particular, the total
durations of the segments are given by ∑

n
i=1 wi and ∑

n′
i=1 w′i, instead of n and n′, re-

spectively. For example, instead of µ = ∑
n
i=1 hi
n , it would be possible to write

µ =
∑

n
i=1 wihi

∑
n
i=1 wi

.

Similarly, (2.3) would become

δ (x) =
wx

∑
n
i=1 wi +wx

(h−µ).

Removing the alignment requirement for other segments similarly introduces ad-
ditional notation. More specifically, as items may reside in multiple segments, the
additional parameters fi and f ′i are introduced, representing the fraction of wi or w′i
which belongs to the segments S and S′, respectively. For example, in this case µ

would be given as

µ =
∑

n
i=1 fiwihi

∑
n
i=1 fiwi

.

In both cases, there are no major deviations from the proof given in Section 2.4,
and a similar proof can be provided for the above cases analogously to the one given
here.

2.7.2 Generalizations for the L1 error case
The proof in Section 2.5 is based on the initial assumptions that m0 < h, and m′w < h.
The case of m0 = h is trivial, as in this case there is no difference in error regardless
of the value of x. To show that the proof is still valid for other initial conditions, such
as m0 > h, it can be observed from Lemma 2.10 that when changing one of these
initial assumptions, one only needs to reconsider the segment for which the assump-
tion was changed. In case of m0 > h, the same reasoning given in Section 2.5.1 can
be followed, provided the items in S are sorted in descending, rather than ascending,
order. The reasoning is similar for segment S′.

In addition, there is the assumption that n, n′ and w are even. To show that the
proof holds if one or more of these values are odd, consider that each of the n+n′+w
items can be split into two subitems of the same height and half unit duration, and
then redefine n, n′ and w accordingly. The proof can then be applied to the redefined
segments directly, which are identical to the original segments.

A similar approach can be used to show that the proof still holds when a single
item is moved to S at each step x, as opposed to two items at a time. In addition, the
proof can be extended to durations of fractional numbers by splitting the items of unit
duration into subitems of a duration equal to the lowest common denominator of the
fractional numbers.

2.8 Conclusions 61

2.8 Conclusions
The results in this chapter show that for any Lp error criterion, an optimal k-
segmentation can be found in polynomial time even when items do not have unit
duration and segment boundaries need not coincide with item boundaries. In par-
ticular, the segmentation error is minimal at the item boundaries, and as such, there
is no advantage to be gained (in terms of error) by not adhering to the alignment
requirement. In addition, we have shown that for the L1 and L2 error criteria, the
segmentation error as a function of the coverage of an item contains at most a single
maximum, and no other stationary points.

In this chapter, we addressed the segmentation component of the main research
question, showing that the methods for solving the k-segmentation problem can also
be applied to sequences of items of non-unit duration, or where the alignment re-
quirement need not hold. While there exist many segmentation methods, algorithms
for k-segmentation are often applied in the field of human motion tracking and out-
side of it, particularly for applications where we have a good idea of the number of
segments we are looking for.

In the proofs provided here, the primary focus has been on the L1 and L2 norms
as error criteria. These norms have the desirable properties that they respectively
minimize the absolute and squared (or Euclidian) error between the items and their
representatives, similar to for example the least squares algorithm used in linear re-
gression. As a result, the representatives of the L1 error criterion correspond to the
segment median, while the representatives of the L2 error criterion correspond to the
segment mean. Note that while we are not always interested in differences in the
means or medians of our raw measurements, segmentation can also be applied on the
measurement features, such as the measurement intensity or variance.

A limitation of k-segmentation algorithms is that they can naturally only be ap-
plied to a finite signal, where we have some indication of the number of segments
of interest. If processing time allows however, it is possible to compute the error for
multiple values of k and select the optimal value. For some applications, it is fairly
straightforward to find the value of k; for example, finding segments of cycling ac-
tivity for people who cycle to and back from work each day. Another limitation of
k-segmentation, and of using the L1 and L2 norms as error criteria, is that it can be
difficult to include domain-specific knowledge on the sequence segments (for exam-
ple, if we know certain item values often occur near segment boundaries). In such
cases, a problem-specific segmentation method of often devised.

3
Activity recognition

3.1 Introduction
The work described in this chapter has been previously published and discussed [Pijl,
van de Par, and Shan, 2010; Dadlani et al., 2013], and related to a number of other
publications [de Ruyter et al., 2011; Pijl et al., 2014].

At a basic level, our ability to remain healthy relies on being able to perform
certain activities such as eating, ambulation and maintaining hygiene. These types
of activities are often referred to as “activities of daily living” (ADL). Our ability to
perform these basic activities is strongly related to our functional independence - that
is, losing the ability to perform some or all of these ADLs will result in dangerous or
unhealthy situations, or even death, without some form of external assistance. This
can be a particular risk for elderly living independently, as ADLs can become difficult
to perform due to physical or cognitive decline. Unobtrusive activity monitoring can
be helpful in such cases, by preventing the need for pre-emptive institutionalization,
by providing peace of mind to family members and caregivers, and by serving as
input for context-aware assistive systems.

However, monitoring ADLs is no trivial matter - the field of human activity recog-
nition is fraught with challenges, ranging from gathering accurate and relevant data to
dealing with the large variation in human activities. Furthermore, many of the more
complex activities cannot be easily distinguished from one another by a single iden-
tifying feature, but only by observing a sequence of successive actions. In addition,
there exist considerable differences in how a given activity is performed by different

63

64 Activity recognition

individuals, making activity recognition more challenging across individuals. While
a more complex activity will often be made up of the same set of actions, it is entirely
feasible that these actions can be performed in a different order to the same effect, or
that some actions may be repeated multiple times, or omitted altogether.

In this chapter, we aim to address the first research question related to the main
research question, introduced in Chapter 1: Can activities of daily living (ADL) be
unobtrusively tracked and recognized? While doing so, we also address the first two
components of the model for human motion tracking described in the main research
question: segmentation and classification. To classify the ADLs based on human
motion data, we simultaneously attempt to find the segment boundaries that mark the
transition from one ADL to the next.

To achieve this, we present an examination of human activity data gathered using
a single fixed camera and a single microphone in a kitchen environment. This data is
employed in the creation of a number of models to classify human activity both after
the activity has been completed and while the activity is being performed. Rather
than attempting to distinguish between all possible activities, six activities of interest
have been selected, with the focus on activities which last for an extended period of
time. In other words, the focus is on activities similar to, for example, watching tele-
vision, rather than recognizing a hand gesture. As the single camera and microphone
have limitations with regard to how much can be observed, the activities examined
in this chapter are all set within the context of a single room. For the experiments
described in this chapter, a kitchen setting was chosen, as this setting allows for a
number of extended activities distinct from one another, yet by and large making
use of the same facilities the setting provides. Despite selecting a single setting, the
methods described here can be applied to any interior setting, or even extended to ex-
terior settings. In total, six activities were chosen to be recognized: storing groceries,
preparing dinner, eating, doing dishes, vacuuming, and preparing a drink.

The method proposed in this chapter makes use of two separate classification lay-
ers. In the first layer, audio and video scene analysis techniques are used to detect
the presence of singular events, such as the location of a person in the room or the
presence of a specific sound. This chapter focuses on the second layer; activity recog-
nition using these events as input. For each of the activities to be recognized, a model
is created by constructing a Hidden Markov Model (HMM). HMMs are explained in
more detail in Section 3.2. Activities are then classified using a history of recently
observed events.

There have been numerous studies in the field of human activity recognition, of
which ADL detection can be seen as a special case [Bao and Intille, 2004; Chen et al.,
2007; van Kasteren et al., 2008; Maurer et al., 2006; Karaman et al., 2014; Konig
et al., 2015; Poularakis et al., 2015]. The majority of these studies fall into one of
two categories previously discussed in Chapter 1: the use of body-worn sensors to

3.1 Introduction 65

capture ADLs, or the use of one or more sensors placed in the environment. Ex-
amples of the former include the use of accelerometers or heart rate monitors, while
examples of environmental sensors used for activity recognition can include RFID
sensors, cameras, contact switches and the like. A second distinction can be made
between sensors based on the depth of information they provide; for example, a sim-
ple pressure switch may only report one of two values at any time (pressed - not
pressed). On the other hand, a single camera frame potentially provides thousands
of pixels’ worth of information. Such sensors are sometimes referred to as low-level
and high-level sensors, respectively.

For ADL detection in particular, this distinction is important because different
methodological approaches are required for low-level and high-level sensors. High-
level sensors require advanced scene analysis algorithms to extract relevant features
from the wealth of data they provide, and data fusion algorithms to combine various
streams of data. On the other hand, low-level sensors are easy to interpret but often
only provide part of the information needed for ADL detection - an issue that may
be solved by employing them strategically and in numbers. Here, the challenge is
to combine the (often many) different outputs of the individual sensors to arrive at
sensible conclusions - sometimes at varying levels of sensor data complexity (a task
for which rule engines or ontologies are often employed).

Regardless of the types of sensors used - wearable or environmental, low-level
or high - there is often a need to combine multiple sensors, either of the same type,
or as a combination of different modalities. In many cases, a single sensor modality
in insufficient to obtain the level of context needed to distinguish between complex
activities such as ADLs. As a result, the concept of sensor networks often crops
up in ADL monitoring. Sensor networks consist of multiple sensors connected to
each other, usually through wireless communication protocols. This allows the data
collected by multiple sensors to be shared within the network, and activities to be
recognized in a more or less real-time fashion. The alternative is to use a central
hub that collects the output from the individual sensors. The advantages of a sensor
network are that the sensor output is provided in some standardized fashion for all
sensors, and that adding new sensors to the network is relatively straightforward. This
makes sensor networks particularly advantageous when large numbers of sensors are
involved.

Activity recognition using wearable sensors. When it comes to activity recog-
nition using wearable sensors, accelerometers are arguably the most popular choice
if current literature is any indication. Bao and Intille [2004] use a network of up
to five accelerometers placed on the body to distinguish between 20 activities, in-
cluding walking, running, vacuuming, eating, brushing teeth, and so on. Bao and
Intille [2004] report an overall recognition accuracy of over 80% using decision trees
on temporal and spectral features. An interesting aspect of the study is that it in-

66 Activity recognition

cludes both complex activities such as brushing teeth, and more basic activities such
as standing up and sitting down.

In general, it can be argued that a certain activity is more complex than another
if it can include those others as a subactivity. For example, the process of brushing
teeth can include walking to the sink, turning on the tap, and so in. Another (albeit
less well-defined) way to view complex and basic activities would be the observation
that the complex activities tend to represent the behavioral intentions or aims of an
individual. That is, the intension of an individual may be to brush their teeth; walking
to the sink is merely a means to that end in this case. Activities like walking or
standing up are rarely performed purely for their own merit1.

From this, we can infer a kind of hierarchical ordering where activities and sub-
activities exist as part of higher-level activities and goals. Of course, this is somewhat
of a simplification of reality, where the distinction between activities and subactivities
will not always be so clear. In addition, we often tend to combine multiple activities
in our daily lives, such as having a phone conversation while walking to the grocery
store. We may therefore encounter subactivities as a result of a secondary task that
we would otherwise not expect. Even so, the hierarchical ordering of activities can
be beneficial from a modeling perspective.

Activity recognition using body-worn sensors is often focused on the recognition
of the relatively more basic activities. Nuynh and Schiele [2005] describe a study
where participants perform the activities walking, standing, jogging, hopping, skip-
ping, and riding a bus. Data was recorded using a sensor attached to a backpack strap,
which recorded 3D acceleration, along with other modalities such as light, audio and
temperature. Different window sizes and features were examined for the optimal
recognition of each activity. In particular, features derived from fast Fourier trans-
forms (FFT) were used with k-means clustering to find activity clusters. Recognition
for jogging and walking performed particularly well, with accuracies of about 90%.

Maurer et al. [2006] have integrated a set of similar sensors into a wristwatch for
the recognition of walking, standing, running, sitting, and walking stairs. Recording
devices were placed in locations where one might normally carry a cell phone; that
is, in various pockets, attached to the belt, in a bag, and around the neck2. The
recording devices measured acceleration and light. Using features primarily based
on correlation, performances ranging from 17% to 93% were reported based on the
sensor modalities used and the wearing position.

Ravi et al. [2005] investigate a similar set of activities as Maurer et al. [2006],
but include the activities sit-ups, vacuuming and brushing teeth in favor of sitting.

1One could argue that such activities can be performed for their own merit within the context of
exercise - however, one could also argue that the exercise itself (e.g., jogging) is the complex activity in
this case.

2While one might argue that this is an unusual position to carry a cell phone, placing sensors in, for
example, a pendant around the neck is not uncommon.

3.1 Introduction 67

Activity recognition is performed using a single accelerometer attached to the pelvic
region. Here, both correlation-based features and features derived from FFT were
investigated together with a number of classification algorithms; decision tables, de-
cision trees, k-nearest neighbor, support vector machines, and naive Bayesian classi-
fiers. Across participants, a maximum accuracy was obtained of 73% using support
vector machines.

As already seen from the work by Bao and Intille [2004], it is also possible to
combine the measurements from multiple accelerometers at different wearing po-
sitions. Gao, Bourke, and Nelson [2014] describe a comparison between systems
using a single or multiple accelerometers for detecting activities such as walking,
stair climbing, and sitting down or standing up (for various surfaces). They report
improved accuracy for the multiple sensors setup, with 96% accuracy compared to
the 93% accuracy of the single sensor system. A downside of such a multi-sensor
system is that wearing a larger number of sensors is a larger burden for the user, as
well as a potential increase in computational requirements and power consumption.
Gao, Bourke, and Nelson [2014] however counter that sensors can be integrated into
clothing, and more lightweight algorithms can be used due to the benefits of multiple
sensor data sources. Whether this makes up for the additional sensor’s power con-
sumption, and how feasible it is to integrate sensors in all items of clothing, remains
up for debate.

Lee and Mase [2002] discuss the use of multiple sensors containing an accelerom-
eter and gyroscope to detect both a set of activities (walking, standing, sitting, moving
up or down stairs), as well as their location within an environment (such as at their
desk, printer, and so on). They use acceleration and rotation features in a dead reck-
oning approach to estimate activity and location. Exact accuracy numbers are not
provided, but Lee and Mase [2002] note that the activity recognition performance
was satisfactory in the number of behaviors missed by the algorithm.

A more expansive overview of the application of accelerometers and inertial sen-
sors in this field, and the accompanying methodologies can for example be found in
the work by Bulling, Blanke, and Schiele [2014]. Accelerometers are not the only
type of body-worn sensor that can be used for activity recognition however; Philipose
et al. [2004] and Patterson et al. [2005] make use of an RFID sensor attached to a
glove to distinguish between a number of complex activities focused on the kitchen
environment, which include making tea, and setting the table (in total, they look
at 14 and 11 different activities, respectively). Many of the objects in the kitchen are
tagged with RFID tags, generating a signal when they are in close proximity to the
glove. A number of activity recognition approaches are described, based on HHMs
and dynamic Bayesian networks. Philipose et al. [2004] describe an average pre-
cision of 88% and recall of 73%, while Patterson et al. [2005] describe an average
accuracy of 81%.

68 Activity recognition

While cameras would traditionally be considered an environmental sensor, minia-
turization has allowed cameras to be used as wearable sensors for the purpose of
activity recognition, as described by Karaman et al. [2014]3. Here, a hierarchical
hidden Markov model4 is used to distinguish between 23 activities of daily living,
including washing clothes, knitting, and brushing teeth. To do so, video segments
where the camera retains the same view are automatically extracted, and from these
a number of motion-related and positional features are derived, that are further com-
bined with a number of audio features. The resulting model can distinguish between
the 23 activities with a median accuracy of 42%.

Activity recognition using environmental sensors. In terms of environmental
sensors, cameras are an often used tool in activity recognition and human movement
tracking through the use of computer vision techniques; an overview of the methods
used in this field can for example be found in the work of Ke et al. [2013], Gavrilla
[1999], and Aggarwal and Cai [1997]. In many studies, camera images are used to
determine the possible behavior of or interaction between individuals. More recently,
the use of 3D camera setups has also been considered [Aggarwal and Xia, 2014].
Typical activities to be recognized in this context are, for example, a person passing
by, two people meeting, and so on. The applications of this type of activity recog-
nition include security [Hongeng, Bremond, and Nevatia, 2000] and human-machine
interaction in for example artificial intelligence applications [Kelley et al., 2008].
There have also been investigations into the derivation of more basic activities using
camera images [Madabhushi and Aggarwal, 1999], where activities such as sitting
down or standing up are examined (in total, 9 activities were examined). Activities
were determined through tracking the movement patterns of a person’s head, yielding
an accuracy of 80% through classification using a Bayesian framework.

An example of the use of cameras to track activities of daily living is described
by Konig et al. [2015]. Here, a study is presented where two cameras placed in the
environment are used to determine whether a number of ADLs are performed, and
additionally kinetic-based features are derived from the camera images to assess how
well the ADLs were performed. The aim is to use such a system to provide early
indicators for dementia or cognitive decline in seniors. The reported performance of
the system in detecting the various ADLs, which include activities such as having a
phone call, preparing a pill box, and making tea, was an overall sensitivity of 85%
and a precision of 76%. Another example of the tracking of ADLs using a camera
is described by Poularakis et al. [2015]. Here, a method based on support vector

3Although the camera used in this study is perhaps not the epitome of unobtrusiveness, relatively
small cameras of high quality are available, as evidenced by modern smartphones. In studies, require-
ments in terms of data storage, reliability and battery life can often be more strict than in an eventual
application.

4Basically a hidden Markov model of hidden Markov models; also see the notes in Section 3.5.

3.1 Introduction 69

machines is used on various data sets for various settings, achieving accuracies of
around 90%.

Video images have also been coupled to audio as an additional modality by Chen
et al. [2007], to detect social interactions between elderly in a nursing home envi-
ronment. This includes standing conversations, interacting, passing by in the hall,
and assisting someone with walking. The study included both ‘wizard of Oz’ sen-
sors and actual sensor recordings. On the latter, classification was attempted using
a dynamic Bayes network, decision trees, support vector machines and logitboost,
with the dynamic Bayes network yielding the best classification accuracies ranging
from 86% to 94% depending on the activity. Hidden Markov models were used to
model a number of subactivities (later used in classification of the main activities),
including ‘approaching’ and ‘passing’.

Oliver, Horvitz, and Garg [2002] use audio and video, along with keyboard and
mouse interactions, to track interactions in the office space - this includes the ac-
tivities phone conversation, giving a presentation, face-to-face conversation, user
present, nobody present, and distant conversation. Here, a layered hidden Markov
model is used, a variation on the standard HMM. The layered HMM includes two
separate HMMs for processing audio and video features, respectively. The classifi-
cation results of this layer are fed to a third HMM for activity classification5. Oliver,
Horvitz, and Garg [2002] report an accuracy on activity sequences of over 99% using
the layered HMM.

Apart from studies focusing on more high-level sensors such as audio and video,
activity recognition studies have also been performed using multiple low-level sen-
sors. A good overview of some of the sensors and techniques used in the smart home
(i.e., a home fitted with environmental sensors) context can be found in the work
by Debes et al. [2016]. In addition to this overview, Debes et al. [2016] also apply
a number of the described methods on data sets from several households; conclud-
ing that overall the Fisher kernel learning method outperformed more ‘traditional’
methods such as HMMs for this application.

Viard et al. [2016] do conclude that good results can be obtained in such a setting
using HMMs, using a large amount of binary sensors (77) placed inside the home.
Viard et al. [2016] comment that an advantage of their HMM approach is that it
allows training for an individual user without knowledge of the real actions performed
during the learning phase, and provide a confusion matrix of the classification results
for activities such as eating, dressing, and doing dishes. A limitation of the study is
that it was performed with a single participant.

5Layered hidden Markov models are comparable to the chained hidden Markov models described
in Section 3.2.4, in the sense that they can be decomposed into Cartesian hidden Markov models, and
use a particular architecture (also) to reduce the dimensionality of the model.

70 Activity recognition

The work of van Kasteren et al. [2008] describes the use of multiple binary
switch sensors for ADL recognition in the home. A total of 14 sensors were placed,
with locations including doors, cupboards, the refrigerator, and toilet. HMMs and
conditional random fields (a method somewhat related to the HMM) were explored
as a means to fuse the various sensor outputs. A total of 8 activities were considered,
including toileting, showering, eating breakfast, and eating dinner. Using HMMs, a
class accuracy of 79% was achieved using offline processing, and 73% using online
processing.

Rashidi and Cook [2009] use sensors embedded in a home environment to find
frequent and periodic patterns of activity by discovering sequences of observed
events. The sensor modalities used include motion, temperature and light sensors.
Participants were asked to follow a script of activities, and include some random
(non-scripted) activities as well. From the discovered patterns, Rashidi and Cook
[2009] conclude that the script’s patterns were discovered correctly. Interestingly, a
discussion is also included on how feedback of the user on the recognized patterns of
activity can be used to improve the performance of the system.

Urwyler et al. [2015] make use of a number of sensor boxes that can be placed
around the home, each included five types of sensors, to detect ADLs. Here, the
naive Bayesian classifier and random forest algorithms are explored, as well as in-
troducing two ‘ad-hoc’ algorithms based on rule inference and circadian activities
rhythm. Urwyler et al. [2015] note that the introduced ad-hoc algorithms outperform
the traditional algorithms in most cases.

Another approach to the smart home is the use of ultrasonic sensors placed on the
ceiling in a grid-like pattern, as described by Okour, Maender, and Basilakis [2015].
Here, the primary focus is on the positional aspects of activities, such as sitting,
sleeping, walking straight or ‘walking curvy’. To distinguish between these activities,
Okour, Maender, and Basilakis [2015] employ a rule-based classifier combined with
finite-state machines to ensure that the detected activities follow each other logically.
The achieved accuracies ranged from 88% to 99% depending on the activity.

Literature discussion. When taking into account the extensive literature on the
topic of human activity recognition, there are a few conclusions we can draw with
regard to the field. The first conclusion is that the accuracies of the activity recogni-
tion methods reported often vary considerably between studies. The primary causes
of this can be described as the activities investigated, the sensor modalities used, and
the definitions of accuracy employed.

It appears that some activities are inherently easier to distinguish than others; in
particular, studies focusing on more low-level activities such as sitting or walking
generally report better accuracies compared to the recognition of ADLs. Naturally,
the overall accuracy is also affected by the number of activities taken into consider-
ation. The wide variety of sensor modalities investigated, as well as differences in
the number of sensors (and their location), also complicate the direct comparison of

3.1 Introduction 71

many study results; in particular, we find few multi-modal studies where the impact of
the individual modalities is critically evaluated. Finally, we encounter many different
(often implicit) definitions of accuracy that are used; for example, there is a notice-
able gap in reported accuracy between studies performed on manually segmented
activities and studies on continuous measurements containing multiple activities.

Taking this into account, we overall see higher accuracies reported for the recog-
nition of lower-level activities compared to the recognition of ADLs; we can conclude
from this that the recognition of more complex activities is therefore a more complex
problem. In general, there seem to be three popular approaches to human activity
recognition: approaches based in computer vision using cameras, wearable sensors,
and the use of multiple (and often large numbers of) environmental sensors. Here,
the wearable sensor approach is mostly used for low-level activities. It is notable
that there are few environmental solutions that both include multiple modalities, and
that would fit inside a single unit, similar to the sensor boxed used by Urwyler et al.
[2015]; such a solution would have an advantage in terms of installation compared to
other environmental solutions, and would be less obtrusive compared to many wear-
able sensor solutions.

It is also interesting to note that the methodologies used seem to have changed
little over the years; the use of algorithms such as hidden Markov models, k-nearest
neighbor, support vector machines, and neural networks remains popular [Gao,
Bourke, and Nelson, 2014; Viard et al., 2016; Poularakis et al., 2015; Karaman et al.,
2014]. This is perhaps not surprising given that these algorithms seem to provide ac-
ceptable levels of performance for most applications. Recently, random forests have
also been applied to human activity recognition [Urwyler et al., 2015]. In the coming
years, we may additionally see an increase in methods that combine the properties
of generative models (such as HMMs) and discriminative models (such as support
vector machines), as described by Debes et al. [2016].

In this chapter, we make use of the well-described HMM to detect ADLs in a
kitchen environment from a single audio and video sensor. As such, we are look-
ing at a system that will fit into a single ‘box’. The aim is to accurately distinguish
between six ADLs (storing groceries, preparing dinner, eating, doing dishes, vacu-
uming, and preparing a drink), using sensor data sequences recorded during a study
where participants were asked to perform each of the listed ADLs.

We will examine the classification results from two perspectives: first, we will
look at the classification accuracy when the start and end times are assumed to be
known (sequences that are already segmented). Second, we will look at the classifi-
cation accuracy over the entire recorded sessions, without any knowledge of the start
and end times of the individual ADLs (unsegmented sequences). In addition, we will
also address the relevance of the individual sensor modalities used, and investigate a
number of different modeling and training schemes for the HMM.

72 Activity recognition

The choice of HMMs for this work was based on a number of properties of the
HMM that match well with the problem described. First, the different states of the
HMM, and the ability to traverse these in a multitude of orders with some probability,
match with the nature of the ADLs being performed; in particular, we theorize that
at least at a conceptual level, ADLs can be divided into a number of subactivities,
that do not necessarily need to be performed in a linear fashion. Many of the smaller
actions that make up the ADL that are performed at a given time depend on the current
subactivity. As such, we expect a strong dependence on the underlying subactivity
and the events observed, similar to the hidden state – visible state paradigm of the
HMM.

Second, our observations made on the subactivities performed allow us to mit-
igate one of the weaknesses of the hidden Markov model: the presence of a large
parameter-space to estimate. Based on our observations, we can initialize our models
based on statistical observations, reducing the parameter estimation problem. Third,
HMMs are effective at integrating data from multiple sources, when they are (for ex-
ample) recorded at different sampling frequencies. Finally, the use of HMMs allows
us to implicitly derive segment boundaries of the ADLs in a sequence of continuous
measurements.

The remainder of this chapter is organized as follows: in Section 3.2, the hid-
den Markov model architecture, algorithms and application are described, as well
as a number of alternative model construction techniques. Section 3.3 describes the
experimental setup and methods used to obtain human activity data. Section 3.4 dis-
cusses the theoretical performance of the method on both fully observed activities
and partly observed activities. Section 3.5 describes method performance in a more
practical application where activities are recognized as they are being performed, us-
ing a short history of past observed events. Finally, some concluding remarks are
given in Section 3.6.

3.2 Modeling activities
A hidden Markov model (HMM) is a state-space (or stochastic) model that consists
of a set of hidden states (or simply states) and a set of observable states, often re-
ferred to as emissions. For a given HMM with n hidden states and m emissions,
let U = {U1,U2, · · · ,Un} be the set of hidden states, and V = {V1,V2, · · · ,Vm} the
set of emissions. At each discrete time step t, the model resides in one of the hid-
den states, indicated by qt , with qt ∈U for all t. The state qt is often referred to as
the model state at time t. The values of qt cannot be directly observed, and as such
represent the ‘hidden’ part of the HMM.

At every time step, the model changes state by randomly selecting a new state
based on a set of probabilities called the transition probabilities (the new state might
be the same as the current state). The transition probabilities themselves depend
solely on the current state of the model; that is, the transition probabilities for select-

3.2 Modeling activities 73

ing the model state qt+1 depend solely on the model state qt . This is referred to as the
Markov property, and is what is represented by the ‘Markov’ term in the name of the
HMM. The transition probabilities ai j given a state Ui at time t, and U j at time t +1
are defined as follows.

Definition 3.1 (Transition probability). The transition probability ai j from state Ui

to state U j, for any t, is given by

ai j = P(qt+1 =U j|qt =Ui),

where for each pair i, j we have ai j ≥ 0 and ∑
n
j=1 ai j = 1. 2

At each time step t, the model also produces one of the emissions in V . Which
emission is produced depends on the emission probabilities, that are once again de-
pendent only on qt . Unlike the model state, emissions can be directly observed.
The emission probabilities are denoted by b j(k); that is, the probability of producing
emission Vk at time t given the model state qt =U j. Formally, the emission probabil-
ities b j(k) are defined as follows.

Definition 3.2 (Emission probability). The emission probability b j(k) represent the
probability of observing emission Vk while in state U j, given as

b j(k) = P(Vk|qt =U j)

where for each pair j,k we have b j(k)≥ 0 and ∑
m
k=1 b j(k) = 1. 2

Note that the transition probabilities ai j and emission probabilities b j(k) are indepen-
dent of t; that is, they do not change over time.

HMMs can be fully defined6 by the set of transition probabilities ai j and emission
probabilities b j(k), as these implicitly define the number of states n and number of
emissions m. In practice, HMMs are often represented by an n×n matrix A = {ai j}
of transition probabilities, and an n×m matrix B = {b j(k)} of emission probabilities.
Note that the matrices A and B are right stochastic; that is, all rows consist of non-
negative numbers that sum to one.

Rabiner [1989] describes HMMs using three fundamental problems.
• Problem 1: given a sequence of emissions, determine the probability that these

emissions were produced by the model.
• Problem 2: given a sequence of emissions, determine the most likely sequence

of hidden states that best matches these emissions.
• Problem 3: given one or more sequences of emissions, and assuming the num-

ber of hidden states is fixed, determine the set of model parameters (i.e., transi-
tion and emission probabilities) that optimally describe the provided emissions.

6Sometimes the definition of HMMs additionally includes a set of initial state probabilities π

where πi = P(q1 = Ui). However, if identical initial probabilities are assumed, as we do here, these
can be omitted.

74 Activity recognition

For the purposes of constructing activity recognition models and detecting activities
from a previously unobserved sequence of emissions, the first and third questions are
of interest. The first problem is solved by a method called the forward-backward pro-
cedure. For the third problem, a number of approaches exist: first, the Baum-Welch
algorithm, which estimates model parameters using one or more positive example
sequences. A second approach is the MA algorithm, which can use both positive and
negative examples, but requires target probabilities to be set. In addition, we discuss
chained hidden Markov models as an alternative model structure, in which audio and
video events are modeled as co-occurring, coupled events. Coupled hidden Markov
models, and the methods for solving problems one and three are detailed in the fol-
lowing sections.

3.2.1 The forward-backward procedure
Determining the likelihood that a given sequence is generated by an HMM can,
naively7, be performed by computing every possible ‘path’ through the model in
terms of hidden state transitions. However, the problem can be solved much more
efficiently by dynamic programming, as implemented in the forward-backward pro-
cedure. The probability of the model being in a certain state at a given time t, having
observed the given sequence up to time t, can be based upon the probabilities for
all states at time t− 1. After all, the current state is only dependent on the previous
state in HMMs. Specifically, the probability at time t is given by multiplying the
probability of producing the current emission while in the current state by the sum
of the products of the probabilities at time t−1 and the transition probabilities from
the states at t− 1 to the state at t. This results in an induction starting from the first
emission. The same calculation can also be done starting from the last emission, as
implied in the name of the algorithm.

Definition 3.3 (Forward step). For an emission sequence O, where O is given
as (O1,O2, · · · ,Ol), with Ot ∈ {1,2, · · · ,m} for t = 1, . . . , l, the forward variable α t(i)
is given as

α t(i) = P(O1,O2, · · · ,Ot ,qt =Ui).

The value of α t+1(j) can then be found through induction:

α t+1(j) = [
n

∑
i=1

α t(i)ai j]b j(Ot+1)

α1(j) = b j(O1).

2

7That is, while the approach arrives at the correct solution, the time complexity is exponential in the
number of items in the input sequence.

3.2 Modeling activities 75

The probability that the emission sequence O was produced by the provided
model is then given by

P(O) =
n

∑
i=1

α l(i). (3.1)

While this solves the first problem, as we will later see, we do not always want to
start the induction process from the start of the sequence at t = 1. Fortunately, using
similar reasoning as above, the induction can easily be reversed, starting from t = l,
and iterating back to t = 1. In this case, the backward variable β t(i) is defined as
follows.

Definition 3.4 (Backward step). For an emission sequence O where O is given
as (O1,O2, · · · ,Ol), with Ot ∈ {1,2, · · · ,m} for t = 1, . . . , l, the backward vari-
able β t(i) is found as

β t(i) = P(Ot+1,Ot+2, · · · ,Ol|qt =Ui).

Induction rules are then given by

β t(i) =
n

∑
j=1

ai jb j(Ot+1)β t+1(j)

β l(i) = 1.

2

3.2.2 The Baum-Welch algorithm
Unfortunately, the problem of finding model parameters to best fit one or a set of
emission sequences cannot be solved analytically with current techniques. In other
words, there is no technique to establish the optimal model parameters for any given
(set of) emission sequence(s) globally. However, it is possible to optimize model
parameters locally, for instance by using gradient descent methods or the methods
described below. As the model parameters can only be optimized locally, it is impor-
tant to have an appropriate initial model before optimization.

Arguably, the best known approach to estimate model parameters is the Baum-
Welch (BW) algorithm [Rabiner, 1989]. The Baum-Welch algorithm works by re-
estimating hidden state and emission probabilities over a number of iterative steps.
Given both model parameters and emission sequence(s), the BW algorithm computes
the expected number of transitions from one hidden state to another hidden state, for
each possible combination of hidden states. The updated probability of transitioning
from hidden state Ui to hidden state U j is then defined as the expected number of
transitions from state Ui to state U j divided by the total expected number of transitions
from state Ui (to any state).

Similarly, the emission probabilities are re-estimated as the expected number of
times the model is in hidden state Ui and emission Vk is observed divided by the

76 Activity recognition

expected number of times the model is in state Ui (regardless of the emission ob-
served). This re-estimation process is repeated over a number of iterations. The
expected probabilities are estimated using the forward and backward variables ob-
tained from the forward-backward procedure discussed in Section 3.2.1, as detailed
below. If the resulting overall likelihoods of two successive models are sufficiently
similar, the algorithm is considered to have converged and the iterative procedure is
terminated.

Let ε t(i, j) be the probability of transitioning from state Ui at time t, to state U j

at time t +1, given an emission sequence O. Formally:

Definition 3.5 (Transition estimate). The probability ε t(i, j) of transitioning from
state Ui to U j for an emission sequence O is given as

ε t(i, j) = P(qt =Ui,qt+1 =U j|O)

=
α t(i) ai j b j(Ot+1) β t+1(j)

P(O)
. (3.2)

Equation 3.2 follows from Definitions 3.1, 3.2, 3.3 and 3.4, and from Equation 3.1.
2

Further, let γ t(i) be the probability of the model residing in state Ui at time t
given O. γ t(i) can therefore be written as follows.

Definition 3.6 (State estimate). The probability γ t(i) of the model being in state Ui

at time t for an emission sequence O is found as

γ t(i) =
n

∑
j=1

ε t(i, j).

