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Abstract

As part of the standard-setting process, certain patents become es-
sential. This may allow the owners of these standard-essential patents
to hold up implementers of the standard, who can no longer turn to
substitute technologies. However, many real-world standards evolve
over time, with several generations of standards succeeding each other.
Thus, standard setting is a repeated game in which participants can
condition future behavior on whether or not hold-up has occurred in
the past. In the presence of complementarity between the different
patents included in the standard, technology contributors have an in-
centive to discipline each other and keep royalties low, which can be
achieved by threatening to exclude contributors who have engaged in
hold-up from future rounds of the process. We show that repeated
standard setting can sustain FRAND royalties provided the probabil-
ity that another round of standard setting will occur is sufficiently high.
We also examine how the decision-making rules of standard-setting or-
ganizations affect the sustainability of FRAND royalties.
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1 Introduction

Technology standards are a pervasive feature of the information and commu-

nication technology (ICT) industries. Adopting a standard can be welfare-

enhancing because it allows industry participants to coordinate on one of

several potential solutions, thereby harnessing network effects and avoiding

duplication of investments (Farrell and Saloner, 1985). At the same time,

there is a concern that standardization may give rise to hold-up problems.

When several different technologies are able to perform the same function,

competition among these technologies can hold license fees in check. Stan-

dardization, however, often selects one particular technology to be included

in the standard. The patent on the technology then becomes standard es-

sential, and its holder gains market power because the standard effectively

eliminates substitute technologies. This may allow the patent holder to hold

up implementers of the standard and charge higher royalties than those that

would have been negotiated ex ante, i.e., before the adoption of the standard

(Farrell et al., 2007; Ganglmair et al., 2012). Standard-setting organizations

(SSOs) have responded to this concern by imposing commitments to li-

cense on “fair, reasonable and non-discrimatory” (FRAND) terms, which

has been interpreted as reflecting an ex ante view (Swanson and Baumol,

2005). In practice, however, the vagueness of these commitments and the

informational difficulties associated with their ex post enforcement make

them unlikely to have much bite in restraining patent holders (Lerner and

Tirole, 2015).

This paper builds on two additional features of the standard-setting

process which we argue are important for understanding the risk of hold-

up: technological complementarities and repeated interaction. As many

observers have noted, products in high-tech industries frequently combine

several complementary technologies (Heller and Eisenberg, 1998; Shapiro,

2001). This may lead to royalty stacking (better known to economists as

the multiple marginalization or Cournot complements problem): because

individual patent holders do not take into account the effect of their roy-

alties on the demand for licenses addressed to other patent holders, their

royalty rates will tend to exceed the level that would maximize joint profits.
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An important implication of this is that a high royalty rate on one essential

patent (e.g., due to hold-up) decreases the demand for the standard, and

thus the profits of the remaining contributors.

In addition, there is repeated interaction between firms participating in

the standard-setting process. Many real-world standards evolve over time,

with several generations of the standard succeeding each other, each build-

ing on the previous generation. The set of standards for mobile communi-

cations is probably the best-known example thereof. In the 1990s, earlier

mobile systems were replaced by systems using TDMA (Time Division Mul-

tiple Access) and CDMA (Code Division Multiple Access), like GSM and

D-AMPS.1 In the 2000s, the sector moved to standards based on improve-

ments of CDMA such as UMTS and CMDA2000.2 At the time it became

increasingly common to refer to these standards in generational terms as 3G,

or third-generation.3 A generation represents a new set of standards that is

not backwards compatible with the previous generation. This generational

view has now become so widespread that the current set of standards is

known as 4G,4 and work has begun on the next generation, already chris-

tened 5G.5 Roughly speaking, a new generation of mobile communications

standards ascends to primacy every decade, i.e., 1G up to the 1990s, 2G in

the 1990s, 3G in the 2000s, 4G in the 2010s, and 5G set to be introduced

from 2020 onwards. Each generation is characterized by significant tech-

1GSM initially stood for Groupe Spécial Mobile (a working group at ETSI), and later
for Global System for Mobile communications. Developed in the EU, this standard went
on to be deployed worldwide. D-AMPS stands for the Digital version of the Advanced
Mobile Phone System (AMPS) standard, deployed mostly in North America.

2UMTS stands for Universal Mobile Telecommmunications System, which evolved from
GSM and is based on a technology called W-CDMA. CDMA2000 is an alternative to
UMTS, based on a technology called cdmaOne.

3TDMA-based standards constitute the second generation, and their predecessors, the
first. The generational approach gained currency with the adoption, in 1997, of an ITU in-
strument, ITU-R Recommendation M.687-2 on International Mobile Telecommunications-
2000 (IMT-2000), which introduced the idea of a family of standards meeting certain
specifications.

4One of the 4G standards, Long-Term Evolution (LTE), is also known with its own
acronym.

5Intermediate iterations of the various generations have also received fractional num-
bers, such as 2.5G (the General Packet Radio Service (GPRS) and Enhanced Data rates for
GSM Evolution (EDGE) specifications) and 3.5G (the High Speed Packet Access (HSPA)
specifications). Both aimed to increase the speed of data communications compared to
the baseline.
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nological improvement, as translated in higher performance characteristics.

2G ushered in digital cellular technology, 3G strengthened data communica-

tions, 4G marked the move to an IP-based network (where voice is merged

with data communication) and 5G is intended to support the data commu-

nications forecast with the Internet of Things.

As this brief description shows, in the ICT sector, standardization it-

self can no longer be seen as an ad hoc phenomenon, but should rather be

considered an institution. Once an activity or a functionality is success-

fully standardized, established standard-setting organizations are expected

to work continuously on maintaining and improving standards, and thus to

produce successive generations of standards over time. Next to mobile com-

munications standards, industry players and users are now accustomed to

generations of standards regarding computing and communications equip-

ment interfaces (USB, Bluetooth), local data communications (Wi-Fi), com-

puter components (RAM) or television. Importantly, often the same firms

contribute to the different generations of the standard.

In this paper, we show that the combination of technological comple-

mentarities and repeated interaction may alleviate the hold-up problem.

Complementarities mean that technology contributors have an interest in

keeping royalty rates of other contributors low. Repeated interaction means

that contributors are able to discipline others that charge excessive royalties

by excluding them from future generations of the standard. Indeed, most

standard-setting organizations (SSOs) are consensus building bodies whose

decisions are made through some sort of voting procedure (Chiao et al.,

2007; Rysman and Simcoe, 2008; Simcoe, 2012; Baron and Spulber, 2015).

This creates scope for participants to punish a contributor who misbehaved

by voting against the inclusion of its technologies in the next generation of

the standard. Thus, complementarities create the incentive and repeated

interaction the ability for technology contributors to mitigate hold-up.

We develop a stylized model of standard setting that captures the re-

peated nature of the process. After each generation of the standard, there

is some probability that the standard will evolve to another generation. In

each generation, there are two perfectly complementary technologies A and

B, neither of which have stand-alone value. Technology A is developed by
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a single firm, while technology B is developed in two competing versions by

firms B1 and B2. Firm B1 makes the more valuable version of the technol-

ogy. Under ex ante licensing, competition would drive the royalty rate of B1

down to the incremental value of its technology over B2’s inferior version;

following Swanson and Baumol (2005) and Layne-Farrar and Llobet (2014),

we adopt this incremental value rule to define the FRAND rate of royalties.

In our setting, the FRAND rate cannot be sustained in a one-shot setting:

firm B1 is able to exploit the market power conferred on it by the standard

to hold up technology implementers and charge a royalty rate exceeding the

incremental value of its technology. Implementers and the contributor of

technology A are left with lower profit, and consumers receive less surplus.

Under repeated standard setting, however, contributor A can condition

its behavior on the history of play, and thus on whether hold-up has occurred

in the past. We show that if the probability of another round of standard

setting is high enough, there exists a subgame perfect equilibrium in which

firm B1’s technology is adopted as the standard in each period, B1 charges

the FRAND rate, and firm A punishes deviations from the FRAND rate

by voting against the inclusion of B1’s technology for a number of rounds;

during these punishment rounds, the inferior technology supplied by B2 is

adopted as the standard with some probability. This outcome does not

depend on enforcement by competition authorities.

Technically, this result is an application of the famous Folk Theorem for

infinitely repeated games (Fudenberg and Tirole, 1991). Our approach is

analogous to that adopted in the economic analysis of collusion. We first

identify the critical discount factor (here, the critical continuation proba-

bility) above which the FRAND outcome can be sustained in equilibrium.

Then, we ask how the procedural rules of the SSO affect this critical con-

tinuation probability. In particular, we show that the effectiveness of pun-

ishment, and thus the sustainability of FRAND royalties, depends on the

super-majority requirement used by the SSO. Only a sufficiently high super-

majority requirement allows for effective punishment. The intuition is that,

in addition to B1, non-strategic voters (i.e., the technology implementers in

our model) will vote for the superior technology provided by B1. The super-

majority requirement must be chosen in such a way as to make it impossible
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to adopt a proposal with only the votes of B1 and the implementers.

