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A note on Shapley ratings in brain networks

M. Musegaas∗† B.J. Dietzenbacher∗ P.E.M. Borm∗

July 7, 2016

Abstract

We consider the problem of computing the influence of a neuronal structure in a
brain network. Abraham, Kötter, Krumnack, and Wanke (2006) computed this in-
fluence by using the Shapley value of a coalitional game corresponding to a directed
network as a rating. Kötter, Reid, Krumnack, Wanke, and Sporns (2007) applied
this rating to large-scale brain networks, in particular to the macaque visual cortex
and the macaque prefrontal cortex. We introduce an alternative coalitional game
that is more intuitive from a game theoretical point of view. We use the Shapley
value of this game as an alternative rating to analyze the macaque brain networks
and corroborate the findings of Kötter et al. (2007). Moreover, we show how miss-
ing information on the existence of certain connections can readily be incorporated
into this game and the corresponding Shapley rating.

Keywords: brain networks, coalitional games, Shapley value

1 Introduction

In this paper we study the influence of a single neuronal structure on the connectivity
structure of the whole brain network. The aim is to contribute to the methodology
proposed by Abraham et al. (2006) from a game theoretical perspective. Cooperative
game theory analyzes the importance of players in a joint collaboration structure by taking
into account the possibility of cooperation in subgroups or coalitions. Von Neumann and
Morgenstern (1944) introduced the model of a coalitional game, in which each coalition
is assigned a worth reflecting what this coalition can achieve if it acts on its own. In
the context of brain networks, the Shapley value (cf. Shapley (1953)) can be applied
to measure the influence of each neuronal structure in a brain network. This measure
depends on the corresponding coalitional game.

In the coalitional game proposed by Abraham et al. (2006) the worth of a coalition of
vertices (neuronal structures) is defined by the number of strongly connected components
in its induced subnetwork (within the whole brain network). We will illustrate that
this coalitional game is counter-intuitive from a game theoretical point of view as it
does not satisfy the two basic properties of superadditivity and monotonicity. Moreover,
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the Shapley value of this game does not specify the relative influence of the neuronal
structures.

In this paper we introduce an alternative coalitional game which resolves these issues.
We discuss specific features of this game in small networks and apply our model to the
large-scale brain networks considered by Kötter et al. (2007). Generally speaking, our
results corroborate the findings of Kötter et al. (2007). Besides, since missing informa-
tion on possible connections in a brain network is a common problem (cf. Kötter and
Stephan (2003)), we illustrate how our new approach allows for a direct incorporation of
probabilistic considerations.

2 Shapley ratings in brain networks

A brain network is a directed graph (N,A) where N is a set of vertices, representing a
set of neuronal structures, and A is a set of arcs, representing the connections between
the neuronal structures. Let A denote all ordered pairs (i, j) of vertices in N for which
there exists a directed path from i to j in (N,A). A graph (N,A) is called strongly
connected if for every two vertices i and j in N there is a directed path from i to j and
from j to i in (N,A), i.e., if A contains all ordered pairs in N . The induced subgraph
(S,A[S]) is a graph where a subset S ⊆ N is the set of vertices and A[S] is the set of arcs
consisting of any arc in A whose starting and end point are both in S. A strongly connected
component is a maximal induced subgraph which is strongly connected, i.e., there is no
other strongly connected subgraph containing this strongly connected component. Let
SCC(N,A) denote the number of strongly connected components in graph (N,A).

Example 2.1. Consider the brain network (N,A) with N = {1, 2, 3, 4} illustrated below.1

1

2

3

4

Note that (N,A) is strongly connected because for every vertex in the graph there exists
a directed path to every other vertex. However, the subgraph induced by {1, 2, 3} is not
strongly connected and we have

A[{1, 2, 3}] = {(1, 2), (1, 3), (2, 1), (2, 3)}.

Note that SCC({1, 2, 3}, A[{1, 2, 3}]) = 2 because the subgraph induced by {1, 2, 3} con-
sists of two strongly connected components: the subgraphs induced by {1, 2} and {3}. 4

A coalitional game is a pair (N, v) where N denotes a non-empty, finite set of players
and v is a function which assigns a number to each subset S ⊆ N (also called a coalition).
By convention, v(∅) = 0. Abraham et al. (2006) introduced a coalitional game (N,wA)
corresponding to a brain network (N,A) defined by

wA(S) = SCC(S,A[S]),

1This instance of a brain network is also used in Example 1 in Section 3.1 of Moretti (2013).
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for all S ⊆ N . Hence, the worth of a coalition in wA is defined by the number of strongly
connected components in its induced subgraph.

