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1 Introduction1

This thesis contributes to the real options and industrial organization literature
by investigating how competition, capacity choice and uncertainty affect firms’ in-
vestment behavior. More specifically, it investigates how firms react to the threat
of entry and when they choose to employ defensive tools rather than accommodate.
Nowadays, these types of strategic interactions are inherent to many industries. The
era of global growth and technological innovation creates perfect conditions for the
emergence of new market players, and this motivates the incumbent firms to adjust
their strategies. Naturally, when entering the market requires substantial irreversible
investment, the timing of the decision to enter a new market is crucial in the un-
certain economic environment. Therefore, this thesis applies real options theory to
model strategic investment behavior of the firms under uncertainty.

The field of real options theory took off with the seminal book by Dixit and
Pindyck (1994). The main idea of this book is that investment timing plays a crucial
role in the decisions to undertake irreversible investment in an uncertain world. More
precisely, the possibility to delay the investment and, therefore, to access additional
information, creates an option value for the market participants. As a result, in the
real options framework the optimal investment thresholds turn out to be above the
so called Marshallian trigger points, which correspond to a zero net present value
(NPV).

The early literature on real options usually focuses on investment decisions of a
single firm. From the 1990s onwards, however, this field was extended by consid-
ering situations where more firms are active in one market. Firms face investment
options, where, in case one firm invests, the value of the investment options of other
firms are reduced because of the increased competition in this market. Adding com-
petition to the real options framework provides an incentive for the firms to invest
quickly in order to preempt investments of other firms, so that they are the first

1This chapter is based on Huberts et al. (2015).
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in the market and gain (temporary) monopoly profits in this way. On the other
hand, uncertainty and irreversibility generate the value of waiting effect, so that an
interesting trade off arises. Smets (1991) is the first contribution in this area. He
considers a framework of a duopoly market where the firms can enlarge an existing
profit flow. Grenadier (2000) is an early survey of this literature. The survey by Huis-
man et al. (2004) focuses on identical firms in a duopoly context. That paper argues
that, since firms are identical, it is natural to consider symmetric strategies. This
results in obvious coordination problems in situations where it is only optimal for
one firm to invest. Huisman et al. (2004) shows that application of mixed strategies,
originally developed by Fudenberg and Tirole (1985b) for a deterministic framework,
provides a meaningful way to deal with such coordination problems. The survey by
Chevalier-Roignant and Trigeorgis (2011) provides an overview of the strategic real
options literature where it explicitly considers first- versus second-mover advantage,
the role of information, firm heterogeneity, capital increment size, and the number
of competing firms. Azevedo and Paxson (2014) wrote a survey on game-theoretic
aspects of real options models like degree of competition, asymmetries between firms,
information structure, cooperation between firms, and market sharing.

Another important modification of the basic real options model arises when firms
are allowed to choose not only the timing of the investment decision, but also the size
of the investment. The real options literature concentrating on investment timing only
has a standard result in that uncertainty generates a value of waiting with investment.
When also size needs to be determined, the literature has a common result that in a
more uncertain economic environment, firms invest later and in a larger capacity size
(e.g., see Dangl (1999), Bar-Ilan and Strange (1999)). So, where from the traditional
real options literature it could easily be concluded that uncertainty is bad for growth,
this is not so clear anymore when also capacity size needs to be determined. Moreover,
in a competitive framework capacity choice of a certain firm can influence the decision
of the other firm to enter the market. For example, among the early models of
capacity choice, Spence (1977) introduces a setting where the firm can deter entry
by overinvestment. Wu (2007) studies incentives of the leader in a growing market
to preempt the follower by investing in capacity. The main result of that paper
is that under the assumption of uncertainty about the date at which the market
starts to decline, the leader will choose a smaller capacity in order to take advantage
of market decline, i.e. to stay longer in the market than the larger competitor.
Huisman and Kort (2015) analyzes accommodation and deterrence strategies of the
market leader in a duopoly setting. It introduces the overinvestment effect that arises
due to possibility of the market leader to deter entry of its competitor, as a bigger
level of the leader’s capacity ensures that the follower invests later. Moreover, the
length of the deterrence region becomes larger when market uncertainty is higher.
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This happens because larger uncertainty generates more incentives for the follower
to postpone the investment and, therefore, the leader can enjoy a longer monopoly
period when implementing the entry deterrence strategy.

Additionally, capacity choice may serve as a tool to not deter the entry of a new
firm, but also to induce the exit of an active firm. In the exit games the firm with
a second mover advantage may have incentives to engage in predatory behavior. For
example, Bayer (2007) presents a model, where the capacity choice of the entrant
accelerated the exit decision of the incumbent. In general, capacity choice is not the
only instrument of exit inducement. Empirical literature suggests that a common
response to the threat of entry in certain industries is a price war, where the stronger
firm is able to drive out its weaker opponent by driving the output prices down. Price
wars have received a rather limited attention in the real options literature, which gives
room for further research.

This thesis approaches this wide variety of economic problems and covers different
aspects of strategic interactions between firms in a rigorous economic framework. It
consists of three main chapters, where the continuous-time optimal stopping models
under uncertainty with lumpy investment are solved using the techniques from real
options theory.

In Chapter 2 a model with capacity choice is considered under the assumption that
firms do not have access to all information about potential entrants. It generalizes
Huisman and Kort (2015) in that it is permitted for a hidden third firm to enter the
industry. The other two firms that are modeled as explicit players have no information
about the exact investment timing of the hidden firm. As in Armada et al. (2011) they
only have the knowledge that the hidden firm invests with a probability satisfying
a Poisson jump process. Additionally, it is assumed that the firms hold a certain
belief about the capacity of the hidden player. In this setting we analyze the effect
of the hidden entrant on the capacity choice and investment timing of the two firms
that are well informed about each other, operating in a limited market with only two
places available. The main results of this chapter are associated with the fact that
due to the fear of hidden entry the follower is more eager to invest and it becomes
too costly to deter its entry. Thus, the deterrence strategy can only be implemented
for a small market size when the investment is not particularly attractive for the
follower. But when the market size is small, also for the leader it is not profitable to
invest. Consequently, the entry accommodation strategy is implemented so that we
have a simultaneous equilibrium even in the endogenous game, which is new in the
literature.

Chapter 3 is focused on investment, capacity choice and exit decisions of the
entrant in a duopoly setting. We show that larger firms incur larger fixed costs
associated with the installed capacity, which may trigger their decision to exit the
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market earlier in the face of declining demand. In this setting, the second mover
advantage of the entrant allows it to drive the incumbent firm out of the market if the
latter has acquired too much capacity. The main result of this chapter is associated
with the existence of a region of hysteresis, i.e. a gap between the investment regions
of the entrant. If the market is large enough, the entrant chooses to coexist with its
opponent in a duopoly. In a small market, however, the entrant has an incentive to
force the incumbent out of the market and become a monopolist. For the case of an
intermediate market size, it is optimal to wait until either one of the scenarios will
occur. It is, however, not clear ex-ante which scenario will be realized due to the
market uncertainty and, thus, the outcome of the game is dependent on the sample
paths of the underlying stochastic process.

Chapter 4 considers exit inducement in an incumbent-entrant model in a different
setting. While in Chapter 3 the capacity choice of the firms is the main instrument
to stimulate the opponent’s exit, Chapter 4 focuses on price wars. In particular, we
allow for predatory behavior of firms in a market where their future profits are subject
to firm-specific stochastic shocks. The predatory behavior is defined as driving the
price down to the level of marginal production costs, i.e. a price war implies zero
profits for the firms. In our model the profits accumulated over time serve as a proxy
for firm’s reputation. The firms are assumed to go bankrupt when their reputation
is damaged, i.e. when their accumulated profits hit zero. This may raise an incentive
for either of the firms to initiate a price war. Due to firm-specific uncertainty that
affects firms’ profits, neither of the firms can guarantee to be the last one standing.
Therefore, sometimes the new firm may still be willing to take a chance and enter
the market despite the threat of predation. Thus, in our model the firm specific
uncertainty creates a rationale for a price war in a complete information setting.



2 Entry Deterrence and Hidden
Competition1

This chapter studies strategic investment behavior of firms facing an uncertain
demand in a duopoly setting. Firms choose both investment timing and the capacity
level while facing additional uncertainty about market participants, which is intro-
duced via the concept of hidden competition. We focus on the analysis of possible
strategies of the firms in terms of their capacity choice and on the influence of hidden
competition on these strategies.

We show that due to hidden competition, the follower is more eager to invest.
As a result, an entry deterrence strategy of the leader becomes more costly, and it
can only be implemented for smaller market size, leaving additional room for entry
accommodation. The leader has incentives to prevent entry of the hidden competitor
stimulating simultaneous investment if the hidden firm has a large capacity, and
has more incentives to apply entry deterrence in the complementary case of a small
capacity of the hidden player. In the first case overinvestment aimed to deter the
follower’s entry does not occur for a wide range of parameters values.

2.1 Introduction
Apple has recently been rumored to develop a project of creating its own branded

electric car (probably self-driving). Several news reports2 claim that Apple employees
have been secretly working on the technology. Even though the Apple representatives
decline to comment on this issue, there are some speculations about whether Apple
will proceed with technology development and enter the market of electric cars in
the future and if so when it can potentially happen. This raises the question of
how the manufacturers of existing cars should respond to this news. The problem

1This chapter is based on Lavrutich et al. (2016).
2http://www.huffingtonpost.com/entry/apple-electric-car-charging_us_5745c0e5e4b03ede44136d55,

http://www.macrumors.com/roundup/apple-car/.
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is that, even though they have enough information about their current competitors,
hardly anything is known about the new project of Apple. The main issue is that
the technology Apple is working on has not been developed yet. As a result, it is
hard to predict at what point in time it will exactly emerge, what are the investment
costs, and what scale of the investment will be chosen by Apple. In this chapter we
try to tackle this sort of problem where Apple is considered in the role of a hidden
competitor.

Following Huisman and Kort (2015), we present a model, where in order to enter
the market, firms invest in a production plant with a certain capacity, where the firms
choose the investment scale. We extend the model of Huisman and Kort (2015) by
relaxing the assumption that firms are fully informed about all market participants.
In line with Armada et al. (2011) we incorporate an additional type of uncertainty in
the model by introducing the concept of hidden competition. In particular we assume
that, apart from the two competitors that are well informed about each other, a third,
hidden firm, can enter the market at an unknown point in time. This can be related
to Bobtcheff and Mariotti (2012) where it is assumed that this additional uncertainty
is associated with the emergence of a new idea. If the technology is known, the
investment timing can be predicted due to the rationality of the market players.
However, the existing firms in the market can hardly infer when the new idea will
come to life and how much time will it take to develop a new technology can be
exactly developed, as, for example, in the case of the Apple electric car.

Consistent with Armada et al. (2011) we develop a model, where two positioned
firms compete in the market with two places available, facing a possibility of a hidden
entry. The entrance occasion of the hidden firm is modeled as an exogenous event
driven by a Poisson jump process. Armada et al. (2011) demonstrates that hidden
competition can exert significant influence on the firms’ investment timing in the
limited market. Namely, they show that, as the arrival rate of the hidden competitor
rises, we can observe a decrease in the investment trigger for the follower on the one
hand, and an increase in the investment trigger for the leader on the other hand.
This means that if the probability that the hidden competitor enters the market is
higher, the market leader will invest later, while the follower will invest sooner.

In this chapter the problem of investing in a market with hidden competition is
approached from a different perspective. We examine how hidden competition affects
the optimal strategies of the firms if they are allowed to choose the capacity level. As
in Huisman and Kort (2015) we consider deterrence and accommodation strategies
for the leader. We show that the deterrence region shrinks with the probability
of hidden entry. This happens because the larger the probability that the hidden
competitor can enter the market, the more eager the follower is to invest earlier, and
therefore it is getting harder for the leader to deter entry. In fact, we show that
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hidden competition induces the positioned firms to enter the market tat the same
time. In this case, unlike in Huisman and Kort (2015) and Armada et al. (2011) the
firms may enter the market simultaneously after waiting.

The rest of this chapter is organized as follows. Section 2 is devoted to the analysis
of the investment decisions of the positioned firms facing a threat of hidden entry on
the market with two places available. We solve the game backwards, first determining
the optimal investment trigger and the optimal capacity level for the follower. Then
we continue by determining the optimal strategies of the firms when the roles of the
leader and the follower are endogenously assigned. Section 3 summarizes the main
results and concludes the chapter. The proofs of the propositions are presented in
the Appendix.

2.2 Model setup
In the model two risk-neutral, ex ante identical firms make a market entry decision.

When a firm becomes active on the market, it starts the production process after
investing in a production plant with capacity of size q > 0. The investments costs
are equal to δq, where δ > 0.

The two firms that have full information about each other are called positioned
firms. The positioned firm that invests first is called the leader and the second
investor is called the follower. An important feature is that here the standard duopoly
model is extended by incorporating the possibility of hidden entry. Like in Armada
et al. (2011), we assume that at any moment in time, the positioned firms face the
probability that a third firm can become active on the market. The information
about this firm remains hidden for the positioned market players. Therefore, this
firm is called the hidden competitor. In the analysis below we distinguish between
two situations depending on whether the hidden or one of the positioned firm is the
first investor. We first consider the scenario where the hidden player enters the market
first. Later on, we examine the case when this role is taken by one of the positioned
firm. It is assumed that the firms hold certain beliefs about the investment timing
and size of the hidden competitor. In particular, the number of available places in
the market, N , follows a Poisson jump process with arrival rate λ, so that the jump
in N corresponds to the entry of the hidden firm. Moreover, as in the Apple example,
we expect the hidden firm to have a new technology. In this case the positioned firms
do not have all the information about the production process of the hidden player.
Thus, we assume that firms have certain beliefs about the production process of the
hidden firm. These beliefs are reflected by qH , the capacity level that the hidden is
presumed to install upon entering the market, which is treated as a parameter. Our
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analysis is aimed at identifying the effect of their beliefs about the presence and (or)
size of the hidden player on the firm’s strategies. Additionally, we follow Armada
et al. (2011) by imposing that the market is big enough only for two firms3. This
implies that the follower loses the option to invest if the hidden competitor enters
the market earlier.

The market price of a unit of output is defined by the multiplicative inverse demand
function:

Pt = Xt(1−Qt), (2.1)

where Qt is aggregate market output and Xt is a stochastic shock process that drives
the uncertainty in the firm’s profitability. It is assumed here thatXt evolves according
to a geometric Brownian motion:

dXt = αXtdt+ σXtdZt, (2.2)

where α is the constant drift, σ > 0 is the standard deviation, and dZt is the increment
of a Wiener process. The discount rate, r > 0, is assumed to be larger than the drift,
r > α, otherwise waiting with investment would always be an optimal policy for the
firms. Given this structure of the demand function, production optimization results
in a fixed optimal quantity irrespective of the level of x. As a result, it is always
optimal for the firms to produce up to capacity.

This specific choice of the demand structure is motivated by the desire to reflect the
property that the market has limited size, which corresponds to the above assumption
that maximally two firms can enter. A multiplicative demand function implies that,
to avoid negative prices, the firms can increase their output only up to a certain
level. Without loss of generality, in this model the maximum total market output is
normalized to 1.

Denoting the leader’s and the follower’s capacity levels as qL and qF , respectively,
the total output quantity given that the hidden firm has not entered the market yet
can be written as

Q = qL + qF . (2.3)

In the next sections we apply dynamic programming techniques to solve the op-
timal stopping problem for the positioned firms on the duopoly market described
above.

3Here we can think of industries where the firms face significant barriers to entry, for example,
due to strict government regulations, exclusive technology, limited resources, patents, or licenses.
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2.3 The problem of the second investor
The problem is solved backwards starting with the decision of the second positioned

investor when the hidden competitor has not invested yet. We determine its best
response for a given strategy of the positioned leader. Then we analyze the strategy
of the first investor, which has two choices in terms of investment timing: either to
invest immediately and become a market leader or to wait with investment taking a
risk of becoming the follower.

The optimal stopping problem of the firm looks as follows:

V ∗F (x, qL) = sup
τ ,qF

Ex
[∫ ∞
τ

e−rtx(1− (qF + qL))qF − e−rτδqF
]
, (2.4)

where V ∗F (x, qL) denotes the value of the follower upon investment, and τ is a stopping
time.4

Because of the Markovian nature of the underlying stochastic process, the solution
will take the well-known form of the firs-passage time of an endogenously determined
threshold. Denote by x∗F (qL) the optimal investment threshold for the follower and
by q∗F (qL) the corresponding capacity level if the positioned leader is active on the
market with a capacity level qL. This implies that the follower will not enter the
market until the stochastic component of the profit flow, x, reaches x∗F (qL). On the
contrary, for the values of x exceeding x∗F (qL) investment becomes optimal and the
follower enters the market immediately installing the capacity q∗F (x, qL).

Thus, the range of x such that x > x∗F (qL) is called the stopping region, while
the one that satisfies x < x∗F (qL) is called the continuation or waiting region. The
optimal investment trigger is found using the fact that at the threshold value the
firm’s value of waiting is equal to the value of stopping, i.e. the firm is indifferent
between entering the market and waiting for more information.

Under the assumption that a positioned firm is the leader, it is possible to derive
the value function for the region where the follower waits with investment. As in
Dixit and Pindyck (1994) we start with the Bellman equation

E(dF ) = rFdt. (2.5)

Taking into account that with probability λdt the last available place on the market
is occupied, Ito’s lemma gives

E(dF ) = (1− λdt)
(

1
2σ

2x2∂
2F (x)
∂x2 dt+ αx

∂F (x)
∂x

dt

)
+ λdt(0− F (x)) + o(dt). (2.6)

Combining (2.5) and (2.6) we get the following partial differential equation:
1
2σ

2x2∂
2F (x)
∂x2 + αx

∂F (x)
∂x

+ λ[0− F (x)] = rF (x), (2.7)

4Throughout the thesis the following notation is used Ex[ · ] = E[ · |X0 = x].
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where the term λ[0−F (x)] represents the expected loss after the hidden entry in the
interval of dt.

The solution of the partial differential equation above, and for the optimal stopping
problem of the follower in general is described by the following proposition.

Proposition 2.1 The follower’s optimal capacity choice for a given level of the
stochastic profitability shock, x, and the leader’s capacity, qL, is given by

q∗F (x, qL) = 1
2

(
1− qL −

δ(r − α)
x

)+

. (2.8)

The value function of the follower takes the following form:

V ∗F (x, qL) =


A(qL)xβ1 if x < x∗F (qL),

[x(1− qL)− δ(r − α)]2
4x(r − α) if x ≥ x∗F (qL),

(2.9)

with

β1 = 1
2 −

α

σ2 +
√(
−1

2 + α

σ2

)2
+ 2(r + λ)

σ2 > 1, (2.10)

A(qL) =
(

(β1 − 1)(1− qL)
δ(r − α)(β1 + 1)

)β1 δ(1− qL)
(β1 − 1)(β1 + 1) . (2.11)

The optimal investment trigger for the follower is given by

x∗F (qL) = δ(r − α)(β1 + 1)
(β1 − 1)(1− qL) . (2.12)

The above equations lead to the following optimal capacity level of the follower
given the leader’s capacity, qL, at the optimal investment threshold

q∗F (qL) = 1− qL
β1 + 1 , (2.13)

where 0 ≤ qL ≤ 1.

It is important to notice that for given capacity level of the leader, both the
optimal capacity level and the investment trigger of the follower are decreasing with
λ. The reason is that in the waiting region the follower faces the risk that the hidden
competitor might enter the market before x reaches x∗F (qL). If this is the case, the
follower loses its option to invest. The bigger λ is, the more likely it is that such a
situation can arise. Thus, the follower has an incentive to invest earlier for larger
values of λ and, therefore, in a smaller capacity level. Moreover, the bigger the
capacity level chosen by the leader the later the follower invests, while it will choose
a smaller capacity level given the investment timing. This brings us to the problem
of capacity choice by the market leader.
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2.4 The problem of the first investor
In order to identify which strategy is optimal for the first investor, we solve the

leader’s investment decision problem. We start by determining the value of investing
immediately, referring henceforth to it as the leader value. In case the leader decides
to enter the market, it also has to decide upon the level of the capacity installment. As
mentioned above, both the optimal investment trigger of the follower and its optimal
capacity level depend on the capacity that the leader chooses. Essentially, there
are two strategies available for the leader: install such a capacity that the follower
enters the market either strictly later, or exactly at the same time as the leader.
Following Huisman and Kort (2015), we call the former an entry deterrence strategy,
and the latter an entry accommodation strategy. In what follows we solve the capacity
optimization problem of the leader that undertakes an immediate investment and
derive the leader value. Then we address the value of waiting with investment for the
first entrant. As in Huisman (2001, Chapter 9), we construct the waiting curve, which
represents the value of waiting with investment until the occurrence of the exogenous
event, which in our case is the hidden entry. Lastly, we analyze the possible equilibria
of this game.

2.4.1 The leader’s deterrence strategy

The first strategy for the leader is to choose the capacity level in such a way that
the follower will postpone its investment. First, we focus on the continuation region
of the follower. Similarly to the previous section, the expected discounted revenue of
the leader in the continuation region of the follower, denoted by L(x), is determined
by the following differential equation:

1
2σ

2x2∂
2L(x)
∂x2 + αx

∂L(x)
∂x

− rL(x) + xqL(1− qL) + λ[Φ1(x)− L(x)] = 0, (2.14)

where Φ1(x) = xqL(1− (qL + qH))
r − α

is the value function of the leader if the hidden
firm occupies the follower’s position. If the hidden competitor enters the market
earlier than the follower, the leader value function will decrease in comparison to
the standard case. This loss due to the hidden entry is captured by including the
additional term in the differential equation, λ[Φ1(x)− L(x)].

Next, using the fact that in the stopping region both positioned firms are present
in the market we consider the following boundary conditions:

lim
x→0

L(x) = 0, (2.15)

lim
x→xF

L(x) = xF qL(1−Q)
r − α

. (2.16)
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Combining these conditions and the expressions for qF and x∗F (qL), obtained in the
previous section, we find the leader value in the deterrence region, i.e. its expected
discounted revenues net of investment costs, i.e. L(x) − δqL, in the continuation
region of the follower:

V det
L (x, qL) =xqL(1− qL)

r − α
− x qLλqH

(λ+ r − α)(r − α) − δqL

−
(
x(β1 − 1)(1− qL)
δ(r − α)(β1 + 1)

)β1
[

δqL
(β1 − 1) −

δ(β1 + 1)qLλqH
(β1 − 1)(1− qL)(λ+ r − α)

]
.

(2.17)

Recall that the follower will invest as soon as the stochastic process exceeds the
value of the follower’s trigger, x∗F (qL). Thus, to implement the deterrence strategy
the leader chooses qL such that x ≤ x∗F (qL) given the current value of x .

Taking into account the expression for x∗F , the deterrence strategy occurs when
the leader chooses the capacity level such that

qL > q̂L(x) = 1− δ(r − α)(β1 + 1)
(β1 − 1)x . (2.18)

Setting the derivative of the value function with respect to qL to zero results into
the following first order condition5:(

x(β1 − 1)(1− qL)
δ(r − α)(β1 + 1)

)β1 δ

(β1 − 1)

[
−(1− (β1 + 1)qL)

(1− qL) + (β1 + 1)λqH
(λ+ r − α)

1− β1qL
(1− qL)2

]

+x(1− 2qL)
r − α

− xλqH
(r − α)(λ+ r − α) − δ = 0.

(2.19)

The solution of equation (2.19) gives us the optimal capacity level for the leader
under the deterrence strategy, qdetL (x). Therefore, the optimal value function of the
leader in the deterrence region is V det∗

L (x) ≡ V det
L (x, qdetL (x)). Further we will show

that the leader can use the deterrence strategy if the value of the stochastic process x
lies in the interval (xdet1 , xdet2 ), where xdet2 is the biggest and xdet1 is the smallest possible
value of the stochastic process that allows the leader to implement the deterrence
strategy. The latter can be found by setting the capacity level to zero in the first
order condition for the deterrence problem (equation (2.19)). In order to identify
the biggest possible value of x for which deterrence is possible, xdet2 , recall that the
leader uses this strategy only if the follower indeed enters later. This happens for
those values of x that satisfy the following inequality: x < x∗F (qdetL ). Therefore,

5Extensive numerical experiments show that the equation (2.19) has a single root, corresponding
to a global maximum of the function V detL (x, qL).
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xdet2 is defined by x∗F (qdetL (xdet2 )) = xdet2 . These results are presented in the following
proposition.

Proposition 2.2 The lower bound of the deterrence region, xdet1 , is implicitly deter-
mined by the following equation:(

x(β1 − 1)
δ(r − α)(β1 + 1)

)β1 δ

(β1 − 1)

[
−1 + (β1 + 1)λqH

(λ+ r − α)

]

+ x

r − α
− xλqH

(r − α)(λ+ r − α) − δ = 0. (2.20)

The upper bound of the deterrence region is given by

xdet2 = 4δ(r − α)(β1 + 1)

(β1 − 1)

1− (β1 + 1)(β1 − 1)λqH
(λ+ r − α) +

√√√√(3 + (β1 + 1)(β1 − 1)λqH
(λ+ r − α)

)2

− 8


.

(2.21)

It holds that xdet2 > xdet1 .

Note that xdet1 and xdet2 determine the feasible region for the deterrence strategy:
for the values of the stochastic component of the profit flow, x, that fall into an
interval (xdet1 , xdet2 ), the leader will consider implementing the deterrence strategy.

As can be seen, the upper and the lower bounds of the deterrence region depends
on the parameter λ, the arrival rate of the hidden firm, and qH , the capacity level of
the hidden firm. Proposition 3 focuses on the latter characteristic.

Proposition 2.3 An increase in the capacity level of the hidden firm, qH , leads to
an increase in the lower bound of the deterrence region, xdet1 , and to a decrease in its
upper bound, xdet2 .

Intuitively, the bigger the hidden firm is expected to be, the less is left for the leader
after the division of market rents, and thus, the less appealing is the investment
opportunity. Therefore on the one hand, a larger x is needed to convince the leader
to enter such a market by installing a positive capacity. This explains an increasing
pattern in xdet1 . On the other hand, since entry of the hidden firm with a large
capacity is bad for the leader’s profitability and there are only two entries possible,
the leader has less incentive to deter the positioned follower’s entry, causing xdet2 to
decline. The next proposition focuses on the effect of λ.

Proposition 2.4 An increase in the arrival rate of the hidden firm, λ, leads to a
decrease in the upper bound of the deterrence region, xdet2 . If qH = 0 the lower bound
of the deterrence region, xdet1 , also decreases. For qH > 0 the effect of an increase in
λ on xdet1 is ambiguous.
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The effect of a change in the arrival rate, λ, on the upper and the lower bounds
of the deterrence region is shown in Figure 2.1.
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Figure 2.1: xdet1 (λ, qH) and xdet2 (λ, qH) for the set of parameter values: r = 0.05, α =
0.02, σ = 0.1, δ = 0.2, and qH = {0.1, 0.5, 0.8}.

In Figure 2.1a, one can notice two differently directed effects of an increase in
λ on xdet1 . On the one hand, for small qH there is only a declining pattern to be
observed. The reason is that for larger λ the leader is more willing to invest earlier
in order to collect monopoly rents. On the other hand, for larger qH numerical
experiments reveal another effect of an increase in λ. In particular, when the value
of qH is sufficiently large, xdet1 is first increasing with λ. This indicates that the effect
of declining profitability of the market dominates the advantage of investing earlier
and collecting monopoly profits when the probability that the hidden firm enters the
market is sufficiently small. However, after a certain point the latter effect becomes
more dominant causing xdet1 to decrease with λ.

Considering the influence of a change in the arrival rate of the hidden firm, λ,
on the upper bound of the deterrence region, x2, we can conclude that a bigger risk
of the hidden entry causes xdet2 to decline. This means that when the risk that the
hidden firm will occupy the last available place on the market is higher, the follower
is more eager to invest earlier. Hence, in this case, it is more difficult to ensure that
the follower will enter the market strictly later than the leader and the deterrence
region becomes smaller. This causes xdet2 to decrease with λ. Moreover, for larger
values of λ this declining pattern is enhanced by the desire of the leader to invest
in a smaller capacity due to a decreased profitability of the market. In addition, a
smaller capacity does not prevent the follower to enter.

The dependence between the size of the deterrence region and the arrival rate of
the hidden competitor and the expected size of the hidden firm is shown in Figure
2.2.
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Figure 2.2: xdet2 (λ, qH)−xdet1 (λ, qH) for the set of parameter values: r = 0.05, α = 0.02,
σ = 0.1, and δ = 0.2.

In Figure 2.2a the decreasing effect of qH is a direct implication of Propositions 2.3
and 2.4. The relation between the size of the deterrence region and the arrival rate
λ cannot be described analytically due to the complexity of the expressions. Instead,
numerous numerical experiments were carried out to investigate this dependence, al-
lowing to conclude that a decrease in xdet2 dominates a decrease of xdet1 for a wide range
of the parameter values causing the deterrence region to become smaller. The result
is illustrated in Figure 2.2b. Huisman and Kort (2015) came to the conclusion that
the deterrence interval expands with demand uncertainty, σ, which is also confirmed
by our findings. However, in the presented setting yet another type of uncertainty is
involved, namely the uncertainty about the market participants. The region where
only the deterrence strategy is optimal tends to become smaller if this uncertainty
is larger, or, in other words, if the risk that the hidden firm can enter the market is
large. This region also becomes smaller for a larger capacity level of the hidden firm
for the reason that the leader has less incentive to overinvest.

2.4.2 The leader’s accommodation strategy

An entry deterrence strategy is not the only option for the leader to implement.
In fact, the market can be big enough for both positioned firms to invest at the same
time. The leader can choose such an investment scale, that the follower will enter the
market immediately after the leader, which yields the following value

V acc
L (x, qL) = xqL(1− (qL + q∗F (x, qL))

r − α
− δqL, (2.22)

where q∗F (x, qL) is given by (2.8).
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We call this strategy the accommodation strategy. The following proposition
presents the optimal capacity of the leader, the corresponding value function, and
the lower bound for the accommodation strategy.

Proposition 2.5 Under the accommodation strategy the leader install the optimal
capacity level qaccL (x) given by

qaccL (x) = 1
2

(
1− δ(r − α)

x

)
, (2.23)

and obtains the following value

V acc∗

L (x) = [x− δ(r − α)]2

8x(r − α) . (2.24)

The lower bound of the accommodation region, xacc1 , is given by

xacc1 = (β1 + 3)
(β1 − 1)δ(r − α). (2.25)

Note that xacc1 does not depend on the capacity level of the hidden firm, because
under the assumption of a market with only two places available it is impossible for
the third firm of any size to enter the market, given that the leader has entered and
applies the accommodation strategy. However, the arrival rate λ still affects the lower
bound of the accommodation region. Differentiating (2.25) with respect to λ we get6

∂xacc1
∂λ

= −4δ(r − α)
(β1 − 1)2 ·

∂β1
∂λ

< 0, (2.26)

The interpretation of the decline in xacc1 with λ is straightforward. The bigger is
the chance that the hidden firm can become active on the market, the earlier the
positioned firms should undertake their investment, because the follower otherwise
faces a high probability to lose its investment option.

2.4.3 The leader’s boundary strategy

Recall that the boundary capacity, q̂L(x), is the maximal capacity level of the leader
that will stimulate the follower to enter the market immediately. For qL > q̂L(x) the
follower will always postpone its investment, while for qL ≤ q̂L(x) will enter the
market for a given x. Earlier we referred to the strategy of the leader in the first case

6Here we use the observation that ∂β1
∂λ

= 1√(
α− σ2

2
)2 + 2σ2(λ+ r)

> 0.
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as deterrence strategy, while in the second – accommodation strategy. In line with
Huisman and Kort (2015) this capacity level is given by

q̂L(x) = 1− δ(r − α)(β1 + 1)
(β1 − 1)x . (2.27)

The main difference, however, between the model presented by Huisman and Kort
(2015) and the current modification is that the results of the latter are to a great
extent influenced by two additional parameters associated with hidden competition.
The key assumption of the presented model is that the positioned firms face a non zero
probability of hidden entry, λdt. The expected investment size of the hidden player
is represented by the parameter qH . Figure 2.3 depicts the standard scenario with
no hidden entries as well as the situation when the positioned firms face a positive
probability that a hidden firm can enter the market by investing in a positive capacity.
The capacity levels qdetL (x), qaccL (x) and q̂L(x) for both cases are presented as functions
of the stochastic profitability shock, x. This specific example points out important
differences of the presented setting with a standard duopoly model.
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Figure 2.3: The capacity levels qdetL (x), q̂L(x) and qaccL (x) for the set of parameter values:
r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, and different values of λ and qH .