The practical relevance of our model crucially depends on whether the

set of firms contributing technologies to a standard is relatively stable over

time, i.e., across different generations. Are the technological breakthroughs

that lead to new generations of a standard usually ushered in by newcomers,

or do they originate with the same firms whose innovations the previous

generation was built upon? To provide at least a tentative answer to this

question, we study four important ICT standards which evolved through

several well-defined generations: mobile (cellular) communications, Wi-Fi,

USB, and Bluetooth. We compare the set of important contributors to each

generation and find substantial overlap. This suggests that a fair share of

technological advances is made by contributors that were already present in

previous rounds of standard setting.

Several alternative solutions to the hold-up problem have been proposed

in the literature. Llanes and Poblete (2014) examine ex ante agreements

about participation in, and the distribution of dividends from, a patent

pool. Lerner and Tirole (2015) study ex ante price commitments, whereby

SSOs would require patent holders to commit to the royalty rates they

would charge were their technologies selected into the standard. Lemley

and Shapiro (2013) advocate a system of binding final offer arbitration be-

tween litigants to establish FRAND rates.6 We show that the difficulties

associated with those alternative solutions, such as the problem of deter-

mining royalties before knowing the exact composition of the standard, can

be avoided in settings where standards evolve through several generations,

provided the rules of SSOs are properly designed.

The paper contributes to a recent literature suggesting that the problems

associated with standard setting may be less severe than initially thought.

Rey and Salant (2012) consider a vertical industry with upstream comple-

ments, Cournot competition downstream, and entry. They show that royalty

stacking can alleviate the problem of socially excessive entry in the down-

stream sector that arises in this setup. Schmidt (2014) finds that the use

of two-part tariffs can eliminate royalty stacking. Spulber (2015) presents a

6For a critical analysis of the Lemley-Shapiro proposal, see Larouche et al. (forthcom-
ing).
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model in which complementary monopolists set quantities, which determine

the size of the pie, and then bargain over the distribution of the pie. He

shows that in the unique equilibrium, the players choose the efficient size of

the pie.

The remainder of the paper is organized as follows. Section 2 sets out a

simple model of repeated standard setting. Section 3 considers the bench-

mark case in which there is a single round of standardization. Section 4

characterizes a subgame perfect equilibrium of the repeated standardization

game in which FRAND royalties prevail and analyzes how SSO rules af-

fect the sustainability of this equilibrium. Section 5 presents evidence on

the prevalence of repeated interaction in several important ICT standards.

Finally, Section 6 concludes. All proofs are relegated to the Appendix.

2 The model

Consider the following stylized model of standardization. Standard setting

takes place in several rounds t = 1, 2, . . . After each round, there is a proba-

bility δ that there will be another round of standard setting; with probability

1− δ the game ends.7 There are two complementary technologies to be in-

cluded in the standard, one of which is developed by a single upstream

innovator A while the other is developed in two competing versions by inno-

vators B1 and B2. Neither technology has any stand-alone value. All three

innovators are infinitely lived. Each of the innovators produces successive

improvements of their technologies.

There is a perfectly competitive downstream sector with a continuum

of implementers. All implementers operate with zero marginal cost of pro-

duction. They face demand Qt(pt) = vti − pt for a product incorporating

the technologies developed by A and Bi. That is, v
t
i represents the demand

intercept for a product based on a standard combining A’s and Bi’s tech-

nologies, i = 1, 2. The demand for a product including at most one of the

three technologies is normalized to zero. Assume that including all three

technologies in the standard is never desirable: after all, the whole point

of standardization is to coordinate on one particular technical specification,

7As usual, δ can also capture time discounting.
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perhaps to reap the benefits of network effects or avoid duplication.8 To

streamline the exposition, we make the following assumption.

Assumption 1. Each successive improvement generates the same value,

and B1 always produces the more valuable version of the B technology: vti =

vi for all t, and v1 > v2 ≥ 0.

Assumption 1 implies that we are within the framework of an indefinitely

repeated game, which simplifies the analysis considerably.

Ex ante licensing and the FRAND rate. All technology firms simul-

taneously propose a per-unit royalty to the downstream firms. Let rtA and

rti denote the royalty rates proposed in round t by firms A and Bi, respec-

tively. To establish a benchmark, consider the hypothetical scenario in which

licensing negotiations take place ex ante and the innovators commit to the

royalty rates they would practice were their technologies adopted. Because

the downstream sector is perfectly competitive, the downstream firms then

choose the B technology that maximizes consumer surplus given the pro-

posed royalty rates, rt1 and rt2. If the technology developed by Bs is selected,

with s ∈ {1, 2}, the price of the final product (suppressing the index t for

brevity) is p = rA + rs, the quantity sold is Q = vs − rA − rs, and consumer

surplus is (vs − rA − rs)
2/2. Hence, if faced with royalty offers r1 and r2,

the downstream firms would select B1 (i.e., s = 1) if and only if

(v1 − rA − r1)
2

2
≥ (v2 − rA − r2)

2

2
,

or v1 − r1 ≥ v2 − r2. Since v1 > v2 by Assumption 1, B1 can always outbid

B2. In the Bertrand-Nash equilibrium, B2 thus sets r2 = 0. In turn, A sets

rA to solve

max
rA

(v1 − rA − r1) rA,

while B1 sets r1 to solve

max
r1

(v1 − rA − r1) r1 subject to r1 ≤ v1 − v2.

8Thus, we implicitly assume that there are some unmodeled costs of failing to coor-
dinate on one of the B technologies. Alternatively, inclusion in the standard may make
both B1 and B2 essential, which due to multiple marginalization would lead to even higher
total royalties than hold-up by B1.
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Solving for the equilibrium royalty rates ignoring the constraint yields rA =

r1 = v1/3. Hence, the constraint is binding if and only if the following

assumption holds:

Assumption 2. B2’s technology is sufficiently valuable to impose a com-

petitive constraint on B1 under ex ante licensing: v2 >
2
3v1.

Assumption 2 ensures that under ex ante licensing, Bertrand competition

between B1 and B2 drives royalty rates down to the following levels: r1 =

v1 − v2, r2 = 0. In what follows we refer to r̄ = v1 − v2 as the fair,

reasonable and non-discriminatory (FRAND) royalty rate for technology 1

(Swanson and Baumol, 2005; Layne-Farrar and Llobet, 2014). Note also

that under ex ante licensing, A best-responds by charging rA = (v1− r̄)/2 =

(v2 − 0)/2 = v2/2 regardless of whether B1’s or B2’s technology is adopted

by the downstream firms. The downstream equilibrium price with B1’s

technology is p̄ ≡ v2/2 + r̄ = v1 − v2/2.

Standard setting. The standard setting process works as follows. In

each round t the SSO issues a call for proposals. B1 and B2 can propose

a standard st ∈ {1, 2} at a proposal cost c. Standard st = 1 includes A’s

technology and B1’s, while standard st = 2 includes A’s and B2’s. Assume

c < r̄v2/2; otherwise FRAND royalties are too low to justify the cost of

proposing a standard and can never be part of an equilibrium. The SSO

then puts all proposals received to a sequential vote. The order in which

proposals are voted on is random. All participants in the standard-setting

process (A, B1, B2, and the downstream firms) are eligible to vote. Each

innovator has one vote, while the downstream firms together hold voting

rights equal to D ≥ 0. A proposal is adopted if it receives a super-majority

of at least a share γ > 1/2 of the votes. Assume γ ≤ (2 + D)/(3 +D), so

that a single vote cannot block adoption. As soon as a proposal is adopted,

the process stops; otherwise, the other proposal is put to a vote. If no

proposal receives a super-majority, the outcome is determined as follows.9

With probability 1 − α, the SSO does not adopt a standard in the current

9We will later relate the likelihood of different outcomes to the procedures and char-
acteristics of the SSO.
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round (st = ∅) and reopens the process in round t+1 (if it occurs). Assume

that if no standard is adopted, all players receive a payoff of zero in round t.

With probability α, the SSO selects one of the proposed technologies as the

standard. If there are two proposals on the table, then it chooses B1’s with

probability β and B2’s with probability 1−β. Like the rest of the literature

(e.g., Farrell and Simcoe, 2012; Bonatti and Rantakari, 2016), we rule out

side payments between participants.

This decision-making procedure is consistent with the available evidence

on the voting rules used by SSOs. According to Bonatti and Rantakari

(2016), most SSOs use rules whereby votes on proposals are based on mo-

tions; this implies that they are taken sequentially. Chiao et al. (2007)

survey 59 SSOs and report that most SSOs in their sample use majority

voting (34%), some require a super-majority (27%), and only a small frac-

tion require unanimity (13%).10 In Baron and Spulber’s (2015) sample of

31 SSOs, 36% use a simple majority rule, 48% require a super-majority, and

16% require unanimity.

