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An Empirical Kaiser Criterion

Johan Braeken
University of Oslo

Marcel A. L. M. van Assen
Tilburg University and Utrecht University

In exploratory factor analysis (EFA), most popular methods for dimensionality assessment such as the
screeplot, the Kaiser criterion, or—the current gold standard—parallel analysis, are based on eigenvalues
of the correlation matrix. To further understanding and development of factor retention methods, results
on population and sample eigenvalue distributions are introduced based on random matrix theory and
Monte Carlo simulations. These results are used to develop a new factor retention method, the Empirical
Kaiser Criterion. The performance of the Empirical Kaiser Criterion and parallel analysis is examined in
typical research settings, with multiple scales that are desired to be relatively short, but still reliable.
Theoretical and simulation results illustrate that the new Empirical Kaiser Criterion performs as well as
parallel analysis in typical research settings with uncorrelated scales, but much better when scales are
both correlated and short. We conclude that the Empirical Kaiser Criterion is a powerful and promising
factor retention method, because it is based on distribution theory of eigenvalues, shows good perfor-
mance, is easily visualized and computed, and is useful for power analysis and sample size planning for
EFA.

Keywords: exploratory factor analysis, Kaiser criterion, parallel analysis

In exploratory factor analysis, most popular methods for dimen-
sionality assessment such as the screeplot (Cattell, 1966), the
Kaiser criterion (Kaiser, 1960), or—the current gold standard—
parallel analysis (Horn, 1965), are based on eigenvalues of the
correlation matrix. Unfortunately, (a) the link between such meth-
ods and statistical theory on eigenvalues is often weak and incom-
plete, and (b) neither the methods’ origin nor the evaluation of
their performance is set within the larger context of practical scale
development.

These two gaps in research on factor analysis should come as a
surprise, because factor analysis is one of the most commonly
applied techniques in scale development, and one can argue that
the determination of the number of factors to retain is likely to be
the most important decision in exploratory factor analysis (Zwick
& Velicer, 1986). Specifying too few factors will result in the loss
of important information by ignoring a factor or combining it with
another (Zwick & Velicer, 1986); specifying too many factors may
lead to an overcomplicated structure with many minor factors
consisting of one or very few observed variables. Examples of the

latter are so-called “bloated specifics,” which are factors arising
due to artificial overlap between variables, for instance due to
similar item phrasing (Cattell, 1961). The consensus is that both
underfactoring and overfactoring are likely to result in noninter-
pretable or unreliable factors and can potentially mislead theory
and scale development efforts (Fabrigar, Wegener, MacCallum, &
Strahan, 1999; Garrido, Abad, & Ponsoda, 2013; Velicer, Eaton, &
Fava, 2000; Zwick & Velicer, 1986).

Dozens of factor retention methods do exist (e.g., Peres-Neto,
Jackson, and Somers, 2005), but their use in practice can be quite
striking. For instance, despite having been repeatedly shown not to
work in simulation studies, the so-called Kaiser criterion or
eigenvalue-greater-than-one rule (Kaiser, 1960) continues to be
very popular, mostly because of its simplicity, ease of implemen-
tation, and it being the default method in many general statistical
software packages (e.g., SPSS and SAS). In contrast, parallel
analysis, the factor retention method that generally has shown the
best performance in simulation studies and gets most recommen-
dations from specialists (for thorough recent reviews, see, e.g.,
Garrido et al., 2013; Timmerman & Lorenzo-Seva, 2011), is not as
well established among practitioners (see, e.g., Dinno, 2009; Fab-
rigar et al., 1999; Ford, MacCallum, & Tait, 1986). Notwithstand-
ing, in view of its generally good performance and its recom-
mended status, the performance of parallel analysis will be our
reference in the current article.

The basic idea of parallel analysis (Horn, 1965) is to use the
observed eigenvalues, and not comparing them with a fixed ref-
erence value of 1 as in the Kaiser criterion, but instead to reference
eigenvalues from generated random data (i.e., independent data
without factor structure). In the current article, we use the most
recommended variant of parallel analysis suggested by Glorfeld
(1995), which retains the first factors that all exceed the 95th
percentile of their corresponding distribution of reference eigen-
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values. The need for Monte Carlo simulations to generate such
reference data, combined with tradition, out-of-date textbooks and
educational training, and the lack of default implementation in
general commercial software (see, e.g., Dinno, 2009; Hayton et al.,
2004), apparently puts a high threshold on the use of parallel
analysis in everyday practice.

A first objective of this article is to further understanding and
encourage new developments in factor retention methods by bridg-
ing the gap between factor retention methods and statistical theory
on eigenvalues. Theoretical results on the distribution of sample
eigenvalues open up new pathways to develop simple and efficient
factor retention rules that are widely applicable and that do not
require simulation. A second objective of this article is to propose
a new factor retention method that is specifically tailored toward
typical research settings in which multiple scales are designed
which are desired to be relatively short, but still reliable. The
demand for and use of such short(ened) tests has recently become
more common (Ziegler, Kemper, & Kruyen, 2014). In personnel
selection for instance, there is an increasing tendency to use short
tests consisting of, say, five to 15 items, for making decisions
about individuals applying for a job (Kruyen, Emons, & Sijtsma,
2012, p. 321). Because of the ubiquity of short tests, factor reten-
tion models should particularly perform well in these cases. In this
particular setting with correlated factors consisting of only a few
variables, the performance of parallel analysis is known to deteri-
orate significantly (see, e.g., Cho, Li, & Bandalos, 2009; Crawford
et al., 2010; De Winter, Dodou, & Wieringa, 2009; Garrido et al.,
2013; Green, Levy, Thompson, Lu, & Lo, 2012; Turner, 1998).
Thus, this setting would be serviced by having a more suitable
alternative factor retention method.

In the next sections we will provide theoretical statistical
background for factor retention methods with particular atten-
tion to the distinction between population-level and sample-
level eigenvalues. These theoretical foundations will be directly
linked to the development of a new factor retention method that
is easily visualized and very straightforward to apply without
requiring Monte Carlo simulation. The new retention method is
called the “Empirical Kaiser Criterion:” “Empirical,” because
the method’s series of reference eigenvalues is a function of an
application’s (a) variables-to-sample-size ratio, and (b) ob-
served eigenvalues; “Kaiser,” because, similar to the original
Kaiser criterion, it requires eigenvalues to be at least equal to 1,
which implies that at the population-level the new and the
Kaiser method retrieve the same number of factors. We make
analytical predictions under which conditions the Empirical
Kaiser Criterion (EKC) will perform well in practically relevant
situations, and provide empirical support by targeted simulation
studies in which we compare the performance of the newly
developed EKC with the performance of parallel analysis and
the original Kaiser criterion. For illustration, the methods are
applied to data on the Guilt and Shame Proneness Scale (GASP;
Cohen, Wolf, Panter, & Insko, 2011), which is a short 16-item
scale consisting of four highly correlated subscales. We con-
clude with a brief discussion and conclusions. An R-Shiny
applet, available on our web site https://cemo.shinyapps.io/
EKCapp, allows the reader to directly implement the EKC, as
well as parallel analysis.

Characterizing the Behavior of Eigenvalues

We will first provide an overview of the relevant theoretical
background on eigenvalues under the null model assuming no
underlying factors. Using results from random matrix theory, we
distinguish between eigenvalues at the population level and eigen-
values at the sample level. After better understanding the sample
behavior of eigenvalues, we explain why, at the sample level under
the null model, Kaiser’s greater-than-one rule fails and parallel
analysis works well. We continue with results under the factor
model, again distinguishing between eigenvalues at the population
and eigenvalues at the sample level. We explain why parallel
analysis cannot be expected to work well in all situations, and how
factor retention methods can and are being adapted to improve
upon the performance of parallel analysis under the factor model.

Under the Null Model

Population level. The null model for factor analysis assumes
there is no factor structure, that is, all variables are uncorrelated in the
population. The null model corresponds to a correlation matrix with
all zeros on the off-diagonal and all ones on the diagonal (i.e., the
identity matrix). All eigenvalues of an identity matrix are equal to 1.

The “eigenvalues greater than one” rule, often attributed to
Kaiser (1960), is implicitly linked to this null model and states that
the number of factors to retain should correspond to the number of
eigenvalues greater than one (i.e., deviating from the null expec-
tation). Intuitively, one can motivate this rule by stating that an
eigenvalue that represents a “true structural dimension” should at
least explain more variance than contained in a single variable. A
theoretical justification is that for a factor to have positive Kuder–
Richardson reliability (cf. Cronbach’s alpha), it is necessary and
sufficient that the associated eigenvalue be greater than 1 (Kaiser,
1960, p. 145). Hence, the greater-than-one rule is essentially an
asymptotical and theoretical lower bound (see, e.g., Guttman,
1954) to the number of true and reliable structural dimensions at
the population level. Yet at the sample level, Monte Carlo simu-
lation studies showed the rule to have low accuracy in practice
(see, e.g., Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986).

Sample level. Eigenvalues at the sample level show random
variation, with typically about the first half of the eigenvalues
above and the latter half below 1 under the null model. Hence, the
main reason why the Kaiser criterion underperforms under the null
model is that the first sample eigenvalues capitalize on coinciden-
tal sampling associations and exceed thereby 1, yielding an over-
estimation of the number of factors.

