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Introduction

This PhD thesis studies the impact of liquidity on the way stock prices are

formed, as well as the effect of limited diversification on residential real estate

prices. In this introduction, I will first discuss the concept of liquidity and give an

example. Next, I will discuss limited diversification and how it could affect stock

and real estate prices. Finally, I will summarize the contents of each chapter of

this dissertation.

In financial economics, the liquidity of an asset is generally defined as the ease

with which it can be traded. This ease can be in the form of being able to trade

quickly, with little effort, or against a low cost. The first and third chapter of this

PhD thesis study stock market liquidity. For the purposes of this introduction, I

will start with an example that I do not study in this dissertation, but most people

are familiar with: foreign currency. When you change your money into foreign

currency and back, you typically lose a small amount in the process, even after

fees. Suppose that you travel from the Netherlands to the U.K. and back, and the

exchange rate remains the same, then the prices at which you buy and sell your

British pounds will still be different. At an exchange office, you will for instance

find that you have to pay 1.37 euro to buy one British pound, while you get back

only 1.35 euro for every British pound that you sell. So, for every euro that you

change to pounds and back, you will lose 2 euro cents. These two cents will,

among other things, compensate the exchange office for holding large amounts of
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INTRODUCTION

different currencies, and running the risk that the currencies that they hold decline

in value.

The foreign currency example can be applied directly to the stock market,

where there is a similar difference between the price at which you buy (the ask

price) and the price at which you sell (the bid price). In general, we say that the

market liquidity of an asset is high when at a single point in time – so that the value

of the asset itself does not change – the difference between the price at which you

buy and the price at which you sell is small. There are many other aspects to mar-

ket liquidity, but this example should at least provide a useful way to think about

the concept.

To see why liquidity would matter to investors in general, we need only con-

sider what happens when it disappears from the market. This occurred, for in-

stance, during the crash of October 1987, the Asian financial crisis, the Rus-

sian default and LTCM collapse in 1998, and the 2007–2009 financial crisis (Liu,

2006; Nagel, 2012). Such periods of illiquidity typically coincide with asset price

declines (Chordia, Roll, and Subrahmanyam, 2001) and may happen suddenly

(Brunnermeier and Pedersen, 2009). This can be very costly to financial institu-

tions that are forced to sell their illiquid asset holdings at firesale prices follow-

ing outflows, or to cover losses (Brunnermeier and Pedersen, 2009; Coval and

Stafford, 2007).

Liquidity has not always played a prominent part in the academic literature.

Traditional stock valuation models, such as the well-known Sharpe (1964), Lint-

ner (1965), and Black (1972) CAPM, assume that markets are perfectly liquid –

meaning that there is always someone to trade with and the price at which you can

buy equals the price at which you can sell – and hence liquidity plays no role in the

pricing results. Since then, many empirical studies have shown that liquidity does

in fact matter for asset prices in many different markets. In the first chapter of this

x



PhD thesis, I focus on the way the liquidity of stocks and the investment horizon

interact, and in the third chapter I investigate the evolution of liquidity over time.

Another part of this dissertation considers how limited diversification affects

residential real estate prices. Diversification is the technical term for reducing risk

by not putting all one’s eggs in one basket, and has been applied often in the con-

text of the stock market. When investing in stocks, the loss on one stock can be

offset by another, especially when there is a large number of stocks in the invest-

ment portfolio. Generally not all risk can be eliminated in this way, and the risk

that remains when holding all stocks in the market is called market risk. Prices

are linked to risk because expected stock returns are viewed a compensation for

the willingness of investors to accept a certain level of risk. The main result of

the CAPM mentioned above is that because stock-specific risk (or idiosyncratic

risk) can be diversified away by including many different stocks in a single port-

folio, only market-level risk should matter for stock prices. If there is limited

diversification, both market risk and stock-specific risk matter for stock prices. It

turns out, however, that it is difficult to test whether this effect occurs in the stock

market, because it is hard to measure the degree of diversification. Residential

real estate is a natural asset class to test for such effects, as home owners tend to

own only a single house and are thus severely under-diversified (Tracy, Schneider,

and Chan, 1999). In the second chapter of this PhD thesis, I will therefore look

into the residential real estate market, to obtain evidence on the effects of limited

diversification on prices.

The first chapter of this PhD thesis is joint work with with Alessandro Beber

and Joost Driessen and investigates what happens when short-term investors and

long-term investors interact in a market with both liquid and illiquid stocks. This

is a natural topic: liquidity only matters when trading actually takes place. Long-

term investors are thus less concerned about liquidity, simply because they trade

less often. When a stock is deemed unattractive by investors due to illiquidity and
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INTRODUCTION

hence is sold at a lower price than justified by the value of the future dividends,

we say that it commands a liquidity premium. Clearly, assets that command such

a liquidity premium are attractive to long-term investors. As David Swensen, the

Chief Investment Officer of the Yale Endowment Fund, has noted: “Accepting

illiquidity pays outsize dividends to the patient long-term investor,” (Swensen,

2000).

In the first chapter, we explicitly model an economy with short-term and long-

term investors, who can invest in a range of assets with different liquidity. By

incorporating liquidity risk – the risk that an asset becomes more or less liquid

over time – as well as heterogeneous investment horizons, we bridge the seminal

papers by Amihud and Mendelson (1986) and Acharya and Pedersen (2005). In

addition, we find that it can be optimal for short-term investors not to invest in the

least liquid assets, which results in a segmentation where the least liquid assets are

held only by long-term investors.

Our model features a liquidity premium that can be decomposed into three

parts. The first part reflects the basic return premium that investors demand to be

compensated for holding an illiquid asset. In equilibrium, however, the least liq-

uid securities are held by long-term investors who trade infrequently and therefore

are less concerned with illiquidity. Consequently, we actually find a smaller liq-

uidity premium for the least liquid assets. We call this reduction a segmentation

premium, and it forms the second part of our decomposition.

The third part is a liquidity spillover premium that arises due to the correlation

between returns on the liquid and illiquid securities. If there were no liquidity

premium on the illiquid assets, then we could set up a near-arbitrage as follows.

By buying liquid securities and selling illiquid securities, we would earn the liq-

uidity premium on the liquid assets while most of the return risk would cancel out.

Trading on this strategy would change prices until it is no longer profitable to do

so. By selling the illiquid securities, their prices decline until they also reflect the

xii



liquidity premium on the liquid assets to some extent. Hence, in equilibrium, we

still find a small liquidity premium on the illiquid assets.

We test the empirical relevance of the model on the cross-section of U.S. stocks

over the period 1964 to 2009. Our results show that by accounting for heteroge-

nous investment horizons and segmentation, we can better explain price differ-

ences between stocks that differ in liquidity, and the decomposition of the liquidity

premium into the three parts discussed above allows us to show the source of these

differences.

The second chapter of this dissertation is joint work with Erasmo Giambona

and concerns residential real estate market. The chapter studies the consequences

of limited diversification for residential real estate prices. Homeowners who are

investing in the residential real estate market typically have a highly leveraged

position in one, or a few properties (Tracy, Schneider, and Chan, 1999). The

leverage consists of the mortgage, with typical loan-to-value ratios of 75% (Green

and Wachter, 2005). The individual investors cannot easily hold a well-diversified

portfolio of small positions in many houses because housing is a lumpy investment

– it is difficult, if not impossible to buy any desired fraction of a single property.

It is a well-known theoretical result in financial economics that asset-specific

risk should matter for prices when investors are underdiversified (Merton, 1987;

Levy, 1978; Malkiel and Xu, 2004), yet for stocks, empirical evidence on the pric-

ing of idiosyncratic risk has been mixed. As there is a clear indication that home-

owners are underdiversified, the residential real estate market provides a good

opportunity to study the pricing of idiosyncratic risk. A key issue is measuring

the extent to which homeowners are underdiversified. We suggest to measure this

through the fraction of people in a certain region who are homeowners. If many

people own the house in which they live, then the housing stock is strongly dis-

persed and hence there is little potential for any single investor to hold a large,

well-diversified portfolio. This implies that if homeownership is high in certain
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INTRODUCTION

regions, then idiosyncratic risk should matter more strongly for house prices in

those regions.

To test this relation, we use house price index data from the Federal Housing

Finance Agency (FHFA) for the period 1980 until 2012, and we measure home-

ownership using IPUMS census data. In our analysis, we include homeownership

as an interaction effect with idiosyncratic risk. In that way, we can see whether

increased homeownership indeed leads to a stronger impact of idiosyncratic risk

on residential real estate prices beyond a certain base level. Our results show that

this indeed is the case.

The third chapter returns to the pricing of liquidity in the stock market. In

contrast to the first chapter, which concerns the differences between liquid and

illiquid stocks, this chapter focuses on the impact of changes in liquidity over time.

In this chapter, I show that liquidity risk matters for stock prices only in relation

to an overall deterioration in liquidity, but not to a deterioration in liquidity that

occurs only for the least liquid stocks.

To motivate my analysis, I start from empirical evidence by Næs, Skjeltorp,

and Ødegaard (2011), who show that there are two ways in which investors shift

their portfolios towards more liquid assets in response to changing expectations

about the real economy. The first is an across-asset-class flight to liquidity, where

investors exit the stock market altogether. One example of this is a shift to the bond

market, such as in Goyenko and Ukhov (2009). This coincindes with an overall

decrease in liquidity in the stock market. The second is a within-asset-class flight

to liquidity, where investors shift their holdings from illiquid stocks to more liquid

stocks. The least liquid stocks then become even less liquid, while liquid stocks

are not affected as much. These shifts in investor holdings of course need not be

the only events related to changes to the shape of the cross-section of liquidity,

and I specifically do not rule out other mechanisms.
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Earlier research by Pástor and Stambaugh (2003) shows that the risk of an

overall deterioration in liquidity matters for stock prices. The risk of only the least

liquid stocks becoming less liquid could also be quite relevant to large institu-

tional investors. This can be understood best from a trading strategy put forward

by Duffie and Ziegler (2003). They show that under certain conditions financial

institutions will choose to sell liquid assets first if they need to close out positions.

This happens for instance in response to an unwanted increase in risk run by the

institutions. Given that the institutions end up holding mostly illiquid securities if

they follow this strategy, even the case where only the least liquid assets become

less liquid poses a significant risk and can lead to large losses, or even insolvency.

To investigate the different ways in which liquidity can change over time, I sta-

tistically disentangle the case of an overall deterioration in liquidity and the case

where only the least liquid assets become even less liquid. It turns out that an

overall deterioration in liquidity is associated most strongly with market down-

turns, while the deterioration in the least liquid segment is related to active trading

in the most liquid segment. The latter is in line with the within-asset-class flight

to liquidity of Næs, Skjeltorp, and Ødegaard (2011).

By combining these two ways in which liquidity can change over time with

the pricing model of Acharya and Pedersen (2005), I am able to test which of

these effects is relevant for stock prices. The results show that only an overall

deterioration in liquidity matters for stock prices statistically and economically,

while there is no such effect for a deterioration that occurs only for the least liquid

stocks.

Summarizing, this dissertation shows that the investment horizon matters for

the impact liquidity has on stock prices, that only the risk of an overall deterio-

ration in liquidity has an impact on stock prices, and that underdiversification is

likely to play a role in the pricing of house-specific risk for U.S. residential real

estate.
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Chapter 1

Pricing Liquidity Risk with Heterogeneous
Investment Horizons1

1.1 Introduction

The investment horizon is a key feature distinguishing different categories of in-

vestors, with high-frequency traders and long-term investors such as pension funds

at the two extremes of the investment horizon spectrum. Most of the literature on

horizon effects in portfolio choice and asset pricing builds on the theoretical in-

sight of Merton’s (1971) hedging demands and demonstrates that long-horizon

decisions can differ substantially from single-period decisions for various model

specifications.

Surprisingly, the interaction between investment horizons and liquidity has at-

tracted much less attention. Even in the absence of hedging demands, heteroge-

neous investment horizons can have important asset pricing effects for the simple

1This chapter is based on joint work with Alessandro Beber and Joost Driessen. We thank Ken Singleton and two
anonymous referees for very useful comments and suggestions. We also thank Jack Bao (the WFA discussant), Bart
Diris, Darrell Duffie, Frank de Jong, Pete Kyle, Marco Pagano, Richard Payne, Dimitri Vayanos, and seminar partici-
pants at University of Essex, University of Maryland, University of North-Carolina, Tilburg University, CSEF-IGIER
Symposium on Economics and Institutions, the Duisenberg School of Finance, the Erasmus Liquidity conference, the
Financial Risks International Forum, the SoFie conference at Tinbergen Institute, and the WFA conference for very
useful comments.
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CHAPTER 1. LIQUIDITY AND THE INVESTMENT HORIZON

reason that different horizons imply different trading frequencies. More specif-

ically, liquidity plays a distinct role for investors with diverse horizons because

trading costs only matter when trading actually takes place. The investment hori-

zon then becomes a key element in the asset pricing effects of liquidity.

We explicitly take this standpoint and derive a new liquidity-based asset pricing

model featuring risk-averse investors with heterogeneous investment horizons and

stochastic transaction costs. Investors with longer investment horizons are clearly

less concerned about trading costs, because they do not necessarily trade every pe-

riod. Our model generates a number of new implications on the pricing of liquidity

that are strongly supported empirically when we test them on the cross-section of

U.S. stock returns.

Previous theories of liquidity and asset prices have largely ignored heterogene-

ity in investor horizons, with the exception of the seminal paper of Amihud and

Mendelson (1986), who study a setting where risk-neutral investors have heteroge-

nous horizons. Their model generates clientele effects: short-term investors hold

the liquid assets and long-term investors hold the illiquid assets, which leads to a

concave relation between transaction costs and expected returns.2 Besides risk-

neutrality, Amihud and Mendelson (1986) assume that transaction costs are con-

stant. However, there is large empirical evidence that liquidity is time-varying.

Assuming stochastic transaction costs, Acharya and Pedersen (2005) set out one

of the most influential asset pricing models with liquidity risk, where various liq-

uidity risk premiums are generated. However, this model includes homogeneous

investors with a one-period horizon and thus implies a linear (as opposed to con-

cave) relation between (expected) transaction costs and expected returns. Our

paper bridges these two seminal papers, because our model entails heterogeneous

2Hopenhayn and Werner (1996) propose a similar set-up featuring risk-neutral investors with heterogeneity in
impatience and endogenously determined liquidity effects.
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1.1. INTRODUCTION

horizons, as in Amihud and Mendelson (1986), with stochastic illiquidity and risk

aversion, as in Acharya and Pedersen (2005). This leads to a number of novel and

important implications for the impact of both expected liquidity and liquidity risk

on asset prices.

Our model setup is easily described. We have multiple assets with i.i.d. divi-

dends and stochastic transaction costs, and many investor types with mean-variance

utility over terminal wealth but different investment horizons. We obtain a station-

ary equilibrium in an overlapping generation setting and we solve for expected

returns in closed form.

This theoretical setup implies the existence of an intriguing equilibrium with

partial segmentation. Short-term investors optimally choose not to invest in the

most illiquid assets, intuitively because their expected returns are not sufficient

to cover expected transaction costs. In contrast, long-term investors trade less

frequently and can afford to invest in illiquid assets. This clientele partition is dif-

ferent from Amihud and Mendelson (1986), because our risk-averse long-horizon

investors also buy liquid assets for diversification purposes.

The partial segmentation equilibrium implies different expressions for the ex-

pected returns of liquid and segmented assets. For liquid assets, expected returns

contain the familiar compensation for expected transaction costs and a mixture of

a liquidity premium and standard-CAPM risk premium. The presence of investors

with longer investment horizons, however, reduces the importance of liquidity risk

relative to a homogeneous investor setting. Furthermore, the effect of expected

liquidity is relatively smaller, given that long-horizon investors do not trade every

period, and it varies in the cross-section of stocks as a function of the covariance

between returns and illiquidity costs. Interestingly, we identify cases in the cross-

section of stocks where high liquidity risk may actually lead to a lower premium

on expected liquidity because of a greater presence of long-term investors.
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The expected returns of segmented assets contain additional terms, both for

risk premia and in expected liquidity effects. More specifically, there are segmen-

tation and spillover risk premia. The segmentation risk premium is positive and

is caused by imperfect risk sharing, as only long-term investors hold these illiq-

uid assets. The spillover risk premium can be positive or negative, depending on

the correlation between illiquid (segmented) and liquid (non-segmented) asset re-

turns. For example, if a segmented asset is highly correlated with non-segmented

assets, the spillover effect is negative and neutralizes the segmentation risk pre-

mium, because in this case the segmented asset can be replicated (almost exactly)

by a portfolio of non-segmented assets.

The expected liquidity term also contains a segmentation effect, in that ex-

pected liquidity matters less for segmented assets that are held only by long-term

investors. Along the same lines as the risk premium, it also contains an expected

liquidity spillover term, with a sign that is a function of the correlation between

liquid and illiquid assets. In sum, the presence of these additional effects implies

that the total expected liquidity premium can be larger for liquid assets relative

to segmented assets. Hence, in contrast to Amihud and Mendelson (1986) and

Acharya and Pedersen (2005), the relation between expected returns and expected

liquidity in our model is not necessarily strictly increasing.

In summary, our model demonstrates that incorporating heterogeneous invest-

ment horizons has a considerable impact on the way liquidity affects asset prices.

It changes the relative size of liquidity and market risk premia, leads to cross-

sectional differences in liquidity effects, and generates segmentation and spillover

effects.

Armed with this array of novel theoretical predictions, we take the model to

the data to test its empirical relevance. Specifically, we analyze the cross-section

of U.S. stocks over the period 1964 to 2009 and use the illiquidity measure of

Amihud (2002) to proxy for liquidity costs, as in Acharya and Pedersen (2005).
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We estimate our asset pricing model using the Generalized Method of Moments

(GMM) and find that a version with two horizons (one month and ten years) gen-

erates a remarkable cross-sectional fit of expected stock returns. Specifically, for

25 liquidity-sorted portfolios, the heterogeneous-horizon model generates a cross-

sectional R2 of 82.2% compared to 62.2% for the single-horizon model, with sim-

ilar improvements when using other portfolio sorting criteria. Our model achieves

this substantial increase in explanatory power using the same degrees of freedom

and imposing more economic structure on the composition of the risk premium

and on the loading of expected returns on expected liquidity. As an upshot of our

richer model, the empirical estimates can also be used to make inferences about

the risk-bearing capacity of investors in each horizon class.

We also estimate a version of our heterogeneous horizon model without liquid-

ity risk, thus incorporating only the effects of expected liquidity and the associated

segmentation and spillover effects. As explained above, this model setup deviates

from Amihud and Mendelson (1986) in that investors are risk-averse, rather than

risk-neutral. Interestingly, the fit of this version of the model is as good as the fit

of a model with liquidity risk. For our empirical application to the cross-section of

U.S. stocks, what matters is the combination of expected liquidity and partial seg-

mentation. While the cost of the homogenous horizon assumption is about 20%

in terms of R2, in the end the cost of assuming constant transaction costs seems

negligible.

The final important implication of the empirical estimates of our model is the

more prominent role of the effect of expected liquidity on expected returns com-

pared to the homogeneous horizon case. Averaged across the 25 liquidity-sorted

portfolios, the expected liquidity premium generates about 2.40% in annual re-

turns in our model, as compared with 0.36% in the homogeneous-horizon model.

The presence of partial segmentation is thus crucial to understand the effect of

expected liquidity on asset prices.
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The remainder of the paper is organized as follows. Section 1.2 reviews the

relevant literature. Section 1.3 presents the general liquidity asset pricing model

that allows for arbitrarily many investment horizons and assets. We describe our

estimation methodology in Section 1.4. Section 1.5 illustrates the data and Sec-

tion 1.6 presents our empirical findings. We conclude with a summary of our

results in Section 1.7.

1.2 Related Literature

Our paper contributes to the existing literature on liquidity and asset pricing

along several dimensions. First, our model is related to theoretical work on port-

folio choice and illiquidity (see Amihud, Mendelson, and Pedersen (2005) for an

overview). Starting with the work of Constantinides (1986), several researchers

have examined multi-period portfolio choice in the presence of transaction costs.

In contrast to these papers, we focus on a general equilibrium setting with het-

erogenous investment horizons in the presence of liquidity risk. We obtain a

tractable asset pricing model by simplifying the analysis in some other dimensions.

In particular, we assume no intermediate rebalancing for long-term investors.

Second, our empirical results contribute to a rich literature that has empiri-

cally studied the asset pricing implications of liquidity and liquidity risk. Ami-

hud (2002) finds that stock returns are increasing in the level of illiquidity both

in the cross-section (consistent with Amihud and Mendelson (1986)) and in the

time-series. Pástor and Stambaugh (2003) show that the sensitivity of stock re-

turns to aggregate liquidity is priced. Acharya and Pedersen (2005) integrate these

effects into a liquidity-adjusted CAPM that performs better empirically than the

standard CAPM. The liquidity-adjusted CAPM is such that, in addition to the stan-

dard CAPM effects, the expected return on a security increases with the level of

illiquidity and is influenced by three different liquidity risk covariances. Several
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articles build on these seminal papers and document the pricing of liquidity and

liquidity risk in various asset classes.3 However, none of these papers study the

liquidity effects of heterogenous investment horizons.

Third, our paper is also related to empirical research showing the relation be-

tween liquidity and investors’ holding periods. For example, Chalmers and Kadlec

(1998) find evidence that it is not the spread, but the amortized spread that is more

relevant as a measure of transaction costs, as it takes into account the length of

investors’ holding periods. Cremers and Pareek (2009) study how investment

horizons of institutional investors affect market efficiency. Cella, Ellul, and Gi-

annetti (2013) demonstrate that investors’ short horizons amplify the effects of

market-wide negative shocks. All of these articles use turnover data for stocks

and investors to capture investment horizons. In contrast, we estimate the degree

of heterogeneity in investment horizons by fitting our asset pricing model to the

cross-section of U.S. stock returns.

Finally, our modeling approach is somewhat related to recent theories where

some investors do not trade every period, although there is no explicit role for

transaction costs and illiquidity. For example, Duffie (2010) studies an equilib-

rium pricing model in a setting where some “inattentive” investors do not trade

every period. He uses this setup to study how supply shocks affect price dynam-

ics in a single-asset model. In contrast, besides incorporating transaction costs,

our focus is cross-sectional as we study a market with multiple assets in a setting

where dividends, transaction costs, and returns are all i.i.d. Similarly, Brennan and

Zhang (2013) develop an asset pricing model where a representative agent has

3For example, Bekaert, Harvey, and Lundblad (2007) focus on emerging markets, Sadka (2010) studies hedge
funds, Franzoni, Nowak, and Phalippou (2012) focus on private equity, Bao, Pan, and Wang (2011) study corporate
bonds, and Bongaerts, De Jong, and Driessen (2011) focus on credit default swaps.
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CHAPTER 1. LIQUIDITY AND THE INVESTMENT HORIZON

a stochastic horizon.4 However, liquidity effects are neglected and investors are

homogeneous, in that they hold the same assets and those assets are liquidated

simultaneously.

1.3 The Model

In this section, we first lay down the foundations of our liquidity asset pricing

model with multiple assets and horizons. We then analyze the main equilibrium

implications of the model. Finally, we explore a number of special cases of the

model to obtain additional interesting insights.

1.3.1 Model Setup and Assumptions

Our liquidity asset pricing model features both stochastic liquidity and het-

erogenous investment horizons in a setting with multiple assets. We develop a

theoretical framework that is also suitable for empirical estimation. Our model is

built on the following assumptions:

• There are K assets, with asset i paying each period a dividend Di,t .5 Selling

the asset costs Ci,t . Transaction costs and dividends are i.i.d. in order to obtain

a stationary equilibrium. There is a fixed supply of each asset, equal to Si

shares, and a risk-free asset with exogenous and constant return R f .

• We model N classes of investors with horizons h j, where j = 1, ..,N. It turns

out that empirically it is sufficient to take N = 2, so we will impose this condi-

tion from here onwards to simplify the expressions. We thus have short-term

4Using a similar motivation, Kamara, Korajczyk, Lou, and Sadka (2015) study empirically how the horizon that
is used to calculate returns matters for the pricing of various risk factors.

5We assume that the proceeds of the dividends at all times are added to the risk-free deposit.
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investors with horizon of h1 periods and long-term investors with horizon h2.

Appendix 1.A.1 solves the model for any N.

• Investors have mean-variance utility over terminal wealth with risk aversion

A j for investor type j.

• We have an overlapping generations (OLG) setup. Each period, a fixed quan-

tity Q j > 0 of type j investors enters the market and invests in some or all of

the K assets.

• Investors with horizon h j only trade when they enter the market and at their

terminal date, hence they do not rebalance their portfolio at intermediate

dates.

Most assumptions follow Acharya and Pedersen (2005).6 The key extension

is that we allow for heterogenous horizons, while Acharya and Pedersen (2005)

only have one-period investors. We make two simplifying assumptions to obtain

tractable solutions. First, we assume i.i.d. dividends and transaction costs so as to

obtain a stationary equilibrium. In reality transaction costs are relatively persistent

over time. In the empirical section of the paper, we show that the i.i.d. assumption

does not have a major impact on our empirical results.

The second simplifying assumption is that investors do not rebalance at inter-

mediate dates. This assumption is important mainly for the long-term investors.

As long as rebalancing trades are small relative to the total positions, we do not

expect that relaxing this assumption would generate very different results. Also

note that, in presence of transaction costs, investors only rebalance their portfo-

lio infrequently (see, for example, Constantinides (1986)). In addition, positions

in some categories of investment assets, such as private equity, may be hard to

rebalance.

6Acharya and Pedersen (2005) start with investors with exponential utility and normally distributed dividends and
costs, which amounts to assuming mean-variance preferences.
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CHAPTER 1. LIQUIDITY AND THE INVESTMENT HORIZON

1.3.2 Equilibrium Expected Returns

In this subsection we describe how we obtain the equilibrium expected returns

given our model setup. First, note that, at time t, investors with horizon h j solve

a maximization problem where they choose the quantity of stocks purchased y j,t

(a vector with one element for each asset) to maximize utility over their holding

period return, taking into account the incurred transaction costs. The utility maxi-

mization problem is given by

max
y j,t

E
[
W j,t+h j

]
− 1

2
A jVar

(
W j,t+h j

)
(1.1)

W j,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f
(
e j−P′t y j,t

)
,

where R f is the gross risk-free rate, W j,t+1 is wealth of the h j investors at time t+1,

Pt+1 is the K×1 vector of prices, and e j is the endowment of the h j investors.

In the remainder of the text of the paper, we set R f = 1 to simplify the expo-

sition. Appendix 1.A.1 derives the model for R f ≥ 1, which leads to very similar

expressions. In the empirical analysis, we obviously estimate the version of the

asset pricing model with R f equal to the historical average of the risk-free rate.

The optimal portfolio choice may reflect endogenous segmentation, which is

the possibility that some classes of investors do not hold some assets in equilib-

rium because the associated trading costs are too high relative to the expected

return over the investment horizon. To this end, we introduce sets B j ( j = 1,2)

that are subsets of {1, . . . ,K}, where K is the number of tradable assets. The set

B j represents the set of assets that investors j will buy in equilibrium. We find that

a short-horizon investor (with horizon h1) will endogenously avoid investing in

assets for which the associated transaction costs are too large. The sets B j thus de-

pend on the level of transaction costs of the assets. Note that, for markets to clear,
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1.3. THE MODEL

long-term investors will hold all assets in equilibrium, so that B2 = {1, . . . ,K}. In

Appendix 1.A.2, we describe in more detail under which conditions endogenous

segmentation arises.

The solution to this utility maximization problem is the usual mean-variance

solution, corrected for transaction costs and the possibility of segmentation. As

shown in Appendix 1.A.1, the solution can be written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

B j,p

(1.2)

×
(
h jE [Rt+1−1]−E [ct+1]

)
,

where Rt+1 denotes the K×1 vector of gross asset returns, with Ri,t+1 = (Di,t+1+

Pi,t+1)/Pi,t , and ct+1 the K×1 vector of percentage costs, with ci,t =Ci,t/Pi,t . For

a generic matrix M, the notation MB j is used to indicate the |B j| × |B j| matrix

containing only the rows and columns of M that are in B j. We write M−1
B j,p for the

inverse of MB j with zeros inserted at the locations where rows and columns of M

were removed. With this convention, Var
(

∑
h j
k=1 Rt+k− ct+h j

)−1

B j,p
corresponds to

the K×K matrix containing the inverse of the covariance matrix of the set of assets

that investors j invest in, with zeros inserted for the rows and columns that were

not included (the assets that investors j do not invest in). The optimal demand

vector y j,t thus contains zeros for those assets in which investor j does not invest.7

With i.i.d. dividends and costs, given a fixed asset supply, a wealth-independent

optimal demand, and with the same type of investors entering the market each pe-

riod, we obtain a stationary equilibrium where the price of each asset Pi,t is con-

stant over time. At any point in time, the market clears with new investors buying

7We compute the long-term covariance matrices using the i.i.d. assumption. Appendix 1.A.3 provides further
details.
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the supply of stocks minus the amount still held by the investors that entered the

market at an earlier point in time,

Q1y1,t +Q2y2,t = S−
h1−1

∑
k=1

Q1y1,t−k−
h2−1

∑
k=1

Q2y2,t−k, (1.3)

where S is the vector with supply of assets (in number of shares of each of the

assets). Given the i.i.d. setting, we have constant demand over time, y j,t = y j,t−k

for all j and k.

We let Rm
t = S̃′tRt/S̃′tι and cm

t = S̃′tct/S̃′tι, where S̃t = diag(Pt)S denotes the dollar

supply of assets. Appendix 1.A.1 shows that under the stated assumptions we

obtain the following result.

PROPOSITION 1: A stationary equilibrium exists with the following equilibrium

expected returns

E [Rt+1−1] = (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (1.4)

+(γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where

V j = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

B j,p

, (1.5)

and γ j = Q j/(A jS̃′ι).8 R f is set equal to 1 for ease of exposition.

Proposition 1 shows that the equilibrium expected returns contain two compo-

nents. The first component is a compensation for the expected transaction costs.

The second component is a compensation for market risk and liquidity risk. Note

that the loadings on expected costs and return covariances are matrices. This is in

8The time subscript for supply S̃t is omitted, as supply is constant over time.
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contrast to standard linear asset pricing models, where these loadings are scalars

and therefore all assets have the same exposure to expected costs and the return

covariance.