Timing. The timing of the game played in each round t is as follows.

First, B1 and B2 simultaneously decide whether to submit a proposal to

the SSO and incur the cost c if they do. The SSO adopts a standard st ∈
{1, 2,∅} according to the procedure described above. Then, A and Bst

simultaneously set the royalty rates rtA and rst at which they offer to license

their standard-essential patents. The downstream firms choose the price pt

at which they sell the product incorporating the standardized technologies

to consumers. Firm A obtains πA = (vst − pt)rtA. Firm B1’s and B2’s

payoffs (excluding proposal costs) are πst = (vst − pt)rtst for the firm whose

technology is adopted, and π−st = 0 for the firm whose technology is not

adopted.

3 A single round of standard setting

As a benchmark, consider what happens if there is a single round of standard

setting; accordingly, we drop the index t for the moment. We solve the game

10They do not have information on the remaining 25% of SSOs.
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by backward induction. At the price-setting stage, the downstream firms set

p = rA + rs. At the licensing stage, given that a standard s has been set,

firms A and Bs choose rA = rs = vs/3; in particular, the B firm whose

technology has been selected as the standard (Bs) is not constrained by

the existence of the alternative technology developed by B−s. Given these

royalty rates, downstream firms sell at a price of (2/3)vs and produce a

total output of vs/3. Their payoff is πD = 0, while A’s and Bs’s payoffs

are πA = πs = (vs/3)
2. B−s’s payoff is zero, and consumer surplus is

CS = v2s/18. Note that πA and CS are increasing in vs, i.e., both A and

consumers prefer B1’s over B2’s technology for inclusion in the standard.

The presence of a standard including only one of the two B technolo-

gies eliminates the other and therefore allows the contributor of the selected

technology to charge a royalty exceeding the FRAND level. This is a version

of the hold-up problem that many observers fear is caused by SSOs “picking

winners.” If selected, B1 is able to charge v1/3 rather than v1−v2, and B2 is

able to charge v2/3 rather than zero. Importantly, this means that innovator

A best-responds by charging rA = vs/3, whereas with FRAND royalties, it

could charge rA = v2/2, which strictly exceeds vs/3 for any s = 1, 2 by As-

sumption 2. Innovator A would benefit from innovator Bs charging a lower

royalty. The intuition, of course, is that complementary patent holders who

set royalty rates independently do not internalize the effect of high royalties

on other patent holders (a phenomenon known as royalty stacking). The

hold-up problem thus hurts the contributors of complementary technologies

(A). It also hurts implementers and consumers, and it reduces aggregate

surplus by leading to higher prices. To see this, note that the equilibrium

price when standard s is adopted is p = (2/3)vs, whereas with FRAND roy-

alties it would be p̄ = v1 − v2/2 < (2/3)v1 if s = 1 and p = v2/2 < (2/3)v2

if s = 2. The following proposition summarizes this discussion.

Proposition 1. In any equilibrium of the one-shot game of standard setting,

the royalties charged by firm Bs and the final consumer prices exceed those

that would arise under ex ante licensing. The profit of firm A is lower.

At the voting stage, there can be many equilibria. We simplify the

analysis by making the following assumption on downstream firms’ voting
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behavior.

Assumption 3. Downstream firms vote for the proposal that leads to higher

expected consumer surplus.

The consumer-surplus objective can be justified by the fact that, if the

downstream sector is even slightly less than perfectly competitive, so that

downstream firms make some profit, the profit-maximizing proposal coin-

cides with the consumer-surplus maximizing one. The assumption, however,

also contains a second element: downstream firms vote sincerely. This is rea-

sonable because each downstream firm individually is too small to affect the

outcome of the vote, hence there is no incentive to behave strategically.

Under Assumption 3, if there is a single proposal, all downstream firms

vote in favor. If there are two proposals, downstream firms’ vote depends

on the order of votes. At the first vote, all downstream firms vote in favor

of B1 and against B2, because consumer surplus is increasing in vs. At the

second vote, if B1’s proposal is on the ballot, the downstream firms vote in

favor. If B2’s proposal is on the ballot, they vote in favor if and only if

v22 ≥ α[βv21 + (1− β)v22].

Thus, there exists a critical value α∗(β) such that the downstream firms vote

in favor if α ≤ α∗(β) and vote against if α > α∗(β), with

α∗(β) =
v22

βv21 + (1− β)v22
.

Suppose firms B1 and B2 also vote sincerely, i.e., they vote in favor of

their own and against the rival’s proposal. This strategy is weakly dominant,

and as Proposition 2 shows, it leads to an equilibrium in which B1 is the

only one to make a proposal, and its proposal is always adopted.

Proposition 2. Suppose c > 0. If B1 and B2 vote in favor of their own

and against the rival’s proposal, the subgame-perfect Nash equilibrium of the

one-shot game is such that B1 proposes its own technology as the standard,

B2 makes no proposal, and B1’s proposal is adopted with a super-majority.

Proposition 2 shows that if B1 and B2 vote sincerely, then the supe-

rior technology developed by B1 is always adopted as the standard. The
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intuition is as follows. When B1 and B2 vote for their own and against

the rival’s proposal, there is always one vote in favor and one vote against.

Thus, either the downstream firms or innovator A (or both) must be piv-

otal. Because by assumption, a single vote cannot prevent a super-majority

(γ ≤ (2 +D)/(3 +D)), a proposal is always adopted if innovator A and the

downstream firms vote in favor. Similarly, because a single vote in favor is

not enough to win even a simple majority, a proposal can never be adopted

if A and the downstream firms vote against. The incentives of A and the

downstream firms are aligned: they both prefer B1 to be selected as the

standard. Although they would sometimes vote in favor of B2’s proposal if

it were on the ballot at the second vote (namely, if α ≤ α∗(β)), the proce-

dure never reaches that stage, for if B1’s proposal is on the ballot at the first

vote, it will be adopted with certainty. The downstream firms always vote in

favor, and whenever pivotal A also votes in favor. If A is not pivotal, it must

be that B1’s proposal has a super-majority even without A’s support (the

opposite scenario, in which B1’s proposal would not have a super-majority

even with A’s support, would require (2 +D)/(3 +D) < γ, which is ruled

out by assumption). Either way, B1’s proposal gets adopted.

Note that the result that there is only one equilibrium does not rely

on specific values of the parameters α, β, and γ; it only relies on B1 and

B2 voting sincerely. The next proposition shows that when we allow for

non-sincere voting by B1 and B2, for certain constellations of α, β, and γ,

outcomes can be worse than those identified in Proposition 2, in the sense

that the inferior technology developed by B2 is sometimes selected.

Proposition 3. If β < 1, α ≤ α∗(β), γ > (1 + D)/(3 + D), and c <

(1/2)(v2/3)
2, there exists a subgame-perfect equilibrium in which B1 and B2

both make proposals, and each gets adopted as the standard with probability

1/2.

The proof of Proposition 3 constructs an equilibrium in which no pro-

posal receives a super-majority at the first vote and any proposal receives a

super-majority at the second vote. This can happen if all strategic players

(A, B1 and B2) vote against at the first vote and in favor at the second;

under the assumptions stated in the proposition, no player has a unilateral
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incentive to deviate. Proposition 3 relies on α being sufficiently low for

downstream firms to vote in favor of B2’s proposal at the second vote. This

is the case for example with α = 0, which corresponds to a rule whereby

proposals that have been voted down are discarded.

The likelihood of an inferior technology being selected can often be miti-

gated by setting α above α∗(β), so that downstream firms vote against B2 at

the second vote. To see this, suppose D ≥ 1, and consider a candidate equi-

librium in which B2 gets adopted at the second vote with the votes of A, B1,

and B2.
11 Then, the condition (1+D)/(3+D) < γ in Proposition 3 implies

that each of them is pivotal, since 2/(3 +D) ≤ (1 +D)/(3 +D) for D ≥ 1.

Thus, A and B1 have an incentive to deviate and vote against B2’s proposal,

so that B1’s is instead adopted with probability αβ. Because this reduces

B2’s expected payoff from introducing a proposal to (1/2)α(1−β)(v2/3)
2−c,

it may even eliminate the equilibrium altogether.

A still better way of reducing the risk of B2’s inferior technology being

selected is to set β = 1 and α = 1. This corresponds to a rule whereby

proposals that have been voted down are kept on the table and the winner

is selected according to a technology-oriented tie-breaker. Having a neutral

third party select the best technology in such a situation can be thought

of as implementing β = 1. One can interpret the rule used by some real-

world SSOs to have the chairman of the working group choose the best

technological solution if none of the proposals has gathered a super-majority

as achieving something similar. As we will show below, these results from

the one-shot game do not carry over to repeated standard setting. There,

an SSO procedure with α = β = 1 can be counterproductive.