2

By summing γ t(i) over all t, the expected number of times the model transitions
from state Ui is determined. Similarly, summing ε t(i, j) over all t yields the expected
number of times the model transitions from state Ui to state U j. As discussed above,
the transition probabilities can be re-estimated by dividing the expected number of
transitions from one state Ui to another state U j by the total expected transitions
from state Ui. Similarly, the re-estimated emission probabilities b̄ j(k) are obtained
by the expected number of times the model is in state U j and emission Vk is observed,
divided by the expected number of times the model is in state U j.

3.2 Modeling activities 77

Definition 3.7 (Baum-Welch re-estimation). The Baum-Welch re-estimation for-
mulae for the re-estimated transition probabilities āi j and re-estimated emission prob-
abilities b̄ j(k) are given by

āi j =
∑

l−1
t=1 ε t(i, j)

∑
l−1
t=1 γ t(i)

b̄ j(k) =
∑

l
t=1(γ t(j)|Ot =Vk)

∑
l
t=1 γ t(j)

.

2

3.2.3 The MA algorithm
The MA algorithm8 is an alternative parameter estimation method with a similar
function to the BW algorithm [Mamitsuka, 1997]. However, it differs from the BW
algorithm in two important ways. First, rather than completely re-estimating the
model parameters at each step, the MA algorithm makes incremental updates to the
model parameters. As a result, the parameter changes are smoother in the MA algo-
rithm. This can mean, however, that more iterations are required to converge com-
pared to the BW algorithm, as the MA algorithm typically makes smaller changes to
the model parameters each iteration. The second, and perhaps most important, differ-
ence is that the MA algorithm uses emission sequences which are not associated with
the model for which parameters are estimated as a negative example. In contrast, the
BW algorithm only uses positive examples (associated with the model) of emission
sequences to determine model parameters.

Whereas the BW algorithm attempts to select parameters maximizing the sum of
the likelihoods of the training sequences associated with the model, the MA algo-
rithm utilizes a kind of distance measure for each sequence between the likelihood
of the sequence ‘belonging’ to the current model and a target likelihood set for that
sequence. The algorithm tries to minimize the total distance of all training sequences.
For activity recognition, targets are set to relatively high likelihood scores for training
sequences matching the activity represented by the model, and relatively low (close
to zero) likelihood scores for sequences representing different activities.

As discussed above, the MA algorithm makes use of smooth, incremental updates
rather than using a re-estimation formula. Each iteration, āi j and b̄ j(k) are updated
according to the following rules, derived from Baldi and Chauvin [1994].

8It is not entirely clear where the acronym ‘MA’ comes from. While some theories can be formu-
lated, a discussion of those is considered somewhat out of scope.

78 Activity recognition

Definition 3.8 (MA re-estimation). The MA re-estimation formulas for the re-
estimated transition probabilities āi j and re-estimated emission probabilities b̄ j(k)
are given by

āi j =
eλwi j

∑
n
h=1 eλwih

b̄ j(k) =
eλv j(k)

∑
m
h=1 eλvi(h)

where λ represents a (constant) learning rate value, wi j is a n× n matrix of values
representing the hidden state transition probabilities, and v j(k) is a n×m matrix of
values representing the emission probabilities. 2

In the MA algorithm, wi j and v j(k) are updated, instead of updating ai j and b j(k)
directly, as shown below. As the MA algorithm makes use of emission sequences
belonging to different classes for parameter re-estimation, let Ox be the x-th sequence
in a set of emission sequences. Further, Px is defined as the probability of emission
sequence Ox being produced by the currently estimated model, that is, Px = P(Ox).
For each emission sequence, a target probability P∗x is defined. The MA algorithm
then tries to minimize a distance metric with respect to Px and P∗x as follows.

Definition 3.9 (MA distance metrics). Let dx and dmax be distance metrics with re-
gard to Px and P∗x , given as

dx = log(
P∗x
Px

)

dmax = log(
p∗max

P∗min
)

where P∗min is the minimum value of all P∗x , and P∗max the maximum value of all P∗x . 2

In practice, dmax can be set to any number provided ∀x(dmax > |dx|). Each it-
eration, the parameters wi j and v j(k) are updated according to wi j = wi j + ∆wi j

and v j(k) = v j(k)+∆v j(k). ∆wi j and ∆v j(k) are given as follows.

Definition 3.10 (MA parameter smoothing). ∆wi j and ∆v j(k) are given as

∆wi j =Ca ∑
x

dx

d2
max−d2

x

lx

∑
t=1

(ε t(i, j)−ai jγ t(i))

∆v j(k) =Cb ∑
x

dx

d2
max−d2

x

lx

∑
t=1

((γ t(j)|Ox
t = k)−b j(k)γ t(j))

where lx represents the number of emissions in Ox, and Ca and Cb are given constants.
2

3.2 Modeling activities 79

For most practical applications, the constants Ca and Cb are set to 1. In the above
equations, the first component (dx

d2
max−d2

x
) indicates whether to increase or decrease the

likelihood of the model producing the given sequence Ox, depending on the current
and target probabilities Px and P∗x . The second components in both equations rep-
resent the difference between the expected parameter probabilities and the current
model parameter probabilities.

3.2.4 Chained hidden Markov models
Chained hidden Markov models (c-HMM), described by Brand, Oliver, and Pentland
[1997], consist in essence of a number of HMMs in which the hidden states of the
separate models are linked together by introducing additional transition probabilities
between the hidden states of each model to the hidden states of the other models. The
amount of HMMs making up a c-HMM is called the number of chains. For example,
a two-chain c-HMM consists of two HMMs, for which there are defined transition
probabilities between the hidden states of both models. As a result, at any given time,
the model is in two hidden states, and two emission symbols are observed. Note that
the individual models are not required to have the same number of hidden states. A
c-HMM can be fully expressed as the Cartesian product of the HMMs making up the
chains.

As all c-HMMs used in this chapter are two-chain models, they will be the sole
focus of this section. However, the same principles apply to models of any number of
chains. As there is both audio and video data available for activity recognition, a two-
chain c-HMM allows modeling the audio process and the video process separately,
rather than as part of a single model. In other words, audio and video can be mod-
eled as two independent, but interacting, processes. This is a considerable difference
compared to the standard HMMs, which are unable to distinguish between the source
of the events (that is, there is no distinction depending on whether an event is an au-
dio or video event). Theoretically, a c-HMM offers advantages in capturing causal
couplings; for example, visiting the sink might increase the chance of observing the
sound of running water. A downside is increased model (and particularly state-space)
complexity.

In regular HMMs, the current hidden state is solely dependent on the previous
hidden state, as stated by the Markov property. However, c-HMMs break the Markov
property in this respect, as the current hidden state in a chain of a c-HMM is depen-
dent on both the previous state in that chain, as well as the previous states of every
other chain. Note that the current hidden state of a chain is not affected by the cur-
rent states of any other chains. This requires a number of adaptations to the standard
HMM algorithms for parameter estimation and the forward-backward algorithm.

As there are now two or more concurrent hidden states to keep track of, the stan-
dard approach of dynamic programming to solve the forward-backward procedure
will no longer work. Adaptations have been devised, generally at the loss of accu-

80 Activity recognition

racy to reduce computational complexity to manageable levels [Brand, 1997]. One
possibility is to first transform the c-HMM into a regular, ‘joint’ HMM, and then use
the standard forward-backward algorithm. This transformation is accomplished by
creating an HMM with the Cartesian product of the hidden states from each chain,
where each hidden state of the joint HMM represents a combination of hidden states
from the chains. The state transition probabilities are recomputed from the state tran-
sitions in the c-HMM. The result is a computation with a computational complexity
exponential in the number of chains. However, as only c-HMMs of two chains are
used in this work, the computational costs remain manageable. Let x and y represent
individual chains, and let c represent the Cartesian HMM. The hidden state transition
probabilities for the Cartesian HMM can then be defined as follows.

Definition 3.11 (c-HMM transition probability). The transition probabilities for a
c-HMM consisting of two chains x and y, and a corresponding Cartesian HMM c,
can be found as

acipc jr = P(qt+1 =Uc
j,r|qt =Uc

i,p)

= P(qx
t+1 =Ux

j |qx
t =Ux

i ,q
y
t =Uy

p)∗P(qy
t+1 =Uy

r |qx
t =Ux

i ,q
y
t =Uy

p).

2

As described above, transition probabilities depend on all current states of all
chains. If independence between x and y is assumed, the components of the equation
above can be written as:

P(qx
t+1 =Ux

j |qx
t =Ux

i ,q
y
t =Uy

p) = P(qx
t+1 =Ux

j |qx
t =Ux

i)∗P(qx
t+1 =Ux

j |q
y
t =Uy

p)

P(qy
t+1 =Uy

r |qx
t =Ux

i ,q
y
t =Uy

p) = P(qy
t+1 =Uy

r |qx
t =Ux

i)∗P(qy
t+1 =Uy

r |q
y
t =Uy

p).

In practice, the assumption of independence may not hold. However, the above equa-
tions still provide an approximation if this is the case. Inserting these equations gives
for the Cartesian hidden state transition probabilities

acipc jr = axix j aypyr axiyr aypx j .

Similar reasoning can be applied to the Cartesian emission probabilities, giving

bcip(k) = bxi(k)byp(k).

The parameter estimation algorithms, such as BW, can then be used mostly un-
altered. The only issue arises when the parameters for the c-HMM need to be re-
estimated. Whilst it is straightforward to determine the joint HMM’s parameters
from the c-HMM’s parameters, the opposite is not true, introducing some amount of
error in the re-estimation. The algorithm used here is based on the method described
by Brand, Oliver, and Pentland [1997], by factoring after re-estimation of the joint
HMM. Theoretically, convergence to a local optimum is not guaranteed. However,

3.3 Activity recognition data collection 81

in practice this has not presented any problems. As has been noted by Brand, Oliver,
and Pentland [1997], convergence can be guaranteed by applying a gradient descent
algorithm after re-estimation.

3.2.5 Hidden Markov models in activity classification and segmentation
For activity classification, one option is the model each activity as a separate state
in the HMM. However, for more elaborate activities, a single state may not provide
sufficient complexity to model the activity in an appropriate fashion. As such, the
approach chosen for this chapter is to model the activities as a separate HMM each.
As there are six classes of activities to be recognized, six separate models need to
be constructed, each representing a single activity class. The inputs for these models
are sequences consisting of audio and video events, generated from either manually
annotated or automatically annotated data, as will be further detailed in Section 3.3
below. For a given sequence of observed events, the probability of a model producing
the given sequence is determined for all six models using the forward-backward pro-
cedure. The model which generates the highest probability assigns its activity class
to the event sequence.

When we apply this scheme to a continuous sequence of measurements, we will
note transitions from one activity to another whenever the probability of the previous
top model is surpassed by one of the other models. Essentially, such transitions mark
the boundaries of ADL segments within the measurement sequence, removing the
need for an explicit segmentation algorithm such as the k-segmentation algorithms
described in Chapter 2; the HMMs perform implicit segmentation instead. This does
not mean that in general the segmentation problem can simply be avoided by the
choice of algorithm however; obtaining an implicit segmentation in this fashion de-
pends to a large degree on the classification performance of the models in question.
If the algorithm used is ill-suited to the task, the segmentation provided is unlikely to
produce good results as well.

Before any of the models can be used for classification, parameter estimation
(or training) is required. Training is performed by using one of the parameter re-
estimation methods described above (i.e., BW or MA). The input for training takes
the form of a set of training sequences, and an initial set of model parameters (see
Section 3.3.5). All six models must be trained independently, using different sets of
training sequences (in the case of BW) or different sets of likelihood targets (in the
case of MA).

3.3 Activity recognition data collection
To both test and train an activity recognition system, a set of data labeled with ground
truth values must be created. To obtain this data, a study was performed in the kitchen
area of Philips’ ExperienceLab in Eindhoven, a facility specifically designed for per-

82 Activity recognition

forming experiments and creating recordings in a home environment. The kitchen
area consists of a fully functional and furbished kitchen and contains, among others,
a counter, sink, stove, oven, refrigerator, and a small table with chairs. The en-
vironment also contains multiple unobtrusively mounted cameras and microphones
intended for recording purposes. As mentioned, we only use a single camera and mi-
crophone - in this case, a camera mounted on the ceiling in one of the corners of the
room (resolution of 576× 352, 25 frames per second), and a microphone mounted
centrally on the ceiling.

For the study, eleven participants were recruited to perform six different activities
in the kitchen environment. These consisted of: storing a set of groceries from a bag
they were given at the start of the experiment, preparing a meal, eating the meal,
doing the dishes, vacuuming the kitchen floor and preparing a drink. The participants
of the study were researchers and students of a research campus, with ages in the
range of 20 to 65 (exact ages were not recorded as part of the study). Participants
were asked in advance which meal they would like to prepare and eat, so ingredients
could be provided. The participants were free in their choice of meal, but it was
suggested to select something they were comfortable with preparing, and was not
too time-consuming to prepare, such as a simple pasta dish or soup. In addition,
participants were free to either do the dishes by hand or use the dishwasher in the
kitchen for the ‘doing the dishes’ activity.

At the start of the protocol, after explaining the aim of the study, the participant
was given a tour of the kitchen to familiarize themselves with it. This consisted of in-
structions on how to operate the sink, dishwasher, and stove (none of the participants
made use of the oven). In addition, they were shown the locations of the refrigera-
tor, vacuum cleaner, dinner table, and cooking and kitchen utensils such as knifes,
plates, glasses, and condiments already present in the kitchen. After the tour, partic-
ipants were given the opportunity to ask any further questions regarding the kitchen
environment.

Afterwards, participants were asked to accompany the researcher to an adjacent
room, closing the door to the kitchen. Here, they were given a list of the activities
to perform for reference during the study which they were allowed to take with them
into the kitchen. At this point, they were instructed that they were allowed to perform
the activities in any order (i.e., not necessarily in the listed order), in whatever manner
they wished. The only exception was the request to eat at the specified table, so the
participants would remain within the camera’s view. In addition, they were instructed
to exit the kitchen upon completing all six activities (into the same room), and to
close the door after entering or leaving the kitchen. Next, they were handed a bag
of groceries containing the ingredients required for preparing their meal. When the
participant indicated that everything was clear and they had no further questions, the
recording was started, and participants were asked to enter the kitchen and begin the
protocol when they were ready.

3.3 Activity recognition data collection 83

Activities subactivities Audio events Video events

Storing groceries Waiting Movement Fridge
Preparing dinner Boiling water Groceries bag Dishwasher
Eating Rinsing dishes Kitchen door Sink
Doing dishes Washing dishes Groceries Cupboard
Vacuuming Cupboard interaction Fridge Stove
Preparing a drink Fridge interaction Fridge door Dining table
Other Dishwasher interaction Pans Transition

Pouring water Cutlery Other
Plating up food Tap
Disposing of garbage Stove on / off
Washing hands Stove
Vacuuming Plates
Stirring Chair
Other Voice

Glass
Hot water
Vacuum cleaner
Cleaning the counter
Dishwasher
Pouring a drink
Background

Table 3.1: The list of activities and events possible for each annotation track. The ‘ac-
tivities’ and ‘subactivities’ tracks list participant activities, ‘audio events’ are related
to observed sounds, and ‘video events’ are related to the position of the participant in
the kitchen.

During the recordings, the participants were alone in the kitchen. They were
however observed through the camera system by a researcher in an adjacent room.
During the activities, participants were allowed to leave the kitchen if needed (for
example for clarifications), although this did not occur during any of the recordings.
The recording session was stopped once all activities were completed and the partic-
ipant had left the kitchen.

Counted from the start of the first activity to the end of the last activity (in the
order they were performed), the participants completed the six activities within a time
span ranging from 16 to 42 minutes (average: 26.3±9.1 SD). A lot of the variation
in completion time can be related to the time required to prepare the selected meal.
Based on technical considerations and time constraints, a total of eight sessions were
selected for annotation, as described below. One session was intended as a pilot and
featured a different camera setup, and two sessions were not annotated due to time
constraints (these were the two last recorded sessions).

84 Activity recognition

3.3.1 Data annotation
To establish a ground truth for the activities and events, manual annotation of the
audio and video data was used. Here, the ground truth refers to information available
from direct observation, rather than some entire objective measure. As is well-known,
annotation, whether done by humans or machines, is generally imperfect, and as such
not a completely accurate representation of reality. Within the context of the study,
however, it is arguably the most accurate measure of the performed activities and
observed events available, and as such will be used as a comparison to the inferred
results from the machine learning algorithms.

The annotations themselves take the form of a number of triplets containing the
activity or event name, the starting time, and the end time. Here, the time is measured
relative to the start of the recording. The data was annotated using a proprietary video
annotation tool similar to, for example, Noldus observer XT, allowing for annotation
while simultaneously viewing the recorded material. The annotation tool allows for
the definition of time intervals in which a certain activity or event takes place. The
annotator is able to move through the video and audio data, and at any point in time
select a new activity or event. This time point would serve as the start time of the
new entry, and the end time of any entry previously selected.

Within the tool, data was annotated on four separate tracks: an activity track
containing the ground truth activity value, a subactivity track containing small tasks
performed towards completing the current activity, an audio track listing observed
audio events, and a video track listing observed video events. For each track, a set
of possible values was determined beforehand. A full list of these values is shown
in Table 3.1. In total, 7 activity values, 14 subactivity values, 21 audio values and 8
video values were defined. Note that while most tracks have an ‘other’ value, the
audio events track does not. For this track, the value ‘background’ also fulfills the
‘other’ role. An example of the four annotated tracks within the annotation tool is
shown in Figure 3.1.

It can be argued that the choices made at selection of the activities and events
will at least in part affect the outcomes and results. In an attempt to counteract some
of this bias, the selected activities were chosen as activities that would commonly
be performed in a kitchen environment as part of everyday life, without taking into
account any a priori concern with regard to the expected recognition accuracy. Simi-
larly, audio and video events were chosen as general as possible (although related to
kitchen activity), in collaboration with experts in the fields of audio scene analysis
and video scene analysis, respectively.

All eight selected sessions were annotated by hand. The activity and subactivity
track were annotated by the researcher conducting the experiment, while the audio
and video tracks were annotated by experts in audio and video scene analysis, respec-
tively. The resulting annotated recordings were used as training and test input for the

3.3 Activity recognition data collection 85

Figure 3.1: Example section of an annotated activity, cut over two lines.

activity recognition algorithms described in later sections. Here, the audio and video
event annotations are used as model emissions, and the activity annotations serve as
a ground truth. The annotated audio and video data can also be used as input for the
audio and video classification algorithms discussed below. Due to the considerable
amount of time required for manual annotation, each track was rated by only a single
annotator - as such, it is unfortunately not possible to establish inter-rater reliability
of the annotations.

3.3.2 Audio and video classification
An alternative to using manually annotated event data to train the activity recogni-
tion algorithms is to create audio and video classification algorithms, which classify
the raw audio and video input into classes similar to the annotated audio and video
classes. This has the advantage that once these algorithms are trained, the collection
of new data sets is far less time consuming, as only the ground truth (i.e., activity)
needs to be annotated by hand. The downside is that the annotations created by these
algorithms are likely to be less accurate than annotations created manually.

As the field of audio and video classification is a topic on its own and as these
algorithms are not the focus of this chapter, only a brief description will be pro-
vided here. The audio classification algorithm used is based on Gaussian mixture
models, and works by extracting a set of features from the raw audio signal. The
algorithm uses part of the manually annotated audio data both for training and test-
ing. The video classification algorithm is based on a background subtraction model,
using manually defined regions of interest in the kitchen. The algorithm uses part
of the manually annotated data for testing purposes. The outputs of both algorithms
correspond to categories defined in the audio and video tracks of the annotated data.

Cross validation results on the annotated data have shown that the performance of
the audio scene analysis algorithm is within the region of 60−70%, depending on the
evaluated recorded session. The performance of the video scene analysis algorithm is
approximately 71%. Both algorithms perform well above chance, although they are

86 Activity recognition

by no means completely accurate. For the activity recognition algorithms to perform
well with the automatically annotated data, it must therefore be tolerant of the errors
made in the automatic annotation. The results of the activity recognition algorithms
using both the automatically annotated and manually annotated data are discussed in
Sections 3.4 and 3.5.

While we will not delve into the details of the scene analysis algorithms, they
do suffer from a number of limitations. First, the context in which these algorithms
operate can affect their performance; for example, external noises can create false
alarms in the audio analysis algorithm, and the video scene analysis algorithm is
affected by changes in lighting conditions or by moving around objects such as chairs
in the camera’s view. Both algorithms have some ability to cope with such changes
however: the video scene analysis algorithm uses a background subtraction model
to adjust to changing conditions, while the audio scene analysis can be periodically
recalibrated.

A further limitation is that the algorithms currently used cannot easily be applied
to a different environment (such as a kitchen with a different layout). In many cases,
automatic recalibration may suffice for the audio scene analysis; in the worst case
however, retraining may be required, which is not a straightforward process. The
video scene analysis algorithm requires the user to indicate the location of several
places of interest. Fortunately, this can be done in a fairly straightforward fashion,
but does mean that some setup is required when moving to a new environment.

3.3.3 Sequence generation
As discussed earlier in this chapter, HMMs generally operate on series of discrete
valued emissions ordered in time9. The annotated data, however, consists of ordered
events with a certain start time and duration, at the end of which a new event starts
- similar to the sequences described in Chapter 2. As a result, the continuous data
sequences S must be converted into discrete sequences of emissions O.

Figure 3.1 shows an example of part of an annotated data sequence. As can be
seen in the figure, there are separate tracks for audio and video events. For c-HMMs,
which require both an audio and a video emission for each input, the existence of the
two separate tracks matches well with the input requirements of the model. For the
non-chained HMM variants however, the audio and video events must be joined into
a single sequence of emissions to provide a suitable input sequence. Below, we will
describe the methods used to construct a sequence of emissions O from an audio and
video track, for both the c-HMM and the regular HMM variants.

To obtain discrete sequences for c-HMM input, the following method was used.
Let Sa and Sv be the time-ordered audio and video sequences, respectively, and let O

9Although they can be extended to the case of continuously valued emissions by replacing the emis-
sion probability matrix with a set of emission probability density functions.

3.3 Activity recognition data collection 87

Figure 3.2: Example transformation from an annotation sequence to an HMM emis-
sion sequence. The colored ellipses indicate when a new event is added to the HMM
input sequence. Red ellipses indicate audio events, while purple ellipses indicate
video events. The resulting emission sequence is shown below the annotation se-
quence.

be the (initially empty) sequence of emissions. A sliding window moves simultane-
ously from the beginning of Sa and Sv to the end of the sequences. Whenever a new
event is encountered in either Sa or Sv, a new emission is added to O, consisting of
the newly encountered event, and event value of the other stream at that time. For ex-
ample, if a new audio event is encountered with a timestamp t , an emission is added
to O consisting of the new audio event value, and the value of Sv at time t .

Whenever an event remains unchanged for a certain predefined duration d in Sa

or Sv, it is added as a new emission to O again (with the event of the other stream) each
time after d expires, counted from the time it was last added. This latter rule ensures
that events continuing for a longer time are adequately represented in the emission
sequence. Equivalently, this can be seen as splitting each event with duration wi > d
in Sa and Sv into bwi

d c subevent of duration d, and a single subevent of duration
mod (wi,d) (if mod (wi,d)> 0), and adding an emission to O whenever a new event
is encountered in Sa or Sv. For all results discussed below, d was set to one second.

To create input sequences for the regular HMM variants, the method described
above was adjusted slightly. Once again, let Sa and Sv be the time-ordered audio
and video sequences, let O be the initially empty sequence of emissions, and let a
sliding window move simultaneously from the beginning of Sa and Sv to the end of the
sequences. Whenever a new event is encountered in either Sa or Sv, a new emission
is added to O of the same value - in this case, no events are included from the other
stream. In this case, emissions in O consist of a single event value, which might
represent either an audio or video event. This is in contrast to the c-HMM method,
where each emission in O consists of a pair containing a single audio event value,
and a single video event value. As before, whenever an event remains unchanged for
a duration d in Sa or Sv, it is added as a new emission to O again each time after d
expires, counted from the time it was last added, with d was set to one second.

88 Activity recognition

For the above method, it is impossible to make exact statements regarding the
amount of time represented by a given emission sequence. At segments in a se-
quence S where rapid chances in events are observed, for instance, a relatively large
amount of emissions would be generated for the given amount of time. In other
words, the number of emissions in the generated sequence represents the informa-
tion density of the input sequences rather than the linear passage of time. However,
the sequence creation method does allow for the definition of an upper bound on
the amount of time represented by a given sequence; given an emission sequence O
containing L observations, the original event sequences Sa and Sv can have at most
a total duration of d·L

2 . Here, it is assumed that Sa and Sv have the same total dura-
tion, as they have been recorded together. Additionally, we can also assume that the
combined number of items in Sa and Sv is at most L.

3.3.4 Imbalanced data
A data set is considered imbalanced when one or more classes are much more com-
mon or well represented compared to one or more other classes. Although the num-
ber of sequences obtained from the data used here is approximately equal for most
classes, the average sequence length per activity class can vary greatly depending on
the amount of time it requires to perform the activity in real life. In some cases, for
instance when dividing sequences into a number of subsequences of a certain length,
variations in sequence length between classes can cause the data set to become im-
balanced. The occurrence of this is related to the selection of classes for the models
(in this case, the selected activities). However, as mentioned, the initial selection of
classes was not based on considerations of maintaining a balanced data set.

Working with imbalanced data sets introduces a number of problems. The
first occurs when computing accuracy scores. Recognition accuracy on an over-
represented class will likely dominate the overall accuracy score. For example, highly
accurate recognition of a class that represents 75% of the data will likely result in an
overall accuracy of over 75%, even if recognition accuracy on the remaining classes
is poor. Similarly, high recognition accuracy on an under-represented class will have
relatively little effect on the overall accuracy. Rather than using accuracy as a mea-
sure, it can be preferable to report class accuracy instead; the average of the recogni-
tion accuracies over the individual classes [van Kasteren et al., 2008].

To illustrate, the accuracy of a classification problem, sometimes called timeslice
accuracy when applied to a set of windows of time-ordered data, is defined for a set
of n classified instances as

1
n

n

∑
i=1

(yi =Ci),

where yi represents the estimated or predicted class, and Ci represents the actual class
of instance i. Here, the value of (yi = Ci) is 1 when the estimated class yi is equal

3.3 Activity recognition data collection 89

to the actual class Ci, and 0 otherwise. Similarly, the class accuracy for l classes
Ci ∈ {c1, . . . ,cl} is defined as

1
l

l

∑
j=1

∑
n j
i=1(yi =Ci) j

n j
,

where n j represents the number of instances i where Ci = c j, and the value
of (yi =Ci) j is 1 when yi is equal to Ci, and 0 otherwise, for instances i where Ci = c j.

A second issue occurs when training the classification models. The presence of
an over-represented class can cause bias in the resulting models. As the BW algo-
rithm averages over all input sequences, this method remains largely unaffected. The
MA algorithm, by contrast, can be affected, as each sequence is assigned a target
score to be optimized. This can cause the models not representing the dominant class
to prioritize differentiating from the dominant class over accurately representing its
own class, resulting in poor distinction between non-dominant classes. A solution
is to forcibly rebalance the data set by undersampling; that is, randomly removing
instances of the dominant classes until all classes are balanced. Unfortunately, this
can in some cases cause valuable training data to be omitted, but generally this ap-
proach results in improved overall performance. Other approaches also exist, such as
oversampling, or Monte Carlo simulation.

3.3.5 Model initialization
Regardless of the model’s architecture or parameter optimization method used, an
appropriate initial model is required for good parameter optimization results. Both
the BW and the MA algorithms require a set of initial parameters to create a (locally)
optimized model. These initial parameters consist of the number of hidden states,
as well as the initial transition and emission probabilities. If the initial parameters
are chosen such that they resemble the underlying process that we attempt to model,
optimization techniques are more likely to produce a further optimized model that
matches the modeled set of emissions well.

One well-known approach is to collaborate with an available domain expert to
create the initial model. This approach can sometimes work well, but is rather time
consuming, and therefore more suitable when only a few models need to be con-
structed. The fact that this method is rather subjective can also be seen as a disadvan-
tage. Another method is to set transition probabilities uniformly, or use some random
distribution to determine their values. Unfortunately, this yielded poor results for this
application, and as such, other methods needed to be devised.

For this work, we developed an approach which uses part of the annotated data
to determine the initial parameters. When constructing an initial model for a certain
activity, the number of hidden states is determined by a function of the number of
annotated subactivities common to that activity. Hidden state transitions are then set
based on the sequential patterns between the subactivities. Finally, emission prob-

90 Activity recognition

abilities are determined by calculating the probabilities of the events occurring at a
given time during the activity and subactivity.

As an example, consider the activity of preparing a drink10. This activity com-
monly consists of two subactivities, namely retrieving an object from the fridge and
retrieving an object (glass) from the cupboard. This would translate into three hidden
states, one for each subactivity, and one final hidden state representing other subac-
tivities such as pouring the drink. When one prepares a drink, one might start with
retrieving something to drink from the fridge, and then retrieve a glass, or the other
way around. However, both subactivities must be completed before a drink can be
poured. This would translate into similar values for the transition probabilities for the
first two hidden states to all other hidden states, but low transition probabilities from
the final hidden state to one of the previous hidden states.

The emission probabilities are computed by recording the total amount of time
each event was observed during the activity of preparing a drink and the relevant
subactivity. Using this data, the probability of observing a particular event during
each set of activity and subactivity is computed. An example of such a distribution for
preparing a drink / retrieving an object from the cupboard is shown in Figure 3.3. As
each event is linked to an emission, the emission probabilities are set to the computed
probabilities.

The above method obtains appropriate initial models for the standard HMM al-
gorithms. However, these initial models did not translate well for use by c-HMM
methods. In addition, the above method still requires a certain amount of manual
input, such as interpreting the appropriate number of hidden states and adjusting the
hidden state transition probabilities. For these reasons, we developed a second ap-
proach based on evolutionary algorithms. Evolutionary algorithms are very similar
to the genetic algorithms described in Chapter 4 - as such, also see Section 4.3.1.

Initialization through evolutionary algorithms. In an evolutionary algorithm,
a collection (or ‘population’) of candidates is maintained throughout a series of
‘rounds’. In this case, the candidates are represented by potential initial models for
the HMM training algorithms, each consisting of a set of transition and emission
probabilities. Initially, these models are randomly generated matrices, adhering to
the requirements discussed in Section 3.2. The aim of the evolutionary algorithm is
to evaluate the candidate models, select (with some chance) the best ones, and modify
them in some way to obtain new candidates. These steps are called fitness, selection,
and reproduction, respectively, and together constitute one round. The process is then
repeated for a set number of rounds.

For the candidate initial models, determining the fitness is straightforward, since
this problem corresponds to question one in Section 3.2; given a sequence of emis-

10Or more specifically, preparing a cold drink. Preparing a hot beverage may involve other subactiv-
ities.

3.3 Activity recognition data collection 91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

5

10

15

20

25

30

35

40

45

Events

P
ro

ba
bi

lit
y

(%
)

Probability of events during ’Preparing drinks’ and ’Cupboard storage / retrieval’

Video eventsAudio events

Figure 3.3: Event distribution during the activity ‘preparing a drink’ and the subactiv-
ity ‘retrieving / storing an object from / in a cupboard’. Probable audio events include:
‘background’ (1), ‘kitchen door’ (3), ‘stove’ (11), ‘movement’ (14) and ‘glass’ (15).
Probable video events include: ‘sink’ (25), ‘Cupboard’ (26) and ‘transition’ (29).

sions, determine the probability that these emissions were produced by the model.
As a result, fitness can be determined using the forward-backward procedure. Here,
a higher likelihood corresponds to a higher fitness score. The fitness score is used as
input for the selection procedure.

The selection scheme used here is named tournament selection. In tournament
selection, two candidates are selected at random, of which the candidate with the
highest fitness is retained, and the other candidate is discarded. This process is re-
peated by randomly selecting two more of the candidates that have not been selected
previously. Once there are no candidates left for selection, the selection process starts
anew for those candidates that have been retained, until the desired number of dis-
carded candidates has been reached. Tournament selection is intended to strike a
balance between retaining candidates with high fitness, while also retaining some
with lower scores, to avoid becoming trapped in a locally optimal solution.

92 Activity recognition

Finally, as part of reproduction, two mechanisms are used to create new candi-
dates, named mutation and cross-over. First, one of the surviving candidates is se-
lected at random as a basis for a new candidate. As part of the mutation mechanism,
each transition and emission probability is replaced by a new random probability,
with a certain percentage chance. As a result, some of the transition and emission
probabilities will be entirely new, while others will be unaltered. For cross-over, a
second random surviving candidate is selected. Here, the transition or emission ma-
trices from both candidates are converted to vectors (in a by-column fashion), and a
random entry is selected. Then, either all entries after or before are replaced by the
same entries from the second candidate. Cross-over for the transition and emission
probabilities are random, and so may occur for either, both, or none. After reproduc-
tion, the probability matrices rescaled and rebalanced as needed.

Experimental results (see Section 3.5.1) show that this method generates initial
models comparable to the previous method described for non-coupled HMMs. In
addition, this method also generates appropriate models for use by c-HMM methods.
The downside of the evolutionary method is the increased computation time required
compared to the statistical method, especially since the method needs to be performed
a number of times for different numbers of hidden states to determine the optimal
number of hidden states to use. An alternative would be to use the first method to
determine the number of hidden states, and the second method to determine the initial
parameter values. In Sections 3.4 and 3.5, the evolutionary method for initialization
is used unless stated otherwise.

3.4 Sequence-based activity classification
In this section, the classification power of the activity recognition models described
in Section 3.2 is examined using sets of emission sequences extracted from the man-
ually annotated and automatically annotated data, respectively. Each emission se-
quence belongs to a single activity class, and consists of a time-ordered sequence of
emissions obtained from a recording for the full duration of the activity performed.
In this case, we examine the performance of the activity recognition models under
the assumption that we know the actual segmentation of the individual activities. The
performance of the models under the condition that the segmentation is unknown a
priori (that is, our sequence represents a continuous stream of recorded activities) is
discussed in Section 3.5.

As discussed in Section 3.2, an HMM is computed for each of the modeled activ-
ities. The observation sequence to be classified is evaluated for each of the models,
resulting in a likelihood score for each model. The model with the highest likelihood
score matches the observation sequence best, and the emission sequence is classified
as belonging to the modeled activity. Comparing this classification against the anno-
tated ground truth for the emission sequence then yields an accurate classification if
the classification and ground truth match and an error otherwise.

3.4 Sequence-based activity classification 93

The accuracy of a method is then defined as the number of accurate classifications
divided by the total number of classifications made (both accurate classifications and
errors). As some activities occur more frequently than others, there exists the po-
tential of an imbalanced data set, as described in Section 3.3.4. To counteract this,
class accuracies are also computed; these are defined as the mean of the classification
accuracies of the individual activities. The results listed in this section have been
obtained using cross validation to ensure a separate test and training set of data.

