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Using 2SLS estimation, we propose two tests for a threshold in models with
endogenous regressors: a sup LR test and a sup Wald test. Here, the 2SLS
estimation is not conventional because it uses additional information about
the first-stage being linear or not. Because of this additional information,
our tests can be more accurate than the threshold test in Caner and Hansen
(2004) which is based on conventional GMM estimation.

We derive the asymptotic distributions of the two tests for a linear and for
a threshold reduced form. In both cases, the distributions are non-pivotal,
and we propose obtaining critical values via a fixed regressor wild bootstrap.
Our simulations show that in small samples, the GMM test of Caner and
Hansen (2004) can be severely oversized under heteroskedasticity, while the
2SLS tests we propose are much closer to their nominal size.

We use our tests to investigate the common claim that the government
spending multiplier is larger close to the zero lower bound, and therefore
that the governments should have spent more in the recent crisis. We find
no empirical support for this claim.
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1. Introduction

Threshold models are widely used in economics to model unemployment, output, growth,
bank profits, asset prices, exchange rates, and interest rates. See Hansen (2011) for a
survey of economic applications.

Pioneered by Howell Tong - see e.g. Tong (1990), threshold models with exogenous
regressors have been widely studied and their asymptotic theory is well known. 1 Even
though exogeneity is violated in many economic applications, papers on threshold regres-
sion with endogenous regressors remain relatively scarce. They were pioneered by Caner
and Hansen (2004), who show that when regressors are endogenous but the threshold
variable is exogenous, the threshold parameter can be estimated by minimizing a two
stage least squares (2SLS) criterion over values of the threshold variable encountered in
the sample.

In general, the applied researcher needs to decide whether there is a threshold to
begin with. This can be done via testing for an unknown threshold. For example,
the government spending multiplier is often conjectured to be larger in regimes where
the nominal interest rate is close to the zero lower bound - see Eggertsson (2010) and
Christiano et al. (2011).2 This conjecture can be validated by testing whether there is a
threshold driven by low interest rates (which we do in this paper). Another example is
testing whether growth slows down when the debt to GDP ratio is high - see Reinhart
and Rogoff (2010) (tests for this conjecture albeit using exogenous regressors can be
found in Lee et al. (2014) and Hansen (2016) a.o.). Many more examples can be found
in Hansen (2011).

In this paper, we develop 2SLS tests for no threshold against the alternative of one
unknown threshold for models with endogenous regressors. Caner and Hansen (2004)
already proposed a GMM sup Wald test for the same hypothesis. Here, we show that this
test is severely oversized in small, heteroskedastic samples. We propose instead two 2SLS
tests (a 2SLS sup LR test and a 2SLS sup Wald test), which we show have superior size
properties in finite samples. The superior size stems from how the 2SLS estimators are
constructed. They are not conventional, because they use additional information about
the first stage, while the conventional GMM estimators in Caner and Hansen (2004) do
not use any information about the first stage. With this additional information, we show
that the 2SLS estimators can be more accurate than the conventional GMM estimators,
and that they lead to better sized tests in finite samples.3

The additional information we use is whether there is a threshold in the first stage.
We consider two cases: the first stage is a linear model and the first stage is a threshold

1See a.o. Hansen (1996, 1999, 2000) and Gonzalo and Wolf (2005) for inference, Gonzalo and Pitarakis
(2002) for multiple threshold regression and model selection, Caner and Hansen (2001) and Gonzalo
and Pitarakis (2006) for threshold regression with unit roots, Seo and Linton (2007) for smoothed
estimators of threshold models, Lee et al. (2011) for testing for thresholds, and Hansen (2016) for
threshold regressions with a kink.

2This can happen because when the monetary policy is less effective, fiscal stimulus can quickly lower
real interest rates by raising inflation, resulting in potentially large multiplier effects.

3These unconventional 2SLS estimators were already proposed in Caner and Hansen (2004), but not
for constructing tests for a threshold.
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model.4 We compute the 2SLS tests for each case separately, and show that their null
asymptotic distributions depend on the data and on the case considered. Nevertheless,
critical values are straightforward to compute via the wild bootstrap, so these tests are
easily implemented in practice. To our knowledge, this is the first paper to propose and
analyze 2SLS tests for a threshold.

We study the properties of both tests via simulation. We generate critical values via
a fixed regressor wild bootstrap that we describe in this paper. We find that the 2SLS
sup LR and the 2SLS sup Wald test are either correctly sized or slightly undersized. In
contrast, the GMM sup Wald test is correctly sized under homoskedasticity, but under
heteroskedasticity, it is severely oversized.5 This holds for both linear and threshold
reduced forms. As the sample size grows large, all tests approach their nominal sizes.
We conclude that the 2SLS tests are valuable complementary diagnostics to the GMM
test for a threshold, especially under heteroskedasticity.

Our paper is closely related to two papers in the break-point literature - Hall et al.
(2012) and Boldea et al. (2016). Both papers study the 2SLS sup LR and 2SLS sup Wald
tests for a break, the first one for a linear first stage, the second one for a first stage
with a break. The asymptotic distributions for the break-point tests are pivotal in the
first paper and depend on the break in the first stage in the second paper. In contrast,
we find that the asymptotic distributions of the threshold tests are non-pivotal in both
cases, a linear or a threshold first stage. Moreover, they are very different than the
break-point distributions, and we show that they only coincide in unrealistic threshold
models.

The paper is also related to Magnusson and Mavroeidis (2014), who use information
about break-points in the first stage (and in general break-points in the derivative of
the moment conditions) to improve efficiency of tests for moment conditions. It is
also related to Antoine and Boldea (2015a) and Antoine and Boldea (2015b): the first
uses breaks in the Hessian of the GMM minimand and the second uses full sample RF
information. Both papers focus on more efficient estimation, while we focus on improved
testing.

It should be noted that we allow for endogenous regressors, but not for endogenous
threshold variables. For the latter, see Kourtellos et al. (2015). Also, to account for re-
gressor endogeneity, we make use of instruments for constructing parametric test statis-
tics for thresholds. As a result, our tests have nontrivial local power for O(T−1/2)
threshold shifts. This is in contrast with Yu and Phillips (2014), who does not use
instruments, but rather local shifts around the threshold to construct a nonparametric
threshold test. As a result, his test covers more general models, at the cost of losing

4Caner and Hansen (2004) consider the same cases for estimating the threshold parameter, but not
for testing for a threshold. One can distinguish between the two cases by testing for a threshold in
the first stage, using currently available tests such as the OLS sup Wald test in Hansen (1996).

5Note that unlike the Wald test for classical hypotheses, the (heteroskedasticity-robust) sup Wald test
for the null hypothesis for an unknown threshold does not have a pivotal null distribution. That
means that correcting for heteroskedasticity (and therefore using Wald tests instead of LR tests)
does not necessarily result in better size properties for the sup Wald test compared to the sup LR
test; this is indeed what we find in the simulations.
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power in O(T−1/2) neighborhoods.
We apply our tests to check whether the US government spending multiplier is larger

in regimes where the nominal interest rate is close to the zero lower bound. We find
strong evidence for a threshold in the first stage, but not in the second stage. Therefore,
we find no empirical evidence that in the sample considered, the government spending
multiplier is larger at the zero lower bound.

This paper is organized as follows. Section 2 introduces the threshold model. Section
3 defines the 2SLS and GMM estimators, and theoretically and numerically motivates
the use of 2SLS estimators. Section 4 defines the new 2SLS test statistics and derives
their asymptotic distributions. Section 5 describes the existing GMM test of Caner and
Hansen (2004). Section 6 describes the fixed regressor wild bootstrap, and illustrates
the small sample properties of all tests via simulations. Section 7 contains the empirical
application. Section 8 concludes and Section 9 contains all tables and graphs. All the
proofs are relegated to the Appendix, together with additional notation.

2. Threshold Model

Our framework is a linear model with a possible threshold at γ0:

yt =
(
z>t θ0

1z + x>
1tθ

0
1x

)
1{qt≤γ0} +

(
z>t θ0

2z + x>
1tθ

0
2x

)
1{qt>γ0} + εt

= w>
t θ0

11{qt≤γ0} + w>
t θ0

21{qt>γ0} + εt.

Here, yt is the dependent variable, zt is a p1 × 1-vector of endogenous variables and x1t

a p2 × 1-vector of exogenous variables containing the intercept, and wt = (z>t , x>
1t)

>. We
set p1 + p2 = p. Also, qt is the exogenous threshold variable (which can be a function
of the exogenous regressors) and 1{A} denotes the indicator function on the set A.
Furthermore, for i = 1, 2, θ0

iz are p1×1-vectors of slope parameters associated with zt, θ0
ix

are p2×1-vectors of the slope parameters associated with x1t and γ0 ∈ Γ0 = [γmin, γmax],
its compact support.6 The second equation is just a more compact way of writing the
first, with wt = (z>t , x>

1t)
> being the augmented regressors, and θ0

i = (θ0>
iz , θ0>

ix )> being
p × 1-vectors of the slope parameters, for i = 1, 2.

We assume that zt is endogenous (E[εt] = 0; E[ztεt] 6= 0) and strong instruments xt

are available; these instruments include x1t, the exogenous regressors.
As in Caner and Hansen (2004), we consider two different specifications for the first

stage (which we call reduced form or RF for lack of better terminology): a linear reduced
form (LRF), given by

zt = Π0>xt + ut,

and a threshold reduced form (TRF) given by

zt = Π0>
1 xt1{qt≤ρ0} + Π0>

2 xt1{qt>ρ0} + ut.

6We can allow for Γ0 = R. However, the end-points of the support of qt, even when infinite, are
relevant for simulating asymptotic p−values. Without further information, the only end-points we
observe are those in the sample: the minimum and maximum value of qt, which we call γmin, γmax;
therefore, we fix Γ0 = [γmin, γmax].
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In both specifications for the RF, xt = (x>
1t, x

>
2t)

> is a q×1-vector with q ≥ p, q = p2+q1;
Π0, Π0

1 and Π0
2 are q×p1-matrices of the RF slope parameters; ρ0 ∈ Γ0 is the RF threshold

parameter, possibly different than γ0, with the same support Γ0.
As common in the threshold literature, we assume that εt and ut are martingale

differences, i.e. E[εt|Ft] = 0 and E[ut|Ft] = 0, Ft = σ{qt−s, xt−s, ut−s−1, εt−s−1|s ≥
0}, and (x>

t , z>
t )> is measurable with respect to Ft. This assumption implies that the

threshold variable qt is exogenous, and so are the instruments xt.
Next, we write the equations above in matrix form. To do so, stack all observations

in the following T -row matrices:

Xρ
1 =

(
x>

t 1{qt≤ρ}

)
t=1,...,T

Xρ
2 =

(
x>

t 1{qt>ρ}

)
t=1,...,T

W γ
1 =

(
w>

t 1{qt≤γ}

)
t=1,...,T

W γ
2 =

(
w>

t 1{qt>γ}

)
t=1,...,T

.

Let Y , X, Z, W , ε and u be the matrices stacking observations t = 1, . . . , T . Then the
LRF is:

Z = XΠ0 + u (2.1)

and the TRF is:
Z = Xρ0

1 Π0
1 + Xρ0

2 Π0
2 + u. (2.2)

The equation of interest - which can arise from a structural model and for lack of better
terminology is called the structural form (SF) - is, for a threshold parameter γ0:

Y = W γ0

1 θ0
1 + W γ0

2 θ0
2 + ε. (2.3)

If there is no SF threshold, θ0
1 = θ0

2 = θ0, and the SF is Y = Wθ0 + ε.

3. 2SLS versus GMM estimation

In this section, we motivate the use of 2SLS estimation for constructing test statistics.
We are interested in testing for a SF threshold, the null hypothesis being H0 : θ0

1 = θ0
2

in (2.3). Because γ0 is usually unknown and it is a nuisance parameter under the null
hypothesis, a common practice is to calculate a series of test statistics, each for a given
γ ∈ Γ (where Γ ⊂ Γ0), and then to take the supremum over these quantities to obtain a
single test statistic for the null of no threshold against the alternative of one threshold.
For example, Hansen (1996) and Caner and Hansen (2004) construct such tests.

In the presence of endogenous regressor, to test for H0, Caner and Hansen (2004)
defines two-step GMM estimators of θ0

i , (i = 1, 2) for each γ. These are conventional in
the sense that by construction, they ignore any information about the RF. Specifically,
for each γ ∈ Γ, where Γ is a closed interval in the support Γ0, bounded away from the
end-points of this support, and i = 1, 2:

θ̂γ
i,GMM =

(
W γ>

i Xγ
i Ĥε−1

i,GMM (γ)Xγ>
i W γ

i

)−1 (
W γ>

i Xγ
i Ĥε

i,GMM (γ)Xγ>
i Y

)
,
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with estimated long-run variances:

Ĥε
1,GMM (γ) = T−1

T∑

t=1

ε̂2
t,GMMxtx

>
t 1{qt≤γ}, Ĥ

ε
2,GMM (γ) = T−1

T∑

t=1

ε̂2
t,GMMxtx

>
t 1{qt>γ},

where ε̂t,GMM is the tth element of the T × 1 vector ε̂GMM = y − W γ
1 θ̃1,GMM (γ) −

W γ
2 θ̃2,GMM (γ), and θ̃i,GMM (γ) are some preliminary first step GMM estimators of (2.3)

for a given γ and i = 1, 2.7

If instead, we estimate (2.3) by 2SLS, we have no choice but to take into account the
nature of the RF - linear model or threshold model - otherwise the resulting estimator
of θ0

i may be inconsistent. These two cases - linear or threshold RF - have also been
considered in Caner and Hansen (2004) for 2SLS slope estimators, but with the purpose
of defining a consistent estimator the threshold parameter γ0. If we do not know which
case applies, we can test it via the sup Wald test in Hansen (1996).

For a linear RF (LRF), let:

Ẑ = XΠ̂, Ŵ =
(
Ẑ,X1

)
, (3.1)

with X1 = (x>
1t)t=1,...,T .

For a threshold RF (TRF), first estimate the threshold parameter ρ as in Caner and
Hansen (2004):

ρ̂ = argmin
ρ∈Γ

det
(
û(ρ)>û(ρ)

)
, (3.2)

where û(ρ) = Z−Xρ
1 Π̂1(ρ)−Xρ

2 Π̂2(ρ) and Π̂1(ρ), Π̂2(ρ) are the OLS estimators of Π0
1, Π

0
2

in (2.2) for a given ρ:

Π̂1(ρ) =
(
Xρ>

1 Xρ
1

)−1

Xρ>
1 Z (3.3)

Π̂2(ρ) =
(
Xρ>

2 Xρ
2

)−1

Xρ>
2 Z. (3.4)

With ρ̂, the TRF slope parameter estimates are Π̂1 = Π̂1(ρ̂), Π̂2 = Π̂2(ρ̂).
Then:

Ẑ = Π̂1X
ρ̂
1 + Π̂2X

ρ̂
2 . (3.5)

The second-stage of the 2SLS is standard. Construct Ŵ =
(
Ẑ,X1

)
, with Ẑ defined

in (3.1) for a LRF and (3.5) for a TRF, and the 2SLS estimators of θ0
1, θ

0
2 for a given

γ ∈ Γ are for i = 1, 2.

θ̂γ
1 =

(
Ŵ γ>

1 Ŵ γ
1

)−1 (
Ŵ γ>

1 Y
)

(3.6)

θ̂γ
2 =

(
Ŵ γ>

2 Ŵ γ
2

)−1 (
Ŵ γ>

2 Y
)

. (3.7)

7Note that because W are already partitioned according to 1{qt≤γ}, we have W γ>
i Y = W γ>

i Yi.

6



Both the 2SLS and the GMM estimators defined here are consistent under standard
assumptions, as shown in Caner and Hansen (2004). But the GMM estimators ignore
potentially valid information about the RF. As a result, the GMM estimators can be
less efficient than the 2SLS estimators. This result is formalized below.

Theorem 1 (2SLS versus GMM).
Assume the SF is (2.3) with the TRF (2.2), one endogenous regressor, one instrument
and no exogenous regressors (p = q = p1 = 1), and impose H0: θ0

z = θ0
1z = θ0

2z.
Let ρ0 be known and let Assumptions A.1–A.4 of Section 3 hold, with σ2

ε = Var(εt),
σ2 = Var(εt + utθ

0
z), π0

1 = Π0
1 and π0

2 = Π0
2. Define λ = P (qt ≤ γ) and μ0 = P(qt ≤ ρ0).

Then, for a given γ,
(i) For both i = 1, 2,

√
T (θ̂γ

i − θ0)]
d
→ N (0, V ∗

A,i(γ)) and
√

T (θ̂γ
i,GMM − θ0)]

d
→ N (0, V ∗

i,GMM (γ)),

where V ∗
A,i(γ) and V ∗

i,GMM (γ) are defined in Lemma 9 of the Appendix.
(ii)

σ2 ≤ σ2
ε ⇐⇒

{
V ∗

i,GMM (γ) ≥ V ∗
A,i(γ) for both i = 1, 2 simultaneously

}
.

(iii) If the RF is in fact linear, that is, if π0
1 = π0

2, then:

σ2 ≤ σ2
ε ⇐⇒ V ∗

1,GMM (γ) ≥ V ∗
A,1(γ)

σ2 ≤ σ2
ε ⇐⇒ V ∗

2,GMM (γ) ≥ VA,2(γ).

(iv) V ∗
i,GMM (ρ0) = V ∗

A,i(ρ
0).

Note that Theorem 1 is derived under conditional homoskedasticity (imposed in As-
sumption A.2) and under independence of qt and xt ( imposed in Assumption A.3).8

The intuition for the results in Theorem 1 is as follows. If the sample {t : qt ≤ γ}
is used for both the RF and the SF to compute 2SLS estimators, and the same sample
is used for GMM estimators, then both these estimators are conventional. Therefore,
the two-step GMM is asymptotically more efficient than the 2SLS, and asymptotically
equivalent in the just-identified case. This is shown in Theorem 1(iv) where we set
γ = ρ0. However, when γ 6= ρ0 the 2SLS estimators are not conventional. For example,
if γ ≤ ρ0, in computing the 2SLS estimator over the sample {t : qt ≤ γ}, we use
information from the RF over a larger sample {t : qt ≤ ρ0}. Theorem 1 (ii) shows that
this additional information leads to more efficient estimators if the 2SLS errors ( εt+utθ

0
z)

have smaller variance than the GMM errors εt. This efficiency result also holds if instead
the RF is linear, as shown in Theorem 1(iii).

Theorem 1 is not just a theoretical result, as shown in the example below.

Example 1. Suppose that π0
1 = 1, π0

2 = 1.25, ρ0 = 0.25. Let qt
iid
∼ N (0, 1), xt

iid
∼ N (0, 1)

and

[
εt

ut

]
iid
∼ N

(

0,

[
1 0.5

0.5 1

])

. Let fi(λ, θ0
z) = V ∗

A,i(γ) − V ∗
GMM,i(γ), and γ ≤ ρ0 (if

γ > ρ0, the first plot becomes the second and viceversa).

8In more general cases, it is much harder to obtain a similar result analytically.
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Note that in this case, σ2 − σ2
ε = (θ0

z)(1 + θ0
z). From Theorem 1, if θ0

z(1 + θ0
z) < 0,

fi(λ, θ0
z) < 0 and both 2SLS estimators are more efficient.9 From Example 1, μ0 =

E1{qt≤ρ0} = 0.5981. In Figures 3.1 and 3.2 we plot f1(λ, θ0
z) and f2(λ, θ0

z) as functions
of θ0

z ∈ [−1.5, 0.5] and λ = P (qt ≤ γ) ∈ (0, μ0]. The purple areas indicate parameter
configurations where 2SLS is more efficient than GMM, and these are sizable areas of
the parameter space.

Figure 3.1: Plot and Contour Plot of f1(∙)
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Figure 3.2: Plot and Contour Plot of f2(∙)
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Because 2SLS can be more accurate than GMM, so can be test statistics based on
them. Tables 9.3 and 9.4 show that the GMM sup Wald test of Caner and Hansen (2004),

9As shown in the proof of Theorem 1, when σ2 > σ2
ε , θ̂γ

1 is less efficient than θ̂γ
1,GMM , but θ̂γ

2 can still

be more efficient than θ̂γ
2,GMM depending on the DGP.
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based on the GMM estimators, is severely oversized in small samples; at a nominal size
of 5%, the empirical sizes reach up to 21.8% for 100 observations; they decrease with the
sample size increasing, but they are still around 7−8% for 1000 observations. Since many
applications of threshold tests are macroeconomic applications, where a representative
sample is around 500 observations, these size distortions are worrisome, as they will
often lead to favor a threshold model when there is none. The same tables show that
the 2SLS tests are either correctly sized or slightly undersized, but not oversized. This
motivates us to propose 2SLS tests as complementary threshold diagnostics.

4. 2SLS Tests

4.1. Test Statistics

For a LRF, the first test statistic we propose is a sup LR test in the spirit of Davies
(1977):

sup
γ∈Γ

LR2SLS
T,LRF (γ) = sup

γ∈Γ

SSR0 − SSR1(γ)

SSR1(γ)/(T − 2p)
, (4.1)

where SSR0 and SSR1(γ) are the 2SLS sum of squared residuals under the null and the
alternative hypotheses:

SSR0 = (Y − Ŵ θ̂)>(Y − Ŵ θ̂),

SSR1(γ) = (Y γ
1 − Ŵ γ

1 θ̂γ
1 )>(Y γ

1 − Ŵ γ
1 θ̂γ

1 ) + (Y γ
2 − Ŵ γ

2 θ̂γ
2 )>(Y γ

2 − Ŵ γ
2 θ̂γ

2 ),

and where θ̂ = (Ŵ>Ŵ )−1Ŵ>Y is the full-sample 2SLS estimator, and Ŵ , θ̂γ
1 , θ̂γ

2 are
defined in Section 3 for a LRF.

A scaled version of this test is known as the sup F test in the break-point literature -
see Bai and Perron (1998) for OLS and Hall et al. (2012) for 2SLS.

We also propose the sup Wald test:

sup
γ∈Γ

W 2SLS
T,LRF (γ) = sup

γ∈Γ
T
[
θ̂γ
1 − θ̂γ

2

]>
V̂ −1(γ)

[
θ̂γ
1 − θ̂γ

2

]
, (4.2)

where V̂ (γ) is defined in Definition A.2 of the Appendix, and unlike the 2SLS sup Wald
test in Hall et al. (2012), it takes into account that the 2SLS estimators θ̂γ

1 and θ̂γ
2 are

correlated through a full-sample first-stage.
For a TRF, the test statistics are calculated exactly as above, but taking into account

the TRF when computing the first stage of the 2SLS estimation, as in (3.5). Therefore,
supγ∈Γ W 2SLS

T,TRF (γ) is computed with V̂A(γ) instead of V̂ (γ), and V̂A(γ) is defined in
Definition A.3 of the Appendix.