Earlier xdet1 was defined as the lower bound of the deterrence region. Therefore,
in this figure xdet1 is determined by the intersection of qdetL (x) and the horizontal
axis. To ensure that the follower invests later than the leader, the condition that
the leader’s capacity is bigger than q̂L(x) has to be satisfied. In contrast, in order
to implement the accommodation strategy the leader should choose a capacity level
below q̂L(x). Thus, the upper bound of the deterrence region, xdet2 , and the lower
bound of accommodation region, xacc1 , can be found as intersections of q̂L(x) and
qdetL (x) or qaccL (x), respectively.
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Figure 2.3a, where λ is equal to zero, resembles the result of Huisman and Kort
(2015). Namely, the deterrence and accommodation regions intersect (xacc1 < xdet2 ).
For the values of x below xacc1 only deterrence can occur, in the region above xdet2 only
accommodation is possible, whereas in the interval (xacc1 , xdet2 ) the leader chooses the
strategy that brings the bigger value.

However, as the parameters associated with hidden competition sufficiently in-
crease, the situation presented above changes. Figure 2.3b illustrates the case when
λ = 0.2 and qH = 0.2. As mentioned earlier, the parameters λ and qH affect the
boundaries of the feasible regions both for the deterrence and accommodation strat-
egy. As can be seen, q̂L shifts upwards, while qdetL (x) shifts downwards for every value
of x, causing xacc1 and xdet2 to change in such a way that now xacc1 > xdet2 . The leader
chooses deterrence if x lies in the interval between xdet1 and xdet2 and the accommoda-
tion strategy can only be implemented when x is bigger that xacc1 . Yet, in the interval
between xacc1 and xdet2 neither a deterrence nor an accommodation optimal capacity
level can be installed by the leader and in this region it is optimal for the leader to
acquire a capacity equal to the boundary level q̂L(x), i.e. the maximal capacity of the
leader that induces simultaneous investment. This situation is illustrated in Figure
2.4.
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Figure 2.4: The value functions V detL (x, qL) and V accL (x, qL) for the set of parameter
values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, λ = 0.22, qH = 0.2, and where
x = 0.01.

The intuition behind this result is as follows. In the presence of a high risk that the
hidden firm will enter the market it is harder to deter the follower from occupying
the last available place. Therefore, on the one hand we observe the shrinkage of
the deterrence region, resulting in the fact that the optimal capacity level for which
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deterrence is optimal, qdetL (x), falls below q̂L(x), which is in the accommodation region
(see Figure 2.4). On the other hand, the optimum in terms of capacity choice cannot
be reached for the accommodation strategy either, as the market is not yet big enough.
This we see in Figure 2.4, where maximal accommodation profits are reached at
qaccL (x) greater than q̂L(x), which is in the deterrence region. Therefore, the leader
optimally invests at the boundary, i.e. choose the capacity level q̂L(x) and enter the
market simultaneously with the follower. The value of the leader in the latter case is
denoted by V̂L(x) and is equal to V̂L(x) ≡ V acc

L (x, q̂L(x)) = δq̂L(x)
β − 1 .

Then the optimal leader value, V ∗L (x), can be described as follows:

V ∗L (x) =



0, if 0 ≤ x < xdet1 ,

V det∗
L (x), if xdet1 ≤ x < min{xdet2 , xacc1 },
ṼL(x), if min{xdet2 , xacc1 } ≤ x < max{xdet2 , xacc1 },
V acc∗
L (x), if x ≥ max{xdet2 , xacc1 },

(2.28)

where ṼL(x) = 1{xdet2 <xacc1 }V̂L(x) + 1{xdet2 >xacc1 }max{V det∗
L (x), V acc∗

L (x)}.
The corresponding optimal capacity level, q∗L(x), is given by

q∗L(x) =



0, if 0 ≤ x < xdet1 ,

qdetL (x), if xdet1 ≤ x < min{xdet2 , xacc1 },
q̃L(x), if min{xdet2 , xacc1 } ≤ x < max{xdet2 , xacc1 },
qaccL (x), if x ≥ max{xdet2 , xacc1 },

(2.29)

where q̃L(x) = 1{xdet2 >xacc1 }

(
1{V detL (x)>V accL (x)}q

det
L (x) + 1{V detL (x)≤V accL (x)}q

acc
L (x)

)
+

1{xdet2 <xacc1 }q̂L(x).
Proposition 2.6 gives the condition under which xdet2 < xacc1 and, as a result, the

boundary solution occurs.

Proposition 2.6 When that λ(8qH − 1) > r − α, it holds that xdet2 < xacc1 and the
leader invests in a capacity level being equal to q̂L(x).

The above condition is sufficient for the boundary region to exist. The obtained
result entails that if the parameters reflecting the degree of the hidden competition, λ
and qH , become large enough, while the difference r−α is relatively low, the boundary
region always exists. This can be interpreted in the following way. A high λ implies
that there is a large risk of losing the last place on the market for the follower. When
r is smaller, an investment results in a higher discounted cash flow stream, while a
large α implies better market growth prospects. As a result, for smaller r or (and)
larger α the follower is more reluctant to lose its investment option. Therefore, to
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secure the place in the market for larger λ, larger α and smaller r, the follower chooses
simultaneous investment earlier, before the optimum for the accommodation strategy
is reached. This guarantees the existence of the boundary strategy. A larger capacity
of the hidden firm, qH , is the reason that the leader wants to avoid entry of the
hidden firm. It does so by pursuing a policy of investing simultaneously with the
other positioned firm. This makes additional room for the entry accommodation, or,
in other words, the boundary strategy.

2.5 Waiting curve
Consider the situation where the hidden competitor enters the market before the

positioned firms and occupies the leader’s position. In this case there is only one place
left in the market, which is to be taken by one of the positioned firms. Naturally, the
positioned firms will try to preempt each other in order to secure the last place in
the market. Such a preemption game will lead to investment at zero-NPV threshold
if x is low enough and yields zero value in expectation for both positioned firms.
For higher values of x the firms will invest immediately and as a result one firm will
occupy the last position in the market. As the firms are symmetric, in such case
the positioned firms will obtain the last available place with equal probability. Then
following Huisman (2001, Chapter 9) we derive the waiting curve as stated in the
following proposition.

Proposition 2.7 The waiting curve is given by

W (x) =



(
x

x∗M (qH)

)β1 λ (1− qH) δβ2

4
(
β2

1 − 1
)

(β2 − β1) (λ+ r)
if x < x∗M (qH),

(
x

x∗M (qH)

)β2 λ (1− qH) δβ1

4(r + λ)
(
1− β2

2

)
(β1 − β2)

− δλ (1− qH)
4(r + λ)

+ λx (1− qH) 2

8(r − α)(r − α+ λ) −
δ2λ(r − α)

8x (σ2 − r − α− λ) if x ≥ x∗M (qH),

(2.30)

with the Marshallian investment trigger

x∗M(qH) = δ(r − α)
(1− qH) . (2.31)

The waiting curve represents the value for the firms if they both wait with invest-
ment until after the hidden entry occurs.
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2.6 Equilibria
In this section we analyze the equilibria in the game where both positioned firms

are allowed to invest first. In the traditional setting, where hidden competition is
not considered (e.g. Huisman and Kort (2015)), a preemption equilibrium occurs.
This equilibrium can be described as follows. When x increases, increasing market
profitability creates incentives for the firms to preempt their rival and thereby to
induce the second investor to enter later. The reward for the first entrant is a period
of monopoly profits. As a result the firms engage in timing preemption. As long as
the value of the first investor exceeds the value of the second investor, each positioned
firm will have an incentive to invest a little earlier in order to become market leader.
The preemption game stops as soon as the leader and the follower values are equalized
(see e.g. Huisman and Kort (2015)). We denote the corresponding value of x by xp
and call it the preemption trigger. For x smaller than xp it does not pay off to invest
because the market is too small. It follows that one of the firms invests at once as
soon as the stochastic process reaches xp. The other firm will postpone its investment
and enter the market as a follower once x reaches xF > xp.

The main difference of our model with the setting described above is the presence
of hidden competition. In fact, the hidden firm can enter the market either after one
of the positioned players has invested and become a follower, or it can enter as first
and occupy the leader’s position. The former possibility implies that the positioned
firm that did not invest loses the option to enter. This is included into the value of
the follower by construction. In order to determine the implications of the possibility
that the hidden firm may enter the market first, we need to add the waiting curve
to the analysis. Depending on the parameters of the hidden competitor, its location
relative to the other value curves may vary. It is, however, possible to show that the
waiting curve can never exceed the leader curve everywhere. This result is stated in
the next proposition.

Proposition 2.8 The waiting curve,W (x), is lager than and the leader value, V ∗L (x),
for small values of x, and smaller for large values of x.

In particular, the waiting curve can intersect the leader value before or after the
preemption point. This is illustrated in Figure 2.5.



22 Entry Deterrence and Hidden Competition
∣∣ Chapter 2

VL
*HxL

VF
*Hx,qL*HxLL

WHxL

2 3 5xpxw 6
0

1

2

3

4

5

x

V
L*
Hx
L,

V
F*
Hx

,
q
L*
Hx
LL
,
W
Hx
L

(a) qH = 0.2

VL
*HxL

VF
*Hx,qL*HxLL

WHxL

2 3 5xp xw 6
0

1

2

3

4

5

x

V
L*
Hx
L,

V
F*
Hx

,
q
L*
Hx
LL
,
W
Hx
L

(b) qH = 0.05

Figure 2.5: The value functions for the set of parameter values: r = 0.05, α = 0.02,
σ = 0.1, δ = 100, λ = 0.25, and different values of qH .

Figure 2.5a shows that when the hidden firm is expected to acquire a large market
share and enter with a large probability, waiting yields a relatively low value. The
result is that the waiting curve intersects with the leader value before the preemption
trigger. Denote this intersection point by xw. When x < xw the firms naturally do
not have any incentives to invest, as both waiting and being a follower yields higher
value than investing immediately. For x > xw the equilibrium turns out to be exactly
the same as in the subgame without the waiting curve. This is because investment
with positive probability is not an equilibrium strategy if xw < x < xp, as the firms
can always improve by investing with zero probability, while for x > xp both firms
prefer to become the leader and invest at once. As a result, due to the preemption
argument the firms’ equilibrium strategy is to wait until the stochastic process hits
xp and invest afterwards.

Now consider the situation in Figure 2.5b, when the hidden firm is relatively small.
In this case xw > xp. For the same reason as in the previous example no investment
will occur before xp. For x > xp the preemption argument still holds. Even though
investing immediately yields a higher value than waiting only for x > xw, the firms
have an incentive to enter the market just before that and take the leader’s position.
Hence, the equilibrium strategy remains the same.

As a result, in both scenarios we have that for a low enough initial value of the
stochastic process the first investor will always enter at the preemption point xp. In
principle, this point can be located in three different regions: where the leader applies
either a deterrence or a boundary or an accommodation strategy. However, given that
at the preemption point leader and follower values must match, the next proposition
shows that the preemption point cannot be situated in the accommodation region.
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Proposition 2.9 If x ≥ xacc1 , the value of the leader always exceeds the value of the
follower.

Consequently, it is either the deterrence or the boundary capacity level that de-
termines the preemption trigger, which is derived as being the intersection of the
corresponding follower and leader value functions. These intersections are denoted
by xdetp and x̂p, respectively, and can be thus found by solving the forthcoming equa-
tions with respect to x

V det∗

L (x) = V ∗F (x, qdetL (x)), (2.32)
V̂L(x) = V ∗F (x, q̂L(x)). (2.33)

Recall that if λ is small, the boundary strategy is irrelevant. Therefore, as in
the benchmark model of Huisman and Kort (2015), where λ = 0, the preemption
equilibrium always occurs in the deterrence region, implying that the first investor
enters as soon as the stochastic process x hits the preemption trigger, xdetp , while the
second investor postpones its entry till xF . However, unlike in Huisman and Kort
(2015) for sufficiently large λ, it is also possible that the preemption trigger lies in
the boundary region, where it is optimal for the firms to invest simultaneously at x̂p.
The latter situation is illustrated in Figure 2.6.
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Figure 2.6: The value functions V ∗L (x) and V ∗F (x, q∗L(x)) for the set of parameter values:
r = 0.05, α = 0.02, σ = 0.1, δ = 100, λ = 0.22, qH = 0.25.

As can be seen, in contrast to the standard result the follower value declines with
x in the boundary region. This result is stated in the following proposition.

Proposition 2.10 The value of the follower declines with x in the boundary region.
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The follower value can be affected by an increase in x in two ways: via invest-
ment timing and via capacity choice. In this problem the investment timing of the
follower is always given. This is because the boundary capacity level of the leader is
determined such that x = xF (qL), implying that as the stochastic component of the
demand function increases, the leader increases its capacity such that the new level of
x exactly corresponds to the follower’s investment threshold. Proposition 2.10 proves
that the follower value is more influenced by the capacity effect, i.e. it declines as the
capacity level of the leader increases than the increase in price for a given capacity
due to the growth of x. As a result, the follower gets a lower value for larger x, due to
an increase in the leader capacity level. This allows the leader and the follower values
to intersect in the boundary region, implying that the preemption point is located
in an interval where the firms invest simultaneously. Intuitively this result can be
interpreted in the following way. If the degree of hidden competition is large, the
value of the deterrence strategy decreases, as it becomes too costly to prevent entry
of the second firm. As a result, it is optimal for the firms to wait till simultaneous
investment is possible. However, even when the market is so big that the firms invest
together at once, the concept of Stackelberg leadership implies that the leader has a
first mover advantage and sets the capacity level first, causing a difference in payoffs
of the first and second investor. This results into a slightly different preemption game,
where each firm still has incentives to invest earlier in order to enjoy the first mover
advantage and acquire a larger capacity level. However, in contrast to the standard
preemption game, the entry of the positioned firms occurs at the same time.

Proposition 2.11 For a given λ there exists a unique value of qH , denoted by q̃H(λ),
such that for qH ≥ q̃H(λ), preemption always occurs in the boundary region, while for
qH < q̃H(λ) we have preemption in the entry deterrence region:

xp(λ, qH) =


xdetp (λ, qH) if qH < q̃H(λ),

x̂p(λ) if qH ≥ q̃H(λ).
(2.34)

q̃H(λ) is given by

q̃H(λ) = (λ+ r − α)β1
λ(β1 − 1)(β1 + 2) , (2.35)

with β1 defined by (2.10).

From Proposition 2.11 it follows that for qH ≥ q̃H(λ) both positioned firms invest
simultaneously at the boundary capacity level, q̂L(x), while similarly to the original
model by Huisman and Kort (2015), for qH < q̃H(λ) the first investor implements an
entry deterrence strategy acquiring qdetL (x).
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Intuitively, the larger is the hidden firm that is expected to enter the market, the
more attractive is the boundary strategy for the positioned firms, as it guarantees
that the hidden player loses the chance to invest at the moment that both firms enter.
Hence, the leader is not exposed to the risk that it has to compete with a large hidden
firm since the other positioned firm invests at the same time as the leader. This is
confirmed by Proposition (2.12).

Proposition 2.12 The capacity q̃H(λ) declines with λ.

Thus, a larger capacity of the hidden player implies a larger range of λ and qH
for which simultaneous investment takes place. This is illustrated by the numerical
example in Figure 2.7. As can be seen, for a larger capacity of the hidden firm the
positioned firms are more willing to invest simultaneously, as by doing so they occupy
all available places on the market and thus prevent the undesirable entry of a large
hidden player.
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Figure 2.7: The possible strategies of the leader depending on λ and qH for the set of
parameter values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2.

The next proposition states an optimal investment trigger and the corresponding
capacity level of the positioned firms when qH ≥ q̃H(λ), i.e. when they enter the
market simultaneously in the boundary region.

Proposition 2.13 If qH ≥ q̃H(λ), the preemption trigger is equal to x̂p, which is
given by

x̂p = δ(r − α)(β1 + 2)
(β1 − 1) , (2.36)
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with the corresponding capacity level

q̂L(x̂p) = 1
β1 + 2 . (2.37)

This implies that the positioned firms not only invest at the same time, but also
at the same capacity level. This is because the first mover advantage of the leader
disappears due to the rent equalization property in the preemption game.

Differentiating (2.36) and (2.37) with respect to λ gives

∂x̂p
∂λ

= −3δ(r − α)
(β1 − 1)2 ·

∂β1
∂λ

< 0, (2.38)

∂q̂L(x̂p)
∂λ

= − 1
(β1 + 2)2 ·

∂β1
∂λ

< 0. (2.39)

Thus, we observe the negative dependence between arrival rate λ and the preemption
trigger x̂p, as well as the capacity level at this preemption point q̂L(x̂p). To interpret
this result we take a derivative of q̂L(x) with respect to λ:

∂q̂L(x)
∂λ

= 2δ(r − α)
(β1 − 1)2x

· ∂β1
∂λ

> 0. (2.40)

Recall that q̂L(x) is the maximal capacity level of the leader such that the follower
invests immediately (x = xF ). As can be seen from (2.40), the boundary capacity
level for a given x is larger if λ increases. In other words the follower facing the threat
of loosing the last available place of the market is willing to accommodate for a larger
level of the leader’s capacity for a given x. Consequently, the bigger is λ, the closer is
the leader capacity level to the optimal level for the accommodation strategy leading
to an increase in the leader value. The follower value, on the contrary, decreases with
λ, as a result of an increase in the leader’s capacity level. The increase of the leader
value, together with the decrease in the follower value, results in the fact that the
preemption point x̂p decreases with λ. This lower value of x̂p results in a lower output
price at the moment of investment, which has a negative effect on the corresponding
capacity level q̂L(x̂p). According to (2.39), this negative effect dominates the positive
effect an increasing λ has on q̂L(x) (see (2.40)).

Note that the capacity of the hidden firm, qH , does not exert an influence on
the preemption point x̂p in this case. This happens because applying the boundary
strategy implies that both firms invest at once, occupying all available places on the
market and therefore the third player, the hidden firm, loses the option to invest, i.e.
to install capacity.

The analytical expressions for the preemption trigger, (2.36), and the capacity
level, (2.37), corresponding to the boundary strategy can be used to analyze the
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effect of uncertainty. Figure 2.8 shows how a change in σ affects x̂p and q̂L(x̂p) for
different values of λ.
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(a) The preemption trigger x̂p
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Figure 2.8: The preemption trigger x̂p and the corresponding capacity level q̂L(x̂p) for
the set of parameter values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, λ =
{0.05, 0.1, 0.25}.

As in Huisman and Kort (2015), both the preemption trigger and the corresponding
quantity increase with uncertainty. This confirms the standard result in the real
options literature. In the present model the increase in the investment threshold due
to uncertainty is less for larger λ, as an increasing probability of the hidden entry
induces earlier investment.

Consider now the case when qH < q̃H(λ) and the first investor prevents an imme-
diate entry of the second investor by installing the deterrence capacity, qdetL (x). In
this case the leader invests at the moment x hits xdetp , while the follower waits till xF .
These thresholds are described by the following proposition.

Proposition 2.14 If qH < q̃H(λ) the preemption trigger is equal to xdetp , which is
the solution with respect to x of

V det∗

L (x) = V ∗F (x, qdetL (x)), (2.41)

with the corresponding capacity level qdetL (xdetp ), implicitly determined by (2.19).

Consider now the dependence between the preemption point xp and the capacity
of the hidden firm for a given λ. In Figure 2.9 the preemption point for the boundary
strategy, x̂p, is not affected by the capacity of the hidden firm, because as mentioned
earlier the simultaneous investment of the positioned firms implies that the hidden
player loses the chance to install capacity. The effects of an increase in qH on the
deterrence preemption trigger, xdetp , and the follower’s investment threshold, xF , result
from changes in the leader and follower values.
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Figure 2.9: The preemption trigger xp(qH) and the follower’s trigger xF (qH) for the set
of parameter values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, λ = 0.1.

Intuitively, the leader value is lower if the hidden firm is larger. This is because the
market becomes less profitable given that when the hidden firm becomes active, it
does so by installing a larger capacity. An increase in the capacity level of the hidden
firm affects the follower value only through the leader’s capacity choice. The bigger
the potential entrant is, the more incentives the leader has to reduce its capacity and
as a result to stimulate the follower to enter the market earlier in order to prevent the
hidden entry. Hence, the follower value increases in x. Together with the decrease of
the leader value, this shifts the preemption point to the right. The follower’s entry
threshold is only influenced indirectly by the capacity of the hidden firm through the
leader’s capacity choice at its optimal point in time.

Due to the described effects, the bigger the hidden firm that is expected to enter
is, the later the leader invests, and later investment implies a larger capacity. On
the other hand, the leader reduces the capacity for every level of x to stimulate the
follower to enter the market. The combination of these two effects is the reason for
the non-monotonicity in the optimal leader capacity at the preemption point as a
function of qH as demonstrated in Figure 2.10.
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Figure 2.10: The capacity level qdetL (x, qH) for the set of parameter values: r = 0.05,
α = 0.02, σ = 0.1, δ = 0.2, qH = {0, 0.5, 0.9}.

Due to this non-monotonic relationship between the capacity of the leader and the
capacity of the hidden firm, the follower threshold first increases with qH and then
declines until it reaches the threshold for the boundary strategy as depicted in Figure
2.9. Now consider the influence of the arrival rate of the hidden firm on the firm’s
optimal investment thresholds under the deterrence strategy.
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Figure 2.11: The preemption trigger xp(λ) for the set of parameter values: r = 0.05,
α = 0.02, σ = 0.1, δ = 0.2 and qH = {0.1, 0.25, 0.5}.

Figure 2.11 depicts the dependence between the preemption trigger, xp, and the
arrival rate of the hidden competitor, λ, for different levels of the capacity size of
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the hidden player. The dash-dotted line in the figure depicts the investment trigger
related to the boundary region, whereas the other lines, each corresponding to a
different capacity level of the hidden firm, represent the deterrence investment trigger,
which is now the focus of our analysis. As it was shown before, for a larger capacity
the region where it is optimal for the first investor to use the deterrence strategy
shrinks. Moreover, the shape of xdetp changes as the size of the hidden firm changes.
Thus, to interpret this result it is reasonable to consider the scenarios of small and
large qH separately. In what follows we first consider the scenario with qH = 0,
followed by an analysis of a situation with large qH .

2.6.1 Small hidden firm

If the capacity of the hidden firm is small its entry is beneficial for the leader.
In the extreme case of qH = 0 the advantage of hidden entry is particularly big
as it implies that the follower loses the option to invest and the leader becomes a
monopolist on the market forever. This scenario has an interesting interpretation.
Namely, it can be interpreted as the game where the government with probability λdt
restricts the number of places on the market to one by, for example, offering a patent
monopoly to an innovating firm. Thus, an increase in the arrival rate of the hidden
firm has a direct effect on the leader value, namely, the value increases for a given x
due the attractiveness of the investment opportunity. On the other hand, a higher
probability of hidden entry affects the follower’s decision, resulting into an indirect
effect on the leader value. In fact, facing the threat of losing the last available place
on the market the follower is more eager to invest earlier. Therefore, it is more costly
for the leader to perform the deterrence strategy, i.e. to induce the follower to invest
later. Thus, for each level of x a larger capacity is needed to ensure that the follower
indeed invests later7. This leads to a decrease in the leader value for a given level of
x. The total effect on the leader value is determined by the predominance of one of
these effects.

Intuitively, for small x, when the investment opportunity is unappealing, the fol-
lower is less eager to invest and the direct effect dominates. However once x becomes
sufficiently large the investment becomes more attractive, making the credible deter-
rence of the follower’s entry more difficult. Thus, the second effect becomes dominant
leading to a decrease in the leader value. Moreover, for larger λ the second effect
starts dominating earlier, as the follower becomes more aggressive facing a larger risk
of the hidden entry.

As a result, of entry deterrence the follower value is always lower for larger λ, as it
7Although analytical expressions for qdetL (x) cannot be obtained, careful numerical simulations

confirm that the presented relation holds for the considered range of λ, i.e. λ < λp(qH).
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is forced to accelerate its investment, because the probability to lose its investment
option is larger. Numerical experiments show that as a result of an increase in λ the
decline in the follower value is always large enough to ensure that the intersection of
the leader and follower value curves takes place for lower values of x. This results in
the fact that the preemption point always declines with λ for relatively small capacity
of the hidden firm Figure 2.12 illustrates this result.
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Figure 2.12: The preemption trigger xp(λ) and the follower’s trigger xF (λ) for the set of
parameter values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, qH = 0.15.

The implication for the follower’s threshold is that it is influenced by a change in
λ both by the desire to enter the market, and by the change in the optimal capacity
level of the leader at the moment of investment. The optimal capacity of the leader
is in turn affected by both preemption timing and the capacity choice that ensures
credible deterrence. As discussed earlier an increase in λ leads to an upward shift in
the leader capacity level for each value of x together with a decrease in the leader
investment threshold as a result of the preemption effect. Therefore, if the decrease in
investment timing is large enough, the leader capacity at the moment of investment
will be lower for larger λ. However, for a relatively small decrease in the investment
threshold together with a larger upward shift in the capacity curve an increase in λ
can result in a larger optimal capacity of the leader at the moment of investment.,
making the follower more reluctant to invest. This could cause a non-monotonicity
in the follower’s investment threshold. However, in the considered model the risk
associated with later investment is too high, as the opportunity to enter the market
might be lost forever. As a result, an increase in λ causes the follower to become
more aggressive and invest earlier for higher λ.
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2.6.2 Large hidden firm

Now consider the situation when qH is large. Here we restrict ourselves to scenarios
where the firm’s revenues are positive. Namely, we exclude the possibility of negative
prices by restricting the considered range of the capacity of the hidden firm, namely
qH ≤ 1 − qL. For qH being large the opposite situation occurs compared to the
analysis of the situation with a small hidden firm. In the event of the hidden entry
the leader is left with a relatively small market share, and thus wants the follower
to invest earlier to prevent the hidden entry. Therefore, as λ increases, the leader
reduces its capacity to tempt the follower to enter the market sooner, thus when the
trigger value is lower.

The effect of an increase in λ on the value functions can again be decomposed in
two parts. On the one hand, the larger the arrival rate the more likely it is that the
hidden firm enters with large capacity, thus the lower is the leader value due to this
direct effect. On the other hand, the larger is the arrival rate, the more eager is the
follower to invest, which is good for the leader. Therefore, its value is increasing due
to this indirect effect.

For small x investment is not attractive yet. Thus, an increase in λ exerts less
influence on the follower’s investment decision. Therefore, the direct effect associated
with the entry of a large hidden player dominates, causing the leader value to decrease.
For larger x the investment opportunity is more valuable and, as a result, the follower
is willing to invest sooner to occupy the last available place on the market. This
situation is favorable for the leader and, therefore, the second effect of an increasing
leader value becomes more important. As in the previous case the larger is λ, the
sooner the indirect effect becomes dominant. This happens because in the presence
of larger hidden entry risk the desire of the follower to invest sooner outweighs the
direct negative effect of possible hidden entry for lower x. On the other hand, the
follower value in this case increases with λ, as the leader wants the follower to invest
early and it does so by investing in smaller capacity. Hence, the leader rewards the
follower even more for early investment.

Combing these results, we conclude that when the market is small, it is more likely
that the leader value declines with λ while the follower value increases, resulting in
an intersection point occurring for a larger value of x. When the market becomes
more profitable, a larger λ leads to an increase in both follower and leader values,
shifting their intersection point to the left.

As a result, the effect of an increase of λ on the preemption point for the de-
terrence strategy, which is determined by the intersection of the value functions, is
non-monotonic. In particular as we observe in Figure 2.13 xdetp (λ) first increases with
λ and then starts to decline.
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Figure 2.13: The preemption trigger xp(λ) and the follower’s trigger xF (λ) for the set of
parameter values: r = 0.05, α = 0.02, σ = 0.1, δ = 0.2, qH = 0.7.

For the follower the implication is the same as in the case of zero capacity of
the hidden firm. Namely, increasing risk of the hidden entry induces the follower to
invest earlier in order not to lose the option to enter the market and, as a result, the
follower’s trigger declines with λ.

2.7 Conclusion
This chapter examines firms’ strategies when making an investment decision under

uncertainty, which includes both timing and capacity level. After allowing the firms to
choose the capacity level in the duopoly model with hidden competition, we found new
effects of the possible entry occasion of the hidden firm. As a result, and in contrast
with Huisman and Kort (2015), where the possibility of hidden entry was not present,
the optimum for the accommodation capacity level is not available immediately after
the deterrence region ends, and for a non-zero probability of the hidden entry a gap
between the two strategies is generated. Intuitively, the deterrence region becomes
smaller if the uncertainty about the market participants is high, because the follower
facing the threat of losing its investment option is more eager to invest earlier and it
is getting harder for the leader to deter this entry. On the other hand, the market is
not yet big enough to acquire the optimal accommodation capacity level. Thus, in the
gap region the leader chooses the strategy that maximizes its value, namely, invests at
the boundary capacity level stimulating immediate investment of the follower. This
strategy is equivalent to the entry accommodation in terms of timing, but, however,
implies a smaller capacity level of the leader. Therefore, in the endogenous roles
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game, when a relatively large hidden player is expected to enter with a sufficiently
large probability, the deterrence strategy becomes too costly to implement, and the
first investor deterring the entry of the second firm always gets a lower value. As a
result, both firms enter the market simultaneously.

Finally, it is important to point out the possibilities for further research related
to this topic. First, it is worth mentioning that the obtained results are derived for
the specific case of a market with limited places. On the one hand, the assumption
of the restricted number of market participants can be relaxed by extending the
model for a larger number of either positioned or hidden firms. On the other hand,
it is also important to consider the more general setting where the follower does
not lose the option to invest once the hidden competitor becomes active on this
market. Intuitively, as long as the multiplicative demand function is used the firms
are limited in capacity expansion, since too much capacity leads to negative prices.
As long as we consider markets described by this specific demand structure, the
positioned firms will always have incentives to install a capacity large enough to
prevent entry of the hidden player. That is why it is interesting to consider how the
assumption of hidden competition affects optimal investment behavior of firms on
markets described by alternative demand functions with unlimited places available.
Furthermore, a relevant extension would be to incorporate the possibility of multiple
investments into the model similar to Boyer et al. (2012). This will allow to draw the
conclusions about the industry development. Combining multiple investments with
capacity optimization would extend Boyer et al. (2012).

Another interesting topic arises relaxing the assumption of the entry probability
of the hidden firm being constant. In particular, further analysis could examine the
influence of the entry decisions of the positioned firms on the arrival rate of the
hidden firm. The more profitable is the market, the more attractive is it for potential
entrants. Therefore, the mean arrival rate of the hidden rival may decline with every
new entry, as the market becomes less profitable.
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2.8 Appendix
Proof of Proposition 2.1 If the leader has already invested, the follower value,
denoted by VF , is given by

VF (x, qL, qF ) = Ex
[∫ ∞

0
xqF (1−Q)e−rtdt− δqF

]
= xqF (1−Q)

r − α
− δqF . (2.42)

Note that VF in this case does not depend on λ, as in this case the positioned firm
occupies the last available place in the market.

