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Bankruptcy Problems with Nontransferable Utility
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Ruud Hendrickx†

July 20, 2016

Abstract

This paper analyzes bankruptcy problems with nontransferable utility as a gen-
eralization of bankruptcy problems with monetary estate and claims. Following the
classical axiomatic theory of bankruptcy, we formulate some appropriate properties for
NTU-bankruptcy rules and study their implications. We explore duality of bankruptcy
rules and we derive several characterizations of the generalized proportional rule and
the constrained relative equal awards rule.

Keywords: NTU-bankruptcy problem, axiomatic analysis, duality, proportional rule,
constrained relative equal awards rule
JEL classification: C79, D63, D74

1 Introduction

In a bankruptcy problem with transferable utility (cf. O’Neill (1982)), claimants have in-
dividual claims on a deficient, monetary estate. Bankruptcy theory analyzes allocations of
the estate among the claimants, taking into account their claims. Bankruptcy problems
with transferable utility are well-studied both from an axiomatic as well as a game theoretic
perspective (cf. Thomson (2003), Thomson (2013) and Thomson (2015)). Thomson (2013)
states that, although the passage from TU to NTU is in general fraught with difficulties, an
NTU generalization is worthwhile in the search for greater generality.

This paper studies bankruptcy problems with nontransferable utility in which claimants
have incompatible claims and the estate corresponds to a set of feasible allocations of utility.
Orshan, Valenciano, and Zarzuelo (2003) analyzed NTU-bankruptcy problems from a game
theoretic perspective by showing that the intersection of the bilateral consistent prekernel
and the core is nonempty for every smooth bankruptcy game. Estévez-Fernández, Borm,
and Fiestras-Janeiro (2014) redefined NTU-bankruptcy games on the basis of convexity and
compromise stability, allowing for a generalization of the characterization of TU-bankruptcy
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games. The current paper axiomatically approaches NTU-bankruptcy problems by formu-
lating appropriate properties for bankruptcy rules and studying their implications, in line
with the model of Estévez-Fernández et al. (2014).

The proportional rule for bankruptcy problems prescribes the Pareto efficient allocation
which is proportional to the vector of claims. We study the proportional rule for NTU-
bankruptcy problems and extend the axiomatic characterizations of Young (1988) and Chun
(1988) using adequate generalizations of the properties composition down, composition up,
self-duality, and path linearity.

The constrained equal awards rule for TU-bankruptcy problems divides the estate equally
among the claimants such that they are not allocated more than their claims. In a bankruptcy
problem with nontransferable utility, it makes sense to compare the claims in relation to the
estate since claimants differ in their measure of utility. Therefore, we introduce the con-
strained relative equal awards rule for NTU-bankruptcy problems which takes into account
the relative claims of the claimants, i.e., the claims in relation to their utopia values. We
extend the axiomatic characterizations of Dagan (1996), Herrero and Villar (2002), Yeh
(2004) and Yeh (2006) using generalizations of the properties symmetry, truncation invari-
ance, conditional full compensation, and claim monotonicity. Interestingly, we show that the
constrained relative equal awards rule also shares a characteristic feature with the serial cost
sharing rule (cf. Moulin and Shenker (1992)) by extending its axiomatic characterization
based on symmetry and independence of larger claims.

Two bankruptcy rules are called dual (cf. Aumann and Maschler (1985)) if one rule allo-
cates awards in the same way as the other rule allocates losses. Two properties for bankruptcy
rules are called dual (cf. Herrero and Villar (2001)) if for any two dual bankruptcy rules it
holds that one rule satisfies one property if, and only if, the other rule satisfies the other
property. We generalize the notions of dual bankruptcy rules and dual properties to the
context of NTU-bankruptcy problems without explicitly formulating dual bankruptcy prob-
lems. In particular, we exploit duality to show that the proportional rule is self-dual and
to adequately define the dual of the constrained relative equal awards rule, the constrained
relative equal losses rule.

This paper is organized in the following way. Section 2 formally introduces bankruptcy
problems with nontransferable utility and defines basic notions for NTU-bankruptcy rules.
In Section 3, we explore duality and analyze dual properties for bankruptcy rules. Section
4 studies the proportional rule and Section 5 analyzes the constrained relative equal awards
rule for bankruptcy problems with nontransferable utility. In Section 6, we formulate some
concluding remarks and point out some suggestions for future research.

2 Bankruptcy Problems with Nontransferable Utility

Let N be a nonempty and finite set of claimants. For any x, y ∈ RN+ , we denote x ≤ y if
xi ≤ yi for all i ∈ N , and x < y if xi < yi for all i ∈ N . A function p : RN+ → RN+ is called
increasing if p(x) ≤ p(y) and p(x) 6= p(y) for all x, y ∈ RN+ with x ≤ y and x 6= y. The
zero-vector x ∈ RN+ with xi = 0 for all i ∈ N is denoted by 0N . For any E ⊆ RN+ ,

– the comprehensive hull is given by comp(E) = {x ∈ RN+ | ∃y∈E : y ≥ x};

– the strong Pareto set is given by SP(E) = {x ∈ E | ¬∃y∈E,y 6=x : y ≥ x};

– the weak Pareto set is given by WP(E) = {x ∈ E | ¬∃y∈E : y > x}.

For any E ⊆ RN+ and any t ∈ R+, the set tE ⊆ RN+ is given by tE = {tx | x ∈ E}.
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A bankruptcy problem with nontransferable utility (cf. Estévez-Fernández et al. (2014))
is a triple (N,E, c) in which E ⊆ RN+ is the estate satisfying the following conditions:

– E is nonempty, closed, and bounded;

– E is nonzero, i.e., E 6= {0N};

– E is comprehensive, i.e., E = comp(E);

– E is non-leveled, i.e., SP(E) = WP(E),

and c ∈ RN+ \E is the vector of claims. Note that we do not require convexity of E. Moreover,
the conditions on E imply that E ∩ RN++ 6= ∅. The estate corresponds to a set of feasible
allocations of utility which are assumed to be normalized such that allocating nothing to a
claimant corresponds to zero utility. The claim vector represents the individual utility claims
on the estate. Let BRN denote the class of all bankruptcy problems with nontransferable
utility with claimant set N . For convenience, we denote an NTU-bankruptcy problem by
(E, c) ∈ BRN . Note that each TU-bankruptcy problem (cf. O’Neill (1982)) corresponds to
an NTU-bankruptcy problem (E, c) ∈ BRN with E = {x ∈ RN+ |

∑
i∈N xi ≤ M} for some

number M ∈ R++.
Throughout this paper, scaling the estate is an essential, fundamental operation which

preserves its shape. Let (E, c) ∈ BRN and let x ∈ RN+ \ {0N}. The scalar λE,x ∈ R++ is
defined such that

x ∈WP(λE,xE) and
1

λE,x
x ∈WP(E).

Note that the conditions on E imply that λE,x exists and that λE,x is increasing in x. We
have λE,x ≤ 1 if x ∈ E, and λE,x > 1 if x 6∈ E. For all t ∈ R++, we have

λtE,x =
λE,x

t
and λE,tx = tλE,x.

Note that (tE, x) ∈ BRN for all t ∈ (0, λE,x), and (E, tx) ∈ BRN for all t ∈ ( 1
λE,x

,∞).

Example 1.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |
x21 + 2x2 ≤ 36} and c = (3, 24). We have λE,c = 1 1

2 , λE,cE = {x ∈ RN+ | x21 + 3x2 ≤ 81},
and 1

λE,c
c = (2, 16). This is depicted below.

