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1 H O M E I S T H E P L A C E TO G O

"Home is a name, a word, it is a strong one; stronger than magician ever
spoke, or spirit ever answered to, in the strongest conjuration."

– Charles Dickens, Martin Chuzzlewit

Whether a single man takes one small step or mankind makes a giant leap,
all endeavours require energy in some form. In the end, the very energy en-
abling these undertakings is often extracted from the energy resources pro-
duced by our planet. Since mankind’s dependency on fossil fuels (such as gas,
petroleum, and coal) increased over the centuries, the natural reserves are ex-
pected to be depleted in a future not too far away. Next to moving towards
renewable energy sources, reducing our energy consumption and improving
our methods to conserve energy are two important factors for our transition
towards a sustainable society.

As reducing energy consumption may start at the household (see, for ex-
ample, the work by Romero-Rodríguez, Zamudio Rodriguez, Flores, Sotelo-
Figueroa, & Alcaraz, 2011), effective approaches towards energy conservation
call for an intelligent environment that persuades its residents to change their
energy consumption behaviour. To change the behaviour of its residents in
the long term, the intelligent environment should provide its inhabitants with
personalised feedback regarding their behaviour. Providing personalised feed-
back in a subtle and nonintrusive way can be achieved by employing a virtual
person; a so-called ”embodied agent”. Employing a human-like appearance
allows the intelligent environment to establish a social bond with a person.
Establishing a social bond between the actuators of an intelligent environ-
ment (e.g., by means of a humanlike agent) and a person is a prerequisite for
effective persuasion (Bailenson & Yee, 2005). A requirement for the establish-
ment of the social bond between the person and the embodied agent, is the
latter’s ability to respond appropriately to a person’s social signals (see, e.g.,
Vinciarelli et al., 2012; Breazeal & Scassellati, 2002).

This Thesis investigates novel algorithms that enable agents to perceive a
person’s non-verbal cues and gestures as accurately as possible. It allows

1



2 home is the place to go

the agents to respond appropriately to a person’s behaviour. The studies ad-
dressed in the Thesis are part of the Persuasive Agents research project (see
Section 1.2), which explores the use of socially-aware virtual agents to per-
suade people to change their energy-consumption behaviour by providing
them with subtle personalised feedback. Inspired by the magical paintings
that litter the walls of the castle of Hogwarts, our ultimate goal is to develop
smart, persuasive, and socially aware embodied agents that are able to engage
in natural interactions with humans.

The remainder of this Chapter is as follows. Section 1.1 provides a general
background of intelligent environments that can be used to influence the be-
haviour of their inhabitants. Subsequently, Section 1.2 presents the Persuasive
Agents project. Section 1.3 then discusses the use of embodied agents to in-
fluence a person’s behaviour. Next, Section 1.4 presents an interaction model
describing the establishment of the social connection between humans and
embodied agents. Section 1.5 describes the relevance of in-depth information
when aiming to implement the interaction model in a household scene. Sec-
tion 1.6 formulates the problem statement, including the resultant research
questions and the corresponding research methodology used to answer them.
Finally, Section 1.7 provides the structure of the Thesis.

1.1 intelligent environments
When Harry Potter walked through the dark hallways of Hogwarts, he was
unaware that his school with its numerous magical paintings (cf. Rowling,
1997) bore remarkable similarities to modern visions of socially-aware vir-
tual agents and intelligent environments. The technology enabling these en-
vironments (see, e.g., Vinciarelli, Pantic, & Bourlard, 2009), viz. ”invisibly en-
hancing the world that already exists” (Weiser, 1997), offers numerous oppor-
tunities for new types and forms of human-computer interactions (see, e.g.,
Schmidt, Pfleging, Alt, Sahami, & Fitzpatrick, 2012; Sebe, 2009), such as com-
puter systems that aim to influence a person’s behaviour.

How should these intelligent environments be designed and deployed in a
manner that facilitates more than it hinders their residents? The answer to
this question should be guided by an emphasis on the social interaction be-
tween the residents and the intelligent environment. Recent progress (see, e.g.,
Murray-Smith, 2014; Pantic & Vinciarelli, 2014; Vinciarelli et al., 2012) in the
automatic processing of affective and social signals enables intelligent environ-
ments and devices (1) to sense social cues, such as emotional facial expressions
(e.g., distress, surprise) and emotional vocal expressions (tone of voice), and
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Figure 1.1: An example of the deployment of an embodied agent in a domestic set-
ting. The agent aims to persuade the household member to reduce his wa-
ter consumption by providing him with personalised feedback about his
energy consumption behaviour. The personalised feedback is presented
using subtle facial expressions, e.g., by looking sad or angry when too
much water is consumed.

(2) to respond appropriately to them. The envisioned intelligent environment
consists of social signal sensors (cameras, microphones, and 3D scanners) and
social actuators in the form of embodied virtual agents1 or robots. The actua-
tors emit social signals by means of virtually generated facial, vocal, and ges-
tural expressions. The ultimate goal is to develop socially-aware virtual agents
that are able to persuade people to reduce their energy consumption. Figure
1.1 shows an example of a human-like, virtual agent that aims to persuade a
person to reduce his2 water consumption by providing him with personalised
feedback about his very behaviour, e.g., by looking sad or angry when too
much water is consumed.

1 It is noted that embodied agents and virtual agents are, technically speaking, different con-
cepts. An agent system is an abstract system that is able to make decisions based on empirical
input; the correct designation of the agents described in this Thesis is virtual embodied agents.
However, for the sake of readability, we will designate them as ‘virtual agents’, ‘smart agents’,
‘embodied agents’, or similar descriptions.

2 For brevity, ‘he’ and ‘his’ are used whenever ‘he or she’ and ‘his or her’ are meant.
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1.2 the persuasive agents project
As reducing energy consumption may start at the household (see, e.g., the
work by Romero-Rodríguez et al., 2011), early studies presented household
members with general information about their energy consumption. The im-
plicit assumption was that this would result in a voluntary change in the
household members’ energy-consumption behaviour. However, the results of
more recent studies indicate this assumption to be false: providing individu-
als with general information regarding their energy consumption does lead
to an increased awareness of the scarcity of resources, but it does not lead
to actual changes in behaviour (see Abrahamse, Steg, Vlek, & Rothengatter,
2005). Based on earlier findings that indicated that personal feedback is more
effective than general feedback (see, e.g., Midden, Meter, Weenig, & Zieverink,
1983), recent studies adopt a more promising approach to change a person’s
energy-consumption behaviour (see, e.g., the work by Ham, Midden, & Beute,
2009; Roubroeks, Midden, & Ham, 2009). These studies aim to change a per-
son’s short-term behaviour by providing him with automatically generated,
personalised feedback regarding his behaviour. The belief that a person can
be persuaded to adapt his behaviour in the long term by using intelligent en-
vironments, led to the launch of the Persuasive Agents project.

Since its establishment in 2007, the aim of the project is to develop novel
techniques and autonomous systems that (1) persuade household members
to reduce their energy consumption, and (2) support the conservation of the
energy they have as much as possible. The systems collect information on con-
sumption patterns through, e.g., power-consumption meters, and use that in-
formation to generate accurate feedback and suggestions. The main challenge
of the research is to combine psychological and technological knowledge so
as to identify and exploit successful human-embodied agent interactions. At
the core of this project lies the belief that intelligent systems should stimulate
people to adopt energy saving behaviour by means of persuasion, rather than
by taking over control. The ultimate goal of the project is to develop embod-
ied agents, often in virtual form on computer displays, but sometimes also
as robotic interfaces, that are not annoying or obtrusive. The agents should
be able to provide personalised and socially acceptable feedback with regard
to saving energy to the inhabitants of intelligent environments. The implicit
assumption of these studies is that the resulting reduction in energy consump-
tion outweighs the actual costs of having and using such intelligent environ-
ments.

The Persuasive Agents project consists of a multidisciplinary group of re-
searchers and practitioners from various fields and backgrounds: computer
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scientists from Tilburg University3, psychologists from Eindhoven University
of Technology4, and practitioners in smart home environments from the Smart
Homes Foundation5. The research program is carried out under the stimulat-
ing leadership of Cees Midden and funded by Agentschap.nl under the EOS
program for Long Term research.

1.3 persuasive embodied agents
Within the field of artificial intelligence, agents are autonomous parts of com-
puter systems that possess some form of artificial intelligence (see, for exam-
ple, Wooldridge, 2001; Neumann, 1958). It enables them to make autonomous
decisions based on empirical input or past experiences. The designation em-
bodied agent refers to agents with a recognisable form, e.g., in the form of a
physically existing robot or in a mere virtual existence as a computer game
character. An embodied form (e.g., a robot or game character) allows the agent
to interact with human users in a natural way. The ability to interact in a nat-
ural way is a prerequisite when attempting to establish a social connection
with a person. An example of a natural interaction in the context of the cur-
rent project, is an agent that aims to persuade a person to change his energy
consumption behaviour by providing him with personalised feedback about
his very behaviour (see Figure 1.1; see, e.g., Vinciarelli et al., 2012; Bailenson
& Yee, 2005; Breazeal & Scassellati, 2002).

When provided by an embodied agent, the effectiveness of personalised feed-
back in a persuasive context is enhanced when (1) participants perceive the
feedback as non-obtrusive, and (2) the feedback is communicated in a human-
like way. Below, these requirements are described in more detail.

First, personal feedback that is experienced as obtrusive may be regarded
as a violation of the individual’s autonomy (Brehm, 1989). In case of person-
alised feedback on energy consumption, this may give rise to an increase in
energy consumption, rather than a decrease, an effect known as psychologi-
cal reactance (Brehm, 1989). Providing individual feedback in a more subtle
manner (see, e.g., Ham et al., 2009; Roubroeks et al., 2009), for example in the
form of a smile or a nod, may therefore increase its effectiveness. Furthermore,
employing human-like interfaces, such as ”eyes in the wall” (Bateson, Nettle,
& Roberts, 2006) or a talking head (see Figure 1.1), increases cooperative be-
haviour and leads to effective persuasion (André et al., 2011).

3 https://www.tilburguniversity.edu/research/institutes-and-research-groups/ticc
4 http://www.tue.nl/universiteit/faculteiten/industrial-engineering-innovation-

sciences/onderzoek/onderzoeksgroepen/human-technology-interaction
5 http://www.smart-homes.nl
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Second, persuasive agents should appear human-like, i.e., possess a certain
degree of personality (Davies & Callaghan, 2012), and come across as credible,
confident and non-threatening towards the users and their privacy (Tentori,
Favela, & Rodriguez, 2006) in order to establish and maintain persuasive in-
teraction.

To meet the two requirements, it is necessary that the agents are enriched
with basic non-verbal characteristics, such as affective facial expressions and
vocal prosody (see, e.g., Van den Broek, 2011; Esposito, 2009), which serve as
carriers of social signals, such as attitudes, stands, and emotions. Moreover,
non-verbal characteristics seem to play a crucial role in persuasive communi-
cation (e.g., Hogg & Reid, 2006; Hiltz, Johnson, & Turoff, 1986). Thus, their
use is particularly relevant in the context of persuasive technology. Supplying
agents with non-verbal cues makes them more appropriate for virtual reality
applications and smart environments (Vinciarelli et al., 2012).

1.4 establishing the social connection
A requirement to establish and maintain persuasive interaction, is the pres-
ence of a social connection between an embodied agent and its human coun-
terpart (see, e.g., Dragone, Duffy, & O’Hare, 2005). The connection, which is
highly similar to the social bond established in human-human interactions
(see, e.g., Hari & Kujala, 2009; Miller, Downs, & Prentice, 1998), allows an
agent to provide its human counterpart with personalised feedback regarding
his behaviour. Figure 1.2 shows a model6 of the envisioned social interactions
between an embodied agent (left) and a person (right). The interactions result
in the establishment of a social connection between the embodied agent and
the person. In the model, the social bond between the agent and the person
is established and maintained in three recursive stages. In the Figure, these
stages are labelled A to C. They are represented as blue transparent ovals. In
what follows, the individual stages are discussed in more detail.

stage a: analysing behaviour In stage A, the behaviour of the person is
detected by analysing sensory data from an array of sensors, e.g., cameras and
microphones. By utilising advanced artificial intelligence, including dedicated
machine learning and data mining techniques, the agent is able to detect the
person’s mood, behaviour and responses.

6 Please note that the model itself is not validated in this Thesis. It merely serves as a guideline
for the reader to illustrate the envisioned social interactions between humans and embodied
agents.
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Social connection

Embodied agent

Intelligent environment

Sensor array

Person(B) Providing 
personalised feedback

Figure 1.2: The model of the social interactions between humans and embodied
agents. An agent detects the behaviour of the person in the intelligent
environment (stage A), after which he provides the person with person-
alised feedback in the form of subtle social signals (stage B). Perceiving
the feedback sent out by the agent, the person may adapt his behaviour
accordingly (stage C), which can again be detected by the sensor array
(stage A) and used for the next cycle of human-embodied agent interac-
tions. As a result, a social bond between the person and the embodied
agent is established.

stage b: providing personalised feedback Based on the analysis of the
sensory data, the agent may decide to provide the person with personalised
feedback. The feedback is presented as social cues, e.g., subtle changes in
facial expressions or tone of voice, which are directed at the person.

stage c: sending social cues and behaviour Given the subtle nature of
the feedback, the person perceives the feedback of the agent subconsciously -
and therefore as nonintrusive. Perceiving the feedback sent out by the agent,
the person may adapt his behaviour accordingly, or respond to it by using
(1) verbal cues (e.g., voice), or (2) non-verbal cues, such as facial expressions,
body pose, and gestures.

The adapted behaviour and responses of the person can then be detected by
the sensor array (stage A), which completes a cycle of the recursive interac-
tions. The social cues and behaviour of the person can be used as input for
the next cycle. As a result, a social bond between the person and the embodied
agent is established.
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1.5 the relevance of depth data
In the domain of human-agent interactions, it can be expected that enabling an
agent to perceive a person’s social (i.e., verbal and non-verbal) cues will allow
the agent to respond more appropriately to the person’s behaviour. Whereas
verbal cues in general are difficult to detect and analyse due to their sensitivity
to background noise, non-verbal cues (such as facial expressions and gestures)
provide a rich and nowadays accessible source of information about a person’s
emotions, intentions, and actions.

To enable an agent to sense the non-verbal behaviour of its human com-
munication partner, the agent requires sensors to perceive the world around
the human. The agent sets the corresponding object detection algorithms to
work to analyse and understand the person’s behaviour. As embodied agents
are likely to be deployed in noisy environments (i.e., environments with a
large variety of objects, changing illumination conditions, and moving peo-
ple, such as a household), the agents require state-of-the-art computer vision
algorithms that are able to deal with the noisy nature of the environment.

Within the various fields of artificial intelligence, most object detection ap-
proaches (see, e.g., Khaligh-Razavi, 2014; Andreopoulos & Tsotsos, 2013) rely
on visual features to segregate objects from their backgrounds (see, for exam-
ple, De Croon, Postma, & Van den Herik, 2011; Bergboer, 2007; Lee & Nevatia,
2007). Visual features are extracted from visual data7, e.g., RGB (Red Green
Blue) images. While rich in detail, the main disadvantage of visual data is that
it is sensitive to the illumination conditions (see, e.g., Rautaray & Agrawal,
2015; C. Zhang & Zhang, 2010; Zhao, Chellappa, Phillips, & Rosenfeld, 2003).
Shadows, for example, may obscure objects from sight, making them difficult
to detect.

While it is possible to reduce the sensitivity of visual features to illumina-
tion conditions (see, e.g., Qu, Tian, Han, & Tang, 2015; Huorong Ren, Yu, &
Zhang, 2015; Shah & Kaushik, 2015; Son, Yoo, Kim, & Sohn, 2015), such im-
provements tend to result in an increase in computational complexity, and are
therefore not ideal for agent systems that aim to operate in real-time. Thus,
given the sensitive nature of visual data (and thereby the visual features ex-
tracted from it), using visual data as the main information source for auto-
matic detection tasks is unpractical in noisy environments such as household
scenes.

A requirement for effective object detection approaches in noisy environ-
ments is that they are insensitive to background noise. Thus, object segrega-
tion may be facilitated by using depth data rather than visual data. Exploiting

7 It is noted that there is a clear hierarchical difference between (raw) data and information. In
this Thesis, we consider input data (e.g., an image) as raw data. Extracting features from input
data results in cleaned raw data, i.e., data; predicting the corresponding class labels results in
information, i.e., data with a meaning.
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depth data allows for the extraction of depth features, which can be used as
an alternative to the widely-used visual features. As depth features provide
direct access to the third dimension, this enables object-background segrega-
tion even under noisy conditions (see, e.g., Brandão, Fernandes, & Clua, 2014;
Tang, Sun, & Tan, 2014; Chan, Koh, & Lee, 2013). As such, using depth data
as an additional - or even as the main - data source is highly relevant when
aiming to achieve robust object detection. The use of depth data became feasi-
ble with the introduction of affordable depth sensors, such as the microsoft

kinect device8 (see, e.g., Dal Mutto, Zanuttigh, & Cortelazzo, 2012).
Although depth data is insensitive to illumination conditions, the depth

images generated by the Kinect device still suffer from low image quality
and resolution. This results in high levels of background noise in the depth
data (see, e.g., Smisek, Jancosek, & Pajdla, 2013; Khoshelham & Elberink, 2012;
Spinello & Arras, 2011). Object detection approaches that aim to incorporate
depth data should therefore be able to deal with the background noise.

1.6 problem statement
When given a meaning, depth data is a robust and valuable source of infor-
mation about a person’s non-verbal cues. We call depth data with a meaning:
in-depth information. Enhancing an agent’s cognitive abilities by incorporating
in-depth information is likely to increase the agent’s ability to perceive human
behaviour. In this Thesis, we will explore the possibilities to deploy in-depth
information to detect the non-verbal cues of people. For this purpose, the
problem statement of the Thesis is formulated as follows.

Problem statement: To what extent is it possible to detect human body
parts and behaviour when using in-depth information?

The problem statement is the point of departure for five separate research
questions, which are presented in Subsection 1.6.1 on the next page. Answer-
ing the research questions to a sufficient degree may result in several contribu-
tions, which are envisaged in Subsection 1.6.2. Subsequently, the methodology
employed to answer the research questions is described in Subsection 1.6.3.

8 For the sake of readability, we henceforth refer to the microsoft kinect device as "Kinect" or
"Kinect device".
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1.6.1 Research Questions

To answer the problem statement as described above, five research questions
are formulated. Below, these research questions are listed and individually
motivated.

Within the field of depth-based object detection, a well-known example of
effective body part detection is proposed by Shotton and his collaborators
(see Shotton, Girshick, et al., 2013; Shotton, Fitzgibbon, et al., 2013; Shotton et
al., 2011). Hereafter, we will indicate these references for brevity as Shotton
et al. (2013a,b; 2011). The teams guided by Shotton developed a state-of-the-
art body part detector that is able to classify individual pixel locations as
belonging to faces, body joints, and body parts. Their approach uses depth
images that are generated by a Kinect device. Though able to achieve high
detection speeds, their approach suffers from the low quality of the depth
images. Deploying body part detection algorithms that are fast and insensitive
to background noise (as discussed in Section 1.5), is highly relevant in the
context of the current project. The first research question (RQ 1) therefore
reads as follows.

Research question 1: How can we improve Shotton et al.’s body part
detector in such a way that it enables fast and effective body part detection
in noisy depth data?

The answer to this research question is guided by the need for robust depth
comparison features that enable effective object-background separation. The
features should (1) enable a detector to deal efficiently with background noise,
and (2) enable a high detection accuracy. With the help of the findings of RQ 1

we aim to develop the notion of Region Comparison features by which we are
able to succeed with effective body part and gesture detection in noisy depth
data. The Region Comparison features will guide our research. To evaluate the
effectiveness of Region Comparison features for body part detection tasks, we
perform a comparative evaluation of the RC features on several challenging
object detection tasks. In the evaluation, the performance of the RC features is
compared with the performance of the original approach as used by Shotton et
al. (2013a,b; 2011). The second research question (RQ 2) thus reads as follows.

Research question 2: To what extent do Region Comparison features
enable fast and accurate face and person detection in noisy depth images?

Facilitating natural interactions between humans and embodied agents asks
for advanced algorithms that are able of recognise a person’s gestural cues.
Developing and training gesture recognition algorithms require high qual-
ity corpora that contain annotated, visual and depth data recordings of peo-
ple performing natural communicative gestures. However, to the best of our



1.6 problem statement 11

knowledge there are no databases available that (1) contain visual and depth
data recordings of natural gestures, and (2) are available for academic pur-
poses. This leads us to formulate the third research question (RQ 3):

Research question 3: How do we develop an annotated database that
incorporates visual and depth data recordings of natural human gestures?

Enabling agents to perceive a person’s social cues is a first step towards natu-
ral human-embodied agent interactions. Investigating the effectiveness of the
Region Comparison features for accurate gesture recognition is thus highly rel-
evant for the development of embodied agents that aim to engage in natural
interactions with people. However, facilitating the actual interactions requires
agents that are capable of perceiving a person’s (natural) gestural cues. Hence,
we will evaluate the performance of the Region Comparison features for ef-
fective gesture recognition. Our fourth research question (RQ 4) thus reads as
follows.

Research question 4: To what extent do Region Comparison features
enable accurate recognition of static gestures when using in-depth infor-
mation?

To establish the envisioned human-embodied agent interactions, we assume
that it is possible to create a strong, social connection between humans and
embodied agents, i.e., that humans are able to perceive an embodied agent as
a communication partner. It is, however, unclear to what extent it is actually
possible to create such social bonds between people and their virtual counter-
parts. Investigating to what extent such social bonds can be established may
be guided by the work by Chartrand & Van Baaren (2009), who found that the
process of imitation is an important social cue in human-human interactions.
As such, examining the effect of virtual agents on the imitative behaviour of
humans is highly relevant in this context. Given that mimicry is a form of
imitation that is mostly unconscious and unintentional (Chartrand & Lakin,
2013), it is particularly interesting to investigate to what extent humans ex-
hibit behavioural mimicry in the form of copying facial expressions and vocal
characteristics when interacting with virtual agents. If humans, in fact, un-
knowingly imitate different non-verbal cues of the agent, it can be interpreted
as an indicator of real social engagement. The fifth and last research question
(RQ 5) therefore reads as follows.

Research question 5: To what extent do people mimic verbal and non-
verbal cues sent out by an embodied agent?
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Table 1.1: Overview of the research approaches employed to investigate the individ-
ual research questions (RQs)

RQ Computational Behavioural

research research

1

2

3

4

5

1.6.2 Research Objectives

Assuming that we are able to answer the research questions to a sufficient
degree, we then arrive at the six research objectives of the Thesis. They are
defined as follows.

1. The proposition of a set of effective depth comparison features.

2. The development of a state-of-the-art object detection algorithm that al-
lows for fast and accurate body part detection in noisy depth images.

3. The development of an algorithm that recognises static fingerspelling
signs using depth data.

4. Gaining advanced insights into the extent to which people are able to
perceive a virtual person as a true communication partner.

5. The development of a challenging and publicly available database with
annotated depth images of human body parts.

6. The development of an open source annotation tool for depth images.

In total, our research may result in a new set of features, two new algorithms,
a new corpus, advanced insights, and a newly developed open source tool.

1.6.3 Research Methodology

Given that the investigation of the problem statement required a multidisci-
plinary approach that combined both behavioural research and computational
science, the research methodology deployed in this Thesis is tuned to serve
multidisciplinary research. It should be noted that the overlapping research
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area of the behavioural and computational approach is flexible when answer-
ing the research questions. Combining the knowledge from both disciplines
allows for the investigation of human behaviour, while it also enables fast
and efficient processing and analysis of the experimental results. Table 1.1
provides an overview of the main research approaches that were employed
to answer each individual research question. In general, the methodology em-
ployed to answer the problem statement and the research questions of the
Thesis (as formulated in Subsection 1.6.1) consists of six separate stages.

1. Reviewing relevant scientific literature.

2. Designing and performing comparative experiments.

3. Analysing the results.

4. Formulating the resultant conclusions and discussing their implications.

5. Answering the research questions in detail.

6. Answering the problem statement.

1.7 structure of the thesis
The problem statement of the Thesis is investigated and discussed over the
course of the next Chapters. Table 1.2, as shown on the next page, provides an
overview of the problem statement and consecutive research questions, and
the Chapters in which they are addressed. Below, the structure of the Chap-
ters is presented in more detail.

Chapter 1: There is no Place Like Home

The Chapter proposes an interaction model that describes the process of es-
tablishing and maintaining social connections between humans and socially
aware agent systems. It formulates the problem statement (PS) and five re-
search questions: RQs 1, 2, 3, 4, and 5. Subsequently, the Chapter presents the
six stage research methodology that is used to answer the research questions.
Answering the research questions may lead to six individual research objec-
tives.

Chapter 2: In Depth Lies Truth

A requirement for effective computer vision algorithms is that they are insen-
sitive to variations in illumination conditions. In-depth information, which is
extracted from depth data, is insensitive to changes in illumination conditions,
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Table 1.2: Overview of the problem statement (PS) and the subsequent research ques-
tions (RQs), and the Chapters in which they are addressed.

Chapter PS RQ 1 RQ 2 RQ 3 RQ 4 RQ 5

1

2

3

4

5

6

7

8

and may thus allow for robust object detection. Noisy depth measurements,
however, may result in high levels of background noise in the depth data. This
Chapter addresses RQ 1 by presenting the novel Region Comparison (RC) fea-
tures. The features are likely to deal effectively with noisy depth data.

Chapter 3: Through the Looking Glass

As it is unclear to what extent the RC features actually enable fast and effective
object detection in noisy depth data, this Chapter addresses RQ 2 by perform-
ing a comparative evaluation of the RC features on several challenging object
detection tasks. In the evaluation, the performance of the RC features is com-
pared with the performance of the state-of-the-art depth comparison features
that are proposed by Shotton et al. (2013a,b; 2011).

Chapter 4: Raising a Tiger

This Chapter addresses RQ 3 by investigating to what extent it is possible to
develop a corpus that contains annotated, visual and depth data recordings
of people performing natural communicative gestures. To answer the research
question, we present the Tilburg Gesture Research (TiGeR) Cub, a multimodal
corpus that consists of dyadically interacting interlocutors. The interactions
are recorded as visual data, depth data, and audio data. As such, the TiGeR
Cub allows for detailed studies into the synthesis and automatic classification
of human gesture.
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Chapter 5: Automatic Gesture Recognition From A to Y

Having proven their worth for effective body part detection tasks, deploying
RC features is highly relevant for embodied agents that aim to establish nat-
ural interactions with people. To enable natural interactions, it is imperative
that agents are enriched with the ability to perceive gestural cues. Hence, this
Chapter answers RQ 4 by investigating to what extent RC features are suitable
for automatic approaches towards gesture recognition.

Chapter 6: Mirror, Mirror on the Wall

So far, our studies focused on increasing an agent’s ability to perceive social
cues and human behaviour, as this may allow agents to respond more appro-
priately to people. It is, however, unclear to what extent it is actually possible
to establish a social connection between a person and an embodied agent, i.e.,
to what extent humans are able to perceive an embodied agent as an actual
communication partner. As such, this Chapter addresses RQ 5 by investigat-
ing to what extent humans show mimicking behaviour when interacting with
an emotionally expressive embodied agent.

Chapter 7: Conclusions

This Chapter combines the answers to the research questions into several con-
clusions. Based on the findings and conclusions, an answer to the problem
statement is formulated.

Chapter 8: General Discussion

This Chapter discusses the findings that are presented in the Thesis, and their
implications for the development of smart embodied agents. Subsequently,
the Chapter discusses points of improvement. The Chapter concludes by for-
mulating four recommendations for future research.





2 I N D E P T H L I E S T R U T H

"’Tis of great use to the Sailor to know the length of his Line, though he
cannot with it fathom all the depths of the Ocean."

– John Locke, An Essay Concerning Humane Understanding

In the domain of human-embodied agent interactions, increasing an agent’s
ability to perceive a person’s non-verbal cues will allow the agent to respond
appropriately to a person’s behaviour. To perceive these social cues accurately,
the agent needs a combination of sensors and machine-learning algorithms
that extract meaningful information about the person’s behaviour. Dedicated
computer vision algorithms are at the core of the agent’s ability to ‘see’ the
person’s gestures and facial expressions by detecting objects, such as the per-
son’s body parts and joints. A well-known example of an effective body part
detection approach is proposed by Shotton et al. (2013a,b; 2011). They de-
veloped a state-of-the-art body part detector that classifies individual pixel
locations as belonging to faces, body joints and body parts. Their approach
uses depth images that are generated by a microsoft kinect device (see, e.g.,
Smisek et al., 2013). Though able to achieve high detection speeds, their ap-
proach suffers from the low quality of the depth images. Thus, a requirement
for effective object detection algorithms (as discussed in Section 1.5) is that
they are insensitive to background noise. This Chapter9 outlines the need for
robust depth comparison features that are (1) insensitive to background noise,
and (2) able to maintain a high classification performance and detection speed.
The Chapter then proposes a novel idea, viz. the Region Comparison (RC) fea-
tures, which enable fast and robust human body part detection in noisy depth
images.

The structure of the Chapter is in accordance with the description above. Sec-
tion 2.1 presents depth data as a robust alternative to visual data. It also dis-
cusses the first principles and limitations of Shotton et al.’s state-of-the-art

9 This Chapter is based on work by R. J. H. Mattheij, K. Groeneveld, E. O. Postma, and H. Jaap
van den Herik (2016); Depth-Based Detection with Region Comparison Features. Published
in the Journal of Visual Communication and Image Representation (JVCI).
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body part detection algorithm. Subsequently, Section 2.2 presents and moti-
vates the research question addressed in the Chapter. Section 2.3 reveals our
contribution towards fast and robust object detection. Section 2.4 presents the
work related to our approach. Finally, Section 2.5 concludes upon our contri-
bution and answers the first research question.

2.1 towards robust body part detection
In the last few years, the automatic detection of objects from digital video and
image sources has gained considerable attention within the field of image
analysis and understanding (see, e.g., Nanni, Lumini, Dominio, & Zanuttigh,
2014; Andreopoulos & Tsotsos, 2013; Jiang, Fischer, Kemal, & Shi, 2013). Many
approaches towards object detection focus on extracting two-dimensional vi-
sual features (e.g., De Croon et al., 2011; Bergboer, 2007; Lee & Nevatia, 2007)
to help to segregate objects from their backgrounds. Well-known visual fea-
tures for object detection are the Haar-like features (Lienhart & Maydt, 2002)
proposed by Viola and Jones (Viola, Jones, & Snow, 2005; Viola & Jones, 2001).

Despite the widespread and successful use of two-dimensional (2D) visual
features in visual detection tasks, they have an important limitation: they typ-
ically respond to local visual transitions without being sensitive to the larger
spatial context (see, e.g., Carlevaris-Bianco & Eustice, 2014). As a consequence,
they are sensitive to factors that may influence scene properties locally, such as
illumination conditions (see, e.g., C. Zhang & Zhang, 2010; Zhao et al., 2003).
Bright lights, for example, may cause shadows (i.e., non-object contours) in
the image. Local 2D visual features will respond to the contours of the shad-
ows in the same way as to the contours of other, real objects. Typical situations
in which 2D visual features fail are those where variations in the third dimen-
sion (depth) lead to shape deformations. In general, the failures are caused
by object pose variations (e.g., Andreopoulos & Tsotsos, 2013; Liao, Jain, & Li,
2012).

A wide variety of methods attempts to overcome these sensitivities. The
most frequently applied methods focus on extracting context-sensitive fea-
tures (see, e.g., Bergboer, 2007). Although such approaches improve classifica-
tion performance, they tend to be costly in terms of computational resources
(J. Wu et al., 2013; Liao et al., 2012).

