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Abstract In this note we show that multiple solutions exist for the production-
inventory example in the seminal paper on adjustable robust optimization in Ben-Tal
et al. (Math Program 99(2):351–376, 2004). All these optimal robust solutions have
the same worst-case objective value, but the mean objective values differ up to 21.9%
and for individual realizations this difference can be up to 59.4%. We show via addi-
tional experiments that these differences in performance become negligible when
using a folding horizon approach. The aim of this paper is to convince users of
adjustable robust optimization to check for existence of multiple solutions. Using
the production-inventory example and an illustrative toy example we deduce three
important implications of the existence of multiple optimal robust solutions. First, if
one neglects this existence of multiple solutions, then one can wrongly conclude that
the adjustable robust solution does not outperform the nonadjustable robust solution.
Second, even when it is a priori known that the adjustable and nonadjustable robust
solutions are equivalent on worst-case objective value, they might still differ on the
mean objective value. Third, even if it is known that affine decision rules yield (near)
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532 Frans J. C. T. de Ruiter et al.

optimal performance in the adjustable robust optimization setting, then still nonlinear
decision rules can yield much better mean objective values.

Keywords Adjustable robust optimization · Production-inventory problems · Folding
horizon · Multiple solutions

1 Introduction

In [2] theRobustOptimization (RO)methodology is extended tomulti-stage problems.
The proposed Adjustable Robust Optimization (ARO) techniques appeared to be very
effective to solve uncertain multi-stage optimization problems. This first paper on
ARO has been cited more than 500 times already, and the AROmethodology has been
applied to a wide variety of problems (see e.g. the survey papers [3,6]). Recently, it
was shown that (A)RO problems may have multiple optimal solutions, and that not all
of these solutions are Pareto robustly optimal [8]. A solution is called Pareto robustly
optimal if there is no other robustly feasible solution that has better objective value
for at least one scenario, and for all other scenarios in the uncertainty set the objective
value is not worse.

In this note we show that the ARO model of the production-inventory problem in
[2], which is the seminal work on ARO, also has multiple optimal robust solutions.
Although in robust optimization one operates in a distribution-free environment, an
often used performancemeasure is the mean objective value, which is evaluated poste-
riorly assuming some information on the distribution of the parameters. For the cases
considered in [2], we show that among the optimal robust solutions, the difference
in mean objective value can be as much as 21.9% and for individual realizations the
difference can be up to 59.4%. This underlines the importance of the message in [8]
that ARO problems may have multiple optimal robust solutions. In such cases one
can often find optimal robust solutions that are much better with respect to the mean
objective value than solutions that were initially found.

We also extend the experiments performed in [2] by including a folding horizon
approach. In a folding horizon approach themodel is re-optimized in each period using
the available information at that point of time and only the decisions for the current time
are implemented.Using this approachwefind that there are stillmultiple optimal robust
solutions, but the differences in mean costs diminish. This is mainly due to the fact
that the here-and-now decisions are unique in almost all periods. As a last experiment,
we also analyze the model and solutions we found when replacing the worst-case
objective by an expected value objective. For the expected value objective we find
that, for the seminal production-inventory problem considered here, the solution is
unique.

In the second part of this notewe discuss several important implications for practical
ARO. The first implication is that, by ignoring the possibility ofmultiple solutions, one
can incorrectly conclude that the ARO solution is not better than the RO solution, or
even incorrectly conclude that ARO is (much) better than RO. The second implication
is that even in cases where it is a priori known that RO and ARO are equivalent,
i.e., they have the same worst-case optimal objective value, one cannot conclude
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The impact of the existence of multiple adjustable robust solutions 533

that there is no value in using ARO. This is because in many cases there are ARO
solutions that give much better solutions for the mean costs. The third implication is
that even in cases where affine decision rules are (nearly) optimal, i.e., the optimal
robust objective value cannot be improved by using nonlinear decision rule, one cannot
conclude that there is no value in using nonlinear decision rules. Such a conclusion
might be wrong, since nonlinear decision rules may yield much better solutions for
the expected objective value. These implications are illustrated by using both the
production-inventory example from [2] and two toy examples.

Our aim is to convince users of ARO that one should always check for the existence
of multiple solutions. In many papers on ARO it is not reported that one checked for
possible existence of multiple solutions. These papers run the risk that much better
solutions could have been found, or even that wrong conclusions have been drawn.
For example, researchers who use the same production-inventory example as in the
seminal work [2] to test new ARO methods, should be aware of the fact that this
problem has many optimal robust solutions with big differences in mean costs.