λE,cE

E

c

x10 1 2 3 4 5 6 7 8 9

x2

6

12

18

24

1
λE,c

c

4
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A bankruptcy rule f is a function which assigns to any bankruptcy problem (E, c) ∈ BRN

a payoff allocation f(E, c) ∈WP(E) for which f(E, c) ≤ c. Moreover, for technical reasons,
we assume that f(E, c) = 0N if E = {0N}, and f(E, c) = c if c ∈ E, for each pair (E, c).

Let (E, c) ∈ BRN , let x ∈ RN+ \ {0N}, and let f be a bankruptcy rule. The payoff path of

f from 0N to x is the function pE,xf : [0, λE,x]→ RN+ which is, for all t ∈ [0, λE,x], defined by

pE,xf (t) = f(tE, x).

A bankruptcy rule f satisfies

– path monotonicity if pE,cf is increasing on [0, λE,c] for all (E, c) ∈ BRN ;

– path continuity if pE,cf is continuous on [0, λE,c] for all (E, c) ∈ BRN .

We show that path monotonicity is a stronger property than path continuity.

Lemma 2.1.
Let f be a bankruptcy rule. If f satisfies path monotonicity, then, f satisfies path continuity.

Proof. Assume that f satisfies path monotonicity and suppose that f does not satisfy path
continuity, i.e., there exists an (E, c) ∈ BRN for which pE,cf is not continuous at a certain

t̂ ∈ [0, λE,c]. Assume that t̂ ∈ (0, λE,c). Since f satisfies path monotonicity, pE,cf is increasing

on [0, λE,c], which implies that

lim
t↑t̂

pE,cf (t) = sup
t∈[0,t̂)

pE,cf (t) ≤ pE,cf (t̂) ≤ inf
t∈(t̂,λE,c]

pE,cf (t) = lim
t↓t̂

pE,cf (t).

Since pE,cf is not continuous at t̂, either supt∈[0,t̂) p
E,c
f (t) 6= pE,cf (t̂) or inft∈(t̂,λE,c] p

E,c
f (t) 6=

pE,cf (t̂) (or both). Assume that supt∈[0,t̂) p
E,c
f (t) 6= pE,cf (t̂). Then, there exists a p∗ ∈ RN+

for which supt∈[0,t̂) p
E,c
f (t) ≤ p∗ ≤ pE,cf (t̂) and supt∈[0,t̂) p

E,c
f (t) 6= p∗ 6= pE,cf (t̂). Since λE,x is

increasing in x, this means that t < λE,p
∗
< t̂ for all t ∈ [0, t̂). This is not possible. Similarly,

we can show that inft∈(t̂,λE,c] p
E,c
f (t) 6= pE,cf (t̂) is not possible. Clearly, these arguments also

apply to the cases t̂ = 0 and t̂ = λE,c. Hence, f satisfies path continuity.

3 Duality

In this section, we explore duality of bankruptcy rules and their properties. Two bankruptcy
rules are called dual (cf. Aumann and Maschler (1985)) if one rule allocates awards in the
same way as the other rule allocates losses. We generalize this idea to rules for bankruptcy
problems with nontransferable utility.

Definition 3.1 (Dual Bankruptcy Rules).
The bankruptcy rules f and g are called dual if f(E, c) = c−g(λE,c−f(E,c)E, c) and g(E, c) =
c− f(λE,c−g(E,c)E, c) for all (E, c) ∈ BRN .

For any bankruptcy rule f and any (E, c) ∈ BRN , we have λE,c−f(E,c) ∈ (0, λE,c) since
0 ≤ f(E, c) ≤ c and 0 6= f(E, c) 6= c, which means that (λE,c−f(E,c)E, c) ∈ BRN .

For any two dual bankruptcy rules f and g, any (E, c) ∈ BRN , and any t ∈ (0, λE,c), we

have λtE,x = λE,x

t , which means that

f(tE, c) = c− g(λtE,c−f(tE,c)tE, c) = c− g(λE,c−f(tE,c)E, c).
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Clearly, duality is a symmetric relation between two bankruptcy rules. We show that
each bankruptcy rule has at most one dual bankruptcy rule.

Lemma 3.1.
Let f , g, and h be three bankruptcy rules. If f and g are dual, and f and h are dual, then,
g = h.

Proof. Assume that f and g are dual, and that f and h are dual. Let (E, c) ∈ BRN . We
can write

g(E, c) = c− f(λE,c−g(E,c)E, c) = h(λE,c−f(λ
E,c−g(E,c)E,c)E, c) = h(λE,g(E,c)E, c) = h(E, c),

where the first and third equality follow from duality of f and g, the second equality follows
from duality of f and h, and the last equality follows from g(E, c) ∈WP(E), which implies
that λE,g(E,c) = 1. Hence, g = h.

Definition 3.2 (Self-Dual Bankruptcy Rule).
A bankruptcy rule f satisfies self-duality if f(E, c) = c − f(λE,c−f(E,c)E, c) for all (E, c) ∈
BRN .

The remainder of this section studies relations between properties of two dual bankruptcy
rules. Two properties for bankruptcy rules are called dual (cf. Herrero and Villar (2001)) if
for any two dual bankruptcy rules, one property is satisfied by one rule if, and only if, the
other property is satisfied by the other rule. A property for bankruptcy rules is a self-dual
property if, for any two dual bankruptcy rules, the property is satisfied by one rule if, and
only if, it is also satisfied by the other rule. First, we show that path monotonicity is a
self-dual property.

Lemma 3.2.
Path monotonicity is self-dual.

Proof. Let f and g be two dual bankruptcy rules and assume that f satisfies path mono-
tonicity. Let (E, c) ∈ BRN . For all t ∈ (0, λE,c), we can write

pE,cf (t) = f(tE, c) = c− g(λE,c−f(tE,c)E, c) = c− pE,cg (λE,c−f(tE,c)) = c− pE,cg (λE,c−p
E,c
f (t)),

where the second equality follows from duality. Since pE,cf is increasing on (0, λE,c) and λE,x

is increasing in x, we have λE,c−p
E,c
f (t) is decreasing in t on (0, λE,c). Since 0 ≤ pE,cg (t) ≤ c

and 0 6= pE,cg (t) 6= c, this means that pE,cg is increasing on [0, λE,c], so g satisfies path
monotonicity. Hence, path monotonicity is self-dual.

Next, we study a self-dual symmetry property. The idea of equality, equity, or symmetry
underlies many theories of economic justice (cf. Rawls (1971) and Young (1995)). The
interpretation of symmetry depends on the underlying model. In a bankruptcy problem
with nontransferable utility, claimants not only differ in their claims, but also differ in their
measure of utility. It makes sense to compare their claims in relation to the estate. Preserving
the most important characteristics of the estate, the maximal individual payoffs within the
estate, or utopia values, appear to be a natural benchmark for a symmetry property. For
(E, c) ∈ BRN , the vector of utopia values uE ∈ RN++ is, for all i ∈ N , given by

uEi = max{xi | x ∈ E}.

Note that the conditions on E imply that this maximum exists and is positive. Moreover,
utE = tuE for all t ∈ R++. The number ci

uEi
is called the relative claim of i ∈ N .

5



Definition 3.3 (Relative Symmetry).

A bankruptcy rule f satisfies relative symmetry if fi(E,c)

uEi
=

fj(E,c)

uEj
for all (E, c) ∈ BRN and

any i, j ∈ N with ci
uEi

=
cj
uEj

.

Note that for a TU-bankruptcy problem (E, c) ∈ BRN with E = {x ∈ RN+ |
∑
i∈N xi ≤

M} for some M ∈ R++, we have uEi = M for all i ∈ N and relative symmetry boils down
to the classic property of equal treatment of claimants with equal claims.

Lemma 3.3.
Relative symmetry is self-dual.