In the equilibrium equation (1.4), the parameter γ j has an interesting interpre-

tation as risk-bearing capacity. Specifically, the OLG setup implies that in every

period the total number of h j-investors in the market is equal to h jQ j. This to-

tal number is important because it determines among how many h j-investors the

risky assets can be shared. Their risk aversion A j is also important, because it

determines the size of the position these investors are willing to take in the risky

assets. Therefore, we can indeed interpret the quantity

h jγ j =
h jQ j

A j

1

S̃′ι
(1.6)

as the risk-bearing capacity of the h j-investors (scaled by the total market capital-

ization).

1.3.3 Interpreting the Equilibrium: Special Cases

We now consider several special cases to gain intuition for the different effects

that the general equilibrium model generates. It is important to note that, in the

empirical analysis, we estimate the general model in equation (1.4). Hence, these

special cases are only used here to better understand the new implications of our

equilibrium model.

We begin with an integration setting where both short-term and long-term in-

vestors hold all assets. In this setting, we consider the following special cases:

• the liquidity CAPM of Acharya and Pedersen (2005);

• the expected liquidity effect without liquidity risk;

• the expected liquidity effect with liquidity risk;
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• the market and liquidity risk premia with two assets.

We then consider a special case within the endogenous segmentation setting,

where the short-term investors do not invest in assets that are very illiquid. Finally,

we summarize and discuss the array of novel predictions of our model.

Liquidity CAPM of Acharya and Pedersen (2005)

If we have only one investor type with a one-period horizon, we obtain a model

similar to the liquidity CAPM of Acharya and Pedersen (2005). Specifically, con-

sider the case where N = 1 (or γ2 = 0), h1 = 1, and B1 = {1, . . . ,K}, so that there

is just one class of one-period investors. For ease of comparison, we write the

equilibrium equation in beta form. In this case, the equilibrium expected returns

simplify to

E [Rt+1−1] = E [ct+1] (1.7)

+
Var
(
Rm

t+1− cm
t+1
)

γ1

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)

Var
(
Rm

t+1− cm
t+1
) ,

which is an i.i.d. version of the equilibrium relation of Acharya and Pedersen

(2005).

Expected liquidity effect without liquidity risk

We now allow for two distinct investor horizons, but assume constant transac-

tion costs (i.e. Var(ct+1) = 0). In the integration setting (B1 = B2 = {1, . . . ,K}),
we obtain a linear asset pricing model with scalar loadings on expected liquidity

and risk

E [Rt+1−1] =
γ1 + γ2

γ1h1 + γ2h2
E [ct+1]+

1
γ1h1 + γ2h2

Cov
(
Rt+1,Rm

t+1
)
. (1.8)
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We immediately see that the loading on expected liquidity equals 1/h1 if γ2 = 0

and 1/h2 if γ1 = 0. As the horizon h j increases, it follows that the impact of

expected liquidity on returns decreases with the investor horizon.

To illustrate the difference with the single-horizon case in equation (1.7), where

the loading on expected liquidity is equal to 1, let us use a simple example with

h1 = 1, h2 = 2, γ1 = 2, and γ2 = 1. In this simple example, the loading on expected

liquidity is equal to
γ1 + γ2

γ1h1 + γ2h2
=

3
4
, (1.9)

which is exactly halfway between the expected liquidity coefficient with only one-

period investors (1/h1 = 1) and the loading when there are only two-period in-

vestors (1/h2 = 1/2). More generally, we observe that the introduction of long-

term investors in the model decreases the impact of expected liquidity on expected

returns.

Expected liquidity effect with liquidity risk

We now extend the previous special case C.2 to a setting with stochastic trans-

action costs. For simplicity, we take Var(ct+1) and Var(Rt+1− ct+1) to be diago-

nal matrices (in this example only), we set h1 = 1, and still consider the integration

setting (B1 = B2 = {1, . . . ,K}). In this case, we obtain

E
[
Ri,t+1−1

]
=

γ1 + γ2V2,i

γ1h1 + γ2h2V2,i
E
[
ci,t+1

]
(1.10)

+
1

γ1h1 + γ2h2V2,i
Cov

(
Ri,t+1− ci,t+1,Rm

t+1− cm
t+1
)
,

where V2,i denotes the i-th diagonal element of V2. In this case, we can write V2,i

as

V2,i =
h2Var

(
Ri,t+1− ci,t+1

)
(h2−1)Var

(
Ri,t+1

)
+Var

(
Ri,t+1− ci,t+1

). (1.11)
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Now consider the following ratio:

Var
(
Ri,t+1− ci,t+1

)
Var
(
Ri,t+1

) . (1.12)

This ratio is a good measure of the amount of liquidity risk, as it increases with

Var(ci,t+1) and with Cov(Ri,t+1,ci,t+1). We can show that the expected liquidity

coefficient in (1.10) decreases with this “liquidity risk” ratio. That is, higher liq-

uidity risk leads to a smaller expected liquidity premium. This result might seem

counterintuitive at first sight, but it has a natural interpretation. If an asset has

higher liquidity risk, it will be held in equilibrium mostly by long-term investors.

Long-term investors care less about liquidity and this leads to the smaller expected

liquidity effect.

Market and liquidity risk premia with two assets

We now focus on interpreting the risk premia that the model generates in equi-

librium. In the general model of equation (1.4), expected returns are determined

by a mix of market and liquidity risk premia. This mix becomes especially clear

when we consider the two-asset case (K = 2), h1 = 1, again in the integration

setting. Formally:

PROPOSITION 2: In the two-asset case (K = 2), with two horizons (N = 2), h1 = 1,

R f = 1, and no segmentation (B1 = B2 = {1, . . . ,K}), the equilibrium expected

returns are

E [Rt+1−1] = (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (1.13)

+(γ1λ1 + γ2λ2)Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)

+ γ2λ2(h2−1)Cov
(
Rt+1,Rm

t+1
)
,
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where λ j = h2
j/d0d j is a scalar parameter. The definitions of the determinants d0

and d j are given by equations (1.48) and (1.50) in Appendix 1.A.4.

In this equilibrium, the total risk premium is a weighted sum of market and

liquidity risk premia. Holding everything else constant, we can show that liquidity

risk becomes less important relative to market risk when the long-term investors

become less risk averse or more numerous (formally, as γ2 increases). As γ2 in-

creases, long-term investors hold a larger fraction of the total supply in equilibrium

and these investors care less about liquidity risk compared to short-term investors.

Segmentation effects

The special cases discussed above show the expected liquidity and risk premia

effects when all investors have positive holdings of all assets. Now we show what

happens to expected returns when some assets are only held by long-term investors

(endogenous segmentation).

To obtain tractable theoretical expressions, we focus on the special case where

V2 equals the identity matrix and set h1 = 1. The simplification V2 = I is appropri-

ate when the variability of returns is much higher than the variability of transaction

costs. As we show later in the empirical section, this is indeed the case in our data

and we can thus rely on these theoretical simplified expressions. Of course, our

benchmark empirical estimation focuses on the unrestricted equilibrium in equa-

tion (1.4).

Without loss of generality, we order the assets by liquidity, with the most liquid

assets first. The returns on the assets that are in B1 are denoted by Rliq
t , and the re-

turns on the assets that are not in B1 are denoted by Rilliq
t . We use this notation also

for the costs. Appendix 1.A.5 shows that in this setting we obtain the following

proposition.
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PROPOSITION 3: If N = 2, h1 = 1, V2 = I, R f = 1, and B1 contains only those as-

sets that the short-term investors hold, then for these “liquid” assets the expected

returns are

E
[
Rliq

t+1−1
]
=

γ1 + γ2

γ1h1 + γ2h2
E
[
cliq

t+1

]
(1.14)

+
1

γ1h1 + γ2h2
Cov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
.

The expected returns on “illiquid” assets only held by long-term investors are

E
[
Rilliq

t+1−1
]
=

1
h2
E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
(1.15)

+
1

γ1h1 + γ2h2
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
+

(
1

γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
−
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
,

where the matrix β denotes the liquidity spillover beta, defined as

β = Cov
(

Rilliq
t+1− cilliq

t+1,R
liq
t+1− cliq

t+1

)
Var
(

Rliq
t+1− cliq

t+1

)−1
. (1.16)

First, we note that the equilibrium expected returns for liquid assets are sim-

ilar to the special cases discussed previously, since these assets are held by both

short-term and long-term investors. For the “illiquid” assets, the pricing is more

complex. In what follows, we thus discuss separately the different components

that make up expected excess returns for illiquid assets.
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We start by analyzing the expected liquidity effect that we can decompose into

three parts:

γ1 + γ2

γ1h1 + γ2h2
E
[
cilliq

t+1

]
(1.17)

+

(
1
h2
− γ1 + γ2

γ1h1 + γ2h2

)
E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
.

The first component, which we denote full risk-sharing expected liquidity pre-

mium, is the expected liquidity effect that one would obtain if these assets were

held by both short-term and long-term investors. The second term (segmentation

expected liquidity premium) reflects that, in fact, only long-term investors hold

the illiquid assets and this term dampens the effect of expected liquidity since
1
h2
− γ1+γ2

γ1h1+γ2h2
< 0. The third component (spillover expected liquidity premium)

arises from the exposure (as given by β) of the illiquid assets to the liquid assets.

If this exposure is positive, this increases the expected liquidity effect for the illiq-

uid assets since h2−h1
h2

γ1
γ1h1+γ2h2

> 0. In other words, if liquid and illiquid assets

are positively correlated, the expected liquidity effect on illiquid assets cannot be

much lower than the effect for liquid assets, because long-term investors would

take advantage by shorting the illiquid assets and buying the liquid assets.

We now turn to the risk premia, where we have a natural interpretation for each

of the various covariance terms in the equilibrium relation for the illiquid assets.

The term
1

γ1h1 + γ2h2
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
(1.18)
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gives the full risk-sharing risk premium that would arise if both types of investors

would hold the asset. The second term,(
1

γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
, (1.19)

gives the segmentation risk premium, which shows the impact of the lower risk

sharing due to long-term investors only holding the illiquid assets. Since 1
γ2h2
−

1
γ1h1+γ2h2

> 0, this segmentation premium increases expected returns in case of

positive return covariance. The third term,

−
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
, (1.20)

defines a spillover risk premium. Along the lines of the discussion above for the

expected liquidity effect, this term concerns the relative pricing of the illiquid

versus liquid assets. If these two assets are positively correlated (high elements of

β), their expected returns cannot be too far apart. This term reduces the effect of

segmentation when the elements of β are nonzero. Specifically, if

Cov
(

Rilliq
t+1− cilliq

t+1,R
m
t+1− cm

t+1

)
= βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
, (1.21)

the net effect of segmentation is equal to zero.

We can also rewrite the expected returns on segmented assets in Proposition 3

in a more compact form:

E
[
Rilliq

t+1−1
]
=

1
h2
E
[
cilliq

t+1

]
+β

(
E
[
Rliq

t+1

]
− 1

h2
E
[
cliq

t+1

])
(1.22)

+
1

γ2h2
Cov

(
Rilliq

t+1− cilliq
t+1−β

(
Rliq

t+1− cliq
t+1

)
,Rm

t+1− cm
t+1

)
,

which can provide some additional intuition. In particular, this expression shows

in a different way how segmentation matters. The expected returns on segmented
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assets are driven by the exposure to net-of-cost returns of the liquid assets, plus an

additional effect that comes from the systematic exposure of the residual return on

segmented assets, Rilliq
t+1− cilliq

t+1−β(Rliq
t+1− cliq

t+1).

The total segmentation risk premium, as expressed in equation (1.22), is in

the spirit of the international asset pricing literature (e.g., De Jong and De Roon

(2005)), where segmentation also leads to additional effects on expected returns.

To better illustrate how segmentation influences the impact of expected liquid-

ity on expected returns, we consider again the simple example earlier in this sec-

tion, where h1 = 1, h2 = 2, γ1 = 2, and γ2 = 1. We also impose Var(ct+1) = 0 and

β = 0. In this segmentation setting, we find that the loading on expected liquidity

is
γ1 + γ2

γ1h1 + γ2h2
=

3
4

(1.23)

for the liquid assets, and
1
h2

=
1
2

(1.24)

for the illiquid assets. This example shows that the effect of expected liquidity

is smaller for the illiquid assets, because these assets are only held by long-term

investors in equilibrium. Note that in this case the total expected liquidity com-

ponent of expected returns for liquid assets (3
4E
[
cliq

t+1

]
) is not necessarily smaller

than the premium for illiquid assets (1
2E
[
cilliq

t+1

]
).

Summary and Discussion

Our model shows that the asset pricing effects of liquidity are much more com-

plex once we allow for heterogenous horizons and segmentation. In summary, the

main theoretical implications are:

(i) the expected liquidity effect is decreasing with investor horizons;

(ii) the expected liquidity effect is decreasing with the amount of liquidity risk;
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(iii) for “segmented” assets the expected liquidity effect is dampened because of

the exclusive ownership of long-term investors;

(iv) for “segmented” assets the expected liquidity effect also contains a spillover

term due to the correlation between segmented and non-segmented assets;

(v) the total risk premium is a mix of a market risk premium and a liquidity risk

premium. The liquidity risk premium becomes relatively more important

when short-term investors are more numerous or less risk-averse;

(vi) for “segmented” assets there is an additional segmentation risk premium due

to limited risk sharing;

(vii) for “segmented” assets there is an additional spillover risk premium due to

the correlation between segmented and non-segmented assets.

Note that the sign of the various effects listed above is not always unambigu-

ous. For example, the spillover effects clearly depend on the sign of the correlation

between segmented and non-segmented assets. The model thus predicts a more

complex relation between liquidity and expected returns compared to Acharya

and Pedersen (2005) and Amihud and Mendelson (1986). For example, one of

the most interesting predictions of Amihud and Mendelson (1986) is the concave

relationship between expected liquidity and expected returns. In our model, the

effect that drives this concave relation is also present (a smaller expected liquidity

coefficient for segmented assets, point 3 above). However, there are other seg-

mentation and spillover effects that also play a role. These additional effects are

not present in Amihud and Mendelson (1986), because they assume risk-neutral

investors. In their model long-term investors only invest in illiquid assets and not

in the liquid assets. In contrast, in our model with risk averse agents, long-term

investors will diversify and invest in liquid assets as well, leading to spillover and

segmentation effects.
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We thus observe that the introduction of heterogenous investment horizons into

a liquidity asset pricing model has strong implications for the pricing of liquid

versus illiquid assets. Specifically, we find various and potentially contrasting

effects on the liquidity (risk) premia. It then becomes an empirical question to

understand the relevance of these additional effects. We take on this task in the

next Sections of the paper.

1.4 Empirical Methodology

In this section, we explain how our liquidity asset pricing model can be esti-

mated. We also explore the economic mechanism that allows the identification of

the parameters. We then discuss alternative approaches for a robust computation

of standard errors.

1.4.1 GMM Estimation

We use a Generalized Method of Moments (GMM) methodology to estimate

the equilibrium condition given by equation (1.4), but without imposing R f =

1. The key estimated parameters are γ j = Q j/(A jS̃′ι), that is, the risk-bearing

capacity of the different classes of investors. We define the vector of pricing errors

of all assets, denoted by g(ψ,γ), as

g(ψ,γ) = E [Rt+1−1]− (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (1.25)

− (γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ is the vector of parameters, and ψ is a vector containing the underlying

expectations and covariances that enter the pricing errors. Specifically, ψ contains

all expected returns, expected costs, covariances entering the V j matrices, and the

covariances with the market return. In a first step, we estimate all elements of ψ
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by their sample moments. In a second step, we perform a GMM estimation of γ,

using an identity weighting matrix across all assets. We thus minimize the sum of

squared pricing errors over γ,

min
γ

g(ψ̂,γ)′g(ψ̂,γ). (1.26)

In Appendix 1.A.6, we derive the asymptotic covariance matrix of this GMM

estimator, taking into account the estimation error in all sample moments in ψ, in

line with the approach of Shanken (1992).

1.4.2 Identification

To gain insight into the economic mechanism that allows the identification of

the parameters, it is useful to illustrate some comparative statics results. Specif-

ically, a change in γ j means that the horizon h j investors become either more

numerous, or less risk averse, or both. Appendix 1.A.7 shows that the effect of

such a change on expected returns is given by

∂E [Rt+1−1]
∂γ j

= (γ1h1V1 + γ2h2V2)
−1V j

(
E [ct+1]−h jE [Rt+1−1]

)
. (1.27)

We observe two contrasting effects of an increase in γ j. The first effect is an in-

crease in the risk premium due to the impact of expected liquidity. The second

effect is the increased amount of risk sharing, which leads to a decrease in the

risk premium proportional to the original risk premium. For long-term investors,

the latter effect dominates and an increase in γ implies lower expected returns for

all assets. For short-term investors, however, the expected costs may exceed the

expected return h jE [Rt+1−1] for the more illiquid assets. This is exactly what we

observe in the data for some more illiquid stocks. Hence, an increase in γ1, which

corresponds to the short-term investors, may increase the expected return of illiq-
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uid assets and decrease the expected return of liquid assets. We also observe that

hedging considerations could play a different role for short-term versus long-term

investors, because the matrix pre-multiplying the difference between the liquidity

cost and the scaled risk premium can reverse the sign of the partial derivatives in

equation (1.27).

In summary, this comparative statics exercise shows that the estimated parame-

ters for short-term versus long-term investors may have opposing effects on equi-

librium expected returns for different assets and, as such, can be properly identi-

fied.

1.4.3 Bootstrap Standard Errors

We use a bootstrap test to check the robustness of the asymptotic standard er-

rors. We generate bootstrap samples by re-sampling the data and then carrying

out the first step of the estimation procedure to obtain estimates for the different

moments that enter the vector of pricing errors.

The test is a bootstrap t-test based on the bootstrap estimate of the standard

error. The test does not provide asymptotic refinements, but has the advantage that

it does not require direct computation of asymptotically consistent standard errors

and thus provides a check on the asymptotic standard errors. Overall, we find that

the bootstrap standard errors are close to the asymptotic standard errors.

1.5 Data

We largely follow Acharya and Pedersen (2005) in our data selection and con-

struction. We use daily stock return and volume data from CRSP from 1964 until

2009 for all common shares listed on NYSE and AMEX. As our empirical mea-

sures of liquidity rely on volume, we do not include Nasdaq since the volume data
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includes interdealer trades (and only starts in 1982). Overall, we consider a num-

ber of stocks ranging from 1,056 to 3,358, depending on the month. To correct for

survivorship bias, we adjust the returns for stock delisting (see Shumway (1997)

and Acharya and Pedersen (2005)).

The relative illiquidity cost is computed as in Acharya and Pedersen (2005).

The starting point is the Amihud (2002) illiquidity measure, which is defined as

ILLIQi,t =
1

Daysi,t

Daysi,t

∑
d=1

∣∣Ri,t,d
∣∣

Voli,t,d
(1.28)

for stock i in month t, where Daysi,t denotes the number of observations available

for stock i in month t, and Ri,t,d and Voli,t,d denote the trading volume in millions

of dollars for stock i on day d in month t, respectively.

We follow Acharya and Pedersen (2005) and define a normalized measure of

illiquidity that deals with non-stationarity and is a direct measure of trading costs,

consistent with the model specification. The normalized illiquidity measure can

be interpreted as the dollar cost per dollar invested and is defined for asset i by

ci,t = min
{

0.25+0.30ILLIQi,tP
m
t−1,30.00

}
, (1.29)

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end

of month t−1 divided by the value at the end of July 1962. The product with Pm
t−1

makes the cost series ci,t relatively stationary and the coefficients 0.30 and 0.25 are

chosen as in Acharya and Pedersen (2005) to match approximately the level and

variance of ci,t for the size portfolios to those of the effective half spread reported

by Chalmers and Kadlec (1998). The value of normalized liquidity ci,t is capped

at 30% to make sure the empirical results are not driven by outliers.

We obtain the book-to-market ratio using fiscal year-end balance sheet data

from COMPUSTAT in the same manner as Ang and Chen (2002). They follow
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Fama and French (1993) in defining the book value of a firm as the sum of common

stockholders’ equity, deferred taxes, and investment credit minus the book value

of preferred stocks. The ratio is obtained by dividing the book value by the fiscal

year-end market value.

We construct the market portfolio on a monthly basis and only use stocks that

have a price on the first trading day of the corresponding month between $5 and

$1000. We include only stocks that have at least 15 observations of return and

volume during the month. Following Acharya and Pedersen (2005), we use equal

weights to compute the return on the market portfolio.

We construct 25 illiquidity portfolios, 25 illiquidity variation portfolios, and

25 book-to-market and size portfolios, as in Acharya and Pedersen (2005). The

portfolios are formed on an annual basis. For these portfolios, we require again for

the stock price on the first trading day of the corresponding month to be between

$5 and $1000. For the illiquidity and illiquidity variation portfolios, we require to

have at least 100 observations of the illiquidity measure in the previous year.

Table 1 shows the estimated average costs and average returns across the 25

illiquidity portfolios. The values correspond closely to those found in Table 1

of Acharya and Pedersen (2005). Most importantly, we see that average returns

tend to be higher for illiquid assets. Also, the table shows that returns on more

illiquid portfolios are more volatile. This finding holds for returns net of costs as

well. The returns (net of costs) on more illiquid portfolios tend to co-move more

strongly with market returns (also net of costs).

1.6 Empirical Results

In this section, we take the model to the data. First, we estimate the parameters

of the model for the segmented case and compare it with single-horizon models

(e.g., Acharya and Pedersen (2005)). We also explore the implications of the
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estimates for the importance of the different components of expected returns. We

then study the robustness of our results to the choice of the investor horizon, to the

extent of segmentation, and to pricing different sets of portfolios.

1.6.1 Estimation Setup

We estimate the parameters of the equilibrium relation given by equation (1.4)

for the sample period 1964–2009 using the GMM methodology described in Sec-

tion 1.4.1. We first estimate the model on 25 portfolios of stocks listed on NYSE

and AMEX, sorted on illiquidity. In the next subsection, we also estimate the

model for 25 illiquidity-variation portfolios and 25 Book/Market-by-Size portfo-

lios.

Our benchmark estimation is based on two classes of investors.9 The first class

(short horizon) has an investment horizon h1 of one month, the second class (long

horizon) has an investment horizon h2 of 120 months (10 years). The choice of the

length of the long horizon can be related to the results of using the methodology

of Atkins and Dyl (1997) for our sample.10 Over the 1964-2009 period, we find

an average holding period of 5.59 years. The robustness tests later in Section 1.6.3

show that the empirical results are virtually unchanged with the long horizon set

at five years or longer.

Long-term investors tend to hold more illiquid assets. Consistent with this idea,

Table 1.1 shows that turnover tends to be much lower and has a smaller standard

deviation for the least liquid portfolios. We thus impose a segmentation cutoff,

where the one-month investors invest only in the 19 most liquid portfolios. We

choose this threshold based on the empirical evidence in Table 1.1. While monthly

9Adding a third class of investors does not yield substantial empirical improvement. The corresponding coefficient
does not necessarily go to zero, but the R2 remains essentially unchanged, with little gain in terms of explanatory power.

10Atkins and Dyl (1997) find that the mean investor holding period for NYSE stocks during the period 1975–1989
is roughly equal to 4.01 years.
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expected excess returns are larger or similar to expected costs for most portfolios,

for the six least liquid portfolios, the costs become roughly 2 to 9 times higher

than the monthly average return. As the one-month investors incur the costs each

period, these assets can be seen as prohibitively costly.11

This simple rule for the one-month investor (hold the asset if the expected

monthly return exceeds the expected transaction costs and have a zero position

otherwise) would also be the optimal rule with a diagonal covariance matrix of re-

turns, as equation (1.2) shows.12 Furthermore, Figure 1.6 shows that this threshold

maximizes the cross-sectional R2 across all possible cutoffs, including the model

without any segmentation.

Having set horizons and the segmentation cutoff, we now estimate the model

parameters γ j = Q j/(A jS̃′ι) and, in some cases, a constant term in the expected

return equation (α). We denote the models with and without a constant term as

specifications (SEG+α) and (SEG), respectively. The role of the constant term

is basically to provide a specification check, because it should equal zero under

the null hypothesis. Recall that we can interpret h jγ j as the risk-bearing capacity

of h j-investors. The risk-bearing capacity is determined by the risk aversion (A j)

and size (Q j) of the h j-investor group. Hence, the interpretation of the estimated

parameters can offer interesting insights on the risk aversion or size of the short-

term versus long-term investor groups.

We compare our model with a baseline one-period horizon model as in equa-

tion (1.7), with N = 1 and h1 = 1. Here, we follow Acharya and Pedersen (2005)

and allow for a slope coefficient κ on the expected liquidity term E [ct+1], although

11A portfolio-level analysis along the lines of Atkins and Dyl (1997) shows that the first 19 portfolios have average
holding periods between 2.49 and 7.91 years, while portfolios 20 through 25 have average holding periods between
10.67 and 30.12 years, suggesting that short-term investors are unlikely to trade these illiquid stocks.

12To determine endogenously what are the portfolios held by the one-month investors, we can cast the problem
as a mean-variance optimization exercise for the one-month investors. However, with this exercise, we run into the
often-encountered issue of extreme positions in some portfolios due to close-to-singular covariance matrices.
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formally the Acharya and Pedersen (2005) model implies a coefficient on expected

liquidity equal to one. This coefficient is used by Acharya and Pedersen (2005)

to correct for the fact that the typical holding period does not equal the estimation

period of one month. We denote these single-horizon specifications as (AP) and

(AP+α) if we add the constant term. These single-horizon specifications provide a

very useful baseline case to understand the empirical improvement of having mul-

tiple horizons and segmentation, because they have the same degrees of freedom

of the segmented models. For both categories, there are two estimated parameters

and, possibly, a constant. Specifically, the single horizon case contains one hori-

zon parameter and one expected liquidity coefficient, while the multiple horizon

case has one parameter for each horizon.

1.6.2 Benchmark Estimation Results

Table 1.2 shows the results for the illiquidity portfolios. We find that the first

specification of the segmented model (SEG), without a constant term, improves

the R2 of the Acharya-Pedersen model by about 20%, from 62% to 82%. Impor-

tantly, this improvement is achieved retaining the parsimony of the original model

– both models depend on two parameters. The fit is graphically displayed in Fig-

ure 1.2. The graphs indicate that accounting for segmentation and heterogeneous

horizons leads to smaller pricing errors in the upper-right end of the plot, i.e., for

the more illiquid portfolios (as Table 1.1 shows that illiquid portfolios tend to have

higher excess returns). Since the more illiquid portfolios are also characterized by

segmentation, this is first suggestive evidence that the economic source of the im-

proved fit of our model is obtained by effectively constraining the clientele of the

illiquid assets to the long-term investors. Table 1.2 also shows that the segmented

model still outperforms the AP model when we allow for a constant term α in the

asset pricing equation.
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We then investigate the sources of this improved fit in more detail and use

the empirical estimates to decompose expected returns into an expected liquidity

component and risk premium component, according to equation (1.4). We depict

this decomposition for the single-horizon and two-horizon case with segmenta-

tion in Figure 1.3. We notice that in the single horizon (AP) case, the impact

of the expected liquidity term is relatively modest. This is because the expected

costs increase exponentially when moving from liquid to illiquid portfolios, while

the expected returns do not exhibit such an exponentially increasing pattern (see

Table 1.1 as well as Figure 1.1). If anything, the expected returns increase with

illiquidity at a lower rate for the more illiquid portfolios: the expected return levels

off after portfolio 19, but the expected expected liquidity term keeps rising. The

(AP) specification implies a linear relation between expected costs and expected

returns, and thus has difficulty fitting the cross-section of liquid versus illiquid

portfolios. As a result, the expected liquidity effect is rather small for the (AP)

specification (a few basis points per month for most portfolios).

Our model with segmentation reduces the impact of the expected liquidity term

on the illiquid portfolios relative to the impact on the liquid portfolios. Hence, our

model allows for a much larger overall expected liquidity premium (between 10

and 40 basis points per month) and this improves the fit substantially as shown

by Figure 1.2 and Figure 1.3. The average expected liquidity premium across

portfolios is about 20 basis points per month for the (SEG) specification, compared

to an average effect of 3 basis points for the (AP) specification. Since only long-

term investors hold the most illiquid assets, the expected liquidity premium is

relatively limited for these assets. This explains the drop in the impact of the cost

term around portfolios 19 and 20. Figure 1.3 also shows that the covariance term

provides the largest overall contribution to the expected excess returns.

To gain further insight into the impact of segmentation, we make use of Propo-

sition 3 to decompose both the expected liquidity effect and the covariance effect
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into a full risk-sharing component, a segmentation component, and a spillover

component. We show these components in Figure 1.4. The decomposition indi-

cates clearly how the impact of segmentation on the total expected return builds

up. For the expected liquidity premium given in equation (1.17) (upper panel in

Figure 1.4), the full risk-sharing effect increases sharply for the least liquid port-

folios since expected costs increase exponentially when moving to illiquid assets.

This effect is mostly canceled out by the negative segmentation effect, which arises

because the long-term investors care less about liquidity. There is still a modest

liquidity spillover premium. Hence, the liquidity spillover effect drives most of

the expected liquidity effect for the least liquid assets. This is also what causes

the drop in the model-implied expected return going from portfolio 19 to 20, as

depicted in Figure 1.3.

For the covariance component of expected returns (lower panel of Figure 1.4),

we observe that the segmentation premium and the spillover risk premium in equa-

tions (1.19) and (1.20) mostly cancel out because the returns on illiquid portfolios

are strongly related to liquid portfolio returns. Hence the risk premia of liquid

and illiquid assets are quite similar. This is evidence showing that the effect of

segmentation is almost entirely driven by the expected liquidity term.

The estimates in Table 1.2 can be used to obtain insight into the structural

parameters in the asset pricing model. For example, if we assume for simplicity

that risk aversion is constant across investor classes (i.e., A1 = A2), we can make

inferences about the number of investors in each class. More specifically, we

examine the ratio (h2γ2)/(h1γ1) = (h2Q2)/(h1Q1).13 The results for specifications

(SEG) and (SEG+α) show that the estimates imply that there are respectively 2.1

and 2.6 times as many long horizon investors as there are short horizon investors.

