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Abstract

Structural break tests developed in the literature for regression models are sensitive to

model misspecification. We show - analytically and through simulations - that the sup

Wald test for breaks in the conditional mean and variance of a time series process exhibits

severe size distortions when the conditional mean dynamics are misspecified. We also show

that the sup Wald test for breaks in the unconditional mean and variance does not have

the same size distortions, yet benefits from similar power to its conditional counterpart.

Hence, we propose using it as an alternative and complementary test for breaks. While

the conditional tests based on dynamic regression models detect breaks in the mean and

variance of the US unemployment growth and interest rate growth series around the Great

Moderation, the evidence for these breaks disappears when using the unconditional tests.

Therefore, there is no evidence of long-run mean or volatility shifts in unemployment growth

and interest rate growth.
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1 Introduction

There is a large literature on alternative structural break tests, as well as empirical

evidence that many economic indicators went through periods of structural change. Most

structural break tests are developed for the slope parameters of a regression model - see

inter alia Andrews (1993), Andrews and Ploberger (1994), Ploberger and Kramer (1992),

Bai and Perron (1998).

Macroeconomic variables may often exhibit long-run mean shifts, that is, structural

breaks in their unconditional mean. Mean shifts in unemployment rates, interest rates,

GDP, inflation and other macroeconomic variables may signal permanent changes in the

structure of the economy and are therefore themselves of interest to practitioners. Never-

theless, very few papers test for unconditional mean shifts; instead, most of the literature

refers to ”mean shifts” as breaks in the short-run conditional mean and proceed with

the usual regression based tests for break-points - see inter alia Vogelsang (1997,1998),

Perron and Yabu (2009) and McKitrick and Vogelsang (2014).

In this paper, we show, analytically and through simulations, that tests for conditional

mean breaks are severely oversized when the functional form is misspecified, leading to

detection of spurious breaks. Their unconditional counterparts are not plagued by the

same issues and we propose using them instead, or in conjunction with, the conditional

mean break tests.

The sensitivity of the conditional mean break tests to functional form misspecifica-

tions has been documented earlier. Chong (2003) focused on cases with iid, conditionally

homoskedastic errors. Bai et al (2008) focused on models with measurement error and

proposed a new break-point test that corrects for measurement error. Another strand

of literature focuses on trend breaks rather than mean breaks. It shows that dynamic

misspecification of the conditional mean may result in severe size distortions and non-

monotonic power - see inter alia Vogelsang (1997,1998,1999), Kejriwal (2009), Perron and

Yabu (2009) and McKitrick and Vogelsang (2014). The theoretical and simulation results

in these papers are backed up by the empirical studies in Altansukh et al. (2012) and

Bataa et al. (2013), who expose the undesirable effects of misspecifying the conditional

mean seasonalities, outliers, dynamics and heteroskedasticity in practice.

In this paper, we analyze the effects of static and dynamic misspecification on condi-

tional mean break tests. We focus on the sup Wald test of Andrews (1993) because it is

widely used in applied work. We prove that its asymptotic distribution is nonstandard

and highly data-dependent when the number of lags is underspecified. Our analysis fo-

cuses on stationary weakly dependent and heteroskedastic processes, generalizing the iid

homoskedastic results derived in Chong (2003).1

1Nonstationary processes with a trend break and unit root errors, whose first-differences exhibit mean

shifts with stationary errors, have been analyzed in many papers. But, as Vogelsang (1998, 1999) shows,

to recover monotonic power, testing the first-differenced series for a mean shift is better than testing the

level series for a trend shift.
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Most of the literature proposed correcting for dynamic misspecification by better lag

selection procedures - Vogelsang and Perron (1998), Perron and Yabu (2009) - or by

fixed bandwidth asymptotics - Vogelsang (1998), Sayginsoy and Vogelsang (2011), Cho

and Vogelsang (2014). In this paper, we propose testing for breaks in the unconditional

mean instead. Breaks in the conditional mean are not equivalent, yet closely related, to

breaks in the conditional mean, as long as the conditional mean is correctly specified.

Aue and Horváth (2012), among others, illustrate tests for both type of breaks in a recent

comprehensive review on structural break tests. We run an extensive simulation study to

show that for most common static and dynamic misspecifications in the conditional mean,

the unconditional mean break test, corrected for autocorrelation, yields correctly-sized or

under-sized tests, compared to over-sized conditional mean tests. Moreover, the power of

both tests is very similar, especially as the sample size increases.2 Similar results hold for

the unconditional versus conditional break tests in variance. Therefore, the approach of

testing first for a break in the unconditional mean and variance of the variable of interest

is not only complementary to the regression approach, but is robust to alternative sources

of misspecification.

There is a plethora of empirical evidence for breaks in the conditional mean and

volatility of many US macroeconomic time series during the early mid 1980s, associated

with the Great Moderation (see for example, McConnell and Perez-Quiros (2000), Stock

and Watson (2002), Sensier and van Dijk (2004), Bataa et al. (2013)). Most studies

employ dynamic regression models to detect such breaks. Focusing on unemployment

and interest rates, we show that the unconditional mean and volatility tests detect no

breaks. Thus, the breaks detected by the conditional tests are either spurious because

of size distortions, or they do not result in long-run breaks in the mean or volatility of

unemployment growth or interest rate growth.

This paper is organized as follows: Section 2 defines the unconditional break tests

in mean and variance and derives their asymptotic properties in a unified framework.

Section 3 defines the conditional structural break tests in mean and variance. It contains

asymptotic results for the conditional break tests under correct specification and misspec-

ification. Section 4 presents the simulation evidence comparing the size and power of the

conditional and unconditional break tests. Section 5 illustrates the difference between

these alternative structural break tests approaches with two empirical applications on

the US civilian unemployment rate and the short-term real interest rates. A final section

concludes. All the proofs are relegated to the Appendix.

2The only case where our test has comparatively low power to the conditional mean test is in a

correctly specified dynamic model with an intercept very close to zero. This case is further discussed in

the simulation section.
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2 Unconditional mean and variance break tests

In this section, we define the unconditional sup Wald test for an unknown break in the

mean or variance of a dynamic univariate process.3

To our knowledge, a test for an unknown unconditional mean break, adjusted for

autocorrelation, is rarely used in the literature.4 Most papers test for a break in the

conditional mean of a series; when they intend to test for an unconditional mean break,

they routinely test for a trend break or an intercept break instead, after specifying a

conditional mean - see e.g. Stock and Watson (2002). Such approaches have the dis-

advantage that they are highly dependent on the correct specification of the conditional

mean. They also do not shed light on unconditional mean shifts, which may not be

equivalent to conditional mean shifts. Therefore, in this paper, we propose using UM

break tests complementarily to CM break tests, to uncover long-run mean shifts in the

presence of potential static and dynamic misspecification.

We denote the unconditional mean by UM, and the unconditional variance by UV

henceforth. In contrast to UM breaks, UV breaks are routinely tested in applications,

for example to uncover the Great Moderation break. It is common to test for a break

in the absolute value of the demeaned data, as a proxy for testing a variance break - see

McConnell and Perez-Quiros (2000), Stock and Watson (2002) and Sensier and van Dijk

(2004). We call these tests UA (unconditional absolute deviation) break tests. One can

also use the squared demeaned data to test for a variance break, as in Pitarakis (2004)

and Qu and Perron (2007). We call these UV break tests, because they test directly for

a variance break.5

Below, we state the null asymptotic distributions of UM, UA and UV break tests

under fairly general assumptions on the data. These distributions are not dependent on

regressor, functional form, or seasonality misspecifications, simply because a conditional

mean is not specified. The only misspecification that affects the null asymptotic distri-

bution of these tests are UM breaks for the UA and UV tests, or UV breaks for the UM

test. Fortunately, this misspecification is easy to correct; we discuss this correction at

3Throughout the paper, we use the sup Wald test definition in Andrews (1993); alternative definitions

of the sup Wald test are available, but they are not equivalent to the original sup Wald test in Andrews

(1993) and should not be confused with it.
4Even though UM tests are not routinely used, they are a special case of the HAC-adjusted conditional

break-point test in e.g. Bai and Perron (1998), when the only regressor is an intercept. Also, a CUSUM

(cumulative sum) variant of this test for iid data is in Pitarakis (2004). As shown in the Appendix,

proof of Theorem 1, for unconditional break tests, there is an explicit asymptotic relationship between

the CUSUM test and the sup Wald test. However, as the Appendix shows, the conclusion of the two

tests based on asymptotic critical values is in general different. Since there is strong evidence for the

non-monotonic power of the CUSUM test - see e.g. Vogelsang (1999), the paper focuses on the sup Wald

test instead.
5Note that a break in the expected absolute value of a demeaned series is not the same as a variance

break only under certain conditions.
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the end of this section.

The true model takes the general form:

yt = μ11[t ≤ TUM ] + μ21[t > TUM ] + ut, (1)

where μ1, μ2 are deterministic, the break TUM = [TλUM ] is an unknown, fixed fraction of

the sample 0 < λUM < 1, and ut satisfies the assumption below.

Assumption A 1.

(i) E(ut) = 0 and Var
(
T−1/2

∑[Tλ]
t=1 ut

)
= λ vu;

(ii) for some d > 4, supt E|ut|d < ∞ and {ut} is L2-near epoch dependent of size

cm = O(m−1) on {gt}, i.e.
∥
∥ut − E[ut|G

t+m
t−m ]

∥
∥

2
≤ dm with dm = O(m−1) where

Gt+m
t−m = σ(gt−m, . . . , gt+m), and {gt} is either φ-mixing of size m−d/(2(d−1)) or α-

mixing of size m−d/(d−2).6

With these assumptions, yt can exhibit very general dependence - ARMA, GARCH,

nonlinear dependence - but it cannot have unit roots or UV breaks.

For a UM break, the null and alternative hypotheses are:

HUM
0 : μ1 = μ2 vs. HUM

A : μ1 6= μ2.

For a UA break, let at = E|yt − y|, and test:

HUA
0 : at = au vs. HUA

A : at = au,1 1[t ≤ TUA] + au,2 1[t > TUA], au,1 6= au,2.

For a UV break, let vut = E(yt − y)2, and test:

HUV
0 : vt = vu vs. HUV

A : vt = vu,1 1[t ≤ TUV ] + vu,2 1[t > TUV ], vu,1 6= vu,2.

Under the alternative hypotheses, all breaks TUM = [TλUM ], TUV = [TλUV ], TUA =

[TλUA] are assumed to occur at unknown fixed fractions 0 < λUM , λUV , λUA < 1 of the

sample.

The UM test is defined below. It is a special case of the Andrews (1993) sup Wald

test when the only regressor is an intercept, and when the variance is estimated under

the null of no break. Therefore, it is not new; nevertheless, to our knowledge, it is rarely

used in the empirical literature in the form defined below:

UM ∗
T = sup

λ∈[ε,1−ε]

UMT (λ), UMT (λ) = T (y1λ − y2λ)
2/v̂uλ, (2)

ε > 0 is a small cut-off, typically ε = 0.15 in applications, yiλ = T−1
iλ

∑
iλ yt for i = 1, 2,

T1λ = [Tλ], T2λ = T − [Tλ],
∑

1λ =
∑T1λ

t=1,
∑

2λ =
∑T

t=T2λ+1 and v̂uλ is a HAC consistent

estimator of vuλ = AVar(
√

T (y1λ − y2λ)) = vu/[λ(1 − λ)] under HUM
0 .