4.2. Assumptions

Define

M1(γ) = E[xtx
>
t 1{qt≤γ}], M = M(γmax) = E[xtx

>
t ], and M2(γ) = M − M1(γ)

9



as the second moment functionals of the instruments xt, where γ ∈ Γ. We impose the
same assumptions as in Caner and Hansen (2004) below:

Assumption A.1.

1. Let vt = (εt, u
>
t )> denote the compound error term. Then

E[vt|Ft] = 0

with Ft = σ{xt−s, vt−s−1, qt−s|s ≥ 0}.

2. The series (εt, u
>
t , x>

t , z>
t , qt)

> is strictly stationary and ergodic with ρ-mixing co-
efficient ρ(m) = O(m−A) for some A > a

a−1
and 1 < a ≤ 2. Also, for some

b > a,

sup
t
E‖xt‖

4b
2 < ∞, sup

t
E‖vt‖

4b
2 < ∞,

with ‖ ∙ ‖2 being the Euclidean norm, and inf
γ∈Γ

det M1(γ) > 0.

3. The density of vt is absolutely continuous, bounded and positive everywhere.

4. The threshold variable qt has a continuous pdf f(qt) with sup
t

|f(qt)| < ∞.

5. The variance of the compound error term vt is given by

E[vtv
>
t ] = Σ =

(
σ2

ε Σ>
ε,u

Σε,u Σu

)

,

which is positive definite.

6. Assume Π0 (LRF) or Π0
1, Π

0
2 (TRF) are full rank.

A.1.1 is needed for threshold models, and it excludes autocorrelation in the errors.
However, lagged regressors can enter both the SF and the RF. A.1.2 is standard for time
series and is trivially satisfied for many cross-section models (note that even though
we use the time series notation with index t, our results equally apply to cross section
models). However, it precludes nonstationary processes. A.1.3 is needed in the TRF
case in order to make asymptotic statements about the RF parameters in the spirit of
Chan (1993). A.1.4 requires the support of qt to be continuous; if it is discrete, the
search over Γ is much easier to perform. A.1.5 allows conditional heteroskedastic errors
and finally, A.1.6 says that xt is a strong instrument.

Assumption A.2.

E[vtv
>
t |Ft−1] = Σ =

(
Σε Σ>

ε,u

Σε,u Σu

)

.

Assumption A.2 is a conditional homoskedasticity assumption, which we only use for
special case derivations.
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Assumption A.3. The threshold variable qt and the vector of exogenous variables xt

are independent. i.e.
qt ⊥ xt ∀t = 1, 2, ..., T.

Assumption A.3 is also quite strong and is only used to relate the results in this paper
to those on break-point tests, not for the main results of the paper. It doesn’t allow the
threshold variable qt to be one of the instrumental variables or exogenous regressors xt,
and is quite restrictive. However, it mimics break-point models, where the threshold is
time, or more exactly, a fraction of the sample size, t/T .

Assumption A.4 (Identifiability). If we have a TRF as in (2.2), Π0
1 6= Π0

2.

Assumption A.4 states that if there is a TRF, the threshold effect is large. It is
imposed for simplicity.

4.3. Asymptotic distributions with a LRF

To write the asymptotic distributions, define the “ratios”

Ri(γ) = Mi(γ)M−1, i = 1, 2.

Also, let
GPmat,1(γ) and GPmat

as q × (p1 + 1)-matrices where all columns are q × 1 zero mean Gaussian processes, and
the covariance kernels of GP1(γ) = vec(GPmat,1(γ)) and GP = vec(GPmat) are given by
E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}] and E[(vtv

>
t ⊗ xtx

>
t )]. Let GPmat = GPmat,1(γmax).

Also, let
A0 = [Π0, S>]>

be the augmented matrix of the RF slope parameters, where S = [Ip2 , 0p2×q1 ], Ip2 is the
p2 × p2 identity matrix and 0p2×q1 a p2 × q1 null matrix (p2 + q1 = q). Hence, x1t = Sxt

and wt = A0xt + ūt, where ūt = (u>
t , 01×q1)

>. Define the matrices

C1(γ) = A0M1(γ)A0>, C = C1(γmax) = A0MA0>, and C2(γ) = C − C1(γ)

and the Gaussian process:

B1(γ) = A0
[
GPmat,1(γ) θ̃0

z − R1(γ)GPmat θ̌0
z

]

where θ̃0
z = (1, θ0>

z )> and θ̌0
z = (0, θ0>

z )>. Finally, let:

E(γ) = C−1
1 (γ)B1(γ) − C−1

2 (γ)B2(γ)

where B2(γ) = B − B1(γ) with B = B1(γmax). Let

σ2 = σ2
ε + 2Σ>

ε,uθ
0
z + θ0>

z Σuθ
0
z .

With this notation, the null distributions for a LRF are stated below.
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Theorem 2 (Asymptotic Distributions LRF). Let Z be generated by (2.1), Y be gen-
erated by (2.3), and Ẑ be calculated by (3.1). Then under H0 and Assumption A.1,
(i)

sup
γ∈Γ

LR2SLS
T,LRF (γ) ⇒ sup

γ∈Γ
E>(γ)Q−1(γ)E(γ),

where Q(γ) = σ2C−1
1 (γ) C C−1

2 (γ);
(ii)

sup
γ∈Γ

W 2SLS
T,LRF (γ) ⇒ sup

γ∈Γ
E>(γ)V −1(γ)E(γ),

where V (γ) is defined in Definition A.2 in the Appendix, and, in general, V (γ) 6= Q(γ).
In both cases, the suprema taken are over γ ∈ Γ and this deserves some explanation.

For theoretical derivations, it suffices that Γ is a closed interval in the support Γ 0 and
that it is bounded away from the end-points of Γ0 = [γmin, γmax]. But in practice,
searching over γ includes calculations over the subsamples {t : 1{qt≤γ}} and {t : 1{qt>γ}},
which means that the data needs to be sorted into quantiles of qt. Therefore, in practice,
Γ is a set that contains ordered values of qt encountered in the sample, from a pre-defined
lower quantile γ to predefined upper quantile γ, where γ > γmin and γ < γmax. We refer
to these upper and lower quantiles as “cut-offs” in the simulation section, and in practice
they are chosen so that the subsamples {t : γmin ≤ qt ≤ γ} and {t : γmax ≥ qt ≥ γ} are
large enough to produce reliable estimates; example cut-offs are the 15% and the 85%
quantiles of qt.

Both asymptotic distributions depend on second moment functionals of the data and
the parameters in the RF. But critical values can be calculated by the bootstrap de-
scribed in Section 6.

As shown in Corollary A1 in the Appendix, the asymptotic distributions remain non-
pivotal for both tests even when the errors are conditional homoskedastic. More im-
portantly, because the 2SLS estimators are not conventional, the sup Wald and sup LR
tests are in general NOT asymptotically equivalent under conditional homoskedasticity.
However, they are equivalent in the just-identified case as shown in Corollary A1. They
are also equivalent in the overidentified case, when xt and qt are independent, as stated
below and proven in the Appendix.

Corollary 1 (to Theorem 2). Let Z be generated by (2.1), Y be generated by (2.3), and
Ẑ be calculated by (3.1).Then, under H0 and Assumptions A.1-A.3,

sup
γ∈Γ

LR2SLS
T,LRF (γ) ⇒ sup

λ∈Λε

BB>
p (λ)BBp(λ)

λ(1 − λ)
, sup

γ∈Γ
W 2SLS

T,LRF (γ) ⇒ sup
λ∈Λε

BB>
p (λ)BBp(λ)

λ(1 − λ)
,

where BBp(λ) = BMp(λ)−λBMp(1), BMp(∙) is a p×1-vector of independent standard
Brownian motions, λ = Prob(qt ≤ γ), Λε = [ε1, 1 − ε2], where ε1 = Prob(qt ≤ γ),
ε2 = Prob(qt ≤ γ).

The distribution in Corollary 1 is identical that of the sup F and sup Wald break-point
tests - see Andrews (1993), Bai and Perron (1998) and Hall et al. (2012) among others.
This is due to similarities between threshold and break point models; a break-point
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model is a special case of a threshold model when qt = t/T .10 Critical values for these
distributions can be found in Andrews (1993) and Bai and Perron (1998). However,
xt ⊥ qt is a case rarely encountered in practice, and we do not consider this case in our
simulations.

4.4. Asymptotic distributions with a TRF

For this section, we assume that the RF has a threshold ρ0 (TRF). For stating the
asymptotic distributions, similar to A0 in the previous section, we define

A0
1 = [Π0

1, S
>]> and A0

2 = [Π0
2, S

>]>. (4.3)

Also, let a ∧ b = min(a, b) for generic scalars a, b, and define the matrices:

CA,1(γ) = A0
1M1(γ ∧ ρ0)A0>

1 + A0
2

[
M1(γ) − M1(γ ∧ ρ0)

]
A0>

2 , (4.4)

and CA,2 = CA − CA,1(γ), where:

CA = CA,1(γmax) = A0
1M1(ρ

0)A0>
1 + A0

2M2(ρ
0)A0>

2 ,

as well as, in line with Section 4, the “ratios”

Ri(γ; ρ0) = Mi(γ)M−1
i (ρ0).

The TRF analogs to the LRF processes B1(γ) and E(γ) are defined as:

BA,1(γ) = A0
1

[
GPmat,1(γ ∧ ρ0)θ̃0

z − R1(γ ∧ ρ0; ρ0)GPmat,1(ρ
0)θ̌0

z

]

+ A0
2

[(
GPmat,1(γ)θ̃0

z − GPmat,1(γ ∧ ρ0)
)

θ̃0
z

]

− A0
2

[(
R2(γ ∧ ρ0; ρ0) − R2(γ; ρ0)

)
GPmat,2(ρ

0)θ̌0
z

]
. (4.5)

and
EA(γ) = C−1

A,1(γ)BA,1(γ) − C−1
A,2(γ)BA,2(γ) (4.6)

where
BA,2(γ) = BA − BA,1(γ)

with
BA = BA(γmax) = A0

1GPmat,1(ρ
0)(θ̃0

z − θ̌0
z) + A0

2GPmat,2(ρ
0)(θ̃0

z − θ̌0
z).

The more complicated expressions in this case stem from the fact that the relative
location of γ and ρ0 influences the asymptotic distribution of our tests, as Theorem 3
shows.

10Note, however, that the asymptotics for break-point tests cannot be obtained as a special case of our
results here because in general, break-point models are not strictly stationary.
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Theorem 3 (Asymptotic Distributions TRF). Let Z be generated by (2.2), Y be gen-
erated by (2.3), and Ẑ be calculated by (3.5). Under H0 and Assumptions A.1 and A.4,
(i)

sup
γ∈Γ

LR2SLS
T,TRF (γ) ⇒ sup

γ∈Γ
E>

A (γ)Q−1
A (γ)EA(γ),

where QA(γ) = σ2C−1
A,1(γ) CA C−1

A,2(γ);
(ii)

sup
γ∈Γ

W 2SLS
T,TRF (γ) ⇒ sup

γ∈Γ
E>

A (γ)V −1
A (γ)EA(γ),

where VA(γ) is defined in Definition A.3 of the Appendix, and in general, VA(γ) 6= QA(γ).

Under conditional homoskedasticity, Corollary A2 in the Appendix shows that, as for
a LRF, the sup Wald and sup LR tests are not asymptotically equivalent for a TRF,
except for the just identified case p = q.

As in Boldea et al. (2016), in this section, the asymptotic distributions are non-pivotal,
and don’t simplify to the usual break-point distributions expressed in Corollary 1. This
is not an issue in practice, because critical values can still be obtained by bootstrap, as
we discuss in Section 6.

5. GMM test

In contrast to our paper, Caner and Hansen (2004) propose testing for a threshold using
a GMM sup Wald test. To calculate this test, they use the conventional two-step GMM
estimators defined in Section 3, with estimated variance-covariances:

V̂i,GMM (γ) =
(
T−1W γ>

i Xγ
i Ĥε−1

i,GMM (γ)Xγ>
i W γ

i

)−1

.

The Wald test statistic in Caner and Hansen (2004) for H0 at each γ is:

WGMM
T (γ) = T [θ̂γ

1,GMM − θ̂γ
2,GMM ]>{V̂1,GMM (γ) + V̂2,GMM (γ)}−1[θ̂γ

1,GMM − θ̂γ
2,GMM ],

and the sup Wald test is sup
γ∈Γ

WGMM
T (γ).

For clarity, we reproduce below the asymptotic distribution of this test, which was
already derived in Caner and Hansen (2004). Assume that H0 holds, and let Vi,GMM (γ) =
[
Ni(γ)Hε−1

i (γ)N>
i (γ)

]−1

, where Hε
i (γ) is defined in Definition A.1 of the Appendix.

Also, let Ni(γ) = A0>
i Mi(γ), and let GP1(γ), be a q × 1 zero mean Gaussian process

with covariance kernel equal to E[GP1(γ1)GP
>
1 (γ2)] = Hε

i (γ1∧γ2). Let GP = GP1(γmax)
and GP2(γ) = GP − GP1(γ).11 Then Caner and Hansen (2004) show:

11In Caner and Hansen (2004), GP = limγ→∞ GP1(γ), to account for an unbounded support Γ0; as
discussed before, for all practical purposes, including calculation of critical values, it makes sense to
impose Γ0 = [γmin, γmax], treat γmin, γmax as fixed values, and therefore define GP = GP1(γmax).
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Theorem 4 (Asymptotic distribution sup Wald GMM). Let Z be generated by (2.1) or
(2.2), and Y be generated by (2.3). Under H0 and Assumptions A.1 and A.4,

sup
γ∈Γ

WGMM
T (γ) ⇒ sup

γ∈Γ

[
V1,GMM (γ)N1(γ)Hε−1

1 (γ)GP1(γ) − V2,GMM (γ)N2(γ)Hε−1

2 (γ)GP2(γ)
]>

× [V1,GMM (γ) + V2,GMM (γ)]−1

×
[
V1,GMM (γ)N1(γ)Hε−1

1 (γ)GP1(γ) − V2,GMM (γ)N2(γ)Hε−1

2 (γ)GP2(γ)
]
.

The proof is in Caner and Hansen (2004). Theorems 2-4 show that the 2SLS and
GMM tests have different asymptotic distributions in general, but there are two notable
exceptions, both for a LRF. First, under conditional homoskedasticity and just identi-
fication, a comparison of Corollaries A1 and A3 in the Appendix shows that the GMM
test distribution looks just like the 2SLS distributions for a LRF, with the difference
that the Gaussian processes are generated by εt rather than (εt + utθ

0
z). Second, under

Assumptions A.1-A.3 and a LRF, all the distributions are the same, and identical to the
break-point sup F and sup Wald test distributions. This latter result is stated below
and proven in the Appendix.

Corollary 2 (Corollary to Theorem 4). Let Z be generated by (2.1) and Y be generated
by (2.3). Then, under H0, and Assumptions A.1-A.3,

sup
γ∈Γ

WGMM
T (γ) ⇒ sup

λ∈Λε

BB>
p (λ)BBp(λ)

λ(1 − λ)

Note that for a TRF and the same assumptions, the distribution in Corollary 2 does
not apply.

6. Simulations

In this chapter, we investigate the small sample properties of the 2SLS tests and the
GMM test. We first introduce the wild fixed-regresssor bootstrap.

6.1. Bootstrap and DGP

Bootstrap As shown in Section 4, the asymptotic distributions of the proposed test
statistics are non-standard and therefore need to be either simulated or bootstrapped.

Simulating the asymptotic distributions involves, for example, simulating the Gaus-
sian processes E(∙) and EA(∙) in Theorems 2-4, while keeping xt, qt fixed. On the other
hand, in simulations, usually Q(γ), V (γ), QA(γ), VA(γ) are replaced with consistent esti-
mators based on the initial sample, Q̂(γ), V̂ (γ), Q̂A(γ), V̂A(γ), and are kept fixed across
simulations. Using similar arguments to Hansen (1996), Theorem 2, one can show that
the critical value simulated in this way converges to the true critical value of the test.
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However, the randomness of Q̂(γ), V̂ (γ), Q̂A(γ), V̂A(γ) may affect the critical value ap-
proximation in finite samples. Therefore, we propose bootstrapping the critical values
instead.

Below, we describe the fixed regressor wild bootstrap we used for simulating crit-
ical values. We first describe it for the 2SLS test and then for the GMM test.

Bootstrap for 2SLS tests:

1. based on the original sample, compute the test statistics in Section 3, gathered
under the generic name Ĝ:

Ĝ : sup
γ∈Γ

LR2SLS
T,LRF (γ), sup

γ∈Γ
LR2SLS

T,LRF (γ), sup
γ∈Γ

W 2SLS
T,LRF (γ), sup

γ∈Γ
LR2SLS

T,LRF (γ)

2. compute the full-sample 2SLS parameter estimates θ̂ = (θ̂>z , θ̂>x )> for a LRF or for
a TRF, using (3.1) or (3.5), and the corresponding residuals for these estimates:

v̂t = (ε̂>t , û>
t )>

3. for each bootstrap sample j, draw a random sample t = 1, . . . , T from ηt ∼
iid N (0, 1), and compute the wild bootstrap residuals:

v̂
(j)
t = v̂tηt

4. keeping xt, qt fixed, calculate a new bootstrap sample (y
(j)
t , z

(j)
t )

z
(j)
t = Π̂>xt + û

(j)
t for a LRF or z

(j)
t = Π̂>

1 xt1{qt≤ρ̂} + Π̂>
2 xt1{qt>ρ̂} + û

(j)
t for a TRF

y
(j)
t = ẑ

(j)>
t θ̂z + x>

1tθ̂x + û
(j)
t

5. using the new sample (y
(j)
t , z

(j)
t , xt, qt) with fixed regressors xt, qt, recalculate all

2SLS test statistics, gathered under the generic name Ĝ(j)

Ĝ(j) : sup
γ∈Γ

LR
2SLS,(j)
T,LRF (γ), sup

γ∈Γ
LR

2SLS,(j)
T,LRF (γ), sup

γ∈Γ
W

2SLS,(j)
T,LRF (γ), sup

γ∈Γ
LR

2SLS,(j)
T,LRF (γ)

6. repeat this procedure for j = 1, . . . , J times

7. the 5% bootstrap critical value for each test statistic is equal to the 95% quantile
from the empirical distribution (Ĝ(1), . . . , Ĝ(J)), call it Ĝ0.95

8. if Ĝ > Ĝ0.95 we reject, else we don’t reject.

Bootstrap for the GMM test:

1. based on the original sample, compute the GMM test statistic:

Ĝ = sup
γ∈Γ

WGMM
T (γ)
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2. compute the full-sample two-step GMM parameter estimates θ̂GMM using the 2SLS
estimator θ̂ for a LRF as the first-step GMM estimator; calculate the corresponding
residuals:

ε̃t = yt − w>
t θ̂GMM

3. for each bootstrap sample j, draw a random sample t = 1, . . . , T from ηt ∼
iid N (0, 1), and compute the wild bootstrap residuals:

ε̃
(j)
t = ε̃tηt

4. keeping zt, xt, qt fixed, calculate a new bootstrap sample y
(j)
t

y
(j)
t = w>

t θ̂GMM + ε̃
(j)
t

5. using the new sample (y
(j)
t , zt, xt, qt) with fixed regressors zt, xt, qt, recalculate

the GMM test statistic Ĝ(j)

Ĝ(j) = sup
γ∈Γ

W
GMM,(j)
T

6. the 5% bootstrap critical value for each test statistic is equal to the 95% quantile
from the empirical distribution (Ĝ(1), . . . , Ĝ(J)), call it Ĝ0.95

7. if Ĝ > Ĝ0.95 we reject, else we don’t reject.

Our bootstrap is slightly different than the one suggested in Caner and Hansen (2004)

for the same test statistic. They suggested setting y
(j)
i = ε̃tηt, therefore computing a

“pseudo-sample” that ignores the predictable part of yt under H0, which is (w>
t θ0). Pre-

sumably, they do so because the value of θ0 is irrelevant for the asymptotic distribution
of their test statistic. However, θ0 shows up in the asymptotic distribution of our test
statistics, and for the sake of comparison, we compute y

(j)
t as suggested in Step 5. Com-

puting y
(j)
t as we suggested is a proper wild bootstrap. Compared to Caner and Hansen

(2004), it should replicate more closely the sample null behavior of the test.
To calculate the empirical sizes α̂ for a nominal significance level α, we repeat the

bootstrap procedure MC times, for a certain fixed H0 DGP but with the original sample
redrawn in each simulation draw s = 1, . . . ,MC , and set:

α̂ =
1

MC

MC∑

s=1

1Ĝs>Ĝ0.95,s
, (6.1)

where the subscript s in Ĝs, Ĝ0.95,s refers to the sth simulated value of Ĝ, Ĝ0.95. The
empirical power is obtained analogously with the DGP under HA:

β̂ =
1

MC

MC∑

s=1

1Ĝs>Ĝ0.95,s
. (6.2)

The size adjusted power is β̂− α̂, where the H0 for calculating α̂ is chosen to mirror HA,
as explained in Section 6.3.
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DGP The H0 DGP used in the simulations for calculating empirical sizes is:

yt = θ0
x1

+ ztθ
0
z + εt = w>

t θ0 + εt (6.3)

zt = (Π0
1,1 + Π0

1,2xt)1{qt≤ρ0} + (Π0
2,1 + Π0

2,2xt)1{qt>ρ0} + ut (6.4)

where xt
iid
∼ N (1, 1), qt = xt + 1, and xt, zt, qt are scalars. We set:

• θ0
z = θ0

x1
= 1.

• Π0
1 = (Π0

1,1, Π0
1,2)

> = (1, 1)>.

• Π0
2 = (Π0

2,1, Π0
2,2)

> = (1, b)>, where we allow b ∈ {0.5, 1, 1.5, 2, 2.5}. Note that
b = 1 corresponds to a LRF, and b 6= 1 to a TRF.

• ρ0 = 1.75.

We consider two cases: homoskedasticity and heteroskedasticity. For homoskedasticity,
εt = νt, and for conditional heteroskedasticity, εt = νt ∙ xt/

√
2 with

(
νt

ut

)
iid
∼ N

((
0
0

)

,

(
1 0.5

0.5 1

))

. (6.5)

We set J = 500 and MC = 1000.

6.2. Size

This section presents empirical sizes for all tests using the DGP in the previous section.
In all simulations, the nature of the RF (LRF) or (TRF) is taken as given.

For conditional homoskedastic errors, Tables 9.1-9.2 show that in small samples, our
tests tend to be slightly undersized, but stay below the nominal level, while the GMM
test is correctly sized or very slightly oversized. Here, it seems that the additional RF
information does not result in better small sample properties. In large samples of about
T = 1000, all tests are close to their nominal size.