13As Q j investors with horizon h j enter each period, at each point in time the total number of type- j investors
equals h jQ j. Also note that including S̃′ι in the γ j does not influence our comparison.
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We show some comparative statics results for each model parameter in Fig-

ure 1.5 (see equation (1.27) for the analytical expression). The graphs illustrate

the impact on the risk premium of an increase in the γ j, that is, an increase in the

quantity of class j investors, a decrease in their risk aversion, or both. The top

panel shows the baseline case with one-period homogeneous investors. Here, the

larger risk-sharing (with more numerous or less risk averse investors) is all that

matters. Looking now at long-term investors in the heterogeneous horizon model

(Figure 1.5, bottom right panel), we see that the effect of an increase in γ2 on the

risk premium is always negative. This is consistent with the theoretical analysis of

Section 1.4.2, where we show that for long-term investors the risk sharing effect

dominates the liquidity effect (absent hedging considerations). In other words, this

finding confirms empirically that long term investors are less concerned about liq-

uidity. For the short term investors (Figure 1.5, bottom left panel), we see that the

effect of γ1 on expected returns is positive for the most illiquid portfolios and nega-

tive for the more liquid portfolios, again in line with our intuition in Section 1.4.2.

These comparative statics results show that γ1 and γ2 have quite different effects

on expected returns, which implies that these parameters are well identified em-

pirically.

1.6.3 Robustness Across Horizons and Portfolios

In this subsection, we check the robustness of our empirical findings to dif-

ferent modeling assumptions. We first test the sensitivity of model performance

to the choice of the long term investor horizon and we compute the R2 for h2 =

30,60,120,240,480 months. The results are given in Figure 1.6, and show that the

explanatory power of the model is relatively insensitive to the choice of horizon.

In addition, the coefficients do not vary much across the different choices. The

performance is also robust to varying h1, the short-term investor horizon, as long
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as it does not grow too large. More specifically, with h1 = 6 months we still obtain

a substantial improvement over the single-horizon model.

The second robustness check concerns the assumption of i.i.d. transaction costs,

which is required to obtain a tractable solution for the asset pricing model. Em-

pirically, transaction costs are persistent over time. For example, Acharya and

Pedersen (2005) estimate an AR(2) model for their monthly measure of trans-

action costs. For our empirical application, the i.i.d. assumption is not a major

concern for two reasons. First, as shown above, the model generates a good fit

even when the short-term investors have a six-month horizon (h1 = 6). The persis-

tence of transaction costs is obviously lower at a semi-annual frequency compared

to the monthly frequency in Acharya and Pedersen (2005). Second, and more im-

portantly, we estimate a version of the model without liquidity risk (hence with

constant ct+1). The results in Table 1.3 show that the model fit is virtually un-

changed. This shows that the good fit of the heterogenous-horizon model is not

obtained through the liquidity risk channel, but rather via the expected liquidity

effect and the associated segmentation and spillover effects. In addition, it follows

from the result in Appendix 1.A.3 that without liquidity risk, V2 = I (assuming

R f = 1). The results for the model without liquidity risk thus indicate that the

assumption that V2 = I does not seem to be very restrictive, validating the analysis

of Section 1.3.3.

Another robustness test is related to the specific choice of the baseline model.

Equation (1.7) is an i.i.d. version of the Acharya and Pedersen (2005) model,

which is a conditional model. To obtain an unconditional version, they take ex-

pectations on both sides and apply a standard result regarding the expectation of a

conditional covariance. This means that the covariance component in their speci-

fication is actually a covariance between residuals of Rt+1− ct+1 and residuals of

Rm
t+1− cm

t+1, obtained with an AR(2) model for returns and liquidity. Unreported

estimation results show that the conditional model with AR(2) residuals yields
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very similar results as the unconditional specification of equation (1.7). Hence,

the comparison of the explanatory power between the results of the models in Ta-

ble 1.2 does not depend on the specific version of the one-period single horizon

model that is used.

As a final robustness check, we also estimate our model for two different port-

folio sorts. As before, the segmentation cutoff is set by comparing the average

monthly return to the average transaction costs, with the one-month investors only

investing in the portfolios where the monthly return exceeds the costs. Table 1.4,

Panel A, shows even larger improvements in the cross-sectional fit of our model for

the σ(illiquidity) portfolios: the R2 equals 64.1% in the AP model versus 86.5% in

the heterogenous horizon model for the case without a constant term. This shows

that the model captures well both the pricing of the level of liquidity and liquidity

risk. For the B/M-by-size portfolios, the improvement is also very substantial (see

Table 1.4, Panel B): here the cross-sectional R2 equals 35.0% in the AP model

versus 54.4% in the heterogenous horizon model (without constant term).14 In

summary, for any portfolio sorting criteria, our heterogeneous investment horizon

model with segmentation provides at least a 20% R2 improvement in the cross-

sectional fit.

1.7 Conclusions

Heterogeneous investment horizons can have important asset pricing effects

through the distinct role of liquidity. Different horizons imply different trading

14If we include a constant term in the asset pricing model, the improvement in R2 is even larger. In this case,
the estimate for γ1 in the heterogenous-horizon model tends to infinity, implying a zero risk premium for the non-
segmented portfolios. For these portfolios the returns are best explained by the constant term plus the expected
liquidity effect.
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frequencies and therefore trading costs can have a varying impact for the expected

returns of assets held by short-term versus long-term investors.

We present a new liquidity-based asset pricing model with heterogeneous in-

vestment horizon investors and stochastic transaction costs. Our model contributes

to the literature by effectively bridging the clientele of investors in the seminal

Amihud and Mendelson (1986) paper with the risk-averse agents and stochastic

illiquidity of the Acharya and Pedersen (2005) model. The increased generality of

our model delivers a number of new theoretical insights. It also provides a useful

metric to understand the empirical cost of restrictive assumptions, such as horizon

homogeneity, in fitting the cross-section of U.S. stock returns.

The most intriguing theoretical result is the existence of an equilibrium with

partial segmentation. Short-term investors optimally choose not to invest in the

most illiquid assets, intuitively because their expected returns are not sufficient to

cover expected transaction costs. In contrast, long-term investors trade less fre-

quently and can afford to invest in illiquid assets. In this equilibrium, the expected

returns of segmented assets contain additional terms, both for risk premia and in

expected liquidity effects. These additional terms depend partly on the segmented

ownership and partly on the correlation between liquid and illiquid assets.

The additional structure imposed by our model delivers a substantial increase

in the cross-sectional explanatory power for U.S. stock returns. For a number of

portfolio sorting criteria, we find that our heterogeneous horizon model increases

the R2 by at least 20% compared to an homogeneous-horizon liquidity asset pric-

ing model. With the same degrees of freedom, we obtain this large empirical

improvement through a suitable characterization of the relation between excess

returns and different features of expected liquidity and the liquidity risk premium.

This characterization depends crucially on the presence of partial segmentation

and agents’ risk aversion.
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1.A Derivations

1.A.1 Main result

To derive the main result, we consider N classes of investors, as this shows the generality of

the result and shortens the proof. We start by introducing sets B j ( j = 1, . . . ,N) that represent the

assets that investor j optimally holds in his or her portfolio. In Appendix 1.A.2 we describe the

conditions that are required for these optimal portfolios. We let the B j be subsets of {1, . . . ,K},

where K is the number of assets. Without loss of generality we assume that for some j it holds that

B j = {1, . . . ,K}.

Proof of Proposition 1: To derive the equilibrium, we first consider each investor’s optimization
problem. For the investors with horizon h j it is given by

max
y j,t

E
[
Wj,t+h j

]
− 1

2
A jVar

(
Wj,t+h j

)
(1.30)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
.

We first introduce notation that will allow us to derive the equilibrium in the case where investor
j holds only assets that are in B j. For a K×K matrix M, we denote by MB j the |B j|× |B j| matrix
(with | · | the cardinality of a set) with the rows and columns that are not elements of B j removed.
As it will be used frequently, we also introduce the notation M−1

B j,p for the inverse of MB j with zeros
inserted at the locations where rows and columns of M were removed, so that M−1

B j,p is a K×K

matrix.
For example, let

M =

 1 3 2
2 2 4
3 5 7


and let B j = {1,3}. Then

MB j =

[
1 2
3 7

]
,
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so that

M−1
B j

=

[
7 −2
−3 1

]
.

We then have

M−1
B j,p =

 7 0 −2
0 0 0
−3 0 1

 .
If we apply this operation to the covariance matrix in the optimization problem of investor j, this
yields the solution considering only the assets in B j padded with zeros, so that it is a K×1 vector.
The benefit is that it makes the solution vectors y j,t ( j = 1, . . . ,N) conformable to addition, which
allows us to derive the equilibrium.

Thus, given that the optimal portfolio of the investor consists only of assets that are elements
of B j, the solution is

y j,t =
1
A j

Vart

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j −Rh j

f Pt

)−1

B j,p

(1.31)

×Et

[
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j −Rh j

f Pt

]
.

Using the i.i.d. assumption for dividends and costs, we obtain a stationary equilibrium with con-
stant prices and i.i.d. returns. It is then straightforward to derive that y j,t can be written as (deriva-
tion available on request)

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

(1.32)

×

(
E

[
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

]
−

h j−1

∑
k=0

Rh j−k
f

)
.

Similarly, it is also straightforward to show that

E

[
h j

∑
k=1

Rh j−k
f Rt+k

]
−

h j−1

∑
k=0

Rh j−k
f = ρ j

(
E [Rt+1]−R f

)
, (1.33)
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where ρ j = ∑
h j
k=1 Rh j−k

f . Making further use of the i.i.d. assumption by which E(ct+h j) = E(ct+k)

for all j and k, the allocations can thus be written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

(1.34)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
.

Each period a fixed quantity Q j > 0 of type j investors enters the market. The equilibrium condition
at time t is

N

∑
j=1

Q jy j,t = S−
N

∑
j=1

h j−1

∑
k=1

Q jy j,t−k, (1.35)

which is equivalent to
N

∑
j=1

h j−1

∑
k=0

Q jy j,t−k = S. (1.36)

Under the i.i.d. assumption we have y j,t−k = y j,t for all k, so that

N

∑
j=1

h jQ jy j,t = S. (1.37)

Scaling by price we obtain
N

∑
j=1

h jQ j diag(Pt)y j,t = S̃t , (1.38)

where S̃t = diag(Pt)S. At this point it is useful to introduce the notation Rm
t+1 = S̃′tRt+1/S̃′tι, and

cm
t+1 = S̃′tct+1/S̃′tι. We note that in the i.i.d. setting with constant prices, S̃t is constant over time,

hence we omit the time subscript and write S̃ in what follows. This allows us to write

Var(Rt+1− ct+1) S̃ = S̃′ιCov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Then, multiplying both sides of (1.38) by (1/S̃′ι)Var(Rt+1− ct+1), and filling in the expression for
the optimal allocations gives

N

∑
j=1

h j
Q j

A jS̃′ι
Var(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1

B j,p

(1.39)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.
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We define γ j = Q j/(A jS̃′ι) and

Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

. (1.40)

This allows us to write

N

∑
j=1

γ jVj
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
. (1.41)

We can rewrite this equilibrium condition as

E [Rt+1]−R f =

(
N

∑
j=1

γ jρ jVj

)−1 N

∑
j=1

γ jVjE [ct+1] (1.42)

+

(
N

∑
j=1

γ jρ jVj

)−1

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Q.E.D.

1.A.2 Endogenous Segmentation

In this Appendix we describe under which conditions endogenous segmentation arises. Con-
sider the usual (non-segmented) mean-variance solution for the short-term investors

y1,t =
1

A1
diag(Pt)

−1 Var

(
h1

∑
k=1

Rh1−k
f Rt+k− ct+h1

)−1

(1.43)

×
(
ρ1
(
E [Rt+1]−R f

)
−E [ct+1]

)
,

Suppose that the costs on some illiquid assets are so high that, in equilibrium, some elements of
y1,t are negative. Without loss of generality, order the assets such that y1,t = (yliq,1,t ,yilliq,1,t) with
yliq,1,t having only positive (or non-negative) elements and yilliq,1,t having only negative elements.
In this case, these investors do not want to buy the more illiquid assets. Of course, it is still possible
that the investor wants to short these illiquid assets, but this is unlikely given the high transaction
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1.A. DERIVATIONS

costs. To see this formally, we note that if the optimal position in the illiquid assets were negative
(and positive for the liquid assets), the optimal portfolio would be

z1,t =
1

A1
diag(Pt)

−1 Var

(
h1

∑
k=1

Rh1−k
f Rt+k−δ1ct+h1

)−1

(1.44)

×
(
ρ1
(
E [Rt+1]−R f

)
−δ1E [ct+1]

)
,

where δ1 is a diagonal matrix with elements equal to 1 if the investor is long in the respective asset,

and -1 if the investor is short (see Bongaerts, De Jong, and Driessen (2011)). Consider the i-th

asset. If zilliq,1,i,t < 0, this is indeed the solution to the optimal portfolio rule, but this is unlikely

if costs are high for this asset. In turn, if zilliq,1,i,t > 0 and the corresponding element of yilliq,1,t

is negative, it is optimal for the short-term investors to have a zero position in the illiquid assets.

We thus focus here on the case in which costs are high enough so that the short-term investors

optimally have a zero position in the illiquid assets. Hence, the set B1 contains only those assets

that are liquid enough for the short-term investors to invest in them.

1.A.3 Computing the long-term covariance matrix

We use the i.i.d. assumption to rewrite part of the moment conditions as follows

Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

=

((
h j−1

∑
k=1

R2(h j−k)
f

)
Var(Rt+1)+Var(Rt+1− ct+1)

)−1

. (1.45)

This allows us to compute the covariance terms using only one-period covariances.

1.A.4 Market and liquidity risk premia with two assets

Proof of Proposition 2: We consider the two-asset case (K = 2), with two horizons (N = 2), h1 = 1,
and no segmentation. We start from (1.38), multiply both sides by 1/S̃′tι, and use the expression
for the allocations to obtain

N

∑
j=1

Q j

A jS̃′ι
h jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1 (
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
=

S̃

S̃′ι
. (1.46)

41



CHAPTER 1. LIQUIDITY AND THE INVESTMENT HORIZON

This yields

E [Rt+1]−R f =

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

(1.47)

×

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
E [ct+1]

+

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

S̃

S̃′ι
.

Next, we introduce for j = 1,2 the determinants

d j = det

(
Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

))
, (1.48)

we note that K = 2 implies that the adj(·) operator is additive, and we apply (1.45) to write

Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

=
1
d j

adjVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)
(1.49)

=
1
d j

((
h j−1

∑
k=1

R2(h j−k)
f

)
adjVar(Rt+1)+ adjVar(Rt+1− ct+1)

)
.

We now let

d0 = det

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
 (1.50)

and

σ j =
h j−1

∑
k=1

R2(h j−k)
f . (1.51)
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Making use of the fact that the adj(·) operator is equal to its own inverse (as K = 2), we find N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

(1.52)

=
1
d0

adj

(
N

∑
j=1

γ j
ρ jh j

d j

(
σ j adjVar(Rt+1)+ adjVar(Rt+1− ct+1)

))

=
N

∑
j=1

γ jλ j
(
σ jVar(Rt+1)+Var(Rt+1− ct+1)

)
,

where λ j = ρ jh j/d0d j. It now follows from (1.39) that

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1

B j,p

−1
S̃

S̃′ι
(1.53)

=
N

∑
j=1

γ jλ j
(
σ jCov

(
Rt+1,Rm

t+1
)
+Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
))

=

(
N

∑
j=1

γ jλ j

)
Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
+

(
N

∑
j=1

γ jλ jσ j

)
Cov

(
Rt+1,Rm

t+1
)
.

The result now follows by applying (1.53) to (1.47) with N = 2. Q.E.D.

1.A.5 Segmentation effects

For this part, we specialize to N = 2, and h1 = 1. To derive the result below, we assume that
V2 = I, that the h1-investors invest only in the most liquid assets, and that the h2-investors invest in
all assets.

Proof of Proposition 3: If we sort the assets by liquidity with the most liquid assets first, writing

Var(Rt+1− ct+1) =

[
Vliq Vliq,illiq

Villiq,liq Villiq

]
, (1.54)
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we have

V1 = h1Var(Rt+1− ct+1)Var

(
h1

∑
k=1

Rh1−k
f Rt+k− ct+h1

)−1

B1,p

(1.55)

=

[
Vliq 0
0 Villiq

][
V−1

liq 0

0 0

]

=

[
I 0

Villiq,liqV−1
liq 0

]
.

Using N = 2 and V2 = I in (1.42) leads to the equilibrium relation

E [Rt+1]−R f = (γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I)E [ct+1]

+ (γ1ρ1V1 + γ2ρ2I)−1 Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

To find the liquidity risk effect, we focus on the factor

(γ1ρ1V1 + γ2ρ2I)−1 =

[
(γ1ρ1 + γ2ρ2) I 0
γ1ρ1Villiq,liqV−1

liq γ2ρ2I

]−1

=

[
(γ1ρ1 + γ2ρ2)

−1 I 0
−γ1ρ1 (γ2ρ2)

−1 (γ1ρ1 + γ2ρ2)
−1Villiq,liqV−1

liq (γ2ρ2)
−1 I

]
.

In what follows, we will use the liquidity spillover beta, defined by

β =Villiq,liqV−1
liq (1.56)

= Cov
(

Rilliq
t+1− cilliq

t+1,R
liq
t+1− cliq

t+1

)
Var
(

Rliq
t+1− cliq

t+1

)−1
.

For the impact of the level of liquidity we write

(γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I) (1.57)

=

[
(γ1ρ1 + γ2ρ2)

−1 I 0
−γ1ρ1 (γ2ρ2)

−1 (γ1ρ1 + γ2ρ2)
−1

β (γ2ρ2)
−1 I

][
(γ1 + γ2) I 0

γ1β γ2I

]

=

[
(γ1 + γ2)(γ1ρ1 + γ2ρ2)

−1 I 0(
γ1 (γ2ρ2)

−1− γ1ρ1 (γ2ρ2)
−1 (γ1 + γ2)(γ1ρ1 + γ2ρ2)

−1
)

β ρ
−1
2 I

]
.
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We rewrite the scalar part of the spillover coefficient using the identity

γ1

γ2ρ2
− γ1ρ1 (γ1 + γ2)

γ2ρ2 (γ1ρ1 + γ2ρ2)
=

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
. (1.58)

Combining the results above, we can write the equilibrium relation for the liquid assets as

E
[
Rliq

t+1

]
−R f =

γ1 + γ2

γ1ρ1 + γ2ρ2
E
[
cliq

t+1

]
+

1
γ1ρ1 + γ2ρ2

Cov
(

Rliq
t+1− cliq

t+1,R
m
t+1− cm

t+1

)
. (1.59)

and the equilibrium relation for the illiquid assets as

E
[
Rilliq

t+1

]
−R f =

1
ρ2

E
[
cilliq

t+1

]
+

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
βE
[
cliq

t+1

]
(1.60)

+
1

γ2ρ2
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
− γ1ρ1

γ2ρ2 (γ1ρ1 + γ2ρ2)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
.

The desired expressions now follow directly. Q.E.D.

1.A.6 Estimation Methodology – Obtaining Standard Errors

We denote the required moments that enter the asset pricing model by the vector ψ. This
vector contains expected returns, expected costs, and all required covariances of returns and costs.
It is straightforward to derive the asymptotic covariance matrix of the sample estimator of these
moments (since covariances can be written as second moments plus products of first moments),

√
T (ψ̂−ψ)

d→N
(
0,Sψ

)
. (1.61)

We can now use the delta method to find the standard errors for γ̂.
Consider the GMM minimization problem given by

min
γ

g(ψ̂,γ)′g(ψ̂,γ), (1.62)

for which the solution is implicitly given by

2Gγ(ψ̂,γ)
′g(ψ̂,γ) = 0, (1.63)
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where
Gγ(ψ,γ) =

∂g(ψ,γ)
∂γ

. (1.64)

Dividing both sides of (1.63) by 2 and evaluating at γ̂, we may write

Gγ(ψ̂, γ̂)
′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)

′ (g(ψ̂, γ̂)−g(ψ̂,γ0)) = 0. (1.65)

Next, we expand g(ψ̂, γ̂) around γ0 to obtain

g(ψ̂, γ̂)−g(ψ̂,γ0)≈ Gγ(ψ̂, γ̂) (̂γ− γ0) . (1.66)

It follows that
Gγ(ψ̂, γ̂)

′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)
′Gγ(ψ̂, γ̂) (̂γ− γ0) = 0. (1.67)

We now expand g(ψ̂,γ0) around ψ0 and use the fact that g(ψ0,γ0) = 0 to find that

g(ψ̂,γ0)≈ Gψ(ψ̂, γ̂)(ψ̂−ψ0) , (1.68)

where
Gψ(ψ,γ) =

∂g(ψ,γ)
∂ψ

. (1.69)

Hence
Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂) (̂γ− γ0) =−Gγ(ψ̂, γ̂)
′Gψ(ψ̂, γ̂)(ψ̂−ψ0) . (1.70)

Using this result we obtain

√
T (̂γ− γ0)≈−

(
Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂)
)−1 Gγ(ψ̂, γ̂)

′Gψ(ψ̂, γ̂)
√

T (ψ̂−ψ0) . (1.71)

It follows that

√
T (̂γ− γ0)

d→N
(

0,
(

G′γGγ

)−1
G′γGψSψG′ψGγ

(
G′γGγ

)−1
)
. (1.72)

This result allows us to compute standard errors for the γ estimates taking into account the pre-

estimation of the various moments ψ. For the final estimation procedure, we restrict the γ j per-

taining to the horizons h j to be positive by estimating the logs. We use the usual, additional, delta

method correction for the computation of the standard errors.
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1.A.7 Comparative statics

We consider an increase in γk, so that the horizon hk investors become either more numerous,
or less risk averse, or both. We find

∂
(
E [Rt+1]−R f

)
∂γk

=−

(
N

∑
j=1

γ jρ jVj

)−1

ρkVk

(
N

∑
j=1

γ jρ jVj

)−1 N

∑
j=1

γ jVjE [ct+1] (1.73)

+

(
N

∑
j=1

γ jρ jVj

)−1

VkE [ct+1]

−

(
N

∑
j=1

γ jρ jVj

)−1

ρkVk

(
N

∑
j=1

γ jρ jVj

)−1

×Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Rearranging gives

∂
(
E [Rt+1]−R f

)
∂γk

=

(
N

∑
j=1

γ jρ jVj

)−1

Vk
(
E [ct+1]−ρk

(
E [Rt+1]−R f

))
. (1.74)
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Table 1.2. GMM estimation results: Illiquidity portfolios

This table shows the results from estimation of the various specifications of the model. The estimates are based on
monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–
2009. An equal-weighted market portfolio is used. The specifications are special cases of the relation

E [Rt+1]−R f = α+κ(γ1ρ1V1 + γ2ρ2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (1.75)

+(γ1ρ1V1 + γ2ρ2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ j = Q j/(A jS̃′ι), ρ j = ∑
h j
k=1 R

h j−k
f , and

Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

R
h j−k
f Rt+k− ct+h j

)−1

B j ,p

. (1.76)

We set h1 = 1, and h2 = 120. The parameters are estimated using GMM. For each coefficient the t-value is given
in parentheses. The cross-sectional R2 is reported in the rightmost column. Estimates for the heterogeneous horizon
model, where short term investors invest only in the 19 most liquid portfolios, are denoted by SEG. AP indicates that
the specification corresponds to a variant of the Acharya and Pedersen (2005) specification (1.7). Where the value of
κ is unreported, it is set to 1.

γ1 γ2 α κ R2

(SEG) 0.2080 0.0036 0.8224
(0.5922) (1.9400)

(SEG+α) 0.0830 0.0018 -0.0050 0.8722
(0.2763) (1.1285) (-0.5358)

(AP) 0.3973 0.0287 0.6215
(2.2428) (0.1672)

(AP+α) 0.1737 -0.0078 0.0088 0.7660
(0.8451) (-0.5432) (0.0213)
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Table 1.3. GMM estimation results: Illiquidity portfolios, without liquidity risk

This table shows the results from estimation of the various specifications of the model without liquidity risk. The setup
is the same as in Table 1.2, but with ct+1 taken to be constant and equal to its estimated mean.

γ1 γ2 α κ R2

(SEG) 0.2008 0.0038 0.8243
(0.3237) (1.4004)

(SEG+α) 0.0802 0.0019 -0.0049 0.8725
(0.1172) (0.9545) (-0.2375)

(AP) 0.3922 0.0425 0.6136
(2.2360) (0.2500)

(AP+α) 0.1675 -0.0081 0.0402 0.7621
(0.8949) (-0.5933) (0.0994)
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Table 1.4. GMM estimation results: σ(illiquidity) and B/M-by-size portfolios

This table shows the results from estimation of the various specifications of the model for different portfolio types.
The setup is the same as in Table 1.2. Panel A shows the results for 25 portfolios sorted on illiquidity variation. For
Panel B 25 value-weighted portfolios sorted on book-to-market value and size are used. In both cases the same rule for
the segmentation threshold is used as in Table 1.2: the one-month investors only invest in assets for which the monthly
average return exceeds the average transaction cost.

Panel A: σ(illiquidity) portfolios

γ1 γ2 α κ R2

(SEG) 0.2030 0.0037 0.8650
(0.5557) (1.9920)

(SEG+α) 0.0796 0.0019 -0.0046 0.9078
(0.2854) (1.4201) (-0.7796)

(AP) 0.3993 0.0278 0.6407
(2.2445) (0.1718)

(AP+α) 0.1755 -0.0076 0.0014 0.7867
(0.9360) (-0.6027) (0.0037Z)

Panel B: B/M-by-size portfolios

γ1 γ2 α κ R2

(SEG) 0.7721 0.0027 0.5442
(0.3613) (0.5327)

(SEG+α) 1.8 ·1014 0.0030 0.0018 0.7579
(0.0000) (0.9388) (0.5242)

(AP) 0.4630 0.0424 0.3498
(2.0839) (0.2590)

(AP+α) 0.8201 0.0025 0.0540 0.3923
(0.8285) (0.8093) (0.5891)
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Figure 1.1. Expected returns and level of illiquidity. This figure illustrates the average monthly
return (left axis) and average transaction costs (right axis) for the 25 US stock portfolios sorted on
illiquidity. Portfolio 1 is the most liquid portfolio, while portfolio 25 is the least liquid portfolio.
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Figure 1.2. Fitted excess returns vs. realized excess returns. The left panel shows the goodness
of fit for the Acharya and Pedersen (2005) specification (AP). The right panel shows the fit for
the heterogeneous horizon specification (SEG). The graphs correspond to the estimation results as
given in Table 1.2.
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Figure 1.3. Decomposition of predicted excess returns in the expected liquidity premium and
the risk premium. In each panel the lower part shows the expected liquidity premium and the
upper part the risk premium. The line indicates the actual excess return. The upper panel shows
the decomposition for the Acharya and Pedersen (2005) specification (AP). The lower panel shows
the decomposition for the heterogeneous horizon specification (SEG). The graphs correspond to
the estimation results as given in Table 1.2.
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Figure 1.4. Segmentation effects. The top panel shows the decomposition of the expected liquid-
ity premium into three components: the full risk-sharing component, the segmentation component,
and the spillover component. The bottom panel shows a similar decomposition for the risk pre-
mium. In all cases the heterogeneous horizon specification (SEG) is used. The coefficient values
correspond to the estimation results as given in Table 1.2.
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Figure 1.5. Comparative statics. The comparative statics are computed according to equation
(1.27), and give the sensitivity of the expected return to the parameter γ j. The top panel shows
the comparative statics for the Acharya and Pedersen (2005) specification (AP). The bottom panel
shows the comparative statics for the heterogeneous horizon specification (SEG). The graphs cor-
respond to the estimation results as given in Table 1.2.
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Figure 1.6. Robustness to horizons and segmentation. This graph shows the sensitivity of the
cross-sectional R2 to varying the horizons and to varying the segmentation threshold. The data and
the specifications are the same as in Table 1.2. Setting h1 = 1, we let h2 = 30,60,120,240,480.
Alternatively, we fix h2 = 120 and let h1 = 1,3,6,12,36. For the segmentation level we take h1 = 1,
h2 = 120 and let the short-term investors invest in the 16, . . . ,25 most liquid portfolios. The case
of 25 corresponds to integration.

56



Chapter 2

The Effect of Homeownership on the
Idiosyncratic Housing Risk Premium1

2.1 Introduction

Diversification is at the core of modern portfolio theory. Yet, housing makes up

about two-thirds of the typical U.S. household portfolio. In the aftermath of WW

I, the U.S. Department of Labor together with several real-estate industry groups

launched a nationwide Own Your Own Home campaign to promote homeowner-

ship as a way to mitigate social unrest and favor economic growth. Over the years,

homeownership has been central in the political agenda of both Democrats and

Republicans. In 1995, the Clinton administration amended the Community Rein-

vestment Act of 1977 to promote lending in low-income neighborhoods. In 2003,

President Bush signed into law the American Dream Downpayment Assistance

Act to help families with their down payments and closing costs. Homeownership

reached a record high 69% in the years that lead to the subprime crisis of 2007.

1This chapter is based on joint work with Erasmo Giambona. We thank Joost Driessen, Stuart Gabriel, Frank de
Jong, Stephen A. Ross (our discussant at the UConn Center for Real Estate 50th Anniversary Symposium) for their
insightful comments and suggestions.
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Research has shown that hedging incentives encourage homeownership and

decrease expected returns on housing. Sinai and Souleles (2005) show that home-

ownership risk is reduced if the household tends to move across highly correlated

housing markets (or if mobility is low). If house prices increase in the current

household market, high correlation across housing markets implies that house

prices increase also in the housing market that the household intends to move

to. Hence, homeownership works as a hedge against future housing consumption

across housing markets. Han (2010) shows that hedging incentives are strong, in

particular, for households that tend to move within the same local housing mar-

kets. A classic example is the case of younger homeowners that plan to move

up the housing ladder within the same market. Because house prices tend to be

highly correlated within housing markets, owning a home is a hedge against the

risk that house prices will have increased when the household intends to move to a

larger house. In support of this prediction, Han (2013) finds that expected housing

returns decrease when hedging incentives are strong.

In this study, we focus on the portfolio implications of homeownership.2 Cocco

(2005) shows that because housing is lumpy, homeownership undermines portfolio

diversification, especially for younger and poorer households. We argue that the

under-diversification caused by homeownership is risky because housing is mostly

financed with mortgage debt (especially, for younger and poorer households). If

house values fall below outstanding mortgage debt, then moving across housing

markets (even highly correlated markets) is difficult because it requires that house-

holds are able (and willing) to cover the capital loss on the home they currently

own.3 Hence, homeownership can hinder labor mobility in down housing mar-

2Theoretically, Ortalo-Magné and Prat (2010) are among the first to combine portfolio and hedging considerations
in the context of housing.