The remainder of this Section is as follows. Subsection 2.1.1 presents three-
dimensional (3D) cues as a robust alternative to (2D) features. Subsequently,
Subsection 2.1.2 describes the first principles of the kinect device (a sensor
array that can be used to capture depth data), while 2.1.3 deals with the state-
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of-the-art body part detection algorithm by Shotton et al. (2013a,b) that is used
to detect objects in 3D data.

2.1.1 From 2D Features to 3D Features

To overcome the limitations of 2D features, we add a third dimension by
combining 2D spatial and 1D depth information into 3D features (see, e.g.,
Brandão et al., 2014; Tang et al., 2014; Baak, Müller, Bharaj, Seidel, & Theobalt,
2013; Chan et al., 2013; Riche, Mancas, Gosselin, & Dutoit, 2011). Depth cues
then provide contextual information for a scene, which facilitates image seg-
mentation (see, e.g., Jiang et al., 2013; Dal Mutto et al., 2012; Plagemann, Gana-
pathi, Koller, & Thrun, 2010; Hoiem, Efros, & Hebert, 2006). Visual objects,
such as faces or persons, are actually much easier to distinguish in a 3D space
than to recognise from a 2D image (e.g., Brunton, Salazar, Bolkart, & Wuhrer,
2014; Burgin, Pantofaru, & Smart, 2011). In recent years, the use of depth
cues became feasible by the development of affordable depth sensors, such
as kinect device (see, e.g., Smisek et al., 2013). The depth cues captured by
the depth sensors are represented as two 2D depth images, in which each pixel
location describes the depth cue at that very specific location. As such, 2D
depth images provide a 3D description of a scene.

2.1.2 Capturing Depth with Microsoft Kinect

The microsoft kinect
1011 (see, e.g., Smisek et al., 2013) device generates its

depth images by (1) illuminating a spatial area with the Kinect’s infrared
laser, and (2) triangulating the corresponding depth with an infrared sensor
(Z. Zhang, 2012). Using an infrared laser that passes through a diffraction
grating, a grid of infrared dots is created. Given the known spatial distance
between the Kinect’s infrared laser and sensor, matching (A) the dots observed
in an image with (B) the dots projected using the pattern from the diffraction
grating, allows for effective depth triangulation. The resulting depth images
have a resolution of 640× 480 pixels. The pixel values of the depth images
encode for the distance between an object and the Kinect device. A large
depth value indicates a large distance between the object and the Kinect de-
vice, while a small depth value encodes for a small distance. On the next page,
Figure 2.1 shows (in 2.1a) an example of a visual image that is captured with
a Kinect device, and (in 2.1b) the corresponding depth image.

10 https://dev.windows.com/en-us/kinect
11 For the sake of readability, we henceforth refer to the microsoft kinect device as "Kinect" or

"Kinect device".
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a

b

Figure 2.1: An example of a visual image of a person (a), and the corresponding
depth image (b). Note the (background) noise in the latter image, which
is visualised as dark areas that can be seen at the edges of the objects in
the depth image.



2.1 towards robust body part detection 21

2.1.3 Shotton’s Pixel Comparison Features

Using the Kinect device, Shotton et al. (2013a,b; 2011) proposed a depth-based
body part detection algorithm that selects and classifies individual pixel loca-
tions in single depth images. Their method incorporates pixel-based depth
comparison features. For the sake of readability, we refer to these features as
the Pixel Comparison (PC) features. In what follows, we briefly discuss Shotton
et al.’s (2013a,b) feature computation procedure.

Shotton et al. started their feature computation procedure by selecting a
subset of random pixel locations from each individual depth image. For each
pixel location P from this subset, the depth difference is computed by com-
paring the depth values at two randomly chosen offset locations Q and R.
The offset locations are defined by the radius and angle with respect to point
P. The radius is defined to be inversely proportional to the depth value at
point P. A small depth value results in a larger radius for offset locations Q

and R, and vice versa. This way, a scale-invariant measure of depth between
two pixel locations is obtained. A single depth comparison between locations
Q and R provides only a weak indication of the depth difference in a spatial
area around point P. Repeating this measurement for other (randomly chosen)
offset locations Q and R, however, provides a fair description of the depth dif-
ference in an area around the location of point P. Then, Shotton et al. classified
the selected pixel locations in the subset as belonging to faces, body joints and
body parts. Below, we discuss (1) the procedure of selecting and classification,
and (2) the trade-off between speed and accuracy.

selecting and classifying There are two advantages of classifying indi-
vidual pixel locations rather than image regions (e.g., by means of a sliding
window): (1) the selection process allows for the detection of partially oc-
cluded objects, and (2) the classification process reduces the time required to
process an entire depth image. Using pixel-based depth-comparison features
makes their detector computationally efficient. In addition to these qualities,
the detector works directly on the raw input depth data, i.e., without an image
pre-processing stage to reduce noise in the data (cf. Förstner, 2000). Combin-
ing (1) efficient depth-comparison features and (2) the raw input depth image
is relevant for fast and effective object detection, as it allows for a high detec-
tion speed. This enables a real-time operation.

speed versus accuracy The detection speed, however, comes at the cost
of accuracy. The classification accuracy is hampered by two limitations (see,
e.g., Smisek et al., 2013; Khoshelham & Elberink, 2012; Spinello & Arras, 2011):
(1) the limited quality of the depth images generated by the Kinect device, and
(2) the limited resolution of the depth images.
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The first limitation arises from the triangulation sensor that is incorporated
in the Kinect device. Depending on the image geometry, parts of a scene may
not be illuminated by the sensor’s laser, i.e., the grid of infrared dots. These
parts are therefore not captured by the infrared sensor, which results in empty
regions in the depth image (cf. Khoshelham & Elberink, 2012). Figure 2.1b
shows an example of a depth image that is captured with the Kinect device.
Special attention should go to the (background) noise in the image, which is
visualised as dark areas that can be seen at the edges of the objects in the
depth image.

The second limitation is due to the point density of the Kinect device’s
sensor. Using its laser and depth sensor, the Kinect device generates a point
cloud of triangulated depth measurements. The dimensions of the spatial area
that are covered by the point cloud increase quadratically with the distance
from the Kinect device. Hence, the resolution of the depth images generated
by the Kinect device decreases with the distance (Khoshelham & Elberink,
2012). These two limitations result in noisy depth measurements. It calls for
feature computation methods that are able to deal efficiently with the noisy
nature of depth images.

2.2 improving shotton’s detector
Shotton et al. (2013a,b; 2011) suggested that a larger computational budget
may allow for the design of “potentially more powerful features based on, for
example, depth integrals over regions, curvature, or more complex local de-
scriptors” (see Shotton et al., 2013a). Alternatively, studies seeking to improve
object detection in depth images (see, e.g., Han, Shao, Xu, & Shotton, 2013) can
opt to use a larger computational budget to refine the input depth data itself
by, for example, including (depth) image filters or other refinement techniques
(e.g., Fanello et al., 2014; Vijayanagar, Loghman, & Kim, 2014; Wang, An, Zuo,
You, & Zhang, 2014; S. Liu, Wang, Wang, & Pan, 2013). While deploying ad-
ditional computational power is likely to increase the detector’s accuracy, it
may come at the cost of detection speed. This necessitates the development of
local descriptors that are both fast and accurate. Hence, the research question
addressed in this Chapter (RQ 1) reads as follows.

RQ 1: How can we improve Shotton et al.’s body part detector in such a
way that it enables fast and effective body part detection in noisy depth
data?

In this Chapter, I propose an improvement of Shotton et al.’s pixel-based
depth comparison features by introducing specialised region-based descrip-
tors that do not require an increased computational budget: the Region Com-
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parison (RC) features. I am inspired by the work by Papageorgiou, Oren, &
Poggio (1998), and Viola & Jones (2001). So, the RC features are based on the
well-known Haar-like region features (see, e.g., Lienhart & Maydt, 2002; Viola
et al., 2005; Viola & Jones, 2001; Papageorgiou et al., 1998) and combined with
the integral image representation (Crow, 1984) of depth images. As such, the
RC features are able to detect depth transitions in adjacent regions of depth
images.

2.3 region comparison features
Below, Region Comparison (RC) features are introduced as our improvement
of Shotton et al. (2013a,b; 2011)’s method. Their introduction and implementa-
tion aim to answer RQ 1. The RC features (as defined in Definition 2.1) trans-
late depth transitions (i.e., depth contours or edges) over regions in a depth
image into a numerical value, i.e., the RC feature value. The feature value pro-
vides an indication of the magnitude of the depth transition. The RC features
are based on the well-known Haar wavelets (Guf & Jiang, 1996). They pro-
vide an indication of the direction and magnitude of depth transitions in an
area of a depth image by comparing the depth differences over regions, i.e.,
large groups of pixels, instead of pixel pairs (as seen in, for instance, Shotton
et al., 2013b). On the one hand, varying the dimensions of the regions over
which the RC features are computed, allows for the description of depth tran-
sitions, smaller or larger. On the other hand, varying the relative positions of
the regions towards each other allows for the computation of the direction of the
depth transition.

Definition 2.1: RC features

RC features are two-dimensional filters that translate depth transitions
over regions in a depth image into a numerical RC feature value, which
describes the magnitude of a depth transition in an area of a depth image.

The advantage of comparing regions rather than individual pixel values (as seen
in Shotton et al., 2013a,b, 2011) is that it allows to average over larger areas. As
a result, RC features are less prone to local pixel noise. Averaging over larger
regions, however, results in a loss of spatial precision. By virtue of the Viola-
Jones approach (Viola & Jones, 2001), which combines (1) Haar wavelets, and
(2) integral images, the RC features combine the best of both worlds. There
are two advantages. Advantage 1 is that the RC features include the averaging
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(summing) over large regions, which makes the features insensitive to local
pixel noise. Advantage 2 is that the features also take individual pixel pairs,
i.e., small regions, into account.

To extract the RC features for a pixel location, the sums of the pixel values
enclosed in the rectangular regions around that pixel location is computed,
after which the sums are subtracted from each other. The computation pro-
cedure of the RC feature is explained in more detail in Subsection 2.3.1. The
spatial orientation of the regions of the RC features are predefined as combi-
nations of symmetrically located rectangular regions in the depth image, i.e.,
the so-called feature types (see Subsection 2.3.2). The additional computational
cost required to calculate the surfaces of the regions, i.e., the sum of the pixel
values, is negligible when integral images are employed (cf. Fanelli, Dantone,
Gall, Fossati, & Van Gool, 2013; Fanelli, Weise, Gall, & Van Gool, 2011). Thus,
the RC features are computed using the integral depth image rather than the
depth image itself. Combining RC feature values results in the creation of
a RC feature vector, which provides a mathematical description of the depth
transitions in the area around the selected pixel location (see Subsection 2.3.3).

2.3.1 Formal Definition

In this Subsection, Definition 2.1 is transformed into a formal definition, i.e.,
a mathematical description of the feature value. An RC feature value for pixel
location P(x,y) in a depth image is computed by first calculating the sums of
the pixels enclosed by two12 rectangular regions, and then subtracting these
sums from each other (cf. Viola & Jones, 2001). Subtracting the sums of the
areas results in a single feature value that indicates the depth difference over
a region. The features are calculated using predefined dimensions for the rect-
angular regions and their relative positions to each other (see Subsection 2.3.2).
The feature type depends on three variables, viz. (1) the parameter r defining
the size of the individual regions, (2) the number of rectangular regions d,
and (3) the spatial configuration i defining the orientation of the constituent
rectangular regions. The resulting feature values thus provide (1) an indica-
tion of the direction and (2) the magnitude of the depth transition over an
area around point P. Formally, the RC feature value of type i at location P in
depth image I, fi(P, I), is defined as follows:

fi(P, I) =
d(i)∑
n=1

S(An(i), r) −
d(i)∑
n=1

S(Bn(i), r),

12 Later, we will broaden the computation procedure by allowing more than two enclosing
rectangular regions.



2.3 region comparison features 25

where An(i) and Bn(i) represent rectangular regions of feature type i. In our
formalisation, we calculate sum S(Xn(i), r) of the pixels enclosed by rectan-
gular region Xn(i) of size r, where Xn encodes for region An or Bn. In this
definition, parameter n represents the index number of the rectangular region:
n = {1, 2, ...d(i)}. The maximum number of rectangular regions d(i) is prede-
fined by feature type i. Iterating over all regions of Xn(i), we calculate the
total sum of summed regions S(X1(i), r) to S(Xd(i)(i), r). The feature value fi
is then computed by subtracting the sums for the regions A and B.

The rectangle image regions define the regions over which the depth differ-
ence is calculated. The value of r determines the spatial scale of analysis. For
a small value of r, the associated feature encodes depth transitions at a small
scale, while large values of r allow the associated feature to encode for depth
transitions at a large scale.

2.3.2 Feature Types

The number of rectangular regions and their relative spatial positions in re-
lation to each other are predefined in terms of feature types i (see Definition
2.2). The feature types are based on the well-known Haar-like features as pro-
posed by Papageorgiou, Oren, & Poggio (1998), and used by Viola & Jones
(2001), and Lienhart & Maydt (2002).

Definition 2.2: Feature types

Feature types are predefined combinations of symmetrically located rect-
angular regions in a depth image that are used to compute the direction
of a depth transition in an area of a depth image.

Figure 2.2 (a-d) shows the basic feature types that are employed by the detec-
tor, and their associated number of constituent regions d(i). The green rectan-
gles represent the rectangular areas An(i) and the blue rectangles represent
the rectangular areas Bn(i) as defined in eq. 2.3.1. Both are used for the com-
putation of the RC features. In Figure 2.2, the red dot represents pixel location
P(x,y). The basic feature types enable the detector to calculate straightfor-
ward depth transitions in horizontal, vertical, diagonal and anti-diagonal ori-
entations. Variations derived from the basic feature types result in specialised
feature types, which are able to encode more complex local depth transitions
(Figure 2.2, e - h), or global depth transitions (Figure 2.2, i - o).

We return to this topic in Chapters 3 and 5, but we already now provide the
following forward pointers. Figure 2.2a shows an example of a basic feature
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a b c d

e f g h

i j k

l m n o

Figure 2.2: An enumeration of the Region Comparison (RC) feature types. The red
dot indicates the pixel location in a depth image. The green and blue
rectangles in each feature type represent the rectangular areas (regions)
over which the RC features are computed. The basic feature types (a - d)
allow for the computation of (a) horizontal, (b) vertical, (c) diagonal, and
(d) anti-diagonal depth transitions. Combining several basic feature types
results in specialised features types (e - o), which are able to encode more
complex local depth transitions (e - h), or global depth transitions (i - o).
The resulting feature values thus provide (1) an indication of the direction
and (2) the magnitude of the depth transition over an area around the
pixel location in a depth image.

type (represented as green rectangle and a blue rectangle; d(i) = 1), while
Figure 2.2e shows an example of an specialised feature type (represented by
two green rectangles A and two blue rectangles B; d(i) = 2). The majority of
the feature types (i.e., the ones shown in Figure 2.2, a - d, and i - o) consist
of square rectangles of dimensions r× r (width × height), which results in r2

pixel values per rectangle. We do note, however, that the derived variations
(i.e., the ones shown in Figure 2.2, e - h) may include rectangles of alternative
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width/height ratios. In those cases, the rectangles are created with dimensions
(0.5× r)× r (Figure 2.2 e), or r× (0.5× r) (Figure 2.2, f - h).

Given feature type i, the spatial dimensions (see Definition 2.3) of the area
over which the feature value is computed are defined by (1) the number of
rectangular regions d(i), and (2) the dimensions r of the individual regions.

Definition 2.3: Spatial dimensions

The spatial dimensions of a feature type are defined as the dimensions
of the two-dimensional area over which the depth transition is calculated.
It is important to take into account that more than two rectangles can be
used to enclose a region.

If a feature type consists of a number of small rectangles, it typically encodes
for local depth transitions in a depth image. Similarly, feature types that are
defined by means of large rectangles allow for the computation of depth fea-
tures over larger areas, i.e., global depth transitions. Calculating local depth
transitions is highly relevant for the detection and classification of small body
parts (e.g., the individual fingers of a hand), while calculating global depth
transitions is relevant for the recognition of larger body parts (e.g., a head,
shoulder, or arms). Hence, feature types such as the ones shown in Figure 2.2
(e - h) are suitable to detect the local depth transitions that are associated with
small objects, e.g., the fingers, while the feature types shown in Figure 2.2 (i
- o) are suitable to detect global depth transitions, which are associated with
larger objects, e.g., the head.

2.3.3 Feature Vector

Given a pixel location P(x,y) in a depth image, the features for this point are
calculated over the course of several iterations. In each iteration, the features
are computed using the feature types as defined in Figure 2.2. The proce-
dure results in a series of feature values - one feature value for each feature
type employed in the iteration - which are concatenated in a feature vector
(see Definition 2.4 on the next page). The feature types used to compute the
features incorporate rectangular regions that enclose multiple pixels per rect-
angle. With each new iteration, the dimensions of the rectangles are increased:
r = {1, 2, ..., rmax}. The feature vectors created after each iteration are then
concatenated in the final RC feature vector. It provides an indication of (1) the
orientation and (2) the extent of the depth differences in the near vicinity, as
well as at a larger spatial distance around point P (see Subsection 2.3.1). Cal-
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culating the sum of the rectangular areas for all possible rectangle sizes up to
rmax can be done efficiently using the integral image representation.

Definition 2.4: Feature vector

A feature vector is defined as a collection of feature values. It provides
a mathematical description of the direction and magnitude of the depth
transitions in a region of a depth image.

2.4 related work
The RC features deal effectively with background noise, without requiring ad-
ditional computational power. They relate to several contributions in the fields
of image refinement, computer vision and image understanding. In what fol-
lows, four related approaches are discussed. We characterise them briefly as
methods that (1) actively counteract background noise in depth data, (2) ex-
tend the Viola-Jones detector, (3) propose generalisations of Shotton et al.’s
method, and (4) incorporate the method proposed by Shotton et al. (2013a,b;
2011).

First, several approaches aiming to counteract background noise in depth
data include advanced depth image filters or other refinement techniques (see,
e.g., Vijayanagar et al., 2014; Wang et al., 2014; S. Liu et al., 2013). Although
image refinement is likely to improve the quality of the input depth data, it
comes at the cost of computational power. This may influence the prediction
time negatively. An interesting approach was presented by Fanello et al. (2014)
in the form of their ‘filter forests’. Using location-dependent adaptive filters,
their approach can be used to refine the quality of depth images. Such filters
are computationally demanding and therefore not suitable for our goals. In-
spired by their approach, our RC features incorporate a more straightforward
- and computationally less demanding - way to filter noisy depth images.

Second, Nanni et al. (2014) aim to detect human faces by applying the well-
known Viola-Jones detector (Viola & Jones, 2001) to visual (RGB - Red Green
Blue) images. Aligned depth images are then used to validate the detection
results. Although this approach does not deploy depth data as its main data
source, using the Viola-Jones detector in this context provides an interesting
element. Inspired by Nanni et al. and Viola and Jones, our approach incorpo-
rates Haar-like features (see, e.g., Lienhart & Maydt, 2002; Viola & Jones, 2001)
to detect objects in depth images.
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Third, the face-detection method proposed by Fanelli, Dantone, Gall, Fos-
sati, & Van Gool (2013) operates on large, randomly selected patches in depth
images (typically the size of a face), rather than on individual pixels (cf. Shot-
ton et al, 2013b). Their method includes a decision forest for the automatic
labelling of the patches. Using patches instead of individual pixels makes
the method less prone to noise. Fanelli et al. suggest that using the integral
image representation (Crow, 1984) of a depth image (rather than the depth im-
age itself) may facilitate an efficient evaluation of the patches in the decision
forest. Inspired by their suggestion, the RC features aim to describe individ-
ual pixel locations by computing depth comparison features over patches of
various dimensions. The RC features can therefore be seen as a generalisa-
tion of the patch-based method by Fanelli et al. Contrary to the randomly
selected patches proposed by Fanelli et al., the RC features provide an indica-
tion of the direction and the magnitude of depth transitions in a depth image.
The RC features include small and large patches of depth images through a
decomposition of the integral depth image. This ensures an efficient feature
computation process, which may therefore result in short prediction times.

Fourth, Buys et al. (2014) incorporate the pixel-based depth comparison
features that are proposed by Shotton et al. in their sophisticated method to
detect human bodies and to estimate their pose in single depth images. They
label pixels using a randomised decision forest classifier (Breiman, 2001). To
deal with the noisy labels generated by their decision forest (which are partly
due to the noisy nature of the individual pixels), Buys et al. perform a smooth-
ing procedure on the pixel labels by means of a mode blur filter. In agreement
with Buys et al., we acknowledge the importance of smoothing depth data to
counteract the noise contained in depth images. In contrast to Buys et al.’s
method for pixel comparison, the RC features do not require explicit smooth-
ing. Instead, the RC features perform an implicit smoothing procedure by in-
tegrating over depth image regions of varying dimensions, rather than relying
on individual pixels. Lacking the need for a post-hoc smoothing procedure is
likely to contribute to the efficiency of our approach.

2.5 chapter conclusions
A requirement for effective object detection algorithms is that they are insensi-
tive to background noise. Whereas visual data is sensitive to illumination con-
ditions, depth data may provide a robust alternative. The main disadvantage
of depth data, however, is the low quality and resolution of the depth images.
Thus, so far depth images suffer from high levels of background noise. State-
of-the-art approaches, such as the work by Shotton et al. (2013b), are sensitive
to the background noise in depth data. This calls for improved feature com-
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putation approaches that are able to deal efficiently with the noisy nature of
depth images.

To answer RQ 1: How can we improve Shotton et al.’s body part detector in such
a way that it enables fast and effective body part detection in noisy depth data?, I pro-
posed a novel idea in this Chapter, viz. the Region Comparison (RC) features
for robust object detection. The RC features provide an indication of (1) the di-
rection and (2) the magnitude of depth transitions in an area of a depth image
by comparing regions in a depth image rather than individual pixel values
pairs (cf. Shotton et al., 2013a). Based on the theoretical description given in
this Chapter, we may formulate the following Chapter conclusions.

• Conclusion 1: Comparing regions has a clear advantage over comparing
individual pixel values in that comparing regions allows for averaging
over larger areas.

• Conclusion 2: From Conclusion 1 we may conclude that our RC features
are less prone to local pixel noise than the PC features.

• Conclusion 3: The RC features do not need an additional computational
budget.

Whereas other attempts towards improved object detection required an in-
crease in the computational budget available, the RC features aim to improve
object detection without requiring additional computational budget. This can
be achieved by calculating the RC features over the integral depth image,
rather than over the depth image itself.

Research Continuation

To investigate to what extent RC features contribute to fast and effective ob-
ject detection in noisy depth images, the next Chapter presents a comparative
evaluation of the RC features on three challenging object detection tasks. In
the evaluation, the performance of the RC features is compared with the per-
formance of the original approach used by Shotton et al. (2013a,b; 2011).
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“Now, here, you see, it takes all the running you can do, to keep in the same
place. If you want to get somewhere else, you must run at least twice as fast
as that!”

– Lewis Carroll, Alice Through the Looking Glass

This Chapter13 aims to present a comparative evaluation of the RC features
on three challenging object detection tasks. To evaluate the results, the perfor-
mance of the RC features is compared with the performance of the pixel-based
depth comparison features that are proposed by Shotton et al. (2013a,b; 2011).

The course of this Chapter is as follows. First, Section 3.1 outlines the sec-
ond research question and its evaluation procedure. Subsequently, Section 3.2
presents the region comparison detector which incorporates our RC features. Sec-
tion 3.3 describes the procedure followed to evaluate the performance of the
Region Comparison detector, after which Section 3.4 presents the results of
our evaluation. The implications of the results are discussed in Section 3.5.
Finally, Section 3.6 concludes upon our contribution and answers our second
research question.

3.1 evaluating the rc features
As mentioned in Conclusion 1 of Chapter 2, the Region Comparison features
average over regions (i.e., large groups of pixels) in a depth image. However,
this may counteract the image’s background noise. Averaging over larger re-
gions may result in a loss of spatial precision. Thus, RC features may be less
sensitive to subtle depth differences. Yet, the RC features aim to prevent the
loss of spatial precision by (1) averaging over large regions, which makes the

13 This Chapter is based on work by R. J. H. Mattheij, K. Groeneveld, E. O. Postma, and H. Jaap
van den Herik (2016); Depth-Based Detection with Region Comparison Features. Published
in the Journal of Visual Communication and Image Representation (JVCI).

31
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features insensitive to local pixel noise (see Conclusion 2 of Chapter 2), and (2)
taking individual pixel pairs (i.e., small regions) into account, which allows
the features to measure subtle local depth differences. Still, it is unclear to
what extent RC features enable fast and accurate body part detection. To this
end, the research question addressed in this Chapter (RQ 2) reads as follows.

RQ 2: To what extent do Region Comparison features enable fast and
accurate face and person detection in noisy depth images?

To answer this research question, we first define a body part detector that in-
corporates our RC features. Then, we compare its performance to a detector
featuring Shotton et al.’s (2013a,b) Pixel Comparison (PC) features (see Subsec-
tion 2.1.3). In a comparative evaluation of the RC and PC features, both associ-
ated detectors are trained and evaluated on three challenging object detection
experiments: two face detection tasks and a person detection task. There are
two evaluation criteria. The first evaluation criterion is classification perfor-
mance (see Definition 3.1). The second evaluation criterion is computational
efficiency (as defined in Definition 3.2).

Definition 3.1: Classification performance

Classification performance is defined as the extent to which a detector is
able to accurately detect objects in depth data.

Definition 3.2: Computational efficiency

Computational efficiency is defined in terms of the time required to pro-
cess an entire depth image.

Both criteria are included in the definition of superiority of XX features over
the YY features (see Definition 3.3), where XX and YY represent given feature
sets (i.e., RC features or PC features). A higher classification accuracy corre-
sponds to a higher classification performance, while a shorter processing time
therefore corresponds to a higher computational efficiency. They are assessed
to ensure that improvements in accuracy do not lead to insurmountable com-
putational costs that prohibit real-time operation.
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Definition 3.3: Superior features

XX features are defined to be superior to YY features when the detector
incorporating the XX features outperforms the detector featuring the PC
features on evaluation criterion 1, i.e., classification performance, and per-
forms equally well or better on evaluation criterion 2, i.e., computational
efficiency.

3.2 the region comparison detector
To investigate the effectiveness of the Region Comparison features, we define
the region comparison detector, an object detector (see Definition 3.4) that incor-
porates our RC features for effective body part recognition tasks. It detects
body parts in depth data by classifying individual pixel locations in a sub-
set of random pixel locations, i.e., a point cloud (see Definition 3.5) as either
belonging to an object (e.g., a face) or to the background.

Definition 3.4: Object detector

A detector is defined as a mechanism that detects objects by classifying
parts of a depth image (e.g., individual pixel locations in a point cloud)
as either belonging to an object (e.g., a face) or to the background.

Definition 3.5: Point cloud

A point cloud is defined as a subset of data points (i.e., a set of pixel
locations) that is extracted from a depth image

The detector consists of two stages: (1) a pre-processing stage to compute our
RC features for the individual pixel locations of the point cloud, and (2) a
classification stage that uses a random decision forest classifier to predict the
corresponding labels of the pixel locations. The labelled point cloud forms
the final output of the classifier. Figure 3.1 shows a diagram of the region
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Figure 3.1: A diagram of the region comparison detector showing its pre-processing
and classification stages (represented by grey rectangular areas), and the
constituent sub-stages (represented as white boxes).

comparison detector. The pre-processing and classification stages are defined
in Subsections 3.2.1 and Subsection 3.2.2, respectively. They are represented
by dark grey, rectangular areas in Figure 3.1. Their constituent sub-stages (A
to D) are represented by white boxes.

3.2.1 Pre-processing stage

The image pre-processing stage (see Definition 3.6) is the stage in which the
input depth image is prepared for the classification process. In what follows,
the sub-stages of the pre-processing stage are discussed in detail.

Definition 3.6: Image pre-processing

Image pre-processing is defined as the process that prepares an input
image for the classification tasks, e.g., by extracting features from the
input image.

First, the integral image representation of the input depth image is computed
(sub-stage A, see Definition 3.7): the integral depth image. Then, a point cloud
(see Definition 3.5) of pixel locations is selected at random from the input
depth image (sub-stage B).
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Definition 3.7: Integral image representation

The integral image representation is defined as an alternative image rep-
resentation form in which an image is represented as the summed area
table of the image. The integral image allows for an efficient computation
of the sum of values in a rectangular subset of an image.

The advantage of selecting a subset of random pixel locations from the input
image (as proposed by Shotton et al. (2011) is twofold: (1) it allows for the
detection of partially occluded objects, and (2) it reduces the time required to
process an entire depth image.

After selecting the pixel locations, the detector computes multiple RC fea-
tures for each individual pixel location in the point cloud. The features are
then combined into a single RC feature vector (see Definition 2.4), which pro-
vides a mathematical description for that particular pixel location (sub-stage
C). The set of feature vectors (i.e., a single feature vector per pixel location in
the point cloud) forms the input for the detector’s classification stage. To ex-
tract the RC features for a pixel location, the sum of the pixel values enclosed
in a region around that very pixel location is computed. This can be achieved
efficiently by calculating the integral image representation of the depth image.

Figure 3.2 (a – d) shows an example of a visual image (Figure 3.2a) of a
person, and the corresponding depth image (Figure 3.2b). Figures 3.2c and
3.2d show examples of RC feature types yielding a response, i.e., a depth
transition over regions, for three randomly selected pixel locations (two in
Figure 3.2c and one in Figure 3.2d). The red dot represents a pixel location,
while the spatial positions of the green/blue rectangles (in these Figures also
indicated by the capital letters A and B, respectively) represent the regions and
direction over which a depth transition is measured; for two straightforward
depth transitions (see Figure 3.2c), and for a more complex depth transition
(see Figure 3.2d).

As stated in Subsection 2.3.2, the spatial dimensions of the area (over which
the RC features are computed) are defined by (1) the number of rectangular
regions d, and (2) the dimensions r of the individual regions. As such, feature
types which consist of (a larger number of) large regions typically encode for
more global depth transitions in a depth image, which are associated with
larger body parts (e.g., a head, shoulder, or arms), or an entire person. Hence,
the RC features for the region comparison detector are defined as a total of
11 different feature types, i.e., a combination of four basic feature types (see
Figure 3.3, a – d) and seven specialised feature types (see Figure 3.3, e – k).
In this Figure, the red dot indicates the pixel location in a depth image. The
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a b

c d

Figure 3.2: An example of a visual image (a) of a person, and the corresponding
depth image (b). Two straightforward depth transitions are given in Fig-
ure 3.2c. A more complex depth transition is seen in Figure 3.2d. Addi-
tional information is given in the text.

green and blue rectangles in each feature type represent the rectangular areas
(regions) over which the RC feature is computed. The basic feature types (a -
d) allow for the computation of (a) horizontal, (b) vertical, (c) diagonal, and (d)
anti-diagonal depth transitions. Combining several basic feature types results
in specialised feature types (e - k), which are able to encode more complex
(global) depth transitions.

3.2.2 Classification

In the classification stage, a random decision forest (RDF; cf. Breiman, 2001)
is used to classify the RC feature vectors that are computed for the pixel loca-
tions in the point cloud (sub-stage D in Figure 3.1). After classifying a feature
vector, the RDF maps a class label (object, no object) onto the corresponding
pixel location in the point cloud. The labelled point cloud forms the final out-
put of the classifier. Given the output of the classifier, groups of pixel locations
with similar labels provide an indication of the presence and location of a per-
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Figure 3.3: The 11 Region Comparison (RC) feature types that are deployed in our
head and person detection tasks. The feature types are defined as a com-
bination of four basic feature types (a – d), and seven specialised feature
types that aim to describe global depth transitions (e – k). The explanation
of the feature types is given in the text.

son’s body parts in the image. In what follows, the classification algorithm is
described briefly.