Results from random matrix theory (see, e.g., Anderson, Gui-
onnet, & Zeitouni, 2010; Wigner, 1955) show that this wider range of
sample eigenvalues is in fact nonrandom, but a direct function of �, the
ratio of the number of variables J to the sample size n (i.e., � � J/n). The
distribution of sample eigenvalues L � [l1, . . . , lj, . . . , lJ] under the null
model follows asymptotically the Marčenko-Pastur (1967) distri-
bution with density function

d(l) ���(lup � l)(l � llow)
2��l

∀l � �llow, lup�

0 otherwise,

and an additional point mass of 1 � 1/� at zero when � � 1.
Sample eigenvalues can be expected to fall within the range

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

451EMPIRICAL KAISER CRITERION

https://cemo.shinyapps.io/EKCapp
https://cemo.shinyapps.io/EKCapp


[llow, lup] � [(1 � ��)2, (1���)2], which indicates that when the
number of variables J approaches the sample size n, the sample
eigenvalues get more and more spread out. Figure 1 shows the
Marčenko-Pastur density function for three values of �, illustrating
that dispersion increases in �. Notice how the range of the sample
eigenvalues is considerable, even for a ratio of 25 observations per
variable.

Factor retention rules based upon eigenvalues should incorpo-
rate this random sample variation. Parallel analysis does exactly
that by approximating the distribution of sample eigenvalues under
the null model by means of simulating samples from a multivariate
normal distribution of J variables, all with a variance of 1 and a
zero-correlation between the variables. Figure 2 illustrates the
close relation between the results of parallel analysis and the
quantiles of the Marčenko-Pastur distribution. The gray points are
eigenvalues of 1,000 datasets (n � 300, J � 10) under the null
model, with the gray dashed lines representing their 5% percentile,
mean, and 95% percentile, respectively. The black horizontal
dashed lines demarcate the asymptotical expected first and last
eigenvalue lup and llow. The black straight line represents the
quantiles for lj from the Marčenko-Pastur distribution (Wachter,
1976). Notice that this black line and the middle gray dashed line
(i.e., the mean eigenvalues of the simulated data) are practically
indistinguishable.

Although the distributional result is an asymptotical result under
regularity conditions of a correlation matrix arising from large data
matrices (i.e., n, J ¡ �, with � constant) consisting of indepen-
dently normally distributed variables, this assumption is nonessen-
tial in practice; distributions of eigenvalues of correlation matrices
of non-normal variables are well approximated by the theoretical
distributions, even in small datasets (see, e.g., Johnstone, 2001).
This corresponds to findings for parallel analysis where the per-
formance of the procedure is assessed as being robust to the exact
univariate distributions of the variables (see, e.g., Buja & Eyubo-
glu, 1992; Dinno, 2009) and practically feasible for even small
datasets.

Under the Factor Model

Population level. Under a factor model with K factors the
population eigenvalues will be separated in a structural part
consisting of the first K population eigenvalues that absorb the
shared variance in the variables accounted for by the common
factors, and a residual part consisting of the remaining eigen-
values that will reflect the unique variance. Specific results on
population eigenvalues can be straightforwardly derived from

Figure 1. Marčenko-Pastur density function for three values of � (i.e., the ratio of the number of variables J
to the sample size n).

1 2 3 4 5 6 7 8 9 10

0.
6

0.
8

1.
0

1.
2

1.
4

j
l j

Figure 2. Results of parallel analysis (gray, 1,000 iterations) and quan-
tiles of the Marčenko-Pastur distribution (black) for an example with n �
300 and J � 10 under the null model.
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the factor model structure. Consider a simple structure factor
model with K correlated factors with homogeneous interfactor
correlation 	, and for each factor, J variables with common
factor loading a. The corresponding population eigenvalues are
given by:

�1 � 1 � (J � 1)a2 � (K � 1)J�a2

�2 � . . . � �K � 1 � (J � 1)a2 � J�a2

�K�1 � . . . � �J � (1 � a2)

(1)

In Equation 1, the first term for the first eigenvalue �1 reflects
that it will necessarily account for the variance of at least one
variable; the second term represents the communality with the
other variables loading on the same factor, and the third term
represents the common share of variance in variables loading on
other correlated factors. For the second to Kth eigenvalues, a
similar reasoning holds for the first two terms in the equation, but
the third term now corrects for the common share of variance that
is already accounted for in the first eigenvalue. The second equa-
tion implies that the 2nd to Kth population eigenvalues are typi-
cally small for highly correlated short factors (i.e., small J and high
	), and may even be smaller than 1. The last few eigenvalues are
then equal to a variable’s unexplained variance. Note that the sum
of all eigenvalues equals JK.

Sample level. Because of random variation at the sample
level, sample eigenvalues will deviate from the population
eigenvalues derived above. As far as we know no useful theory
on the distribution of empirical eigenvalues exists when there is
an underlying factor structure, that is, when at least some
variables are correlated in the population. However, a sampling
dispersion effect similar as under the null model can also be
expected to apply.

An extract of Monte Carlo simulation results is shown in
Table 1 to illustrate that two mechanisms play a role: A struc-
tural dispersion effect due to the factor model and a residual
dispersion effect as under the null model. In general, the first
half of eigenvalues in each part (i.e., structural and residual) is
pulled upward, whereas the second half of eigenvalues in each
part is pulled downward. This is apparent from the results of

2,000 simulations on a reference model presented in the first
columns of Table 1. The reference model is based on two
uncorrelated factors, four items per factor with a � .8, and
sample size n � 100. The first population eigenvalue is over-
estimated; the second one is underestimated, whereas the sum
of these two sample eigenvalues is approximately equal to the
sum of population eigenvalues (small bias, last row). As can be
expected, increasing the sample size to get a better � ratio,
reduces the sampling bias in both the factor and the residual
part (Condition 1 in Table 1). Decreasing the factor loadings
(Condition 2) degrades the separation between the structural
and the residual parts, because eigenvalues of the structural part
decrease whereas those of the residual part increase, and the
two dispersion biases can get mixed together for the latter half
of the K factors. Consequently, the fuzzy boundaries between
the structural and residual part will make it increasingly more
difficult to correctly identify multiple factors, and bias for the
structural part increases (last row). Increasing the correlation
between factors appears to reduce the structural dispersion
effect for strong factor structures, but not the residual disper-
sion effect (Condition 3). Combining decreased factor loadings
and increased interfactor correlations blurs the boundaries again
between the structural and residual part, with again higher bias
for the structural part (Condition 4).

Toward Factor Retention Under the Factor Model

In parallel analysis, all reference eigenvalues are simulated
under the null model of no-structure (i.e., independence). Al-
though this procedure has been shown to perform well in a
whole range of conditions, parallel analysis underestimates the
number of factors in conditions with oblique factors that highly
correlate, particularly when each factor is assessed with few
variables (Beauducel, 2001; Cho et al., 2009; Crawford et al.,
2010; De Winter, Dodou, & Wieringa, 2009; Garrido et al.,
2013; Green et al., 2012; Turner, 1998; Zwick & Velicer, 1986).
Harshman and Reddon (1983) were among the first to give an
intuition about why parallel analysis can break down, and what
should be done to fix this. The problem is an instance of an

Table 1
Bias in Sample Eigenvalues Under a Factor Population Model as a Function of Factor Structure

Condition:
J

Reference model

Condition 1:
Increased sample
size to n � 500

Condition 2:
Decrease factor

loading to
a � .4

Condition 3:
Increase factor

correlation to 	 � .6
Condition 4:

	 � .6 and a � .4

lj �j Bias lj �j Bias lj �j Bias lj �j Bias lj �j Bias

1 3.18 2.92 .26 3.03 2.92 .11 1.71 1.48 .23 4.46 4.46 .00 1.94 1.86 .08
2 2.67 2.92 �.25 2.81 2.92 �.11 1.42 1.48 �.06 1.40 1.38 .02 1.26 1.10 .16
3 .51 .36 .15 .42 .36 .06 1.10 .84 .26 .50 .36 .14 1.07 .84 .23
4 .43 .36 .07 .39 .36 .03 .96 .84 .12 .43 .36 .07 .95 .84 .11
5 .37 .36 .01 .37 .36 .01 .85 .84 .01 .37 .36 .01 .84 .84 .00
6 .32 .36 �.04 .35 .36 �.01 .75 .84 �.09 .32 .36 �.04 .74 .84 �.01
7 .28 .36 �.08 .33 .36 �.03 .65 .84 �.19 .28 .36 �.08 .65 .84 �.19
8 .23 .36 �.13 .30 .36 �.06 .54 .84 �.30 .23 .36 �.13 .54 .84 �.30

1 � 2 5.86 5.84 .02 5.84 5.84 .00 3.13 2.96 .17 5.86 5.84 .02 3.20 2.96 .24

Note. Sample eigenvalue lj, population eigenvalue �j; Sample data has sample size n � 100 for J � 8 items under a reference model of simple structure
with K � 2 orthogonal factors (factor correlation 	 � .0), with four items loading on each factor with loading a � .8.
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ill-defined reference. In principle the null model only applies as
an adequate reference to the very first observed eigenvalue. The
second eigenvalue is conditional upon the structure in the data
that is captured by the first eigenvalue. In case of oblique
factors, particularly when scales are short, the first eigenvalue
is relatively very large, whereas the succeeding eigenvalues will
be necessarily much smaller because of the total variance
constraints in the eigenvalue decomposition (i.e., sum of eigen-
values � total variance). Hence, a more accurate reference for
the second observed eigenvalue is the second eigenvalue of a
conditional null model, that is, assuming independence of re-
siduals, conditional on the previous factor. To conclude, a
well-behaved factor retention procedure should consider taking
into account the serial nature of eigenvalues.