In this section (as well as in Section 3.5), we consider both the accuracy on the
manually annotated data set and the automatically annotated data set. As discussed
in Section 3.3.1, the manually annotated data set consists of annotations for the ac-
tivities, subactivities, audio events, and video events assigned by experts using the
annotation tool. In contrast, the automatically annotated data set uses scene analysis
techniques to automatically derive audio and video events. The ground truth activity
labels serving as ground truth are in both data sets manually annotated, and identical.
In addition to the accuracies for manual and automatic annotation, we also exam-
ine the use of a single modality (i.e., audio only or video only) compared to both
modalities, and the resulting effects on the recognition accuracy.

Sequence length. An important consideration for the activity classification meth-
ods used is the length of the emission sequences which are to be classified. The-
oretically, using the entire sequence for classification will yield the best results, as
all of the available information upon which classification can be based is taken into
account. However, as a result, classification cannot be performed until after the ac-
tivity has finished. For many real life applications, activities need to be identified
while the activity is taking place. Classifying on shorter sequences means less de-
lay between an activity commencing and the detection of that activity, however, it
also requires classification with less than complete information, possibly resulting in
increased classification error. Therefore, a compromise between classification accu-
racy and delay between the start of an activity and its recognition must be found. The
effects of sequence lengths are discussed in more detail in Section 3.5.

3.4.1 Classification on a set of extracted activities
To examine the results of sequence-based activity classification in the most opti-
mal situation, classification has been applied using the full-length of each of the se-
quences. The resulting accuracy scores for the manually annotated data are shown
in Table 3.2a. When considering the class accuracy scores, which are robust against
class imbalance, it can be seen that all methods perform well on classification of full-
length sequences. This is especially true for the non-coupled classification methods,
and for the MA method in particular, with a classification class accuracy of over 96%.
It can also be seen that there is little deviation between overall accuracy and class ac-
curacy, suggesting that the trained classification models are not heavily affected by
any class imbalance.

94 Activity recognition

BW MA cBW cMA

Storing groceries 1 1 1 0.625
Preparing dinner 0.9375 0.9375 0.9375 0.875
Eating 0.8889 1 0.8889 1
Doing dishes 1 1 0.9091 0.9091
Vacuuming 1 1 1 1
Preparing a drink 0.7857 0.8571 0.7143 0.7857

Class accuracy 0.9354 0.9658 0.9083 0.8658
Overall accuracy 0.9242 0.9545 0.8939 0.8636

(a) Manually annotated data

BW MA cBW cMA

Storing groceries 1 1 0.875 1
Preparing dinner 1 1 1 0.9375
Eating 0.6667 0.8889 0.8889 0.8889
Doing dishes 1 1 1 1
Vacuuming 1 1 1 1
Preparing a drink 0.4286 0.2143 0.2143 0.7857

Class accuracy 0.8492 0.8505 0.8297 0.9354
Overall accuracy 0.8333 0.8182 0.803 0.9242

(b) Automatically annotated data

Table 3.2: Sequence-based activity classification accuracy rates on manually anno-
tated data and automatically annotated data using full-length sequences. The tables
list the accuracies using the BW algorithm, the MA algorithm, the coupled BW algo-
rithm (cBW) and the coupled MA algorithm (cMA).

A somewhat different picture can be seen when considering the results of full-
length sequence-based activity classification on the automatically annotated data,
shown in Table 3.2b. For most classification methods, class accuracy scores are lower
compared to the annotated data. This is not surprising, as we expect the automatic
classification of observations to be less accurate compared to the manual annotation;
the use of scene analysis techniques introduces an additional classification step with
an expected error of around 30%, as discussed in Section 3.3.2, likely resulting in a
more noisy classification set compared to the manual annotation.

Remarkably, the coupled MA method breaks the trend of poor performance com-
pared to the manually annotated data, and is considerably more accurate on the auto-

3.4 Sequence-based activity classification 95

matically annotated data than on the manually annotated data. This is an unexpected
result, but may be partially explained by both the fact that the coupled MA model
considerably outperforms the other models on the automatically annotated data (par-
ticularly for the ’preparing a drink’ activity), and that the coupled MA model seems
to perform relatively poorly on the ‘groceries’ activity in the manually annotated data.

Also of note is the relatively poor performance of most models on the ‘preparing
a drink’ activity. It is not entirely clear why this is, but as we will see, poor perfor-
mance on the ‘preparing a drink’ activity for the automatically annotated data set is
somewhat of a theme. A possible explanation for this is that the scene analysis tech-
niques used struggled with accurately capturing the events needed to distinguish this
activity from other activities.

In real life applications, classification on full-length sequences is not always an
option, as this means classification does not take place until after the activity has fin-
ished - and that is assuming we would even have a means to determine that an activity
has finished. To simulate a more realistic situation, the full-length sequences are split
into subsequences of length 50 each (with no overlap between subsequences). These
subsequences represent short, momentary observations of an activity in progress,
with no explicit information of how far the activity has progressed in time.

As some activities intrinsically have longer durations than others (e.g., preparing
dinner generally takes longer than preparing a drink), splitting sequences into sub-
sequences as described above creates an imbalance in the data set, as discussed in
Section 3.3.4. As mentioned there, the MA algorithms are especially susceptible to
class imbalances. Empirical evidence suggests that the coupled MA algorithm suffers
most from this, while the ‘standard’ MA algorithm is less affected. As also described
in Section 3.3.4, rebalancing the data set can alleviate this problem for the coupled
MA algorithm. The results for the coupled MA algorithm both with and without
using a rebalanced data set are shown in the following results.

The sequence classification results on subsequences of 50 emissions obtained
from the manually annotated data are shown in Table 3.3a. Compared to the full-
length sequences, the results on the subsequences show a lower class accuracy over-
all. This result is expected, as the shorter subsequences contain less information
than the full-length sequences. The coupled MA algorithm performs especially
poorly, mostly due to class imbalance, caused mainly by the over-representation of
the ‘preparing dinner’ class. When using a rebalanced data set, the results for the cou-
pled MA algorithm improve. These are still relatively low, however, possibly due to a
lack of training data caused by rebalancing the data set. The classification results for
subsequences obtained from the automatically annotated data, shown in Table 3.3b,
show an identical trend.

96 Activity recognition

BW MA cBW cMA cMA - balanced

Storing groceries 1 1 1 0.9167 0.6364
Preparing dinner 0.7565 0.9336 0.7823 0.7417 0.1667
Eating 0.9259 0.9012 0.9506 0.037 1
Doing dishes 0.9231 0.8462 0.7538 0.1692 0.7273
Vacuuming 1 1 1 0.5313 0.9167
Preparing a drink 0.6667 0.6667 0.6667 0.3333 0.8333

Class accuracy 0.8787 0.8913 0.8589 0.4549 0.7134
Overall accuracy 0.8257 0.9108 0.8216 0.5187 0.7143

(a) Manually annotated data

BW MA cBW cMA cMA - balanced

Storing groceries 0.7857 0.8571 0.7143 1 1
Preparing dinner 0.8179 0.9072 0.9003 0.7388 0.0714
Eating 0.7778 0.8642 0.9506 0 1
Doing dishes 0.8108 0.6892 0.7568 0.1622 0.3077
Vacuuming 0.9512 0.878 0.8049 0.122 0.7857
Preparing a drink 0.5714 0.1786 0.25 0.3571 0.6

Class accuracy 0.7858 0.7291 0.7295 0.3967 0.6275
Overall accuracy 0.8072 0.828 0.8412 0.4839 0.6265

(b) Automatically annotated data

Table 3.3: Sequence-based activity classification accuracy rates on manually anno-
tated data and automatically annotated data using subsequences of 50 emissions each.
The tables list the accuracies using the BW algorithm, the MA algorithm, the cou-
pled BW algorithm (cBW), the coupled MA algorithm (cMA), and the coupled MA
algorithm using the rebalanced data set (cMA - balanced).

3.4.2 Audio-based classification
We can also explore to what degree classification is possible if only a single modality
is taken into consideration. In this section, we look at classification through audio
events only. Table 3.4a shows the results for full-length sequence-based classifica-
tion on the manually annotated data set, using only observations obtained from audio
sources. Note that the coupled classification methods (coupled BW and coupled MA)
are not included in the results. As there is only a single modality present, the coupled
methods would be reduced to consisting of only a single chain, and as such would
be equivalent to their non-coupled alternatives. Comparing these results to those

3.4 Sequence-based activity classification 97

BW MA

Storing groceries 1 1
Preparing dinner 0.9375 0.9375
Eating 0.6667 1
Doing dishes 0.9091 0.9091
Vacuuming 1 1
Preparing a drink 0.7143 0.8571

Class accuracy 0.8713 0.9506
Overall accuracy 0.8636 0.9394

(a) Manually annotated data

BW MA

Storing groceries 0.75 1
Preparing dinner 0.875 1
Eating 0.4444 0
Doing dishes 0.9091 0.6364
Vacuuming 1 1
Preparing a drink 0.5 0

Class accuracy 0.7464 0.6061
Overall accuracy 0.7424 0.5909

(b) Automatically annotated data

Table 3.4: Audio only sequence-based activity classification accuracy rates on man-
ually annotated data and automatically annotated data using full-length sequences.
The tables list the accuracies using the BW algorithm and the MA algorithm.

obtained using both modalities shows little difference between accuracy scores, es-
pecially for the MA method. This seems to indicate that for the manually annotated
data and full sequence lengths, audio information alone is sufficient for purposes of
classification.

The results for full-length sequence-based classification on the automatically an-
notated data, shown in Table 3.4b, show a more substantial difference to those ob-
tained for the automatically annotated data using both modalities. For both methods,
classification accuracy is well below that of their equivalent methods, and even fur-
ther below the optimal classification accuracy obtained on the automatically anno-
tated data using the coupled MA method. The class accuracy scores are also con-
siderably below the class accuracy scores obtained on the manually annotated data

98 Activity recognition

for audio only, especially for the MA algorithm. A possible explanation is that by
themselves, the audio observations lack sufficient information for classification in the
noisier automatically annotated data set. The poor performance of the MA algorithm
specifically might be attributed to the poor performance on ‘eating’ and ‘preparing a
drink’; these classes were seemingly never assigned by the algorithm.

When splitting the full-length sequences into subsequences of 50 emissions each,
the general trend remains similar. The results for classification on subsequences are
shown in Table 3.5a for the manually annotated data, and Table 3.5b for the automat-
ically annotated data. Again, the results on the manually annotated data show class
accuracies close to those obtained for classification using both audio and video. Also,
the results obtained for the automatically annotated data show class accuracies lower
than those obtained for audio and video classification, and again, the MA algorithm
performs poorly on the ‘eating’ and ‘preparing a drink’ activities. As was the case
for the video and audio classification, the classification results on subsequences are
overall lower than the classification results on full-length sequences.

3.4.3 Video-based classification
In this section, classification based on video observations only is examined. The re-
sults for full-length sequence-based classification on the manually annotated data are
shown in Table 3.6a. As for audio-only classification, the coupled BW and coupled
MA algorithms are omitted, for reasons discussed in the previous section. The results
show the class accuracy scores for both algorithms are considerably lower compared
to those obtained using audio and video classification and audio-only classification.
This may indicate that video observations alone provide insufficient information to
accurately distinguish between the selected activities, even on the relatively low-noise
manually annotated data.

The above trend persists in the classification results on full-length sequences ob-
tained from the automatically annotated data, shown in Table 3.6b. The class accu-
racy scores for both algorithms are considerably lower compared to those obtained
using audio and video classification, and they are lower overall compared to the re-
sults obtained using audio-only classification. The exception is that the MA algo-
rithm yields a higher class accuracy compared to the audio-only classification due to
the ‘eating’ activity being better recognized.

The above patterns extend to the classification results using subsequences of 50
emissions. The subsequence classification results on the manually annotated data are
shown in Table 3.7a, while the classification results on the automatically annotated
data are shown in Table 3.7b. Again, the class accuracy scores are consistently lower
than those obtained using audio and video classification. The same holds true when
compared to the audio-only classification, excepting the MA algorithm on the auto-
matically annotated data. Overall, it can be concluded the video-only classification
performs poorest of the three methods discussed.

3.4 Sequence-based activity classification 99

BW MA

Storing groceries 1 1
Preparing dinner 0.7778 0.9778
Eating 0.925 0.75
Doing dishes 0.7931 0.6552
Vacuuming 1 1
Preparing a drink 0.75 0.625

Class accuracy 0.8743 0.8347
Overall accuracy 0.8217 0.887

(a) Manually annotated data

BW MA

Storing groceries 0.8571 0.7143
Preparing dinner 0.4533 0.9267
Eating 0.8049 0.0732
Doing dishes 0.6757 0.6216
Vacuuming 1 0.8889
Preparing a drink 0.5455 0.0909

Class accuracy 0.7228 0.5526
Overall accuracy 0.5909 0.7083

(b) Automatically annotated data

Table 3.5: Audio only sequence-based activity classification accuracy rates on manu-
ally annotated data and automatically annotated data using subsequences of 50 emis-
sions each. The tables list the accuracies using the BW algorithm and the MA algo-
rithm.

3.4.4 Discussion
The results outlined in the previous sections show that the combined modalities of
audio and video yield higher classification accuracies than methods using just audio
or video for classification. Video-only classification results indicate relatively poor
classification ability compared to the other methods. The classification accuracies ob-
tained for audio-only classification on the other hand score similarly to those obtained
for audio and video classification on the manually annotated data. For the automat-
ically annotated data, however, the audio-only classification performs considerably
worse compared to the audio and video classification.

100 Activity recognition

BW MA

Storing groceries 0.875 0.5
Preparing dinner 0.9375 0.875
Eating 0.3333 0.8889
Doing dishes 1 1
Vacuuming 0.875 0.125
Preparing a drink 0.7143 0.2143

Class accuracy 0.7892 0.6005
Overall accuracy 0.803 0.6212

(a) Manually annotated data

BW MA

Storing groceries 0.75 0.875
Preparing dinner 1 1
Eating 0.1111 0.6667
Doing dishes 0.8182 0.8182
Vacuuming 1 0.75
Preparing a drink 0.2143 0

Class accuracy 0.6489 0.6850
Overall accuracy 0.6515 0.6667

(b) Automatically annotated data

Table 3.6: Video only sequence-based activity classification accuracy rates on man-
ually annotated data and automatically annotated data using full-length sequences.
The tables list the accuracies using the BW algorithm and the MA algorithm.

Intuitively, it might be surprising that the video-only classification performs
worse compared to the audio-only classification, as video images are often con-
sidered to contain a higher amount of information compared to audio. However,
it should be noted that only the location of the participant was extracted from the
video information; as a result, the actual information content of the video events may
be considerably more restricted compared to the information that would be derived
by for example a human observer. It is feasible that if more advanced video scene
analysis techniques were used, the performance of video-only classification could be
improved.

When comparing the BW and MA methods (and their coupled equivalents), it
is difficult to say from these results that one method clearly outperforms the other.

3.4 Sequence-based activity classification 101

BW MA

Storing groceries 0.6667 0
Preparing dinner 0.7969 0.8516
Eating 0.9167 0.9444
Doing dishes 0.8276 0.7931
Vacuuming 0.5 0.3571
Preparing a drink 0.6667 0.1667

Class accuracy 0.7291 0.5188
Overall accuracy 0.7963 0.7963

(a) Manually annotated data

BW MA

Storing groceries 0.8333 0.3333
Preparing dinner 0.9398 0.9549
Eating 0.1111 0.8333
Doing dishes 0.8286 0.8286
Vacuuming 0.8947 0.7895
Preparing a drink 0 0

Class accuracy 0.6013 0.6233
Overall accuracy 0.7595 0.8565

(b) Automatically annotated data

Table 3.7: Video only sequence-based activity classification accuracy rates on manu-
ally annotated data and automatically annotated data using subsequences of 50 emis-
sions each. The tables list the accuracies using the BW algorithm and the MA algo-
rithm.

Overall, the MA method seems to do better when there is a high amount of infor-
mation available in the data; that is, when operating on full-length sequences and
manually annotated events. On shorted sequences, the performance of the MA algo-
rithms seems to drop compared to the BW algorithms, although this can partially be
explained due to the unbalance introduced in the data set. The performance of the
MA algorithms is also lowered compared to the BW algorithms on automatically an-
notated data, although on full length sequences, the MA algorithms still give the best
performance. Interestingly, the trend of lower performance of the MA algorithm on
automatically annotated data is reversed for the video-only classification, although
performance on this data set is very low in general.

102 Activity recognition

For sequence-based classification, the cHMM algorithms do not seem to offer
better performance compared to their non-coupled equivalents - the exception being
the coupled MA algorithm on automatically annotated, full-length sequences, which
is the only algorithm performing well on the ‘preparing a drink’ activity. As a result,
the theory that exploiting the causal link between audio and video events can yield
improved performance has not proven to be the case for this data set. Overall, a
recommendation could be that for data sets with a balanced set of observations or
little noise, the regular MA algorithm might be the best choice, and to choose the
regular BW algorithm otherwise. However, the differences in accuracy between these
methods is often small; as both offer high accuracy in many cases, either could work
well in a sequence-based activity recognition application.

3.5 Session-based online activity classification
In contrast to the sets of well-defined observation sequences discussed in the previous
section, this section focuses on recognizing activities from a continuous stream of
audio and video data. As a result, there is no indication when one activity ends and
another begins. In addition, the data stream may contain periods of inactivity (e.g.,
no one is present) or of activities other than those the system is trained to recognize.

To simulate the situation described above, the entire data streams of single record-
ing sessions (see Section 3.3 on gathering data) are used. When activity recognition is
being performed on one of the eight recorded sessions, the remaining seven sessions
are used to train the activity recognition models (i.e., estimate model parameters),
resulting in an analysis method similar to cross validation. The activity recognition
algorithm uses a sliding window of a fixed length to store incoming data read from
the data stream(s). Whenever the contents of the window are updated, activity recog-
nition is performed on the current contents of the sliding window. In other words,
activity recognition is performed over a history of the most recent observations.

In the experiments described in this section, a window size of 50 observations
was used, resulting in observation sequences of identical length. As described in
Section 3.3.3, a sequence length of 50 observations corresponds to at most 25 sec-
onds of observations. Activity recognition was performed whenever the contents of
the sliding windows were shifted by two new observations. Ideally, these two new
observations represent both a single new audio event and a single new video event,
although in practice this is not necessarily the case (for example, potentially when
two new sounds follow each other within the space of a second).

Whenever activity recognition is performed, the result is compared with the
ground truth which has been annotated. Accuracy is defined as the fraction of
matches between the recognized activity and the ground truth over all windows in
the session. Windows for which the ground truth activity is ‘other’ are discarded for
this purpose, as the recognition algorithm cannot recognize this class of activity. The

3.5 Session-based online activity classification 103

average accuracy over all sessions is computed to determine the overall accuracy of
the activity recognition algorithm.

As the average duration of the activity classes attempted to recognize varies, some
activities become over-represented when considering the recognition results of each
sliding window individually. As a result, the overall accuracy may not be indicative
of the recognition accuracy of individual activities. As such, two accuracy measures
will be used: ‘standard’ accuracy as described above (also referred to as time-slice
accuracy in this context) and class accuracy, obtained by computing the accuracies
for each activity class individually and computing the mean over these accuracies.
The time-slice accuracy and class accuracy measures were previously mentioned in
Section 3.3.4, which also includes the definitions of the two accuracies.

As an example, the activity recognition results for one of the sessions have been
visualized in Figure 3.4. The horizontal axis represents the sliding window contents
on which activity recognition was performed in chronological order. The vertical axis
lists the various activity classes. The dashed, red line represents the annotated ground
truth, while the blue line represents the recognized activity. When considering the
relation between the recognized activity and the ground truth, it can be seen there is
a ‘delay’ between the ground truth and the recognized activity; where a change in the
ground truth only results in a change in the recognized activity several windows later.
This is a result of using a history of observations: when the ground truth changes,
there are at most two observations in the current window which represent the new
activity. As such, 48 observations related to the previous activity still remain, causing
events produced by the previous activity to dominate events produced by the current
activity11. As the sliding window is updated, more observations of the current activity
enter the window, while the older observations are pushed out, until eventually the
current activity becomes dominant.

Theoretically, the point at which both the current and previous activity are equally
represented occurs when there is an equal number of observations of both activities
in the window. This situation, one might expect, is where the recognition algorithm
switches from one activity to another. In practice, the distinguishing value of indi-
vidual observations also plays a role. Observations which are highly common in one
activity while uncommon in another will have a greater influence on the recognition
result than observations which are equally common in both activities.

11By themselves, hidden Markov models already impose a kind of exponential weighting that can
help with this on older observations when determining the probability of being in a certain current state.
When comparing to overall probabilities of two different models, however, there is no such weighting in
effect. One option would be to build a model architecture where certain states represent activities, and
essentially have all activity models interconnected - this is called a hierarchical hidden Markov model.
The downside of such a single model for all activities is that the number of parameters to be estimated
is much larger.

104 Activity recognition

0 500 1000 1500 2000
Other

Groceries

Dinner

Eating

Dishes

Vacuuming

Drinks

Windows (time ordered)

A
ct

iv
ity

Classification results on session 1 annotated data (Baum−Welch algorithm with statistical initialization)

Figure 3.4: Example of activity recognition results on a recorded session over time.
The dashed red line in the graph indicates the ground truth activity at each time step
during the recording, while the blue line indicates the recognized activity at each of
those time steps. An overlap between the two lines indicates an accurate recognition;
a difference indicates a recognition error.

For example, ‘walking around the kitchen’ (the ‘transition’ video observation) is
common both to ‘preparing a drink’ and ‘vacuuming’, however the sound of a vac-
uum cleaner is strongly associated with the latter. Therefore, even a few observations
of the sound of the vacuum cleaner are likely to impact the recognition result consid-
erably. Therefore, the presence of distinguishing observations can cause the switch
in the recognized activity to occur earlier or later. As nearly all observations are
distinguishing to some extent, this switch seldom occurs exactly at the halfway mark.

As the timing of a switch in the recognized activity is influenced by the number
of observations considered, it can be reasoned that the delay between ground truth
activity and recognized activity increases as the size of the sliding window increases.
Figure 3.5 shows an example of the activity recognition results using the same pa-
rameters as in Figure 3.4, except for using a sliding window half the original size.
Indeed, it can be seen that the delay between changes in the ground truth activities
and corresponding changes in the recognized activity is reduced for a smaller win-

3.5 Session-based online activity classification 105

0 500 1000 1500 2000
Other

Groceries

Dinner

Eating

Dishes

Vacuuming

Drinks

Windows (time ordered)

A
ct

iv
ity

Classification results on session 1 annotated data, half standard window size (Baum−Welch algorithm with statistical initialization)

Figure 3.5: Example of activity recognition results on a recorded session over time,
using half the normal sliding window size. The dashed red line in the graph indicates
the ground truth activity at each time step during the recording, while the blue line
indicates the recognized activity at each of those time steps. An overlap between the
two lines indicates an accurate recognition; a difference indicates a recognition error.

dow size. However, it can also be seen that errors not related to this delay appear to
be more numerous.

To summarize, a larger sliding window size results in more errors due to the
aforementioned delay, but fewer errors when the ground truth activity is stable, as
there is more information in the sliding window for the activity recognition algorithm
to draw on. Therefore, trade-off must be made: if the window size is too small, it
contains too little information to base recognition on. If too large, changes in the
ground truth will be detected too late or not at all. In either case, the overall error will
likely become larger.

A reason to favor larger window sizes slightly over smaller window sizes is the
issue of stability12. Smaller window sizes result in larger frequencies of changes of

12In machine learning, stability (or algorithmic stability) refers to the extend by which the output of
an algorithm is affected by small changes in input. If an algorithm is stable, its output will only show
small changes in response to a small change in input.

106 Activity recognition

the recognized activity, which in practical applications is often undesirable. Using
a larger window size results in a more stable activity recognition result over time,
as there are fewer short-lived changes between activities, as can also be seen in Fig-
ures 3.4 and 3.5. Even though stability has no direct impact on accuracy scores, it
can in practice be beneficial to select a larger than optimal window size13.

3.5.1 Audio-based and video-based classification
Making use of the methods described above, the result of the accuracies over each
session and averages over all eight sessions using the manually annotated data is
shown in Tables 3.8a and 3.8b. On the manually annotated data set, the timeslice
accuracies, shown in Table 3.8a, of the various methods are very similar, with dif-
ferences of less than 1%. Indeed, when applying a repeated measures ANOVA test,
we can see that there are no significant differences between the four methods overall
(F(3,21) = 0.07, p = 0.97). Similarly, pairwise t-tests do not show any significant
differences between individual methods.

When one considers the class accuracies for the four methods, shown in Ta-
ble 3.8b, the differences between the methods are somewhat more pronounced com-
pared to the timeslice accuracy. For the Baum-Welch method, the class accuracy is
similar to the timeslice accuracy, indicating there is little bias towards any imbalanced
classes. This is not the case for the MA and coupled Baum-Welch methods, where
there is a more substantial difference between timeslice and class accuracy. This bias
seems to be exacerbated for the coupled MA method, having the lowest class accu-
racy of the four methods. Even so, the class accuracy remains at an acceptable level,
approximately 6% lower compared to the timeslice accuracy. The repeated measures
ANOVA test does show that there is a significant difference in class accuracy between
the four methods (F(3,21) = 4.38, p = 0.015), likely related to the relatively poor
performance of the coupled MA algorithm. Pairwise t-tests also show no further
significant differences between the individual methods after Bonferroni correction,
however.

When considering the accuracy scores of the individual sessions, it can be seen
there are considerable differences between sessions, and also between methods for
the same session. However, some sessions appear to elicit higher accuracy scores
than others, regardless of methods used. A good example of this is Session 3. It
therefore appears that some sessions are inherently more difficult to classify than
others, likely due to individual differences between participants.

This is supported when we examine the intraclass correlation for the four
methods. For the timeslice accuracy, we find an intraclass correlation of 0.96
(F(7,21)= 94.1, p� 0.001) using a two-way model, which indicates close to perfect

13It is also possible to use some type of filtering to smoothen the changes in the recognized activities.
Depending on the filter used, this will delay the output of the activity recognition algorithm, however.

3.5 Session-based online activity classification 107

1 2 3 4 5 6 7 8 acc

BW 0.7406 0.8668 0.9532 0.7905 0.7847 0.8860 0.8082 0.4897 0.7900
MA 0.7142 0.8841 0.9439 0.7811 0.8666 0.8337 0.8577 0.4721 0.7942
cBW 0.8194 0.8775 0.9422 0.7937 0.8225 0.8249 0.7970 0.4663 0.7929
cMA 0.7261 0.8856 0.9312 0.8177 0.8519 0.8253 0.8457 0.4889 0.7966

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.6962 0.8283 0.8591 0.7457 0.8163 0.8663 0.7420 0.7422 0.7870
MA 0.6460 0.8095 0.8334 0.6960 0.8264 0.7649 0.7574 0.6409 0.7468
cBW 0.7678 0.7940 0.8199 0.7283 0.8061 0.7570 0.7306 0.7196 0.7654
cMA 0.6649 0.8066 0.7848 0.7160 0.7836 0.7022 0.7416 0.6457 0.7307

(b) Class accuracy

Table 3.8: Session-based activity classification accuracy rates on manually annotated
data using audio-based and video-based classification. The tables show the accura-
cies per session, numbered 1 through 8, and the average accuracies over all eight
sessions. The tables show accuracy results for the Baum-Welch algorithm (BW),
the MA algorithm, the coupled Baum-Welch algorithm (cBW) and the coupled MA
algorithm (cMA). For each session, the most accurate classification is highlighted.

consistency in accuracy scores between the models. This suggests that much of the
variance in the individual accuracies is related to differences between participants.
For the class accuracy scores, the intraclass correlation is 0.71 (F(7,21) = 10.9,
p� 0.001); while the intraclass correlation is not as substantial as for the timeslice
accuracy, this still indicates a strong consistency between the methods.

Using the same methods, the results for the automatically annotated data are
shown in Table 3.9a and 3.9b. Using the repeated measures ANOVA test, we can
see that there are significant differences between the four methods for the timeslice
accuracy (F(3,21) = 7.78, p = 0.0011). However, there are no significant differ-
ences between the class accuracies (F(3,21) = 1.2, p = 0.33). The significant dif-
ferences on the timeslice accuracy are likely due to the relatively poor performance
of the Baum-Welch algorithm in this aspect. This seems to be confirmed by pair-
wise t-tests between the methods. On the timeslice accuracy, pairwise tests show
significant differences after correction for the Baum-Welch method compared to the
MA method (p = 0.0075). There are no significant pairwise differences for the class
accuracy scores. Intraclass correlation remains high for the timeslice accuracy with
a correlation of 0.81 (F(7,21) = 17.7, p� 0.001). However, the same can not be
said of the intraclass correlation for the class accuracy, which is quite low at 0.21
(F(7,21) = 2.06, p = 0.094).

108 Activity recognition

1 2 3 4 5 6 7 8 acc

BW 0.6155 0.7221 0.9023 0.6621 0.7295 0.7471 0.7613 0.7142 0.7318
MA 0.7825 0.7664 0.9299 0.7106 0.7530 0.8006 0.8084 0.7800 0.7914
cBW 0.7454 0.8265 0.9112 0.6447 0.7524 0.8206 0.7776 0.7773 0.7820
cMA 0.7825 0.8437 0.9205 0.7467 0.7548 0.8101 0.7668 0.7826 0.8010

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.6517 0.5955 0.6416 0.6599 0.5491 0.6864 0.7651 0.6460 0.6494
MA 0.7243 0.6166 0.7458 0.6375 0.5201 0.7488 0.6635 0.6509 0.6634
cBW 0.7432 0.6476 0.6127 0.6376 0.5761 0.6479 0.6990 0.6071 0.6464
cMA 0.7427 0.7382 0.7191 0.7128 0.5305 0.7214 0.6648 0.6232 0.6816

(b) Class accuracy

Table 3.9: Session-based activity classification accuracy rates on automatically anno-
tated data using audio-based and video-based classification. The tables show the ac-
curacies per session, numbered 1 through 8, and the average accuracies over all eight
sessions. The tables show accuracy results for the Baum-Welch algorithm (BW),
the MA algorithm, the coupled Baum-Welch algorithm (cBW) and the coupled MA
algorithm (cMA). For each session, the most accurate classification is highlighted.

When considering the timeslice accuracy, it is clear the Baum-Welch method
performs poorly compared to the other methods (as also indicated by the pairwise
tests). In contrast, the accuracies of the other three methods are much more similar
to those obtained for the manually annotated data. However, none of the methods
show any significant differences in pairwise tests (once again using the Wilcoxon
signed rank test) between the timeslice accuracy scores on manually annotated data
compared to automatically annotated data. For all methods, class accuracy is consid-
erably lower compared to those obtained for the manually annotated data. However,
this difference is only significant after Bonferroni correction for the coupled Baum-
Welch method (p = 0.0078), and close to significant for the regular Baum-Welch
method (p = 0.0156). Closer inspection of individual class accuracy scores indicates
this is partly due to poor recognition on the ‘preparing a drink’ activity class. The
high variance in accuracy scores on this class might also offer an explanation for the
differences in intraclass correlation between the timeslice accuracy and class accu-
racy scores on the automatically annotated data, as the ‘preparing a drink’ class is not
a dominant class in the data set.

Remarkably, the coupled MA method shows the highest class accuracy on the
automatically annotated data, while showing the lowest on the manually annotated

3.5 Session-based online activity classification 109

1 2 3 4 5 6 7 8 acc

man 0.7515 0.8053 0.8933 0.7571 0.7700 0.7705 0.7498 0.4253 0.7404
aut 0.7804 0.5667 0.8826 0.5709 0.7000 0.7672 0.7514 0.7172 0.7171

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

man 0.7426 0.7744 0.7938 0.7012 0.8358 0.7849 0.7949 0.6802 0.7635
aut 0.8027 0.6056 0.8248 0.7086 0.6110 0.8157 0.7593 0.7082 0.7295

(b) Class accuracy

Table 3.10: Session-based activity classification accuracy rates for the coupled MA
algorithm using a rebalanced data set. The tables show the accuracies per session,
numbered 1 through 8, and the average accuracies over all eight sessions. In the
tables, ‘man’ represents the results on the manually annotated data, ‘aut’ represents
the results on the automatically annotated data.

data. This is similar to the results obtained in Section 3.4. A possible explanation is
a greater robustness against noise introduced by the audio and video classification on
certain activities. Also of interest when comparing the automatically annotated data
to the manually annotated data are the results on session 8, which shows unusually
low timeslice accuracy scores on the manually annotated data. However, this effect
is not replicated on the automatically annotated data, possibly indicating an error in
the manual annotation of this session, most likely on a dominant activity class such
as ‘preparing dinner’.

As became apparent from the first runs using the coupled MA algorithm, this
algorithm is highly susceptible to the effects of class imbalance. The results of the
coupled MA algorithm shown in Tables 3.10a and 3.10b have been obtained using a
rebalanced data set, as described in Section 3.3.4. Tests on rebalanced sets have also
been performed using the other algorithms described in this section, however these
yielded no increases in recognition accuracy, and therefore are not listed. Compared
to the respective results previously obtained for the coupled MA algorithm, rebal-
ancing the data set results in lower timeslice accuracies, but improved class accuracy
scores. Pairwise tests do not show that these improvements are significant, however.

For the Baum-Welch and MA methods, it is also possible to examine the ef-
fect of the different model initialization algorithms, evolutionary and statistical (see
Section 3.3.5). The results are shown in Table 3.11a. The differences in accuracy
resulting from these initialization methods are very small, less than 1%. The results
for class accuracies, shown in Table 3.11b, show a similar trend, with the largest
difference between both initialization methods less than 2%. It can be concluded

110 Activity recognition

Evolutionary method Statistical method

BW timeslice accuracy (manual) 0.7900 0.7997
MA timeslice accuracy (manual) 0.7942 0.7969
BW timeslice accuracy (automatic) 0.7318 0.7370
MA timeslice accuracy (automatic) 0.7914 0.7924

(a) Timeslice accuracy

Evolutionary method Statistical method

BW class accuracy (manual) 0.7870 0.7867
MA class accuracy (manual) 0.7468 0.7599
BW class accuracy (automatic) 0.6494 0.6616
MA class accuracy (automatic) 0.6634 0.6639

(b) Class accuracy

Table 3.11: Overview of the activity classification accuracy rates using the evolu-
tionary model initialization method and the statistical model initialization method,
both on the manually annotated (manual) and the automatically annotated (automatic)
data, and examined for the Baum-Welch and MA algorithms.

therefore, that both initialization methods result in comparable models for both the
Baum-Welch and the MA methods for audio and video recognition.

3.5.2 Audio-based classification
The previous section describes a method using both audio and video observations to
recognize activities. It is also possible to perform a similar experiment using only a
single modality, in this case audio. To achieve this, the method described has been
altered on some points. Most importantly, only observations originating from the
audio stream are considered, similarly as in Section 3.4.2. This reduces the total
number of observation classes to 21.