Proof. Let f and g be two dual bankruptcy rules and assume that f satisfies relative sym-
metry. Let (E, c) ∈ BRN , let i, j ∈ N with ci

uEi
=

cj
uEj

and denote d = λE,c−g(E,c). Then, we

can write

gi(E, c)

uEi
=
ci − fi(dE, c)

uEi
=

ci
uEi
− dfi(dE, c)

duEi
=

ci
uEi
− dfi(dE, c)

udEi

=
cj
uEj
− dfj(dE, c)

udEj
=

cj
uEj
− dfj(dE, c)

duEj
=
cj − fj(dE, c)

uEj
=
gj(E, c)

uEj
,

where the first equality follows from duality, the fourth equality follows from relative symme-
try, and the last equality again from duality. This means that g satisfies relative symmetry.
Hence, relative symmetry is self-dual.

Two other convenient properties for bankruptcy rules are composition down and com-
position up. Composition down implies that allocations can be used to derive solutions
downwards on the payoff path to the claim vector and composition up implies that alloca-
tions can be used to derive solutions upwards on the payoff path to the claim vector.

Definition 3.4 (Composition Down).
A bankruptcy rule f satisfies composition down if for all (E, c) ∈ BRN and any t ∈ (0, 1),
we have f(tE, c) = f(tE, f(E, c)).

Definition 3.5 (Composition Up).
A bankruptcy rule f satisfies composition up if for all (E, c) ∈ BRN and any t ∈ (0, 1), we
have f(E, c) = f(tE, c) + f(λE,f(E,c)−f(tE,c)E, c− f(tE, c)).

We show that composition down and composition up are stronger properties than path
monotonicity.

Lemma 3.4.
Let f be a bankruptcy rule.

(i) If f satisfies composition down, then, f satisfies path monotonicity.

(ii) If f satisfies composition up, then, f satisfies path monotonicity.

Proof. (i) Assume that f satisfies composition down. Let (E, c) ∈ BRN and let t1, t2 ∈
[0, λE,c] such that t1 < t2. We show that pE,cf (t1) ≤ pE,cf (t2) and pE,cf (t1) 6= pE,cf (t2).

Assume that t1, t2 ∈ (0, λE,c). Then, t1
t2
∈ (0, 1) and we can write

pE,cf (t1) = f(t1E, c) = f

(
t1
t2
t2E, c

)
= f

(
t1
t2
t2E, f(t2E, c)

)
= f(t1E, f(t2E, c)) ≤ f(t2E, c) = pE,cf (t2),

6



where the third equality follows from composition down, and the inequality follows from the
definition of a bankruptcy rule. Moreover, pE,cf (t1) 6= pE,cf (t2) since WP(t1E)∩WP(t2E) = ∅.
Clearly, these arguments also apply to the cases t1 = 0 and t2 = λE,c.

(ii) Assume that f satisfies composition up. Let (E, c) ∈ BRN and let t1, t2 ∈ [0, λE,c]

such that t1 < t2. We show that pE,cf (t1) ≤ pE,cf (t2) and pE,cf (t1) 6= pE,cf (t2). Assume that

t1, t2 ∈ (0, λE,c). Then, t1
t2
∈ (0, 1) and we can write

pE,cf (t2) = f(t2E, c) = f

(
t1
t2
t2E, c

)
+ f

(
λ
t2E,f(t2E,c)−f

(
t1
t2
t2E,c

)
t2E, c− f

(
t1
t2
t2E, c

))
= f(t1E, c) + f(λE,f(t2E,c)−f(t1E,c)E, c− f(t1E, c))

≥ f(t1E, c) = pE,cf (t1),

where the second equality follows from composition up, and the inequality follows from the
definition of a bankruptcy rule. Moreover, pE,cf (t2) 6= pE,cf (t1) since WP(t2E)∩WP(t1E) = ∅.
Clearly, these arguments also apply to the cases t1 = 0 and t2 = λE,c.

Finally, we show that composition down and composition up are dual properties.

Lemma 3.5.
Composition down and composition up are dual.

Proof. Let f and g be two dual bankruptcy rules.
Assume that f satisfies composition down. Then, we know from Lemma 3.4 that f

satisfies path monotonicity. Hence, by Lemma 3.2, g satisfies path monotonicity. Let (E, c) ∈
BRN , let t ∈ (0, 1), and denote d = λE,c−g(E,c) and d′ = λE,c−g(tE,c). Then, we have d < d′

since g(tE, c) ≤ g(E, c) and g(tE, c) 6= g(E, c). We can write

g(E, c)− g(tE, c) = (c− f(dE, c))− (c− f(d′E, c))

= f(d′E, c)− f(dE, c)

= f(d′E, c)− f(dE, f(d′E, c))

= f(d′E, c)−
(
f(d′E, c)− g(λE,f(d

′E,c)−f(dE,f(d′E,c))E, f(d′E, c))
)

= g(λE,g(E,c)−g(tE,c)E, c− g(tE, c)),

where the first equality follows from duality, the third equality follows from composition
down taking into account that d

d′ ∈ (0, 1), and the fourth equality follows from duality. This
means that g satisfies composition up.

Reversely, assume that g satisfies composition up. Then, we know from Lemma 3.4 that
g satisfies path monotonicity. Hence, by Lemma 3.2, f satisfies path monotonicity. Let
(E, c) ∈ BRN , let t ∈ (0, 1), and denote d = λE,c−f(E,c) and d′ = λE,c−f(tE,c). Then, we
have d < d′ since f(tE, c) ≤ f(E, c) and f(tE, c) 6= f(E, c). We can write

f(tE, c) = c− g(d′E, c)

= c−
(
g(dE, c) + g(λE,g(d

′E,c)−g(dE,c)E, c− g(dE, c))
)

= f(E, c)− g(λE,f(E,c)−f(tE,c)E, f(E, c))

= f(E, c)−
(
f(E, c)− f(λE,f(E,c)−g(λ

E,f(E,c)−f(tE,c)E,f(E,c))E, f(E, c))
)

= f(λE,f(tE,c)E, f(E, c))

= f(tE, f(E, c)),

7



where the first equality follows from duality, the second equality follows from composition
up taking into account that d

d′ ∈ (0, 1), the third and fourth equality follow from duality and

the last equality follows from f(tE, c) ∈ WP(tE), which implies that λE,f(tE,c) = t. This
means that f satisfies composition down.

4 The Proportional Rule

This section introduces the proportional rule for bankruptcy problems with nontransferable
utility and provides three axiomatic characterizations.

Definition 4.1 (The Proportional Rule).
For all (E, c) ∈ BRN , the proportional rule Prop is defined by

Prop(E, c) =
1

λE,c
c.

Example 2.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |
x21 + 2x2 ≤ 36} and c = (3, 24) as in Example 1. We have λE,c = 1 1

2 , which means that
Prop(E, c) = 1

λE,c
c = 2

3c = (2, 16).

E

c

x10 1 2 3 4 5 6

x2

6

12

18 Prop(E, c)

4
The characterization of the proportional rule for TU-bankruptcy problems in terms of

composition down and self-duality, or composition up and self-duality (cf. Young (1988)),
can be extended to bankruptcy problems with nontransferable utility.

Theorem 4.1.

(i) The proportional rule is the unique bankruptcy rule satisfying composition down and
self-duality.

(ii) The proportional rule is the unique bankruptcy rule satisfying composition up and self-
duality.

Proof. Since (ii) follows directly from (i) and Lemma 3.5, it suffices to prove only (i).
First, we show that the proportional rule satisfies composition down and self-duality. Let

(E, c) ∈ BRN and let t ∈ (0, 1). Then, we can write

Prop(tE,Prop(E, c)) =
1

λtE,Prop(E,c)
Prop(E, c) =

1

λtE,
1

λE,c
c

(
1

λE,c
c

)
= λE,c

1

λtE,c

(
1

λE,c
c

)
=

1

λtE,c
c = Prop(tE, c).