4 Repeated standard setting

Having seen that FRAND royalties cannot be sustained as an equilibrium in

the one-shot game, we now study under which conditions repeated standard

setting can overturn this result. We first introduce some notation. In each

round t, firms B1 and B2 decide whether to propose a standard, a decision

11This requires 3/(3+D) ≥ γ. If this inequality does not hold, B2’s proposal never gets
adopted when α > α∗(β), and so the result is even more immediate.
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we denote by xti ∈ {0, 1}. Let xt =
∑

i x
t
i denote the sum of proposals

submitted, so that xt ∈ {0, 1, 2}. Denote by s̃t1 the proposal that is on

the ballot first and by s̃t2 the proposal that is on the ballot second, with

s̃tϑ ∈ {1, 2,∅} for ϑ = 1, 2. Denote by φt
ϑj ∈ {0, 1} player j’s decision to vote

in favor at the ϑth vote, with j ∈ {A, 1, 2}.12 We maintain Assumption 3,

so that the downstream firms vote as described in Section 3. Thus an action

profile in t is given by

at ≡ (xt1, x
t
2, φ

t
1A, φ

t
11, φ

t
12, φ

t
2A, φ

t
21, φ

t
22, r

t
A, r

t
1, r

t
2).

Let ht denote the complete history of play up to period t − 1, i.e., ht ≡
(a1, a2, . . . , at−1).

Let us now look at each player’s strategy in the repeated game. For firm

A, a strategy is

σt
A = (φt

1A(s̃
t
1, x

t, ht), φt
2A(s̃

t
2, h

t), rtA(s
t, ht)).

That is, firm A’s strategy prescribes whether to vote in favor at the first

and second vote as a function of the proposal on the ballot, the number of

proposals submitted, and the history of play, as well as which royalty to

charge as a function of the standard adopted and the history of play.13 For

firm Bi, a strategy is

σt
i = (xti(h

t), φt
1i(s̃

t
1, x

t, ht), φt
2i(s̃

t
2, h

t), rti(s
t, ht)).

That is, firm Bi’s strategy prescribes whether to submit a proposal given

the history of play, whether to vote in favor at the first and second vote as a

function of the proposal on the ballot, the number of proposals submitted,

and the history of play, as well as which royalty to charge as a function of

the standard adopted and the history of play.

We will look for an equilibrium in which B1’s technology is adopted

as the standard, B1 sets its royalty at the FRAND level (r1 = r̄), and

A enforces this outcome by punishing deviations from the FRAND rate.

12As previously, φt
ϑ1 denotes B1’s decision and φt

ϑ2 denotes B2’s decision.
13The royalty could in principle condition also on which proposals were submitted and

how the standard was adopted (first vote, second vote, or runoff). We do not need such
a dependence for the equilibrium that we construct below, however, and therefore adopt
this simpler description of strategies.
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The punishment takes the form of A voting against the inclusion of B1’s

technology in the standard (and in favor of B2’s) for a number of rounds

following the deviation. For such a punishment to be effective, it must lead

to B1’s technology sometimes not being adopted as the standard; this can

happen either if B2’s technology is adopted as the standard, or if no standard

is adopted. Let q1 denote the probability that B1’s technology is adopted as

the standard during the punishment phase and q2 the probability that B2’s

is. The following proposition first shows under which conditions on q1 and

q2 such an equilibrium can be constructed. Later we determine how q1 and

q2 depend on the rules of the standard-setting process.

Proposition 4. Suppose c ≤ q2(v2/3)
2 and q1 < q̄, where

q̄ ≡ v2(v1 − v2)/2

(v1/3)2
.

If δ is sufficiently close to 1, there exists a subgame-perfect equilibrium of

the repeated game in which B1’s technology is adopted as the standard in

every round and B1 charges FRAND royalties (i.e., rt1 = r̄ for all t).

In the proof of Proposition 4 we construct strategies that can sustain

FRAND royalties as an equilibrium. In this equilibrium, there is a tempta-

tion for B1 to deviate from the FRAND rate and hold up the downstream

firms by charging rt1 = v1/3 (as in the equilibrium of the one-shot game).

The trick is to dissuade B1 from deviating from the FRAND rate by means

of a credible threat of punishment. Punishment here takes the form of A

voting against B1’s technology and in favor of B2’s for L ≥ 1 periods fol-

lowing the deviation. The proposition identifies a threshold q̄ such that

punishment is effective if q1 < q̄, i.e., if it prevents adoption of B1’s technol-

ogy sufficiently often. B2 is happy to carry out the punishment as long as

it leads to adoption of its own technology as the standard sufficiently often

to justify the proposal cost, i.e., if c ≤ q2(v2/3)
2. However, punishing B1

is costly to A, because it leads to an inferior technology sometimes being

implemented, and thus to lower demand and lower royalties.

To make punishment credible, we must reward A after the end of the

punishment. In doing so, we must be careful not to also reward the devi-

ator B1. As the proof shows, the reward for A can be achieved by having
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B1 charge a royalty r̃ below the FRAND level after the punishment. This

is possible as long as r̃ is sufficiently large for B1 to prefer to stick to the

equilibrium strategy rather than deviate and get punished. The proof shows

that, if δ is sufficiently close to 1, we can always make the number of pun-

ishment rounds L large enough to find a value of r̃ that rewards A without

prompting B1 to deviate.

Note that the strategies constructed in Proposition 4 are self-enforcing:

they can sustain FRAND royalties without the need for external enforcement

by courts or competition authorities. In fact, external enforcement can even

crowd out private enforcement here. This is because during the punishment

phase, when firm B2’s technology is selected as the standard, B2 does not

charge the FRAND rate, but instead charges v2/3. If competition authorities

or courts were to enforce the FRAND rate against B2, this would diminish

B2’s incentive to submit a proposal to the SSO during the punishment phase.

This, in turn, would make it harder to punish B1 for deviating from the

FRAND rate.

The next proposition restricts the number of punishment periods to 1.

In that case, we can characterize the critical discount factor δ∗ above which

there exists an equilibrium in which B1 charges FRAND royalties.

Proposition 5. Suppose c = 0. There exists v∗2 ∈ ((2/3)v1, v1) such that,

for all v2 < v∗2, B1 charging FRAND royalties can be sustained as a subgame-

perfect equilibrium with a single round of punishment if q1 ≤ q̃(v2), given

by

q̃(v2) ≡ (v1 − v2)v2 − ((v1 − v2/2)/2)
2

(v1/3)2
,

and δ ≥ δ∗ ∈ (0, 1). The critical discount factor δ∗ solves

δ∗
[(

v1 − r(δ∗, q1)
2

)2

−
(
v1 − r̄

2

)2
]
=

(1− δ∗)
[
(1− q1)

(v1
3

)2 − q2

(v2
3

)2
]
, (1)

where

r(δ, q1) =
1

2

⎛
⎝v1 −

√√√√v21 −
8

1 + δ

[(
v1 − v2/2

2

)2

+ δq1

(v1
3

)2
]⎞⎠ .
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A single punishment period may not suffice to implement FRAND royal-

ties. If the condition v2 < v∗2 does not hold, a single round of punishment is

never enough to sustain FRAND royalties in equilibrium, regardless of the

discount factor δ and the probability of adopting B1’s technology during the

punishment phase, q1. The intuition is that, when v2 is too close to v1, the

FRAND rate r̄ = v1 − v2 is so low that it becomes too tempting for firm

B1 to deviate. Proposition 5 shows that if v2 < v∗2 and q1 ≤ q̃(v2), i.e.,

if B2’s technology is substantially worse than B1’s and the probability of

adopting B1’s technology during the punishment phase is sufficiently low,

then FRAND royalties can be sustained if the continuation probability (or

discount factor) δ is sufficiently close to 1.

Proposition 6. An increase in q2 reduces the critical discount factor δ∗.

An increase in q1 has ambiguous effects on δ∗.

The intuition for the result in Proposition 6 is as follows. Changes in q1

and q2 affect the critical discount factor δ∗ through two channels: firm A’s

willingness to punish, and firm B1’s fear of being punished. An increase in

q2 – i.e., an increase in the probability that B2’s technology is adopted as

the standard during the punishment phase – makes punishment less costly

ceteris paribus for firm A and does not affect firm B1’s payoff. An increase

in q1 – i.e., an increase in the probability that B1’s technology is adopted

during punishment – also makes punishment less costly for A. At the same

time, however, it makes firm B1 less afraid of being punished. The net effect

of these two opposing forces is ambiguous.

The next proposition relates the probabilities of adopting B1 and B2

during the punishment phase to the rules of the standard-setting organiza-

tion.

Proposition 7. A necessary condition for q1 < 1 is γ > (1 +D)/(3 +D).