Two recently proposed factor retention procedures take into
account the serial nature of eigenvalues. Both computer-intensive
procedures first estimate factor models with 1 up to X factors on
the observed dataset, and then simulate new datasets according to
each of these estimated models (i.e., parametric bootstrap) to serve
as reference base factor retention decisions. Green, Levy, Thomp-
son, Lu, and Lo (2012) suggest using a procedure in which the
sampling distribution of the reference eigenvalues is con-
structed sequentially: The jth eigenvalue of the real data is
compared to the Monte Carlo sampling distribution of the jth
eigenvalue based upon simulated datasets generated in corre-
spondence with the model with (j � 1) factors that was esti-
mated upon the real data. This means, for instance, that for the
second eigenvalue the reference sampling distribution is based
upon the estimated 1-factor model, whereas for the third eigen-
value it is based upon the estimated 2-factors model. Ruscio and
Roche (2012) proposed to compute the discrepancy between the
simulated eigenvalues under each factor model and the ob-
served eigenvalues, and to assess by means of sequential model
comparison which of the data-generating models fits the ob-
served data best. Both procedures were shown to yield a con-
siderable improvement in performance over parallel analysis in
the case with oblique factors.

Yet, the two aforementioned procedures have some disadvan-
tages in common. First, they are not linked to statistical theory on
eigenvalues, which prevents deriving conditions when the proce-
dures can be expected to perform well. Second, both procedures
require extensive Monte Carlo simulations which hinder wide-
spread application in practice. Nevertheless, because both proce-
dures take the serial nature of eigenvalues into account and are
shown to perform better than parallel analysis in applications with
short correlated scales, we examine their factor retention perfor-
mance later on in the Comparison to Computer-Intensive Methods
and Goodness-of-Fit Tests section.

An Empirical Kaiser Criterion (EKC)

The EKC also takes into account the serial nature of eigenval-
ues, but does not have the disadvantages of the procedures of
Green et al. (2012) and Ruscio and Roche (2012): The EKC is both
linked to statistical theory and researchers’ practice to obtain
reliable scales, does not require simulations, and is straightforward
to apply. The development of the EKC is based on three theoret-
ically motivated ingredients that together formulate an adaptive
sequence of reference eigenvalues lEKC � �l1EKC, . . . , lJ

EKC�. The

first ingredient in the EKC makes use of the known sampling
behavior of eigenvalues under the null model and starts by setting
the first reference eigenvalue to the asymptotic maximum sample
eigenvalue under the null model: l1

EKC � lup � (1���)2. Hence,
this first reference value will be a direct function of the variables-
to-sample-size ratio (i.e., � � j/n) in the dataset as given in the
Marčenko-Pastur distribution.

The second ingredient in the EKC is an expression for calcu-
lating reference values for subsequent eigenvalues that takes into
account the serial nature of eigenvalues by means of a proportional
empirical correction of the first reference value as a function of
prior observed sample eigenvalues:

lj
REF �

J � �
j�0

j�1

lj

J � j � 1(1 � ��)2, with l0 � 0.

The correction factor
J� �

j�0

j�1
lj

J�j�1 has three interpretations: It is (a) the
average remaining variance after accounting for the first up to the
(j � 1)th observed eigenvalue, (b) the theoretical minimum value
of lj, and (c) the population value of 
j if the null model of
conditional independence were true after accounting for (j � 1)
factors.

The third and final ingredient of the EKC is the requirement
that the observed eigenvalue should exceed 1. We include this
restriction into the factor retention procedure for three reasons.
First, a theoretical justification is that for a scale to have
positive reliability, it is necessary and sufficient that the asso-
ciated eigenvalue be greater than 1 (Kaiser, 1960, p. 145).
Second, a practical justification is that we want to prevent the
procedure to retrieve correlated residuals (corresponding to
bloated specifics) or unique factors (single variables with neg-
ligible to small loadings on all factors) as factors. Third, this
restriction ensures that, at the population level, the EKC is
equivalent to the original Kaiser criterion (i.e., for infinite n, all
reference eigenvalues would be 1).

Putting all ingredients together, the expression for reference
eigenvalues of the EKC becomes:

lj
EKC � max� J � �

j�0

j�1

lj

J � j � 1(1 � ��)2, 1�, with l0 � 0. (2)

Applying the EKC then implies to retain all factors 1 up to K for
which lj 	 lj

EKC ∀j � �1, K�.

Illustration

Consider a factor model with four factors, each consisting of
five variables with loadings equal to .564 (i.e., corresponding to a
[sub]scale reliability of .7; see next section). The correlation be-
tween factors is .6, and two of the scales have bloated specifics,
that is, a pair of variables with a correlation between their resid-
uals, here equal to .4. Figure 3 illustrates how the EKC works at
the population level (infinite n, panel b) and at the sample level
(n � 200, panel c). The fourth column of panel a presents the
“observed” eigenvalues of one dataset generated using the speci-
fied factor structure.

EKC retrieves the four factors with eigenvalues greater than
1, both at the sample and population level, as indicated by the
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four eigenvalues above EKC’s reference values (black solid
lines). Note that without the eigenvalue-greater-than-one re-
striction, EKC retrieves 14 factors at the population level,
because all first 14 population eigenvalues are larger than the
average of subsequent population eigenvalues (black dashed
line in panel b), with population eigenvalues 15 and 16 corre-
sponding to the bloated specific item pair.

Panel c and the last three columns of panel a of Figure 3
illustrate the performance of the EKC at the sample level and
contrast it with parallel analysis using 100 iterations, column-
wise row permutations, and employing the 95th percentile as
reference value. There are four times five items for a sample
size of 200 in this example, so the first reference eigenvalue
under EKC amounts to (1���)2 � 	1 � �20 ⁄ 200
2 � 1.73.
We observe that, as expected, EKC and parallel analysis, which
has 1.71 as the first reference value, have a similar starting
point. Panels a (last two columns) and c show that subsequent
reference values of the EKC are lower than those of parallel
analysis, because EKC accounts for the large first sample
eigenvalues. As a result, parallel analysis fails to pick up the
multidimensional structure, whereas EKC correctly retrieves all
four factors in the sample data. In the next sections we show
that we can relatively accurately predict when the EKC will
correctly retrieve the number of factors and when it likely goes
wrong.

Research Design

Acceptable Scales

Earlier, we have stressed the importance of looking at perfor-
mance of factor retention methods under practically relevant con-

ditions, that is, we presuppose that researchers are aiming to
identify factors from which acceptable scales can be constructed.
Following others, we argue that only factors or scales containing at
least three variables are viable (e.g., Glorfeld, 1995; Velicer &
Fava, 1998; Zwick & Velicer, 1986). Moreover, we consider a
scale acceptable if corrected-item total correlations are at least .3
(see, e.g., Nunnally & Bernstein, 1994) and the scale is sufficiently
reliable. We consider sufficient reliability values of .6 to .9 in
multiples of .1. Using a factor model, we can now derive require-
ments on factor loading a to obtain acceptable scales of J items
with reliability �.

The population reliability of a scale consisting of J homog-
enous (i.e., parallel) variables, which equals Cronbach’s alpha
of that scale, with variance 1 and factor loading a can be
expressed as:


 � J
J � 1

Cov(X)
Var(X) � J

J � 1
J(J � 1)a2

J(J � 1)a2 � J
� Ja2

(J � 1)a2 � 1
.

From here, we can derive the value of loading a to obtain a
certain population �:

a �� 

J � (J � 1)
 . (3)

Table 2 tabulates a as a function of J (rows) and � (columns).
For instance, to obtain a population reliability � equal to .7 for a
scale consisting of 20 parallel items, factor loadings of .323 are
required. Notice that the factor loading required to obtain a given
reliability decreases in J, because � increases with the number of
items while keeping a constant.

If only corrected item-total correlations of at least .3 are deemed
satisfactory in practice, then 8, 16, 32, 81 parallel items with
loadings of at least .397, .357, .333, .316 (printed in bold in Table

Figure 3. Example illustrating the Empirical Kaiser Criterion (EKC) with and without the greater-than-1
restriction. Note. Successive columns of (a) present the population eigenvalues (� j), population reference
eigenvalues using the unrestricted EKC	� j

REF
, sample eigenvalues (lj), and its reference eigenvalues using
parallel analysis 	lj

Parallel
 and the unrestricted EKC 	lj
REF
. The bold reference eigenvalues shows that EKC

selects four factors in the example, whereas parallel analysis selects one factor. Panels (b) and (c) depict
the same information for the population and sample respectively, with eigenvalues (black squares) and
reference eigenvalues (black [dashed] solid line for [unrestricted] EKC and gray solid line for parallel
analysis). EKC is identical to Kaiser’s greater-than-one rule at the population-level in panel (b).
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2), respectively, yield a population reliability of at least .6, .7, .8,
.9, respectively.1,2 In other words, longer scales yielding these
reliability values are considered unsatisfactory in practice because
the interitem correlations are (too) weak (with corrected item-total
correlations smaller than .3). On the other hand, shorter scales
yielding these reliabilities contain stronger indicator variables
(with higher corrected item-total correlations) and are therefore
satisfactory in practice.