Hence, the proportional rule satisfies composition down.
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Moreover, we can write

Prop(λE,c−Prop(E,c)E, c) =
1

λλE,c−Prop(E,c)E,c
c =

λE,c−Prop(E,c)

λE,c
c =

λE,(1−
1

λE,c
)c

λE,c
c

=

(
1− 1

λE,c

)
λE,c

λE,c
c = c− 1

λE,c
c = c− Prop(E, c).

Hence, the proportional rule satisfies self-duality.

Second, we show that the proportional rule is the only bankruptcy rule satisfying compo-
sition down and self-duality. Let (E, c) ∈ BRN and let x ∈ RN+ \{0N}. Let f be a bankruptcy
rule satisfying composition down and self-duality. Then, we know from Lemma 3.4 that f
satisfies path monotonicity. Hence, by Lemma 2.1, f satisfies path continuity. This means
that for any s ∈ [0,

∑
i∈N xi], there exists a unique t ∈ [0, λE,x] for which

∑
i∈N fi(tE, x) = s.

Let t ∈ (0, λE,x). For all t′ ∈ (0, t), we can write

p
E,pE,xf (t)

f (t′) = f(t′E, pE,xf (t)) = f(t′E, f(tE, x)) = f(t′E, x) = pE,xf (t′),

where the third equality follows from composition down. Given a vector y ∈ RN+ \ {0N} on
the payoff path of f from 0N to x, this means that any vector on the payoff path of f from
0N to y is also on the payoff path of f from 0N to x. Moreover, we can write

x−pE,xf (t) = x− f(tE, x) = f(λE,x−f(tE,x)E, x) = f(λE,x−p
E,x
f (t)E, x) = pE,xf (λE,x−p

E,x
f (t)),

where the second equality follows from self-duality. Given a vector y ∈ RN+ \ {0N} on the
payoff path of f from 0N to x, this means that x− y is also on the payoff path of f from 0N

to x.
Let t̂ ∈ (0, λE,x) such that

∑
i∈N fi(t̂E, x) = 1

2

∑
i∈N xi. Then, f(t̂E, x) and x−f(t̂E, x)

are both on the payoff path of f from 0N to x. We can write∑
i∈N

(xi − fi(t̂E, x)) =
∑
i∈N

xi −
∑
i∈N

fi(t̂E, x) =
∑
i∈N

xi −
1

2

∑
i∈N

xi =
1

2

∑
i∈N

xi.

This implies that x − f(t̂E, x) = f(t̂E, x), so f(t̂E, x) = 1
2x. This means that 1

2x is on the
payoff path of f from 0N to x.

In particular, 1
2c is on the payoff path of f from 0N to c. Moreover, 1

4c is on the payoff
path of f from 0N to 1

2c, which implies that 1
4c and 3

4c are on the payoff path of f from 0N

to c. Continuing this reasoning, we have that m
2n c is on the payoff path of f from 0N to c

for any n ∈ N and any m ∈ N, m ≤ 2n. Since f satisfies path continuity, this means that
tc is on the payoff path of f from 0N to c for any t ∈ [0, 1]. In other words, we can write
f(tE, c) = 1

λtE,c
c = Prop(tE, c). Hence, f = Prop.

Chun (1988) used a linearity axiom to characterize the proportional rule. We extend this
characterization by showing that the proportional rule is the only bankruptcy rule with a
linear payoff path for any bankruptcy problem with nontransferable utility.

Definition 4.2 (Path Linearity).
A bankruptcy rule f satisfies path linearity if f(θE+(1−θ)tE, c) = θf(E, c)+(1−θ)f(tE, c)
for all (E, c) ∈ BRN , any t ∈ [0, λE,c], and any θ ∈ (0, 1).

9



Theorem 4.2.
The proportional rule is the unique bankruptcy rule satisfying path linearity.

Proof. First, we show that the proportional rule satisfies path linearity. Let (E, c) ∈ BRN ,
let t ∈ [0, λE,c], and let θ ∈ (0, 1). If t = 0, we can write

Prop(θE + (1− θ)tE, c) = Prop(θE, c) =
1

λθE,c
c = θ

1

λE,c
c

= θProp(E, c) = θProp(E, c) + (1− θ)Prop(tE, c).

If t > 0, we can write

Prop(θE + (1− θ)tE, c) = Prop((θ + (1− θ)t)E, c) =
1

λ(θ+(1−θ)t)E,c c

=
θ + (1− θ)t

λE,c
c = θ

1

λE,c
c+ (1− θ) t

λE,c
c

= θ
1

λE,c
c+ (1− θ) 1

λtE,c
c = θProp(E, c) + (1− θ)Prop(tE, c).

Hence, the proportional rule satisfies path linearity.

Second, we show that the proportional rule is the only bankruptcy rule satisfying path
linearity. Let f be a bankruptcy rule satisfying path linearity. Let (E, c) ∈ BRN . Then, we
can write

f(E, c) = f

(
1

λE,c
λE,cE +

(
1− 1

λE,c

)
0λE,cE, c

)
=

1

λE,c
f(λE,cE, c) +

(
1− 1

λE,c

)
f(0λE,cE, c)

=
1

λE,c
f(λE,cE, c) +

(
1− 1

λE,c

)
f({0N}, c)

=
1

λE,c
c+

(
1− 1

λE,c

)
0N

=
1

λE,c
c

= Prop(E, c).

Hence, f = Prop.

5 The Constrained Relative Equal Awards Rule

This section introduces the constrained relative equal awards rule for bankruptcy problems
with nontransferable utility and provides four axiomatic characterizations. The constrained
relative equal awards rule generalizes the constrained equal awards rule for TU-bankruptcy
problems which divides the estate equally among the claimants such that they are not al-
located more than their claims. Following our interpretation of equality and symmetry in
bankruptcy problems with nontransferable utility as discussed in Section 3, it makes sense
to define a bankruptcy rule which divides the estate relatively equal among the claimants
such that they are not allocated more than their claims.

10



Definition 5.1 (The Constrained Relative Equal Awards Rule).
For all (E, c) ∈ BRN and any i ∈ N , the constrained relative equal awards rule CREA is
defined by

CREAi(E, c) = min{ci, αE,cuEi },

where αE,c ∈ (0, 1) is such that CREA(E, c) ∈WP(E).

Note that the conditions on E imply that αE,c is well-defined. Moreover, for a TU-
bankruptcy problem (E, c) ∈ BRN with E = {x ∈ RN+ |

∑
i∈N xi ≤M} for some M ∈ R++,

we have uEi = M for all i ∈ N and the constrained relative equal awards rule coincides with
the classic constrained equal awards rule.

Example 3.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈
RN+ | x21 + 2x2 ≤ 36} and c = (3, 24) as in Example 1. We have uE = (6, 18) and αE,c =
3
4 . Moreover, CREA1(E, c) = min{c1, αE,cuE1 } = min{3, 4 1

2} = 3 and CREA2(E, c) =
min{c2, αE,cuE2 } = min{24, 13 1

2} = 13 1
2 .

E

c

x10 1 2 3 4 5 6

x2

6

12

18
uE

CREA(E, c)

4

Throughout this section, we refer to the Appendix for the derivations of the specific
properties stated for the constrained relative equal awards rule. Inspired by Dagan (1996),
we axiomatically characterize the constrained relative equal awards rule using the properties
relative symmetry, composition up, and truncation invariance. The truncation invariance
property considers only the truncated claims of the claimants as relevant. For any (E, c) ∈
BRN , the vector of truncated claims ĉE ∈ RN+ is, for all i ∈ N , given by

ĉEi = min{ci, uEi }.