RDF classifiers are fast and effective multi-class classifiers that typically de-
ploy an ensemble (“forest”) of slightly different decision trees. They are suit-
able for various supervised machine-learning tasks, such as object classifica-
tion tasks (see, e.g., Chang & Nam, 2013; Criminisi, Shotton, & Konukoglu,
2012). Each individual tree in an RDF classifier consists of multiple binary
split nodes and leaf nodes. Individual split nodes compare single features
from the feature vector with a threshold, branching left or right depending
on the outcome of the comparison. The leaf nodes of the trees contain the
prediction results. In a forest, the predictions of all constituent decision trees
are averaged to obtain the final classification.

To grow the trees of a RDF classifier, each individual split node in a tree
selects a random subset of features taken from the collection of candidate
features from the training set. The number of features to select at random
is (by default) the square root of the number of candidate features per pixel
location. The best splitting candidate, i.e., the feature that best separates the
subset of training examples, is selected as the split node’s threshold. A tree
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can be grown until each leaf node contains a limited number of observations,
hence pruning the trees is not necessary.

Figures 3.4, 3.5, and 3.6 show a total of six examples from our test set, in
which the RDF of the region comparison detector classified individual pixel
positions as belonging to a head (see Figures 3.4 and 3.5) or person (see Figure
3.6). In these examples, a green dot represents a pixel location that is correctly
classified as belonging to a head or a person. The examples show that groups
of pixel locations with the same labels reveal the location of a person’s head
or body.

3.3 evaluation procedure
This Section describes the experiments performed to evaluate the performance
of the RC features. In our evaluation procedure, we compare the performance
of our Region Comparison (RC) features with a variant based on Shotton et
al.’s (2013a,b) Pixel Comparison (PC) features. Thus, we use the same detector;
one version uses the RC features, while the other version uses the PC features.
The latter version is called the pixel comparison detector.14 The aim of our ex-
periments is to investigate to what extent our RC features enable fast and
effective face and person detection in noisy depth images, as compared to the
PC features. To perform our evaluation, the region comparison detector (see
Section 3.2) and the pixel comparison detector are trained and evaluated on
three quite different challenging datasets with noisy depth data (see below).
Our ambition is to investigate (a) the difference between body part detection
and person detection in depth images, and (b) the difference between object
detection in smoothed and non-smoothed depth data. To satisfy our ambition
we have compressed the number of experiments to three: two face detection
tasks (smoothed and non-smoothed depth data) and one person detection
task. As stated in Section 3.1, the evaluation investigates (1) the classification
performance, and (2) the computational efficiency (i.e., the prediction speed)
of the detectors.

The remainder of this Section is as follows. Subsection 3.3.1 describes the
datasets that are used in the experiments, together with the criteria that we
apply for the comparison of the experimental results concerning the PC and
RC features. Then, we give the implementation details of both detectors in
Subsection 3.3.2. Subsequently, we describe the experiments performed in

14 As there was no version of Shotton’s algorithm available for academic purposes, we built an
implementation of the body part detection algorithm as described in Shotton et al. (2013a,b;
2011).
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Subsection 3.3.3 and the application of the criteria employed to evaluate their
performances in Subsection 3.3.4.

3.3.1 Datasets and Criteria

To assess to what extent the RC features are able to deal effectively with back-
ground noise in depth images, the region comparison detector and the pixel
comparison detector are trained and evaluated on the following three publicly
available databases with depth images.

1. Biwi Kinect Head Pose Database by Fanelli et al. (2013).

2. RGB-D Face Database by Høg et al. (2012).

3. RGB-D People Dataset by Spinello and Arras (2011).

The databases vary in (1) the amount of background noise (i.e., smoothed
background and non-smoothed background), and (2) the objects captured in
the depth data, i.e., human faces or entire humans. Figures 3.4, 3.5, and 3.6
show a total of six examples from the databases, in which the region compar-
ison detector classified individual pixel positions as belonging to a head (see
Figures 3.4 and 3.5) or person (see Figure 3.6). In these examples, a green dot
represents a pixel location that is correctly classified as belonging to a head
or a person, while a red dot represents a pixel location that is (correctly) dis-
missed by the detector. Orange dots indicate false negative predictions, while
blue represents the false positive ones. Below, the datasets are reviewed briefly.

biwi kinect head pose database is developed by Fanelli et al. (2013). The
dataset contains over 15, 000 visual (RGB) and depth (D) images of people
with various head poses sitting in front of a Kinect device. It provides anno-
tations in the form of masks that indicate the location of a person’s face in a
depth image. The masks use logical flags to indicate whether a pixel location
belongs to a face or not. All depth images in this database have an image reso-
lution of 640× 480 pixels. The background of the depth data is removed using
a threshold on the distance. The depth values are rescaled to an interval with
values ranging from 0 to 4, 095 (both inclusive). Removing the background is
likely to result in a reduction of the amount of background noise in the depth
images. On the next page, Figure 3.4 shows two examples from the Biwi Kinect
Head Pose Database.

rgb-d face database is developed by Høg et al. (2012). The dataset contains
1, 581 visual (RGB) and depth (D) images of the heads and shoulders of hu-
man participants in various poses and with different facial expressions. As no
annotations were provided for this database, each depth image in the subset
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a b

Figure 3.4: Two examples of the classification results that are achieved by the region
comparison detector on test images from the first head detection task, i.e.,
face detection in smoothed depth images.

was manually annotated15 by selecting a rectangular area that encloses the
person’s face in the depth image. The boundaries of the annotation area were
aligned with the left, top and right side of the face, and the lowest point of the
person’s lower jaw. Similar to the Biwi Kinect Head Pose Database, the image
resolution of the depth images is 640× 480 pixels. The depth values of the
depth images range from 0 to 4, 095 (both inclusive). The background of the
depth data is left intact. Figure 3.5 shows two examples of depth images from
this database.

rgb-d people dataset is developed by Spinello and Arras (2011). The dataset
contains over 3, 000 visual (RGB) and depth (D) images of mostly upright
walking and standing people in a populated indoor environment, seen from
different orientations and with different degrees of occlusions. This dataset
is acquired in a university hall using three vertically mounted Kinect devices.
In total, the dataset contains 1, 133 annotated depth images. As the Kinect de-
vices used in this experiment were mounted vertically, the depth images in
the dataset are rotated 90 angular degrees. Hence, the image resolution of the
depth images is 480× 640 pixels. The maximal distance between the Kinect
device and the hand of the subject is 1.0 meter. The annotations consist of
rectangular bounding boxes enclosing a person’s body. Similar to the RGB-D
Face Database, the background of the depth data is left intact. The depth values,
however, are rescaled to an interval with values ranging from 0 to 4, 095 (both
inclusive). Figure 3.6 shows two examples of depth images from this dataset.

15 The annotations for this database are available upon request from the author.
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a b

Figure 3.5: Two examples of the classification results that are achieved by the region
comparison detector on test images from the second head detection task,
i.e., face detection in non-smoothed depth images.

a b

Figure 3.6: Two examples of the classification results that are achieved by the region
comparison detector on test images from the person detection task, i.e.,
person detection in non-smoothed depth images.

For a proper evaluation of the performances of the PC features and the RC
features, we use two evaluation criteria. They are identified on the next page.
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criteria The performance of the detectors will be quantified using two perfor-
mance metrics: (1) a classification performance metric to report on the average
per-class segmentation accuracy, and (2) a computational efficiency metric to
measure the time required by a classifier to process an entire image. In our
evaluation RC features are considered to outperform PC features when they
achieve a higher average classification performance (evaluation criterion 1),
without incurring an additional cost in terms of detection speed as compared
to the PC features (evaluation criterion 2). Thus, we consider a feature set
to be superior when the detector incorporating the RC features outperforms
the detector featuring the PC features on evaluation criterion 1 and performs
equally well or better on evaluation criterion 2. The performance metrics are
defined in Subsection 3.3.4 together with their application on the results of
the experiments.

3.3.2 Implementation Details

The experiments are described in Subsection 3.3.3. Unless specified otherwise,
four types of parameters are used, viz. for (1) the selection of the random
pixel locations and spatial search area, (2) the RC and PC features, (3) the
RDF classifier, and (4) the implementation of the detectors.

the selection of the random pixel locations and spatial search area
For each depth image, a subset of 2, 000 random pixel locations is selected, for
which the RC and PC features are computed. To ensure a fair comparison
between both feature computation methods (i.e., RC vs. PC), both methods
operate on exactly the same pixel locations.

The maximal dimensions of the spatial search area over which the PC de-
tector computes its features are 150× 150 pixels. The PC detector normalises
the dimensions of the spatial search area based on the distance (depth value)
at point P(x,y). As a result, the search area is small for objects far from the
Kinect device (high depth value at point P(x,y)) but large for objects close to
the Kinect device (low depth value at point P(x,y)).

The spatial search area over which the RC features are computed is the
same as the maximal (i.e, not normalised) search area used by the PC fea-
tures. As such, the maximal dimensions of the rectangles incorporated by the
RC features are 38× 38 pixels. As the feature types with the largest spatial
dimensions deploy 4 rectangles (positioned horizontally, vertically, or (anti)-
diagonally next to each other), the resulting search area is (4× 38)× (4× 38) ≈
150× 150 pixels. Contrary to the PC features, the search area used for the RC
features is not normalised for the distance.
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the rc and pc features The rectangle size parameter r for the feature
types that are used to compute the RC features, is defined as an integer value
that increases with each iteration. In the first iteration, the value of r is initi-
ated at 1. After each iteration, the value of r increases with step size 1, up to
its maximum value of 38. Hence, the value of r over the iterations is defined
as: r = {1, 2, 3, ...38}. The resulting RC feature vectors may at most contain
11× 38 = 418 unique elements for each pixel location. The parameters em-
ployed to compute the PC features are as specified in Shotton et al. (2013b).
The resulting PC feature vectors contain 2, 000 unique elements for each pixel
location.

the rdf classifier For the experiments, the MATLAB implementation of
the random decision forest (the so-called “TreeBagger”16) is used. For the RC
features, each split node of the forest selects a random subset of

√
418 ≈ 20

candidate features. For the PC features, each split node of the forest tests√
2, 000 ≈ 44 candidate features to find the best splitting threshold. Each tree

of the random decision forest is trained until a minimum number of one ob-
servation per tree leaf is reached. The trees are not pruned.

the implementation of the detectors Both detectors are implemented
in MATLAB scripts. The implementations of the detectors are available upon
request from the author. The entire training and evaluation procedure takes
several days on a 50-core Linux calculation server.

3.3.3 Experiments

To evaluate the performance obtained by the RC features (as compared to
the PC features), we perform three classification experiments. In the experi-
ments, we train and evaluate the performance of both feature types (RC and
PC) using publicly available databases. In the first experiment, the Biwi Kinect
Head Pose Database (see Fanelli et al., 2013) is used to detect human faces in
smoothed depth images. In the second experiment, the RGB-D Face Database
(see Høg et al., 2012) is used to detect human faces in non-smoothed depth im-
ages. In the third experiment, the RGB-D People Dataset (see Spinello & Arras,
2011) is used to detect entire people in non-smoothed depth images. In what
follows, the experimental setup and the individual experiments (experiment
1, experiment 2, experiment 3) are described briefly.

experimental setup While the Biwi Kinect Head Pose Database and the RGB-
D Face Database both contain depth images of annotated human faces, the
depth images in the first database are likely to contain less background noise

16 http://nl.mathworks.com/help/stats/treebagger.html
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than the depth images in the latter database. This is due to the removal of the
background of the depth images in the Biwi Kinect Head Pose Database. Thus,
training and evaluating the detectors on these databases in the first two ex-
periments provides an indication of the extent to which the RC features are
able to deal effectively with background noise. Compared to the face detection
tasks, detecting an entire human is likely to be a more challenging task. To in-
vestigate whether our results also extend to more complex detection tasks, we
therefore compare the performance of both detectors in the third experiment
(the person detection task).

As the feature extraction procedure is computationally demanding (espe-
cially during the training procedure of the pixel comparison detector, due to
the large feature vectors required for this detector), our experiments are per-
formed using subsets of randomly selected depth images. The resulting sub-
sets are considerably smaller than the original datasets. For all experiments,
the generalisation performance is estimated using a 10-fold cross-validation
procedure. The datasets used in our experiments are partitioned into separate
training sets and test sets. In our experiments, the complexity of the RDF clas-
sifiers is not optimised prior to the experiment. Hence, we did not create a
validation set. Moreover, the PC features are not optimised beyond the param-
eters provided by Shotton et al. (2013a,b; 2011). The RC features are optimised
to match the parameters of the PC features, which ensures a fair comparison
between both feature computation approaches.

experiment 1 Experiment 1 deals with face detection in smoothed depth
images. For the experiment, a random subset of 100 depth images is selected
from the Biwi Kinect Head Pose Database. Using the 10-fold cross-validation
procedure, individual folds are created that each consist of 90 training images
and 10 test images. Inspired through the work by Shotton et al. (2011), a
subset of 2, 000 random pixel locations is selected from each depth image, and
labelled in a binary fashion, i.e., face when a pixel is located within the region
annotated as belonging to the face, or other in all other cases. For each fold,
the resulting dataset of experiment 1 consists of 180, 000 training examples
(pixels) and 20, 000 test examples. For each individual training example, the
RC and PC vectors are computed. Combined with the labels, the training
examples are used to train RDF classifiers, with forests ranging from 1 tree up
to 10 trees (both inclusive). The test examples and the corresponding labels
are used to assess the generalisation performance of the detectors.

experiment 2 Experiment 2 deals with face detection in non-smoothed
depth images. The underlying idea of experiment 2 is as follows. We expect
that RC features are suitable to deal with noise in depth data. Removing the
background in depth images, however, would also reduce the amount of noise
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in the depth data, which may influence the performance of the RC and PC
features. Experiment 2 is performed on the RGB-D Face Database. Contrary
to experiment 1, the current database contains depth images from which the
background is not removed.

For experiment 2, a random subset of 93 depth images is selected. After
performing 10-fold cross-validation, the resulting folds consist of 84 training
images and 9 test images. Similar to experiment 1, a subset of 2, 000 random
pixel locations is selected from each depth image, and labelled accordingly.
The resulting dataset contains 168, 000 training examples and 18, 000 test ex-
amples per fold. The training and evaluation procedure for the experiment is
the same as in experiment 1.

experiment 3 Experiment 3 deals with person detection in non-smoothed
depth images. The underlying idea of experiment 3 is as follows. Whereas
detecting human faces in depth images in general might be relatively easy
due to the fairly consistent shape of the human face, detecting entire humans
is likely to be a more challenging task.

For experiment 3, a subset of 100 random depth images is selected from the
RGB-D People Dataset. The background of the depth images in this dataset is
left intact. Similar to experiment 1 and 2, the resulting subset is divided into
separate training and test sets using the 10-fold cross-validation procedure.
We again select 2, 000 random pixel locations from each depth image. Each
individual fold therefore consists of 180, 000 training examples and 20, 000 test
examples. Each example is labelled as either person or other. We deployed
the same training and evaluation procedure of experiment 3 is the same as in
experiment 1 and 2.

3.3.4 Performance Metrics

The introduction of the performance metrics took place at the end of Subsec-
tion 3.3.1. In what follows, we describe the details of the performance metrics
that we use to quantify the classification performance and the computational
efficiency of the feature sets. It can be seen as a follow-up on the implementa-
tion details (see Subsection 3.3.2).

classification performance metric The detectors that are trained and
evaluated in our experiments classify individual pixel locations as either be-
longing to an object (e.g., a face), or to the background. Given the binary
nature of the experiments, we use (1) the balanced accuracy (as defined in Def-
inition 3.8), (2) precision (see Definition 3.9), and (3) recall (see Definition 3.10)
as our classification metrics to measure the classification performance of a
detector.
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As the class distributions of the datasets are highly skewed, i.e., a low percent-
age of face- or person-samples versus a high percentage of other-samples,
the performance is likely to be biased towards the most frequent class in a
dataset. To deal with the bias, Brodersen, O., Stephan, & Buhmann (2010),
and Carrillo, Brodersen, & Castellanos (2014) proposed the use of the balanced
accuracy as an alternative to the regular accuracy measurement. Thus, to han-
dle the bias in the datasets we use the balanced accuracy as our first detection
performance metric.

Definition 3.8: Balanced accuracy

The balanced accuracy is defined as the arithmetic mean of class-specific
accuracies, which considers the recall of the positive and negative class.

Definition 3.9: Precision

Precision is defined as the percentage of instances recognized by the de-
tector that are relevant.

Definition 3.10: Recall

Recall is defined as the percentage of relevant instances that are identified
by the detector.

Moreover, we adopt two additional classification metrics to handle the bias: (4)
the F1-score (see Definition 3.11, and, for example, the work by Powers (2011)),
and (5) the area under the receiver operating characteristic curve (AUC) (see Defi-
nition 3.12, which is taken from, for example, Omary & Mtenzi (2010)).

Definition 3.11: F1-score

The F1-score is defined in terms of the weighted average of the precision
and recall values of the positive class
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Definition 3.12: Area Under the Curve

The Area Under the Curve (AUC) is defined as the relation between the
true positive rate and the false positive rate of a classifier given various
classification thresholds.

We provide an indication of the complexity of the classifier (see Definition
3.13) by measuring (6) the average number of levels per tree, and (7) the av-
erage number of leaf nodes per tree. The average number of levels per tree
provides an indication of the (average) number of tests that are performed
on each feature vector. Moreover, the combination of (a) the average number
of levels, and (b) the average number of leaf nodes provides an indication of
the efficiency of the tree. Efficient trees are typically characterised by a low
number of levels, yet a relatively high number of leaf nodes.

Definition 3.13: Complexity

The complexity of the classifier is defined as the relation between the
number of levels and the number of leaf nodes in a tree.

Here we note that in the presentation of the results (see, e.g., Tables 3.1 and
3.3, and Figure 3.7) we deviate from the enumeration of classification metrics
provided above. For the Tables, either we use the order (1) balanced accuracy,
(2) recall, (3) precision, and (4) F1-score, or we use the full Table for the AUC
scores. For the Figures, we use the following order: (a) balanced accuracy, (b)
precision and recall, (c) F1-scores, and (d) the AUC scores.

computational efficiency metric The computational efficiency metric
measures the time required by a detector to process individual depth images
(see Definition 3.14). A shorter classification time corresponds to a higher com-
putational efficiency. Thus, the classification times provide an indication of the
computational efficiency of a detector.

Definition 3.14: Prediction time

The classification time is defined as the time required to pre-process a
single depth image, and classify the selected pixel locations.
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3.4 experimental results
In this Section, we describe the results of the experiments performed to eval-
uate the RC features and the PC features. Subsection 3.4.1 describes the re-
sults of experiment 1: the first face detection task, which uses a dataset with
depth images from which the background is removed (smoothed) using a
threshold. This experiment is considered as the benchmark experiment. Sub-
sequently, Subsection 3.4.2 describes the results of the face detection task with
non-smoothed depth images. Then, Subsection 3.4.3 describes the results of
the person detection task with non-smoothed depth images.

3.4.1 Experiment 1: Face Detection, Smoothed background

The results of the face detection task with smoothed depth images are shown
in Figures 3.7 and 3.8, and Tables 3.1, 3.2 and 3.3. In what follows, the results
will be discussed in detail.

Figure 3.7 shows the performance for both feature computation methods
(RC and PC) for ten sizes (i.e., number of trees per forest) of the RDF clas-
sifier for five metrics: (a) the balanced accuracy, (b) precision and recall, (c)
F1-scores, and (d) the AUC scores. Please note that Figure 3.7b contains two
metrics. Figure 3.8 shows (a) the average tree depth, and (b) the average num-
ber of leaf nodes per tree in the classifiers, which provides an indication of
the complexity of the classifiers. Table 3.1 shows the minimum and maximum
performances for the region comparison detector, while Table 3.2 shows this
information for the pixel comparison detector. Table 3.3 shows the AUC values
and the associated classification times (i.e., the computation times required to
process an entire depth image), for ten sizes of the forest.

Figure 3.4 (see Subsection 3.3.1) shows two depth images from our test set,
in which the region comparison detector recognized the location of a persons’
head by classifying the pixel locations in the point cloud. In these examples,
a green dot indicates a true positive prediction for a given pixel p P(x,y),
while a red dot indicates a true negative prediction. Orange represents false
negative predictions, while blue represents the false positive ones. The black
background of the images is the (visualized) result of the background removal
(smoothing). Figure 3.13a (see Section 3.6) shows the AUC curve for the opti-
mal detection parameters, i.e., a RDF classifier of 10 trees.

The results of the experiment show that the region comparison detector is
able to achieve a significantly higher classification performance than the pixel
comparison detector. The results also reveal that both detectors approach their
optimal classification performance using a random decision forest of rather
small dimensions, i.e., a forest consisting of only a limited number of trees (say,
three to five). Training additional trees does not affect the balanced accuracy
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Figure 3.7: [Experiment 1: face detection] The classification performance for the first
face detection task for ten sizes of the random decision forests: (a) bal-
anced accuracy, (b) precision and recall, (c) F1-scores, and (d) the AUC
scores (higher is better). The continuous line represents the performance
obtained by the RC features, while the dotted line represents the perfor-
mance obtained by the PC features. The x-axes of the graphs represent
the number of trees in the RDF. The y-axes represent the classification
performance. More details and interpretations are provided in the text.

(see Figure 3.7a) of the region comparison detector significantly, although
it decreases slightly for the pixel comparison detector. When increasing the
number of trees in the forest, recall and precision (Figure 3.7b), and the F1-
score (Figure 3.7c) increase slightly for the region comparison detector, while
the precision of the pixel comparison shows a slight increase, and even a
decrease in recall and F1-score. For both detectors, the Area Under the Curve
(AUC) score increases with the size of the forest, approaching its optimal score
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Table 3.1: [Experiment 1 - RC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the RC fea-
tures in experiment 1.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 79.4 (1.7) 88.8 (1.5)

Recall (%) 59.7 (3.5) 79.1 (3.1)

Precision (%) 52.6 (7.3) 74.0 (7.4)

F1-score 0.59 (0.04) 0.70 (0.03)

Table 3.2: [Experiment 1 - PC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the PC fea-
tures in experiment 1.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 51.2 (0.4) 63.5 (1.1)

Recall (%) 2.63 (0.9) 31.8 (2.1)

Precision (%) 12.9 (1.8) 19.7 (7.3)

F1-score 0.05 (0.01) 0.18 (0.02)

using a forest of three trees and five trees for the region and pixel comparison
detector, respectively (Figure 3.7d).

The results also show that the trees that are grown for the region compar-
ison detector are significantly smaller than the ones that are grown for the
pixel comparison detector. Figure 3.8 shows (in Figure 3.8a) the average tree
depth, and (in Figure 3.8b) the average number of leaf nodes per tree for both
detectors in experiment 1.

Averaged over all folds and dimensions in the experiment, the trees of the
region comparison detector are 13.0 levels deep (SD = 0.21). The trees that are
grown for the pixel comparison detector, however, reach an average depth of
17.6 levels (SD = 0.41). Moreover, our results show that the trees of the region
comparison detector contain an average of 1, 001 leaf nodes (SD = 23), while
the trees of the pixel comparison detector contain an average of 2, 015 leaf
nodes (SD = 23).

These results imply that the random forests that are trained by means of the
RC feature vectors, require, on average, a lower number of tests to perform the
classification procedure than their pixel comparing counterparts. Our results
thus indicate that, compared to the RDF classifiers that are trained by incorpo-
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Table 3.3: [Experiment 1: face detection] The AUC scores and classification times per
image for the both detectors while using RDF classifiers of ten sizes in
experiment 1.

Forest RC features PC features

size AUC Pred. time (s) (SD) AUC Pred. time (s) (SD)

1 0.794 1.08 (0.16) 0.578 0.01 (0.00)

2 0.889 1.38 (0.01) 0.635 0.01 (0.00)

3 0.924 1.74 (0.01) 0.674 0.01 (0.00)

4 0.947 2.09 (0.02) 0.722 0.01 (0.00)

5 0.959 2.45 (0.01) 0.761 0.02 (0.00)

6 0.969 2.83 (0.02) 0.784 0.02 (0.00)

7 0.975 3.17 (0.03) 0.801 0.02 (0.00)

8 0.980 3.52 (0.02) 0.824 0.02 (0.00)

9 0.982 3.86 (0.02) 0.842 0.02 (0.00)

10 0.980 4.24 (0.01) 0.846 0.02 (0.00)
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Figure 3.8: [Experiment 1: face detection] The bar plot of (a) the average tree depth,
and (b) the average number of leaf nodes per tree for the region com-
parison detector (represented in blue) and the pixel comparison detector
(represented in grey), and the corresponding error bars. The results are
averaged over all trees and all folds.

rating the PC features, incorporating RC features leads to a lower complexity
in the RDF classifiers.
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The results of experiment 1 suggest that the RC features enable a significantly
higher classification performance than the PC features. However, the average
classification times (as shown in Table 3.3) indicate that the region comparison
detector requires more time to process a depth image than the pixel compari-
son detector. This may (partially) be due to the time required to (1) compute
the integral image representation, and (2) extract the RC features. While the
results of experiment 1 show that RC features enable a higher classification
performance in smoothed depth data, their classification performance comes
at the cost of computational efficiency.

3.4.2 Experiment 2: Face Detection, non-smoothed background

We now investigate to what extent the pattern of results of experiment 1 are
related to non-smoothed depth data. As noisy depth data is likely to result
in erroneous depth measurements in the feature vectors, accurately separat-
ing the feature vectors may become a challenge. Classifiers that aim to sepa-
rate feature vectors with erroneous feature values require additional tests to
achieve an optimal separation of the data. This may lead to an increase in the
number of split nodes and leaf nodes, i.e., an increase in the complexity of
the classifiers. Increasing the number of tests that are performed on the input
feature vectors may influence a detector’s classification time negatively. This
is assessed in our second face detection experiment, in which both detectors
are trained and evaluated on a dataset with non-smoothed depth images.

For the second face detection task, the average classification performances
are shown in Figures 3.9 and 3.10, and Tables 3.4, 3.5 and 3.6. The dataset used
in the experiment contains depth images from which the background is left
intact. In what follows, the results will be discussed in detail.

Figure 3.9 shows (a) the balanced accuracy, (b) precision and recall, (c) F1-
scores, and (d) the AUC scores for both feature computation methods. Figure
3.10 provides an indication of the complexity of the classifiers by showing
the average tree depth and the average number of leaf nodes per tree in the
classifiers. Tables 3.4 and 3.5 show the minimum and maximum performances
for the RC features and PC feature, respectively. Table 3.6 shows the AUC
values and the associated classification times for ten sizes of the RDF classifier.
Figure 3.5 (in Subsection 3.3.1) shows two examples of depth images from our
test, in which the region comparison detector (featuring a RDF classifier of
10 trees) classified individual pixel locations. We remark the presence of the
“depth shadow”, i.e., empty parts in the depth image, on the right side of the
person. It is a direct result of a part of a scene that is not illuminated by the
laser of the Kinect device, and therefore not captured by its infrared sensor.
Consequently, it results in the undefined (empty) regions that are described
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Figure 3.9: [Experiment 2: face detection] The classification performance for the sec-
ond face detection task for ten sizes of the random decision forests: (a)
balanced accuracy, (b) precision and recall, (c) F1-scores, and (d) the AUC
scores (higher is better). The continuous line represents the performance
obtained by the RC features, while the dotted line represents the perfor-
mance obtained by the PC features. The x-axes of the graphs represent
the number of trees in the RDF classifier. The y-axes represent the classifi-
cation performance. More details and interpretations are provided in the
text.

by, for example, (Khoshelham & Elberink, 2012). Figure 3.13b shows the AUC
curve for the optimal detection parameters, i.e., a RDF classifier of 10 trees.
The results of the experiment (Figure 3.9 and Table 3.4) show that the RC fea-
tures again achieve a significantly higher classification performance than the
PC features (Table 3.5), even though the number of training samples is slightly
smaller than in experiment 1. Similar to the results of experiment 1, Figure 3.9
shows that both types of features approach their optimal classification perfor-
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Table 3.4: [Experiment 2 - RC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the RC fea-
tures in experiment 2.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 91.3 (2.0) 95.5 (1.8)

Recall (%) 83.4 (3.9) 92.4 (3.5)

Precision (%) 76.9 (4.7) 92.0 (3.9)

F1-score 0.83 (0.03) 0.91 (0.03)

Table 3.5: [Experiment 2 - PC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the PC fea-
tures in experiment 2.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 51.7 (0.4) 63.1 (1.3)

Recall (%) 3.81 (0.9) 33.9 (2.4)

Precision (%) 18.8 (1.6) 34.6 (6.0)

F1-score 0.07 (0.02) 0.24 (0.01)

mance using a random decision forest of rather small dimensions (again, say
three to five). Training additional trees does not affect the accuracy (see Fig-
ure 3.9a) of the RC features significantly, although it decreases slightly for the
PC features. When increasing the size of the forest, recall, precision (Figure
3.9b), and the F1-score (Figure 3.9c) increase slightly for the RC features. The
difference in performances of both feature types is also reflected in their AUC
scores (Figure 3.9d).

Compared to experiment 1, the depth data used in experiment 2 contains
a much higher amount of background noise. Following the increase in the
amount of background noise, our results (see Figures 3.7d and 3.9d) show
that the classification performance of the PC features decreases slightly. The
performance of the RC features, however, shows a minor increase.

The average classification times (as shown in Table 3.6) indicate that, for
experiment 2, the region comparison detector requires less time to process
an entire depth image than the pixel comparison detector. In contrast to the
results of experiment 1, the region comparison detector achieves a detection
speed that is up to 2.5 times faster than the detection speed of the pixel com-
parison detector.
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Table 3.6: [Experiment 2: face detection] The AUC scores and classification times per
image for the both detectors while using RDF classifiers of ten sizes in
experiment 2.

Forest RC features PC features

size AUC Pred. time (s) (SD) AUC Pred. time (s) (SD)

1 0.912 1.36 (0.23) 0.415 7.55 (0.22)

2 0.958 1.72 (0.02) 0.507 8.17 (0.03)

3 0.973 2.18 (0.03) 0.583 8.82 (0.07)

4 0.979 2.63 (0.02) 0.641 9.46 (0.06)

5 0.984 3.09 (0.02) 0.680 10.1 (0.08)

6 0.987 3.60 (0.05) 0.719 10.7 (0.07)

7 0.987 3.98 (0.04) 0.745 11.4 (0.08)

8 0.989 4.51 (0.04) 0.761 12.1 (0.15)

9 0.991 4.89 (0.09) 0.782 12.7 (0.12)

10 0.991 5.44 (0.08) 0.784 13.3 (0.20)

The difference in detection speed may partially be due to an increase in the
complexity of the RDF classifier of the pixel comparison detector. Figure 3.10

shows (in Figure 3.10a on the next page) the average tree depth, and (in Fig-
ure 3.10b) the average number of leaf nodes per tree for both detectors in
experiment 2.

An analysis of the complexity of the pixel comparison detector reveals that,
while the classifier of the pixel comparison detector reaches an average depth
of 17.6 levels (SD = 0.41) in experiment 1, the average tree depth of the clas-
sifier quadruples to 68.1 levels (SD = 2.36) in experiment 2. This increase is
also reflected in the number of leaf nodes of the classifier, as they double from
2, 015 (SD = 23) in experiment 1 to an average of 3880 leaf nodes (SD = 58) in
experiment 2. The trees grown for the region comparison detector, however,
now reach an average depth of 13.1 levels (SD = 0.22) and 997 leaf nodes (SD
= 31), which translates to a minimal increase in average tree depth, or even a
small decrease in the average number of leaf nodes.