Monte Carlo Experiments

The performance of the EKC is evaluated through a series of
Monte Carlo simulation experiments. Experiments are defined by
their data-generating population factor model, which are the null
model, unidimensional factor models, and orthogonal and oblique
multidimensional factor models. Across the set of experiments, the
following design properties are manipulated: sample size n �
(100, 250, 500), number of items per factor J � (3, 8, 16, 32, 81),
scale reliability � � (.6, .7, .8, .9), number of factors K � (0, 1, 2,
3, 4, 5), and correlation between factors 	 � (0, .2, .4, .6, .8). Exact
combinations of experimental factors and levels depend on the
experiment. For the null model only sample size and number of
items are considered, and for multidimensional factor models K �
1 and J � 81, for orthogonal and unidimensional models 	 � 0.
Additionally, we examined the performance of the retention crite-
ria in an experiment focusing on short scales (J � 3–6).

For all experiments, 2,500 datasets are simulated in each con-
dition, with variables being multivariate normally distributed with
a correlation matrix defined by the data-generating population
model. For factor models we assume simple structure with homog-
enous factor loadings as derived in Equation 3. The population
factor models that are in line with our definition of an acceptable
scale correspond to conditions for which J � 8 & � � .6, J � 16
& � � .7, J � 32 & � � .8, and J � 81 & � � .9.

Analytical Predictions

For each experiment, analytical predictions are made on under
which conditions the EKC can be expected to successfully retrieve

the number of factors of the data-generating model. The analytical
predictions are based on a comparison between the population
eigenvalues of the data-generating model (see Equation 1) and the
EKC’s reference eigenvalues for the condition’s sample size and
number of variables (see Equation 2), where we plug in the
population eigenvalues to the correction factor as proxy for
the sample eigenvalues. We expect our predictions to be conser-
vative (i.e., too restrictive), as the first sample eigenvalue(s) will
be typically larger than the corresponding population eigenvalues.
Specific details of the experimental design and analytical predic-
tions for each simulation can be found in the corresponding Re-
sults section.

Performance Evaluation

For each experimental condition, the percentage of datasets for
which the number of factors of the data-generating model is
correctly identified is computed per factor retention method. This
percentage is referred to as “hit rate” or “power,” because it
corresponds to the probability of correctly specifying the true
“hypothesis” or number of factors. In the further evaluation of
these results, a distinction will be made between relevant condi-
tions with acceptable scales and less relevant conditions with
unacceptable scales. Performance of the EKC will be classified as
successful if it reaches a hit rate of at least 80% (cf., common
power value) in conditions with acceptable scales where the
method is predicted to work.

EKC’s performance was compared to that of parallel analysis.
For parallel analysis, a version was employed based on 100 iter-
ations using column-wise row permutations and the 95th percentile
as reference value (Glorfeld, 1995). This version of parallel anal-
ysis performs well in many studies (Buja & Eyuboglu, 1992;
Dinno, 2009; Garrido et al., 2013; Hayton et al., 2004; Peres-Neto
et al., 2005; Ruscio & Roche, 2012; Velicer, Eaton, & Fava, 2000).
Given that EKC is an empirical version of the original Kaiser
criterion, the performance of the latter was also evaluated, but only
in the context of short correlated scales, because it may perform
well in this context whereas it is well-known to perform very badly
in most other conditions. Other factor retention methods were not
included in our analyses because they either perform worse than
parallel analysis or are not easily applicable.

Results

The Null Model: Zero Factors

Theoretical expectations. By definition of the procedure par-
allel analysis was expected to have a power of about 95% to detect
zero factors. EKC was also predicted to have high power since

1 Population corrected item-total correlation

RXjX�j
�

Cov(Xj, X�j)

�Var(Xj)Var(X�j)
� (J � 1)a2

�1 � �(J � 1)(J � 2)a2 � (J � 1)�
.

2 Scales with satisfactory corrected item-total correlations amount to
interitem correlations equal to at least .158 (a � .397, � � .6, J � 8), .127
(a � .357, � � .7, J � 16), .111 (a � .333, � � .8, J � 32), and .100 (a �
.316, � � .9, J � 81).

Table 2
Factor Loading a Required to Obtain Scale Reliability � as a
Function of Number of Items J

Number of
items

J

Scale reliability

� � .6 � � .7 � � .8 � � .9

3 .577 .661 .756 .866
4 .522 .607 .707 .832
5 .480 .564 .667 .802
6 .447 .529 .632 .775
7 .420 .500 .603 .750
8 .397 .475 .577 .728

10 .361 .435 .535 .688
12 .333 .403 .500 .655
16 .293 .357 .447 .600
20 .264 .323 .408 .557
25 .238 .292 .371 .514
32 .212 .261 .333 .469
50 .171 .211 .272 .391
81 .135 .167 .217 .316
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L1 � (1���)2 is the asymptotically expected first sample eigen-
value under the null model.

Monte Carlo results. The Monte Carlo results summarized in
Table 3 supported our expectations. The hit rate of parallel analysis
was 95% in all 15 conditions; hit rate of the EKC even surpassed
95% for up to 32 variables, whereas power was somewhat lower
than 95% for 81 variables. For the record, the traditional Kaiser
criterion was too liberal: It retrieved more than two factors in 49%
of the iterations in the J � 3 conditions, and 100% in all other
conditions.

Unidimensionality: One Factor

Theoretical expectations. We predict the EKC to correctly
identify the single factor whenever the population eigenvalue 
1

exceeds the asymptotically expected first sample eigenvalue under
the null model (1���)2. Hence, the analytical predictions (con-
trasting Equation 1 and 2) are based on whether it holds that:

J
J � (J � 1)
 	 (1 � �J ⁄ n)2.

Solving for sample size n, we predict that EKC will work for all
60 conditions except for three of the practically irrelevant condi-
tions: (J � 32, � � .6, n � 108), (J � 81, � � .6, n � 252), and
(J � 81, � � .7, n � 127). Given that the first reference eigenvalue
under parallel analysis is the simulated counterpart of the first
reference eigenvalue for EKC, we do not anticipate large differ-
ences between the performances of the two methods.

Monte Carlo results. In Table 4 we provide the percentage of
correct identifications by both EKC as well as parallel analysis as
a function of reliability, number of variables, and sample size.
These results can be summarized as follows: (a) For relevant
conditions corresponding to acceptable scales for which EKC is
predicted to work (upper right of Table 4, normal font), the single
factor corresponding to the acceptable scale was correctly identi-
fied in all conditions, and this by both methods; with a hit rate of
at least 93% (M � 97.8%) for EKC and at least 97.5% (M �
99.8%) for parallel analysis. Parallel analysis slightly outper-
formed EKC in most of these conditions. (b) For irrelevant con-
ditions with a practically unacceptable scale but for which EKC is
still anticipated to work (lower left of Table 4, italic font), EKC
still had a high hit rate (at least 93.5%, M � 95.9%), whereas
parallel analysis showed more variable and generally weaker per-
formance (at least 78.6%, M � 92.3%). (c) Finally, for irrelevant
conditions with a practically unacceptable scale for which EKC
does not give theoretical guarantees (Table 4, bold font), the

anticipated underperformance is confirmed. EKC’s performance
was still good (89.7, 92.2, and 95.0%) in conditions almost satis-
fying 
1 � (1���)2, but considerably worse when this was
clearly not satisfied (62.2%; J � 81, � � .6, n � 100). In contrast,
parallel analysis’ performance was under the 80% threshold in all
these conditions (48.4%–77.5%).

Multidimensionality: K Orthogonal Factors

Theoretical expectations. Given that the K population eigen-
values are all equal to J

J � 	J � 1

 under this design, we predict the
EKC to correctly identify the K orthogonal factors whenever the
first population eigenvalue 
1 exceeds the asymptotically expected
first sample eigenvalue under the null model (1���)2. The sec-
ond to Kth population eigenvalue will also exceed their corre-
sponding reference values as EKC corrects the starting reference
eigenvalues downward for each subsequent factor. Hence, the
analytical predictions are based on whether it holds that:

J
J � (J � 1)
 	 (1 � �JK ⁄ n)2.

We are aware that the sample structural eigenvalues differ
systematically from their corresponding population eigenvalues,
and that this may affect the accuracy of our predictions. In the
orthogonal case the first half of the structural eigenvalues has a
positive bias, whereas the second half of structural eigenvalues has
a negative bias (Table 1, columns 2 and 3, row 4). This implies that
the first half of the structural sample eigenvalues will be more
easily retrieved than the latter half. Yet, this positive bias also
results in even lower subsequent reference eigenvalues and we
expect that this downward adjustment will compensate for the
slightly downward bias in the latter half of structural sample
eigenvalues. Our predictions’ accuracy in the simulation study will
shed light on this issue.