Suppose this condition is satisfied and c = 0. Then, q1 and q2 depend on α,

β, and γ as follows:

(q1, q2) =

⎧⎨
⎩

(0, 1) for γ ≤ 2/(3 +D)
(αβ/2, (1 + α(1− β))/2) for γ > 2/(3 +D) and α ≤ α∗(β)

(αβ, α(1− β)) for γ > 2/(3 +D) and α > α∗(β).
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Proposition 7 has several implications for the design of SSO rules. First,

it shows that if the super-majority requirement is too low, punishment for

deviations from FRAND royalties is not possible: if γ ≤ (1 + D)/(3 +

D), the technologically superior proposal by B1 is always adopted as the

standard, even against the vote of A and B2. As a result, FRAND royalties

cannot be sustained in equilibrium, as q1 < 1 is required for the equilibrium

constructed in Proposition 4. Note that the relevance of this condition

depends on the voting rights of the non-strategically voting downstream

firms: if D < 1, then γ > (1 +D)/(3 +D) is satisfied for any γ > 1/2, so

the condition is never binding. In that case, setting a low super-majority

requirement (γ ≤ 2/(3 + D)) actually facilitates punishment, as it implies

that B2’s proposal can be adopted with certainty during the punishment

phase (q2 = 1 and q1 = 0).

If instead D ≥ 1, then 2/(3+D) ≤ 1/2, so setting γ below that threshold

is not possible. In that case, the effectiveness of punishment depends on α

and β. If α > α∗(β), q1 is higher and q2 lower than if α ≤ α∗(β). In the limit

as α and β both tend to one, q1 approaches 1 so that punishment becomes

completely ineffective.14 Recall that with a single round of standard setting,

setting α = β = 1 tends to improve outcomes, as it eliminates the possibility

thatB2’s inferior technology is selected. By contrast, with repeated standard

setting, setting this same policy (α = β = 1) has adverse welfare effects: by

eliminating outcomes that are inefficient in a one-shot game, it also makes

it harder to punish deviations – and thus to sustain more efficient outcomes

– in the repeated game.

More generally, decreasing α makes it more likely that the conditions

q1 ≤ q̄ from Proposition 4 and q1 ≤ q̃(v2) from Proposition 5 are satisfied,

so that an equilibrium with FRAND royalties can be sustained for some δ.

At the same time, the effect of small changes in α on the critical discount

factor δ∗ in Proposition 5 is generally ambiguous. Starting from α < α∗(β),

an increase in α first raises q2, making FRAND royalties easier to sustain. At

α = α∗(β), however, there is a discrete jump down from q2 = (1+α(1−β))/2

to q2 = α(1−β), which has the opposite effect. Furthermore, an increase in

14This illustrates that γ > (1+D)/(3+D) is necessary but not sufficient to implement
punishment.
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α also raises q1, the effect of which may go either way (see Proposition 6).

Bonatti and Rantakari (2016) show that raising the super-majority re-

quirement (γ) and implementing a rule removing projects that have not

been adopted from further consideration (which corresponds to α = 0 in

our setup) can induce project proposers to compromise, thus moving the

proposed projects closer to the socially optimal ones. This provides a ratio-

nale for the evidence in Baron and Spulber (2015), according to which most

SSOs require a super-majority, rather than a simple majority or unanimity,

and for the prevalence of rules discarding proposals that have been voted

down. Our model provides an alternative rationale for such rules, based on

dynamic considerations. It suggests that super-majority requirements and

rules to discard unsuccessful proposals make it easier to discipline partici-

pants in their royalty setting behavior and prevent hold-up.

5 Evidence on repeated interaction in ICT stan-
dardization

Much like popular hardware and software products are issued in new ver-

sions at regular intervals, ICT users have grown accustomed to successful

product standards moving over time from one generation to the next, in

tune with technological evolution. In this section, we investigate a number

of important ICT standards comprising multiple generations. The objective

is to assess the extent to which the set of firms contributing to a given gen-

eration overlaps with the set of contributors to other generations. We look

at mobile communications and Wi-Fi standards, which are set within well-

established SSOs and often cited as prime examples of hold-up and royalty

stacking (see,e.g. Lemley and Shapiro, 2007), as well as USB and Bluetooth

standards, which are set within narrower, industry-driven SSOs.

Mobile communications standards. As discussed in the introduction,

the standards for cellular communications networks are the prime example

of a standard evolving over several well-defined generations. While second-

generation standards where developed independently by several regional

SSOs – in particular, GSM in Europe by the European Telecommunications
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Table 1: Top 10 SEP holders for mobile communications standard genera-
tions

2G (GSM)a 2.5G (GPRS)b 3G (UMTS)c 4G (LTE)d

Nokia: 1456

Motorola: 1116

Ericsson: 843

InterDigital: 675

Qualcomm: 422

Philips: 175

Nokia Siemens
Networks: 164

Alcatel: 88

Siemens: 69

Toshiba: 62

Qualcomm: 517

Ericsson: 514

Motorola: 451

Siemens: 100

Qualcomm: 2799

InterDigital: 2337

Motorola: 1961

Nokia: 1631

Philips: 529

Siemens: 421

Huawei: 380

Ericsson: 349

NEC: 208

Nokia Siemens Net-
works: 180

InterDigital: 808

Qualcomm: 524

Samsung: 322

Ericsson: 315

Motorola: 293

Huawei: 281

ZTE: 235

NTT: 212

LG: 208

Nokia: 197

Source: Disclosed Standard Essential Patents (dSEP) Database (Bekkers et al., 2012).
a: ETSI project GSM.
b: ETSI project GPRS.
c: Includes ETSI projects UMTS, UMTS/CDMA, UMTS FDD, UMTS Release 99,
UMTS Release 4, UMTS Release 5, UMTS Release 6, UMTS Release 7, UMTS Release
8, UMTS Release 9, WCDMA, and TD-SCDMA.
d: Includes ETSI projects LTE, LTE Release 8, LTE Release 9, LTE Release 10,
HSPA+, HSUPA, and E-UTRA.

Standards Institute (ETSI) – starting with the third generation, develop-

ment occurred within the Third Generation Partnership Project (3GPP), a

collaboration of seven SSOs from Asia, Europe, and North America. 3GPP

developed both the UMTS (3G) and LTE (4G) standards. Its intellec-

tual property rights (IPR) policy requires its members to disclose any IPR

they believe to be (potentially) essential to the work done within 3GPP.

ETSI, which runs the day-to-day business of 3GPP, keeps a public record of

these disclosures. Using data from the Disclosed Standard-Essential Patents

Database (dSEP) compiled by Bekkers et al. (2012),15, Table 1 shows the 10

15The database is available at http://www.catalini.com/dsep/ (last accessed on 5 Febru-
ary 2016).
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leading SEP holders for the different generations of mobile communications

standards (2G, 2.5G, 3G, and 4G) maintained or developed by 3GPP.16,17

Next to the commonly-used name of the firm, we have listed the number of

SEP disclosures recorded in the database.18

Table 1 shows a recurring core of SEP holders. In particular, Ericsson,

Motorola, and Qualcomm are among the top 10 in each of the four gener-

ations; Interdigital, Nokia and Siemens (also via Nokia Siemens Networks)

are present in three out of four generations; and Philips and Huawei are

present in two out of four generations.

Wi-Fi standards. We perform a similar exercise for Wi-Fi (the IEEE

802.11 family of standards), also using data from the dSEP database. Wi-Fi

standards are developed at the IEEE (Institute of Electrical and Electronics

Engineers), an international organization dedicated to the advancement of

technology, including through standardization. Given the smaller number

of SEPs and of SEP holders in Wi-Fi, only the top 5 are listed.

Table 2 also shows a recurring small core of SEP holders. Though no firm

is among the top 5 in all four generations of Wi-Fi, France Télécom (now

Orange) and Télédiffusion de France are present in three out of four. Overall,

the pattern is less clear here than in mobile communications, however.

USB. The USB generations of standards (USB 1.0, 2.0 and now 3.0) were

developed at the USB Implementers Forum (USBIF). Using data collected

from the USBIF website, it is possible to compile a list of contributing parties

and specification owners, mentioned as such in the USB specifications. These

firms are designated as ‘promoters’ within the USBIF. Table 3 indicates

16In the case of GPRS, the number of SEP holders is small and the numbers of SEPs
declared drops dramatically after the 4th-ranked firm, hence the shorter list.

17The names of all patent owners mentioned in this document are harmonized, and
thus indicate the name of the company or organization that made the disclosure. The
information in the database accounts for different spellings of a firm name within or across
SSOs, but does not account for mergers and acquisitions after the date of disclosure. In
the case of a third party disclosure, the patent owner is not the one that also submitted
the declaration.