Tables 9.3-9.4 show results for a LRF and a TRF and conditional heteroskedasticity.
In both LRF and TRF, the GMM test is severely oversized - up to a size of 21 .8% for
a nominal size of 5%. Moreover, its oversize seems to increase as the magnitude of the
RF threshold increases. Even around sample sizes of T = 1000, its size is still above the
nominal size. In practice, this means that the GMM test frequently detects a threshold
when there is none. This is in stark contrast to both our tests, which stay below or
very close to the nominal size, for both a LRF and a TRF, with homoskedasticity or
heteroskedasticity.

The results under heteroskedasticity confirm the intuition that the 2SLS tests can be
more accurate when they use additional valid information compared to the GMM sup
Wald test. Note however that as in the DGP of Theorem 1, in our simulated DGP,
there should still be areas of the parameter space where the GMM estimation is more
accurate, so the GMM test should not be discarded, but used in conjunction with the
2SLS tests to identify a threshold.
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6.3. Power

In this section, we present the size adjusted power of the three tests. We slightly alter
the DGP in (6.3) while leaving everything else equal. In particular we set

yt = w>
t θ0

11{qt≤γ0} + w>
t θ0

21{qt>γ0} + εt (6.6)

with θ0
1 = (1, 1)> as before and θ0

2 = (a, c)> with a ∈ {1, 2}, c ∈ {1.25, 1.5, 1.75, 2}, and
δ = c − 1 the slope threshold size. This allows us to investigate how the power varies
with the threshold size, measured by a − 1 and δ. Finally, we set γ0 = 2.25.
We follow Davidson and MacKinnon (1998, Section 6) and plot size-power curves. That
is, we plot all possible sizes between 0 and 1 on the x-axis. The sizes used for size-
adjusted powers are true empirical sizes in the sense that they are computed based on
(simulated) empirical critical values and the empirical distribution function of the test
statistics12. On the y-axis we plot the size adjusted power which is calculated using the
empirical critical values.

Figures 9.1–9.4 show the result of this exercise for a LRF, a TRF, with homoskedastic
and heteroskedastic errors, and a slope threshold (δ = c − 1 6= 0) or an intercept and
slope threshold (a − 1 6= 0 and δ 6= 0). In general, holding the sample size fixed, as the
threshold sizes |a − 1| or |δ| increase, the powers of all three tests increase. An increase
in the sample size, given a fixed threshold size, increases the power of the tests as well.
Furthermore, for moderate threshold sizes the tests have very similar power.
However, there are is also an interesting difference for small threshold size and/or small
sample size: across most cases, the sup Wald tests outperform the sup LR test. Of
course, this difference vanishes as the sample size and/or the threshold size increases.
Moreover, it seems that the GMM sup Wald test has better power than the 2SLS sup
Wald but only in the case of small samples and small threshold values.

Even though our simulations indicate that the sup Wald tests are better than the 2SLS
sup LR test in terms of power, we know from Caner and Hansen (2004) that under the
alternative, the γ at which the supremum is obtained for the sup LR test is a consistent
threshold estimator whether we have an LRF or a TRF, so it is useful to compute the
2SLS sup LR test anyway.

7. Empirical Application

In this section, we test whether the government spending multiplier - measured as the
percentage increase in output when government spending increases by 1% - changes in
the presence of different interest rate regimes. For example, the multiplier is expected to
be larger in the recent crisis if the transmission mechanism is largely demand-driven - see
e.g. Eggertsson (2010) and Christiano et al. (2011). When the nominal interest rates are

12The empirical critical values are computed under the DGP of Section 6.2. Of course, other H0-DGPs
are possible (e.g. averaging over θ0

1 and θ0
2) but it seems natural to take that of Section 6.2 for easy

comparison.
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close to the zero lower bound (ZLB) or in general below a certain threshold, government
spending should be more effective in increasing growth, since higher consumption and
investment are facilitated by a low real interest rate (potentially through higher infla-
tion). On the other hand, if in the present crisis, the transmission mechanism is driven
by supply, and despite the low nominal interest rate, government spending crowds out
private investment, the multiplier is small. We use the following specification, in line
with Hall (2009) and Kraay (2012), but allowing for a threshold:

yt − yt−1

yt−1

=

(

α1 + β1
gt − gt−1

yt−1

)

1{rt−1≤γ0} +

(

α2 + β2
gt − gt−1

yt−1

)

1{rt−1>γ0} + εt, (7.1)

where yt and gt denote real GDP and government spending per capita, respectively,
α1, α2 are constants, β1, β2 are the multipliers in the two regimes, and εt is an error term
that satisfies Assumption A.1; rt denotes the Federal Funds Rate and γ0 is the unknown
potential threshold-parameter.

We are interested in testing whether the multipliers in (7.1) are indeed different in
different interest rate regimes, that is, whether we have a interest-rate driven threshold

γ0. Since zt =
gt − gt−1

yt−1

is endogenous as output shocks can influence spending in the

same quarter, we instrument it as in Ramey (2011), with one quarter-ahead government
spending forecast errors, SPFt, from the Survey of Professional Forecasters.13 Thus, we
specify the RF (with a potential threshold at ρ0) as:

gt − gt−1

yt−1

= (Π1,1 + Π1,2SPFt)1{rt−1≤ρ0} + (Π2,1 + Π2,2SPFt)1{rt−1>ρ0} + ut. (7.2)

We use quarterly US data spanning 1969Q1-2014Q4, with the real GDP and govern-
ment spending from the Bureau of Economic Analysis14, the federal funds rate from the
Fed St. Louis15 and the government spending forecasts from the Philadelphia Fed.16

The data includes the current ZLB regime, as can be seen from the federal funds rate
plot in Figure 9.5.

Since our sample includes the Volcker period, part of which is characterized by un-
usually high interest rates and volatile economic conditions, we consider three sam-
ples: 1969Q2-2014Q4, 1969Q2–1984Q4 and 1985Q1–2014Q4. Since low interest rates
are mostly, but not exclusively near the end of our sample, we consider two cut-off
points for testing for a threshold in (7.1): the 15% and the 5% quantiles of the empirical
distribution of rt−1.

We first test whether the RF is a threshold model (TRF) or a linear model (LRF)
by the methods proposed in Hansen (1996). Based on the results, we estimate the
LRF or TRF and test for a threshold in (7.1) using the 2SLS and GMM tests. Tables

13See Ramey (2011) for more discussion on instrument validity of SPFt, and a description of how the
forecast errors were calculated.

14Accessed February 2015.
15Accessed February 2015.
16Accessed February 2015.

20



9.5-9.7 present results for all the three samples considered. In these tables, we re-
port bootstrapped p-values of the test statistics instead of bootstrapped critical values.
Bootstrapped p-values are simply obtained by counting how many times in J bootstrap
samples the original test statistic is larger than its bootstrapped equivalent.

Concerning the RF, regardless of the cut-off, or whether we use the full-sample or the
post 1985 sample, we find that the RF has a threshold at ρ0 below 7.

For the SF in (7.1), estimated on the whole sample, we find no clear evidence for a
threshold effect based on 2SLS tests: none of the 2SLS threshold tests rejects at the 1%
level. But the p-value of the GMM test is below the 1% level for a 5% cut-off. So relying
on the GMM test alone, one would tend to include a threshold. Since the p-values of the
2SLS sup LR test are above the 5% level, the applied researcher can be more confident
about the absence of a SF threshold.

Furthermore, the threshold estimator reflects a very high interest rate regime, sensitive
to the cut-off choice of 5% or 15%, and not close to the ZLB. This prompts us to
investigate the samples 1968Q1-1984Q4 (unusually high interest rates) and 1985Q1-
2014Q4 (not so high interest rates) separately.17

Table 9.6 shows that all three threshold tests do not reject the null of no threshold
regime for the period of 1985 onwards. That is, we find no evidence that a ZLB or any
other interest rate regime in our sample changes the government spending multiplier or
the effectiveness of the government spending on output growth.

We find that the government spending multiplier 2SLS and GMM estimators are close
to each other, significant, and around 0.12. Thus, an increase in government spending of
1% of real GDP will increase growth by 0.12%. Our estimates are small and in line with
Hall (2009) (who used a sample period from 1960–2008) . They are much smaller than
in Nakamura and Steinsson (2014), who find an (open economy) multiplier of about 1.5.
Eggertsson (2010) and Christiano et al. (2011) argue that in the neighborhood of the
ZLB, when monetary policy is less effective, fiscal stimulus lowers real interest rates by
raising inflation, resulting in potentially large multipliers. However, in the recent crisis,
the US inflation has remained low and stable, which may explain why we don’t find a
larger multiplier near the ZLB.

8. Conclusion

In this paper, we propose two novel threshold tests for linear models with endogenous
regressors, a sup LR and a sup Wald test. These tests are based on 2SLS estimation and
explicitly account for a possible threshold effect in the RF. We derive the asymptotic
distributions of our tests, which are non-pivotal but whose critical values or p-values
can easily be bootstrapped. Our simulation study shows that the tests behaves well in
small samples, and their size and power compare favorably to an existing GMM based
sup Wald test. We therefore recommend using them in conjunction with the GMM test
for threshold testing.

17 The Volcker period results in Table 9.5 are presented for completeness, but the sample size is small,
and care should be used in interpreting those results.
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We apply our method to assess whether the US government spending multiplier is
larger near the zero lower bound. All tests, but more conclusively the 2SLS tests,
suggest that the US government spending multiplier for output growth did not change
near the zero lower bound or any other interest rate regime.
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9. Tables and Figures

Table 9.1: Empirical sizes for 5% nominal size, a LRF and homoskedastic errors

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ)

100 0.047 0.030 0.052
250 0.048 0.037 0.040
500 0.057 0.053 0.047

1000 0.048 0.048 0.046

Table 9.2: Empirical sizes for 5% nominal size, a TRF and homoskedastic errors

b=0.5 b=1.5

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ) LR2SLS

T (γ) W 2SLS
T (γ) WGMM

T (γ)

100 0.023 0.028 0.047 0.017 0.022 0.052
250 0.029 0.030 0.051 0.024 0.022 0.040
500 0.027 0.026 0.046 0.038 0.031 0.045

1000 0.042 0.040 0.042 0.033 0.037 0.043

b=2.0 b=2.5

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ) LR2SLS

T (γ) W 2SLS
T (γ) WGMM

T (γ)

100 0.026 0.024 0.052 0.032 0.016 0.055
250 0.039 0.031 0.049 0.049 0.036 0.051
500 0.052 0.041 0.046 0.053 0.040 0.047

1000 0.045 0.049 0.047 0.048 0.050 0.043
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Table 9.3: Empirical sizes for 5% nominal size, a LRF and heteroskedastic errors

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ)

100 0.046 0.038 0.159
250 0.048 0.037 0.104
500 0.057 0.052 0.092

1000 0.048 0.045 0.080

Table 9.4: Empirical sizes for 5% nominal size, a TRF and heteroskedastic errors

b=0.5 b=1.5

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ) LR2SLS

T (γ) W 2SLS
T (γ) WGMM

T (γ)

100 0.034 0.030 0.110 0.037 0.018 0.188
250 0.050 0.032 0.080 0.043 0.022 0.127
500 0.053 0.032 0.077 0.046 0.036 0.090

1000 0.061 0.049 0.070 0.052 0.036 0.080

b=2.0 b=2.5

T LR2SLS
T (γ) W 2SLS

T (γ) WGMM
T (γ) LR2SLS

T (γ) W 2SLS
T (γ) WGMM

T (γ)

100 0.050 0.021 0.203 0.046 0.024 0.218
250 0.055 0.032 0.130 0.056 0.026 0.135
500 0.053 0.043 0.091 0.060 0.045 0.096

1000 0.056 0.042 0.078 0.058 0.039 0.075

We also tried J = 1000 instead of J = 500, and set T = 100, keeping everything else the same.
The size of the GMM test improves (e.g. for b = 0.5 empirical size is roughly 8%) but the
2SLS tests improve as well.
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Table 9.5: Estimation Results Full Sample

Sample 1969Q2–2014Q4

Cut-Off 15% Cut-Off 5%
γ = 1.95 and γ = 9.46 γ = 0.15 and γ = 13.58

RF Results

p-value WOLS 0.0000 0.0000

Π̂1,1 0.0029 0.0029

Π̂1,2 0.4226 0.4226

Π̂2,1 0.0068 0.0068

Π̂2,2 0.5253 0.5253
ρ̂ 6.7000 6.7000

No. of obs.
total 183 183 183 183 183 183

rt−1 ≤ ρ̂ 124 124 124 124 124 124
rt−1 > ρ̂ 59 59 59 59 59 59

SF Results

Tests LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

Statistic 14.9129 9.8724 10.4121 21.6958 9.8724 10.4121
p-value 0.0650 0.0310 0.0240 0.0920 0.0430 0.0050

β̂1 0.0522 0.0522 0.0853 0.0522 0.0522 0.0853
(0.0806) (0.0806) (0.0060) (0.0806) (0.0806) (0.0060)

α̂1 0.0066 0.0066 0.0065 0.0066 0.0066 0.0065
(0.0006) (0.0006) (0.00004) (0.0006) (0.0006) (0.00004)

β̂2 – – – – – –
– – – – – –

α̂2 – – – – – –
– – – – – –

γ̂ – – – – – –
95%-CI for γ̂ – – – – – –

No. of obs.
total 183 183 183 183 183 183

rt−1 ≤ γ̂ – – – – – –
rt−1 > γ̂ – – – – – –

1 LR stands for the sup LR test and W for the sup Wald test for a threshold. Their superscripts
indicates the estimation method used (OLS, 2SLS, or GMM)

2 Standard errors in parentheses.
3 Γ = [γ, γ].
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Table 9.6: Estimation Results Subsample 1985Q1–2014Q4

Sample 1985Q1–2014Q4

Cut-Off 15% Cut-Off 5%
γ = 1.02 and γ = 7.74 γ = 0.12 and γ = 8.48

RF Results

p-value WOLS 0.0000 0.0000

Π̂1,1 0.0027 0.0027

Π̂1,2 0.4285 0.4285

Π̂2,1 0.0078 0.0078

Π̂2,2 0.5713 0.5713
ρ̂ 6.4700 6.4700

No. of obs.
total 120 120 120 120 120 120

rt−1 ≤ ρ̂ 97 97 97 97 97 97
rt−1 > ρ̂ 23 23 23 23 23 23

SF Results

Tests LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

Statistic 4.7812 3.4531 3.1544 4.7182 3.4531 3.1544
p-value 0.4960 0.7250 0.7650 0.5460 0.8950 0.7080

β̂1 0.1146 0.1146 0.1242 0.1146 0.1146 0.1242
(0.0672) (0.0672) (0.0069) (0.0672) (0.0672) (0.0069)

α̂1 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061
(0.0005) (0.0005) (0.00005) (0.0005) (0.0005) (0.00005)

β̂2 – – – – – –
– – – – – –

α̂2 – – – – – –
– – – – – –

γ̂ – – – – – –
95%-CI for γ̂ – – – – – –

No. of obs.
total 120 120 120 120 120 120

rt−1 ≤ γ̂ – – – – – –
rt−1 > γ̂ – – – – – –

1 LR stands for the sup LR test and W for the sup Wald test for a threshold. Their superscripts
indicates the method used (OLS, 2SLS, or GMM)

2 Standard errors in parentheses.
3 Γ = [γ, γ].
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Table 9.7: Estimation Results Subsample 1969Q2–1984Q4

Sample 1969Q2–1984Q4

Cut-Off 15% Cut-Off 5%
γ = 4.87 and γ = 12.69 γ = 4.30 and γ = 15.85

RF Results

p-value WOLS 0.8800 0.9060

Π̂1,1 0.0052 0.0052

Π̂1,2 0.4739 0.4739

Π̂2,1 – –

Π̂2,2 – –
ρ̂ – –

No. of obs.
total 63 63 63 63 63 63

rt−1 ≤ ρ̂ – – – – – –
rt−1 > ρ̂ – – – – – –

SF Results

Test LR2SLS W 2SLS WGMM LR2SLS W 2SLS WGMM

Statistic 18.3092 13.2520 22.1056 18.3092 13.2520 22.1056
p-value 0.0200 0.0030 0.0000 0.0380 0.0000 0.0000

β̂1 0.3850 0.3850 0.3874 0.3850 0.3850 0.3874
(0.1873) (0.1873) (0.0233) (0.1873) (0.1873) (0.0233)

α̂1 0.0109 0.0109 0.0110 0.0109 0.0109 0.0110
(0.0016) (0.0016) (0.0002) (0.0016) (0.0016) (0.0002)

β̂2 -0.3049 -0.3049 -0.3061 -0.3049 -0.3049 -0.3061
(0.2681) (0.2681) (0.0343) (0.2681) (0.2681) (0.0343)

α̂2 0.0040 0.0040 0.0041 0.0040 0.0040 0.0041
(0.0027) (0.0027) (0.0004) (0.0027) (0.0027) (0.0004)

γ̂ 8.8000 8.8000 8.800 8.8000 8.8000 8.8000
95%-CI for γ̂ [5.5700; 11.3900] [5.5700; 11.3900]

No. of obs.
total 63 63 63 63 63 63

rt−1 ≤ γ̂ 32 32 32 32 32 32
rt−1 > γ̂ 31 31 31 31 31 31

1 LR stands for the sup LR test and W for the sup Wald test for a threshold. Their
superscripts indicates the method used (OLS, 2SLS, or GMM)

2 Standard errors in parentheses.
3 Γ = [γ, γ].
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Figure 9.1: Size-adjusted power curves - homoskedastic errors and no change in intercept
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Figure 9.2: Size-adjusted power curves - homoskedastic errors and change in intercept
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Figure 9.3: Size-adjusted power curves - heteroskedastic errors and no change in intercept
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Figure 9.4: Size-adjusted power curves - heteroskedastic errors and change in intercept
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Figure 9.5: Data empirical application – 1969Q2–2014Q4
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Mathematical Appendix

A. Definitions

Definition A.1 (H and Ĥ matrices).

Hu
1 (γ) = E[xtx

>
t (u>

t θ0
z)

21{qt≤γ}] Hu
2 (γ) = E[xtx

>
t (u>

t θ0
z)

21{qt>γ}]

Hε
1(γ) = E[xtx

>
t ε2

t1{qt≤γ}] Hε
2(γ) = E[xtx

>
t ε2

t1{qt>γ}]

Hε,u
1 (γ) = E[xtx

>
t εtu

>
t θ0

z1{qt≤γ}] Hε,u
2 (γ) = E[xtx

>
t εtu

>
t θ0

z1{qt>γ}]

H1(γ) = Hu
1 (γ) + 2Hε,u

1 (γ) + Hu
1 (γ) H2(γ) = Hu

2 (γ) + 2Hε,u
2 (γ) + Hu

2 (γ).

Also, let H = H1(γmax) = E[xtx
>
t (εt + u>

t θ0
z)

2] and Hu = Hu
1 (γmax) = E[xtx

>
t (u>

t θ0
z)

2].
Their estimators are constructed under H0. Let ẑt and therefore ŵt = (ẑ>t , x>

1t)
> be

calculated by (3.1) for a LRF and by (3.5) for a TRF. Let ût = zt − ẑt and ε̂t =
yt − w′

tθ̂, where θ̂ = (Ŵ>Ŵ )−1Ŵ>Y , the full sample 2SLS estimator, partitioned as
θ̂ = (θ̂>z , θ̂>x )>. The sample analogs of all H matrices above are denoted with a hat
accent Ĥ, and replace E with T−1

∑T
t=1, and εt, ut, θ

0
z with ε̂t, ût, θ̂z; for example, Ĥε

1(γ) =

T−1
∑T

t=1 xtx
>
t ε̂2

t1{qt≤γ}.

Definition A.2 (V (γ) and V̂ (γ)). We have a LRF as in (2.1). Then:

V (γ) = V1(γ) + V2(γ) − V12(γ) − V >
12(γ)

Vi(γ) = C−1
i (γ)A0

[
Hi(γ) + Ri(γ)HuR>

i (γ) − [Hε,u
i (γ) + Hu

i (γ)]R>
i (γ)

− Ri(γ)[Hε,u
i (γ) + Hu

i (γ)]
]
A0>C−1

i (γ), i = 1, 2

V12(γ) = −C−1
1 (γ)A0

[
[Hε,u

1 (γ) + Hu
1 (γ)]R>

2 (γ) + R1(γ)[Hε,u
2 (γ) + Hu

2 (γ)]

− R1(γ)HuR>
2 (γ)

]
A0>C−1

2 (γ).

VA(γ) is constructed by replacing all quantities in the definition of VA(γ) by their

sample analogs, denoted with a hat accent. For example, V̂i(γ) = Ĉ−1
i (γ)Â

[
Ĥi(γ) +

R̂i(γ)ĤuR̂>
i (γ) − [Ĥε,u

i (γ) + Ĥu
i (γ)]R̂>

i (γ) − R̂i(γ)[Ĥε,u
i (γ) + Ĥu

i (γ)]
]
Â>Ĉ−1

i (γ), with

Â = [Π̂, S>]>, Ĉi(γ) = ÂM̂i(γ)Â>, M̂1(γ) = T−1
∑T

t=1 xtx
>
t 1{qt≤γ},

M̂2(γ) = T−1
∑T

t=1 xtx
>
t 1{qt>γ}, M̂ = M̂1(γmax), R̂i(γ) = M̂i(γ)M̂−1.
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Definition A.3 (VA(γ) and V̂A(γ)). We have a TRF as in (2.2). Then:

VA(γ) = VA,1(γ) + VA,2(γ) − VA,12(γ) − V >
A,12(γ)

VA,1(γ) = C−1
A,1(γ)A0

1

[
H1(γ) + R1(γ; ρ0)Hu

1 (ρ0)R>
1 (γ; ρ0) − [Hε,u

1 (γ) + Hu
1 (γ)]R>

1 (γ; ρ0)

− R1(γ; ρ0)[Hε,u(γ) + Hu
1 (γ)]

]
A0>

1 C−1
A,1(γ)

VA,2(γ) = C−1
A,2(γ)

[
A0

2 Hε
2(ρ

0) A0
2 + A0

1 [Hε
1(ρ

0) − Hε
1(γ) + Hu

1 (γ) + R1(γ; ρ0)Hu
1 (ρ0)R>

1 (γ; ρ0)

+ R1(γ; ρ0)[Hε,u
1 (ρ0) − Hε,u

1 (γ) − Hu
1 (γ)]

+ [Hε,u
1 (ρ0) − Hε,u

1 (γ) − Hu
1 (γ)]R>

1 (γ; ρ0)] A0>
1

]
C−1

A,2(γ)

VA,12(γ) = −C−1
A,1(γ)A0

1 [Hu
1 (γ) + Hε,u

1 (γ) + R1(γ; ρ0)(Hε,u
1 (ρ0) − Hε,u

1 (γ) − Hu
1 (γ))

− (Hε,u
1 (γ) + Hu

1 (γ))R>
1 (γ; ρ0)

+ R1(γ; ρ0)Hu
1 (ρ0)R>

1 (γ; ρ0)] A0>
1 C−1

A,2(γ)

whenever γ ≤ ρ0.When γ > ρ0, then

VA,1(γ) = C−1
A,1(γ)

[
A0

1H
ε
1(ρ

0)A0>
1 + A0

2H
ε
2(ρ

0)A0>
2 + A0

2[H
u
2 (γ) − Hε

2(γ)]A0>
2

+ A0
2R2(γ; ρ0)Hu

2 (ρ0)R>
2 (γ; ρ0)A0>

2

+ A0
2H

ε,u
2 (ρ0)R>

2 (γ; ρ0)A0>
2

+ A0
2R2(γ; ρ0)Hε,u

2 (ρ0)A0>
2

− A0
2[H

ε,u
2 (γ) + Hu

2 (γ)]R>
2 (γ; ρ0)A0>

2

− A0
2R2(γ; ρ0)[Hε,u

2 (γ) + Hu
2 (γ)]A0>

2

]
C−1

A,1(γ)

VA,2(γ) = C−1
A,2(γ)A0

2

[
H2(γ) + R2(γ; ρ0)Hu

2 (ρ0)R>
2 (γ; ρ0)

− [Hε,u
2 (γ) + Hu

2 (γ)]R>
2 (γ; ρ0)

− R2(γ; ρ0)[Hε,u
2 (γ) + Hu

2 (γ)]
]
A0>

2 C−1
A,2(γ)

VA,12(γ) = −C−1
A,1(γ)A0

2

[
[Hε,u

2 (γ) + Hu
2 (γ)] + Hε,u

2 (ρ0)R>
2 (γ; ρ0)

+ R2(γ; ρ0)Hu
2 (ρ0)R>

2 (γ; ρ0)

− [Hε,u
2 (γ) + Hu

2 (γ)]R>
2 (γ; ρ0)

− R2(γ; ρ0)[Hε,u
2 (γ) + Hu

2 (γ)]
]
A0>

2 C−1
A,2(γ).

V̂A(γ) is constructed by replacing all quantities in the definition of VA(γ) by their sample
analogs, denoted with a hat accent. For example, ĈA,1 = Â1M̂1(γ ∧ ρ)Â>

1 + Â2[M̂1(γ) −
M̂1(γ ∧ ρ)]Â>

2 , Âi = [Π̂i, S
>]> and R̂i(γ; ρ̂) = M̂i(γ)M̂−1

i (ρ̂).
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B. Proofs

In what follows, we use the symbol K to denote a strictly positive constant. Whenever
needed, we use a subscript to distinguish among different constants.