Table 5 presents the predictions on EKC’s performance as a
function of sample size, reliability, and number of factors. Scale
lengths from J � 3 up to J � 70 items were examined. Each cell
presents the maximum scale length at which EKC is still predicted
to accurately retrieve the number of factors. For instance, the
number “28” for n � 100, � � .7, K � 2 means that EKC is
predicted to accurately retrieve two factors if each of the two
equally long scales consists of up to 28 homogenous items with
factor loadings resulting in a scale reliability of .7. Using the fact
that scales are acceptable up to length J � 8, 16, 32, for reliabilities
� � .6, .7, .8, respectively, it follows from Table 5 that EKC is

Table 3
Percentage of Correct Identifications of Zero Factors as a Function of Sample Size n and the
Number of Variables J

K � 0 EKC Parallel analysis

J n � 100 n � 250 n � 500 n � 100 n � 250 n � 500

3 99.2 99.4 99.2 94.3 95.6 95.2
8 97.9 98.2 97.6 94.7 95.5 95.0

16 97.1 97.0 96.6 95.5 95.2 95.0
32 96.2 96.0 95.4 95.2 95.4 94.8
81 94.4 94.4 93.6 95.4 95.4 95.6
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predicted to retrieve up to five acceptable scales for sample
sizes of 250 and 500. For N � 100, EKC is not predicted to
perform well for three or more acceptable scales with � � .6,
for four or five acceptable scales with � � .7, and for five
scales with � � .8. We excluded the theoretical predictions for
� � .9 from Table 5 because EKC is predicted to perform well
in all these conditions.

Monte Carlo results. Table 6 summarizes the simulation
results by presenting the hit rate across the 192 conditions as a
function of scale quality (i.e., acceptable or not) and theoretical
predictions. (a) Both EKC and parallel analysis perform at a very
high standard in conditions containing acceptable scales for which
EKC is predicted to correctly identify the number of factors (upper
left). Only in the two conditions with acceptable scales where the
number of variables was larger than the sample size (cf. � ratio �
1), EKC showed a hit rate under 90% (i.e., 82% and 87%).
Noteworthy is that EKC accurately retrieved the number of factors
when it was predicted to work even in the 18 conditions with
unacceptable scales, whereas parallel analysis broke down (lower
left). (b) Both EKC and parallel analysis showed bad performance
in the 30 conditions where we were unable to give theoretical
guarantees that the EKC would work (right column). In the 12

conditions containing acceptable scales (upper right) there is a
large variability in performance as indicated by the large differ-
ence between minimum and mean hit rate. Not surprisingly, all 12
conditions are characterized by low sample sizes (n � 100) and the
worst performing of these combine small sample size with low
scale reliability (� � .6) and many factors (K  4; i.e., all
ingredients for a small signal-to-noise ratio).

Multidimensionality: K Oblique Factors

Theoretical expectations. We predict EKC to correctly re-

trieve the number of factors if �k 	
KJ � �j�0

k�1
�j

KJ � K�1 	1 � �KJ⁄n
2 �
Lk

*, for all values k � 1, . . . , K. Using population structural
eigenvalues we derived a range for the correlation between factors
(	) for which this condition is satisfied. This yields three condi-
tions for 	, as a function of sample size, number of factors,
reliability of scales (or factor loading), and number of items.

The first condition is that the first population eigenvalue 
1 
L1, which is satisfied if

� 
(1 � ��)2 � 1 � (J � 1)a2

(K � 1)Ja2 . (4)

Table 4
Percentage of Correct Identifications of One Factor by the Empirical Kaiser Criterion (EKC) and Parallel Analysis as a Function of
Reliability (�), Number of Variables (J), and Sample Size (N)

K � 1 EKC Parallel analysis

J n � � .6 � � .7 � � .8 � � .9 � � .6 � � .7 � � .8 � � .9

3 100 98.9 100.0 100.0 100.0 99.7 100.0 100.0 100.0
250 100.0 99.9 99.8 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0

8 100 98.2 98.8 98.7 97.6 98.0 99.9 100.0 100.0
250 99.2 98.8 98.2 97.5 99.9 100.0 100.0 100.0
500 98.8 97.4 98.0 97.6 100.0 100.0 100.0 100.0

16 100 96.1 98.1 97.8 96.2 91.6 97.8 99.9 100.0
250 98.6 98.0 97.5 96.6 98.1 99.8 100.0 100.0
500 97.6 97.4 96.8 95.8 99.3 100.0 100.0 100.0

32 100 89.7 96.6 96.0 94.6 77.5 90.4 97.5 100.0
250 96.6 96.8 96.0 95.6 89.8 96.6 99.9 100.0
500 97.0 96.4 95.9 95.6 94.7 98.9 100 100.0

81 100 62.2 92.2 94.4 93.0 48.4 75.3 88.3 98.7
250 95.0 94.8 94.9 94.0 75.7 84.2 94.5 99.9
500 93.5 94.9 93.8 94.4 78.6 89.3 97.7 100

Note. The 18 conditions with practically unacceptable scales are printed in italics; the conditions for which EKC does not give theoretical guarantees are
also printed in bold.

Table 5
Maximum Scale Length at Which EKC is Predicted to Accurately Retrieve the Number of Factors as a Function of Sample Size (N),
Reliability (�), and Number of Factors (K)

K

n � 100 n � 250 n � 500

� � .6 � � .7 � � .8 � � .6 � � .7 � � .8 � � .6 � � .7 � � .8

2 12 28 68 � � � � � �
3 X 16 43 23 51 � 52 � �
4 X 10 30 16 37 � 37 � �
5 X 6� 22 12 28 68 29 62 �

Note. � � performance guarantee for scale length J � 3 up to J � 70; X � no performance guarantee given; � � no performance guarantee for scale
length J � 3.
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It is obtained by equating 
1 to L1. The first condition reflects
the fact that the first eigenvalue increases with the correlation
between factors. The second condition is that �2  L2

*. Note that if
the first factor is retrieved, the first sample eigenvalue exceeds L1,
and hence it follows from Equation 2 that L2

* exceeds L2. There-
fore, if �2  L2

* it also exceeds L2. The second condition holds if

� �
1 � (J � 1)a2(KJ � 1) � (1 � ��)2(KJ � 1 � (J � 1)a2)

Ja2(KJ � 1) � (1 � ��)2(K � 1)Ja2

(5)

which is obtained by equating 
2 to L2
*. Because 
2 � . . . � 
K and

L2
* 	 . . . 	 LK

* , we get �k  Lk
* for all 2 � k � K. The second

condition reflects that the 2nd to Kth eigenvalues decrease with the
correlation between factors; if this correlation is too high, the 2nd
to Kth eigenvalues will not exceed their corresponding reference

values. The third and final condition is that 
2 � . . . � 
K  1.
It directly follows from Equation 1 that the third condition holds if

� � J � 1
J . (6)

The third condition reflects that, if the correlation between
factors is too high, the remaining structural eigenvalues will be
smaller than 1. Again, we are aware that the sample structural
eigenvalues differ systematically from their corresponding popu-
lation eigenvalues, and that this may affect the accuracy of our
predictions.

Table 7 presents the correlation ranges for the conditions cor-
responding to acceptable scales (� � .6, J � 3, 8), (� � .7, J �
3, 8, 16), and (� � .8, J � 3, 8, 16, 32). For instance, the “.325”
in row “K � 2, J � 16” and column “N � 100, � � .7” means that
in this condition EKC is predicted to accurately retrieve the two

Table 6
Monte Carlo Experiment for Orthogonal Factors: Hit Rate (i.e., Correctly Identified Factors) as
a Function of Scale Quality and Theoretical Predictions for the Empirical Kaiser Criterion

#C � 192

EKC Predicted to work EKC No guarantee provided

#C � 144 EKC PAR #C � 12 EKC PAR

Acceptable scales Mean .98 .99 Mean .67 .72
Min .82 .84 Min .11 .46

#C � 18 EKC PAR #C � 18 EKC PAR

Unacceptable scales Mean .97 .75 Mean .47 .37
Min .95 .33 Min .00 .11

Note. #C indicates the number of represented experimental conditions. EKC � Empirical Kaiser Criterion;
PAR � parallel analysis.

Table 7
Range for the Correlation Between Factors (	) as a Function of Sample Size n, Number of Factors K, Reliability of Scales �, and
Number of Items J per Factor, for Which EKC is Predicted to Perform Well

n � 100 n � 250 n � 500

� � .6 � � .7 � � .8 � � .6 � � .7 � � .8 � � .6 � � .7 � � .8

K � 2
J � 3 .469 .658 .667� .667� .667� .667� .667� .667� .667�

J � 8 .264 .527 .724 .576 .727 .841 .714 .816 .875�

J � 16 X .325 .606 X .616 .776 X .743 .850
J � 32 X X .410 X X .671 X X .783

K � 3
J � 3 .012–.203 .488 .667� .571 .667� .667� .667� .667� .667�

J � 8 X .352 .622 .439 .639 .790 .628 .761 .860
J � 16 X .089 .469 X .498 .707 X .669 .807
J � 32 X X .204 X X .570 X X .721

K � 4
J � 3 X .311 .598 .455 .650 .667� .650 .667� .667�

J � 8 X .185 .524 .316 .560 .743 .552 .712 .832
J � 16 X X .337 X .391 .645 X .604 .769
J � 32 X X X X X .478 X X .665

K � 5
J � 3 X .01–.12 .486 .342 .577 .667� .586 .667� .667�

J � 8 X .012–018 .427 .199 .485 .700 .482 .667 .806
J � 16 X X .209 X .290 .586 X .543 .734
J � 32 X X X X X .390 X X .613

Note. Only the upper bound of the range is given; the lower bound is equal to zero, unless mentioned otherwise. X � no performance guarantee can be
given for EKC in this condition; � � the upper bound is set to (J � 1)/J, the third condition of the EKC such that 
2 � . . . � 
K  1.
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factors if their correlation is in the interval [0, .325]. Note that
there are three cells (e.g., K � 3, J � 3, � � .6, N � 100) with a
correlation range excluding 	 � 0, suggesting that in some con-
ditions EKC may perform better if factors are slightly correlated
than when they are uncorrelated. This occurs if 	 � 0 and L1 

1 � �2  L2

*; because 
1 is increasing in 	, and 
2 is decreasing
in 	, a slight increase in 	 may result in 
1  L1  �2  L2

*. A
further increase of 	 ultimately yields �2 � L2

*. Hence, EKC is not
predicted to perform well when factors are strongly correlated,
particularly so for smaller sample size, more factors, lower reli-
ability, and more variables (conditional on reliability). Some cor-
relation ranges are indexed with �, which reflects that the upper
bound of the range is equal to (J � 1)/J (see Equation 6). This also
reflects that EKC may detect the K factors, after omitting the
restriction 
j  1.