To determine the optimal quantity, the follower solves the following maximization
problem, given the level of geometric Brownian motion, x :

max
qF

Ex
[∫ ∞

0
qFx(1−Q)e−rtdt− δqF

]
. (2.43)

The first order condition for the follower in this case takes the following form:

∂

∂qF

[
x

r − α
(1− (qF + qL)) qF − δqF

]
= 0. (2.44)

Thus, the follower’s optimal capacity level is equal to

q∗F (x, qL) = 1
2

(
1− qL −

δ(r − α)
x

)
. (2.45)

The total quantity, Q, takes now the following form

Q(qL) = Q(q∗F (qL), qL) = qL + q∗F (qL) = 1
2

(
1 + qL −

δ(r − α)
x

)
. (2.46)

Substituting the expression for q∗F into the follower value function, we get

VF (x, qL, q∗F (x, qL)) = [x(1− qL)− δ(r − α)]2
4x(r − α) . (2.47)

The value function of the follower in the continuation region can be found by
solving8

1
2σ

2x2∂
2F (x)
∂x2 + αx

∂F (x)
∂x

− (r + λ)F (x) = 0. (2.48)

Denoting xF is the trigger value for the follower, we consider the following bound-
ary conditions:

lim
x→0

F (x) = 0. (2.49)

8The problem is solved by applying dynamic programming methods presented in Dixit and
Pindyck (1994).
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lim
x→xF

F (x) = xF qF (1−Q)
r − α

− δqF , (2.50)

lim
x→xF

∂F (x)
∂x

= qF (1−Q)
r − α

. (2.51)

Considering the condition (2.49) we can write the solution of the differential equa-
tion (2.48) as F (x) = Axβ1 with β1 equal to9

β1 = 1
2 −

α

σ2 +
√(
−1

2 + α

σ2

)2
+ 2(r + λ)

σ2 > 1. (2.52)

From the value matching (2.50) and smooth pasting (2.51) conditions we get the
expression for A

A(qL, qF ) = 1
x
β1
F (qL, qF )

(
xF (qL, qF )qF (1− (qF + qL))

r − α
− δqF

)
, (2.53)

where the trigger value xF (qL, qF ) is given by

xF (qL, qF ) = β1δ(r − α)
(β1 − 1)(1−Q) . (2.54)

At the moment of investment the optimal capacity of the follower q∗F (x, qL) is given
by

q∗F (x, qL) = 1
2

(
1− qL −

δ(r − α)
x

)
. (2.55)

Hence, the optimal investment trigger x∗F (qL) and the follower’s quantity q∗F (qL)
given the capacity of the leader qL are defined by

x∗F (qL) = δ(r − α)(β1 + 1)
(β1 − 1)(1− qL) , (2.56)

q∗F (qL) = 1− qL
β1 + 1 . (2.57)

Substituting the results in the expression for A gives

A(qL) =
(

(β1 − 1)(1− qL)
δ(r − α)(β1 + 1)

)β1 δ(1− qL)
(β1 − 1)(β1 + 1) . (2.58)

Therefore, the compact solution for the follower’s problem is given by

V ∗F (x, qL) =


A(qL)xβ1 if x < x∗F (qL),

[x(1− qL)− δ(r − α)]2
4x(r − α) if x ≥ x∗F (qL).

(2.59)

9Here β1 is the positive solution of the fundamental quadratic equation, i.e.
1
2σ

2xβ1
2 + (α− 1

2σ
2)β1 − (r + λ) = 0.
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Proof of Proposition 2.2 Define ψ(x, qH) as the left hand side of the the equation
(2.19) in the case when qL = 0:

ψ(x, qH) =
(

x(β1 − 1)
δ(r − α)(β1 + 1)

)β1 δ

(β1 − 1)

[
−1 + (β1 + 1)λqH

(λ+ r − α)

]

+ x

r − α
− xλqH

(r − α)(λ+ r − α) − δ. (2.60)

Therefore, xdet1 is implicitly determined by the equation ψ(x, qH) = 0.
Note that

ψ(0, qH) = −δ < 0, (2.61)

ψ(x∗F (0), qH) = δ

β1 − 1 > 0, (2.62)

∂ψ(x, qH)
∂x

= (λ+ r − α)− λqH
(λ+ r − α)(r − α) −

(λ+ r − α)− (β1 + 1)λqH
(λ+ r − α)(r − α)

β1
β1 + 1

(
x(β1 − 1)

δ(r − α)(β1 + 1)

)β1−1
.

(2.63)

Differentiating (2.63) with respect to x we get:

∂2ψ(x, qH)
∂x2 = xβ1−2

β1δ
(

(β1−1)
(β1+1)δ(r−α)

)β1 ((β1 + 1)λqH − (λ+ r − α))
(λ+ r − α) . (2.64)

For x ≥ 0 the function in (2.64) is either monotonically increasing or monotonically
decreasing depending on the combination of the parameter values.

Consider x ∈ (0, x∗F (0)). Evaluating the first derivative ∂ψ(x, qH)
∂x

at the upper
bounds of this interval we obtain

∂ψ(x, qH)
∂x

∣∣∣∣
x=0

= λ(1− qH) + r − α
(λ+ r − α)(r − α) ≥ 0, (2.65)

∂ψ(x, qH)
∂x

∣∣∣∣
x=x∗

F (0)
=

(
β2

1 − 1
)
λqH + λ+ r − α

(β1 + 1)(λ+ r − α)(r − α) ≥ 0. (2.66)

Given the monotonicity of ∂
2ψ(x, qH)
∂x2 we can conclude that for x ∈ (0, x∗F (0)),

∂ψ(x, qH)
∂x

> 0. From this fact in combination with the results of (2.61) and (2.62)
we deduce that xdet1 exists and xdet1 ∈ (0, x∗F (0)).
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The expression for xdet2 is determined using the expression for q̂L(x) given by equa-
tion (2.18), and the first order condition (2.19):

xdet2 = 4δ(r − α)(β1 + 1)

(β1 − 1)

1− (β1 + 1)(β1 − 1)λqH
(λ+ r − α) +

√√√√(3 + (β1 + 1)(β1 − 1)λqH
(λ+ r − α)

)2

− 8


.

(2.67)

Let B = (β1 + 1)(β1 − 1)λqH
(λ+ r − α) > 0, then we can rewrite xdet2 as

xdet2 = 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] , (2.68)

where 1−B +
√

1 + 6B +B2 < 4, as
√

1 + 6B +B2 <
√

9 + 6B +B2 = B + 3. Then
the following holds

xdet2 >
δ(r − α)(β1 + 1)

(β1 − 1) = x∗F (0). (2.69)

Since xdet1 ∈ (0, x∗F (0)), (2.69) allows us to conclude that xdet2 > xdet1 .

Proof of Proposition 2.3 Here we fist examine the effect of an increase in qH on
xdet1 and then on xdet2 . Consider equation (2.60), which implicitly determines xdet1 .
Applying the implicit function theorem to (2.60) we get

dxdet1
dqH

= −

∂ψ(x, qH)
∂qH

∣∣∣∣∣
x=xdet1

∂ψ(x, qH)
∂x

∣∣∣∣∣
x=xdet1

. (2.70)

As ∂ψ(x)
∂x

> 0 from Proposition 2.2, in order to show that dxdet1
dqH

> 0 it is sufficient

to demonstrate that ∂ψ(x, qH)
∂qH

< 0.

∂ψ(x, qH)
∂qH

=
(

x(β1 − 1)
δ(r − α)(β1 + 1)

)β1 δ(β1 + 1)λ
(β1 − 1)(λ+ r − α) −

xλ

(r − α)(λ+ r − α)

= xλ

(r − α)(λ+ r − α)

( x(β1 − 1)
δ(r − α)(β1 + 1)

)β1−1

− 1
 . (2.71)

For x < δ(r−α)(β1+1)
(β1−1) = x∗F (0), it holds that

(
x(β1−1)

δ(r−α)(β1+1)

)β1−1
< 1. Therefore,

∂ψ(x, qH)
∂qH

∣∣∣∣∣
x=xdet1

< 0 and dxdet1
dqH

> 0.
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Recall that the upper bound of the deterrence region is given by

xdet2 = 4δ(r − α)(β1 + 1)

(β1 − 1)

1− (β1 + 1)(β1 − 1)λqH
(λ+ r − α) +

√(
3 + (β1 + 1)(β1 − 1)λqH

(λ+ r − α)

)2
− 8

 . (2.72)

Differentiating with respect to qH gives

∂xdet2 (qH)
∂qH

=

−4δ(r − α)(β1 + 1)2λ

λ+ r − α

−1 +
3 + (β1 + 1)(β1 − 1)λqH

(λ+ r − α)√(
3 + (β1 + 1)(β1 − 1)λqH

(λ+ r − α)

)2
− 8


1− (β1 + 1)(β1 − 1)λqH

(λ+ r − α) +

√(
3 + (β1 + 1)(β1 − 1)λqH

(λ+ r − α)

)2
− 8

2 . (2.73)

We can rewrite (2.73) using the notation introduced in the proof of Proposition
2.2 as follows

∂xdet2 (qH)
∂qH

= −

4δ(r − α)(β1 + 1)2λ

−1 + 3 +B√
(3 +B)2 − 8


(λ+ r − α)

(
1−B +

√
(3 +B)2 − 8

)2 . (2.74)

Since
(
−1 + 3+B√

(3+B)2−8

)
> 0, we can conclude that ∂x

det
2 (qH)
∂qH

< 0.

Proof of Proposition 2.4 In the notation introduced in the proof of Proposition
2.2 xdet2 is given by

xdet2 = 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] . (2.75)

For simplicity denote let D(B) = 1 − B +
√

1 + 6B +B2, then the derivative of
xdet2 with respect to λ takes the following form

∂xdet2 (λ)
∂λ

=
−∂β1(λ)

∂λ

8δ(r − α)
(β1 − 1)2D(B)−

(
∂D(B)
∂β1

∂β1
∂λ

+ ∂D(B)
∂λ

) 4δ(r − α)(β1 + 1)
(β1 − 1)

D(B)2

= − 4δ(r − α)
(β1 − 1)D(B)2

[
∂β1(λ)
∂λ

2D(B)
(β1 − 1) +

(
∂D(B)
∂β1

∂β1
∂λ

+ ∂D(B)
∂λ

)
(β1 + 1)

]
,

(2.76)

where

∂D(B)
∂λ

= (β2
1 − 1)(r − α)qH
(λ+ r − α)2

−1 + 3 +B√
(3 +B)2 − 8

 > 0, (2.77)
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∂D(B)
∂β1

= 2β1λqH
(λ+ r − α)

−1 + 3 +B√
(3 +B)2 − 8

 > 0, (2.78)

and
∂β1
∂λ

= 1√(
α− σ2

2

)2
+ 2σ2(λ+ r)

> 0. (2.79)

Note that D(B) = 1−B+
√

1 + 6B +B2 is positive given the range of B, because
D(0) = 2 > 0 and the function D(B) is monotonically increasing with B:

∂D(B)
∂B

= B + 3√
1 + 6B +B2

− 1 =
√

9 + 6B +B2

1 + 6B +B2 − 1 > 0. (2.80)

Thus, all the terms inside the brackets in (2.76) are positive and we conclude that
∂xdet2 (λ)
∂λ

< 0.
Now we want to show that xdet1 is decreasing with λ if qH = 0. Applying the

implicit function theorem to (2.60) we get

dxdet1
dλ = −

∂ψ(x, β1(λ))
∂λ

∣∣∣∣∣
x=xdet1

∂ψ(x, λ)
∂x

∣∣∣∣∣
x=xdet1

. (2.81)

Using the fact that ∂ψ(x, λ)
∂x

> 0 it is sufficient to prove that ∂ψ(x, β1(λ))
∂λ

∣∣∣∣∣
x=xdet1

>

0. The latter can be written as
∂ψ(x, β1(λ))

∂λ
= ∂ψ(x, β1(λ))

∂β1

∂β1
∂λ

, (2.82)

where ∂β1
∂λ

> 0, so that we only need to consider ∂ψ(x, β1(λ))
∂β1

, which is given by

∂ψ(x, β1(λ))
∂λ

= −
δ
(

(β1−1)x
(β1+1)δ(r−α)

)β1
(
(β1 + 1) log

(
(β1−1)x

(β1+1)δ(r−α)

)
+ 1

)
β2

1 − 1
. (2.83)

Consider

g(β1, x) = (β1 + 1) log
(

(β1 − 1)x
δ(r − α)(β1 + 1)

)
+ 1. (2.84)

Since g(β1, x) monotonically increases with x and g(β1,
δ(r−α)(β1+1)

(β1−1) e−
1

β1+1 ) = 0, for

x < δ(r−α)(β1+1)
(β1−1) e−

1
β1+1 it holds that g(β1, x) < 0 and ∂ψ(x, β1(λ))

∂λ
> 0. Therefore,
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in order to demonstrate the negative relation between xdet1 and λ for qH = 0 it is
sufficient to show that xdet1 < δ(r−α)(β1+1)

(β1−1) e−
1

β1+1 .
If qH = 0, xdet1 is implicitly determined by ψ1(xdet1 , β1) = 0, where

ψ1(x, β1) = −
(

x(β1 − 1)
δ(r − α)(β1 + 1)

)β1 δ

(β1 − 1) + x

r − α
− δ. (2.85)

Plugging in x = δ(r−α)(β1+1)
(β1−1) e−

1
β1+1 we get

ψ1

(
δ(r − α)(β1 + 1)

(β1 − 1) e−
1

β1+1 , β1

)
= δ

(β1 − 1)

(
−e−

β1
β1+1 + (β1 + 1)e−

1
β1+1 − β1 + 1

)
.

(2.86)

Note that as β1 goes to infinity it holds that

lim
β1→∞

ψ1

(
δ(r − α)(β1 + 1)

(β1 − 1) e−
1

β1+1 , β1

)
= 0, (2.87)

while the derivative with respect to β1 is

∂ψ1

(
δ(r−α)(β1+1)

(β1−1) e−
1

β1+1 , β1

)
∂β1

= −
(β1 + 3)

([
e

β1
β1+1 − e

1
β1+1

]
β1 + e

β1
β1+1

)
e
(
β2

1 − 1
)2 < 0. (2.88)

Thus,
∂ψ1( δ(r−α)(β1+1)

(β1−1) e−
1

β1+1 , β1)
∂β1

> 0. Moreover, which ψ1(x, β1) is increasing

with x, because ∂ψ1(x, β1)
∂x

= 1
(r − α)

1− β1
β1 + 1

(
x(β1 − 1)

δ(r − α)(β1 + 1)

)β1−1
 > 0 for

x <
δ(r − α)(β1 + 1)

(β1 − 1) . Hence, xdet1 < δ(r−α)(β1+1)
(β1−1) e−

1
β1+1 . As a result, we can conclude

that ∂ψ(x, β1(λ))
∂λ

∣∣∣∣∣
x=xdet1

> 0 and dxdet1
dλ < 0.

Proof of Proposition 2.5 In the stopping region the value function for the leader
looks as follows

V acc
L (x, qL) = xqL(1− (qL + q∗F (x, qL))

r − α
− δqL. (2.89)

Substituting the follower’s optimal capacity level, q∗F (x, qL) = 1
2

(
1− qL − δ(r−α)

x

)
,

and maximizing with respect to qL gives the following first order condition:

∂V acc
L (x, qL)
∂qL

= x

2(r − α)(1− 2qL)− δ

2 = 0. (2.90)
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Thus, the capacity level of the leader can be written as

qaccL (x) = 1
2

(
1− δ(r − α)

x

)
. (2.91)

The next step is to substitute the resulting expression into (2.89) to obtain the
value of the accommodation strategy for the leader

V acc∗

L (x) = [x− δ(r − α)]2

8x(r − α) . (2.92)

The accommodation strategy is implemented by the leading firm when the optimal
capacity level of the leader, qaccL (x), is such that the other positioned firm follows
immediately after, that is when

x∗F (qaccL (x)) ≤ x. (2.93)

Let xacc1 denote the lower bound of the accommodation region, i.e. the level of the
stochastic profitability shock such that

xacc1 = x∗F (qaccL (xacc1 )). (2.94)

Given equation (2.91), the optimal trigger is the solution of

x = 2δ(r − α)(β1 + 1)x
(β1 − 1)[x+ δ(r − α)] . (2.95)

Solving (2.94) we get

xacc1 = (β1 + 3)
(β1 − 1)δ(r − α). (2.96)

Proof of Proposition 2.6 Using the notation introduced in the proof of Proposi-
tion 2.2 we can write xdet2 as

xdet2 = 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] . (2.97)

We can write the difference between the upper bound of the deterrence region and
the lower bound of the accommodation region as

xdet2 − xacc1 = 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] − δ(r − α)(β1 + 3)
(β1 − 1)

= 4δ(r − α)(β1 + 1)
(β1 − 1)

 4β1 + 4[
1−B +

√
1 + 6B +B2

] − (β1 + 3)
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=
4δ(r − α)(β1 + 1)

[
(β1 + 3)

(
3 +B −

√
1 + 6B +B2

)
− 8

]
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] . (2.98)

From the derivations in Proposition 2.4 it follows that 4δ(r−α)(β1+1)
(β1−1)[1−B+

√
1+6B+B2] > 0.

Thus, xdet2 − xacc1 < 0 when

(β1 + 3)
(
3 +B −

√
1 + 6B +B2

)
− 8 < 0. (2.99)

Using the property that β1 > 1 we can rewrite the inequality as follows

3 +B − 8
β1 + 3 <

√
1 + 6B +B2. (2.100)

The expressions on both sides of the last inequality are positive as for β1 > 1 it
holds that 8

β1 + 3 < 2. Therefore, for xdet2 to be smaller than xacc1 it is sufficient to
prove that (

3 +B − 8
β1 + 3

)2

< 1 + 6B +B2, (2.101)

9 + 6B +B2 − (3 +B) 16
β1 + 3 + 64

(β1 + 3)2 < 1 + 6B +B2, (2.102)

8− 48
β1 + 3 + 64

(β1 + 3)2 < B
16

β1 + 3 , (2.103)

B >
β2

1 − 1
2(β1 + 3) . (2.104)

Substituting the expression for B we get

(β2
1 − 1)λqH

(λ+ r − α) >
β2

1 − 1
2(β1 + 3) , (2.105)

λqH
(λ+ r − α) >

1
2(β1 + 3) . (2.106)

Given the restrictions on β1, one can see that 1
2(β1 + 3) <

1
8 . Therefore, as long

as λqH
(λ+ r − α) >

1
8 (or equivalently λ(8qH − 1) > r − α), inequality (2.106) always

holds, implying that xdet2 < xacc1 .
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Proof of Proposition 2.7 Consider first the game, when the hidden competitor
takes the leader’s position. In this case the firms invest immediately and with prob-
ability 0.5 one of them becomes the follower. Denote the capacity level by qS and by
S the expected value of the positioned firm, which is given by

S(x, qS) = 1
2

(
xqS(1− (qH + qS)

r − α
− δqS

)
. (2.107)

The capacity level that maximizes the this value function is

q∗S(x, qH) = 1
2

(
1− qH −

δ(r − α)
x

)
. (2.108)

Plugging back the optimal capacity level into the value function yields

S∗(x, qH) = [x(1− qH)− δ(r − α)]2
8x(r − α) . (2.109)

As argued in Section 2.5 the investment yields zero value in expectation if x is below
the Marshallian (or zero-NPV) investment trigger, which we denote by x∗M(qH). It
can be found by setting S∗(x) to zero, which gives

x∗M(qH) = δ(r − α)
(1− qH) . (2.110)

As a result, the value of waiting for the hidden entry satisfies the following system
1
2σ

2x2∂
2W (x)
∂x2 + αx

∂W (x)
∂x

− rW (x) + λ[0−W (x)] = 0 if x < x∗M (qH),

1
2σ

2x2∂
2W (x)
∂x2 + αx

∂W (x)
∂x

− rW (x) + λ[S∗(x)−W (x)] = 0 if x ≥ x∗M (qH).

(2.111)

The solution of this system is the following function

W (x) =


Bxβ1 if x < x∗M(qH),

Cxβ2 − δλ(1−qH)
4(r+λ) + λx(1−qH)2

8(r−α)(r−α+λ) −
δ2λ(r−α)

8x(σ2−r−α−λ) if x ≥ x∗M(qH),
(2.112)

where the constants B and C can be found by applying smooth pasting and value
matching conditions at x = x∗(qH).

The resulting waiting curve is defined as follows

W (x) =



(
x

x∗
M (qH)

)β1
λ(1−qH)δβ2

4(β2
1−1)(β2−β1)(λ+r)

if x < x∗M(qH),

(
x

x∗
M (qH)

)β2
λ(1−qH)δβ1

4(r+λ)(1−β2
2)(β1−β2)

− δλ(1−qH)
4(r+λ) if x ≥ x∗M(qH).

+ λx(1−qH)2

8(r−α)(r−α+λ) −
δ2λ(r−α)

8x(σ2−r−α−λ)

(2.113)
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Proof of Proposition 2.8 On the one hand, note that for small values of x the
waiting curve is always above the leader value. This is because for x ≤ xdet1 it holds

that V ∗L (x) = 0, while for x < x∗M(qH), W (x) =
(

x
x∗
M (qH)

)β1
λ(1−qH)δβ2

4(β2
1−1)(β2−β1)(λ+r)

> 0.
Thus, for 0 < x < min{xdet1 , x∗M(qH)}, W (x) > V ∗L (x).

On the other hand, consider the leader value and the waiting curve as x goes
to infinity. As follows from the previous analysis, for x being large enough the
leader implements the accommodation strategy and V ∗L (x) = [x− δ(r − α)]2

8x(r − α) , while

W (x) =
(

x
x∗
M (qH)

)β2
λ(1−qH)δβ1

4(r+λ)(1−β2
2)(β1−β2)

− δλ(1−qH)
4(r+λ) + λx(1−qH)2

8(r−α)(r−α+λ) −
δ2λ(r−α)

8x(σ2−r−α−λ) .

Hence, for x > max{xacc1 , x∗M(qH)} the difference V ∗L (x)−W (x) is given by

V ∗L (x)−W (x) = 1
8

x (λqH (2− qH) + r − α)
(r − α)(r − α+ λ) − 2δ(λqH + r)

λ+ r
+
δ2
(
r − α+ λ

σ2−α−λ−r

)
x


−
((1− qH)x
δ(r − α)

)β2 β1δλ(1− qH)
4
(
1− β2

1

)
(β1 − β2)(λ+ r)

.

(2.114)

Since β2 < 0 and (λqH(2−qH)+r−α)
(r−α)(r−α+λ) > 0, we can conclude that

lim
x→∞
{V ∗L (x)−W (x)} =∞. (2.115)

Therefore, it holds that V ∗L (x) ≥ W (x) for x→∞. The result that W (x) > V ∗L (x)
for small x, while V ∗L (x) ≥ W (x) for large x, allows to establish that there always
exists at least one intersection between V ∗L (x) and W (x).

Proof of Proposition 2.9 Recall that the value of the first investor implementing
accommodation and the corresponding capacity level are given by

V acc∗

L (x) = (x− δ(r − α))2

8x(r − α) , (2.116)

and

qaccL (x) = 1
2

(
1− δ(r − α)

x

)
. (2.117)

The value of the stochastic process that triggers investment of the follower can be
found by substituting qaccL (x) into the expression for xF (qL):

x = 2(β1 + 1)δx(r − α)
(β1 − 1)(δ(r − α) + x) . (2.118)

Solving for x we get

xaccF = (β1 + 3)
(β1 − 1)δ(r − α). (2.119)
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Note that xaccF = xacc1 . This means that it is never optimal for the follower to wait
in the accommodation region. Thus, we consider only the value of stopping, which is
equal to

V ∗F (x, qaccL (x)) = (x− δ(r − α))2

16x(r − α) . (2.120)

Hence, for x ≥ xacc1

V acc∗

L (x) = (x− δ(r − α))2

8x(r − α) >
(x− δ(r − α))2

16x(r − α) = V ∗F (x, qaccL (x)). (2.121)

Proof of Proposition 2.10 The follower value in the stopping region can be writ-
ten as

VF (x, qL, q∗F (x, qL)) = q∗F (x, qL)
(
x(1− (qL(x) + q∗F (x, qL)))

r − α
− δ

)
. (2.122)

Plugging in the boundary capacity level q̂L(x) we obtain:

V ∗F (x, q̂L(x)) = δ2(r − α)
x(β1 − 1)2 , (2.123)

so that the value of the follower is clearly decreasing with x.

Proof of Proposition 2.11 The threshold x̂p is determined by the intersection of
the leader’s and follower’s curves:

V̂L(x, q̂L(x)) = V ∗F (x, q̂L(x)), (2.124)

where

q̂L(x) = 1− δ(r − α)(β1 + 1)
(β1 − 1)x . (2.125)

For the capacity level q̂L(x) the follower gets exactly the same value in both stop-
ping and continuation regions which is equal to

V ∗F (x, q̂L(x)) = δ2(r − α)
x(β1 − 1)2 , (2.126)

while the leader’s value becomes

V̂L(x) = δ

β1 − 1

(
1− δ(r − α)(β1 + 1)

(β1 − 1)x

)
. (2.127)

Solving V̂L(x) = V ∗F (x, q̂L(x)) for x we get

x̂p = δ(r − α)(β1 + 2)
(β1 − 1) . (2.128)
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First, note that the threshold x̂p is only relevant if it lies in the feasible region
of the boundary strategy. In particular, it should hold that xdet2 < x̂p < xacc1 . It is
easy to see that x̂p < xacc1 , as x̂p = δ(r−α)(β1+2)

(β1−1) < δ(r−α)(β1+3)
(β1−1) = xacc1 . Yet the relation

between xdet2 and x̂p depends on the hidden competition parameters λ and qH .
Using the notation introduced in the proof of Proposition 2.2 we can write

xdet2 − x̂p = 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] − δ(r − α)(β1 + 2)
(β1 − 1)

= δ(r − α)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] [(β1 + 2)
(
3 +B −

√
1 + 6B +B2

)
− 4

]
.

(2.129)

Due to the fact that 4δ(r − α)(β1 + 1)
(β1 − 1)

[
1−B +

√
1 + 6B +B2

] is positive, xdet2 − x̂p < 0

when

(β1 + 2)
(
3 +B −

√
1 + 6B +B2

)
− 4 < 0. (2.130)

Using the property that β1 > 1 we can rewrite the inequality as

3 +B − 4
β1 + 2 <

√
1 + 6B +B2. (2.131)

The expressions on both sides of this inequality are positive as for β1 > 1 it holds
that 4

β1 + 2 <
4
3 . Therefore, for x

det
2 to be smaller than x̂p it is enough to prove that

(
3 +B − 4

β1 + 2

)2

< 1 + 6B +B2, (2.132)

9 + 6B +B2 − (3 +B) 8
β1 + 2 + 16

(β1 + 2)2 < 1 + 6B +B2, (2.133)

8− 24
β1 + 2 + 16

(β1 + 2)2 < B
8

β1 + 2 , (2.134)

B >
β1(β1 + 1)
(β1 + 2) . (2.135)

Substituting the expression for B we get

(β2
1 − 1)λqH

(λ+ r − α) >
β1(β1 + 1)
(β1 + 2) , (2.136)
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qH >
(λ+ r − α)β1

λ(β1 − 1)(β1 + 2) . (2.137)

This implies that for xdet2 < x̂p. Thus, there exists unique qH , which we denote by
q̃H , such that for qH > q̃H , it holds that xdet2 < x̂p and the preemption trigger lies in
the boundary region.

Proof of Proposition 2.12 The capacity level q̃H is determined by

q̃H(λ) = (λ+ r − α)β1
λ(β1 − 1)(β1 + 2) . (2.138)

Taking the derivative with respect to λ and taking into account that ∂β1
∂λ

> 0 we get

∂q̃H(λ)
∂λ

= − 1
λ (β1 − 1) (β1 + 2)

(λ+ r − α)
(
β2

1 + 2
)

(β1 − 1) (β1 + 2)
∂β1
∂λ

+ β1(r − α)
λ

 < 0. (2.139)

Therefore, we conclude that q̃H(λ) decreases with λ.

Proof of Proposition 2.13 From the proof of Proposition 2.11 x̂p is given by

x̂p = δ(r − α)(β1 + 2)
(β1 − 1) . (2.140)

Substituting the above expression into (2.125) we get

q̂L(x̂p) = 1
(β1 + 1) . (2.141)

Proof of Proposition 2.14 The leader implements the deterrence strategy and its
capacity choice is such that the follower delays its investment. Therefore, the pre-
emption trigger is defined as the first intersection of the leader value and the follower
value of waiting. At this point one of the firms enters the market as a leader, whereas
its rival waits till the follower’s optimal investment moment. The leader value and its
capacity under the deterrence strategy are derived in Section 2.4.1 while the follower
value of waiting as well as its optimal timing and optimal capacity choice are given
in Proposition 1. Due to the complexity of these functions the explicit solution for
the preemption trigger cannot be obtained.



3 Capacity Choice in a Duopoly
with Endogenous Exit1

Applying the real options framework, this chapter investigates the investment
decision of an entrant given that an incumbent is already active. Both firms have an
option to exit this market if the demand level falls too low. The combination of three
decision components, capacity choice, entry and exit timing, results into multiple
trigger strategies for the entrant. In particular, in the presence of a large incumbent,
it can either choose to coexist with its rival in a duopoly or (eventually) monopolize
the market by installing a sufficiently large capacity. The former scenario is realized
when the market is large, while the latter occurs when the market is small. When
the market is of intermediate size, a hysteresis region emerges where the entrant does
not take any actions and prefers to postpone investment.

3.1 Introduction
Traditional real options models address the question of investment timing in un-

certain markets applying dynamic programming techniques. Most of these models
associate stopping with the decision to enter the new market by undertaking an ir-
reversible investment. The common assumption in such models is that firms can
temporarily suspend their operations in the case of negative profit flow and later
resume it at no cost if the market profitability increases. This means that after in-
vestment firms stay in the market, irrespectively of the realized demand patterns.
In reality, resumption of the firms’ operations is rarely costless and sometimes even
impossible.2 As a result, a negative demand shock may trigger their decision to exit
the market forever. Irreversibility of exit decisions in uncertain markets allows to
treat them as real options.

Exit options have received limited attention in the literature. Ghemawat and Nale-
1This chapter is based on Lavrutich (2015).
2For example due to the loss of the team of professionals.
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buff (1985) and Fudenberg and Tirole (1986b) analyze the exit game in a duopoly
with asymmetric firms in a deterministic setting. The early literature on stochastic
monopoly models includes Mossin (1968), that focuses on combined entry and exit
strategies, later generalized by Dixit (1989), and Alvarez (1998, 1999) that study the
optimal exit strategy of a firm operating with a fixed capacity. Another contribution,
which focuses on both entry and exit decisions is Kwon (2010). He finds that in a
monopoly with declining demand the investment threshold deceases in volatility due
to the presence of the exit option. Adkins and Paxson (2016) considers a three-factor
stochastic real options model to investigate the decision to invest and/or abandon a
single project. They conclude that the option to abandon the project in the opera-
tional stage causes the investment threshold to decrease, as it makes the investment
opportunity more attractive. Hagspiel et al. (2016) analyzes the effect of flexibility
on exit and entry decisions of a monopolist. If a firm is assumed to be able to adjust
its production levels, it invests in a smaller capacity level than an inflexible firm.
Moreover, the difference between the capacity choices of a flexible and an inflexible
firm is larger in a highly uncertain environment.

A continuous time duopoly setting with the option to exit was investigated among
others by Lambrecht (2001), who presents a model of strategic interactions of firms
that have both entry and exit options. He explicitly derives entry and exit thresholds,
and investigates how the exit order is influenced by different economic factors. He
shows that, consistent with earlier findings, the firm that has a lower monopoly exit
threshold leaves the market last. Additionally, he modifies the model by assuming
that financially distressed firms can decrease their debt through debt exchange offers.
As a result, a reversed bankruptcy order of the firms may appear. Murto (2004)
examines exit decisions under uncertainty in a duopoly game with asymmetric firms
in a declining market. He shows that when market uncertainty is sufficiently low,
there is a unique equilibrium where the larger firm exits the market earlier. However,
in a highly uncertain environment there exists an empty span between the exit regions
of the firms, i.e. the two exit regions have an empty intersection. Within this span
neither of them leaves the market and a reversed exit order may appear. As a result,
the equilibrium is no longer unique and it is not clear which firm is first to exit the
market. Ruiz-Aliseda (2006) studies an entry/exit game in a duopoly market that
first expands until some random moment in time and then starts declining. He finds
that the monopolist does not exit as long as the market grows. After the market
matures and starts declining no firm enters the market anymore and the incumbent
ultimately leaves. In case both players are active when the market reaches maturity
the firm with higher sunk costs exits first. Bayer (2007) presents a model where firms
consider an option to increase their capacity in order to stimulate sooner exit of the
opponent. In this model the firm with the larger capacity exits last. This is due to
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the assumption that the production costs are fixed and do not depend on the capacity
level. In such a setting predatory behavior occurs in a more competitive and a less
uncertain market.