Definition 5.2 (Truncation Invariance).
A bankruptcy rule f satisfies truncation invariance if f(E, ĉE) = f(E, c) for all (E, c) ∈
BRN .

Theorem 5.1.
The constrained relative equal awards rule is the unique bankruptcy rule satisfying relative
symmetry, composition up, and truncation invariance.

Proof. From Lemma A.2, Lemma A.4, and Lemma A.5, we know that the constrained relative
equal awards rule satisfies relative symmetry, composition up, and truncation invariance.
Let f be a bankruptcy rule satisfying relative symmetry, composition up, and truncation
invariance. Then, we know from Lemma 3.4 that f satisfies path monotonicity. Hence, by
Lemma 2.1, f satisfies path continuity.

11



Let (E, c) ∈ BRN and suppose that f(tE, c) 6= CREA(tE, c) for some t ∈ [0, λE,c]. Let
t̂ = inf{t ∈ [0, λE,c] | f(tE, c) 6= CREA(tE, c)}. Since f and CREA satisfy path continuity,
we have t̂ ∈ [0, λE,c) and f(t̂E, c) = CREA(t̂E, c). Assume that t̂ ∈ (0, λE,c). Denote
N = {1, . . . , n} such that c1

uE1
≤ · · · ≤ cn

uEn
and let k ∈ N such that fi(t̂E, c) = ci for all

i < k, and fi(t̂E, c) = t̂αt̂E,cuEk < ci for all i ≥ k. Let m = min{‖x‖ | x ∈ WP(E)} and

take ε ∈ (0,m( ck
uEk
− fk(t̂E,c)

uEk
)). Note that the conditions on E imply that m exists. Since

f satisfies path continuity, there exists a δ > 0 such that ‖f(tE, c) − f(t̂E, c)‖ < ε for all
t ∈ (t̂,min{t̂+ δ, λE,c}). Let t ∈ (t̂,min{t̂+ δ, λE,c}). Since f satisfies path monotonicity, we

have λE,f(tE,c)−f(t̂E,c) ∈ (0, λE,c). Denote d = λE,f(tE,c)−f(t̂E,c). We can write

m

(
ck
uEk
− fk(t̂E, c)

uEk

)
> ε > ‖f(tE, c)− f(t̂E, c)‖ = ‖f(dE, c− f(t̂E, c))‖ ≥ dm,

where the equality follows from composition up taking into account that t̂
t ∈ (0, 1). This

means that d < ( ck
uEk
− fk(t̂E,c)

uEk
). Let ũdE ∈ RN+ be given by

ũdEi =

{
0 if i < k;

udEi if i ≥ k.

For all i < k, we can write

ũdEi = 0 = ci − ci = ci − fi(t̂E, c) = ci − CREAi(t̂E, c).

For all i ≥ k, we can write

ũdEi = udEi = duEi <

(
ck
uEk
− fk(t̂E, c)

uEk

)
uEi ≤

(
ci
uEi
− t̂αt̂E,cuEk

uEk

)
uEi

= ci − t̂αt̂E,cuEi = ci − fi(t̂E, c) = ci − CREAi(t̂E, c).

Then, we can write

f(dE, c− f(t̂E, c)) = f(dE, ũdE) =
1

λdE,ũdE
ũdE

= CREA(dE, ũdE) = CREA(dE, c− CREA(t̂E, c)),

where the first equality follows from truncation invariance, the second and third equality
follow from relative symmetry, and the last equality follows again from truncation invariance.
We can write

f(tE, c) = f(t̂E, c) + f(dE, c− f(t̂E, c))

= CREA(t̂E, c) + CREA(dE, c− CREA(t̂E, c))

= CREA(tE, c),

where the first and the last equality follow from composition up. This contradicts the
definition of t̂. Clearly, the same type of arguments also apply to the case t̂ = 0, even
without using composition up. Hence, f(tE, c) = CREA(tE, c) for all t ∈ [0, λE,c].
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The second axiomatic characterization is in the spirit of Yeh (2006), who showed that the
constrained equal awards rule for TU-bankruptcy problems is the only bankruptcy rule that
satisfies claim monotonicity and a property which requires that the claimants with small
enough claims are fully compensated. We generalize this idea to a conditional full compen-
sation property for NTU-bankruptcy rules based on the relative claims, and characterize the
constrained relative equal awards rule in terms of claim monotonicity and conditional full
compensation.

Definition 5.3 (Claim Monotonicity).
A bankruptcy rule f satisfies claim monotonicity if fi(E, c

′) ≥ fi(E, c) for all (E, c) ∈ BRN ,
any i ∈ N , and any c′ ∈ RN+ with c′i ≥ ci and c′j = cj for all j ∈ N \ {i}.

Definition 5.4 (Conditional Full Compensation).
A bankruptcy rule f satisfies conditional full compensation if fi(E, c) = ci for all (E, c) ∈
BRN and any i ∈ N for which c̄E(i) ∈ E, where

c̄E(i) =

(
min

{
ci
uEi

,
cj
uEj

}
uEj

)
j∈N

.

Example 4.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈ RN+ |
x21 + 2x2 ≤ 36} and c = (3, 24) as in Example 1. We have uE = (6, 18), which implies that
c1
uE1

= 1
2 and c2

uE2
= 1 1

3 , which means that c̄E(1) = c1
uE1
uE = (3, 9) and c̄E(2) = c = (3, 24).

Hence, c̄E(1) ∈ E and c̄E(2) /∈ E.

E

c = c̄E(2)

x10 1 2 3 4 5 6

x2

6

12

18
uE

CREA(E, c)

c̄E(1)

4

Theorem 5.2.
The constrained relative equal awards rule is the unique bankruptcy rule satisfying claim
monotonicity and conditional full compensation.

Proof. From Lemma A.1 and Lemma A.6, we know that the constrained relative equal awards
rule satisfies claim monotonicity and conditional full compensation. Let f be a bankruptcy
rule satisfying claim monotonicity and conditional full compensation. Let (E, c) ∈ BRN .

First, we show that fi(E, c) = CREAi(E, c) for all i ∈ N with CREAi(E, c) = ci. Let
i ∈ N with CREAi(E, c) = ci. For all j ∈ N , we can write

c̄Ej (i) = min

{
ci
uEi

,
cj
uEj

}
uEj ≤ min

{
αE,c,

cj
uEj

}
uEj = min{cj , αE,cuEj } = CREAj(E, c).

This implies that c̄E(i) ∈ E since E is comprehensive. Since f satisfies conditional full
compensation, then, fi(E, c) = ci.
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Now, suppose that f(E, c) 6= CREA(E, c). Since E is non-leveled, and both f(E, c) ∈
WP(E) and CREA(E, c) ∈ WP(E), this implies that there exists a j ∈ N for which

fj(E, c) < CREAj(E, c) = αE,cuEj . Let k ∈ argminj∈N{
fj(E,c)

uEj
| CREAj(E, c) = αE,cuEj }.

We have fk(E, c) < αE,cuEk < ck since fk(E, c) = CREAk(E, c) if CREAk(E, c) = ck. Let
b ∈ RN+ be given by bk = αE,cuEk and bj = cj for all j ∈ N \ {k}. We have f(E, c) ≤ b ≤ c.
For all j ∈ N , we can write

b̄Ej (k) = min

{
bk
uEk

,
bj
uEj

}
uEj = min

{
αE,c,

cj
uEj

}
uEj = min{cj , αE,cuEj } = CREAj(E, c).