6Here, ‖ ∙ ‖2 = (E‖ ∙ ‖2)1/2 stands for the L2-norm, and | ∙ | stands for the Euclidean norm.
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For the HAC estimator v̂uλ, it is crucial to calculate it over the full sample, i.e. under

the null HUM
0 . If we use sub-sample estimators in its computation - i.e. we estimate the

variances T 1/2(y1λ − μ) and T 1/2(y2λ − μ) separately - we need a separate bandwidth for

each. Since the bandwidth estimation is only accurate in large samples, for those λ’s that

are close to ε and 1− ε, such an estimation would be highly inaccurate, resulting in high

size distortions.7

Thus, we define:

v̂uλ =
1

λ(1 − λ)

bT−1∑

j=−bT +1

k

(
j

bT

)

γ̂j , γ̂j =






1
T−1

∑T
t=j+1(yt − y)(yt−j − y), j ≥ 0

γ̂−j j < 0
,

where y = T−1
∑T

t=1 yt, k(x) = (1 − |x|) 1[|x| ≤ 1] is throughout the paper the Bartlett

kernel, with the optimal data-dependent bandwidth in Newey and West (1994). 8 Specif-

ically, we let bT = min[T, η̂ T
1
3 ], where η̂ = 1.1447(f̂ (1)/f̂ (0))

2
3 , and f̂ (1) = 2

∑τ
j=1 jγ̂j ,

f̂ (0) = γ̂0 + 2
∑τ

j=1 γ̂j , with τ = [(T/100)2/9]. The lag truncation parameter τ governs

how many auto-covariances should be used in forming the nonparametric estimates f̂ (1)

and f̂ (0), which estimate the spectral density at frequency one and zero.9 Therefore, f̂ (1),

f̂ (0), and η̂ are computed over the full sample.

The UA and UV tests are denoted by UA∗
T and UV ∗

T . They are computed as UM ∗
T ,

but with yt replaced by ât = |yt − y| for UA, v̂t = (yt − y)2 for UV, and v̂uλ replaced by

the HAC consistent estimator of the asymptotic variance of ât or v̂t.

Define the distribution:

Gp = sup
λ∈[ε,1−ε]

[Bp(λ) − λBp(1)]′[Bp(λ) − λBp(1)]

λ(1 − λ)
,

where Bp(∙) is a p× 1 vector of independent standard Brownian motions, for some p ≥ 1.

As Theorem 1 shows, G1 is the null asymptotic distributions of the UM, UA and UV

break tests. Although the distribution of various break point tests under different (more

restrictive) assumptions is available, an explicit proof for the UM, UV and UA tests

under A1 is not available in a unified setting to our knowledge, and we provide it in the

Appendix.

Theorem 1.

Let the model be as in (1), and let A1 hold. Then: (i) under HUM
0 , UM ∗

T ⇒ G1; (ii)

under HUM
0 and HUA

0 , UA∗
T ⇒ G1; (iii) under HUM

0 and HUV
0 , UV ∗

T ⇒ G1.
10

Note that the distributions are non-standard, but critical values are available in e.g.

Andrews (1993) and Bai and Perron (1998).

7Simulation evidence for this statement is available from the authors upon request.
8Additional simulations not reported here show that the fixed optimal bandwidth proposed in Andrews

(1991) leads to worse performance of the UM break test.
9The weights mentioned in Newey and West (1994) are set equal to one as usual for scalar cases.

10Here, ”⇒” indicates weak convergence in the Skorohod metric.
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Theorem 1 assumes no UV breaks for UM tests, via imposing A1(i), and no UM

breaks for UV/UA tests, via imposing HUM
0 . If there is a UM break (HUM

A holds instead

of HUM
0 ), as shown in Pitarakis (2004), we can obtain v̂t and ât via subsample demeaning,

and Theorem 1(ii)-(iii) will hold. That is, we let v̂t = (yt − yt)
2, ât = |yt − yt|, and

yt = T̂−1
UM

∑T̂UM

t=1 yt1[t ≤ T̂UM ] + (T − T̂UM )−1
∑T

t=T̂UM+1 yt1[t > T̂UM ], where T̂UM is

the Bai and Perron (1998) OLS break-point estimator of TUM in (1). If there is a UV

break, the asymptotic distribution of the UM test is affected, but one can employ the

fixed-regressor bootstrap in Hansen (2000) to correct for this. The correction for the UV

tests via sub-sample demeaning is necessary and employed in our empirical analysis in

Section 5.

3 Conditional mean and variance break tests

3.1 Correct specification

Unlike unconditional break tests, regression-based break tests are pervasive in empirical

work, despite their sensitivity to misspecification (this sensitivity is discussed in Section

3.2). The most common regression specification is of the linear form:

yt = x′
tθ11[t ≤ TCM ] + x′

tθ21[t > TCM ] + εt, (3)

where TCM = [TλCM ], 0 < λCM < 1, xt is a p × 1 vector of regressors that includes an

intercept and possibly lagged dependent variables, and εt are scalar errors.

We denote by CM, CA and CV the conditional mean, conditional absolute deviation

and the conditional variance, where the word ”conditional” simply refers to specifying

the conditional mean in (3). To derive the asymptotic distribution of the CM, CA and

CV break tests, we need additional assumptions on the joint dependence of regressors

and errors.

Assumption A 2.

(i) E(xtεt) = 0, AVar(T−1/2
∑[Tλ]

t=1 xtεt) = λV and T−1
∑[Tλ]

t=1 xtx
′
t

p
→ λQ, two positive

definite (pd) matrices of constants;

(ii) for some d > 4, supt ‖xtεt‖d < ∞ and {xtεt} is L2-near epoch dependent of size

cm = O(m−1) on {ht}, and {ht} is either φ-mixing of size m−d/(2(d−1)) or α-mixing

of size m−d/(d−2).

The null and alternative hypotheses of the conditional tests are:

HCM
0 : θ1 = θ2 vs. HCM

A : θ1 6= θ2,

HCA
0 : aεt = aε vs. HCA

A : aεt = aε1 1[t ≤ TCA] + aε2 1[t > TCA], aε1 6= aε2,

HCV
0 : vεt = vε vs. HCV

A : vεt = vε1 1[t ≤ TCV ] + vε2 1[t > TCV ], vε1 6= vε2,
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where aεt = E|εt|, vεt = Var(εt), TCA = [TλCA], TCV = [TλCV ], 0 < λCA, λCV < 1.

The corresponding sup Wald test for a CM break is defined in e.g. Andrews (1993):

CM ∗
T = sup

λ∈[ε,1−ε]

CMT (λ), CMT (λ) = T (θ̂1λ − θ̂2λ)
′V̂−1

λ (θ̂1λ − θ̂2λ),

where θ̂1λ, θ̂2λ are the OLS estimators of θ in (3) in subsamples {1, . . . , T1λ} and {T1λ +

1, . . . , T }, and V̂λ is a consistent estimator of AVar(T 1/2(θ̂1λ − θ̂2λ)) under HCM
0 .

For the conditional test, the asymptotic variance AVar(T 1/2(θ̂1λ − θ̂2λ)) is routinely

estimated over subsamples - i.e. separately for T 1/2(θ̂1λ − θ0) and T 1/2(θ̂2λ − θ0), or

under the alternative. If a HAC estimator under the alternative would be used, the

same problems would arise as for the unconditional test: there would be size distortions

due to inaccurate bandwidth estimation for λ close to the beginning or the end of the

sample. However, in most studies, the conditional mean specification in (3) is assumed

to be correct, in which case all lags of the dependent variable are included as regressors,

and correcting for autocorrelation is no longer necessary. If this is the case, the variance

can be estimated under the alternative without further size distortions. Thus, as in most

empirical studies, we use variance estimators that are not autocorrelation-robust in all

the simulations except those where the model is static. In a static model, the researcher

might suspect that the errors are autocorrelated, and a HAC estimator is justified.

For the theory section, we consider two potential estimators for AVar(T 1/2(θ̂1λ−θ̂2λ)),

under homoskedasticity or heteroskedasticity. The one under homoskedasticity is:

V̂λ = V̂1λ + V̂2λ, V̂iλ = v̂ε,iλ (T−1
∑

iλ xtx
′
t)

−1
, v̂ε,iλ = T−1

iλ

∑
iλ ε̂2

t , (i = 1, 2),

ε̂t = yt − x′
tθ̂1λ1{t ≤ T1λ} − x′

tθ̂2λ1{t > T1λ}. (4)

Under heteroskedasticity,

V̂λ = V̂1λ + V̂2λ, V̂iλ = (T−1
∑

iλ xtx
′
t)

−1
(T−1

∑
iλ ε̂2

t xtx
′
t) (T−1

∑
iλ xtx

′
t)

−1
, (i = 1, 2).

(5)

We define the CA and CV tests as the UA and the UV tests, but with ât, v̂t replaced

by âεt = |ε̂t|, v̂εt = ε̂2
t , and with ε̂t = yt − x′

tθ̂ the residuals from estimating (3) under the

null HCM
0 . We emphasize that the name ”conditional” refers exclusively to pre-specifying

the conditional mean in (3), and not the conditional variance of yt or εt. Therefore, the

tests in this paper should not be confused with the conditional variance tests proposed in

e.g. Andreou and Ghysels (2002), who write down a model for the conditional variance

of εt.

Theorem 2 states the asymptotic distribution of the CM, CA and CV break tests.

Theorem 2.

Let the model be as in (3), and let A2 hold. Then: (i) under HCM
0 , CM ∗

T ⇒ Gp; (ii)

under HCM
0 and HCA

0 , CA∗
T ⇒ G1; (iii) under HCM

0 and HCV
0 , CV ∗

T ⇒ G1.
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Note that the distributions are similar to the unconditional break tests, but there are

more degrees of freedom used up by the conditional break tests.

As for the UA and UV tests, the asymptotic distributions of the CA and CV tests

are not valid if there is a CM break; in that case, as Pitarakis (2004) shows, the CM

break at TCM can be pre-estimated by T̂CM along with the slope parameters θ̂1, θ̂2 before

and after the break, via the methods in Bai and Perron (1998). Then we can redefine

ε̂t = yt − x′
tθ̂11[t ≤ T̂CM ] − x′

tθ̂21[t > T̂CM ] in the computation of âεt, v̂εt, obtaining the

same asymptotic distributions as stated in Theorem 2. Under the alternative HCV
A , the

asymptotic null distribution of the CM test is not valid, but as for the unconditional

break tests, it can be bootstrapped via the fixed regressor bootstrap in Hansen (2000).

3.2 Dynamic Misspecification

Unlike the unconditional break tests, all the conditional break tests are highly dependent

on the correct specification of the functional form, including seasonality and dynamics.

Bataa et al. (2013) and Altansukh et al. (2012) empirically show the effects of misspec-

ifying the conditional mean seasonalities, outliers, dynamics and heteroskedasticity on

the conditional break tests. Chong (2003) and Bai et al (2008) theoretically show that

misspecification of the functional form leads to different null asymptotic distributions for

the CM break tests. They focus on iid errors and static misspecifications, although some

of their theoretical results apply to dynamic misspecification as well. The impact of dy-

namic misspecification of (3) on conditional break tests has been analyzed by Vogelsang

and Perron (1998), Vogelsang (1999), Perron and Yabu (2009), inter alia. But all these

studies correct for omitted autocorrelation in the errors by either better selection of lags

in the regression equation, or directly correcting the error variance via HAC estimators.

The first correction is successful if the method used indeed selects the number of lags

correctly. The second correction is not always valid if the regression model is already dy-

namic, as omitted autocorrelation in the errors often violates the exogeneity assumption

A2(i), so a HAC variance estimator does not fix the dynamic misspecification problems.