Discarding the video stream causes the minimum number of observations per
second to drop from two observations to a single observation (see Section 3.3.3).
Accordingly, the size of the sliding window is halved to 25 observations, so as to
represent the same time span as before. Empirical evidence seems to suggest this re-
duction improves performance, as recognition in the audio-only case using a window
size of 50 observations would suffer greatly from errors caused by delays between
ground truth changes and corresponding recognition result changes (see Section 3.5).
Using similar reasoning as above, the recognition result is updated whenever a sin-
gle new observation enters the sliding window, rather than only for every two new
observations.

3.5 Session-based online activity classification 111

1 2 3 4 5 6 7 8 acc

BW 0.8871 0.8011 0.7937 0.8021 0.7420 0.8103 0.7899 0.4182 0.7556
MA 0.8659 0.7907 0.8442 0.6917 0.8129 0.7936 0.7961 0.7812 0.7970

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.8416 0.8215 0.7944 0.7597 0.8083 0.7900 0.7506 0.6586 0.7781
MA 0.8201 0.7031 0.6957 0.6734 0.7696 0.6776 0.6814 0.7052 0.7158

(b) Class accuracy

Table 3.12: Session-based activity classification accuracy rates on manually anno-
tated data using audio-only classification. The tables show the accuracies per session,
numbered 1 through 8, and the average accuracies over all eight sessions. The tables
show accuracy results for the Baum-Welch algorithm (BW) and the MA algorithm.
For each session, the most accurate classification is highlighted.

The results for the audio-only timeslice accuracy and class accuracy on the man-
ually annotated data are shown in Tables 3.12a and 3.12b, respectively. As there
is little point in using coupled methods when considering a single modality (as this
would imply a single chain, the resulting models would be equivalent to those pro-
duced by the appropriate non-coupled methods), they are omitted here. As was the
case for audio-based and video-based classification, the MA method achieves high
accuracy, but relatively poor class accuracy. Overall, the accuracies achieved are
similar to those achieved for audio-based and video-based classification on manu-
ally annotated data. This is supported by t-tests comparing the accuracy scores for
audio-only to their counterparts using both modalities (using Bonferroni correction),
as there are no significant differences between the sets of modalities. For the class
accuracy scores however, the difference between the Baum-Welch and MA methods
is significant (p = 0.0158).

There appears to be more variation regarding the results for timeslice and class
accuracy on the automatically annotated data, shown in Tables 3.13a and 3.13b, re-
spectively. The results on both timeslice and class accuracy are considerably lower
than those obtained using audio-based and video-based classification. Using t-tests,
we can see that for all methods, there are significant differences (after Bonferroni
correction) between the accuracy scores using both modalities, and using audio only.
This holds for both the timeslice accuracy (p = 0.0012 for the Baum-Welch method,
p= 0.0060 for the MA method) and the class accuracy (p= 0.0072 for Baum-Welch,
p< 0.001 for MA). There were no significant differences between the methods them-
selves.

112 Activity recognition

1 2 3 4 5 6 7 8 acc

BW 0.4447 0.4474 0.4459 0.5781 0.6094 0.5981 0.4067 0.4214 0.4940
MA 0.5837 0.6664 0.7852 0.7273 0.3333 0.6877 0.5802 0.4467 0.6013

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.5524 0.5385 0.4809 0.5836 0.5557 0.6441 0.5370 0.5272 0.5524
MA 0.6031 0.4553 0.5763 0.5226 0.3266 0.5347 0.4142 0.4117 0.4806

(b) Class accuracy

Table 3.13: Session-based activity classification accuracy rates on automatically an-
notated data using audio-only classification. The tables show the accuracies per ses-
sion, numbered 1 through 8, and the average accuracies over all eight sessions. The
tables show accuracy results for the Baum-Welch algorithm (BW) and the MA algo-
rithm. For each session, the most accurate classification is highlighted.

Similar to the results on the manually annotated data, the results of audio-only-
classification on automatically annotated data show relatively high timeslice accu-
racy, but relatively low class accuracy for the MA method. Also, the results on the
manually annotated data yield considerably higher accuracy scores compared to the
results on the automatically annotated data. This may indicate that while accurate
classification with audio only is possible on a clean data set, the additional noise
present in the automatically annotated data set means audio-only classification is
severely impeded. This result is consistent with the results obtained in Section 3.4.

3.5.3 Video-based classification
Using methods similar to those discussed in the previous section on audio-only clas-
sification, it is also possible to perform activity recognition based purely on video-
based observations. The method used differs only in that only observations origi-
nating from the video stream are considered in this case. Using similar reasoning
as in the previous section, the sliding window size was reduced to 25 observations,
and activity recognition is performed whenever a single new observation enters the
sliding window. By taking only video observations into account, the total number of
observations classes is reduced to 8.

The results are shown in Tables 3.14a and 3.14b, listing the timeslice accuracy
and the class accuracy respectively for the manually annotated data. As for audio-
based classification, the coupled HMM methods have not been included. The results
show a considerable difference between timeslice accuracy and class accuracy, the
latter being relatively low compared to the class accuracies obtained on manually

3.5 Session-based online activity classification 113

1 2 3 4 5 6 7 8 acc

BW 0.5436 0.7427 0.8930 0.7534 0.6545 0.7737 0.8077 0.3957 0.6955
MA 0.5549 0.7978 0.8952 0.7172 0.7811 0.7737 0.6919 0.4111 0.7029

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.4864 0.5921 0.6550 0.5693 0.5504 0.5880 0.6244 0.4280 0.5617
MA 0.3751 0.6507 0.6147 0.4220 0.6226 0.5037 0.4289 0.4303 0.5060

(b) Class accuracy

Table 3.14: Session-based activity classification accuracy rates on manually anno-
tated data using video-only classification. The tables show the accuracies per session,
numbered 1 through 8, and the average accuracies over all eight sessions. The tables
show accuracy results for the Baum-Welch algorithm (BW) and the MA algorithm.
For each session, the most accurate classification is highlighted.

annotated data using audio and video classification or audio-only classification. The
differences between accuracy for video-only classification compared to using both
modalities are significant after correction using paired t-tests for timeslice accuracy
(p = 0.0033 for Baum-Welch, p < 0.001 for MA) and class accuracy (p < 0.001 for
both methods). Again, the MA method shows lower class accuracy compared to the
Baum-Welch method on manually annotated data, although there are no significant
differences between the methods for both timeslice and class accuracy.

A similar trend can be observed for recognition results on the automatically an-
notated data, show in Tables 3.15a (timeslice accuracy) and 3.15b (class accuracy).
Again, there is a considerable disparity between timeslice accuracy and class accu-
racy for both methods, as was also the case with the results obtained in Section 3.4.
A possible explanation is video-only classification is able to distinguish only a few
activities accurately, while being nearly unable to identify the remainder reliably.
Looking through individual session / activity accuracies seems to indicate this is the
case, with (in general) especially poor recognition rates for ‘storing groceries’ and
‘preparing a drink’. It is possible the 8 observation classes offer insufficient distin-
guishing information, causing the training methods to learn to start ‘guessing’ the
most commonly occurring activity in this case, which would explain the relatively
high timeslice accuracy. Alternatively, it is possible that only some of the activity
classes can be accurately recognized using purely video observations, and that these
turn out to be the most common ones in the data sets.

Overall, there are no significant differences between the accuracy scores of both
methods on the automatically annotated data as indicated by paired t-tests, for both

114 Activity recognition

1 2 3 4 5 6 7 8 acc

BW 0.7020 0.6932 0.8703 0.4707 0.7230 0.5979 0.7535 0.7621 0.6966
MA 0.5666 0.7125 0.9042 0.6049 0.7751 0.7531 0.7608 0.7593 0.7296

(a) Timeslice accuracy

1 2 3 4 5 6 7 8 acc

BW 0.5408 0.5635 0.5722 0.4240 0.4134 0.4874 0.5097 0.5023 0.5017
MA 0.3751 0.5331 0.6643 0.4589 0.5472 0.5787 0.5400 0.5245 0.5277

(b) Class accuracy

Table 3.15: Session-based activity classification accuracy rates on automatically an-
notated data using video-only classification. The tables show the accuracies per ses-
sion, numbered 1 through 8, and the average accuracies over all eight sessions. The
tables show accuracy results for the Baum-Welch algorithm (BW) and the MA algo-
rithm. For each session, the most accurate classification is highlighted.

the timeslice accuracy. As mentioned, the timeslice accuracy is relatively high, and
there are no significant differences when comparing the video-only timeslice accu-
racy compared to using both modalities. The reverse is the case for the class accuracy
scores however, as for both methods there exist significant differences after correc-
tion when comparing the video-only class accuracies with the audio and video class
accuracies (p = 0.0011 for Baum-Welch, p = 0.0091 for MA).

3.5.4 Discussion
From the results discussed in this section, it is clear that session-based activity classi-
fication using both audio and video is more accurate on automatically annotated data
compared to using only a single modality, based on the class accuracy scores. The
highest overall classification on the automatically annotated data was obtained by the
coupled MA algorithm using a rebalanced data set, resulting in a class classification
accuracy of approximately 73%. In comparison, the highest classification accuracy
for audio-only classification is 55%, and for video-only classification 53%. It can
therefore be concluded that the combination of both modalities yields a considerable
improvement in classification on data obtained from lower level classifiers.

On the manually annotated data, the highest overall classification accuracy using
both audio and video is approximately 79%, compared to 78% for audio-only classi-
fication, and 56% for video-only classification. For the relatively less noisy manually
annotated data (compared to the automatically annotated data), the classification ac-
curacies of the audio-video and audio-only classification are very similar. It therefore
seems that given the availability of highly accurate training data, audio information

3.5 Session-based online activity classification 115

is sufficient to accurately classify users’ activities. In practice, however, such data is
unlikely to become available unless additional steps in audio and video scene analysis
are made.

When comparing the four different activity classification methods, the accuracy
scores themselves do not vary considerably, and there are few cases in which sig-
nificant differences have been observed. However, it should be taken into account
that the number of participants (8) is fairly low for the purposes of statistical analysis
(we can note here that a statistical comparison between the four methods was not
the primary objective of the study). To determine differences between the methods
more accurately, a further study including a larger number of participants would be
beneficial. Overall though, it seems that the variance between participants is larger
compared to the variance between classification methods, and as such it seems rea-
sonable to conclude that the accuracy differences between the methods are minor
overall.

Due to the relatively small differences in classifier performance, it is once again
hard to recommend any one classification method over the others. For the manually
annotated data, the comparative performances are similar to those for the individ-
ual, 50 emission sequences in Table 3.3a in that the Baum-Welch methods match or
outperform the MA methods, particularly the coupled MA algorithm which appears
to struggle with class imbalance (having both the highest timeslice accuracy and the
lowest class accuracy). As in Section 3.4, it appears that in general, the coupled
variants add little additional value to the non-coupled variants for this application.

On the automatically annotated data, the MA algorithms perform slightly bet-
ter compared to the Baum-Welch algorithms, with the coupled MA algorithm even
showing the highest class accuracy in this case. However, compared to the 50 emis-
sion sequences in Table 3.3b, the overall accuracies are relatively low (in the order
of 65% as opposed to 80%), and the individual differences between the methods
are relatively small. In all, it was expected that the class accuracies would be less
compared to those for the individual sequences, as the latter do not include activity
transitions. Overall, the accuracies for the session-based classification are still sub-
stantially higher than what would be expected by chance, and all classifier methods
seem to be effective in recognizing the different activities across participants.

Finally, while we find few differences between the individual classification meth-
ods, there are considerable differences between the different modalities. Here, we
observe the same trend as in Section 3.4, with audio and video classification out-
performing audio-only classification, which in turn outperforms video-only classifi-
cation. The performance of the video-only classification is likely related to the fact
that only location is derived from the video images - with the use of more advanced
computer vision techniques, video as a single modality would likely yield better per-
formance. On automatically annotated data in particular, the use of both modalities

116 Activity recognition

confers significantly better accuracy, strongly suggesting that there is considerable
benefit in the fusion of the two modalities in terms of ADL recognition. In some
cases, it might be more convenient (or more accepted due to privacy concerns) to use
only a single modality - in this case, a trade-off must be made between performance
and the other perceived benefits.

A limitation of this study is that only activities performed by a single person
are considered, with no other persons present in the room. This is less of a con-
cern when monitoring people who live by themselves, although in this case one must
still account for visitors. When multiple people are together, a means to distinguish
between different people must be developed. Possible solutions can include face
recognition, or the use of tags attached to the body (e.g., in clothing). In addition, the
activity recognition algorithm will have to deal with additional noise generated by the
presence of multiple persons, for example the sound of conversation, or camera oc-
clusion. Effective ways of dealing with multi-user settings remains an open research
questions for many applications.

Another limitation is that with a single camera and microphone, only part of
most homes can be fully covered: in this case, we selected the kitchen as a room
where a large number of ADLs take place. Naturally, this leaves the system unable
to detect ADLs taking place outside of sensor range. This can also be seen as an
advantage however, as kitchen-related ADLs are arguably less privacy-sensitive than
for example, bedroom or bathroom-related activities. Kitchen-related ALDs have
been included in scales to assess functional decline [Graf, 2008] and dementia [Bucks
et al., 1996]; as such, it is likely that kitchen-related activities have some predictive
value for these applications. Another possibility is to follow the approach of Urwyler
et al. [2015], and use multiple sensor boxes placed around the home.

It should also be noted that while there is considerable interest in ADL detection
for elderly living independently, this study was performed with a younger population.
As such, the results found in this study may not generalize older populations. In
addition, the study was performed in a simulated home environment, rather than the
participants’ actual homes. Potential future work could therefore include a study with
elderly participants, in their own kitchen environment.

When comparing our results with the state of the art, it is difficult to make a
direct comparison due to differences in the activities recognized and the sensors used.
Konig et al. [2015] use a camera to detect six ADLs, in part by determining the
position of a user in various zones inside the environment, with a recall of 85% and a
precision of 75%. A possible explanation for these accuracy numbers is that there is
likely a stronger relation between the set of ADLs investigated and the user’s location
in the environment (for example, the ‘watching tv’ ADL is likely related to presence
in the ‘tv zone’).

3.6 Conclusion 117

Poularakis et al. [2015] obtain good results of approximately 90% accuracy using
support vector machines on video images of a number of mostly low-level kitchen
ADLs. It is possible that the lower level of the activities recognized plays a role in
the relatively high accuracy (which they note is similar to other results on the same
data sets), however, the results also seem to indicate that improved performance from
computer vision methods is possible using more advanced techniques compared to
the work described in this chapter.

3.6 Conclusion
In this chapter, an approach has been presented to classify a user’s current activity
captured by a single camera and microphone, using hidden Markov models. A num-
ber of techniques for constructing hidden Markov models have been outlined and
tested experimentally. It was shown that for fully observed activities, a recognition
(class) accuracy on the six trained activities of 96% can be achieved on data in which
events were annotated by hand. On data obtained using scene analysis algorithms, a
class accuracy of 93% was achieved. For activities in progress, using an event his-
tory of up to 25 seconds, a class accuracy can be achieved of 79% on data annotated
by hand, and a class accuracy of 73% on data in which events were classified using
video and audio scene analysis algorithms.

On the manually annotated data the ‘standard’ Baum-Welch algorithm shows the
highest accuracy, while on the automatically annotated data the more complex cou-
pled MA algorithm yields the highest class accuracy, provided issues with imbal-
anced data can be overcome. However, the differences between the different classi-
fier methods are small, and not statistically significant. It was also shown that using
a combination of audio and video events as input yields superior results compared to
using only audio events, or only video events. This suggests that for ADL recogni-
tion, a fusion of the two modalities will lead to better results compared to the use of
a single modality only.

4
Prediction of successful participation

in a lifestyle activity program

4.1 Introduction
The work presented in this chapter has been previously published and discussed [Pijl
et al., 2009; Long et al., 2014; Long et al., 2011], and related to a number of other
publications [Long et al., 2009; van Halteren et al., 2014].

As mentioned in Chapter 1, an increasing amount of people lead an unhealthy
lifestyle, with a lack of physical activity being one of the major contributors. As such
a lifestyle can have serious implications for their future health (including increased
risk of cardiovascular disease and diabetes), many people actively seek to increase
their levels of physical activity throughout the day. However, long-term motivation
can be difficult to maintain, also because the benefits of increasing one’s level of
physical activity are often not immediately visible. As a result, many fall back into
old habits, and the gains made in lifestyle improvement are lost.

In response to this, programs have been developed to assist people in achieving a
more sustainable change in their lifestyles. These so-called ‘lifestyle physical activity
programs’ aim to encourage and support its participants in reaching and maintaining
a healthy amount of daily physical activity. In this chapter, we consider participants
taking part in a twelve-week lifestyle physical activity program, with the aim of de-
termining the current, and particularly the future behavior of the participants. More
specifically, we aim to identify those participants at risk of losing motivation and

119

120 Prediction of successful participation in a lifestyle activity program

dropping out of the program; by detecting these participants early, it may be possible
to intervene in time and avoid the participant dropping out of the program altogether.

In this chapter, we address the second research question that was introduced in
Chapter 1: Can analyzing the behavior of people trying to be more physically ac-
tive help predict if they will drop out of a lifestyle physical activity program? We
will also address the classification component of the model for human motion track-
ing described in the main research question, by introducing a method to distinguish
between dropouts and adherent users of a lifestyle physical activity program.

In particular, the ‘DirectLife’ lifestyle physical activity program of 2009/2010 is
considered here1. The program itself is also described by Goris and Holmes [2008],
with examples of similar programs also being provided by Ware et al. [2008]. As part
of this program, participants receive an activity monitor which measures their energy
expenditure. After an assessment week in which their normal (pre-intervention) ac-
tivity level is determined as a baseline, participants begin a twelve-week program dur-
ing which they can monitor their activity level on a minute-by-minute basis through
an online web interface after syncing their activity monitor to a computer, and can
find advice and tips on how to improve their physical activity. Based on their base-
line activity level, participants also receive weekly physical activity targets, which
increase as the program advances, leading to a healthy (or at least healthier) level of
physical activity towards the end of the twelve-week period. In addition, the program
offers coaching support to assist and encourage participants where needed. At the
end of the twelve-week program, participants have the option of continuing to use
the service to maintain their level of physical activity, or to start a new twelve-week
program.

Despite the tools and assistance offered by lifestyle physical activity programs,
maintaining motivation to persist in the lifestyle changes suggested in such a pro-
gram can often be a challenge. Loss of motivation is one of the main reasons why
participants ‘drop out’ of the program prematurely, ultimately causing the efforts of
the program to fail in effecting a lifestyle change. In the DirectLife program, this
issue is partially mitigated by the coaches, who can intervene if a participant is likely
to lose motivation. However, the number of participants (950 at the time of analysis)
in the program at any given time is sufficiently large to make identifying who is at
risk of dropping out a considerable challenge. Therefore, dropout prediction, the au-
tomatic identification of participants who are at risk of dropping out of the program,
can be extremely helpful for targeted interventions, and will be the main focus of this
chapter.

There are many possible reasons why participants might drop out of a program.
In the literature, few predictors for adherence have been found, and fewer are uni-

1It should be noted that there are considerable differences with the current (2016) DirectLife pro-
gram, including changes in the program structure, technology used, and participant population.

4.1 Introduction 121

versally acknowledged. One of the main reasons for adherence is believed to be a
participant’s level of self-motivation, a concept that has long been associated with ad-
herence to exercise programs [Dishman and Ickes, 1981]. Even so, this relationship
is not universally acknowledged; Garcia and King [1991] find little relation between
self-motivation and adherence to exercise regimen, instead noting that self-efficacy
(the belief in one’s ability to reach one’s goals) seems to be a stronger predictor. Other
predictors associated with adherence to physical exercise include intention, personal
capabilities, behavioral skill, commitment and reinforcement [Dishman, Sallis, and
Orenstein, 1985].

In this chapter, our main focus will be on dropout prediction; the aim of dropout
prediction is to identify (potential) dropouts before they actually drop out of the pro-
gram. By knowing which participants will drop out in advance, additional attention
or interventions can be directed to those participants at risk. What interventions are
appropriate depends on the program, but in some cases a simple phone call or email
can suffice. To achieve dropout prediction, we make use of the we have data gath-
ered about the participant so far, for instance regarding their participation or progress
in the program, self-reported information such as their motivation levels, or demo-
graphic information such as age or BMI.

The prediction of participants at risk of dropout has been attempted in a num-
ber of studies, although not necessarily in the context of a lifestyle physical activity
program. Keijsers, Kampman, and Hoogduin [2001] attempt to predict dropout in a
cognitive behavior therapy program for people with panic disorder, using a logistic
regression approach. Two predictors (motivation and level of education) were statis-
tically significant, but the authors mention that effect sizes are small, leading to only
moderately successful prediction. They also observe that there may be many individ-
ual reasons for dropout, rather than finding the existence of some uniform ‘dropout
group’.

Another popular topic for dropout prediction is the dropout of students in (online)
courses, with the aim to pre-emptively intervene for at-risk students. An example is
the work of Lykourentzou et al. [2009], where three different machine learning tech-
niques are used to predict students at risk of dropout (neural networks, support vector
machines, and probabilistic simplified fuzzy ARTMAP). The authors also investigate
ensemble learning techniques for the three algorithms, achieving higher predictive
accuracy compared to the individual algorithms. Similarly, Kotsiantis, Pierrakeas,
and Pintelas [2003] discuss the prediction of student dropout in distance learning
courses by exploring a set of six different algorithms, of which the authors report
the Naive Bayes algorithm as being the most appropriate. Results also indicate that
dropout prediction becomes more accurate towards the middle of the academic pe-
riod, compared to the initial predictions using only demographic data.

122 Prediction of successful participation in a lifestyle activity program

In terms of dropout prediction in exercise programs, Seelig and Fuchs [2011]
discuss dropout of new members of a health-oriented fitness center. The authors
propose a rule-based prediction scheme, based on the observation that participation
behavior might be better modeled as a categorical variable, meaning that participants
are first identified as early dropouts, late dropouts, maintenance, or fluctuation. It
should be noted that the authors are looking at a longer time scale compared to a
twelve-week program (in the twelve-week program, all dropouts would be considered
‘early dropouts’).

It should be noted that the majority of work on dropout prediction in exercise
programs focuses on scheduled exercise, that is, exercises planned at certain times
and days of the week. In contrast, lifestyle physical activity programs aim at increas-
ing overall levels of physical activity by being more active throughout the day. It can
therefore be questioned how well the findings from exercise programs generalize to
lifestyle physical activity programs. Still, we can conclude that there has been some
success in dropout prediction in a number of different settings, and that we have to
consider a potentially large number of reasons as to why participant may drop out (as
such, it may be required to include a sufficient amount of information and participants
in the model to account for this level of variance).

The organization of this chapter is as follows: in Section 4.2, the data set used
in this chapter is described, and a number of its properties with regards to dropout
prediction are explored. The topic of dropout prediction is further explored in Sec-
tion 4.3, where a genetic algorithm to aid dropout prediction is introduced, and then
evaluated and compared to the method use by the DirectLife coaches in Section 4.4.
Finally, conclusions are discussed in Section 4.5.

4.2 Data analysis
The work described in this chapter makes use of a de-identified2 version of New
Wellness Solutions’ DirectLife database, containing the physical activity data and
characteristics of a large number of participants in the DirectLife program. The
physical activity data is recorded through a wearable activity monitor, which uses
an accelerometer to estimate the amount of physical activity of its wearer. The activ-
ity monitor can be worn at a variety of positions, including the belt, pockets or around
the neck. To read out the data, the activity monitor must be connected to the USB port
of the participant’s computer, called ‘docking’, at which point the physical activity
data is automatically uploaded to the DirectLife database. Docking also allows the
battery of the activity monitor to be recharged. Participants can then view their newly
recorded data (and previously recorded data) through a web interface. In addition to
the physical activity data, the DirectLife database also contains web interface usage

2That is, any personal or possibly identifying data has been removed, such as names, addresses,
dates of birth, and so on.

4.2 Data analysis 123

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

N
um

be
r

of
 d

ro
po

ut
s

Week in the program

Figure 4.1: The number of dropouts by week in the DirectLife program, based on the
dropout day (dl +1).

statistics, and personal characteristics (such as age, gender, BMI) and activity goals
determined by the participant as part of the initial assessment week.

Not all participants present in the database are suitable for analysis, for various
reasons. For example, some participated in trials with different kinds of programs,
and others signed up, but never actually used the service. To filter out such cases,
only participants which match the following criteria are selected for analysis:

• Participants must have participated in a twelve-week program.

• Participants must have completed an assessment week prior to the twelve-week
program.

• Participants from DirectLife trials (for purposes of testing, etc.) are not con-
sidered.

• Participants must have a profile (containing e.g., age, weight, etc.) available.

• Participants must have at least some participant data available.

• Participants must have logged in to the web interface and docked the device at
least once.

Once all the above criteria have been taken into account, a total of 950 selected
participants remain in the database. Of the 950 participants, 391 (41%) did not com-
plete their twelve-week program, and are thus labeled as dropouts. To determine

124 Prediction of successful participation in a lifestyle activity program

which participants were dropouts, the definition for dropout by New Wellness Solu-
tions was used: a participant is considered a dropout if no activity is recorded within
the last two weeks (14 days) of the program.

Definition 4.1 (Dropout). A participant j of a program is considered a dropout
if de− dl(j) ≥ 14, where de is the final day of the program, and dl(j) is the last
day on which activity was recorded by participant j. Days are numbered consecu-
tively from the start of the program, with the first day of the program ds = 1. Note
that dl(j) may be after the program ends (i.e., dl(j)> de). 2

Figure 4.1 shows the number of dropouts per week in the DirectLife program
using this definition. To determine the week in which a participant drops out, the
dropout day is used; this is the day after the last time a participant recorded activity
data (i.e., dl + 1). Note that to still fit the definition of a dropout, the dropout day
cannot be later than the first day of week eleven in the twelve-week program. This
means that the dropouts under week eleven are all from a single day, rather than a full
week.

Given this fact, it is noteworthy that the number of dropouts in week eleven is still
comparable to the other weeks. Some insight as to why this is can be obtained from
Figure 4.2. Here, it can be seen that there is a strong weekly pattern regarding a spike
in the number of dropouts. While the participants in the program start at different
dates, the first day of a program is nearly always a Monday. From the figure, it
appears that most dropouts occur after the weekend. One possible explanation of this
is that participants become occupied with the busier weekday routine, and lose focus
on improving their physical activity. Another explanation is that most participants
dock their activity monitors during the weekend; as such, they may still be recording
activity on Monday, but the data never gets entered into the system as the device is
not docked again.

As mentioned, the main focus of this section will be dropout prediction. Basi-
cally, the aim of dropout prediction in the context of this Chapter is to predict whether
or not a participant will become a dropout in the next week of the program. Here,
the weeks refer to the twelve weeks in the program, rather than an exactly seven-day
period between the moment of prediction and the dropout day. Specifically, dropout
prediction refers to the following problem.

4.2 Data analysis 125

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 d

ro
po

ut
s

Day in the program

Figure 4.2: The number of dropouts per day in the program in the DirectLife program,
based on the dropout day (dl +1). Note that week twelve is not included in the figure,
as a participant’s dropout day cannot be in week twelve, per definition.

Definition 4.2 (Dropout prediction). Let dl(j) be the last day on which activity was
recorded, counted from the first day of the program, by a participant j. Then, if
participant j is defined as a dropout as per Definition 4.1, let the dropout week wl(j)
be the program week containing the first day after dl(j), that is, dl(j)+ 1 (with the
first week of the program being days 1− 7, and so on). For each week y, the aim
is to classify for each participant j whether or not wl(j) = y, using data up to and
including week y−1. 2

By parsing the data present in the database, a number of features for each partici-
pant are retrieved, which are referred to as markers. Markers generally fall into one of
three categories. First, static markers represent participant properties which remain
more or less static over time, such as a participant’s height or gender. Second, assess-
ment markers relate to participant behavior recorded during the assessment period of
the program, and include markers such as the average activity recorded during this
time. Third, dynamic markers represent (aggregates of) participant behavior during
a specific time frame within the twelve-week program. Dynamic markers typically
change over time and therefore depend on the time frame under consideration, for ex-
ample the average activity in the first week versus the average activity in the current
week of the program.

126 Prediction of successful participation in a lifestyle activity program

In the remainder of this section, two approaches are considered for data explo-
ration. First, the metric of information gain is used to investigate the expected predic-
tive value of the markers calculated from the database. The principles of information
gain are briefly described below. Second, the dropout and non-dropout populations
are analyzed statistically for markers which indicate significant differences between
both populations. The use of markers for the purposes of dropout prediction is then
discussed in Section 4.3.

Information gain. Information gain, a notion common in the field of decision trees,
is an indication of the increase in purity obtained by splitting a set given some sepa-
rator or decision boundary. Given a single marker or a set of markers, a hypersurface
decision boundary can be defined, splitting the set of participants into two separate
subsets. Ideally, for some subset of markers a decision boundary exists which inter-
sects the set of participants such that one of the resulting subsets contains all dropouts,
and the other subset contains all non-dropouts. The resulting subsets are then con-
sidered ‘pure’. In practice, such a decision boundary may unfortunately not exist.
However, the purity of a decision boundary’s resulting subsets serves as an indica-
tion of the predictive power of the corresponding subset of markers over which the
decision boundary is defined.

Given a subset of participants, the impurity of the subset S is given by the entropy
impurity measure i, which is defined as follows.

Definition 4.3 (Impurity). The entropy impurity i of a subset S is given as

i(S) =−∑
j

P(c j) log2 P(c j)

where P(c j) is the fraction of participants in S belonging to class c j. 2

The entropy impurity is maximal when each class is equally represented (that is,
P(ci) = P(c j) for all i, j), and minimal (zero) when all participants belong to the
same class. From decision trees, it is known that the reduction of impurity for a
given decision boundary over a subset S, often called information gain when entropy
impurity is used, is given as follows.

Definition 4.4 (Information gain). When splitting a set S into two subsets S1 and S2,
the information gain ∆i(S) is given by

∆i(S) = i(S)−P(S1)i(S1)− (1−P(S1))i(S2)

where P(S1) the fraction of participants in S present in S1. 2

A more detailed description of impurity and information gain can be found, for ex-
ample, in the book by Duda, Hart, and Stork [2000], within the context of decision
trees.

4.2 Data analysis 127

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Marker index

In
fo

rm
at

io
n

ga
in

Marker information gain (gini impurity) for dropouts based on (x < c) tests

Figure 4.3: The information gain scores of the individual markers, divided into six
segments indicated by the vertical, dotted lines. The first segment represents the
static markers, the second segment represents the assessment markers, and the final
four segments represent the same set of dynamic markers for different time slots. The
third segment includes data up till and including the first quarter of the program, the
fourth segment includes data up to and including the first half of the program, and
so on. The horizontal, dashed, blue line indicates the expected information gain for
completely random marker values.

4.2.1 Information gain analysis results
As a first step, the information gain for each of the individual markers was cal-
culated. The aim was to assess the predictive power of the available markers,
which might serve as a basis for selecting which markers are relevant with regard
to dropout prediction. Let X = {X1, . . . ,Xn} be the set of all available mark-
ers, containing n markers in total, and let x i j denote the value of marker Xi for
participant j. For a marker Xi, the optimal decision boundary Ci was computed,
where Ci is a constant that maximizes ∆i(S) by subsetting Xi as S1 = {x i j|x i j <Ci},
and S2 = {x i j|x i j ≥ Ci}. Computing Ci is fairly straightforward; for a total of h
participants, there are at most h− 1 possible values for each Ci to consider. Given
the number of participants (950) and markers (120), these can easily be computed
exhaustively. The results are shown in Figure 4.3.

128 Prediction of successful participation in a lifestyle activity program

Marker Dropout mean Non-dropout mean Test statistic

High minutes (pa) 6.21 per day 9.30 per day 5.72
High minutes (p) 6.72 per day 9.30 per day 5.67
Docking (p) 0.23 times per day 0.56 times per day 12.15
Docking (a) 0.65 times per day 0.9 times per day 4.40
Reported motivation n/a n/a 167.1 (df=3)
Docking (pa) 0.26 times per day 0.58 times per day 11.58
Moderate minutes (p) 26.38 per day 35.89 per day 6.59
Moderate minutes (pa) 25.73 per day 35.5 per day 6.49
Coaching method n/a n/a 406.7 (df=2)
Moderate minutes (a) 27.65 per day 34.24 per day 4.18
Reported difficulty n/a n/a 211.6 (df=4)
LEDs observed (p) 4.15 times per day 8.46 times per day 15.28
LEDs observed (pa) 4.14 times per day 8.13 times per day 14.51

Table 4.1: Markers with statistically significant differences (p < 0.0001) between
dropouts and non-dropouts. Between parentheses is indicated whether the marker is
computed over data in the assessment period (a), the program period (p), or both (pa).
Averages for both groups are provided for markers with non-categorical values. The
test statistic refers either the χ2 goodness of fit test statistic (for ordinal values), or
the t-test test statistic (for continuous values), depending on the test used.

From these results, as well as from visual inspection of marker histograms, it can
be concluded that markers individually possess little predictive power with regard
to dropout prediction. All of the highest scoring markers are found in the dynamic
markers segments, as can be seen in Figure 4.3. In particular, it can be seen that
every second marker in these segments become increasingly more informative with
time. This is partly due to the ordering of the markers in the figure: for each quarter,
most dynamic markers can be paired with another, similar marker which measures the
same feature. One of these markers measures this feature for only the given quarter,
while the other measures the same feature for all quarters up to and including that
quarter. As more data becomes available, the fact that participants have dropped out
becomes more visible in the data (for instance, they no longer record activity), and
as such it can be expected that discrimination between dropouts and non-dropouts
increases. It is therefore questionable whether these markers would be as successful
when all dropouts to be predicted occur only in the future.

4.2.2 Statistical analysis
An alternative approach to finding potentially predictive markers is the use of sta-
tistical analysis to find significant differences between dropouts and non-dropouts as
groups. The test used to determine this depends on the type of marker. For nominal

4.2 Data analysis 129

or ordinal markers (that is, markers with discrete values such as gender) Pearson’s χ2

test is used to determine whether samples drawn from the dropout population match
the distribution of samples drawn from the non-dropout population. For markers with
continuous values (for example, the average active minutes per day) the Student’s t-
test is used to determine if samples from the dropout population share the same mean
as samples from the non-dropout population. The t-test was selected as visual inspec-
tion of the data suggests that the assumption of normally distributed samples seems
reasonable. In addition, for all tests Bonferroni correction was applied to adjust for
the large number of statistical tests used.

Table 4.1 shows a list of the most relevant (in terms of the relative difference in
means) statistically significant markers (with p < 0.0001). The reported means do
not include days in which there is no recorded activity (i.e. the activity monitor is
not used). The complete list of significant markers contains 34 items. An interest-
ing conclusion is that values measured during the assessment period are almost as
indicative as values measured during the remainder of the program. Unfortunately,
although these markers show statistical significance with regard to the differences
between dropouts and non-dropouts, they do not provide sufficient predictive power
by themselves to accurately distinguish individuals from both groups, as is also sug-
gested by the results in Section 4.2.1. Here, the high number of significant markers is
in part a consequence of the large number of program participants; while the means
of both populations differ significantly, the variance generally seems sufficiently high
that defining a clear decision boundary becomes difficult.