Monte Carlo results. Table 8 summarizes the simulation
results by presenting the hit rate across the 768 conditions as a
function of scale quality (i.e., acceptable or not) and theoretical
predictions. We predicted EKC to correctly retrieve the number of
factors in 407 conditions with acceptable scales (upper left cell).
The average hit rate across all 407 conditions was .95, and the hit
rate exceeded .8 in 384 of these conditions (94.3%), generally
corroborating the good performance of EKC. However, EKC did
not correctly retrieve the number of factors with hit rate larger than
.8 in 23 conditions (5.7%), with a minimum hit rate of .15. All
these conditions had in common that the scales consisted of J � 3
items, whereas they differed in number of scales, scale reliability,
sample size, and correlation between factors. Closer inspection of
these cases revealed that the sample structural eigenvalues, based
on three variables each, was higher than their corresponding ref-
erence value, but not higher than 1. Dropping the eigenvalue-
greather-than-1 restriction boosted EKC’s performance dramati-
cally. Average hit rate increased to 97%, whereas the hit rate
exceeded .8 in all but three conditions (99.3%), with a minimal hit
rate across all conditions equal to .71. Turning to the unacceptable
scales where EKC was also predicted to work (lower left cell),
EKC indeed performed well in all 23 conditions; the minimum hit
rate was .94, with average hit rate equal to .97.

In the conditions where EKC was predicted to work (left col-
umn), parallel analysis’ performance failed to match EKC’s per-
formance. Parallel analysis’ hit rate did not exceed .8 in 89
conditions with acceptable scales (21.9%), with a minimum hit
rate of 0% (attained for 18 conditions), whereas average hit rate

was .83. Closer inspection of conditions where parallel analysis
failed, confirmed that it mainly failed to detect strongly correlated
scales. This was the case even for conditions with scale reliability
as high as .9 (e.g., hit rate of 0.00 for five strongly correlated (	 �
.8) scales with 16 items each and sample size n � 250). Concern-
ing unacceptable scales, the hit rate of parallel analysis did not
exceed .8 in 5 of 23 conditions (22%), with the average hit rate
equal to .85.

Both EKC and parallel analysis showed bad performance in the
338 conditions where we were unable to give theoretical guaran-
tees that the EKC would work (right column); average hit rates did
not exceed .26. Noteworthy, dropping the eigenvalue-greater-
than-1 restriction did not improve EKC’s performance much;
average hit rate increased to .39 and .23 for acceptable and unac-
ceptable scales, respectively. This implies that the signal-to-noise
ratio in these conditions is just too small to allow for accurate
factor retrieval, and that our derivations accurately predicted this.

Short Scales

We set up a fully factorial Monte Carlo simulation design with
720 conditions in which we manipulated sample size n � (100,
250, 500), number of items per factor J � (3, 4, 5), scale reliability
� � (.6, .7, .8, .9), number of factors K � (2, 3, 4, 5), and
interfactor correlations 	 � (0, .2, .4, .6, .8). All population models
are in line with our definition of an acceptable scale.

Theoretical expectations. Applying our analysis using the
three conditions in Equation 4–6 yields 499 conditions in which
EKC is predicted to work, and 221 where our analytical predic-
tions would not guarantee EKC to work. We evaluate performance
of the EKC and parallel analysis, but now also explicitly include
the original Kaiser criterion. Kaiser’s criterion is expected to
perform better than parallel analysis for short correlated scales,
particularly for larger 	, for two reasons. First, the reference
eigenvalues of Kaiser (equal to 1) are smaller than those of parallel
analysis (larger than 1). Second, it follows from Equation 1 that the
2nd to Kth population eigenvalues decrease in 	 and are especially
small when scales are short. Hence, particularly for larger 	, the
2nd to Kth population eigenvalue will likely be larger than 1 but
not larger than the corresponding reference eigenvalue of parallel
analysis.

Monte Carlo results. The simulation results (see Table 9)
mirror those of the previous sections. EKC performs well when it

Table 8
Monte Carlo Experiment for Oblique Factors: Hit Rate (i.e., Correctly Identified Factors) as a
Function of Scale Quality and Theoretical Predictions for the Empirical Kaiser Criterion

#C � 768

EKC Predicted to work EKC No guarantee provided

#C � 407 EKC PAR #C � 217 EKC PAR

Acceptable scales Mean .95 .83 Mean .26 .15
Min .15 .00 Min .00 .00

#C � 23 EKC PAR #C � 121 EKC PAR

Unacceptable scales Mean .97 .85 Mean .23 .24
Min .94 .59 Min .00 .00

Note. #C � number of represented experimental conditions; EKC � Empirical Kaiser Criterion; PAR �
parallel analysis.
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is predicted to work; the average hit rate was .97, with hit rate
exceeding .8 in 468 conditions (93.8%), with minimum hit rate
equal to .17. Again, performance of the EKC was boosted if
the eigenvalue-greater-or-equal-to-1 restriction was dropped; hit
rate exceeded .8 in all but six conditions (98.8%), with minimal hit
rate across all conditions equal to .74. Performance of parallel
analysis was worse than EKC, but also worse than the original
Kaiser criterion in conditions when EKC was predicted to work;
the average hit rate was .83, but the hit rate did not exceed .8 in
23% of conditions, with 30 conditions having a hit rate smaller
than .05 (6%). Finally, all four methods performed poorly in
conditions where our analytical predictions would not guarantee
EKC to work (average hit rates were .18, .07, .46, and .25 for the
EKC, parallel analysis, the unrestricted EKC, and the original
Kaiser criterion, respectively).

Comparison to Computer-Intensive Methods and
Goodness-of-Fit Tests

Finally, we conclude this series of Monte Carlo experiments
with a head-to-head comparison of parallel analysis and the EKC
to other methods. These methods include the two computer-
intensive methods of Green et al. (2012) and Ruscio and Roche
(2012). For these two methods 100 parametric bootstrap samples
were estimated per estimated factor model. Two other methods are
based on goodness-of-fit tests within the structural equation mod-
eling framework, that is, the chi-square test of exact fit and the
RMSEA test for close fit. For these methods a parsimony heuristic
was applied that selects the factor model with the least number of
factors for which the goodness-of-fit test of exact/close fit was not
rejected. Table 10 summarizes the procedures of all methods.
Notice that Green et al.’s (2012) method is a more direct logical
extension of parallel analysis, whereas Ruscio and Roche’s (2012)
method is more similar to the goodness-of-fit statistics in the sense
that their underlying reference statistic is based on the full eigen-
values series under a simulated model.

The comparison is focused on conditions that pose the greatest
challenges to factor retention methods: Few items per factor (J �

3) for a relatively large number of factors (K � 3) with low scale
reliability (� � .6, i.e., relatively low factor loadings), and inter-
factor correlations varied across four levels 	 � (0, .25, .5, .75)
with higher correlations being more challenging for accurate factor
retention. All population models are in line with our definition of
an acceptable scale and will be tested across three sample size
levels n � (100, 250, 500), leading to an experimental design with
12 conditions. We feel it is important to mention here that we did
not examine other conditions; hence, we did not select these 12
conditions post hoc to give the impression that some methods
perform particularly good or bad relative to the EKC. Finally, we
do not report the results of the unrestricted EKC because it did not
perform substantially better than the EKC.

Theoretical expectations. Our analysis using Equations 4–6
predicts the EKC to accurately predict the number of factors in five
out of 12 conditions. These are indicated by bold sample sizes in
Table 11. Based on the results of previous sections, we expect the
predictions to be correct and a deterioration of the performance of
parallel analysis for correlated scales. Given that the chi-square
and RMSEA test are asymptotically based, it may be possible that
their performance is relatively worse in conditions with small
sample size (n � 100).

Monte Carlo results. Corroborating our expectations and pre-
vious results, the EKC accurately retrieves the number of factors
when it is predicted to do so (hit rate  .97), and fails to do so
otherwise (hit rate � .71; see Table 11). Moreover, parallel anal-
ysis performed very bad in one condition where the EKC per-
formed well (hit rates of .17 vs. .97, respectively, for 	 � .5 and
n � 500). Importantly, the methods of Green et al. (2012); Ruscio
et al. (2012), and the chi-square test performed well when the EKC
was predicted to perform well (hit rates  .99,  .92,  .94,
respectively), and also performed worse otherwise (hit rates �
.83, � .65, � .61). The RMSEA test did not perform well, at least
not as we implemented it; it failed to accurately retrieve the
number of factors in two out of five conditions where the other
methods performed well. Hence, our general conclusions are that
our method for predicting conditions of accurate factor retention
also seems to work for three other methods, and in the case of
correlated short scales EKC and these three other methods perform
about equally well and outperform parallel analysis.