Similar to Lambrecht (2001) we investigate the combination of firms’ exit and entry
decisions in a duopoly. The main difference, however, is that in our model capacity
choice is considered. Namely, in order to become active in the market, firms can freely
choose the scale of their investment. This in turn affects not only their investment
decision, but also the exit order. We adopt the approach for capacity optimization
used in the monopoly model of Dangl (1999), and later extended by Huisman and
Kort (2015) to a duopoly scenario. In the setting where firms are able to choose
both timing and size of their investment, Huisman and Kort (2015) shows that the
firm with a larger capacity invests at a higher investment threshold. Moreover, they
demonstrate that the market leader overinvests in capacity in order to ensure that
its rival enters the market later and installs a smaller capacity.

Here we extend Huisman and Kort (2015) by incorporating the exit option into the
model. This triggers a second mover advantage for the firm that enters the market
last, the entrant, as it can influence the exit game. This chapter focuses on the
analysis of the investment strategies of the entrant given that the first investor is
already active in the market with a certain capacity.

As in Lambrecht (2001) and Murto (2004), we demonstrate that the firm with the
larger capacity level exits the market first. As a result, in the presence of a sufficiently
large incumbent the entrant has an incentive to drive the incumbent out of the market
by installing a relatively large capacity with size still below the incumbent’s capacity
level. This may result in a non-monotonicity in the entrant’s expected entry time
with respect to the size of the incumbent. In particular, the entrant’s expected entry
time first increases as a result of the decrease in the output price similar to Huisman
and Kort (2015), yet then starts declining as the entrant anticipates sooner exit of
the incumbent.

In addition, we show that the introduction of an exit option leads to a multiple
trigger strategy of the entrant. This result is associated with the existence of a so
called region of hysteresis. This region corresponds to a gap between the investment
regions of the entrant. In particular, if the market is large enough, or, in other words,
exit by one of the firms is unlikely to occur soon, the entrant chooses to coexist
with its opponent in a duopoly. In a small market, however, given that it is already
optimal for the monopolist to enter, the entrant has an incentive to monopolize the
market by driving its rival out. For the case of an intermediate market size, it is
optimal to wait until either of the scenarios is profitable. As a result, the entrant
does not undertake any actions and prefers to postpone investment.

The hysteresis region can be related to the inaction region of Decamps et al.
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(2006). The latter extends Dixit (1993a) and studies a single firm’s decision to invest
in alternative projects with an uncertain cash flow. For each project there is a certain
region of the output price that triggers the firm’s investment. The main similarity
with our finding is associated with the fact that the optimal investment intervals of
two projects do not intersect, creating the inaction region. In the inaction region
the firm does not invest yet and it is unknown in which of the two projects it will
eventually invest.

The chapter is organized as follows. Section 2 is devoted to the analysis of the
investment decisions of the monopolist that has an option to exit the market. Section
3 discusses the exit order of the firms in a duopoly context and specifies the solution
for the entrant’s entry-exit problem. Section 4 summarizes the main results and
concludes the chapter. The proofs of the propositions are presented in the Appendix.

3.2 Monopoly
Consider the investment problem of a monopolist, that faces a possibility to under-

take an irreversible investment in a plant with a certain capacity. Once the investment
is made the firm becomes active on the market and launches the production process.
The market for the final output is characterized by uncertain demand, specified by a
multiplicative inverse demand function:

Pt = Xt(1− ηQt), (3.1)

with η > 0, Qt total market output, and Xt a stochastic shock, which follows a
geometric Brownian motion:

dXt = αXtdt+ σXtdZt, (3.2)

where α and σ are the drift and volatility parameters, respectively, and Zt is a Wiener
process. The firm is assumed to be risk neutral with a discount rate r. Moreover, it
should hold that r > α, otherwise the discounted value of the future revenue stream
is infinite and the firm always prefers to delay investment.

We assume that the firm that becomes active on the market always produces up
to capacity and henceforth we will refer to Q as the capacity level.3. The investment
costs the firm bears are proportional to the capacity and are given by δQ, where δ > 0
is the unit investment cost. Apart from the investment costs that are incurred only
at the moment of investment, the fixed production costs proportional to capacity,
cQ, are paid by the firm in each period with c > 0. In practice the firm can produce
below capacity. However, as argued in Goyal and Netessine (2007), firms often have

3The capacity level must be such that 0 ≤ Q ≤ 1
η , otherwise the output price is negative.
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incentive to produce up to capacity facing large fixed costs due to production ramp-
ups or engagements with certain suppliers. Additionally, fixed costs may also trigger
firm’s decision to exit when demand is declining. Here we can also think of the
costs for labor, regular maintenance of machinery or rent for production spaces,
laboratories, etc. The implications of relaxing the capacity clearance assumption are
examined in detail in Hagspiel et al. (2016).

Once invested, the firm faces the possibility to exit the market at no cost when the
demand level is too low. The presence of exit costs does not significantly influence
the problem and for simplicity they are normalized to zero. The exit decision is
assumed to be irreversible, i.e. production cannot be resumed once being shut down.
Hence, the problem of the potential market entrant consists of the optimal choice of
investment timing, capacity level, and exit timing.

In the presented setting the firm holds an option to exit when it is active, while if
the firm has not entered yet, it holds an investment option. For the idle firm there
exists an optimal investment trigger, which we denote by XI

M(Q), such that once
it is reached by the stochastic process, x, the firm is indifferent between investing
capacity Q and waiting. Thus, for x ≥ XI

M(Q) the monopolist enters the market,
forgoing its investment option, V M

0 , for the operating project value, V M
1 , and pays

sunk investment costs δQ. After the firm has entered the market, it possesses the
option to abandon the project, i.e. exit the market. The optimal level of x to exercise
such an option is denoted by XE

M(Q).
First, consider the situation where the capacity level of the firm is given. The value

of the firm and the optimal thresholds in this case are summarized by the following
proposition.

Proposition 3.1 The value of the idle and active monopolist for a given level of the
stochastic process, x, and capacity, Q, and are given by (3.3) and (3.4), respectively:

V M
0 (x,Q) = β2

β2 − β1

(
x

XI
M(Q)

)β1
(
XI
M(Q)(1− ηQ)Q

r − α

(
1− 1

β2

)
−
(
c

r
+ δ

)
Q

)
,

(3.3)

V M
1 (x,Q) =

(
x

XE
M(Q)

)β2 cQ

r(1− β2) + x(1− ηQ)Q
r − α

− cQ

r
, (3.4)

where the optimal exit threshold XE
M(Q) for a given capacity choice Q is given by

XE
M(Q) = β2c(r − α)

r(β2 − 1)(1− ηQ) , (3.5)

and the optimal investment threshold XI
M(Q) is the solution of

(β1 − β2)c
(1− β2)β1r

(
x

XE
M(Q)

)β2

+
(

1− 1
β1

)
x(1− ηQ)
r − α

− c

r
− δ = 0, (3.6)
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and β1, β2 are given by

β1 = 1
2 −

α

σ2 +
√(
−1

2 + α

σ2

)2
+ 2r
σ2 > 1, (3.7)

β2 = 1
2 −

α

σ2 −
√(
−1

2 + α

σ2

)2
+ 2r
σ2 < 0. (3.8)

Intuitively, the monopolist chooses its capacity level Q such that the investment
yields the highest possible value until it is optimal to exit, i.e. as long as x > XE

M(Q).
Using (3.5) we can express the latter condition in terms of Q, namely as Q < Q̃M(x),
defined by

Q̃M(x) = 1
η

(
1− β2(r − α)c

r(β2 − 1)x

)
. (3.9)

This means that if the capacity of the firm is too large, Q ≥ Q̃M(x), the firm is
not able to bear the current production costs for a given market profitability and it
does not expect to compensate for this in the future. Hence, will exit the market
immediately. Hence, the optimal capacity level of the monopolist is found maximizing
the value of an operating project V1(x,Q) with respect to Q such that Q < Q̃M(x).
This results in the following proposition.

Proposition 3.2 The optimal capacity level of the monopolist, Q∗M(x), for a given
level of x is implicitly determined by(

x

XE
M(Q)

)β2 c (1− ηQ(1 + β2))
r(1− β2)(1− ηQ) + x(1− 2ηQ)

r − α
− c

r
− δ = 0. (3.10)

The optimal investment trigger, XI∗
M satisfies

−
(

rβ1(β2 − 1)XI∗
M

(β1 + 1)β2(r − α)c

)β2 (β1 − β2)c
β1(β2 − 1)r + (β1 − 1)XI∗

M

(β1 + 1)(r − α) −
(
c

r
+ δ

)
= 0, (3.11)

and the corresponding capacity level is equal to

Q∗M ≡ Q∗M(XI∗

M ) = 1
η(β1 + 1) . (3.12)

The optimal exit trigger XE∗
M is given by

XE∗

M = β2(β1 + 1)(r − α)c
β1(β2 − 1)r . (3.13)
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It follows from the above proposition that the production costs are crucial for the
decision of the firm to exit the market. Intuitively, the larger the production costs are,
the larger losses the firm faces when the demand level becomes low. This causes the
exit threshold of the monopolist to increase with c. Note, however, that the optimal
capacity level does not depend on the production costs incurred by the firm, while the
optimal investment threshold increases with c. This is due to the particular choice
of the demand function and the assumption that the production costs the firm bears
in each period are fixed. Therefore, given that there are no strategic effects involved
in the firm’s decision, the firm will respond to an increase in the production costs in
the same way as to an increase in the investment costs, namely, by postponing its
investment decision, while keeping the capacity choice unaffected.

Proposition 3.3 The optimal exit threshold XE∗
M , as well as the optimal capacity

level Q∗M decreases with both σ and α, and increases with r.

As follows from the above proposition, in a more uncertain environment the firm
decreases its exit threshold. This finding is consistent with the traditional result in the
real options literature. A larger drift, α, means that the market is showing stronger
market growth prospects, which triggers a later exit decision. A larger r implies that
the future payoffs are discounted more heavily. As a result, the discounted cash flow
steam from the project is lower and the firm prefers to leave the market for higher x.

Proposition 3.4 The optimal investment threshold, XI∗
M , is lower than this threshold

in the model without an exit option, XI∗
M,0. Moreover, XI∗

M,0 increases with σ and
exhibits a U-shaped non-monotonic behavior with respect to α and r.

As stated in Proposition 3.4, the firm that has an option to exit invests earlier
than the firm that stays in the market forever upon investment. This is because the
existence of the exit option increases the attractiveness of the investment opportunity,
as the firm can avoid staying longer in a market with negative cash flows.

Due to the complexity of the expression for XI∗
M , the effects of the different pa-

rameter values cannot be easily obtained. However, numerical experiments show that
when the parameters of the model are changed, XI∗

M exhibits a similar behavior to
XI∗
M,0, the threshold in the model without the exit decision. Because of this we con-

sider the analytical results for the latter and provide a numerical comparison between
XI∗
M,0 and XI∗

M . Figure 3.1 illustrates the sensitivity of the entry threshold with re-
spect to the different parameter values for both models with and without exit. In
the standard real options model where the capacity level is fixed, the entry threshold
decreases with α and increases with both r and σ. As it can be seen in Figure 3.1, in
our model the effect of uncertainty, σ, remains the same, meaning that the firms will
postpone the investment in a more uncertain environment. On the other hand, we
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find a non-monotonic U-shaped relation between the entry thresholds and both r and
α. In the case of the discount rate, r, this is due to the presence of the production
costs that are incurred at each moment in time. As r increases the firm discounts
not only its future profits more heavily, but also its costs. The former effect results
in an increase in the investment threshold, because the firm values future payoffs
less, which makes the project less attractive. The later effect leads to a decrease
in the threshold, as the project is becoming relatively less costly. This results in a
U-shaped type of function as illustrated in Figures 3.1c and 3.1d. A similar shape
of the entry threshold is observed when sensitivity with respect α is considered. The
reason is now, however, that we add capacity optimization into the model. As proved
in the Appendix (see proof of Proposition 3.3) in the model with fixed capacity there
is only a decreasing effect to be observed. This can be explained by the fact that
the investment opportunity becomes more attractive, given the better market growth
prospects. If the firm is allowed to choose the capacity level it will choose a larger
quantity for larger α to anticipate on future growth, which in turn gives an incentive
to delay its investment decision.
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Figure 3.1: The optimal investment thresholds XI∗

M and XI∗

M,0 for the set of parameter
values: η = 1, c = 20, δ = 100, and different values of r, α, and σ.
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As it can also be seen from Figure 3.1 the difference between the exit threshold in
the model with the exit option, XI∗

M , and in the model without the exit option, XI∗
M,0,

is the largest for large values of σ, small values of α, intermediate values of r in the
case of positive α and small values of r in the case of negative α. Intuitively, in the
more uncertain environment, i.e. when σ is large, the firms value the option to exit
the market more. Similarly, the smaller the drift in the geometric Brownian motion,
α, and, as a result, the worse are the growth prospects, the bigger role plays the exit
decision. The effect of the discount rate, however, differs for positive and negative
α, as illustrated in Figures 3.1c and 3.1d. Note that in both figures the investment
thresholds XI∗

M and XI∗
M,0 approach each other as r increases. This is because if the

discount rate is large the firm just cares about the immediate cash flows, while the
exit decision is relatively far in the future. Thus, the presence of the option to exit
does not influence the firm’s investment decision a lot. For positive α the investment
thresholds are very close to each other also for small r, given that the condition
r > α is satisfied. In this scenario, if r is approaching α from above, there exists a
dominating revenue term, i.e. the revenues from the project become v large and exit
is rather unlikely. Though, if α is negative, while r is close to zero, the difference
between XI∗

M and XI∗
M,0 becomes large again. In this case exit is more important given

negative growth prospects and low discount rate.

3.3 Duopoly
In the duopoly the incumbent is the firm that made the first move in the investment

game. Its capacity level is denoted by QL. When demand is high enough, the
second firm, the entrant, also becomes active on the market. It decides upon its
capacity level, QF , which maximizes its value function given the level acquired by
the incumbent. As mentioned earlier, in what follows we concentrate on the entrant’s
investment and exit decision for a given capacity choice of the incumbent, which is
already operating in the market. The problem is solved backwards starting with the
exit game for a given capacity choice. After determining the optimal exit timing
and specifying the value of the active firm, we consider the capacity optimization
problem. Lastly, the entry problem is discussed.

3.3.1 Exit decision

Once both firms have undertaken their investment the exit game starts. It contin-
ues until demand becomes low enough to trigger the exit of one of the firms. Several
papers, e.g. Lambrecht (2001), demonstrate that the firm with a lower monopoly
threshold exists last in the equilibrium. Similar to Ghemawat and Nalebuff (1985)
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and Murto (2004), in the current setting this is the firm with the lower capacity level.
Intuitively, such a firm incurs lower production costs, that in the face of declining
demand induces smaller losses. As an example consider the airline industry. The
carriers with more excess capacity that incur higher labor and operating costs suffer
more from the downturn in demand. For instance, in 2001 several large airlines in the
US, including US Airways and United, declared bankruptcy due to the drastically
declining passenger demand after the 9/11 attacks. As another example, Delta and
Northwestern, the third and fourth largest carriers in the US, filed for bankruptcy
protection in 2005, as a result of intense competition with the low-cost airlines that
were driving the prices down. The lower labor and operating costs enable the low-
cost airlines to surpass the crisis period better (Lawton (2003), Flouris and Walker
(2005)). In this example another reason for bankruptcy, apart from excess capacity,
could be inability to raise additional funds when demand is declining. This prob-
lem is the main focus of Chapter 4, which discusses exit due to damages to a firm’s
reputation.

We specify the exit order of the firms according to the following proposition.4

Proposition 3.5 The firm with the larger capacity level exits first at the optimal
duopoly exit threshold, XE

D , determined by

XE
D(QL, QF ) = β2c(r − α)

r(β2 − 1)(1− η(QL +QF )) , (3.14)

while the firm with the smaller capacity level exits once x hits the optimal monopoly
exit threshold, XE

M , given by

XE
M(Qi) = β2c(r − α)

r(β2 − 1)(1− ηQi)
, (3.15)

with i = L if the smaller firm has entered the market first and i = F if it has entered
last.

If the firms install the same capacity level, QL = QF , either of the firms exits first.

The crucial feature of the model with both exit and investment option is that the
entrant has a second mover advantage. Namely, in the case of a sufficiently large
capacity level of the incumbent, the entrant can install a capacity large enough to
force the incumbent out of the market for specific values of the market size. Thus, the
optimization problem of the entrant should incorporate that the exit order depends on
its capacity choice. In particular, the entrant can reply to a certain capacity level of

4Due to the fact that in our model the follower undertakes an entry decision, the exit game starts
for values of x that are large enough to rule out the possibility of the gap equilibrium shown by
Murto (2004).
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the incumbent, QL, with either larger, QF > QL, smaller QF < QL, or equal capacity
level, QL = QF . Each of these cases leads to different exit order scenarios. This,
in turn, affects the value functions, because they must incorporate the possibility
that in case of a market decline one firm is going to exit the market, while the other
becomes a monopolist.

Hence, the entrant’s exit strategy is specified as follows. When it enters the market
as the larger firm, i.e. QF > QL, it exits at the duopoly exit threshold XE

D(QL, QF ).
Intuitively, the larger is the capacity that the entrant acquires, the earlier will it
exit the market, which is confirmed by (3.14). This brings us to the capacity level,
Q̃F (x,QL), that leads to the immediate displacement of the entrant from the market.

Q̃F (x,QL) = 1
η

(
1− β2c(r − α)

r(β2 − 1)x

)
−QL. (3.16)

When the entrant is the smaller firm, i.e. QF < QL, the incumbent exits first
at XE

D(QL, QF ) and the entrant enjoys monopoly profits until x hits the monopoly
exit threshold, XE

M(QL, QF ). In this case Q̃F (x,QF ) has a different interpretation,
namely, it is the capacity level such that once installed by the entrant the incumbent
is forced out of the market. Clearly, if the entrant is a smaller firm, it will never
install this capacity level. This is reflected in its optimal capacity choice, which we
consider later.

If QF = QL the game is symmetric, and, as shown by Murto (2004), the exit order
is not identified, ruling out the mixed strategies.5

The described strategies of the entrant are illustrated in Table 1, where we denote
by V B

1 the value of the larger entrant (B stands for “big"), by V S
1 the value of the

smaller entrant (S stands for “small"), and by V M
1 the value of the monopolist, defined

in the previous section.

Conditions QF < Q̃F (x,QL) QF ≥ Q̃F (x,QL)
x < XE

D(QL, QF ) x ≥ XE
D(QL, QF )

QF > QL
V B

1 − δQF −δQFentrant exits first
QF < QL

V S
1 − δQF V M

1 − δQFentrant exits last
QF = QL

λV B
1 + (1− λ)V S

1 − δQF (1− λ)V M
1 − δQFExit order unclear

Table 3.1: Value of the entrant for the different capacity levels of the incumbent, where
λ is the probability that the entrant exits first in the symmetric game.

5Steg and Thijssen (2015), for example, focus on the equilibrium in mixed strategies.
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The value functions of the entrant, introduced in Table 3.1, are characterized in
Proposition 3.6.

Proposition 3.6 The value of the active entrant is given by

V1(x,QL, QF ) =1{QF≥Q̃F }
(
(1− λ)VM

1 (x,QF )1{QF=QL} + VM
1 (x,QF )1{QF<QL}

)
+1{QF<Q̃F }

(
V B

1 (x,QL, QF )1{QF>QL} + V S
1 (x,QL, QF )1{QF<QL}

+ (λV B
1 (x,QL, QF ) + (1− λ)V S

1 (x,QL, QF ))1{QF=QL}
)
− δQF , (3.17)

with λ introduced earlier, and where V B
1 is the value of the large entrant defined by

V B
1 (x,QL, QF ) =

(
x

XE
D(QL, QF )

)β2 cQF
r(1− β2) + XQF (1− η(QL +QF ))

r − α
− cQF

r
,(3.18)

V S
1 is the value of the smaller entrant determined by

V S
1 (x,QL, QF ) =

(
x

XE
M (QF )

)β2 cQF
r(1− β2) +

(
x

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α

+XQF (1− η(QL +QF ))
r − α

− cQF
r
,

(3.19)

and V M
1 is a value of the active monopolist given by (3.4).

Note that both V B
1 (x,QL, QF ) and V S

1 (x,QL, QF ) contain the duopoly revenue net
of production costs, reflected by the last two terms in (3.18) and (3.19), respectively.
In (3.18) the first term represents the exit option. In (3.19) the exit option of the
entrant is represented by the second term and the first term corrects for the fact that
the duopoly revenues are replaced by the monopoly revenues once the incumbent
exits.

In the symmetric game the value of the entrant is a weighted average of the values
under different exit orders, V B

1 (x,QL, QF ) and V S
1 (x,QL, QF ). Hence, this value

is always smaller than the maximum of V B
1 (x,QL, QF ) and V S

1 (x,QL, QF ). As the
value functions are continuous, it will never be optimal to choose the exact same
capacity as the incumbent. Therefore, the symmetric game will never occur. Now,
since 1{QF=QL} = 0, the value of the active entrant can be rewritten in the following
way:

V1(x,QL, QF ) = 1{QF<Q̃F }

(
V B

1 (x,QL, QF )1{QF>QL} + V S
1 (x,QL, QF )1{QF<QL}

)
+ 1{QF≥Q̃F }

(
V M

1 (x,QF )1{QF<QL}
)
. (3.20)
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3.3.2 Capacity optimization

In order to find the optimal response of the entrant to a given capacity level
acquired by the incumbent, QL, we maximize V1(x,QL, QF ) − δQF with respect to
QF :

Q∗F (x,QL) = argmax
QF

{V1(x,QL, QF )− δQF}. (3.21)

The exit order is endogenously determined by the firms’ relative capacity size,
because the firm with the smaller capacity always exits last. However, the strategy
of being the last firm to exit is not always preferable, as it requires a relatively low
capacity level. We illustrate this situation below.
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Figure 3.2: The value function of the entrant as a function of QF for a given capacity
level of the incumbent for the parameter values: r = 0.05, α = 0.02, σ = 0.1,
η = 1, δ = 100, c = 50, x = 66.

Figure 3.2 shows the value function of the entrant for different values of the incum-
bent’s capacity level. The dotted curves in both figures correspond to the value that
the entrant gets if it exits first, while the dashed curves show the value when it exits
last. Note that the latter value is not a unimodal function of capacity, QF . Instead,
it has a spike for large values of QF . This is because, given that the entrant exits
last, it becomes a monopolist as soon as QF reaches Q̃F (x,QF ). Thus, anticipation of
a sooner monopoly position causes the entrant’s value to increase as QF approaches
Q̃F (x,QF ). This value, however, can only be reached when the incumbent’s capacity
is larger. Due to the exit order constraint the entrant can end up on the upper curve
only if it becomes the smallest firm in the market, QF < QL. The complementary
case of QF > QL yields the value that corresponds to the lower curve. Thus, the
solid parts of the curves represent the actual value of the entrant. In Figure 3.2a
the capacity level of the incumbent is small, meaning that the entrant is relatively
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close to the monopoly situation. In this case the value of becoming the last firm to
exit is smaller than the value of installing a larger capacity and exiting last. On the
contrary, when the capacity of the firm that already operates in the market is large,
the exit order becomes more important. Figure 3.2b shows that for larger QL the
entrant prefers to install a smaller capacity and exit last. Thus, we can conclude
that the firm faces a trade-off between staying longer in the market and installing a
larger capacity. In fact, if QL is small a larger value is obtained by installing a larger
capacity and as a consequence forgoing the potential monopoly position. Proposition
3.7 shows the entrant’s capacity choice for each level of the incumbent’s capacity.

Proposition 3.7 For relatively large values of x the optimal capacity level of the
entrant depending on the capacity level of the incumbent is given by

Q∗F (x,QL) = Q∗F,D(x,QL)1{QL≤Q̄4(x)} +Q∗F,M(x,QL)1{QL>Q̄4(x)}, (3.22)

where Q∗F,D denotes the optimal capacity of the entrant when it enters as a duopolist,
while Q∗F,M is the optimal capacity level when it becomes a monopolist upon entry.
These capacity levels are given by

Q∗F,D(x,QL) =



QB
F (x,QL) if QL < Q̄1(x),

QL − ε if QL ∈ (Q̄1(x), Q̄2(x)] ∪ (Q̄3(x), Q̄4(x)],

QS
F (x,QL) if Q̄L ∈ (Q̄2(x), Q̄3(x)],

(3.23)

where ε > 0 is a small value and the capacity levels of the entrant QB
F (x,QL) and

QS
F (x,QL) implicitly determined by the first order conditions (3.24) and (3.25), re-

spectively:

∂(V B
1 (x,QL, QF )− δQF )

∂QF

= 0, (3.24)

∂(V S
1 (x,QL, QF )− δQF )

∂QF

= 0, (3.25)

and

Q∗F,M(x,QL) =


Q̃F (x,QL) if Q̄L ∈ (Q̄4(x), Q̄5(x)],

QM(x) if Q̄L > Q̄5(x).
(3.26)

The expressions for Q̄1(x), Q̄2(x), Q̄3(x), Q̄4(x), Q̄5(x) are given in the Appendix.

A numerical example illustrating the optimal capacity choice of the entrant for a
given x is presented in Figure 3.3.
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Figure 3.3: The optimal reaction of the entrant given the incumbent’s capacity level for
the parameter values: r = 0.05, α = 0.02, σ = 0.1, η = 1, δ = 100, c = 50,
x = 100.

Apart from illustrating the optimal capacity choice of the entrant, Figure 3.3
also helps to infer which exit order corresponds to a certain capacity clevel of the
incumbent. Namely, the entrant will choose to leave the market first when its optimal
capacity level is above the 45◦ line, otherwise it acquires a market share smaller than
the incumbent and exits last.

As can be seen, the entrant prefers to exit first only when the capacity level of the
incumbent is relatively small, i.e. QL < Q̄1(x). Then the entrant can obtain a large
revenue by installing a larger capacity. The large revenue outweighs the advantage of
leaving the market last and, consequently, the entrant behaves as a large duopolist.

In addition, if the entrant observes that the incumbent has installed a capacity of
a considerable size, it is not possible to obtain such a large revenue that it would be
still profitable to leave the market first. As a result, the entrant chooses to be a small
duopolist in order to stay longer on the market for QL ∈ (Q̄2(x), Q̄3(x)].

Note that for both the large and small duopolist the optimal capacity level mostly
decreases with QL, because a larger capacity of the first investor reduces the output
price for a given capacity of the entrant. However, Figure 3.3 shows that for some
intervals the entrant’s capacity increases with the incumbent’s capacity.

The increasing parts of the curves correspond to the scenarios, where the entrant
chooses to mimic the incumbent’s behavior and acquires capacity just below QL.
When QL ∈ (Q̄1(x), Q̄2(x)], the share of the incumbent is large enough to stimulate
the entrant to leave last. However, leaving last would require that the capacity
of the entrant satisfies the constraint, QF < QL. As a result, the optimum of the
small duopolist cannot be reached. In this case the entrant maximizes its revenue in a
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constrained duopoly using a mimicking strategy, with the optimal choiceQF = QL−ε.
When QL hits Q̄3(x) we observe a relatively large discontinuous upward jump in

the entrant’s optimal capacity. This result corresponds to the findings in Kwon and
Zhang (2015), namely, that if the capacity of one firm is large enough, it becomes
optimal for its rival to increase the capacity to force such a firm out of the market.
Thus, in the regions where QL ∈ (Q̄3(x), Q̄4(x)] and QL ∈ (Q̄4(x), Q̄5(x)] the capacity
of the incumbent is so large, and, consequently, the output price is so low, that the
entrant acts to force a soon or immediate exit of the incumbent, respectively. Antici-
pating the incumbent’s (almost) immediate exit, the entrant behaves as a constrained
monopolist, i.e. it installs a capacity level such that on the one hand the incumbent
exits first, and, on the other hand, that it gets the largest possible monopoly value for
itself. As a result, it chooses QL−ε and Q̃F (x) for the two regions, respectively. Note
that mimicking strategy arises here for a different reason than in the case of smaller
levels of the incumbent’s capacity. Namely, for QL ∈ (Q̄3(x), Q̄4(x)] the duopoly exit
threshold is relatively close, yet due to the capacity constraint for the small firm the
immediate exit of its rival cannot be triggered. Thus, the entrant installs the largest
capacity available to ensure that this threshold is hit as soon as possible.

In the last region, i.e. where QL > Q̄5(x), the entrant becomes an unconstrained
monopolist as acquiring the monopoly capacity level is enough to ensure the incum-
bent leaves the market.

In the above formulation we concentrate on the capacity strategy of the entrant for
a given x. Naturally, the problem can be reversed and the boundaries of the strategic
regions can be defined in terms of x for a given level of QL using the inverse function
of Q̄i(x) with i = 1, .., 5. The capacity choice of the entrant in two dimensions, thus
as a function of both x and QL, is illustrated in Figure 3.4.
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Consider, for example, QL = 0.4. Then if x is small enough the entrant chooses a
capacity level to maximize monopoly profits, because the rival leaves the market any-
how. For x a little larger the entrant overinvests to force the exit of the incumbent.
As x increases even further the market moves away from the duopoly exit trigger and
the entrant prefers to capture larger immediate profits. Thus, it gradually increases
its capacity as exit becomes further away and thus less crucial to take into account
in its investment decision. Consequently, apart from a direct effect on revenue, the
market profitability also indirectly influences the firm’s exit strategies through capac-
ity choice. In particular, exit decisions are hastened in less profitable markets and
delayed in more profitable markets.

3.3.3 Entry decision

Given the optimal exit timing and the optimal capacity choice, the entrant de-
termines its optimal investment timing, or, in other words, its investment threshold,
which we denote by XI

F . It does so by solving the following optimal stopping problem

V ∗(x,QL) = sup
τ1

Ex
[
e−rτ1

(
V1(x,QL, Q

∗
F (x,QL))− δQ∗F (x,QL)

)]
, (3.27)

where τ 1 is a stopping time, Q∗F (x,QL) is given by (3.22). Here V ∗(x,QL) equals to
the value of the active firm in the stopping region and to the value of the option to
invest in the continuation region. The value of this option corresponds to the value
of an idle firm, V0, which together with the investment threshold, XI

F , is defined by
the following proposition.