The results show that non-dropouts overall have a considerably higher number of
moderate and high intensity activity minutes per day than eventual dropouts. Days
where no activity was recorded were filtered out for this analysis, which might oth-
erwise explain this effect, as dropouts can be expected to have a greater number of
inactive days for obvious reasons. This seems to indicate that non-dropouts tend to
be more active than non-dropouts. Indeed, a significant difference in PAL score (the
activity levels measured by the activity monitor) was found, although this is not yet
visible during the assessment week.

The results also show that on average, non-dropouts dock their activity monitor
to upload data more often, and more often trigger the activity monitor for feedback3.
This seems to indicate that non-dropouts are more engaged with the program’s web-
site and the activity monitor throughout the program. There are also significant dif-
ferences on the self-reported motivation and perceived difficulty (established through
questionnaires at the start of the program). Interestingly, dropouts report a somewhat
higher motivation than non-dropouts, but also report a higher perceived difficulty of
completing the program. Although not significant, non-dropouts also report to be
slightly less active than non-dropouts.

3The activity monitor will give a visual indication of the amount of daily activity through a series of
LEDs if briefly shaken. In Table 4.1 this is indicated as ‘LEDs observed’.

130 Prediction of successful participation in a lifestyle activity program

4.3 Dropout prediction
The aim of dropout prediction is to identify dropouts before they actually drop out of
the program. As was mentioned in Definition 4.1, dropouts are defined as participants
who have not recorded any activity data in the last two weeks of the program. Iden-
tifying a dropout at the appropriate moment in time is essential: detecting a dropout
after the initial dropout point may mean it is too late to take action, and while detect-
ing a dropout weeks ahead of time might be informative, there may be little need to
take action at that time4. It is therefore assumed optimal to detect dropouts one week
prior to the actual dropout week.

To simulate this need for timing, we consider each week of the program individ-
ually for making dropout predictions. As participants head towards the end of their
program, an increasing amount of data becomes available for analysis (in the form of
dynamic markers). For example, in the second week of a participant’s program we
are agnostic regarding their activity levels in week four. To take this increase in data
into account, dropout predictions are made using only the data available at the time.
In other words, when making dropout predictions regarding some week y, we only
use data available in week y−1. This results in the dropout prediction problem defi-
nition as stated in Definition 4.2. It is assumed that for any week y, constant markers
and assessment markers will be available.

Initial attempts at dropout classification made use of the C4.5 or CART algo-
rithms (which are based on the information gain metric discussed in Section 4.2) to
form decision trees by combining markers. Unfortunately, these yielded poor per-
formance and as such, were not very successful. The trees created were often only
a single node deep, indicating that once a decision boundary was formed, the ad-
dition of further decision boundaries rarely added any meaningful separation to the
created subsets. The best performance in terms of class accuracy of the created deci-
sion trees on dropout prediction reached a class accuracy of 56.2%, and many of the
combinations of markers examined barely performed above random guessing (which
is equivalent to 50% class accuracy). The results of the decision tree approach are
shown in more detail in Section 4.4.

As an alternative, a classification scheme based on genetic programming to com-
bine markers was developed. The classification process consists of a number of steps.
First, a new set of combined markers is created from the available set of markers
through genetic programming, as discussed in Section 4.3.1. The aim is to find com-
binations of markers which together have more predictive power than the individ-
ual markers. Then, the dimensionality of the participant data is reduced to remove

4In some cases, it may arguably be beneficial to address potential dropouts further in advance.
However, a longer time period between the moment of prediction and the actual dropout point increases
the odds that an intervention might be perceived as burdensome rather than helpful, and as a result may
lead to adverse effects instead.

4.3 Dropout prediction 131

any highly correlating data using principal component analysis (described in Sec-
tion 4.3.2). Finally, participants are classified using the nearest neighbor algorithm,
which is briefly discussed in Section 4.3.3. The classification results are compared to
the method currently used by the program’s coaches, detailed in Section 4.3.4, and
the results of the decision tree classification described above.

The choice to use a genetic programming approach for this problem is mainly
motivated by the fact that both analysis of information gain and statistical analysis
have shown few promising markers in terms of predictive power in our set of mark-
ers. As we do not have a clear solution on what markers to include in a prediction
algorithm, a method is needed to address the feature selection problem, and to en-
hance the current markers in terms of predictive power, both of which the genetic
programming provides [Yang and Honavar, 1998; Guo, Jack, and Nandi, 2005].

4.3.1 Genetic programming
The aim of the genetic programming algorithm described here is the find combina-
tions of markers that are more predictive compared to the markers individually. To
estimate the predictive power of a set of markers, the notion of information gain is
used once more. Rather than determining a decision boundary over a single marker,
a decision boundary is created over a linear combination of a subset of markers.

Let X be the set of all n markers, and let X be a sequence of n markers drawn
from X (that is, X is ordered, and may contain the same marker more than once).
Finding an optimal decision boundary over X directly is problematic as n increases;
the number of potential decision boundaries quickly becomes unmanageable. In or-
der to ensure the optimization problem remains tractable, only decision boundaries of
the form fX <C are considered, where fX is a linear function over X of n terms, with
each marker in X as a single term. Like before, C is the optimal decision boundary
constant, and can once again be found as a one-dimensional optimization problem,
which can be solved in O(h) for h participants. The challenge is then to find the
optimal sequence of markers X , and the corresponding expression fX .

Finding the globally optimal values for X and fX would require an exhaustive
search over all sequences X and functions fX , which quickly becomes intractable
as n increases. However, the optimal decision boundary can be approximated by
genetic programming techniques. In genetic programming, a set of candidates E,
each consisting of a set of markers X and function fX , are maintained.

Definition 4.5 (Candidate). A candidate e is defined as a sequence of markers X of
length n, and a function fX : X →ℜ of n terms, where each marker in X corresponds
to a single term in fX . 2

In the context of the dropout prediction genetic algorithm, the marker functions fX

are represented as a set of operators o1, . . . ,on−1, with oi ∈ {+,−,∗,/}. These are
combined with the markers in X , yielding expressions of the form X1o1X2 . . .on−1Xn.

132 Prediction of successful participation in a lifestyle activity program

These expressions are assumed to be left-associative. Although the expressions them-
selves are very basic, they already allow for considerable variety in marker combina-
tions.

The set of candidates E = {e1, . . . ,em} is updated over a number of rounds in an
iterative process, consisting of the following, recurring steps:
• fitness: each of the candidates is assigned a score, or ‘fitness’ of the candidate.
• selection: based on the fitness of each candidate, a number of candidates are

eliminated from the candidate pool.
• reproduction: the candidates are altered and re-arranged to form a new set of

candidates through mutation, cross-over, insertion and deletion.
The purpose behind these three steps is loosely based on the concept of ‘survival

of the fittest’ from evolution theory5. Fitness represents how well the candidates are
adapted to the environment; in our case, the expected ability to distinguish between
dropouts and non-dropouts. The candidates essentially represent the genetic code to
create a separator between these two classes. Selection determines which candidates
‘survive’ to create offspring and pass on their genetic code. As expected, the more
‘fit’ candidates have a better chance of making it through the selection. Reproduction,
as the name suggests, involves the creation of new candidates from the genetic code
of the surviving parents, which is altered through cross-over, mutation, insertion and
deletion.

The four reproduction mechanisms all seek to create new genetic codes based on
the parent codes, but achieve this in different ways. The aim is to use all the mecha-
nisms together, to create sufficient variation from the original parent code. Mutation,
like its real-life counterpart, creates small changes by randomly altering some val-
ues. Cross-over creates a new code by combining random parts of two parent codes.
Insertion and deletion do not really fit to a real-life analogy, as our genetic code gen-
erally does not vary in length, but essentially add new sections or remove sections of
the genetic code. The four mechanisms will be discussed in more detail below.

Essentially, repeating the steps of fitness, selection and reproduction, and going
through the various ‘generations’ amounts to a semi-guided search of the marker
space to find an effective combination of markers to distinguish between dropouts
and non-dropouts. In other words, the genetic programming procedure aims to in-
crementally improve the pool of candidates by means of the mutation and cross-over
mechanics, and selecting the best results each round. Each of the three steps will be
discussed in more detail below. For a more in-depth introduction to genetic program-
ming, see for example the book by Koza [2010].

The genetic algorithm terminates once a certain number of rounds have been
completed, or alternatively, once a target overall fitness has been reached. Features

5In the same way that neural networks are related to the neurons in the brain; that is, the comparison
does not really extend beyond the superficial level.

4.3 Dropout prediction 133

can then be selected from the pool of remaining candidates. There are several options
to select the final features; either the entire surviving candidate pool can be used,
or a number of high-fitness candidates can be selected. Other alternatives include
selecting high-fitness candidates from previous rounds as well.

For the results described here, the entire candidate pool was used, after which
the total dimensionality of the feature set was reduced using principle component
analysis (PCA). The motivation for the use of the PCA step is that often, a genetic
programming population will contain a number of candidates that are highly similar
to each other. Using PCA, we will be able to group these similar candidates together
in a fashion, reducing the overall dimensionality of our candidate space, and reducing
the risk of overfitting as a result.

Fitness. Given a set of participants, the fitness of a candidate expression can be
determined by the information gain of that expression, as defined in Definition 4.4.
In practice, the set of participants used for this purpose is a subset of all available
participants, as it is advisable to maintain a separate train and test set to avoid con-
tamination of the results due to possible overfitting. As decision boundaries take the
form of fX < C, the optimal value for C must be found to determine the fitness for
each candidate. As before, computing fX(x j) for a total of h participants, where x j are
the values of the markers in X for participant j, results in at most h unique outcomes.
As a result, there are at most h−1 values for C to consider.

In general, shorter expressions are preferred over equally informative longer ex-
pressions6. In this case, the longer expression is needlessly complicated, and a sim-
pler expression would be easier to interpret. More importantly, even if they are some-
what more informative, longer expressions are more likely to result in overfitting, and
as such may lack generalization ability. For these reasons, a penalty to the fitness
score is introduced, which is deducted from an expression’s fitness for each operator
in the expression beyond a fixed number (three for the results in Section 4.4). As a
result, introducing additional operators to an expression will only result in a higher
fitness if the increase in information gain due to these operators exceeds the penalties
incurred.

Selection. To allow for the creation of new candidate expressions, a number of
candidates are removed each round (see Section 4.4). Generally, it is preferable to
retain the candidates with the highest fitness scores. However, it is often beneficial
to also retain a number of candidates with lower fitness scores, to retain the ability to
move away from the current local optimum and transverse the feature space for other
optima. This feature, in part, differentiates genetic algorithms from some local search
algorithms such as gradient descent. To accomplish this, candidates to be retained are
generally selected by chance, where candidates with higher fitness are more likely to
be retained than candidates with a lower fitness.

6This can be seen as a version of Occam’s razor.

134 Prediction of successful participation in a lifestyle activity program

Numerous selection algorithms exist based around this principle, of which tour-
nament selection is one of the more popular. In tournament selection, two candidates
are selected at random, of which the candidate with the highest fitness is retained,
and the other candidate is discarded. This process is repeated by randomly select-
ing two more of the candidates that have not been selected previously. Once there
are no candidates left for selection, the selection process starts anew for those can-
didates that have been retained, until the desired number of discarded candidates has
been reached (this may happen before a tournament round is complete, in which case
any remaining candidates are automatically retained). The process of tournament
selection is such that candidates with higher fitness are preferred. Due to randomly
selecting sets of candidates however, candidates with lower fitness also have a chance
to be retained.

Reproduction. After selection, a new set of candidate expressions is created using
the selected candidates as a basis. In genetic algorithm, two main types of mech-
anisms govern this reproduction process. First, mutation of an existing candidate
involves small random changes to the characteristics of the original candidate. Sec-
ond, crossover involves combining attributes of two existing candidates to create a
new candidate. The two mechanics are described in more detail below. In addition,
the insertion and deletion mechanics are also discussed, which allow for the addition
or removal of markers from the candidates.

As mentioned above, let the functions fX be represented as a set of opera-
tors o1, . . . ,on−1, with oi ∈ {+,−,∗,/}. The mutation mechanism can be imple-
mented either through random changes to the sequence of markers X , or to one of
the operators in fX . The probability of such a change occurring for a specific marker
variable or operator is given by parameter called the ‘mutation rate’. The mutation of
a specific marker or operator in f (X) can be defined as follows:

Definition 4.6 (Mutation). For a sequence of markers X of length n, drawn from
the set of all markers X , and a function fX represented by a sequence of consecu-
tive operators o1, . . . ,on−1, yielding an expression of the form X1o1X2 . . .on−1Xn, the
mutation of a marker Xk consists of a transformation of the form

X1o1X2 . . .Xk . . .on−1Xn→ X1o1X2 . . . X̂k . . .on−1Xn

where X̂k ∈X \{Xk}. Similarly, the mutation of an operator in fX is a transformation
of the form

X1o1X2 . . .ok . . .on−1Xn→ X1o1X2 . . . ôk . . .on−1Xn

where ôk ∈ {+,−,∗,/}\{ok}. 2

Alternatively, a new candidate expression can be created through cross-over.
Here, two candidate expressions are selected at random, and each expression is split
at a random point along its length. A new candidate expression is created by either

4.3 Dropout prediction 135

attaching the front of the first expression to the tail of the second expression, or vice
versa. Naturally, the resulting candidate expression must be a valid expression itself.
This can be achieved by always splitting expressions after (or before) an operator.
The impact of the cross-over mechanism on reproduction is governed by the cross-
over rate parameter, which determines the fraction of new candidates created through
the cross-over mechanism. The definition of cross-over is given as:

Definition 4.7 (Cross-over). For two sequence of markers X of length n and X̂ of
length n̂, drawn from the set of all markers X , and corresponding functions fX and fX̂
represented by sequences of consecutive operators o1, . . . ,on−1 and ô1, . . . , ôn̂−1 re-
spectively, yielding expressions of the form X1o1X2 . . .on−1Xn and X̂1ô1X̂2 . . . ôn̂−1X̂n̂,
cross-over at markers k, l can be defined as

X1o1X2 . . .XkokX̂l ôl . . . ôn̂−1X̂n̂

where 1≤ k < n and 1 < l ≤ n̂. 2

Often, genetic algorithms operate on candidates with some fixed length repre-
sentation. However, candidates can be altered in length by removing or introducing
new markers and operators. The insertion and deletion operators can be used for this
purpose. The insertion mechanism adds a new marker and operator pair to the ex-
pression at a random position. Similarly, the deletion mechanism removes a random
operator and marker pair from an expression. The probability of insertion or dele-
tion occurring in a new candidate is governed by the insertion rate and deletion rate,
respectively. First, insertion is defined as:

Definition 4.8 (Insertion). For a sequence of markers X of length n, drawn from
the set of all markers X , and a function fX represented by a sequence of consecutive
operators o1, . . . ,on−1, yielding an expression of the form X1o1X2 . . .on−1Xn, insertion
is a transformation of the form

X1o1X2 . . .XkokXk+1 . . .on−1Xn→ X1o1X2 . . .XkokX̂ ôXk+1 . . .on−1Xn

where X̂ ∈ X and ô ∈ {+,−,∗,/}. 2

Similarly, deletion is defined as

Definition 4.9 (Deletion). For a sequence of markers X of length n, drawn from the
set of all markers X , and a function fX represented by a sequence of consecutive
operators o1, . . . ,on−1, yielding an expression of the form X1o1X2 . . .on−1Xn, deletion
is a transformation of the form

X1 . . .ok−1XkokXk+1 . . .on−1Xn→ X1 . . .ok−1Xk+1 . . .on−1Xn.

2

136 Prediction of successful participation in a lifestyle activity program

4.3.2 Principal component analysis
Using principal component analysis (PCA), a data set can be transformed from a high
dimensional space to a lower dimensional space, in which the principal dimensions
explain the largest amount of the variance in the data. This means that the higher
dimensions are likely highly correlated, and can therefore be discarded without much
loss of information. The advantage of this is that data with fewer dimensions is easier
(and faster) to perform calculations on, and that the original correlated elements in
the data might act as a source of noise to any classification algorithm.

To use principal component analysis, each participant is considered an m-
dimensional data point, where m is the number of combined markers selected (which
in turn may consist of a number of the original markers). After applying PCA, these
dimensions are reorganized, and those explaining little or no variance are removed.
For this work, the number of dimensions retained was selected such that at least 95%
of the variance in the data would be explained, under the assumption that maintain-
ing sufficient variance would be beneficial in distinguishing between dropouts and
non-dropouts.

After the genetic programming step, PCA is used to reduce the dimensionality of
the marker space, as the marker combinations created by the genetic programming
algorithm can result in sets of marker combinations which are highly correlated. As
such, PCA is used as an intermediate step before classification by the nearest neigh-
bor algorithm described in the next section.

4.3.3 Nearest neighbor algorithm
The nearest neighbor classification algorithm classifies an unknown instance (in this
case an unknown participant) according to the spatial distance to the nearest known
instance. The well-known variant k-nearest neighbor is used here: instead of looking
only at the closest known instance, it examines the k closest known instances, and
classifies the unknown instance based on the most common class (dropout or not) in
the subset of closest known instances. As outlined in the previous section, partici-
pants can be represented as data point in the principal component space, and as such
distance measures can be used to determine the distance between two participants.

The optimal value for k was determined experimentally in this study. That is,
for each week of the program a number of classifications are made on a separate test
and train set with different k, and the optimal value found is finally used to classify
the unknown participants. As there are more non-dropouts each week than dropouts,
dropouts were assigned greater weight than non-dropouts. In Section 4.4, the nearest
neighbor algorithm is used for the classification of dropouts on the marker space cre-
ated by the genetic programming algorithm, after PCA transformation. Other clas-
sification algorithms were also explored, including a naive Bayesian classifier and
learning vector quantization (LVQ), but these offered no further improved perfor-
mance compared to the k-nearest neighbor algorithm.

4.4 Results 137

Program week 1 2 3 4 5 6 7 8 9 10 11 12

Number of days 3 3 3 6 6 14 14 14 10 10 5 5

Table 4.2: The number of days without docking a participant must equal or exceed to
be labeled as a potential dropout, according to the DirectLife coaches’ method. The
number of days a participant is allowed to go without docking depends on the week
of the program they are in; for example, if a participant is in week six, and has not
docked for (at least) the last 14 days, they would be considered as a dropout per this
method.

4.3.4 Coaches’ method
At the time of the investigation, the DirectLife coaches made use of an inferential
classification method derived from their own experiences to signal potential dropouts
amongst their assigned participants. This method is reasonably straightforward, by
counting the number of days since a participant has last docked their activity monitor
and uploaded their data. Once this number equals or exceeds a certain constant, the
participant is automatically listed as a potential dropout, and the coach will examine
the participant’s data in detail. The amount that must be equaled by the number
of days without docking depends on which week of the twelve-week program the
participant is currently in, as detailed by Table 4.2. Note that the numbers indicate
the total amount of days since the participant has last docked their activity monitor,
and not only the number of days in that particular week.

4.4 Results
Ideally, future dropouts are identified as such before actually dropping out of the
program, as this would allow for timely interventions to prevent this. As discussed
in Section 4.3, the aim is to predict dropouts one week prior to actually dropping
out, using data available at that time. First, for all known dropouts amongst the
participants, the actual dropout day is determined, and similarly, the dropout week.
For classification, dropouts are only labeled as dropouts during their dropout week.
After their dropout week, participants are no longer considered as instances for any
subsequent weeks. As there are 12 weeks in the program, and dropouts per definition
have no recorded activity in the last two weeks, a separate set of dropouts is created
for 11 of the program weeks (dropouts in week 11 have the first day of week 11 as
their actual dropout day).

As mentioned, when classifying dropouts in week y, only data available up to
and including week y− 1 is considered. For example, when classifying dropouts in
week 10, data recorded in weeks 10, 11 and 12 is not considered. In effect, this creates

138 Prediction of successful participation in a lifestyle activity program

an expanding window of data, growing in size with each week classified. For each
week, a separate set of genetic markers, principal component analysis and k-nearest
neighbor classifier is constructed. 10-fold cross validation was used each week to
obtain separate train and test sets. In 10-fold cross validation, data is separated into
ten subsets, and iteratively one is selected as test set while the remaining subsets
form the training set. Classifiers are trained and evaluated for each test and train set
individually, and results are averaged to obtain a classification score for each week.

For the genetic algorithm, a total population of 200 candidates were used, of
which 40 were maintained each round as part of selection. For reproduction, the fol-
lowing probabilities were used: a mutation rate of 0.05, a cross-over rate of 0.9, and
an identical insertion and deletion rate of 0.3. In total, 100 rounds were completed
each iteration.

As the set of dropouts is divided over 11 weeks (and the non-dropouts remain
present throughout the program), the number of non-dropouts vastly exceeds the
number of dropouts for any given week, creating a class imbalance. Using the stan-
dard measure of accuracy for classifier results (number of correct classifications di-
vided by the total number of classifications) in such a situation leads to misrepresenta-
tion of classifier performance, as the accuracy on the non-dropout class dominates the
classifier accuracy. Therefore, as discussed in Chapter 3, the class accuracy measure
is used. Here, the accuracies over the individual classes (dropouts and non-dropouts)
are computed first, and the class accuracy is defined as the mean over the accuracies
of the individual classes.

To determine the improvement gained from the use of genetic programming, clas-
sification results from markers obtained from genetic programming are compared to
classification results from markers obtained directly from the participant database.
As described above, dropouts are determined for each week separately, using data
available at that time. In both conditions, principal component analysis is used to
reduce the dimensionality of the participant data, after which the participants are
classified using a k-nearest neighbor classifier. The optimal value for the parame-
ter k is established experimentally for each week separately. Due to the sensitivity of
the k-nearest neighbor algorithm to class imbalance, discussed in the previous para-
graph, before classification dropout samples in the training set are oversampled (i.e.,
randomly duplicated) until the training set becomes balanced.

In addition, we compare the results of the nearest neighbor algorithm, both with
and without genetic programming, to the results of the decision tree model described
in Section 4.3. The decision trees are constructed using Gini impurity (see Sec-
tion 4.2) and use pruning to avoid overfitting.

The classification results are shown in Table 4.3, where the classification accura-
cies of the decision tree model are shown in the left. As mentioned in Section 4.3,
the classification results are fairly low overall, for some weeks approaching 50%

4.4 Results 139

Week Decision tree Without GP With GP

Week 1 0.5768 0.6873 0.7524
Week 2 0.6229 0.6629 0.7396
Week 3 0.5093 0.6667 0.7310
Week 4 0.5188 0.6043 0.6484
Week 5 0.5142 0.6443 0.7201
Week 6 0.6407 0.6364 0.7528
Week 7 0.5455 0.6389 0.6711
Week 8 0.5839 0.6586 0.7838
Week 9 0.6830 0.6165 0.8107
Week 10 0.4895 0.6247 0.7334
Week 11 0.4973 0.5679 0.5773

Average 0.5620 0.6371 0.7201

Table 4.3: Class accuracy per week of dropout prediction using markers obtained
from participant data for the decision tree method, and for the nearest neighbor al-
gorithm both with and without the use of genetic programming to adapt the feature
space. Classification was done using the k-nearest neighbor algorithm, after PCA
transformation. The class accuracies obtained without the use of genetic program-
ming are listed under ‘Without GP’, while the class accuracies obtained using ge-
netic programming are listed under ‘With GP’. Class accuracies were obtained using
10-fold cross validation.

class accuracy, which is equal to the performance of guessing the class label through
random chance. The average class accuracy over all weeks is 0.5620, that is, approx-
imately 56%.

The results of dropout prediction using basic markers obtained from the avail-
able participant data are shown in the middle column of the table. The table shows
class accuracy results for every week in which classification is performed. Over
the eleven weeks, the recorded class accuracy scores remain fairly consistent, with
slightly higher scores towards the start of the program. The final week of the pro-
gram, however, scores considerably lower in class accuracy. As can be seen in the
table, the average class accuracy over all eleven weeks for this method is 0.6371 (i.e.,
approximately 64%).

The results of dropout prediction using markers obtained through genetic pro-
gramming are shown on the right hand side of Table 4.3. Over the eleven weeks,
results again appear fairly consistent, with the exceptions in week four, seven and
most noticeably week eleven. When compared to the results obtained using only ba-
sic markers, the use of genetic programming results in an increase of class accuracy

140 Prediction of successful participation in a lifestyle activity program

Week Coaches’ method With GP

Week 1 n/a 0.7524
Week 2 0.54 0.7396
Week 3 0.61 0.7310
Week 4 0.60 0.6484
Week 5 0.62 0.7201
Week 6 0.62 0.7528
Week 7 0.52 0.6711
Week 8 0.56 0.7838
Week 9 0.55 0.8107
Week 10 0.62 0.7334
Week 11 0.51 0.5773

Average 0.58 0.7168

Table 4.4: A comparison of class accuracy per week of dropout prediction using
markers obtained from participant data with the use of genetic programming and
using the coach’s method. The class accuracies obtained using the coach’s method
are listed under ‘Coaches’ method’, while the class accuracies obtained using ge-
netic programming are listed under ‘With GP’. Class accuracies were obtained using
10-fold cross validation. The average class accuracy for the genetic programming
method excludes the accuracy in week 1, for the benefit of comparison to the coaches’
method.

for every week of the program. As can be seen in Table 4.3, the average class ac-
curacy over all weeks of the program when using genetic programming is 0.7201,
or 72%.

Using pairwise t-tests, we can conclude that even without the use of genetic pro-
gramming, the nearest neighbor algorithm performs significantly better compared to
the decision tree model (t(10) = 3.81, p = 0.0034). We can also see that adding
the genetic programming approach further improves the classification results signif-
icantly compared to the basic nearest neighbor algorithm (t(10) = 5.37, p < 0.001).
Given these results, we might expect the difference between the decision tree model
and the nearest neighbor algorithm with genetic programming to be significant as
well, and this is indeed the case (t(10) = 9.83, p� 0.001). Note that the differences
remain significant if Bonferroni correction is taken into account for the multiple com-
parisons between the three classification methods.

The results are also compared to the method used by the DirectLife coaches at
the time of the study in order to examine if any improvements can be made. Table 4.4
shows a comparison between the results of dropout classification using genetic pro-

4.5 Conclusions 141

gramming and the results using the coaches’ method described in Section 4.3.4. The
results of dropout classification using genetic programming is of course identical to
those listed in Table 4.3. The average class accuracy of the coaches’ method is ap-
proximately 58%, which is below the accuracies of dropout prediction using markers
either with or without genetic programming. Note that the coaches’ method does not
allow for classification in the first week of the program, so no accuracy score is listed
for this week. Using a paired t-test, the class accuracy scores between the coaches’
method and the genetic programming approach are shown to be significantly different
(t(9) = 6.59, p < 0.001).

4.5 Conclusions
From the analysis in Sections 4.2.1 and 4.2.2, it can be seen that while there are on
average significant differences between dropouts and non-dropouts for many mark-
ers, individual markers offer little predictive value regarding the dropout potential
of a participant. This can be explained by the large amount of overlap between the
dropout and non-dropout population. If these populations are modeled as a normal
distribution for some marker, the means may be some distance apart, but the vari-
ances of one or both distributions are sufficiently high to make classification with
any certainty difficult. Amongst the current markers, there appears to be no marker
for which both distributions are sufficiently separate to be considered a powerful pre-
dictor between these two groups.

In Section 4.4, it was shown that classification using basic markers resulted in
an average class accuracy of 0.6371, while classification using genetic programming
resulted in an average class accuracy of 0.7201. When compared to a majority class
(or random guessing) baseline, which in a two class problem yields a class accu-
racy of 0.5, both of the classification methods discussed here clearly outperform this
baseline. When comparing both methods, classification after genetic programming
clearly outperforms classification based on basic markers only, as expected, with a
significant difference in accuracy rates between both methods. When examining the
error rates of both methods (given as error rate = 1− accuracy), the use of genetic
programming results in a reduction in the number of classification errors of approx-
imately 23% ((1−0.6371)−(1−0.7201)

1−0.6371 · 100%). When compared to the currently used
coaches’ method, it is clear that classification using genetic programming provides a
higher classification accuracy. The latter method results in a reduction in the number
of classification errors of approximately 33% ((1−0.58)−(1−0.7201)

1−0.58 ·100%).
When comparing the classification results on a weekly basis, the low class accu-

racy in week eleven forms an obvious outlier for all three classification methods. The
most likely explanation seems to be found in the definition of a dropout; those who
drop out in week eleven are close to the decision boundary which separates dropouts
from non-dropouts. In essence, week eleven contains dropouts from a single day

142 Prediction of successful participation in a lifestyle activity program

rather than a week - ‘dropouts’ which happen later that week are not labeled as such.
As this decision boundary is somewhat arbitrary, it may algorithmically be difficult to
distinguish between participants close to the decision boundary, yielding poor clas-
sification accuracy scores as a result. Note that for week four, a similar observation
can be made with regard to class accuracy for the marker-based methods, although
proximity to the decision boundary seems an unlikely cause in this case. As such,
the cause is not entirely clear in this case, and the difference may simply be due to
variance in the data.

In contrast, other weeks show considerable deviation from the average classifi-
cation accuracy for the genetic programming method, but no coinciding deviation in
accuracy for the method using the coaches’ method or basic markers only. Examples
of this include week seven and nine. Possible explanations are that either for these
weeks the combination of markers adds an amount of information that is lesser or
greater than average (for weeks seven and nine, respectively), or that the cause lies in
inconsistent performance often inherent in genetic algorithms due to their stochastic
nature.

From a practical perspective, the above results show improved classification ac-
curacy can be obtained through the use of genetic programming. However, there are
also a number of disadvantages to this method. First, the large number of param-
eters can present difficulties for those unfamiliar with the algorithm. Fortunately,
experiments have shown classification results to be fairly invariant to small param-
eter changes, and there was no need to construct a different set of parameters for
each week of the program. Second, genetic programming algorithms can become
computationally expensive, especially as the number of participants and markers in
the database increases. Fortunately, classification only requires a single run of the
algorithm per week regardless of the number of classifications made, which should
ensure the computational costs remain manageable.

A third disadvantage is that genetic programming methods can often be suscep-
tible to overfitting. To counteract this, a penalty function is often required, as we
applied in this work. In addition, we used principle component analysis to reduce
the dimensionality of our marker set. As the genetic programming algorithm was in-
cluded in the cross-validation procedure, the results obtained suggest that fortunately,
there is little negative effect of overfitting in our application. Finally, the use of possi-
bly complex combinations of markers, rather than single markers, complicates human
interpretation of classifier decisions. Indeed, examination of the combined markers
generated by genetic programming rarely yields intuitive combinations. This may
have consequences with regard to the acceptance and practical usefulness of these
classifiers to prevent dropout through interventions in a lifestyle physical activity
program.

4.5 Conclusions 143

When comparing our results to the state of the art, in should be noted that several
variants of the decision tree classifier we used initially have gained increased popu-
larity with regard to prediction problems, specifically the random forest [Ellis et al.,
2014] and gradient boosting algorithms [Lombardo et al., 2015]. In that respect, it
would be interesting to explore if these techniques would improve over the rather
poor baseline results obtained using the more classical decision tree approach.

Genetic programming-based methods remain popular tools for the predictive
modeling of applications with a large number of potential features [Márquez-Vera
et al., 2013]. In terms of predictive modeling for health-related applications, meth-
ods based on (generalized) linear regression have also seen use [op den Buijs et al.,
2015; Tran et al., 2014]. In the near future, it is also feasible that deep learning
approaches would be applied to these problems, as these methods provide a means
for automatic feature selection. As such, it would be interesting to investigate these
methods in the context of the problem and data set described in this chapter.

In conclusion, the work here shows that the addition of genetic programming to
dropout classification yields a considerable increase in classifier accuracy. It also
shows that combining markers, even using only simple mathematical operators, can
yield measures which are more informative with regard to a participant’s future be-
havior than measures using these markers individually. The use of genetic program-
ming is particularly useful when the number of basic markers is very large, making
exhaustive approaches to combining markers infeasible, and when there are no clear
intuitions regarding which or how markers should be combined. It was shown that
when applied to prediction of participants’ continued participation in a lifestyle activ-
ity program, the use of genetic programming to create combined markers resulted in a
reduction in the number of classifier errors of 23% compared to using basic markers,
and 33% compared to the currently used coaches’ method.

As a more accurate prediction opens up the possibility of intervention for partic-
ipants who are at risk of dropping out of the activity program, the number of partic-
ipants completing the program is likely to increase as a result. The results presented
in this document emphasize that through combining markers considerable improve-
ments in the prediction of dropouts can be attained, a task that can be considered at
least challenging for humans. Therefore, the use of data mining techniques to predict
participants dropping out of an activity program ahead of time seems a promising
step toward the effective prevention of dropout through timely interventions.

5
Step detection

5.1 Introduction
The work described in this chapter is based on a publication submitted to Gait &
Posture [Pijl and Smits, 2016], and related to a number of publications [Pijl, 2015;
Pijl, Fulton, and Baldus, 2015; Pijl and Baldus, 2016].

Gait can be described as a particular way of moving on foot, or alternatively, as
the way locomotion is achieved (by humans) through the use of their legs. While
gait may, at first glance, appear to be achieved similarly from person to person, there
are subtle differences between individuals that are characteristic enough to have ap-
plications in security. For example, Iwama et al. [2012] use gait detection from
CCTV video for person-verification in forensics. Examples of commonly explored
aspects of gait include a person’s walking speed, cadence (steps per minute) and step
variance. Other examples include hip sway, angles of the toes or knees, and so on.

Gait can, very generally, be decomposed into a number of phases; most impor-
tantly, each leg can be in a swing phase or a stance phase. During the stance phase, the
foot is connected to the ground, while during the swing phase, it is moving through
the air. While walking, gait alternates between a double support phase where both
legs are in contact with the ground (that is, both legs are in stance), and a single
support phase where one leg is disconnected from the ground (that is, one leg is in
swing phase and the other leg remains in stance phase). Here, the swing phases al-
ternate between the left and right leg. An illustration of the gait phases is shown in
Figure 5.1.

145

146 Step detection

Figure 5.1: Illustration of the gait phases, showing the transition from double support
to single support, and back to double support.

A person’s gait is closely related to their health. It is well-known that sufficient
physical activity is required to maintain a healthy lifestyle [Haskell et al., 2007; War-
burton, Nicol, and Bredin, 2006]. For many people, walking is one of the primary
contributors to their daily amount of physical activity. As a result, many lifestyle
physical activity programs such as the one discussed in Chapter 4 include feedback
on the number of steps taken, or the daily distance traversed on foot. Algorithms
for step detection and gait analysis are therefore included in numerous commercially
available products related to sport, exercise and healthy lifestyle, ranging from pe-
dometers to healthwatches.