Application: The Guilt and Shame Proness
Scale (GASP)

Cohen, Wolf, Panter, and Insko (2011) developed and validated
the GASP to measure individual differences in the propensity to
experience the related moral emotions guilt and shame. The 16-
item GASP consists of four highly correlated subscales called
guilt-NBE (negative behavior-evaluations), guilt-repair, shame-
NSE (negative self-evaluations), and shame-withdraw, each con-
sisting of four items with seven response alternatives. The GASP
was developed in their first study. After about half of their 450
student participants answered 60 potential GASP items (15 for
each scale), the 16 GASP items were selected based on both item
score analysis and strongest factor loadings obtained by explor-
atory factor analyses, conducted separately for each of the four
subscales. Confirmatory factor analysis (CFA) on the data of
remaining participants validated the 16-item GASP scale. CFA
also validated GASP’s factor structure in their Study 2 with 862

Table 9
Monte Carlo Experiment for Short Scales: Hit Rate (i.e.,
Correctly Identified Factors) Across the 720 Conditions as a
Function of Theoretical Predictions for the Empirical
Kaiser Criterion

EKC Predicted to work
EKC No guarantee

provided

#C � 499 #C � 221

EKC PAR EKC PAR

Mean .97 .83 .18 .07
Min .17 .00 .00 .00

EKC(un) Kaiser EKC(un) Kaiser

Mean .98 .89 .46 .25
Min .74 .59 .00 .00

Note. #C � number of represented experimental conditions; EKC �
Empirical Kaiser Criterion; PAR � parallel analysis; Kaiser � eigenvalue-
greater-than-one rule; EKC(un) is obtained after dropping the restriction
from EKC that factor eigenvalues should exceed 1.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

461EMPIRICAL KAISER CRITERION



adults from an online subject pool. The four-factor model fitted
best in both samples, although both CFAs revealed three strong
correlations between factors (e.g., .67, .83, .84 in Study 2). Reli-
abilities of all the four scales varied from .61 to .69 in Study 1 and
.62 to .71 in Study 2. The construct and predictive validity GASP
were corroborated in Study 1 and Study 2, as well as in their last
Study 3. Based on Cohen et al.’s (2011) findings we assume the
GASP indeed measures four separate but highly related concepts.

Will parallel analysis and the EKC retrieve the four GASP
factors in the data of Study 1 and Study 2 of Cohen et al. (2011)?
Based on previous findings and our analysis showing bad perfor-
mance of parallel analysis in contexts with short correlated sub-
scales, we expected parallel analysis to retrieve too few factors.
Because the EKC performed well in our analysis, and also in
contexts with short correlated subscales, we expected EKC to
accurately retrieve four factors. Figure 4 shows the results of EKC
and parallel analysis on the data of the second half of Study 1
(panel a) and Study 2 (panel b). The data of the first half of Study
1 were initially not included, because these data were used to

create the four subscales. Parallel analysis suggested extracting
only two factors in both data sets. EKC retrieved four factors in the
data of the second half of Study 1, with the fourth sample eigen-
value just above the EKC reference value, and three factors in
Study 2, with the fourth sample eigenvalue being equal to .981, just
below the EKC reference value. Finally, we note that EKC retrieved
four factors when only applied to the data of the first half of Study 1,
and when applied to the dataset combining the data of the second half
of Study 1 and Study 2. Thus, all in all, the EKC provides evidence
in favor of the four factors of the GASP with four short highly
correlated scales. Yet, the results also illustrate that the factor structure
of the GASP is relatively noisy, as the forth structural eigenvalue is
not well separated from the residual eigenvalues.

Discussion

We developed a new factor retention method, the Empirical
Kaiser Criterion (EKC), which is directly linked to statistical
theory on eigenvalues and to researchers’ goals to obtain reliable

Table 10
Procedural Overview of Factor Retention Methods

Empirical Kaiser Criterion

Computation Compute lup � 	1 � �J ⁄n
2

Compute Define cumulatively summed eigenvalue vector V: vj � �i�1
j li

Omit last element and put a zero upfront: V � 	0, v1, . . . , vJ�1

Define reflected eigenvalue order vector W � 	J, J � 1, J � 2, . . . , 1


Reference eigenvalues Set vector of reference eigenvalues as max	J � V
W lup, 1


Decision step Choose the number of factors K for which the 1st to Kth observed eigenvalue is higher than their
corresponding reference eigenvalue

Goodness-of-Fit tests Chi-square RMSEA

Estimation step Based on the observed dataset, estimate factor model with k factors;
Start at k � 0, and proceed onwards until positive decision on K

Decision step Choose the number of factors K corresponding
to the first model that does not significantly
deviate from the null hypothesis of exact fit

Choose the number of factors K corresponding
to the first model that does not significantly
deviate from the null hypothesis of close fit

Computer intensive simulation methods

Simulation step 1 Estimate factor model with k factors based on the observed dataset (if k � 0, no estimation required)
Repeatedly simulate datasets of size n by J under model with k factors
Compute eigenvalues of the correlation matrix of each simulated dataset

Parallel Analysis Green et al., 2012

Simulation step 2 Not required (k � 0) Repeat step 1 until decision has been reached
(i.e., K � 1)

Reference eigenvalues Set reference value for each observed
eigenvalue as the value corresponding to the
95% percentile in the simulated distribution
for that jth eigenvalue under the null model

Set reference value for the jth observed
eigenvalue as the value corresponding to the
95% percentile in the simulated distribution
for that jth eigenvalue under the model with
(j � 1) factors

Decision step Choose the number of factors K for which the 1st to Kth observed eigenvalue is higher than their
corresponding reference eigenvalue

Ruscio & Roche, 2012

Simulation step 2 Repeat step 1 until decision has been reached (i.e., K � 1)
Reference

For each simulated dataset, compute the root mean square residual eigenvalue: RMSR � �	lj � lj
Simulated�
2

Decision step Choose number of factors K corresponding to the first model not showing significantly lower RMSR compared
to the model with one additional factor (nonparametric difference test).

Note. n � sample size; J � total number of items.
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scales. EKC is easily visualized, and easy to compute and apply
(no specialized software or simulations are needed). EKC can be
seen as a sample-variant of the original Kaiser criterion (which is
only effective at the population level), yet with a built-in empirical
correction factor that is a function of the variables-to-sample-size
ratio and the prior observed eigenvalues in the series. The links
with statistical theory and practically relevant scales allowed us to
derive conditions under which EKC accurately retrieves the num-

ber of acceptable scales, that is, sufficiently reliable scales and
strong enough items.

Our simulations verified our derivations, and showed that (a)
EKC performs about as well as parallel analysis for data arising
from the null, 1-factor, or orthogonal factors model; and (b) clearly
outperforms parallel analysis for the specific case of oblique
factors, particularly whenever interfactor correlation is moderate to
high and the number of variables per factor is small, which is

Table 11
Monte Carlo Experiment Comparing the Hit Rate (i.e., Correctly Identified Factors) Between the Empirical Kaiser Criterion and
Alternative Methods That are Either Computer-Intensive or Rely on Asymptotical Goodness-of-Fit Tests

Condition Factor retention method

K � 3, J � 3, � � .6 n
Parallel
analysis

Empirical Kaiser
Criterion

Green et al.
2012 Ruscio Roche 2012

2

Exact fit
RMSEA
Close fit

	 � .00 100 77 69 83 65 52 19
250 100 100 99 94 95 81
500 100 100 99 94 94 100

	 � .25 100 30 35 54 35 34 8
250 90 100 99 92 94 44
500 100 100 100 95 95 90

	 � .50 100 0 2 7 3 10 1
250 3 71 81 61 61 2
500 17 97 99 93 95 6

	 � .75 100 0 0 0 0 1 0
250 0 0 1 1 4 0
500 0 0 27 13 23 0

Note. The sample sizes (n) of the conditions for which EKC does not give theoretical guarantees are printed in bold.

(a) Study 1: n  = 225  (b) Study 2: n  = 862  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

0
1

2
3

4

j

l j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

0
1

2
3

4

j

l j

Figure 4. Annotated screeplots for the two GASP studies. Note. Black squares represent sample eigenvalues,
whereas reference values are represented by solid black lines (EKC) and gray lines (parallel analysis, 95%
percentile).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

463EMPIRICAL KAISER CRITERION



characteristic of many applications these days. Moreover, addi-
tional simulations suggest that our method for predicting condi-
tions of accurate factor retention also work for the more computer-
intensive methods of Green et al. (2012) and Ruscio et al. (2012).
The GASP, a scale consisting of four highly correlated subscales
of four variables each, was used as an illustration. The ease-of-use
and effectiveness of EKC make this method a prime candidate for
replacing parallel analysis, and the original Kaiser criterion that,
although it empirically does not perform too well, is still the
number one method taught in introductory multivariate statistics
courses and the default in many commercial software packages.
Furthermore, the link to statistical theory opens up possibilities for
generic power curves and sample size planning for exploratory
factor analysis studies.