To our knowledge, the effect of misspecifying the regressors or number of lags on

CM break tests has not been studied before under general dependence and conditionally

heteroskedastic data as allowed for in A3.11 We prove below that the asymptotic distri-

bution of the CM break test is data-dependent and different than that stated in Theorem

2. Therefore, in the presence of dynamic misspecification, the critical values of the CM

tests will be incorrect12, while the critical values for the UM break test are correct. So

the UM break test provides a valuable tool for assessing stability of the process yt in the

presence of dynamic misspecification.

To formalize the results under dynamic misspecification, let xt = vec(xt(1), xt(2)) and

11The result in Theorem 3 has to our knowledge only been derived by Chong (2003) for iid, conditionally

homoskedastic data.
12The simulation section shows that the CM tests are severely oversized with dynamic misspecification.
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θ = vec(θ(1), θ(2)), where xt(1), θ(1) are p1 × 1, xt(2), θ(2) is p2 × 1, and p1 + p2 = p.13

The true model is (3), but we mistakenly regress yt only on xt(1) (which we assume

includes the intercept). Thus, we underspecify the number of regressors; in particular,

we are interested in the effects of underspecifying the number of lags.14 Partition Q =[
Q(1) Q(12)

Q′
(12) Q(2)

]

, with Q(1), Q(2) of dimensions p1 × p1 and p2 × p2, respectively.

Assumption A 3. Let kt = xt(1)εt, Lt = xt(1)x
′
t(2) − Q(12), Mt = xt(1)x

′
t(1) − Q(1), and

wt = vech(kt, Lt,Mt), where vech(A,B) selects, in order, the unique elements and the

first occurrence of the repeating elements in vec(A,B).

(i) E(wt) = 0, AVar(T−1/2
∑[Tλ]

t=1 wt) = λH, a pd matrix of constants;

(ii) for some d > 4, supt ‖wt‖d < ∞ and {wt} is L2-near epoch dependent of size

dm = O(m−1) on either an φ-mixing process of size m−d/(2(d−1)) or an α-mixing

process of size m−d/(d−2).

(iii) Q(12) 6= Op1×p2, where Op1×p2 is the p1 × p2 null matrix;

(iv) T−1
∑

1λ wtw
′
t

p
→ λΩ, a pd matrix of constants.

A3(iii) states that the omitted regressors are correlated with the included regressors,

as is the case when the number of lags is underspecified. The rest of the statements

in A3 are standard. Let r = p1(1 + p2 + (p1 + 1)/2), the dimension of wt. Then,

under A3, the functional central limit theorem in Wooldridge and White (1988, Theo-

rem 2.11) can be applied to yield T−1/2
∑

1λ wt ⇒ H1/2Br(λ). To state the asymptotic

distribution of the CM break test under misspecification, let Br(λ) = Br(λ) − λBr(1),

s = p1(1 + p1 + p2), and B∗
s(λ) = B∗

s (λ) − λB∗
s (1), where B∗

s (λ) is constructed from

Br(λ) by repeating its elements exactly in the positions where w∗
t = vec(kt, Lt,Mt) re-

peats the elements of wt = vech(kt, Lt,Mt). Similarly, let H∗1/2 and Ω∗ be positive

semidefinite matrices constructed from H1/2 and Ω - which were defined in A3 - so that

AVar(T−1/2
∑[Tλ]

t=1 w∗
t ) = λH∗1/2H∗1/2′

, and T−1
∑

1λ w∗
t w

∗′
t

p
→ λΩ∗. With this notation,

the asymptotic distribution of the CM test is stated in Theorem 3.

Theorem 3. Let A2-A3 and HCM
0 hold, δ = Q−1

(1)Q(12)θ(2), ξ = vec(1, θ(2),−δ) and

A = H∗1/2′
[Q−1

(1) ⊗ ξ]
{

[Q−1
(1) ⊗ ξ′]Ω∗[Q−1

(1) ⊗ ξ]
}−1

[Q−1
(1) ⊗ ξ′]H1/2.

(i) If CM ∗
T is constructed under heteroskedasticity,

CM ∗
T ⇒ sup

λ

B′
p1(p2+1)(λ) A Bp1(p2+1)(λ)

λ(1 − λ)
.

13We extend the vec(A,B) notation to denote stacking in a vector all columns of A, then all columns

of B, one by one, in order, even when A,B do not have the same number of rows, and we let vec′(A,B) =

[vec(A,B)]′.
14Overspecifying the number of lags or regressors is not a problem, as the coefficients on the additional

regressors or lags will converge to zero.
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(ii) Let ν = σ2
ε + θ′(2)[Q(2) −Q′

(12)Q
−1
(1)Q(12)]θ(2). If CM ∗

T is constructed under homoskedas-

ticity, then the result in (i) holds, with A = ν−1H∗1/2′
[Q−1

(1) ⊗ (ξξ′)]H∗1/2.

The theorem above shows that the asymptotic distribution of the CM test is nonstan-

dard and highly dependent on the data and the unknown number of lags omitted. Thus,

under dynamic misspecification (with Q(12) 6= 0), the usual critical values from Theorem

2 no longer apply. Note that Theorem 3 in Chong (2003) is a special case of our result,

when the errors εt are iid and conditionally homoskedastic, and the variance estimation is

done under homoskedasticity. Allowing for conditional heteroskedasticity, our Theorem

3 demonstrates that the size distortions of the CM test are dependent on several param-

eters of the data generating process, and that correcting for heteroskedasticity does not

help in overcoming this problem.

4 Simulation results

The objective of the simulation analysis is to compare the size and power of unconditional

moments, UM/UV, break tests to their conditional moments, CM/CV, counterparts, un-

der correct regression model specification, and under static and dynamic misspecifica-

tion. We evaluate the size and power of the tests for alternative model specifications,

sample sizes, as well as structural break sources and sizes.15 We consider sample sizes

T = 100, 200, 500, 1000 with a break in the middle of the sample, T0 = [0.5T ] and four

data generating processes (DGPs). We also considered alternative break points and our

results are robust to T0 = [0.25T ] and T0 = [0.75T ]. For all simulations, we use the

critical values reported in Andrews (2003). For DGPs with static errors, we calculate

CM ∗
T with V̂λ as described in (4). For DGPs with AR(1) errors, the CM ∗

T test employs

the Newey-West HAC estimator for V̂λ.

The results are organized as follows: the sizes of all tests are reported in Tables and the

size-adjusted powers in Figures. Tables 1,3 and Figures 1-3,7 are for correctly specified

models, and Tables 2,4 and Figures 4-6,8-9 are for misspecified models. Tables 1-2 and

Figures 1-6 refer to mean tests, and Tables 3-4 and Figures 7-9 refer to variance tests.

We consider four DGPs, some of which we analyze under both correct specification

and misspecification. The first DGP is a simple AR(1) model with iid errors:

DGP1 : yt = αt + βtyt−1 + εt, εt ∼ iid N (0, 1), (t = 1, . . . , T ).

All simulations are performed in Matlab for 10000 replications and for the AR models we

use zero as the starting value and 100 burn-in observations. Under the null, αt = α = 1,

15The unconditional mean and variance sup Wald tests require a long-run variance estimator. We

report the Newey and West (1994) HAC estimator with the data dependent bandwidth therein and the

Bartlett kernel, as explained in detail in Section 2. The Andrews (1991) fixed bandwidth HAC estimator

leads to slightly worse performance across all tests and designs; results are available upon request from

the authors.
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and the persistence ranges from βt = β ∈ [0.1, 0.7]. Under the alternative, there is one

break either in the intercept, with αt = 1 1t≤T0 + δα 1t>T0 , and δα ∈ (0, 2], or in the slope,

with βt = 0.1 1t≤T0 + δβ 1t>T0 , and δβ ∈ (0, 0.6].

For DGP1, we estimate only the correctly specified dynamic model. The size of the

CM and UM break tests (under the null) are reported in the top panel of Table 1. Using

the 5% critical values we find that the UM test exhibits slightly better size for small

sample sizes of T = 100 relative to the CM test which yields size around 10%. For large

sample sizes of T > 500, both tests approach the nominal level, as expected. Under

the alternative, we plot the size-adjusted power functions in Figure 1. When the break

occurs in the slope parameter, the UM and CM tests have similar power as the sample

size grows. The CM test performs only mildly better for moderate changes in the AR

slope parameter (with maximum relative gains in power of 10% for T = 100). On the

other hand, when the break is in the intercept, the UM test has better power in small

sample sizes (of T = 100, 200), with up to 20% gains vis-a-vis the CM test.16

The second DGP is an AR(4) model with iid errors:

DGP2 : yt = αt + β ′
tvec(yt−1, . . . , yt−4) + εt, εt ∼ iid N (0, 1), (t = 1, . . . , T ).

We set β ′
t = (βt,1, 0.2, 0.15, 0.075) to represent the memory decaying pattern encountered

in many time series in economics. Under the null, we set αt = α = 1 and vary βt,1 =

β ∈ [0.1, 0.3]. Under the alternative, there is one break either in the intercept, given by

αt = 1 1t≤T0 +δα 1t>T0 , and δα ∈ (0, 2], or in the slope, given by βt,1 = 0.1 1t≤T0 +δβ 1t>T0 ,

and δβ ∈ (0, 0.2].

For DGP2, we only analyze the impact of dynamic misspecification: the true DGP

is an AR(4) model, but we estimate an AR(1) or an AR(2) model instead. The top

two panels of Table 2 show that underestimating the number of lags causes severe size

distortions of the CM test, of up to 60% even for small levels of forgone persistence. This

effect does not die out even for large sample sizes of T = 1000. In contrast, the UM

test is not so severely oversized especially for large samples; the size distortions reach

a maximum of 13% for large samples of T = 1000. The reason UM behaves better

in terms of size under dynamic misspecification is due to the HAC correction. What

is interesting though from our simulation results is that although the HAC estimator

may be less reliable in small samples, under misspecification the size of the UM test

is relatively better than that of the CM test for small samples. Under the alternative,

the size-adjusted power curves of the UM and CM test with dynamic misspecification

are reported in Figure 4. They show that underestimating the AR dynamics does not

affect the size-adjusted power of either the CM or UM tests for any sample size or break

magnitude.

16Note that for DGP1, the UM of yt is equal to αt/(1−βt). If αt/(1−βt) is close to zero regardless of

t, the UM test will, by design, have little power for a break in the slope βt. Therefore, if a slope break

is the only break of interest, it should be tested directly via the CM test for partial structural change in

slopes.
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The third DGP is a static model with iid errors:

DGP3 : yt = αt + βtXt + εt, εt ∼ iid N (0, 1), Xt ∼ iid N (1, 1), Xt ⊥ εs, (t, s = 1, . . . T ).

Under the null, we set αt = α = 1 and vary βt = β ∈ [0.1, 0.9]. Under the alternative,

there is one break either in the intercept, where αt = 1 1t≤T0 + δα 1t>T0 , and δα ∈ (0, 2],

or in the slope, where βt,1 = 0.1 1t≤T0 + δβ 1t>T0 , and δβ ∈ (0, 0.9].

For DGP3, we analyze both correctly specified and misspecified models. As expected,

if we estimate the correctly specified static model in DGP3, the size of both the CM and

UM break tests is close to the nominal size, as shown by the second panel in Table 1.

The corresponding size-adjusted power curves in Figure 2 are again similar for the two

tests, especially as T increases.

However, if instead we estimate an AR(1) model, the results in the third panel of

Table 2 show that the UM test is undersized for small sample sizes and that its size

improves for T > 500. In contrast, the CM test is oversized for small samples. As for

the power, the two tests have similar power for large samples, as shown in Figure 5.