2 Multiple adjustable robust solutions

To illustrate the implications of multiple adjustable robust solutions we use three
problems. The first problem is the production-inventory problem by [2] in its original
setting. The second problem is an illustrative toy example where the existence of
multiple solutions is more directly visible. The last toy problem we investigate is
a two-stage facility location problem. For all models we study both the impact in a
folding and in a non-folding horizon approach.

2.1 Production-inventory model by Ben-Tal et al. [2]

We have repeated the experiments for the production-inventory problem by [2]. All
solutions are obtained using the commercial solver Gurobi 6.0 [7] programmed in the
YALMIP language [10] in MATLAB. All options of Gurobi were left at their default
values.

We have found three distinct optimal robust solutions for the original model by
[2, pp. 369–370]. All of these solutions are optimal in a robust sense, i.e. they have
the same worst-case costs, but costs differ for individual (non worst-case) realizations
of the demand. The first solution was obtained by just solving the original model
with Gurobi. The average costs of this solution turned out to be much higher than
the solution reported by [2]. The second solution is the solution that performs best on
the mean costs among all optimal robust solutions. It can be found via the following
two-step approach similar to the methods used by [8] to find so-called Pareto robustly
optimal solutions:

1. Solve the original model from [2], which gives a solution with minimal worst-case
costs.
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534 Frans J. C. T. de Ruiter et al.

2. Change the objective into minimizing the costs for the nominal demand trajectory.
Furthermore, add a constraint that ensures that the worst-case costs do not exceed
the costs found in Step 1.

The solution obtained after step two is the ‘Best’ solution, the one that performs best
on the expected objective value among all optimal robust solutions that use linear
decision rules, assuming that nominal demand is equal to the expected demand. The
third solution is found by changing the objective in the second step into maximizing
costs for the nominal demand trajectory. This we call the ‘Worst’ solution. Without
the two-step approach, and some bad luck, one could have obtained this solution as
a ‘First’ solution, i.e. by solving the original problem formulation. The performances
of these three optimal robust solutions are given in Table 1. The first column states the
uncertainty level, for which we used the same levels as in [2]. If the level of uncertainty
is 2.5%, then this indicates that in each period the realized demand could be up to
2.5% higher or lower than the nominal demand. The three solutions are all robustly
optimal, so they have the sameworst-case costs (WCcosts). For each of those solutions
we have determined the mean costs and the standard deviation. In [2] the mean costs
were approximated using 100 simulated demand trajectories drawn from a uniform
distribution. The mean costs can also be determined exactly since the objective is
linear in the uncertain demand. For the mean costs comparison we assume, as in the
original paper, that the mean demand is given by the nominal demand scenario. The
standard deviation was derived using the second moment of the uniform distribution,
the distribution that was also used in the seminal paper by [2] to sample the scenarios
to calculate average costs.

As is clear from Table 1, the performances of the three solutions differ significantly.
For both the ‘First’ solution and the ‘Worst’ solution we give the mean and maximum
performance gap. The mean performance gap is just the percentage increase of the
mean costs compared to the mean costs of the ‘Best’ solution. The maximum perfor-
mance gap is the single demand trajectory that results in the largest difference in costs
between the ‘Best’ solution and the ‘Worst’ (or ‘First’) solution. To explain how this
gap is calculated, we determine the costs for the ‘Worst’ and the ‘Best’ solution, when
trajectory d realizes, by respectively OPTW (d) and OPTB(d). These costs are linear
in demand d because the original objective is linear, fixed recourse and we use linear
decision rules. The maximum performance gap for the ‘Worst’ solution is given by

max
d∈U

OPTW (d) − OPTB(d)
OPTB(d)

,

where U is the box uncertainty set (defined by a set of linear constraints) used in
this inventory problem. This is a linear-fractional maximization problem, which can
be written as a linear optimization problem using the well-known Charnes-Cooper
transformation [5]. The maximum performance gap for the ‘First’ solution is defined
and determined analogously. The ‘First’ solution, which is the solution we obtained
after solving the original LP problem with our solver, has mean costs of up to 14.5%
higher than the mean costs for the best solution for a 20% uncertainty level. The
‘Worst’ solution has a performance gap of 21.9% for the same uncertainty level. If
we compare the performance for individual realizations, we see that the costs can
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536 Frans J. C. T. de Ruiter et al.

increase up to 39.4 and 59.4% for the ‘First’ and ‘Worst’ solutions, respectively. For
uncertainty levels up to 10% the mean costs for the ‘Worst’ solution are equal to
the worst-case costs, meaning that the worst-case costs are attained in every single
scenario. Finally, as reported by [2], only for an uncertainty level of 2.5% one can find
a feasible nonadjustable solution implying that production levels in each period must
be determined at the beginning of the planning horizon. The mean costs of 35279
for the nonadjustable solution are only slightly higher than the mean costs for the
adjustable ‘Worst’ solution. Note that in the nonadjustable case there is no uncertainty
in the objective, hence the mean costs are equal to the worst-case costs.