The overall pattern of results for all Monte Carlo experiments is,
unsurprisingly, in line with previous simulation studies, showing
that accuracy of factor retention improves as number of variables
per scale increases, sample size increases, item strengths (factor
loadings) increase, number of scales decrease, and the interfactor
correlation decreases. In other words, performance deteriorates
with less information and a noisier factor structure. The results also
indicate that it will likely be impossible to propose universal factor
retention rules that always work, because the rules’ performance is
highly dependent on aforementioned application characteristics.
Hence, to achieve accurate factor retention in an application of
exploratory factor analysis, we recommend defining a potential set
of expected factor structures and predefining requirements for the
scales, and then conducting targeted power studies. These power
studies identify the minimum sample size needed to accurately
retrieve the number of factors given the predefined factor structure
and scale requirements.

From the perspective of power studies, an important result of
our simulations is that the formally derived predictions on perfor-
mance of the EKC were confirmed by the simulations. Generally,
the EKC accurately retrieved the number of factors in conditions
whenever it was predicted to work well, and its performance was
worse when it was not predicted to work well. More precisely, hit
rate or power exceeded .8 in accordance with predictions under the
null model, 1-factor model, the orthogonal factor model, and the
oblique factor model with more than three variables per scale.
Only in the case of minimal scales, that is, with three items per
scale, did EKC sometimes not accurately retrieve the number of
factors as predicted; dropping the restriction that eigenvalues
should exceed 1 then mended EKC’s performance. A general
guideline for application that can be derived from our results (and
would not need a study-specific power study), is that EKC will
accurately retrieve the number of factors in samples of at least 100
persons, when there is no factor, one practically relevant scale, or
up to five practically relevant uncorrelated scales with a reliability
of at least .8.

More generally, our analytic and simulation results improve
understanding of the role of sample size in factor retention. There
are many rules of thumb that prescribe minimum sample sizes for
exploratory factor analysis (see, e.g., Steger, 2006, p. 268), but that
lack clear foundations. This is for instance illustrated by de Winter,
Dodou, and Wieringa (2009) that show that in some cases sample
sizes below 50 can be sufficient. Hence, it appears that in the
current state, there is no solid advice available for sample size
planning for an exploratory factor analysis study. Yet, our tech-

nique for making theoretical predictions shows promise and can
potentially provide the basis for generic power curves and sample
size recommendations based on hypothesized factor structure or
acceptable-scale requirements.

Our predictions and results on the performance of EKC also
enable improving our understanding of findings of previous stud-
ies on factor retention. We provide a few examples, particularly
relevant for the practice of using correlated short scales. Cho, Li,
and Bandalos (2009) and Garrido et al. (2013) examined the
performance of parallel analysis with ordinal variables in a simu-
lation study. They found that “with highly correlated factors,
parallel analysis tends to moderately underfactor with the mean
eigenvalue criterion and to severely underfactor with the 95th
percentile criterion” (Garrido et al., 2013, p. 13), and “the perfor-
mance of the P[arallel] A[analysis] procedure with highly corre-
lated factors improved somewhat as the number of variables
increased. . . . also interesting to note that increases in the [factor]
loading size did little or nothing to ameliorate the effects of the
high interfactor correlations.” (Cho et al., 2009, p. 757). Explain-
ing first Garrido et al.’s (2013) finding, the population 2nd to Kth
eigenvalues decrease as a function of the interfactor correlation
(see Equation 1). As a result, parallel analysis tends to underfactor,
and factor retention methods with lower reference values perform
better, such as parallel analysis with the mean eigenvalue criterion,
and even more so the original Kaiser criterion and EKC as shown
in our study. Note, however, that parallel analysis with the mean
eigenvalue criterion and the original Kaiser criterion perform
poorly in other cases, such as no or orthogonal factors. Explaining
Cho et al.’s (2009) findings, loading size is irrelevant whenever
interfactor correlation is higher than (J � 1)/J (see Equation 6);
whatever the loading size, population eigenvalue will be smaller
than 1, and the corresponding sample eigenvalue lower than its
reference value. Finally, increasing the number of variables J will
improve performance of factor retention methods when factors are
correlated; the 2nd to Kth population eigenvalues will increase in
J linearly by a factor of (1 � 	)a2 (see Equation 1), whereas
reference eigenvalues will increase less than linearly in J.

As a final example, Green et al. (2012) examined seven variants
of parallel analysis in a simulation study varying five dimensions.
After summarizing their results they state that “readers are likely to
wonder what to make of recommendations of seven different
methods dependent on conditions of a study” (p. 16). Calculating
population eigenvalues in their conditions enables interpreting
their results. For instance, they found that the variants of parallel
analysis performed very badly when interfactor correlation was .8,
and number of variables per factor was three or six, with perfor-
mance even decreasing in sample size (p. 15). They report these
“results were particularly difficult to understand” (p. 15), but
calculations using Equation 1 show that the population eigenvalues
of these conditions were only a little larger than 1 (
2 � 1.03 for
J � 6, a � .4; 
2 � 1.1 for J � 6, a � .7) or smaller than 1 (
2 �
.94 for J � 3, a � .4; 
2 � .8 for J � 3, a � .7). Factors with these
low population eigenvalues, particularly those with values smaller
than 1, are difficult to extremely hard to detect with parallel
analysis using the 95th percentile criterion; for a population eigen-
value equal to 1, the probability of detection is about 5% by this
variant of parallel analysis.

All in all, our theoretical and simulation results show that
eigenvalues of a correlation matrix are useful summary statistics
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that can be employed to obtain accurate factor retention rules. In
the literature there is some controversy about this, because eigen-
values of a correlation matrix also form the basis for principal
components analysis (PCA). We agree with Widaman (1993) that
PCA is not optimally designed for interpreting the factor structure
of a set of variables as it concentrates on extracting the total
instead of the common variance. Yet, we disagree with the sug-
gestions that there is no direct relationship between eigenvalues of
a correlation matrix and the number of common factors (e.g.,
Timmerman & Lorenzo-Seva, 2011, p. 210). In fact, our theoret-
ical results show that eigenvalues can be directly derived from a
hypothesized population factor model. Furthermore, eigenvalues
of a reduced correlation matrix are likely influenced by additional
sources of sampling and systematic bias induced by the model
used for constructing plug-in estimates for the common variances,
whereas eigenvalues of the original correlation matrix are more
data-driven. Some studies (e.g., Garrido et al., 2013; Velicer &
Fava, 1998) suggest that variants of parallel analysis that use a
reduced correlation matrix with an estimate of the common vari-
ance on the diagonal (i.e., in line with principal-axis factor anal-
ysis), or are based on minimum rank factor analysis, are less
accurate than the default parallel analysis variant (i.e., using
“PCA”-based eigenvalues).

Further research needs to explore how the proposed EKC per-
forms under less clear-cut factor structures, that is, with different
number of variables per factor, cross-loadings, more heteroge-
neous factor loadings, and including bloated specifics. Bloated
specifics, caused by for instance items that are essentially rephras-
ings of each other, are a commonly observed anomaly in practice,
but their impact on factor retention has not yet been thoroughly
investigated. Deriving predictions on the performance of EKC
given these less clear-cut factor structures is rather straightforward,
since their population eigenvalues can directly be calculated and
EKC’s reference eigenvalues are not dependent on this structure.
However, it is yet unclear how well these predictions for these
structures will perform. An underlying assumption remains that
some factor model underlies the variables’ population covariance
structure; hence, we need to be cautious with generalizations to
conditions with population-model error (see, e.g., MacCallum,
2003).

Another direction of future research is further examining and
developing the statistical theory on eigenvalues of correlation
matrices. The Marčenko-Pastur distributional result provides an
indication of the expected values for the sequence of eigenvalues,
but it does not provide an indication about the variability around
each individual sample eigenvalue. However, for covariance ma-
trices of identically and independently normally distributed vari-
ables, Johnstone (2001) derived the asymptotical sampling distri-
bution of the first eigenvalue to be the Tracy and Widom (1996)
distribution of order 1. Unfortunately a similar result that holds for
correlation matrices is not available (although, for a potential ad
hoc simulated adaptation, see p. 308, Johnstone, 2001), and theo-
retical results for subsequent eigenvalues or for more complex
structural models than the null model are—as far as we know—
less developed or absent. Still, there might be other hidden gems or
new developments in random matrix theory that are useful for
factor analysis or other classical multivariate statistical methods
such as MANOVA and canonical correlation analysis.

A practical venue for future research, as suggested by John
Ruscio (personal communication, October, 2015), is to apply the
EKC retroactively to published EFA results. This is possible
because only sample size and number of variables are required to
calculate the reference values, and observed eigenvalues are usu-
ally reported. Hence, the quality of factor retention decisions in
EFA in the literature, and its development over time, can now
easily be addressed using the EKC.

As a final thought we want to add that we do not advocate
considering factor retention as a one-time event merely determined
by a statistical optimality criterion, a yes-or-no outcome in line
with current hasty scientific practice. We stress that in practice
factor retention should be seen as part of a larger cumulative
measurement validation project (as in the empirical illustration of
the GASP), benefitting from other than statistical optimality cri-
teria: Substantive interpretation, practical relevance, purpose of the
scales, and the extent to which structures replicate for the same
target population or generalize across different populations (for a
discussion on replicable vs. optimal factors, see, e.g., Preacher,
Zhang, Kim, & Mels, 2013) should all form important pieces of the
bigger picture.
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