For smaller samples, misspecifying the regressors compromises the power of the CM test

which can be up to around 20% smaller than that of the UM test when T = 100.

The fourth DGP is a static model with AR(1) errors:

DGP4 : yt = αt + βtXt + εt, εt = 0.6εt−1 + νt, νt ∼ iid N (0, 1), (t = 1, . . . , T ).

For comparison purposes, in DGP4 the Xt and the null and alternatives are generated

following DGP3. For DGP4, we analyze both correctly specified and misspecified models.

Under correct specification, the last panel of Table 1 shows that the UM test is correctly

sized for all sample sizes, whereas the CM test is oversized even for large sample sizes.

The size of the CM tests can reach up to 10% even when T = 1000 (and the nominal size

is 5%).

Furthermore, we consider a nonlinear misspecification by estimating the model with

X2
t instead of Xt, similar to Chong (2003). The nonlinear misspecification yields oversized

CM tests across all sample sizes. The last panel of Table 2 shows that, even for T = 1000,

the traditional CM test yields size of around 13%. In addition, the size-adjusted power

of the CM test is lower than that of the UM test. Figure 6, show that the UM test has

relatively better power especially for small sample sizes of T < 200. When T = 100 the

UM test has an increasing power function which is almost 70% higher than that of the

CM test. For large samples of T = 1000, the size-adjusted power curves of the two tests

are very similar.

We now turn to examine the size and power of tests for breaks in the variance of the

residuals of the regression models by comparing the UV and CV tests.17 We consider the

same DGPs as before, but we set αt = 1, βt = 0.5. For DGP 1-3, we let εt ∼ iid N (0, σt),

and for DGP4, we let νt ∼ iid N (0, σt). Under the null hypotheses, we fix σt = σ ∈ [1, 2.6].

17The results are very similar for the UA and CA tests and they are available upon request.
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Under the alternative, we set σt = 1 1[t ≤ T0] + δσ1[t > T0], and let δσ ∈ (0, 1.6]. As

before, we estimate both correctly specified and misspecified models.

When the estimated model is correctly specified, as considered in DGP1 and DGP4,

the size of both CV and UV tests are close to the nominal size for T > 200, as shown in

Table 3. However, the powers of these two tests differ. Figure 7 shows that for DGP1,

the CV test has better power for small sample sizes across all break sizes, including small

breaks, as T increases. For DGP4, Figure 7 shows that the power curves of the CV tests

and UV tests are the same.

If instead, a misspecified model is estimated for DGP1-DGP4, the CV test appears to

enjoy good size properties, shown in Table 4. The exception is the oversizing reported in

the top panel of Table 4, which is due to underestimating the lag order; in this case the

size does not improve as the sample increases. Our analysis shows that misspecifying the

dynamics of the conditional mean of the regression model yields an oversized CV test.

For the power, the results are less clear-cut: the power of the CV test seems larger than

that of the UV test in the presence of dynamic misspecification (Figure 8), but smaller

under nonlinear misspecification (Figure 9). Nevertheless, this difference disappears in

large samples.

Summarizing, the simulation results show that under correct model specification, the

UM/UV and CM/CV have similar size and power. In contrast, under static nonlinear and

dynamic misspecifications, the CM/CV tests are severely oversized, having both finite

and large sample distortions. While the UM/UV tests may also occasionally exhibit mild

size distortions, they feature similar power properties as the CM/CV tests, especially in

larger samples. Therefore, the UM/UV tests can be a valuable tool for detecting breaks,

because in applied work misspecification is likely to occur and bias the CM/CV break

test results.18

18Other types of model misspecifications may also affect the size and power of the (CM and CV)

structural break tests. Analyzing them is beyond the scope of this paper, but further results regarding

these misspecifications can be found in Chong (2003), Pitarakis (2004), among others.
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Table 1: Size of the UM/CM tests in correctly specified models

DGP Trim Model UM∗
T CM∗

T

DGP1 - AR(1)

model, iid errors

15%

α β T=100 200 500 1000 100 200 500 1000

1
0.1 0.034 0.040 0.047 0.052 0.067 0.056 0.050 0.050

0.2 0.039 0.047 0.054 0.056 0.078 0.060 0.050 0.051

0.3 0.040 0.048 0.053 0.057 0.082 0.063 0.056 0.052

0.4 0.044 0.055 0.056 0.056 0.091 0.064 0.058 0.048

0.5 0.052 0.052 0.062 0.060 0.107 0.068 0.063 0.050

0.6 0.061 0.058 0.070 0.065 0.120 0.079 0.055 0.058

0.7 0.082 0.072 0.075 0.069 0.141 0.092 0.062 0.058

DGP3 - static

model, iid errors

15% 1
0.1 0.067 0.052 0.060 0.050 0.075 0.063 0.059 0.041

0.2 0.073 0.053 0.049 0.043 0.086 0.052 0.054 0.047

0.3 0.067 0.056 0.054 0.052 0.083 0.062 0.049 0.049

0.4 0.084 0.055 0.049 0.052 0.091 0.058 0.042 0.052

0.5 0.061 0.053 0.058 0.051 0.070 0.056 0.061 0.051

0.6 0.058 0.058 0.046 0.054 0.080 0.056 0.044 0.052

0.7 0.073 0.056 0.056 0.055 0.081 0.059 0.054 0.048

0.8 0.063 0.060 0.047 0.048 0.079 0.059 0.051 0.048

0.9 0.069 0.062 0.055 0.050 0.092 0.065 0.050 0.052

DGP 4 - static

model, AR(1)

errors

15% 1
0.1 0.063 0.055 0.067 0.064 0.115 0.107 0.090 0.098

0.3 0.065 0.061 0.066 0.062 0.113 0.111 0.090 0.100

0.5 0.063 0.060 0.063 0.059 0.122 0.109 0.091 0.106

0.7 0.060 0.061 0.070 0.060 0.111 0.113 0.104 0.109

0.9 0.064 0.061 0.065 0.065 0.109 0.106 0.086 0.099

15



Table 2: Size of the UM/CM tests in misspecified models

DGP Estimated

Model

Trim Model UM∗
T CM∗

T

DGP2 -

AR(4), iid errors

AR(1) 15%

α β T=100 200 500 1000 100 200 500 1000

1 0.1 0.157 0.114 0.114 0.088 0.427 0.463 0.486 0.508

0.2 0.191 0.131 0.132 0.102 0.493 0.509 0.531 0.560

0.3 0.231 0.171 0.174 0.130 0.554 0.579 0.606 0.616

DGP2 -

AR(4), iid errors

AR(2) 15% 1 0.1 0.157 0.113 0.114 0.088 0.419 0.371 0.336 0.332

0.2 0.190 0.131 0.131 0.103 0.455 0.378 0.344 0.336

0.3 0.230 0.170 0.173 0.129 0.496 0.421 0.374 0.358

DGP3 - static

model, iid

errors

AR(1) 15% 1 0.1 0.023 0.031 0.044 0.047 0.067 0.054 0.053 0.046

0.2 0.025 0.032 0.042 0.044 0.067 0.054 0.047 0.049

0.3 0.030 0.036 0.043 0.046 0.070 0.056 0.048 0.056

0.4 0.027 0.033 0.041 0.046 0.070 0.053 0.048 0.052

0.5 0.024 0.036 0.044 0.046 0.065 0.055 0.051 0.051

0.6 0.028 0.032 0.044 0.045 0.074 0.053 0.049 0.051

0.7 0.027 0.033 0.041 0.046 0.067 0.055 0.049 0.048

0.8 0.028 0.031 0.043 0.049 0.073 0.054 0.050 0.051

0.9 0.022 0.032 0.046 0.045 0.065 0.053 0.053 0.052

DGP4 - static

model, AR(1)

errors

X2
t instead of

Xt

15% 1 0.1 0.058 0.060 0.064 0.062 0.207 0.165 0.111 0.121

0.3 0.064 0.061 0.064 0.062 0.204 0.158 0.120 0.125

0.5 0.063 0.062 0.063 0.062 0.211 0.162 0.121 0.131

0.7 0.062 0.060 0.069 0.061 0.209 0.160 0.127 0.128

0.9 0.065 0.061 0.068 0.064 0.216 0.173 0.137 0.143
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Table 3: Size of the UV/CV break tests in correctly specified models

DGP Trim Model UV ∗
T CV ∗

T

DGP1 - AR(1)

model, iid errors

15%

α σ T=100 200 500 1000 100 200 500 1000

1 1 0.042 0.052 0.051 0.059 0.0753 0.0570 0.050 0.048

1.2 0.042 0.047 0.051 0.050 0.0730 0.0533 0.050 0.048

1.4 0.039 0.046 0.050 0.056 0.0754 0.0584 0.050 0.052

1.6 0.040 0.043 0.052 0.054 0.0745 0.0517 0.053 0.047

1.8 0.040 0.045 0.052 0.055 0.0735 0.0543 0.053 0.051

2.0 0.040 0.047 0.052 0.054 0.0775 0.0572 0.053 0.052

2.2 0.041 0.044 0.054 0.057 0.0768 0.0592 0.050 0.051

2.4 0.043 0.049 0.054 0.055 0.0774 0.0595 0.051 0.048

2.6 0.043 0.047 0.052 0.052 0.0738 0.0581 0.049 0.048

DGP4 - static

model, AR(1)