The results imply that increased levels of background noise in depth data
result in a significant increase in the number of tests that are performed by
the RDF classifier of the pixel comparison detector. However, the results also
imply that the RDF of the region comparison detector does not require addi-
tional tests to perform its classification task.
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Figure 3.10: [Experiment 2: face detection] The bar plot of (a) the average tree depth,
and (b) the average number of leaf nodes per tree for the region compar-
ison detector (represented in blue) and the pixel comparison detector
(represented in grey), and the corresponding error bars. The results are
averaged over all trees and all folds.

The results of experiment 2 show a significant increase in the classification
time of the pixel comparison detector, especially when compared to a rela-
tively small increase in the classification times of the region comparison detec-
tor. The results show that the complexity of the RDF classifier employed by the
pixel comparison detector increases significantly with the level of background
noise in the depth data. It indicates that the pixel comparison detector is more
sensitive to background noise than the region comparison detector. Thus, the
results suggest that the RC features are better suited to handle background
noise in depth images.

3.4.3 Experiment 3: Person Detection

We now turn to experiment 3 to assess the more complex task of person de-
tection in depth images. While detecting human faces in depth images might
be relatively easy, detecting entire humans is likely to be a more challenging
task. The experiment explores whether and if so, to what extent, RC features
outperform PC features in more complex detection tasks. The average classi-
fication performances obtained by RC features and PC features on the person
detection task are shown in Figure 3.11 and 3.12, and Tables 3.7, 3.8 and 3.9.
The dataset used in the experiment contains depth images with high levels of
background noise. In what follows, the results will be discussed in detail.

Figure 3.11 shows the classification performance of both types of features
for different sizes of the random decision forest: (a) the balanced accuracy, (b)
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Figure 3.11: [Experiment 3: person detection] The classification performance for the
person detection task for various sizes of the random decision forests:
(a) balanced accuracy, (b) precision and recall, (c) F1-scores, and (d) the
AUC scores (higher is better). The continuous line represents the per-
formance obtained by the RC features, while the dotted line represents
the performance obtained by the PC features. The x-axes of the graphs
represent the number of trees in the RDF classifier. The y-axes represent
the classification performance.

precision and recall, (c) F1-scores, and (d) the AUC scores. Figure 3.12 shows
(a) the average tree depth, and (b) the average number of leaf nodes per tree
in the classifiers, which provides an indication of the complexity of the clas-
sifiers. Tables 3.7 and 3.8 show the minimum and maximum performances of
the aforementioned performance metrics for the RC features and PC features,
respectively. Table 3.9 shows the performances expressed as the AUC of the
detectors, versus the time required to process an entire depth image, i.e., the
classification time.
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Table 3.7: [Experiment 3 - RC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the RC fea-
tures in experiment 3.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 73.6 (1.1) 83.0 (1.0)

Recall (%) 48.7 (2.1) 68.0 (2.0)

Precision (%) 63.3 (2.9) 88.3 (2.2)

F1-score 0.62 (0.02) 0.76 (0.02)

Table 3.8: [Experiment 3 - PC features] The minimum and maximum scores for the
balanced accuracy, recall, precision, and F1-scores obtained by the PC fea-
tures in experiment 3.

Performance metric Min. score (SD) Max. score (SD)

Balanced accuracy (%) 52.5 (0.6) 56.0 (0.6)

Recall (%) 7.21 (1.1) 27.0 (1.3)

Precision (%) 23.0 (1.8) 38.9 (2.7)

F1-score 0.12 (0.02) 0.248 (0.01)

Figure 3.6 (see Subsection 3.3.1) shows two examples of depth images from
our test set, and the corresponding prediction results of the region compar-
ison detector (using a RDF classifier of 10 trees). We remark that the region
comparison detector is capable of detecting people at close range and at larger
distances from the Kinect device. Figure 3.13c shows the AUC curve for the
optimal detection parameters, i.e., a RDF classifier of 10 trees.

The results (see Figure 3.11) of the experiment show that the RC features
again achieve a significantly higher classification performance than the PC
features (see Tables 3.7 and 3.8). Both (balanced) accuracy and recall obtained
by the RC features are largely independent of the number of trees in the
RDF classifiers. The precision of the detector, however, increases significantly
with the dimensions of the forest. The region comparison detector achieves its
optimal AUC using a forest of 4 trees.

The classification times for the person detection task are listed in Table 3.9.
The results are two-fold. On the one hand, the results show that the RC fea-
tures allow for a considerably shorter classification time per image (which
therefore results in a higher prediction speed) than the PC features. For in-
stance, our results show that the detection speed obtained by the region com-
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Table 3.9: [Experiment 3: person detection] The AUC scores and classification times
per image for the both detectors while using RDF classifiers of ten sizes in
experiment 3.

Forest region comparison detector pixel comparison detector

size AUC Pred. time (s) (SD) AUC Pred. time (s) (SD)

1 0.785 1.70 (0.22) 0.552 8.07 (0.18)

2 0.862 2.54 (0.03) 0.590 9.21 (0.10)

3 0.892 3.34 (0.04) 0.620 10.3 (0.05)

4 0.913 4.19 (0.05) 0.640 11.5 (0.09)

5 0.923 5.00 (0.09) 0.651 12.6 (0.14)

6 0.931 5.92 (0.06) 0.668 13.7 (0.05)

7 0.936 6.75 (0.17) 0.675 15.0 (0.10)

8 0.940 7.63 (0.07) 0.682 16.1 (0.13)

9 0.944 8.48 (0.12) 0.691 17.3 (0.09)

10 0.946 9.30 (0.17) 0.695 18.3 (0.17)
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Figure 3.12: [Experiment 3: person detection] The bar plot of (a) the average tree
depth, and (b) the average number of leaf nodes per tree for the region
comparison detector (represented in blue) and the pixel comparison de-
tector (represented in grey), and the corresponding error bars. The re-
sults are averaged over all trees and all folds.

parison detector is about two to four times higher than the detection speed
obtained by its pixel comparing opponent. On the other hand, the results show
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that both detectors require more time to classify the pixel locations than in ex-
periment 1 and 2. Figure 3.12 shows that this is also reflected in the increased
complexity of both detectors.

An analysis of the complexity of the detectors that are trained for experi-
ment 3 (see Figure 3.12) reveals that the RDF classifier of the region compar-
ison detector reaches an average depth of 24, 0 levels (SD = 0.39), versus an
average depth of 40.4 levels (SD = 1.02) for the pixel comparison detector. The
trees of the region comparison detector consist of, on average, 6, 610 leaf nodes
(SD = 94), and 11, 600 leaf nodes (SD = 90) for the pixel comparison detector.

Compared to the results of experiment 2 (see Figure 3.10), the results show
an increase in the number of levels of the RDF of the region comparison detec-
tor, but a decrease in the number of levels of its pixel comparing opponent. Yet,
the results also indicate that the average number of leaf nodes increases sig-
nificantly for either detector. This suggests an increase in the average number
of tests per tree of either detector, which translates to an increase in complex-
ity of both detectors. Although the complexity increases for both detectors,
the RDF of the region comparison detector again achieves a lower complexity
than the pixel comparison detector.

The results of experiment 3 indicate that the person detection task is, indeed, a
harder task than the face detection tasks (experiment 1 and 2). For more com-
plex classification tasks, the RC features seem to benefit from an increase in
the number of trees. When detecting an entire person in non-smoothed depth
images, RC features outperform PC features at a two to four-fold increase in
processing speed. The results of experiment 3 thus show that the superiority
of RC features also holds for the task of person detection.

3.5 discussion
In this Chapter, we evaluated the Region Comparison (RC) features that were
proposed in Chapter 2. In our evaluation, we compared the classification per-
formance and detection speed of a detector that incorporated our RC features
with the performance achieved by a detector that incorporated Shotton et al.’s
(2013a,b; 2011) Pixel Comparison (PC) features. The results of our evaluation
of experiments with a non-smoothed noisy background reveal that our ap-
proach achieves a high detection accuracy without requiring an additional
computational budget. The results of the empirical evaluation show that RC
features do indeed outperform PC features in (1) classification performance,
and (2) computational efficiency. This holds for face detection as well as for
person detection.
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This Section discusses the implications of the results in more detail. Subsection
3.5.1 discusses the relative superiority of the RC features over the PC features,
while Subsection 3.5.2 addresses the number of samples that are used in our
experiments. Subsequently, Subsection 3.5.3 discusses our future work and
the steps to be taken before the region comparison detector can actually be
employed for object detection tasks.

3.5.1 RC Features Combine the Best of Both Worlds

Given the superior results achieved by the RC features in our evaluation, the
prevailing question still is: what precisely does explain the superiority of the
RC features over PC features? As indicated in Section 2.1, handling the noise
in depth images is an important challenge for object detection methods. In-
dividual depth pixels may have incorrect values due to limited sensor reso-
lution or false reflections. Comparing individual, incorrect pixel values may
therefore lead to measurement errors. To counter the far-reaching effects of
incorrect pixel values requires averaging over larger regions in the depth im-
age. That is where RC features come in. However, averaging over pixel values
results in a loss of spatial precision. Analogously to the Viola-Jones approach,
which combines integral images and Haar wavelets, the RC features combine
the best of both worlds. On the one hand, RC features include the averaging
(summing) over large regions, which makes the features insensitive to local
pixel noise, while on the other hand the RC features take individual pixel
pairs (such as the PC features) into account. We believe that the balanced
combination of global averaging and local precision explains the relative su-
periority of the RC features over the PC features. Moreover, the computational
efficiency is a direct result of our use of the highly efficient integral image rep-
resentation.

To arrive at this point, we incorporated the combination of RC features and
the integral image in our region comparison detector. The detector computes
feature vectors with RC features for each randomly selected pixel location in
a depth image. The resulting RC feature vectors contain 418 elements. In con-
trast, the PC feature vectors (that are created using the PC features of Shotton
et al. (2013a,b; 2011)) contain 2, 000 elements per pixel location. It implies that
calculating features over the same spatial area in a depth image results in RC
feature vectors that are approximately 80% smaller than the feature vectors
created for the PC features. As a result, the number of calculations required
to create the individual feature vectors is likely to be in favour of the RC fea-
tures. The additional computational cost required to compute the surface of
the areas for the RC features is negligible when integral images are employed
(cf. Fanelli et al., 2013, 2011). Moreover, shorter feature vectors contain fewer
features that need to be tested by the random decision forest. This may there-
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fore add to the computational efficiency of the RC features. One may argue
that calculating the integral image representation of the depth image itself also
requires computational power. However, the results of our evaluation reveal
that processing an entire depth image using the RC features (by first calculat-
ing the integral image of a depth image and subsequently computing the RC
feature vectors) takes less time than the time required to create and classify
the PC feature vectors. This is partly due to the fact that the integral image rep-
resentation is computed only once for each depth image. The time required
to calculate the integral image is therefore likely to be compensated by the
efficient feature computation process. We therefore argue that computing the
integral image and the RC feature vectors can be achieved more efficiently
than the PC feature vectors, which works in favour of the RC feature vectors.

As stated above, our results show that the RC features achieve performances
superior to PC features. Of course, the next question is: how do RC features
compare to other state-of-the-art methods? A direct comparison is difficult,
because the RC and PC detectors assign labels to individual pixels, rather
than to entire objects. Still, some indication may be given by relating our de-
tection results to those obtained by Buys et al. (2014). As discussed in Section
2.4 (Related Work), Buys et al. (2014) developed a sophisticated method for
human body pose detection by building on the PC features. Their person-
classification performances range from 80 to 90%. Given our findings, we may
expect that the detection accuracy of Buys et al.’s (2014) method would im-
prove beyond 90% when the PC features would be replaced by RC features.

3.5.2 The Number of Samples Required

The PC features of Shotton et al. (Shotton, Girshick, et al., 2013) rely on the
comparison of depth pixel pairs. They require many examples to encode ob-
jects uniquely against the background. As a case in point, in their experiments,
Shotton et al. (2013a,b; 2011) use datasets of a size that are 150 to 9, 000 times
as large as the 100-image subsets that are used in our experiments. As each of
our experiments took several days to complete on powerful 50-core calculation
servers, the decision to use subsets of the original databases was motivated
by computational considerations. The experiments reported in (Shotton et al.,
2011), for example, relied on 1000-core servers, which are not available to us.

Using subsets of the databases, however, may give rise to two challenges.
On the one hand, it may be the case that the performance obtained by PC
features benefits from an increase in the number of training examples. On
the other hand, using a small subset may result in overfitting. To investigate
these challenges, we performed an additional exploratory experiment using a
larger subset of depth images of the Biwi Kinect Head Pose Database. In the ex-
periment, we trained and evaluated both detectors on a subset of 1, 250 depth
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images, using the same conditions as described in Section 3.3. The results of
this experiment showed similar results as reported in Subsection 3.4.1. While
increasing the size of the datasets (and thereby the number of training ex-
amples) may increase the classification performance of PC features, we expect
that this will increase the classification performance of the RC features as well.
Due to the results of the up-scaled experiments (in combination with the estab-
lished cross-validation procedure), we feel confident that our results provide
reliable estimates of the classification performance on large-scale datasets.

3.5.3 Future Work

Below, we recommend three instances of future work that may further im-
prove the accuracy of the RC features.

First, we emphasise that the detection tasks performed in our evaluation
procedure were limited to the automatic labelling of individual pixel locations
as belonging to either an object (face/body) or to the background. Calculat-
ing features from pixel locations and classifying them accordingly are two
important steps towards actual object detection. However, actual object detec-
tion requires an additional processing step which integrates the individual
pixel labels into a higher-level detection of the object, i.e., the labelling of a
larger region encompassing the face or body. We refrained from developing
such a higher-level detection stage, because the focus of this study was on the
evaluation of the RC features. Future work may therefore extend the region
comparison detector with this stage. It is to be expected that the superiority of
RC features (as compared to PC features) will be reflected in any higher-level
detection method that takes the labels generated by the region comparison
detector as input. Deploying the RC features is highly relevant for the devel-
opment of embodied agents that aim to engage in natural interactions with
the inhabitants of intelligent environments.

Second, we stress that the detectors that are used in the evaluation proce-
dure were implemented as MATLAB scripts. While MATLAB allows for rapid
prototype development, it is not optimised for speed. Implementing the RC
features in a dedicated programming language such as C++ or Python may
speed up their processing time. We expect that porting the RC features to
a C++ or Python implementation is feasible and that the RC features are
therefore likely to run on reasonable hardware. In this respect, future work is
mainly a challenge from an engineering perspective. However, I am sure that
in this phase, new ideas will arise that will make the RC features even faster.

Third, in this Chapter, we evaluated both feature computation methods on
three publicly available databases with depth images: (1) the Biwi Kinect Head
Pose Database by Fanelli et al. (2013), (2) the RGB-D Face Database by Høg et
al. (2012), and (3) the RGB-D People Dataset by Spinello and Arras (2011). The
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first two databases were created in controlled experiments, while the latter
one was created by recording people walking in a semi-unrestricted space. Al-
though capturing data under controlled conditions is likely to result in high
quality recordings of a scene, it may also result in less natural behaviour by
the participants in the experiment, such as consciously (and therefore clearly)
performed gestural cues. As the goal of this Thesis is to facilitate natural in-
teractions between humans and embodied agents, we argue that future work
should include a training and evaluation procedure which evaluates the per-
formance of the RC features on databases that contain depth data recordings
of spontaneous human behaviour and unconsciously performed gestures.

3.6 chapter conclusions
The research question of this Chapter is RQ 2. It reads: To what extent do Re-
gion Comparison features enable fast and accurate face and person detection in noisy
depth images? To answer the research question, this Chapter evaluates the RC
features that were proposed in Chapter 2. In three different object detection
tasks, a comparative evaluation investigated to what extent RC features con-
tribute to fast and effective object detection in noisy depth images.

The results of the evaluation show that the RC features outperform the state-
of-the-art PC features in classification performance and do so with the same
(or even better) prediction speed, especially in noisy depth images. The RC
features deal effectively with the background noise in depth images. They
maintain precision in the depth images by sampling depth transitions on
scales varying from small to large image regions. The RC features are able
to provide an accurate indication of the direction and magnitude of the depth
transitions in a depth image. Thus, they are able to perform fast and effective
body part detection tasks in noisy depth data. Based on our results, we may
provisionally conclude the following.

• Conclusion 1: The Region Comparison features contribute significantly
to fast and effective face and person detection in noisy depth images.

• Conclusion 2: The RC features yield an improvement over PC features.

• Conclusion 3: The RC features are able to operate adequately with the
same computational budget.

Employing RC features might be able to increase the classification perfor-
mance of detectors based on the work by Shotton et al. (2013a,b; 2011), such
as the body part detector by Buys et al. (2014).
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Research Continuation

In the Chapter, our RC features have proven their value for face detection and
person detection in noisy scenes. As such, deploying RC features is highly
relevant for the development of embodied agents that aim to establish and
maintain natural interactions with the inhabitants of intelligent environments.
To enable such interactions, it is imperative that agents are enriched with the
ability to perceive natural gestural cues. This requires a procedure which will
train detectors (such as the region comparison detector) on depth data that
contains spontaneous human behaviour and unconsciously performed ges-
tures. However, to the best of our knowledge, there are no databases available
in the public domain that (A) contain thoroughly annotated depth recordings
of (B) people performing spontaneous and natural gestures. To meet these re-
quirements, the next Chapter proposes, designs, and develops the TiGeR Cub,
a new database with annotated depth images of people performing natural
gestures.



66 through the looking glass

False positive rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e 
po

si
tiv

e 
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RC detector
PC detector

a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

RC detector
PC detector

b

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

RC detector
PC detector

c

Figure 3.13: The AUC (Area Under the Curve) graphs of the detectors when us-
ing their optimal detector parameters (i.e., the parameters resulting in
the highest prediction performance; a forest of 10 trees). Figure 3.13a
shows an example of the AUC from experiment 1 (face detection in
smoothed depth images), while Figure 3.13b shows this for experiment
2 (face detection in non-smoothed depth images). Subsequently, Figure
3.13c shows an example of the AUC from experiment 3 (person detec-
tion in non-smoothed depth image).
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“Fie, fie upon her!
There’s language in her eye, her cheek, her lip,
Nay, her foot speaks; her wanton spirits look out
At every joint and motive of her body."

– William Shakespeare, Troilus and Cressida

Facilitating natural interactions between humans and embodied agents re-
quires advanced algorithms that are able to recognise a person’s gestural cues.
Developing and training gesture recognition algorithms require high quality
corpora that contain annotated, visual and depth data recordings of people
performing natural communicative gestures. Ideally, such databases are avail-
able for the public domain. However, to the best of our knowledge, there are
no databases available that meet these criteria. This Chapter designs and de-
velops the Tilburg Gesture Research Cup database, or TiGeR Cub for short.
The database contains annotated recordings of naturally interacting interlocu-
tors. The interactions are recorded as a combination of visual data, depth data,
and audio data. The TiGeR Cub therefore allows for detailed studies into au-
tomatic gesture recognition and human gesture synthesis.

The structure of the Chapter is as follows. First, Section 4.1 outlines the dire
need to develop a new corpus for robust and accurate gesture recognition
tasks. Subsequently, Section 4.2 provides an overview of related corpora in
the field of natural human-human interactions. Then, Section 4.3 describes the
experiment that has been performed to create our corpus, and the annotation
procedure of the resulting corpus. Section 4.4 discusses the resulting TiGeR
Cub corpus. Finally, Section 4.5 concludes on the creation of the TiGeR Cub
corpus and answers our third research question.

67
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4.1 towards a database with natural gestures
In social interactions between humans, the process of communication is estab-
lished by combining and aligning a person’s social (i.e., verbal and non-verbal)
expressions (see, e.g., Pickering & Garrod, 2004; McNeill, 1992). The synthesis
and classification of the non-verbal cues that are employed in these interac-
tions are studied extensively in various disciplines, such as psychology (see,
e.g., Hinde, 1972), cognitive science (see, e.g., Manusov & Patterson, 2006),
and artificial intelligence (see, e.g., Osawa & Imai, 2013).

The aim of this Thesis is to develop smart and socially aware embodied
agents. To facilitate natural interactions between humans and embodied agents,
the agents need accurate computer vision algorithms that are able to recognise
a person’s non-verbal cues. Thus, supporting the agents to recognise natural
human gestures is highly relevant in the context of the current project.

As embodied agents are likely to be deployed in noisy environments (i.e.,
environments with a large variety of objects, changing illumination condi-
tions, and moving people) the computer gesture recognition algorithms of the
agents should be able to deal with the environment’s background noise. Many
approaches towards automatic gesture comprehension and recognition, how-
ever, incorporate visual data to perform their classification procedure. While
rich in detail, the disadvantage of visual data is that it is sensitive to illumina-
tion conditions (see Section 1.5; see, e.g., C. Zhang & Zhang, 2010; Zhao et al.,
2003). This may negatively influence the quality of the data.

Alternative data sources such as depth data (which is discussed extensively
in Chapter 2 of this Thesis) may provide robust cues for accurate gesture
recognition approaches, especially when combined with visual information
(see, e.g., Jiang et al., 2013; Dal Mutto et al., 2012). As depth data is not bound
to a light source, it is less sensitive to changes in illumination conditions. In
the domain of automatic gesture recognition, the availability of low-cost depth
sensors such as the Microsoft Kinect device (see, e.g., Smisek et al., 2013) en-
ables recordings of human interactions in the form of multiple data streams,
i.e., both depth and visual data (see, e.g., Dal Mutto et al., 2012). Incorporating
alternative data sources such as depth data may thus increase the detection
performance of gesture recognition algorithms.

Natural or - more specific - dynamic gestures can occur in any order, di-
mension, or shape. Moreover, the gestures that are performed by individuals
can vary significantly per person (see McNeill, 1992). Thus, enabling agents
to recognise natural gestures calls for the use of multimodal corpora that in-
corporate recordings of natural gestures. Well-known examples of such of cor-
pora are (1) the SaGA corpus by Lücking, Bergmann, Hahn, Kopp, & Rieser
(n.d.), which incorporates visual data recordings of dialogs between interlocu-
tors that are engaged in a spatial communication task, and (2) the VACE cor-
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pus by Chen et al. (2006), which contains multimodal cues from interlocutors
gathered in a series of meetings. To combine the best of both worlds (i.e., data
that is rich in detail, yet robust against changes in illumination conditions),
such corpora should include both visual (RGB - Red Green Blue) and depth
(D) data. Despite the clear need for detailed yet robust recordings of natural
human gestures, there are, to the best of our knowledge, no databases avail-
able that:

1. contain recordings of people performing spontaneous behaviour and
natural communicative gestural cues,

2. provide the recordings as RGB-D data,

3. provide clear annotations of (a part of) the data, and

4. are available for scientific purposes.

It calls for the development of a new database that meets the requirements as
defined above. Thus, the research question addressed in this Chapter (RQ 3)
reads as follows.

RQ 3: How do we develop an annotated database that incorporates visual
and depth data recordings of natural human gestures?

To answer the research question, the Chapter presents a multimodal corpus
of social interactions between interlocutors. As evidence shows that interlocu-
tors gesture more when talking about spatial topics (cf. Alibali, 2005), we
performed an experiment in which participants fulfil two spatial event de-
scription tasks. A part of the recordings of the experimental tasks were anno-
tated. This led to the creation of the Tilburg Gesture Research Cub corpus, or
TiGeR Cub for short. The corpus contains 32 recordings of 16 dyadic interac-
tions between interlocutors. Each recording contains movie sequences (audio
included) of approximately 15 minutes and, on average, 27, 000 frames with
depth data per participant. Thus, the data is recorded as a combination of
depth + visual + audio data. At present, we provide accurate annotations for
individual body parts (e.g., the head, shoulders, and arms) for a subset of the
depth data. The TiGeR Cub corpus is available for academic purposes upon
request from the authors.

4.2 related work
Over the last two decades, several multimodal databases have been proposed
to study gesture recognition and human gesture synthesis (see, e.g., Guyon,
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Athitsos, Jangyodsuk, & Escalante, 2014; Caridakis et al., 2013; L. Liu & Shao,
2013; Fothergill, Mentis, Kohli, & Nowozin, 2012; Lücking et al., n.d.). These
corpora can roughly be divided into two categories: (1) corpora that focus
on visual (RGB) recordings (see, e.g., Caridakis et al., 2013; Lücking et al.,
n.d.; L. Chen et al., 2006), and (2) databases that incorporate a combination of
visual and depth (RGB-D) data (see, e.g., Guyon et al., 2014; L. Liu & Shao,
2013; Swift et al., 2012). While the TiGeR Cub database mainly relates to the
corpora in the latter category, the design of the TiGeR Cub is inspired by
several contributions in the field of human gesture study databases. In what
follows, Subsection 4.2.1 briefly describes the related corpora. Subsequently,
Subsection 4.2.2 discusses how these corpora inspired us to develop the TiGeR
Cub.

4.2.1 Related Approaches

Below, we briefly describe four related corpora in the field of natural com-
municative gestures. The dialogs of the interlocutors are typically captured
in controlled experiments. The corpora can be characterised as databases that
contain (1) multimodal recordings of emotional gestures in multi-camera se-
tups, (2) communication gestures captured in spatial event description tasks,
(3) annotated RGB-D recordings of individuals performing sets of gestures,
and (4) synchronised recordings of hand gesture sequences.

First, Caridakis et al. (2013) developed a corpus to study the use of emo-
tional gestures in combination with other modalities, such as facial expres-
sions and speech. Thus, they proposed a multimodal dataset that focusses on
capturing hand gesture expressivity, but also includes the subjects’ speech and
facial expressions. The dataset contains visual data recordings of 51 subjects
from 3 different countries. The hand gestures are captured by recording the
subjects’ bare hands, the movements of a Nintendo Wii remote controls, and
a data glove. In their experiments, Caridakis et al. (2013) recorded the sub-
jects in a dual camera setup. The first camera captures the subject’s complete
body, while the second camera captures a close-up of the subject’s shoulder
and head. The data is recorded as 25 frames per second video sequences. The
resolution of the video material is 720× 576 pixels.

Second, Lücking, Bergmann, Hahn, Kopp, & Rieser (n.d.) developed the
thoroughly-annotated Bielefeld Speech and Gesture Alignment (SaGA) cor-
pus. The database contains visual recordings of 25 dialogs between interlocu-
tors who engage in a spatial communication task. In the experimental setup,
the cameras capture multiple views: the router, the follower, and the entire
scene. The data have been systematically annotated and evaluated in terms of
interrater agreement. As a result, the annotations provide an indication of the
order, dimension, and shape of the gestures.



4.2 related work 71

Third, the ChaLearn Gesture Dataset developed by Guyon, Athitsos, Jangy-
odsuk, & Escalante (2014) contains over 54, 000 hand and arm gestures from
20 subjects. The data was recorded as RGB-D data using a single Kinect device,
with an image resolution of 240× 320 pixels. In the majority of the recordings,
the Kinect device focusses on the torsos of the subjects. The data comes with
man-made annotations, i.e., temporal segmentation into individual gestures,
alignment of RGB and depth images, and body part location. The corpus
contains recordings of individuals performing sets of gestures, such as body
language gestures, gesticulations performed to accompany speech, and sig-
nals (e.g., diving signals). The gestures are mostly performed by the arms and
hands of the individuals.

Fourth, the SKIG (Sheffield KInect Gesture) dataset developed by L. Liu &
Shao (2013) contains 1080 visual (RGB) and 1080 depth (D) hand gesture se-
quences that are collected from 6 subjects using a Kinect device. The dataset
consists of 10 categories of descriptive hand gestures, such as circles, triangles,
up-down, and right-left. The sequences are recorded under various illumina-
tion conditions and different backgrounds. Annotations are provided in the
form of descriptions of the gesture sequences.

4.2.2 Inspiration for the TiGeR Cub

In what follows, we briefly discuss how the approaches described above in-
spired us to develop the TiGeR Cub.

First, the work by Caridakis et al. (2013) inspired us to develop a dual
recording device setup to ensure that we capture high quality (i.e., high resolu-
tion) RGB-D data, we developed a static mount to which a Kinect device and
a digital camcorder were connected. The recording devices focussed on the
upper body of each participant, which allows for highly detailed recordings
of a person’s behaviour.

Second, inspired by Lücking, Bergmann, Hahn, Kopp, & Rieser (n.d.), we
performed an experiment that incorporated spatial event description tasks.
As evidence shows that interlocutors gesture more when talking about spa-
tial topics (cf. Alibali, 2005), this allows us to capture natural communication
gestures.

Third, inspired by the work by Guyon et al. (2014), the TiGeR Cub contains
recordings of gestures that are performed by the arms and hands of the sub-
jects. Moreover, we adopt their annotation procedure to annotate the locations
of the individual body parts.

Fourth, L. Liu & Shao (2013) stress the importance to synchronise the vi-
sual and depth data recordings of the gestures. While the data in both the
SKIG dataset by L. Liu & Shao (2013) and the ChaLearn Gesture Dataset by
Guyon et al. (2014) are captured using a single Kinect device to record the



72 raising a tiger

gestures, the experimental setup of the TiGeR Cub incorporates a combina-
tion of a Kinect device and a digital camcorder. Thus, inspired by the work by
L. Liu & Shao (2013), we developed a mechanical solution on the mount that
synchronises both recording devices.

4.3 experiment
To create the TiGeR Cub, we performed an experiment that incorporated two
event description tasks. The resulting recordings of these tasks are used to cre-
ate the corpus. In what follows, Subsection 4.3.1 describes the physical setup
that is used to create the corpus. Subsequently, Subsection 4.3.2 reviews the
participants and the procedure employed to record the dialogues. Then, Sub-
section 4.3.3 presents the resulting database, while Subsection 4.3.4 discusses
the annotations that are created for the corpus.

4.3.1 Experimental Setup

The TiGeR Cub contains visual (RGB) and depth (D) recordings of people
engaging in natural communicative interactions, i.e., people describing a se-
ries of spatial events. The experimental setup is created in one of the offices
at Tilburg University. To perform the experiment, we built an experimental
setup that consists of the following.

• Two chairs in which the participants are seated.

• A computer monitor to show visual stimuli to the participants.

• A remote control to allow the participants to go to the next stimulus.

• A camera mount with a Kinect device and a digital camcorder.

• A laptop to store the recorded data.

Figure 4.1a shows an overview of the experimental setup. In this Figure, the
first chair (chair A) is positioned with its back against the wall. A remote con-
trol is connected to the chair. This allows a seated participant to continue to
the next stimulus in the experiment. Facing the chair, at a distance of 1.6 me-
ters, a Sony HDR-XR550VE digital camcorder and a Microsoft Kinect device
are mounted on a tripod mount at a height of 1.0 meters. At distances of 0.5
meters from the chair, a computer monitor and a second chair (chair B) are set
up under 90 angular degrees on the left and right side, respectively.

The camcorder captures visual data at a resolution of 1, 920× 1, 080 pixels
(25 frames per second). The Kinect device captures depth data at a resolution



4.3 experiment 73

a
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Figure 4.1: The experimental setup (a) and two photos (b & c) of the experiment
that is performed to create the TiGeR Cub corpus. Figure 4.1d shows
an example of the visual data that is captured in the experiment. Figure
4.1e shows the corresponding depth image. The participants shown in
this example are actresses and are not included in the final corpus.
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of 640×480 pixels (25 frames per second). The lenses of the camcorder and the
Kinect device were mounted as close to each other as possible, to ensure that
they recorded the same spatial scene. Figure 4.1 (b & c) shows two photos
of the experiment; Figure 4.1d shows an example of the visual data that is
captured in the experiment. Figure 4.1e shows the corresponding depth image.
The participants shown in this example are actresses and are not included in
the final corpus.