Alternatively, we define the brain network game (N, vA) corresponding to (N,A) by

vA(S) = |A[S]|,

for all S ⊆ N . Hence, the worth of a coalition S in vA is defined by the number of ordered
pairs (i, j) of vertices in S for which there exists a directed path from i to j in (S,A[S]).

Two basic properties for coalitional games are superadditivity and monotonicity. A
coalitional game is called monotonic if the worth of a coalition increases when the coalition
grows, and called superadditive if breaking up a coalition into parts does not pay. From a
game theoretical perspective it is desirable that coalitional games satisfy these two basic
properties since they provide a clear incentive for cooperation in the grand coalition and
thus provide a motivation to focus on fairly allocating the worth of the grand coalition.
Unfortunately, these properties are not satisfied by the coalitional game (N,wA). In
contrast, the brain network game (N, vA) does satisfy monotonicity and superadditivity.
This is illustrated in the following example.

Example 2.2. Reconsider the brain network (N,A) presented in Example 2.1. The worth
of every coalition in the games (N,wA) and (N, vA) is presented below.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

wA(S) 1 1 1 1 1 2 2 2 2 2 2 2 3 1 1

vA(S) 0 0 0 0 2 0 0 1 1 1 4 4 1 6 12

Note that (N,wA) is not monotonic since {3, 4} ⊂ {2, 3, 4} but nevertheless

wA({3, 4}) = 2 > 1 = wA({2, 3, 4}).

Note that (N,wA) is also not superadditive since, e.g.,

wA({1, 2}) + wA({3, 4}) = 3 > 1 = wA({1, 2, 3, 4}).

It is readily checked that (N, vA) is both monotonic and superadditive. 4

The Shapley value (cf. Shapley (1953)) of a coalitional game (N, v) is for all i ∈ N
defined by

Φi(v) =
∑

S⊆N\{i}

pS (v(S ∪ {i})− v(S)),

where pS = |S|!(|N |−|S|−1)!
|N |! . Hence, the Shapley value looks at the marginal contributions

of a player to all possible coalitions. The weight pS is such that all marginal contribu-
tions are weighted adequately to obtain an efficient allocation of the worth of the grand
coalition.

In the context of coalitional games corresponding to brain networks, the Shapley value
can be interpreted as a measure for the influence of a neuronal structure. Abraham et al.
(2006) considered the Shapley value Φ(wA) as a rating for the neuronal structures in a
brain network. Similarly, we consider the Shapley value Φ(vA) as a rating.
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Example 2.3. Reconsider the coalitional games (N,wA) and (N, vA) of Example 2.2.
The Shapley rating Φ(wA) is given by

Φ(wA) =
(
1
2
,−1

6
, 1
3
, 1
3

)
, 2

while the Shapley rating Φ(vA) is given by

Φ(vA) =
(
21
6
, 41

6
, 25

6
, 25

6

)
,

both determining a ranking (2, 3, 4, 1) or (2, 4, 3, 1) (there is a tie for the second highest
ranking). We note that a lower Shapley rating in wA indicates a higher influence in a
brain network. On the contrary, a higher Shapley rating in vA indicates a higher influence.

Since a Shapley rating in wA can be negative, as is the case in this example, it is not
possible to determine the relative influence of two vertices on the basis of Φ(wA). On the
other hand, a Shapley rating in vA can not be negative by definition. Therefore, using
Φ(vA), we can say that the influence of vertex 2 in the brain network (N,A) is almost
twice as large as the influence of vertex 1. 4

A common problem in the analysis of brain networks is the fact that it is not known
whether some specific connections (arcs) are present or not (cf. Kötter and Stephan
(2003)). Using a certain probabilistic knowledge about these unknown connections, this
lack of information can readily be incorporated in the brain network game.

We assume that each possible arc (i, j) is present with probability pij ∈ [0, 1]. Clearly,
for each present arc we set pij = 1 and for each absent arc we set pij = 0. All proba-
bilities are summarized into a vector p. Given such a vector p, we define the stochastic
brain network game (N, vp) in which the worth of a coalition equals the expected (in the
probabilistic sense) number of ordered pairs for which there exists a directed path in its
induced subgraph.

Example 2.4. Reconsider the brain network presented in Example 2.1. Only now sup-
pose that the arcs (1, 4) and (3, 1) are present with probability p14 and p31, respectively.
The complete corresponding vector p can be found below.

(i, j) (1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3)

pij 1 0 p14 1 1 0 p31 0 1 0 1 0

In total there are four possible brain networks. These different brain networks are illus-
trated below and the corresponding probabilities for those networks are p14p31, (1−p14)p31,
p14(1− p31) and (1− p14)(1− p31) for (a), (b), (c), and (d), respectively.