errors

15% 1 1 0.041 0.051 0.052 0.057 0.076 0.067 0.059 0.060

1.2 0.041 0.049 0.053 0.055 0.075 0.067 0.060 0.058

1.4 0.042 0.048 0.053 0.058 0.076 0.066 0.060 0.060

1.6 0.039 0.047 0.056 0.054 0.071 0.064 0.063 0.056

1.8 0.041 0.048 0.056 0.053 0.077 0.066 0.063 0.057

2.0 0.043 0.048 0.055 0.057 0.076 0.062 0.063 0.061

2.2 0.039 0.049 0.058 0.052 0.073 0.064 0.063 0.056

2.4 0.042 0.053 0.056 0.054 0.075 0.072 0.061 0.057

2.6 0.045 0.048 0.053 0.057 0.072 0.061 0.058 0.060

17



Table 4: Size of the CV/UV tests in misspecified models

DGP Estimated

Model

Trim Model UV ∗
T CV ∗

T

DGP2-

AR(4) model,

iid errors

AR(1) 15%

α σ T=100 200 500 1000 100 200 500 1000

1 1 0.057 0.064 0.075 0.063 0.110 0.107 0.124 0.121

1.2 0.061 0.063 0.072 0.065 0.112 0.102 0.118 0.129

1.4 0.059 0.068 0.072 0.065 0.116 0.112 0.119 0.129

1.6 0.062 0.061 0.072 0.063 0.116 0.100 0.118 0.125

1.8 0.055 0.056 0.073 0.067 0.113 0.104 0.120 0.125

2 0.057 0.064 0.068 0.062 0.119 0.106 0.115 0.123

2.2 0.060 0.063 0.077 0.064 0.118 0.099 0.119 0.122

2.4 0.057 0.063 0.075 0.067 0.108 0.108 0.121 0.125

2.6 0.062 0.065 0.074 0.065 0.111 0.113 0.116 0.125

DGP1-

AR(1) model,

iid errors

AR(4) 15% 1 1 0.042 0.052 0.051 0.058 0.075 0.054 0.047 0.047

1.2 0.042 0.046 0.050 0.051 0.075 0.052 0.048 0.046

1.4 0.040 0.046 0.050 0.054 0.070 0.054 0.049 0.050

1.6 0.040 0.043 0.052 0.055 0.079 0.052 0.049 0.046

1.8 0.040 0.046 0.051 0.055 0.076 0.051 0.049 0.050

2 0.040 0.046 0.052 0.053 0.075 0.056 0.050 0.050

2.2 0.040 0.045 0.053 0.057 0.073 0.051 0.047 0.049

2.4 0.043 0.049 0.054 0.056 0.074 0.053 0.048 0.046

2.6 0.043 0.048 0.053 0.052 0.076 0.055 0.047 0.046

DGP3-static

model, iid

errors

AR(1) 15% 1 1 0.030 0.033 0.041 0.047 0.077 0.057 0.051 0.051

1.2 0.030 0.032 0.040 0.048 0.076 0.058 0.048 0.053

1.4 0.029 0.032 0.043 0.047 0.075 0.055 0.055 0.051

1.6 0.028 0.032 0.041 0.044 0.072 0.054 0.049 0.050

1.8 0.028 0.033 0.039 0.049 0.071 0.054 0.047 0.053

2 0.029 0.037 0.040 0.048 0.074 0.061 0.049 0.054

2.2 0.029 0.033 0.040 0.043 0.080 0.057 0.049 0.045

2.4 0.026 0.036 0.039 0.044 0.069 0.058 0.048 0.049

2.6 0.029 0.032 0.045 0.045 0.074 0.055 0.056 0.050

DGP4-static

model,

AR(1) errors

X2
t instead

of Xt

15% 1 1 0.044 0.050 0.053 0.055 0.075 0.064 0.059 0.058

1.2 0.044 0.049 0.053 0.052 0.074 0.063 0.058 0.055

1.4 0.043 0.049 0.050 0.055 0.073 0.064 0.058 0.058

1.6 0.041 0.048 0.057 0.053 0.071 0.063 0.063 0.057

1.8 0.043 0.049 0.052 0.057 0.070 0.064 0.060 0.059

2 0.046 0.049 0.053 0.055 0.076 0.065 0.058 0.059

2.2 0.043 0.049 0.056 0.051 0.069 0.064 0.063 0.054

2.4 0.046 0.052 0.053 0.049 0.075 0.067 0.060 0.052

2.6 0.042 0.049 0.052 0.056 0.075 0.060 0.057 0.058
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Figure 1: DGP1 - Size-adjusted power for a correctly specified AR(1) model with iid errors

magnitude of break in β

P
ow

er

0 0.1 0.2 0.3 0.4 0.5 0.6
0.05

0.2

0.4

0.6

0.8

1
T=100/α=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.05

0.2

0.4

0.6

0.8

1
T=200

0 0.1 0.2 0.3 0.4 0.5 0.6
0.05

0.2

0.4

0.6

0.8

1
T=500

0 0.1 0.2 0.3 0.4 0.5 0.6
0.05

0.2

0.4

0.6

0.8

1
T=1000

 

 

Wald
Wald

U

magnitude of break in α

P
ow

er

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.2

0.4

0.6

0.8

1
T=100/β=0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.2

0.4

0.6

0.8

1
T=200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.2

0.4

0.6

0.8

1
T=500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.2

0.4

0.6

0.8

1
T=1000

 

 
Wald
Wald

U

Figure 2: DGP3 - Size-adjusted power for a correctly specified static model with iid errors
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*Here, Wald is the CM test, and Waldu the UM test.
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Figure 3: DGP4 - Size-adjusted power for a correctly specified static model with AR(1) errors
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Figure 4: DGP2 - Size-adjusted power for dynamic misspecification: estimating an AR(1)

model instead of an AR(4)
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*Here, Wald is the CM test, and Waldu the UM test.
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Figure 5: DGP3 - Size-adjusted power for dynamic misspecification: estimating an AR(1)

model instead of a static model with iid errors
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Figure 6: DGP4 - Size-adjusted power for nonlinear misspecification: regressing on X2
t instead

of Xt in a static model with AR(1) errors
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*Here, Wald is the CM test, and Waldu the UM test.
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Figure 7: DGP1 (left), DGP4 (right) - Size-adjusted power for a correctly specified model:

with an AR(1) lag and iid errors (left), or with static regressors and AR(1) errors (right)
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Figure 8: DGP2 (left), DGP1 (right): Size-adjusted power for dynamic misspecification: an

AR(4) model (iid errors) misspecified as an AR(1) (left) and vice versa (right)
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*Here, Wald is the CV test and WaldU the UV test.
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Figure 9: DGP3 (left), DGP4 (right): Size-adjusted power for misspecification: a static

model with iid errors misspecified as an AR(1) model (left), and nonlinear misspecifica-

tion: a static model with AR(1) errors where the regressors are X2
t instead of Xt (right)
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*Here, Wald is the CV test and WaldU the UV test.
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5 Empirical Illustrations

This section illustrates the implications of the UM/UV and CM/CV breaks tests for two

macroeconomic series. The first is the monthly US civilian unemployment rate and the

second the monthly short term real interest rates. These variables are also examined for

breaks in the conditional mean and volatility in Stock and Watson (2002) and Sensier

and van Dijk (2004), among others, at quarterly frequency. We employ the analysis on

a monthly sample from 1960:1-2014:10 with T = 658, taken from the FRED database at

the Federal Reserve Bank of St. Louis. Given our focus on breaks tests for stationary

processes, we transform these series by taking their first differences, based on the evi-

dence from a number of unit root tests. Similar transformations are employed in Stock

and Watson (2002), and from now on, when we refer to unemployment and interest rates,

we mean the first differences in unemployment rates and interest rates, unless stated oth-

erwise. We apply the breaks tests using both 5% and 10% trimming, to detect potential

breaks due to the recent economic crisis. For all the tables, we use the critical values in

Andrews (2003).

The UM and CM tests for unemployment using AR(p) models with p=1,4,12 are

reported in Table 5. The UM test provides empirical evidence of no structural breaks in

the US unemployment. In contrast, the CM tests for the AR(1) model find a break in the

conditional mean in the late 1960s, associated with women joining the labor force. One

may argue that these two results can be reconciled if both the intercept and the slope

of the dynamic model have undergone a structural change, in a way that does not affect

the long-run structural unemployment rate.19 On the other hand, our simulations show

that the CM test is severely oversized when underestimating the lag order of a dynamic

model, even for large sample sizes of T = 500 and 1000. These results may imply that

the 1960s break detected by CM could be spurious, and do not represent a true break in

the long-run mean of unemployment (in first differences).

The evidence of no structural change in the unconditional mean is also consistent with

the findings of Stock and Watson (2002), who estimate AR(4) models for the quarterly

difference in the US unemployment rate and find no break in the conditional mean, over

a shorter period from 1959-2001. Therefore, we also analyze the quarterly first difference

in the US civilian unemployment for an extended sample period (up to 2014) in Table 6.

Both UM and CM tests indicate no mean break. Moreover, selecting the number of breaks

via Information Criteria (IC)20, for both the monthly and quarterly unemployment (in

Tables 5 and 6, respectively), we find additional empirical support of no shift in both the

conditional and unconditional mean. The monthly and quarterly IC results hold for our

19Recall that we are analyzing the first-difference and not the level of the unemployment rate.
20We use the modified BIC proposed by Hall et.al (2013), which employ a modified penalty function

in which each break is equivalent to the estimation of three individual regression coefficients, instead of

the BIC, which tends to underestimate the number of breaks. Additionally, we use the LWZ criterion

which does not require any modified penalty.
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Table 5: Structural breaks in the mean of unemployment

Moments/Models Test Trimming Statistic

Value

Critical

value

Break

frac-

tion

Break

date

Unconditional Mean sup Wald tests:

E(yt) UM ∗
T

10% 1.711 9.11 0.417 -

5% 3.577 9.71 0.928 -

Conditional Mean sup Wald tests:

AR(1) CM ∗
T

10% 24.506∗ 12.17 0.179 12/1969

5% 24.506∗ 12.80 0.179 12/1969

AR(4) CM ∗
T

10% 18.184 18.86 0.898 -

5% 41.365∗ 19.57 0.928 11/2010

AR(12) CM ∗
T

10% 36.962∗ 32.76 0.899 05/2009

5% 46.340∗ 33.63 0.942 09/2011

Regression model

with predictors
CM ∗

T

10% 26.992∗ 20.81 0.882 05/2008

5% 26.992∗ 21.53 0.882 05/2008

Regression model

with macro factor
CM ∗

T

10% 11.623 12.17 0.786 -

5% 11.623 12.80 0.786 -

Regression model with

macro uncertainty factor
CM ∗

T

10% 13.545∗ 12.17 0.288 05/1975

5% 15.308∗ 12.80 0.938 11/2008

Notes: Unemployment refers to the first-difference in the monthly civilian unemployment rate, seasonally

adjusted. Sample period: 01/1960-10/2014. Source: FRED. Superscript ∗ indicates rejection of the null

hypothesis. Because of different sample sizes available for different regressions due to constructing lags,

different break factions may be indicative of the same break point.

extended sample 1959-2014, as well as the subsample 1959-2001, considered in Stock and

Watson (2002). Therefore, both the UM test and the IC results support the hypothesis of

no long-run structural change in unemployment (in first differences). These results shed

light on the current debate as to whether the recent economic crisis caused a permanent

shift in the structural unemployment, for which the evidence in Tables 5 and 6 provide

no empirical support.

Next, we test for breaks in the variance of unemployment via the UV and CV tests;

these results are reported in Table 7.21 The UV test yields no evidence of structural

change. In contrast, the CV tests, based on AR(p) models, show a structural break in

the conditional variance of the unemployment in the mid 1980s, associated with the Great

Moderation period. The simulation evidence in Table 4 (top panel) showed that dynamic

misspecification, especially underestimation of the number of lags, yields severely over-

21The results for UA and CA tests are identical and omitted to save space.
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Table 6: Structural breaks in the mean and variance of unemployment

Moments/Models Test Trim Statistic

Value

Critical

value

Break

fraction

Break

date

Unconditional Mean sup Wald tests:

E(yt) UM∗
T 10% 1.041 9.11 0.435 -

Conditional Mean sup Wald tests:

AR(4) CM∗
T 10% 10.937 18.86 0.403 -

Unconditional Variance sup Wald tests:

Var(yt) UV ∗
T 10% 2.400 9.11 0.894 -

Conditional Variance sup Wald tests:

AR(4) CV ∗
T 10% 7.443 9.11 0.435 -

Notes: See Table 5. The variance tests are corrected for a mean break, when necessary, as in Pitarakis

(2004).

sized CV tests even for T = 1000, while their power is comparable to the UV tests. This

might explain the difference in results between the two tests. Alternatively, the results

in Table 7 can be taken to suggest that although there is no break in the unconditional

(long-run) variance of unemployment, there is a structural change in the conditional

(short-run) variance of the unemployment dynamics, possibly related to the Great Mod-

eration. It is worth mentioning that the mixed empirical evidence on volatility breaks in

unemployment provided by the two tests is also found in other studies using quarterly

data. Namely, while Stock and Watson (2002) report no evidence of breaks using the UV

test for quarterly unemployment, Sensier and van Dijk (2004) find support for a Great

Moderation volatility break when using an AR(4) model.

We further analyze the stability of the unemployment via a representative distributed

lag regression, using a small set of predictors. The model includes an intercept, the first

lag of the dependent variable, and the first lag of each of the predictors. The predictors

used in this model, in addition to the lagged dependent variable, are the real economic

activity proxied by the industrial production index as in Yashiv (2000), the average

hours worked, the unemployment insurance claims and the US real interest rate (e.g.

Blanchard and Wolfers, 2000), all taken from the FRED database.22 All variables are

first log differences, except the hours worked. These transformations are based on the

evidence from unit root tests, also employed in Stock and Watson (2002).