For any m × 1-vector x we denote by ‖x‖2 =
√∑m

i=1 x2
i the Euclidean norm. More-

over, for any real m × n-matrix X we denote by ‖X‖F =
√

tr(X>X) =
√

tr(XX>)
the Frobenius matrix-norm which is submultiplicative, i.e. for two matrices A ∈ Rm×n

and B ∈ Rn×l it holds that ‖AB‖F ≤ ‖A‖F‖B‖F , and is compatible with the Eu-
clidean norm, i.e. for a matrix A ∈ Rm×n and a vector x ∈ Rn×1 it holds that
‖Ax‖2 ≤ ‖A‖F‖x‖2. Also note that, for two vectors u, v ∈ Rn×1 it holds that ‖uv>‖F =√∑

i

∑
j |uivj|2 =

√∑
i |ui|2

∑
j |vj|2 =

√∑
i |ui|2

√∑
j |vj|2 = ‖u‖2 ∙ ‖v‖2. Further-

more, we denote by Im the m × m-identity matrix and by 0m×n an m × n-matrix of
zeros.

To simplify notation, we define the following sets T1(γ) = {t : 1{qt≤γ}} and T2(γ) =
{: 1{qt>γ}}. These sets partition the data according to the decision rules 1{qt≤γ} and
1{qt>γ}, respectively, and will be convenient to display sums.

Moreover, we define ε̃ = ε+(Z− Ẑ)θ0
z and s = ε+uθ0

z . Also, let ūt = vec(u>
t , 01×p2)

> de-
note the augmented RF error. This way, we can write wt = A0xt+ūt for a LRF. Note that
ε̃ can also be partitioned into regimes, with ε̃γ

1 = εγ
1 +(Z−Ẑ)γ

1θ
0
z and ε̃γ

2 = εγ
2 +(Z−Ẑ)γ

2θ
0
z .

All convergence results, if not otherwise stated, are uniformly in γ. Moreover,
p
−→ denotes

convergence in probability and ⇒ denotes weak convergence in the Skorokhod-metric.

Proofs for Section 4.3: 2SLS tests and a LRF

To prove Theorem 2, we first provide four Lemmata and their proofs.

Lemma 1. Suppose Assumption A.1 holds. Then

T−1/2 vec(Xγ>
1 v) ⇒ GP1(γ)

where GP1(γ) is a zero-mean Gaussian Process with covariance function

CGP(γ1, γ2) = E[GP1(γ1)GP
>
1 (γ2)] = E[(vtv

>
t ⊗ xtx

>
t )1{qt≤(γ1∧γ2)}]

Proof of Lemma 1. Recall that X is a T × q-matrix and v is a T × (1 + p1)-matrix,
both satisfying Assumption 1. Further, let v:,i denote the i-th column of the matrix v.
Then, by Hansen (1996, Theorem 1)

T−1/2Xγ>
1 v:,i ⇒ GP i

1(γ)

and therefore

T−1/2 vec(Xγ>
1 v) ⇒






GP1
1(γ)
...

GP1+p1

1 (γ)




 . (B.1)
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By Hansen (1996, Theorem 1), GP i
1(γ) is a zero-mean Gaussian Process with covariance

function
Ci
GP(γ1, γ2) = E[xtx

>
t v2

i,t1{qt≤(γ1∧γ2)}]. (B.2)

Similarly, it holds that

Ci,j
GP(γ1, γ2) = E[GP i

1(γ1)GP
j>
1 (γ2)] = E[xtx

>
t vi,tvj,t1{qt≤(γ1∧γ2)}]. (B.3)

Combining (B.2) and (B.3),

CGP(γ1, γ2) = E[GP1(γ1)GP
>
1 (γ2)] = E[(vtv

>
t ⊗ xtx

>
t )1{qt≤(γ1∧γ2)}]. (B.4)

Results (B.1) and (B.4) complete the proof.

Lemma 2. Suppose Assumption A.1 holds. Then

(i) T−1Ŵ γ>
1 Ŵ γ

1

p
−→ A0M1(γ)A0> ≡ C1(γ)

(ii) T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ A0
(
GPmat,1(γ)θ̃0

z − M1(γ)M−1GPmat,1θ̌
0
z

)
.

Proof of Lemma 2. First, we prove claim (i) and then claim (ii).
Claim (i): The RF predicted values are

Ẑ = XΠ̂ (B.5)

and
T 1/2(Π̂ − Π0) =

(
T−1X>X

)−1 (
T−1/2X>u

)
. (B.6)

By Hansen (1996, Theorem 1), it holds uniformly in γ that

T−1Xγ>
1 Xγ

1
a.s.
−−→ M1(γ), and T−1X>X

a.s.
−−→ M. (B.7)

This implies that T−1X>X = Op(1). By Lemma 1, T−1/2X>u = Op(1). Therefore,

T 1/2(Π̂ − Π0) = Op(1) and so Π̂ − Π0 = op(1). Therefore, uniformly in γ,

T−1Ẑγ>
1 Ẑγ

1 = Π̂>
(
T−1Xγ>

1 Xγ
1

)
Π̂

p
−→ Π0>M1(γ)Π0. (B.8)

Last, with S the selection matrix such that x1t = xtS, it holds that

Ŵ γ
1 =

[
Ẑγ

1 Xγ
1,1

]
=
[
Xγ

1 Π̂ Xγ
1,1

]
= Xγ

1

[
Π̂ S

]
= Xγ

1 Â>. (B.9)

Therefore, by (B.8) and (B.9) and uniformly in γ,

T−1Ŵ γ>
1 Ŵ γ

1 = Â
(
T−1Xγ>

1 Xγ
1

)
Â> p

−→ A0M1(γ)A0> ≡ C1(γ).

Claim (ii): By (B.5) it follows that

T−1/2Ẑγ>
1 ε̃γ

1 = Π̂>( T−1/2Xγ>
1 (εγ

1 + uγ
1θ

0
z)︸ ︷︷ ︸

=(I)

−T−1/2Xγ>
1 Xγ

1 (Π̂ − Π0)θ0
z︸ ︷︷ ︸

=(II)

). (B.10)
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Next, we analyze the limiting behavior of (I) and (II). Recalling that θ̃0
z = (1, θ0>

z )>,

I = T−1/2Xγ>
1 (εγ

1 + uγ
1θ

0
z) = T−1/2[Xγ>

1 εγ
1 , X

γ>
1 uγ

1 ]θ̃
0
z

and thus, by Lemma 1, uniformly in γ:

T−1/2[Xγ>
1 εγ

1 , X
γ>
1 uγ

1 ]θ̃
0
z ⇒ GPmat,1(γ)θ̃0

z . (B.11)

By (B.6), term (II) in (B.10) satisfies

II = T−1/2Xγ>
1 Xγ

1 (Π̂ − Π0)θ0
z =

(
T−1Xγ>

1 Xγ
1

) (
T−1X>X

)−1 (
T−1/2X>uθ0

z

)
. (B.12)

Recalling that θ̌0
z = (0, θ0>

z )>,

T−1/2X>uθ0
z = T−1/2X>ε ∙ 0 + T−1/2X>uθ0

z = T−1/2[X>ε,X>u]θ̌0
z (B.13)

So, by (B.7), (B.12)–(B.13) and Lemma 1, uniformly in γ,

T−1/2Xγ>
1 Xγ

1 (Π̂ − Π0)θ0
z ⇒ M1(γ)M−1GPmat,1θ̌

0
z . (B.14)

Next, because for any a, b = (1), Π̂>(a − b) = Π0>(a − b) + op(1), (B.11) and (B.14)
together with (B.10) yield, uniformly in γ,

T−1/2Ẑγ>
1 ε̃γ

1 ⇒ Π0>
(
GPmat,1(γ)θ̃0

z − M1(γ)M−1GPmat,1θ̌
0
z

)
. (B.15)

Last, because Ŵ γ
1
> =

[
Ẑγ

1 Xγ
1,1

]
= Xγ

1 Â> (see (B.9)) it immediately follows with (B.15)
that, uniformly in γ,

T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ B1(γ), (B.16)

proving claim (ii).

Lemma 3. Suppose Assumption A.1 holds and define θ̂γ = vec(θ̂γ
1 , θ̂

γ
2 ), and θ̄0 =

vec(θ0, θ0). Then, under H0 and for a fixed γ:

T 1/2(θ̂γ − θ̄0) ⇒ N (0, Σγ)

with

Σγ =

[
V1(γ) V12(γ)
V >

12(γ) V2(γ),

]

where V1(γ), V2(γ) and V12(γ) are defined in Definition A.2.

Proof of Lemma 3. First, we define the following quantities

W̄ =

[
Ŵ γ

1 0

0 Ŵ γ
2

]

, Ȳ =

[
Y γ

1

Y γ
2

]

, θ̂γ =

[
θ̂γ
1

θ̂γ
2

]

.
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Thus, the 2SLS estimator is given by

θ̂γ = (W̄>W̄ )−1W̄>Ȳ = θ̄0 + (W̄>W̄ )−1W̄>ˉ̃ε.

where

ˉ̃ε =

[
ε̃γ
1

ε̃γ
2

]

=

[
εγ
1 + (Z − Ẑ)γ

1θ
0
z

εγ
2 + (Z − Ẑ)γ

2θ
0
z

]

.

By Lemma 2,

T 1/2(θ̂γ − θ̄0) ⇒

[
C−1

1 (γ)B1(γ)
C−1

2 (γ)B2(γ)

]

.

Thus, we are left to derive

Σγ =

[
Var[C−1

1 (γ)B1(γ)] Cov[C−1
1 (γ)B1(γ), C−1

2 (γ)B2(γ)]
Cov[C−1

2 (γ)B2(γ), C−1
1 (γ)B1(γ)] Var[C−1

2 (γ)B2(γ)]

]

.

Start with Var[B1(γ)]. Write vtv
>
t ⊗ xtx

>
t as a short-cut for (vtv

>
t ) ⊗ (xtx

>
t ), and θ̌0>

z ⊗
A0M1(γ)M−1 as a short-cut for θ̌0>

z ⊗ (A0M1(γ)M−1). Then:

Var[B1(γ)] = Var[A0GPmat,1(γ)θ̃0
z − A0M1(γ)M−1GPmat,1θ̌

0
z ]

= Var[(θ̃0>
z ⊗ A0)GP1(γ)] + Var[(θ̌0>

z ⊗ A0M1(γ)M−1)GP ]

− Cov[(θ̃0>
z ⊗ A0)GP1(γ), (θ̌0>

z ⊗ A0M1(γ)M−1)GP ]

− Cov[(θ̌0>
z ⊗ A0M1(γ)M−1)GP , (θ̃0>

z ⊗ A0)GP1(γ)]

= (θ̃0>
z ⊗ A0)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}](θ̃

0
z ⊗ A0>)

+ (θ̌0>
z ⊗ A0M1(γ)M−1)E[vtv

>
t ⊗ xtx

>
t ](θ̌0

z ⊗ M−1M1(γ)A0>)

− (θ̃0>
z ⊗ A0)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}](θ̌

0
z ⊗ M−1M1(γ)A0>)

− (θ̌0>
z ⊗ A0M1(γ)M−1)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}](θ̃

0
z ⊗ A0>)

= A0E[xtx
>
t (εt + u>

t θ0
z)

21{qt≤γ}]A
0>

+ A0M1(γ)M−1E[xtx
>
t (u>

t θ0
z)

2]M−1M1(γ)A0>

− A0E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt≤γ}]M
−1M1(γ)A0>

− A0M1(γ)M−1E[xtx
>
t ](εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt≤γ}]A
0>,

which yields the claim for V1(γ), when pre- and post-multiplied by C−1
1 (γ).

Next, we consider Var[B2(γ)]. First, note that

B2(γ) = A0GPmat,1θ̃
0
z − A0GPmat,1θ̌

0
z − A0GPmat,1(γ) + A0M1(γ)M−1GPmat,1θ̌

0
z

= A0GPmat,2(γ)θ̃0
z − A0M2(γ)M−1GPmat,1θ̌

0
z
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By similar arguments as for Var[B1(γ)],

Var[B2(γ)] = A0E[xtx
>
t (εt + u>

t θ0
z)

21{qt>γ}]A
0>

+ A0M2(γ)M−1E[xtx
>
t (u>

t θ0
z)

2]M−1M2(γ)A0>

− A0E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt>γ}]M
−1M2(γ)A0>

− A0M2(γ)M−1E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt>γ}]A
0>

which yields the claim for V2(γ), when pre- and post-multiplied by C−1
2 (γ).

Finally, we derive an expression for Cov[B1(γ),B2(γ)]18:

Cov[B1(γ),B2(γ)] = Cov[A0GPmat,1(γ)θ̃0
z − A0M1(γ)M−1GPmat,1θ̌

0
z ,

A0GPmat,2(γ)θ̃0
z − A0M2(γ)M−1GPmat,1θ̌

0
z ]

= −Cov[A0GPmat,1(γ)θ̃0
z , A

0M2(γ)M−1GPmat,1θ̌
0
z ]

− Cov[A0M1(γ)M−1GPmat,1θ̌
0
z , A

0GPmat,2(γ)θ̃0
z ]

+ Cov[A0M1(γ)M−1GPmat,1θ̌
0
z , A

0M2(γ)M−1GPmat,1(γ)θ̌0
z ]

= −A0E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt≤γ}]M
−1M2(γ)A0>

− A0M1(γ)M−1E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt>γ}]A
0>

+ AM1(γ)M−1E[xtx
>
t (u>

t θ0
z)

2]M−1M2(γ)A0>

which yields the claim for V12(γ) when pre-multiplied by C−1
1 (γ) and post-multiplied by

C−1
2 (γ).

Lemma 4. Suppose Assumption A.1 holds. Under H0 and uniformly in γ for i = 1, 2,

(i) Ĥε
i (γ)

p
−→ Hε

i (γ) (ii) Ĥε,u
i (γ)

p
−→ Hε,u

i (γ)

(iii) Ĥu
i (γ)

p
−→ Hu

i (γ) (iv) Ĥi(γ)
p
−→ Hi(γ)

Proof of Lemma 4. Claim (i): Note that, under H0, ε̂t = yt − w>
t θ̂ and start with

Ĥε
i (γ) = T−1

∑

Ti(γ)

xtx
>
t ε̂2

t

= T−1
∑

Ti(γ)

xtx
>
t (yt − w>

t θ̂)2

= T−1
∑

Ti(γ)

xtx
>
t [w>

t (θ0 − θ̂) + εt]
2

= T−1
∑

Ti(γ)

xtx
>
t [w>

t (θ0 − θ̂)]2

︸ ︷︷ ︸
(I)

+ 2T−1
∑

Ti(γ)

xtx
>
t εtw

>
t (θ0 − θ̂)

︸ ︷︷ ︸
(II)

+ T−1
∑

Ti(γ)

xtx
>
t ε2

t

︸ ︷︷ ︸
(III)

.

18Note that Cov[GP1(γ),GP2(γ)] = E[GP1(γ)GP>
2 (γ)] = 0.
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We are left to show the limiting behavior of (I), (II), and (III).

‖(I)‖F ≤ T−1
∑

Ti(γ)

‖xtx
>
t [w>

t (θ0 − θ̂)]2‖F

≤
(
T−1

∑

Ti(γ)

‖xt‖
2
2‖wt‖

2
2

)
‖θ0 − θ̂‖2

2

=
(
T−1

∑

Ti(γ)

‖xt‖
2
2‖A

0xt + ūt‖
2
2

)
‖θ0 − θ̂‖2

2

≤



T−1
∑

Ti(γ)

‖xt‖
2
2

[
‖A0‖F‖xt‖2 + ‖ut‖2

]2


 ‖θ0 − θ̂‖2
2

=



T−1
∑

Ti(γ)

‖xt‖
4
2‖A

0‖2
F + 2‖xt‖

3
2‖ut‖2‖A

0‖F + ‖xt‖
2
2‖ut‖

2
2



 ‖θ0 − θ̂‖2
2

= op(1) (B.17)

where the last equality holds because ‖θ0 − θ̂‖ = op(1) under H0 (follows directly from
Lemma 2 by dropping γ ) and the term in paranthesis is Op(1). To see this latter claim,
note that ‖A0‖F = Op(1) by Assumption A.1 and consider

P



T−1
∑

Ti(γ)

‖xt‖
4
2 > K1



 ≤

E
∑

Ti(γ)

‖xt‖4
2

TK1

≤
sup

t
E‖xt‖4

2

K1

, (B.18a)

P



T−1
∑

Ti(γ)

‖xt‖
3
2‖ut‖2 > K2



 ≤

E
∑

Ti(γ)

‖xt‖3
2‖ut‖2

TK2

≤
sup

t
E‖xt‖3

2‖ut‖2

K2

≤
sup

t

[
E‖xt‖4

2

]3/4[
E‖ut‖4

2

]1/4

K2

≤
sup

t

[
E‖xt‖4

2

]3/4

sup
t

[
E‖ut‖4

2

]1/4

K2

(B.18b)

and

P



T−1
∑

Ti(γ)

‖xt‖
2
2‖ut‖

2
2



 ≤

E
∑

Ti(γ)

‖xt‖2
2‖ut‖2

2

TK3

≤
sup

t
E‖xt‖2

2‖ut‖2
2

K3

≤
sup

t

[
E‖xt‖4

2E‖ut‖4
2

]1/2

K3

≤
sup

t

[
E‖xt‖4

2

]1/2

sup
t

[
E‖ut‖4

2

]1/2

K3

.

(B.18c)
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Now, by Assumption A.1.2 it follows that all three terms (B.18a)–(B.18c) are Op(1) and
therefore, (B.17) follows.
For (II) it follows that

‖(II)‖F ≤ T−1
∑

Ti(γ)

‖xtx
>
t w>

t (θ0 − θ̂)εt‖F

≤
(
T−1

∑

Ti(γ)

‖xt‖
2
2‖A

0xt + ūt‖2|εt|
)
‖θ0 − θ̂‖2

≤
(
T−1

∑

Ti(γ)

‖xt‖
3
2‖A

0‖F |εt| + ‖xt‖
2
2‖ut‖2|εt|

)
‖θ0 − θ̂‖2

= op(1). (B.19)

To see why this statement holds, consider

P



T−1
∑

Ti(γ)

‖xt‖
3
2|εt| > K4



 ≤

E
∑

Ti(γ)

‖xt‖3
2|εt|

TK4

≤
sup

t
E‖xt‖3

2|εt|

K4

≤
sup

t

[
E‖xt‖4

2

]3/4[
E|εt|4

]1/4

K4

≤
sup

t

[
E‖xt‖4

2

]3/4

sup
t

[
E|εt|4

]1/4

K4

(B.20a)

P



T−1
∑

Ti(γ)

‖xt‖
2
2‖ut‖2|εt| > K5



 ≤

E
∑

Ti(γ)

‖xt‖2
2‖ut‖2|εt|

TK5

≤
sup

t
E‖xt‖2

2‖utεt‖2

K5

≤
sup

t

[
E‖xt‖4

2

]1/2[
E‖utεt‖2

2

]1/2

K5

≤
sup

t

[
E‖xt‖4

2

]1/2[
E‖ut‖4

2

]1/4[
E|εt|4

]1/4

K5

≤
sup

t

[
E‖xt‖4

2

]1/2

sup
t

[
E‖ut‖4

2

]1/4

sup
t

[
E|εt|4

]1/4

K5

.

(B.20b)

Thus, the fact that ‖θ0 − θ̂‖2 = op(1) together with (B.20a) and (B.20b) yield (B.19).

Finally, because (III)
p
−→ Hε

1(γ), uniformly in γ, by Hansen (1996, Lemma 1), Claim (i)
follows.
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Claim (ii): Under H0 and a LRF it holds that ε̂t = yt − w>
t θ̂ and ût = zt − Π̂>xt.