Proposition 3.8 The value of the idle entrant is given by

V0(x,QL) = AF (QL)xβ1 , (3.28)

where AF (QL) = ÂF (XI
F (QL), QL, Q

∗
F (XI

F (QL), QL)) with

ÂF (x,QL, QF ) = β2
β2 − β1

(1
x

)β1
(
x(1− η(QL +QF ))QF

r − α

(
1− 1

β2

)
−
(
c

r
+ δ

)
QF

− x

β2

(
∂V1(x,QL, QF )

∂QF

− δ
)
∂Q∗F (x,QL)

∂x

)
. (3.29)

The optimal investment trigger XI
F (QL) is a solution with respect to x of

h(x,QL, Q
∗
F (x,QL)) = 0, (3.30)
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where

h(x,QL, QF ) =
(

1− β2
β1

)
BF (QL, QF )

QF

xβ2 +
(

1− 1
β1

)
x(1− η(QL +QF ))

r − α
− c

r
− δ

− x

β1QF

(
∂V1(x,QL, QF )

∂QF

− δ
)
∂QF

∂x
= 0, (3.31)

and BF (QL, QF ) is

BF (QL, QF ) = BB
F (QL, QF )1{QF>QL} +BS

F (QL, QF )1{QF<QL}

+ (λBB
F (QL, QF ) + (1− λ)BS

F (QL, QF ))1{QF=QL}, (3.32)

with λ being the probability that the entrant exits first in a symmetric game, and

BB
F (QL, QF ) =

(
1

XE
D(QL, QF )

)β2 cQF

r(1− β2) , (3.33)

BS
F (QL, QF ) =

(
1

XE
M(QF )

)β2 cQF

r(1− β2) +
(

1
XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α
.

(3.34)

Extensive numerical experiments show that for reasonable parameter values the
level of x at the moment of investment is large enough to satisfy Proposition 3.7.
The intuition behind this is that for smaller x the option value exceeds the value of
investing immediately and the firm waits till the market is large enough. Therefore,
the optimal capacity choice at the moment of entry is consistent with the results of
Proposition 3.7. Clearly, the piecewise structure of the entrant’s optimal capacity
strongly affects its optimal investment timing. For example, it can end up either
being a duopolist or a monopolist upon entry. Naturally, these cases correspond to
two different value curves with the latter scenario resulting in higher profits. As
a result, multiple investment thresholds corresponding to different value functions
may be available to the entrant as long as they are consistent with the boundaries
for the capacity choice, i.e. capacity at the moment of entry should fall into the
specific regions defined in Proposition 3.7. In order to find the optimal strategy of
the entrant for each level of x, we first need to establish whether it is optimal to invest
immediately given the available capacity strategy for the particular value of x. If this
is not the case we need to determine until what moment it is optimal to wait with
investment, or in other words, the threshold corresponding to the capacity strategy,
which will eventually trigger the investment. We do this by comparing the values
of the options to invest for different capacity strategies. Figure 3.5 presents entrant
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values as functions of market profitability for different values of the incumbent’s
capacity choice.
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(c) QL = 0.38.
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(d) QL = 0.41.

Figure 3.5: The value functions of the entrant for the set of parameter values: r = 0.05,
α = 0.2, σ = 0.1, η = 1, δ = 100, c = 20, and different values of QL.

The solid line in Figure 3.5 represent the value of an active entrant. If x is relatively
small the entrant is able to obtain the monopoly value, which corresponds to the
increasing part of the entrant curve before the spike. It is possible because current
output price is low, so it is easier to force the incumbent out of the market. In
a large market this strategy is too costly for the entrant, as a larger capacity is
needed to stimulate the incumbent’s immediate exit. Thus, the entrant operates
in a duopoly. The declining part of the duopoly value after the spike is associated
with the mimicking strategy. As stated earlier, under this strategy the entrant’s
capacity is given by QF = QL − ε. Thus, for a given level of QL the capacity of the
entrant is also fixed in such a way that it always exits last. An increase in market
profitability has two effects on the entrant’s value in this case. On the one hand,
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a larger x means that exit of its rival is farther in the future, affecting the firm’s
value negatively. On the other hand, a larger x increases its revenues, leading to an
increase in value. The mimicking strategy enters the optimal capacity of the entrant
twice – for small QL ∈ (Q̄1, Q̄2] and for large QL ∈ (Q̄3, Q̄4]. In the first case an
increasing effect prevails as the exit is far away in the future so that the firms care
more about higher revenues. In the latter case the exit of the large firm is relatively
close, and therefore the negative effect of an increase in market size dominates. Due
to the latter we observe a decline in the entrant value in the region connecting the
strategies of monopolist and duopolist.

The dashed lines in Figure 3.5 correspond to the values of the idle entrant, or, in
other words, to the value of waiting. It follows that it is optimal for the firm to wait
with investment if the dashed line lies above the solid line. Intuitively, each capacity
strategy results in a different investment timing. For example, in Figure 3.5a it is
optimal for the entrant to invest as a large firm. The investment threshold of a large
duopolist is denoted by XI,W

F . In this case the capacity of the incumbent is so small,
that waiting for a larger market and capturing a larger market share yields a higher
value. Once the capacity of the incumbent increases, taking into account its exit
becomes a more valuable strategy. There exists a maximal market size such that for
a given QL the entrant can enter as a monopolist, which is denoted by XI

F . Since
each strategy is admissible only in a particular region in terms of QL and x, it may
happen that the optimal investment moment given a particular strategy lies outside
the admissible boundaries.

First consider the case of low initial x, i.e. X ∈ [0, XI
F ]. If the monopoly threshold

lies beyond XI
F , given that it aims at the monopoly position, the entrant chooses to

enter the market at the next best alternative, namely, at XI
F . This happens if the

capacity of the incumbent is relatively small, as in this case the entrant has more
incentive to wait for a larger market, as shown in Figure 3.5b. If the capacity of the
incumbent increases further, it hastens the entrant’s investment decision, making the
optimal thresholds first leading to a constrained and then leading to an unconstrained
monopoly available in the corresponding strategic regions. Thus, for low initial x the
entrant waits either until XI

M in the unconstrained monopoly region, or until X̃I
F in

the case of constrained monopoly. The latter situation is illustrated in Figures 3.5c
and 3.5d.

If the initial value of x is so large that forcing the incumbent out of the market
immediately upon entry is not possible anymore, i.e. x > XI

F , the entrant has an
option to wait either until the market is large enough to enter as a duopolist or
until the market is low enough to enter as a monopolist. Thus, in Figures 3.5b and
3.5c waiting also pays off if X ∈ (XI

F , X
I,S
F ), where XI,S

F is the optimal investment
threshold of a small entrant. If the capacity of the incumbent is larger, the optimal
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investment threshold of the small entrant in a duopoly declines and it may occur
below the starting point of the corresponding strategy, which we denote by XI

F , see
Figure 3.5d. Clearly, in this case for X ∈ (XI

F , X
I
F ) the entrant can either enter with

a mimicking capacity, or wait until either XI
F or XI

F is hit. It turns out that in this
case waiting for either of the thresholds to be hit is a preferable strategy as it leads
to a larger value.

We conclude that the introduction of the exit option together with being able to
choose the capacity level has resulted in the following entrant’s investment behavior.
If the capacity of the incumbent is relatively large the entrant has three investment
thresholds. Two of them trigger investment providing a monopoly position for the
entrant. The first threshold occurs if the initial market size is so low that the entrant
waits until it is profitable enough to enter as a monopolist. The second one is present
for intermediate market size, where the entrant has an option to wait until the incum-
bent’s exit threshold is close enough, so that the incumbent is expected to exit soon.
The last investment threshold corresponds to the standard case in the real options
models, i.e. when the market is large enough for the two firms to operate together in
a duopoly. Hence, in the presence of a large incumbent in a small market the entrant
waits until the monopoly threshold is hit and then invests immediately as long as the
monopoly strategy is available. In the case of an intermediate market size it waits
until either monopoly or duopoly threshold is hit, i.e. until the exit is close enough
to force the incumbent out or until the market is large enough to coexist with the
incumbent. Following the recent literature, we will refer to the region between these
thresholds as inaction region or hysteresis region (Decamps et al. (2006)). Lastly, in
a large market the entrant invests immediately.

If the incumbent sets its capacity at an intermediate level, the only difference with
the previous case is that the thresholds that lead to the monopoly situation merge
into one. Thus, the entrant waits for the same moment to invest both in the cases
of small or intermediate market. At the threshold the entrant overinvests to trigger
immediate exit of the incumbent.

If the capacity of the incumbent is small, stimulating its exit becomes so costly
that the entrant prefers to wait until a duopoly is profitable and we are back in the
situation of one investment threshold.

The investment thresholds of the entrant described above are presented in the
following proposition.

Proposition 3.9 There exist a threshold which leads to immediate investment in
a duopoly XI

F,D(QL). The entrant’s monopolization strategy becomes available only
if the capacity of the incumbent is sufficiently large. In this case there exist two
additional investment thresholds: XI

F,M(QL) that leads to the monopoly once being
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hit by x from below, and XI
F,M

(QL) that triggers the monopoly situation from above.

The investment thresholds of the entrant described above as well as the entrant’s
strategies for different capacity levels of the incumbent are illustrated in Figure 3.6.
The dark gray areas in this figure represent the combinations of x and QL such that
the entrant only waits for an increase in x and then enters with the capacity level,
indicated right below the figure. The light gray area corresponds to the hysteresis
region, where the entrant waits either for a decline in market profitability or an
increase and enters at either of the two investment thresholds. In the white parts
of the graph the entrant invests immediately with the capacity level indicated right
above the figure.
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Figure 3.6: The optimal investment strategy of the entrant for the set of parameter
values: r = 0.05, α = 0.02, σ = 0.17, η = 1, δ = 100, and c = 20.

Note that in the region where the entrant sets the capacity level equal to Q̃F ,
the optimal investment threshold lies below the monopoly level. Recall that Q̃F is
the capacity level under a constrained monopoly. In this case the entrant chooses
its capacity in such a way that the duopoly exit threshold XE

D is immediately hit
and the incumbent is forced out of the market. Evidently, as the capacity installed
by incumbent increases the entrant is able to drive it out for larger values of x. As
we observe in Figure 3.6, the entrant gradually increases its entry timing until the
monopoly trigger can be reached.

Another interesting result arises when we allow α, the constant drift in the Brown-
ian motion, to be negative. In this case we observe non-monotonicity in the entrant’s
duopoly threshold. If the capacity level of the incumbent is low and, thus exit is still
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far away, the duopoly threshold increases with the incumbent’s capacity as in Figure
3.6. However, once the incumbent’s capacity becomes sufficiently large, the entrant
chooses to be a smaller firm in order to exit last. At the same time this means that
the exit of the larger firm, the incumbent, becomes closer. Anticipating sooner exit
of its rival, the entrant has an incentive to enter the market sooner and its investment
threshold decreases. This situation is illustrated in Figure 3.7.
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Figure 3.7: The optimal investment strategy of the the entrant for the set of parameter
values: r = 0.05, α = −0.03, σ = 0.17, η = 1, δ = 100, and c = 50.

In general, the entrant considers a monopolization strategy only if the capacity
of the incumbent exceeds a certain threshold. As stated in Proposition 3.9, the
entrant never has an incentive to become a monopolist if the incumbent’s capacity
is sufficiently large. This is because, given that the market share of the opponent is
small, in order to induce a monopoly scenario the entrant either needs to wait until
the market is low enough or to install a large enough capacity. In both cases the
entrant exits rather soon itself. Therefore, for small QL the entrant prefers to extract
greater duopoly rents above becoming a monopolist for a short period. Denote by Q̂L

the minimal value of the incumbent’s capacity for which in a small market benefits
of monopolization outweigh the disadvantages of the sooner exit, or in other words,
Q̂L is the smallest incumbent’s capacity level for which the hysteresis region occurs.
Then Q̂L is the solution of the following system

VM
(

β2c(r−α)
r(β2−1)(1−2ηQL) , QL

)
− δQL = V0

(
β2c(r−α)

r(β2−1)(1−2ηQL) , QL, Q
∗
F,D (x,QL)

)
,

h(x,QL, Q
∗
F,D(x,QL)) = 0,

(3.35)

where h(x,QL, QF ) is defined by (3.31).
Figures 3.8 and 3.9 illustrate how the capacity level Q̂L changes with respect to

different parameter values.
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Figure 3.8: The capacity level Q̂L for the set of parameter values: r = 0.05, α = 0.02,
η = 1, δ = 100, and different values of c and σ.

As can be seen, an increase in production costs, c, results in a smaller level of Q̂L.
This is because larger production costs increase the exit triggers of the firms. Conse-
quently, a smaller capacity of the incumbent is needed to ensure that monopolization
is profitable. An increase in market uncertainty, σ has an opposite effect. The stan-
dard result in the real options literature (see e.g. Dixit and Pindyck (1994)) is that
the firms delay their decisions for higher uncertainty. In particular, the decision to
exit the market is delayed, that is why a larger σ implies that a larger capacity of the
incumbent is needed to trigger the entrant’s monopolization strategy. The effects of
α and r are non-monotonic as it can be seen from Figure 3.9.
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Figure 3.9: The capacity level Q̂L for the set of parameter values: σ = 0.1, η = 1, c = 50,
δ = 100, and different values of r and α.

Consider now the effect of a change in the drift, α, illustrated in Figure 3.9a. When
α is positive the firms expect the market to grow in the future and, as a result, to move
away from the exit threshold. Therefore, as α increases the monopolization strategy
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brings less benefits for the entrant and Q̂L increases. When α is negative, this means
on the one hand that both firms expect to exit the market soon, while the less negative
α becomes, the longer the monopoly period of the entrant is anticipated. Thus, we
can see a decline in Q̂L for negative α, because the monopolization strategy becomes
more attractive. A similar type of non-monotonicity is to be observed considering the
effect of the discount rate if α is positive (see Figure 3.9b). On the one hand, for large
r the firms discount their future payoffs more heavily, or put differently, care more
about the present rather than the exit decisions in the future. Thus, the entrant needs
a larger capacity installed by the incumbent to consider the monopoly scenario. On
the other hand, for relatively small r another effect comes into the picture. Namely,
the exit trigger of the incumbent increases with r, and it becomes easier to drive it
out of the market, i.e. less capacity is needed. Note, that for negative α the latter
effect disappears as that would mean that the entrant expects to exit sooner itself and
to stay for a shorter period in the monopoly. As a result, for negative α the capacity
level Q̂L as a function of the discount rate, r, exhibits only increasing behavior.

3.4 Conclusion
This chapter analyzes entry and exit decisions of the firm in an existing market

under uncertainty. In the presence of an incumbent the entrant launches its market
operations by undertaking an investment in a certain capacity. In our model the
entrant decides not only about its optimal investment threshold but also about the
exit threshold and its optimal capacity level. Thus, the duopoly model with capacity
optimization (Huisman and Kort (2015)) is modified to incorporate an option to
exit. The entrant, while observing the existing quantity in the market installed by the
incumbent, can influence the exit order by choosing capacity. This is because we show
that the firm with the larger capacity exits first. Thus, in order to stay longer in the
market the entrant has to choose a capacity below the incumbent’s level. As a result,
different strategies are available for the entrant in terms of its capacity choice. In
particular, it can choose to mimic the behavior of the incumbent and install a capacity
level that is just below the incumbent’s capacity. When the incumbent’s capacity is
large enough the entrant is able to boost its capacity such that the incumbent exits
immediately. The latter is crucial for the main result of this chapter. Namely, that in
contrast with the basic model, the entrant has multiple investment thresholds. Now
it not only has an option to enter as a duopolist but also to monopolize the market
by forcing the exit of the incumbent. The first situation appears when the market is
big enough for the firms to coexist. The second scenario occurs when the market is
sufficiently small, so that it is relatively easy to drive the competitor out by installing
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a large enough capacity. However, for an intermediate market size a gap between the
two strategies occurs, generating a hysteresis region. Intuitively, within this region the
market is too small to coexist in a duopoly, but yet too big to make monopolization
of the market profitable for the entrant. Furthermore, for negative market growth
prospects the entrant’s investment trigger exhibits a non-monotonicity with respect
to the capacity of the incumbent. At first the investment trigger increases with the
incumbent’s capacity. However, once the incumbent’s capacity becomes sufficiently
large, it starts declining, as the entrant anticipates sooner exit of the incumbent and
is eager to invest sooner.

We have derived important results for the sensitivity of the optimal investment
and exit thresholds with respect to the different parameter values for the monopoly
case. The monopolist exits the market later if: the economic environment is more
uncertain, i.e. σ is large; the market shows better growth prospects, i.e. α is large;
the firm discounts the future payoff less, i.e. r is small. The monopolist enters the
market later when σ is large, while the relation between the entry timing and both α
and r is non-monotonic. For small α the investment threshold declines, as the market
becomes more attractive, while for large α it increases, because the firm has incentives
to install a larger capacity level in order to account for the future growth. A larger r,
on the one hand, implies a smaller discounted revenue stream, but on the other hand
also a smaller discounted production cost stream. The latter effect dominates for the
small r so that the firm will enter earlier, while the former dominates for larger r
inducing the firm to postpone the investment. Furthermore, we have shown that if
the exit option is present the monopolist enters the market earlier.

Lastly, it is important to indicate the possibilities for further research. This chapter
is focused on the decisions of the entrant entering an existing market. However, it is
also interesting to examine the case of a new market where both firms have an option
to invest. In this way we include the decision of the incumbent in the analysis. In
addition, the obtained results are derived for the specific case when firms produce
up to capacity. This assumption can be relaxed by allowing the firms to leave some
capacity idle when the demand level decreases. Moreover, different demand functions
could be considered.
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3.5 Appendix
Proof of Proposition 3.1 The entrant solves the following optimal stopping prob-
lem

V ∗(x) = sup
τ1<τ2,Q

Ex
[∫ τ2

τ1
e−rt (x(1− ηQ)Q− cQ)− e−rτ1δQ

]
. (3.36)

where τ 1 and τ 2 are stopping times, corresponding to the entry and exit decisions,
respectively.

As in Dixit and Pindyck (1994), in order to solve the optimal stopping problem in
(3.36), we split it up into exit and entry problems. The exit problem is to find the
optimal time to abandon leave the market, τ ∗2, such that

Ex
[∫ τ∗

2

0
e−rt (x(1− ηQ)Q− cQ)

]
= sup

τ2
Ex
[∫ τ2

0
e−rt (x(1− ηQ)Q− cQ)

]
. (3.37)

The solution of the problem is represented by the value function of the active firm
is denoted by V M

1 (x,Q) and the optimal exit threshold denoted by XE
M .

The entry problem is to find the optimal time to undertake an investment, τ ∗1, and
the optimal capacity level, Q∗M , such that

Ex
[
e−rτ∗

1(V1(x,Q∗M)− δQ∗M)
]

= sup
τ1,Q

Ex
[
e−rτ1(V1(x,Q)− δQ)

]
. (3.38)

Denote the value of the idle firm by V M
0 (x). Following the solution procedure in

Dixit and Pindyck (1994), the value functions of the idle and the active firms take
the following forms

V M
0 (x) = A1x

β1 + A2x
β2 , (3.39)

V M
1 (x,Q) = B1x

β1 +B2x
β2 + x(1− ηQ)Q

r − α
− cQ

r
, (3.40)

with A1, A2, B1 and B2 being constants, β1, β2 – the roots of the fundamental
quadratic equation 1

2σ
2β(β − 1) + αβ − r = 0. To rule out the possibility of specula-

tive bubbles it should hold that B1 = 0, while A2 = 0 due to the boundary condition
at x = 0, namely, V M

0 (0) = 0. Thus, we can rewrite (3.39) and (3.40) as

V M
0 (x) = A1x

β1 , (3.41)

V M
1 (x,Q) = B2x

β2 + x(1− ηQ)Q
r − α

− cQ

r
. (3.42)
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Consider the optimal exit threshold, XE
M , and the optimal investment threshold,

XI
M . The following boundary conditions must hold6



V M
1 (XI

M , Q))− δQ = V M
0 (XI

M),

∂V M
1 (x,Q)
∂x

∣∣∣∣∣
x=XI

M

+ ∂V1(XI
M , Q)

∂Q

∂Q

∂x

∣∣∣∣∣
x=XI

M

= ∂V M
0 (x)
∂x

∣∣∣∣∣
x=XI

M

,

V M
1 (XE

D , Q) = 0,

∂V M
1 (x,Q)
∂x

∣∣∣∣∣
x=XE

D

= 0.

(3.43)

Plugging in the values of the idle and active monopolist from (3.41) and (3.42) we
get7



−A1X
Iβ1
M +B2X

Iβ2
M + XI

M(1− ηQ)Q
r − α

− cQ

r
− δQ = 0,

−β1A1X
Iβ1−1
M + β2B2X

Iβ2−1
M + (1− ηQ)Q

r − α
= 0,

B2X
Eβ2
M + XE

M(1− ηQ)Q
r − α

− cQ

r
= 0,

β2B2X
Eβ2−1
M + (1− ηQ)Q

r − α
= 0.

(3.44)

Solving for A1, B2, XI
M and XE

M leads to8



(β1 − β2)c
(1− β2)β1r

(
XI
M

XE
M(Q)

)β2

+
(

1− 1
β1

)
XI
M(1− ηQ)
r − α

− c

r
− δ = 0,

A1(Q) = β2
β2 − β1

(
1
XI
M

)β1 (
XI
M(1− ηQ)Q
r − α

(
1− 1

β2

)
−
(
c

r
+ δ

)
Q

)
,

XE
M(Q) = β2c(r − α)

r(β2 − 1)(1− ηQ) ,

B2(Q) =
(

1
XE
M(Q)

)β2 cQ

r(1− β2) ,

(3.45)

and the corresponding values of the idle and active monopolist:

V M
0 (x,Q) = A1(Q)xβ1 , (3.46)

6Here we refer to Q(x) as Q. Thus, in the first two equations of the systems (3.43), (3.44) and
(3.45) it is evaluated at x = XI

M , while in the last two – at x = XE
M .

7Given that ∂V1(x,Q)
∂Q = 0 for the optimal Q.

8The fact that A1(Q) > 0 and the uniqueness of the optimal investment trigger XI
M are verified

numerically.
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V M
1 (x,Q) =

(
x

XE
M(Q)

)β2 cQ

r(1− β2) + x(1− ηQ)Q
r − α

− cQ

r
. (3.47)

Proof of Proposition 3.2 The monopolist maximizes the value of being active on
the market:

maximize
Q

V M
1 (x,Q)− δQ

s.t. Q < Q̃M(x).
We now want to show that this function has a single maximum in the feasible

region of the investment problem. We start by considering the first and the second
order derivatives defined below:

∂(VM
1 (x,Q)− δQ)

∂Q
=
(

x

XE
M (Q)

)β2 c (1− ηQ(1 + β2))
r(1− β2)(1− ηQ) + x(1− 2ηQ)

r − α
− c

r
− δ, (3.48)

∂2(V1(x,Q)− δQ)
∂Q2 =

(
r(β2 − 1)
β2c

)β2−1 ( x

r − α

)β2 η(2− (β2 + 1)ηQ)
(1− ηQ)2−β2

− 2ηx
r − α

. (3.49)

In order for the firm to enter the market it should hold that x > XE
M(Q); otherwise

it will immediately exit. In order for the monopolist to enter the market with positive
capacity the following should hold x > XE

M(0) = β2c(r−α)
r(β2−1) . Given this and the fact that

β2 < 0 it holds that ∂2(V1(x,Q)−δQ)
∂Q2

∣∣∣∣∣
Q=0

= 2ηx
r−α

((
r(β2−1)x
β2c(r−α)

)β2−1
− 1

)
< 0. Moreover,

limQ→ 1
η

∂2(V1(x,Q)−δQ)
∂Q2 = ∞.9 Note that the second order derivative increases with

Q and has a single root, as ∂3(V1(x,Q)−δQ)
∂Q3 =

(
(β2−1)rx
β2c(r−α)

)β2 cη2β2(−3+(β2+1)ηQ)
r(1−ηQ)3−β2 > 0. This

means that the first order derivative is first declining with Q and then is increasing.
Translating the condition x > XE

M(Q) in terms of the capacity level it should hold that

0 ≤ Q < Q̃M(x). Note that by construction ∂(V1(x,Q)−δQ)
∂Q

∣∣∣∣∣
Q=Q̃M (x)

= −δ < 0. This

implies that there exist two possibilities depending on the sign of ∂(V1(x,Q)−δQ)
∂Q

∣∣∣∣∣
Q=0

:

either the function V M
1 (x,Q)− δQ, which takes the value of zero for zero capacity, is

first increasing and then decreasing or is strictly decreasing for the considered range
of Q. In the latter scenario the optimal capacity choice is 0, meaning that the firm
will forgo its investment option. In the former scenario there exists a single maximum
defined by the first order condition.10

9Capacity is defined such that 0 ≤ Q ≤ 1
η so that the prices cannot be negative.

10The uniqueness of the solution of (3.50) is verified numerically.
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The resulting optimal capacity level Q∗M(x) is determined by11

(
x

XE
M(Q)

)β2 c (1− ηQ(1 + β2))
r(1− β2)(1− ηQ) + x(1− 2ηQ)

r − α
− c

r
− δ = 0. (3.50)

The optimal capacity level at the investment threshold can be found by solving
the following system:

(β1 − β2)c
(1− β2)β1r

(
x

XE
M(Q)

)β2

+
(

1− 1
β1

)
x(1− ηQ)
r − α

− c

r
− δ = 0,

(
x

XE
M(Q)

)β2 c (1− ηQ(1 + β2))
r(1− β2)(1− ηQ) + x(1− 2ηQ)

r − α
− c

r
− δ = 0.

(3.51)

Combining the equations in the above system we get

1− ηQ(β1 + 1)
β1 − β2

(
(1− β2)x
r − α

+ β2
1− ηQ

(
c

r
+ δ

))
= 0. (3.52)

From (3.52) it follows that either Q∗M = 1
η(β1 + 1) or the expression in the paren-

theses is equal to zero, i.e. XI
M(Q) = β2(r − α)

(β2 − 1)(1− ηQ)

(
c

r
+ δ

)
. Plugging the latter

back into (3.51) and solving for Q gives Q∗ = 1
η(β2 + 1) . If β2 < −1 this gives a neg-

ative capacity, whereas the complementary case when β2 > −1, leads to the negative
prices, P (x) = xβ2

β2 + 1 < 0. Therefore, we conclude that

Q∗M = 1
η(β1 + 1) . (3.53)

The corresponding XI∗
M is implicitly defined by12

−
(

β1(β2 − 1)rx
(β1 + 1)β2(r − α)c

)β2 (β1 − β2)c
β1(β2 − 1)r + (β1 − 1)x

(β1 + 1)(r − α) −
(
c

r
+ δ

)
= 0. (3.54)

The optimal exit threshold XE∗
M is given by

XE∗

M = β2(β1 + 1)(r − α)c
β1(β2 − 1)r . (3.55)

11Given that the second order condition for a maximum, ∂
2(V1(x,Q)−δQ)

∂Q2

∣∣
Q=Q∗

M
(x) < 0, is satisfied.

The first order condition (3.50) also ensures that the smooth pasting condition is correctly specified
as ∂V1(XI

M ,Q)
∂Q = 0 for the optimal capacity level Q.

12We choose the root such that x > (β1+1)β2(r−α)
β1(β2−1)

(
c
r + δ

)
, otherwise A1(Q) is negative.
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Proof of Proposition 3.3 In what follows we obtain the explicit expressions for the
derivatives of the optimal exit threshold with respect to different parameter values.
We first consider the exit threshold for the fixed capacity level, XE

M , then we look at
the optimal exit threshold, XE∗

M , i.e. the exit threshold for the optimal capacity level.

1. Sensitivity with respect to the drift, α.

The derivative ofXE
M , the exit threshold for the fixed capacity level, with respect

to α is given by the following expression

∂XE
M

∂α
= ∂

∂α

(
β2c(r − α)

r(β2 − 1)(1− ηQ)

)
= − c

r(1− ηQ)

 ∂β2
∂α

(r − α) + β2(β2 − 1)
(β2 − 1)2

 .
(3.56)

Note first that ∂β2
∂α

= β2√(
α−σ2

2

)2
+2rσ2

and
√(

α− σ2

2

)2
+ 2rσ2 = −β2σ

2−
(
α− σ2

2

)
. Plugging this back yields

∂XE
M

∂α
= cβ2
r(1− ηQ)

−(r − α)− (β2 − 1)
√(

α− σ2

2

)2
+ 2rσ2

(β2 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



= cβ2
r(1− ηQ)

−(r − α)− (β2 − 1)
(
−β2σ

2 −
(
α− σ2

2

))
(β2 − 1)2

√(
α− σ2

2

)2
+ 2rσ2



= cβ2
r(1− ηQ)

 1
2σ

2β2
2 +

(
α− σ2

2

)
β2 − r + σ2

2

(
β2

2 − 2β2 + 1
)

(β2 − 1)2
√(

α− σ2

2

)2
+ 2rσ2


= cβ2σ

2

2r(1− ηQ)
√(

α− σ2

2

)2
+ 2rσ2

< 0. (3.57)

The derivative of the optimal capacity level with respect to α is given by

∂Q∗

∂α
= β1

(β1 + 1)2η

√(
α− σ2

2

)2
+ 2rσ2

> 0. (3.58)

Consider now the optimal exit threshold for the optimal capacity level Q∗ =
1

η(β1+1) . Applying the multiplication rule we can write the following

∂XE∗
M

∂α
= ∂

∂α

(
β2(r − α)c

r(β2 − 1)(1− ηQ∗)

)
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=
(

1
1− ηQ∗

)
∂

∂α

(
β2(r − α)c
r(β2 − 1)

)
+ cβ2(r − α)

r(β2 − 1)
∂

∂α

(
1

1− ηQ∗

)

= c(β1 + 1)β2σ
2

2rβ1

√(
α− σ2

2

)2
+ 2rσ2

+ 1

β1

√(
α− σ2

2

)2
+ 2rσ2

cβ2(r − α)
r(β2 − 1)

= cβ2

rβ1

√(
α− σ2

2

)2
+ 2rσ2

(
(β1 + 1)σ2

2 + (r − α)
(β2 − 1)

)
(3.59)

Here the expression in the brackets can be simplifies as follows

(β1 + 1)σ2

2 + r − α
β2 − 1 =

r + σ2

2 +
√(

α− σ2

2

)2
+ 2rσ2 − (r − α)

α+σ2
2 +

√(
α−σ2

2

)2
+2rσ2

σ2

= σ2. (3.60)

As a result, it holds that

∂XE∗
M

∂α
= cβ2σ

2

rβ1

√(
α− σ2

2

)2
+ 2rσ2

< 0. (3.61)

2. Sensitivity with respect to the uncertainty, σ.

The derivative of the exit trigger for a given capacity level with respect to σ is
negative:

∂XE
M

∂σ
= ∂XE

M

∂β2

∂β2
∂σ

< 0, (3.62)

because ∂β2
∂σ

= 2(r−αβ2)

σ

√(
α−σ2

2

)2
+2rσ2

> 0, and ∂XE
M

∂β2
= − c(r−α)

r(β2−1)2(1−ηQ) < 0.

Note that
∂β1
∂σ

= − 2 (r − αβ1)

σ

√(
α− σ2

2

)2
+ 2rσ2

< 0, (3.63)

as

r − αβ1 = r −
−α

(
α− σ2

2

)
+ α

√(
α− σ2

2

)2
+ 2rσ2

σ2

=

√(
α
(
α− σ2

2

)
+ rσ2

)2
−
√(

α
(
α− σ2

2

))2
+ 2α2rσ2

σ2

=

√
α
(
α− σ2

2

)2
+ 2α2rσ2 + σ4r(r − α)−

√(
α
(
α− σ2

2

))2
+ 2α2rσ2

σ2 > 0.

(3.64)
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Hence,
∂Q∗

∂σ
= ∂Q∗

∂β1

∂β1
∂σ

= 2 (r − αβ1)

ησ(β1 + 1)2
√(

α− σ2

2

)2
+ 2rσ2

> 0. (3.65)

Taking into account the above observations we can derive the expression for the
optimal exit threshold. Applying the multiplication rule we get
∂XE∗

M

∂σ
= ∂

∂σ

(
β2(r − α)c

r(β2 − 1)(1− ηQ∗)

)
=
( 1

1− ηQ∗
)
∂

∂σ

(
β2(r − α)c

r(β2 − 1)(1− ηQ∗)

)
+ cβ2(r − α)

r(β2 − 1)
∂

∂σ

( 1
1− ηQ∗

)
= − 2c(r − α)(β1 + 1)(r − αβ2)

r(β2 − 1)2β1σ

√(
α− σ2

2

)2
+ 2rσ2

+ 2 (r − αβ1)

σβ2
1

√(
α− σ2

2

)2
+ 2rσ2

cβ2(r − α)
r(β2 − 1)

= 2c(r − α)

r(β2 − 1)β1σ

√(
α− σ2

2

)2
+ 2rσ2

(
−(β1 + 1)(r − αβ2)

(β2 − 1) + (r − αβ1)β2
β1

)

(3.66)

The last expression can be simplified using the fact that β1β2 = − 2r
σ2 and

β1 + β2 = 1− 2α
σ2 as the roots of the fundamental quadratic equation:

−(β1 + 1)(r − αβ2)
(β2 − 1) + (r − αβ1) β2

β1

= 2r
β1

(
β2r − αβ1β2

2r − (β1 + 1)(β1r − αβ1β2)
2(β2 − 1)r

)

= 2r
β1

1
2

(2α
σ2 + β2

)
−

(β1 + 1)
(

2α
σ2 + β1

)
2(β2 − 1)


= 2r
β1

(
−2αβ1

σ2 + 2αβ2
σ2 − 2α

σ2 − 2α
σ2 − β2

1 − β1 + β2
2 − β2

)
2(β2 − 1)

= 2r
β1

(
(β2 − β1)

(
2α
σ2 + β1 + β2

)
− 4α

σ2 − (β1 + β2)
)

β12(β2 − 1)

= 2r
β1

(
2α
σ2 − 2α

σ2 + β2 + β2 − 1− 1
)

2(β2 − 1)

= 2r
β1
. (3.67)

Therefore, the optimal exit trigger declines with uncertainty.
∂XE∗

M

∂σ
= 4c(r − α)

r(β2 − 1)β2
1σ

√(
α− σ2

2

)2
+ 2rσ2

< 0. (3.68)
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3. Sensitivity with respect to the discount rate, r.