4.3.2 Methodology

To create the TiGeR Cub, we perform an experiment that consists of two event
description tasks. In what follows, the event description tasks are discussed
in more detail.

event description task 1 In the first event description task, the partic-
ipants mimic the gestures that are shown in a series of video sequences. In
this task, there is no verbal contact between the participants. For this task, we
selected 21 hand signals from the set of internationally recognized scuba div-
ing hand signals, as defined by the CMAS Code of International Diving Signals17.
The scuba diving hand signals form a series of emblem gestures, i.e., specific
gestures with a specific meaning, which are consciously used by the sender
and consciously understood by the receiver (cf. McNeill, 1992). The collection
of diving signals contains a series of emblems that are executed with only one
hand, as well as emblems that are performed with both hands. Repeating the
diving signals performed a function as an implicit warming-up for the second
event description task in our experiment.

Our choice for diving hand signals is on the one hand motivated by the
clearly defined beginning and end of the signal gestures. On the other hand,
the gestural meaning of diving signals is (partially) derived from the gestural
motion itself, instead of (for example) solely the pointing direction of the arms,
hands, or fingers. We therefore argue that diving signals are a challenge for
(computational) approaches towards gesture recognition, as such approaches
are forced to take the gestural context into account.

event description task 2 In the second event description task, the partic-
ipants describe the events occurring in a series of 5 video sequences of Tweety
and Sylvester (cf. McNeill, 1992). The choice for the Tweety and Sylvester car-
toons was motivated by the large number of spatial events occurring in the
cartoons. As Alibali (2005) suggested that interlocutors gesture more when

17 CMAS stands for the Confédération Mondiale des Activités Subaqua-
tiques. For a complete overview of the scuba diving hand signals, see
http:www.cmas.orgdocument?sessionId=&fileId=2212&language=1
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talking about spatial topics, we expect that using Tweety and Sylvester car-
toons persuades participants to use spontaneous and natural spatial gestures
to describe the aforementioned events.

Below, we describe the participants of the experiment in Subsection 4.3.2.1
and the procedure in 4.3.2.2.

4.3.2.1 Participants

The participants are 32 first-year students from the Communication and Infor-
mation Sciences curriculum at Tilburg University: 13 male participants, and
19 female participants. The students receive course credits for their participa-
tion in the experiment and were (afterwards) duly informed about the use of
the recordings in the experiment. All participants are asked for their consent
to share the recordings of their interactions in the experiment for academic
purposes.

4.3.2.2 Procedure

The procedure of the experiment consists of four successive stages: (1) a brief-
ing stage, (2) the first event description task, (3) the second event description
task, and (4) the debriefing stage of the experiment. The entire procedure,
including instructions and debriefing, takes approximately one hour to com-
plete. In what follows, the procedure and subsequent stages are described in
more detail.

stage 1 : briefing Upon arrival in pairs of two, the experiment leader asks
the participants to be seated. Subsequently, they are informed about the vol-
untary nature of the experiment. After the instructions, the experiment leader
starts the recording devices and leaves the room.

stage 2 : event description task I The video sequences contain a com-
bination of 21 one-handed and two-handed diving signals. The diving signal
are sequentially shown on the computer monitor. The individual diving sig-
nals are shown once to the participant. The computer monitor is only visible
to the participant seated in chair A (henceforth referred to as participant A),
but invisible to the participant seated in the second seat (henceforth referred
to as participant B). Participant A mimics each gesture towards participant B.
Participant B’s aim is to guess the signal’s presumed meaning. By guessing
and writing down the meaning of the gesture, the continued mental focus of
participant B’s is ensured. The experiment leader is fetched upon completion
of this stage. He then explains the second stage. After the instructions, he
leaves the room.
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stage 3 : event description task II Following the completion of the
first event description task, the second event description task is initiated. In
this task, a series of 5 animated cartoon movie sequences of Sylvester and
Tweety ("Canary Row") are shown to participant A. After each video sequence,
participant A describes the events occurring in the sequence to participant B.
The latter’s aim is to answers a secret question, only known to this participant.
This ensures the mental focus of participant B. Upon completion of this task,
the experiment leader is fetched, after which both participants switch seats.
Stages 2 and 3 are then repeated for participant B. To ensure the participant’s
genuine participation, we use a different secret question for the second task.

stage 4 : debriefing Upon completion of stages 2 and 3 for both partic-
ipants, the experiment leader debriefs the participants. Both participants are
asked to sign the consent forms of the experiment. They then leave the room,
after which the experiment is finished.

4.3.3 The TiGeR Cub

The resulting corpus contains 32 recordings of 16 dyadic interactions between
participants. Each recording contains movie sequences (audio included) of
≈ 15 minutes and, on average, 27, 000 frames with depth data per participant.
For the corpus, we only used the recordings for which both participants gave
their consent for the distribution of the recordings.

4.3.4 Annotations

The annotation procedure focussed on annotating the participants’ body parts
in the depth data generated in the second event description task. Annotating
the extensive quantities of data generated in the experiment proved to be a
challenge. This Section describes the procedure followed to annotate the data.

For the annotation procedure, the first 13 participants are selected from the
original population of 32 participants. On average, the second event descrip-
tion tasks resulted in ≈ 13, 000 depth images per participant, from which 50

depth frames are selected at random. The resulting subset contains (13 partic-
ipants ×50 depth images per participant = ) 650 depth images, from which (if
visible) the head, shoulders, upper arms, lower arms and hands are annotated.
As a result, 12 body parts are annotated in each depth image. Inspired by the
mask-based annotations that are used in the database by Fanelli et al. (2013),
we use polygons to annotate the body parts in the depth images of the TiGeR
Cub. The annotations are stored as the (x,y)-coordinates of the polygons in
plain text files. To perform the actual annotations, we designed and built the
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AnnoTool; an open source annotation tool for depth images. The AnnoTool is
available for academic purposes upon request from the authors.

The annotation procedure is performed by a group of 52 first-year students
from the Communication and Information Sciences curriculum at Tilburg Uni-
versity: 17 male students and 35 female students. The students who are par-
ticipating as annotators are ignorant about the experiment and did not par-
ticipate in the event description tasks. The students receive course credits for
their participation as annotators. The 52 annotators are divided over 13 anno-
tation teams of 4 annotators per team. The 13 subsets (with 50 depth images
per subset) are divided over the annotation teams. Each annotation team is
divided into two separate annotation groups. The first group performs the
annotations of the head and both hands, while the second group annotates
both upper and lower arms. The annotations are cross-validated within each
group. Figures 4.2 and 4.3 on the next two pages show a total of four depth
images from the TiGeR Cub and the corresponding annotations. In the Fig-
ures, the individual body parts are annotated as green polygons that follow
the contours of the head, shoulders, upper and lower arms, and hands.

4.4 discussion
In this Chapter, we proposed the Tilburg Gesture Research Cup database, or
TiGeR Cub for short. The corpus contains annotated RGB-D recordings of di-
alogues between interlocutors. To create the corpus, we performed an experi-
ment in which the interlocutors were engaged in two spatial event description
tasks. The TiGeR Cub allows for detailed studies into automatic gesture recog-
nition and human gesture synthesis.

The remainder of this Section discusses the points of improvement of the
corpus, as well as our future work. In what follows, Subsection 4.4.1 discusses
the synchronisation of the RGB-D data. Then, Subsection 4.4.2 addresses the
annotation procedure of the data. Finally, Subsection 4.4.3 discusses our future
work on the TiGeR Cub.

4.4.1 Synchronising the RGB-D Data

The aim of this Chapter is to develop a high quality corpus that contains vi-
sual and depth data recordings of people performing natural communicative
gestures. High quality recordings are typically characterised by (1) a high im-
age resolution, i.e., the detail an image holds, and (2) a high frame rate, i.e.,
the number of frames per second.



78 raising a tiger

a

b

Figure 4.2: Two examples from the TiGeR Cub and (in green) their annotations. The
body parts are annotated as polygons following the contours of the head,
shoulders, upper and lower arms, and hands.
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Figure 4.3: Two examples from the TiGeR Cub and (in green) their annotations. The
body parts are annotated as polygons following the contours of the head,
shoulders, upper and lower arms, and hands.
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When attempting to capture high quality RGB-D recordings, approaches such
as the work by Guyon et al. (2014) and L. Liu & Shao (2013) deploy Kinect
devices to capture synchronous streams of visual (RGB) and depth (D) data.
According to Khoshelham & Elberink (2012), the Kinect device captures visual
data with a maximum image resolution of 1, 280× 1, 024 pixels and depth data
with a maximum image resolution of 640× 480 pixels, at frame rates of up to
30 frames per second. However, due to limitations in the bandwidth of the
hardware, the framerate tends to drop to a mere 15 frames per second when
the maximum image resolution of both cameras is utilised. Drops in the frame
rate result in less fluent recordings of, for example, a person’s gestures.

To overcome this problem, we decided to build a combination of a Kinect
device and a digital camcorder to capture the RGB-D data: the camcorder
captures visual data with an image resolution of 1, 920× 1, 080 pixels at 25

frames per second, while the Kinect device captures depth data with an image
resolution of 640× 480 pixels at 25 frames per second. On the one hand, this
solution allows us to capture data with the highest image resolution available,
which enables us to capture small objects (e.g., a person’s fingers). On the
other hand, using two recording devices allows us to maintain a high frame
rate for both data streams. This enables us to capture fluent recordings of, for
example, a person’s gestural cues.

To synchronise both recording devices, we developed a synchronisation
mechanism that activates both devices at the same time. However, empirical
evidence suggests that our synchronisation mechanism functions with a small
time delay. Thus, the visual and depth data streams are not entirely synchro-
nised. While inconvenient, we argue that this will not influence the quality of
the recordings severely, given that it can be corrected by removing a sequence
of frames at the beginning of the visual data.

4.4.2 Annotating the Data

The aim of the Thesis is to facilitate natural interactions between humans
and embodied agents. Thus, developing accurate computer vision algorithms
that are able to recognise human gestures is highly relevant in the context of
the current project (see Section 4.1). The training procedure of the algorithms
requires high quality corpora that contain annotated recordings of people per-
forming natural communicative gestures. As stated in Subsection 4.3.4, an-
notating the huge quantities of data gathered for the corpus proved to be a
challenge. For our annotation procedure, we selected a subset of depth im-
ages from the second event description task. Inspired by the work by Guyon
et al. (2014), we performed an annotation procedure in which we annotated
individual body parts, e.g., the head, shoulders, and arms. As a result, the
TiGeR Cub contains a total of 650 annotated depth images. In its current form,
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the annotations can be used to train and evaluate modern day approaches
towards, for example, automatic body part detection in depth data.

As the TiGeR Cub provides high quality recordings of people engaging
in natural dialogues, the TiGeR Cub contains a rich set of examples of nat-
ural gestures and communicative interactions. Thus, the TiGeR Cub has the
potential to provide a solid base to train and evaluate gesture recognition al-
gorithms. This requires an extension of our current set of annotations, i.e.,
annotations that describe the order, dimension, and shape of the participants’
(natural) gestures. Thus, inspired by the work by Lücking et al. (n.d.), we
argue that the annotations of the TiGeR Cub should be extended with (1) an-
notations of the participants’ body parts, and (2) annotations that describe the
direction and magnitude of the participants’ gestures.

4.4.3 Future Work

In the previous Chapter, we evaluated the performance of the region compar-
ison detector on three challenging object detection tasks. In our experiments,
we trained the region comparison detector to label individual pixel locations
in depth images in a binary fashion, e.g, either as face when a pixel location
belongs to a person’s face, or other in all other cases. As enabling the detector
to recognise multiple body parts is highly relevant in the context of accurate
gesture recognition, we argue that the region comparison detector should be
extended with the ability to label pixel locations as belonging to, for example,
the head, shoulders, upper and lower arms, hands, or background. Restricted
by time constraints, we refrained from extending the detector with this ability.
Thus, future work should focus on training and evaluating the performance
of the region comparison detector on the body parts that are annotated in the
TiGeR Cub. The results of the evaluation may provide a baseline performance
for state-of-the-art approaches towards body part detection.

4.5 chapter conclusions
The research question of this Chapter is RQ 3. It reads: How can we develop
an annotated database that incorporates visual and depth data recordings of natural
human gestures? To answer the research question, this Chapter shows how the
Tilburg Gesture Research (TiGeR) Cub has been developed. It is a multimodal
corpus that consists of dyadically interacting interlocutors. The TiGeR Cub
contains annotated visual + depth + audio recordings of the interactions. It is
available for academic purposes. The answer to the research question resides
in the experimental setup as given in Subsection 4.3.1 and in the methodology
followed in the experiments (see Subsection 4.3.2). Both, setup and methodol-
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ogy led to the development of an annotated database that incorporates visual
and depth data recordings of natural human gestures. Of course, annotating
the huge quantities of data remains a challenge. In its current form, the TiGeR
Cub corpus provides a solid base to study the synthesis and classification of
natural human gestures. Future work should focus on extending the corpus
with additional annotations of the gestures.

Research Continuation

When aiming to facilitate natural interactions between humans and embodied
agents, the latter should be enriched with the ability to perceive the social cues
of their human communication partners. Thus, developing approaches for ef-
fective gesture recognition is a first step towards natural human-embodied
agent interactions. The next Chapter investigates to what extent RC features
(as proposed in Chapter 2) are suitable for accurate (static) gesture recogni-
tion.



5 A U TO M AT I C S I G N L A N G U A G E
R E C O G N I T I O N F R O M A TO Y

"Sign is a live, contemporaneous, visual-gestural language and consists of
hand shapes, hand positioning, facial expressions, and body movements.
Simply put, it is for me the most beautiful, immediate, and expressive of
languages, because it incorporates the entire human body."

– Myron Uhlberg, Hands of My Father

In the context of natural interactions between humans and embodied agents,
the Region Comparison (RC - see Chapter 2) features have proven their value
for fast and accurate body part detection tasks. This raises the question to
what extent RC features are suitable to recognise (static) human gestures. To
investigate their effectiveness, we propose and evaluate a novel detector that
incorporates the RC features for effective static gesture recognition. The detec-
tor is trained and evaluated on a challenging dataset with fingerspelling signs
of the American Sign Language (ASL).

The course of this Chapter is as follows. First, Section 5.1 further outlines the
research question addressed in this Chapter. Then, Section 5.2 discusses the
challenges that are to be faced when aiming to recognise static hand gestures
in the American Sign Language. Section 5.3 presents the work related to our
approach. Subsequently, Section 5.4 discusses the stage detector. Section 5.5
describes the evaluation procedure, in which the classification performance
is assessed. Subsequently, Section 5.6 presents the results of our evaluation.
The implications of the results are discussed in Section 5.7. Finally, Section 5.8
concludes upon our contribution and answers the fourth research question
(RQ 4).

5.1 towards automatic gesture recognition
Embodied agents aiming to engage in natural interactions with humans, re-
quire the ability to perceive and recognise a person’s communicative gestural
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cues. According to, e.g., Dixit & Agrawal (2015), gestures exist in two distinc-
tive forms: (1) dynamic gestures, which involve direction and speed of motion
to convey their meaning, and (2) static gestures, which involve arm and hand
postures to represent a specific meaning. As constructing dynamic gestures
requires motion in some form, perceiving those gestures requires computer
vision techniques that are able to detect, track, and recognise the motion of
the gestures (cf. Rautaray & Agrawal, 2015). Static gestures, however, derive
their meaning from the shape of the hand. Approaches towards static gesture
recognition may therefore focus on the recognition of the hand shape in single
images, rather than recognising the hand motion in a sequence of images.

The studies described in this Thesis are part of a research project that aims
to develop emotionally responsive agents. Providing embodied agents with
the ability to perceive static gestures is a first step towards the automatic
recognition of human gestures in general, and thus highly relevant in the
context of the current project. In the previous Chapter, the combination of (1)
the RC features, and (2) data depth has proven its value for robust body part
detection tasks. This raises the question to what extent the combination of
RC features and in-depth information is suitable for the recognition of static
gestures. To this end, the research question addressed in the Chapter (RQ 4)
reads as follows.

RQ 4: To what extent do Region Comparison features enable accurate
recognition of static gestures when using in-depth information?

To answer the research question, we perform a comparative evaluation to as-
sess the effectiveness of the RC features in a gesture recognition task. We
introduce an extension of the region comparison detector proposed in Chap-
ter 3. Moreover, we claim that the extended detector, henceforth referred to as
the Static Gestures detector, or stage detector for short, incorporates the RC fea-
tures for effective gesture recognition in depth images. To investigate to what
extent this claim holds, we perform a comparative evaluation of the stage

detector on a dataset with static fingerspelling signs of the American Sign
Language (ASL). The performance of the detector is compared with state-of-
the-art approaches towards the automatic recognition of static gestures, i.e.,
automatic sign language recognition. For our experiments, we use the clas-
sification performance of the detector as its evaluation criterion. The classi-
fication performance is defined as the extent to which the stage detector is
able to recognise the individual signs accurately. A higher detection accuracy
corresponds to a higher classification performance. We establish straightfor-
ward outperforming the classification performance of the state-of-the-art as
our decision criterion. We consider the stage detector (and therefore the RC
features) to be superior to the state-of-the-art approaches when the stage de-
tector outperforms its opponents in classification performance. Given that the
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Figure 5.1: The fingerspelling signs of the ASL alphabet. We remark that all signs are
constructed as static hand gestures, except from the signs for “J” and “Z”,
which involve hand motion for their gestural meaning. This overview
of the American Sign Language alphabet is part of the image found at
http://www.wpclipart.com/sign_language/American_Sign_La
nguage_chart.png

RC features have proven their value for effective body part detection tasks,
we expect that the stage detector is able to outperform the state-of-the-art
approaches in classification performance.

5.2 the american sign language
The American Sign Language (or ASL - see, e.g., Battison & Baird, 1978) con-
sists of a limited set of specific hand shapes that represent (1) the letters of
the alphabet, and (2) several numerical values. The majority of the signs for
the alphabet (i.e., 24 out of 26 signs) are constructed using static hand poses,
while two signs require some form of motion. Figure 5.1 shows an overview
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of the signs used to construct the ASL alphabet. We remark that all signs are
constructed as static hand gestures, except from the signs for “J” and “Z”,
which involve hand motion for their gestural meaning. As the majority of the
signs consists of static gestures, this allows us to focus on the recognition of
the hand shape, rather than on the motion of the hand. Recognising the in-
dividual signs, however, remains a challenge. Pugeault & Bowden (2011) and
Kuznetsova, Leal-Taixé, & Rosenhahn (2013) identified three main reasons
why automatic sign language recognition is difficult:

1. the visual similarity between the signs;

2. the inter-subject variability in the production of the signs;

3. the intra-subject variability in the production of the signs.

To fully understand the challenging nature of automatic sign language recog-
nition, we will discuss these difficulties in more detail.

First, several signs bear a strong visual resemblance (i.e., visual similarity;
see Definition 5.1) with each other. For example, the signs for the letters A, S,
and T are based on small variations of a closed fist; the meaning of the signs
is derived from the position of the thumb. Similar signs increase the risk of
confusion.

Definition 5.1: Visual similarity

Visual similarity is defined as the extent to which entities (e.g., a gesture)
bear a visual resemblence with each other.

Second, variations in the ability to sign in a clear way lead to a high variabil-
ity in the appearances of the signs, i.e., the inter-subject variability (see Defi-
nition 5.2). As a result, the construction of the signs is not consistent within a
group of people.

Definition 5.2: Inter-subject variability

Inter-subject variability is defined as variations in the construction of a
given entity (e.g., a gesture) between subjects.

Third, variations in hand pose (or, say, camera position) result in variations
in the appearance of the individual signs. As a result, the construction of the
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signs by individual people is not consistent over time, i.e., the intra-subject
variability (see Definition 5.3).

Definition 5.3: Intra-subject variability

Inter-subject variability is defined as variations in the construction of a
given entity (e.g., a gesture) within a single subject.

Figure 5.2 illustrates the visual resemblance and variability in the construc-
tion of the ASL signs. In this Figure, the columns represent the signs for the
letters A (left column), S (middle column), and T (right column). The rows
represent individual people constructing the signs for these letters. By com-
paring the different rows, it is evident that the visual resemblance between
the signs leads to ambiguity between the signs. The way in which each per-
son constructs the signs varies highly between people. This leads to a high
inter-subject variability.

5.3 related work
Recognizing human gestures (such as sign language) in visual data became an
active field of research over the last twenty years (see, for example, Rautaray &
Agrawal, 2015; Mitra & Acharya, 2007; Aggarwal & Cai, 1999; Y. Wu & Huang,
1999; Pavlovic, Sharma, & Huang, 1997). As such, modern day approaches to-
wards gesture recognition can be divided into two computer vision-based cate-
gories (see L. Chen, Wang, Deng, & Ji, 2013): (1) approaches that primarily use
visual data (see, e.g., Ghosh & Ari, 2015; Li, Yu, Wu, Su, & Ji, 2015), and (2) ap-
proaches that primarily rely on depth data for their recognition tasks (see, e.g.,
Brandão et al., 2014; Tang et al., 2014). While present-day approaches towards
gesture recognition in visual data (the first category) achieve a near-perfect
classification performance on the available datasets (see, e.g., the work by Li
et al., 2015), they are sensitive to naturally occurring factors that may influence
the quality of visual data. Variations in illumination conditions and skin tone,
for example, may influence the detector’s ability to separate the hand from its
background negatively (cf. Rautaray & Agrawal, 2015). Advances in sensing
technologies, however, allow for rapid improvements in the robustness and
quality of gesture recognition solutions (see Kuznetsova et al., 2013) by, for
example, using depth data for gesture detection tasks (the second category;
see, e.g., Brandão et al., 2014; Tang et al., 2014).

When incorporating depth data, accurate gesture recognition approaches
require feature extraction methods that are able to encode the local depth
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Figure 5.2: Illustration of the visual resemblance and variability in the ASL signs. In
this Figure, the columns represent the signs for the letters A (left column),
S (middle column), and T (right column). The rows represent five people
producing the signs for these letters.

transitions which are typically associated with a person’s hands. This require-
ment inspired us to develop an approach towards static gesture recognition
that incorporates our RC features. Our approach relates to several contribu-
tions in the field of hand gesture recognition with depth cameras. Thus, it falls
under the category of depth-based approaches towards gesture recognition.
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In what follows, Subsection 5.3.1 describes four related approaches towards
static gesture recognition. Subsequently, Subsection 5.3.2 discusses how these
approaches inspired us to develop our approach.

5.3.1 Related Approaches

Below, we briefly describe four related approaches towards static gesture
recognition. We characterise them as methods that (1) recognise parts of a
hand by classifying individual pixel locations in a depth image, (2) use Gabor
filters to compute local hand patterns, (3) separate the hand from its back-
ground using a threshold, and (4) use grid-like structures to compute distinc-
tive descriptors for the input images.

First, Keskin, Kıraç, Kara, & Akarun (2013) propose a generalisation of the
well-known body part detector that was proposed by Shotton et al. (2011).
Keskin et al. aim to classify the individual hand skeleton parameters. Their
approach aims to estimate the locations of the joints in the hand by perform-
ing per-pixel classifications. A random decision forest (see, e.g., Breiman, 2001)
assigns the pixels to the individual parts of the hand, thus providing an esti-
mation of the hand shapes and gestures.

Second, Pugeault & Bowden (2011) propose the use of multiscale filter
banks with Gabor filters (see, e.g., Jain & Farrokhnia, 1990) to recognise static
gestures in their ASL dataset. Gabor filters can be used to capture transitions
in depth images, i.e., depth transitions. As such, Gabor filters can be used to
describe local hand patterns in depth data. A random decision forest is then
employed to perform the final classification. The disadvantage of using Gabor
filters is that they require that the input images are rescaled to predefined
dimensions.

Third, Pedersoli, Benini, Adami, & Leonardi (2014) aim to recognise static
hand poses in their hand pose and gesture recognition framework. Their ap-
proach first segments the hand from the background of the input depth image
by using (1) a mean shift segmentation, and (2) a hand palm detection proce-
dure. Similar to Pugeault & Bowden (2011), Gabor filters are then used to
extract features from the input depth data. A Support Vector Machine (SVM)
classifier performs the final classification.

Fourth, Kapuscinski, Oszust, Wysocki, & Warchol, 2015) (2015) propose to
perform gesture recognition on a point cloud of depth measurements. Their
approach divides the point cloud into a grid-like structure of 3-D cells, for
which unique descriptors are calculated. According to Kapuscinski et al., this
allows for a more distinctive description of the depth image. The hand pos-
tures are classified using a nearest neighbour classifier.
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5.3.2 Inspiration for Static Gesture Recognition

In what follows, we briefly discuss how the approaches described above in-
spired us to develop our approach towards static gesture recognition.

First, inspired by Keskin et al.’s (2013) approach, we adopt the idea to ex-
tract depth comparison features from individual pixel locations in a depth
image. While Keskin et al. aim to recognise different parts of a hand by classi-
fying individual pixel locations, our approach extracts depth descriptors from
individual pixel locations to provide a description of the entire hand shape.

Second, following the idea by Pugeault & Bowden (2011), we use a mul-
tiscale filter bank to extract depth comparison features from the depth data.
This allows us to encode depth transitions of various dimensions, i.e., local
and global depth transitions.

Third, we adopt Pedersoli et al.’s (2014) idea to separate the hand from the
background. This allows us to focus on the classification of the hand shape,
which may allow for more accurate hand pose estimations.

Fourth, we adopt Kapuscinski et al.’s (2015) idea to divide the input scene
into a grid-like structure and compute local descriptors for each element in
the grid. The advantage of this approach is that we can compute a global
descriptor by incorporating local information from several sampling locations.

5.4 the stage detector
To investigate the effectiveness of the RC features for static gesture recognition
(i.e., to what extent the RC features are able to recognise the fingerspelling
signs of the American Sign Language), we propose a detector that incorpo-
rates our RC features for accurate static gesture recognition: the static gestures
detector, or stage detector for short. The detector is an extension of the region
comparison detector proposed in Chapter 3.

The stage detector recognises static gestures by estimating a person’s hand
pose in a depth image. To classify the hand shape, the detector first separates
the hand from its background. This allows the detector to focus on the unique
properties of the hand shape itself, i.e., the local depth differences that are
typically associated with the hand pose. Then, the detector selects a subset of
pixel locations in a grid-like structure from the depth image. For each pixel
location in the subset, the detector computes multiple RC features. This pro-
vides a mathematical description of the entire hand, which is used for the
final classification.
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Figure 5.3: A diagram of the static gestures (stage) detector, showing its (1) im-
age pre-processing stage, (2) feature extraction stage, and (3) classifica-
tion stage, which are represented by grey rectangular areas, and the con-
stituent sub-stages, which are represented as white boxes.

As such, the stage detector consists of three consecutive stages.

1. an image pre-processing stage to prepare the input image for the feature
extraction process;

2. a feature extraction stage to extract and compute the RC features for the
hand shape in the depth image;

3. a classification stage that incorporates a random decision forest classifier
to classify the ensemble of RC features.

Figure 5.3 shows a diagram of the stage detector. In the Figure, the image
pre-processing stage, feature extraction stage, and classification stage are rep-
resented by dark grey, rectangular areas. Their constituent sub-stages (A to
G) are represented by white boxes. The input (step 1 in the first stage) and
output (step 3 of the third stage) are represented as light grey boxes. All in all,
the last step of the third stage forms the final classification.
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The remainder of this Section presents the three individual stages. Subsection
5.4.1 discusses the image pre-processing stage of the detector. Subsequently,
Subsection 5.4.2 discusses the feature extraction stage. Finally, Subsection 5.4.3
describes the classification stage.

5.4.1 Image Pre-processing

In the image pre-processing stage, the hand is separated from its background.
Inspired by Pedersoli et al. (2014), we perform a separation procedure using a
fixed threshold on the depth values (sub-stage A). An analysis of the dataset
that is used in our experiments revealed that the hands of all subjects are
present within a one meter range from the Microsoft Kinect device. Thus, we
separate the hands from the background by disregarding all depth values
beyond 1, 000 millimetres. The limitation of this solution is that it limits the
maximal distance at which the hand gestures can be recognised. However,
the low image resolution of the depth images makes it difficult to detect and
segment small objects, such as a human hand (cf. Ren, Yuan, & Zhang, 2011).
This is particularly the case when the distance between the Kinect device
and the object increases (Khoshelham & Elberink, 2012). Thus, to achieve a
high classification performance, we deem it necessary to use a fixed threshold
on the depth values. After segmenting the background, the integral image
representation of the depth image is computed (sub-stage B). Computing the
integral image representation of the depth image ensures that the RC features
can be computed efficiently. Figure 5.4 shows an example of a raw input depth
image, before (Figure 5.4a), and after removing (Figure 5.4b) the background
of the depth image.

5.4.2 Feature Extraction

After segmenting the hand from its background in the depth image, a sub-
set of pixel locations is selected using a grid in the depth image (sub-stage
C). For each point Pn in the subset (where n refers to the index of point P

in the subset, i.e., n = {1, 2, 3, ...nmax}), the feature computation procedure
computes multiple RC features (sub-stage D) using distinctive feature types.
Similar to the region comparison detector, the stage detector computes its
features by calculating the sums of the pixel values enclosed in two or more
rectangular regions around point P, and subtracting the sums from each other.
The resulting features are combined into an RC feature vector that provides
a (local) description of the depth differences in the area around point P. The
resulting feature vectors for points P1 to Pnmax are then concatenated into
a single feature vector that provides a description of the entire depth image
(sub-stage E). Figure 5.4c shows an example of a depth image and the grid



5.4 the stage detector 93

a b c

Figure 5.4: An example of a depth image that is to be classified by the stage detector.
Figure 5.4a show the raw input depth image, while Figure 5.4b shows
the same depth image after the removal of the background. Subsequently,
Figure 5.4c shows the grid of pixels locations (displayed as red dots) for
which the RC features are computed.

a b c d

e f g h

Figure 5.5: The 8 Region Comparison (RC) feature types that are used in the stage

detector. The feature types are defined as a combination of four basic
feature types (see Figure 5.5, a – d), and four specialised feature types
that aim to describe very local depth transitions (Figure 5.5, e – h). The
explanation of the feature types is given in the text.

that is used to select the subset of pixel locations. The red dots represent the
pixel locations of points P1 to Pnmax in the grid, for which the RC feature
vectors are computed.

As stated in Subsection 2.3.2, the RC feature types consist of a limited num-
ber of small rectangles that typically encode for local depth transitions in a
depth image. Calculating features to describe local depth transitions is highly
relevant for the detection and classification of small body parts, e.g., the indi-
vidual fingers of a hand. To this end, the stage detector incorporates a total
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of 8 different feature types, i.e., a combination of basic feature types (Figure
5.5, a - d) and four specialised feature types (Figure 5.5, e - h). In this Figure,
the red dot represents point P in a grid of the depth image. The green and
blue rectangles in each feature type represent the rectangular areas (regions)
over which the RC feature (i.e., the depth differences) is computed. The basic
feature types (a - d) allow for the computation of (a) horizontal, (b) vertical, (c)
diagonal, and (d) anti-diagonal depth transitions. Variations derived from the
basic feature types result in specialised feature types (e - k), which are able to
encode more complex (local) depth transitions.

5.4.3 Image Classification

In the classification stage, a random decision forest (RDF) classifier is used
to classify the depth images. To perform the actual classification, the stage

detector trains and uses the standard random decision forest classifier (cf.
Breiman, 2001) to classify the image feature vector for each depth image (sub-
stage F). The prediction results of the RDF classifier are mapped onto a class
label (sub-stage G), which forms the final classification output of the stage

detector. Subsection 3.2.2 provides a more in-depth explanation of the RDF
classifier.

5.5 evaluation procedure
This Section describes the experiments performed to evaluate the performance
of the stage detector. The aim of the experiments is to investigate to what ex-
tent the stage detector (and therefore our RC features) enable accurate recog-
nition of static gestures. To perform the evaluation, the detector is trained and
evaluated on a challenging dataset with fingerspelling signs of the American
Sign Language. Our evaluation focusses on the classification performance of
the detector.