18To be precise, these disclosures include both specific IPR and so-called “blanket dis-
closures,” whereby a form simply declares that it owns relevant IPR, without specifying
the patents (or patent applications) concerned.
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Table 2: Top 5 SEP holders for Wi-Fi standard generations

802.11a,b 802.11g 802.11n 802.11ac

France Télécom:
62

Télédiffusion de
France: 62

Panasonic: 16

Golden Bridge: 5

Wi-Lan: 4

France Télécom:
62

Télédiffusion de
France: 62

Agere Systems: 13

Intersil Corp: 5

Philips: 2

AT&T: 24

Nortel: 10

France Télécom: 7

Télédiffusion de
France: 7

Panasonic: 5

Broadcom: 1

Celeno Comms: 1

ETRI: 1

Lantiq: 1

Qualcomm: 1

Source: Disclosed Standard Essential Patents (dSEP) Database (Bekkers et al., 2012).

which companies had ‘promoter’ status in the successive USB generations

from 1998 until 2015.

Here as well, the table reveals a core of firms involved throughout the

main events surrounding the evolution of the USB standard, including (in

alphabetical order) HP, IBM, Intel, and Microsoft.

Bluetooth. Much like USB, the Bluetooth standard is governed by a pri-

vate SSO, the Bluetooth Special Interest Group (SIG). There have been four

generations of the standard so far. Data was collected from the website of

the Bluetooth SIG and checked against relevant literature (Keil, 2002). As

with USB, leading firms are designated as ‘promoters.’ Table 4 indicates,

on a yearly basis, which companies had the role of ‘promoters’.19

Even if the yearly table does not quite give a sense of how the core

contributors might have varied from one generation to the next, it does

point to a stable core of members, around Ericsson, Intel, Lenovo, Microsoft,

Motorola, Nokia, and Toshiba.

19Data for 2011 was unavailable.

23



Table 3: Promoters in the USB specification generations

USB 1.0 USB 2.0 USB icon USB 3.0 USB-C Current

Compaq x x x
DEC x
IBM x x x
Intel x x x x x
Microsoft x x x x
NEC x x x x
Nortel x
HP x x x x
Lucent x x
Philips x
Dell x
Gateway x
ST NXP-Wireless x
Texas Instruments x
Renesas Electronics x
STMicroelectronics x

Source: data collected from the USB Implementers Forum (USBIF) website
(www.usb.org).

Table 4: Promoters in the Bluetooth SIG, year by year

2006 2007 2008 2009 2010 2012 2013 2014 2015

Ericsson x x x x x x x x x
Lenovo x x x x x x x x
Intel x x x x x x x x x
Microsoft x x x x x x x x x
Motorola x x x x x x x x x
Nokia x x x x x x x x
Toshiba x x x x x x x x x
Agere Systems x
IBM x

Source: data collected from the Bluetooth Special Interest Group (SIG) website
(www.bluetooth.org).

24



6 Conclusion

As part of the standard-setting process, certain patents become essential.

This may allow the owners of these standard-essential patents to hold up

implementers of the standard, who can no longer turn to substitute tech-

nologies. However, many real-world standards evolve over time, with several

generations of standards succeeding each other. Thus, standard setting is

a repeated game in which participants can condition future behavior on

whether or not hold-up has occurred in the past. In the presence of comple-

mentarity between the different patents included in the standard, technology

contributors have an incentive to discipline each other and keep royalties low,

which can be achieved by threatening to exclude contributors who have en-

gaged in hold-up from future rounds of the process. We show that repeated

standard setting can sustain FRAND royalties provided the probability that

another round of standard setting will occur is sufficiently high. This result

does not rely on intervention by competition authorities or courts. We also

examine how the decision-making rules of standard-setting organizations

affect the sustainability of FRAND royalties.

Appendix: Proofs

Proof of Proposition 2. Consider first the case in which a single proposal

has been submitted, say by i (s = i). By assumption, B−i votes against the

proposal, while Bi and the downstream firms vote in favor. A’s vote only

matters if it is pivotal, i.e., if

1 +D

3 +D
< γ ≤ 2 +D

3 +D
. (2)

The second inequality in (2) is satisfied by assumption. If the first inequality

is not satisfied (i.e., (1+D)/(3+D) ≥ γ), the proposal is adopted regardless

of A’s vote. If the first inequality is satisfied, the proposal is adopted if and

only if A votes in favor. Voting in favor yields A a payoff of (vs/3)
2, while

voting against yields α(vs/3)
2; hence for any α < 1, A votes in favor when

pivotal, and for α = 1, the proposal gets adopted even if A votes against.

In sum, when there is a single proposal, it is adopted.
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Now consider the case where B1 and B2 have both submitted proposals.

By assumption, B1 and B2 vote in favor of their own proposal and against

the rival’s. To determine the behavior of the downstream firms and innovator

A, we start at the second vote and work backward to the first.

Second vote:

If B1 is on the ballot, the downstream firms always vote in favor. If (1 +

D)/(3 + D) ≥ γ, the proposal is adopted regardless of A’s vote, while if

(1 + D)/(3 + D) < γ, the proposal is adopted if and only if A votes in

favor. Voting in favor yields A a payoff of (v1/3)
2, while voting against

yields α[β(v1/3)
2 + (1− β)(v2/3)

2]. Hence, for any α < 1 or β < 1, A votes

in favor when pivotal, and for α = β = 1, the proposal gets adopted even if

A votes against.

If B2 is on the ballot, the voting behavior of A and the downstream firms

depends on whether α ≤ α∗(β):

• If α ≤ α∗(β), the downstream firms vote in favor. Again, if (1 +

D)/(3 +D) ≥ γ, the proposal is adopted regardless of A’s vote, while

if (1+D)/(3+D) < γ, the proposal is adopted if and only if A votes in

favor. Voting in favor yields A a payoff of (v2/3)
2, while voting against

yields α[β(v1/3)
2 + (1 − β)(v2/3)

2]. Because α ≤ α∗(β), A votes in

favor.

• If α > α∗(β), the downstream firms vote against. A is pivotal if

1

3 +D
< γ ≤ 2

3 +D
. (3)

The first inequality is always satisfied since 1/(3 +D) < 1/2 < γ. If

the second inequality is not satisfied (i.e., γ > 2/(3+D)), the proposal

is rejected regardless of A’s vote. If the second inequality is satisfied

(i.e., γ ≤ 2/(3 + D)), the proposal is adopted if and only if A votes

in favor. Voting in favor yields A a payoff of (v2/3)
2, while voting

against yields α[β(v1/3)
2 + (1 − β)(v2/3)

2]. Because α > α∗(β), A

votes against.

To summarize, B1’s proposal is always accepted at the second vote, while

B2’s proposal is accepted if and only if α ≤ α∗(β) and rejected otherwise.
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First vote:

Regardless of whether α ≤ α∗(β), consumer surplus from adopting B1’s

proposal at the first vote is always greater than the expected consumer

surplus from holding a second vote on B2’s proposal:

v21 ≥ max{v22, α[βv21 + (1− β)v22]}.

Conversely, rejecting B2’s proposal and holding a second vote on B1’s pro-

posal yields higher consumer surplus than adopting B2 at the first vote.

Hence, the downstream firms vote in favor of B1 and against B2. Because

A’s payoff is also increasing in vs, A similarly votes for B1 and against B2

whenever pivotal at the first vote. Finally, note that B2’s proposal cannot

be adopted without A’s support as 1/(3+D) < 1/2 < γ, and B1’s proposal

cannot be rejected without A voting against as γ ≤ (2+D)/(3+D). Thus,

B1’s proposal is adopted and B2’s rejected at the first vote regardless of

whether or not A is pivotal.

The equilibrium thus always involves B1’s proposal receiving a super-

majority. B2’s proposal never receives a super-majority unless it is the

only proposal. Moving back to the proposal stage, it follows that for any

proposal cost 0 < c < (v1/3)
2, the unique subgame perfect equilibrium is

such that only B1 makes a proposal. By assumption, c > 0. Moreover,

c < r̄v2/2, so Assumption 2 implies r̄v2/2 = (v1 − v2)v2/2 < (v1/3)
2 and

hence c < (v1/3)
2.

Proof of Proposition 3. Consider the following equilibrium candidate. Both

B1 and B2 make proposals for standards. At the first vote, everybody votes

against B2 and everybody except the downstream firms votes against B1.

At the second vote, everybody votes in favor of B1 and B2. We now show

that this strategy profile forms an equilibrium under the assumptions stated

in the proposition.

The assumption α ≤ α∗(β) implies that the downstream firms vote in

favor of B1 and B2 at the second vote. Because a single vote cannot prevent

a super-majority, none of the other three players can change the outcome

of the vote by unilaterally deviating and voting against. Thus, everybody

voting in favor of either proposal is an equilibrium in the subgame following
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rejection at the first vote. Moving back to the first vote, the downstream

firms vote in favor of B1 and against B2. If B2 is on the ballot, none of the

other players can change the outcome by unilaterally deviating and voting

in favor. If B1 is on the ballot, a unilateral deviation by one of the other

three players results in a share of favorable votes of (1 +D)/(3 +D), which

by assumption is less than γ so it does not change the outcome. Thus,

everybody except the downstream firms voting against any proposal at the

first vote is an equilibrium.