To determine the sign of the derivative with respect to the discount rate we use
the following observations. Fisst, that β1β2 = − 2r

σ2 , second, β1 + β2 = 1 − 2α
σ2 ,

third,
√(

α− σ2

2

)2
+ 2rσ2 = −β2σ

2 −
(
α− σ2

2

)
. Lastly we also use the following

expression ∂β2
∂r

= − 1√(
α−σ2

2

)2
+2rσ2

. As a result, for the exit threshold for the

fixed capacity level we obtain

∂XE
M

∂r
= c

r(1− ηQ)

(
β2(β2 − 1)αr −

∂β2
∂r (r − α)

(β2 − 1)2

)

= c

r(1− ηQ)


α
r (β2 − 1)β2

√(
α− σ2

2

)2
+ 2rσ2 + (r − α)

(β2 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



= c

r(1− ηQ)

 α
r

(
(β2 − 1)β2

(
−
(
α− σ2

2

)
− β2σ

2
)

+ r2

α − r
)

(β2 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



= c

r(1− ηQ)

 α
r

(
β2

2
(
−α− β2σ

2)+ β2
2σ

2 + r2

α + 1
2σ

2β2
2 +

(
α− σ2

2

)
β2 − r

)
(β2 − 1)2

√(
α− σ2

2

)2
+ 2rσ2



= c

r(1− ηQ)

−β2σ
2
(

2α2β2
rσ2 + 2αβ2

2
r − 2αβ2

r − 2r
β2σ

2

)
2(β2 − 1)2

√(
α− σ2

2

)2
+ 2rσ2



= c

r(1− ηQ)

− β2σ
2
(
−4α2

σ4 − 4αβ2
σ2 + 4α

σ2 + β2
1

)
2β1(β2 − 1)2

√(
α− σ2

2

)2
+ 2rσ2



= c

r(1− ηQ)

−β2σ
2
((
−2α
σ2 − β2 + 1

)2
−
(
−2α
σ2 − β2 + 1

)2
+ (β2 − 1)2

)
2β1(β2 − 1)2

√(
α− σ2

2

)2
+ 2rσ2


= − β2cσ

2

2β1r(1− ηQ)
√(

α− σ2

2

)2
+ 2rσ2

> 0. (3.69)

Now, for the optimal capacity level it holds that

∂Q∗

∂r
= − 1

(β1 + 1)2η

√(
α− σ2

2

)2
+ 2rσ2

< 0. (3.70)

Taking into account (3.60) and (3.70) and applying the multiplication rule, it
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can be shown that the optimal exit threshold increases with r:

∂XE∗
M

∂r
= ∂

∂r

(
β2(r − α)c

r(β2 − 1)(1− ηQ∗)

)

=
(

1
1− ηQ∗

)
∂

∂r

(
β2(r − α)c

r(β2 − 1)(1− ηQ∗)

)
+ cβ2(r − α)

r(β2 − 1)
∂

∂r

(
1

1− ηQ∗

)

= − β2(β1 + 1)cσ2

2β2
1r

√(
α− σ2

2

)2
+ 2rσ2

− 1

β2
1

√(
α− σ2

2

)2
+ 2rσ2

cβ2(r − α)
r(β2 − 1)

= − β2cσ
2

β2
1r

√(
α− σ2

2

)2
+ 2rσ2

> 0. (3.71)

Proof of Proposition 3.4 Denote the investment threshold in the model without
exit option by XI

M,0. As it follows from the analysis in Huisman and Kort (2015), the
optimal investment threshold for the fixed capacity XI

M,0 is given by

XI
M,0 =

β1

(
c
r

+ δ
)

(r − α)
(β1 − 1)(1− ηQ) , (3.72)

while the substitution of the optimal capacity level Q∗ = 1
η(β+1) gives

XI∗

M,0 =
(β1 + 1)

(
c
r

+ δ
)

(r − α)
(β1 − 1) . (3.73)

Note that in the model with exit option the optimal investment threshold XI∗
M is

implicitly defined by:

−
(

β1(β2 − 1)rx
(β1 + 1)β2(r − α)c

)β2 (β1 − β2)c
β1(β2 − 1)r + (β1 − 1)x

(β1 + 1)(r − α) −
(
c

r
+ δ

)
= 0, (3.74)

whereas XI∗
M,0 solves the equation which contains the latter two terms of (3.74),

namely:

(β1 − 1)x
(β1 + 1)(r − α) −

(
c

r
+ δ

)
= 0. (3.75)

Given that the first term of (3.74) is positive it holds that

XI∗

M < XI∗

M,0. (3.76)

Now we will show how a change in α influences the investment threshold. As
pointed out in the main text, we observe the non-monotonic behavior of the derivative
of the entry threshold with respect to α. In fact, the reason behind that is that we
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incorporate capacity optimization into the model. In order to demonstrate this we
first consider the sign of this derivative when the capacity level is fixed. Note that
∂β1
∂α

= − β1√(
α−σ2

2

)2
+2rσ2

and
√(

α− σ2

2

)2
+ 2rσ2 = β1σ

2 +
(
α− σ2

2

)
.

∂XI
M,0

∂α
= ∂

∂α

β1

(
c
r

+ δ
)

(r − α)
(β1 − 1)(1− ηQ)

 = −
c
r

+ δ

1− ηQ

 β1
β1 − 1 +

(r − α)∂β1
∂α

(β1 − 1)2



= −
c
r

+ δ

1− ηQ


β1

β1 − 1 +

(r − α) −β1√(
α−σ2

2

)2
+2rσ2

(β1 − 1)2



= −

(
c
r

+ δ
)
β1

(1− ηQ)

(β1 − 1)
√(

α− σ2

2

)2
+ 2rσ2 − (r − α)

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



= −

(
c
r

+ δ
)
β1

(1− ηQ)

(β1 − 1)
(
β1σ

2 +
(
α− σ2

2

))
− (r − α)

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



= −

(
c
r

+ δ
)
β1

(1− ηQ)

 1
2σ

2β2
1 +

(
α− σ2

2

)
β1 − r + 1

2 (β1 − 1) 2σ2

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2


= −

(
c
r

+ δ
)
β1σ

2

2(1− ηQ)
√(

α− σ2

2

)2
+ 2rσ2

< 0. (3.77)

However, once we add capacity optimization the derivative is no longer monotonic
in α

∂XI
M,0

∂α
= ∂

∂α

(β1 + 1)
(
c
r

+ δ
)

(r − α)
(β1 − 1)

 =
(
c

r
+ δ

)−β1 + 1
β1 − 1 −

2(r − α)∂β1
∂α

(β1 − 1)2



=
(
c

r
+ δ

)−(β2
1 − 1)

√(
α− σ2

2

)2
+ 2rσ2 + 2β1(r − α)

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



=
(
c

r
+ δ

)−(β2
1 − 1)

(
β1σ

2 +
(
α− σ2

2

))
+ 2β1(r − α)

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2



=
(
c

r
+ δ

)2β1

(
1
2σ

2β2
1 + β1

(
α− σ2

2

)
− r

)
− (β1 − 1)2

(
α− σ2

2

)
(β1 − 1)2

√(
α− σ2

2

)2
+ 2rσ2
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= −

(
c
r

+ δ
) (
α− σ2

2

)
√(

α− σ2

2

)2
+ 2rσ2

. (3.78)

The expression above is negative when α < σ2

2 , and when α > σ2

2 it is positive.
Similarly, we observe a non-monotonic behavior of the entry threshold when a

change in r is considered. However, in this case the non-monotonicity comes from
the fact that we add production costs that are discounted each period. The derivative
of the entry threshold with respect to r is

∂XI
M,0
∂r

= ∂

∂r

(
(β1 + 1)

(
c
r + δ

)
(r − α)

(β1 − 1)

)

=β1 + 1
β1 − 1

(
−c(r − α)

r2 + c

r
+ δ

)
−
(
c

r
+ δ

) 2(r − α)
(β1 − 1)2

∂β1
∂r

=
(
αc

r2 + δ

)β1 + 1
β1 − 1 −

2r(r − α)
(

c+δr
αc+δr2

)
(
β2

1 − 1
)√(

α− σ2

2

)2
+ 2rσ2



=
(
αc

r2 + δ

)(β2
1 − 1

)
−

2(r − α)− 2(r − α) + 2r(r − α)
(

c+δr
αc+δr2

)
(β1 − 1)2

√(
α− σ2

2

)2
+ 2rσ2



=
(
αc

r2 + δ

)
(
β2

1 − 1
) (
β1σ

2 + α− σ2

2

)
− 2(r − α)

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2

+
2(r − α)

(
1− r

(
c+δr
αc+δr2

))
(β1+1
β1−1

√(
α− σ2

2

)2
+ 2rσ2



=
(
αc

r2 + δ

)1 + σ2√(
α− σ2

2

)2
+ 2rσ2

−
2(r − α)2 c

αc+δr2

(β1 − 1)2
√(

α− σ2

2

)2
+ 2rσ2

 . (3.79)

Evidently, when c = 0 the last term in the brackets disappears and the derivative
is always positive for the considered set of parameter values:

∂XI
M,0

∂r
= δ

1 + σ2√(
α− σ2

2

)2
+ 2rσ2

 > 0. (3.80)

Lastly, consider the sensitivity of the entry threshold with respect to uncertainty.
Taking into account that ∂β1

∂σ
is given by (3.63), we have

∂XI
M,0

∂σ
=
∂XI

M,0

∂β1

∂β1
∂σ

=
4(r − α)

(
c
r

+ δ
)

(r − αβ1)

(β1 − 1)2σ

√(
α− σ2

2

)2
+ 2rσ2

> 0. (3.81)
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Proof of Proposition 3.5 Similarly to the monopoly case, the value of the firm i,
which constitutes a duopoly with firm j and possesses an exit option is given by

V D
1 (x,Qi, Qj) = Bix

β2 + x(1− η(Qi +Qj))Qi

r − α
− cQi

r
. (3.82)

Applying the boundary conditions
V D

1 (XE
D , Qi, Qj) = 0,

∂V D
1 (x,Qi, Qj)

∂x

∣∣∣∣∣
x=XE

D

= 0,
(3.83)

we obtain the following duopoly exit threshold

XE
D(Qi, Qj) = β2c(r − α)

r(β2 − 1)(1− η(Qi +Qj))
. (3.84)

As can be seen the capacity levels of the firms i and j enter the expression for the
exit threshold only as a sum. Thus, we can conclude that both firms have the same
duopoly exit threshold. Yet the monopoly thresholds are different if Qi 6= Qj. This
can be seen from the expression for the monopoly threshold (3.85), which is derived
using (3.45):

XE
M(Qi) = β2c(r − α)

r(β2 − 1)(1− ηQi)
. (3.85)

Moreover, if Qi > Qj, then XE
M(Qi) > XE

M(Qj) and visa versa. It is now easy to
show that if Qi > Qj then firm i will always exit first at the duopoly threshold. This
scenario is indeed an equilibrium, as if j exits at the duopoly threshold, XE

D(Qi, Qj),
it is optimal for firm i to leave once x hits XE

M(Qi). The opposite scenario, however,
is not an equilibrium. This is because if j exits at its monopoly threshold, XE

M(Qj),
there is still the region where firm i prefers to stay on the market and get monopoly
profits, namely, when X ∈ (XE

M(Qi), XE
M(Qj)]. Hence, the firm with a larger capacity

exits the market first. Applying this result for the incumbent-entrant setting we
obtain (3.14) and (3.15). Note that when the firms are of the same size, QL = QF ,
both strategies are equilibrium strategies, and as a result, in a symmetric game it is
unclear which firm exits first when we consider pure strategies.

Proof of Proposition 3.6 As it follows from Proposition 5 the value of the active
entrant is

V1(x,QF , QL) = BFx
β2 + x(1− η(QF +QL))QF

r − α
− cQF

r
, (3.86)
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where BF differs depending on the exit order. If the entrant is a larger firm, it will
leave the market once x hits XE

D(QL, QF ), which is the optimal exit threshold for a
large firm in a duopoly. Thus, it must hold that

V1(XE
D(QL, QF ), QF ) = 0, (3.87)

which after plugging in (3.86) and solving for BF yields

BB
F (QL, QF ) =

(
1

XE
D(QL, QF )

)β2 cQF

r(1− β2) . (3.88)

In the complementary case, when the entrant is the smaller firm, it becomes a
monopolist as x hits XE

D(QL, QF ), and then exits at XE
M(QF ) in case x declines

further. Hence, the following condition must be satisfied

V1(XE
D(QL, QF ), QF ) = V M

1 (XE
D(QL, QF ), QF ), (3.89)

where V M
1 (x,Q) is given by (3.47). This gives the following expression for BF

BS
F (QL, QF ) =

(
1

XE
M(QF )

)β2 cQF

r(1− β2) +
(

1
XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α
.

(3.90)

Let λ be the probability that the entrant exits first in a symmetric game, then

BF (QL, QF ) = BB
F (QL, QF )1{QF>QL} +BS

F (QL, QF )1{QF<QL}
+ (λBB

F (QL, QF ) + (1− λ)BS
F (QL, QF ))1{QF=QL}. (3.91)

To obtain the value of the large entrant we plug in BB
F (QL, QF ) from (3.88) into

(3.86), for the value of the small follower – and BS
F (QL, QF ) from (3.90), which gives

V B
1 (x,QL, QF ) =

(
x

XE
D(QL, QF )

)β2 cQF
r(1− β2) + x(1− η(QL +QF ))QF

r − α
− cQF

r
, (3.92)

V S
1 (x,QL, QF ) =

(
x

XE
M (QF )

)β2 cQF
r(1− β2)+

(
x

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α

+ XQF (1− η(QL +QF ))
r − α

− cQF
r
. (3.93)

The value of the symmetric game, when the incumbent and the entrant are of the
same size, depends on the probability that either of the firms will leave the market
first. For the entrant in this case it is a weighted average of the two scenarios,



88 Capacity Choice in a Duopoly with Endogenous Exit
∣∣ Chapter 3

V B
1 and V S

1 , with respect to the probability of leaving the market first given that
the incumbent has already invested. This yields the value for the active entrant
determined by

V1(x,QL, QF ) =



V B
1 (x,QL, QF ) if QF > QL,

V S
1 (x,QL, QF ) if QF < QL,

λV B
1 (x,QL, QF ) + (1− λ)V S

1 (x,QL, QF ) if QF = QL,

(3.94)

which is equivalent to

V1(x,QL, QF ) = V B
1 1{QF>QL} + (λV B

1 + (1− λ)V S
1 )1{QF=QL} + V S

1 1{QF<QL}.(3.95)

Proof of Proposition 3.7 Firstly, it is possible to show that if x → ∞, then
V S

1 (x,QL, QF ) = V B
1 (x,QL, QF ). For x <∞ it holds that

V S
1 (x,QL, QF )− V B

1 (x,QL, QF ) = cQF
r(1− β2)

(
x

XE
D(QL, QF )

)β2 [ ( 1− ηQF
1− η(QL +QF )

)β2

−1− ηQLβ2
1− η(QL +QF )

]
. (3.96)

For β2 < 0 and QF > 0, the first two multipliers in the difference are positive,
thus, it has the same sign as the expression in the square brackets, which we denote
by g(QL). Note first that g(0) = 0. Moreover, taking a derivative with respect to QL

gives

∂g(QL)
∂QL

= −β2η(1− ηQF )
(1− η(QF +QL))2

1−
(

1− ηQF

1− η(QF +QL)

)β2−1
 > 0. (3.97)

The derivative above is positive, because β2 − 1 < −1 and 1−ηQF
1−η(QL+QF ) > 1. Given

(3.97), the value of the symmetric game, being a weighted average of V B
1 (x,QL, QL)

and V S
1 (x,QL, QL), is always smaller or equal than the value of the small firm. Thus,

for some positive probability to exit first in a symmetric game, λ, it is always possible
to find an ε small enough to ensure that installing a capacity QL − ε and, hence,
becoming a small firm, brings a larger value.

Case 1: Big follower. Analogous to the monopoly case the follower value
V B

1 (x,QL, QF ) for QF < Q̃F (x,QL)13 can be proved to have a single maximum14,
which is defined by the following first order condition

∂(V B
1 (x,QL, QF )− δQF )

∂QF

= 0, (3.98)

13The case QF ≥ Q̃F (x,QL) is not relevant for V B1 (x,QL, QF ), because then the large firm exits
the market and its value is equal to 0.

14The proof is completely analogous to the proof in Proposition 3.2 for the monopoly case.
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or rewritten(
x

XE
D(QL, QF )

)β2 c

r(1− β2)

(
1− β2ηQF

1− η(QF +QL)

)
+ x(1− ηQL − 2ηQF )

r − α
− c

r
− δ = 0.

(3.99)

We denote the capacity level corresponding to (3.99) by QB
F .

Case 2: Small follower. The value of the small follower, V S
1 (x,QL, QF )− δQF ,

is no longer a unimodal function of its capacity choice. Its shape and, as a result, the
location of the maximum may change depending on the parameter values. In order
to describe the behavior of this function we need to determine the signs of its first
and second order derivatives with respect to QF defined below:

∂(V S
1 (x,QL, QF )− δQF )

∂QF
=
(

x

XE
M (QF )

)β2 c(1− ηQF (β2 + 1))
r(1− β2)(1− ηQF ) + X (1− ηQL − 2ηQF )

r − α

−
(

x

XE
D(QL, QF )

)β2 cβ2ηQL(1− η(β2QF +QL))
r(1− β2)(1− η(QF +QL))2 −

c

r
− δ,

(3.100)

∂2(V S
1 (x,QL, QF )− δQF )

(∂QF )2 =
(

x

XE
M (QF )

)β2 β2cη(2− ηQF (β2 + 1))
r(β2 − 1)(1− ηQF )2 − 2ηx

r − α

−
(

x

XE
D(QL, QF )

)β2 β2cη
2QL(2− 2ηQL − β2QF )
r(1− η(QF +QL))3 . (3.101)

The sign of the expressions above cannot be uniquely determined. However, it
is possible to describe the behavior of these two functions for the different parame-
ter values. First, we can show that (3.101) is a strictly increasing function of QF .
Consider the derivative ∂3(V S1 (x,QL,QF )−δQF )

(∂QF )3 given by expression (3.102). It is always
positive for x > 0 and QL > 0, because β2 < 0 and the price is non-negative,
1− η(QL +QF ) ≥ 0:

cβ2η
2

r

(
x

XE
M (QF )

)β2 ((β2 + 1)ηQL − 3
(1− ηQL)3 + (2− β2)ηQL(β2ηQL − 3(1− ηQL))

(1− η(QL +QF ))4−β2(1− ηQL)β2

)
≥ 0.

(3.102)

Moreover, rewriting (3.101) as
((β2 − 1)rx
β2c(r − α)

)β2 β2cη

(β2 − 1)r

(2− (β2 + 1)ηQF
(1− ηQF )2−β2

− (β2 − 1)ηQL(2− β2ηQF − 2ηQL)
1− ηQF − ηQL)3−β2

)
− 2ηx
r − α

, (3.103)
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it can be seen that lim
QF→−∞

∂2(V S1 (x,QL,QF )−δQF )
(∂QF )2 = −∞ and lim

QF→ 1
η

∂2(V S1 (x,QL,QF )−δQF )
(∂QF )2 =

∞. This means the second order derivative (3.101) always has a single root in the
interval (−∞, 1

η
]. Thus, we can conclude that the first order derivative (3.100) is

a convex function of QF with a single minimum reached in QF ∈ (−∞, 1
η
]. Such

a function in general may have either two roots (when its minimum is smaller than
zero), one root (when its minimum value is exactly zero), or none (when the minimum
value is positive). On the other hand, the negative roots will not affect the shape
of the value function as it is only defined for QF ≥ 0. Thus, the sign of the value
function to a large extent depends on the location of the minimum of its first order
derivative. We will now demonstrate how it changes as we increase QL and/or x.

First, we can show that the first order derivative (3.100) evaluated at its minimum
is an increasing function of QL for QF ≥ 0 and decreasing for QF < 0. Consider first
the derivative of ∂(V S1 (x,QL,QF )−δQF )

∂QF
with respect to QL, which equals to

ηx

r − α

(
1− (β2 − 1)η (QF (1− ηQF − β2ηQL) +QL(1− ηQL))

(1− ηQF − ηQL)2

)(
x

XE
D(QL, QF )

)β2−1

− 1.

(3.104)

At the minimum point the second order condition should be satisfied, i.e. (3.101)
should be larger than zero. Dividing (3.101) by −2 and adding it to (3.104) yields

2(1− η(QF +QL))2 + (β2 − 1)ηQF (2ηQF + β2ηQL − 2)
(1− η(QF +QL))3−β2

+
((β2 − 1)rx
β2c(r − α)

)β2−1 ηX((β2 + 1)ηQF − 2)
2(r − α)(1− ηQF )2−β2

. (3.105)

The sign of (3.105) is the same as the sign of (3.104) taking into account that the
latter is evaluated at argmin

QF

∂(V S1 (x,QL,QF )−δQF )
∂QF

. We can demonstrate now that for

QF ≥ 0 the derivative of (3.105) with respect to QL is positive:

(β2 − 2)(β2 − 1)η (3ηQF (1− ηQF )− β2η
2QFQL)

(1− η(QF +QL))4−β2
+ 2(1− β2)η

(1− η(QF +QL))2−β2
> 0,

(3.106)

and that (3.105) evaluated at minimum QL = 0 is non-negative:

(β2 − 1)η(−QF )(1− ηQF )β2−2 ≥ 0. (3.107)

This means that for QF ≥ 0 the expression given by (3.105) is always positive and
so is (3.104) evaluated at argmin

QF

∂(V S1 (x,QL,QF )−δQF )
∂QF

. Note, however, that for QF < 0

the sign of both (3.106) and (3.107) changes and the derivative of (3.105) with respect
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to QL becomes negative. Thus, we can conclude that as QL increases, the minimum
of (3.100) as a function of QL increases for QF ≥ 0 and decreases for QF < 0.

In order to determine how a change in QL affects the location of the minimum
of (3.100) we set the second order condition (3.103) to zero and apply the implicit
function theorem. This gives

dQF
dQL

=

−β2ηQF (1− ηQF ) +
(
(β2 − 1)2 + 1

)
η2QFQL + 2(1− ηQL)(1− ηQF − (β2 − 1)ηQL)

(1− η(QF +QL))4−β2
(β2 + 1)ηQF − 3
(1− ηQF )3−β2

+ (β2 − 2)ηQL(3(1− ηQL)− β2ηQF )
< 0.

(3.108)

Hence, an increase in QL results into a decrease in the location of the minimum
of the first order derivative in (3.100) together with an increase in its y-coordinate.
This allows us to conclude that the largest possible value of the minimum of the first
order derivative (3.100) is reached for QF = 0. This allows to determine the number
of roots that the first order derivative has for different values of QL and x. Namely, if
the second order condition is satisfied for QF = 0, i.e. ∂2

∂Q2
F
V S

1 (x,QL, QF )
∣∣∣
QF=0

= 0,
and at the same time

1. ∂
∂QF

V S
1 (x,QL, QF )

∣∣∣
QF=0

≤ 0, then the first order derivative always has two roots
(or one when it touches the x-axis),

2. ∂
∂QF

V S
1 (x,QL, QF )

∣∣∣
QF=0

> 0, then the first order derivative has two roots for
small QL (or one when it touches the x-axis) and none for large QL.

Now it is possible to find a specific value of the market size, x, to distinguish these

two scenarios. First, consider the derivative of ∂V S1 (x,QL,QF )
∂QF

∣∣∣∣∣
QF=0

with respect to QL:

∂

∂QL

(
∂V S

1 (x,QL, QF )
∂QF

∣∣∣∣
QF=0

)
= ηx

r − α

(
−1 +

((β2 − 1)rx
β2c(r − α)

)β2−1 (1− β2ηQL)
(1− ηQL)2−β2

)
.

(3.109)

This function is clearly increasing in QL. Moreover, if QL = 0 its value is neg-

ative, while for QL → 1
η
it becomes infinitely large. Thus, ∂V S1 (x,QL,QF )

∂QF

∣∣∣∣∣
QF=0

has

a single minimum, that can be found by setting (3.109) to zero. This gives us
the following expression X =

(
1−β2ηQL
1−ηQL

) 1
1−β2 β2c(r−α)

(β2−1)r(1−ηQL) , which we can plug into
∂

∂QF
V S

1 (x,QL, QF )
∣∣∣
QF=0

and get its value at the minimum QL. Setting the obtained
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result to zero will give us the value of QL such that this function exactly touches the
x-axis and, thus, has a single root:

β2c

(β2 − 1)r

(
ηQL

1− β2ηQL
− (1− ηQL)−β2+1

β2(1− β2ηQL) + 1
)(1− β2ηQL

1− ηQL

) 1
1−β2 − c

r
− δ = 0. (3.110)

Note that the above expression is zero for QL = 0 and goes to infinity as QL → 1
η
.

Together with the fact that its derivative with respect to QL is positive, and that
β2cη(2−β2ηQL)(1−(1−ηQL)1−β2)

(
β2−

β2−1
1−ηQL

) 1
1−β2

(β2−1)r(1−ηQL)(1−β2ηQL)2 > 0, it allows to conclude that the solution

of (3.110) is unique. As a result, there exists a unique X̊ =
(

1−β2ηQL
1−ηQL

) 1
1−β2 β2c(r−α)

(β2−1)r(1−ηQL) ,
such that for x > X̊ the condition 2 is satisfied for all QL, i.e. ∂

∂QF
V S

1 (x,QL, QF )
∣∣∣
QF=0

is always positive.
Moreover, evaluating (3.101) at QF = 0 we get

∂2V S
1 (x,QL, QF )
(∂QF )2

∣∣∣∣
QF=0

=

2ηx
r − α

((β2 − 1)rx
β2c(r − α)

)β2−1(
1−

((β2 − 1)rx
β2c(r − α)

)1−β2

− (β2 − 1)ηQL
(1− ηQL)2−β2

)
, (3.111)

which has the same sign as the last expression in brackets. Note that its last part,
(β2−1)ηQL

(1−ηQL)2−β2 , is monotonically decreasing with QL, because its derivative is negative, i.e.

(β2−1)η
(

1−(β2−1)ηQL
(1−ηQL)3−β2

)
< 0. The other part, 1−

(
(β2−1)rx
β2c(r−α)

)1−β2 , is a constant with respect
to QL. Therefore, there exists unique QL, denoted by Q̆L, such that if QL < Q̆L then
∂2V S1 (x,QL,QF )

(∂QF )2

∣∣∣∣
QF=0

< 0, and if QL ≥ Q̆L then ∂2V S1 (x,QL,QF )
(∂QF )2

∣∣∣∣
QF=0

≥ 0.

This means that for QL ≥ Q̆L the function V S
1 (x,QL, QF ) − δQF is convex. Its first

order derivative with respect to QF is strictly increasing and positive for the considered
parameter values. Hence, keeping in mind that in order to be a small follower the firms
capacity should be smaller than the capacity of the leader, QF < QL, for QL ≥ Q̆L the
firm will always invest just before QL.15

If QL < Q̆L, the sign of the second order derivative changes from negative to positive,
so that V S

1 (x,QL, QF )− δQF is convex for small values of QF and concave for large values
of QF . As showed earlier the first order derivative may have either two or (one) roots
(for small QL) or none (for large QL). In the latter case V S

1 (x,QL, QF ) − δQF is again a
strictly increasing function of QF . Thus, there exists a critical value of QL such that for
values above it the first order derivative is always positive. This QL can be determined
by simultaneously setting to zero the first and second derivatives of V S

1 (x,QL, QF )− δQF ,
given by (3.100) and (3.101), respectively. Finally, for QL smaller than the critical value
V S

1 (x,QL, QF )− δQF is decreasing for the intermediate values of QF and increasing if QF
is either small or large.

15In this case investing just before QL, i.e. at QL − ε is ε-optimal for ε > 0.
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To summarize, the value function of the small follower starts from the origin and has
a polynomial shape. Depending on the combination of the parameter values it can either
have two turning points (e.g. for small QL) or none (e.g. for large QL). In the latter case
the value function is strictly increasing and given the constraint QF < QL, its maximum is
located at QF = QL− ε. If QL is relatively small the follower curve increases until the first
turning point, then coming to its minimum and from there on it starts increasing again
reaching the boundary at Q̃F (x,QF ). For this case the location of the maximum can be
determined differently depending on the level of QL, which is crucial for the constraint in
the optimization problem. In particular, the follower’s optimum can be reached either at
the first turning point, i.e. at the boundary Q̃F (x,QF ) or according to the following first
order condition ∂(V S1 (x,QL,QF )−δQF )

∂QF
= 0.

The capacity level that is defined by the above first order condition is denoted in this
case by QSF . It is implicitly determined by solving (3.100) and choosing the solution such
that (3.101) is negative. The illustration of the value functions and the possibles locations
of their maximums for different values of the incumbent’s capacity is presented in Figure
3.10.
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Figure 3.10: Illustration of possible locations of the maximum for the parameter values:
r = 0.05, α = 0.02, σ = 0.1, η = 1, δ = 100, c = 50, x = 66.
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In all the cases except (a) the entrant replies with a smaller capacity than the leader
and exits last. Next we define the specific capacity levels of the incumbent to distinguish
between the scenarios shown in Figure 3.10.16 The maximal capacity level of the incumbent
such that it is optimal for the entrant to become a large firm and exit last Q̄1(x) is the
solution of

V B
1 (x,QL, QBF (x,QL)) = V S

1 (x,QL, QL) (3.112)

with respect to QL subject to QL < QBF (x,QL).
The minimum capacity level of the incumbent that ensures that the entrant chooses to

be a small firm Q̄2(x) is

QSF (x,QL) = QL, (3.113)

while the maximum level Q̄3(x) is the solution of

V S
1 (x,QL, QSF (x,QL)) = V S

1 (x,QL, QL) (3.114)

with respect to QL subject to QL > QSF (x,QL).
The minimal capacity level of the incumbent that leads to a constrained monopoly

scenario, i.e. when the entrant drives the incumbent out of the market by installing Q̃F (x),
is given by

Q̄4(x) = 1
2η

(
1− β2c(r − α)

r(β2 − 1)x

)
. (3.115)

The unconstrained monopoly appears when the incumbent’s capacity level is larger than
Q̄5(x), meaning that the entrant is able to drive the incumbent out by installing the optimal
monopoly capacity Q̄5(x), which is implicitly determined by

QM (x) = Q̃F (x,QL). (3.116)

Proof of Proposition 3.8 Assuming that the incumbent has already entered the
market, we obtain the values of active and idle entrant similarly to the monopoly
case:

V0(x) = AFx
β1 , (3.117)

V1(x,QL, QF ) = BF (QL, QF )xβ2 + x(1− η(QF +QL))QF

r − α
− cQF

r
, (3.118)

where BF (QL, QF ) is given by (3.91) and AF is a to be determined from the system
(3.119).