The mean costs of the solution reported by [2], where no use of a two-step approach
was reported, coincides with the performance of our ‘Best solution’. We have tried
various settings for our solver to seewhetherwe could also replicate their good result as
a ‘First’ solution. We tried both primal/dual simplex methods, interior point methods
and a mixture of both in Gurobi. We have also solved the model for each of these
options with crossover either enabled or disabled. If the crossover option is enabled,
then the solver will push a solution in the optimal facet to a basic solution. None of
these alterations led to a solution that was considerably better than our ‘First’ solution
depicted in Table 1.

2.2 Folding horizon versus non-folding horizon

One might wonder whether the same differences in mean costs still exist if a so-
called folding horizon (FH) is used. In a folding horizon approach the model is re-
optimized at each period using the available information at that point of time and only
the decisions for the current time are implemented. This is done for each period t
starting from the first period until the end of the planning horizon. Using this folding
horizon approach we again compared solutions that used the two-step approach in
each step (Best FH solution), without a two-step approach (First FH solution) and
when the two-step approach was used when maximizing for nominal demand in the
second step (Worst FH solution). An exact calculation of the mean costs and the
standard deviation is not possible for this experiment. Therefore, we draw 100 demand
trajectories independently and uniformly distributed in each period. These trajectories
are used to approximate the mean costs and the standard deviation when using the
folding horizon approach. Simulations were also used in [2] to approximate the mean
costs and the standard deviation for the non-folding horizon approach. The results are
depicted in Table 2. We stress that this folding horizon approach was not used in [2].
Clearly, using the two-step approach does not yield significantly better results for the
folding horizon approach. Often the resulting costs are the same for both approaches,
but for one of our simulated realizations the extra costs incurred when not using the
two-step approach is 0.7%. Even stronger, for each simulated demand trajectory, the
costs when using the folding horizon approach (Best FH solution) were at most the
costs of the “First FH” solution. Finally, note that the mean costs for the folding
horizon solutions are not much lower than the mean costs of the ‘Best’ solution given
in Table 1, meaning that there is not much additional gain by re-optimizing in each
step as is done in the folding horizon approach. It is at a first glance surprising that the
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Fig. 1 Here-and-now decisions for factory 2 only differ in period 18 (5 scenarios depicted)

effect of having multiple optimal solutions diminishes when using a folding horizon
approach. We found that this is mainly because the first stage decisions are unique for
almost all time periods and in all simulated scenarios. The question whether or not
the first stage decisions are unique can be answered by fixing the worst case costs in
the first step, as in the usual two step approach, and then minimize or maximize the
order quantity in the current time period. In this way we get, for each time period t ,
a lower and upper bound on the feasible first stage decisions. In Fig. 1 we depict the
differences between the maximum and the minimum for the 20% uncertainty level
for one out of the three factories. The behavior of the solutions depicted was observed
for all other cases as well: the vast majority of the first-stage decisions are unique. We
only witnessed non-unique optimal here-and-now decisions in time periods 6 and 18,
depending on the factory (1, 2 or 3) considered.

Finally, we also investigate what happens if we optimize the expected objective
value rather than the worst-case objective value in the non-folding horizon approach.
This can be done at comparable computational costs, by replacing the maximization
over all realizations in the objective by an objective that solely considers the nominal
demand. This expected objective value was also used in [9] to prove optimality of
linear decision rules under stochastic and robust settings. The authors did not study the
existence of multiple adjustable solutions. We stress that, although we now minimize
an expected objective value, we still have a robust problemwith ‘hard’ constraints, i.e.,
the constraints should be satisfied for any realization within the uncertainty set. The
main differencewith the two step approach is thatwe do not fix theworst-case objective
value as we did in the second step. Arguably, this approach would make more sense in
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The impact of the existence of multiple adjustable robust solutions 539