Hence, in equilibrium the proposal that is on the ballot at the second vote

is adopted. Since B1 and B2 are equally likely to be first and second, each

proposal gets adopted with probability 1/2. Firm Bi’s expected payoff from

introducing a proposal is (1/2)(vi/3)
2− c, i = 1, 2. Thus if (1/2)(v2/3)

2 ≥ c

both introduce proposals.

Proof of Proposition 4. We construct three phases of play called C, P and

R. The phases are associated with the following stage-game strategies:

C: Only B1 proposes a standard (xt1 = 1, xt2 = 0). Everybody votes in

favor of B1’s and against B2’s proposal: for all ϑ and j, φt
ϑj(s̃

t
ϑ) = 1

if and only if s̃tϑ = 1. The royalties charged are rt1(s
t) = r̄ for all st,

rt2(s
t) = v2/3 for all st, rtA(1) = (v1 − r̄)/2, rtA(2) = v2/3.

P : B2 proposes a standard (xt2 = 1). B1 proposes a standard (xt1 = 1) if

q1(v1/3)
2− c ≥ 0 and does not propose a standard (xt1 = 0) otherwise.

A and B2 vote in favor of B2 and against B1, while B1 votes in favor

of B1 and against B2: for all ϑ and for j = A,B2, φ
t
ϑj(s̃

t
ϑ) = 1 if and

only if s̃tϑ = 2, while for all ϑ, φt
ϑ1(s̃

t
ϑ) = 1 if and only if s̃tϑ = 1. The

royalties charged are rt1(s
t) = v1/3 for all st, rt2(s

t) = v2/3 for all st,

rtA(1) = v1/3, r
t
A(2) = v2/3.

R: Only B1 proposes a standard (xt1 = 1, xt2 = 0). Everybody votes in

favor of B1’s and against B2’s proposal: for all ϑ and j, φt
ϑj(s̃

t
ϑ) = 1

if and only if s̃tϑ = 1. The royalties charged are rt1(s
t) = r̃ for all st,

rt2(s
t) = v2/3 for all st, rtA(1) = (v1 − r̃)/2, rtA(2) = v2/3.

Transitions between phases are as follows. At t = 1, start in phase C.

Remain in phase C as long as B1 does not deviate. If B1 deviates, move to
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phase P for L rounds. If someone other than B1 deviates return to C; if

B1 deviates restart phase P . If no one deviates during the L rounds, move

to phase R. Remain in phase R unless someone deviates. If B1 deviates,

move to P for L rounds and then return to R. If A deviates, return to

C. Deviations by B2 are inconsequential. This determines how strategies

depend on the history of play.

During the punishment phase, Bi’s proposal is adopted with probability

qi, i = 1, 2, with q1+ q2 ≤ 1; (q1, q2) depends on the parameters α, β, and γ

as specified in Proposition 7. For this proof we work with the reduced-form

probabilities q1 and q2.

Note that A and B2 have no unilateral incentive to deviate from C since

they play static best responses. Thus we do not need separate punishment

phases for these players. What we need to show is that, for δ close to 1,

(a) A and B2 are willing to carry out the punishment. Specifically, B2 must

be willing to introduce a proposal (xt2 = 1), while A must be willing to

vote in favor of B2 and against B1. B2 is willing to make a proposal

if and only if c ≤ q2(v2/3)
2. This condition is satisfied by assumption

(provided A sticks to the punishment strategy). To check that A is

willing to vote for B2 and against B1, suppose that B1 has submitted

a proposal. Suppose also that A is pivotal, in the following sense: if A

votes for B2 and against B1, Bi’s proposal is adopted with probability

qi, but if A deviates by voting for B1 and against B2, B1’s proposal is

adopted with probability 1. During phase P firm A’s per-period payoff is

q1(v1/3)
2+q2(v2/3)

2. During phase C its payoff is ((v1− r̄)/2)2. During

phase R it is ((v1 − r̃)/2)2. Since (vs/3)
2 < ((v1 − r̄)/2)2 = (v2/2)

2 for

s = 1, 2, a necessary condition for A to be willing to carry out the

punishment is r̃ < r̄. A sufficient condition is

L∑
τ=1

δτ−1

[
q1

(v1
3

)2
+ q2

(v2
3

)2
]
+

δL

1− δ

(
v1 − r̃

2

)2

≥

(v1
3

)2
+

δ

1− δ

(
v1 − r̄

2

)2

. (4)

The left-hand side represents the payoff from L rounds of phase P fol-

lowed by phase R forever. The right-hand side represents the payoff from
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deviating, which results in one round of B1’s proposal being adopted,

B1 charging rt1 = v1/3, and A best-responding by charging rtA = v1/3,

yielding a payoff of (v1/3)
2, followed by phase C forever. Multiplying

both sides by (1− δ), we have

(1− δ)

L∑
τ=1

δτ−1[q1(v1/3)
2 + q2(v2/3)

2] + δL
(
v1 − r̃

2

)2

≥

(1− δ)
(v1
3

)2
+ δ

(
v1 − r̄

2

)2

.

As δ → 1, this inequality tends to(
v1 − r̃

2

)2

≥
(
v1 − r̄

2

)2

,

which is satisfied for r̄ > r̃.

(b) B1 does not want to deviate during phase C. B1’s payoff during phase

C is r̄(v1 − r̄)/2 − c while during P it is max{0, q1(v1/3)2 − c} and

during R it is r̃(v1 − r̃)/2 − c. If it deviates from r̄, its best deviation

is rt1 = (v1 − v2/2)/2, which is the best response to A charging rtA =

(v1 − r̄)/2 = v2/2 and yields ((v1 − v2/2)/2)
2 − c. Thus the relevant

condition is

1

1− δ

(
r̄(v1 − r̄)

2
− c

)
≥

(
v1 − v2/2

2

)2

− c

+

L∑
τ=1

δτ max

{
0, q1

(v1
3

)2 − c

}
+

δL+1

1− δ

(
r̃(v1 − r̃)

2
− c

)
. (5)

(c) B1 does not want to deviate during phase R. The condition is

1

1− δ

(
r̃(v1 − r̃)

2
− c

)
≥

(
v1 − v2/2

2

)2

− c

+

L∑
τ=1

δτ max

{
0, q1

(v1
3

)2 − c

}
+

δL+1

1− δ

(
r̃(v1 − r̃)

2
− c

)
. (6)

Because r̄ > r̃, (5) is implied by (6), so we can focus on the latter.

Noting that payoffs on the left and right-hand side are equal after the

last punishment period, for δ = 1 (6) becomes

(L+1)

(
r̃(v1 − r̃)

2
− c

)
≥

(
v1 − v2/2

2

)2

−c+Lmax

{
0, q1

(v1
3

)2 − c

}
.

(7)
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Since we can choose r̃ = r̄ − ε, where ε > 0 can be arbitrarily small,

and c < r̄(v1− r̄)/2 by assumption, the left-hand side is strictly positive

and increasing in L for ε sufficiently small. There are two cases. If

q1(v1/3)
2− c ≤ 0, the right-hand side is constant in L. Hence, it suffices

that L + 1 > (v1 − v2/2)
2/[2v2/(v1 − v2)]. If q1(v1/3)

2 − c > 0, we can

rewrite (7) as

L

(
r̃(v1 − r̃)

2
− q1

(v1
3

)2
)

≥
(
v1 − v2/2

2

)2

− r̃(v1 − r̃)

2
.

For r̃ = r̄−ε and q1 < q̄, the left-hand side is again strictly positive and

increasing in L for ε small, while the right-hand side is constant in L.

Hence, we can find a finite L such that the inequality is satisfied. By

continuity, for δ sufficiently close to 1, B1 has no incentive to deviate.

We conclude that for q1 < q̄ and c ≤ q2(v2/3)
2, we can always find a finite

L such that the above strategies form a subgame-perfect equilibrium if δ is

close to 1.