16The order of these capacity levels is verified numerically.
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For the investment problem the following boundary conditions must hold17
V1(XI

F , QL, QF )− δQF = V0(XI
F , QL, QF ),(

∂V1(x,QL, QF )
∂x

+ ∂ (V1(x,QL, QF )− δQF )
∂QF

∂QF
∂x

) ∣∣∣∣
x=XI

F

= ∂V0(x,QL, QF )
∂x

∣∣∣∣
x=XI

F

,

(3.119)

which can be written as

−AXIβ1
F +BF (QL, QF )XIβ2

F + XI
F (1− η(QF +QL))QF

r − α
− cQF

r
− δQF = 0,

−β1AFX
Iβ1−1
F + β2BF (QL, QF )XIβ2−1

F + (1− η(QF +QL))QF
r − α

+
(
∂V1(XI

F , QL, QF )
∂QF

− δ
)
∂QF
∂x

∣∣∣∣
x=XI

F

= 0.

(3.120)

with ∂V1(XI
F , QL, QF )
∂QF

= ∂BF (QL, QF )
∂QF

+ XI
F (1− η(2QF +QL))

r − α
− c

r
.

Therefore, the investment threshold of the entrant XI
F (QL) is the solution with

respect to x of(
1− β2

β1

)
BF (QL, Q∗F (x,QL))

Q∗F (x,QL) xβ2 +
(

1− 1
β1

)
x(1− η(QL +Q∗F (x,QL)))

r − α
− c

r
− δ

− x

β1Q
∗
F (x,QL)

(
∂V1(x,QL, QF )

∂QF

∣∣∣∣
QF=Q∗

F (x,QL)
− δ

)
∂Q∗F (x,QL)

∂x

∣∣∣∣
x=XI

F

= 0,

(3.121)

and AF (QL) = ÂF (XI
F (QL), QL, Q

∗
F (XI

F (QL), QL)) with

ÂF (x,QL, QF ) = β2
β2 − β1

(1
x

)β1
(
x(1− η(QL +QF ))QF

r − α

(
1− 1

β2

)
−
(
c

r
+ δ

)
QF

− x

β2

(
∂V1(x,QL, QF )

∂QF
− δ

)
∂Q∗F (x,QL)

∂x

)
.

(3.122)

Proof of Proposition 3.9 If QL >
¯̄Q1, the threshold which leads to the immediate

investment in a duopoly is given by

XI
F,D(QL) = X

I

F (QL), (3.123)

where XI
F (QL) is the inverse function of Q̄3(x):

X
I

F (QL) = (Q̄3(x))−1, (3.124)
17The systems (3.119) and (3.120) hold for Q∗F (x,QL) (given by (3.22)) evaluated at x = XI

F . To
simplify the notation we refer to Q∗F (x,QL) as QF .
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and ¯̄Q1 is found by solving

h
(
X
I
F (QL), QL, Q

∗
F,D

(
X
I
F (QL), QL

))
= 0, (3.125)

where h(x,QL, QF ) is defined by (3.31).
If QL ≤ ¯̄Q1, XI

F,D(QL) is a solution with respect to x of

h(x,QL, Q
∗
F,D(x,QL)) = 0. (3.126)

The entrant monopolization strategy becomes available only if the capacity of the
incumbent satisfies QL ≥ Q̂L, where capacity level Q̂L can be found by solving the
following system

VM
(

β2c(r−α)
r(β2−1)(1−2ηQL) , QL

)
− δQL = V0

(
β2c(r−α)

r(β2−1)(1−2ηQL) , QL, Q
∗
F,D (x,QL)

)
,

h(x,QL, Q
∗
F,D(x,QL)) = 0.

(3.127)

In this case the entrant’s investment threshold that leads to the monopoly once
being hit by x from below is

XI
F,M(QL) = β2c(r − α)

r(β2 − 1)(1− 2ηQL) if QL ≤ ¯̄Q2, (3.128)

and ¯̄Q2 is found by solving

h

(
β2c(r − α)

r(β2 − 1)(1− 2ηQL) , QL, Q
∗
M

(
β2c(r − α)

r(β2 − 1)(1− 2ηQL)

))
= 0. (3.129)

If QL >
¯̄Q2 the thresholds XI

F,M(QL) is the solution with respect to x of

h(x,QL, Q
∗
M(x)) = 0. (3.130)

The situation when monopoly is triggered from above corresponds to the threshold

XI
F,M

(QL) = X
I
F (QL). (3.131)



4 Predatory Pricing under
Uncertainty1

In this chapter we develop a stochastic dynamic model of predatory pricing. When
profits evolve stochastically, a negative demand shock can lead to bankruptcy for
firms, that cannot immediately raise external capital. An assumption that firms’
accumulated profits determine its reputation creates incentives for market incumbents
to use predatory pricing strategies in order to keep new players out of the industry.
Applying game theoretic and dynamic programming techniques, we show that firms
may initiate a price war that could drive the opponent out of the market. Because
of uncertainty the new player may wish to take a chance and enter based on the
probability of success. Therefore, the realized market structure may vary for different
sample paths of the stochastic process.

4.1 Introduction
Contentions that firms use aggressive pricing to drive the opponents out of the

market are not uncommon, and yet the early literature on the topic failed to ex-
plain the rationality behind such behavior. The early contributions explained this
phenomenon in two ways. The first one is known as the deep pocket argument in-
troduced by McGee (1958) and later studied by Telser (1966) and Benoit (1983). In
these models a more resourceful incumbent is able to drive a financially constrained
entrant out of the market by the means of aggressive pricing. Their main conclusion
is, however, that under perfect information no price war will be observed in equilib-
rium due to the temporary nature of price cuts. The second explanation is associated
with the so-called, chain store paradox. In the formulation of Selten (1978) an incum-
bent’s incentives to predate come from reputational considerations. More specifically,
by initiating a price war when facing the first out of potentially many entrants an

1This chapter is based on Lavrutich and Thijssen (2016).
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incumbent establishes reputation as an aggressive firm in order to prevent further
entries. Selten (1978) presents the unintuitive result that starting a price war is not
a viable strategy from the perspective of standard game theoretic approach. This
finding is known in the literature as the chain store paradox.

More recent studies bridge the gap between theory and practice by incorporating
market imperfections into the analysis. For example, Milgrom and Roberts (1982),
Kreps and Wilson (1982), and Benoit (1984) find that incomplete (or imperfect) infor-
mation about firms’ payoffs resolves the chain store paradox. According to Fudenberg
and Tirole (1985a) and Poitevin (1989) asymmetric information in financial markets
can trigger predatory pricing behavior due to the fact that financiers are typically not
aware of an entrant’s true profitability. Alternatively, the entrant may be uncertain
about its own costs and thus, is unable to perfectly predict its future profits. In
Fudenberg and Tirole (1986a), the entrant’s inference about its future profitability
is based on the current profits and, as a result, the incumbent may “jam" this signal
using a predatory pricing strategy. Saloner (1987) considers a three-stage game where
two incumbents compete under asymmetric information about production costs, given
the possibility of a future merger. In this model an informed firm is willing to signal
low-cost type using output expansions in order to facilitate better takeover terms.
Bolton and Scharfstein (1990) shows that mitigating agency problems between the
firm and its financiers creates incentives for predatory behavior.

In this chapter we go back to a complete information setting. We investigate if
firms have an incentive to use predatory pricing strategies in a dynamic setting where
firms’ profits are subject to stochastic shocks. In our model an entrant becomes active
in the existing market by undertaking an irreversible investment given the uncertainty
about its future profit stream. Upon entry, either of the firms may decide to initiate
a price war. Consequently, the entrant could be driven out of the market or even
abstain from entering the market in the first place. Our analysis primarily focuses
on the question as to whether the entrant would exercise its option to invest given
the predation threat.

In this regard, this chapter is also related to the real options theory and contributes
to this strand of the literature in two ways. Firstly, we enhance the existing body of
research by providing a more general model of predatory pricing under uncertainty.
Even though a large bulk of real options studies focuses on entry deterrence strategies
(e.g. Smets (1991), Spence (1977), Boyer et al. (2004) and Huisman and Kort (2015))
or exit games (e.g. Lambrecht (2001), Murto (2004)), predatory pricing has gained a
rather limited attention. Among the few real options contributions that explicitly use
the notions of either aggressive pricing or predatory behavior are Gryglewicz (2009),
that considers a stochastic limit pricing model under asymmetric information, and
Bayer (2007), where predation is defined as forcing the entrant out of the market
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by installing a large capacity. We present a complete information model, where the
firm-specific uncertainty can provide the rationale for aggressive pricing.

This is related to our second contribution, which is more of a methodological
nature. In this model we depart from the assumption of perfectly correlated shocks
for market participants. In the standard real options models firms are subject to the
same uncertainty regarding the future profits. As a result, their deterministic actions
allow to predict the outcome of the game. In our model deterministic actions change
the probabilistic environment. More precisely, firms built up their reputation, which
is determined by their accumulated profits. A firm goes bankrupt when its reputation
becomes too low, or, in other words, its accumulated profits are depleted. Given that
firms are subject to potential future losses, the instantaneous profit inflow is subject
to firm-specific uncertainty. In this setting an incumbent firm cannot guarantee that
initiating a price war will eventually lead to exit of its opponent. On the contrary,
aggressive pricing alters the probability of staying alive. Hence, the final outcome of
the game is determined by the paths of the underlying stochastic process. Depending
on the amount of accumulated profits, this may create incentives for an established
firm to take a chance and initiate a price war, while for a new firm the uncertainty
may create an incentive to enter despite the possibility of a price war.

4.2 Model
In our model we consider two risk neutral profit maximizing firms. One firm is

already operating in the market as a monopolist. The other firm faces a possibility
to enter this market by undertaking an irreversible investment that creates a revenue
stream. The firms are assumed to be symmetric from the perspective of the produc-
tion process, i.e. they incur the same marginal costs. The net revenue accumulated
over time, when the firm is active, determines each firm’s reputation. Additionally,
market participants are subject to firm-specific uncertainty. If the accumulated prof-
its that serve as a proxy for a firm’s reputation are driven down to zero due to a
series of negative shocks, this firm suffers from a severe reputational damage. In
this case the firm goes bankrupt and leaves the market. Therefore, the accumulated
profit of firm i, denoted by Xit, is modeled as an arithmetic Brownian motion. The
instantaneous profit inflow for firm i, thus, satisfies the following differential equation

dXit = πidt+ σidBit, (4.1)

where πi is firm’s i current profit, σi is a volatility parameter, and Bi is a Wiener
process. Similarly to DeMarzo and Sannikov (2006) and Morellec et al. (2014) this
formulation the drift of the Brownian is selected by the firms, while the volatility is
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not. As mentioned earlier, we relax the assumption of perfectly correlated profitability
shocks for different firms. In reality a firm’s future profitability may depend on various
firm-specific factors, as e.g. firm-level productivity shocks, dependence on certain
suppliers, particular contractual agreements, as well as on different characteristics of
the firm’s location, such as local labor markets condition or regulatory restrictions.
Moreover, the new firm may potentially face different uncertainty than the incumbent
firm that has already been operating in the market. Therefore, rather than assuming
the same uncertainty for the incumbent and the entrant, we model the shocks to be
firm-specific, i.e. processes B1t and B2t are uncorrelated2.

In the present model the timeline of the game runs as follows. First, the entrant
undertakes an irreversible investment decision for a certain level of the incumbent’s
accumulated profit. Second, when the new firm chooses to enter, the firms decide
whether they are going to coexist in a duopoly or initiate a price war. In the latter case
the predator drives the price down to the level of marginal costs. Due to the symmetry
between firms, the price war implies zero instantaneous profits for both of them each
period. In this setting the incumbent chooses only whether to fight or accommodate,
while the entrant’s decision involves an additional component, namely investment
timing. Lastly, if the accumulated profit of either of the firms hits zero, this firm goes
bankrupt and leaves the market, while its opponent becomes a monopolist.

To derive a subgame perfect equilibrium, we solve the model backwards starting
with the stage where both firms are operating in the market. We derive the proba-
bility distributions of bankruptcy times and investigate under which conditions the
firms are willing to engage in a price war. In the later sections we solve the optimal
stopping problem of an entrant.

4.3 Duopoly subgame
In this section we examine the situation when both firms are already active in the

market. When the entrant has already undertaken investment, the only decision left
for the firms is whether to initiate a price war or not. Let i = 1 denote a firm’s
position as incumbent, and i = 2 as entrant. The choice of strategy is denoted by k,
i.e. whether to accommodate (A) or to fight (F).

If both firms are choosing to coexist in a duopoly, their period profits equal to πA.
If either of the firms chooses to fight, their profits are driven down to zero, πF = 0.
In that way by behaving aggressively, the predator is not only harming the opponent

2The traditional models usually only account for industry specific uncertainty. However, as
industry specific shocks are the same for both firms, they do not change the odds of winning the
predation game. Hence, their inclusion does not significantly influence the main results.
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but also itself. A change in period profits also alters firms’ bankruptcy times that are
defined as follows. Denote by xi the accumulated profit of firm i at the beginning of
the subgame. We assume that the new player has a certain level of initial reputation.
Here we can think of existing brands entering a new market. In this example the
profit in the old market would determine its reputation on the new market. Then
the bankruptcy time τ i, i.e. the time when the firm i’s accumulated profit hits zero,
is given by

τ i = inf{t > 0 : Xit = −xi}. (4.2)

If the incumbent goes bankrupt first, i.e. if τ 1 < τ 2, it leaves the market with no
profits. If the entrant goes bankrupt first, i.e. τ 1 > τ 2, the entrant leaves the market
and the incumbent becomes a monopolist. This is reflected in the value function of
the firm i for a given strategy k, V k

i , which equals to

V k
i (xi, xj) = xi + πk

r
+ Ekxi,xj

[
e−rτ i1τ i<τ j

] (
−πk
r

)
+ Ekxi,xj

[
e−rτ j1τ i>τ j

] (πM
r
− πk

r

)
,

(4.3)

where r is the discount rate, πM is monopoly profit, and k ∈ {A,F}. Denote the
stochastic discount factor of the incumbent going bankrupt first, i.e. Ekx1,x2 [e−rτ11τ1<τ2 ],
by Qk

1, and the stochastic discount factor of the entrant going bankrupt first, i.e.
Ekx1,x2 [e−rτ21τ1>τ2 ], by Qk

2. Note that the accumulated profit of the entrant at the
beginning of the duopoly subgame are always fixed to the level of the initial reserves.
This is because the new firm is not producing before entering the market. The re-
serves of the incumbent firm, instead, differ depending on the entry time of the new
firm. Thus, the stochastic discount factors and, therefore, the values of the firms are
functions of x1 only, while x2 enters as a parameter. Using the proposed notation we
can rewrite the value function in (4.3) as

V k
i (xi) = πk

r
+Qk

i (xi)
(
−πk
r

)
+Qk

j (xi)
(
πM
r
− πk

r

)
. (4.4)

where the stochastic discount factors are defined in the following proposition.

Proposition 4.1 The stochastic discount factor of the incumbent going bankrupt
first, given the strategy k, is given by

Qk1(x1, x2) =
∫ ∞

0
e−rt x1

σ1
√

2πt3
e
− (x1+πkt)

2

2σ2
1t

(
Φ
(
x2 + πkt

σ2
√
t

)
− e
− 2πkx2

σ2
2 Φ

(−x2 + πkt

σ2
√
t

))
dt,

(4.5)
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and the stochastic discount factor of the entrant going bankrupt first, given the strat-
egy k, is given by

Qk2(x1, x2) =
∫ ∞

0
e−rt x2

σ2
√

2πt3
e
− (x2+πkt)

2

2σ2
2t

(
Φ
(
x1 + πkt

σ1
√
t

)
− e
− 2πkx1

σ2
1 Φ

(−x1 + πkt

σ1
√
t

))
dt,

(4.6)

where k ∈ {A,F}, and Φ is the CDF of the standard normal distribution.

As pointed out in Rogers and Shepp (2006), “finding the expectation (or the
law) of a functional of a Brownian path is usually either quite straightforward .. or
quite impossible". From this perspective, a model without firm-specific volatility is a
good example of the former. However, departing from the assumption that firms are
not subject to exactly the same shock process, immediately makes the derivation of
analytical probabilities quite impossible. For this reason some results of this chapter
are presented in the form of numerical examples.

The goal now is to determine for which values of x1 do firms undertake a decision to
initiate a price war. The firm would prefer to behave aggressively if the value of fight-
ing exceeds the value of accommodating. Therefore, in order to determine fighting
and accommodation regions, we consider the differences in values of accommodation
and fighting for both firms: for the incumbent, i.e. DAF

1 (x1) = V A
1 (x1)− V F

1 (x1), and
for the entrant, defined by DAF

2 (x1) = V A
2 (x1)− V F

2 (x1):

DAF
1 (x1) = πA

r

(
1−QA

1 (x1)
)

+QA
2 (x1)πM − πA

r
−QF

2 (x1)πM
r
, (4.7)

DAF
2 (x1) = πA

r

(
1−QA

2 (x1)
)

+QA
1 (x1)πM − πA

r
−QF

1 (x1)πM
r
. (4.8)

Lemma 1 If πM
πM−πA

<
3πA+
√
π2
A+2rσ2

2√
2rσ2

2
, there exists a unique value of x2 such that

lim
x1→∞

DAF
1 (x1) = 0, and for smaller values of x2 lim

x1→∞
DAF

1 (x1) < 0, while for larger

of x2 values lim
x1→∞

DAF
1 (x1) ≥ 0. If πM

πM−πA
>

3πA+
√
π2
A+2rσ2

2√
2rσ2

2
, then lim

x1→∞
DAF

1 (x1) > 0.

Moreover, it always holds that lim
x1→∞

DAF
2 (x1) > 0.

Figure 4.1 illustrates the functions DAF
1 (x1) and DAF

2 (x1) defined by (4.7) and
(4.8). The solid curve represents the difference between accommodation and fighting
for the incumbent, while the dashed line that for the entrant3. As long as either of
the firms prefers the fighting strategy, i.e. when either of the curves is negative, the
firms engage in a price war. The fighting regions are colored gray.

3Numerical experiments indicate that both functions have at most one zero, or in other words,
there is at most one value of x1 for each firm, such that they are indifferent between fighting and
accommodation.
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Figure 4.1: The difference between accommodation and fighting for the set of parameter
values: x2 = 0.3, πA = 0.3, πM = 0.5, σ1 = 0.2, σ2 = 0.4, and r = 0.05.

Intuitively, for large values of x1 the incumbent firm is more willing to fight a new
firm, as the probability to win the game is relatively large. The opposite holds for
the entrant: the weaker the incumbent is, the more likely the entrant is to survive
a price war, hence, it prefers to fight for small x1. For the intermediate values of x1

neither of the firms is willing to initiate a price war, therefore, the accommodation
scenario occurs. Naturally, the regions where firms implement either of the strategies
change depending on the parameter set. The next figures illustrate how a change in
different parameter values influences the firms’ choice of strategy.
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Figure 4.2: Strategic regions for the set of parameter values: πM = 0.65, σ1 = 0.2,
σ2 = 0.3 and r = 0.05.

As can be seen in Figure 4.2a, if the entrant is stronger, i.e. x2 is large, it is willing
to engage in a price war with a stronger incumbent. The incumbent, on the contrary,
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is willing to postpone the price war until its accumulated profit is larger when facing
a stronger entrant. Figure 4.2b shows that the larger the monopoly profit, or in other
words, the larger is the difference between duopoly and monopoly profits is, the more
appealing the fighting strategy is for both firms. In fact there exists a region, where
the “prize" at the end of a price war is so large, that the firms would always inevitably
end up fighting.
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Figure 4.3: Strategic regions for the set of parameter values: x2 = 0.3, πA = 0.3, πM =
0.65, and r = 0.05.

In Figures 4.3a and 4.3b the effect of the firm-specific uncertainty on the fighting
and accommodation regions is twofold. On the one hand, larger σ1 implies that
the incumbent is going bankrupt sooner and with larger probability. Thus, at first
we observe a similar effect in Figure 4.2a, namely, the incumbent starts fighting for
larger x1, while the entrant stops fighting for larger x1. However, when σ1 becomes
sufficiently large, we observe the opposite effect. This is because the uncertainty
negatively affects the probability that both firms survive forever. In particular, for
very large values of σ1, the event of bankruptcy while accommodating is almost as
likely as while fighting. In this case, the entrant prefers to accommodate, as there is
no reason to give up its period profits, given that the incumbent is very likely to go
bankrupt first anyway. The incumbent, in turn, has an incentive to drive the profits
of the opponent to zero as a last resort. Thus, the incumbent is wiling to initiate a
fight earlier, while the entrant gives this strategy up earlier. A similar reasoning can
be applied to explain the non-monotonicity in Figure 4.3b.

To summarize, the firms may end up in either of the three scenarios depending of
the parameter values: both firms engage in a price war for any x1, both firms are
willing to accommodate for any x1, or they alternate between strategies depending
on the current value of x1. Importantly, the outcome here largely affects the optimal
stopping problem of the entrant, which we introduce in the subsequent section.
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4.4 The entrant’s optimal stopping problem
In the subgame where the entrant is not active yet, it faces an optimal stopping

problem, where it decides whether to wait or to invest immediately. In other words,
the entrant chooses a stopping time that maximizes its value

F ∗(x1) = sup
τ

Ex1

[
e−rτ (V2(x1)− I)

]
, (4.9)

where I denotes the investment costs.
If the incumbent is a monopolist on the market, the entrant observes the following

process for the incumbent’s accumulated profit:

X1t = πM t+ σ1B1t. (4.10)

The state space of this stochastic process can be split up in a continuation and a
stopping region due to the Markovian property. As a result, of the irreversibility of
the investment decision, the value of the entrant in the stopping region is the expected
value of the active firm, V2(x1). Denote the value function in the continuation region
by, W (x1), then

F ∗(x1) =

W (x1) for x1 ∈ C,
V2(x1) for x1 /∈ C,

(4.11)

where the continuation and stopping regions are defined as

C = {x1 ∈ R|F ∗(x1) > V2(x1)}, (4.12)
R \ C = {x1 ∈ R|F ∗(x1) = V2(x1)}. (4.13)

The optimal stopping time can be written as

τ ∗ = inf{t > 0;X1t 6∈ C}. (4.14)

Typically, if the value function V2(x1) is decreasing, the continuation region can
be written as C = (X∗1 ,∞), and the solution can be expressed in terms of the opti-
mal investment threshold, X∗1 . This threshold can be found by applying the value
matching and smooth pasting conditions. However, in our model at the moment the
firm decides to stop, the drift of the Brownian motion changes. As a result, the value
function in the stopping region is based on the new underlying process. This results
in a more complex relation between stopping and waiting values. For this reason,
in order to solve the optimal stopping problem we need to apply a more general
approach.
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In particular, solving the optimal stopping problem in (4.9) is equivalent to the
problem of finding the function F ∗, which is the smallest superharmonic function
dominating V2 (Peškir and Shiryaev (2006)), i.e. the following conditions must be
satisfied: LF

∗ − rF ∗ ≤ 0, (F ∗ minimal) ,
F ∗ ≥ V2, (F ∗ > V2 on C & F ∗ = V2 on R \ C),

(4.15)

where L is the infinitesimal generator of x1.4 In the literature the superharmonicity
condition in (4.15) is often satisfied automatically and is rarely checked. In our model,
however, it plays an important role due to the convexity of V2.

It follows from (4.15) that for the candidate optimal threshold the following con-
ditions have to be satisfied:

LF ∗ − rF ∗ = 0 on C,
∂V2

∂x1

∣∣∣∣∣
∂C

= ∂F ∗

∂x1

∣∣∣∣∣
∂C

,

F ∗ ≥ V2, (F ∗ > V2 on C & F ∗ = V2 on R \ C),

(4.16)

where the last two conditions represent the smooth pasting and value matching con-
ditions at the boundary of the continuation region, ∂C. The first condition corre-
spondingly reduces to

LW (x1)− rW (x1) = 0, (4.17)

or alternatively,

1
2σ

2
1
∂2W (x1)
∂X2

1
+ πM

∂W (x1)
∂x1

− rW (x1) = 0. (4.18)

Solving the above equation for W (x1) and determining the bounds of the contin-
uation region yield a solution for the optimal stopping problem in (4.9). In the next
section we present the solution for the fighting region. Later we use numerical ex-
periments to illustrate the solution for the region where only accommodation occurs.
The primary focus of this chapter is the former scenario, when for any reputation of
the incumbent firm the price war will be initiated, either by the incumbent itself or
by the new entrant. Several reasons account for that interest. Firstly, it gives new
important insights on how to solve the optimal stopping problem when the super-
harmonicity property of the gain function is not always satisfied. Secondly, the case
based on fighting alone features interesting and unique results that are not observed

4Lf(x) = lim
t→0

Ex[f(Xt)]− f(x)
t

.
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in the standard models. Thirdly, the simplified expressions of the survival probabil-
ities allow to derive more analytical results. Lastly, this scenario serves as a ground
for the more general case when depending on the value of x1 both accommodation
and fighting may occur. The latter we leave to future research.

4.4.1 Fighting region

Consider the situation when one of the firms initiates a price war immediately
upon the investment of the entrant. In this case the value of stopping, i.e. V F

2 for
the entrant simplifies to

V F
2 (x1) = QF

1 (x1)πM
r
. (4.19)

Note that if x1 is infinitely large, investment yields zero value in expectation and
the option to invest in this case is zero. This results in the following boundary
condition: lim

x1→∞
W (x1) = 0, which implies that the option value of the entrant takes

the following form

WF (x1) = Ae−βMx1 , (4.20)

where βM = πM+
√
π2
M+2σ2

1r

σ2
1

> 0 . Applying the value matching and smooth pasting
conditions we find the implicit equation that determines candidate solutions for the
optimal investment trigger, as stated in the following proposition.

Proposition 4.2 Let the function g be given by

g(x1) = −πM
r

(
1
βM

∂QF
1 (x1)
∂x1

+QF
1 (x1)

)
+ I. (4.21)

The candidates for the optimal investment threshold satisfy the following equation

g(x1) = 0. (4.22)

In order to determine the stopping region for this problem, we need to take into
account an additional requirement in (4.15). Namely, the superharmonicity condition
must be satisfied in the stopping region. This implies the following

LV F
2 (x1)− rV F

2 (x1) ≤ 0 for x1 /∈ C. (4.23)

where

LV F
2 (x1)− rV F

2 (x1) = 1
2σ

2
1
∂2V F

2 (x1)
∂X2

1
+ πM

∂V F
2 (x1)
∂x1

− rV F
2 (x1). (4.24)
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If for the candidate investment threshold, there exists a region, (0, X∗1 ), where
the superharmonicity condition is not satisfied, the NPV process in this region is a
sub-martingale. This means that, in expectation, the value of investing later will
grow indefinitely and it will never be optimal for the new firm to enter. In order to
identify such cases, it is useful to express LV F

2 (x1)− rV F
2 (x1) in terms of the implicit

function that determines candidate thresholds in (4.21). This result is presented in
the following proposition.

Proposition 4.3 The expression in (4.24) can be simplified as follows:

LV F
2 (x1)− rV F

2 (x1) = −βMσ
2
1

2
∂g(x1)
∂x1

+ rg(x1), (4.25)

where g(x1) is given by (4.21). In particular, at the optimal investment threshold it
holds that

LV F
2 (X∗1 )− rV F

2 (X∗1 ) = −βMσ
2
1

2
∂g(x1)
∂x1

∣∣∣∣∣
x1=X∗

1

< 0. (4.26)

It follows from the above proposition that whenever g(x1) is a strictly increasing
function, the superharmonicily condition will always be satisfied. This case corre-
sponds to the unique optimal investment threshold. However, if there exists a region
where g(x1) is increasing, the superharmonicity condition can no longer be guaran-
teed. Numerical experiments show that equation (4.22) has at most three solutions.
Moreover, it is possible to show that the candidate solution with negative derivative
can always be eliminated (see proof of Proposition 4.2). Therefore, there may ex-
ist either one, X∗1 , or two candidate solution for the optimal investment threshold,
X̃∗1 < X̃∗∗1 , depending on the parameter values. In the latter case there always exists
a region in (X̃∗1 , X̃∗∗1 ), where V F

2 (x1) is not superharmonic.
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Figure 4.4: The functions g(x1) (solid) and LV (x1) − rV (x1) (dashed) for πM = 0.5,
σ1 = 0.4, σ2 = 0.3, r = 0.05, I = 0.8, and different values of x2.
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Figure 4.4a illustrates the situation in which two candidate solutions for the opti-
mal stopping problem exist and only for the smallest one the function F ∗(x1) is su-
perharmonic. In Figure 4.4b the superharmonicity property is violated. Figure 4.4c
shows the case, where the function g(x1) is strictly increasing with a unique solution
and, thus, F ∗(x1) is superharmonic. Note that the only difference in the parameter
values between these three cases is in x2. Intuition suggests that the weaker the
entrant is, the smaller the value of x1 that triggers its investment is. In Figure 4.4c,
i.e. when the entrant is relatively strong, we observe the standard case with a unique
optimal threshold, X∗1 , and the continuation region of the form (X∗1 ,∞). However,
when the new firm has a relatively poor reputation, the continuation and stopping
regions are not trivial anymore, i.e. there exists an interval where the superharmonic-
ity condition is not satisfied. As mentioned earlier, this implies that the value process
is a submartingale and the firm has an incentive to postpone its investment. The
incentive disappears when x1 is either sufficiently low or sufficiently high, i.e. the
entrant is willing to invest, when x1 lies outside of the non-superharmonic interval.
This implies a need of an additional continuation region. The option value in this
region is bounded both from above and below. Given that LF ∗(x1)− rF ∗(x1) = 0 on
C, the additional option value must be represented by Ŵ (x1) = B1e−βMx1 +B2eγMx1 ,
where βM = πM+

√
π2
M+2σ2

1r

σ2
1

> 0 and γM = −πM+
√
π2
M+2σ2

1r

σ2
1

> 0. The constants B1 and
B2 are to be determined from the value matching and smooth pasting conditions.
These boundary conditions also give two additional thresholds, X̂∗1 and X̂∗∗1 , such
that (X̂∗1 , X̂∗∗1 ) ⊂ C. The above findings are summarized in the next proposition.

Proposition 4.4 The additional option value is given by

Ŵ (x1) = B1(X̂∗1 )e−βMx1 +B2(X̂∗1 )eγMx1 , (4.27)

with B1(X̂∗1 ) = eβMX̂∗
1

βM+γM

(
γM (V F

2 (X̂∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗

1

)
and B2(X̂∗1 ) = −e−γMX̂∗

1 g(X̂∗
1 )

βM+γM
.

The optimal thresholds of the inaction region, X̂∗1 and X̂∗∗1 , are implicitly deter-
mined by the following system

e−γM X̂∗
1 g(X̂∗1 ) = e−γM X̂∗∗

1 g(X̂∗∗1 ),

eβM X̂∗
1

(
γM (V F

2 (X̂∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗

1

)
=

eβM (X̂∗∗
1 )
(
γM (V F

2 (X̂∗∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗∗

1

)
.

(4.28)

The relation between the thresholds of the inaction region, X̂∗1 and X̂∗∗1 , and the
candidate investment thresholds in Proposition 4.2, X̃∗1 and X̃∗∗1 , can be described as
follows.
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1. If g(X̂∗1 ) < 0 (and as a result B2(X̂∗1 ) < 0), then X̂∗1 < X̃∗1 < X̂∗∗1 < X̃∗∗1 .

2. If g(X̂∗1 ) > 0 (and as a result B2(X̂∗1 ) > 0), then X̃∗1 < X̂∗1 < X̃∗∗1 < X̂∗∗1 .

3. If g(X̂∗1 ) = 0 (and as a result B2(X̂∗1 ) = 0 and B1(X̂∗1 ) = A(X̃∗1 )), then
X̃∗1 = X̂∗1 , and X̃∗∗1 = X̂∗∗1 .

Numerical experiments show that if there exist two candidate solutions for the op-
timal investment threshold, X̃∗1 and X̃∗∗1 , then the following is observed. If X̂∗1 < X̃∗1 ,
then Ŵ (x1) < W (x1) for x1 > X̃∗1 , which implies that Ŵ (X̃∗∗1 ) < W (X̃∗∗1 ) = V F

2 (X̃∗∗).
Thus, the option value A(X̃∗1 )e−βMx1 does not dominate the gain function, and, as
a result, is not a solution to the optimal stopping problem. In the complementary
case, it holds that X̂∗∗1 > X̃∗∗1 and neither of A(X̃∗∗1 )e−βMx1 and Ŵ (x1) is dominating.
Therefore, the smallest superharmonic function that dominates V F

2 (x1) in this case
is A(X̃∗1 )e−βMx1 . Taking into account the above observations, we conclude that the
continuation region of the optimal stopping problem is given by:

1. (X̃∗∗1 ,+∞), if there exists a unique optimal threshold, X∗1 , and the gain function
is superharmonic for x1 < X∗1 ,

2. (X̂∗1 , X̂∗∗1 ) ∪ (X̃∗∗1 ,+∞), if the superharmonicity property is not satisfied and
X̂∗∗1 ≤ X̃∗∗1 ,

3. (X̃∗1 ,+∞), if the superharmonicity property is not satisfied and X̂∗∗1 > X̃∗∗1 .