The CM breaks tests for this model can be found in Table 5. The CM test now

indicates a break associated with the recent crisis, more specifically the Lehman Brothers

collapse. The CV breaks test, in Table 7, indicates a Great Moderation break. The tests

based on the AR and DL models refer to different conditional moments stemming from

22The short term ex-post real interest rate is proxied by the 3-month Treasury Bill rate minus the

inflation rate based on the Consumer Price index for all Urban consumers (all items).
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Table 7: Structural breaks in the variance of unemployment

Moments/Models Test Trimming Statistic

Value

Critical

value

Break

fraction

Break

date

Unconditional Variance sup Wald tests:

Var(yt) UV ∗
T

10% 5.913 9.11 0.447 -

5% 5.913 9.71 0.447 -

Conditional Variance sup Wald tests:

AR(1) CV ∗
T

10% 16.416∗ 9.11 0.475 02/1986

5% 16.416∗ 9.71 0.475 02/1986

AR(4) CV ∗
T

10% 14.442∗ 9.11 0.473 02/1986

5% 14.442∗ 9.71 0.473 02/1986

AR(12) CV ∗
T

10% 14.557∗ 9.11 0.466 02/1986

5% 14.557∗ 9.71 0.466 02/1986

Regression model with

predictors
CV ∗

T

10% 13.811∗ 9.11 0.473 02/1986

5% 13.811∗ 9.71 0.473 02/1986

Regression model with

macro factor
CV ∗

T

10% 12.759∗ 9.11 0.472 07/1984

5% 12.759∗ 9.71 0.472 07/1984

Regression model with

macro uncertainty factor
CV ∗

T

10% 20.147∗ 9.11 0.496 02/1986

5% 20.147∗ 9.71 0.496 02/1986

Notes: See Table 5.

the different conditioning information, which can also explain the difference in the breaks

results.

More generally given that the CM/CV tests examine a different null hypothesis than

the UM/UV tests (short-run versus long-run breaks), it is not surprising that these two

tests yield different results. Besides potential oversizing stemming from static and dy-

namic misspecification, the CM tests are also subject to the Hansen (2000) critique,

according to which these tests are not robust to potential breaks in the unconditional

(marginal) distribution of regressors. We investigate whether this critique applies to our

empirical analysis, and report the results in Table 8. We find that there are two regressors

with a break in their marginal distribution: the unemployment claims series, which has

a UV break, and the hours worked series, which has a UM break. Both breaks occur

around the Great Moderation. The CM/CV tests are not robust to these breaks, also

explaining the difference in results between the unconditional and conditional tests.

We also apply these tests to two distributed lag models of unemployment, driven by

two monthly factors respectively: a macro factor, extracted from the mean of a large

cross-section of economic and financial US series, and a macro uncertainty factor (the
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Table 8: Structural breaks in the regressors

Moments Test Trimming Statistic

Value

Critical

value

Break

fraction

Break

date

Hours Worked

E(yt) UM∗
T

10% 14.805∗ 9.11 0.467 10/1985

5% 14.805∗ 9.71 0.467 10/1985

Unemployment Claims

E(yt) UM∗
T

10% 3.729 9.11 0.898 -

5% 3.729 9.71 0.898 -

Industrial Production

E(yt) UM∗
T

10% 3.816 9.11 0.118 -

5% 3.816 9.71 0.118 -

3-month real interest rate

E(yt) UM∗
T

10% 5.154 9.11 0.387 -

5% 5.154 9.71 0.387 -

Macro Factor

E(yt) UM∗
T

10% 2.646 9.11 0.281 -

5% 2.646 9.71 0.281 -

Macro Uncertainty Factor

E(yt) UM∗
T

10% 5.214 9.11 0.898 -

5% 6.295 9.71 0.921 -

Hours Worked

Var(yt) UV ∗
T

10% 3.605 9.11 0.892 -

5% 5.778 9.71 0.947 -

Unemployment Claims

Var(yt) UV ∗
T

10% 13.708∗ 9.11 0.430 10/1983

5% 13.708∗ 9.71 0.430 10/1983

Industrial Production

Var(yt) UV ∗
T

10% 5.756 9.11 0.436 -

5% 5.756 9.71 0.436 -

3-month real interest rate

Var(yt) UV ∗
T

10% 4.514 9.11 0.409 -

5% 4.514 9.71 0.409 -

Macro Factor

Var(yt) UV ∗
T

10% 4.277 9.11 0.898 -

5% 10.181∗ 9.71 0.935 01/2009

Macro Uncertainty Factor

Var(yt) UV ∗
T

10% 4.969 9.11 0.898 -

5% 8.317 9.71 0.928 -

Notes: First series: Average Weekly Hours of Production and Nonsupervisory Employees: Manufactur-

ing, Hours, Monthly, Seasonally Adjusted. Sample Period: 01/1960-10/2014. Source: FRED. Second

series: Average Weekly Initial Claims, Unemployment Insurance (Thousands). Sample Period: 01/1960-

10/2014. Source: Ludvigson and Ng (2009). Third series: Industrial Production Index, Index 2007=100,

Monthly, Seasonally Adjusted. Sample Period: 01/1960-10/2014. Source: FRED. Fourth series: 3-

month real interest rate (computed as the difference between the 3-month Treasury Bill rate and the

3-month (CPI) based inflation rate, FRED). Sample Period: 04/1960-10/2014. The variance tests are

corrected for a mean break, if needed, as in Pitarakis (2004).
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models include an intercept and the first lag of each factors). Both factors are taken

from Jurado et al. (2014) and their use is further motivated in Benigno et al. (2015),

inter alia. We examine the stability of the relationship between unemployment and these

macro factors; the results are reported in the last two rows of Tables 5 and 7, respectively.

We find no break in the dynamic relationship between the unemployment rate and the

macro factor (that represents macroeconomic conditions). This result is in contrast to

the remaining distributed lag models in Table 5, which are driven by a small set of

predictors. An explanation for this mixed evidence can be found in Table 8, which shows

that while some of individual predictors in Table 5 are subject to the Hansen (2000)

critique, the macro factor is not. Hence, applying the CM tests to factor augmented

models yields more reliable inference than the aforementioned regression models based

on certain economic variables.

Thus, both the CM test of the factor-augmented regression with the macro factor and

the UM test indicate no evidence of mean breaks in unemployment.23 Turning though to

the results in Table 7, there is consistent evidence of a structural change associated with

the Great Moderation in the conditional variance of the unemployment rate.

To summarize, we find no long-run breaks in the unemployment mean, in its volatil-

ity, or in its relationship to the overall macro conditions approximated by macro factors.

However, there is evidence of short-run mean shifts in the unemployment rate related

to women entering the labor force, or shifts in the relationship to other macroeconomic

variables around the Great Moderation. There is further evidence of conditional vari-

ance breaks. It is worth emphasizing that our results are for the first-difference in the

unemployment rate, and not the level of this series. There may be long-run shifts in

the level of structural unemployment rates, but these can be detected only with tests for

nonstationary variables, which are beyond the scope of this paper.

Turning to the analysis of short-term interest rates, several papers find breaks in

their conditional mean - see e.g. Garcia and Perron (1996), Stock and Watson (2002)

and Sensier and van Dijk (2004). We focus on the first-differenced interest rates; they

are computed as the annualized nominal 3-month Treasury Bill minus the 3-month CPI

inflation rate, over the sample period 1960:1-2014:10. Tables 9 and 10 show that the

UM and UV tests detect no break whilst the corresponding CM and CV tests, based on

the AR(p) model, detect a break associated with the oil crises.24 In particular, the CM

and CV tests report breaks around the mid 1970s and early 1980s, respectively. Similar

to the unemployment evidence reported earlier, the short-run breaks in the conditional

moments do not reflect the long-run unconditional moment structural change detected in

23It is worth mentioning that the macro uncertainty factor provides only weak and mixed empirical

evidence of a break in the relationship between the unemployment and macro uncertainty, as shown in

the last row of Table 5.
24In Table 8 we use the real interest rates whereas Tables 9 and 10 we use the annualized real interest

rates because the latter features as the primary series in many other empirical analyses. The qualitative

results are the same whether the real interest rates are annualized or not.
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the US interest rates.

Table 9: Structural breaks in the mean of real interest rates

Moments/Models Test Trimming Statistic

Value

Critical

value

Break

fraction

Break

date

Unconditional Mean sup Wald tests:

E(yt) UM∗
T

10% 5.900 9.11 0.386 -

5% 5.900 9.71 0.386 -

Conditional Mean sup Wald tests:

AR(1) CM∗
T

10% 23.940∗ 12.17 0.366 04/1980

5% 23.940∗ 12.80 0.366 04/1980

AR(2) CM∗
T

10% 44.190∗ 14.69 0.262 09/1974

5% 44.190∗ 15.36 0.262 09/1974

AR(3) CM∗
T

10% 46.807∗ 16.91 0.261 09/1974

5% 46.807∗ 17.54 0.261 09/1974

AR(4) CM∗
T

10% 43.762∗ 18.86 0.261 09/1974

5% 43.762∗ 19.57 0.261 09/1974

AR(12) CM∗
T

10% 72.248∗ 32.76 0.889 11/2008

5% 72.248∗ 33.63 0.889 11/2008

Notes: The real interest rate is the first difference in the annualized 3-month real interest rate (computed

as the annualized 3-month Treasury Bill rate minus the annualized 3-month (CPI) inflation rate). Sample

Period: 04/1960-10/2014. Superscript ∗ indicates rejection of the null hypothesis. Source: FRED.
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Table 10: Structural breaks in the variance of real interest rates

Moments/Models Test Trimming Statistic

Value

Critical

value

Break

fraction

Break

date

Unconditional Variance sup Wald tests:

Var(yt) UV ∗
T

10% 4.823 9.11 0.409 -

5% 4.823 9.71 0.409 -

Conditional Variance sup Wald tests:

AR(1) CV ∗
T

10% 20.720∗ 9.11 0.410 09/1982

5% 20.720∗ 9.71 0.410 09/1982

AR(2) CV ∗
T

10% 24.770∗ 9.11 0.412 11/1982

5% 24.770∗ 9.71 0.412 11/1982

AR(3) CV ∗
T

10% 23.219∗ 9.11 0.410 10/1982

5% 23.219∗ 9.71 0.410 10/1982

AR(4) CV ∗
T

10% 23.452∗ 9.11 0.409 10/1982

5% 23.452∗ 9.71 0.409 10/1982

AR(12) CV ∗
T

10% 20.746∗ 9.11 0.398 08/1982

5% 20.746∗ 9.71 0.398 08/1982

Notes: See Table 9.

6 Conclusion

In this paper, we propose an alternative and complementary approach to the sup Wald

test for breaks in the conditional mean and variance. We show that the corresponding

unconditional mean and variance break tests exhibit not only comparable size and power

properties but are also robust to various forms of regression model misspecification. We

show that under certain commonly encountered forms of regression model misspecifica-

tion, the traditional conditional mean break tests suffer from severe oversizing, even for

large sample sizes, compared to the unconditional mean break tests which don’t suffer

from this problem. Moreover, both tests have similar size-adjusted power as the sample

size grows. In a comprehensive empirical analysis, we apply these tests to show that

there is no evidence of long-run breaks in the US civilian unemployment growth, and US

short-term real interest rate growth.
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8 Appendix

Proof of Theorem 1:

Part (i). Aue and Horváth (2012) define a CUSUM test for HUM
0 versus HUM

A as follows:

Z∗
T = supλ∈[ε,1−ε] ZT (λ), ZT (λ) = 1√

T

(∑[Tλ]
t=1 yt −

[Tλ]
T

∑T
t=1 yt

)
/v̂

1/2
u ,

where v̂u is a HAC consistent estimator of vu = AVar
(

1√
T

∑T
t=1 yt

)
under HUM

0 and

A1(i). They state that if a functional central limit theorem (FCLT) holds under HUM
0 for

1√
T

∑[Tλ]
t=1 ut, then ZT (λ) ⇒ [B1(λ)−λB1(1)] = B1(λ), and so by the continuous mapping

theorem (CMT),

Z∗
T ⇒ supλ∈[ε,1−ε] B1(λ), (6)

where B1(λ) = B1(λ)−λB1(1) is a scalar independent Brownian bridge. Below, we show

that there is a clear connection between the CUSUM and the UM test, so the asymptotic

distribution of the second follows from the first.