Therefore,

Ĥε,u
i (γ) = T−1

∑

Ti(γ)

xtx
>
t ε̂tû

>
t θ̂z = T−1

∑

Ti(γ)

xtx
>
t [w>

t (θ0 − θ̂) + εt][x
>
t (Π0 − Π̂) + u>

t ]θ̂z

= T−1
∑

Ti(γ)

xtx
>
t x>

t A0(θ0 − θ̂)x>
t (Π0 − Π̂)θ̂z

︸ ︷︷ ︸
(IV)

+ T−1
∑

Ti(γ)

xtx
>
t x>

t A0(θ0 − θ̂)u>
t θ̂z

︸ ︷︷ ︸
(V)

+ T−1
∑

Ti(γ)

xtx
>
t ū>

t (θ0 − θ̂)x>
t (Π0 − Π̂)θ̂z

︸ ︷︷ ︸
(VI)

+ T−1
∑

Ti(γ)

xtx
>
t ū>

t (θ0 − θ̂)u>
t θ̂z

︸ ︷︷ ︸
(VII)

+ T−1
∑

Ti(γ)

xtx
>
t εtx

>
t (Π0 − Π̂)θ̂z

︸ ︷︷ ︸
(VIII)

+ T−1
∑

Ti(γ)

xtx
>
t ε>t u>

t θ̂z

︸ ︷︷ ︸
(IX)

. (B.21)

Now, it immediately follows, by similar arguments as for Claim (i), that

‖(IV)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
4
2

)
‖A0‖F‖Π

0 − Π̂‖F‖θ
0 − θ̂‖2‖θ̂z‖2

= Op(1)Op(1)op(1)op(1)Op(1) = op(1) (B.22a)

‖(V)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
3
2‖ut‖2

)
‖A0‖F‖θ

0 − θ̂‖2‖θ̂z‖2

= Op(1)Op(1)op(1)Op(1) = op(1) (B.22b)

‖(VI)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
3
2‖ut‖2

)
‖Π0 − Π̂‖F‖θ

0 − θ̂‖2‖θ̂z‖2

= Op(1)op(1)op(1)Op(1) = op(1) (B.22c)

‖(VII)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
2
2‖ut‖

2
2

)
‖θ0 − θ̂‖2‖θ̂z‖2

= Op(1)op(1)Op(1) = op(1) (B.22d)

‖(VIII)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
3
2|εt|

)
‖Π0 − Π̂‖F‖θ̂z‖2

= Op(1)op(1)Op(1) = op(1). (B.22e)

For the last term in (B.21) it holds, uniformly in γ by Hansen (1996, Lemma 1), that

(IX) = T−1
∑

Ti(γ)

xtx
>
t εtu

>
t (θ0 + op(1)) = T−1

∑

Ti(γ)

xtx
>
t εtu

>
t θ0 + op(1)

p
−→ Hε,u

1 (γ). Thus,

Claim (ii) follows together with (B.22a)–(B.22e).
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Claim (iii): As before, ût = zt − Π̂>xt. Then, under H0, it follows that

Ĥu
i (γ) = T−1

∑

Ti(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

Ti(γ)

xtx
>
t {[x

>
t (Π0 − Π̂) + u>

t ]θ̂z}
2

= T−1
∑

Ti(γ)

xtx
>
t [x>

t (Π0 − Π̂)θ̂z]
2

︸ ︷︷ ︸
(X)

+2 T−1
∑

Ti(γ)

xtx
>
t x>

t (Π0 − Π̂)θ̂zu
>
t θ̂z

︸ ︷︷ ︸
(XI)

+ T−1
∑

Ti(γ)

xtx
>
t (u>

t θ̂z)
2

︸ ︷︷ ︸
(XII)

(B.23)

Next,

‖(X)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
4
2

)
‖Π0 − Π̂‖2

F‖θ̂z‖
2
2 = Op(1)op(1)Op(1) = op(1) (B.24a)

‖(XI)‖F ≤
(
T−1

∑

Ti(γ)

‖xt‖
3
2‖ut‖2

)
‖Π0 − Π̂‖F‖θ̂z‖

2
2 = Op(1)op(1)Op(1) = op(1). (B.24b)

For the last term in (B.23) it holds, uniformly in γ by Hansen (1996, Lemma 1), that

(X) = T−1
∑

Ti(γ)

xtx
>
t (u>

t θ̂z)
2 = T−1

∑

Ti(γ)

xtx
>
t (u>

t θ0
z)

2 + op(1)
p
−→ Hu(γ). Thus, Claim (iii)

follows together with (B.24a) and (B.24b).

Claim (iv): This claim follows by noting that Ĥi(γ) = Ĥε
i (γ) + 2Ĥε,u

i (γ) + Ĥu
i (γ),

using Claims (i)–(iii) and the continuous mapping theorem.

Proof of Theorem 2.

(i) sup LR Test: This proof is done in two parts: part (A) shows that T−1SSR1(γ)
p
−→

σ2 and part (B) shows that SSR0 − SSR1(γ) ⇒ E>(γ)C2(γ)C−1C1(γ)E(γ).
Part (A). The scaled sum of squared residuals of the restricted model, SSR1(γ), is

T−1SSR1(γ) = T−1[Y γ
1 − Ŵ γ

1 θ̂γ
1 ]>[Y γ

1 − Ŵ γ
1 θ̂γ

1 ]

+ T−1[Y γ
2 − Ŵ γ

2 θ̂γ
2 ]>[Y γ

2 − Ŵ γ
2 θ̂γ

2 ]

= T−1[Ŵ γ
1 (θ0 − θ̂γ

1 ) + ε̃γ
1 ]

>[Ŵ γ
1 (θ0 − θ̂γ

1 ) + ε̃γ
1 ]

+ T−1[Ŵ γ
2 (θ0 − θ̂γ

2 ) + ε̃γ
2 ]

>[Ŵ γ
2 (θ0 − θ̂γ

2 ) + ε̃γ
2 ]

= T−1ε̃>ε̃

+ 2(T−1ε̃γ>
1 Ŵ γ

1 )(θ0 − θ̂γ
1 ) + (θ0 − θ̂γ

1 )>(T−1Ŵ γ>
1 Ŵ γ

1 )(θ0 − θ̂γ
1 )

+ 2(T−1ε̃γ>
2 Ŵ γ

2 )(θ0 − θ̂γ
2 ) + (θ0 − θ̂γ

2 )>(T−1Ŵ γ>
2 Ŵ γ

2 )(θ0 − θ̂γ
2 ).

(B.25)

45



Next, by Lemma 2, for i = 1, 2, T−1Ŵ γ>
i ε̃γ

i = op(1) and T−1Ŵ γ>
i Ŵ γ

i = Op(1) uniformly
in γ. This implies that

θ̂γ
i − θ0 = (T−1Ŵ γ>

i Ŵ γ
i )−1(Ŵ γ>

i ε̃γ
i ) = Op(1)op(1) = op(1)

and therefore, (B.25) simplifies to

T−1SSR1(γ) = T−1ε̃>ε̃ + op(1)

= T−1s>s + 2(T−1s>X)(Π0 − Π̂)θ0
z

+ θ0>
z (Π0 − Π̂)X>X(Π0 − Π̂)θ0

z + op(1) (B.26)

where s = ε + u>θ0
z , Π̂ − Π0 = op(1) and T−1s>X = op(1) by Lemma 2, uniformly in γ.

Thus, (B.26) simplifies to

T−1SSR1(γ) = T−1s>s + op(1)

= T−1ε>ε + 2(T−1ε>u)θ0
z + θ0>

z (T−1u>u)θ0
z + op(1)

p
−→ σ2

ε + 2Σ>
ε,uθ

0
z + θ0>

z Σuθ
0
z = σ2

uniformly in γ. This proves part (i).
Part (B). We have that

SSR0 − SSR1(γ) = [Y γ
1 − Ŵ γ

1 θ̂]>[Y γ
1 − Ŵ γ

1 θ̂] − [Y γ
1 − Ŵ γ

1 θ̂γ
1 ]>[Y γ

1 − Ŵ γ
1 θ̂γ

1 ]

+ [Y γ
2 − Ŵ γ

2 θ̂]>[Y γ
2 − Ŵ γ

2 θ̂] − [Y γ
2 − Ŵ γ

2 θ̂γ
2 ]>[Y γ

2 − Ŵ γ
2 θ̂γ

2 ] (B.27)

Now, for i = 1, 2,

[Y γ
i − Ŵ γ

i θ̂]>[Y γ
i − Ŵ γ

i θ̂]

−[Y γ
i − Ŵ γ

i θ̂γ
i ]>[Y γ

i − Ŵ γ
i θ̂γ

i ] = Y γ>
i Y γ

i − 2θ̂>Ŵ γ>
i Y γ

i + θ̂>Ŵ γ>
i Ŵ γ

i θ̂

− Y γ>
i Y γ

i + 2θ̂γ>
i Ŵ γ

i − θ̂γ>
i Ŵ γ>

i Ŵ γ
i θ̂γ

i

= [θ̂γ
i − θ̂]>Ŵ γ>

i [2Y γ
i − Ŵ γ

i θ̂ − Ŵ γ
i θ̂γ

i ]

= T 1/2[θ̂γ
i − θ̂]>

[
2(T−1/2Ŵ γ>

i ε̃γ
i )

−(T−1Ŵ γ>
i Ŵ γ

i )(T 1/2(θ̂ − θ0))

−(T−1Ŵ γ>
i Ŵ γ

i )(T 1/2(θ̂γ
i − θ0))

]
. (B.28)

Next, we show the asymptotic behavior of the terms on the right hand side of (B.28)
which then concludes the proof together with Part (i), (B.27), the continuous mapping
theorem and weak convergence (uniformly in γ). It holds that

(T−1Ŵ>Ŵ )(T 1/2(θ̂ − θ0))

=T−1/2Ŵ>ε̃

=T−1/2Ŵ γ>
1 ε̃γ

1 + T−1/2Ŵ γ>
2 ε̃γ

2

=(T−1Ŵ γ>
1 Ŵ γ

1 )(T 1/2(θ̂γ
1 − θ0)) + (T−1Ŵ γ>

2 Ŵ γ
2 )(T 1/2(θ̂γ

2 − θ0)) (B.29)
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and by Lemma 2 that, uniformly in γ for i = 1, 2,

T−1Ŵ γ>
i Ŵ γ

i

p
−→ Ci(γ). (B.30)

Define β̂ ≡ T 1/2(θ̂ − θ0), β̂i ≡ T 1/2(θ̂γ
i − θ0) and Di(γ) ≡ C−1Ci(γ) (i = 1, 2). Then,

(B.30) can be restated as

β̂ = D1(γ)β̂1 + D2(γ)β̂2 + op(1). (B.31)

Moreover, note that because D1(γ) + D2(γ) = I,

T 1/2(θ̂γ
1 − θ̂) = β̂1 − β̂ = D2(γ)(β̂1 − β̂2) + op(1) (B.32a)

T 1/2(θ̂γ
2 − θ̂) = β̂2 − β̂ = −D1(γ)(β̂1 − β̂2) + op(1) (B.32b)

T−1/2Ŵ γ>
i ε̃γ

i = Ci(γ)β̂i + op(1) (B.32c)

by (B.31) and Lemma 2.
So, using (B.29)–(B.32c), quantity (B.28) can be written, for i = 1, as

(β̂1 − β̂2)
>D>

2 (γ)
[
2C1(γ)β̂1 − C1(γ)β̂ − C1(γ)β̂1

]
+ op(1)

=(β̂1 − β̂2)
>D>

2 (γ)C1(γ)(β̂1 − β̂) + op(1)

=(β̂1 − β̂2)
>D>

2 (γ)C1(γ)D2(γ)(β̂1 − β̂2) + op(1). (B.33)

Similarly, using (B.29)–(B.31) and (B.32b), and(B.32c), quantity (B.28) can be stated,
for i = 2, as

(β̂1 − β̂2)
>D>

1 (γ)C2(γ)D1(γ)(β̂1 − β̂2) + op(1). (B.34)

So, using (B.28), (B.33) and (B.34), quantity (B.27) can be restated as

SSR0 − SSR1(γ) = (β̂1 − β̂2)
>D>

2 (γ)C1(γ)D2(γ)(β̂1 − β̂2)

+ (β̂1 − β̂2)
>D>

1 (γ)C2(γ)D1(γ)(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)
>
[
(Ip − D>

1 (γ))C1(γ)(Ip − D1(γ))

+D>
1 (γ)(C − C1(γ))D1(γ)

]
(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)
>
[
C1(γ) − 2C1(γ)D1(γ) + D>

1 (γ)C1(γ)D1(γ)

+D>
1 (γ)CD1(γ) − D>

1 (γ)C1(γ)D1(γ)
]
(β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)
> [C1(γ) − C1(γ)D1(γ)] (β̂1 − β̂2) + op(1)

= (β̂1 − β̂2)
>C2(γ)D1(γ)(β̂1 − β̂2) + op(1). (B.35)

Last, by Lemma 2 it holds, uniformly in γ, that

β̂1 − β̂2 = (T−1Ŵ γ>
1 Ŵ γ

1 )−1(T−1/2Ŵ γ>
1 ε̃γ

1) − (T−1Ŵ γ>
2 Ŵ γ

2 )−1(T−1/2Ŵ γ>
2 ε̃γ

2)

⇒ C−1
1 (γ)A0B1(γ) − C−1

2 (γ)A0B2(γ) ≡ E(γ). (B.36)

So, combining (B.35) and (B.36) yields

SSR0 − SSR1(γ) ⇒ E>(γ)C2(γ)D1(γ)E(γ)

which in turn with Part (A), the continuous mapping theorem and weak convergence
(uniformly in γ) proves the claim.
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(ii) sup Wald Test: From Equation (B.28) it follows that

T 1/2(θ̂γ
1 − θ̂γ

2 ) ⇒ E(γ). (B.37)

Moreover, from Definition A.2,

V̂i(γ) = Ĉ−1
i (γ)Â

[
Ĥi(γ) + R̂i(γ)ĤuR̂>

i (γ) − [Ĥε,u
i (γ) + Ĥu

i (γ)]R̂>
i (γ)

− R̂i(γ)[Ĥε,u
i (γ) + Ĥu

i (γ)]
]
Â>Ĉ−1

i (γ) (B.38a)

and

V̂12(γ) = Ĉ−1
1 (γ)Â

[
(Ĥε,u

1 (γ) + Ĥu
1 (γ))R̂>

2 (γ) − R̂1(γ)(Ĥε,u
2 (γ) + Ĥu

2 (γ))

+ R̂1(γ)ĤuR̂>
2 (γ))

]
Â>Ĉ−1

2 (γ) (B.38b)

Now, by (B.7) and the continuous mapping theorem it immediately follows, uniformly
in γ, that

R̂i(γ) = M̂i(γ)M̂−1 =
(
T−1Xγ>

i Xγ
i

)(
T−1X>X

)−1 p
−→ Mi(γ)M−1 = Ri(γ). (B.39)

Moreover, by Lemma 2 and the continuous mapping theorem it also holds, uniformly in
γ, that

Ĉ−1
i (γ) = (T−1Ŵ γ>

i Ŵ γ
i )−1 =

(
ÂM̂i(γ)Â>

)−1 p
−→ C−1

i (γ), and Â = [Π̂, S>]>
p
−→ A0.

(B.40)
Finally, in Lemma 4 we derived the limits of Ĥε

i (γ), Ĥu
i (γ) and Ĥε,u

i (γ) concluding the
proof together with (B.37)–(B.40).

Corollary A 1 (to Theorem 2). Let Z be generated by (2.1), Y be generated by (2.3),
and Ẑ be calculated by (3.1). Under H0 and Assumptions A.1-A.2,
(i)

sup
γ∈Γ

LR2SLS
T,LRF (γ) ⇒ sup

γ∈Γ
Ẽ>(γ)Q−1(γ)Ẽ(γ)

(ii)
sup
γ∈Γ

W 2SLS
T,LRF (γ) ⇒ sup

γ∈Γ
Ẽ>(γ)Ṽ −1(γ)Ẽ(γ)

where Ṽ (γ) = Ṽ1(γ) + Ṽ2(γ) − Ṽ12(γ) − Ṽ >
12(γ),

Ṽi(γ) = C−1
i (γ) A0

[
σ2Iq − (σ2 − σ2

ε )Ri(γ)
]
Mi(γ)A>

0 C−1
i (γ)

Ṽ12(γ) = −C−1
1 (γ)(σ2 − σ2

ε )A
0R1(γ)M2(γ)A0>C−1

2 (γ),

and G̃Pmat,1(γ) is a q×(p1+1)-matrix where all columns are independent q×1 zero mean
Gaussian processes with covariance kernel19 M1(γ1 ∧ γ2), Σ1/2 is the principal square

19Thus, the only difference between the two Gaussian processes G̃Pmat,1(γ) and GPmat,1(γ) lies in their
covariance functions.
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root of Σ, Ẽ(γ) = C−1
1 (γ)B̃1(γ) − C−1

2 (γ)B̃2(γ), and B̃1(γ) = A0[G̃Pmat,1(γ)Σ1/2θ̃0
z −

R1(γ)G̃PmatΣ
1/2θ̌0

z ], B̃2(γ) = B̃1(γmax) − B̃1(γ).
(iii) If the system is just-identified, i.e. if p = q, then the two test statistics are asymp-
totically equivalent with asymptotic distribution given by supγ∈Γ J1(γ), where:

J1(γ) =
1

σ2
(Σ1/2θ̃0

z)
>[M−1

1 (γ)G̃Pmat,1(γ) − M−1
2 (γ)G̃Pmat,2(γ)]>

× [M2(γ)M−1M1(γ)]

× [M−1
1 (γ)G̃Pmat,1(γ) − M−1

2 (γ)G̃Pmat,2(γ)]Σ1/2θ̃0
z .

Proof of Corollary A1.

(i) sup LR-test: We only need to show E(γ) = Ẽ(γ) under Assumptions A.1 and A.2;
in other words, that GPmat,1(γ) = G̃Pmat,1(γ)Σ1/2.20 The covariance kernel of GP1(γ)
is given as E[GP1(γ1)GP

>
1 (γ2)] = E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ1∧γ2}] by Lemma 1, using the

shortcut notation vtv
>
t ⊗xtx

>
t = (vtv

>
t )⊗ (xtx

>
t ). Under Assumption A.2 this expression

can be simplified to

E[(vtv
>
t ⊗ xtx

>
t )1{qt≤γ1∧γ2}] = E

[
E[(vtv

>
t ⊗ xtx

>
t )1{qt≤(γ1∧γ2)}|xt, qt]

]

= E
[
E[vtv

>
t |xt, qt] ⊗ (xtx

>
t 1{qt≤(γ1∧γ2)})

]

= E
[
Σ ⊗ (xtx

>
t 1{qt≤(γ1∧γ2)})

]

= Σ ⊗ M1(γ1 ∧ γ2).

Next, the principal square root of Σ, i.e. Σ1/2 that satisfies Σ1/2Σ1/2 = Σ, exists since Σ
is positive definite by Assumption A.1.5. Thus,

E[(vtv
>
t ⊗ xtx

>
t )1{qt≤γ1∧γ2}] = Σ ⊗ M1(γ1 ∧ γ2)

= (Σ1/2 ⊗ M1(γ1 ∧ γ2))(Σ
1/2 ⊗ Iq)

= (Σ1/2 ⊗ Iq)(Ip1+1 ⊗ M1(γ1 ∧ γ2))(Σ
1/2 ⊗ Iq). (B.41)

The covariance kernel of (Σ1/2 ⊗ Iq)G̃P1(γ) = vec(G̃Pmat,1(γ)Σ1/2) is given by

E[(Σ1/2 ⊗ Iq)G̃P1(γ1)G̃P
>
1 (γ2)(Σ

1/2 ⊗ Iq)] = (Σ1/2 ⊗ Iq)E[G̃P1(γ1)G̃P
>
1 (γ2)](Σ

1/2 ⊗ Iq)

= (Σ1/2 ⊗ Iq)(Ip1+1 ⊗ M1(γ1 ∧ γ2))(Σ
1/2 ⊗ Iq)

(B.42)

because E[G̃P1(γ1)G̃P
>
1 (γ2)] = Ip1+1 ⊗ M1(γ1 ∧ γ2) by definition of G̃P1(γ). Combining

(B.41) and (B.42) yields the desired result since Gaussian processes are uniquely defined
through their mean and covariance functions.

20We will do this by showing that their covariance functions are the same. Hence, because both
processes have mean zero, equality follows due to the fact that Gaussian processes are uniquely
defined through their mean and covariance functions.
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(ii) sup Wald-test: Conditional homoskedasticity implies that Hε
i (γ) = σ2

ε Mi(γ),
Hu

i (γ) = (θ0>
z Σuθ

0
z) Mi(γ), and Hε,u

i (γ) = (Σ>
ε,uθ

0
z) Mi(γ). Plugging these results into

the expression for V (γ) in Definition A.2 and simplifying yields the asymptotic distri-
bution of the sup-Wald test for the overidentified case.

(iii) To show the asymptotic equivalence for p = q, define Δσ = σ2 − σ2
ε . Then:

Ṽ (γ) = Ṽ1(γ) + Ṽ2(γ) − Ṽ12(γ) − Ṽ >
12(γ)

= σ2C−1
1 (γ) − ΔσC−1

1 (γ)A0R1(γ)M1(γ)A0>C−1
1 (γ)

+ σ2C−1
2 (γ) − ΔσC−1

2 (γ)A0R2(γ)M2(γ)A0>C−1
2 (γ)

+ ΔσC−1
1 (γ)A0R1(γ)M2(γ)A0>C−1

2 (γ)

+ ΔσC−1
2 (γ)A0R2(γ)M1(γ)A0>C−1

1 (γ)

= σ2(C−1
1 (γ) + C−1

2 (γ))

+ ΔσC−1
1 (γ)A0R1(γ)[M2(γ)A0>C−1

2 (γ) − M1(γ)A0>C−1
1 (γ)]

+ ΔσC−1
2 (γ)A0R2(γ)[M1(γ)A0>C−1

1 (γ) − M2(γ)A0>C−1
2 (γ)]. (B.43)

In general, A0 ∈ Rp×q. Thus, for the just-identified case, i.e. whenever p = q, A0 ∈ Rp×p.
Moreover, since Π0 ∈ Rq×p1 , q ≥ p1, is of full (column) rank by Assumption A.1.6, A0 is
also of full rank and thus, invertible. Denote by A0−1

the inverse of A0. Hence, it follows
that (A0Mi(γ)A0>)−1 = A0>−1

M−1
i (γ)A0−1

. Therefore,

M2(γ)A0>C−1
2 (γ) − M1(γ)A0>C−1

1 (γ) = 0. (B.44)

By equations (B.43)-(B.44), Ṽ (γ) = σ2(C−1
1 (γ) + C−1

2 (γ)). Finally,

Ṽ −1(γ) =
(C−1

1 (γ) + C−1
2 (γ))−1

σ2
=

C1(γ)C−1C2(γ)

σ2

which yields the asymptotic equivalence of both, sup-LR and sup-Wald tests in the
just-identified case under conditional homoskedasticity.

Note that in this setting, C−1
1 (γ)A0M1(γ)M−1 = (A0>)−1M−1, which implies that:

Ẽ(γ) = C−1
1 (γ)A0[G̃Pmat,1(γ)Σ1/2θ̃0

z − M1(γ)M−1G̃PmatΣ
1/2θ̌0

z ]

− C−1
2 (γ)A0[G̃Pmat,2(γ)Σ1/2θ̃0

z − M2(γ)M−1G̃PmatΣ
1/2θ̌0

z ]

= C−1
1 (γ)A0G̃Pmat,1(γ)Σ1/2θ̃0

z − C−1
2 (γ)A0G̃Pmat,2(γ)Σ1/2θ̃0

z

= (A0>)−1[M−1
1 (γ)G̃Pmat,1(γ) − M−1

2 (γ)G̃Pmat,2(γ)]Σ1/2θ̃0
z .