In what follows, Subsection 5.5.1 describes the dataset that is used in the
experiments. Then, Subsection 5.5.2 discusses the performance metrics and
criterion used to evaluate the performance of the detector. Subsequently, we
give the implementation details of the detector in Subsection 5.5.3. Finally, the
details of the experiments are discussed in Subsection 5.5.4.

5.5.1 Dataset

To assess to what extent RC features enable accurate sign language recog-
nition, the detector is trained and evaluated on the publicly available ASL
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Fingerspelling Dataset, which is developed by Pugeault & Bowden (2011). The
dataset contains visual images (i.e., RGB - Red Green Blue) and depth data
of 5 subjects constructing 24 static signs from the American Sign Language
(ASL) alphabet. For our experiments, we only use the depth images in the
dataset. Figure 5.1 shows an overview of the fingerspelling signs of the Amer-
ican Sign Language. We remark that Pugeault and Bowden excluded the signs
for “J” and “Z” from the dataset, given that they involve hand motion for their
gestural meaning.

The ASL dataset contains a total of 65, 894 depth images, which are divided
over the 5 subjects. As each subject constructs 24 fingerspelling signs, the
dataset thus contains approximately 550 depth images per sign per subject.
The dimensions of the depth images are approximately 100× 100 pixels. The
depth values of the depth images range from 0 to 4, 095 (both inclusive). The
labels of the fingerspelling signs are provided as plain text. Figure 5.4a shows
an example of a depth image from the dataset.

5.5.2 Performance Metrics and Criterion

Below, the performance of the stage detector is quantified using two perfor-
mance metrics: (1) a classification performance metric of the stage detector,
and (2) the classification time metric. Moreover, we define the decision crite-
rion that is applied for the comparison of the experimental results concerning
the stage detector.

classification performance metrics The classification performance of
the detector is quantified using the per-class detection accuracy of the detec-
tor. For a given size of the RDF classifier, the detection accuracy is calculated
by averaging the detection accuracy over each fold. Within each fold, the de-
tection accuracy is defined as the average accuracy achieved by the detector
over all 24 fingerspelling signs.

classification time metric The classification time metric measures the
time required by a detector to identify the hand pose in a single depth image.
A shorter classification time corresponds to a higher classification speed.

criterion Our decision criterion is established as straightforwardly out-
performing the classification performance of the state-of-the-art. Thus, we con-
sider the stage detector to be superior to the state-of-the-art approaches when
the detector outperforms its opponents in classification performance. In Sec-
tion 5.6 we will examine to what extent the impression holds. In what follows,
the classification metrics and the classification time metrics are discussed.
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5.5.3 Implementation Details

In the experiments, four types of parameters are used, viz. for (1) selecting
the pixel locations and spatial search area, (2) the RC feature parameters, (3)
the RDF classifier, and (4) the implementation of the detector. They are briefly
discussed below.

selecting the pixel locations and spatial search area For each depth
image, a subset of 121 pixel locations is selected in a 11× 11 grid structure.
The horizontal and vertical distance between the pixel locations is approxi-
mately 10 pixels. For each pixel position of the subset, a feature vector with
RC features is computed. The maximal dimensions of the rectangles incor-
porated by the RC features are 24 × 24 pixels. The spatial search area over
which the RC features are computed, is defined by the maximal dimensions
of the rectangles incorporated by the RC features. As the feature types with
the largest spatial dimensions (i.e., the ones shown in Figures 5.5g and 5.5h)
incorporate 3 horizontally positioned rectangles and (0.5+ 1+ 0.5 =)2 verti-
cally positioned rectangles, the maximal spatial search area of the RC features
is (3× 24)× (2× 24) = 72× 48 pixels.

rc feature parameters The rectangle size parameter r for the feature
types that are used to compute the RC features, is defined as an integer value
that increases over the course of 12 iterations. In the first iteration, the value
of r is initiated at 2. After each iteration, the value of r increases with step
size 2, up to its maximum value of 24. Hence, over the course of the itera-
tions, the value of r is defined as: r = {2, 4, 6, ...24}. The resulting RC feature
vectors contain (8 feature types ×12 iterations =)96 elements for each of the
121 pixel locations. After concatenating the feature vectors of the individual
pixel locations, the resulting feature vector for the entire depth image contains
(121× 96 =)11, 616 elements.

rdf classifier For our experiment, we use the MATLAB implementation
of the random decision forest; the so-called treebagger

18. For the RC features,
each split node of the forest selects a random subset of

√
11, 616 ≈ 108 can-

didate features. In the training procedure, the feature that best separates the
observations is selected as the split node’s test. Each tree of the random de-
cision forest is trained until a minimum number of one observation per tree
leaf is reached. The trees are not pruned.

implementation of the detector The stage detector is implemented in
MATLAB scripts. The implementations of the detector are publicly available

18 http://nl.mathworks.com/help/stats/treebagger.html
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upon request. The entire training and evaluation procedure takes several days
on a 50-core Linux calculation server.

5.5.4 Experimental Design

To evaluate the performance obtained by the ALS detector, we perform a clas-
sification experiment in which we evaluate the performance of the stage detec-
tor on the ASL Fingerspelling Dataset. This provides an indication of the extent
to which the RC features are suitable for accurate static gestures recognition.
In what follows, the experimental setup and the experiment are discussed.

experimental setup In our experiment, we train and evaluate the stage

detector on depth images from the ASL Fingerspelling Dataset; see Subsection
5.5.1. The dataset consists of five subjects constructing 24 fingerspelling signs
each. To estimate the detector’s generalisation performance, the data (i.e, the
depth images) is separated into individual training sets and individual test
sets.

To create the training and test sets, several approaches employ a validation
procedure in which half of the data of each subject is selected at random and
designated to the training set; the other half of the data is used as the test
set; the so-called “50vs50” validation procedure (see, e.g., Kapuscinski et al.,
2015; Li et al., 2015; Pugeault & Bowden, 2011). However, due to the way in
which the data is divided into a training and test set, the 50vs50 validation
method comes at the risk of classifying “seen” data samples. In casu, this
means that the test data may be highly similar to the training data, given
that it originates from the same subject in the dataset. While the classification
performances achieved with the 50vs50 validation method reportedly surpass
the performances achieved with cross-validation (see, e.g., Kapuscinski et al.,
2015), it may result in a poor generalisation performance on depth images
of unseen subjects. We therefore emphasise the requirement that the training
and test data should be clearly partitioned using a suitable cross-validation
procedure. To meet this requirement, we perform 5-fold cross-validation to
create five folds with separate training and test sets. In each fold, the training
set consists of 4 subjects from the dataset, while the test set consists of 1

subject.
In the experiment, the RC features are optimised for the small dimensions

of the depth images by limiting the maximum size of the rectangles. As the
complexity of the RDF classifier is not optimised prior to the experiment,
we did not create a validation set. In the experiment, we measure (1) the
classification performance of the stage detector, and (2) the time required to
process an entire depth image. The highest average classification performance
is used as the benchmark in the comparative evaluation.
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experiment Our evaluation procedure consists of (1) a training stage, and
(2) an evaluation stage. In what follows, both stages are discussed in more
detail.

In the training stage, the folds are used to train the stage detector using ran-
dom decision forest (RDF) classifiers. On average, each fold consists of 52, 715
training images and 13, 179 test images. The images are labelled using the
annotations that are provided by Pugeault and Bowden (2011). The training
procedure is performed in several iterations. In each iteration, RDF classifiers
are trained for the individual folds. The dimensions of the RDF classifiers are
increased from 10 trees up to 100 trees (both inclusive), in steps of 10 trees.
Additionally, we train an RDF classifier of 1, 000 trees. Due to the computa-
tional power required to train the RDF classifiers, we refrained from training
classifiers beyond 1, 000 trees.

In the evaluation stage, we first assess the average classification perfor-
mance of the stage detector over all folds. The test examples and the cor-
responding labels are used to evaluate the performance of the detector for
different sizes of the RDF classifier. Repeating this procedure and averaging
the classification performance over the individual folds result in an estimation
of the classification performance on unseen data. Additionally, we investigate
the variability within the dataset, and the extent to which the stage detector
is able to distinguish the individual signs.

The highest average classification performance of the stage detector is com-
pared with the performances of the state-of-the-art approaches that (1) include
the ASL Fingerspelling Dataset, and (2) perform the 5-fold cross-validation pro-
cedure (and therefore meet the requirement regarding the partitioning of the
dataset, as emphasised in the previous paragraph) to create their training and
test sets. More specifically, we compare the classification performance of the
stage detector with the highest performances as achieved by four competing
approaches, i.e., the work by (1) Pugeault & Bowden (2011), (2) Kuznetsova et
al. (2013), (3) Pedersoli et al. (2014), and (4) Kapuscinski et al. (2015). Similar
to our approach, all aforementioned approaches experimentally optimised the
parameters of their feature extraction methods prior to the experiment. The
complexity of the classifiers was not optimised.

5.6 experimental results
In this Section, we describe the experimental results of our evaluation. The
aim of our experiment is to assess the classification performance of the stage

detector. In what follows, Subsection 5.6.1 investigates the average classifica-
tion performance of the stage detector over all folds, for several sizes of the
RDF classifier. Then, Subsection 5.6.2 assesses the variability in the dataset.
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Finally, Subsection 5.6.3 investigates to what extent the stage detector is able
to distinguish the individual signs from each other.

5.6.1 Evaluating the classification performance

To investigate to what extent the dimensions of the forest influence the clas-
sification performance, we assess (1) the detector’s classification performance
(i.e., detection accuracy), and (2) its classification time using different sizes of
the random forest. The results of our evaluation are shown in Figure 5.6.

Figure 5.6a shows the average detection accuracy over all folds for ten sizes
of the RDF classifier. The results indicate that the detector approaches its opti-
mal accuracy using a forest of rather small dimensions (say, 30 trees). Using a
forest of 30 trees, the detector achieves a detection accuracy of 72% (SD = 16),
up to 75% (SD = 16) for a forest of 100 trees. Increasing the size of the forest
to 1, 000 trees, results in an average detection accuracy of 77% (SD = 16). Due
to the computational power required, we refrained from training forests that
are larger than 1, 000 trees. The results, however, weakly suggest that increas-
ing the size of the random forest may result in a further small increase in
classification performance.

Additionally, Figure 5.6b shows the classification times of the detector for
ten sizes of the RDF classifier. Using a forest of 30 trees, the stage detector
requires 0.8 seconds (SD = 0.1) to process an entire image, up to 17.6 seconds
(SD = 1.2) for a forest of 1, 000 trees. For the sake of readability, we did not
include the latter in the Figure. The results suggest a rather linear relation be-
tween the size of the RDF classifier and the time required to process an entire
depth image. In summary, the results of our experiment suggest that increas-
ing the size of the forest leads to an increase in classification performance.
However, the increase in detection performance comes at the cost of detection
speed.

To complete this Subsection, we may conclude that the results of our ex-
periment indicate that the stage detector achieves its highest average detec-
tion accuracy when using an RDF classifier of 1, 000 trees. The results of our
evaluation suggest that the stage detector outperforms the performance of
the state-of-the-art approaches, i.e., the work by Pugeault & Bowden (2011),
Kuznetsova, Leal-Taixé, & Rosenhahn (2013), Pedersoli et al. (2014), and Ka-
puscinski et al. (2015). Figure 5.7 shows the performance of the stage detector
(using an RDF of 1, 000 trees) in comparison with its competing approaches.

5.6.2 Assessing the Variability in the Dataset

To assess the variability in the dataset, we investigate the variations in detec-
tion accuracy scores between the individual folds. The inter-subject variability
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Figure 5.6: The average detection accuracy (a) and average classification times (b)
of the stage detector over all folds, for ten sizes of the random forest
(from 10 to 100). The first Figure shows that the detector approaches its
highest classification performance of 77% (see dotted line, it is achieved
by a forest of 1,000 trees; not visible in the Figure) using random forests
of rather limited dimensions. The second Figure shows a linear relation
between the size of the forest and the average classification time.
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Figure 5.7: The detection accuracy achieved by (1) Pugeault & Bowden (2011), (2)
Kuznetsova, Leal-Taixé, & Rosenhahn (2013), (3) Pedersoli et al. (2014), (4)
Kapuscinski et al. (2015), and (5) the stage detector (including standard
deviation). The stage detector uses a random decision forest of 1,000
trees. The results indicate that the stage detector achieves a higher detec-
tion accuracy.

(see Definition 5.2) describes the variations in the construction of the signs be-
tween different people, while the intra-subject variability (see Definition 5.3)
describes the variations in hand pose or, say, camera position, which may re-
sult in variations in the appearance of the individual signs. To this end, we



5.6 experimental results 101

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n 
ac

cu
ra

cy
 (

%
)

Folds

Figure 5.8: The per-fold detection accuracy for the gestures of the ASL dataset, using
an RDF classifier of 1,000 trees. In this Figure, the grey dots represent the
detection accuracy of the detector with respect to the individual gestures
in each of the 5 folds. The horizontal lines (in this Figure shown in red)
represent the mean per-fold detection accuracy of the detector.

investigate the performance of the stage detector yielding an RDF classifier of
1, 000 trees. Figure 5.819 shows the per-fold detection accuracy of the detector.
In this Figure, each fold represents a single subject in the dataset. In this Fig-
ure, the grey dots represent the detection accuracy of the detector with respect
to the individual gestures in each fold. The red lines represent the mean per-
fold detection accuracy, along with the 95% confidence interval (represented
by purple bars), and 1 standard deviation (in this Figure represented by pink
bars). The results of our evaluation suggest that there are no significant dif-
ferences in construction between the individual subjects, i.e., a low level of
variability in the dataset.

5.6.3 Detecting Individual Signs

To assess to what extent the stage detector is able to recognise the individual
ASL signs, we investigate the classification performance of the stage detector
with respect to the individual signs of the dataset. For our investigation, we
again use an RDF classifier that consists of 1, 000 trees. The results are shown
in Figure 5.9 and Table 5.1.

19 Figures 5.8 and 5.9 are created using the MATLAB toolbox provided by R.
Campbell at http://www.mathworks.com/matlabcentral/fileexchange/26508-notboxplot-
alternative-to-box-plots
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Figure 5.9: The per-class detection accuracy for the gestures of the ASL dataset, using
an RDF classifier of 1,000 trees. The detector achieves a high detection
accuracy for the majority of the individual signs, but a low accuracy for
others signs.

Figure 5.9 shows the per-sign classification performance for the individual
folds. In the Figure, the grey dots represent the detection accuracy of the
detector for the individual folds. The red lines represent the mean per-sign
detection accuracy, along with the 95% confidence interval (represented as
purple bars), and 1 standard deviation (represented as pink bars). The results
indicate that the stage detector achieves a high mean detection accuracy for
the majority of the individual signs (e.g., the signs for the letters B, I, L, U,
V , and W), i.e., well over 90%. The mean detection accuracy for several other
signs (e.g., the signs for the letters K, N, and P to T ), however, is considerably
lower, i.e., far below the average of 77% accuracy.

Table 5.1 shows the distribution of the average detection scores over all
folds. In the table, the rows represent the actual class labels (e.g., the letters
A, B, ...) of the fingerspelling signs in the experiment. The columns represent
the predicted class labels of the signs. The average detection accuracy (i.e., the
percentage of correctly classified signs, averaged over all folds) is represented
as rounded percentages. In the table, green represents a detection accuracy of
at least 76%, while red represents a detector accuracy below 76%; higher is
better. Orange indicates the most relevant misclassifications for the individual
signs, i.e., the cases in which the detector wrongfully classifies 10% or more
of the signs to this class label; lower is better. For example: in 15% of the
cases, the detector predicts that a sign represents the letter N, while it actually
represents the letter M. These results confirm that the detector achieves a high
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Table 5.1: The distribution of the average detection scores over all folds. The rows rep-
resent the actual class labels of the fingerspelling signs, while the columns
represent the predicted class labels. The mean detection scores are rep-
resented as rounded percentages. In the table, green represents a high
detection accuracy, while red represents a low detector accuracy. Orange
indicates detection errors above 10%.

A B C D E F G H I K L M N O P Q R S T U V W X Y

A 79 0 0 0 1 0 0 0 0 0 0 1 6 0 0 2 0 3 7 0 0 0 0 0

B 1 92 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 84 0 1 1 0 0 0 0 0 0 0 4 6 0 0 0 0 0 0 0 1 0

D 0 0 0 77 1 1 0 0 0 3 2 0 0 1 0 0 7 0 0 2 0 0 2 1

E 0 0 2 0 76 0 0 0 0 0 0 1 1 5 1 0 0 8 4 0 0 0 1 0

F 0 1 0 0 0 87 0 0 0 1 0 0 0 0 0 0 3 0 0 0 1 4 0 0

G 0 0 0 0 0 0 81 6 0 3 0 0 0 0 1 3 0 2 2 0 0 0 1 0

H 1 0 0 0 0 0 10 84 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0

I 0 0 1 0 1 0 0 0 92 1 0 0 1 0 0 0 0 1 1 0 0 0 1 2

K 0 0 0 6 0 0 7 0 1 53 2 0 0 0 1 0 7 0 0 3 14 2 3 0

L 0 0 0 2 0 0 0 0 0 1 96 0 0 0 0 0 0 0 0 0 0 0 0 0

M 2 0 0 0 2 0 0 0 0 0 0 82 7 0 0 0 0 5 2 0 0 0 0 0

N 3 0 0 0 1 0 0 0 0 0 0 215 61 0 0 0 0 1 15 0 0 0 3 0

O 0 0 1 0 7 0 1 0 0 1 0 1 0 81 3 2 0 2 1 0 0 0 0 0

P 0 0 1 1 0 0 2 4 1 1 0 0 3 4 60 13 0 0 2 0 0 4 2 0

Q 2 0 0 0 1 1 7 0 0 0 0 0 0 8 20 54 0 1 0 0 1 4 1 0

R 0 0 0 6 1 2 0 0 0 6 1 0 0 0 0 0 57 0 0 26 0 0 0 0

S 3 0 1 0 5 0 1 0 0 0 0 17 1 3 1 0 0 56 13 0 0 0 0 0

T 8 0 0 0 4 0 1 0 0 0 0 13 21 1 2 0 0 7 42 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 94 0 0 0 0

V 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 2 91 1 0 0

W 0 2 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 1 3 90 0 0

X 0 0 0 6 0 0 0 0 1 3 0 0 5 1 1 0 1 0 1 3 0 0 76 0

Y 0 0 0 0 1 0 3 0 4 0 2 0 0 0 5 0 0 1 0 0 0 0 0 85

mean detection accuracy for the majority of the individual signs. The results,
however, also indicate that the detector achieves relatively high error rates on
a limited number of fingerspelling signs. The detector tends to confuse, for
example, (1) the signs for the letters P and Q with each other, as well as (2)
the signs for the letters M, N, S, and T .

In summary: there are no significant variations in detection accuracy be-
tween the individual folds (see Subsection 5.6.2), although the results do indi-
cate that there are large differences in the detection accuracy achieved within
the individual folds, i.e., between the individual signs. The results suggest that
there are considerable differences in the way the individual subjects construct
some of the individual signs.
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5.7 discussion
In this Chapter, we investigated to what extent the RC features enable accu-
rate gesture recognition in depth data. To investigate their effectiveness, we
propose and evaluate the stage detector, which is an extension of the region
comparison detector proposed in Chapter 3. The performance of the detector
is evaluated on a dataset with depth images of the American Sign Language
(ASL). The results of our evaluation reveal that the stage detector achieves a
higher detection accuracy than the state-of-the-art approaches.

The remainder of this Section discusses the implications of the results in more
detail. In what follows, Subsection 5.7.1 addresses the use of RC features for
accurate gesture recognition. Subsequently, Subsection 5.7.2 discusses the dif-
ferences in detection accuracy for the individual signs of the ASL alphabet.
Finally, Subsection 5.7.3 discusses our future work, and the steps to be taken
before the stage detector can actually be deployed to recognise human ges-
tures.

5.7.1 Enabling Accurate Gesture Recognition

The results of our evaluation show that the stage detector outperforms its
competing approaches in classification performance. This raises the question
why the deployment of RC features enables the superior detector scores that
are achieved by the stage detector. As stated in Subsection 5.2, recognising
the individual signs remains a challenge due to three difficulties: (1) the vi-
sual similarity between the signs, (2) the inter-subject variability in the produc-
tion of the signs, and (3) the intra-subject variability in the production of the
signs. Approaches aiming to recognise the individual signs should thus be
able to (1) take the global hand shape into account, and (2) detect subtle local
differences between the individual signs. The stage detector computes its RC
features using a grid-like structure of pixel locations, which enables the detec-
tor to calculate depth descriptors for the entire image. As the RC features are
calculated over regions of various dimensions, this allows for the computation
of global as well as local depth transitions. On the one hand, the RC features
average over large regions in a depth image, which allows the detector to esti-
mate the global hand shape. On the other hand, the features take local depth
differences into account, which allows for the detector of subtle depth differ-
ences between the individual signs. We believe that the combination of global
and local depth sampling explains the high performance of the RC features.
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5.7.2 Recognising the Individual Signs

The results of our experiment indicate that the stage detector achieves a high
mean detection accuracy for the majority of the individual signs. However, the
results also show that the detector achieve a significantly lower classification
performance for a limited number of fingerspelling signs. As a case in point,
the detector tends to confuse the signs for the letters M, N, S, and T , which
leads to lower detection scores for those signs. We argue that this is caused
by the high degree of similarity between the signs. The signs for the letters
M, N, S, and T , for example, are all based on a raised fist (see Figure 5.1).
The position of the thumb constructs the meaning of the individual signs.
This results in a high degree of visual similarity (and thus in very subtle
differences) between the individual signs. Given the low quality of the depth
data (see Subsection 2.1.3), we argue that increasing the quality of the input
depth data may result in a higher classification performance of the stage

detector.

5.7.3 Future Work

As two signs in the ASL alphabet involve motion for their gestural meaning,
the evaluation procedure of the stage detector was limited to the recognition
of the 24 static gestures from the ASL alphabet. As stated in Section 5.1, ges-
tures exist in two distinctive forms: (1) static gestures and (2) dynamic gestures.
The ability to recognise static gestures in the ASL alphabet is a first step to-
wards accurate gesture recognition in general. As a next step, it is imperative
that the stage detector is extended with the ability to (1) detect, (2) track, and
(3) recognise dynamic gestures. We refrained from developing such extensions
for the detector, because the focus of the experiment was on the evaluation of
the RC features, rather than the detector’s ability to detect and track gestures.
Future work may therefore improve the detector with the aforementioned ad-
ditions. It is to be expected that the performance of the RC features will be
reflected in any detection approach that incorporates the features for hand
pose recognition.

For our evaluation procedure, the stage detector was implemented as a
combination of several MATLAB scripts. As stated in Subsection 3.5.3, the
MATLAB environment is not optimised for speed. Implementing (parts of) the
stage detector in a dedicated programming language (e.g., C++, Python, or
equivalent) may speed up the processing time of the detector. Our evaluation
results show that the detector is able to achieve a near-optimal classification
performance, while requiring less than a second to process an entire depth
images. We expect that developing a C++ or Python implementation of the
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detector allows it to run in real time, i.e, to be able to process several frames
per second on reasonable hardware.

This Chapter focusses on the recognition of static gestures in depth images.
Future work may extend the stage detector to include visual data as well,
similar to approaches such as the work by Li et al. (2015). As stated in Section
1.5, visual data is rich in detail, yet sensitive to external factors such as the illu-
mination conditions. The advantage of using visual data (in addition to depth
data) is that it may provide additional contextual information regarding small,
individual parts of a hand, e.g., the fingers. Combining and aligning (1) visual
features and (2) depth features may thus increase the general performance of
the stage detector, provided that it this does not result in a significant increase
in the computational budget required.

5.8 chapter conclusions
The research question of this Chapter is RQ 4: To what extent do Region Com-
parison features enable accurate recognition of static gestures when using in-depth
information? To answer the research question, the Chapter evaluates the effec-
tiveness of the RC features for accurate gesture recognition. To investigate the
effectiveness of the RC features, we propose and evaluate the stage detector,
which is an extension of the region comparison detector proposed in Chap-
ter 3. It incorporates the RC features for accurate sign language recognition.
The detection performance is evaluated on a dataset with depth images of the
American Sign Language. The results of our evaluation reveal that the stage

detector outperforms the state-of-the-art approaches in classification perfor-
mance. The RC features enable for the computation of global depth transitions
as well as local depth transitions. As the RC features are calculated over re-
gions of various dimensions, this allows for the computation of global as well
as local depth transitions. They allow the stage detector to estimate both the
global hand shape as well as subtle depth differences between the individual
signs. Based on our results, we may provisionally conclude the following.

• Conclusion 1: Due to a high degree of visual similarity between static
gestures, identifying the individual signs proves to be a challenge.

• Conclusion 2: The RC features are able to distinguish subtle differences
in depth data.

• Conclusion 3: The RC features contribute to accurate static gestures
recognition in depth images.

• Conclusion 4: The RC features outperform the state-of-the-art in the field
of static gesture recognition.
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Future work may combine the RC features with visual features for an increase
in classification performance.

Research Continuation

In this Chapter, the RC features have shown their value for accurate gesture
recognition, which is an important step towards embodied agents and intel-
ligent environments that are able to perceive human behaviour and engage
in natural interactions. As a next step in the establishment of natural interac-
tions, it is imperative that smart agents are able to perceive on which objects
(or topics) their human communication partners focus their attention. Hence,
the next Chapter investigates to what extent RC features are suitable for accu-
rate head pose estimation.





6 M I R R O R , M I R R O R O N T H E W A L L

"The human is indissolubly linked with imitation; a human being only be-
comes human at all by imitating other human beings."

– Theodor Adorno

The techniques investigated so far allow embodied agents to perceive and un-
derstand (some) social cues. The ability to understand these cues is a break-
through step towards the establishment of a social connection between a per-
son and an agent, which is a requirement for effective persuasion. It is, how-
ever, unclear to what extent it is actually possible to establish a social connec-
tion between humans and embodied agents, i.e., to what extent humans are
able to perceive embodied agents as communication partners. As mimicking
behaviour is widely considered to be a sign of a social connection between
people, this Chapter20 investigates the effect of agents on the mimicking be-
haviour of humans. This topic is highly relevant in the context of persuasive
technology. Investigating a person’s mimicking behaviour therefore provides
an indication of the extent to which it is possible to establish a social bond
between a human and a virtual agent. An experiment is conducted in which
participants interact verbally with a virtual embodied agent. During the inter-
action, both the vocal pitch and the affective facial expressions of the agent are
locally manipulated and the consecutive vocal and facial expressions of the
participants registered. Computational analyses of the recorded expressions
reveal vocal and facial mimicry as a sign of unconscious affect recognition
and social connection.

The course of the Chapter is as follows. First, Section 6.1 outlines the relevance
of people that unconscious imitate the cues sent out by embodied agents. Sub-
sequently, the Section presents the details of RQ 5. Next, Section 6.2 describes
the background of the experimental paradigm and the methodology used for
the experiment. The results of the experiment are described in Section 6.3,

20 This Chapter is based on work by R. J. H. Mattheij, M. Postma-Nilsenová, and E. O. Postma
(2015); Mirror, Mirror in the Wall: Is there mimicry in you all? Published in the Journal of
Ambient Intelligence and Smart Environments (JAISE).
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while their implications for the development of embodied agents and intelli-
gent environments in general are discussed in Section 6.4. We conclude upon
our findings in Section 6.5.

6.1 social signals and embodied agents
Recent progress in the automatic processing of affective and social signals (see,
e.g., Murray-Smith, 2014; Pantic & Vinciarelli, 2014; Vinciarelli et al., 2012) en-
ables the employment of smart devices in intelligent environments. Capable of
sensing social cues such as (1) emotional facial expressions (e.g., distress, sur-
prise), and (2) emotional vocal expressions (tone of voice), these devices fulfil
a role as the eyes and ears of the envisioned intelligent environment. Employ-
ing such smart devices enables the intelligent environment to perceive and
understand the behaviour of people who are present, and, eventually, allows
the environment to respond to their social cues in a contextually appropri-
ate manner, i.e., responding in a natural way. Aiming to respond in a natural
way, the intelligent environment may rely on actuators, i.e., virtual agents that
emit social signals by means of virtually generated facial, vocal, and gestural
expressions. The ultimate goal of these virtual agents is to provide person-
alised and socially acceptable feedback to humans, and to engage in natural
interactions with them, without being experienced as annoying or obtrusive.

The course of the Section is as follows. Subsection 6.1.1 outlines the role of be-
havioural imitation in human-human interactions. Subsequently, Subsection
6.1.2 discusses the importance of imitation for embodied agents that aim to
influence human behaviour. Finally, Subsection 6.1.3 addresses the research
question of this Chapter, and the focus of the experiment performed to an-
swer it.

6.1.1 Behavioural Imitation

A prerequisite for successful interactions between virtual agents and humans
is twofold: (1) agents should respond appropriately to social signals, and (2)
agents should evoke social signals. One of the most basic components of
human-human interactions with respect to non-verbal behaviour is its auto-
matic imitation (see, e.g., Louwerse, Dale, Bard, & Jeuniaux, 2012; Breazeal &
Scassellati, 2002; Chartrand & Bargh, 1999).
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Mitchell (1987) defines the concept of imitation as follows:

• something C (the copy) is produced by an organism and/or machine,
where

• C is similar to something else M (the model)

• registration (or perception) of M is necessary for the production of C,
and

• C is designed to be similar to M.

Apart from its crucial role in, for example, learning (see Dautenhahn, Ne-
haniv, & Alissandrakis, 2003), behavioural imitation and convergence (i.e., an
increased similarity) creates (1) feelings of rapport, (2) empathy, and (3) social
bonding (cf. Chartrand & van Baaren, 2009), which have a positive effect on
social approval. Human behavioural studies show that speakers tend to mimic
(1) verbal communication, e.g., the pitch in a person’s voice (see, e.g., Looze,
Oertel, Rauzy, & Campbell, 2011), and (2) non-verbal communication, such
as facial expressions (see, e.g., Fischer, Becker, & Veenstra, 2012; Niedenthal,
Brauer, Halberstadt, & Innes-Ker, 2001) and gestures (e.g., Holler & Wilkin,
2011).

6.1.2 Imitating Humans

With respect to artificial entities such as robots and embodied agents, three
lines of experimental evidence suggest that positive effects can be achieved if
the artificial entities engage in imitating humans.

First, Bailenson & Yee (2005) found that embodied agents gained social in-
fluence over participants when they mimicked the participants’ head move-
ments. Even though the participants did not explicitly notice the mimicry, the
mimicking agents were more persuasive and received more positive trait rat-
ings than their non-mimicking counterparts.

Second, Bevacqua, Hyniewska, & Pelachaud (2010) conducted an experi-
ment in which an embodied agent in the role of the listener employed both
unique smiles and mimicked smiles during an interaction with a human par-
ticipant. The results show that participants smiled longer and more often
when the embodied agent performed some smiling behaviour. Moreover, in
both smiling conditions the agent was rated more positively than in the condi-
tion in which it never smiled. Hence, the results indicated that the frequency
and duration of a participant’s smile was influenced by the smiling behaviour
of the embodied agent and that an embodied agent’s behaviour can therefore
positively influence a participant.
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Third, Meltzoff, Brooks, Shon, & Rao, (2010) used behavioural imitation by
robots as a way to bias children to treat the robots as psychological agents who
can ”perceive”. In an experiment with 18-month-old infants, they showed that
(1) humanoid robots which were observed to imitate the actions performed by
the experimenter, and (2) the actions of the robots which were mimicked, were
more likely to elicit gaze following. The outcome of the experiment suggests
that (a) engaging in imitative behaviour is an important part of social interac-
tion from an early age, and (b) that it can have an impact on humans’ attention
shifting.