Gait analysis also has a role in the medical domain and healthcare; gait is a com-
plex operation, involving amongst others the musculoskeletal system, the process-
ing of sensory information, balance and coordination. Unsurprisingly, if any of the
systems involved in gait become compromised, the aspects of a person’s gait may
change, in many cases sufficiently so that this causes a so-called gait abnormality
(some of the better known examples include ataxia, waddling gait or Parkinsonian
gait). In many cases, gait abnormalities can be the first warning signs of an un-
derlying condition; Parkinson’s disease being arguably the best known example of
this [Dijkstra et al., 2008; Ying et al., 2007]. However, it’s not just gait abnormalities
that can be informative of potential health-related issues; more subtle changes in gait
can already be linked to a potential decline in health. For example, a study by Shinkai
et al. [2000] with 736 seniors found that walking speed was highly correlated with
becoming functionally dependent within a period of six years. Gait is also closely
connected to fall risk in elderly.

In addition, decline in gait (i.e., deterioration in one or more aspects of gait) has
repeatedly been linked to (the onset of) dementia and cognitive decline [Waite et al.,
2005; Deshpande et al., 2009; van Iersel et al., 2004]. It is not entirely clear what
exactly is the cause of this link, although there are a number of theories that might

5.1 Introduction 147

explain the relationship. Several of them are summarized by Scherder et al. [2007].
One explanation can be found in atrophy of the hippocampus, which is known to
be functionally involved in memory and complex cognitive tasks. Atrophy of the
hippocampus is believed to play a part in memory decline in normal ageing, mild
cognitive impairment (MCI), and various types of dementia. It is believed that the
hippocampus, among other things, plays a role in spatial orientation and navigation.

Another possible explanation offered by Scherder et al. [2007] is damage to the
periventricular white matter, which connects areas of the brain that are a long dis-
tance away from each other. It is believed that periventricular white matter lesions
are related to a decline in gait and balance. In addition, it was found by Ryberg et al.
[2007] that atrophy of the corpus callosum correlated with MMSE score (or mini-
mental state examination score, referring to a questionnaire by Folstein, Folstein,
and McHugh [1975] widely-used to measure cognitive impairment). In general, the
corpus callosum has been reported to play an important role in bilateral motor coor-
dination. It is also possible is that cognitive decline can cause changes in gait through
a more direct fashion. For example, a reduced ability by the patient to divide atten-
tion effectively can have a negative impact on gait, especially under conditions with
a large amount of distractions.

As a result, the automatic assessment of gait parameters such as cadence and
walking speed has received considerable attention in research. Accelerometry is an
often-used measurement technique for estimating gait parameters as accelerometers
are small, cheap and power-efficient, and can be easily worn or attached to objects or
clothing. As such, a large variety of techniques and algorithms have been developed
for step detection and gait assessment based on input from a tri-axial accelerometer,
for various wearing positions, including ankle, wrist and torso positions.

In this chapter, we aim to address the third research question introduced in Chap-
ter 1: Is it possible to determine (psycho)motor skills such as gait accurately using
wearable sensors? In doing so, we also address the regression component of the
model for human motion tracking described in the main research question, by in-
vestigating a number of methods that can be applied to the estimation of cadence,
defined as the number of steps a person takes in the span of one minute.

In particular, changes in cadence have often been related to changes in cognitive
or physical health [Verghese et al., 2008; Wittwer, Webster, and Menz, 2010; Maquet
et al., 2010]. There is a close relation between cadence and step detection; essen-
tially, cadence can be seen as the number of steps detected per minute. Compared to
some applications of step detection however, cadence estimation does not necessarily
require knowledge of when each step occurred, only that the step happened. Cadence
is also strongly related to walking speed and physical activity intensity, and can be
indicative of behavioral patterns when studied in a free-living environment [Tudor-
Locke and Rowe, 2012].

148 Step detection

Specifically, our aim is to investigate the performance of a number of cadence
estimation methods using tri-axial acceleration data, for a variety of walking speeds,
at both the wrist and torso (pendant) position. As mentioned, preferred and maxi-
mum walking speed can often differ considerably between individuals and subpopu-
lations [Bohannon, 1997]. To assess differences and changes in walking characteris-
tics it is important that algorithms perform well across the expected range of walking
speeds. In particular, it has often been found that performance can degrade at faster
and slower walking speeds [Dijkstra et al., 2008; Zijlstra and Hof, 2003; Storti et al.,
2008].

There is a wide body of literature available on methods for cadence and step
detection. The literature regarding individual methods is discussed in Section 5.2,
whenever appropriate. With regard to more general discussions, a performance com-
parison for four freely available step detection methods on both healthy participants,
as well as mobility impaired geriatric participants, is described by Marschollek et al.
[2008]. The authors do not investigate the effect of specific walking speeds on the
performance of the selected step detection methods. There, the authors conclude that
all four algorithms work poorly overall, and that algorithms customized to a specific
sample often perform worse on a sample with different motor characteristics (for
example, elderly).

The validity of step detection approaches with a tri-axial accelerometer is inves-
tigated by Fortune et al. [2014], using an activity monitoring system and a num-
ber of commercially available products, with walking speeds ranging from 0.1 to
4.8 m/s. The authors conclude there is high agreement with manually-recorded step
counts for these methods, consistent across most walking speeds except for low
speeds (< 0.5 m/s). Ryan et al. [2006] compare the performance of three com-
mercially available pedometers at five different treadmill walking speeds, and three
free-walking, self-selected speeds. They conclude that the performance of two of the
pedometers decreases at slower walking speeds. The latter two studies mostly focus
on commercial devices and do not include any systematic comparisons of multiple
algorithms and wearing positions.

Below, the performance of a number of cadence estimation methods using tri-
axial acceleration data is investigated, for a variety of walking speeds, at both the
wrist and torso (pendant) position. Preferred and maximum walking speed can often
differ considerably between individuals and subpopulations. For example, walking
speed generally decreases with age [Bohannon, 1997]. It is therefore important to
investigate whether the performance of an algorithm varies across different walking
speeds. It should be noted that the selected algorithms fit the criteria of being ‘easy to
use’ in practice, in the sense that they do not assume a fixed orientation with regards
to the body, or require calibration for individual users to be effective.

5.2 Cadence estimation algorithms 149

In the remainder of this chapter, the cadence estimation algorithms used are first
discussed in Section 5.2. The data set used to investigate the performance of these
algorithms is then discussed in Section 5.3, followed by the results on algorithm
performance on the data set in Section 5.4. Finally, conclusions are provided in
Section 5.5.

5.2 Cadence estimation algorithms
Cadence estimation algorithms are generally closely related to step detection algo-
rithms, as cadence is simply defined as the number of steps per minute. As a result,
cadence estimation algorithms can often be used for step detection and vice versa,
sometimes with some adaptations required. Both cadence estimation and step detec-
tion often rely on finding steps from the raw accelerometer signal, which are often
visible as peaks in the signal. Therefore, peak detection algorithms are commonly
employed.

There is a wide variety of accelerometry-based step detection algorithms de-
scribed in literature. However, some broad categorizations can be made. First, as
walking is a highly periodic signal, a group of algorithms exists which relies on
transformations to the frequency domain or other methods to determine periodicity.
This includes algorithms based on Fourier transform, autocorrelation or wavelet anal-
ysis [Ladetto, 2000]. Second, there is a group of algorithms which relies on filtering
or other forms of preprocessing to improve the effectiveness of peak detection al-
gorithms, with examples including threshold-based methods [Mladenov and Mock,
2009; Ryu et al., 2013] and the QRS algorithm [Ying et al., 2007; Marschollek et al.,
2008]. Third is a group of algorithms which determines steps through measures of
similarity between neighboring segments of the signal, dynamic time warping being
arguably the best-known example of this [Li et al., 2012]. Finally, there is a group
of algorithms which relies on heuristics for step detection [Huang et al., 2010; Oner
et al., 2012]; many rule-based approaches fall into this category.

It should be noted that these categories are not entirely free of overlap, nor are
they exhaustive - other examples include the use of finite state machines [Alzantot
and Youssef, 2012], or hidden Markov models [Mannini and Sabatini, 2012]. The set
of algorithms considered here includes algorithms from each of these groups; these
are algorithms based on autocorrelation, dynamic time warping, iterative step detec-
tion based on heuristics, and the QRS algorithm. As mentioned in the introduction,
an additional requirement was that the algorithms do not assume a fixed accelerom-
eter orientation with regards to the body, or require calibration for individual users.
These requirements mean that the algorithms can be more readily used in real-life
applications. The algorithms described here can be used for both cadence estima-
tion and step detection, with some modifications in the case of the autocorrelation
algorithm.

150 Step detection

Walking segmentation. In this chapter, we primarily focus on cadence estima-
tion, and do not discuss the related problem of segmenting measurement sequences
recorded during day-to-day activity into segments of walking and segments contain-
ing other behaviors. As the data set used in this study does not contain annotated,
longitudinal data, we cannot use this data to determine the performance of such a
segmentation method. Even so, the use of sequence segmentation to derive walking
sequences is an important step in many applications that involve the estimation of
cadence or other gait parameters from daily life measurements.

One approach to this is to use a method for k-segmentation as described in Chap-
ter 2, and apply the algorithm to (for example) each day of measurements. As we
would generally not have knowledge on the total number of walking segments, the
algorithm would need to be repeated for a number of different values for k. For some
applications however, it can be sufficient to simply find the k best fitting (according to
our error criterion) walking segments, and derive gait estimates from these segments.

In this application of k-segmentation, using the L1 or L2 norm described in Chap-
ter 2 directly on the raw acceleration measurements may not be the optimal approach,
as the signal mean or median of a segments may not be the strongest indicator of
walking behavior. As the acceleration signals during walking are generally cyclic
in nature, and tend to show a high signal intensity, applying the L1 or L2 norm to
features such as signal intensity, variability, or regularity may be more effective.

More heuristic based approaches to walking segmentation can also be used; these
benefit from being usable in an online fashion, and impose little computational load,
often at the cost of being less discriminative. Such methods often take the form of
a simple thresholding scheme, for example based on signal intensity as described
by Dijkstra et al. [2008], or variance as described by Ladetto [2000].

Outside of threshold-based segmentation, Bradjic and Harle [2013] investigate a
number of walking segmentation algorithms, including methods based on short-term
Fourier transform, wavelet analysis, hidden Markov models and k-means clustering1.
A Fourier transform-based method for step segmentation is also used by Zhang et al.
[2012] for detecting gait in a middle-aged to elderly population.

5.2.1 Notation
At each time interval, the tri-axial accelerometer simultaneously produces three mea-
surements, one for each axis x, y and z. The accelerometer measurements can be
considered a vector a = (ax,ay,az). The magnitude (or norm) of the signal (see Fig-
ure 5.2a) is determined as

s =
√

a2
x +a2

y +a2
z ,

1As mentioned in Chapter 2, the k-means problem is closely related to the k-segmentation problem,
with the exception that the k-means problem does not impose an ordering on the items.

5.2 Cadence estimation algorithms 151

resulting in a sequence S = (s1, . . . ,sn) of magnitude measurements. Using the mag-
nitude of the signal rather than the measurements of the individual axes has the ad-
vantage that the magnitude is more or less invariant of the orientation of the sensor.
In addition, as the gravity component is constant throughout S, it can easily be sub-
tracted.

For a given sequence S, let X = (x1, . . . ,xm) be a sequence of indices denoting all
local maxima of S, with xi ∈ (1, . . . ,n). Here, xi represents the location of the peak
in S; the height of the peak itself is given by sxi . The peaks in X are assumed to be
sorted in increasing order, that is, xi < x j for all i < j with i, j ∈ (1, . . . ,m). A method
on how to find such a sequence of peaks X is detailed in Section 5.2.1.

While peak detection can in principle be used to directly determine footsteps from
the raw magnitude signal, in practice such an approach often proves to be highly
sensitive to noise in the measurements. As such, rather than using peak detection
directly as a cadence estimation algorithm, here it is introduced as a component for
a number of the cadence estimation algorithms discussed here, where peak detection
is preceded and / or followed by a number of pre- or post-processing steps.

Peak detection
Many step detection algorithms use peak detection as one of their components, as
such algorithms rely on the ability to find peaks in a given signal. This section de-
scribes the peak detection algorithm used by a number of the cadence estimation
methods described in later sections. Here, a fairly straightforward algorithm is used
that makes use of a minimum height difference δ between successive peaks and val-
leys. The algorithm works by iterating over a sequence S, alternatively searching for
either a peak or valley, and retroactively assigning a value as a peak or valley once a
value is found which exceeds the minimum height difference δ .

At all times, the algorithm maintains the values and location of the current max-
imum and minimum values, cmax = (Sa,a) and cmin = (Sb,b), respectively. For each
new item i in S, cmax and cmin are updates as follows:

cmax =

{
(si, i), if si > sa

(sa,a), otherwise

cmin =

{
(si, i), if si < sb

(sb,b), otherwise

If the algorithm is currently searching for a peak, then a new peak is added to
the set of peaks X if si < sa− δ . In this case, a is added to X , cmin = (si, i), and the
algorithm will next look for a valley. Similarly, if the algorithm is searching for a
valley and si > sb + δ , the algorithm will set cmax = (si, i) and will next look for a
peak. An example of the peak detection is shown in Figure 5.2b.

152 Step detection

(a) Example of the magnitude of a sequence of accelerometer measurements for a
participant walking at a speed of 4 km/h.

(b) Example of peak detection results using the peak detection algorithm described
in Section 5.2.1, on the walking data shown in Figure 5.2a, using a minimum height
difference δ of 3. Detected peaks are shown in red, valleys are shown in green.

Figure 5.2: Example of walking data magnitude and peak detection.

5.2.2 Autocorrelation
Autocorrelation algorithms for step detection make use of the highly periodic na-
ture of walking to determine at which intervals the signal is highly correlated with
itself. There are several strategies to implementing a step detection algorithm based
on autocorrelation, but most rely on finding the time interval, or lag, at which the
autocorrelation reaches a peak. The autocorrelation is defined as

Definition 5.1 (Autocorrelation). The autocorrelation RSS for a sequence S is given
by

RSS(j) =
n− j−1

∑
i=0

si+ j · si,

where j is the autocorrelation lag. 2

For cadence estimation, it is possible to examine RSS(j) for a number of lags up
to a reasonable delay, of for instance 2 seconds. In the implementation used here, the

5.2 Cadence estimation algorithms 153

signal is first smoothed with a moving average filter with a window size equal to one-
fifth of the sampling rate, in order to remove some degree of noise from the signal.
Then, the autocorrelation is calculated for all successive lags. For the experimental
results described in Section 5.4, this is generally equivalent to a delay of 30 seconds.
The cadence is then determined based on the average lag between all peaks found by
the peak detection algorithm.

As an alternative to autocorrelation, methods based on Fourier transform or
wavelet analysis can also be used to find the step frequency. We chose to use
the autocorrelation algorithm over these more advanced techniques as in practice,
autocorrelation-based methods often seem to be preferred due to their relatively low
computational requirements.

5.2.3 QRS
The QRS algorithm described here is based on the well-known Pan-Tompkins al-
gorithm for detecting QRS-complexes in ECG (heart rate) signals described by Pan
and Tompkins [1985], and has previously been applied to step detection (for exam-
ple by Marschollek et al. [2008]). Like the QRS-complexes, the steps in the ac-
celerometer signals tend to be of a periodic nature as well, and as such the principles
of QRS detection can also be applied to step detection. The basic premise of the
Pan-Tompkins algorithm is a series of four cascading filters which remove noise and
locate the periodic peaks. To improve performance on step detection problems, a few
adaptations have been made compared to the original algorithm, as will be detailed
below.

As mentioned, the QRS algorithm can be seen as a series of four cascading fil-
tering steps. The first step is applying a band-pass filter to the signal. In the original
Pan-Tompkins algorithm, this was accomplished by cascading a low-pass and a high-
pass filter to obtain a passband of 5−15 Hz. As the cadence of most (healthy) people
tends to be around two steps per second or less, resulting in a step frequency of around
2 Hz, this passband is not optimal for step detection applications. In this implemen-
tation, a single band-pass filter was used instead, with a passband of 1− 2.5 Hz,
designed using the Parks-McClellan algorithm in Matlab.

In general, the filters used as part of the QRS algorithm are applied through con-
volution, which is indicated as S∗F for a sequence S and a filter F .

Definition 5.2 (Convolution). The convolution S∗F is defined as

(S∗F)(k) = ∑
j

s j fk− j

for all indices j for which s j and fk− j are valid items. 2

154 Step detection

The second step consists of applying a derivative filter to the signal. The aim of
this filter is to derive information regarding the slope of the signal.

Definition 5.3 (Derivative filter). The derivative filtered signal Sder is given
as Sder = S′ ∗Fder, for the band-pass filtered signal S′, and the derivative filter Fder

given as Fder = [−1 −2 0 2 1]
8 . 2

In the original Pan-Tompkins algorithm, the third step consists of squaring the
signal through the filtering step ssq

k = (sder
k)2. The aim of this is to identify large

changes in the signal, whether in the positive or negative direction. For step detection,
this approach turns out to often not be very effective, as it can result in two peaks per
step, one during the stance phase and one during the swing phase. Instead, a slightly
modified approach to squaring is used in the implementation described here.

Definition 5.4 (Squaring). The squared signal Ssq is defined as

ssq
i =

{
q2

i , if qi > 0
0, otherwise

where qi = sder
i −Sder, and where Sder represents the (local) mean of Sder. 2

The fourth and final filtering step consists of applying a simple moving window
integration, with the aim of smoothening out the resulting signal.

Definition 5.5 (Moving window integration). The signal after moving window in-
tegration Smw is defined as Smw = S sq ∗W , with W = [1 1 1 1 1 1 1 1 1 1]

10 . 2

Note that the size of the moving window, which is chosen as 10 here, will depend
on the sample rate of the accelerometer signal. At a sample rate of 25 Hz, a window
of 10 samples will be able to cover most peaks as a result of walking, while being
unlikely to merge the peaks of several steps together.

Peak detection is then used to find the steps in the resulting signal. In the original
algorithm, a series of adaptive thresholds is used to find QRS-complexes. For step
detection however, a single, fixed threshold is used; this is to avoid detecting steps
erroneously in the signal during periods where someone is not actually walking. The
exact threshold may vary depending on the accelerometer used.

5.2.4 Dynamic time warping
Dynamic time warping (DTW) is a technique used to find the optimal alignment
between two time-ordered sequences g and h of length n and m respectively. In a
sense, DTW allows for a measure of similarity between two sequences which may
have been shifted in time (relative to each other). DTW aims to align the sequences g
and h through the construction of a warping path.

5.2 Cadence estimation algorithms 155

0 5 10 15 20 25
Step sequence measurements

Figure 5.3: Example of the warping path for two step sequences. The dashed lines
between the two sequences indicate which points have been matched together by the
optimal warping path, which is shown in Figure 5.4.

0 5 10 15 20 25
0

5

10

15

20

25

Step sequence 1 measurements

S
te

p
se

qu
en

ce
 2

 m
ea

su
re

m
en

ts

Figure 5.4: Optimal warping path for the sequences shown in Figure 5.3. Here, se-
quence one corresponds to the sequence marked in blue in Figure 5.3, and sequence
two corresponds to the sequence marked magenta. The path on the grid indicates
which sequence measurements have been linked together as part of the optimal warp-
ing path.

156 Step detection

Definition 5.6 (Warping path). A warping path p is a sequence of length l with
pi(a,b) ∈ (1, . . . ,n)× (1, . . . ,m). A valid warping path must adhere to the following
three conditions:

• Boundary condition: p1 = (1,1) and pl = (n,m).

• Monotonicity condition: a1 ≤ a2 ≤ . . .≤ al and b1 ≤ b2 ≤ . . .≤ bl .

• Step size condition: pi+1− pi ∈ {(1,0),(0,1),(1,1)} for i = 1, . . . , l−1.

2

Briefly, these conditions state that: (1) the first and last items in g and h must remain
the first and last items, respectively, (2) the items in g and h cannot swap their ordering
in time, (3) no item can be skipped, and (4) there are no repeated pairs in the warping
path p. Here, (1) corresponds to the boundary condition, (2) corresponds to the
monotonicity condition, and (3) and (4) correspond to the step size condition.

Definition 5.7 (Optimal warping path). The cost cp(g,h) of a warping path p is
defined as cp(g,h) = ∑

l
i=1 c(gai ,hbi), for some cost function c. The warping path that

minimizes the cost cp(g,h) is called the optimal warping path. 2

Here, the L1 distance metric is chosen as the cost function of the warping path, giv-
ing c(gai ,hbi) = |gai −hbi |. Finding the optimal warping path can be done efficiently
through dynamic programming [Muller, 2007]. The resulting cost of the optimal
warping path can be seen as a measure of similarity between g and h. An example of
the optimal warping path for two sequences can be seen in Figures 5.3 and 5.4.

To determine the potential step sequences, the accelerometer magnitude signal S
is first filtered using a zero-phase 20th order band-pass filter with a passband be-
tween 1 and 2.5 Hz. The filter was created using the Parks-McClellan algorithm
implemented in Matlab.

Peak detection is then used to find a set of peaks X on the filtered signal S′. To
avoid too much overlap, peaks that are too close to each other are removed using the
following procedure: starting with the first detected peak x1, and for each successive
peak xi, determine

argmax
j=1,...,m

s′x j
|x j ∈ [xi +dmin,xi +dmax]

for parameters dmin and dmax. In other words, for a peak xi, it is determined if there
exist any peaks in the interval [xi + dmin,xi + dmax], and if so, determine the highest
peak x j in the interval. If such a peak exists, x j is considered the next peak after xi,
and all peaks xl with i < l < j are removed from X , and the algorithm proceeds
from x j. If no peak is found within the interval, the algorithm continues from xi+1.

5.2 Cadence estimation algorithms 157

Figure 5.5: Example of the ISD algorithm on walking data, showing the accelerom-
eter magnitude, the originally detected peaks, and the resulting peaks selected by the
ISD algorithm. Note that the figure shows the unfiltered accelerometer magnitude,
which as a result causes some of the peaks detected on the filtered magnitude to
appear misaligned.

For each remaining peak xi ∈ X , a potential step sequence is generated.

Definition 5.8 (Step sequence). The step sequence q(xi) for peak xi ∈ X is defined
as q(xi) = s′m−(xi)

, . . . ,s′m+(xi)
, with

m+(xi) = argmin
j=xi+1,...,xi+δ (X)

s′j

m−(xi) = argmin
j=xi−δ (X),...,xi−1

s′j,

where δ (X) is the median distance between the successive peaks in X and s′j refers
to the filtered signal S′. 2

Each sequence is then compared to its four closest neighbors (two on each side)
by calculating the average cost of the optimal warping paths:

c(xi) =
1
4 ∑

j∈{−2,−1,1,2}
c(q(xi),q(x j)) .

A peak is then accepted as a step if c(xi)< T for some threshold T . For the algorithm,
the threshold was set as T = 0.8, based on empirical evaluation.

5.2.5 Iterative step detection
The iterative step detection (ISD) algorithm works by iteratively adding or removing
peaks from a selection in order to optimize an error or fitness function and obtain
the most likely set of footsteps. At each iteration, the algorithm will greedily add or

158 Step detection

remove one or two peaks from the current selection, depending on what yields the
largest improvement to the overall error, continuing to iterate until the improvement
of the error falls below a certain threshold, or a maximum number of iterations is
reached.

Like the dynamic time warping algorithm, the first step consists of applying a
zero-phase band-pass filter, after which the local maxima X are determined on the
filtered sequence S′. The algorithm maintains a subset of peaks Q t ⊆ X , where t
represents the number of iterations. The initial set of peaks is set to all detected
peaks, that is, Q1 = X . Like the peaks in X , the peaks in Q t are assumed to be sorted
in increasing order, or in other words, for all peaks q t

i ∈ Q t , it holds that q t
i < q t

i+1
for i = 1, . . . ,m t −1. Here, m t represents the number of peaks in Q t for iteration t.

For each peak q t
i ∈ Q t , a fit f (q t

i) can be calculated. This fit is based on the
distance to nearby peaks, and the differences in amplitude between peaks. The fit
can either be positive (for a good match) or negative (for a poor match). The fit for a
selection of peaks Q t is then given as

f (Q t) =
m t

∑
i=1

f (q t
i).

The algorithm then tries to improve on the overall fit f (Q t) by including and / or
removing one or two peaks during each iteration. As a result, a new selection Q t+1

which maximizes the fit f (Q t+1) is created by exploring all possible peak pairs.
The iterative process continues until a maximum number of iterations is reached,
or f (Q t+1)− f (Q t)< T for some threshold T .

To determine f (q t
i), a fitness metric is used which relies on a set of four param-

eters, θ = (l,d,a,b). Here, l represents the number of other peaks that q t
i will be

compared to, given by the sequence oi = (q t
i−l, . . . ,q

t
i−1). Furthermore, d is a fitness

weight parameter for metrics related to the distance between peaks, a is a weight for
metrics related to peak amplitudes, and b is a coefficient for the difference in time
between successive peaks. The fitness metrics themselves are based on the following
observations:

• Step durations are generally constant while walking.

• Successive steps must not be too close or too far after each other.

• Step duration rarely changes more than then 15% between successive steps.

• Step amplitudes are of roughly similar height (with some upward spikes).

5.2 Cadence estimation algorithms 159

Definition 5.9 (Iterative step detection fit). The fit f (q t
i) is determined as the

sum f (q t
i) = f1(q t

i)+ f2(q t
i)+ f3(q t

i)+ f4(q t
i) of the following four components:

• f1(q t
i) =−b|∆ t(oi)−∆ t(q t

i ,q
t
i−1)|, where ∆ t(q t

i ,q
t
i−1) = q t

i −q t
i−1, and ∆ t(oi)

is the mean difference in time between successive peaks in oi.

• f2(q t
i) =

{
d, if ∆ t(q t

i ,q
t
i−1)> δmin∧∆ t(q t

i ,q
t
i−1)< δmax

0, otherwise.

• f3(q t
i) =

{
d, if |∆ t(oi)−∆ t(q t

i ,q
t
i−1)|< 0.15 ·∆ t(oi)

0, otherwise.

• f4(q t
i) =

{
−a, if s′q t

i
< s′oi

0, otherwise
where s′oi

is the mean of the peak height in oi.

2

The optimal values for δmax and δmin depend on the target population (e.g.,
healthy or movement-impaired). The minimum and maximum step lengths used here
are 0.4 seconds and 0.8 seconds, respectively.

An example of the ISD algorithm on walking data is shown in Figure 5.5. For
the implementation used in the results (Section 5.4), the parameters were set based
on empirical evidence as l = 7, d = 45, a = 35, and b = 3. It should be noted that
when implementing this algorithm, it is not necessary to recalculate the fit of every
peak whenever a new peak is added or removed, since such a change affects at most l
peaks for which the fit needs to be recomputed. Implementing the algorithm in such
a manner can greatly increase the speed of the algorithm, particularly for sequences
with a large number of peaks. For very large sequences, an ‘online’ version of the
algorithm can be used, which only evaluates a certain window of peaks at a time,
although this can lead to a small loss of performance.

5.2.6 Improving cadence estimation performance through post-processing
Regardless of the algorithm used, cadence estimation can sometimes be improved
through post-processing steps based on the final set of detected steps - for instance,
steps which are too close to one another can be removed to create a more accurate
sequence of steps. Below, two post-processing approaches are discussed, which are
used to improve cadence estimation for a number of the algorithms described above.

Improving performance through heuristics
A way to improve cadence estimation on longer sets of walking data is finding ‘good’
segments of the data to base the cadence estimate on, and disregard results on noisy
data where steps are missing or detected incorrectly. To determine the segments that
are kept or discarded, a set of heuristics can be used similar to the ISD algorithm.

160 Step detection

In this case, the observation that successive steps rarely change more than 15% in
duration is used, as well as the fact that there is an expected maximum and minimum
duration between successive steps. Steps which do not fit these criteria are marked as
invalid.

If one or more segments of at least 15 successive, valid steps are found, then these
segments are used to determine the estimated cadence. If no such segment is found,
cadence is determined over all footsteps that were detected. Using this method, it is
important to retain a decent number of steps to reduce the risk of high variance in the
cadence estimates, caused by basing the estimate on only a small sample of the total
data. It is therefore advisable to choose parameters such as maximum and minimum
step length conservatively.

The heuristic described here is used for the DTW and QRS algorithms. It was not
added to the ISD algorithm as this set of heuristics is already included implicitly in
its fitness function. Similarly, it was left out of the autocorrelation algorithm as the
algorithm does not explicitly detect steps.

Improving performance with autocorrelation
Apart from directly estimating cadence with autocorrelation, it is also possible to
use the autocorrelation of the walking signal to try and improve other step detection
algorithms. One way to use the autocorrelation is to iterate over all footsteps detected
successively, using the autocorrelation lag as an indicator of where the next step is
expected to be located. For a detected peak xi and lag l, let xa be the peak closest
to xi + l. Then, if xi + l−δ · l ≤ xa ≤ xi + l+δ · l, xa is selected as the next peak, and
all intermediate steps between xi and xa are removed. Otherwise, xi+1 remains the
next peak and the algorithm continues from there.

It should be noted that using the autocorrelation lag in this manner can also hurt
performance when the lag does not accurately match the actual step duration. This
can result in removing detected steps which were actually valid.

5.3 Data collection
To investigate the step detection algorithms detailed in Section 5.2, a wireless in-
ertial measurement unit named ‘SMM’ was used. The SMM contains a number of
sensors, including a gyroscope, magnetometer, pressure sensor and three tri-axial
accelerometers. For the purpose of this study, only the output from one of the tri-
axial accelerometers was considered; for many practical applications, only a single
accelerometer is available, mainly due to constraints related to power consumption.
Accelerometer data was collected at a sampling rate of 50 Hz, and stored in the inter-
nal flash memory of the SMM. At the end of the protocol, the data was transferred to
a computer through a USB connection.

5.4 Results 161

As part of the study, 20 healthy participants (average age: 35.4±10.3) were re-
cruited for a treadmill-walking task and a free-walking task. During these tasks, the
participants wore one SMM data collection device at the wrist using a fitted pouch at-
tached to a Velcro strap, and one SMM as a pendant using a cord around the neck. No
particular attention was given to the orientation of the SMM, however, participants
were asked to wear the SMM on their non-dominant wrist.

During the treadmill task, participants walked on a treadmill at 12 different
speeds, ranging from 1.5 to 6 km/h, with increments of 0.5 km/h. Participants walked
each speed for a duration of 90 seconds; for the purposes of data analysis, only the
last 60 seconds were considered, in order to allow the participants to adjust to the
speed of the treadmill. They were asked to walk with their arms free (as opposed to
holding the side rails) if they felt secure in doing so.

During the free-walking task, participants were asked to walk a pre-defined 24
meter trajectory consisting of straight line down a corridor, with marked start and end
points. Each participant completed this track three times at three different speeds:
their preferred speed, slow, and fast. Participants were allowed to use their own
interpretation of what they considered as slow or fast speeds. During both tasks, a
camera was used to collect ground-truth gait information through manual annotation
of the number of footsteps at each treadmill speed. Due to technical issues with the
devices (1) and (partially) missing or unusable video recordings (5), data from 14
participants was included in the analysis.

5.4 Results
To estimate the performance of the algorithms on cadence estimation, the root mean
square error (RMSE) between the recorded ground truth and the cadence estimated
by the algorithms is used. The RMSE is defined as

e =

√
1
p

p

∑
i=1

(ye− ygt)2

where p is the number of participants, ye is the estimated cadence, and ygt is the
cadence recorded as the ground truth.

Using the accelerometer worn on the pendant position as input, the performance
of the algorithms on the treadmill task is shown in Figure 5.6. As can be seen in the
figure, all algorithms perform well on the higher walking speeds of 3.5 km/h or more.
At lower walking speeds, however, the RMSE increases for many of the algorithms,
and for the autocorrelation algorithm in particular. The boosted QRS algorithm is
less affected by the decrease in walking speed.

For the wrist position, we would generally expect algorithms to perform worse;
this is in part because we measure movement further away from the ‘source’, and
because the wrist position is likely to experience more movements not related to

162 Step detection

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−1

10
0

10
1

10
2

Walking speed (km/h)

R
M

S
E

 (
st

ep
s/

m
in

)

QRS DTW ISD xcorr QRS+

Figure 5.6: Performance of the cadence estimation algorithms on the treadmill task,
using data from the pendant position. For each algorithm, the root mean square error
is shown on a logarithmic scale for each of the walking speeds.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−1

10
0

10
1

10
2

Walking speed (km/h)

R
M

S
E

 (
st

ep
s/

m
in

)

QRS DTW ISD xcorr QRS+

Figure 5.7: Performance of the cadence estimation algorithms on the treadmill task,
using data from the wrist position. For each algorithm, the root mean square error is
shown on a logarithmic scale for each of the walking speeds.

walking. In Figure 5.7, we can see that this is indeed the case. Here, relatively large
errors do not only occur at slow walking speeds, but also at higher walking speeds.
This is possibly due to the algorithms having difficulty distinguishing between the
step frequency and the stride frequency in the signal.

In general, the algorithms still perform better at higher walking speeds compared
to the lower walking speeds. For some algorithms, outliers in RMSE can be observed
at particular speeds. This is generally due to misestimation of a single participant’s

5.4 Results 163

pendant wrist
speed QRS DTW ISD xcorr QRS+ QRS DTW ISD xcorr QRS+

1.5 37.30 33.41 35.51 57.61 1.97 31.72 29.23 16.96 39.90 35.37
2 35.33 24.19 12.01 42.90 0.97 15.95 17.96 5.30 37.52 17.13
2.5 11.57 6.42 0.95 31.54 1.06 7.32 11.76 0.94 23.19 3.84
3 0.77 1.32 0.90 8.69 0.84 7.75 0.83 0.66 26.75 0.83
3.5 0.88 0.88 0.90 0.87 0.85 2.54 1.48 1.15 15.68 1.29
4 0.87 0.86 0.90 0.95 0.88 0.86 1.20 0.86 13.44 14.61
4.5 0.85 0.82 0.93 0.72 0.76 4.88 2.10 1.09 14.76 0.94
5 0.72 0.72 0.70 0.88 0.69 1.28 6.77 7.46 23.41 0.86
5.5 0.77 0.90 0.74 0.72 0.77 1.32 10.40 1.23 22.95 0.58
6 0.95 1.35 1.12 0.95 0.95 1.82 23.51 18.15 26.84 1.15

Table 5.1: Root mean squared error scores for the QRS, DTW, ISD, autocorrelation
(xcorr) and QRS combined with autocorrelation (QRS+) algorithms at various tread-
mill speeds for the pendant and wrist positions. The bolded values indicate the best
performance for each walking speed and wearing position.

position speed QRS DTW ISD xcorr QRS+

pendant preferred 2.18 2.04 2.28 2.44 2.22
slow 31.41 23.09 21.52 38.81 2.38
fast 4.01 8.97 5.40 3.59 4.11

wrist preferred 9.30 13.13 7.11 35.26 1.85
slow 25.53 18.20 9.57 31.73 21.19
fast 24.78 36.87 39.38 46.32 25.47

Table 5.2: The root mean squared error of each of the algorithms on the free-walking
task, for both the pendant and wrist wearing positions, while walking at either the
preferred, slow or fast walking speeds.

cadence. Examples include the combined QRS and autocorrelation algorithm, and
the ISD algorithm on the wrist position, at the 4 km/h and 5 km/h speeds respectively.
The exact RMSE for each of the algorithms for all treadmill speeds and both wearing
positions is shown in Table 5.1.