3Head and Lloyd-Ellis (2012) show that housing liquidity (how quickly households can sell their houses) affects
the decision of home owners to accept job offers from other cities.
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kets (which is perhaps when mobility is most needed), especially for younger and

poorer households (who are perhaps those that need mobility the most).4 There-

fore, we predict that idiosyncratic risk is priced in the housing market and the

premium for idiosyncratic risk increases with homeownership.

To test our predictions, we follow Ang, Hodrick, Xing, and Zhang (2006) by

formulating a conditional factor model for housing returns that includes housing

market and stock market factors, as well as an idiosyncratic risk factor. As we

focus on individual volatility rather than aggregate volatility, we test the model

using the approach of Goyal and Santa-Clara (2003), who include idiosyncratic

risk as a characteristic, and estimate the price of risk. To investigate the relation

between the price of idiosyncratic risk and homeownership, we use the approach

of Shanken (1990) to estimate a time-varying risk premium that depends not only

on homeownership, but also on the unemployment rate and the rent level. These

variables feature in our main specification as interactions with the idiosyncratic

risk level. As in Han (2013), we measure idiosyncratic risk as the ARCH(1) es-

timate of residual volatility for a standard CAPM that includes both housing and

stock market factors.

We use the Federal Housing Finance Agency (FHFA) all transactions House

Price Index (HPI) to measure housing returns at the MSA level. We have annual

observations for 296 MSAs over the period 1980–2012. As special dynamics due

to the subprime crisis, such as the limited diversification potential documented

by Cotter, Gabriel, and Roll (2015), could influence our results, we follow Han

(2013) and initially focus on the period until 2007. We apply an AR(1) filter to

unsmooth the series of housing returns. To estimate the level of idiosyncratic risk,

4Kahl, Liu, and Longstaff (2003) argue that entrepreneurs who hold illiquid and undiversified portfolios due to
selling restrictions on their company stocks incur considerable costs. In our context, their argument suggests that when
a household has a large fraction of its wealth invested in housing, he or she might reduce consumption below optimal
and use the proceeds from reduced consumption to invest in other assets (diversifying excessive exposure to housing).

59



CHAPTER 2. HOMEOWNERSHIP AND IDIOSYNCRATIC HOUSING RISK

we estimate an ARCH(1) model for the residuals of a standard CAPM regression

of MSA-level housing returns on a national-housing index and the S&P500 stock

market index. The variables that we use to explain time-variation in the premium

for idiosyncratic risk are obtained from the U.S. census through the Integrated

Public Use Microdata Series (IPUMS).

We find that idiosyncratic risk is priced for U.S. housing. In the cross section

of decile portfolios of MSAs sorted by idiosyncratic risk, we observe that idiosyn-

cratic risk commands a premium of 0.57% per annum. The premium commanded

by idiosyncratic housing risk is positively related to the homeownership rate. For

our main regression model, we find that the coefficient on the idiosyncratic risk

factor is 0.1463, the coefficient on the idiosyncratic risk/homeownership interac-

tion is 0.0438, and both are statistically significant at the 1% level. This combined

evidence suggests that when homeownership increases by one standard deviation,

the price for idiosyncratic risk increases by one third of the original price.

Our analysis thus far suggests that idiosyncratic risk is priced and the premium

for idiosyncratic risk increases with homeownership. As discussed, previous lit-

erature has documented that the risk of homeownership decreases when hedging

incentives are strong. Therefore, it is important that we assess the robustness of

our findings when households have strong incentives to own a house for hedg-

ing. Following the literature, we use the percentage of the population that moves

within the same MSA (or across highly correlated MSAs)and rental volatility at

the MSA level to proxy for hedging incentives. If a large fraction of the population

in a certain MSA traditionally moves within the same MSA, then it is less likely

that households from this MSA will move to other MSAs (especially MSAs with

uncorrelated housing markets) for job related reasons. Hence, homeownership as

a hedge against house price increases is more likely to be important when within

MSA migration is high. Similarly, when rent volatility is high, homeownership

becomes important to insure against rent risk (Sinai and Souleles, 2005). We find
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that the interaction of idiosyncratic risk with homeownerships remains positively

significant in our housing return regressions when we control for hedging incen-

tives.

To recap, we find strong evidence that idiosyncratic risk is priced in the housing

market and that the premium for idiosyncratic risk increases with homeownership.

Our analysis indicates that the idiosyncratic housing risk premium remains eco-

nomically sizable after we control for hedging incentives. Further, our results are

robust to including year fixed effects, MSA fixed effects, and using the Fama-

MacBeth estimation.

Our paper relates to three streams of literature. As discussed, Sinai and Soule-

les (2005) and Han (2010, 2013) show that hedging incentives encourage home-

ownership and reduce expected returns on housing. We complement these studies

by showing that idiosyncratic risk is priced in the housing market. Idiosyncratic

risk matters in housing because homeownership hinders portfolio diversification,

which, in turn, reduces labor mobility.

Second, we relate to the literature that emphasizes how homeownership can in-

troduce portfolio distortions. Cocco (2005) shows that housing crowds out stock

holdings. This is true especially for younger and poorer households who will have

limited wealth to invest in other assets once they become home owners. Similarly,

Brueckner (1997) argues that the consumption benefits of housing may motivate

consumers to overinvest in housing. This overinvestment will lead to a mean-

variance inefficient portfolio with a reduction in diversification benefits that needs

to be balanced against the increase in consumption benefits. Flavin and Yamashita

(2002) argue that young households, for which housing is a particularly large frac-

tion of their wealth, tend also to be highly leveraged, and are thus inclined to re-

duce the risk of their portfolio by using excess wealth to pay down their mortgage,

or buy bonds rather than stocks. We contribute to this literature by showing that

beyond these effects, the lack of diversification due to the overinvestment in hous-
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ing has pricing consequences for housing itself. Not only do (young) homeowners

tend to have an inefficient position in the stock market, they are also exposed to

idiosyncratic risk in the housing market.

Third, we relate to research on the pricing of idiosyncratic risk. Merton (1987)

argues that people tend to hold familiar stocks and hence have under-diversified

portfolios. If the practice of holding familiar stocks is widespread, then idiosyn-

cratic risk should be priced in equilibrium. Similar arguments are put forward

by Levy (1978) and Malkiel and Xu (2004). The empirical evidence for stocks

is mixed. Ang, Hodrick, Xing, and Zhang (2006) show that the cross-sectional

price of market volatility risk is negative for the stock market, consistent with past

research in option pricing (e.g., Bakshi and Kapadia, 2003; Carr and Wu, 2009).

In addition, they find a strong negative correlation between idiosyncratic volatility

and average returns. By contrast, Goyal and Santa-Clara (2003), provide time-

series evidence that the price for idiosyncratic risk is positive for the stock market.

Housing is an ideal laboratory to study the pricing of idiosyncratic risk. First,

housing, unlike stocks, is lumpy, which implies that home owners are likely to

be under-diversified (Tracy, Schneider, and Chan, 1999). Second, we can use

variation in homeownership rates across regions and time to proxy for the degree

of under-diversification. Third, it is possible to identify conceptually the fric-

tions (e.g., reduced labor mobility) through which idiosyncratic risk is priced in

housing. As Case, Cotter, and Gabriel (2011) and Cannon, Miller, and Pandher

(2006), we show that idiosyncratic risk is priced in the housing market. But we

go further. We propose that one channel through which the under-diversification

caused by homeownership increases risk for households is reduced job mobility.

We then show empirically that idiosyncratic risk affects housing returns through

homeownership. To our knowledge, our study is the first to document a positive

relation between idiosyncratic risk and returns through low diversification (i.e.,

homeownership).
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The paper is organized as follows. Section 2.2 describes the data. We describe

the empirical approach in Section 2.3 and present the results in Section 2.4. Sec-

tion 2.5 summarizes the findings and concludes the paper.

2.2 Data

In this section, we describe the data that we use for our analyses. First, we

present the data on housing returns and the various controls and interaction effects

that we use. Then, we proceed by discussing our measure of idiosyncratic risk and

its empirical properties.

2.2.1 Real Estate and Macroeconomic Data

We use the Federal Housing Finance Agency (FHFA) all transactions House

Price Index (HPI) to measure housing returns at the MSA level. In addition, we

have data on the homeownership rate, the unemployment rate, and the rent level.

These are obtained from the U.S. census through the Integrated Public Use Micro-

data Series (IPUMS). Our dataset consists of annual observations for 296 MSAs

and our sample runs from 1980 until 2012. Using MSA-level data implies that

we are averaging out some of the idiosyncratic risk. We follow Han (2013) and

winsorize the housing returns at the 1st and 99th percentiles. In the cases where

we impose that the market price of risk equals the market risk premium, we also

winsorize the beta times the market risk premium at the 1st and 99th percentiles.

To correct for smoothing that occurs as a result of using appraisal-based values

and temporal aggregation, we apply an AR(1) filter to the housing returns (Fisher,

Geltner, and Webb, 1994). Specifically, we construct our unsmoothed series as the

mean HPI return plus the AR(1) residual.
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Table 2.1 presents some descriptive statistics. Most notably, the mean house

price index shows an annual real excess return of -1.47% relative to an average

annual risk-free rate of 5.04%, while the stock market index produced a positive

excess return of 7.54%. The volatility of the housing market, 4.06%, is lower

than that of the stock market, which is 16.99%. The homeownership rate was on

average 71.84%, but it has varied substantially during the sample period. Fig-

ure 2.1 shows the strong increase in homeownership during the early 2000s and

the decline afterwards.

2.2.2 Idiosyncratic Risk

To measure idiosyncratic risk, we start by running a standard CAPM of the

form

Ri,t−R f = αi +βFHFA,i
(
Rm,FHFA,t−R f

)
+βS&P,i

(
Rm,S&P,t−R f

)
+ εi,t . (2.1)

on housing returns. For the individual returns we take the FHFA all transactions

house price index at the MSA level. The market returns are based on the FHFA

all transactions house price index at the national level. We also include as a factor

the return on the S&P500 index, obtained from Kenneth French’s website.

We take the time-varying residual standard deviation σε,i,t of (2.1) as our mea-

sure of idiosyncratic risk for MSA i. Our estimate of σε,i,t derives from the fol-

lowing ARCH(1) model.

σ
2
ε,i,t = α0,i +α1,iε

2
i,t−1. (2.2)

We use all available observations to estimate the σε,i,t . For robustness, we also

consider σε,i,t estimated as the RMSE of (2.1).

The descriptive statistics in Table 2.1 show that the level of idiosyncratic risk

varies substantially in our sample. It is on average 4.09% with a standard devi-
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ation of 2.73%. The largest value in our sample is 50.90%. Our mean estimate

is comparable to the 4.59% found by Case, Cotter, and Gabriel (2011). To gain

insight into the relation between idiosyncratic risk and other characteristics, we

sort the MSAs into idiosyncratic risk deciles and compute averages of all vari-

ables for each decile. The corresponding averages are given in Table 2.2. Moving

from the bottom to the top decile of the idiosyncratic risk distribution, we see that

housing returns increase from 4.25% to 5.09% per annum, while idiosyncratic risk

increases from 1.52% to 9.33%. Figure 2.2 shows the housing market return as

well as the average idiosyncratic risk level. Table 2.3 shows correlations between

the different variables that are used in this study.

2.3 Empirical Methodology

In this section we set out the empirical strategy. Our analysis consists of two

stages. First, we show that idiosyncratic risk is indeed priced for the US housing

market. Second, we analyze the determinants of the idiosyncratic risk premium.

2.3.1 Pricing of Idiosyncratic Risk

For our analysis, we consider idiosyncratic risk as a stock characteristic that

commands a premium. Our asset pricing model is given by

Et−1
[
Ri,t−R f

]
= λ0,t−1 +λFHFA,t−1βFHFA,i +λS&P,t−1βS&P,i (2.3)

+λσ,t−1σε,i,t ,

where λFHFA,t−1, λS&P,t−1, and λσ,t−1 denote the prices of risk for our pricing

factors. Note that, given the ARCH parameters, σε,i,t is known at time t−1.
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To test whether idiosyncratic risk is priced, we consider panel regressions of

the form

Ri,t−R f = λ0,i +ξt +λFHFA,t−1βFHFA,i,t−1 +λS&P,t−1βS&P,i,t−1 (2.4)

+λσ,t−1σε,i,t + εi,t ,

where we use rolling OLS regressions with a time window of 10 years to estimate

βFHFA,i, and βS&P,i. In our basic specification, we include year dummies to control

for unobserved time-varying macro shocks. We cluster the standard errors by

year to adjust for cross-sectional correlation. In other specifications, we include

MSA fixed effects to control for, e.g., geographical constraints and local amenities

(Han, 2013). The importance of local amenities and other local parameters is

supported by Hwang and Quigley (2006) and Goetzmann, Spiegel, and Wachter

(1998), who find that housing markets cluster and that local aspects matter for

house price fluctuations. We also cluster standard errors by MSA, and include

two-dimensional clustering by year and MSA as well.

In addition to the panel regressions, we run Fama and MacBeth (1973) regres-

sions to establish our pricing relation (as in Cotter, Gabriel, and Roll, 2015). To

control for geographical constraints and local amenities, we include MSA fixed ef-

fects by demeaning the housing returns for each MSA. We also apply the Petersen

(2009) correction, which adjusts the standard errors for the presence of an unob-

served MSA effect (see, e.g., Rubin and Smith, 2009, for a similar application in

the context of stock returns).

To identify the channel through which idiosyncratic risk is priced, we use

homeownership as a proxy for underdiversification. Homeowners are typically

underdiversified as they tend to own a single house, rather than a well-diversified

portfolio of housing (Tracy, Schneider, and Chan, 1999). In addition, when the

homeownership rate is high, it is more difficult for individual investors to attain
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higher degrees of diversification. We use the approach of Shanken (1990) to model

the price of risk for idiosyncratic risk as a function of homeownership (see also

Ferson and Harvey, 1999; Petkova and Zhang, 2005).

We model the time-varying coefficient on idiosyncratic risk as a function of the

homeownership rate. That is, we model λσ,i,t−1 as

λσ,i,t−1 = λσ,0 +λσ,1HOMEOWNi,t−1, (2.5)

where HOMEOWNi,t denotes the rate of homeownership at time t. At the return

level, we control for outmigration, unemployment, population, population growth,

median income, income growth, rent risk, and the fraction of the population that is

between 20 to 45 years. For the outmigration variable, as well as the fraction be-

tween 20 and 45 years we use IPUMS data and follow Han (2013). We control for

outmigration using a dummy variable, denoted by SAMEMSAMED, that equals 1

if the outmigration rate is less than 14%. Rent risk is computed as the rolling stan-

dard deviation of the rent level, divided by the rolling average of median income.

Effectively, this setup means that we model λ0,i to be a function of these variables.

As an additional robustness check, we also run our regressions with these control

variables included in (2.5) as well.

Combining (2.5) with specification (2.4) and adding the controls, we obtain the

main specifications that we use. We also include specifications where we control

directly for macroeconomic shocks by including both the housing market beta and

the stock market beta. Omitting the additional controls, his leads to the following

empirical model.

Ri,t−R f = λ0,i +ξt +λFHFA,t−1βFHFA,i +λS&P,t−1βS&P,i (2.6)

+λσ,0σε,i,t +λσ,1σε,i,t×HOMEOWNi,t−1 + εi,t
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We impose λFHFA,t = Rm,FHFA,t −R f and λS&P,t = Rm,S&P,t −R f to improve the

power of our test. Using the interactions in (2.5) leads to strongly correlated re-

gressors. Hence, we standardize within each MSA the variables that we interact

idiosyncratic risk with (i.e. homeownership as well as the additional controls).

2.4 Empirical Results

In Table 2.4 we present the estimation results for (2.4) and (2.6). The results

show that idiosyncratic risk is priced in this panel setting when including the rele-

vant control variables and clustering the standard errors by year. The idiosyncratic

risk coefficient value of 0.20 is close to the value of 0.18 found by Cannon, Miller,

and Pandher (2006). The price of risk for idiosyncratic housing risk is positively

related to the homeownership rate, which is an indication that underdiversification

is indeed the mechanism through which idiosyncratic risk is priced.

Table 2.5 shows the results when including MSA fixed effects and clustering

the standard errors by MSA, while Table 2.6 presents the results when including

fixed effects and clustering both by year and by MSA. Table 2.6 also presents Fama

and MacBeth (1973) estimates. We implement MSA fixed effects in the Fama and

MacBeth (1973) setting by taking deviations from the mean return within each

MSA. Across all specifications we find similar results showing the idiosyncratic

risk is priced, and that its price of risk depends positively on the homeownership

rate. The results in Table 2.6 show that the effect is indeed present using the Fama

and MacBeth (1973) approach. Together with the results of in Table 2.4, these

results show that idiosyncratic risk is indeed priced, and that the idiosyncratic risk

premium increases with homeownership.

Across the various specifications, the significant control variables have the ex-

pected signs. The population level and growth, as well as income growth have

positive signs. For hedging variables that measure a decrease in risk, for instance
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because homeownership hedges against a future increase in rents, such as rent risk

and the fraction of the population aged 20 to 45 years we see a negative sign.

The results of specification with additional interactions of control variables

with idiosyncratic risk given in Table 2.10 show that our results are robust to in-

cluding these additional interactions. In addition, Table 2.7 and Table 2.8 respec-

tively show that our results are also robust to using the RMSE of a full-sample

and a rolling window CAPM regression to estimate idiosyncratic risk. Moreover,

Table 2.8 shows that the results are also robust to including the stock and housing

market betas as characteristics, rather than imposing that the market price of risk

equals the market risk premium.

2.5 Conclusions

Although housing makes up two-thirds of a typical U.S. household’s investment

portfolio, the risk-return relationship for housing has received little attention. A

notable difference with the stock market is that the typical real estate investor’s

portfolio displays limited diversification. U.S. home-owners tend to have a highly

levered position in a single house, rather than own a large, diversified portfolio.

Due to this limited diversification, a risk premium for idiosyncratic risk arises

naturally. Viewing the homeownership rate as a proxy for the degree of under-

diversification, we can say more about the extent to which idiosyncratic risk is

priced. When the homeownership rate is high, investors tend to be more underdi-

versified. Hence, we would expect to see a higher premium for idiosyncratic risk

in that case.

Earlier research has shown cross-sectionally that a premium for idiosyncratic

risk exists (Cannon, Miller, and Pandher, 2006). We contribute to this literature by

showing that this premium is also significant in the time-series dimension, and that

its time-variation is important in understanding the pricing mechanism. Specifi-
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cally, the time-series dimension allows us to identify the interaction with the home-

ownership rate.

This paper establishes that idiosyncratic risk is indeed priced for U.S. real es-

tate. We analyze returns to housing measured by the FHFA all transactions House

Price Index (HPI). We measure idiosyncratic volatility by estimating an ARCH(1)

model for housing returns, while controlling for housing market and stock market

factors. Following the asset pricing approach of Ang, Hodrick, Xing, and Zhang

(2006), we find a significant impact of idiosyncratic volatility on housing returns.

The premium commanded by idiosyncratic housing risk is positively related to the

homeownership rate.
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Table 2.1. Descriptive statistics

This table shows descriptive statistics for the data used to estimate the model. The sample consists of annual observa-
tions at the MSA level during the period 1980–2012. Ri,t −R f denotes the real excess return on the MSA-level FHFA
all transactions House Price Index (HPI), Rm,FHFA,t −R f the excess return on the national FHFA all transactions HPI,
Rm,S&P,t −R f the return on the S&P500 index, and R f denotes the risk-free rate. βFHFA,i denotes the beta with respect
to the housing market, and βS&P,i the beta with respect to the stock market, and both are obtained from estimation
of (2.1). σε,i,t denotes the idiosyncratic risk level estimated by ARCH(1) specification (2.2). HOMEOWN denotes
the homeownership rate, UNEMP the unemployment rate, RENT the rent level, HEDGEWITHIN the Han (2013)
within-MSA heding measure, MEDINCOME median income, and RENTRISK rent risk.

Observations Mean Standard Minimum Maximum
Deviation

Ri,t −R f (%) 8,402 -0.9798 5.3745 -29.4695 22.4880
Rm,FHFA,t −R f (%) 9,472 -1.4702 4.0633 -10.4975 6.3792

Rm,S&P,t −R f (%) 9,768 7.5424 16.9866 -38.3404 31.1993
R f (%) 9,768 5.0439 3.4724 0.0400 14.7175
βFHFA,i 9,768 0.8135 0.3372 0.1632 1.8554

βFHFA,i,t (rolling) 6,951 0.8711 0.8889 -10.6995 16.0752
βS&P,i 9,768 -0.0236 0.0369 -0.2040 0.0701

βS&P,i,t (rolling) 6,951 -0.0173 0.1517 -4.3484 3.1495
σε,i,t (CAPM) 9,768 3.8287 1.6213 1.5284 12.2708
σε,i,t (ARCH) 5,679 4.0889 2.7285 0.0962 50.9009
σε,i,t (rolling) 6,951 3.2162 2.1867 0.0000 22.7505

HOMEOWN (%) 7,272 71.8320 6.6746 38.3191 89.6937
UNEMP (%) 7,272 6.4786 2.1917 1.8762 25.3859

RENT (USD) 7,262 145.0379 72.8086 34.4915 668.6465
HEDGEWITHIN 6,996 0.5242 0.4995 0.0000 1.0000

MEDINCOME (USD) 7,272 23799.5275 57666.7127 5910.0000 2.512e+06
RENTRISK 5,921 0.0008 0.0006 0.0000 0.0040

71



CHAPTER 2. HOMEOWNERSHIP AND IDIOSYNCRATIC HOUSING RISK

Table 2.2. Descriptive statistics for portfolios sorted by idiosyncratic risk

This table shows descriptive statistics for excess return on the decile portfolios sorted by idiosyncratic risk. Idiosyn-
cratic risk, denoted by σε,i,t , is measured as the ARCH(1) estimate based on (2.2). The returns are in excess of the
risk-free rate. The sample consists of annual observations of excess housing returns at the MSA level during the period
1980–2012.

Ri,t −R f CAPM βFHFA,i,t βS&P,i,t σε,i,t Home Unemployment Rent
α Ownership Rate Level

1
Mean -0.79 -0.69 0.74 -0.01 1.52 74.21 5.87 152.10
Std. Dev. 2.60 0.12 0.17 0.01 0.11 2.47 1.23 23.95
2
Mean -0.36 -0.19 0.84 -0.01 2.16 73.48 6.10 154.85
Std. Dev. 2.85 0.12 0.18 0.01 0.10 2.73 1.15 21.71
3
Mean -0.43 -0.26 0.81 -0.01 2.59 72.63 6.14 161.81
Std. Dev. 2.42 0.16 0.18 0.01 0.15 2.35 1.28 30.91
4
Mean -0.21 0.03 0.86 -0.02 3.05 72.30 6.13 165.99
Std. Dev. 2.99 0.19 0.17 0.02 0.18 2.87 1.27 25.26
5
Mean -0.07 0.09 0.94 -0.03 3.46 71.80 6.63 164.65
Std. Dev. 3.17 0.17 0.17 0.03 0.24 2.95 1.31 32.46
6
Mean -0.19 0.29 0.93 -0.03 3.89 71.59 6.67 171.23
Std. Dev. 3.25 0.15 0.19 0.03 0.28 2.72 1.11 32.72
7
Mean -0.05 0.32 0.88 -0.02 4.33 71.74 6.71 173.69
Std. Dev. 3.25 0.17 0.10 0.02 0.37 2.44 1.47 34.59
8
Mean 0.23 0.50 0.98 -0.02 4.94 70.00 7.15 191.52
Std. Dev. 3.70 0.14 0.24 0.03 0.69 2.62 1.50 39.46
9
Mean -0.01 0.35 0.93 -0.01 5.93 71.90 6.96 171.05
Std. Dev. 3.53 0.17 0.32 0.03 1.51 2.67 1.53 35.13
10
Mean 0.05 0.42 0.97 -0.02 9.33 73.04 7.01 171.46
Std. Dev. 3.99 0.17 0.24 0.04 4.53 2.36 1.36 38.61
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Table 2.4. Pricing of idiosyncratic risk and premium determinants (year clustering).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. SAMEMSAMED, is a dummy variable that equals 1 if the outmigration rate is less than 14% (see
Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.3329*** 0.3007***

(0.0654) (0.0708)
σε,i,t 0.0606 0.0933 0.2071*** 0.2040***

(0.0677) (0.0688) (0.0399) (0.0425)
HOMEOWN 0.0032 0.0035 -0.0097** -0.0108*

(0.0028) (0.0028) (0.0038) (0.0058)
SAMEMSAMED -0.0042*

(0.0024)
UNEMP -0.0024

(0.0025)
POPULATION -0.0018

(0.0037)
POPGROWTH 0.0025***

(0.0007)
MEDINCOME -0.0113*

(0.0057)
INCOMEGR 0.0056

(0.0039)
RENTRISK -0.0029

(0.0031)
FRAC20TO45YRS -0.0048

(0.0056)
Constant -0.0160*** -0.0010 -0.0045 -0.0083** -0.0099*

(0.0030) (0.0019) (0.0044) (0.0029) (0.0049)
Fixed Effects Year Year Year Year Year
Clustering Year Year Year Year Year
R2 0.0363 0.0390 0.0421 0.0630 0.0734
R2

adj 0.0324 0.0347 0.0367 0.0575 0.0646
RSS 9.0763 7.3755 6.2804 6.1433 5.4661
Observations 4,161 3,842 3,218 3,218 2,859

74



2.5. CONCLUSIONS

Table 2.5. Pricing of idiosyncratic risk and premium determinants (MSA clustering).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. SAMEMSAMED, is a dummy variable that equals 1 if the outmigration rate is less than 14% (see
Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.3284*** 0.2899***

(0.0524) (0.0535)
σε,i,t 0.0338 0.0531 0.2059*** 0.1816***

(0.0361) (0.0492) (0.0575) (0.0569)
HOMEOWN 0.0040 0.0054* -0.0080** -0.0148***

(0.0025) (0.0028) (0.0032) (0.0044)
SAMEMSAMED -0.0046

(0.0042)
UNEMP -0.0033

(0.0024)
POPULATION 0.0002

(0.0038)
POPGROWTH 0.0026**

(0.0011)
MEDINCOME -0.0342***

(0.0106)
INCOMEGR 0.0107**

(0.0044)
RENTRISK -0.0082**

(0.0041)
FRAC20TO45YRS -0.0111*

(0.0058)
Constant -0.0152** -0.0010 -0.0018 -0.0077 -0.0174

(0.0068) (0.0066) (0.0080) (0.0080) (0.0146)
Fixed Effects Year & MSA Year & MSA Year & MSA Year & MSA Year & MSA
Clustering MSA MSA MSA MSA MSA
R2 0.0402 0.0442 0.0462 0.0665 0.0808
R2

adj 0.0363 0.0399 0.0409 0.0610 0.0720
RSS 8.0032 6.4638 5.5410 5.4231 4.7902
Observations 4,161 3,842 3,218 3,218 2,859
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Table 2.6. Pricing of idiosyncratic risk and premium determinants (year and MSA
clustering).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. SAMEMSAMED, is a dummy variable that equals 1 if the outmigration rate is less than 14%
(see Han, 2013). Standard errors are given in parentheses. FMB indicates Fama and MacBeth (1973) standard errors
are used with 2 lags. For this case, we apply the Petersen (2009) correction, which adjusts for the presence of an
unobserved MSA effect.

Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.3007*** 0.2899*** 0.3139** 0.2899***

(0.0708) (0.0535) (0.1453) (0.0783)
σε,i,t 0.2040*** 0.1816*** 0.0917 0.1816***

(0.0425) (0.0569) (0.1938) (0.0675)
HOMEOWN -0.0108* -0.0148*** -0.0104** -0.0148**

(0.0058) (0.0044) (0.0039) (0.0070)
SAMEMSAMED -0.0042* -0.0046 -0.0017 -0.0046

(0.0024) (0.0042) (0.0017) (0.0044)
UNEMP -0.0024 -0.0033 -0.0003 -0.0033

(0.0025) (0.0024) (0.0014) (0.0035)
POPULATION -0.0018 0.0002 -0.0057 0.0002

(0.0037) (0.0038) (0.0041) (0.0039)
POPGROWTH 0.0025*** 0.0026** 0.0002 0.0026***

(0.0007) (0.0011) (0.0068) (0.0008)
MEDINCOME -0.0113* -0.0342*** -0.0023 -0.0342**

(0.0057) (0.0106) (0.0085) (0.0138)
INCOMEGR 0.0056 0.0107** 0.0175 0.0107**

(0.0039) (0.0044) (0.0150) (0.0054)
RENTRISK -0.0029 -0.0082** -0.0059 -0.0082**

(0.0031) (0.0041) (0.0110) (0.0039)
FRAC20TO45YRS -0.0048 -0.0111* -0.0034 -0.0111

(0.0056) (0.0058) (0.0079) (0.0084)
Constant -0.0099* -0.0174 0.0052 0.0034

(0.0049) (0.0146) (0.0057) (0.0084)
Fixed Effects Year Year & MSA FMB & MSA Year & MSA
Clustering Year MSA FMB Year & MSA
R2 0.0734 0.0808 0.1755 0.1880
R2

adj 0.0646 0.0720 0.1229
RSS 5.4661 4.7902 4.7902
Observations 2,859 2,859 2,859 2,859
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Table 2.7. Pricing of idiosyncratic risk and premium determinants (robustness to
idiosyncratic risk estimation method).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. For these regressions, idiosyncratic risk is estimated as the RMSE of a CAPM regression. Similarly
to the early tables, SAMEMSAMED is a dummy variable that equals 1 if the outmigration rate is less than 14% (see
Han, 2013). Standard errors are given in parentheses. FMB indicates Fama and MacBeth (1973) standard errors
are used with 2 lags. For this case, we apply the Petersen (2009) correction, which adjusts for the presence of an
unobserved MSA effect.

Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.4911*** 0.4777*** 0.2680**

(0.0584) (0.0531) (0.0928)
σε,i,t 0.2369*** 0.2501*** 0.4187***

(0.0758) (0.0726) (0.0698)
HOMEOWN -0.0161*** -0.0176*** -0.0068**

(0.0026) (0.0039) (0.0029)
SAMEMSAMED -0.0037 -0.0043**

(0.0026) (0.0018)
UNEMP -0.0018 -0.0028*

(0.0025) (0.0014)
POPULATION -0.0023 -0.0101*

(0.0031) (0.0051)
POPGROWTH 0.0017*** 0.0035

(0.0006) (0.0036)
MEDINCOME -0.0131** -0.0208***

(0.0050) (0.0057)
INCOMEGR 0.0031 0.0126

(0.0037) (0.0126)
RENTRISK -0.0017 0.0002

(0.0028) (0.0033)
FRAC20TO45YRS -0.0061 -0.0027

(0.0047) (0.0063)
Constant -0.0098** -0.0118** -0.0033

(0.0039) (0.0045) (0.0035)
Fixed Effects Year Year FMB
Clustering Year Year FMB(2L,P)
R2 0.0683 0.0780 0.1652
R2

adj 0.0636 0.0706
RSS 7.1506 6.3852
Observations 3,842 3,403 3,403
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Table 2.8. Pricing of idiosyncratic risk and premium determinants (robustness to
idiosyncratic risk estimation method).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. For these regressions, idiosyncratic risk is estimated as the RMSE of a rolling CAPM regression
with a time window of 10 years. Similarly to the early tables, SAMEMSAMED is a dummy variable that equals 1 if
the outmigration rate is less than 14% (see Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.3893*** 0.3549*** 0.3549***

(0.0704) (0.1032) (0.0821)
σε,i,t 0.3558*** 0.3182*** 0.3182**

(0.0853) (0.1099) (0.1541)
HOMEOWN -0.0110** -0.0140*** -0.0140**

(0.0050) (0.0043) (0.0069)
SAMEMSAMED -0.0041 -0.0077** -0.0077**

(0.0026) (0.0038) (0.0031)
UNEMP -0.0028 -0.0021 -0.0021

(0.0027) (0.0022) (0.0034)
POPULATION -0.0029 -0.0012 -0.0012

(0.0033) (0.0036) (0.0039)
POPGROWTH 0.0014** 0.0017 0.0017**

(0.0006) (0.0011) (0.0008)
MEDINCOME -0.0162*** -0.0350*** -0.0350**

(0.0045) (0.0100) (0.0161)
INCOMEGR 0.0066 0.0122*** 0.0122**

(0.0043) (0.0039) (0.0059)
RENTRISK -0.0028 -0.0062* -0.0062*

(0.0028) (0.0036) (0.0034)
FRAC20TO45YRS -0.0067 -0.0130** -0.0130

(0.0049) (0.0052) (0.0080)
Constant -0.0161* -0.0205 -0.0057

(0.0082) (0.0134) (0.0100)
Fixed Effects Year Year & MSA Year & MSA
Clustering Year MSA Year & MSA
R2 0.0734 0.0765 0.1869
R2

adj 0.0660 0.0691 0.1229
RSS 6.4168 5.6310 5.6310
Observations 3,403 3,403 3,403
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Table 2.9. Pricing of idiosyncratic risk and premium determinants (robustness to including
beta).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. For these regressions, idiosyncratic risk is estimated as in the original specifications, but here we
include the housing market and stock market betas as characteristic, rather than imposing that the market price of risk
equals the market risk premium. Similarly to the early tables, SAMEMSAMED is a dummy variable that equals 1 if
the outmigration rate is less than 14% (see Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f
σε,i,t ×HOMEOWN 0.2036*** 0.1739*** 0.1739***

(0.0372) (0.0449) (0.0360)
σε,i,t 0.1962*** 0.1264*** 0.1264***

(0.0373) (0.0342) (0.0230)
HOMEOWN -0.0158*** -0.0165*** -0.0165***

(0.0025) (0.0041) (0.0053)
βFHFA,i,t (rolling) 0.0075 0.0092*** 0.0092

(0.0062) (0.0014) (0.0071)
βS&P,i,t (rolling) 0.0154 0.0256*** 0.0256

(0.0274) (0.0086) (0.0274)
SAMEMSAMED -0.0023 -0.0019 -0.0019

(0.0020) (0.0031) (0.0045)
UNEMP 0.0012 -0.0001 -0.0001

(0.0020) (0.0018) (0.0017)
POPULATION -0.0046 -0.0070** -0.0070*

(0.0028) (0.0032) (0.0038)
POPGROWTH 0.0012* 0.0014 0.0014**

(0.0006) (0.0012) (0.0005)
MEDINCOME -0.0181** -0.0292*** -0.0292**

(0.0063) (0.0108) (0.0139)
INCOMEGR 0.0044 0.0078** 0.0078***

(0.0035) (0.0033) (0.0025)
RENTRISK -0.0053** -0.0088*** -0.0088**

(0.0022) (0.0033) (0.0034)
FRAC20TO45YRS -0.0179*** -0.0219*** -0.0219***

(0.0038) (0.0040) (0.0041)
Constant -0.0672*** -0.0667*** -0.0675***

(0.0034) (0.0086) (0.0044)
Fixed Effects Year Year & MSA Year & MSA
Clustering Year MSA Year & MSA
R2 0.4767 0.4869 0.5172
R2

adj 0.4714 0.4816 0.4781
RSS 3.1158 2.8748 2.8748
Observations 2,859 2,859 2,859

79



CHAPTER 2. HOMEOWNERSHIP AND IDIOSYNCRATIC HOUSING RISK

Table 2.10. Pricing of idiosyncratic risk and premium determinants (idiosyncratic risk
interactions).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. SAMEMSAMED, is a dummy variable that equals 1 if the outmigration rate is less than 14% (see
Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f

σε,i,t ×HOMEOWN 0.3007*** 0.2278* 0.2899*** 0.2657*** 0.2899*** 0.2657**
(0.0708) (0.1300) (0.0535) (0.0925) (0.0783) (0.1289)

σε,i,t 0.2040*** 0.2676** 0.1816*** 0.1470 0.1816*** 0.1470*
(0.0425) (0.0981) (0.0569) (0.0960) (0.0675) (0.0830)

HOMEOWN -0.0108* -0.0076* -0.0148*** -0.0137*** -0.0148** -0.0137***
(0.0058) (0.0042) (0.0044) (0.0046) (0.0070) (0.0050)

SAMEMSAMED -0.0042* -0.0017 -0.0046 -0.0080 -0.0046 -0.0080
(0.0024) (0.0075) (0.0042) (0.0055) (0.0044) (0.0094)

UNEMP -0.0024 -0.0021 -0.0033 -0.0058 -0.0033 -0.0058
(0.0025) (0.0030) (0.0024) (0.0036) (0.0035) (0.0037)

POPULATION -0.0018 0.0054 0.0002 0.0097* 0.0002 0.0097**
(0.0037) (0.0033) (0.0038) (0.0056) (0.0039) (0.0048)

POPGROWTH 0.0025*** 0.0004 0.0026** -0.0004 0.0026*** -0.0004
(0.0007) (0.0031) (0.0011) (0.0026) (0.0008) (0.0030)

MEDINCOME -0.0113* -0.0160** -0.0342*** -0.0444*** -0.0342** -0.0444**
(0.0057) (0.0068) (0.0106) (0.0123) (0.0138) (0.0182)

INCOMEGR 0.0056 0.0038 0.0107** 0.0073 0.0107** 0.0073
(0.0039) (0.0073) (0.0044) (0.0123) (0.0054) (0.0117)

RENTRISK -0.0029 -0.0027 -0.0082** -0.0087** -0.0082** -0.0087
(0.0031) (0.0049) (0.0041) (0.0043) (0.0039) (0.0059)

FRAC20TO45YRS -0.0048 -0.0057 -0.0111* -0.0182** -0.0111 -0.0182***
(0.0056) (0.0034) (0.0058) (0.0088) (0.0084) (0.0058)

σε,i,t ×SAMEMSAMED -0.0597 0.0910 0.0910
(0.1970) (0.1249) (0.1631)

σε,i,t ×UNEMP -0.0039 0.0689 0.0689
(0.1007) (0.0799) (0.1041)

Fixed Effects Year Year Year & MSA Year & MSA Year & MSA Year & MSA
Clustering Year Year MSA MSA Year & MSA Year & MSA
R2 0.0734 0.0763 0.0808 0.0847 0.1880 0.1914
R2

adj 0.0646 0.0649 0.0720 0.0733 0.1229 0.1240
RSS 5.4661 5.4487 4.7902 4.7700 4.7902 4.7700
Observations 2,859 2,859 2,859 2,859 2,859 2,859
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Table 2.10. Pricing of idiosyncratic risk and premium determinants (idiosyncratic risk
interactions, continued).

This table shows the estimation results for the pricing regressions for idiosyncratic risk and the determinants of its
premium. The data used are annual data at the MSA level for the period 1990–2006. The definitions of the variables
are as in Table 2.1. SAMEMSAMED, is a dummy variable that equals 1 if the outmigration rate is less than 14% (see
Han, 2013). Standard errors are given in parentheses.

Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f Ri,t −R f

σε,i,t ×POPULATION -0.1756* -0.2235** -0.2235**
(0.0958) (0.1078) (0.1075)

σε,i,t ×POPGROWTH 0.0545 0.0746 0.0746
(0.0794) (0.0659) (0.0787)

σε,i,t ×MEDINCOME 0.1243 0.2242 0.2242
(0.2078) (0.1776) (0.2400)

σε,i,t × INCOMEGR 0.0392 0.0820 0.0820
(0.1339) (0.3473) (0.3106)

σε,i,t ×RENTRISK -0.0001 0.0124 0.0124
(0.0885) (0.0760) (0.1033)

σε,i,t ×FRAC20TO45YRS 0.0269 0.1621 0.1621
(0.0994) (0.1455) (0.1148)

Constant -0.0099* -0.0126* -0.0174 -0.0165 0.0034 0.0041
(0.0049) (0.0066) (0.0146) (0.0162) (0.0084) (0.0118)

Fixed Effects Year Year Year & MSA Year & MSA Year & MSA Year & MSA
Clustering Year Year MSA MSA Year & MSA Year & MSA
R2 0.0734 0.0763 0.0808 0.0847 0.1880 0.1914
R2

adj 0.0646 0.0649 0.0720 0.0733 0.1229 0.1240
RSS 5.4661 5.4487 4.7902 4.7700 4.7902 4.7700
Observations 2,859 2,859 2,859 2,859 2,859 2,859
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Figure 2.1. Homeownership per year. This figure shows the evolution of homeownership in the
U.S. and various MSAs over time.
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Figure 2.2. Market-level housing return and the average idiosyncratic risk level per year.
This figure shows the evolution of the market-level housing return and the average idiosyncratic
risk level over time.
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Chapter 3

Pricing Effects of Time-Series Variation in
Liquidity1

3.1 Introduction

Stock market liquidity has well-established pricing implications for the cross-

section of stock returns (e.g., Acharya and Pedersen, 2005). Even though there is

evidence that liquidity betas are time-varying, and that liquidity premia are varying

over time (Kamara, Lou, and Sadka, 2008; Vayanos, 2004), little is known about

the sources of this variation (Comerton-Forde, Hendershott, Jones, Moulton, and

Seasholes, 2010; Karolyi, Lee, and van Dijk, 2012). A better understanding is not

only relevant for asset pricing, but also for portfolio choice (e.g., Ang, Papaniko-

laou, and Westerfield, 2014).

Recent studies focus on liquidity commonality and flights to quality (Rösch

and Kaserer, 2013). Næs, Skjeltorp, and Ødegaard (2011) empirically show that

investors respond to changing expectations about the real economy by shifting

their portfolios towards more liquid assets in two ways. The first type of shift

1I thank Alessandro Beber, Dion Bongaerts, Anton van Boxtel, Joost Driessen, Björn Hagströmer, Frank de Jong,
Vincent van Kervel, Frans de Roon, and seminar participants at the 8th Financial Risks International Forum, the
32nd International Conference of the French Finance Association, the 2014 Netspar Pension Day, the University of
Amsterdam, and the VU University Amsterdam for their insightful comments and suggestions.
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happens when investors decide to exit the stock market, for instance to the bond

market, as in Goyenko and Ukhov (2009). I refer to this as an across-asset-class

flight to liquidity. The second type of shift occurs when investors move from

illiquid stocks into liquid stocks. I call this a within-asset-class flight to liquidity

(see also, e.g., Beber, Brandt, and Kavajecz, 2009; Baele, Bekaert, Inghelbrecht,

and Wei, 2015; Vayanos, 2004). In this paper, I will use these mechanisms to

motivate my analysis, but empirically I will consider the stock market only.

This paper considers the changes in the cross-section of liquidity that coincide

with such portfolio shifts, as well as the impact of these changes in liquidity on

asset prices. In the case of reduced overall stock market participation, there is a

decrease in liquidity across all stocks, resulting in a level shift (Næs, Skjeltorp,

and Ødegaard, 2011). When investors shift their holdings to more liquid stocks,

the illiquid stocks become even less liquid, while liquid stocks are not affected as

strongly (Næs, Skjeltorp, and Ødegaard, 2011). This increase in liquidity disper-

sion across stocks is essentially a liquidity slope effect.

Of course, the across and within asset class flights to liquidity need not be the

only drivers of changes in the level or the slope of the cross-section of liquidity.

The level component should pick up commonality in liquidity (see, e.g., Chordia,

Roll, and Subrahmanyam, 2000; Rösch and Kaserer, 2013). For instance, if there

is a funding liquidity freeze, all assets will become less liquid at the same time

(Brunnermeier and Pedersen, 2009; Chordia, Sarkar, and Subrahmanyam, 2005).

For the slope component, we note that empirically, the market liquidity of high-

volatility stocks is more sensitive to inventory shocks (Comerton-Forde, Hender-

shott, Jones, Moulton, and Seasholes, 2010). The reason is that high-volatility

stocks are less liquid (Chordia, Sarkar, and Subrahmanyam, 2005; Ho and Stoll,

1983), and that funding liquidity deterioration hits volatile, illiquid stocks hardest

(Brunnermeier and Pedersen, 2009).
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The level component should be priced, as it is well-known that liquidity com-

monality is priced in the cross-section (Pástor and Stambaugh, 2003; Acharya and

Pedersen, 2005). It is less straightforward why the slope component would com-

mand a premium. For a possible motivation, consider a fund manager facing a

large outflow. A potential strategy is to sell liquid assets first to minimize transac-

tions costs (Duffie and Ziegler, 2003; Scholes, 2000). Empirical evidence suggests

that this is indeed the strategy that is followed by various institutional investors

(Ben-David, Franzoni, and Moussawi, 2012; Manconi, Massa, and Yasuda, 2012;

Xing, 2016). However, after initially selling most of the liquid assets, this may

force the fund to sell illiquid assets at great cost after a large negative return. In

this way, the strategy increases tail losses and the probability of insolvency (Duffie

and Ziegler, 2003). As this is compounded by exposure to slope risk, it seems not

unlikely for the slope component to be priced.

The characterization in terms of level and slope effects naturally leads to a

principal components analysis. Studies that focus on principal components of

liquidity (e.g., Hagströmer, Anderson, Binner, and Nilsson, 2009; Korajczyk and

Sadka, 2008) tend to consider the level of liquidity, while I use innovations. The

advantage of using innovations is that they are roughly i.i.d and therefore allow

a factor model interpretation for the principal components (see e.g., Basilevsky,

1994). This is not possible when using the level of liquidity, as liquidity is highly

serially correlated (see e.g., Acharya and Pedersen, 2005, but also Table 3.2). It

turns out that the first two principal components of illiquidity innovations are in-

deed the empirically relevant ones. I study what drives these components, as well

as their impact on asset prices.

I explore the pricing implications by rephrasing the liquidity beta structure of

Acharya and Pedersen (2005) in terms of the principal component exposures. This

results in a parsimonious specification with a market return beta, a liquidity level

beta, a liquidity slope beta, and a principal component residual beta. As the level
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and slope component are the empirically relevant ones, the residual beta should

not be priced. An advantage of this formulation is that the principal component

betas are much less correlated than the Acharya and Pedersen (2005) betas, so they

allow for improved identification of different liquidity effects.

To isolate the two components of liquidity, I use 25 liquidity-sorted portfolios

of U.S. stocks over the period 1964 to 2013, with market liquidity measured by

the illiquidity measure of Amihud (2002) (adjusted as in Acharya and Pedersen,

2005). The principal components analysis reveals that 66% of the variation of

illiquidity innovations can be explained by these first two principal components.

The level component, which explains roughly 57% of the variation, is negatively

related with market returns, negatively related with funding risk, and positively

related with changes in the risk-free rate. This indicates that the level component

reflects adverse selection, inventory risk, and margin requirements. The slope

component, which explains about 9% of the variation, is negatively related with

market returns in times of capital constraints on the funding market, positively

related with the default spread, positively related with liquid portfolio turnover,

negatively related with illiquid portfolio turnover, and negatively related with in-

vestor sentiment. Hence, the slope component reflects inventory risk, trading in

the liquid segment of the market, and investor sentiment.

When we consider liquidity-related crises such as those discussed in Pástor and

Stambaugh (2003), we can see that the level component, which reflects adverse

selection, inventory risk, and margin requirements, displays the largest shocks

during the 1970 domestic unrest, Silver Thursday (March 1980) and the 1987

crash. The latter is consistent with evidence that market making collapsed at dur-

ing that year’s stock market crisis (Brady, Cotting, Kirby, Opel, and Stein (1988)

in Hameed, Kang, and Viswanathan, 2010). The slope component, which reflects

inventory risk, trading in the liquid segment of the market, and sentiment, experi-

enced relatively larger shocks during the 1990 crisis, the LTCM crisis (September
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1998), and the dotcom bubble burst (May 2000). During the Russian default (Au-

gust 1998) and the 2008 subprime crisis, both channels were active.

The results of the asset pricing analysis show that only the level beta is sta-

tistically significant. Moreover, the economic impact of the three liquidity betas

is markedly different. While the liquidity level beta has a significant economic

impact of about 1.5% p.a., there is no meaningful economic impact of the other

liquidity betas. In summary, the pricing analysis indicates that market liquidity is

economically relevant to risk premia only through level rather than slope effects.

A subsample analysis reveals that the liquidity betas vary over time. Hence, I also

consider time-varying betas which are estimated using rolling time windows of

120 months. The results of the analysis using time-varying betas are similar to the

static results.

The pricing result that only the level component is relevant for stock prices

has implications for management of liquidity crises. The risk that overall market

liquidity deteriorates because liquidity disappears from part of the market (slope

effect) does not lower prices of unaffected stocks. On the other hand, the risk of an

overall liquidity freeze (level effect) has a price impact beyond what is implied by

a drop in liquidity of the individual assets. This makes economic sense, as an in-

stitution that sells liquid assets first when under stress to meet capital requirements

(see Duffie and Ziegler, 2003, for a discussion of strategies) will not be affected

by the slope effect, but will certainly be harmed by the level effect.

The paper is organized as follows. Section 3.2 gives an overview of relevant

literature. Section 3.3 describes the data. I describe the empirical approach and

present the results in Section 3.4. Section 3.5 summarizes the findings and con-

cludes the paper.
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3.2 Related Literature

This paper builds on previous research on liquidity commonality, determinants

of liquidity, principal components of liquidity, liquidity and asset pricing, and

flights to liquidity. Most directly related is the paper by Acharya and Pedersen

(2005), who develop a liquidity CAPM and show that both the level of liquidity

and liquidity risk are priced in the cross-section of stocks. They derive three liq-

uidity betas that are related to specific liquidity risks. On the basis of their model, it

is possible to identify the pricing effects of the level and slope of the cross-section

of liquidity by deriving betas for the respective effects.

To motivate why the level and the slope of liquidity should be relevant, I build

on empirical work by Næs, Skjeltorp, and Ødegaard (2011), who use individual

investor holdings data for all stocks on the Oslo Stock Exchange to show that

changes to the cross-section of liquidity coincide with portfolio shifts by investors.

Specifically, a decrease in overall liquidity coincides with investors exiting the

stock market altogether (across-asset-class flight to liquidity), for instance to move

into the bond market as in Goyenko and Ukhov (2009), while a decrease in the

liquidity of only the least liquid stocks coincides with a shift towards more liquid

stocks (within-asset-class flight to liquidity).

Earlier work has also studied the principal components of liquidity. For in-

stance, Korajczyk and Sadka (2008) analyze liquidity commonality through a

principal components analysis. They look at principal components of liquidity

itself (measure-specific) and principal components of various measures of liquid-

ity (across-measure). In addition, they construct liquidity factors to see whether

there is a liquidity premium associated with the various principal components.

Hagströmer, Anderson, Binner, and Nilsson (2009) estimate systematic liquid-

ity using a principal components analysis based on the level of liquidity. They

find that the market average liquidity yields the same degree of commonality as
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the principal components-based estimates, but the latter are better able to explain

stock returns. In addition, they find that for some estimators of liquidity the liq-

uidity covariance matrix changes over time, so that it is necessary to use a rolling

window principal component estimator. This finding, however, does not apply to

the Amihud (2002) measure that is used in this study.

A similar analysis is performed by Kim and Lee (2014), who use an across-

measure principal components analysis of liquidity to investigate the pricing im-

plications using the Acharya and Pedersen (2005) liquidity CAPM. The setup

of this paper is different, as I use a principal components analysis on the cross-

section of liquidity, rather than on different liquidity measures. Also, in contrast

with Hagströmer, Anderson, Binner, and Nilsson (2009) and Korajczyk and Sadka

(2008), I consider liquidity innovations, rather the level of liquidity. This setup

allows for a factor interpretation of the principal components (e.g., Basilevsky,

1994), and it allows me to leverage the Acharya and Pedersen (2005) liquidity

CAPM to establish pricing implications.

The liquidity level component that I use is strongly related to the market av-

erage liquidity, and therefore to liquidity commonality Chordia, Roll, and Sub-

rahmanyam (e.g., 2000). This liquidity commonality is one of the liquidity risks

shown by Acharya and Pedersen (2005) to be priced in the cross-section of stocks.

There are many recent papers on liquidity commonality. For instance, Rösch

and Kaserer (2013) find that liquidity commonality itself varies significantly over

time, and that it is higher during market crises. Brockman, Chung, and Pérignon

(2009) and Lee (2011) show that liquidity commonality occurs internationally,

while Mancini, Ranaldo, and Wrampelmeyer (2013) show that it also occurs in

the foreign exchange market.

Although it is straightforward that liquidity commonality should be priced, it

being a nondiversifiable risk, it is less clear why the liquidity slope component

should command a premium. For a possible motivation, consider a fund manager
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facing a large outflow. A potential strategy is to sell liquid assets first to minimize

transactions costs (Duffie and Ziegler, 2003; Scholes, 2000). Empirical evidence

suggests that this is indeed the strategy that is followed by various institutional

investors (Ben-David, Franzoni, and Moussawi, 2012; Manconi, Massa, and Ya-

suda, 2012; Xing, 2016). However, after initially selling most of the liquid assets,

this may force the fund to sell illiquid assets at great cost after a large negative re-

turn. In this way, the strategy increases tail losses and the probability of insolvency

(Duffie and Ziegler, 2003).

To facilitate the interpretation of the principal components of liquidity, I relate

them to a number determinants of liquidity. In the literature, the effect of inventory

turnover rates, inventory risks, and frictions such as margin requirements on liq-

uidity is well-documented (Demsetz, 1968; Ho and Stoll, 1981; Stoll, 1978). For

instance, high turnover should lead to high liquidity, as it implies lower inventory

risk for market makers. A low default spread will lead to high liquidity for the

same reason. The market return should be negatively associated with liquidity, es-

pecially when declines occur, as these declines indicate increased future volatility

(Brunnermeier and Pedersen, 2009; Comerton-Forde, Hendershott, Jones, Moul-

ton, and Seasholes, 2010; Kyle and Xiong, 2001), and thus lead to higher inventory

risk. A higher cost of margin trading will lead to lower liquidity, as it increases

the cost of liquidity provision.

An increase in volatility of market returns should lead to an increase in illiquid-

ity due to increased adverse selection and inventory risk (Comerton-Forde, Hen-

dershott, Jones, Moulton, and Seasholes, 2010; Stoll, 1978). Empirically, the

market liquidity of high-volatility stocks is more sensitive to inventory shocks

(Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes, 2010). This re-

sult arises because high-volatility stocks are less liquid (Chordia, Sarkar, and Sub-

rahmanyam, 2005; Ho and Stoll, 1983), and funding liquidity deterioration hits

volatile, illiquid stocks hardest (Brunnermeier and Pedersen, 2009).
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Changes in the commercial paper spread are positively related to capital con-

straints on the funding market. When these capital constraints become more bind-

ing, the negative impact of a market decline on liquidity will be amplified (Gatev

and Strahan, 2006; Hameed, Kang, and Viswanathan, 2010; Krishnamurthy, 2002).

Chordia, Roll, and Subrahmanyam (2001) suggest that a high term spread will lead

to lower stock market liquidity, as investors could move their wealth from equity

into longer-term Treasury bonds in response to the high spread. As Baker and

Stein (2004) argue that positive investor sentiment leads to higher liquidity, I also

consider the Baker and Wurgler (2006) sentiment measure.

3.3 Identifying and understanding the level and slope of liquid-
ity

In this section, I describe the data that are used, and the construction of the

variables that I include in my regressions.

3.3.1 Data

The portfolio return and illiquidity data are constructed following Acharya and

Pedersen (2005). I use CRSP daily stock return and volume data from 1964 until

2013 for all common shares listed on NYSE and AMEX. Due to the inclusion

of interdealer trades and the shorter history, I exclude Nasdaq. The returns are

adjusted for stock delisting following Shumway (1997). In addition to these stock-

level data, I use data on the commercial paper spread, the default spread, and the

term spread, obtained from the Federal Reserve Bank of St. Louis, and the Baker

and Wurgler (2006) sentiment measure.
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Illiquidity is measured by the Amihud (2002) illiquidity measure, which is de-

fined as

ILLIQi,t =
1

Daysi,t

Daysi,t

∑
d=1

∣∣Ri,t,d
∣∣

Voli,t,d
(3.1)

for stock i in month t, where Daysi,t denotes the number of observations available

for stock i in month t, and Ri,t,d and Voli,t,d denote the trading volume in millions

of dollars for stock i on day d in month t, respectively.

To deal with non-stationarity and for comparability with returns, I follow Acharya

and Pedersen (2005) and use a normalized illiquidity measure

ci,t = min
{

0.25+0.30ILLIQi,tP
m
t−1,30.00

}
, (3.2)

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end

of month t − 1 divided by the value at the end of July 1962. The coefficients

0.30 and 0.25 are such that the series for size-sorted portfolios matches approx-

imately the level and variance of the effective half spread reported by Chalmers

and Kadlec (1998). Outliers are removed by setting the maximum value of ci,t to

30% (Acharya and Pedersen, 2005).

Using this measure, I construct 25 illiquidity-sorted portfolios, following Acharya

and Pedersen (2005). The portfolios are formed annually, and include stocks for

which the price on the first trading day of the formation month is between $5

and $1000, and which have at least 100 observations of illiquidity during that

month. For the market portfolio, the same criteria apply, but only 15 observa-

tions of illiquidity during the formation month are required. The illiquidity port-

folios are value-weighted, while the market portfolio is equally-weighted. The

time-series of illiquidity at the portfolio level is given in Figure 3.2, and the corre-

sponding time-series for the market portfolio is shown in Figure 3.1.

Table 3.1 and Table 3.2 show descriptive statistics at the portfolio and the mar-

ket level, respectively. Table 3.1 shows that, on average, less liquid portfolios

94



3.3. IDENTIFYING AND UNDERSTANDING THE LEVEL AND SLOPE OF LIQUIDITY

command a higher risk premium, have more volatile returns, higher liquidity risk,

and lower percentage turnover. These facts are consistent with Acharya and Ped-

ersen (2005). Table 3.2 shows that the time-series of market liquidity is highly

persistent. The first order autocorrelation is equal to 89%.

3.3.2 Principal Components of Liquidity

To disentangle the liquidity level and slope effects, I use a principal compo-

nents analsis. For a factor model interpretation of the components, we need the

dependent variable to be i.i.d. (see, e.g., Basilevsky, 1994). Due to the persistence

of ci
t (see Table 3.2), I follow Acharya and Pedersen (2005) and use an AR(2)

specification to obtain illiquidity innovations that should be roughly i.i.d. I run

the PCA on these illiquidity innovations. As the variance of the illiquidity in-

novations varies substantially across portfolios, I base the PCA on the correlation

matrix. This ensures that the principal components are not biased towards the least

liquid portfolios, which have the most volatile innovations. To estimate the prin-

cipal components and the loadings, I use the full sample period. In the appendix

to this chapter, I analyze the robustness to using a rolling estimation window.

Following Acharya and Pedersen (2005), I start by computing un-normalized

liquidity, truncated for outliers, as

ILLIQi,t =
Ni

∑
j=1

w j,i,t min
{

ILLIQi,t ,
30.00−0.25

0.30Pm
t−1

}
, (3.3)
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where Ni is the number of stocks in portfolio i, and w j,i,t denotes the portfolio

weight. The AR(2) model takes the form(
0.25+0.30ILLIQm

t Pm
t−1
)
= a0 +a1

(
0.25+0.30ILLIQm

t−1Pm
t−1
)

(3.4)

+a2
((

0.25+0.30ILLIQm
t−2Pm

t−1
))

+ut .

We take the residual u, interpret it as the illiquidity innovation according to

ci
t−Et−1

[
ci

t
]
= ut , (3.5)

and use it as the input for the principal components analysis. The residual is shown

for the 25 liquidity-sorted portfolios in Figure 3.3. The principal components

analysis yields a factor decomposition of the form

ci
t−Et−1

[
ci

t
]
= γLL,iFLL,t + γLS,iFLS,t + εi,t . (3.6)

I use this decomposition, including the loadings (factor exposures) for the subse-

quent analysis of pricing effects.