This implies that b̄E(k) ∈ E. Then, fk(E, b) = bk since f satisfies conditional full com-
pensation. This means that fk(E, c) < fk(E, b), which contradicts that f satisfies claim
monotonicity. Hence, f(E, c) = CREA(E, c).

Next, we generalize the characterization of Herrero and Villar (2002) and Yeh (2004) by
showing that that the constrained relative equal awards rule is the only bankruptcy rule
satisfying composition down and conditional full compensation.

Theorem 5.3.
The constrained relative equal awards rule is the unique bankruptcy rule satisfying composi-
tion down and conditional full compensation.

Proof. From Lemma A.3 and Lemma A.6, we know that the constrained relative equal awards
rule satisfies composition down and conditional full compensation. Let f be a bankruptcy
rule satisfying composition down and conditional full compensation. Then, we know from
Lemma 3.4 that f satisfies path monotonicity. Hence, by Lemma 2.1, f satisfies path conti-
nuity. Let (E, c) ∈ BRN .

First, we show that fi(E, c) = CREAi(E, c) for all i ∈ N with CREAi(E, c) = ci. Let
i ∈ N with CREAi(E, c) = ci. For all j ∈ N , we can write

c̄Ej (i) = min

{
ci
uEi

,
cj
uEj

}
uEj ≤ min

{
αE,c,

cj
uEj

}
uEj = min{cj , αE,cuEj } = CREAj(E, c).

This implies that c̄E(i) ∈ E since E is comprehensive. Since f satisfies conditional full
compensation, then, fi(E, c) = ci.

Now, suppose that f(E, c) 6= CREA(E, c). Since E is non-leveled, and both f(E, c) ∈
WP(E) and CREA(E, c) ∈ WP(E), this implies that there exists a j ∈ N for which

fj(E, c) < CREAj(E, c) = αE,cuEj . Let k ∈ argminj∈N{
fj(E,c)

uEj
| CREAj(E, c) = αE,cuEj }.

We have fk(E, c) < αE,cuEk < ck since fk(E, c) = CREAk(E, c) if CREAk(E, c) = ck.
Assume that fk(E, c) > 0. Let x ∈ RN+ \ {0N} be given by

xj =

{
cj if CREAj(E, c) = cj ;
fk(E,c)

uEk
uEj if CREAj(E, c) < cj .

For all j ∈ N with CREAj(E, c) < cj , we have xj = fk(E,c)

uEk
uEj < αE,cuEj = CREAj(E, c).

This implies that λE,x < λE,CREA(E,c) = 1.
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For all j ∈ N , we can write

f(E, c)
λE,xE

j (k) = min

{
fk(E, c)

uλ
E,xE
k

,
fj(E, c)

uλ
E,xE
j

}
uλ

E,xE
j = min

{
fk(E, c)

uλ
E,xE
k

uλ
E,xE
j , fj(E, c)

}
= min

{
fk(E, c)

uEk
uEj , fj(E, c)

}
≤ min

{
fk(E, c)

uEk
uEj , cj

}
≤ xj .

This implies that f(E, c)
λE,xE

(k) ∈ λE,xE since λE,xE is comprehensive. Then, we have
fk(λE,xE, c) = fk(λE,xE, f(E, c)) = fk(E, c) since f satisfies composition down and condi-
tional full compensation. Since f satisfies path monotonicity, this means that

fk(tE, c) = fk(E, c) for all t ∈ [λE,x, 1].

Let t̂ ∈ (1, λE,c) be such that

fk(E, c) < fk(t̂E, c) < αE,cuEk .

Such a t̂ exists since f satisfies path continuity. Let y ∈ RN+ \ {0N} be given by

yj =

{
cj if CREAj(E, c) = cj ;
fk(t̂E,c)

uEk
uEj if CREAj(E, c) < cj .

For all j ∈ N with CREAj(E, c) < cj , we have yj = fk(t̂E,c)

uEk
uEj < αE,cuEj = CREAj(E, c).

This implies that λE,y < λE,CREA(E,c) = 1. Moreover, we have x ≤ y and x 6= y, which
means that λE,y ∈ (λE,x, 1). This implies that fk(λE,yE, c) = fk(E, c).
For all j ∈ N , we can write

f(t̂E, c)
λE,yE

j (k) = min

{
fk(t̂E, c)

uλ
E,yE
k

,
fj(t̂E, c)

uλ
E,yE
j

}
uλ

E,yE
j = min

{
fk(t̂E, c)

uλ
E,yE
k

uλ
E,yE
j , fj(t̂E, c)

}
= min

{
fk(t̂E, c)

uEk
uEj , fj(t̂E, c)

}
≤ min

{
fk(t̂E, c)

uEk
uEj , cj

}
≤ yj .

This implies that f(t̂E, c)
λE,yE

(k) ∈ λE,yE since λE,yE is comprehensive. Then, we have
fk(λE,yE, c) = fk(λE,yE, f(t̂E, c)) = fk(t̂E, c) since f satisfies composition down and con-
ditional full compensation. This means that fk(E, c) = fk(t̂E, c), which contradicts the
definition of t̂. Clearly, the same type of arguments also apply to the case fk(E, c) = 0, even
without defining x. Hence, f(E, c) = CREA(E, c).

Interestingly, the constrained relative equal awards rule also shares a characteristic feature
with the serial cost sharing mechanism (cf. Moulin and Shenker (1992)). We show this by
formulating a fourth characterization of the constrained relative equal awards rule based on
relative symmetry and independence of larger relative claims.

Definition 5.5 (Independence of Larger Relative Claims).
A bankruptcy rule f satisfies independence of larger relative claims if fi(E, c

′) = fi(E, c) for
all (E, c) ∈ BRN , any i ∈ N , and any c′ ∈ RN+ for which c′j = cj for all j ∈ N with

cj
uEj
≤ ci

uEi

and c′j ≥ cj for all j ∈ N with
cj
uEj

> ci
uEi

.
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Theorem 5.4.
The constrained relative equal awards rule is the unique bankruptcy rule satisfying relative
symmetry and independence of larger relative claims.

Proof. From Lemma A.2 and Lemma A.7, we know that the constrained relative equal
awards rule satisfies relative symmetry and independence of larger relative claims. Let f be a
bankruptcy rule satisfying relative symmetry and independence of larger relative claims. We
show that f = CREA. Let (E, c) ∈ BRN . Denote N = {1, . . . , n} such that c1

uE1
≤ · · · ≤ cn

uEn

and let k ∈ N such that CREAi(E, c) = ci for all i < k, and CREAi(E, c) = αE,cuEk < ci
for all i ≥ k. For all i < k, we can write

fi(E, c) = fi(E,CREA(E, c)) = CREAi(E, c),

where the first equality follows from independence of larger relative claims. For all i ≥ k, let
ci ∈ RN+ be given by

cij =

cj if
cj
uEj
≤ ci

uEi
;

ci
uEi
uEj if

cj
uEj

> ci
uEi

.

We can write

fk(E, c) = fk(E, ck) = αE,c
k

uEk = CREAk(E, ck) = CREAk(E, c),

where the first equality follows from independence of larger relative claims, the second and
third equality follow from relative symmetry, and the last equality follows again from in-
dependence of larger relative claims. Clearly, the same argument can now be applied to
claimant k + 1. Continuing this reasoning, we have fi(E, c) = CREAi(E, c) for all i ≥ k.
Hence, f(E, c) = CREA(E, c).

Finally, we use duality in relation to the constrained relative equal awards rule. We
introduce the constrained relative equal losses rule for NTU-bankruptcy problems as a gen-
eralization of the constrained equal losses rule for TU-bankruptcy problems and show that
the constrained relative equal awards rule and the constrained relative equal losses rule
are dual. This means that the constrained relative equal losses rule also satisfies relative
symmetry, composition down and composition up.