Also,

C2(γ)C−1C1(γ) = A0M2(γ)A0>(A0>)−1M(A0)−1A0M2(γ)A0>

= A0M2(γ)M−1M1(γ)A0>.

50



Therefore, the asymptotic distribution under conditional homoskedasticity and just-
identification is:

J1(γ) =
1

σ2
(Σ1/2θ̃0

z)
>[M−1

1 (γ)G̃Pmat,1(γ) − M−1
2 (γ)G̃Pmat,2(γ)]>

× [M2(γ)M−1M1(γ)]

× [M−1
1 (γ)G̃Pmat,1(γ) − M−1

2 (γ)G̃Pmat,2(γ)]Σ1/2θ̃0
z .

Proof of Corollary 1. First, by Assumption A.1.4 , Prob(qt ≤ γ) is continuous in
γ. We will replace the sup over the threshold parameter γ by sup over an equivalent
value, Prob(qt ≤ γ) = λ. To see how this works, note first that Γ ⊂ Γ0. Then,
Prob(qt ≤ γmin) = 0 and Prob(qt ≤ γmax) = 1 in the sample. Suppose now, that Γ can
be defined in terms of a cut-off value, say the κ-th quantile, i.e. Γ = [γκ, γ1−κ]. Then
equivalently, we have Prob(qt ≤ γ) = λ for all γ ∈ Γ where λ is uniformly distributed
on Λκ = (κ; 1 − κ), i.e λ ∼ U(Λκ).
Now, by Assumption A.3, we have that

M1(γ1 ∧ γ2) = E[xtx
>
t 1{qt≤γ1∧γ2}] = E[xtx

>
t ]E[1{qt≤γ1∧γ2}] = min{λ1, λ2}M. (B.45)

This also implies that

M1(γ) = λM (B.46a)

C1(γ) = A0M1(γ)A0> = λA0MA0> = λC (B.46b)

M2(γ) = (1 − λ)M (B.46c)

C2(γ) = A0M2(γ)A0> = (1 − λ)A0MA0> = (1 − λ)C. (B.46d)

Therefore,

Ṽ12(γ) = −C−1
1 (γ)ΔσA0M1(γ)M−1M2(γ)A0>C−1

2 (γ)

= −Δσλ
−1C−1λ(1 − λ)C(1 − λ)−1C−1

= −ΔσC
−1

Ṽ1(γ) = λ−1C−1[σ2λC − Δσλ
2C]λ−1C−1

= σ2λ−1C−1 − ΔσC−1

Ṽ2(γ) = σ2(1 − λ)−1C−1 − ΔσC−1

Ṽ (γ) = Ṽ1(γ) + Ṽ2(γ) − Ṽ12(γ) − Ṽ >
12(γ)

= σ2λ−1C−1 + σ2(1 − λ)−1C−1

= σ2 C−1

λ(1 − λ)
,

implying that

sup
γ∈Γ

W 2SLS
T (γ), sup

γ∈Γ
LR2SLS

T (γ) ⇒ sup
λ∈Λκ

λ(1 − λ)

σ2
Ẽ>(γ)CẼ(γ)
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Hence, in this situation, the sup Wald and sup LR-test are asymptotically equivalent,
no matter whether the system is just- or overidentified.
Next, (B.45) implies that – under Assumptions A.2 and A.3 – the Gaussian process
GP1(γ) can be restated as

GP1(γ) = (Σ1/2 ⊗ Iq)G̃P1(γ) = (Σ1/2 ⊗ M1/2)BMq(p1+1)(λ)

⇐⇒ GPmat,1(γ) = M1/2BMmat,q(p1+1)(λ)Σ1/2 (B.47)

where BMq(p1+1) denotes a q(p1 +1)×1 vector of independent Brownian motions on the
unit interval, and BMmat,q(p1+1)(λ) is the q×(p1+1) matrix with vec(BMmat,q(p1+1)(λ)) =
BMq(p1+1)(λ). Equation (B.47) in turn implies that B1(γ) can be rewritten as B1(λ).
Therefore, we obtain

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ(γ) = [C−1
1 (γ)B1(γ) − C−1

2 (γ)B2(γ)]>

× C2(γ)C−1C1(γ)

× [C−1
1 (γ)B1(γ) − C−1

2 (γ)B2(γ)]

=
1

λ(1 − λ)
[C−1B1(λ) − λC−1B1(1)]>

× C[C−1B1(λ) − λC−1B1(1)]

=
1

λ(1 − λ)
[C−1/2B1(λ) − λC−1/2B1(1)]>

× [C−1/2B1(λ) − λC−1/2B1(1)]. (B.48)

Next, we show that the term C−1/2B1(λ)−λC−1/2B1(1)
D
= [(Σ1/2θ̃0

z)
>⊗Ip][BMp(p1+1)(λ)−

λBMp(p1+1)(1)], where BMp(p1+1)(λ) collects in a vector the first p out of each q block
of elements of BMq(p1+1)(λ). Because of (B.46a) and (B.47) it follows that

B1(λ) = A0[GPmat,1(γ)θ̃0
z − M1(γ)M−1GPmat,1θ̌

0
z ]

= A0M1/2[BMmat,q(p1+1)(λ)Σ1/2θ̃0
z − λBMmat,q(p1+1)(1)Σ1/2θ̌0

z ].

Furthermore, recall that C = A0MA0>. Thus:

C−1/2B1(λ) = (A0MA0>)−1/2A0M1/2BMmat,q(p1+1)(λ)Σ1/2θ̃0
z

− λ(A0MA0>)−1/2A0M1/2BMmat,q(p1+1)(1)Σ1/2θ̌0
z .

Note that because (A0MA0>)−1/2(A0MA0>)(A0MA0>)−1/2 is a p× p projection matrix,
pre-multiplying with (A0MA0>)−1/2A0M1/2 is without loss of generality equal in distri-
bution to selecting the first p rows of the q rows of BMmat,q(p1+1)(λ) (this can be seen
by writing down the eigenvalue decomposition of the projection matrix as in Hall et al.
(2012), supplemental appendix, page 22-23), yielding

BMmat,p(p1+1)(λ)
D
= (A0MA0>)−1/2A0M1/2BMmat,q(p1+1)(λ)

BMmat,p(p1+1)(1)
D
= (A0MA0>)−1/2A0M1/2BMmat,q(p1+1)(1),
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where BMp(p1+1)(λ) = vec(BMmat,p(p1+1)(λ)). From the last statement, using the fact
that for generic matrices A,B, we have vec(AB) = (B′ ⊗ I)vec(A),

C−1/2B1(λ)
D
= BMmat,p(p1+1)(λ)Σ1/2θ̃0

z − λBMmat,p(p1+1)(1)Σ1/2θ̌0
z

λC−1/2B1(1)
D
= λBMmat,p(p1+1)(1)Σ1/2θ̃0

z − λBMmat,p(p1+1)(1)Σ1/2θ̌0
z

C−1/2B1(λ) − λC−1/2B1(1)
D
= BMmat,p(p1+1)(λ)Σ1/2θ̃0

z − λBMmat,p(p1+1)(1)Σ1/2θ̃0
z

= [(Σ1/2θ̃0
z)

> ⊗ Ip] [BMp(p1+1)(λ) − λBMp(p1+1)(1)]

≡ [(Σ1/2θ̃0
z)

> ⊗ Ip]BBp(p1+1)(λ). (B.49)

Using (B.49),

E>(γ)C2(γ)C−1C1(γ)E(γ)

σ2

D
=

{
[(Σ1/2θ̃0

z)
> ⊗ Ip]BBp(p1+1)(λ)

}> {
[(Σ1/2θ̃0

z)
> ⊗ Ip]BBp(p1+1)(λ)

}

λ(1 − λ)(Σ1/2θ̃0
z)

>(Σ1/2θ̃0
z)

=
BB>

p(p1+1)

{
[(Σ1/2θ̃0

z)[(Σ
1/2θ̃0

z)
>(Σ1/2θ̃0

z)]
−1(Σ1/2θ̃0

z)
>] ⊗ Ip

}
BBp(p1+1)

λ(1 − λ)
.

Since F = (Σ1/2θ̃0
z)[(Σ

1/2θ̃0
z)

>(Σ1/2θ̃0
z)]

−1(Σ1/2θ̃0
z)

> is a projection matrix, as before, pre-
multiplying with F ⊗ Ip involves, without loss of generality, selecting the first p elements
of BBp(p1+1), yielding BBp(λ). Therefore,

Ẽ>(γ)C2(γ)C−1C1(γ)Ẽ(γ)

σ2

D
=

BB>
p (λ)BBp(λ)

λ(1 − λ)
,

proving the claim.

Proofs for Section 4.4: 2SLS tests and a TRF

Lemma 5. Under Assumption A.1, T (ρ̂− ρ0) = Op(1), T 1/2(Π̂i −Π0
i ) = Op(1), i = 1, 2

and it holds that the distribution is as if ρ0 was known:

T 1/2 vec(Π̂i(ρ
0) − Π0

i )
D
−→ N (0, Si),

where S1 = (Ip1 ⊗ M−1
1 (ρ0))E[(utu

>
t ⊗ xtx

>
t )1{qt≤ρ0}](Ip1 ⊗ M−1

1 (ρ0)) and S2 = (Ip1 ⊗
M−1

2 (ρ0))E[(utu
>
t ⊗ xtx

>
t )1{qt>ρ0}](Ip1 ⊗ M−1

2 (ρ0)).

Proof of Lemma 5. The results T (ρ̂ − ρ0) = Op(1), T 1/2(Π̂i − Π0
i ) = Op(1), i = 1, 2

directly follow from Caner and Hansen (2004), Theorems 1 and 2. We will prove the
statement for T 1/2 vec(Π̂1(ρ

0) − Π0
1). The proof for T 1/2 vec(Π̂2(ρ

0) − Π0
2) is similar and

omitted for brevity.
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By construction

Π̂1(ρ
0) = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 Z)

= (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 Xρ0

1 Π0
1 + Xρ0>

1 Xρ0

2 Π0
2 + Xρ0>

1 u)

= Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ0

1 )

where the last equality holds because Xρ0>
1 Xρ0

2 = 0. Hence,

T 1/2 vec(Π̂1(ρ
0) − Π0

1) = vec
(
(T−1Xρ0>

1 Xρ0

1 )−1(T−1/2Xρ0>
1 u)

)

= (Ip1 ⊗ (T−1Xρ0>
1 Xρ0

1 )−1) vec(T 1/2(Xρ0>
1 uρ0

1 )).

Next, (T−1Xρ0>
1 Xρ0

1 )−1 p
−→ M−1

1 (ρ0) and by Lemma 1

T 1/2 vec(Xρ>
1 uρ

1) ⇒ GP1(ρ).

Note that GP1(ρ) is a zero-mean Gaussian process with covariance function CGP(ρ1, ρ2) =
E[(utu

>
t ⊗ xtx

>
t )1{qt≤ρ1∧ρ2}]. Therefore,

T 1/2 vec(Π̂1(ρ
0) − Π0

1) ⇒ (Ip1 ⊗ M−1
1 (ρ0))GP1(ρ

0).

Because GP1(ρ
0) denotes the Gaussian process at a particular value ρ0 it follows that

GP1(ρ
0) ∼ N (0,E[utu

>
t ⊗ xtx

>
t 1{qt≤ρ0}]) and therefore,

T 1/2 vec(Π̂1(ρ
0) − Π0

1)
D
−→ (Ip1 ⊗ M−1

1 (ρ0))N (0,E[utu
>
t ⊗ xtx

>
t 1{qt≤ρ0}]),

which concludes the proof.

Lemma 6. Suppose Assumption A.1 holds. Then, under H0,

T−1Ŵ γ>
1 Ŵ γ

1

p
−→ A0

1M1(γ ∧ ρ0)A0>
1 + A0

2(M1(γ) − M1(γ ∧ ρ0))A0>
2 = CA,1(γ)

and

T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ A0
1

[
GPmat,1(γ)θ̃0

z − R1(γ ∧ ρ0; ρ0)GPmat,1(ρ
0)θ̌0

z

]

+ A0
2

[
(GPmat,1(γ) − GPmat,1(γ ∧ ρ0))θ̃0

z

− (R2(γ ∧ ρ0; ρ0) − R2(γ; ρ0))GPmat,2(ρ
0)θ̌0

z

]

= BA,1(γ)

Proof of Lemma 6. This proof is done in two parts: First, we show the asymptotic
behavior of T−1Ŵ γ>

1 Ŵ γ
1 and afterwards the asymptotic behavior of T−1/2Ŵ γ>

1 ε̃γ
1 .

Also, it will be helpful during the proofs to consider three cases: Case (a) assumes that
γ < ρ0, Case (b) that γ = ρ0 and Case (c) that γ > ρ0. There are two sub-cases within
each case:
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• In case (a) it follows that γ < ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ − ρ0 is a
fixed strictly negative number by construction. This implies two sub-cases: (a.1) with
γ < ρ̂ ≤ ρ0 and (a.2) with γ < ρ0 < ρ̂.

• In case (b) there are two sub-cases: (b.1) with γ = ρ0 ≤ ρ̂ and (b.2) with ρ̂ < γ = ρ0

• In case (c) it follows that γ > ρ̂ because ρ̂ = ρ0 + op(1) by Lemma 2 and γ − ρ0 is a
fixed strictly positive number by construction. This implies two sub-cases: (c.1) with
ρ̂ ≤ ρ0 < γ and (c.2) with ρ0 < ρ̂ < γ.

Claim (i). Starting with case (a), because γ < ρ̂ for both possible sub-cases, it holds
uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = Â1(T
−1Xγ>

1 Xγ
1 )Â>

1

= A0
1(T

−1Xγ>
1 Xγ

1 )A0>
1 + op(1)

p
−→ A0

1M1(γ)A0>
1 (B.50)

by Lemma 2.
In case (b), we first consider sub-case (b.1). Because γ ≤ ρ̂, it holds uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = Â1(T
−1Xγ>

1 Xγ
1 )Â>

1

= A0
1(T

−1Xγ>
1 Xγ

1 )A0>
1 + op(1)

p
−→ A0

1M1(γ)A0>
1 (B.51)

by Lemma 2. In sub-case (b.2) it follows that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 + T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T
−1X ρ̂>

1 X ρ̂
1 )Â>

1 + Â2(T
−1Xρ0>

1 Xρ0

1 − T−1X ρ̂>
1 X ρ̂

1 )Â>
2 , (B.52)

because ρ̂ < γ = ρ0. By Lemma 5 we have that ρ̂ = ρ0 + Op(T
−1) and therefore,

T−1X ρ̂>
1 X ρ̂

1 = T−1

T∑

t=1

xtx
>
t 1{qt≤ρ̂}

= T−1

T∑

t=1

xtx
>
t 1{qt≤ρ0} + T−1

T∑

t=1

xtx
>
t (1{qt≤ρ̂} − 1{qt≤ρ0})

= T−1Xρ0>
1 Xρ0

1 + Op(T
−1)

= T−1Xρ0>
1 Xρ0

1 + op(1). (B.53)

So, (B.52), (B.53) and Lemma 2 imply, uniformly in γ,

T−1Ŵ γ>
1 Ŵ γ

1

p
−→ A0

1M1(ρ
0)A0>

1 = A0
1M1(γ)A0>

1 . (B.54)
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Last, we consider case (c). In sub-case (c.1) we have uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ̂>
1 Ŵ ρ̂

1 + T−1(Ŵ ρ0>
1 Ŵ ρ0

1 − Ŵ ρ̂>
1 Ŵ ρ̂

1 )

+ T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ ρ0>
1 Ŵ ρ0

1 )

= Â1(T
−1X ρ̂>

1 X ρ̂
1 )Â>

1 + Â2(T
−1Xρ0>

1 Xρ0

1 − T−1X ρ̂>
1 X ρ̂

1 )Â>
2

+ Â2(T
−1Xγ>

1 Xγ
1 − T−1Xρ0>

1 Xρ0

1 )Â>
2

p
−→ A0

1M1(ρ
0)A0>

1 + A0
2(M1(γ) − M1(ρ

0))A0>
2 (B.55)

by Lemma 2. In sub-case (c.2) it follows uniformly in γ that

T−1Ŵ γ>
1 Ŵ γ

1 = T−1Ŵ ρ0>
1 Ŵ ρ0

1 + T−1(Ŵ ρ̂>
1 Ŵ ρ̂

1 − Ŵ ρ0>
1 Ŵ ρ0

1 )

+ T−1(Ŵ γ>
1 Ŵ γ

1 − Ŵ ρ̂>
1 Ŵ ρ̂

1 )

= Â1(T
−1Xρ0>

1 Xρ0

1 )Â>
1 + Â1(T

−1X ρ̂>
1 X ρ̂

1 − T−1Xρ0>
1 Xρ0

1 )Â>
1

+ Â2(T
−1Xγ>

1 Xγ
1 − T−1X ρ̂>

1 X ρ̂
1 )Â>

2

p
−→ A0

1M1(ρ
0)A0>

1 + A0
2(M1(γ) − M1(ρ

0))A0>
2 . (B.56)

Finally, putting results (B.50), (B.51), (B.54)–(B.56) together yields the claim.

Claim (ii). To show this claim, we present a full proof for case (a). Since cases (b)
and (c) follow similar reasoning we only state the most important intermediate results
to conclude the claim.
Starting with sub-case (a.1) of (a) it holds that

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1(T
−1/2Xγ>

1 ε̃γ
1)

= Â1(T
−1/2Xγ>

1 (εγ
1 + (Zγ

1 − Ẑγ
1 )θ0

z)

= Â1

[
T−1/2Xγ>

1 (εγ
1 + (Xγ

1 Π0
1 + uγ

1 − Xγ
1 Π̂1)θ

0
z)
]

= Â1

[
T−1/2Xγ>

1 sγ
1 − (T−1Xγ>

1 Xγ
1 )T 1/2(Π̂1 − Π0

1)θ
0
z

]
, (B.57)

By Lemma 1 it follows that T−1/2Xγ>
1 sγ

1 ⇒ GPmat,1(γ)θ̃0
z uniformly in γ where vec(GPmat,1(γ)) =

GP1(γ) with GP1(γ) as in Lemma 1 and θ̃0
z = (1, θ0>

z )>. Moreover, uniformly in γ

(T−1Xγ>
1 Xγ

1 )T 1/2(Π̂1 − Π0
1)θ

0
z = (T−1Xγ>

1 Xγ
1 )(T−1X ρ̂>

1 X ρ̂
1 )−1(T−1/2X ρ̂>

1 uρ̂
1)θ

0
z

⇒ M1(γ)M−1
1 (ρ0)GPmat,1(ρ

0)θ̌0
z

Therefore, (B.57) behaves uniformly in γ as

T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ A0
1

[
GPmat,1(γ)θ̃0

z − R1(γ; ρ0)GPmat,1(ρ
0)θ̌0

z

]
. (B.58)

As in sub-case (a.1), for sub-case (a.2) it follows that

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1

[
T−1/2Xγ>

1 sγ
1 − (T−1Xγ>

1 Xγ
1 )T 1/2(Π̂1 − Π0

1)θ
0
z

]
. (B.59)
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We now have21

Π̂1 − Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ0

1 ) + op(1)

because

Π̂1 = (X ρ̂>
1 X ρ̂

1 )−1(X ρ̂>
1 Z ρ̂

1 )

= (X ρ̂>
1 X ρ̂

1 )−1(Xρ0>
1 Xρ0

1 Π0
1 + Xρ0>

1 Xρ0

1 Π0
2 − X ρ̂>

1 X ρ̂
1Π0

2 + X ρ̂>
1 uρ̂

1)

= Π0
1 + (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ0

1 ) + op(1) (B.60)

by Lemma 5. So, putting (B.59) and (B.60) together yields uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ A0
1

[
GPmat,1(γ)θ̃0

z − R1(γ; ρ0)GPmat,1(ρ
0)θ̌0

z

]
. (B.61)

For case (b), sub-case (b.1), it follows, as for sub-case (a.2), uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1

[
T−1/2Xγ>

1 sγ
1 − (T−1Xγ>

1 Xγ
1 )T 1/2(Π̂1 − Π0

1)θ
0
z

]

with
Π̂1 − Π0

1 = (Xρ0>
1 Xρ0

1 )−1(Xρ0>
1 uρ0

1 ) + op(1).

So, as for sub-case (a.2), uniformly in γ

T−1/2Ŵ γ>
1 ε̃γ

1 ⇒ A0
1

[
GPmat,1(γ)θ̃0

z − R1(γ; ρ0)GPmat,1(ρ
0)θ̌0

z

]
, (B.62)

where R1(γ; ρ0) = Iq whenever γ = ρ0.
For sub-case (b.2) it holds uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1

[
T−1/2X ρ̂>

1 sρ̂
1 − (T−1X ρ̂>

1 X ρ̂
1 )T 1/2(Π̂1 − Π0

1)θ
0
z

]

+ Â2

[
T−1/2(Xρ0>

1 sρ0

1 − X ρ̂>
1 sρ̂

1) − T−1(Xρ0>
1 Xρ0

1 − X ρ̂>
1 X ρ̂

1 )T 1/2(Π̂2 − Π0
2)θ

0
z

]

⇒ A0
1

[
GPmat,1(γ)θ̃0

z − GPmat,1(γ)θ̌0
z

]
(B.63)

by Lemmata 1, 2 and Equation (B.53).