The loadings obtained from the Principal Components Analysis on the time-

series of illiquidity for the 25 liquidity-sorted portfolios, and the illiquidity of the

equal-weighted market portfolio are given in Table 3.3. The first principal com-

ponent, which explains about 57% of the variation, has positive loadings for all

portfolios, capturing the level of liquidity innovations. The second principal com-

ponent, which explains about 9% of the variation, has negative loadings on the

most liquid portfolios and positive loadings on the least liquid portfolios, captur-

ing the slope of liquidity innovations. The third and fourth principal component

respectively explain 4% and 3% of the variation. Using the scree plot in Fig-

ure 3.4, we find that the first two principal components are indeed the pertinent
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ones. The percentages of the variation in illiquidity explained by the components

already show an interesting finding. It seems that the impact of level effects on

market liquidity is much stronger than that of slope effects.

To validate the interpretation of the first two principal components of liquidity

innovations, Table 3.4 presents the correlations between the components, inno-

vations of market liquidity, and the cross-sectional dispersion of liquidity inno-

vations. The table shows that, while both components are correlated with mar-

ket liquidity innovations, the level component shows a much stronger correlation.

Only the second component is significantly correlated with liquidity dispersion.

This suggests that the level component represents market liquidity commonality

(liquidity co-movement), while the slope component captures the extent to which

liquidity varies in the cross-section at a certain point in time.

3.3.3 Determinants of the Level and Slope of Liquidity

To economically interpret the first two principal components of liquidity, I con-

sider the determinants of liquidity used by Chordia, Roll, and Subrahmanyam

(2001) and Hameed, Kang, and Viswanathan (2010). These include proxies for

trading activity, inventory turnover rates, inventory risks, margin requirements,

capital constraints on the funding market, and investor sentiment. The aim of this

analysis is to establish what the principal components are related to by computing

multivariate correlations. Hence I use a regression framework where all variables

are contemporaneous, and I am not trying to show causality here.

Following Chordia, Roll, and Subrahmanyam (2001), I include the risk-free

rate as a short-term interest rate to proxy for margin requirements, the term spread

to measure the relative attractiveness of the bond market, and the default spread to

proxy for inventory risk. Based on Hameed, Kang, and Viswanathan (2010), I also

consider the volatility of monthly market returns as an inventory risk proxy, market
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percentage turnover as an inventory risk proxy, the impact of market downturns,

the spread in commercial paper to proxy for capital constraints on the funding

market, and the Baker and Wurgler (2006) index for investor sentiment.

A possible interpretation of the slope component is that it coincides with the

portfolio shift from illiquid to liquid stocks that is documented by Næs, Skjel-

torp, and Ødegaard (2011). To investigate this channel, I follow Beber, Driessen,

and Tuijp (2012) and classify the liquidity-sorted portfolios into a liquid segment

(the 19 most liquid portfolios) and an illiquid segment (the 6 least liquid portfo-

lios). Next, I compute the percentage turnover separately for each segment. Using

this decomposition, we may see whether the principal components of liquidity are

related to overall changes in turnover or only to turnover in one segment of the

market. Hence we should expect the slope component to be positively related to

turnover in the liquid segment, but negatively related to turnover in the illiquid

segment.

The effect of market turnover on overall illiquidity should be negative, as high

turnover should lead to lower inventory risk. As short rates reflect the cost of

margin trading, the risk-free rate should be positively associated with overal illiq-

uidity. Chordia, Roll, and Subrahmanyam (2001) suggest that investors could

move their wealth from equity into bonds after an increase in longer-term Trea-

sury bond yields, causing increased trading activity, but also increased illiquidity

in the stock market, leading to a positive relation with the term spread. An in-

crease in the default spread could increase inventory risk, and hence overal illiq-

uidity. Changes in the commercial paper spread are positively related to capi-

tal constraints on the funding market, and hence augment the negative impact

of a market decline on liquidity (Gatev and Strahan, 2006; Hameed, Kang, and

Viswanathan, 2010; Krishnamurthy, 2002). An increase in volatility of market

returns should lead to an increase in illiquidity due to increased adverse selection

and inventory risk (Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes,
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2010; Stoll, 1978). The market return should also be negatively associated with

liquidity, especially when declines occur, which for instance lead to increased fu-

ture volatility (Brunnermeier and Pedersen, 2009; Comerton-Forde, Hendershott,

Jones, Moulton, and Seasholes, 2010; Kyle and Xiong, 2001).

As the principal components are formed according to (3.6), using innovations

of illiquidity, I include first differences of most of the determinants in my regres-

sions. This results in

Fk,t = β0 +β1MKTDOWNt +β2MKTDOWNt×CAPt +β3rm
t (3.7)

+β4∆DEFt +β5∆CPSPREADt +β6∆σ
m
t +β7∆TRNliq

t

+β8∆TRNilliq
t +β9∆TERMt +β10∆r f

t +β11R2
trn,t

+β12∆SENT⊥t + εt ,

where k = LL,LS. In this equation, MKTDOWN represents the market return

when it is negative and zero otherwise, CAP is a dummy variable that measures

capital constraints on the funding market and equals 1 when the non-financial

commercial paper spread has increased and 0 otherwise, DEF denotes the de-

fault spread, CPSPREAD the non-financial commercial paper spread, σm
t the mar-

ket volatility measured as the monthly standard deviation of daily market returns,

TRNliq is the percentage turnover in the in the liquid segment of the market (port-

folios 1 through 19), TRNilliq
t is the turnover in the illiquid segment of the market

(portfolios 20 through 25), TERM denotes the term spread, r f
t the risk-free rate,

R2
trn denotes the Karolyi, Lee, and van Dijk (2012) turnover commonality mea-

sure, and SENT⊥ denotes the orthogonalized Baker and Wurgler (2006) sentiment

index.2 All variables are standardized, so that the regression coefficients indicate

2The orthogonalization follows Baker and Wurgler (2006) and is with respect to several macroeconomic con-
ditions. The reason to orthogonalize the sentiment measure is to reduce the likelihood that the sentiment index is
connected to systematic risk.
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by how many standard deviations each component changes given a one standard

deviation change in the respective variables.

Table 3.5 presents estimation results for regressions (3.7). As expected, the

market return has a negative impact on liquidity level component. The market re-

turn also has a negative impact on the slope component, but only when there are

capital constraints on the funding market (measured through the commerical pa-

per spread). The commercial paper spread itself has a positive impact on the level

component, indicating a more direct impact of funding risk. The level component

increases with changes in the the risk-free rate, indicating that margin require-

ments have a positive impact on the level component. The fact that the default

spread is not significant for the level component, but does have a positive impact

on the slope component, could be explained by the results of Comerton-Forde,

Hendershott, Jones, Moulton, and Seasholes (2010), who find that inventory risk

affects high volatility stocks much more strongly than low volatility stocks. As

high volatility stocks are also the least liquid ones, a slope effect seems natural.

The percentage turnover for the liquid portfolios has a positive effect on the

slope component. There is a negative effect for the turnover of the illiquid port-

folios. This could possibly indicate trading shifting to the liquid part of the mar-

ket (as in Næs, Skjeltorp, and Ødegaard, 2011) when the slope component is ac-

tive. Only the level component is associated with turnover commonality. Lower

turnover commonality leads to a decrease in the level of liquidity. The slope com-

ponent is decreasing in the Baker and Wurgler (2006) index for investor senti-

ment, implying that illiquid assets will become even less liquid when sentiment

decreases. These results are in line with the findings of Karolyi, Lee, and van Dijk

(2012), and with Baker and Stein (2004) who argue that positive sentiment leads

to higher liquidity.

Comparing the results for both components, we see that the level component re-

acts more strongly to market returns. The level component is also associated with
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increases in the risk-free rate. These are related to adverse selection, inventory

risk, and margin requirements. The slope component is associated with market

returns in times of capital constraints on the funding market, increases in the de-

fault spread and percentage turnover for liquid portfolios, and decreases in the

Baker and Wurgler (2006) index. These are related to inventory risk, the amount

of trading in the liquid segment of the market, and investor sentiment.

If we look at the plots of the standardized first two principal component se-

ries, given in Figure 3.5, we can focus on a number of liquidity-related crises,

such as those mentioned by Pástor and Stambaugh (2003). We see that the level

component displayes the largest shocks during the 1970 domestic unrest, Silver

Thursday (March 1980) and the 1987 crash. That the level component was active

during the 1987 crash is consistent with evidence that market making collapsed

at during that year’s stock market crisis (Brady, Cotting, Kirby, Opel, and Stein

(1988) in Hameed, Kang, and Viswanathan, 2010). The slope component, was

most active during the 1990 crisis, the LTCM crisis (September 1998), and the

dotcom bubble burst (May 2000). During the Russian default (August 1998) and

the 2008 subprime crisis, both channels experienced large shocks.

3.4 Asset Pricing Tests

In this section I set out the asset pricing tests. The approach consists of two

stages. First, I obtain static pricing results through an Acharya and Pedersen

(2005) approach. Second, I estimate time-varying factor exposure to the two liq-

uidity components and investigate time-varying risk premia.
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3.4.1 Static Pricing of the Level and Slope of Liquidity

To determine the pricing implications for the level and the slope of liquidity,

we consider the model by Acharya and Pedersen (2005),

Et
[
ri
t+1
]
− r f = κEt

[
ci

t+1
]
+λt

Covt
(
ri
t+1− ci

t+1,r
m
t+1− cm

t+1
)

Vart
(
rm
t+1− cm

t+1
) . (3.8)

They obtain an unconditional specification given by

E
[
ri
t+1
]
− r f = κE

[
ci

t+1
]
+λβ

1i +λβ
2i−λβ

3i−λβ
4i, (3.9)

where

β
1i =

Cov
(
ri
t+1,r

m
t+1−Et

[
rm
t+1
])

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.10)

β
2i =

Cov
(
ci

t+1−Et
[
ci

t+1
]
,cm

t+1−Et
[
cm

t+1
])

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.11)

β
3i =

Cov
(
ri
t+1,c

m
t+1−Et

[
cm

t+1
])

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.12)

β
4i =

Cov
(
ci

t+1−Et
[
ci

t+1
]
,rm

t+1−Et
[
rm
t+1
])

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.13)

and the market price of risk is given by

λ = E
[
ri
t+1− r f − cm

t+1

]
. (3.14)

In this setup, the three liquidity betas β2i, β3i, and β4i have natural interpretations.

Acharya and Pedersen (2005) argue that β2i reflects commonality in liquidity, β3i

is high for securities that are desirable because they have high returns when the

market is illiquid (see also Pástor and Stambaugh, 2003), and β4i is high for se-

curities that are desirable because they are liquid when the market return is low.
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Taking this model to the data, Acharya and Pedersen (2005) find that the return

premium for β4i is highest.

Using the factor exposure decomposition from (3.6), we can reformulate the

Acharya and Pedersen (2005) beta structure as in the following proposition (the

proof is given in Appendix 3.A.1).

PROPOSITION 4: The factor decomposition given in (3.6) allows us to rewrite

(3.9) as

E
[
ri
t+1
]
− r f = κE

[
ci

t+1
]
+λβ

Ri +λβ
LLi +λβ

LSi +λβ
LRi, (3.15)

with

β
Ri =

Cov
(
ri

t+1,r
m
t+1−Et

[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) , (3.16)

β
LLi =

Cov(γLL,iFLL,t ,γLL,mFLL,t)−Cov
(
ri

t+1,γLL,mFLL,t
)
−Cov

(
γLL,iFLL,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) , (3.17)

β
LSi =

Cov(γLS,iFLS,t ,γLS,mFLS,t)−Cov
(
ri

t+1,γLS,mFLS,t
)
−Cov

(
γLS,iFLS,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) . (3.18)

β
LRi =

Cov(εi,t ,εm,t)−Cov
(
ri

t+1,εm,t
)
−Cov

(
εi,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) . (3.19)

The four betas have natural interpretations as sensitivities to the market return

βRi, the level component of liquidity βLLi, the slope component of liquidity βLSi,

and the other components of liquidity βLRi. For each of the three liquidity betas

in Proposition 4, we see that they are combinations of the three Acharya and Ped-

ersen (2005) liquidity betas, using the principal component exposures rather than

illiquidity ci
t+1 itself. Hence, the interpretation of the components of the betas

follows from that of the Acharya and Pedersen (2005) betas.

For the level component beta βLLi, the first part reflects the premium that in-

vestors demand for commonality in level shifts of liquidity, the second part reflects

the premium that investors are willing to pay for a security that provides high re-

turns when level shifts make the market less liquid, and the third part reflects the
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premium that investors are willing to pay for a security that is liquid due to level

shift exposure when market returns are low. The interpretations for the slope com-

ponent beta βLSi and the residual component beta βLRi are similar.

Not only does this reformulation allow us to look into the pricing consequences

of level shifts and slope changes, it also results in betas that should be not as

strongly correlated. As a result, we are able to obtain better identification of the

level and slope effects, while retaining a clear economic interpretation. In addi-

tion, this allows us to check whether the residual component beta indeed is not

priced, as we would expect from the PCA scree plot. As the Acharya and Peder-

sen (2005) betas cannot be rewritten in terms of the principal component betas, the

improved identification for the latter cannot be used to provide inference regard-

ing the original beta structure. For this reason, it would be interesting to estimate

the model for all parts of the PCA betas separately, yielding nine liquidity betas

instead of three, with

β
LLi
2 =

Cov(γLL,iFLL,t ,γLL,mFLL,t)

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.20)

β
LLi
3 =

Cov
(
ri
t+1,γLL,mFLL,t

)
Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.21)

β
LLi
4 =

Cov
(
γLL,iFLL,t ,rm

t+1−Et
[
rm
t+1
])

Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
])), (3.22)

and similarly for the other liquidity betas. The numbering 2,3,4 corresponds to the

related Acharya and Pedersen (2005) liquidity betas. In the appendix to this chap-

ter, I show that we cannot identify all nine parts separately in the static setup, as for

k = LL,LS, it holds that Cov
(
γk,iFk,t ,γk,mFk,t

)
and Cov

(
γk,iFk,t ,rm

t+1−Et
[
rm
t+1
])

are perfectly correlated in the cross-section by construction. Therefore, I include

βLLi
2 and βLLi

4 as they appear in the full level beta: βLLi
2 −βLLi

4 , and similarly for the

slope beta.
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Every regression is run with κ free, and also with its value fixed to κ = 0.034

to improve estimation efficiency following Acharya and Pedersen (2005). The κ

should roughly equal the average monthly turnover in the sample, to proxy for

the inverse of the holding period.3 In the sample used by Acharya and Pedersen

(2005) the average monthly turnover is 0.034. In my sample, it is 0.0827. In the

appendix to this chapter I provide results where I fix κ = 0.0827. Another way to

improve efficiency, is to impose that the market price of risk λ equals the observed

average market risk premium net of transaction costs, as given in (3.14). I provide

the results for this case in the appendix to this chapter.

To compute the economic impact of each term, we use the λ coefficient estimate

obtained from (3.9) or (3.15) and fix κ at 0.034 for reasons of efficiency, following

Acharya and Pedersen (2005). The annualized economic impact of the liquidity

level term is computed as κ
(
Et
[
c25

t+1
]
−Et

[
c1

t+1
])
·12, and similarly for the other

terms.

To check the stability of the results, I run a subsample analysis. The analysis

is done for the first half of the sample (January 1964 until December 1988) and

the second half of the sample (January 1989 until December 2013). In addition,

I run the analysis without the most liquid portfolio, and without the least liquid

portfolio, to see whether these extreme portfolios influence the results.

3.4.2 Static Pricing of the Level and Slope of Liquidity Results

The variables that appear in (3.15) are given in Table 3.6. Most notably, the

level beta is increasing in illiquidity, while the slope beta is smaller for the very

liquid assets, and roughly similar in size across the other assets.

3The authors argue that when the estimation period is κ times the typical investor’s holding period, the risk
premium and the betas will scale with κ, but the E

[
ci

t+1
]

term will not. Hence, they scale the latter by κ to correct for
this.
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Compared to the Acharya and Pedersen (2005) betas, the level-slope formula-

tion yields less multicollinearity. See Table 3.7 for a comparison. Where the cor-

relation between β2i and β4i is equal to −0.9957, the strongest correlation for the

principal component betas is 0.8270. The reduced correlation allows for improved

identification of the pricing impact of different aspects of liquidity, although we

still cannot identify the individual impact of the original betas. What we can see

from Table 3.7, however, is that the level beta is most strongly related to β2i (com-

monality in liquidity) and β4i (liquid when the market return is low), while the

slope beta is most strongly related to β3i (high returns when the market is illiquid).

Table 3.8 gives the estimation results for (3.15). The pricing analysis reveals

that statistically, of the liquidity betas only the level component is significant. In

terms of the economic impact only the liquidity level channel has a significant

contribution of about 1.5% p.a. The total effect of liquidity risk found by Acharya

and Pedersen (2005) is equal to 1.1% per annum. Hence, this result indicates that

the largest part of the economic contribution of liquidity risk to the risk premium is

driven through the level channel. This is confirmed by the economic contributions

of the slope channel and the other principal components, which are equal to 0.01%

p.a. and 0.18% p.a., respectively.

Looking at Table 3.8, we see in the full regression that the impact of the level

component is driven by βLLi
2 −βLLi

4 , which represents the level aspect of common-

ality in liquidity and being liquid when the market return is low. For the slope

component, the corresponding term is the only significant one, even though the

slope component had no effect in the results given in Table 3.8. In addition, the

level of liquidity E
[
ci

t+1
]

also has a significant impact, in line with Acharya and

Pedersen (2005).

The subsample results, given in the appendix to this chapter, show that the

results are absent for the first half of the sample (January 1964 until December

1988), but are strongly present during the second half of the sample (January 1989
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until December 2013). Also, the betas vary substantially between the two halves

of the sample. This motivates the time-varying beta analysis. The appendix to this

chapter shows that the results do still hold for the analysis without the most liquid

portfolio, and the analysis without the least liquid portfolio.

3.4.3 Time-varying Pricing of the Level and Slope of Liquidity

Motivated by the subsample analysis, I consider time-varying versions of (3.15).

I start by running a constant coefficient time-varying beta regression of the form

ri
t− r f −κEt−1

[
ci

t
]
= λ0 +λRβR,i,t−1 +λLLβLL,i,t−1 +λLSβLS,i,t−1 (3.23)

+λLRβLR,i,t−1 + εt .

To obtain βR,i,t , βLL,i,t , and βLS,i,t , I compute rolling estimates of (3.16)–(3.18)

with a time window of 120 months. For the time-periods where insufficient obser-

vations are available, I require that there are at least 60 observations to compute the

rolling estimates. The factor premium estimates and the corresponding standard

errors are obtained using the Fama and MacBeth (1973) procedure.

For the rolling estimates of the betas, I use time-varying factor exposures to en-

sure proper conditioning. These time-varying factor exposures result from rolling

window estimates for the conditional factor model

ci
t−Et−1

[
ci

t
]
= γLL,i,tFLL,t + γLS,i,tFLS,t + εi,t , (3.24)

where FLL,t denotes the liquidity level factor and FLS,t the liquidity slope factor,

both obtained from the PCA on illiquidity innovations. The window size is set

to 120 months for all portfolios. As for the betas, I require that there are at least

60 observations to compute the rolling estimates if insufficient observations are

available.
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As the variance of the liquidity innovations differs considerably across the port-

folios, it is not immediately obvious that the optimal time window size should

be equal across the different portfolios. In the appendix to this chapter, I use the

method of Ang and Kristensen (2012) to estimate the optimal window size through

a kernel-based method. It turns out that the optimal bandwidth is roughly 120 ob-

servations for all portfolios. This validates the window size chosen for the rolling

window estimates.

To further investigate how the pricing of liquidity varies over time, I estimate

time-varying risk premia using the cross-sectional regression

ri
t− r f −κEt−1

[
ci

t
]
= λ0,t−1 +λR,t−1βR,i,t−1 +λLL,t−1βLL,i,t−1 (3.25)

+λLS,t−1βLS,i,t−1 +λLR,t−1βLR,i,t−1 + εt

for each period t. This specification is motivated by Vayanos (2004), who shows

that liquidity premia increase during more volatile times, and by Watanabe and

Watanabe (2008), who show that the price of liquidity risk varies over time, even

when taking into account a time-varying liquidity beta.

For the time-varying versions, I also use the different setups for κ and λ as

discussed in the static analysis. Similarly, I also consider the nine different parts of

the liquidity betas. In this setting, there are no inherent multicollinearity issues, but

βLLi
2 and βLLi

4 are still nearly perfectly correlated in the data. Therefore I include

them as βLLi
2 −βLLi

4 .

3.4.4 Time-varying Pricing of the Level and Slope of Liquidity Results

The time-varying factor exposure of the illiquidity innovations for the 25 liq-

uidity-sorted portfolios to the level and slope component is given in Figure 3.7.

Both effects have remained relatively stable over time, although there is substan-

tial variation in exposure for the least liquid portfolio. The rolling window esti-
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mates of the level and slope beta are shown in Figure 3.8. As for the exposure

of the illiquidity innovations to the principal components, we see that the betas

are relatively stable for the liquid portfolios, while they vary more strongly for the

least liquid portfolio.

When we keep the prices of risk fixed and use the Fama and MacBeth (1973)

procedure, we find the results given in Table 3.10. The level beta is significant in

the specification with all the variables and κ free, while the slope beta is significant

across all specifications. Looking at the results for the decomposition of the betas

in Table 3.11, we see that βLLi
3 is significant across a number of specifications and

has the correct sign, indicating that investors value having high returns when the

market is illiquid. For the slope component, we see no significant terms in the

decomposition, contrasting with the results in Table 3.10. The estimation results

for (3.25), where the prices of risk are time-varying, are shown in Figure 3.9. This

results in the liquidity risk premia given in Figure 3.10 (level beta) and Figure 3.11

(slope beta).

3.5 Conclusions

This paper identifies two liquidity components and analyzes their pricing impli-

cations. A principal components analysis of 25 liquidity-sorted portfolios of U.S.

stocks over the period 1964 to 2013, shows that 66% of the variation of illiquidity

can be explained by the first two principal components. The loadings on the first

factor, which explains about 57%, are consistent with a level component interpre-

tation. The loadings on the second component, which explains about 9%, show

that it is a slope component. Although both components are correlated with mar-

ket liquidity innovations, the correlation is much stronger for the level component.

The slope component is related to liquidity dispersion, while the level component

is not.
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To investigate the economic meaning of the principal components, I run re-

gressions on various determinants of liquidity and look at which component was

active during various liquidity crises. The level component, which reflects adverse

selection, inventory risk, and margin requirements, has the largest shocks during

the 1970 domestic unrest, Silver Thursday (March 1980) and the 1987 crash. The

slope component, which reflects inventory risk, trading in the liquid segment of

the market, and investor sentiment, experienced large shocks during the 1990 cri-

sis, the LTCM crisis (September 1998), and the dotcom bubble burst (May 2000).

During the Russian default (August 1998) and the 2008 subprime crisis, both com-

ponents experienced large shocks.

The pricing analysis shows that only the liquidity level beta is statistically sig-

nificant in a liquidity CAPM. Additionally, only the liquidity level beta has a sig-

nificant economic impact of about 1.5% p.a. This is roughly equal to the total

economic impact of liquidity risk in our setting, and to the total economic impact

found by Acharya and Pedersen (2005). Hence, it seems that only the level of

market liquidity is relevant to risk premia, while the slope has no significant ef-

fect. In addition, the betas appear to vary over time, which motivates the analysis

of time-varying betas and risk premia. It appears, however, that liquidity betas are

relatively stable over time. Not surprisingly, the time-varying beta analysis pro-

duces results that are similar to the static analysis, although it does provide more

support for a slope effect.

Combining the results above, we see that the liquidity level component cap-

tures most of the variation in liquidity, and is the only part of liquidity risk with a

meaningful economic impact. The liquidity slope component does explain part of

the time-variation in liquidity, but is not statistically significant in a pricing con-

text, and does not carry a sizeable economic impact. This has implications for

management of liquidity crises. In the case of a slope effect, where liquidity only

deteriorates for part of the market, there will be no price impact beyond what is
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implied by the drop in liquidity of the individual securities. For a level effect,

however, there will be an additional impact through the level beta. A possible eco-

nomic motivation is that institutions that sell liquid assets first when under stress

to meet capital requirements (see Duffie and Ziegler, 2003, for a discussion of

strategies) will not be strongly affected by the slope effect, but will certainly be

harmed by the level effect.
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3.A Derivations Factor Pricing

3.A.1 Main result

Proof of Proposition 4: We use the factor exposure decomposition given in (3.6)

and the orthogonality of the factors to obtain

Cov
(
ci

t+1−Et
[
ci

t+1
]
,cm

t+1−Et
[
cm

t+1
])

(3.26)

= Cov
(
γLL,iFLL,t + γLS,iFLS,t + εi,t ,γLL,mFLL,t + γLS,mFLS,t + εm,t

)
= Cov(γLL,iFLL,t ,γLL,mFLL,t)+Cov

(
γLS,iFLS,t ,γLS,mFLS,t

)
+Cov(εi,t ,εm,t) .

This gives

β
2i =

Cov(γLL,iFLL,t ,γLL,mFLL,t)+Cov(γLS,iFLS,t ,γLS,mFLS,t)+Cov(εi,t ,εm,t)

Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) . (3.27)

Similarly, we find

β
3i =

Cov
(
ri

t+1,γLL,mFLL,t
)
+Cov

(
ri

t+1,γLS,mFLS,t
)
+Cov

(
ri

t+1,εm,t
)

Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) , (3.28)

and

β
4i =

Cov
(
γLL,iFLL,t ,rm

t+1−Et
[
rm

t+1

])
+Cov

(
γLS,iFLS,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) (3.29)

+
Cov

(
εi,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) ,
Collecting the commonality and dispersion effects, we obtain a new beta structure that allows us
to disentangle the risk premia for the commonality and dispersion components:

E
[
ri
t+1
]
− r f = κE

[
ci

t+1
]
+λβ

Ri +λβ
LLi +λβ

LSi +λβ
LRi, (3.30)
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with

β
Ri =

Cov
(
ri

t+1,r
m
t+1−Et

[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) , (3.31)

β
LLi =

Cov(γLL,iFLL,t ,γLL,mFLL,t)−Cov
(
ri

t+1,γLL,mFLL,t
)
−Cov

(
γLL,iFLL,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) , (3.32)

β
LSi =

Cov(γLS,iFLS,t ,γLS,mFLS,t)−Cov
(
ri

t+1,γLS,mFLS,t
)
−Cov

(
γLS,iFLS,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) . (3.33)

β
LRi =

Cov(εi,t ,εm,t)−Cov
(
ri

t+1,εm,t
)
−Cov

(
εi,t ,rm

t+1−Et
[
rm

t+1

])
Var
(
rm

t+1−Et
[
rm

t+1

]
−
(
cm

t+1−Et
[
cm

t+1

])) . (3.34)

Q.E.D.
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0.3448

4.8916
0.0699

4.9049
0.2442

5.6554
4.8098

11
0.6734

0.3725
5.1438

0.0941
5.1611

0.2572
5.4089

4.2691
12

0.5630
0.4037

4.8935
0.1072

4.9144
0.2445

4.7951
3.7103

13
0.6529

0.4376
4.8893

0.1240
4.9165

0.2463
4.7662

3.6871
14

0.7400
0.4758

5.0515
0.1529

5.0836
0.2535

4.4090
3.0553

15
0.6506

0.5453
5.0894

0.1981
5.1365

0.2565
4.2004

3.0606
16

0.6331
0.6210

5.0289
0.2298

5.0830
0.2524

4.0327
2.5514

17
0.8010

0.7238
5.0751

0.3034
5.1522

0.2531
4.2676

4.4986
18

0.6807
0.8283

5.0265
0.3259

5.1102
0.2504

4.2420
5.3765

19
0.8664

0.9742
5.1872

0.4031
5.2873

0.2563
3.7374

2.6377
20

0.6789
1.2769

5.3153
0.5771

5.4804
0.2594

3.4632
2.3135

21
0.8253

1.5531
5.4042

0.6395
5.5692

0.2597
2.9857

1.7014
22

0.8381
1.9864

5.3899
0.8188

5.5838
0.2556

3.8557
7.9582

23
0.8183

2.8059
5.4890

1.2157
5.9041

0.2685
3.1721

2.6555
24

0.7511
4.4659

5.5545
2.0282

6.3574
0.2732

2.6859
1.9129

25
0.8712

8.0759
6.0417

4.0085
7.8284

0.2780
2.4010

2.1144
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Table 3.2. Descriptive statistics (market level)

This table shows market level descriptives. The CRSP data used are monthly data with sample period 1964–2013. In
this table, R f denotes the risk-free rate, Rm denotes the market return, cm the market illiquidity, σ(Rm) the volatility of
market returns, Liquidity Dispersion is the cross-sectional standard deviation of illiquidity, R2

liq and R2
trn respectively

denote the Karolyi, Lee, and van Dijk (2012) liquidity and turnover commonality measures, CP Spread is the non-
financial commercial paper spread, SENT⊥ denotes the Baker and Wurgler (2006) sentiment index, FLL,t denotes the
liquidity level factor, and FLS,t denotes the liquidity slope factor.

Mean Stdev Skewness Kurtosis Min Max ACF (1st lag)
R f 0.0045 0.0026 0.6658 3.9211 0.0000 0.0135 0.9585
Rm 0.0113 0.0504 -0.5734 6.7533 -0.2634 0.2354 0.1675
cm 0.0115 0.0029 1.3385 4.7736 0.0073 0.0229 0.8671
Rm− cm -0.0002 0.0514 -0.6067 6.7374 -0.2795 0.2235 0.1851
cm

t −Et−1 [cm
t ] 0.0000 0.0014 0.9703 6.6921 -0.0045 0.0088 -0.0790

σ(Rm) 0.0071 0.0050 4.1588 28.6524 0.0017 0.0469 0.6610
Turnover 0.0827 0.0669 1.9567 7.3358 0.0161 0.4383 0.9571
Term Spread 0.0169 0.0132 -0.5569 2.7849 -0.0265 0.0442 0.9511
Default Spread 0.0111 0.0047 1.6887 6.4478 0.0055 0.0338 0.9629
Liquidity Dispersion 0.0195 0.0078 0.6111 3.1340 0.0045 0.0460 0.8816
R2

liq 0.2466 0.1054 1.8217 7.2781 0.0684 0.7665 0.4481
R2

trn 0.4002 0.1277 0.6026 3.2085 0.1622 0.8062 0.3842
CP Spread 0.5874 0.5213 2.5052 12.9236 0.0400 4.3800 0.8594
∆SENT⊥ -0.0052 0.9763 0.3093 5.4497 -3.5268 4.3673 -0.0834
FLL,t 0.0236 3.7261 0.6882 9.1136 -19.1966 18.6432 0.1916
FLS,t 0.1109 1.5016 0.6166 5.4568 -5.9776 7.3365 -0.0321
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Table 3.3. Principal Components Analysis results: portfolio loadings

This table shows the loadings on the first and second principal component of illiquidity for 25 liquidity-sorted portfo-
lios. Portfolio 1 is the most liquid, portfolio 25 the least liquid. The CRSP data used are monthly data corresponding
to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013.