6.1.3 Mimicking Embodied Agents

The imitation of a human sender’s social signals leads to the agent being per-
ceived as a socially appealing partner (see, e.g., Castellano, Mancini, Peters,
& McOwan, 2012; Michalowski, Simmons, & Kozima, 2009; Bailenson & Yee,
2005). It is, however, unclear how fast, and in what manner, imitation takes
place when the sender of the social cues is a human-like embodied agent.
Given that imitation is recognized as an important social cue and as a factor
affecting preferences and behaviours in commercial settings (see, e.g., Char-
trand & Lakin, 2013; Stel, Mastop, & Strick, 2011; Tanner, Ferraro, Chartrand,
Bettman, & Van Baren, 2008), examining the effect of agents on the imitative
behaviour of humans is highly relevant in the context of persuasive technol-
ogy. In particular, it is interesting to investigate to what extent humans ex-
hibit behavioural mimicry in the form of copying facial expressions and vocal
characteristics, which is a form of imitation that is mostly unconscious and
unintentional (e.g., Chartrand & Lakin, 2013; Bell, Gustafson, & M., 2003). If
humans, in fact, unknowingly imitate different non-verbal cues of the agent,
their behaviour can be interpreted as an indicator of real social engagement.
The research question of this Chapter therefore reads as follows.

RQ 5: To what extent do people mimic verbal and non-verbal cues sent
out by an embodied agent?

The experimental study described in this Chapter investigates to what extent
humans display mimicking behaviour towards an emotionally responsive em-
bodied agent, in particular its facial expressions and vocal characteristics. An
earlier study examined global mimicking behaviour averaged over multiple
interactions (Mattheij & Nilsenová, M. and Postma, E. O., 2013). The current
study is directed at mimicry (see Definition 6.1) in individual interactions of
male and female humans with a (female) embodied agent.
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Definition 6.1: Mimicry

Mimicry is defined as a significant correlation between (1) the facial ex-
pressions of the participants and the embodied agent, or (2) the vocal
pitch of the participants and the embodied agent, when the direction of
the correlation points towards the embodied agent.

In the experiment, the participants are exposed to an embodied virtual agent
that generates both verbal and non-verbal social signals. The experiment meets
the conditions of non-obtrusiveness and human-like feedback (as described
in Section 1.3) by deploying a realistically looking embodied agent. The agent
meets the condition of non-obtrusiveness by having the agent communicate
through both different facial expressions and subtle changes in the pitch of
voice. It meets the condition of human-like feedback by using an embodied
agent with a humanoid appearance, which incorporates emotional facial ex-
pressions that are modelled on the movement of human ’facial action units’ (cf.
Ekman & Friesen, 1978). To quantify the mimicking behaviour of the partici-
pants in our experiment, we consider significant correlations in (1) the facial
expressions of the participants and the embodied agent, or in (2) the vocal
pitch of the participants and the embodied agent as positive signs of mimicry,
especially when the direction of the correlation points towards the embodied
agent.

6.2 methodology and experiment
This Section describes the experiment performed to measure the extent to
which participants show mimicking behaviour when interacting with embod-
ied agents. The aim of the experiment is to find evidence for mimicry in (1)
emotional facial expressions, and (2) vocal pitch. The goal of the visual anal-
ysis was to find signs of mimicry in emotional facial expressions. The goal of
the auditory analysis was to find a statistically significant change in the vocal
pitch of participants in response to a low-pitched or high-pitched voice of the
embodied agent.

In what follows, the methodology of the experiment is described. First, the
background of the experiment is described in Subsection 6.2.1. Then, Subsec-
tion 6.2.2 presents the participant pool used for the experiment, as well as the
design of the experiment. Subsequently, Subsection 6.2.3 describes the mate-
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rial used. Finally, Subsection 6.2.4 describes the criteria and methods used to
analyse the results (in the form of perceived data) from the experiment.

6.2.1 Background

The experiment consists of a verbal interaction between a participant and an
embodied agent. The latter expresses multiple facial expressions and utilises
different levels of vocal pitch. Facial expressions and vocal properties are the
most important source of information about the speaker’s emotions, men-
tal states, and personality traits; the ability to process the information is at
the core of social intelligence (cf. Vinciarelli et al., 2012). In particular, the hu-
man voice is a reliable indicator of social signals because the voice produc-
tion mechanism directly reflects various physiological changes related to emo-
tional responses (cf. Scherer, Johnstone, & Klasmeyer, 2003). Past research in-
dicates that among the acoustic parameters that can be measured in the voice,
the most robust effects can be found with respect to pitch, the perceptual corre-
late of fundamental frequency in the voice (cf. Juslin & Laukka, 2003). Given
that strategic monitoring and regulation of facial expressions appears to be
easier than conscious modification of affect-expressing vocal patterns, acous-
tic measurements possibly constitute a more reliable cue to social signals than
visual data. As such, visual as well as vocal mimicry is examined in our exper-
iment.

6.2.2 Participants and Design

In total, 73 participants (25 men and 48 women; mean age 20.1) were recruited
from the Tilburg University student population. They received course credits
for their participation. All participants were native speakers of Dutch. They
participated in an interactive task that was presented as a word-association
game with an embodied agent. The within-participant independent variables
manipulated in the task are the agent’s vocal pitch (High, Low) and seven
facial expressions (Anger, Contempt, Disgust, Fear, Happiness, Sadness, and
Surprise; (see Ekman & Friesen, 1978)). The dependent variables measured are
the degree of participants’ unconscious vocal and facial mimicry as indicators
of social partnership.

6.2.3 Material

Commercially available software was used to create a realistic embodied agent
with convincing facial expressions. In order to draw participants’ attention to
the facial expressions, the agent was designed as a female human head. The
entire experiment consisted of (1) a training sequence of 3 trials, and (2) the ex-
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perimental session (in a sequence of 28 trials). In each trial, the agent changes
its neutral facial expression to one of the seven emotional expressions (dura-
tion: 1.0 second), while verbally producing a word. The word was produced
with either a high or a low pitch of voice. Each trial lasted 2.5 seconds, includ-
ing two 500 milliseconds transitional phases, i.e., a phase in which the agent
changed its facial expression from neutral to one of the seven facial expres-
sions, and vice versa. The task of the experimental participant was to react by
the first verbal association that came to mind within a four-second time frame.
Each combination of a facial expression and a pitch of voice was repeated
twice (7× 2), which resulted in 28 trials per participant.

lexical properties The words that are used as primes in the experiment
were selected from the list of the 100 most frequent Dutch nouns in the SoNaR
corpus (cf. Oostdijk, Reynaert, Hoste, & Schuurman, 2013), which contains
over 500 million contemporary Dutch words. To control for the duration of
the stimuli, only disyllabic nouns were included in the list. The selected words
were all semantically neutral, which excluded a possible effect of semantic and
prosodic (in)congruence (e.g., a semantically positive word combined with a
sad facial expression). Appendix A provides the full list of stimuli.

vocal characteristics The words were synthesized using the Text-Aloud
text-to-speech (TTS) software which employs the L&H TTS3000

21 Dutch TTS
engine. To fit the female agent used in the experiment, the TTS engine em-
ployed the L&H Karen voice package. The average pitch of the synthesized
words was approximately 170 Hz which can be described as a low female
voice. Using PRAAT (cf. Boersma & Weenink, 2012)22, a randomly selected
half of the stimulus material was raised in pitch with 40 Hz and resynthe-
sized. Given that a normally hearing listener is able to distinguish speech
sounds that differ in 5 Hz, the manipulation resulted in perceptually clearly
distinguishable pitch variation.

facial expressions The facial expressions in this experiment displayed
the basic emotions identified by Ekman (cf. Ekman & Friesen, 1971), i.e.,
Anger, Contempt, Disgust, Fear, Happiness, Sadness, and Surprise, all pre-
sented four times in a random order. The expressions were created using
HapFACS (Amini, Yasavur, & Lisetti, 2012), an API to generate dynamic 3D
facial expressions based on the Facial Action Coding System (FACS) (Ekman
& Friesen, 1978). HapFACS enables the creation of facial expressions by acti-
vating the relevant facial action units and the corresponding intensities.

21 http://www.ttsmaster.com/download
22 http://www.fon.hum.uva.nl/praat/
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a b c

d e f
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Figure 6.1: The eight facial expressions (seven emotional expressions and the neutral
expression) employed by the embodied agent: (a) Anger, (b) Contempt, (c)
Disgust, (d) Fear, (e) Happiness, (f) Sadness, (g) Surprise, and (h) Neutral.

Table 6.1 lists (1) the expressions, (2) the corresponding Action Units (AUs)
and intensities (cf. Amini et al., 2012), and (3) the effect of activating the AU
that were employed to create the facial expressions for the experiment. The
individual AUs that are used to construct the facial expression are identified
by unique coding numbers. Unless specified otherwise, all action units are
activating bilaterally. Note that the intensities of the action units are expressed
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Table 6.1: An overview of the combinations of action units and their intensities em-
ployed to create the facial expressions of the embodied agent. The inten-
sities of the action units vary between A (lowest intensity) and E (highest
intensity). Unless specified otherwise, all action units are activated bilater-
ally.

Facial expression Action Units Effect

Anger 4D Brow lowerer

5E Upper lid raiser

7C Lid tightener

23C Lip tightener

Contempt 12B Lip corner puller

R14E Dimpler right

Disgust 9E Nose wrinkler

15D Lip corner depressor

16E Lower lip depressor

Fear 1D Inner brow raiser

2D Outer brow raiser

4D Brow lowerer

5E Upper lip raiser

20C Lip stretcher

26E Jaw drop

Happiness 6C Cheek raiser

12E Lip corner puller

25C Lip parts

Sadness 1C Inner brow raiser

4D Brow lowerer

15D Lip corner depressor

Surprise 1C Inner brow raiser

2D Outer brow raiser

5B Upper lid raiser

26E Jaw drop

as a degree between A (lowest intensity) and E (highest intensity). There is
one exception: AU 14 is not activated bilaterally. In that case, the number is
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preceded by a letter (R14) indicating the right (dimpler). The default intensity
of an AU is 0 (zero), which corresponds to a deactivated Action Unit. Figure
6.1 displays the emotional expressions of the embodied virtual agent.

Using HapFACS, two instruction scripts were created for each of the seven
basic emotions of the agent. Both scripts defined the changes of the intensities
of the constituent AUs over time. For each of the agent’s facial expressions,
the first script specified the transition of the constituent AUs from a neutral
expression to one of the seven emotional expressions, while the second set
specified the transition in the reverse direction. The duration of both tran-
sitions were set to 500 milliseconds, which yields realistic facial-expression
onsets and offsets.

experimental setup and procedure The experimental setup consisted of
a desktop computer23 that ran the experimental software, two external audio
speakers and an Eye Catcher device. The computer rendered the embodied
agent24 in full-screen mode against a black background. A computer mouse
was connected to the computer. All other input devices were disabled. The Eye
Catcher device25 is commercially available teleconferencing equipment that
was employed to display the embodied agent and capture the participants’
visual and auditory responses using its internal camera and microphone. The
resolution of the Eye Catcher is 800 × 600 pixels. The recordings were saved
as a single AVI video file with a frame rate of 25 frames per second. The DV
Video Encoder filter was employed to compress the video signal and the IMA
ADPCM audio codec was used to compress the audio signal. The Eye Catcher
and the speakers were positioned on a table in front of the participant at a
distance of 40 cm and 30 cm, respectively; the computer was located on an
adjacent table. Figure 6.2c shows a model participant watching the embodied
agent.

Prior to each experimental session, the camera of the Eye Catcher was man-
ually adjusted to capture a frontal view of the face of the participant. Partici-
pants were instructed to watch the screen and to respond to each word uttered
by the agent with an arbitrarily associated word; the point of the interaction
was to play an association game with the agent. Each session started by the
presentation of a black screen with a red cross for a duration of 1 second.
The location of the red cross corresponded to the location of the agent’s eyes,
drawing the participants’ attention to the eye-region of the agent. At the end
of the session, all participants filled out and signed an informed consent form,
as well as a non-disclosure agreement to prevent them from informing other
students of the content of the experiment.

23 The desktop computer employed in the experiment was a Dell Optiplex 740 with a 2.5 GHz
dual-core processor and 4 GB RAM. All software ran on Windows XP.

24 http://www.haptek.com
25 http://www.qconferencing.eu/product/eye-catcher/
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Figure 6.2: A schematic overview of the experimental setup (Figure 6.2a) and two
pictures showing an impression of the experiment in which a partici-
pant engages in a conversation with an embodied agent (Figures 6.2b
and 6.2c). The software developed for our experiment runs on a desk-
top computer. It renders the embodied agent, which is displayed on the
Eye Catcher’s screen. The agent’s voice is produced through the external
speakers. The participants’ visual and vocal responses are captured using
the Eye Catcher’s built-in camera and microphone.

6.2.4 Criteria and Methods

This subsection first describes the criteria used to quantify the signs of mimicry.
Then, it describes the methods for the visual and auditory analysis of the re-
sults.
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criteria for mimicry To quantify the mimicking behaviour of the partic-
ipants in our experiment, we expect that the participants mimic the facial
expressions or the pitch of voice of the embodied agents (see Definition 6.1).
We therefore formulate two criteria: (1) a criterion to quantify facial mimicry,
and (2) a criterion to quantify vocal mimicry

The visual analysis investigates the mean correlation between the facial ex-
pressions of the participant and the virtual agent. When a participant mimics
the facial expressions of the agent, this should occur in a positive time lag
starting after the initial facial expression. As such, our criterion to quantify
facial mimicry (criterion 1) is defined as a positive correlation after the ini-
tialization of a facial expression by the agent. Correlations found before or
somewhere after the agreed period are disregarded as facial mimicry.

The auditory analysis investigates the correlation between the mean pitch
of the agent and the participants’ responses. We expect that participants who
mimic the vocal pitch of the embodied agent adapt their pitch to the pitch
height of the agent. As such, we quantify the correlation between the pitch
of the participants and the pitch of the agent as a significant shift in the par-
ticipant’s mean vocal pitch towards the pitch of the agent. We consider a
significant shift in the participant’s mean vocal pitch towards the pitch of the
agent (criterion 2) a sign of vocal mimicry, while non-significant shifts in the
mean vocal pitch are disregarded as signs of vocal mimicry.

visual analysis The video sequences were analysed using the Computer
Expression Recognition Toolbox (CERT) developed by Littlewort and colleagues
(Littlewort et al., 2011). The video sequences of the embodied agent and of all
participants were processed by CERT yielding time-series for the following
seven emotional facial expressions: Anger, Contempt, Disgust, Fear, Happi-
ness, Sadness, and Surprise. CERT computes scores on these expressions by
estimating the presence of constituent FACS4.4 Action Units (AUs). On indi-
vidual Action Units, CERT achieves an average estimation accuracy of almost
80% on a dataset of spontaneous facial expressions (Littlewort et al., 2011).

In the experiment, each participant performed 28 trials, in which 7 facial
expressions were involved, i.e., 4 trials per facial expression per participant.
Each of the 7 facial expressions obtained for each participant video, and the
associated time-series obtained for the embodied agent, were submitted to
time-dependent correlation analyses. The participant and embodied agent
time-series were paired in the sense that they represented the same emotional
expression. We employed Matlab’s crosscorr function26 to analyse mimicry
in the individual human-agent interactions. The cross-correlation window size
was 100 samples (about 4 seconds) and the lag ranged from −100 to +100 sam-
ples (−4 to +4 seconds). The emotions of participants mimicking those of the

26 http://nl.mathworks.com/help/econ/crosscorr.html
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embodied agents should be reflected in a peak in the sample cross correla-
tion in a positive time lag. Thus, a positive cross correlation in time indicates
that an emotional expression of the agent is mimicked by the participant af-
ter some delay corresponding to the time lag. A time lag of 0 would indicate
synchronous expressions of the agent and participant. Therefore, the time lag
should be positive and within an appropriate range. Previous studies of facial
mimicry report latencies ranging from 500 to 1500 milliseconds (Achaibou,
Pourtois, Schwartz, & Vuilleumier, 2008; Sato & Yoshikawa, 2007; Dimberg &
Thunberg, 1998), therefore we define peaks approximately within this range
as probable signs of mimicry.

For each emotion and participant gender, the maximum cross correlation
coefficient (peak), CCmax, and lag, lagmax, were computed from the average
sample cross correlations. These were obtained by averaging over all partici-
pants with the same gender. It resulted in 7× 2 (emotions × gender) pairs of
CCmax and lagmax values as measures of visual mimicry.

auditory analysis The audio recordings were analysed with the help of
PRAAT 5.3.04 (Boersma & Weenink, 2012). The recordings were manually
segmented. A visual and an auditory inspection were used to establish a
speaker’s pitch floor and ceiling in order to prevent pitch tracking errors due
to octave jumps (cf. Boersma & Weenink, 2012). Generally, the range was set
to 70 Hz - 250 Hz for male voices and 80 Hz - 400 Hz for female voices. Mean
pitch of the voiced segments was estimated using the standard autocorrela-
tion method (cf. Boersma, 1993). Only speech vocalisations were included in
the acoustic measurements; non-speech sounds (e.g., filled pauses, laughter,
and background noises) were filtered out. In total, pitch measurements were
obtained for 1899 of the 2044 experimental trials (73 participants, 28 trials per
participant); in 8(0.4%) of the trials, pitch was undefined, and in 137(6.7%) tri-
als, the participants’ output was missing or overlapped with the output of the
embodied agent. The pitch measurements collected in the acoustic analysis
were averaged per participant, participant gender, emotion (Anger, Contempt,
Disgust, Fear, Happiness, Sadness, and Surprise) and pitch condition (High
or Low Pitch, as used by the embodied agent in the prime preceding the par-
ticipant’s vocalisation).

6.3 experimental results
The analysis of the video and audio recordings revealed evidence for mimicry.
Below, the results for facial-expression mimicry are presented in Subsection
6.3.1. Then, Subsection 6.3.2 addresses the results for pitch mimicry.
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6.3.1 Facial-Expression Mimicry

The main results for the analysis of facial expressions are listed in Tables
6.2 (female participants) and 6.3 (male participants). In both tables, the first
column specifies the emotional expression under consideration, the second
column displays the mean correlation at the location of the peak, mean Rmax,
and its standard deviation, and the third column displays the time lag lagRmax

of the mean.
The clearest signs of mimicry are observed for the facial expressions of

Disgust, Happiness, and Surprise (printed in boldface). For these emotions,
the time lags of about 0.9− 1.6 seconds differ clearly from 0 with an average
correlation of almost 0.5. There are no large differences in the intensity and
delays of mimicry between females and males, suggesting that both respond
similarly to the emotional expressions of the embodied conversational agent.
Interestingly, for the facial expressions of the other emotions, the Rmax values
are quite large. Given the short time lags (< 500 milliseconds), these facial
responses are unlikely to be caused by mimicry and may reflect the actions of
predictive mechanisms (cf. Kaufman & Johnston, 2014).

Figures 6.3 and 6.4 show a total of 14 graphs of the sample cross correlations
for the seven emotions (rows) for female and male participants (left and right
column, respectively). In each graph, the solid curve depicts the average cor-
relation coefficient as a function of time lag. The shaded region represents the
standard deviation from the mean. The dashed vertical line indicates the time
lag at which the largest average correlation coefficient is obtained. Clearly,
non-zero peaks are observed at positive time-lags. This indicates that the dis-
play of Disgust, Happiness or Surprise in the facial expression of the agent is
likely to be followed by the display of the same emotional expression in the
participant after about 0.9− 1.6 seconds in both females and males. Examina-
tion of the individual cross-correlation graphs for each participant revealed
considerable individual differences in the degree of mimicry of facial expres-
sions.

humans mimic facial expressions While we did not find clear signs of
mimicry for all facial expressions, we did find signs of mimicry for the ex-
pressions of Disgust, Happiness and Surprise. The results indicate that partic-
ipants unconsciously mimic several of the facial expressions expressed by the
embodied agent.

6.3.2 Pitch Mimicry

The number of male and female participants (> 20 per between-subject cell,
here: Gender) was judged to be sufficient to guarantee robustness to non-
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Table 6.2: Main results of the visual analysis of facial-expression mimicry for female
participants. The mean Rmax represents the mean correlation at the loca-
tion of the peak and its standard deviation, while lagRmax

represents the
time lag of the mean. The clearest signs of facial expression mimicry are
observed for the facial expressions of Disgust, Happiness and Surprise.

Facial expression mean Rmax (std) lagRmax
(secs)

Anger 0.26 (0.18) 0.28

Contempt 0.40 (0.19) 0.08

Disgust 0.18 (0.22) 0.88

Fear 0.30 (0.27) 0.12

Happiness 0.24 (0.25) 1.00

Sadness 0.29 (0.21) 0.04

Surprise 0.34 (0.25) 1.60

Table 6.3: Main results of the visual analysis of facial-expression mimicry for male
participants. The mean Rmax represents the mean correlation at the loca-
tion of the peak and its standard deviation, while lagRmax

represents the
time lag of the mean. The clearest signs of facial expression mimicry are
observed for the facial expressions of Disgust, Happiness and Surprise.

Facial expression mean Rmax (std) lagRmax
(secs)

Anger 0.26 (0.21) 0.16

Contempt 0.43 (0.19) 0.08

Disgust 0.23 (0.20) 1.00

Fear 0.33 (0.27) 0.12

Happiness 0.26 (0.24) 1.20

Sadness 0.27 (0.24) 0.08

Surprise 0.29 (0.24) 1.40

normality (cf. Tabachnick & Fidell, 2007). A Box’s M test (see Box, 1949)
showed no significant difference between the Mean Pitch values in the re-
sponses of the male and female speakers to all stimuli, thus satisfying the
assumption of homogeneity of the within-group covariance. Therefore, no ad-
justment of alpha levels due to unequal sample sizes of male and female
speakers was necessary.
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Figure 6.3: Overview of average correlation coefficients for the first four (Anger, Con-
tempt, Disgust, and Fear) of the seven emotional expressions for female
(left column) and male (right column) participants. In each plot, the solid
curve depicts the average correlation coefficient as a function of time lag.
The shaded region represents one standard deviation from the mean. The
dashed vertical line indicates the time lag at which the largest average
correlation coefficient is obtained.
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Figure 6.4: Overview of average correlation coefficients for the last three (Happiness,
Sadness, and Surprise) of the seven emotional expressions for female (left
column) and male (right column) participants. In each plot, the solid
curve depicts the average correlation coefficient as a function of time lag.
The shaded region represents one standard deviation from the mean. The
dashed vertical line indicates the time lag at which the largest average
correlation coefficient is obtained.

the variable mean pitch In both the within-participant conditions (High
and Low Pitch), the variable Mean Pitch was not normally distributed (Shapiro-
Wilk’s (1965) test < .0001); therefore, a nonparametric test was used to com-
pare the mean pitch values of the speaker’s vocalisations in the two conditions.
The Wilcoxon Signed Ranks test indicated that, overall, participants adapted
their pitch to the pitch of the embodied agent (see Wilcoxon, 1945). Mean
Pitch was lower in the vocalisations following a low pitch prime (Mdn = 199

Hz) compared to those uttered after a high pitch prime (Mdn = 208 Hz),
Z = −6.041, p < .0001. The effect size measure suggested a large effect of
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Table 6.4: Median values (in Hz) and main statistical results of the auditory analysis
of pitch mimicry for the low and high pitch conditions. There are clear
signs of pitch mimicry are observed for all facial expressions except Hap-
piness.

Facial expression Low Pitch High Pitch Z Significance

Anger 201 206 -2.837 .005

Contempt 201 205 -3.427 .001

Disgust 194 206 -5.132 <.001

Fear 198 209 -3.916 <.001

Happiness 202 202 -0.237 .813

Sadness 201 211 -3.916 .003

Surprise 196 198 -3.137 .002

the experimental manipulation, r = −.71. Low-pitched agents induce lower
pitched responses and high-pitched agents induce higher pitched responses.

post hoc split-file analysis To compare the effect on male and female
speakers, a post hoc split-file analysis was performed. The Wilcoxon Signed
Ranks tests revealed a slightly higher effect for the male speakers (Z = −3.969,
p < .0001, r = −.79) compared to the female speakers (Z = −4.749, p < .0001,
r = −.69). In comparison to female participants, male participants showed a
slightly higher tendency to shift their average pitch towards the pitch of the
agent. In order to explore the effect of the agent’s emotional expression on
pitch mimicry, a series of nonparametric paired-samples tests was performed
for Mean Pitch values collected in the two within-participant conditions (High
and Low Pitch) for each of the seven emotions separately. Wilcoxon Signed
Ranks tests revealed a significant difference for Anger, Contempt, Disgust,
Fear, Sadness and Surprise, but not for Happiness. As shown in Table 6.4, for
the six emotions where the difference was present (printed in bold), partici-
pants mimicked the pitch height of the agent by lowering their pitch in the
Low-Pitch condition and raising it in the High-Pitch condition. Figure 6.5 dis-
plays the same results. For each emotion, the median pitch of the participants
in response to the agent with a low-pitched voice (white bar) or high-pitched
voice (grey bar) is shown. With the exception of Happiness, all emotions show
a clear shift in the median vocal pitch of the participants towards the pitch of
the agent.

humans show signs of vocal imitation The results of this experiment
indicate that low-pitched agent vocalisation induced lower pitched responses
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Figure 6.5: The main results of the auditory analysis at the level of emotional expres-
sions. Seen from left to right, the bar plots show the results for the six
basic emotions. For each emotion, the two bars show the median vocal
pitch of the participant in the Low Pitch condition (white bar) and High
Pitch condition (grey bar). For all emotions, except Happiness, partici-
pants adapt their vocal pitch to the pitch of the agent (please note the
truncated range on the vertical axis).

by the participants, while a high-pitched vocalisation induced higher pitched
responses. Our results therefore indicate that humans show signs of vocal
mimicry when interacting with embodied agents. The implications of the re-
sults collected both in the visual and auditory domain are discussed in the
next Section.

6.4 discussion
In this Chapter, we investigated to what extent people show mimicking be-
haviour when interacting with an emotionally expressive virtual agent. We
quantify the mimicking behaviour of the participants as a significant correla-
tion in (1) the facial expressions between the participants and the embodied
agent, and (2) the vocal pitch between the participants and the embodied
agent. Our results indicate that people unconsciously mimic both facial and
vocal cues that are emitted by an embodied agent.
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In what follows, the implications of the results are discussed in more details.
Subsection 6.4.1 discusses the implications of human mimicking behaviour
for the establishment of a social connection between humans and embodied
agents. Subsequently, Subsection 6.4.2 discusses future extensions of our re-
search.

6.4.1 Mimicry as a Sign of a Social Connection

The results of our experimental investigation support the notion of virtual
embodied agents as social communication partners for humans in intelligent
environments. In general, local manipulation of behavioural cues expressed
in the visual and auditory domain led to changes in facial expressions and
in vocal behaviour in the participants. Given that such changes are a sign
of social connection in human-human interactions, our results suggest the
establishment of a social connection between the participant and the agent.

With respect to facial expressions, the clear signs of facial-expression mimicry
for the emotions of Happiness and Surprise point at a social connection. It is
not clear why these two emotions gave rise to facial mimicry, whereas the oth-
ers seem to fail to do so (with the exception of Disgust). Possibly, the details
of the virtual embodied agent (appearance, level of realism) and task setting
(not all participants seemed equally engaged in the task) determine the extent
to which emotions evoke facial-expression mimicry. A second option that can
be explored in future research is that positive emotions give rise to higher
degrees of facial imitation, as suggested in Chartrand & Lakin (2013).

In the auditory domain, participants were quick to adapt the pitch of their
voice to the perceptible change in the pitch of the agent. However, a more
detailed analysis of pitch changes following different emotional facial expres-
sions revealed no significant effect of the vocal manipulation after expressions
of Happiness. This result is particularly striking in view of the pronounced
imitation of the agent’s visual expression in this emotion condition. A possible
explanation is that the strong visual imitation of a happy expression actually
resulted in higher pitch (viz. the median values reported in Table 6.4), given
that high pitch is typically associated with positively valenced aroused states.

6.4.2 Future work

The results presented above may obscure the fact that there appear to be large
individual differences in the way participants responded to the agent. For
instance, female participants seem to be more responsive in terms of facial
expressions than male participants, with the opposite effect found in the audi-
tory domain. An important challenge for future study is the identification of
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individual interaction styles and the automatic adaptation of agent behaviour
to the preferred interaction style of the participant.

A recent point that needs to be addressed in the future is the cultural context
of the interaction and the interpretation of different facial expressions by par-
ticipants of different origins. Although many studies of emotional expressions
assume a high amount of cultural homogeneity, there is growing evidence of
cultural differences in non-verbal communication (see, e.g., Elfenbein, 2013;
Jack, Caldara, & Schyns, 2012).

6.5 chapter conclusions
The research question of this Chapter is RQ 5. It reads: To what extent do peo-
ple mimic verbal and non-verbal cues sent out by an embodied agent? To this end,
an experiment was conducted to measure behavioural mimicry in individual
interactions between humans and a human-like embodied agent. In the exper-
iment, participants were exposed to an embodied agent that generated both
verbal and non-verbal social signals. The embodied agent, equipped with a hu-
manoid appearance, communicated through both different facial expressions
and subtle changes in the pitch of voice.

The results of the experiment reveal that local manipulations of behavioural
cues expressed in the visual and auditory domain led to (1) significant changes
in several facial expressions, and (2) observable changes in the vocal behaviour
of the participants. The changes in the participants’ facial expressions and vo-
cal behaviour are directed towards the embodied agent, i.e., mimicking be-
haviour. In human interactions, such changes are a sign of a social connec-
tion. The answer to the research question is therefore that humans do exhibit
behavioural mimicry when interacting with an embodied agent, by matching
both the facial expressions and the pitch of voice of the embodied agent. These
results imply that humans are able to perceive virtual agents as potential com-
munication partners. Based on our results, we may provisionally conclude
that humans are able to establish a social connection with an human-like em-
bodied agent.





7 C O N C L U S I O N S

"I think and think for months and years. Ninety-nine times, the conclusion
is false. The hundredth time I am right."

– Albert Einstein

The work presented in this Thesis is part of the Persuasive Agents research
project. As explained in Chapter 1, the project explores the use of socially
aware virtual agents that persuade people to change their energy-consumption
behaviour by providing them with subtle personalised feedback. Enhancing
the ability of a virtual agent to perceive human non-verbal behaviour increases
its ability to act as a persuasive agent. Thus, the Thesis investigates novel meth-
ods that enable agents to perceive a person’s non-verbal cues and gestures as
accurately as possible.

The structure of the Chapter is as follows. Section 7.1 answers the five research
questions on the basis of the work in the Thesis. Subsequently, Section 7.2
formulates our conclusion to the problem statement.

7.1 answers to the research questions
In this Section, we provide the answers to the individual research questions.

Research question 1: How can we improve Shotton et al.’s body part
detector in such a way that it enables fast and effective body part detection
in noisy depth data?

The first research question is investigated in Chapter 2. There, we proposed
the use of region comparison (RC) features for fast and effective object detec-
tion in noisy depth data. The features provide a robust alternative to the pixel
comparison (PC) features that were proposed by Shotton et al. (2013a,b; 2011).
Based on the theoretical description given in the Chapter, we may conclude
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that (1) comparing regions in a depth image has a clear advantage over com-
paring individual pixel values in that comparing regions allows for averaging
over larger areas. We may further conclude that (2) the RC features are less
prone to local pixel noise than the PC features, and (3) the RC features do not
need an additional computational budget.

Research question 2: To what extent do Region Comparison features
enable fast and accurate face and person detection in noisy depth images?

The answer to the second research question is derived from Chapter 3, where
we performed a comparative evaluation to investigate to what extent RC fea-
tures contribute to fast and effective object detection in noisy depth images.
From our empirical results we observe that the RC features outperform the
state-of-the-art PC features in both classification performance and prediction
speed. Our results reveal that the RC deal effectively with the background
noise in depth images. The RC features provide an accurate indication of the
direction and magnitude of the depth transitions in a depth image. We may
therefore conclude that (1) RC features contribute significantly to fast and ef-
fective face and person detection in noisy depth images, (2) the RC features
yield an improvement over PC features, and (3) the RC features are able to
operate with the same computational budget.