21Note that in sub-case (a.1) we could also write Π̂1−Π0
1 = (Xρ0>

1 Xρ0

1 )−1(Xρ0>
1 uρ0

1 )+op(1). However,
the composition of the op(1)-term is different in both cases, as illustrated in (B.60). E.g. in (B.60)

also Xρ0>
1 Xρ0

1 Π0
2 − X ρ̂>

1 X ρ̂
1Π0

2 is included in the op(1)-term, whereas in (a.1) this term completely
vanishes already in samples (rather than only asymptotically) because of the relative locations of γ,
ρ0 and ρ̂.
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Last, we show the claim for case (c). In sub-case (c.1) it holds uniformly in γ that

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1

[
T−1/2X ρ̂>

1 sρ̂
1 − (T−1X ρ̂>

1 X ρ̂
1 )T 1/2(Π̂1 − Π0

1)θ
0
z

]

+ Â2

[
T−1/2(Xρ0>

1 sρ0

1 − X ρ̂>
1 sρ̂

1) − T−1(Xρ0>
1 Xρ0

1 − X ρ̂>
1 X ρ̂

1 )T 1/2(Π̂2 − Π0
2)θ

0
z

]

+ Â2

[
T−1/2(Xγ>

1 sγ
1 − Xρ0>

1 sρ0

1 ) − T−1(Xγ>
1 Xγ

1 − Xρ0>
1 Xρ0

1 )T 1/2(Π̂2 − Π0
2)θ

0
z

]

⇒ A0
1

[
GPmat,1(ρ

0)θ̃0
z − GPmat,1(ρ

0)θ̌0
z

]

+ A0
2

[
GPmat,1(γ)θ̃0

z − GPmat,1(ρ
0)θ̃0

z − (Iq − R2(γ; ρ0))GPmat,2(ρ
0)θ̌0

z

]
,

(B.64)

where the middle term drops because T−1/2(Xρ0>
1 sρ0

1 −X ρ̂>
1 sρ̂

1) = op(1), T−1(Xρ0>
1 Xρ0

1 −
X ρ̂>

1 X ρ̂
1 ) = op(1) and T 1/2(Π̂2 − Π0

2) = Op(1) by Lemma 5.
Last, sub-case (c.2) yields uniformly in γ

T−1/2Ŵ γ>
1 ε̃γ

1 = Â1

[
T−1/2Xρ0>

1 sρ0

1 − (T−1Xρ0>
1 Xρ0

1 )T 1/2(Π̂1 − Π0
1)θ

0
z

]

+ Â1

[
T−1/2(X ρ̂>

1 sρ̂
1 − Xρ0>

1 sρ0

1 ) − T−1(X ρ̂>
1 X ρ̂

1 − Xρ0>
1 Xρ0

1 )T 1/2(Π̂2 − Π0
2)θ

0
z

]

+ Â2

[
T−1/2(Xγ>

1 sγ
1 − X ρ̂>

1 sρ̂
1) − T−1(Xγ>

1 Xγ
1 − X ρ̂>

1 X ρ̂
1 )T 1/2(Π̂2 − Π0

2)θ
0
z

]

⇒ A0
1

[
GPmat,1(ρ

0)θ̃0
z − GPmat,1(ρ

0)θ̌0
z

]

+ A0
2

[
GPmat,1(γ)θ̃0

z − GPmat,1(ρ
0)θ̃0

z − (Iq − R2(γ; ρ0))GPmat,2(ρ
0)θ̌0

z

]
,

(B.65)

where the middle term drops because T−1/2(X ρ̂>
1 sρ̂

1 − Xρ0>
1 sρ0

1 ) = op(1), T−1(X ρ̂>
1 X ρ̂

1 −
Xρ0>

1 Xρ0

1 ) = op(1) and T 1/2(Π̂2 − Π0
2) = Op(1) by Lemma 5.

Finally, putting (B.58), (B.61)–(B.65) together immediately yields the claim.

Lemma 7. Suppose Assumption A.1 holds and define θ̂γ = vec(θ̂γ
1 , θ̂

γ
2 ), and θ̄0 =

vec(θ0, θ0). Then, under H0 and for a fixed γ,

T 1/2(θ̂γ − θ̄0) ⇒ N (0, Σγ
A)

with

Σγ
A =

[
VA,1(γ) VA,12(γ)
V >

A,12(γ) VA,2(γ)

]

where VA,1(γ), VA,2(γ) and VA,12(γ) are defined in Definition A.3.

Proof of Lemma 7. First, we define the following quantities

W̄ =

[
Ŵ γ

1 0

0 Ŵ γ
2

]

, Ȳ =

[
Y γ

1

Y γ
2

]

, θ̂γ =

[
θ̂γ
1

θ̂γ
2

]

.
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With this notation, the 2SLS estimator is

θ̂γ = (W̄>W̄ )−1W̄>Ȳ

= θ̄0 + (W̄>W̄ )−1W̄>ˉ̃ε

where the last equality follows from Equation (A.20) in our paper and

ˉ̃ε =

[
ε̃γ
1

ε̃γ
2

]

=

[
εγ
1 + (Z − Ẑ)γ

1θ
0
z

εγ
2 + (Z − Ẑ)γ

2θ
0
z

]

.

Hence, by Lemma 6 it immediately follows that

T 1/2(θ̂γ − θ̄0) ⇒

[
C−1

A,1(γ)BA,1(γ)
C−1

A,2(γ)BA,2(γ)

]

∼ N (0, Σγ
A).

for fixed γ. Thus, we are left to derive Σγ
A. Start with VA,1(γ):

Var[BA,1(γ)] = Var[A0
1GPmat,1(γ)θ̃0

z − A0
1M1(γ)M−1

1 (ρ0)GPmat,1(ρ
0)θ̌0

z ]

= Var[(θ̃0>
z ⊗ A0

1)GP1(γ)] + Var[(θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP1(ρ

0)]

− Cov[(θ̃0>
z ⊗ A0

1)GP1(γ), (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP1(ρ

0)]

− Cov[(θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])GP1(ρ

0), (θ̃0>
z ⊗ A0

1)GP1(γ)]

= (θ̃0>
z ⊗ A0

1)E[(vtv
>
t ⊗ xtx

>
t )1{qt≤γ}](θ̃

0
z ⊗ A0>

1 )

+ (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])E[(vtv

>
t ⊗ xtx

>
t )1{qt≤ρ0}](θ̌

0
z ⊗ [M−1

1 (ρ0)M1(γ)A0>
1 ])

− (θ̃0>
z ⊗ A0

1)E[(vtv
>
t ⊗ xtx

>
t )1{qt≤γ}](θ̌

0
z ⊗ [M−1

1 (ρ0)M1(γ)A0>
1 ])

− (θ̌0>
z ⊗ [A0

1M1(γ)M−1
1 (ρ0)])E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}](θ̃

0
z ⊗ A0>

1 )

= A0
1E[xtx

>
t (εt + u>

t θ0
z)

21{qt≤γ}]A
0>
1

+ A0
1M1(γ)M−1

1 (ρ0)E[xtx
>
t (u>

t θ0
z)

21{qt≤ρ0}]M
−1
1 (ρ0)M1(γ)A0>

1

− A0
1E[xtx

>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt≤γ}]M
−1
1 (ρ0)M1(γ)A0>

1

− A0
1M1(γ)M−1

1 (ρ0)E[xtx
>
t (εtu

>
t θ0

z + θ0>
z utu

>
t θ0

z)1{qt≤γ}]A
0>
1

= A0
1 [H1(γ) + R1(γ; ρ0)Hu

1 (ρ0)R>
1 (γ; ρ0) − R1(γ; ρ0)(Hε,u

1 (γ) + Hu
1 (γ))

− (Hε,u
1 (γ) + Hu

1 (γ))R>
1 (γ; ρ0)] A0>

1 (B.66)

which yields the claim for γ ≤ ρ0 when pre- and post-multiplied with C−1
A,1(γ).

Next, we consider Var[BA,2(γ)]. First, note that

Var[BA,2(γ)] = Var[BA] + Var[BA,1(γ)] − Cov[BA,BA,1(γ)] − Cov[BA,1(γ),BA] (B.67)

where Var[BA,1(γ)] was already derived in Equation (B.66), and BA = BA(γmax) =
A0

1GPmat,1(ρ
0)e1+A0

2GPmat,2(ρ
0)e1 was defined right before Theorem 3 and e1 = θ̃0

z−θ̌0
z =

(1, 0, . . . , 0)>. Because

Var[BA] = Var[A0
1GPmat,1(ρ

0)e1] + Var[A0
2GPmat,2(ρ

0)e1] (B.68)
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where we used the fact that Cov[GP1(ρ
0),GP2(ρ

0)] = E[GP1(ρ
0)GP>

2 (ρ0)] = E[GP1(ρ
0)GP>

1 ]−
E[GP1(ρ

0)GP>
1 (ρ0)] = 0. Equation (B.68) thus reads as

Var[BA] = (e>1 ⊗ A0
1)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤ρ0}](e1 ⊗ A0>

1 )

+ (e>1 ⊗ A0
2)E[(vtv

>
t ⊗ xtx

>
t )1{qt>ρ0}](e1 ⊗ A0>

2 )

= A0
1E[xtx

>
t ε2

t1{qt≤ρ0}]A
0>
1 + A0

2E[xtx
>
t ε2

t1{qt>ρ0}]A
0>
2

= A0
1H

ε
1(ρ

0)A0>
1 + A0

2H
ε
2(ρ

0)A0>
2 . (B.69)

From (B.67), we still need to derive Cov[BA,BA,1(γ)]:

Cov[BA,BA,1(γ)] = Cov[A0
1GPmat,1(ρ

0)e1 + A0
2GPmat,2(ρ

0)e1,

A0
1GPmat,1(γ)θ̃0

z − A0
1M1(γ)M−1

1 (ρ0)GPmat,1(ρ
0)θ̌0

z ]

= Cov[A0
1GPmat,1(ρ

0)e1, A
0
1GPmat,1(γ)θ̃0

z ]

− Cov[A0
1GPmat,1(ρ

0)e1, A
0
1M1(γ)M−1

1 (ρ0)GPmat,1(ρ
0)θ̌0

z ] (B.70)

where the last equality holds since γ ≤ ρ0 implies that Cov[GP1(γ),GP2(ρ
0)] =

Cov[GP1(ρ
0),GP2(ρ

0)] = 0. Thus, equation (B.70) can then be stated as

Cov[BA,BA,1(γ)] = (e>1 ⊗ A0
1)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤γ}](θ̃

0
z ⊗ A0>

1 )

− (e>1 ⊗ A0
1)E[(vtv

>
t ⊗ xtx

>
t )1{qt≤ρ0}](θ̌

0
z ⊗ M−1

1 (ρ0)M1(γ)A0>
1 )

= A0
1E[xtx

>
t (ε2

t + εtu
>
t θ0

z)1{qt≤γ}]A
0>
1

− A0
1E[xtx

>
t (εtu

>
t θ0

z)1{qt≤ρ0}]M
−1
1 (ρ0)M1(γ)A0>

1

= A0
1 [Hε

1(γ) + Hε,u
1 (γ) − Hε,u

1 (ρ0)R>
1 (γ; ρ0)] A0>

1 . (B.71)

Note that Cov[BA,1(γ),BA] = Cov[BA,BA,1(γ)]>. Hence, putting (B.66), (B.67), (B.69)
and (B.71) together yields

Var[BA,2(γ)] = A0
1H

ε
1(ρ

0)A0>
1 + A0

2H
ε
2(ρ

0)A0>
2

+ A0
1 [H1(γ) + R1(γ; ρ0)Hu

1 (ρ0)R>
1 (γ; ρ0) − R1(γ; ρ0)(Hε,u

1 (γ) + Hu
1 (γ))

− (Hε,u
1 (γ) + Hu

1 (γ))R>
1 (γ; ρ0)] A0>

1

− A0
1 [Hε

1(γ) + Hε,u
1 (γ) − Hε,u

1 (ρ0)R>
1 (γ; ρ0)] A0>

1

− A0
1 [Hε

1(γ) + Hε,u
1 (γ) − R1(γ; ρ0)Hε,u

1 (ρ0)] A0>
1

= A0
2 Hε

2(ρ
0) A0>

2

+ A0
1 [Hε

1(ρ
0) + H1(γ) − 2Hε,u

1 (γ) − 2Hε
1(γ)

+ R1(γ; ρ0)Hu
1 (ρ0)R>

1 (γ; ρ0)

+ R1(γ; ρ0)[−Hε,u
1 (γ) − Hu

1 (γ) + Hε,u
1 (ρ0)]

+ [−Hε,u
1 (γ) − Hu

1 (γ) + Hε,u
1 (ρ0)]R>

1 (γ; ρ0)] A0>

1

= A0
2 Hε

2(ρ
0) A0>

2

+ A0
1 [Hε

1(ρ
0) − Hε

1(γ) + Hu
1 (γ)
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+ R1(γ; ρ0)Hu
1 (ρ0)R>

1 (γ; ρ0)

+ R1(γ; ρ0)[Hε,u
1 (ρ0) − Hε,u

1 (γ) − Hu
1 (γ)]

+ [Hε,u
1 (ρ0) − Hε,u

1 (γ) − Hu
1 (γ)]R>

1 (γ; ρ0)] A0>
1 .

Pre- and post-multiplication with C−1
A,2(γ) then yields the claim when γ ≤ ρ0. Finally,

we derive an expression for:

Cov[BA,1(γ),BA,2(γ)] = Cov[BA,1(γ),BA] − Cov[BA,1(γ),BA,1(γ)].

Using results (B.71) and (B.66) immediately yields:

Cov(BA,1(γ),BA,2(γ)) = Cov(BA,1(γ),BA) − Cov(BA,1(γ),BA,1(γ))

= A0
1

[
Hε

1(γ) + Hε,u
1 (γ) − R1(γ; ρ0)Hε,u

1 (γ)
]
A0>

1

− A0
1

[
H1(γ) + R1(γ; ρ0)Hu

1 (ρ0)R>
1 (γ; ρ0) − R1(γ; ρ0)[Hε,u

1 (γ) + Hu
1 (γ)]

− [Hε,u
1 (γ) + Hu

1 (γ)]R>
1 (γ; ρ0)]

]
A0>

1

= A0
1

[
Hε

1(γ) + Hε,u
1 (γ) − H1(γ) − R1(γ; ρ0)[Hε,u

1 (ρ0) − Hε,u
1 (γ) − Hu

1 (γ)]

− R1(γ; ρ0)[Hu
1 (ρ0)R>

1 (γ; ρ0) + [Hε,u
1 (γ) + Hu

1 (γ)]R>
1 (γ; ρ0)]

]
A0>

1

= A0
1

[
− Hε,u

1 (γ) − Hu
1 (γ) − R1(γ; ρ0)[Hε,u

1 (ρ0) − Hε,u
1 (γ) − Hu

1 (γ)]

− R1(γ; ρ0)[Hu
1 (ρ0)R>

1 (γ; ρ0) + [Hε,u
1 (γ) + Hu

1 (γ)]R>
1 (γ; ρ0)]

]
A0>

1

= −A0
1

[
Hε,u

1 (γ) + Hu
1 (γ) + R1(γ; ρ0)[Hε,u

1 (ρ0) − Hε,u
1 (γ) − Hu

1 (γ)]

+ R1(γ; ρ0)[Hu
1 (ρ0)R>

1 (γ; ρ0) − [Hε,u
1 (γ) + Hu

1 (γ)]R>
1 (γ; ρ0)]

]
A0>

1

Pre-, respectively post-multiplication with C−1
A,1(γ), respectively C−1

A,2(γ) yields the

claim for Cov(θ̂γ
1 , θ̂

γ
2 ) when γ ≤ ρ0.

The case γ > ρ0 is derived in a similar fashion and thus omitted for brevity.

Lemma 8. Suppose Assumption A.1 holds. Then, under H0 and uniformly in γ and for
i = 1, 2,

(i) Ĥε
i (γ)

p
−→ Hε

i (γ) (ii) Ĥε,u
i (γ)

p
−→ Hε,u

i (γ)

(iii) Ĥu
i (γ)

p
−→ Hu

i (γ) (iv) Ĥi(γ)
p
−→ Hi(γ)

Proof. Claim (i): Let Ã be the one of the two matrices A0
1 and A0

2 with larger Frobenius-
norm. Then

‖wt‖2 = ‖A0
1xt1{qt≤ρ0} + A0

2xt1{qt>ρ0} + ūt‖2

≤ ‖A0
1‖F‖xt‖21{qt≤ρ0} + ‖A0

2‖F‖xt‖21{qt>ρ0} + ‖ut‖2

≤ ‖Ã‖F‖xt‖2 + ‖ut‖2
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Using this expression along the lines of the proof of Lemma 4 then yields the claim.

To show Claims (ii)–(iv), we consider the three cases, and their sub-cases, of Lemma 6
again.
Claim (ii): Case a: In both sub-cases we obtain

T−1
∑

T1(γ)

xtx
>
t (ε̂tû

>
t θ̂z) = T−1

∑

T1(γ)

xtx
>
t (ε̂t[(Π

0
1 − Π̂1)

>xt + ut]
>θ̂z)

p
−→ Hε,u

1 (γ)

where convergence follows along the same lines as in the proof of Lemma 4.

Case b: In sub-case b.1 it holds, as for Case a, that

T−1
∑

T1(γ)

xtx
>
t (ε̂tû

>
t θ̂z) = T−1

∑

T1(γ)

xtx
>
t ([ε̂t(Π

0
1 − Π̂1)

>xt + ut]
>θ̂z)

p
−→ Hε,u

1 (γ).

In sub-case b.2 it follows that

T−1
∑

T1(γ)

xtx
>
t (ε̂tû

>
t θ̂z) = T−1

∑

T1(ρ̂)

xtx
>
t (ε̂tû

>
t θ̂z) + T−1

∑

T1(γ)\T1(ρ̂)

xtx
>
t (ε̂tû

>
t θ̂z)

= T−1
∑

T1(ρ̂)

xtx
>
t (ε̂t[(Π

0
1 − Π̂1)

>xt + ut]
>θ̂z)

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t (ε̂t[(Π

0
1 − Π̂2)

>xt + ut]
>θ̂z)

p
−→ Hε,u

1 (γ),

where the second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅.

Case c: In sub-case c.1 it holds that

T−1
∑

T1(γ)

xtx
>
t (ε̂tû

>
t θ̂z) = T−1

∑

T1(ρ̂)

xtx
>
t (ε̂tû

>
t θ̂z) + T−1

∑

T1(ρ0)\T1(ρ̂)

xtx
>
t (ε̂tû

>
t θ̂z)

+ T−1
∑

T1(γ)\T1(ρ0)

xtx
>
t (ε̂tû

>
t θ̂z)

= T−1
∑

T1(ρ̂)

xtx
>
t (ε̂t[(Π

0
1 − Π̂1)

>xt + ut]
>θ̂z)

+ T−1
∑

T1(ρ0)\T1(ρ̂)

xtx
>
t (ε̂t[(Π

0
1 − Π̂2)

>xt + ut]
>θ̂z)

+ T−1
∑

T1(γ)\T1(ρ0)

xtx
>
t (ε̂t[(Π

0
2 − Π̂2)

>xt + ut]
>θ̂z)

p
−→ Hε,u

1 (ρ0) + Hε,u
1 (γ) − Hε,u

1 (ρ0) = Hε,u
1 (γ),
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where the first and third term converge by similar arguments as in the proof of Lemma
4. The second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅ (this notation means that the number of elements

in the set T1(ρ
0) \ T1(ρ̂) is negligible in the limit as T → ∞).

For sub-case c.2 it holds that

T−1
∑

T1(γ)

xtx
>
t (ε̂tû

>
t θ̂z) = T−1

∑

T1(ρ0)

xtx
>
t (ε̂tû

>
t θ̂z) + T−1

∑

T1(ρ̂)\T1(ρ0)

xtx
>
t (ε̂tû

>
t θ̂z)

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t (ε̂tû

>
t θ̂z)

= T−1
∑

T1(ρ0)

xtx
>
t (ε̂t[(Π

0
1 − Π̂1)

>xt + ut]
>θ̂z)

+ T−1
∑

T1(ρ̂)\T1(ρ0)

xtx
>
t (ε̂t[(Π

0
2 − Π̂1)

>xt + ut]
>θ̂z)

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t (ε̂t[(Π

0
2 − Π̂2)

>xt + ut]
>θ̂z)

p
−→ Hε,u

1 (ρ0) + Hε,u
1 (γ) − Hε,u

1 (ρ0) = Hε,u
1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma
4. The second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅.

Claim (iii): Case a: In both sub-cases we obtain

T−1
∑

T1(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

T1(γ)

xtx
>
t ([(Π0

1 − Π̂1)
>xt + ut]

>θ̂z)
2

p
−→ Hu

1 (γ)

where convergence follows along the same lines as in the proof of Lemma 4.

Case b: In sub-case b.1 it also holds, as before, that

T−1
∑

T1(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

T1(γ)

xtx
>
t ([(Π0

1 − Π̂1)
>xt + ut]

>θ̂z)
2

p
−→ Hu

1 (γ).
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In sub-case b.2 it follows that

T−1
∑

T1(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

T1(ρ̂)

xtx
>
t (û>

t θ̂z)
2 + T−1

∑

T1(γ)\T1(ρ̂)

xtx
>
t (û>

t θ̂z)
2

= T−1
∑

T1(ρ̂)

xtx
>
t ([(Π0

1 − Π̂1)
>xt + ut]

>θ̂z)
2

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t ([(Π0

1 − Π̂2)
>xt + ut]

>θ̂z)
2

p
−→ Hu

1 (γ),

where the second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅.

Case c: In sub-case c.1 it holds that

T−1
∑

T1(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

T1(ρ̂)

xtx
>
t (û>

t θ̂z)
2 + T−1

∑

T1(ρ0)\T1(ρ̂)

xtx
>
t (û>

t θ̂z)
2

+ T−1
∑

T1(γ)\T1(ρ0)

xtx
>
t (û>

t θ̂z)
2

= T−1
∑

T1(ρ̂)

xtx
>
t ([(Π0

1 − Π̂1)
>xt + ut]

>θ̂z)
2

+ T−1
∑

T1(ρ0)\T1(ρ̂)

xtx
>
t ([(Π0

1 − Π̂2)
>xt + ut]

>θ̂z)
2

+ T−1
∑

T1(γ)\T1(ρ0)

xtx
>
t ([(Π0

2 − Π̂2)
>xt + ut]

>θ̂z)
2

p
−→ Hu

1 (ρ0) + Hu
1 (γ) − Hu

1 (ρ0) = Hu
1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma
4. The second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅.

For sub-case c.2 it holds that

T−1
∑

T1(γ)

xtx
>
t (û>

t θ̂z)
2 = T−1

∑

T1(ρ0)

xtx
>
t (û>

t θ̂z)
2 + T−1

∑

T1(ρ̂)\T1(ρ0)

xtx
>
t (û>

t θ̂z)
2

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t (û>

t θ̂z)
2

= T−1
∑

T1(ρ0)

xtx
>
t ([(Π0

1 − Π̂1)
>xt + ut]

>θ̂z)
2

+ T−1
∑

T1(ρ̂)\T1(ρ0)

xtx
>
t ([(Π0

2 − Π̂1)
>xt + ut]

>θ̂z)
2

+ T−1
∑

T1(γ)\T1(ρ̂)

xtx
>
t ([(Π0

2 − Π̂2)
>xt + ut]

>θ̂z)
2
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p
−→ Hu

1 (ρ0) + Hu
1 (γ) − Hu

1 (ρ0) = Hu
1 (γ),

where the first and third term converge by similar arguments as in the proof of Lemma
4. The second term converges to 0 in probability since the sum is of order Op(1) and

ρ̂
p
−→ ρ0 implying T1(ρ

0) \ T1(ρ̂)
p
−→ ∅.

Claim (iv): As in Lemma 4.

For i = 2, the proof follows similar steps and omitted for brevity.

Proof of Theorem 3.