Portfolio First Second
1 0.0746 -0.0800
2 0.2172 -0.2476
3 0.2267 -0.2133
4 0.2258 -0.1895
5 0.2332 -0.1943
6 0.2250 -0.1852
7 0.2310 -0.1698
8 0.2191 -0.1532
9 0.2302 -0.1519
10 0.2192 -0.1056
11 0.2288 -0.1104
12 0.2106 -0.0115
13 0.2117 -0.0222
14 0.2218 -0.0312
15 0.2011 0.0942
16 0.2070 0.0930
17 0.2052 0.1090
18 0.1904 0.1510
19 0.1862 0.1834
20 0.1583 0.2328
21 0.1649 0.2833
22 0.1363 0.2873
23 0.1460 0.3372
24 0.1359 0.3143
25 0.1007 0.3502
Mkt 0.1723 0.2015
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Table 3.4. Correlations of principal components

This table shows correlations between the first two principal components of liquidity innovations, the first difference
of market liquidity, and liquidity dispersion.

First (FLL,t ) Second (FLS,t ) cm
t −Et−1 [cm

t ] LIQDISPt
First (FLL,t ) 1.0000
Second (FLS,t ) 0.0000 1.0000
cm

t −Et−1 [cm
t ] 0.6611*** 0.2974*** 1.0000

LIQDISPt 0.0194 0.2243*** 0.0909** 1.0000
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Table 3.5. Principal component regressions.

This table shows the estimation results for the regressions of the first (level) and second (slope) principal component
of illiquidity innovations on several determinants of liquidity. That is,

Fk,t = β0 +β1MKTDOWNt +β2MKTDOWNt ×CAPt +β3rm
t +β4∆DEFt +β5∆CPSPREADt +β6∆σ

m
t (3.35)

+β7∆TRNliq
t +β8∆TRNilliq

t +β9∆TERMt +β10∆r f
t +β11R2

trn,t +β12∆SENT⊥t + εt ,

for k = LL,LS. In this equation, MKTDOWN represents the market return when it is negative and zero otherwise,
CAP is a dummy variable that measures capital constraints on the funding market, DEF denotes the default spread,
CPSPREAD the non-financial commercial paper spread, σm

t the market volatility, TRNliq is the percentage turnover
in the in the liquid segment of the market (portfolios 1 through 19), TRNilliq

t is the turnover in the illiquid segment of
the market (portfolios 20 through 25), TERM denotes the term spread, r f

t the risk-free rate, R2
trn denotes the Karolyi,

Lee, and van Dijk (2012) turnover commonality measure, and SENT⊥ denotes the orthogonalized Baker and Wurgler
(2006) sentiment index. All variables are standardized to facilitate the interpretation. The CRSP data used are monthly
data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013.
Standard errors are given in parentheses.

First (FLL,t ) Second (FLS,t )
MKTDOWNt -0.2721*** 0.0916

(0.0938) (0.1117)
MKTDOWNt ×CAPt 0.1936** -0.2681***

(0.0775) (0.0922)
rm

t -0.4269*** -0.1409
(0.0718) (0.0855)

∆DEFt -0.0049 0.2035***
(0.0345) (0.0411)

∆CPSPREADt 0.1171*** 0.0272
(0.0403) (0.0480)

∆σm
t 0.0717 -0.2633***

(0.0504) (0.0600)
∆TRNliq

t -0.0402 0.2824***
(0.0634) (0.0755)

∆TRNilliq
t -0.0149 -0.2516***

(0.0609) (0.0725)
∆TERMt -0.0078 -0.0262

(0.0357) (0.0425)
∆r f

t 0.1087*** -0.1024**
(0.0381) (0.0454)

R2
trn,t -0.0698* -0.0029

(0.0411) (0.0490)
∆SENT⊥t -0.0361 -0.0957**

(0.0381) (0.0453)
Constant -0.0096 0.0109

(0.0354) (0.0421)
R2 0.4236 0.2020
Observations 437 437
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Table 3.6. Regression variables

This table shows the variables used for the regression

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.36)

for 25 liquidity-sorted portfolios, where βnet = β1i + β2i− β3i− β4i, with βki as in (3.10)–(3.13). Portfolio 1 is the
most liquid, portfolio 25 the least liquid. The CRSP data used are monthly data corresponding to 25 value-weighted
US stock portfolios sorted on illiquidity with sample period 1964–2013.

Portfolio E
[
ri

t+1
]
− r f E

[
ci

t+1
]

βnet,i βRi βLLi βLSi βLRi

(%) (%) (·100) (·100) (·100) (·100) (·100)
1 0.39 0.25 67.08 66.26 0.67 0.02 0.13
2 0.44 0.26 80.25 79.19 0.83 0.02 0.21
3 0.50 0.26 83.86 82.74 0.87 0.03 0.21
4 0.64 0.27 86.22 85.05 0.92 0.04 0.21
5 0.64 0.27 92.14 90.78 1.03 0.06 0.27
6 0.61 0.28 89.57 88.28 0.99 0.04 0.25
7 0.62 0.29 88.83 87.55 1.05 0.06 0.18
8 0.60 0.30 90.99 89.59 1.14 0.06 0.20
9 0.66 0.32 91.78 90.30 1.19 0.05 0.24
10 0.67 0.34 91.35 89.85 1.19 0.05 0.26
11 0.74 0.36 95.83 94.20 1.35 0.05 0.23
12 0.65 0.39 91.62 90.01 1.33 0.06 0.23
13 0.72 0.42 91.03 89.35 1.44 0.04 0.20
14 0.79 0.46 94.54 92.68 1.60 0.06 0.20
15 0.72 0.53 94.38 92.31 1.76 0.06 0.25
16 0.69 0.60 92.36 90.17 1.86 0.07 0.26
17 0.84 0.69 92.70 90.27 2.18 0.05 0.21
18 0.73 0.79 90.60 88.05 2.20 0.08 0.28
19 0.88 0.93 93.33 90.63 2.50 0.07 0.14
20 0.73 1.21 94.44 91.24 3.13 0.08 -0.01
21 0.79 1.48 94.56 91.14 3.33 0.06 0.04
22 0.88 1.88 91.99 87.92 3.63 0.07 0.36
23 0.87 2.66 96.46 90.86 5.17 0.06 0.37
24 0.81 4.24 95.26 87.62 7.01 0.07 0.56
25 0.91 8.15 95.07 85.22 8.68 0.09 1.08
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Table 3.7. Beta correlations

This table shows the correlations between the Acharya and Pedersen (2005) betas (Panel A), as well as the correlation
between βRi, βLLi, βLSi, and βLRi (Panel B) and the correlation across the two types of betas (Panel C). The CRSP
data used are monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample
period 1964–2013.

Panel A (AP) β1i β2i β3i β4i

β1i 1.0000
β2i 0.0196 1.0000
β3i -0.8291*** -0.4308** 1.0000
β4i -0.0485 -0.9957*** 0.4761** 1.0000
Panel B (PCA) βRi βLLi βLSi βLRi

βRi 1.0000
βLLi 0.1102 1.0000
βLSi 0.5619*** 0.6467*** 1.0000
βLRi -0.0460 0.7679*** 0.4169** 1.0000
Panel C (AP and PCA) β1i β2i β3i β4i

βRi 1.0000 0.0196 -0.8291*** -0.0485
βLLi 0.1102 0.9865*** -0.5412*** -0.9956***
βLSi 0.5619*** 0.5807*** -0.7649*** -0.6129***
βLRi -0.0460 0.8342*** -0.2255 -0.8156***
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Table 3.8. Pricing regression results.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.37)

where κ is restricted to 0.034 and βnet = β1i + β2i− β3i− β4i, with βki as in (3.10)–(3.13). The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.38)

with κ both restricted to 0.034 and unrestricted and where βRi, βLLi, βLSi, and βLRi as in (3.16)–(3.19). The CRSP
data used are monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample
period 1964–2013. Newey and West (1987) standard errors are given in parentheses.

βnet 0.0146*** 0.0154***
(0.0022) (0.0026)

βRi 0.0151*** 0.0133*** 0.0126*** 0.0128*** 0.0106*** 0.0106***
(0.0026) (0.0031) (0.0027) (0.0024) (0.0027) (0.0028)

βLLi 0.0132* 0.0071 0.0218** 0.0647** 0.0592** 0.0604
(0.0069) (0.0086) (0.0104) (0.0267) (0.0249) (0.0350)

βLSi 1.2464 1.1504 1.4243 1.4378
(1.3008) (1.4064) (1.2978) (1.2402)

βLRi -0.1792 0.0116
(0.1221) (0.1941)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0257*** -0.0272 -0.0289 -0.0315
(—) (—) (—) (—) (0.0058) (0.0257) (0.0248) (0.0495)

α -0.6621*** -0.6980*** -0.5920** -0.5098** -0.7221*** -0.5426** -0.4170** -0.4152*
(0.2043) (0.2349) (0.2412) (0.2060) (0.2384) (0.2030) (0.1948) (0.1999)

R2 0.6468 0.6562 0.6675 0.7083 0.7634 0.8037 0.8140 0.8140
Observations 25 25 25 25 25 25 25 25
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Table 3.9. Pricing regression results for decomposed betas.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.39)

where κ is restricted to 0.034 and βnet = β1i + β2i− β3i− β4i, with βki as in (3.10)–(3.13). The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.40)

with κ both restricted to 0.034 and unrestricted and where βRi, βLLi, βLSi, and βLRi as in (3.16)–(3.19). The CRSP
data used are monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample
period 1964–2013. Newey and West (1987) standard errors are given in parentheses.

βnet 0.0146*** 0.0154***
(0.0022) (0.0026)

βRi 0.0028 0.0069 0.0028 0.0046 0.0097 0.0175**
(0.0060) (0.0059) (0.0066) (0.0055) (0.0075) (0.0062)

βLLi
2 −βLLi

4 -0.0074 0.0564 0.0208 0.0353 0.0766 0.1091**
(0.0117) (0.0401) (0.0396) (0.0287) (0.0574) (0.0431)

βLLi
3 -0.8472* -0.3787 -0.5490 -0.6477 -0.1457 0.5212

(0.4080) (0.4673) (0.4773) (0.3949) (0.5766) (0.4551)
βLSi

2 −βLSi
4 59.1359* 33.1134 167.5353 501.5881***

(32.0279) (36.4540) (185.8307) (146.0623)
βLSi

3 -0.5102 -0.5961 -0.2599 1.4332
(1.4235) (1.2447) (1.5934) (1.2456)

βLRi
2 -3.6846*** -8.6162***

(1.2609) (1.5017)
βLRi

3 -0.4618 -0.2002
(0.3883) (0.2685)

βLRi
4 -0.0757 -0.1074

(0.1138) (0.1032)
E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0257*** -0.0097 0.1365 0.4836***
(—) (—) (—) (—) (0.0058) (0.0239) (0.1717) (0.1269)

α -0.6621*** -0.4142* -0.3763* -0.2786 -0.7221*** -0.3835* -0.4245* -0.5838***
(0.2043) (0.2133) (0.1899) (0.2100) (0.2384) (0.1938) (0.2192) (0.1967)

R2 0.6468 0.7194 0.7569 0.8218 0.7634 0.8228 0.8351 0.9297
Observations 25 25 25 25 25 25 25 25
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Table 3.10. Pricing regression results (rolling beta analysis).

This table shows the Fama and MacBeth (1973) estimation results for

ri
t − r f = α+κci

t−1 +λβ
net,i
t−1 , (3.41)

where κ is restricted to 0.034 and βnet
t−1 = β1i

t−1 + β2i
t−1− β3i

t−1− β4i
t−1, with βki

t−1 as in (3.10)–(3.13). The table also
shows estimation results for

ri
t − r f = λ0 +κci

t−1 +λ1βR,i,t−1 +λ2βLL,i,t−1 +λ3βLS,i,t−1 +λ4βLR,i,t−1 + εt , (3.42)

with κ both restricted to 0.034 and unrestricted, and where βRi, βLLi, βLSi, and βLRi as in (3.16)–(3.19). The betas have
been estimated with a rolling time window of 120 months. The CRSP data used are monthly data corresponding to
25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013. Newey and West (1987)
standard errors are given in parentheses.

βnet 0.0082** 0.0078**
(0.0040) (0.0039)

βRi 0.0078** 0.0058 0.0088** 0.0056 0.0035 0.0037
(0.0038) (0.0039) (0.0040) (0.0038) (0.0038) (0.0040)

βLLi -0.0287 0.0432 0.0023 0.0212 0.1118* 0.1516**
(0.0326) (0.0508) (0.0558) (0.0482) (0.0660) (0.0745)

βLSi 0.3148** 0.3450** 0.5664*** 0.5930***
(0.1367) (0.1527) (0.1753) (0.1878)

βLRi -0.0234 -0.0279
(0.0571) (0.0671)

ci
t−1 0.034 0.034 0.034 0.034 0.0190 -0.0158 -0.1204 -0.2008**

(—) (—) (—) (—) (0.0259) (0.0614) (0.0769) (0.0920)
α 0.2643 0.3518 0.4462 0.1637 0.3378 0.4925* 0.5499* 0.4752

(0.3244) (0.2963) (0.2920) (0.3032) (0.3077) (0.2985) (0.2842) (0.3041)
R2 0.1382 0.2635 0.3293 0.3914 0.2530 0.3301 0.3908 0.4503
Observations 13,500 13,500 13,500 13,500 13,500 13,500 13,500 13,500
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Table 3.11. Pricing regression results for decomposed betas (rolling beta analysis).

This table shows the Fama and MacBeth (1973) estimation results for

ri
t − r f = α+κci

t−1 +λβ
net,i
t−1 , (3.43)

where κ is restricted to 0.034 and βnet
t−1 = β1i

t−1 + β2i
t−1− β3i

t−1− β4i
t−1, with βki

t−1 as in (3.10)–(3.13). The table also
shows estimation results for

ri
t − r f = λ0 +κci

t−1 +λ1βR,i,t−1 +λ2βLL,i,t−1 +λ3βLS,i,t−1 +λ4βLR,i,t−1 + εt , (3.44)

with κ both restricted to 0.034 and unrestricted, and where βRi, βLLi, βLSi, and βLRi as in (3.16)–(3.19). The betas have
been estimated with a rolling time window of 120 months. The CRSP data used are monthly data corresponding to
25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013. Newey and West (1987)
standard errors are given in parentheses.

βnet 0.0082** 0.0078**
(0.0040) (0.0039)

βRi 0.0027 0.0053 -0.0081 0.0025 0.0023 -0.0092
(0.0061) (0.0067) (0.0070) (0.0062) (0.0066) (0.0072)

βLLi
2 −βLLi

4 -0.0311 -0.0123 -0.0667 0.0042 0.1130 0.2475**
(0.0424) (0.0649) (0.0895) (0.0567) (0.0854) (0.1219)

βLLi
3 -0.6088 -0.8370* -1.6100*** -0.5475 -0.9379** -1.2224**

(0.4136) (0.4939) (0.5494) (0.4049) (0.4693) (0.5415)
βLSi

2 -638.9801 1000.4931 -697.7494 1180.0652
(984.7313) (646.1290) (968.2381) (901.5105)

βLSi
3 -3.3394 -2.9894 -2.2176 -0.5787

(2.1240) (2.1683) (2.1243) (2.1826)
βLSi

4 5.2283 -6.7267 6.3501 -6.9160
(6.9178) (4.8732) (6.9107) (6.7775)

βLRi
2 -5.8393 -4.9727

(6.3010) (7.5155)
βLRi

3 -0.6608 -0.5042
(0.4336) (0.4273)

βLRi
4 -0.0881 -0.0801

(0.0743) (0.1075)
ci

t−1 0.034 0.034 0.034 0.034 0.0190 -0.0171 -0.2676** -0.4688**
(—) (—) (—) (—) (0.0259) (0.0625) (0.1343) (0.1951)

α 0.2643 0.2722 0.5538* 0.4210 0.3378 0.4241 0.5459* 0.4753
(0.3244) (0.2962) (0.2947) (0.3328) (0.3077) (0.2963) (0.2928) (0.3362)

R2 0.1382 0.3254 0.4858 0.6222 0.2530 0.3876 0.5356 0.6626
Observations 13,500 13,500 13,500 13,500 13,500 13,500 13,500 13,500
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Figure 3.1. Market illiquidity. This graph shows the time-series of market-level illiquidity.
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Figure 3.2. Portfolio illiquidity. This graph shows the time-series of illiquidity for four of the
25 liquidity-sorted portfolios, with the first portfolio being the most liquid and the 25th portfolio
being the least liquid.
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Figure 3.3. Portfolio illiquidity innovations. This graph shows the time-series of illiquidity
innovations (AR(2) residuals) for 25 liquidity-sorted portfolios, with the first portfolio being the
most liquid and the 25th portfolio being the least liquid.
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Figure 3.4. Scree plot for the principal components of illiquidity innovations. This graph
shows the eigenvalues corresponding to the principal components of the illiquidity innovations.
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Figure 3.5. Principal components of market illiquidity. The top panel shows the first prin-
cipal component of market illiquidity (liquidity commonality effect). The bottom panel shows
the second principal component of market illiquidity (liquidity dispersion effect). Both principal
components are standardized, and the two-standard-deviation bound is indicated for each series.
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Figure 3.6. Cumulative principal components of market illiquidity. The top panel shows the
first principal component of market illiquidity (liquidity commonality effect). The bottom panel
shows the second principal component of market illiquidity (liquidity dispersion effect). Both
principal components are standardized and cumulated over time to show the impact on the level of
liquidity, rather than on the innovations. The two-standard-deviation bound is indicated for each
series.
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Figure 3.7. Conditional exposure of illiquidity to the liquidity level and slope component.
This graph shows the conditional exposure to the liquidity level (top panel) and slope (bottom
panel) component for four of the 25 liquidity-sorted portfolios, with the first portfolio being the
most liquid and the 25th portfolio being the least liquid.
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Figure 3.8. Conditional beta for the liquidity level and slope component. This graph shows the
conditional beta for the liquidity level (top panel) and slope (bottom panel) component for four of
the 25 liquidity-sorted portfolios. The first portfolio is the most liquid and the 25th portfolio is the
least liquid.

132



3.A. DERIVATIONS FACTOR PRICING

196401 197401 198401 199401 200401
−6

−4

−2

0

2

4

6

Month

L
ev

el
Pr

ic
e

of
R

is
k

196401 197401 198401 199401 200401
−30

−20

−10

0

10

20

30

Month

Sl
op

e
Pr

ic
e

of
R

is
k

Figure 3.9. Time-varying prices of risk. The time-varying market prices of risk pertaining to the
rolling beta estimates of the first (top panel) and second (bottom panel) principal component. The
dotted line indicates the 120-month moving average.
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Figure 3.10. Conditional risk premium to the liquidity level component. This graph shows the
conditional risk premium to the liquidity level component for 25 liquidity-sorted portfolios. The
first portfolio is the most liquid and the 25th portfolio is the least liquid.
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Figure 3.11. Conditional risk premium to the liquidity slope component. This graph shows the
conditional risk premium to the liquidity slope component for 25 liquidity-sorted portfolios. The
first portfolio is the most liquid and the 25th portfolio is the least liquid.
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3.B Additional Proofs

3.B.1 Principal Components Beta Decomposition

In this section, I show that in the static setting, two of the components of the

level and slope betas are cross-sectionally perfectly correlated. Let k = LL for the

level beta, and k = LS for the slope beta. Introduce

σ = Var
(
rm
t+1−Et

[
rm
t+1
]
−
(
cm

t+1−Et
[
cm

t+1
]))

. (3.45)

The decomposition of βk,i is given by

β
k,i =

1
σ

Cov
(
γk,iFk,t ,γk,mFk,t

)
− 1

σ
Cov

(
ri
t+1,γk,mFk,t

)
(3.46)

− 1
σ

Cov
(
γk,iFk,t ,rm

t+1−Et
[
rm
t+1
])
.

I will now show that the first term and the third term are cross-sectionally perfectly

correlated. To see this, write

Cov
(
γk,iFk,t ,γk,mFk,t

)
= γk,iγk,mVar

(
Fk,t
)

(3.47)

and

Cov
(
γk,iFk,t ,rm

t+1−Et
[
rm
t+1
])

= γk,iCov
(
Fk,t ,rm

t+1−Et
[
rm
t+1
])
. (3.48)

Taking the cross-sectional correlation (across i), we obtain

Corr
(
γk,iγk,mVar

(
Fk,t
)
,γk,iCov

(
Fk,t ,rm

t+1−Et
[
rm
t+1
]))

= Corr
(
γk,i,γk,i

)
(3.49)

= 1.
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A consequence of this is that it is not possible in the static setting to separately

identify the prices of risk for these two components in the case of the level beta

and the slope beta.

3.B.2 Ang and Kristensen (2012) Optimal Bandwidth

In this section, I give some details regarding the Ang and Kristensen (2012)

estimation method. We start from the bias and variance, which are given by

E [̂γ(t)− γ(t)]≈ 1
2

h2
γ
(2)(t)µ2, (3.50)

Var (̂γ(t))≈ κ2

nh
Λ
−1
FF(t)⊗Σ(t), (3.51)

where

µ2 =
∫

∞

−∞

z2K (z) dz, (3.52)

which has µ2 = 1 for the Gaussian kernel, and

κ2 =
∫

∞

−∞

K2 (z) dz, (3.53)

which has κ2 ≈ 0.2821 for the Gaussian kernel, to obtain the approximate mean

squared error (AMSE)

MSE (̂γ(t)) = tr(Var (̂γ(t)))+E [̂γ(t)− γ(t)]′E [̂γ(t)− γ(t)] (3.54)

≈ κ2

nh
tr
(

Λ
−1
FF(t)⊗Σ(t)

)
+

1
4

h4‖γ(2)(t)‖2

= AMSE (̂γ(t)) . (3.55)

This yields the following FOC for the minimum

∂AMSE (̂γ(t))
∂h

=− κ2

nh2 tr
(

Λ
−1
FF(t)⊗Σ(t)

)
+h3‖γ(2)(t)‖2 = 0. (3.56)
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It follows that

κ2tr
(

Λ
−1
FF(t)⊗Σ(t)

)
= nh5‖γ(2)(t)‖2 (3.57)

⇔ h5 =
κ2tr

(
Λ
−1
FF(t)⊗Σ(t)

)
n‖γ(2)(t)‖2

⇔ h =

κ2tr
(

Λ
−1
FF(t)⊗Σ(t)

)
‖γ(2)(t)‖2


1
5

×n−1/5.

For the approximate mean integrated squared error (AMISE), we find

AMISE (̂γ(t)) =
∫ T

0
AMSE (̂γ(t)) dt (3.58)

=
∫ T

0

κ2

nh
tr
(

Λ
−1
FF(t)⊗Σ(t)

)
dt +

∫ T

0

1
4

h4‖γ(2)(t)‖2 dt

=
1
nh

∫ T

0
κ2tr

(
Λ
−1
FF(t)⊗Σ(t)

)
dt +

1
4

h4
∫ T

0
‖γ(2)(t)‖2 dt

=
1
nh

V (γ)+
1
4

h4B(γ) ,

so that we obtain the following FOC for the minimum

∂AMISE (̂γ(t))
∂h

=− 1
nh2V (γ)+hB(γ) = 0. (3.59)

It follows that

1
nh2V (γ) = h3B(γ) (3.60)

⇔ h5 =
V (γ)

nB(γ)

⇔ h =

(
V (γ)

B(γ)

)1
5

×n−1/5,
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where

V (γ) =
∫ T

0
κ2tr

(
Λ
−1
FF(t)⊗Σ(t)

)
dt (3.61)

B(γ) =
∫ T

0
‖γ(2)(t)‖2 dt.

3.B.3 Ang and Kristensen (2012) Optimal Bandwidth Estimation

To estimate the optimal bandwidth, we need to find γ(2)(t). We start from

γ(t) =

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

KhT (ti− t)XiRi

)
(3.62)
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and take the first derivative, which is given by

γ
(1)(t) =

d
dt

( n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

KhT (ti− t)XiRi

) (3.63)

=
d
dt

( n

∑
i=1

KhT (ti− t)XiX ′i

)−1
( n

∑
i=1

KhT (ti− t)XiRi

)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiRi

)

=−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1
d
dt

(
n

∑
i=1

KhT (ti− t)XiX ′i

)

×

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

KhT (ti− t)XiRi

)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiRi

)

=

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ(t)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiRi

)
.

This gives the following expression for the second derivative.

γ
(2)(t) =

d
dt

((
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ(t) (3.64)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiRi

))
,
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or

γ
(2)(t) =

 d
dt

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1
( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ(t) (3.65)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiX ′i

)
γ(t)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ
(1)(t)

−

 d
dt

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1
( n

∑
i=1

dKhT (ti− t)
dt

XiRi

)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiRi

)
,
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or

γ
(2)(t) =−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
(3.66)

×

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ(t)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiX ′i

)
γ(t)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ
(1)(t)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)

×

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiRi

)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiRi

)
,

so that

γ
(2)(t) =−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ
(1)(t) (3.67)

−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiX ′i

)
γ(t)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

dKhT (ti− t)
dt

XiX ′i

)
γ
(1)(t)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiRi

)
,
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and therefore

γ
(2)(t) =−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiX ′i

)
γ(t) (3.68)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiRi

)
.

We have

KhkT (z) =
K
(

z
hkT

)
hkT

(3.69)

and use the Gaussian kernel

K(z) =
1√
2π

exp
(
−z2

2

)
. (3.70)

Hence,

dKhkT (z)
dz

=
K′
(

z
hkT

)
(hkT )2 , (3.71)

d2KhkT (z)
dz2 =

K′′
(

z
hkT

)
(hkT )3 , (3.72)

and

dK(z)
dz

=− z√
2π

exp
(
−z2

2

)
, (3.73)

d2K(z)
dz2 =

z2
√

2π
exp
(
−z2

2

)
− 1√

2π
exp
(
−z2

2

)
(3.74)

=
z2−1√

2π
exp
(
−z2

2

)
.
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Summarizing the results, we have obtained the following expression.

γ
(2)(t) =−

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiX ′i

)
γ(t) (3.75)

+

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

d2KhT (ti− t)
dt2 XiRi

)
,

where

γ(t) =

(
n

∑
i=1

KhT (ti− t)XiX ′i

)−1( n

∑
i=1

KhT (ti− t)XiRi

)
, (3.76)

d2KhkT (z)
dz2 =

K′′
(

z
hkT

)
(hkT )3 , (3.77)

d2K(z)
dz2 =

z2−1√
2π

exp
(
−z2

2

)
. (3.78)

3.C Additional Empirical Results

3.C.1 Time-varying Factor Exposure

To check whether the rolling window time-varying factor exposure estimates

are appropriate, I use the method of Ang and Kristensen (2012). Given the liquid-

ity level factor FLL,t and the liquidity slope factor FLS,t obtained from the PCA on

illiquidity innovations, we can estimate the conditional factor model

ci
t−Et−1

[
ci

t
]
= γ0,i,t + γLL,i,tFLL,t + γLS,i,tFLS,t + εi,t , (3.79)

where εi,t can accommodate both heteroskedasticity and time-varying cross-sectional

correlations. We write Σ(t) for the covariance structure of the full εt . Ang and

Kristensen (2012) provide conditional kernel-based estimators with standard er-
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rors that take into account the underlying factor dynamics. Note that the vari-

ance of the liquidity innovations differs considerably across the portfolios. Con-

sequently, the optimal time window size may also vary across the portfolios. The

method of Ang and Kristensen (2012) is similar to that of Lewellen and Nagel

(2006), who use a fixed-length time window to estimate time-varying exposure.

In the framework of Ang and Kristensen (2012), a fixed time window can be im-

plemented by using a backward-looking uniform kernel.

We arrange the factors in a vector Ft =
(
FLL,t ,FLS,t

)′ and assume that they fol-

low the discretized diffusion model

∆Ft = µF (t)∆+Λ
1/2
FF (t)

√
∆ut , (3.80)

where ut ∼ I I D (0, I), and the possibly random functions µF (t) and Λ
1/2
FF (t) are

twice differentiable.

To estimate the γ`,k,t , Ang and Kristensen (2012) use a Gaussian kernel, with a

different bandwidth for each asset. They have

KhkT (z) =
K
(

z
hkT

)
hkT

(3.81)

where

K(z) =
1√
2π

exp
(
−z2

2

)
. (3.82)

Their estimator for γ(t) in (3.79) is a weighted multivariate OLS estimator,

γ̂(t) =

(
T

∑
s=1

KhkT (s− t)XiX ′i

)−1( T

∑
s=1

KhkT (s− t)Xici

)
, (3.83)
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where Xi = (1,F ′t )
′. Ang and Kristensen (2012) show (see Section 3.B.2 for the

details) that the optimal bandwidth h∗k is given by

h∗k =

κ2tr
(

Λ
−1
FF(t)⊗Σ(t)

)
‖γ(2)(t)‖2


1
5

×n−1/5, (3.84)

where γ(2)(t) is the second derivative of γ(t), and

κ2 =
∫

∞

−∞

K2 (z) dz, (3.85)

which gives κ2 ≈ 0.2821 for the Gaussian kernel. Feasible estimation is possible

given estimates of ΛFF(t), Σ(t), and γ(2)(t). Further details, including a two-step

estimation procedure, are provided in Ang and Kristensen (2012).

The results of this procedure are given in Table 3.12. The average optimal

bandwidth h across portfolios equals 105 months, or 8.75 years. The choice of

120 months for the estimation window for the factor coefficients corresponds to

the 80th percentile of the bandwidths for all portfolios, and is close to the mode of

119 months.

3.C.2 Robustness to Principal Components Estimation Sample

In this section, I provide the results for the case where a rolling estimation

window is used for the principal components.
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Table 3.12. Ang and Kristensen (2012) bandwidths for time-varying factor exposure
estimation

This table shows the Ang and Kristensen (2012) optimal estimation bandwidths for the estimation of (3.79) on 25
liquidity-sorted portfolios, as well as the equally-weighted market portfolio. Portfolio 1 is the most liquid, portfolio 25
the least liquid. The CRSP data used are monthly data corresponding to 25 value-weighted US stock portfolios sorted
on illiquidity with sample period 1964–2013.