The deterioration in performance can partly be attributed to a decrease in signal-
to-noise ratio at slower speeds. For step detection in healthy adults, however, this
may not be a major issue, as many people have a preferred walking speed which
is sufficiently high to avoid these issues. For populations that tend to walk at slower
speeds, the deterioration in performance may prove to be substantial. Table 5.2 shows

164 Step detection

the RMSE of the algorithms on the free-walking task for both wearing positions, and
the slow, fast and preferred walking speeds.

At the preferred speed (average in km/h: 4.84± 0.52 SD), most algorithms
provide reasonable estimates for the actual cadence regardless of wearing position.
When the participants were asked to walk slowly (average in km/h: 2.97±0.85 SD),
however, we can see in the table that there are more cases where the estimated ca-
dence differs substantially from the actual cadence, resulting in increased RMSE. At
fast speed (average in km/h: 6.36±0.60 SD) there is a clear difference between the
wearing positions. At the pendant position, performance remains fairly high, while
at the wrist position, a deterioration similar to slow walking speeds can be observed;
likely again due to the difficulty in distinguishing between steps and strides in the
accelerometer signal.

5.5 Conclusion
As was expected, walking speed has a considerable impact on the performance of
the accelerometry-based algorithms for cadence analysis. For walking speeds above
3 km/h, it can be seen that at least for the pendant position, all algorithms show
comparable performance. Below this speed, the error rates rise considerably, in some
cases dramatically so. It is notable that at these low speeds, the QRS combined with
autocorrelation shows the best performance for the pendant position, while the ISD
algorithm shows the best performance for the wrist position. This may be an example
of step detection algorithms being specialized and performing well in one scenario,
while suffering in others as a result - an observation previously made by Marschollek
et al. [2008].

For the wrist position, there are occasionally large increases in error rate for
higher speeds as well. This is likely due to underestimation of the cadence, which
is most likely caused at least in part by the swing of the arm that often accompanies
walking. The duration of the arm swing is typically equal to the stride duration, rather
than the step duration, resulting in the actual cadence being underestimated.

The algorithms in this study have not been tailored to the individual character-
istics of the study participants. The advantage is that these algorithms are expected
to provide the same level of performance to new users ‘out of the box’; a similar ap-
proach is applied by the majority of commercial applications of step detection. Theo-
retically, performance may be improved by learning the individual walking character-
istics of a user. However, there is currently little research into this topic, also because
applications are often constrained in terms of computational resources. Even so, the
automatic and unobtrusive learning of a user’s walking characteristic may be an in-
teresting topic for future research.

Comparing the performance of the investigated algorithms to the state of the
art, Storm, Heller, and Mazzà [2015] describe a study showing that the best perform-

5.5 Conclusion 165

ing commercially available step detectors achieve an accuracy of 1−3% in terms of
mean absolute percentage error. While not directly comparable to RMSE, the errors
observed during the faster walking speeds are in the region of 0.7−0.9 RMSE, which
seem comparable in terms of magnitude. A number of step detection methods and
applications investigated by Fortune et al. [2014] show similar results. Like we ob-
served in our study, agreement between the methods and the ground truth decreases
at lower walking speeds. Marschollek et al. [2008] report relatively high errors in the
step detection methods investigated; this is potentially related to testing on an older
population (likely yielding lower walking speeds), and a relatively short walking dis-
tance of 20 meters.

There are a number of limitations to this study. First, participants were selected
from a research campus and as such are not representative of the population of healthy
adults as a whole. Also, while walking slowly is more similar to the normal gait
of elderly or people with mobility impairments, there are likely to be differences
in gait between these groups which might impact the results of the algorithms. In
addition, it has been noted that people change their gait while walking on a treadmill
compared to walking freely, which might also have an effect on the result. Finally,
while none of the algorithms have been ‘trained’ on the participants of this study, in
some cases parameters have been (globally) adjusted to obtain accurate performance.
Further study is required to determine if these parameter changes are optimal for
other participants and populations.

The results described in this chapter suggest that for cadence estimation and step
detection, care must be taken when measuring populations that are likely to walk
slowly, such as elderly, people with mobility impairments, or Parkinson patients, as
accuracy drops off considerably for many algorithms. In addition, measuring at a
position other than the wrist might be preferable for these groups. For populations
more inclined to walk at regular speeds, most algorithms investigated here show sim-
ilar, fairly accurate performance. For such populations, wrist-based solutions can be
preferable, as accelerometers can be easily integrated into wrist-worn devices such
as a smart watch.

6
Conclusion

The research in this thesis describes the measuring and interpretation of human ac-
tivity and mobile behavior through the use of pervasive and unobtrusive sensors. It
is well understood that activity and health are closely related. The need for the pro-
motion of an active lifestyle in an increasingly sedentary society where obesity and
cardiovascular disease are becoming more widespread is a well-known example of
this. The link between health and activity does not stop at physical exercise, how-
ever. There is a lot of information to be gained by observing people while they are
active; changes in motor function can herald a decline in health, and the lack or pres-
ence of certain behaviors can indicate physical or mental issues as well.

The applications described above all benefit from continuous measurement, in
contrast to occasional check-ups. The former can provide instant and more detailed
feedback, and changing values can be picked up immediately. To facilitate contin-
uous, or pervasive, measurement, sensors should ideally be minimally obtrusive, so
they do not interfere with normal behavior or become a burden to the user. In addi-
tion, to allow ease of use such sensors are often restricted in size or power. Regardless
of the sensor modalities used, the raw output takes the form of a time series; a series
of discrete measurements ordered in time. These form the basis of the analysis and
interpretation of the measured activities and behaviors.

In this thesis, a number of topics related to human motion tracking are addressed.
In Chapter 2, the k-segmentation problem is discussed; this is a common problem

167

168 Conclusion

in the analysis of data over time, and consists of partitioning a set of measurements
into k segments, such that an error criterion is minimized. In many practical applica-
tions, one is interested in finding particular segments that for example match certain
activities, or correspond to a particular time of day. For many error criteria, such as
the Lp criteria (with p = 1,2, . . .), the k-segmentation problem can be solved in poly-
nomial time using dynamic programming, for measurements with a fixed, equidistant
interval, and where segment boundaries align with measurement boundaries. In this
chapter, we show that also for measurements with variable or real-valued durations,
or cases where item boundaries and segment boundaries are not aligned, an optimal
k-segmentation can still be found in polynomial time for the Lp error criteria. In
addition, we show for the L1 and L2 error criteria that more specifically, the seg-
mentation error as a function of the coverage of an item contains at most a single
maximum, and no other stationary points.

In Chapter 3, a method is described to unobtrusively track activities of daily liv-
ing (ADL) in a kitchen environment. ADLs are daily activities that play a role in
self-care; examples include dressing, eating, personal hygiene, and so on. ADLs can
be tracked using a camera and microphone; through the camera, a user’s location can
be tracked within the room, while the microphone can pick up characteristic sounds.
Scene analysis techniques can then be used to identify locations and sounds from
the raw sensor data. Methods are detailed for deriving discrete events from the ob-
served locations and sounds, and for recognizing ADLs through the use of hidden
Markov models (HMMs). A number of variations of the HMM are explored, in-
cluding the MA algorithm for parameter estimation, and the use of coupled hidden
Markov models for combining inputs from audio and video. The chapter also de-
scribes a study with eight participants in which six different ADLs are recorded for
each participant. Audio and video events were both annotated manually and derived
automatically through scene analysis techniques. Using the data from the study, the
well-known Baum-Welch parameter estimation is compared to the MA parameter es-
timation method. The use of chained hidden Markov models for ADL classification
is also investigated. When ADLs are classified offline, after observing the entire ac-
tivity, a maximum accuracy of 97% is achieved on annotated data, and 94% on scene
analysis data. Classifying online using a sliding window approach, where only part
of an activity is observed and different ADLs may overlap, yields an accuracy of 79%
on annotated data, and 73% on scene analysis data. In addition, it is shown that the
multi-modal approach of using both video and audio yields superior performance
compared to using a single modality only.

In Chapter 4 the focus is shifted from activities of daily living to physical activity
in general. In this chapter, it is investigated whether it is possible to predict if people
participating in a lifestyle activity program drop out before the program’s comple-

Conclusion 169

tion. For the duration of a lifestyle activity program, the amount of daily physical
activity of a participant is monitored through a small body-worn sensor, and can be
viewed online by the participant. In addition, the participant has a tailored set of
daily activity targets, and can contact a personal coach through email. The aim of
the program is to slowly increase the amount of physical activity over its duration,
hopefully leading to a permanent increase once the program ends. Participants who
terminate their participation early for whatever reason (referred to as ‘dropouts’) risk
their initial aims of achieving a more active lifestyle. If potential dropouts can be ad-
dressed in a timely fashion, interventions might still be possible. In this chapter it is
investigated which factors (called markers) contribute to dropout probability using a
database of 950 participants of a twelve-week lifestyle activity program. In addition,
a method based on genetic programming is discussed to combine existing markers
into a new set of markers with a higher level of predictive power. Using principal
component analysis and a k-nearest neighbor classifier, results show that without the
use of genetic programming to combine markers, classification accuracy is approx-
imately 64%. By combining markers through genetic programming, classification
class accuracy increases to 72%, which equates to a reduction in the number of errors
of approximately 23%.

Looking closer at how the amount of physical activity can be determined, Chap-
ter 5 investigates methods for step detection and cadence estimation. Step detection
refers to the detection of individual footsteps when a person is walking, and forms
the functional part of a pedometer. In addition, cadence estimation and step detection
have important applications in medicine and healthcare, where changes in gait can be
indicative of underlying health problems such as the onset of cognitive decline. The
focus of this chapter is on comparing various cadence estimation techniques based on
tri-axial accelerator data. Here, four cadence estimation methods (autocorrelation,
QRS, dynamic time warping and iterative step detection) are explored for various
wearing positions of the accelerometer, namely the pendant and wrist wearing posi-
tions. In addition, the performance of the algorithms is investigated for a variety of
walking speeds, ranging from 1.5 to 6 km/h. As expected, performance seems to de-
teriorate for lower walking speeds - this is particularly relevant for elderly or people
with gait abnormalities, as these populations often walk considerably slower com-
pared to ‘healthy’ populations. In addition, the results suggest that pendant-based
cadence estimation is more accurate compared to wrist-based cadence estimation.

In addition to the topics described in the individual chapters, we addressed the
following main research question:

How can segmentation, classification, and regression be applied to problems
that involve the tracking and interpretation of human motion?

170 Conclusion

In light of the main research question, the following three related research ques-
tions were addressed:

• Can activities of daily living (ADL) be unobtrusively tracked and recognized?

• Can analyzing the behavior of people trying to be more physically active help
predict if they will drop out of a lifestyle physical activity program?

• Is it possible to determine (psycho)motor skills such as gait accurately using
wearable sensors?

With regard to the first research question, can activities of daily living (ADL) be
unobtrusively tracked and recognized, a model to unobtrusively recognize ADLs was
developed, and described in Chapter 3. To address this research question, both the
segmentation problem and the classification problem discussed in Section 1.6 need to
be solved. The results from Chapter 3 suggest that the problem of unobtrusive ADL
tracking can be solved with reasonable accuracy, however, a number of challenges
still remain. One of these challenges pertains to the quality of the measured sensor
data. As discussed in Chapter 3, the recognition results based on manually annotated
data are generally superior to those on automatically classified sensor data, indicating
that the feasibility of ADL recognition at least in part depends on the accuracy of the
employed scene analysis techniques. Another aspect is what sensor modalities are
employed; as can be seen in the results of Chapter 3, some sensor modalities yield
better results compared to others. In addition, in many cases it may be beneficial to
combine several sensor modalities, as this may provide better results compared to
any individual modality.

Another remaining challenge is in distinguishing multiple persons in such a sys-
tem, or how to discard sensor inputs not created by the intended user of the system.
This remains an open question for now. One solution is to let the intended users wear
tags or other items that help identify them. However, this will likely reduce the un-
obtrusiveness of the system, and introduces problems when the user forgets to wear
their tag. Other options include more unobtrusive means of identification, such as the
use of a camera for face recognition. Such methods generally still have limitations,
for example, a user must look in the direction of the camera for face recognition to
work. Finally, the results in Chapter 3 also demonstrate the added complexity in-
troduced when both the classification and segmentation problems need to be solved
simultaneously. This can be seen by comparing the results from Section 3.4, where
only the classification problem is considered, to the results from Section 3.5, where
both problems are considered.

In terms of the second research question, can analyzing the behavior of people
trying to be more physically active help predict if they will drop out of a lifestyle
physical activity program, a large set of data from such a program was analyzed to
determine if the event of a participant dropping out can be predicted in advance. The
results of this study are described in Chapter 4, and indicate that the analysis of the

Conclusion 171

participants’ behavior and characteristics can assist in providing an early warning to
coaches regarding potential dropouts. However, the results also illustrate some of the
challenges with such approaches in general. In particular, the large number of data
markers typically available in such data sets can make it challenging to find the cor-
rect markers for the prediction problem at hand. The genetic programming algorithm
used can help with this issue to some extent, as it performs a semi-guided search
of the marker space to determine which markers may be valuable for a particular
prediction problem. There also exist several other methods for marker selection, for
example stepwise selection for regression models. Some care must be taken when
using such methods however, as they should not preclude critical thinking by the re-
searcher with regard to which markers may be relevant for inclusion and as to why
certain markers may have been selected.

In addition, the study in Chapter 4 shows that if the markers in a data set have
little predictive power individually, it may be worthwhile to attempt to combine mark-
ers, and as a result create a new set of markers. More generally, any algorithm for
predictive analysis can only perform as well as what information is provided by the
available markers. In some cases, there is more to be gained from exploring new
markers that can be derived from the overall data set, than by attempting to improve
the algorithms used for the predictive analysis over the data markers (which is not to
say the latter should not also be attempted).

With regard to the final research question, is it possible to determine (psy-
cho)motor skills such as gait accurately using wearable sensors, we show in Chapter 5
that it is possible to accurately determine cadence using a single accelerometer worn
at the wrist or around the neck. However, we also show that there are a number of
factors that impact how accurately gait can be determined. In particular, walking
speed has a considerable impact on how accurately cadence can be determined using
an accelerometer. At lower walking speed, the accelerations due to walking become
less pronounced, making accurate estimation more difficult. It seems likely that the
estimation of other gait features, such as walking speed or step variance, would also
suffer from this effect at lower walking speeds. In addition, the wearing position
of the accelerometer also plays a role in the accuracy of gait estimation. A wear-
ing position that is further detached from the source of the walking accelerations is
more likely to be affected by noise due to other movements. This is also illustrated
in Chapter 5, where using the wrist as a wearing position yields inferior performance
compared to the pendant position in most cases. At lower walking speeds, the ef-
fects of the wearing position are often exacerbated. For applications designed for
populations with low expected walking speeds, such as for instance elderly, it may
be worthwhile to consider carefully the wearing position of a gait estimation sensor.

172 Conclusion

6.1 Discussion on human motion tracking
This thesis concerns the field of human motion tracking. While there are many ap-
plications in this field (including security, sports, and social interaction), we expect
the field to be increasingly driven by applications in healthcare and healthy lifestyles,
as the world continues to age [Mathers et al., 2015] and global health-related costs
continue to increase [WHO, 2011]. As the pressure on the world’s healthcare sys-
tems continues to mount, we will increasingly have to look at technology solutions
to assist and lower the burden on healthcare professionals and carers. While there
are promising innovations, there are also still challenges to overcome [Wiederhold,
Riva, and Graffigna, 2013; Free et al., 2013; de Joode et al., 2012]. As we have seen
throughout this thesis, applications in human motion tracking have a role to play in
these developments.

In addition, the field is, and will likely continue to be, driven by the increasing
ubiquity of sensors in our daily lives; the main contributors to this being the pro-
liferation of smartphones and smartwatches, and the developments surrounding the
Internet of Things (IoT) [Gubbi et al., 2013]. In particular, smartphones and smart-
watches offer widespread sensor platforms already carried daily by a large portion of
the population; for some applications, this precludes the need of wearing a special-
ized sensor platform. In addition, as platform and sensor capabilities expand, there
will be increasingly less need for a commercial application to develop its own sen-
sor solution, making the development of such applications more accessible and less
costly.

There are already a number of publications on the topic of gait analysis describ-
ing applications tailored for smartphone use [Bradjic and Harle, 2013; Huang et al.,
2010; Li et al., 2012; Mladenov and Mock, 2009], as well as on the topic of hu-
man activity recognition [Mitchell, Monaghan, and O’Connor, 2013; Ronao and Cho,
2016]. Indeed, the algorithm described in Chapter 5 could also be implemented for
a smartphone or smartwatch application. However, there are also downsides to these
platforms that should be kept in mind, such as power consumption, differences be-
tween various models in terms of computational power and sensor availability, and
low control over the system as a whole.

The Internet of Things, very generally speaking, refers to the trend of more
sensor-capable devices becoming connected, and as such, allowing us to collect po-
tentially very large amounts of data of a person’s daily life activities and behavior.
While there already is considerable literature on how the IoT can be deployed [Per-
era et al., 2014], there are still many challenges to be solved, and perhaps as a con-
sequence there have been few practical applications in the field of human motion
tracking. For this field, the most relevant extension of the IoT is at the moment the
smart home; a home embedded with sensors that can be used to track and react to its
residents.

6.1 Discussion on human motion tracking 173

The concept of the smart home is closely related to for example the work of Ok-
our, Maender, and Basilakis [2015] or van Kasteren et al. [2008], using a large num-
ber of sensors embedded in a home environment. However, as few people actually
live in a smart home at the time of writing, its practical applications are limited.
While smart homes may have a big impact on the field of human motion tracking
in the future, it seems currently more feasible for solutions based on environmental
sensors to be restricted to a limited number of easy to install sensor boxes, such as
the system described in Chapter 3 or by Urwyler et al. [2015].

With increasingly large amounts of data available from sensors, it is feasible that
techniques from big data analytics will play a larger role in future applications of hu-
man motion tracking. Currently, however, our ability to collect all this data is limited
by many mobile sensors, as the streaming of all data created is often prohibitive in
terms of battery life and bandwidth. As such, for many mobile devices, we must still
rely on local processing of the data.

To an extent, this can be addressed by temporarily storing data on the device itself,
and then synchronizing with a local internet connection, as employed by the sensor
described in Chapter 4. This does have disadvantages for some applications (for
example, real-time data is not available), but is one of the approaches that allows us
to capture large amounts of data using a mobile sensor. While the data set described
in Chapter 4 is relatively small in terms of big data, it is already clear that finding
information in the data set through manual inspection is very difficult, and techniques
from data mining and big data analytics are required.

With regard to the model we described in our main research question, consisting
of segmentation, classification, and regression, we have seen that the problems de-
scribed in this thesis all fit with one or more components of this model. While the
model describes the main components of most problems in the field of human motion
tracking, it is not a sequence of steps that can be applied to solving all problems in
this field; the main reason being that there are often domain-specific steps to be taken
in for example preprocessing of data or the expected behavior of a set of measure-
ments over time. This means that a practitioner of this field cannot simply apply a
method from one application they are familiar with to a new domain, and expect to
be immediately successful. As such, in the field of human motion tracking, one must
draw from a wide variety of expertise, including machine learning, data analytics,
signal processing, movement science, and psychology.

174 Conclusion

6.2 Contributions
Finally, we briefly describe the contributions made to the field of human motion
tracking in this thesis.

• We show that the k-segmentation problem can be solved in O(n2k) time, even
for sequences consisting of items with non-unit durations, or where the align-
ment requirement needs not hold.

• For the L1 and L2 error criteria, we show that between two item boundaries,
the error function contains at most a single maximum, and no other stationary
points.

• We show that the recognition of activities of daily life (ADL) in a kitchen
environment is feasible using a single camera and microphone.

• We investigated the use of coupled hidden Markov models to the detection of
ADLs based on video and audio data. In addition, we investigated the MA
algorithm for parameter estimation in this context, a method that uses both
positive and negative examples for parameter estimation.

• We investigate the contribution of each individual modality in audio and video-
based ADL recognition.

• The performance of ADL recognition based on individual, manually seg-
mented sequences of audio and video data is compared to the performance
when input is provided as a continuous, unsegmented steam of audio and video
data.

• We describe a genetic programming approach to combining individually weak
features for predicting dropout risk of a population in a large, high-dimensional
data set, and compare this method with the heuristic approach used in practice.

• We compare a number of different classes of accelerometry-based gait anal-
ysis algorithms in terms of performance for different walking speeds, under
treadmill and free-walking conditions, for wearing positions at the wrist and
pendant position.

• We introduce an algorithm based on iterative step detection for the detection of
cadence.

Bibliography

Aggarwal, J. and Q. Cai [1997]. Human motion analysis: A review. In Proceedings
of the IEEE Non-Rigid and Articulated Motion Workshop, pp. 90–102. IEEE.
doi:10.1109/NAMW.1997.609859.

Aggarwal, J. K. and L. Xia [2014]. Human activity recognition
from 3D data: A review. Pattern Recognition Letters 48, 70–80.
doi:10.1016/j.patrec.2014.04.011.

Aghabozorgi, S., A. S. Shirkhorshidi, and Y. W. Teh [2015]. Time-
series clustering – A decade review. Information Systems 53, 16–38.
doi:10.1016/j.is.2015.04.007.

Alzantot, M. and M. Youssef [2012]. Uptime: Ubiquitous pedestrian tracking us-
ing mobile phones. In IEEE Wireless Communications and Networking Con-
ference. IEEE. doi:10.1109/WCNC.2012.6214359.

Auger, F., M. Hilairet, J. Guerrero, E. Monmasson, T. Orlowska-Kowalska,
and S. Katsura [2013]. Industrial applications of the Kalman filter: A
review. IEEE Transactions on Industrial Electronics 60 (12), 5458–5471.
doi:10.1109/TIE.2012.2236994.

Azad, R. K., J. S. Rao, W. Li, and R. Ramaswamy [2002]. Simplifying the
mosaic description of DNA sequences. Physical Review E 66 (3), 031913.
doi:10.1103/PhysRevE.66.031913.

Baldi, P. and Y. Chauvin [1994]. Smooth on-line learning algorithms
for hidden Markov models. Neural Computing 6 (2), 307–318.
doi:10.1162/neco.1994.6.2.307.

Bao, L. and S. S. Intille [2004]. Activity recognition from user-annotated ac-
celeration data. In A. Ferscha and F. Mattern (Eds.), Pervasive Computing,
Volume 3001 of Lecture Notes in Computer Science, pp. 1–17. Springer.
doi:10.1007/978-3-540-24646-6 1.

Bataineh, M., T. Marler, K. Abdel-Malak, and J. Arora [2016]. Neural network
for dynamic human motion prediction. Expert Systems with Applications 48,
26–34. doi:10.1016/j.eswa.2015.11.020.

Bellman, R. [1961]. On the approximation of curves by line segments
using dynamic programming. Communications of the ACM 4 (6), 284.
doi:10.1145/366573.366611.

175

176 BIBLIOGRAPHY

Bingham, E. [2010]. Finding segmentations of sequences. In S. Dzeroski,
B. Goethals, and P. Panov (Eds.), Inductive Databases and Constraint-Based
Data Mining, pp. 177–197. Springer New York. doi:10.1007/978-1-4419-
7738-0 8.

Bohannon, R. [1997]. Comfortable and maximum walking speed of adults aged
20–79 years: Reference values and determinants. Age and Ageing 26 (1), 15–
19. doi:10.1093/ageing/26.1.15.

Bonato, P. [2010]. Wearable sensors and systems. IEEE Engineering in Medicine
and Biology Magazine 29 (3), 25–36. doi:10.1109/MEMB.2010.936554.

Boulgouris, N., D. Hatzinakos, and K. Plataniotis [2005]. Gait recognition: A
challenging signal processing technology for biometric identification. IEEE
Signal Processing Magazine 22 (6), 78–90. doi:10.1109/MSP.2005.1550191.

Bradjic, A. and R. Harle [2013]. Walk detection and step counting on uncon-
strained smartphones. In Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pp. 225–234. ACM.
doi:10.1145/2493432.2493449.

Brand, M. [1997]. Coupled Hidden Markov Models for Modeling Interactive Pro-
cesses. Technical report, MIT Media Lab Perceptual Computing /Learning and
Common Sense, Technical Report 405.

Brand, M., N. Oliver, and A. Pentland [1997]. Coupled hidden Markov models
for complex action recognition. In Proceedings of the 1997 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 994–
999. IEEE. doi:10.1109/CVPR.1997.609450.

Bucks, R. S., D. L. Ashworth, G. K. Wilcock, and K. Siegfried [1996]. As-
sessment of activities of daily living in dementia: Development of the
Bristol activities of daily living scale. Age and Ageing 25 (2), 113–120.
doi:10.1093/ageing/25.2.113.

Bulling, A., U. Blanke, and B. Schiele [2014]. A tutorial on human activity recog-
nition using body-worn inertial sensors. ACM Computing Surveys 46 (3), 33.
doi:10.1145/2499621.

Chen, D., J. Yang, R. Malkin, and H. D. Wactlar [2007]. Detecting social in-
teractions of the elderly in a nursing home environment. ACM Transac-
tions on Multimedia Computing, Communications, and Applications 3 (1), 6.
doi:10.1145/1198302.1198308.

Chundi, P. and D. Rosenkrantz [2008]. Efficient algorithms for segmentation of
item-set time series. Data Mining and Knowledge Discovery 17 (3), 377–401.
doi:10.1007/s10618-008-0095-0.

Churchill, G. A. [1989]. Stochastic models for heterogeneous DNA sequences.
Bulletin of Mathematical Biology 51 (1), 79–94. doi:10.1007/BF02458837.

BIBLIOGRAPHY 177

Cochran, W., J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, G. Maling,
D. Nelson, C. Rader, and P. Welch [1967]. What is the fast Fourier transform?
Proceedings of the IEEE 55 (10), 1664–1674. doi:10.1109/PROC.1967.5957.

Cooley, J. and J. Tukey [1965]. An algorithm for the machine calculation of
complex Fourier series. American Mathematical Society 19 (90), 297–301.
doi:10.2307/2003354.

Dadlani, P., P. Markopoulos, D. van Bel, K. Smolders, M. Pijl, B. de Ruyter,
and E. Aarts [2013]. Similarity awareness: Using context sensing to support
connectedness in intra-family communication. Journal of Ambient Intelligence
and Smart Environments - Design and Deployment of Intelligent Environ-
ments 5 (5), 425–441. doi:10.3233/AIS-130219.

de Joode, E. A., M. P. J. van Boxtel, F. R. Verhey, and C. M. van Heugten [2012].
Use of assistive technology in cognitive rehabilitation: Exploratory studies of
the opinions and expectations of healthcare professionals and potential users.
Brain Injury 26 (10), 1257–1266. doi:10.3109/02699052.2012.667590.

de Ruyter, B. E. R., S. E. Baha, M. J. Pijl, and P. Markopoulos [2011].
The role of empathy in making availability judgments from video and sil-
houette awareness information. The Ergonomics Open Journal 4, 41–46.
doi:10.2174/1875934301104010041.

Debes, C., A. Merentitis, S. Suhkanov, M. Niessen, N. Frangiadakis, and
A. Bauer [2016]. Monitoring activities of daily living in smart homes: Under-
standing human behavior. IEEE Signal Processing Magazine 33 (2), 81–94.
doi:10.1109/MSP.2015.2503881.

Deshpande, N., E. J. Metter, S. Bandinelli, J. Guralnik, and L. Ferrucci
[2009]. Gait speed under varied challenges and cognitive decline in
older persons: A prospective study. Age and Ageing 38 (5), 509–514.
doi:10.1093/ageing/afp093.

Dijkstra, B., W. Zijlstra, E. Scherder, and Y. Kamsma [2008]. Detection of walk-
ing periods and number of steps in older adults and patients with Parkinson’s
disease: Accuracy of a pedometer and an accelerometry-based method. Age
and Ageing 37 (4), 436–441. doi:10.1093/ageing/afn097.

Dishman, R. K. and W. Ickes [1981]. Self-motivation and adherence to
therapeutic exercise. Journal of Behavioral Medicine 4 (4), 421–438.
doi:10.1007/BF00846151.

Dishman, R. K., J. F. Sallis, and D. R. Orenstein [1985]. The determinants of
physical activity and exercise. Public Health Reports 100 (2), 158–171.

Du, Y., W. Wang, and L. Wang [2015]. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1110–1118. IEEE.

178 BIBLIOGRAPHY

doi:10.1109/CVPR.2015.7298714.
Duda, R., P. Hart, and D. Stork [2000]. Pattern Classification, 2nd Edition. Wiley.
Ellis, K., J. Kerr, S. Godbole, G. Lanckriet, D. Wing, and S. Marshall [2014]. A

random forest classifier for the prediction of energy expenditure and type of
physical activity from wrist and hip accelerometers. Physiological Measure-
ment 35 (11), 2191–2203. doi:10.1088/0967-3334/35/11/2191.

Flanagan, J. A., J. Mantyjarvi, and J. Himberg [2002]. Unsupervised clus-
tering of symbol strings and context recognition. In Proceedings of the
2002 International Conference on Data Mining, pp. 171–178. IEEE.
doi:10.1109/ICDM.2002.1183900.

Folstein, M. F., S. E. Folstein, and P. R. McHugh [1975]. “Mini-mental state”.
A practical method for grading the cognitive state of patients for the clin-
ician. Journal of Psychiatric Research 12 (3), 189–198. doi:10.1016/0022-
3956(75)90026-6.

Fortune, E., V. Lugade, M. Morrow, and K. Kaufman [2014]. Validity of using tri-
axial accelerometers to measure human movement - Part ii: Step counts at a
wide range of gait velocities. Medical Engineering & Physics 36 (6), 659–669.
doi:10.1016/j.medengphy.2014.02.006.

Free, C., G. Phillips, L. Galli, L. Watson, L. Felix, P. Edwards, V. Pa-
tel, and A. Haines [2013]. The effectiveness of mobile-health technology-
based health behavior change or disease management interventions for health
care consumers: A systematic review. PLoS Medicine 10 (1), e1001362.
doi:10.1371/journal.pmed.1001362.

Gao, L., A. K. Bourke, and J. Nelson [2014]. Evaluation of accelerometer based
multi-sensor versus single-sensor activity recognition systems. Medical Engi-
neering & Physics 36 (6), 779–785. doi:10.1016/j.medengphy.2014.02.012.

Garcia, A. W. and A. C. King [1991]. Predicting long-term adherence to aerobic
exercise: A comparison of two models. Journal of Sport & Exercise Physiol-
ogy 13 (4), 394–410.

Gavrilla, D. [1999]. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding 73 (1), 82–98. doi:10.1006/cviu.1998.0716.

Ge, X., W. Pratt, and P. Smyth [1999]. Discovering Chinese words from unseg-
mented text. In Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 271–
272. ACM. doi:10.1145/312624.313472.

Gedikli, A., H. Aksoy, N. Unal, and A. Kehagias [2010]. Modified dynamic pro-
gramming approach for offline segmentation of long hydrometeorological time
series. Stochastic Environmental Research and Risk Assessment 24 (5), 547–
557. doi:10.1007/s00477-009-0335-x.

BIBLIOGRAPHY 179

Gheyas, I. A. and L. S. Smith [2010]. Feature subset selection in
large dimensionality domains. Pattern Recognition 43 (1), 5–13.
doi:10.1016/j.patcog.2009.06.009.

Gionis, A. and H. Mannila [2003]. Finding recurrent sources in sequences. In
Proceedings of the 7th Annual International Conference on Research in Com-
putational Molecular Biology, pp. 123–130. doi:10.1145/640075.640091.

Godbehere, A. B., A. Matsukawa, and K. Goldberg [2012]. Visual tracking
of human visitors under variable-lighting conditions for a responsive au-
dio art installation. In American Control Conference, pp. 4305–4312. IEEE.
doi:10.1109/ACC.2012.6315174.

Goris, A. and R. Holmes [2008]. The effect of a lifestyle activity intervention
program on improving physical activity behavior of employees. In PERSUA-
SIVE 2008: Proceedings of the 3rd International Conference on Persuasive
Technology, Berlin, Heidelberg, pp. 23–34. Springer-Verlag. doi:10.1007/978-
3-540-68504-3 3.

Graf, C. [2008]. The Lawton instrumental activities of daily
living scale. American Journal of Nursing 108 (4), 52–62.
doi:10.1097/01.NAJ.0000314810.46029.74.

Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami [2013]. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future Genera-
tion Computer Systems 29 (7), 1645–1660. doi:10.1016/j.future.2013.01.010.

Guo, H., L. B. Jack, and A. K. Nandi [2005]. Feature generation using ge-
netic programming with application to fault classification. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35 (1), 89–99.
doi:10.1109/TSMCB.2004.841426.

Gupta, P. and T. Dallas [2014]. Feature selection and activity recognition using
a single triaxial accelerometer. IEEE Transactions on Biomedical Engineer-
ing 61 (6), 1780–1786. doi:10.1109/TBME.2014.2307069.

Gwadera, R., A. Gionis, and H. Mannila [2006]. Optimal segmentation using tree
models. In ICDM 2006 6th International Conference on Data Mining, pp.
244–253. doi:10.1109/ICDM.2006.122.

Haiminen, N., A. Gionis, and K. Laasonen [2008]. Algorithms for unimodal seg-
mentation with applications to unimodality detection. Knowledge and Infor-
mation Systems 14 (1), 39–57. doi:10.1007/s10115-006-0053-3.

Haskell, W., I. Lee, R. Pate, K. Powell, S. Blair, B. Franklin, C. Macera, G. Heath,
P. Thompson, and A. Bauman [2007]. Physical activity and public health:
Updated recommendation for adults from the American college of sports
medicine and the American heart association. Circulation 116 (9), 1081–1093.
doi:10.1161/CIRCULATION.107.185649.

180 BIBLIOGRAPHY

Hongeng, S., F. Bremond, and R. Nevatia [2000]. Representation and opti-
mal recognition of human activities. In Proceedings of the 2000 IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 818–825. IEEE.
doi:10.1109/CVPR.2000.855905.

Huang, Y., H. Zheng, C. Nugent, P. McCullagh, S. McDonough, M. Tully,
and S. Connor [2010]. Activity monitoring using an intelligent mobile
phone: A validation study. In Proceedings of the 3rd International Confer-
ence on Pervasive Technologies Related to Assistive Environments. ACM.
doi:10.1145/1839294.1839306.