Definition 5.6 (The Constrained Relative Equal Losses Rule).
For all (E, c) ∈ BRN and any i ∈ N , the constrained relative equal losses rule CREL is
defined by

CRELi(E, c) = max{0, ci − βE,cuEi },

where βE,c ∈ R++ is such that CREL(E, c) ∈WP(E).

Note that the conditions on E imply that βE,c is well-defined. Moreover, for a TU-
bankruptcy problem (E, c) ∈ BRN with E = {x ∈ RN+ |

∑
i∈N xi ≤M} for some M ∈ R++,

we have uEi = M for all i ∈ N and the constrained relative equal losses rule coincides with
the classic constrained equal losses rule.

Example 5.
Let N = {1, 2} and consider the bankruptcy problem (E, c) ∈ BRN in which E = {x ∈
RN+ | x21 + 2x2 ≤ 36} and c = (3, 24) as in Example 1. We have uE = (6, 18) and βE,c =

1 − 1
6

√
15. Moreover, CREL1(E, c) = max{0, c1 − βE,cuE1 } = max{0,

√
15 − 3} =

√
15 − 3

and CREL2(E, c) = max{0, c2 − βE,cuE2 } = max{0, 3
√

15 + 6} = 3
√

15 + 6.
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Proposition 5.5.
The constrained relative equal awards rule and the constrained relative equal losses rule are
dual.

Proof. Let (E, c) ∈ BRN . First, we show that CREA(E, c) = c−CREL(λE,c−CREA(E,c)E, c).
Denote d = λE,c−CREA(E,c). Assume that dβdE,c ≤ αE,c. For all i ∈ N , we can write

CRELi(dE, c) = max{0, ci − βdE,cudEi } = ci −min{ci, dβdE,cuEi }
≥ ci −min{ci, αE,cuEi } = ci − CREAi(E, c).

This means that we have CREL(dE, c) ≥ c − CREA(E, c). Since E is non-leveled, and
both CREL(dE, c) ∈ WP(dE) and c − CREA(E, c) ∈ WP(dE), this implies that we have
CREL(dE, c) = c−CREA(E, c). Clearly, the same type of arguments also apply to the case
dβdE,c > αE,c.

Second, we show that CREL(E, c) = c − CREA(λE,c−CREL(E,c)E, c). Denote d′ =
λE,c−CREL(E,c). Assume that d′αd

′E,c ≤ βE,c. For all i ∈ N , we can write

CREAi(d
′E, c) = min{ci, αd

′E,cud
′E
i } = ci −max{0, ci − d′αd

′E,cuEi }
≤ ci −max{0, ci − βE,cuEi } = ci − CRELi(E, c).

This means that we have CREA(d′E, c) ≤ c − CREL(E, c). Since E is non-leveled, and
both CREA(d′E, c) ∈WP(d′E) and c− CREL(E, c) ∈WP(d′E), this implies that we have
CREA(d′E, c) = c−CREL(E, c). Clearly, the same type of arguments also apply to the case
d′αd

′E,c > βE,c. Hence, CREA and CREL are dual.

6 Concluding Remarks

This section formulates some concluding remarks on our model and results for bankruptcy
problems with nontransferable utility and points out some suggestions for future research.

First, note that our interpretation of equality is quite specific. In a bankruptcy problem
with nontransferable utility, claimants differ in their measure of utility and their claims are
therefore incomparable. For that reason, it makes sense to compare their claims in relation
to the estate. In particular, we formulate the relative symmetry property in terms of the
claims relative to the utopia values as given by the estate. Besides, this approach ensures
that all considered notions are invariant under individual rescaling of utility.
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Second, this paper focuses on proportionality, equality, and duality in the analysis of the
proportional rule and the constrained relative equal awards rule for bankruptcy problems
with nontransferable utility. Moreover, we have shown how to define a constrained relative
equal losses rule such that it is the dual of the constrained relative equal awards rule. Future
research could study generalizations of other well-known bankruptcy rules for TU-bankruptcy
problems, such as the random arrival rule (cf. O’Neill (1982)), the Talmud rule (cf. Aumann
and Maschler (1985)) and the adjusted proportional rule (cf. Curiel, Maschler, and Tijs
(1987)).

Finally, this paper interprets bankruptcy problems with nontransferable utility as a gen-
eralization of bankruptcy problems with transferable utility. Alternatively, bankruptcy prob-
lems with nontransferable utility can be interpreted as a new approach to bargaining prob-
lems with claims (cf. Chun and Thomson (1992)) with the zero vector as disagreement
point. Chun and Thomson (1992) extended the classical bargaining problem of Nash (1950)
with a vector of claims and studied these problems using axiomatic bargaining theory. The
proportional rule for NTU-bankruptcy problems coincides with their proportional solution
for bargaining problems with claims. Moreover, the constrained relative equal awards rule
for NTU-bankruptcy problems can be considered as an extension of the solution of Kalai and
Smorodinsky (1975) to bargaining problems with claims. Future research could study the
relation between NTU-bankruptcy rules and solutions for bargaining problems with claims
in detail. In particular, one could use axiomatic bargaining theory to characterize rules for
bankruptcy problems with nontransferable utility, similar to Dagan and Volij (1993).

Appendix: Properties of the CREA rule

Lemma A.1.
The constrained relative equal awards rule satisfies claim monotonicity.

Proof. Let (E, c) ∈ BRN , let i ∈ N , and let c′ ∈ RN+ such that c′i ≥ ci and c′j = cj for all
j ∈ N \ {i}. We show that CREAi(E, c

′) ≥ CREAi(E, c).
If CREAi(E, c) = αE,cuEi , then, clearly CREA(E, c′) = CREA(E, c). Assume that

CREAi(E, c) = ci, i.e., ci
uEi
≤ αE,c.

If CREAi(E, c
′) = c′i, then,

CREAi(E, c
′) = c′i ≥ ci = CREAi(E, c).

Assume that CREAi(E, c
′) = αE,c

′
uEi and take t = ci

uEi
. For all j ∈ N ,

min
{
c′j , tu

E
j

}
= min

{
cj ,

ci
uEi

uEj

}
≤ min

{
cj , α

E,cuEj
}

= CREAj(E, c).

Since E is comprehensive, this means that (min{c′j , tuEj })j∈N ∈ E, which implies that t ≤
αE,c

′
. Consequently,

CREAi(E, c
′) = αE,c

′
uEi ≥ tuEi =

ci
uEi

uEi = ci = CREAi(E, c).
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Lemma A.2.
The constrained relative equal awards rule satisfies relative symmetry.

Proof. Let (E, c) ∈ BRN and let i, j ∈ N with ci
uEi

=
cj
uEj

. We show that CREAi(E,c)

uEi
=

CREAj(E,c)

uEj
.

We have

CREAi(E, c)

uEi
=

min{ci, αE,cuEi }
uEi

= min

{
ci
uEi

,
αE,cuEi
uEi

}
= min

{
ci
uEi

, αE,c
}

= min

{
cj
uEj

, αE,c

}
= min

{
cj
uEj

,
αE,cuEj
uEj

}
=

min{cj , αE,cuEj }
uEj

=
CREAj(E, c)

uEj
.

Lemma A.3.
The constrained relative equal awards rule satisfies composition down.

Proof. Let (E, c) ∈ BRN and let t ∈ (0, 1). We show that CREA(tE,CREA(E, c)) =
CREA(tE, c).

We have (min{ci, αtE,cutEi })i∈N ∈ tE, which implies that (min{ cit , α
tE,cuEi })i∈N ∈ E.