Portfolio Bandwidth Bandwidth
(fraction of sample) (months)

1 0.0959 57.56
2 0.1467 88.01
3 0.1980 118.83
4 0.1968 118.08
5 0.1862 111.72
6 0.1707 102.40
7 0.1977 118.62
8 0.1636 98.14
9 0.2561 153.65
10 0.2307 138.44
11 0.2350 140.97
12 0.2127 127.60
13 0.1714 102.86
14 0.1683 100.97
15 0.1651 99.09
16 0.1670 100.22
17 0.1850 111.00
18 0.2010 120.57
19 0.1617 97.04
20 0.1350 81.03
21 0.1339 80.32
22 0.2060 123.59
23 0.1384 83.02
24 0.1602 96.13
25 0.1426 85.58
Mkt 0.1252 75.12
Average 0.1750 105.02
Median 0.1695 101.68
Min 0.0959 57.56
Max 0.2561 153.65

3.C.3 Pricing regression with κ equal to average monthly turnover

Acharya and Pedersen (2005) argue that when the estimation period is κ times

the typical investor’s holding period, the risk premium and the betas will scale

with κ, but the E
[
ci

t+1
]

term will not. Hence, they scale the latter by the average

monthly turnover κ in the sample (a proxy for the inverse of the holding period).

In the sample used by Acharya and Pedersen (2005) the average monthly turnover

is 0.034. In Table 3.13, I present the results where I fix κ = 0.0827, the average
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Table 3.13. Pricing regression with κ equal to average monthly turnover.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.86)

where κ is restricted to 0.0827 and βnet = β1i +β2i−β3i−β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.87)

with κ unrestricted and with βRi, βLLi, βLSi, and βLRi as defined in the paper. The CRSP data used are monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013. Newey
and West (1987) standard errors are given in parentheses.

βnet 0.0102*** 0.0154***
(0.0027) (0.0026)

βRi 0.0170*** 0.0153*** 0.0141*** 0.0128*** 0.0106*** 0.0106***
(0.0032) (0.0040) (0.0030) (0.0024) (0.0027) (0.0028)

βLLi -0.0278** -0.0332** -0.0069 0.0647** 0.0592** 0.0604
(0.0117) (0.0129) (0.0119) (0.0267) (0.0249) (0.0350)

βLSi 1.1087 0.9365 1.4243 1.4378
(1.5406) (1.6287) (1.2978) (1.2402)

βLRi -0.3211** 0.0116
(0.1498) (0.1941)

E
[
ci

t+1
]

0.0827 0.0827 0.0827 0.0827 0.0257*** -0.0272 -0.0289 -0.0315
(—) (—) (—) (—) (0.0058) (0.0257) (0.0248) (0.0495)

α -0.3122 -0.8218*** -0.7275** -0.5802** -0.7221*** -0.5426** -0.4170** -0.4152*
(0.2318) (0.2833) (0.3126) (0.2250) (0.2384) (0.2030) (0.1948) (0.1999)

R2 0.2324 0.6400 0.6467 0.7441 0.7634 0.8037 0.8140 0.8140
Observations 25 25 25 25 25 25 25 25

monthly turnover in my estimation sample. The results show that, although the

level beta remains significant, setting κ = 0.0827 results in a negative sign for the

level beta, rather than the expected positive sign.

3.C.4 Pricing regression with fixed market price of risk

In this subsection, I impose the market price of risk for the CAPM beta to be

equal to

λ = E
[
rm
t+1− r f −0.034cm

t+1

]
, (3.88)

following the theoretical result by Acharya and Pedersen (2005), rather than esti-

mating it in the regression framework. The 0.034 corrects for the holding period
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Table 3.14. Pricing regression results with fixed market price of risk for the CAPM beta.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.89)

where κ is restricted to 0.034 and βliq,net = β2i− β3i− β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.90)

with κ unrestricted and with βLLi, βLSi, and βLRi as defined in the paper. For these analyses, I have fixed

λ = E
[
rm

t+1− r f −0.034cm
t+1
]
. (3.91)

The CRSP data used are monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity
with sample period 1964–2013. Newey and West (1987) standard errors are given in parentheses.

βliq,net 0.0136 0.0956***
(0.0089) (0.0325)

βLLi 0.0157 -0.0002 0.0173 0.0874*** 0.0643** 0.0696*
(0.0095) (0.0103) (0.0115) (0.0286) (0.0244) (0.0337)

βLSi 2.9792*** 2.6389** 2.3016** 2.2902**
(1.0251) (1.0447) (1.0299) (1.0696)

βLRi -0.2026 0.0564
(0.1329) (0.1893)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 -0.0719* -0.0525* -0.0395* -0.0510
(—) (—) (—) (—) (0.0349) (0.0276) (0.0223) (0.0452)

α -0.0067 -0.0070 -0.1360*** -0.1040** -0.1029** -0.0752** -0.1646*** -0.1780***
(0.0264) (0.0251) (0.0474) (0.0458) (0.0439) (0.0339) (0.0462) (0.0491)

R2 0.1208 0.1354 0.3293 0.4219 0.6668 0.6599 0.7222 0.7238
Observations 25 25 25 25 25 25 25 25

in a similar manner as the κ coefficient in the model. In my sample, the value

of the unconditional market price of risk estimate equals λ = 0.7200. The results

in Table 3.14 show that imposing this restriction produces results similar to the

benchmark regression.

3.C.5 Pricing regression subsample analysis

In this subsection, I investigate the stability of the model by estimating it for the

subsamples running from 1964 until 1988 and from 1989 until 2013. The results

are given in Table 3.15 and Table 3.16, respectively. From the results, we see that
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Table 3.15. Pricing regression results (first subsample).

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.92)

where κ is restricted to 0.034 and βnet = β1i +β2i−β3i−β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.93)

with κ unrestricted and with βRi, βLLi, βLSi, and βLRi as defined in the paper. The CRSP data used are monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–1988. Newey
and West (1987) standard errors are given in parentheses.

βnet 0.0211*** 0.0215***
(0.0027) (0.0034)

βRi 0.0218*** 0.0146*** 0.0125*** 0.0189*** 0.0139*** 0.0156***
(0.0040) (0.0029) (0.0025) (0.0041) (0.0016) (0.0022)

βLLi 0.0131 0.1229*** 0.1661*** 0.1002** -0.0399 -0.1533
(0.0099) (0.0349) (0.0428) (0.0476) (0.0326) (0.1215)

βLSi 0.3108*** 0.4169*** 0.8476*** 0.9908***
(0.0886) (0.1104) (0.1857) (0.2706)

βLRi -0.1416* 0.1313
(0.0726) (0.1130)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0288 -0.1295 0.6952*** 0.9928**
(—) (—) (—) (—) (0.0169) (0.0829) (0.1766) (0.3867)

α -1.2054*** -1.2439*** -0.8006*** -0.6629*** -1.2346*** -1.0747*** -0.7190*** -0.8099***
(0.2297) (0.3203) (0.2104) (0.1699) (0.2876) (0.3146) (0.1173) (0.1498)

R2 0.8211 0.8119 0.8808 0.9008 0.8558 0.8607 0.9478 0.9527
Observations 25 25 25 25 25 25 25 25

the that the liquidity betas vary over time. This motivates the time-varying beta

analysis.

150



3.C. ADDITIONAL EMPIRICAL RESULTS

Table 3.16. Pricing regression results (second subsample).

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.94)

where κ is restricted to 0.034 and βnet = β1i +β2i−β3i−β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.95)

with κ unrestricted and with βRi, βLLi, βLSi, and βLRi as defined in the paper. The CRSP data used are monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1989–2013. Newey
and West (1987) standard errors are given in parentheses.

βnet 0.0078*** 0.0069***
(0.0021) (0.0019)

βRi 0.0070*** 0.0073*** 0.0065*** 0.0073*** 0.0073*** 0.0059***
(0.0018) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

βLLi -0.0010 0.0343 0.1280* 0.0258 0.0202 0.0925
(0.0154) (0.0632) (0.0724) (0.0490) (0.1018) (0.0889)

βLSi -0.0256 -0.1088* 0.0128 0.0755
(0.0387) (0.0622) (0.2178) (0.1791)

βLRi 0.0716 0.1076***
(0.0472) (0.0348)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0217*** 0.0197 0.0133 -0.0878
(—) (—) (—) (—) (0.0046) (0.0203) (0.1128) (0.1011)

α -0.0658 0.0286 -0.0178 -0.0115 0.0345 -0.0147 -0.0110 0.0314
(0.2118) (0.1903) (0.1628) (0.1416) (0.1958) (0.1697) (0.1683) (0.1491)

R2 0.3548 0.4093 0.4213 0.4954 0.4160 0.4082 0.4084 0.5324
Observations 25 25 25 25 25 25 25 25

3.C.6 Pricing regression robustness to portfolios 1 and 25

In this section, I provide results for the benchmark regression where I leave out

portfolio 1 or portfolio 25. The motivation for this check is that portfolios 1 and

25 seem to be special both in terms of their liquidity and the PCA loadings. This is

to be expected, as these are the most extreme portfolios. The results in the section

show that the results are robust to excluding either of these portfolios.
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Table 3.17. Pricing regression results excluding portfolio 1.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.96)

where κ is restricted to 0.034 and βnet = β1i +β2i−β3i−β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.97)

with κ unrestricted and with βRi, βLLi, βLSi, and βLRi as defined in the paper. The CRSP data used are monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013. Newey
and West (1987) standard errors are given in parentheses.

βnet 0.0193*** 0.0217***
(0.0024) (0.0022)

βRi 0.0216*** 0.0200*** 0.0180*** 0.0182*** 0.0159*** 0.0159***
(0.0025) (0.0036) (0.0038) (0.0031) (0.0037) (0.0038)

βLSi 0.0150** 0.0109 0.0211** 0.0569** 0.0535** 0.0580
(0.0057) (0.0075) (0.0100) (0.0261) (0.0243) (0.0343)

βLSi 0.8209 0.8405 1.0867 1.1292
(1.2871) (1.4019) (1.2685) (1.2055)

βLRi -0.1344 0.0457
(0.1210) (0.1876)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0210*** -0.0163 -0.0187 -0.0285
(—) (—) (—) (—) (0.0050) (0.0256) (0.0254) (0.0490)

α -1.0933*** -1.2791*** -1.1792*** -0.9909*** -1.3003*** -1.0166*** -0.8715*** -0.8785***
(0.2172) (0.2171) (0.2771) (0.2991) (0.1950) (0.2645) (0.2827) (0.2818)

R2 0.5683 0.5994 0.6060 0.6346 0.7441 0.7708 0.7783 0.7791
Observations 24 24 24 24 24 24 24 24
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Table 3.18. Pricing regression results excluding portfolio 25.

This table shows the estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λβ

net,i, (3.98)

where κ is restricted to 0.034 and βnet = β1i +β2i−β3i−β4i, with βki as defined in the paper. The table also shows
estimation results for

E
[
ri

t+1
]
− r f = α+κE

[
ci

t+1
]
+λ1β

Ri +λ2β
LLi +λ3β

LSi +λ4β
LRi, (3.99)

with κ unrestricted and with βRi, βLLi, βLSi, and βLRi as in defined in the paper. The CRSP data used are monthly data
corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–2013. Newey
and West (1987) standard errors are given in parentheses.

α -0.6621*** -0.6980*** -0.5920** -0.5098** -0.7221*** -0.5426** -0.4170** -0.4152*
(0.2043) (0.2349) (0.2412) (0.2060) (0.2384) (0.2030) (0.1948) (0.1999)

βnet 0.0151*** 0.0147***
(0.0024) (0.0025)

βRi 0.0142*** 0.0117*** 0.0119*** 0.0093*** 0.0089*** 0.0068**
(0.0025) (0.0027) (0.0028) (0.0023) (0.0029) (0.0028)

βLLi 0.0232* 0.0164 0.0210* 0.1947** 0.1849** 0.2652***
(0.0122) (0.0125) (0.0111) (0.0802) (0.0845) (0.0769)

βLSi 1.6334 1.4276 0.4144 0.2385
(1.2679) (1.3153) (1.5068) (1.5106)

βLRi -0.1013 0.2381
(0.1837) (0.1934)

E
[
ci

t+1
]

0.034 0.034 0.034 0.034 0.0416** -0.2387* -0.2259 -0.3665***
(—) (—) (—) (—) (0.0197) (0.1249) (0.1324) (0.1255)

α -0.7024*** -0.6320*** -0.4851** -0.4805** -0.6691*** -0.3245* -0.3017 -0.2132
(0.2187) (0.2180) (0.2071) (0.2038) (0.2244) (0.1673) (0.1903) (0.1881)

R2 0.6776 0.6897 0.7087 0.7153 0.7514 0.8208 0.8216 0.8359
Observations 24 24 24 24 24 24 24 24
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Nederlandse Samenvatting

Dit proefschrift bestudeert de invloed van liquiditeit op de totstandkoming van

koersen van aandelen en daarnaast wat de gevolgen zijn van beperkte diversificatie

voor de waarde van woningen. In deze inleiding zal ik eerst het concept liquiditeit

bespreken aan de hand van een voorbeeld. Vervolgens zal ik ingaan op beperkte

diversificatie en wat daar de consequenties van kunnen zijn voor de waarde van

aandelen en vastgoed. Tot slot zal ik de inhoud van elk hoofdstuk van het proef-

schrift samenvatten.

In de financiële economie wordt de liquiditeit van een eigendom in het alge-

meen gedefinieerd als het gemak waarmee het eigendom kan worden verhandeld.

Dat gemak kan de volgende vormen aannemen: het snel kunnen verhandelen, het

met weinig moeite kunnen verhandelen, of kunnen handelen tegen lage kosten.

Het eerste en derde hoofdstuk van dit proefschrift bestuderen de liquiditeit van

aandelen. Voor deze introductie zal ik beginnen met een voorbeeld dat ik niet be-

handel in dit proefschrift, maar dat voor de meesten herkenbaar zal zijn: vreemde

valuta. Bij het in- en terugwisselen van geld naar een andere munteenheid verlies

je meestal een kleine hoeveelheid, zelfs na wisselkosten. Stel dat je heen en weer

reist tussen Nederland en het Verenigd Koninkrijk, terwijl de wisselkoers gelijk

blijft. Dan zullen de prijzen waartegen je Britse ponden koopt en verkoopt toch

anders zijn. Bij een wisselkantoor zul je bijvoorbeeld 1,37 euro per Britse pond

betalen, terwijl je per verkochte Britse pond slechts 1,35 euro terug zult krijgen.

Dit betekent dat je voor elke euro die je in- en terugwisselt uiteindelijk 2 eurocent
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zult verliezen. Deze twee cent compenseren het wisselkantoor bijvoorbeeld voor

het aanhouden van grote hoeveelheden van verschillende valuta en het daaraan

verbonden risico dat de waarde van die valuta zal dalen.

Het voorbeeld aangaande vreemde valuta kan direct worden toegepast op de

markt voor aandelen, waar een soortgelijk verschil bestaat tussen de koers waar-

tegen je koopt (de laatkoers) en de koers waartegen je verkoopt (de biedkoers). In

het algemeen zeggen we dat de marktliquiditeit van een eigendom hoog is wanneer

op een bepaald moment – opdat de waarde van het eigendom zelf niet verandert –

het verschil tussen de prijs waartegen je koopt en de prijs waartegen je verkoopt

klein is. Er zijn vele andere aspecten van marktliquiditeit, maar dit voorbeeld zou

ten minste een nuttige manier moeten bieden om over liquiditeit na te denken.

Als we willen begrijpen waarom liquiditeit van belang kan zijn voor beleggers

in het algemeen, dan hoeven we slechts te beschouwen wat er gebeurt wanneer

de liquiditeit verdwijnt uit de markt. Dit gebeurde bijvoorbeeld tijdens de beurs-

krach van oktober 1987, de Azië-crisis, de Roebelcrisis, de instorting van LTCM in

1998, en de financiële crisis van 2007–2009 (Liu, 2006; Nagel, 2012). Dergelijke

illiquide periodes vallen regelmatig samen met sterke waardedalingen (Chordia,

Roll, en Subrahmanyam, 2001) en kunnen plotseling optreden (Brunnermeier en

Pedersen, 2009). Dit kan zeer kostbaar zijn voor financiële instellingen die ge-

dwongen zijn hun illiquide activa te verkopen tegen zeer lage prijzen in reactie op

uitstromen, of om verliezen te dekken (Brunnermeier en Pedersen, 2009; Coval en

Stafford, 2007).

Liquiditeit heeft niet altijd een prominente rol gespeeld in de academische lite-

ratuur. Traditionele modellen voor de waardering van aandelen, zoals het bekende

Sharpe (1964), Lintner (1965) en Black (1972) CAPM, nemen aan dat markten

perfect liquide zijn – wat betekent dat er altijd een tegenpartij is om mee te han-

delen en dat de prijs waartegen je kunt kopen gelijk is aan de prijs waartegen je

kunt verkopen – en daarom speelt liquiditeit geen rol in de waardering. Sindsdien
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heeft een groot aantal empirische studies laten zien dat liquiditeit er wel degelijk

toe doet in de waardering van verschillende soorten eigendommen. In het eerste

hoofdstuk van dit proefschrift richt ik me op het samenspel tussen de liquiditeit

van aandelen en de beleggingshorizon bij de totstandkoming van de koers, terwijl

het derde hoofdstuk gaat over de invloed van de verandering van liquiditeit in de

loop der tijd.

Een ander deel van dit proefschrift gaat over de consequenties van beperkte

diversificatie voor de waarde van woningen. Diversificatie is de technische term

voor het spreiden van risico over veel verschillende beleggingen. Bij het beleggen

in bijvoorbeeld aandelen kan het verlies op het ene aandeel worden gecompen-

seerd door de winst op een ander aandeel, zeker wanneer men een groot aantal

aandelen in portefeuille heeft. In het algemeen kan niet al het risico op deze ma-

nier worden weggenomen en het risico dat overblijft wanneer men alle aandelen

die worden verhandeld in portefeuille heeft wordt dan ook marktrisico genoemd.

Koersen zijn gekoppeld aan risico omdat verwachte aandelenrendementen worden

gezien als vergoeding voor de bereidheid van beleggers om een zekere hoeveel-

heid risico te aanvaarden. Het hoofdresultaat van het bovengenoemde CAPM is

dat aandeelspecifiek (of idiosyncratisch) risico er niet toe doet voor de waarde-

ring, aangezien dit vermeden kan worden door veel verschillende aandelen op te

nemen in de beleggingsportefeuille. Daarom is in de context van dit model alleen

marktrisico relevant voor de waardering van aandelen. Als echter sprake is van

beperkte diversificatie, dan zouden zowel marktrisico als aandeelspecifiek risico

relevant moeten zijn voor de waardering van aandelen. Het blijkt echter dat het

lastig is om dit effect aan te tonen voor de aandelenmarkt, aangezien het moeilijk

is te meten in hoeverre daar sprake is van beperkte diversificatie. De woningmarkt

biedt hier uitkomst, aangezien veel huiseigenaren slechts één huis bezitten en daar-

door hun beleggingen zeer beperkt hebben gediversificeerd (Tracy, Schneider, en

Chan, 1999). In het tweede hoofdstuk van dit proefschrift zal ik dan ook de markt
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voor woonhuizen beschouwen om te analyseren wat de effecten zijn van beperkte

diversificatie op woningwaardes.

Het eerste hoofdstuk van dit proefschrift is gebaseerd op onderzoek dat is uit-

gevoerd in samenwerking met Alessandro Beber en Joost Driessen. Het onder-

zoek gaat over de interactie tussen korte- en lange-termijnbeleggers die in dezelfde

markt handelen in liquide en illiquide aandelen. Het is logisch dit te analyseren,

liquiditeit doet er immers enkel toe wanneer men daadwerkelijk handelt. Lange-

termijnbeleggers zijn dan ook minder bezorgd over liquiditeit, aangezien zij min-

der vaak handelen. Als beleggers een illiquide aandeel onaantrekkelijk vinden

en het wordt verhandeld tegen een waarde die lager is dan wordt gerechtvaardigd

door de waarde van de toekomstige dividenden, dan zeggen we dat het aandeel

een liquiditeitspremie biedt. Het mag duidelijk zijn dat aandelen die een der-

gelijke liquiditeitspremie bieden aantrekkelijk zijn voor lange-termijnbeleggers.

Zoals werd opgemerkt door David Swensen, de Chief Investment Officer van het

Yale Endowment Fund: “Het accepteren van illiquiditeit betaalt zich dubbel en

dwars uit voor de geduldige lange-termijnbelegger,” (Swensen, 2000).4

In het eerste hoofdstuk modelleren we een economie waarin zowel korte- als

lange-termijnbeleggers aanwezig zijn. Deze beleggers kunnen beleggen in een

spectrum van aandelen met verschillende liquiditeit. Door zowel liquiditeitsrisico

– het risico dat een eigendom meer of minder liquide wordt in de loop der tijd –

als heterogene beleggingshorizonten in ons model op te nemen, zijn we in staat

aspecten van de bekende modellen van Amihud en Mendelson (1986) en Acharya

en Pedersen (2005) te combineren. Daarnaast laten we zien dat het optimaal kan

zijn voor korte-termijnbeleggers om in het geheel niet te beleggen in de minst

liquide aandelen, wat resulteert in een segmentatie waar de minst liquide aandelen

volledig in handen zijn van lange-termijnbeleggers.

4Het oorspronkelijke citaat luidt: “Accepting illiquidity pays outsize dividends to the patient long-term investor.”
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Ons model bevat een liquiditeitspremie die kan worden ontbonden in drie de-

len. Het eerste deel bevat de basale premie die beleggers verlangen ter compen-

satie voor het aanhouden van een illiquide aandeel. In economisch evenwicht

is het echter zo dat de minst liquide aandelen worden aangehouden door lange-

termijnbeleggers die zelden handelen en daarom minder bezorgd zijn om illiqui-

diteit. Als gevolg daarvan vinden we dat er juist voor de minst liquide aandelen

een kleinere liquiditeitspremie is. We noemen deze afname die het tweede deel

van onze ontbinding vormt dan ook een segmentatiepremie.

Het derde deel is een liquiditeitsoverlooppremie die ontstaat door de correlatie

tussen rendementen op de liquide en illiquide aandelen. Als er in het geheel geen

liquiditeitspremie op de minst liquide aandelen zou zitten, dan zouden we als volgt

een zogenoemde bijna-arbitragestrategie op kunnen zetten. Door liquide aandelen

te kopen en illiquide aandelen te verkopen, zouden we de liquiditeitspremie op de

liquide aandelen kunnen verdienen, terwijl het grootste deel van het rendements-

risico opgeheven zou worden door de tegengestelde posities. Het uitvoeren van

deze strategie zou de prijzen veranderen tot het niet langer winstgevend is om dit

te doen. Door de illiquide aandelen te verkopen, zou hun koers dalen tot er voor

die aandelen ook een zekere liquiditeitspremie aanwezig is, die gerelateerd is aan

de liquiditeitspremie op de liquide aandelen.

We onderzoeken de empirische relevantie van het model door het te schatten

op in de V.S. genoteerde aandelen gedurende de periode 1964 tot 2009. Onze

resultaten laten zien dat we door rekening te houden met heterogene beleggings-

horizonten en segmentatie de koersverschillen tussen liquide en illiquide aandelen

beter kunnen verklaren. De ontbinding van de liquiditeitspremie in de drie hierbo-

ven genoemde delen laat zien waar deze verschillen vandaan komen.

Het tweede hoofdstuk van dit proefschrift is gebaseerd op onderzoek dat is uit-

gevoerd in samenwerking met Erasmo Giambona en betreft de markt voor koop-

woningen. Het hoofdstuk bestudeert de gevolgen van beperkte diversificatie voor
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de prijzen van woningen. Huiseigenaren die beleggen in de woningmarkt hebben

over het algemeen een positie met een grote hefboom in één of een paar woningen

(Tracy, Schneider, en Chan, 1999). De hefboom bestaat uit de hypotheek, waar-

bij in de V.S. de hypotheek over het algemeen zo’n 75% van de woningwaarde

vertegenwoordigt (Green en Wachter, 2005). De individuele beleggers kunnen

niet gemakkelijk een goed-gediversificeerde portefeuille van kleine posities in een

groot aantal huizen aanhouden omdat het vaak lastig, zo niet onmogelijk is om elk

willekeurig deel van een woning te kopen.

Het is een bekend theoretisch resultaat in de financiële economie dat eigen-

domspecifiek risico alleen relevant is voor de waardering wanneer sprake is van

beperkte diversificatie (Merton, 1987; Levy, 1978; Malkiel en Xu, 2004). Voor

aandelen zijn de empirische resultaten hieromtrent echter niet eenduidig. Aan-

gezien er een duidelijke indicatie is dat bij huiseigenaren sprake is van beperkte

diversificatie, biedt de woningmarkt een goede kans om de gevolgen van eigen-

domspecifiekrisico voor de waardering te analyseren. Het is hier van belang om

een maatstaf te hebben die aangeeft in hoeverre bij de huiseigenaren sprake is

van beperkte diversificatie. Wij stellen voor om dit te meten via het percentage

eigenaar-bewoners in een zeker gebied. Als veel inwoners het huis waarin zij

wonen bezitten, dan is de voorraad huizen sterk gespreid over de inwoners en is

er slechts een beperkte mogelijkheid om een grote, goed gediversificeerde por-

tefeuille woningen te bezitten. Dit betekent dat woningspecifiek risico een gro-

tere rol zou moeten spelen in de woningwaarde in gebieden waar het percentage

eigenaar-bewoners hoog is.

We toetsen of dit verband bestaat aan de hand van de huizenprijsindex van het

Federal Housing Finance Agency (FHFA) en statistische data van IPUMS omtrent

huizenbezit. In onze analyse nemen we het percentage huizenbezit op als inter-

actie met woningspecifiek risico. Hierdoor kunnen we vaststellen of een hoger

percentage huizenbezit inderdaad samengaat met een sterkere invloed van wo-
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ningspecifiek risico op de waardering. Uit onze resultaten volgt dat dit inderdaad

het geval is.

Het derde hoofdstuk keert terug naar de invloed van liquiditeit op de waar-

dering van aandelen. In tegenstelling tot het eerste hoofdstuk, dat gaat over de

verschillen tussen liquide en illiquide aandelen, gaat dit hoofdstuk over het effect

van verschillen in liquiditeit in de loop der tijd. In dit hoofdstuk toon ik aan dat

liquiditeitsrisico alleen relevant is voor de waarde van aandelen in de context van

een algemene daling in liquiditeit in de hele markt, maar niet in de situatie waarin

alleen de minst liquide aandelen nog minder liquide worden.

Voor mijn analyse ga ik uit van empirisch bewijs van Næs, Skjeltorp, en Øde-

gaard (2011), die laten zien dat er twee manieren zijn waarop beleggers meer

liquide beleggingen in hun portefeuilles opnemen in reactie op gewijzigde ver-

wachtingen aangaande de reële economie. De eerste manier is een verschuiving

naar bijvoorbeeld de obligatiemarkt (Goyenko en Ukhov, 2009, zoals in). Dit gaat

samen met een algemene daling in liquiditeit in de hele aandelenmarkt. De tweede

manier is een verschuiving van minder liquide naar meer liquide aandelen. In dat

geval worden de minst liquide aandelen nog minder liquide, terwijl de liquiditeit

van de relatief liquide aandelen niet sterk verandert. Deze portefeuilleverschuivin-

gen hoeven natuurlijk niet de enige gebeurtenissen te zijn die gerelateerd zijn aan

veranderingen in de relatieve liquiditeit en ik sluit andere mogelijkheden dan ook

niet uit.

Eerder onderzoek door Pástor en Stambaugh (2003) laat zien dat het risico

op een algemene daling in liquiditeit relevant is voor de waardering van aande-

len. Het risico dat alleen de minst liquide aandelen nog minder liquide worden

kan ook zeer relevant zijn voor grote institutionele beleggers. Dit kan het beste

geı̈llustreerd worden aan de hand van een handelsstrategie die wordt voorgesteld

door Duffie en Ziegler (2003). Zij laten zien dat financiële instellingen er onder

bepaalde voorwaarden voor zullen kiezen om eerst hun liquide beleggingen te ver-
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kopen als zij posities moeten sluiten. Dat laatste kunnen zij doen bijvoorbeeld in

reactie op een ongewenste toename in het risico dat zij lopen op hun beleggingen.

Aangezien de financiële instellingen door die strategie uiteindelijk vooral illiquide

beleggingen zullen aanhouden, kan zelfs het geval waarin alleen de minst liquide

aandelen nog minder liquide worden een groot risico vormen. Die situatie kan dan

leiden tot grote verliezen, of zelfs tot insolventie.

Met behulp van een statistische methode kan ik de twee verschillende manie-

ren waarop liquiditeit in de loop der tijd kan variëren onderscheiden. Het blijkt

dat een algemene daling in liquiditeit het sterkst is geassocieerd met negatieve

rendementen op marktniveau, terwijl de afname van liquiditeit in het minst liquide

segment gerelateerd is aan een hoog handelsvolume in het meest liquide segment.

Het laatste is in overeenstemming met de portefeuilleverschuivingen van illiquide

aandelen naar liquide aandelen zoals beschreven door Næs, Skjeltorp, en Øde-

gaard (2011).

Door deze twee manieren waarop liquiditeit kan variëren in de loop der tijd te

combineren met het waarderingsmodel van Acharya en Pedersen (2005) ben ik in

staat om te toetsen welke van deze twee manieren relevant is voor de waardering

van aandelen. De resultaten laten zien dat alleen een algemene daling in liquidi-

teit statistisch en economisch relevant is voor de waardering, terwijl een dergelijk

effect niet optreedt voor het geval waarin alleen de minst liquide aandelen nog

minder liquide worden.

Samenvattend laat dit proefschrift zien dat de beleggingshorizon relevant is

voor de mate waarin liquiditeit een rol speelt in de waardering van aandelen, dat

alleen het risico van een algemene daling in liquiditeit van invloed is op de waar-

dering van aandelen, en dat beperkte diversificatie er waarschijnlijk voor zorgt dat

woningspecifiek risico een rol speelt in de waardering van woonhuizen in de V.S.
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