1

2

3

4

(a) (N,A1)

1

2

3

4

(b) (N,A2)

1

2

3

4

(c) (N,A3)

1

2

3

4

(d) (N,A4)

2Because of a mistake in the worth of wA({1, 2, 3}), the Shapley value is incorrectly stated by Moretti
(2013).
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In order to calculate the worth of coalition {1, 3, 4} in the corresponding stochastic brain
network game (N, vp) we take the following weighted averages

vp({1, 3, 4}) = p14p31 · vA
1

({1, 3, 4}) + (1− p14)p31 · vA
2

({1, 3, 4})
+ p14(1− p31) · vA

3

({1, 3, 4}) + (1− p14)(1− p31) · vA
4

({1, 3, 4})
= p14p31 · 3 + (1− p14)p31 · 2 + p14(1− p31) · 2 + (1− p14)(1− p31) · 1
= 1 + p14 + p31.

The worth of every coalition is presented below.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

vp(S) 0 0 0 0 2 p31 p14 1 1 1 4 + 2p31 4 + 2p14 1 + p14 + p31 6 12

The Shapley rating of the game (N, vp) is given by

Φ1(v
p) = 21

6
+ 1

3
p14 + 1

3
p31,

Φ2(v
p) = 41

6
− 1

6
p14 − 1

6
p31,

Φ3(v
p) = 25

6
− 1

2
p14 + 1

3
p31,

Φ4(v
p) = 25

6
+ 1

3
p14 − 1

2
p31.

Fore example, if p14 = 1
2

and p31 = 1
3
, then

Φ(vp) =
(
216
36
, 4 1

36
, 225

36
, 230

36

)
,

with corresponding ranking (2, 4, 3, 1). 4

3 Results and discussion

In this section we apply the Shapley rating based on the brain network game (N, vA) to
the two large-scale brain networks considered by Kötter et al. (2007) and we compare the
results.

The first large-scale brain network is the macaque visual cortex with thirty neuronal
structures as illustrated in Figure 1 of Kötter et al. (2007). The ranking of the five
brain regions with the highest Shapley rating obtained by means of the coalitional games
(N,wA) and (N, vA) can be found below in (a) and (b) respectively.

(a) Top 5 of Φ(wA)

Ranking Brain region

1. V4
2. FEF
3. 46
4. V2
5. Vp

(b) Top 5 of Φ(vA)

Ranking Brain region

1. V4
2. FEF
3. Vp
4. V2
5. 46
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Note that both ratings agree on the top 5; only with respect to the positions 3 and 5 there
are some minor differences.

The entire Shapley rating Φ(vA) of the macaque visual cortex can be found in Figure 1
in the appendix. Correspondingly, we can roughly divide the brain regions in five classes
based on the relative difference with the brain region with the highest Shapley rating. We
consider the following five classes based on the differences in terms of percentage: 0%–5%,
5%–10%, 10%–15%, 15%–20%, 20% and higher. The first class consists of the single brain
region V4 with the highest Shapley rating. The second class consists of the brain regions
FEF to TF as ordered in Figure 1 that differ 5%–10% with V 4. The brain regions in the
third class are MSTd to V3, in the fourth class we have MSTI to PITd and in the fifth
class we have the single brain region VOT with a relative influence which is 23% lower
than that of V4.

The second large-scale brain network is the macaque prefrontal cortex with twelve
neuronal structures (as illustrated in Figure 3(a) of Kötter et al. (2007)). In this case
there is a lack of information about the presence or absence of nine connections. To get
some insight, Kötter et al. (2007) considered two extreme cases. First, they assume that
connections with unknown presence are absent. Second, they assume that those connec-
tions are present. For both extreme cases the Shapley ratings are calculated separately.
Our stochastic brain network game provides a way to incorporate lack of information into
one Shapley rating on the basis of probabilistic information. For simplicity, we assume
that each connection with unknown presence is absent with probability 1

2
. Note that,

in case more information would become available, more adequate probabilities can be
readily inserted. Having the complete vector p of arc probabilities, one readily computes
the corresponding stochastic brain network game (N, vp) and the corresponding Shapley
rating Φ(vp). The ranking based on the Shapley rating Φ(vp) can be found below.

Ranking Brain region

1. 9
2. 24
3. 12
4. 10
5. 46
6. 25
7. 11
8. 8B
9. 13
10. 8A
11. 45
12. 14
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Appendix

Figure 1: Shapley rating of the macaque visual cortex.
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