Since E is comprehensive, (min{ci, αtE,cuEi })i∈N ≤ (min{ cit , α
tE,cuEi })i∈N implies that

(min{ci, αtE,cuEi })i∈N ∈ E. This means that αtE,c ≤ αE,c.
Assume that αtE,CREA(E,c) ≤ αtE,c. Then, for all i ∈ N ,

CREAi(tE,CREA(E, c)) = min{CREAi(E, c), α
tE,CREA(E,c)utEi }

= min{min{ci, αE,cuEi }, tαtE,CREA(E,c)uEi }
= min{ci, αE,cuEi , tαtE,CREA(E,c)uEi }
≤ min{ci, αE,cuEi , tαtE,cuEi }
= min{ci, tαtE,cuEi }
= min{ci, αtE,cutEi }
= CREAi(tE, c).

This means that we have CREA(tE,CREA(E, c)) ≤ CREA(tE, c). Since E is non-leveled,
and both CREA(tE,CREA(E, c)) ∈WP(tE) and CREA(tE, c) ∈WP(tE), this implies that
CREA(tE,CREA(E, c)) = CREA(tE, c).

Clearly, the same type of arguments also apply to the case αtE,CREA(E,c) > αtE,c.

Lemma A.4.
The constrained relative equal awards rule satisfies composition up.

Proof. Let (E, c) ∈ BRN and let t ∈ (0, 1). We show that CREA(E, c) = CREA(tE, c) +
CREA(λE,CREA(E,c)−CREA(tE,c)E, c− CREA(tE, c)).

We have (min{ci, αtE,cutEi })i∈N ∈ tE, which implies that (min{ cit , α
tE,cuEi })i∈N ∈ E.

Since E is comprehensive, (min{ci, αtE,cuEi })i∈N ≤ (min{ cit , α
tE,cuEi })i∈N implies that

(min{ci, αtE,cuEi })i∈N ∈ E. This means that αtE,c ≤ αE,c.
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For all i ∈ N ,

CREAi(tE, c) = min{ci, αtE,cutEi } = min{ci, tαtE,cuEi } ≤ min{ci, αE,cuEi } = CREAi(E, c).

Since CREA(tE, c) 6= CREA(E, c), this implies that λE,CREA(E,c)−CREA(tE,c) ∈ (0, λE,c).
Denote d = λE,CREA(E,c)−CREA(tE,c) and define L,H ⊆ N by

L = {i ∈ N | CREAi(tE, c) = ci} and H = {i ∈ N | CREAi(tE, c) = tαtE,cuEi }.

For all i ∈ L, we can write

CREAi(dE, c− CREA(tE, c)) = 0 = ci − ci = CREAi(E, c)− CREAi(tE, c).

Assume that dαdE,c−CREA(tE,c) ≤ αE,c − tαtE,c. For all i ∈ H, we can write

CREAi(dE, c− CREA(tE, c)) = min{ci − CREAi(tE, c), α
dE,c−CREA(tE,c)udEi }

= min{ci − tαtE,cuEi , dαdE,c−CREA(tE,c)uEi }
≤ min{ci − tαtE,cuEi , αE,cuEi − tαtE,cuEi }
= min{ci, αE,cuEi } − tαtE,cuEi
= CREAi(E, c)− CREAi(tE, c).

This means that CREA(dE, c−CREA(tE, c)) ≤ CREA(E, c)−CREA(tE, c). Since E is non-
leveled, and both CREA(dE, c−CREA(tE, c)) ∈WP(dE) and CREA(E, c)−CREA(tE, c) ∈
WP(dE), this implies that CREA(dE, c− CREA(tE, c)) = CREA(E, c)− CREA(tE, c).

Clearly, the same type of arguments also apply to the case dαdE,c−CREA(tE,c) > αE,c −
tαtE,c.

Lemma A.5.
The constrained relative equal awards rule satisfies truncation invariance.

Proof. Let (E, c) ∈ BRN . We show that CREA(E, ĉE) = CREA(E, c).
First, for all t ∈ (0, 1) and any i ∈ N , we have

min{ĉEi , tuEi } = min{min{ci, uEi }, tuEi } = min{ci, uEi , tuEi } = min{ci, tuEi }.

This implies that αE,ĉ
E

= αE,c. For all i ∈ N , this means that

CREAi(E, ĉ
E) = min{ĉEi , αE,ĉ

E

uEi } = min{min{ci, uEi }, αE,cuEi } = min{ci, uEi , αE,cuEi }
= min{ci, αE,cuEi } = CREAi(E, c).

Lemma A.6.
The constrained relative equal awards rule satisfies conditional full compensation.

Proof. Let (E, c) ∈ BRN and let i ∈ N such that c̄E(i) ∈ E. We show that CREAi(E, c) = ci
if CREAi(E, c) = αE,cuEi .

Assume that CREAi(E, c) = αE,cuEi . Then, we have αE,c ≤ ci
uEi

. For all j ∈ N , we can

write

CREAj(E, c) = min{cj , αE,cuEj } = min

{
αE,c,

cj
uEj

}
uEj ≤ min

{
ci
uEi

,
cj
uEj

}
uEj = c̄Ej (i).

Since E is non-leveled and CREA(E, c) ∈WP(E), this implies that we have CREA(E, c) =
c̄E(i). This means that CREAi(E, c) = ci.

20



Lemma A.7.
The constrained relative equal awards rule satisfies independence of larger relative claims.

Proof. Let (E, c) ∈ BRN , let i ∈ N , and let c′ ∈ RN+ such that c′j = cj for all j ∈ N

with
cj
uEj
≤ ci

uEi
, and c′j ≥ cj for all j ∈ N with

cj
uEj

> ci
uEi

. We show that CREAi(E, c
′) =

CREAi(E, c).
For all j ∈ N ,

min{cj , αE,c
′
uEj } ≤ min{c′j , αE,c

′
uEj } = CREAj(E, c

′).

Since E is comprehensive, this means that (min{cj , αE,c
′
uEj })j∈N ∈ E, which implies that

αE,c
′ ≤ αE,c.

First, consider the case ci
uEi

< αE,c
′ ≤ αE,c. Then,

CREAi(E, c
′) = min{c′i, αE,c

′
uEi } = c′i = ci = min{ci, αE,cuEi } = CREAi(E, c).

Second, consider the case αE,c
′ ≤ ci

uEi
≤ αE,c. For all j ∈ N ,

CREAj(E, c
′) = min{c′j , αE,c

′
uEj } = min

{
c′j
uEj

, αE,c
′

}
uEj

≤ min

{
c′j
uEj

,
ci
uEi

}
uEj = min

{
cj
uEj

,
ci
uEi

}
uEj

≤ min

{
cj
uEj

, αE,c

}
uEj = min{cj , αE,cuEj }

= CREAj(E, c).

This means that we have CREA(E, c′) ≤ CREA(E, c). Since E is non-leveled, and both
CREA(E, c′) ∈WP(E) and CREA(E, c) ∈WP(E), this implies that we have CREA(E, c′) =
CREA(E, c). In particular, we have CREAi(E, c

′) = CREAi(E, c).
Finally, consider the case αE,c

′ ≤ αE,c < ci
uEi

. For all j ∈ N ,

CREAj(E, c
′) = min{c′j , αE,c

′
uEj } = min

{
c′j
uEj

, αE,c
′

}
uEj

≤ min

{
c′j
uEj

, αE,c

}
uEj = min

{
cj
uEj

, αE,c

}
uEj

= min{cj , αE,cuEj } = CREAj(E, c).

This means that we have CREA(E, c′) ≤ CREA(E, c). Since E is non-leveled, and both
CREA(E, c′) ∈WP(E) and CREA(E, c) ∈WP(E), this implies that we have CREA(E, c′) =
CREA(E, c). In particular, we have CREAi(E, c

′) = CREAi(E, c).
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