(i) sup LR Test: The proof of this result follows the same arguments as in the LRF case.
For brevity, we will only display the major differences to the LRF case. As in the LRF
case, we split the proof into two parts: in part (i) we will show that T−1SSR1(γ)

p
−→ σ2

and in part (ii) that SSR0 − SSR1(γ) ⇒ E>
A (γ)CA,2(γ)C−1

A CA,1(γ)E(γ).
Part (i). As in the LRF proof (cf. equation (B.26)) it holds uniformly in γ that

T−1SSR1(γ) = T−1[Y γ
1 − Ŵ γ

1 θ̂γ
1 ]>[Y γ

1 − Ŵ γ
1 θ̂γ

1 ]

+ T−1[Y γ
2 − Ŵ γ

2 θ̂γ
2 ]>[Y γ

2 − Ŵ γ
2 θ̂γ

2 ]

= T−1[Ŵ γ
1 (θ0 − θ̂γ

1 ) + ε̃γ
1 ]

>[Ŵ γ
1 (θ0 − θ̂γ

1 ) + ε̃γ
1 ]

+ T−1[Ŵ γ
2 (θ0 − θ̂γ

2 ) + ε̃γ
2 ]

>[Ŵ γ
2 (θ0 − θ̂γ

2 ) + ε̃γ
2 ]

= T−1ε̃>ε̃

+ 2(T−1ε̃γ
1Ŵ

γ
1 )(θ0 − θ̂γ

1 ) + (θ0 − θ̂γ
1 )>(T−1Ŵ γ>

1 Ŵ γ
1 )(θ0 − θ̂γ

1 )

+ 2(T−1ε̃γ
2Ŵ

γ
2 )(θ0 − θ̂γ

2 ) + (θ0 − θ̂γ
2 )>(T−1Ŵ γ>

2 Ŵ γ
2 )(θ0 − θ̂γ

2 )

= T−1ε̃>ε̃ + op(1), (B.72)

where the last equality holds because, for i = 1, 2, T−1Ŵ γ>
i ε̃γ

i = op(1), T−1Ŵ γ>
i Ŵ γ

i =

Op(1) and θ0 − θ̂γ
i = (T−1Ŵ γ>

i Ŵ γ
i )−1(T−1Ŵ γ>

i ε̃γ
i ) = Op(1)op(1) = op(1) uniformly in γ

by Lemma 3.
Next, rewrite (B.72) as

T−1SSR1(γ) = T−1ε̃ρ0>
1 ε̃ρ0

1 + T−1ε̃ρ0>
2 ε̃ρ0

2 + op(1). (B.73)

By construction

ε̃ρ0

1 = ερ0

1 + (Zρ0

1 − Ẑρ0

1 )θ0
z

and thus

ε̃ρ0

1 =

{
sρ0

1 + Xρ0

1 (Π0
1 − Π̂1) if ρ0 ≤ ρ̂

sρ0

1 + Xρ0

1 (Π0
1 − Π̂1) + op(1) if ρ0 > ρ̂
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where sρ0

1 = ερ0

1 + uρ0

1 θ0
z . It can be shown that:

T−1ε̃ρ0>
1 ε̃ρ0

1 = T−1sρ0>
1 sρ0

1 + 2(T−1sρ0>
1 Xρ0

1 )(Π0
1 − Π̂1)

+ (Π0
1 − Π̂1)

>(T−1Xρ0>
1 Xρ0

1 )(Π0
1 − Π̂1)

= T−1sρ0>
1 sρ0

1 + op(1)

because T−1sρ0>
1 Xρ0

1 = op(1) and T−1Xρ0>
1 Xρ0

1 = Op(1) and Π0
1 − Π̂1 = op(1) by Lemma

3.
Similarly, we obtain

T−1ε̃ρ0>
2 ε̃ρ0

2 = T−1sρ0>
2 sρ0

2 + op(1).

Therefore, (B.73) reads as

T−1SSR1(γ) = T−1sρ0>
1 sρ0

1 + T−1sρ0>
2 sρ0

2 + op(1)

= T−1s>s + op(1)
p
−→ σ2

ε + 2Σ>
ε,uθ

0
z + θ0>

z Σuθ
0
z ≡ σ2,

uniformly in γ, proving part (i).

Part (ii). For this part, derivations remain as in the LRF case (up to equation
(B.21)). Utilizing Lemma 4, expressions (B.30) and (B.31) in the LRF proof become

T−1Ŵ γ>
i Ŵ γ

i

p
−→ CA,i(γ)

and
β̂ = DA,1(γ)β̂1 + DA,2(γ)β̂2 + op(1)

by Lemma 3 with DA,1(γ) ≡ C−1
A CA,1(γ) and therefore, DA,2(γ) = C−1

A CA,2(γ) = Ip −
DA,1(γ). Consequently, equations (B.30)–(B.32a) in the LRF proof are adjusted in this
fashion as well. The following derivations then remain the same.
Last, equation (B.36) from the LRF case now reads as 22

β̂1 − β̂2 = C−1
A,1(γ)BA,1(γ) − C−1

A,2(γ)BA,2(γ) ≡ EA(γ).

Thus, as in the LRF case, it follows that

SSR0 − SSR1(γ) = (β̂1 − β̂2)
>CA,2(γ)DA,1(γ)(β̂1 − β̂2) + op(1)

⇒ E>
A (γ)CA,2(γ)DA,1(γ)EA(γ)

uniformly in γ. Together with Part (i), (a.s.) continuity of the process EA(γ), the
continuous mapping theorem and weak convergence (uniformly in γ) it then follows that

sup
γ∈Γ

SSR0 − SSR1(γ)

SSR1(γ)/T
⇒ sup

γ∈Γ

E>
A (γ)CA,2(γ)C−1

A CA,1(γ)EA(γ)

σ2

proving the claim of the theorem.

22A0 is replaced with A0
i , i = 1, 2, absorbed in the definition of BA,1(γ).
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(ii) sup Wald Test: The proof follows the exact same arguments as the proof of The-
orem 2 by replacing the LRF quantities with the according TRF quantities.

To write down Corollary A2 to Theorem 3 below, which derives the asymptotic dis-
tributions of the 2SLS tests under conditional homoskedasticity, we define the Gaussian
processes

ẼA(γ) = C−1
A,1(γ)B̃A,1(γ) − C−1

A,2(γ)B̃A,2(γ)

and

B̃A,1(γ) = A0
1

[
G̃Pmat,1(γ ∧ ρ0)Σ1/2θ̃0

z − R1(γ ∧ ρ0; ρ0)G̃Pmat,1(ρ
0)Σ1/2θ̌0

z

]

+ A0
2

[
G̃Pmat,1(γ)Σ1/2θ̃0

z − G̃Pmat,1(γ ∧ ρ0)Σ1/2θ̃0
z

]

− A0
2

[
(R2(γ ∧ ρ0; ρ0) − R2(γ; ρ0))G̃Pmat,2(ρ

0)Σ1/2θ̌0
z

]

B̃A,2(γ) = B̃A(γmax) − B̃A,1(γ),

and G̃Pmat,1(γ) is a q × (p1 + 1) matrix where all columns are independent q × 1 zero
mean Gaussian processes with covariance kernel M1(γ).23 Then we have:

Corollary A 2 (to Theorem 3). Let Z be generated by (2.2), Y be generated by (2.3),
and Ẑ be calculated by (3.5).Then, under H0, and Assumptions A.1, A.2 and A.4,
(i)

sup
γ∈Γ

LR2SLS
T,TRF (γ) ⇒ sup

γ∈Γ
Ẽ>

A (γ)Q−1
A (γ)ẼA(γ),

(ii)
sup
γ∈Γ

W 2SLS
T,TRF (γ) ⇒ sup

γ∈Γ
Ẽ>

A (γ)Ṽ −1
A (γ)ẼA(γ).

where ṼA(γ) = ṼA,1(γ) + ṼA,2(γ) − ṼA,12(γ) − Ṽ >
A,12(γ) and:

ṼA,1(γ) = C−1
A,1(γ)

[
σ2CA,1(γ) − (σ2 − σ2

ε )A
0
1R1(γ; ρ0)M1(γ)A0>

1

]
C−1

A,1(γ)

ṼA,2(γ) = C−1
A,2(γ)

[
σ2

ε CA,2(γ) + (σ2 − σ2
ε )(CA,1(γ) − A0

1R1(γ; ρ0)M1(γ)A0>
1 )
]
C−1

A,2(γ)

ṼA,12(γ) = −(σ2 − σ2
ε )C

−1
A,1(γ)

[
CA,1(γ) − A0

1R1(γ; ρ0)M1(γ)A0>
1

]
C−1

A,2(γ)

whenever γ ≤ ρ0. If γ > ρ0, then

ṼA,1(γ) = C−1
A,1(γ)

[
σ2

ε CA,1(γ) + (σ2 − σ2
ε )(CA,2(γ) − A0

2R2(γ; ρ0)M2(γ)A0>
2 )
]
C−1

A,1(γ)

ṼA,2(γ) = C−1
A,2(γ)

[
σ2CA,2(γ) − (σ2 − σ2

ε )A
0
2R2(γ; ρ0)M2(γ)A0>

2

]
C−1

A,2(γ)

ṼA,12(γ) = −(σ2 − σ2
ε )C

−1
A,1(γ)

[
CA,2(γ) − A0

2R2(γ; ρ0)M2(γ)A0>
2

]
C−1

A,2(γ)

23Thus, the only difference between the two Gaussian processes G̃Pmat,1(γ) and GPmat,1(γ) lies again
in their covariance functions.
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Moreover, if the system is just-identified, i.e. if p = q, then the two test statistics are
asymptotically equivalent with asymptotic distribution given by

sup
γ∈Γ

Ẽ>
A (γ)C2(γ)C−1C1(γ)ẼA(γ)

σ2
.

Proof of Corollary A2: The proof follows the exact same arguments as the proof of
Corollary A1. Note that when p = q, ẼA(γ) does not simplify to Ẽ(γ) from the LRF,
because ρ0 does not disappear from the definition of ẼA(γ).

Proofs for Section 5: GMM tests

Corollary A 3 (to Theorem 4). Let Z be generated by (2.1) and Y be generated by
(2.3).Then, under H0, Assumptions A.1, A.2 and p = q,

sup
γ∈Γ

WGMM
T (γ) ⇒ sup

γ∈Γ
J2(γ),

where

J2(γ) =
[
M−1

1 (γ)G̃P
(r1)

mat,1(γ) − M−1
2 (γ)G̃P

(r1)

mat,2(γ)
]>

× [M1(γ)M−1M2(γ)] (B.74)

×
[
M−1

1 (γ)G̃P
(r1)

mat,1(γ) − M−1
2 (γ)G̃P

(r1)

mat,2(γ)
]

(B.75)

and G̃P
(r1)

mat,i is the first row of the q × (p1 + 1) matrix G̃P
(r2)

mat,1 defined in Corollary A1.

Proof of Corollary A3. We have Hε
i (γ) = σ2

ε Mi(γ), Ni(γ) = A0Mi(γ), Vi,GMM =
σ2

ε (A
0MiA

0>)−1 = (A0>)−1M−1
i (γ)(A0)−1. The rest follows by plugging these into The-

orem 4.

Proof of Corollary 2. As for Corollary 1, we can equivalently write Prob(qt ≤ γ) = λ
for all γ ∈ Γ where λ is uniformly distributed on Λκ = (κ; 1 − κ), i.e λ ∼ U(Λκ).
Now, by Assumption A.3, we have that

Hε
1(γ) = λHε, Hε

2(γ) = (1 − λ)Hε (B.76)

N1(γ) = λN, N2(γ) = (1 − λ)N

VGMM,1(γ) = λ−1
[
NHε−1

N>
]−1

VGMM,2(γ) = (1 − λ)−1
[
NHε−1

N>
]−1

VGMM,1(γ) + VGMM,2(γ) =

[
NHε−1

N>
]−1

λ(1 − λ)
(B.77)
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VGMM,1(γ)N1(γ)Hε−1

1 (γ) = λ−1
[
NHε−1

N>
]−1

NHε−1

VGMM,2(γ)N2(γ)Hε−1

2 (γ) = (1 − λ)−1
[
NHε−1

N>
]−1

NHε−1

Moreover, (B.76) implies that –under Assumptions A.2 and A.3– the Gaussian process
GP1(γ) can be restated as

GP1(γ) = Hε1/2

BM(λ)

GP = Hε1/2

BM(1)

where BM(∙) is a q × 1-vector of independent Brownian motions on the unit interval.
Thus, the term VGMM,1(γ)N1(γ)Hε−1

1 (γ)GP1(γ) − VGMM,2(γ)N2(γ)Hε−1

2 (γ)GP2(γ) can
be restated in terms of λ: as

VGMM,1(γ)N1(γ)Hε−1

1 (γ)GP1(γ) − VGMM,2(γ)N2(γ)Hε−1

2 (γ)GP2(γ) (B.78)

λ−1
[
NHε−1

N>
]−1

NHε−1/2

BM(λ) − (1 − λ)−1
[
NHε−1

N>
]−1

NHε−1/2

(BM(1) − BM(λ)).

Because
[
NHε−1

N>
]−1

NHε−1/2
is half of a projection matrix, by similar arguments as

for the proof of Corollary 1, we obtain the desired result.

Proofs for Section 3: 2SLS versus GMM estimators

Lemma 9. Suppose Assumptions A.1–A.4 hold and that p = q = 1. Define as in
Theorem 1, λ = Prob(qt ≤ γ), μ0 = Prob(qt ≤ ρ0), α = (μ0 − λ)/(1 − λ), β = μ0/λ,
and let E(x2

t ) = m. Then, under H0:

V ∗
1,GMM (γ) =






σ2
ε

λm π02
1

if γ ≤ ρ0

σ2
ε

λm [βπ0
1+(1−β)π0

2 ]2
if γ > ρ0

V ∗
2,GMM (γ) =






σ2
ε

(1−λ)m [απ0
1+(1−α)π0

2 ]2
if γ ≤ ρ0

σ2
ε

(1−λ)m π02
2

if γ > ρ0.

Moreover,

V ∗
A,1(γ) =






σ2
ε

λm π02
1

+ σ2−σ2
ε

λm π02
1

(
1 − λ

μ0

)
if γ ≤ ρ0

σ2
ε

λm [βπ02
1 +(1−β)π02

2 ]
+

π02

2 (1−λ)(σ2−σ2
ε )

λ2m [βπ02
1 +(1−β)π02

2 ]2

(
1 − 1−λ

1−μ0

)
if γ > ρ0

V ∗
A,2(γ) =






σ2
ε

(1−λ)m [απ02
1 +(1−α)π02

2 ]
+

π02

1 λ(σ2−σ2
ε )

(1−λ)2m [απ02
1 +(1−α)π02

2 ]2

(
1 − λ

μ0

)
if γ ≤ ρ0

σ2
ε

(1−λ)m π02
2

+ σ2−σ2
ε

(1−λ)m π02
2

(
1 − 1−λ

1−μ0

)
if γ > ρ0
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Proof of Lemma 9. First, we show the claim for the GMM case and afterwards for
the 2SLS case.

GMM Variances: Let γ ≤ ρ0. Then, if Assumptions A.1–A.4 hold, it follows that
Hε

1(γ) = E[x2
t ε

2
t1{qt≤γ}] = E[1{qt≤γ}] ∙E[x2

t ]σ
2
ε = λσ2

ε m, Hε
1(γ)(γ) = E[x2

t ε
2
t1{qt>γ}] = (1−

λ)σ2
ε m, N1(γ) = E[xtzt1{qt≤γ}] = E[x2

t π
0
11{qt≤γ}] = λπ0

1m, and N2(γ) = E[xtzt1{qt>γ}] =
E[x2

t π
0
1(1{qt≤ρ0} − 1{qt≤γ})] + E[x2

t π
0
21{qt>ρ0}] = (μ0 − λ)π0

1m + (1 − μ0)π0
2m. Plugging

these results into the expressions for Vi,GMM (γ) defined just before Theorem 4 directly
yields the claim. The case γ > ρ0 is omitted for brevity but follows similar arguments.

2SLS Variances: Let γ ≤ ρ0. Then, if Assumptions A.1–A.4 hold, it follows that
M1(γ) = E[x2

t1{qt≤γ})] = λm, CA,1(γ) = λπ02

1 m, and also that Ψ1(γ) ≡ E[vtv
>
t x2

t1{qt≤γ}] =

λmΣ. Hence, (θ̃0>
z ⊗A0

1)Ψ1(γ)(θ̃0
z ⊗A0>

1 ) = λπ02

1 mθ̃0>
z Σθ̃0

z = λπ02

1 mσ2, for example. Sim-
ilar derivations apply for all the other quantities in VA,1(γ) defined in Definition A.3.
Thus, it follows that

VA,1(γ) =
1

λ2π04

1 m2

[
λπ02

1 mθ̃0>
z Σθ̃0

z +
λ2

μ0
π02

1 mθ̌0>
z Σθ̌0

z − 2
λ2

μ0
π02

1 mθ̃0>
z Σθ̌0

z

]

=
1

π02

1 m

[ θ̃0>
z Σθ̃0

z

λ
+

θ̌0>
z Σθ̌0

z

μ0
− 2

θ̃0>
z Σθ̌0

z

μ0

]

=
1

π02

1 m

[μ0σ2
ε + 2μ0θ0

zσε,u + μ0θ02

z σ2
u + λθ02

z σ2
u − 2λθ0

zσε,u − 2λθ02

z σ2
u

λμ0

]

=
1

π02

1 m

[
σ2

ε

λ
+ θ0

z(σ
2 − σ2

ε )
(1

λ
−

1

μ0

)]

= V ∗
A,1(γ),

where σ2 − σ2
ε = 2σε,uθ

0
z + σ2

u(θ
0
z)

2, and σε,u = Σε,u, σ2
u = Σu, proving the claim for

V ∗
A,1(γ).

Next, we derive the desired result for V∗
A,2(γ). By the same arguments as above it

immediately follows that

VA,2(γ) =
1

[(μ0 − λ)π02

1 + (1 − μ0)π0
2]

2m2

×
[
μ0π02

1 Me>1 Σe1 + (1 − μ0)π02

2 Me>1 Σe1 + λπ02

1 mθ̃0>
z Σθ̃0

z

+
λ2

μ0
π02

1 mθ̌0>
z Σθ̌0

z − 2
λ2

μ0
π02

1 mθ̃0>
z Σθ̌0

z − 2
λ2

μ0
π02

1 Me>1 Σθ̃0
z

+ 2λπ02

1 Me>1 Σθ̌0
z

]
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=
1

[(μ0 − λ)π02

1 + (1 − μ0)π0
2]

2m

×
[
(1 − μ0)π02

2 σ2
ε + μ0π02

1 σ2
ε + λπ02

1 σ2
ε + 2λπ02

1 θ0
zσε,u + λπ02

1 θ02

z σ2
u

+
λ2

μ0
π02

1 θ02

z σ2
u − 2

λ2

μ0
π02

1 θ0
zσε,u − 2

λ2

μ0
π02

1 θ02

z σ2
u − 2λπ02

1 σ2
ε − 2λπ02

1 θ0
zσε,u

+ 2λπ02

1 θ0
zσε,u

]

=
σ2

ε

[(μ0 − λ)π02

1 + (1 − μ0)π0
2]m

+
π02

1 λ(1 − λ
μ0 )θ

0
z(2σε,u + θ0

zσ
2
u)

[(μ0 − λ)A02

1 + (1 − μ0)A0
2]

2m
= V ∗

A,2(γ)

proving the claim for V ∗
A,2(γ). By a symmetry argument the claim follows for γ > ρ0.

Proof of Theorem 1.

Part (i): Limiting distributions. This follows from Caner and Hansen (2004) and
Lemma 9 for GMM and Lemma 7 and Lemma 9 for 2SLS.

Part (ii): Variance comparisons for TRF. We only analyze the case γ ≤ ρ0; by
symmetry, the claim for γ > ρ0 follows. From Lemma 9 it follows that:

V ∗
1,GMM (γ) − V ∗

A,1(γ) = −
1

λπ02

1 m

[

(σ2 − σ2
ε )
(
1 −

λ

μ0

)]

.

Hence,

V ∗
1,GMM (γ) ≥ V ∗

A,1(γ) ⇐⇒ σ2 ≤ σ2
ε .

For the second subsample,

V ∗
2,GMM (γ) =

σ2
ε

(1 − λ)m [απ0
1 + (1 − α)π0

2]
2

V ∗
A,2(γ) =

σ2
ε

(1 − λ)m [απ02

1 + (1 − α)π02

2 ]
+

π02

1 λ(1 − λ
μ0 )(σ

2 − σ2
ε )

(1 − λ)2m [απ02

1 + (1 − α)π02

2 ]2
.

From this,

V ∗
2,GMM (γ) − V ∗

A,2(γ) ≥ 0

⇐⇒
σ2

ε

(1 − λ)m [απ0
1 + (1 − α)π0

2]
2
−

σ2
ε

(1 − λ)m [απ02

1 + (1 − α)π02

2 ]

−
π02

1 λ(1 − λ
μ0 )(σ

2 − σ2
ε )

(1 − λ)2m [απ02

1 + (1 − α)π02

2 ]2
≥ 0.

Since [απ0
1 + (1 − α)π0

2]
2 − [απ02

1 + (1 − α)π02

2 ] = −α(1 − α)(π0
1 − π0

2)
2 ≤ 0,

σ2
ε

(1 − λ)m [απ0
1 + (1 − α)π0

2]
2
≥

σ2
ε

(1 − λ)m [απ02

1 + (1 − α)π02

2 ]
,
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implying that a sufficient condition for V ∗
2,GMM (γ) − V ∗

A,2(γ) ≥ 0 is σ2 ≤ σ2
ε , the same

condition that is necessary and sufficient for V ∗
1,GMM (γ) − V ∗

A,1(γ) ≥ 0.

Part (iii). Variance comparisons for LRF. Here, π0
1 = π0

2 = π0, and because
there is no threshold in the RF, wlog we let ρ0 = γmax ⇐⇒ μ0 = 1, and we calculate
the variances from γ ≤ ρ0 = γmax. Plugging these into the results of part (ii), we have:

V ∗
1,GMM (γ) − V ∗

A,1(γ) = −
(1 − λ)(σ2 − σ2

ε )

λπ02m
≥ 0 ⇐⇒ σ2 ≤ σ2

ε

V ∗
2,GMM (γ) − V ∗

A,2(γ) =
σ2

ε

(1 − λ)m π02 −
σ2

ε

(1 − λ)m π02 −
λ(σ2 − σ2

ε )

(1 − λ)m π02

= −
λ(σ2 − σ2

ε )

(1 − λ)m π02 ≥ 0 ⇐⇒ σ2 ≤ σ2
ε .

Part (iv). We obtain the claim by plugging in γ = ρ0 into the variance expressions
of Lemma 9.

72


	Rothfelder_Boldea_Threshold2SLS.pdf
	Introduction
	Model
	Tests for Linear Reduced Form
	Tests for Threshold Reduced Form
	Comparison to sup Wald GMM
	Simulations
	P-value Simulation and Data Generating Process
	Size
	Power

	Empirical Application
	Conclusion
	Tables and Figures
	2SLS Results involving a Linear Reduced Form
	2SLS Results involving a Threshold Reduced Form