Intuitively, the need of an additional continuation region can be explained by the
non standard relation between the values of stopping and waiting. Before entry has
occurred, the incumbent is a monopolist and, without facing any competition, is
earning positive profits each period. Hence, there always exists a possibility that
accumulated profit of the incumbent will never fall below a certain level. The longer
the entrant waits in this case, the larger this level is. Naturally, for the entrant it
is more attractive to enter when the incumbent is weak. Therefore, the new firm
is facing the following trade-off. It can either wait until the larger expected payoff
from a price war with a weaker incumbent is possible, even though the probability of
reaching this state could be rather small; or to obtain a lower payoff by entering for
a larger threshold, which can be reached with a higher probability. These investment
thresholds correspond to the two candidate solutions of (4.22).

It follows from Proposition 4.3 that if there exist two candidate solutions for the
threshold, there always exists an inaction region, where it is still worth waiting for
the higher payoff. If x1 hits the lower bound of this region it is optimal to enter,
while at the upper bound the firm gives up waiting for the lower threshold, because
the probability of reaching it is too small and, thus, invests. In the complementary
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cases, this region does not exist for two reasons. Either the investment opportunity
is so valuable that it is never optimal to wait too long and the firm enters for the
relatively high values of x1, or the investment is only worth undertaking when x1 is
extremely small. The three described situations are illustrated in the Figure 4.5.
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Figure 4.5: Continuation and stopping regions for the set of parameter values: πM = 0.5,
σ1 = 0.3, σ2 = 0.4, and r = 0.05.

In Figure 4.5a the investment costs are relatively small, while the initial reputation
of the entrant is relatively high, therefore, it is worth entering only for a relatively
large x1. In Figure 4.5c the firm’s reputation is relatively poor and the investment is
costly, thus, it is only willing to enter if the probability of winning is relatively large.
Figure 4.5b represents the intermediate scenario, where the inaction region occurs.
For intermediate values of x1 the firm has incentives to wait for the lower threshold,
while when x1 becomes sufficiently large it gives up this opportunity and enters the
market. If x1 becomes even larger the expected payoff is so small that the firm prefers
to wait.
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The next figures show how different parameter sets affect the stopping (gray)
and continuation (white) regions, as well as investment thresholds. The solid curves
represent the standard investment thresholds, X̃∗1 and X̃∗∗1 , while the dashed curves
stand for the thresholds of the inaction region, X̂∗1 and X̂∗∗1 . The parameter sets in
this case are chosen in such a way that it is optimal to fight for both firms.5 In Figures
4.6, 4.7 and 4.8 the parameter values for which the jump in the optimal threshold
occurs are marked with an asterisk. Notably, even though there exists a jump in the
optimal threshold, the optimal value function F ∗ changes continuously. The reason is
the fact that at the jump from the lower threshold, X̃∗1 , to the upper threshold, X̃∗∗1 ,
(or visa versa), the inaction thresholds are exactly equal to the standard thresholds:
X̃∗1 = X̂∗1 , and X̃∗∗1 = X̂∗∗1 . Additionally, the option value in the inaction region, the
value of the option to wait for X̃∗1 , and the value of the option to wait for X̃∗∗1 are
represented by the same function. Hence, at the jump the firm is indifferent between
waiting for the lower threshold, for the upper threshold, or for either of the two.

Consider first the effects of x2, the initial reputation of an entrant, and πM , the
monopoly profit, identified in Figure 4.6. This figure is to be read as follows. Suppose
that x2 = 0.11, then there exist four possible scenarios depending on the value of x1:

1. if x1 > 0.41, then the entrant waits until the solid line is hit from above;

2. if 0.15 ≤ x1 ≤ 0.41, then the entrant invests immediately;

3. if 0.04 < x1 < 0.15, the entrant waits until the dashed line is hit;

4. if x1 ≤ 0.039, then the entrant invests immediately.
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Figure 4.6: Continuation and stopping regions for the set of parameter values: πA = 0.3,
σ1 = 0.3, σ2 = 0.4, r = 0.05, and I = 0.8.

5Note that duopoly profits do not affect the inaction region, while the investment costs do not
affect the trade-off between accommodating and fighting. Therefore, it is possible to find multiple
scenarios where the inaction region exists by adjusting these parameters.
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A larger x2 implies that the entrant is stronger and willing to stand against a
stronger incumbent. Thus, the investment threshold increases with x2. A similar
effect is observed when πM is increased. Namely, the investment opportunity in this
case becomes more valuable and the new firm enters the market sooner. In both cases
the increased attractiveness of the investment opportunity causes the inaction region
to become smaller.

Figure 4.7 illustrates the effect of firm-specific uncertainty on the continuation and
stopping regions of the entrant. When the volatility parameters are considered, we
observe a non-monotonic behavior of the optimal investment threshold in σ1. This is
because an increase in the volatility of the incumbent firm has two opposite effects
on the threshold. On the one hand, in a more uncertain environment the option to
invest becomes more valuable, thus, the entrant is less willing to give up this flexibility
and prefers to invest later. On the other hand, a larger volatility of the opponent
implies larger probability to win the price war, which makes the investment more
appealing for large σ1. This creates incentives to enter earlier, i.e. for larger x1. For
the threshold X̃∗∗1 the former effect is dominating for larger values of σ1. For the
smaller trigger, X̃∗1 , only the latter effect is observed.
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Figure 4.7: Continuation and stopping regions for the set of parameter values: x2 = 0.1,
πA = 0.3, πM = 0.5, r = 0.05, and I = 1.2.

As can be seen in Figure 4.7b, for σ2 this trade-off does not exist, because a
larger uncertainty of the entrant decreases its probability of winning the price war.
Therefore, in this case the effect works in the opposite direction and both triggers
decline with σ2. The inaction region in Figure 4.8b becomes larger for larger σ1 and
σ2, explained by the value of waiting effect earlier on. For σ1 this effect is more
pronounced because when the incumbents profits are more volatile it is more likely
to reach lower thresholds for the entrant.
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Figure 4.8: Continuation and stopping regions for the set of parameter values: x2 = 0.1,
πA = 0.3, πM = 0.5, σ1 = 0.3, σ2 = 0.4, r = 0.05, and I = 0.8.

In Figure 4.8 the investment costs and the discount rate show similar influence on
the optimal thresholds. In particular, the entrant prefers to wait longer for larger
investment costs, as the investment opportunity becomes less attractive. Similarly,
for larger values of r, the entrant discounts its future profits more heavily, thus,
prefers to invest later. Additionally, we observe a slight expansion of the inaction
region, as a result of an increase in I and a decrease in r. As mentioned earlier, a
more costly investment reduces the entrant’s incentives to enter the market, making
it worthwhile to wait longer for more favorable investment conditions. An increase in
discount rate implies that the entrant values future payoff less, therefore the inaction
region shrinks with r.

4.4.2 Accommodation region

This section presents the scenarios when the accommodation strategy is chosen.
Here we focus on the implications of the differences between the accommodation and
fighting scenarios for the optimal stopping problem of the entrant. We start with
looking back at the value function of the entrant under accommodation strategy6.

V A
2 (x1) = πA

r

(
1−QA

2 (x1)
)

+QA
1 (x1)πM − πA

r
, (4.29)

with the stochastic discount factors defined in Proposition 4.1.
Its major difference with the aggressive pricing strategy is associated with the fact

that the firms obtain positive duopoly profits until either of them goes bankrupt.
This means that the accumulated profits are now represented by drifted Brownian

6Recall that x2 enters the stochastic discount factors, QA1 and QA2 , and, thus, the value function,
V A2 , as a parameter.
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motions, with πA > 0. Due to the positive drift of the accumulated profit process,
the first bankruptcy event occurs later than in the predation game. Moreover, unlike
during the price war, there exists a positive probability that none of the firms ever
goes bankrupt and they coexist in a duopoly forever.

Following the approach of the previous section, we determine the candidates for the
optimal investment threshold and identify whether the superharmonicity condition
is satisfied. Technically, these cases look quite similar, but taking a deeper look at
the matter we find a few significant differences. One of the distinctive features of the
accommodation scenario is that for certain parameter sets the entrant is willing to
invest even when the incumbent has extremely strong reputation. The above findings
are summarized in the next proposition.

Proposition 4.5 Let the function gA be given by

gA(x1) =− πA
r

(
1− 1

βM

∂QA2 (x1)
∂x1

−QA2 (x1)
)
− πM − πA

r

(
1
βM

∂QA1 (x1)
∂x1

+QA1 (x1)
)

+ I.

(4.30)

Then the candidates for the optimal thresholds are determined by

gA(x1) = 0. (4.31)

In addition, it holds that

lim
x1→∞

gA(x1) = −πA
r

(
1− e−βA2 x2

)
+ I. (4.32)

When lim
x1→∞

gA(x1) < 0, the new firm prefers to invest even for infinitely large
values of x1. Intuitively, in this case the incumbent is certainly going to leave the
market last. Then, if the entrant’s expected discounted earnings until bankruptcy
exceed its investment costs, it undertakes an investment despite the infinitely large
accumulated profits of the opponent. In other words, if the duopoly situation is quite
favorable, it does not matter how strong the incumbent firm is, the new firm always
has an incentive to enter the market.

Recall, however, that firms are particularly inclined to use the accommodation
strategy when the benefits of being in a monopoly position are not too large in
comparison to duopoly, i.e. for small values of πM . In this case violation of the
superharmonicity condition is more likely to occur. This means that when x1 falls
below a certain level, it becomes optimal to wait until it hits an even lower level, which
brings a larger payoff. Hence, the entrant may choose to invest for small values of x1,
wait for intermediate values, and stop for large values. In the extreme case, the first
stopping region may consist of only one point, x1 = 0. This situation is illustrated in
Figure 4.9 .
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Figure 4.9: The continuation and the stopping values of the entrant for the set of pa-
rameter values: x2 = 0.2, πA = 0.2, πM = 0.22, σ1 = 0.6, σ2 = 0.3, r = 0.05,
and I = 0.8.

Figure 4.9 shows the gain function and the option value of the entrant for small
monopoly payoff and relatively large volatility parameter of the incumbent. Here, the
stream of duopoly profits until bankruptcy make the investment so appealing that
the new firm enters even for extremely large values of x1. On the other hand, for a
small level of the incumbent’s accumulated profit we observe a steep increase in the
value function, which makes it optimal to wait until zero is hit. The reason is that
in this region the incumbent is so weak, and thus, is very likely to leave the market
soon, so that the entrant is motivated to wait until this happens. Hence, one of the
implications of the model, which at first seems rather counterintuitive, is that in the
accommodation region the firm has incentives to wait for small x1 and to invest for
large x1.

4.5 Conclusion
This chapter studies the stochastic predatory pricing game, where the entrant

undertakes an irreversible investment in a market with an existing incumbent. The
future profits in this market are subject to firm-specific stochastic shocks. The market
participants are subject to to reputational risks and may predatory strategy to drive
the opponent out of the market. Due to the firm specific nature of uncertainty in the
model, the winner of the price war cannot be determined ex ante, and the outcome
of the game depends on the realizations of the underlying stochastic process. This
translates the firms’ decisions into probabilistic terms, namely, the choice of a certain
strategy is now based on survival probabilities. This study offers several contributions
to the literature.
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First, based on the hitting time distributions of two uncorrelated Brownian mo-
tions, we derive stochastic discount factors and identify when the firms have incentives
for predatory behavior. We find that even though the success of aggressive pricing
strategy is not guaranteed, both firms are willing to engage in a price war in cer-
tain scenarios. From this perspective, our model contributes to the bulk of theoretic
literature on predatory pricing, explaining the rationale behind price wars by the
presence of uncertainty in the future profits. This model goes in line with the repu-
tational argument, particularly, we demonstrate that firms with a strong reputation,
i.e. with large accumulated profits, are more inclined to price aggressively facing a
weaker opponent. In addition, the firms have more incentives to predate for a larger
monopoly payoff, i.e. a larger “prize" for the winner of the predation game. The
effect of the volatility parameters on predatory behavior exhibits non-monotonic be-
havior. This is because when one player’s volatility parameter is relatively small, its
increase reduces the probability to be the last one standing in the price war, as a
result, the firm postpones the decision to engage in predatory pricing. If the firm
is more uncertain about its future profits a further increase in the volatility, drives
down the probability to stay in the market forever when accommodating, so that the
chances survival under fighting and accommodation strategies are becoming closer.
Facing an imminent bankruptcy the firm accelerates its decision to price aggressively
to reduce the chances of survival of its opponent. The opposite effect is observed
when the uncertainty of the rival firm is considered.

Second, we solve the optimal stopping problem of the entrant for the fighting and
accommodation scenarios. This problem, however, differs from the standard real
options models due to the fact that the new firm’s investment decision is based upon
the value of its opponent’s accumulated profit. In addition, the entrant’s investment
changes the drift of the stochastic process, represented by the firm’s current profits.
It is either driven down to zero, if one of the firms decides to fight, or to the level of
duopoly profits, if both firms prefer to accommodate. Intuition suggests that in this
setting the entrant postpones its investment if the incumbent’s accumulated profit
is large and enters, when it falls below the optimal threshold. Even though this
situation indeed occurs for certain parameter sets, in general it is not always the
case. In such cases, we find that the continuation region may not be a connected set.
In fact, the continuation region then consists of two disjoint parts, separated from
the stopping set by three thresholds: two of them trigger investment from above,
while the third one – from below. In the accommodation scenario it is even possible
that the state space of the stochastic process consists of only stopping and inaction
regions, while the standard continuation region does not exist. The inaction region
occurs due to the complex relation between probability of survival for a certain value
of the opponent’s accumulated profit and the probability of ever reaching this value.
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If the incumbent is alone in the market the process for it’s accumulated profit has a
positive drift and there exists a positive probability that it never falls below a certain
level. The entrant then faces a choice between two opportunities, which under certain
parameter sets are equally valuable. It can either invest for a relatively large value
of the incumbent’s accumulated profit level, which implies a modest expected payoff,
but a high probability of obtaining it; or it can wait until the accumulated profit
of the incumbent decreases, substantially increasing its expected gain, but facing a
smaller probability that this will ever happen. The inaction region represents the
values of the incumbent’s accumulated profit such that the entrant prefers to wait
either until the accumulated profit is low enough so that the entry is optimal, or until
it is so large, that the probability of such a decrease is sufficiently low.

We demonstrate that the inaction region becomes larger when the attractiveness
of the investment opportunity decreases, i.e. when the entrant cares more about the
expected payoff. This happens for relatively large values of investment costs and
discount rate, or relatively small values of the initial reputation of the entrant or the
monopoly payoff. The inaction region also becomes larger in a more uncertain envi-
ronment, when the entrant values its flexibility more. The incumbent’s uncertainty,
however, has a non-monotonic effect on the entrant’s investment threshold. This is
because, on the one hand, due to the above argument, a larger uncertainty creates
incentives to postpone the investment. On the other hand, the more uncertain is
the incumbent about its future payoff, the larger is the survival probability of the
entrant, thus, it is willing to invest sooner. One should note, however, that if the
investment becomes sufficiently unattractive, the inaction region disappears and the
investment is only possible for the lower trigger, i.e. only when the survival proba-
bility is sufficiently large. At this point we observe a jump in the optimal investment
threshold as the parameters change. Nevertheless, the jump does not occur in the
optimal value function, which changes continuously.

Lastly, it is important to discuss the possibilities for further research. A valuable
addition to our study would be to consider the optimal stopping problem when both
fighting and accommodation occurs. The solution in this case is largely complicated
by the presence of the jump in the value function of the entrant. This jump occurs at
the point when the incumbent decides to switch from fighting to accommodation. In
addition, the decision of the entrant to change the strategy does not create a discon-
tinuity in the value function itself, but in its derivative. Nevertheless, this analysis
may yield more interesting results. Another potential extension of our framework is
generalizing the model to include the correlation between the profit processes of the
firm.
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4.6 Appendix
Proof of Proposition 4.1 Let X1t and X2t be two uncorrelated Brownian motions
with constant drifts with the statring values of zero:

Xit = µit+ σtBit, (4.33)

and

τ i = inf{t > 0 : Xit = −xi}, (4.34)

with i = {1, 2}.
Given the first passage time density of Brownian motion (see Karatzas and Shreve

(1991)), the survival probability is

Pr(τ i > t) =
∫ ∞
t

xi

σi
√

2πs3
e
− (xi+µis)2

2σ2
i
s ds. (4.35)

Alternatively, consider the minimum process

M i
t = min

0<s<t
Xis. (4.36)

Then the CDF and the survival probability can be obtained as follows

Pr(τ i < t) = Pr(M i
t < −xi) = 1− Φ

(
xi + µit

σi
√
t

)
+ e
− 2µixi)i

σ2
i Φ

(−xi + µit

σi
√
t

)
, (4.37)

Pr(t < τ i <∞) + Pr(τ i =∞) = Φ
(
xi + µit

σi
√
t

)
+ e
− 2µixi

σ2
i Φ

(−xi + µit

σi
√
t

)
, (4.38)

where Φ is the CDF of the standard normal distribution.
Using the above CDF we can derive the following

Ex1,x2

[
e−rτ11τ1<τ2

]
=
∫ ∞

0
e−rt x1

σ1
√

2πt3
e
− (x1+µ1t)

2

2σ2
1t dt

∫ ∞
t

x2

σ2
√

2πs3
e
− (x2+µ2t)

2

2σ2
2s ds

=
∫ ∞

0
e−rt x1

σ1
√

2πt3
e
− (x1+µ1t)

2

2σ2
1t

(
Φ
(
x2 + µ2t

σ2
√
t

)
− e
− 2µ2x2

σ2
2 Φ

(−x2 + µ2t

σ2
√
t

))
dt. (4.39)

Substituting the means of the Brownian motions with the duopoly profits, πk, and
interchanging τ 1 and τ 2 yields the result of the proposition.

Proof of Lemma 1 First, note that

Exi,xj
[
e−rτ i1τ i<τ j

]
= Exi,xj

[
e−rτ i |τ i < τ j

]
P (τ i < τ j). (4.40)



120 Predatory Pricing under Uncertainty
∣∣ Chapter 4

It follows from the proof of Proposition 4.1, that the probability that firm 1 goes
bankrupt before firm 2 is given by

Pr(τ1 < τ2) =
∫ ∞

0

x1

σ1
√

2πτ3
1

e
− (x1+µ1τ1)2

2σ2
1τ1

(
Φ
(
x2 + µ2τ1
σ2
√
τ1

)
− e
− 2µ2x2

σ2
2 Φ

(
−x2 + µ2τ1
σ2
√
τ1

))
dτ1,

and the probability that firm 2 goes bankrupt before firm 1 is given by

Pr(τ 1 > τ 2) =
(

1− e
− 2µ1x1

σ2
1

)(
1− e

− 2µ2x2
σ2

2

)
− Pr(τ 1 < τ 2). (4.41)

Additionally, it holds that

Exi,xj
[
e−rτ i1τ i<τ j

]
+ Exi,xj

[
e−rτ i1τ i>τ j

]
= Exi

[
e−rτ i

]
, (4.42)

where Exi [e−rτ i ] = e−βixi , with βi = µi+
√
µ2
i+2σ2

i r

σ2
1

. Taking into account (4.40) we can
rewrite (4.42) as

Exi,xj
[
e−rτ i |τ i < τ j

]
P (τ i < τ j) + Exi,xj

[
e−rτ i |τ i > τ j

]
P (τ i > τ j) = e−βixi . (4.43)

If xi = 0, then P (τ i < τ j) = 1 and P (τ i > τ j) = 0. Therefore, Exi,xj
[
e−rτ i1τ i<τ j

]
=

Exi,xj [e−rτ i |τ i < τ j] = 1. If xj = 0, then the opposite holds and Exi,xj
[
e−rτ i1τ i<τ j

]
= 0.

If xi → ∞, then lim
xi→∞

P (τ i < τ j) = 0 and lim
xi→∞

P (τ i > τ j) = 1. Hence,

lim
xi→∞

Exi,xj
[
e−rτ i1τ i<τ j

]
= 0. If xj →∞, then the opposite holds: lim

xj→∞
P (τ i < τ j) = 1

and lim
xj→∞

P (τ i > τ j) = 0. Hence, lim
xj→∞

Exi,xj
[
e−rτ i1τ i<τ j

]
= e−βixi .

Now recall that the difference between accommodation and fighting values for the
incumbent is given by

DAF
1 (x1) = πA

r

(
1−QA

1 (x1)
)

+QA
2 (x1)πM − πA

r
−QF

2 (x1)πM
r
, (4.44)

where Qk
1(x1) = Ekx1,x2 [e−rτ11τ1<τ2 ] and Qk

2(x1) = Ekx1,x2 [e−rτ21τ2<τ1 ]. It follows from
the above observations that

DAF
1 (0) = 0, (4.45)

and

lim
x1→∞

DAF
1 (x1) = πA

r
+ e−βA2 x2

πM − πA
r

− e−βF2 x2
πM
r

= πA
r

+ e−βA2 x2
πM − πA

r
− e−βF2 x2

πM
r

+ πM
r
− πM

r

=
(
1− e−βF2 x2

) πM
r
−
(
1− e−βA2 x2

) πM − πA
r
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=
(
1− e−βF2 x2

) πM − πA
r

 πM
πM − πA

− 1− e−βA2 x2

1− e−βF2 x2

 . (4.46)

Note that πM
πM−πA

> 1 and 1−e−βA2 x2

1−e−βF2 x2
> 1. Moreover,

lim
x2→0

1− e−βA2 x2

1− e−βF2 x2
= βA2
βF2

=
πA +

√
π2
A + 2rσ2

2√
2rσ2

2

, (4.47)

and

∂

∂x2

(
1− e−βA2 x2

1− e−βF2 x2

)
=

ex2(βF2 −βA2 ) (βF2 (1− eβA2 x2
)
− βA2

(
1− eβF2 x2

))
(
eβF2 x2 − 1

)2 < 0. (4.48)

Hence, if πM
πM−πA

>
πA+
√
π2
A+2rσ2

2√
2rσ2

2
, the difference is always positive, i.e. the incumbent

prefers to accommodate even for infinite values of x1. In the complementary case,
when πM

πM−πA
≤ πA+

√
π2
A+2rσ2

2√
2rσ2

2
there exists a unique x2 such that if x1 goes to infinity,

for the smaller values of the entrant’s accumulated profits the incumbent will choose
to fight, while for the larger values – to accommodate.

The difference between the value functions for the entrant is defined as follows

DAF
2 (x1) = πA

r

(
1−QA

2 (x1)
)

+QA
1 (x1)πM − πA

r
−QF

1 (x1)πM
r
. (4.49)

Similarly to the previous vase, we conclude that

DAF
2 (0) = 0 (4.50)

and

lim
x1→∞

DAF
2 (x1) = πA

r

(
1− e−βA2 x2

)
≥ 0. (4.51)

Proof of Proposition 4.2 The value matching and smooth pasting conditions give
Ae−βMX∗

1 = V F
2 (X∗1 )− I,

−AβMe−βMX∗
1 = ∂V F2 (x1)

∂x1

∣∣∣∣∣
x1=X∗

1

,
(4.52)

where V F
2 (x1) = QF

1 (x1)πM
r
, and ∂V F2 (x1)

∂x1
= ∂QF1 (x1)

∂x1
πM
r
.

Solving the above system for A and X∗1 we get

A(X∗1 ) = −eβMX∗
1
πM
rβM

∂QF
1 (x1)
∂x1

∣∣∣∣∣
x1=X∗

1

(4.53)
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and

−πM
r

 1
βM

∂QF
1 (x1)
∂x1

∣∣∣∣∣
x1=X∗

1

+QF
1 (X∗1 )

+ I = 0. (4.54)

Additionally, if there exists a solution, X∗n, such that ∂g(x1)
∂x1

∣∣∣
x1=X∗

n

< 0, it is possible
to show that X∗n is never the optimal investment trigger. Namely, if for x1 < X∗n the

function V (x1) is steeper than W (x1), i.e.
∣∣∣∣∣∂V F2 (x1)

∂x1

∣∣∣∣∣ >
∣∣∣∣∣∂W (x1)

∂x1

∣∣∣∣∣, then the option value

lies below the investment value, and, thus, X∗n cannot be the optimal investment
threshold. The difference of the absolute values of the derivatives can be written as
follows∣∣∣∣∣∂V F

2 (x1)
∂x1

∣∣∣∣∣−
∣∣∣∣∣∂W (x1)

∂x1

∣∣∣∣∣ = −∂Q
F
1 (x1)
∂x1

πM
r

+ e−βM (x1−X∗
1 )πM

r

∂QF
1 (x1)
∂x1

∣∣∣∣∣
x1=X∗

n

= e−βMx1
πM
r

(f(X∗n)− f(x1)), (4.55)

where f(x1) = eβM ∂QF1 (x1)
∂x1

. Consider now its derivative

∂f(x1)
∂x1

= βMeβM
(

1
βM

∂2QF
1 (x1)

∂X2
1

+ ∂QF
1 (x1)
∂x1

)
. (4.56)

From (4.54) ∂g(x1)
∂x1

always has the opposite sign to ∂f(x1)
∂x1

. Thus, in the neighborhood

of X∗n it holds that ∂f(x1)
∂x1

> 0 and, as a result,
∣∣∣∣∣∂V (x1)

∂x1

∣∣∣∣∣ −
∣∣∣∣∣∂W (x1)

∂x1

∣∣∣∣∣ > 0 for x1 < X∗n.

Hence, X∗n is not an optimal investment trigger.

Proof of Proposition 4.3 It follows from (4.52) that for any function V2 (i.e. both
for fighting and accommodating) it holds that g(x1) = − 1

βM

∂V2(x1)
∂x1

− V2(x1) + I and
∂g(x1)
∂x1

= − 1
βM

∂2V2(x1)
∂x2

1
− ∂V2(x1)

∂x1
.

Then we can derive the following relation

LV2(x1)− rV2(x1) = 1
2σ

2
1
∂2V2(x1)
∂X2

1
+ πM

∂V2(x1)
∂x1
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= 1
2σ

2
1
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∂X2

1
+ 1
βM
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∂x1

(1
2σ

2
1β

2
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)
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2
1βM

(
1
βM

∂2V2(x1)
∂X2

1
+ ∂V2(x1)

∂x1

)

−r
( 1
βM

∂V2(x1)
∂x1

+ r(V2(x1)− I)
)

= −βMσ
2
1

2
∂g(x1)
∂x1

+ rg(x1). (4.57)
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Moreover, at X∗1 it holds that

LV2(X∗1 )− rV2(X∗1 ) = −βMσ
2
1

2
∂g(x1)
∂x1

∣∣∣∣
x1=X∗

1

. (4.58)

Hence, we can conclude that LV2(X∗1 )− rV2(X∗1 ) ≥ 0, when ∂g(x1)
∂x1

∣∣∣∣∣
x1=X∗

1

≤ 0 and

LV2(X∗1 )− rV2(X∗1 ) < 0, when ∂g(x1)
∂x1

∣∣∣∣∣
x1=X∗

1

> 0. It means that if (4.54) has a solution

with a negative derivative, there always exist a region where superharmonicity is not
satisfied.

Proof of Proposition 4.4 In order to find the option value we need to consider
the boundary conditions of value matching and smooth pasting at the two candidate
thresholds, X̂∗1 and X̂∗∗1 :

B1e−βM X̂∗
1 +B2eγM X̂∗

1 = V F
2 (X̂∗1 )− I,

−B1βMe−βM X̂∗
1 +B2γMeγM X̂∗

1 = ∂V F2 (x1)
∂x̂1

∣∣∣∣∣
x1=X̂∗

1

B1e−βM X̂∗∗
1 +B2eγM X̂∗∗

1 = V F
2 (X̂∗∗1 )− I,

−B1βMe−βM X̂∗∗
1 +B2γMeγM X̂∗∗

1 = ∂V F2 (x1)
∂x̂1

∣∣∣∣∣
x1=X̂∗∗

1

,

(4.59)

where V F
2 (x1) = QF

1 (x1)πM
r
, and ∂V F2 (x1)

∂x̂1
= ∂QF1 (x1)

∂x1
πM
r
. Further simplification yields
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1 1
βM +γM

(
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1

)
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)
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)
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1

)
,

(4.60)

Note now that the system can be simplified further using the function g(x1), defined
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by (4.21).

B1 = eβM X̂∗
1 1
βM+γM

(
γM (V F

2 (X̂∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗

1

)
,

B2 = −e−γM X̂∗
1 1
βM+γM

g(X̂∗1 ),

e−γM X̂∗
1 g(X̂∗1 ) = e−γM X̂∗∗

1 g(X̂∗∗1 ),

eβM X̂∗
1

(
γM (V F

2 (X̂∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗

1

)
=

eβM (X̂∗∗
1 )
(
γM (V F

2 (X̂∗∗1 )− I)− ∂V F2 (x1)
∂x̂1

∣∣∣∣
x1=X̂∗∗

1

)
.

(4.61)

Consider the function e−γMx1g(x1). This function has the same zeros as g(x1).
Moreover, as e−γMx1 < 1, it is always smaller than g(x1) if g(x1) > 0, and larger
than g(x1) if g(x1) < 0. This observation allows us to conclude that if there exists a
solution, (X̂∗1 , X̂∗∗1 )7, then the following holds:

1. If g(X̂∗1 ) < 0 (and g(X̂∗∗1 ) < 0), then it holds that X̂∗1 < X̃∗1 < X̂∗∗1 < X̃∗∗1 ,
where X̃∗1 and X̃∗∗1 are the solutions of g(x1) = 0,8

2. If g(X̂∗1 ) > 0 (and g(X̂∗∗1 ) > 0), then it holds that X̃∗1 < X̂∗1 < X̃∗∗1 < X̂∗∗1 .

3. If g(X̂∗1 ) = 0 (and g(X̂∗∗1 ) = 0), then it holds that X̃∗1 = X̂∗1 and X̃∗∗1 = X̂∗∗1 .

Proof of Proposition 4.5 The value matching and smooth pasting can be written
as 

AAe−βMX∗
1A = πA

r

(
1−QA

2 (X∗1A)
)

+QA
1 (X∗1A)πM−πA

r
− I,

−AAβMe−βMX∗
1A = −πA

r

∂QA2 (x1)
∂x1

∣∣∣∣∣
x1=X∗

1A

+ πM−πA
r

∂QA1 (x1)
∂x1

∣∣∣∣∣
x1=X∗

1A

,
(4.62)

where X∗1A is the optimal investment trigger.
Solving (4.62) for AA yields AA = ÂA(X∗1A), with

ÂA(x1) = eβMx1

βM

(
πA
r

∂QA
2 (x1)
∂x1

− πM − πA
r

∂QA
1 (x1)
∂x1

)
, (4.63)

and the candidates for the optimal investment trigger are determined by the following
implicit equation:

−πA
r

(
1− 1

βM

∂QA2 (x1)
∂x1

−QA2 (x1)
)
− πM − πA

r

(
1
βM

∂QA1 (x1)
∂x1

+QA1 (x1)
)

= −I.(4.64)

7Using similar argument as in the proof of Proposition 4.2 we can neglect the solutions with a
negative derivative of e−γMx1g(x1).

8If g(x1) = 0 has a unique solution, X∗1 , then X̂∗1 < X̂∗∗1 < X∗1 .
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Denoting this function by gA(x1) and taking the limit to infinity we arrive at the
result in the proposition:

lim
x1→∞

gA(x1) = −πA
r

(
1− e−βA2 x2

)
+ I. (4.65)
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