T (y1λ − y2λ)
2 = T

(
1

T1λ

∑
1λ yt − 1

T2λ

∑
2λ yt

)2

= T 3

T 2
1λT 2

2λ

(
T2λ

T

∑
1λ yt −

T1λ

T

∑
2λ yt

)2

= T 3

T 2
1λT 2

1λ

(∑
1λ yt −

T1λ

T

∑T
t=1 yt

)2

=
[

1
λ2(1−λ)2

+ o(1)
] [

1√
T

(∑
1λ yt −

T1λ

T

∑T
t=1 yt

)]2

⇒ vu[B1(λ) − λB1(1)]2/[λ2(1 − λ)2] = vu B2
1(λ)/[λ2(1 − λ)2].

Since vuλ = AVar(
√

T (y1λ − y2λ)) = vu/[λ(1 − λ)], UMT (λ) ⇒ B2
1(λ)/[λ(1 − λ)], so:

UM ∗
T ⇒ supλ∈[ε,1−ε] B

2
1(λ)/[λ(1 − λ)]. (7)

Comparing (6) and (7), the two limiting distributions attain their supremum at different

λ’s, and thus the size of these tests will in general be different.25 However, underlying

the asymptotic theory is the same assumption, that the FCLT holds for T−1/2
∑[Tλ]

t=1 ut.

A1 guarantees that the FCLT in Wooldridge and White (1988), Theorem 2.11, can be

applied for ut (in fact, we only need dm = O(m−1/2)), completing the proof of (i).

Part (ii). Here, we just verify A1 for |yt − y| − a instead of ut. The rest of the proof

is as in part (i) of the proof. A1(i) is straightforward, and we are left to verify A1(ii).

Since ut is L2-near epoch dependent of size m−1/2 on {gt} with positive constants equal

to 1 (these constants appear in the near epoch dependent definition in Davidson (1994)

but since here they are fixed, they are absorbed into the definition for dm), it follows

that so is yt − y, with constants 2 supt(1) = 2. In Theorem 17.12 in Davidson (1994),

let φt(∙) = | ∙ |, a uniform Lipschitz function, with the argument yt − y. Then, yt − y is

L2-near epoch dependent of size m−1/2.

Part (iii). Here, we just verify A1(ii) for (yt − y)2 − vu, instead of ut. In Theorem 17.12

in Davidson (1994), under HUV
0 and HUM

0 , define the function φt(yt − y) = (yt − y)2 − vu.

25Also note that the test statistic supλ∈[ε,1−ε]

√
UMT is known in statistics as a “weighted version” of

the CUSUM test - see Aue and Horváth (2012), p. 5.
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From part (ii) of the proof, (yt − y) is a L2-near epoch dependent process of size m−1 on

{gt} with constants equal to 2. Below, we show that under HUM
0 , φt is uniform Lipschitz

almost surely:

|φt(yt − y) − φt(yk − y)| = |(yt − y)2 − (yk − y)2|

≤ |yt + yk − 2y| |(yt − y) − (yk − y)| ≤ |ut + uk − 2u| |(yt − y) − (yk − y)|

≤ (4 supt |ut|) |(yt − y) − (yk − y)| ≤ κ|(yt − y) − (yk − y)|, almost surely,

for some κ > 0, by Assumption 1.3 for ut, where u = T−1
∑T

t=1 ut. Hence, by Theorem

17.12 in Davidson (1994), (yt−y)2−vu is also L2-near epoch dependent of size m−1/2.

Proof of Theorem 2:

(i). Since A2 is a special case of Assumption 8 in Hall, Han and Boldea (2012), the result

follows directly from their Theorem 6, setting xt = zt.

(ii), (iii). Primitive assumptions for CV test can be found in e.g. Qu and Perron (2007)

and involve joint mixing assumptions on {xtεt} and ε2
t . They mention that these condi-

tions can be replaced by sufficient conditions to yield a FCLT for {xtεt} and ε2
t −vε under

the null. By similar reasoning, for the CA test, sufficient conditions to yield a joint FCLT

for {xtεt} and |εt| − E|εt| suffice. Since xt includes an intercept, these conditions can be

verified as for the proof of Theorem 1(ii)-(iii). Note that they all require HCM
0 .

Proof of Theorem 3:

Denote, for i = 1, 2, Q̂iλ,(1) = T−1
∑

iλ xt(1)x
′
t(1), Q̂iλ,(12) = T−1

∑
iλ xt(1)x

′
t(2), Q̂iλ,(2) =

T−1
∑

iλ xt(2)x
′
t(2), where recall that

∑
1λ =

∑[Tλ
t=1, and

∑
2λ =

∑T
[Tλ]+1. By A2, Q̂iλ,(1)

p
→

λiQ(1), Q̂iλ,(2)
p
→ λiQ(2) and Q̂iλ,(12)

p
→ λiQ(12), where i = 1, 2, λ1 = λ and λ2 = 1 − λ1.

Recall that we mistakenly regress yt only on xt(1); let θ̂1λ and θ̂2λ be the OLS estimators

in {1, . . . , [Tλ]}, respectively {[Tλ] + 1, . . . , T }.

θ̂1λ = Q̂−1
1λ,(1)

∑
1λ xt(1)yt = θ(1) + Q̂−1

1λ,(1)Q̂1λ,(12)θ(2) + Q̂−1
1λ,(1)T

−1
∑

1λ xt(1)εt

θ̂2λ = Q̂−1
2λ,(1)

∑
1λ xt(2)yt = θ(1) + Q̂−1

2λ,(1)Q̂2λ,(12)θ(2) + Q̂−1
2λ,(1)T

−1
∑

2λ xt(1)εt

T 1/2(θ̂1λ − θ(1)) = Q̂−1
1λ,(1)T

1/2Q̂1λ,(12)θ(2) + Q̂−1
1λ,(1)T

−1/2
∑

1λ xt(1)εt

T 1/2(θ̂2λ − θ(1)) = Q̂−1
2λ,(1)T

1/2Q̂2λ,(12)θ(2) + Q̂−1
2λ,(1)T

−1/2
∑

2λ xt(1)εt

T 1/2(θ̂1λ − θ̂2λ) = Q̂−1
1λ,(1)T

−1/2
∑

1λ[xt(1)εt + (xt(1)x
′
t(2) − Q(12))θ(2)]

− Q̂−1
2λ,(1)T

−1/2
∑

2λ[xt(1)εt + (xt(1)x
′
t(2) − Q(12))θ(2)]

+ (λQ̂−1
1λ,(1) − (1 − λ)Q̂−1

2λ,(1)) T 1/2Q(12)θ(2) + oP (1)

= Q̂−1
1λ,(1)T

−1/2
∑

1λ(kt + Ltθ(2)) − Q̂−1
2λ,(1)T

−1/2
∑

2λ(kt + Ltθ(2)) + oP (1)

− λ(1 − λ) T 1/2Q̂−1
1λ,(1) [Q̂1λ,(1)/λ − Q̂2λ,(1)/(1 − λ)] Q̂−1

2λ,(1)Q(12)θ(2) + oP (1)
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= Q̂−1
1λ,(1)T

−1/2
∑

1λ(kt + Ltθ(2)) − Q̂−1
2λ,(1)T

−1/2
∑

2λ(kt + Ltθ(2)) + oP (1)

− Q̂−1
1λ,(1)T

−1/2[
∑

1λ xt(1)x
′
t(1) − λ

∑T
t=1 xt(1)x

′
t(1)]Q̂

−1
2λ,(1)Q(12)θ(2) + oP (1)

≡ I + II − III.

I + II = Q−1
(1) T−1/2 [

∑
1λ[kt Lt]/λ −

∑
2λ[kt Lt]/(1 − λ)]vec(1, θ(2)) + oP (1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
[∑

1λ[kt Lt] − λ
∑T

t=1[kt Lt]
]
vec(1, θ(2)) + oP (1).

Let δ = Q−1
(1)Q(12)θ(2), and note:

III = 1
λ(1−λ)

Q−1
(1)T

−1/2[
∑

1λ xt(1)x
′
t(1) − λ

∑T
t=1 xt(1)x

′
t(1)]Q

−1
(1)Q(12)θ(2) + oP (1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
(∑

1λ Mt − λ
∑T

t=1 Mt

)
δ + oP (1)

= 1
λ(1−λ)

Q−1
(1)T

−1/2
(∑

1λ Mt − λ
∑T

t=1 Mt

)
δ + oP (1).

With st = [kt Lt Mt], we have:

T 1/2(θ̂1λ − θ̂2λ) = 1
λ(1−λ)

Q−1
(1)

(∑
1λ st − λ

∑T
t=1 st

)
vec(1, θ(2),−δ) + oP (1).

By A3 and the FCLT, T−1/2
∑

1λ vec(st) ⇒ H∗1/2B∗
s (λ), and so T−1/2

∑
1λ st ⇒ H∗1/2B∗

mat(λ),

where we denoted

B∗
mat(λ) = (B∗

1:p1
(λ),B∗

p1+1:2p1
(λ), . . . ,B∗

p1p2+1:p1(p2+1)(λ),B∗
p1(p2+1)+1:p1(p2+1)+p1

(λ), . . . ,B∗
p1p+1:p1(p+1)(λ)),

so that vec(B∗
mat(λ)) = B∗

s(λ). Letting ξ = vec(1, θ(2), δ), we obtain:

T 1/2(θ̂1λ − θ̂2λ) ⇒ Q−1
(1)H

∗1/2 [B∗
mat(λ)/λ − (B∗

mat(1) − B∗
mat(λ))/(1 − λ)]vec(1, θ(2), δ)

= Q−1
(1)H

∗1/2[B∗
mat(λ) − λB∗

mat(1)]ξ/[λ(1 − λ)]

= Q−1
(1)H

∗1/2
(
B∗

1:p1
(λ) +

∑p2

i=1 B
∗
p1i+1:p1(i+1)θi(2) +

∑p1

i=1 B
∗
p1(p2+1)+p1(i−1)+1:p1(p2+1)+p1i(λ)δi

)

= [Q−1
(1) ⊗ ξ′]H∗1/2B∗

p1(p+1),

where θi(2), δi are the ith elements of θ(2), respectively δ.