Ifeachor, E. and B. Jervis [2002]. Digital Signal Processing: A Practical Ap-
proach. Pearson Education.

Iwama, H., D. Muramatsu, Y. Makihara, and Y. Yagi [2012]. Gait-
based person-verification system for forensics. In IEEE 5th Interna-
tional Conference on Biometrics: Theory, Applications and Systems.
doi:10.1109/BTAS.2012.6374565.

Jones, N. and P. Pevzner [2004]. An Introduction to Bioinformatics Algorithms.
The MIT Press.

Kaghyan, S. and H. Sarukhanyan [2012]. Activity recognition using k-nearest
neighbor algorithm on smartphone with tri-axial accelerometer. International
Journal of Information Models and Analyses 1, 146–156.

Karaman, S., J. Benois-Pineau, V. Dovgalecs, R. Mégret, J. Pinquier, R. André-
Obrecht, Y. Gaëstel, and J. Dartigues [2014]. Hierarchical hidden Markov
model in detecting activities of daily living in wearable videos for stud-
ies of dementia. Multimedia Tools and Applications 69 (3), 743–771.
doi:10.1007/s11042-012-1117-x.

Ke, S., H. L. U. Thuc, Y. Lee, J. Hwang, J. Yoo, and K. Choi [2013]. A re-
view on video-based human activity recognition. Computers 2 (2), 88–131.
doi:10.3390/computers2020088.

Kehagias, A., E. Nidelkou, and V. Petridis [2006]. A dynamic program-
ming segmentation procedure for hydrological and environmental time se-
ries. Stochastic Environmental Research and Risk Assessment 1 (2), 77–94.
doi:10.1007/s00477-005-0013-6.

Keijsers, G. P. J., M. Kampman, and C. A. L. Hoogduin [2001]. Dropout predic-
tion in cognitive behavior therapy for panic disorder. Behavior Therapy 32 (4),
739–749. doi:10.1016/S0005-7894(01)80018-6.

Kelley, R., A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Be-
bis [2008]. Understanding human intentions via hidden Markov models
in autonomous mobile robots. In Proceedings of the 3rd ACM/IEEE In-
ternational Conference on Human-Robot Interaction, pp. 367–374. ACM.

BIBLIOGRAPHY 181

doi:10.1145/1349822.1349870.
Kelly, M. E., D. Loughrey, B. A. Lawlor, I. H. Robertson, C. Walsh, and S. Bren-

nan [2014]. The impact of exercise on the cognitive functioning of healthy
older adults: A systematic review and meta-analysis. Ageing Research Re-
views 16, 12–31. doi:10.1016/j.arr.2014.05.002.

Keogh, E., S. Chu, D. Hart, and M. Pazzani [2001]. An online algorithm for seg-
menting time series. In Proceedings of the 2010 IEEE International Confer-
ence on Data Mining, pp. 289–296. doi:10.1109/ICDM.2001.989531.

Kocielnik, R., N. Sidorova, F. M. Maggi, M. Ouwerkerk, and J. H. D. M. West-
erink [2015]. Smart technologies for long-term stress monitoring at work. In
Proceedings of the 26th IEEE International Symposium on Computer-Based
Medical Systems, pp. 53–58. IEEE. doi:10.1109/CBMS.2013.6627764.

Konig, A., C. F. Crispim-Junior, A. Derreumaux, G. Bensadoun, P. D. Petit, F. Bre-
mond, R. David, F. Verhey, P. Aalten, and P. Robert [2015]. Validation of an
automatic video monitoring system for the detection of instrumental activities
of daily living in dementia patients. Journal of Alzheimer’s Disease 44 (2),
675–685. doi:10.3233/JAD-141767.

Kotsiantis, S. B., C. J. Pierrakeas, and P. E. Pintelas [2003]. Preventing student
dropout in distance learning using machine learning techniques. In V. Palade,
R. J. Howlett, and L. Jain (Eds.), Knowledge-Based Intelligent Information
and Engineering Systems, Volume 2774 of Lecture Notes in Computer Science,
pp. 267–274. Springer. doi:10.1007/978-3-540-45226-3 37.

Koza, J. R. [2010]. Introduction to genetic programming tutorial: From the basics
to human-competitive results. In GECCO 2010: Proceedings of the 12th An-
nual Conference Companion on Genetic and Evolutionary Computation, pp.
2137–2262. ACM. doi:10.1145/1830761.1830894.

Ladetto, Q. [2000]. On foot navigation: Continuous step calibration using both
complementary recursive prediction and adaptive Kalman filtering. In Pro-
ceedings of the 13th International Technical Meeting of the Satellite Division
of the Institute of Navigation, pp. 1735–1740.

Lara, O. and M. Labrador [2013]. A survey on human activity recognition using
wearable sensors. IEEE Communications Surveys & Tutorials 15 (3), 1192–
1209. doi:10.1109/SURV.2012.110112.00192.

Lee, S. and K. Mase [2002]. Activity and location recognition using wearable sen-
sors. Pervasive Computing 1 (3), 24–32. doi:10.1109/MPRV.2002.1037719.

Li, F., C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao [2012]. A reliable and accu-
rate indoor localization method using phone inertial sensors. In Proceedings
of the 2012 ACM Conference on Ubiquitous Computing, pp. 421–430. ACM.
doi:10.1145/2370216.2370280.

182 BIBLIOGRAPHY

Ligorio, G. and A. M. Sabatini [2015]. A novel Kalman filter for hu-
man motion tracking with an inertial-based dynamic inclinometer.
IEEE Transactions on Biomedical Engineering 62 (8), 2033–2043.
doi:10.1109/TBME.2015.2411431.

Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A.
AlMazroa, M. Amann, H. R. Anderson, K. G. Andrews, M. Aryee, C. Atkin-
son, L. J. Bacchus, A. N. Bahilim, K. Balakrisnan, J. Balmes, S. Barker-
Collo, A. Baxter, M. L. Bell, J. D. Blore, F. Blyth, C. Bonner, G. Borges,
R. Bourne, M. Boussinesq, M. Brauer, P. Brooks, N. G. Bruce, B. Brunekreef,
C. Bryan-Hancock, C. Bucello, R. Buchbinder, F. Bull, R. T. Burnett, T. E.
Byers, B. Calabria, J. Carapetis, E. Carnahan, Z. Chafe, F. Charlson, H. Chen,
J. S. Chen, A. T. Cheng, J. C. Child, A. Cohen, K. E. Colson, B. C. Cowie,
S. Darby, S. Darling, and A. Davis [2010]. A comparative risk assessment of
burden of disease and injury attributable to 67 risk factors and risk factor clus-
ters in 21 regions 1990-2010: A systematic analysis for the global burden of
disease study 2010. The Lancet 380 (9859), 2224–2260. doi:10.1016/S0140-
6736(12)61766-8.

Lippmann, R. [1987]. An introduction to computing with neural nets. IEEE ASSP
Magazine 4 (2), 4–22. doi:10.1109/MASSP.1987.1165576.

Logan, B., J. Healey, M. Philipose, E. Tapia, and S. Intille [2007]. A long-
term evaluation of sensing modalities for activity recognition. In J. Krumm,
G. Abowd, A. Seneviratne, and T. Strang (Eds.), UbiComp 2007: Ubiquitous
Computing, Volume 4717 of Lecture Notes in Computer Science, pp. 483–500.
Springer. doi:10.1007/978-3-540-74853-3 28.

Lombardo, L., M. Cama, C. Conoscenti, M. Märker, and E. Rotigliano [2015].
Binary logistic regression versus stochastic gradient boosted decision trees in
assessing landslide susceptibility for multiple-occurring landslide events: Ap-
plication to the 2009 storm event in Messina (Sicily, southern Italy). Natural
Hazards 79 (3), 1621–1648. doi:10.1007/s11069-015-1915-3.

Long, X., S. Pauws, M. J. Pijl, J. Lacroix, A. H. C. Goris, and R. M. Aarts [2009].
Analysis and prediction of daily physical activity level data using autoregres-
sive integrated moving average models. In Proceedings of the 3rd Workshop
Behaviour Monitoring and Interpretation, pp. 1–15.

Long, X., S. Pauws, M. J. Pijl, J. Lacroix, A. H. C. Goris, and R. M. Aarts [2011].
Predicting daily physical activity in a lifestyle intervention program. In B. Got-
tfried and H. Aghajan (Eds.), Behaviour Monitoring and Interpretation – BMI,
Volume 9 of Ambient Intelligence and Smart Environments, pp. 131–146. IOS
Press. doi:10.3233/978-1-60750-731-4-131.

Long, X., M. J. Pijl, S. Pauws, J. Lacroix, A. H. C. Goris, and R. M. Aarts [2014].
Towards tailored physical activity health intervention: Predicting dropout par-

BIBLIOGRAPHY 183

ticipants. Health and Technology 4 (3), 273–287. doi:10.1007/s12553-014-
0084-9.

Lovric, M., M. Milanovic, and M. Stamenkovic [2014]. Algorithmic methods for
segmentation of time series: An overview. Journal of Contemporary Economic
and Business Issues 1 (1), 31–53.

Lus̃trek, M. and B. Kaluz̃a [2009]. Fall detection and activity recognition with
machine learning. Informatica 33 (2), 197–204.

Lykourentzou, I., I. Giannoukos, V. Nikolopoulos, G. Mpardis, and V. Loumos
[2009]. Dropout prediction in e-learning courses through the combination
of machine learning techniques. Computers & Education 53 (3), 950–965.
doi:10.1016/j.compedu.2009.05.010.

Madabhushi, A. and J. K. Aggarwal [1999]. A Bayesian approach to human activ-
ity recognition. In Second IEEE Workshop on Visual Surveillance, pp. 25–32.
IEEE. doi:10.1109/VS.1999.780265.

Mamitsuka, H. [1997]. Supervised learning of hidden Markov models for se-
quence discrimination. In Proceedings of the 1st Annual International Con-
ference on Computational Molecular Biology, RECOMB 1997, pp. 202–208.
ACM. doi:10.1145/267521.267551.

Mannila, H., H. Toivonen, and A. I. Verkamo [1997]. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery 1 (3),
259–289. doi:10.1023/A:1009748302351.

Mannini, A. and A. Sabatini [2012]. Gait phase detection and discrimination
between walking-jogging activities using hidden Markov models applied
to foot motion data from a gyroscope. Gait & Posture 36 (4), 657–661.
doi:10.1016/j.gaitpost.2012.06.017.

Maquet, D., F. Lekeu, E. Warzee, S. Gillain, V. Wojtasik, E. Salmon, J. Peter-
mans, and J. L. Croisier [2010]. Gait analysis in elderly adult patients with
mild cognitive impairment and patients with mild Alzheimer’s disease: Sim-
ple versus dual task: A preliminary report. Clinical Physiology and Functional
Imaging 30 (1), 51–56. doi:10.1111/j.1475-097X.2009.00903.x.

Márquez-Vera, C., A. Cano, C. Romero, and S. Ventura [2013]. Predicting stu-
dent failure at school using genetic programming and different data min-
ing approaches with high dimensional and imbalanced data. Applied Intelli-
gence 38 (3), 315–330. doi:10.1007/s10489-012-0374-8.

Marschollek, M., M. Goevercin, K. Wolf, B. Song, M. Gietzelt, R. Haux, and
E. Steinhagen-Thiessen [2008]. A performance comparison of accelerometry-
based step detection algorithms on a large, non-laboratory sample of
healthy and mobility-impaired persons. In 30th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society. IEEE.

184 BIBLIOGRAPHY

doi:10.1109/IEMBS.2008.4649407.
Mathers, C. D., G. A. Stevens, T. Boerma, R. A. White, and M. I. Tobias

[2015]. Causes of international increases in older age life expectancy. The
Lancet 385 (9967), 540–548. doi:10.1016/S0140-6736(14)60569-9.

Maurer, U., A. Smailagic, D. P. Siewiorek, and M. Deisher [2006]. Activity recog-
nition and monitoring using multiple sensors on different body positions. In
International Workshop on Wearable and Implantable Body Sensor Networks,
pp. 113–116. IEEE. doi:10.1109/BSN.2006.6.

McCallum, A. and K. Nigam [1998]. A comparison of event models for naive
Bayes text classification. In Workshop on Learning for Text Categorization,
pp. 41–48. doi:10.1.1.65.9324.

McNamee, A. [2005]. Ethical Issues arising from the Real Time Tracking and
Monitoring of People using GPS-Based Location Services. Technical report,
University of Wollongong.

Megiddo, N. and K. J. Supowit [1984]. On the complexity of some common
geometric location problems. SIAM Journal on Computing 13 (1), 182–196.
doi:10.1137/0213014.

Megiddo, N., E. Zemel, and S. L. Hakimi [1981]. The maximum coverage loca-
tion problem. SIAM Journal on Algebraic Discrete Methods 4 (2), 253–261.
doi:10.1137/0604028.

Meinhold, R. J. and N. D. Singpurwalla [1983]. Understanding the Kalman filter.
The American Statistician 37 (2), 123–127.

Mezghani, N., S. Husse, K. Boivin, K. Turcot, R. Aissaoui, N. Hagemeis-
ter, and J. de Guise [2008]. Automatic classification of asymptomatic
and osteoarthritis knee gait patterns using kinematic data features and
the nearest neighbor classifier. IEEE ASSP Magazine 55 (3), 1230–1232.
doi:10.1109/TBME.2007.905388.

Michael, K., A. McNamee, and M. Michael [2006]. The emerging ethics of hu-
mancentric GPS tracking and monitoring. In International Conference on Mo-
bile Business, pp. 34. doi:10.1109/ICMB.2006.43.

Mitchell, E., D. Monaghan, and N. E. O’Connor [2013]. Classification of sport-
ing activities using smartphone accelerometers. Sensors 13 (4), 5317–5337.
doi:10.3390/s130405317.

Mladenov, M. and M. Mock [2009]. A step counter service for java-enabled de-
vices using a built-in accelerometer. In Proceedings of the 1st International
Workshop on Context-Aware Middleware and Services: affiliated with the 4th
International Conference on Communication System Software and Middle-
ware, pp. 1–5. ACM. doi:10.1145/1554233.1554235.

Muller, M. [2007]. Dynamic time warping. In Information Retrieval for Music and

BIBLIOGRAPHY 185

Motion. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74048-3 4.
Must, A., J. Spadano, E. H. Coakley, E. A. Field, G. Colditz, and W. H.

Dietz [1999]. The disease burden associated with overweight and obesity.
The Journal of the American Medical Association 282 (16), 1523–1529.
doi:10.1001/jama.282.16.1523.

Nuynh, T. and B. Schiele [2005]. Analyzing features for activity recognition. In
Proceedings of the 2005 Joint Conference on Smart Objects and Ambient In-
telligence: Innovative Context-Aware Services: Usages and Technologies, pp.
159–163. ACM. doi:10.1145/1107548.1107591.

Okour, S., A. Maender, and J. Basilakis [2015]. An adaptive rule-based approach
to classifying activities of daily living. In International Conference on Health-
care Informatics, pp. 404–407. IEEE. doi:10.1109/ICHI.2015.57.

Oliver, N., E. Horvitz, and A. Garg [2002]. Layered representations for human
activity recognition. In 4th IEEE International Conference on Multimodal In-
terfaces, pp. 3–8. IEEE. doi:10.1109/ICMI.2002.1166960.

Oner, M., J. Pulcifer-Stump, P. Seeling, and T. Kaya [2012]. Towards the run and
walk activity classification through step detection - An Android application. In
2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE. doi:10.1109/EMBC.2012.6346344.

op den Buijs, J., T. Smits, M. Pijl, M. Simons, and L. Schertzer [2015]. Predic-
tive modeling of emergency hospital transport using medical alert pattern data:
Retrospective cohort study. In iproc, Volume 1 of Connected Health Sympo-
sium, pp. e19. JMIR Publications. doi:10.2196/iproc.4772.

Pan, J. and W. J. Tompkins [1985]. A real-time QRS detection algo-
rithm. IEEE Transactions on Biomedical Engineering 32 (3), 230–236.
doi:10.1109/TBME.1985.325532.

Pantelopoulos, A. and N. Bourbakis [2009]. A survey on wearable sensor-based
systems for health monitoring and prognosis. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews 40 (1), 1–12.
doi:10.1109/TSMCC.2009.2032660.

Patel, S., H. Park, P. Bonato, L. Chan, and M. Rodgers [2012]. A review of wear-
able sensors and systems with application in rehabilitation. Journal of Neuro-
Engineering and Rehabilitation 9 (21). doi:10.1186/1743-0003-9-21.

Patterson, D. J., D. Fox, H. Krautz, and M. Philipose [2005]. Fine-grained ac-
tivity recognition by aggregating abstract object usage. In Proceedings of the
9th IEEE International Symposium on Wearable Computers, pp. 44–51. IEEE.
doi:10.1109/ISWC.2005.22.

Perera, C., A. Zaslavsky, and P. C. D. Georgakopoulos [2014]. Context aware com-
puting for the Internet of Things: A survey. IEEE Communications Surveys &

186 BIBLIOGRAPHY

Tutorials 16 (1), 414–454. doi:10.1109/SURV.2013.042313.00197.
Philipose, M., K. P. Fishkin, M. Perkowitz, and D. J. Patterson [2004]. Inferring

activities from interactions with objects. Pervasive Computing 3 (4), 50–57.
doi:10.1109/MPRV.2004.7.

Pijl, M., J. Lacroix, S. Pauws, and A. Goris [2009]. Prediction of successful par-
ticipation in a lifestyle activity program using data mining techniques. In 21st
Benelux Conference on Artificial Intelligence.

Pijl, M., S. van de Par, and C. Shan [2010]. An event-based approach to
multi-modal activity modeling and recognition. In IEEE International Con-
ference on Pervasive Computing and Communications, pp. 98–106. IEEE.
doi:10.1109/PERCOM.2010.5466986.

Pijl, M. J. [2015]. Method of estimating the position of a device and an apparatus
implementing the same. U.S. Patent Application 20150173037.

Pijl, M. J. and H. Baldus [2016]. Method and apparatus for determining the risk
of a patient leaving a safe area. U.S. Patent Application 20160113591.

Pijl, M. J., P. M. Fulton, and H. Baldus [2015]. Method of controlling a device
implementing the same. U.S. Patent Application 20150087332.

Pijl, M. J., C. Shan, L. Wang, and S. L. J. D. E. van de Par [2014]. Method of
selecting an optimal viewing angle position for a camera. U.S. Patent 8659655.

Pijl, M. J. and T. Smits [2016]. A comparison of accelerometer-based cadence es-
timation algorithms at different walking speeds. Submitted to Gait & Posture.

Poularakis, S., K. Avgerinakis, A. Briassouli, and I. Kompatsiaris [2015].
Computationally efficient recognition of activities of daily living. In
IEEE International Conference on Image Processing, pp. 247–251. IEEE.
doi:10.1109/ICIP.2015.7350797.

Preis, J., M. Kessel, M. Werner, and C. Linnhoff-Popien [2012]. Gait recognition
with Kinect. In 1st International Workshop on Kinect in Pervasive Computing,
pp. 1–4.

Rabiner, L. R. [1989]. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE 77 (2), 257–286.
doi:10.1109/5.18626.

Rashidi, P. and D. J. Cook [2009]. Keeping the resident in the loop:
Adapting the smart home to the user. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans 39 (5), 949–959.
doi:10.1109/TSMCA.2009.2025137.

Ravi, N., D. Nikhil, P. Mysore, and M. L. Littman [2005]. Activity recognition
from accelerometer data. In Proceedings of the 17th Conference on Innovative
Applications of Artificial Intelligence, pp. 1541–1546. AAAI Press.

BIBLIOGRAPHY 187

Ronao, C. A. and S. Cho [2016]. Human activity recognition with smartphone
sensors using deep learning neural networks. Expert Systems with Applica-
tions 59, 235–244. doi:10.1016/j.eswa.2016.04.032.

Ryan, C. G., P. M. Grant, W. W. Tigbe, and M. H. Granat [2006]. The validity and
reliability of a novel activity monitor as a measure of walking. British Journal
of Sports Medicine 40 (9), 779–784. doi:10.1136/bjsm.2006.027276.

Ryberg, C., E. Rostrup, M. B. Stegmann, F. Barkhof, P. Scheltens, E. C. W. van
Straaten, F. Fazekas, R. Schmidt, J. M. Ferro, H. Baezner, T. Erkinjuntti,
H. Jokinen, L. O. Wahlund, J. O’Brien, A. M. Basile, L. Pantoni, D. Inzi-
tari, and G. Waldemar [2007]. Clinical significance of corpus callosum atro-
phy in a mixed elderly population. Neurobiology of Aging 28 (6), 955–963.
doi:10.1016/j.neurobiolaging.2006.04.008.

Ryu, U., K. Ahn, E. Kim, M. Kim, Y. Chang, B. Kim, and S. Woo [2013].
Adaptive step detection algorithm for wireless smart step counter. In Inter-
national Conference on Information Science and Applications, pp. 1–4. IEEE.
doi:10.1109/ICISA.2013.6579332.

Saar-Tsechansky, M. and F. Provost [2007]. Handling missing values when ap-
plying classification models. Journal of Machine Learning Research 8, 1623–
1657.

Scherder, E., L. Eggermont, D. Swaab, M. v. Heuvelen, Y. Kamsma, M. d. Greef,
R. v. Wijck, and T. Mulder [2007]. Gait in ageing and associated dementias;
Its relationship with cognition. Neuroscience & Biobehavioral Reviews 31 (4),
485–497. doi:10.1016/j.neubiorev.2006.11.007.

Seelig, H. and R. Fuchs [2011]. Physical exercise participation: A continuous or
categorical phenomenon? Psychology of Sport and Exercise 12 (2), 115–123.
doi:10.1016/j.psychsport.2010.10.004.

Shaeffer, D. [2013]. MEMS inertial sensors: A tutorial overview. IEEE Commu-
nications Magazine 51 (4), 100–109. doi:10.1109/MCOM.2013.6495768.

Sheikh, Y., M. Sheikh, and M. Shah [2005]. Exploring the space of an action for
human action recognition. In 10th IEEE International Conference on Com-
puter Vision, pp. 144–149. IEEE. doi:10.1109/ICCV.2005.90.

Shinkai, S., S. Watanabe, S. Kumagai, Y. Fujiwara, H. Amano, H. Yoshida,
T. Ishizaki, H. Yukawa, T. Suzuki, and H. Shibata [2000]. Walking
speed as a good predictor for the onset of functional dependence in a
Japanese rural community population. Age and Ageing 29 (5), 441–446.
doi:10.1093/ageing/29.5.441.

Sorbral, A. and A. Vacavant [2014]. A comprehensive review of background sub-
traction algorithms evaluated with synthetic and real videos. Computer Vision
and Image Understanding 122, 4–21. doi:10.1016/j.cviu.2013.12.005.

188 BIBLIOGRAPHY

Stefanov, D. [2004]. The smart house for older persons and persons with phys-
ical disabilities: Structure, technology arrangements, and perspectives. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 12 (2), 288–
250. doi:10.1109/TNSRE.2004.828423.

Stergiou, N. and L. M. Decker [2011]. Human movement variability, nonlinear
dynamics, and pathology: Is there a connection? Human Movement Sci-
ence 30 (5), 869–888. doi:10.1016/j.humov.2011.06.002.

Stevens, G. A., G. M. Singh, Y. Lu, G. Danaei, J. K. Lin, M. M. Finucane, A. N.
Bahalim, R. K. McIntire, H. R. Gutierrez, M. Cowan, C. J. Paciorek, F. Farzad-
far, L. Riley, and M. Ezzati [2012]. National, regional, and global trends in
adult overweight and obesity prevalences. Population Health Metrics 10 (22).
doi:10.1186/1478-7954-10-22.

Storm, F. A., B. W. Heller, and C. Mazzà [2015]. Step detection and activity
recognition accuracy of seven physical activity monitors. PLoS ONE 10 (3),
e0118723. doi:10.1371/journal.pone.0118723.

Storti, K. L., K. K. Pettee, J. S. Brach, J. B. Talkowski, C. R. Richardson,
and A. M. Kriska [2008]. Gait speed and step-count monitor accuracy in
community-dwelling older adults. Medicine & Science in Sports & Exer-
cise 40 (1), 59–64. doi:10.1249/mss.0b013e318158b504.

Suryadevara, N. and S. Mukhopadhyay [2012]. Wireless sensor network based
home monitoring system for wellness determination of elderly. IEEE Sensors
Journal 12 (6), 1965–1972. doi:10.1109/JSEN.2011.2182341.

Tao, W., T. Liu, R. Zheng, and H. Feng [2012]. Gait analysis using wearable
sensors. Sensors 12 (2), 2255–2283. doi:10.3390/s120202255.

Tatti, N. [2013]. Fast sequence segmentation using log-linear models. Data Mining
and Knowledge Discovery 27 (3), 421–441. doi:10.1007/s10618-012-0301-y.

Terzi, E. [2006]. Problems and Algorithms for Sequence Segmentations. Technical
report, Department of Computer Science, Helsinki University.

Terzi, E. and P. Tsaparas [2006]. Efficient algorithms for sequence segmentation.
In Proceedings of the 2006 SIAM International Conference on Data Mining,
pp. 316–327. doi:10.1137/1.9781611972764.28.

Thompson, P. D. [2003]. Exercise and physical activity in the pre-
vention and treatment of atherosclerotic cardiovascular disease. Ar-
teriosclerosis, Thrombosis, and Vascular Biology 23 (8), 1319–1321.
doi:10.1161/01.ATV.0000087143.33998.F2.

Torrence, C. and G. P. Compo [1998]. A practical guide to wavelet analysis. Bul-
letin of the American Meteorological Society 79 (1), 61–78. doi:10.1175/1520-
0477(1998)079<0061:APGTWA>2.0.CO;2.

Toshev, A. and C. Szegedy [2014]. DeepPose: Human pose estimation

BIBLIOGRAPHY 189

via deep neural networks. In Proceedings of the 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1653–1660. IEEE.
doi:10.1109/CVPR.2014.214.

Tran, T., W. Luo, D. Phung, S. Gupta, S. Rana, R. L. Kennedy, A. Larkins, and
S. Venkatesh [2014]. A framework for feature extraction from hospital med-
ical data with applications in risk prediction. BMC Bioinformatics 15 (425).
doi:10.1186/s12859-014-0425-8.

Tudor-Locke, C. and D. Rowe [2012]. Using cadence to study free-living am-
bulatory behavior. Sports Medicine 42 (5), 381–398. doi:10.2165/11599170-
000000000-00000.

Urwyler, P., L. Rampa, R. Stucki, M. Büchler, R. Müri, U. P. Mosimann,
and T. Nef [2015]. Recognition of activities of daily living in healthy sub-
jects using two ad-hoc classifiers. BioMedical Engineering OnLine 14 (54).
doi:10.1186/s12938-015-0050-4.

Valle, M. A., S. Varas, and G. A. Ruz [2012]. Job performance prediction in a call
center using a naive Bayes classifier. Expert Systems with Applications 39 (11),
9939–9945. doi:10.1016/j.eswa.2011.11.126.

van der Maaten, L., E. Postma, and J. van den Herik [2009]. Dimensionality re-
duction: A comparative review. Journal of Machine Learning Research 10,
66–71.

van Halteren, A. T., J. P. W. Lacroix, G. Gelijnse, M. J. Pijl, P. K. Saini, M. C.
Kaptein, J. L. G. Ferron, and R. Holmes [2014]. Coaching system that builds
coaching messages for physical activity promotion. U.S. Patent Application
20140122104.

van Iersel, M. B., W. Hoefsloot, M. Munneke, B. R. Bloem, and M. G. M. O.
Rikkert [2004]. Systematic review of quantitative clinical gait analysis in pa-
tients with dementia. Zeitschrift für Gerontologie und Geriatrie 37 (1), 27–32.
doi:10.1007/s00391-004-0176-7.

van Kasteren, T., A. Noulas, G. Englebienne, and B. Kröse [2008]. Ac-
curate activity recognition in a home setting. In Proceedings of the
10th International Conference on Ubiquitous Computing, pp. 1–9. ACM.
doi:10.1145/1409635.1409637.

Verghese, J., M. Robbins, R. Holtzer, M. Zimmerman, C. Wang, X. Xue,
and R. B. Lipton [2008]. Gait dysfunction in mild cognitive impairment
syndromes. Journal of the American Geriatrics Society 56 (7), 1244–1251.
doi:10.1111/j.1532-5415.2008.01758.x.

Viard, K., M. Fanti, G. Faraut, and J. Lesage [2016]. An event-based approach
for discovering activities of daily living by hidden Markov models. In 15th
IEEE International Conference on Ubiquitous Computing and Communica-

190 BIBLIOGRAPHY

tions. IEEE.
Vögele, A., B. Krüger, and R. Klein [2014]. Efficient unsupervised tem-

poral segmentation of human motion. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 167–176.

Waite, L. M., D. A. Grayson, O. Piguet, H. Creasey, H. P. Bennett, and G. A.
Broe [2005]. Gait slowing as a predictor of incident dementia: 6-year longitu-
dinal data from the Sydney Older Persons Study. Journal of the Neurological
Sciences 229–230, 89–93. doi:10.1016/j.jns.2004.11.009.

Warburton, D., C. Nicol, and S. Bredin [2006]. Health benefits of physical activ-
ity: The evidence. Canadian Medical Association Journal 174 (6), 801–809.
doi:10.1503/cmaj.051351.

Ware, L. J., R. Hurling, O. B. W. B. Fairley, L. T. Hurst, P. Murray, L. K. Ren-
nie, E. C. Tomkins, A. Finn, R. M. Cobain, A. D. Pearson, and P. J. Foreyt
[2008]. Rates and determinants of uptake and use of an internet physical ac-
tivity and weight management program in office and manufacturing work sites
in England: Cohort study. Journal of Medical Internet Research 10 (4), e56.
doi:10.2196/jmir.1108.

Welch, G. and G. Bishop [1995]. An Introduction to the Kalman Filter. Technical
report, University of North Carolina at Chapel Hill.

WHO [2011]. Global Health and Ageing. Technical report, World Health Organi-
zation, US National Institute of Aging.

Wichit, N. and A. Choksuriwong [2015]. Multi-sensor data fusion model based
Kalman filter using fuzzy logic for human activity detection. Interna-
tional Journal of Information and Electronics Engineering 5 (6), 450–453.
doi:10.7763/IJIEE.2015.V5.577.

Wiederhold, B., G. Riva, and G. Graffigna [2013]. Ensuring the best care
for our increasing aging population: Health engagement and positive tech-
nology can help patients achieve a more active role in future health-
care. Cyberpsychology, Behavior and Social Networking 16 (6), 411–412.
doi:10.1089/cyber.2013.1520.

Wittwer, J. E., K. E. Webster, and H. B. Menz [2010]. A longitudinal study of mea-
sures of walking in people with Alzheimer’s disease. Gait & Posture 32 (1),
113–117. doi:10.1016/j.gaitpost.2010.04.001.

Yang, J. and V. Honavar [1998]. Feature subset selection using a genetic algo-
rithm. In H. Liu and H. Motoda (Eds.), Feature Extraction, Construction and
Selection: A Data Mining Perspective, Volume 453 of The Springer Interna-
tional Series in Engineering and Computer Science, pp. 117–136. Springer
US. doi:10.1007/978-1-4615-5725-8 8.

Ye, J., S. Dobson, and S. McKeever [2012]. Situation identification techniques in

BIBLIOGRAPHY 191

pervasive computing: A review. Pervasive and Mobile Computing 8 (1), 36–
66. doi:10.1016/j.pmcj.2011.01.004.

Ying, H., C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek [2007]. Automatic
step detection in the accelerometer signal. In Proceedings of the 4th Inter-
national Workshop on Wearable and Implantable Body Sensor Networks, pp.
80–85. Springer. doi:10.1007/978-3-540-70994-7 14.

Zhang, Y., K. G. M. Beenakker, P. M. Butala, C. Lin, T. D. C. Little, A. B.
Maier, M. Stijntjes, R. Vartanian, and R. C. Wagenaar [2012]. Monitoring
walking and cycling of middle-aged to older community dwellers using wire-
less wearable accelerometers. In 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 158–161. IEEE.
doi:10.1109/EMBC.2012.6345895.

Zijlstra, W. and A. L. Hof [2003]. Assessment of spatio-temporal gait parameters
from trunk accelerations during human walking. Gait & Posture 18 (2), 1–10.
doi:10.1016/S0966-6362(02)00190-X.

Acknowledgements

Although somewhat cliché, it is nonetheless true that this thesis would not have be-
come a reality without the large group of people who have guided, supported, and
inspired me along the way.

First and foremost, I would like to thank my copromotor and day-to-day coor-
dinator Jan Korst, and my promotors Emile Aarts and Max Louwerse. Thank all of
you for challenging, encouraging and motivating me to achieve the results that can
be found in this book.

Jan, I cannot thank you enough for the untold amounts of hours you have dedi-
cated, the innumerable times you critically went through my writings, and for all the
feedback and guidance you have given me over the years. I would say that I will
miss our weekly talks and discussions on work and also topics of a more random na-
ture, but if we are ever going to solve that k,h-segmentation problem, we’re probably
going to need a lot more coffee...

Emile, thank you for your energy and enthusiasm, from our first meeting to the
final print of this thesis, never dulled despite gradually increasing geographical sep-
aration. Throughout that time, your ability to instantly grasp a topic and condense it
into its essence has never ceased to amaze me.

Max, even though you joined at a later stage of the journey, your enthusiasm,
ideas and feedback have been invaluable. Thank you for providing a new and unique
perspective to this work that made this thesis much better than it otherwise would
have been.

I would also like to extend my gratitude to the members of the reading commit-
tee: Catholijn Jonker, Johan Lukkien, Wim van Petegem, Eric Postma, and Boris de
Ruyter for reviewing this thesis, and for challenging me to further improve the con-
tents of this work. In the same vein, I would like to thank Verus Pronk for reviewing
the thesis, and Ramon Clout for reviewing the contents of Chapter 2. Thank you for
your comments, and in particular, for painstakingly checking all my mathematical
equations.

I would also like to thank everyone I worked with at Philips Research. In partic-
ular, but by no means exclusively, my fellow project members who worked with me
on the topics described in this thesis: Steven van de Par, Caifeng Shan, Pavan Dad-
lani, Lu Wang, Boris de Ruyter, Steffen Pauws, Xi Long, Joyca Lacroix, Privender
Saini, Roger Holmes, Annelies Goris, Tine Smits, Paul Fulton, Alan Davie, Patrick
Kechichian, Laura Klaming, and Heribert Baldus.

193

194 Acknowledgements

In addition, I want to thank everyone at Philips Research with whom I had the
pleasure to work over the years, whether as a project member or otherwise, as well as
those at Tilburg University who helped during the final stages of this thesis. Further,
I would like to thank all those who participated in the studies described in this thesis;
the tracking of human motion would have been very difficult without you.

Finally, I would like to thank my friends and family, particularly Sip Jan, Agnes,
Steven and Esther, for supporting and encouraging me, and distracting me when
needed.