Research question 3: How do we develop an annotated database that
incorporates visual and depth data recordings of natural human gestures?

To answer the third research question, Chapter 4 shows how the Tilburg Ges-
ture Research (TiGeR) Cub has been developed. It is a multimodal corpus
that consists of annotated, visual, depth, and audio recordings of dyadically
interacting interlocutors. So, we may conclude that the answer to the research
question resides in the experimental setup as given in Subsection 4.3.1 and
in the methodology followed in the experiments (see Subsection 4.3.2). Both,
setup and methodology led to the development of an annotated database that
incorporates visual and depth data recordings of natural human gestures. Of
course, annotating the huge quantities of data remains a challenge.

Research question 4: To what extent do Region Comparison features
enable accurate recognition of static gestures when using in-depth infor-
mation?

The fourth research question is addressed in Chapter 5. In the Chapter, we
evaluate the effectiveness of the RC features for accurate static gesture recog-
nition. To perform the evaluation, we proposed a detector that incorporates
the RC features for effective gesture recognition. The performance of the de-
tector is evaluated on a dataset with depth images of static American Sign
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Language (ASL) signs. Based on our results, we may conclude that (1) due
to a high degree of visual similarity between static gestures, identifying the
individual signs proves to be a challenge. We may further conclude that (2)
the RC features are able to distinguish subtle differences in depth data, (3) the
RC features contribute to accurate static gestures recognition in depth images,
and (4) the RC features outperform the state-of-the-art in the field of static
gesture recognition.

Research question 5: To what extent do people mimic verbal and non-
verbal cues sent out by an embodied agent?

Chapter 6 investigates the fifth research question. In the Chapter, we con-
ducted an experiment to measure behavioural mimicry in individual inter-
actions between humans and a human-like embodied agent. In the experi-
ment, participants were exposed to an embodied agent that generated both
verbal and non-verbal social signals. The embodied agent, equipped with a hu-
manoid appearance, communicated through both different facial expressions
and subtle changes in the pitch of voice. Our results revealed that local ma-
nipulation of behavioural cues expressed in the visual and auditory domain
led to (1) significant changes in several facial expressions, and (2) observable
changes in the vocal behaviour of the participants, i.e., mimicking behaviour.
Our results therefore imply that humans are able to perceive virtual agents
as potential communication partners. Based on our empirical results, we may
conclude that humans are able to establish a social connection with an human-
like embodied agent.

7.2 answer to the problem statement
In this Section, we provide an answer to the problem statement. Our answer
is based on the overall results reported in the thesis.

In Chapter 1 we outlined the importance of smart embodied agents that are
able to establish and maintain a social connection between a person and the
agent by using social signals such as affective facial expressions and vocal
prosody. A requirement for the establishment of the social bond between the
person and the embodied agent, is the latter’s ability to respond appropriately
to a person’s social signals. In the Chapter, we identified depth data as a robust
source of information. As depth data provides contextual information for a
scene, it facilitates effective foreground-background segmentation. Therefore,
depth data may be a robust alternative to the widely-used visual data. This
calls for the development of novel computer vison algorithms that employ in-
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depth information for the detection of human body parts and behaviour. As
such, the problem statement of this Thesis was defined as follows.

Problem statement: To what extent is it possible to detect human body
parts and behaviour when using in-depth information?

In the Thesis, we found that the use of depth data for object detection pur-
poses is hampered by two limitations: (1) the limited quality of the depth im-
ages, and (2) the limited resolution of the depth images, with result in noisy
depth images. To deal with these challenges, we proposed the use of RC fea-
tures. The RC features average over larger regions in a depth image, making
them less prone to local pixel noise. By outperforming several state-of-the-art
competing methods in a series of experiments, the features have proven their
worth for fast and effective body part and gesture recognition in noisy depth
data.

Seeing that the RC features are able to deal effectively with the background
noise in the depth data without leading to insurmountable computational
costs, we may conclude that is it possible to perform accurate human body
parts and behaviour recognition by means of in-depth information that is en-
coded by RC features. We may further conclude that using the RC features for
human body part and behaviour recognition tasks may enhance an agent’s
cognitive abilities. Our findings and their implications for the design of em-
bodied agents are discussed in the next Chapter.



8 G E N E R A L D I S C U S S I O N

"The aim of argument, or of discussion, should not be victory, but progress."
– Joseph Joubert

To establish the envisioned interactions between humans and embodied agents,
we assume that it is possible to create a strong social connection between a per-
son and an agent. To initiate the actual interactions, the agents use advanced
artificial intelligence techniques to analyse a person’s non-verbal behaviour.
As the agents are likely to be deployed in noisy environments, i.e., environ-
ments with a large variety of objects, changing illumination conditions, and
moving people, this necessitates the use of state-of-the-art computer vision
algorithms that (1) allow for accurate behaviour recognition, and (2) are able
to deal with the noisy nature of the environment. To meet the requirements,
we proposed six objectives that enable the agents to perceive a person’s non-
verbal cues and gestures more accurately (see Subsection 1.6.2). Moreover, we
investigated to what extent our assumption regarding the social bond between
a human and a virtual agent holds. This Chapter discusses our findings, as
well as their implications for the design of embodied agents.

The course of this Chapter is as follows. First, Section 8.1 reflects upon the
implications of our findings for the design of smart agents and intelligent
environments. Then, Section 8.2 discusses the points of improvement of our
studies. Finally, Section 8.3 presents pointers to future work.

8.1 towards socially aware embodied agents
As stated in Chapter 1, the aim of the Thesis is to facilitate natural interactions
between humans and embodied agents. Enabling the agents to perceive a
person’s social cues is a first step towards natural human-embodied agent
interactions.
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Figure 8.1: A model describing the envisioned interactions between humans and em-
bodied agents, and the establishment of the corresponding social bond.
In this Figure, our main contributions to the establishment of the interac-
tions (i.e., the object and gesture recognition algorithms) are represented
as light grey rectangles. This Figure is a modified reproduction the inter-
action model that is presented in Figure 1.2. We refer to Section 1.4 for a
detailed description of the interaction model.

Based on the findings in the Thesis, our contributions are two-fold. On the
one hand, we introduce a set of novel computer vision algorithms that allow
the agents to perceive a person’s non-verbal cues and gestures accurately. On
the other hand, we investigate to what extent it is possible to establish a social
bond between a human and a virtual agent. In this Section, we reflect upon
our objectives, as well as their implications for the design of smart embodied
agents and intelligent environments.

In Section 1.4, we presented an interaction model to describe the envisioned
human-embodied agent interactions (see Figure 1.2). To provide the proper
context for our research objectives (see Subsection 1.6.2), we extend the inter-
action model by including our main objectives. Figure 8.1 shows the extended
interaction model. Please note that the model itself is not validated in this The-
sis. It merely serves as a guideline for the reader to illustrate the envisioned
social interactions between humans and embodied agents.
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In the Figure, the first three objectives are represented as white rectangles.

1. The RC features, i.e., robust depth comparison features that are pro-
posed in Chapter 2.

2. The region comparison detector that is proposed in Chapter 3, which
allows for fast and effective body part and person detection in depth
data.

3. The stage detector (as proposed in Chapter 5), which is able to recognise
static gestures in depth images.

Our fourth research objective follows from our findings in Chapter 6. In that
Chapter, we gained

4. advanced insights into the extent to which people are able to perceive a
virtual person as a true communication partner.

The findings of Chapter 6 provide an indicater of the degree to which it is
possible to establish a social bond between a person and an embodied agent.
In the Figure, the social bond is represented by the white bi-directional arrow.
Our last two research objectives (not shown in the Figure; see Chapter 4) con-
cern the development of

5. the TiGeR Cub corpus, which contains annotated RGB-D recordings of
naturally interacting interlocutors, and

6. the AnnoTool, which ensures detailed annotations of the data in the
corpus.

The first three objectives allow for fast and effective body part and gesture
recognition, which enable agents to perceive a person’s behaviour and ges-
tural cues more accurately. Our objectives enable agents to respond properly
to a person’s behaviour, e.g., by interpreting a person’s gestures, or following
him with its gaze. The fourth objective investigates to what extent humans are
able to perceive embodied agents as communication partners. It provides an
indication of the extent to which is possible to establish a social connection be-
tween humans and embodied agents. Thus, it provides insights into the extent
to which social signals that are sent out by an embodied agents can influence
a person’s behaviour. We therefore state that objectives 1 to 4 are directly rele-
vant for the development of socially adaptive agents (see, e.g., Ben Youssef et
al., 2015; Van Welbergen, Ding, Sattler, Pelachaud, & Kopp, 2015). Thus, the
objectives may ultimately increase the human-likeness of embodied agents
(see, e.g., Gris, Rivera, & Novick, 2015; Wargnier et al., 2015).

The fifth and sixth objective are the TiGeR Cub corpus and our annotation
tool. The corpus can, for example, be used to (1) train and evaluate machine
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learning algorithms for gesture recognition tasks, and (2) to study the synthe-
sis of gestures. The annotation tool can be used to create detailed annotations
of objects and body parts in depth data. While they do not contribute directly
to the development of socially aware agents, we argue that both objectives are
relevant for the development of the next generation of gesture and behaviour
recognition approaches. As the agents require accurate computer vision al-
gorithms to detect a person’s behaviour, our last two objectives support the
development of accurate gesture recognition approaches, making them rele-
vant for the development of socially aware embodied agents.

8.2 points of improvement
In this Section, we discuss three points of improvement and provide two
alternative methods to further enhance the accuracy and robustness of the
proposed approach. In what follows, Subsection 8.2.1 discusses the use of
depth data for accurate behaviour recognition. Subsequently, Subsection 8.2.2
reflects upon the selection of the features types of the RC features. Then,
Subsection 8.2.3 discusses the use of RC features for body part and gesture
recognition detection tasks. Finally, Subsection 8.2.4 discusses two alternative
methods.

8.2.1 The Use of Depth Data

The agents are likely to be deployed in noisy environments, i.e., environments
with a large variety of objects, changing illumination conditions, and moving
people. Thus, the agents require state-of-the-art computer vision algorithms
that are able to handle the noisy nature of the environment. Many present-day
approaches towards automatic object detection, however, rely on visual data
as their main source of information (see, e.g., Q. Chen et al., 2015; Khaligh-
Razavi, 2014; Andreopoulos & Tsotsos, 2013). While rich in detail, the dis-
advantage of visual data is that it is sensitive to the illumination conditions,
such as shadows or bright lights (see, e.g., Qu et al., 2015; Rautaray & Agrawal,
2015; Shah & Kaushik, 2015). Shadows, for example, may obscure objects from
sight, which may make them difficult to detect. Thus, the quality of informa-
tion that is extracted from visual data suffers from the illumination conditions
present. This makes the use of visual data unpractical in noisy scenes.

In Chapter 2, we introduced depth data as an alternative to visual data. As
depth data combines spatial and depth cues (see, e.g., Brandão et al., 2014;
Tang et al., 2014), depth data provides contextual information for a scene,
which facilitates image segmentation (see, e.g., Brunton et al., 2014; Jiang et
al., 2013). Moreover, depth cues are invariant to the illumination conditions in
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a scene. Our motivation to use depth data as the main source of information
for the computer vision algorithms of the agents is thus two-fold. On the one
hand, depth data allows for effective foreground-background segmentation,
which enables computer vision algorithms to separate a person’s body parts
accurately from their background. On the other hand, the quality of depth
data is not influenced by the illumination conditions present, which makes
depth data a suitable source of information in noisy environments.

The ability to perform accurate object detection in depth data is hampered
by two limitations: (1) the limited quality of the depth images, and (2) the lim-
ited resolution of the depth images, with result in noisy depth images. Our
RC features are able to deal with the noise effectively by averaging over larger
regions in the images, which enable high detection performances. Using a
combination of visual (RGB) and depth (D) data, however, may combine the
best of both worlds: (1) the high level of detail from visual data, and (2) the
ease with which objects can be segmented from their background in depth
data. We therefore argue that the use of RGB-D data over the use of solely
depth data may increase the detection performance of RC-based approaches
even further. We do remark, however, that the process of combining and align-
ing both types of data may result in an increase in computational complexity,
which may negatively influence the operating time of the detection algorithm.
Thus, combining visual and depth data is only feasible when it does not result
in a insurmountable increase in operating speed and time.

8.2.2 The Search for RC Features

In Chapter 2, we proposed our RC features for robust and effective object
detection in depth images. The design of the RC features was inspired by the
work by Lienhart & Maydt (2002), Viola & Jones (2001), and Papageorgiou et
al. (1998). In a non-exhaustive search, we proposed a set of 15 predefined RC
feature types, i.e., spatially oriented combinations of symmetrically located
rectangular regions in a depth image. We first defined a set of 4 basic feature
types, which encode straightforward depth transitions in horizontal, vertical,
diagonal and anti-diagonal orientations. Based on the basic feature types, we
defined 11 specialised feature types, which are able to encode more complex
depth transitions. In general, we can state that a feature type that consist of
small rectangles typically encodes for local the depth transitions. Similarly,
feature types that consist of large rectangles typically encode for global depth
transitions.

Our design of the feature types was limited to the design of two, three, and
four-rectangle RC features. Moreover, we emphasise that we deployed opti-
mised sets of RC features in our experimental tasks, i.e., RC features that are
specialised in encoding depth transitions over larger regions for the body part
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detection task (see Chapter 3), and RC features that typically encode subtle
depth differences for the sign language recognition task (see Chapter 5). We
assume that designing more complex feature types (e.g., by incorporating (1)
rectangles or polygons instead of squares, or (2) complex spatial combinations
of the regions) may provide more accurate encodings of complex depth tran-
sitions in a depth image. However, using an extended set of feature types may
result in an overall increase in computational complexity, which in turn may
result in a decrease of the algorithm’s operating time. We therefore argue that
an investigation into the development of additional feature types will lead to
the development of better optimised RC feature types. However, we estimate
it as unlikely that the development of additional feature types will cause a
significant increase in overall detection performance.

8.2.3 From Body Part Detection to Gesture Recognition

Embodied agents that aim to engage in natural interactions with humans re-
quire the ability to detect a person’s body parts and gestural cues. To meet
this requirement, we proposed the region comparison detector (see Chapter
3) for accurate body part detection, and the stage detector (see Chapter 5) for
effective gesture recognition.

As stated in Section 5.1, gestures exist in two distinctive forms: (1) dynamic
gestures, which involve direction and speed of motion to convey their mean-
ing, and (2) static gestures, which involve arm and hand postures to represent
a specific meaning (see, e.g., Dixit & Agrawal, 2015). In its current form, the
stage detector is able to recognise (static) gestures by analysing the hand
shape. Recognising dynamic gestures requires computer vision techniques
that are able to (1) detect, (2) track, and (3) recognise the motion of the ges-
tures (cf. Rautaray & Agrawal, 2015). Thus, to enable the stage detector - and
thereby embodied agents in general - to recognise dynamic gestures, the de-
tector should be extended by incorporating these techniques. We believe that
this can easily be achieved by combining (1) the region comparison, and (2)
the stage detector into a detector that first identifies a person’s body parts,
and then classifies their shape to recognise the gestures. Combining informa-
tion about the location and shape of body parts in a sequence of images will
then enable the agents to recognise dynamic gestures. Moreover, such a com-
bination will broaden the capabilities of the stage detector and let the detector
recognise both static and dynamic gestures.

8.2.4 Alternative Methods

In what follows, we discuss two alternative methods that are related to the
work presented in the Thesis.
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First, we evaluated the effectiveness of the RC features in comparison with
the state-of-the-art PC features (see Chapter 3) that were developed by Shot-
ton et al. (2013a,b; 2011). Future studies, however, may compare the effective-
ness of the RC features with other depth-based features. Promising compet-
ing approaches are the HOG features (see, e.g., Dalal & Triggs, 2005) and their
derivatives, such as the HOD features that were proposed by Spinello & Arras
(Spinello & Arras, 2011). Although, some of our informal comparative evalu-
ations seem to suggest that the RC features outperform the HOD features,
future work should be directed at a systematic comparative evaluation of RC
and HOD features. Similarly, the performances obtained by RC features may
be compared with recently developed schemes, such as the work by Su, Liu,
Xu, Li, & Ji (2015) and C. Zhang & Tian (2015).

Second, nowadays convolutional neural networks represent the state-of-the-
art in computer vision and machine learning approaches. In the Thesis, we
did not examine deep learning methods in combination with depth images.
The large body of work available on this domain (Eitel, Springenberg, Spinello,
Riedmiller, & Burgard, 2015; Lenz, Lee, & Saxena, 2015; Oberweger, Wohlhart,
& Lepetit, 2015; Schmidhuber, 2015; Wohlhart & Lepetit, 2015), however, sug-
gests that a great gain in performance can be obtained by using deep learning,
either on the raw depth data or on the Haar feature-encoded depth images. We
expect that deep learning-based methods (i.e., approaches that learn the most
suitable features, instead of using predefined features) may achieve superior
classification scores. However, given that deep learning is computationally in-
tensive, we also expect that our approach outperforms the majority of deep
learning methods in detection speed. Determining the trade-off between accu-
racy and efficiency for deep learning and RC-feature based approaches is left
to future study.

8.3 realising the interaction model
In the Thesis we described the blueprints for crucial components of a model
that addressed the interactions between humans and embodied agents. A full-
fletched model, however, requires four main additions. In this Section, we
elaborate on the additions.

First, our objectives provide embodied agents with the ability to detect a
person’s body parts and gestures (see stage A in Figure 8.1). As such, our
objectives allow the agents to perceive a person’s non-verbal cues. However,
the agents described in the interaction model do not possess the ability to
recognise a person’s facial expressions. To extend the agents with this ability,
we suggest that the agents are enriched with software packages that are able to
recognise a person’s facial expressions. Well-know examples of (commercially
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available) facial expression recognition software are the Computer Expression
Recognitino Toolbox (CERT; Littlewort et al., 2011) and IntraFace (see Chu, De la
Torre, & Cohn, 2013).

Second, we acknowledge that the sensor array (see stage A) could be ex-
tended with sensors that are able to measure a person’s behaviour beyond his
regular social interactions. Thus, we suggest that the sensing capabilities of
the agents are improved by incorporating sensors of the intelligent environ-
ment itself, e.g., water and energy usage sensors.

Third, in stage B of the interaction model (see Figure 8.1), the agent incor-
porates a series of simple affective facial expressions (e.g., fear and happiness;
see Chapter 6) to respond to a person’s behaviour. We expect that incorpo-
rating more complex facial expressions will increase the human-likeness of
agents even further (see, e.g., Gris et al., 2015). Human-likeness is highly rele-
vant for the development of socially aware embodied agents.

Fourth, based on the social behaviour of a person, stage B describes the cre-
ation of the agent’s response. If you want to influence a person’s behaviour
subtly, you need to provide the person with personalised feedback regarding
his behaviour. The feedback should encourage a person to show the desired
behaviour. As such, stage B in the interaction model should be extended by
(1) a clear goal, i.e., the desired behaviour of the person, and (2) the corre-
sponding specifications of the expression-feedback. In the long term, this may
influence a person to show the desired behaviour, which is one of the goals of
our project.
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A O V E R V I E W O F L E X I C A L
S T I M U L I

The Appendix provides an overview of the words that were used as primes in
the experiment described in Chapter 6. The words were selected from the list
of the 100 most frequent Dutch nouns in the SoNaR corpus (Oostdijk et al.,
2013). In what follows, we present the list of stimuli. The order of the stimuli
is the same as in the experiment.

1. Hoofdstuk

2. Koning

3. Muziek

4. Wedstrijd

5. Voertuig

6. Brandweer

7. Gebruik

8. Seizoen

9. Oorzaak

10. Prinses

11. Probleem

12. Gebaar

13. Huisdier

14. Miljoen

15. Regel

16. Procent

17. Miljard

18. Moment

19. Begin

20. Gedrag

21. Foto

22. Partij

23. Vader

24. Talent

25. Beker

26. Water

27. Auto

28. Moeder

29. Motor

30. Zuster

In this overview, the first three words were used for the training sequence; the
remaining words were used in the actual experiment.
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B A C R O N Y M S A N D
A B B R E V I AT I O N S

The Appendix provides a list of acronyms and abbreviations that are used in
the Thesis.

ASL American Sign Language

AUC Area Under the Curve

CMAS Confédération Mondiale des Activités Subaquatiques

D Depth

HOD Histogram of Oriented Depths

HOG Histogram of Oriented Gradients

PC Pixel Comparison

RC Region Comparison

RGB Red Green Blue

RGB-D Red Green Blue + Depth

STAGE Static Gestures

TiGeR Tilburg Gesture Recognition
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S U M M A R Y

As reducing energy consumption may start at the household, effective ap-
proaches towards energy conservation call for the development of an intel-
ligent environment that persuades its residents to change their energy con-
sumption behaviour. To change their behaviour in the long term, the intel-
ligent environment should provide its residents with personalised feedback
regarding their behaviour. Providing personalised feedback in a subtle and
nonintrusive way can be achieved by employing a persuasive virtual person;
a so-called ”embodied agent”. Enhancing the ability of an agent to perceive
human behaviour accurately increases its ability to establish a social bond
with a person, which, in turn, allows the agent to act as a persuasive agent.

As the agents are likely to be deployed in noisy environments, they require
state-of-the-art computer vision algorithms that are able to handle the noisy
nature of the environment. Many present-day approaches towards automatic
object detection, however, rely on visual data as their main source of informa-
tion. While rich in detail, the disadvantage of visual data is that it is sensitive
to the illumination conditions, such as shadows or bright lights. Depth data,
however, is insensitive to the illumination conditions. Object segregation may
therefore be facilitated by using depth data rather than visual data.

Thus, enhancing an agent’s cognitive abilities by incorporating in-depth
information is likely to increase its ability to perceive human behaviour. As
such, the Thesis explored the possibilities to deploy in-depth information to
detect the non-verbal cues of people. Moreover, the Thesis investigated to
what extent it is possible to establish a social bond between a human and a
virtual agent.

The problem statement of the Thesis reads as follows: To what extent is it
possible to detect human body parts and behaviour when using in-depth information?
The problem statement is the point of departure for five separate research
questions: (RQ 1) How can we improve Shotton et al.’s body part detector in such
a way that it enables fast and effective body part detection in noisy depth data?, (RQ
2) To what extent do Region Comparison features enable fast and accurate face and
person detection in noisy depth images?, (RQ 3) How do we develop an annotated
database that incorporates visual and depth data recordings of natural human ges-
tures?, (RQ 4) To what extent do Region Comparison features enable accurate recog-
nition of static gestures when using in-depth information?, and (RQ 5) To what
extent do people mimic verbal and non-verbal cues sent out by an embodied agent?
The answers to the research questions enable us to formulate our conclusion
to the problem statement.
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166 summary

Chapter 1 first introduces the concepts of intelligent environments and em-
bodied agents. Subsequently, the Chapter presents an interaction model that
describes the establishment of a social connection between humans and em-
bodied agents. As enhancing an agent’s ability to perceive human behaviour
increases its ability to establish a social bond with a person, the Chapter then
introduces the use of depth data for effective behaviour recognition. Finally,
the Chapter formulates the problem statement, including the resultant re-
search questions and the corresponding research methodology used to answer
them.

Chapter 2 answers RQ 1. The Chapter first elaborates on the use of depth
data as a robust alternative to visual data. Then, the Chapter discusses the
first principles and limitations of Shotton et al.’s state-of-the-art body part
detection algorithm, which incorporates their Pixel Comparison (PC) features.
Inspired by Shotton et al.’s detector, the Chapter presents our contribution
to fast and robust object detection, i.e., the Region Comparison (RC) features.
Finally, the Chapter presents and discusses the work related to our approach.

Chapter 3 answers RQ 2. First, the Chapter presents the region comparison
detector, which incorporates our RC features for effective body part detection.
In a comparative evaluation of the RC and PC features, both associated de-
tectors are then trained and evaluated on three challenging object detection
experiments: two face detection tasks and a person detection task. Finally, the
Chapter presents the results of the evaluation, and discusses their implica-
tions. The results show that the RC features outperform the RC features in
both detection performance and computational efficiency.

Chapter 4 answers RQ 3. Guided by the dire need for a new corpus with
detailed recordings of natural human gestures, the Chapter discusses recent
multimodal databases that have been proposed to study automatic gesture
recognition. Subsequently, the Chapter describes the creation of the TiGeR
Cub corpus, i.e., a novel database with depth recordings of two interacting
interlocutors, and the procedure followed to annotate the data.

Chapter 5 answers RQ 4. The Chapter first discusses the challenges that are
to be faced when aiming to recognise static hand gestures in the American
Sign Language. After discussing four recent related approaches in the field of
static gesture recognition, the Chapter presents the stage detector, which in-
corporates the RC features for automatic gesture recognition. In a comparative
evaluation, the performance of the stage detector is assessed and compared
to the performance of four state-of-the-art approaches towards static gesture
recognition. The results of the evaluation show that the stage detector outper-
forms all competing approaches towards static sign language recognition in
detection performance.

Chapter 6 answers RQ 5. First, the Chapter outlines the relevance of mim-
icking the cues sent out by embodied agents. Then, the Chapter describes the
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methodology and results of an experiment in which we investigate whether,
and if so to what extent, humans unconsciously imitate the cues sent out by
embodied agents. The results show that humans unconsciously imitate both
verbal and non-verbal cues sent out by embodied agents. Finally, the Chap-
ter discusses the implications of the results for the development of embodied
agents and intelligent environments in general.

Chapter 7 answers the five research questions on the basis of the work in
the Thesis, which are then used to formulate our conclusions, and the answer
to the problem statement. Based on the answers to our research questions, we
may conclude that it is possible to perform accurate human body parts and
behaviour recognition by means of in-depth information that is encoded by
RC features. We may further conclude that using the RC features for human
body part and behaviour recognition tasks may enhance an agent’s cognitive
abilities.

Chapter 8 completes the Thesis by discussing our findings and conclusions,
as well as their implications for the design of embodied agents. The Chap-
ter first reflects upon the implications of our findings for the design of smart
embodied agents and intelligent environments. Subsequently, the Chapter for-
mulates three points of improvement of our studies, and provides two alterna-
tive methods to further enhance the accuracy and robustness of the proposed
approach. Finally, the Chapter presents four pointers to future work.
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van de gastronomen die TiCC rijk is) en, natuurlijk, door mijn kamergenoot
Rick. Naast deze koffieliefhebbers zijn er nog vele andere collega’s die het
leven in het Dante gebouw bijzonder aangenaam maakten. Ik wil een aantal
van hen graag benoemen. Bij dezen; Ruud K. (‘’Ruud No. 2”), aangezien ik
altijd enorm heb genoten van je brede interesses, je plagerijen en scherpe hu-
mor. Anja, want je bent toch een beetje de onofficiële TiCC mama van iedereen.
Martijn B., vanwege je gortdroge humor die de lunch nog een stukje vroli-
jker maakte. Rein, aangezien je altijd een grijns op m’n gezicht wist te tov-
eren. Emmelyn, omdat je altijd voor iedereen klaar staat, met goed advies en
fijne gesprekken. Jacqueline, ik word altijd zo enorm vrolijk van jouw ent-
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housiasme voor alles dat met technologie te maken heeft. Lauraine, Eva, en
Joke, omdat we allemaal weten dat jullie het kloppende hart binnen TiCC
vormen. Martijn G., omdat je een ver-bovengemiddeld-leuk (en significant
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aanstekelijke enthousiasme. Naomi, omdat je mensen altijd een hart onder de
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Fons en Marc, omdat jullie Vlaamse accent en bijbehorende taalgebruik iedere
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Marie, Marije en Monique, omdat ik zelden zulke gepassioneerde mensen
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Mariek, omdat je liefde voor theater ervoor zorgde, dat we een lekker bizarre
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altijd in me geloofde. Suleman, because you inspired me to pursue a scientific
career in the first place. Carel, vanwege je onnavolgbare gevoel voor humor
en hilarische reisverslagen, die menig schrijfsessie onderbroken hebben. Kiek,
omdat je me gewoon lekker voor de klas liet staan. Juliette, stiekem ben je
helemaal niet zo streng - eigenlijk ben je gewoon ronduit cool. Hille, het blijft
geweldig om als ware piraten een TEDx podium te beklimmen om even wat
foto’s te kunnen maken. Alex, Menno, Véronique, Paul, Sander, en alle andere
collega’s: omdat jullie enorm fijne mensen zijn!

Naast de onvoorwaardelijke steun die ik heb mogen ontvangen van alle col-
lega’s binnen TiCC, hebben ook veel mensen buiten de muren van de univer-
siteit direct of indirect bijgedragen aan het voltooien van dit proefschrift. Ik
wil hen bij dezen dan ook graag de revue laten passeren.

Allereerst wil ik mijn familie bedanken voor hun onvermoeibare steun en
opbeurende woorden. Alhoewel het een beetje cliché klinkt - en ik nou niet
echt het type ben voor emotionele uitspraken - ben ik jullie, papa en mama,
mijn broertje Paul en mijn zusje Jeanne, bijzonder dankbaar voor alles dat
juliie voor me gedaan hebben, en voor het feit dat jullie er altijd voor mij
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duiken.

Daarnaast wil ik graag mijn vriendin bedanken voor alle energie die ze
me geeft. Lieve Ineke, mijn favoriete piraatje, je hebt in korte tijd mijn hart
veroverd en mijn hoofd op hol gebracht. Ik dank je voor alle mooie momenten
die we al samen gehad hebben, en die we nog gaan beleven. Op naar meer
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springkussens, oude gevangenissen, nieuwe uitdagingen, en vooral heel erg
veel arrharrr.

Bij de afronding van dit proefschrift werd ik bijgestaan door twee weten-
schappelijke bodyguards, c.q., mijn paranimfen Hans en Alwin. Ik wil jullie
hartelijke danken voor alle informele discussies, creatieve oplossingen en een
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Het schrijven van een proefschrift voelt soms als een wetenschappelijke
achtbaanrit. Ik heb het voltooien van deze rit voor een belangrijk deel te
danken aan het doorzettingsvermogen, dat ik geleerd heb tijdens de welhaast
filosofische Krav Maga lessen van Lex, Daan, Jack en Wendy, waarvoor ik jul-
lie zeer dankbaar ben. Daarnaast wil ik mijn naamgenoot en sparringspartner
Ruud bedanken voor alle keren dat hij me hielp bij het toegepast filosoferen,
en voor de keren dat ik menig filosofisch inzicht op hem af mocht reageren.

Zoals de oplettende lezer ongetwijfeld gemerkt heeft, heb ik naast weten-
schap nog een passie: improvisatie-theater. Deze passie blijkt volledig te wor-
den gedeeld door de fantastische RLG community. Last, but certainly not least,
wil ik dan ook graag mijn dank uitspreken richting Rik, Jasper, Cees, Nikie,
Rowan, Naduah, Buddy, Ramir, Gees, Esther, Ciska, Justine, Han, Saïd, Ro-
gier, Sebas, Natalie, Brian, Robert, Felix, Bert, Doris, Joeri, Milly, Cor, Alwin,
Nathanja, Bas, Okke, Bernd, Tessa, Danny, Cendy, Judit, Paula, Ilya, Shilton,
Ayrton, Tony, Björn, Dennis, Nico - en natuurlijk iedereen die hier nog niet
genoemd wordt. Het is een eer om schouder aan schouder met jullie te mo-
gen staan, en samen met jullie door de verlaten gangen van de bekende, 140
jaar oude locatie te kunnen rennen. Het bouwen van de RLG belevingen be-
hoort tot de mooiste ervaringen van de afgelopen jaren. Ik weet zeker dat de
Keizer trots zou zijn. After all, ”Niks is onmogelijk, er is slechts een gebrek
aan capaciteit”. Sir, yes sir!
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