Proof of Proposition 5. The two conditions that need to be satisfied are (4)

and (6). Rewriting (4) for the case where L = 1 and multiplying by (1− δ)

yields

δ

[(
v1 − r̃

2

)2

−
(
v1 − r̄

2

)2
]
≥ (1− δ)

[
(1− q1)

(v1
3

)2 − q2

(v2
3

)2
]
. (8)

Rewriting (6) for the case c = 0 and L = 1, we obtain, after simplifying,

(1 + δ)

(
r̃(v1 − r̃)

2

)
≥

(
v1 − v2/2

2

)2

+ δq1

(v1
3

)2
. (9)

Since r̃ < r̄ is needed to satisfy (8) and r̄ = v1 − v2 ≤ v1/3 by Assumption

2, the left-hand side of (9) is increasing in r̃. Noticing that(
v1 − v2/2

2

)2

= max
r1

r1

(
v1 −

(
v1 − r̄

2

)
− r1

)
≥ r̄

(
v1 −

(
v1 − r̄

2

)
− r̄

)

=
r̄(v1 − r̄)

2
>

r̃(v1 − r̃)

2
,

(9) cannot be satisfied at δ = 0, and cannot be satisfied unless r̃(v1− r̃)/2 >

q1(v1/3)
2. Thus, a necessary condition for (9) is that it holds for δ = 1 and
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r̃ = r̄, which requires

r̄(v1 − r̄) ≥
(
v1 − v2/2

2

)2

+ q1

(v1
3

)2
,

or q1 ≤ q̃(v2). Since q̃((2/3)v2) = 1 > 0 > q̃(v1) = −(3/4)2 and q̃(v2) is

an inverse-U shaped quadratic expression in v2, there exists a unique cutoff

v∗2 ∈ ((2/3)v1, v1) such that q̃(v2) > 0 if and only if v2 < v∗2.

We can then solve for the lowest r̃ satisfying (9) as a function of q1 and

δ, yielding r(δ, q1). Hence, the critical discount factor δ∗ is such that (8)

evaluated at r̃ = r(δ, q1) holds with equality. What remains to be shown

is that δ∗ < 1. By construction, for v2 < v∗2 and q1 ≤ q̃(v2), we have

r(1, q1) < r̄. Continuity implies that for δ sufficiently close to 1, the left-hand

side of (8) is positive and increasing in δ. Because q1 + q2 ≤ 1 and v1 > v2,

the right-hand side is decreasing in δ and tends to zero as δ approaches 1.

We conclude that there exists a δ∗ as claimed.

Proof of Proposition 6. Let f(δ, q1, q2) ≡ g(δ, q1)δ − h(q1, q2)(1− δ), where

g(δ, q1) ≡
(
v1 − r(δ, q1)

2

)2

−
(
v1 − r̄

2

)2

h(q1, q2) ≡ (1− q1)
(v1
3

)2 − q2

(v2
3

)2
.

By Proposition 5, δ∗ is implicitly defined by f(δ, q1, q2) = 0. Thus, applying

the implicit function theorem,

∂δ∗

∂q1
= −∂f/∂q1

∂f/∂δ
=

(1− δ)(∂h/∂q1)− δ(∂g/∂q1)

g + (∂g/∂δ)δ + h

∂δ∗

∂q2
= −∂f/∂q2

∂f/∂δ
=

(1− δ)(∂h/∂q2)

g + (∂g/∂δ)δ + h
.

We have

∂g

∂q1
= − ∂r

∂q1︸︷︷︸
>0

(
v1 − r(δ, q1)

2

)
︸ ︷︷ ︸

>0

< 0

∂h

∂q1
= −

(v1
3

)2
< 0

∂h

∂q2
= −

(v2
3

)2
< 0.
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Finally, the argument in the proof of Proposition 5 implies that g+(∂g/∂δ)δ+

h > 0 in the vicinity of δ∗, which establishes the sign of the effects of q1 and

q2 on δ∗.

Proof of Proposition 7. Suppose γ ≤ (1 + D)/(3 + D). Because B1 and

the downstream firms always vote in favor of B1, B1’s proposal is adopted

whenever it is on the ballot. Moreover, A’s and B2’s votes are not enough to

adopt B2 at the first vote as (1+D)/(3+D) ≥ γ > /2 implies 2/(3+D) <

1/2 < γ. Hence, q1 = 1, establishing the first claim.

Now suppose (1+D)/(3+D) < γ ≤ 2/(3+D). Then, the above results

are reversed: A and B2 can adopt B2’s proposal by voting in favor whenever

it is on the ballot, and the votes of B1 and the downstream firms are not

enough to adopt B1 when it is on the ballot first. Hence, q1 = 0 and q2 = 1.

If instead γ > max{(1 +D)/(3 +D), 2/(3 +D)}, neither A and B2 nor

B1 and the downstream firms have a super-majority. Thus, none of the two

proposals can be adopted at the first vote. There are two cases to consider:

(i) For α ≤ α∗(β), the downstream firms vote in favor of B2 at the second

vote. Hence, B2 gets adopted if B1 is on the ballot first and B2 second

(probability 1/2). If instead B2 is on the ballot first and B1 second

(probability 1/2), neither of them receives a super-majority, so B1 is

adopted with probability αβ and B2 with probability α(1− β).

(ii) For α > α∗(β), the downstream firms vote against B2 at the sec-

ond vote. Hence, no proposal ever receives a super-majority, so B1 is

adopted with probability αβ and B2 with probability α(1− β).

References

Baron, J., Spulber, D.F. (2015): Technology Standards and Standards Or-

ganizations: Introduction to the Searle Center Database. Working Paper,

Searle Center, Northwestern University.

Bekkers, R., Catalini, C., Martinelli, A., Simcoe, T. (2012): Intellectual

Property Disclosure in Standards Development. Proceedings from NBER

33



conference on Standards, Patents and Innovation, Tucson (AZ), January

20 and 21, 2012.

Bonatti, A., Rantakari, H. (2016): The Politics of Compromise. American

Economic Review 106(2): 229–259.

Chiao, B., Lerner, J., Tirole, J. (2007): The Rules of Standard-Setting

Organizations. RAND Journal of Economics 38(4): 905–930.

Farrell, J., Hayes, J., Shapiro, C., Sullivan, T. (2007): Standard Setting,

Patents, and Hold-up. Antitrust Law Journal 74(3): 603–670.

Farrell, J., Saloner, G. (1985): Standardization, Compatibility, and Innova-

tion. RAND Journal of Economics 16(1): 70–83.

Farrell, J., Simcoe, T. (2012): Choosing the Rules for Consensus Standard-

ization. RAND Journal of Economics 43(2): 235–252.

Fudenberg, D., Tirole, J. (1991): Game Theory. Cambridge, MA: MIT

Press.

Ganglmair, B., Froeb, L.M., Werden, G.J. (2012): Patent Hold-Up and An-

titrust: How A Well-Intentioned Rule Could Retard Innovation. Journal

of Industrial Economics 60(2): 249–273.

Heller, M.A., Eisenberg, R.S. (1998): Can Patents Deter Innovation? The

Anticommons in Biomedical Research. Science 280: 698–701.

Keil, T. (2002): De-facto standardization through alliances – lessons from

Bluetooth. Telecommunications Policy 26(3): 205–213.

Larouche, P., Padilla, J., Taffet, R.S. (forthcoming): Settling FRAND Dis-

putes: Is Mandatory Arbitration a Reasonable and Nondiscriminatory

Alternative? Journal of Competition Law and Economics .

Layne-Farrar, A., Llobet, G. (2014): Moving beyond simple examples: As-

sessing the incremental value rule within standards. International Journal

of Industrial Organization 36: 57–69.

34



Lemley, M.A., Shapiro, C. (2007): Patent Holdup and Royalty Stacking.

Texas Law Review 85: 1991–2049.

Lemley, M.A., Shapiro, C. (2013): A Simple Approach to Setting Reason-

able Royalties for Standard-Essential Patents. Berkeley Technology Law

Journal 28: 1135–1166.

Lerner, J., Tirole, J. (2015): Standard-Essential Patents. Journal of Political

Economy 123(3): 547–586.

Llanes, G., Poblete, J. (2014): Ex Ante Agreements in Standard Setting and

Patent-Pool Formation. Journal of Economics & Management Strategy

23(1): 50–67.

Rey, P., Salant, D. (2012): Abuse of Dominance and Licensing of Intellectual

Property. International Journal of Industrial Organization 30(6): 518–

527.

Rysman, M., Simcoe, T. (2008): Patents and the performance of voluntary

standard-setting organizations. Management Science 54(11): 1920–1934.

Schmidt, K.M. (2014): Complementary Patents and Market Structure.

Journal of Economics & Management Strategy 23(1): 68–88.

Shapiro, C. (2001): Navigating the Patent Thicket: Cross-Licenses, Patent

Pools, and Standard-Setting. In: A. Jaffe, J. Lerner, S. Stern (eds.),

Innovation Policy and the Economy, pp. 119–150. Cambridge, MA: MIT

Press.

Simcoe, T. (2012): Standard setting committees: Consensus governance for

shared technology platforms. American Economic Review 102(1): 305–

336.

Spulber, D.F. (2015): Complementary Monopolies and the Bargaining Prob-

lem. Working Paper, Searle Center, Northwestern University.

Swanson, D.G., Baumol, W.J. (2005): Reasonable and nondiscriminatory

(RAND) royalties, standards selection, and control of market power. An-

titrust Law Journal 73(1): 1–58.

35