Part (i). Recall that V̂iλ = (
∑

iλ xt(1)x
′
t(1))

−1Ω̂iλ(
∑

i xt(1)x
′
t(1))

−1 and Ω̂iλ = T−1
∑

iλ ε̂2
t xt(1)x

′
t(1),

for i = 1, 2. Since ε̂t = εt − x′
t(1)(θ̂1λ − θ(1)) + x′

t(2)θ(2), ε̂2
t = ε2

t + (θ̂1λ − θ(1))
′xt(1)x

′
t(1)(θ̂1λ −

θ(1))+ θ′(2)xt(2)x
′
t(2)θ(2) −2(θ̂1λ − θ(1))

′εtxt(1) +2θ′(2)εtxt(2) −2(θ̂1λ − θ(1))
′xt(1)x

′
t(2)θ(2) and so:

Ω̂1λ = T−1
∑

1λ ε̂2
t xt(1)x

′
t(1) = T−1

∑
1λ ε2

t xt(1)x
′
t(1) + T−1

∑
1λ[x

′
t(1)(θ̂1λ − θ(1))]

2xt(1)x
′
t(1)

+ T−1
∑

1λ[θ
′
(2)xt(2)]

2xt(1)x
′
t(1) − 2T−1

∑
1λ(θ̂1λ − θ(1))

′εtxt(1)xt(1)x
′
t(1)

+ 2T−1
∑

1λ εtx
′
t(2)θ(2)xt(1)x

′
t(1)

− 2T−1
∑

1λ(θ̂1λ − θ(1))
′xt(1)x

′
t(2)θ(2)xt(1)x

′
t(1)

= IV + V + V I − V II + V III − IX.

Partition Ω∗ =






Ω∗
kk Ω∗

k` Ω∗
km

Ω∗′
k` Ω∗

`` Ω∗
`m

Ω∗′
km Ω∗′

`m Ω∗
mm




, such that Ω∗

kk, Ω
∗
``, Ω

∗
mm are p1 × p1, (p1p2) × (p1p2),

and p2
1×p2

1 respectively. First, IV = T−1
∑

1λ ε2
t xt(1)x

′
t(1) = T−1

∑
1λ ktk

′
t = λΩ∗

kk +oP (1).
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Also, from the above, θ̂1λ − θ(1) = δ + oP (1), where δ = Q−1
(1)Q(12)θ(2). Thus, because of

existence of fourth order moments of xt by A3, it can be shown that:

V = T−1
∑

1λ[x
′
t(1)(θ̂1λ − θ(1))]

2xt(1)x
′
t(1) = T−1

∑
1λ(xt(1)x

′
t(1)δ)(δ

′xt(1)x
′
t(1)) + oP (1)

= T−1
∑

1λ(xt(1)x
′
t(1) − Q(1))δδ

′(xt(1)x
′
t(1) − Q(1)) + oP (1) + Q(1)δδ

′T−1
∑

1λ xt(1)x
′
t(1)

+ T−1
∑

1λ xt(1)x
′
t(1)δδ

′Q(1) − λQ(1)δδ
′Q(1) + oP (1)

= T−1
∑

1λ(xt(1)x
′
t(1) − Q(1))δδ

′(xt(1)x
′
t(1) − Q(1)) + λQ(1)δδ

′Q(1) + oP (1)

= T−1
∑

1λ Mtδδ
′M ′

t + λQ(12)θ(2)θ
′
(2)Q

′
(12) + oP (1).

We have T−1
∑

1λ vec(Mt)vec
′(M ′

t)
p
→ λΩ∗

mm by A3. With mt,ij , `t,ij the (i, j)th element

of Mt, Lt and δi the ith element of δ, we have:

δ′M ′
t = vec[

∑p1

n=1 δnmt,n1, . . . ,
∑p1

n=1 δnmt,np1 ]

= vec[δ′ {vec[Mt]}1:p1
, . . . , δ′ {vec[Mt]}(p2

1−p1+1):p2
1
] = vec′[Mt][Ip1 ⊗ δ],

Mtδ = [
∑p1

n=1 δnMt,1n, . . . ,
∑p1

n=1 δnMt,p1n] = [Ip1 ⊗ δ′]vec[M ′
t ],

Ltθ(2) = [Ip1 ⊗ θ′(2)]vec[L′
t],

θ′(2)L
′
t = vec′[Lt][Ip1 ⊗ θ(2)].

It follows that:

Mtδδ
′M ′

t = [Ip2 ⊗ δ′]vec[M ′
t ]vec

′[Mt][Ip1 ⊗ δ],

V = T−1
∑

1λ Mtδδ
′M ′

t + λQ(12)θ(2)θ
′
(2)Q

′
(12) + oP (1)

= λ[Ip1 ⊗ δ′]Ω∗
mm[Ip1 ⊗ δ] + λQ(12)θ(2)θ

′
(2)Q

′
(12) + oP (1).

Similarly, it follows that:

V I = T−1
∑

1λ xt(1)x
′
t(2)θ(2)θ

′
(2)xt(2)x

′
t(1) = T−1

∑
1λ(xt(1)x

′
t(2) − Q(12))θ(2)θ

′
(2)(xt(2)x

′
t(1) − Q′

(12))

+ Q(12)T
−1
∑

1λ θ(2)θ
′
(2)xt(2)x

′
t(1) + T−1

∑
1λ xt(1)x

′
t(2)θ(2)θ

′
(2)Q

′
(12) − λQ(12)θ(2)θ

′
(2)Q

′
(12)

= T−1
∑

1λ Ltθ(2)θ
′
(2)L

′
t + λQ(12)θ(2)θ

′
(2)Q

′
(12) + oP (1)

= λ[Ip1 ⊗ θ′(2)]Ω
∗
``[Ip1 ⊗ θ(2)] + λQ(12)θ(2)θ

′
(2)Q

′
(12) + oP (1).

Also,

V II = 2T−1
∑

1λ(θ̂1λ − θ(1))
′εtxt(1)xt(1)x

′
t(1) = 2T−1

∑
1λ(δ

′xt(1)εt) xt(1)x
′
t(1) + oP (1)

= 2T−1
∑

1λ(δ
′xt(1)εt) (xt(1)x

′
t(1) − Q(1)) + 2T−1

∑
1λ(δ

′xt(1)εt)Q(1) + oP (1)

= 2T−1
∑

1λ xt(1)εtδ
′(xt(1)x

′
t(1) − Q(1)) + oP (1) = 2T−1

∑
1λ ktδ

′M ′
t + oP (1)

= T−1
∑

1λ ktδ
′M ′

t + T−1
∑

1λ δ′M ′
tkt + oP (1) = λΩ∗

km[Ip1 ⊗ δ] + λ[Ip1 ⊗ δ′]Ω∗′
km + oP (1),
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V III = 2T−1
∑

1λ θ′(2)εtxt(2)xt(1)x
′
t(1) = 2T−1

∑
1λ xt(1)εtθ

′
(2)xt(2)x

′
t(1)

= 2T−1
∑

1λ xt(1)εtθ
′
(2)(xt(2)x

′
t(1) − Q′

(12)) + oP (1) = 2T−1
∑

1λ ktθ
′
(2)L

′
t + oP (1) =

= λΩ∗
k`[Ip1 ⊗ θ(2)] + λ[Ip1 ⊗ θ′(2)]Ω

∗′
k` + oP (1),

IX = 2T−1
∑

1λ(θ̂1λ − θ(1))
′xt(1)x

′
t(2)θ(2)xt(1)x

′
t(1) = 2T−1

∑
1λ xt(1)x

′
t(1)δθ

′
(2)xt(2)x

′
t(1) + oP (1)

= 2T−1
∑

1λ Mtδθ
′
(2)L

′
t + 2Q(1)δθ

′
(2)T

−1
∑

1λ xt(2)x
′
t(1) + 2T−1

∑
1λ xt(1)x

′
t(1)δθ

′
(2)Q

′
(12)

− 2λQ(1)δθ
′
(2)Q

′
(12) + oP (1)

= λ[Ip1 ⊗ δ′]Ω∗′
`m[Ip1 ⊗ θ(2)] + λ[Ip1 ⊗ θ′(2)]Ω

∗
`m[Ip1 ⊗ δ] + 2λQ(1)δθ

′
(2)Q

′
(12) + oP (1).

Putting all of the above together,

Ω̂∗
1λ = λ

{
Ω∗

kk + [Ip1 ⊗ δ′]Ω∗
mm[Ip1 ⊗ δ] + [Ip1 ⊗ θ′(2)]Ω

∗
``[Ip1 ⊗ θ(2)] − Ω∗

km[Ip1 ⊗ δ] − [Ip1 ⊗ δ′]Ω∗′
km

+Ω∗
k`[Ip1 ⊗ θ(2)] + [Ip1 ⊗ θ′(2)]Ω

∗′
k` − [Ip1 ⊗ δ′]Ω∗′

`m[Ip1 ⊗ θ(2)] − [Ip1 ⊗ θ′(2)]Ω
∗
`m[Ip1 ⊗ δ]

}
+ oP (1)

= λ {[Ip1 ⊗ ξ′] Ω∗ [Ip1 ⊗ ξ]} + oP (1)

V̂1λ = 1
λ
Q−1

(1) {[Ip1 ⊗ ξ′] Ω∗ [Ip1 ⊗ ξ]}Q−1
(1) + oP (1) = 1

λ

{
[Q−1

(1) ⊗ ξ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP (1)

V̂2λ = 1
1−λ

{
[Q−1

(1) ⊗ ξ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP (1)

V̂λ = 1
λ(1−λ)

{
[Q−1

(1) ⊗ ξ′] Ω∗ [Q−1
(1) ⊗ ξ]

}
+ oP (1).

Hence,

CM ∗
T ⇒ supλ

{
1

λ(1−λ)
B∗′

p1(p+1)(λ) A B∗
p1(p+1)(λ)

}
,

with A = H∗1/2′
[Q−1

(1) ⊗ ξ]
{

[Q−1
(1) ⊗ ξ′] Ω∗ [Q−1

(1) ⊗ ξ]
}−1

[Q−1
(1) ⊗ ξ′]H∗1/2.

Part (ii). In this case,

v̂ε,1λ = T−1
1λ

∑
1λ ε2

t + (θ̂1λ − θ(1))
′ T−1

1λ

∑
1λ xt(1)x

′
t(1)(θ̂1λ − θ(1)) + θ′(2) T−1

1λ

∑
1λ xt(2)x

′
t(2)θ(2)

− 2(θ̂1λ − θ(1))
′ T−1

1λ

∑
1λ εtxt(1) + 2θ′(2) T−1

1λ

∑
1λ εtxt(2) − 2(θ̂1λ − θ(1))

′ T−1
1λ

∑
1λ xt(1)x

′
t(2)θ(2)

= σ2
ε + δ′Q(1)δ + θ′(2)Q(2)θ(2) − 2δ′Q(12)θ(2) + oP (1)

= σ2
ε + θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + θ′(2)Q(2)θ(2) − 2θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + oP (1)

= σ2
ε − θ′(2)Q

′
(12)Q

−1
(1)Q(12)θ(2) + θ′(2)Q(2)θ(2) + oP (1)

= λσ2
ε + θ′(2)[Q(2) − Q′

(12)Q
−1
(1)Q(12)]θ(2) + oP (1)

V̂1λ =
{

σ2
ε + θ′(2)[Q(2) − Q′

(12)Q
−1
(1)Q(12)]θ(2)

}
Q−1

(1)/λ + oP (1)

V̂2λ =
{

σ2
ε + θ′(2)[Q(2) − Q′

(12)Q
−1
(1)Q(12)]θ(2)

}
Q−1

(1)/(1 − λ) + oP (1)

V̂λ = 1
λ(1−λ)

{
σ2

ε + θ′(2)[Q(2) − Q′
(12)Q

−1
(1)Q(12)]θ(2)

}
Q−1

(1) + oP (1) = ν
λ(1−λ)

Q−1
(1) + oP (1).

So, CM ∗
T weakly converges to:

= supλ

{
1

νλ(1−λ)
B∗′

p1(p+1)(λ)H∗1/2′
{Q−1

(1) ⊗ (ξξ′)}H∗1/2B∗
p1(p+1)(λ)

}
.
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