Table 3 Performance of the
linear decision rule that
minimizes the mean costs

Uncertainty level (%) WC Mean Std

2.5 35108 33919 178

5 36412 34031 357

10 39040 34311 708

20 44298 35066 1375

problems where the objective is a ‘soft’ criterion as opposed to the constraints which
are typically ‘hard’ restrictions. When minimizing the expected objective value, the
worst-case objective value is ignored. Hence, in principle, the worst-case costs could
be very high. To find the worst-case objective value for a given linear decision rule,
a posteriori, one can simply maximize the costs over all possible realizations within
the uncertainty set. The results for the optimization problem, with the ‘soft’ expected
objective value, but ‘hard’ constraints, are depicted in Table 3. First of all, we note
that there is not much difference between the mean costs and the worst-case costs
with respect to the ‘Best’ robust solution given earlier in Table 1. There is only a
very minor increase in worst-case costs and a very minor decrease in the mean costs.
Hence, minimizing the mean costs yields a solution that has very similar costs to the
costs of the solution obtained when minimizing worst-case costs. Second, there is
no ‘Best’ and ‘Worst’ solution displayed in Table 3. This is because we found that
the obtained solution is unique, so there does not exist a linear decision rule, with
minimum mean costs, that has a different (neither better nor worse) guarantee on the
worst-case objective value.

In the inventorymodel the decisions aremade biweekly. Therefore, itmakes sense to
use a folding horizon approaches in this case. The impact of multiple adjustable robust
solutions on the mean costs is negligible when we re-optimize. However, there might
still be value in checking for multiple solutions in (non-)folding horizon approaches
for inventory models and related multi-stage optimization models for the following
reasons:

1. The non-folding horizon solution can be used as a backup solution in case of
failure in hardware or software during the re-optimization steps. This is especially
important inmore criticalmulti-stage optimization systems such as power systems.

2. Re-optimization might take too much computation time or might not be possible
at all. This happens in multi-stage optimization settings when periods follow up
close in time, or when the solutions are implemented in low-end software sys-
tems. Examples of low-end computer systems are traffic light systems, that are not
designed to solve the more computationally demanding optimization models.

Although for this inventory model the impact of the existence of multiple adjustable
robust solutions on themean costs seems to be negligible, there are othermodels where
there could be a significant impact. This is illustrated by our toy examples in the next
section.
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540 Frans J. C. T. de Ruiter et al.

Table 4 Comparison of the different nonadjustable and adjustable solutions

RO1 RO2 LDR1 LDR2 NDR1 NDR2

Here-and-now x 1 0 1 0 1 0

Wait-and-seea y 0 0 −b − 1
2 b −b2 − b − 1

2 b
3

Profits for scenario (a, b) a 0 a + b 1
2 b a + b2 + b 1

2 b
3

Worst-case profits 0 0 0 0 0 0

Mean profits (with unif. distr.) 1
2 0 1 1

4
4
3

1
8

a Note that for RO1 and RO2 the variable y is a here-and-now variable

2.3 Toy examples

Our first illustrative toy example is the following maximization problem:

max
x,y

min
a∈[0,1] ax − y

subject to y + b2 + b ≥ 0 ∀b ∈ [0, 1]
0 ≤ x ≤ 1.

(toy-1)

Let us consider the case where both x and y are nonadjustable. We readily see that
the worst-case objective value is 0 and the two solutions, RO1 = (1, 0) and RO2 =
(0, 0), or any convex combination of these, are worst-case optimal.Without a two-step
approach the solver is indifferent between all these optimal robust solutions since they
all have optimal worst-case profits. The realized profits as a function of scenario (a, b)
are respectively pRO1(a, b) = a and pRO2(a, b) = 0 and the two-step approach yields
solution RO1.

Now suppose that y is adjustable and we restrict ourselves to linear decision rules
(LDR). Then we find that linear decision rules y(b) = −b or y(b) = − 1

2b are optimal
in worst-case sense together with any nonadjustable x in [0, 1]. For the first solution
LDR1 we take (x, y) = (1,−b) and for the second solution LDR2 = (0,− 1

2b). The
profits of these solutions for scenario (a, b) are respectively pLDR1(a, b) = a+b and
pLDR2(a, b) = 1

2b. Again,without a two-step approach the solverwould be indifferent
between these solutions since both have optimal worst-case objective value of 0. The
two-step approach yields solution LDR1.

Finally, we notice that the so-called perfect hindsight solution, where parameters
a and b are known before deciding upon x and y, equals (x, y) = (1,−b2 − b)
for any a, b in [0, 1]. This perfect hindsight solution can also be obtained in the
adjustable robust optimization model by allowing for nonlinear decision rules and
setting NDR1 = (1,−b2 − b). The profits for this nonlinear decision rule (NDR) are
pNDR1(a, b) = a + b2 + b for scenario (a, b). Again, there are many more nonlinear
decision rules that are optimal in worst-case sense, but have different mean profits.
One example is NDR2 = (0,− 1

2b
3) which yields profit pNDR2(a, b) = 1

2b
3. All

these results are summarized in Table 4.
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In the table we use a uniform distribution to calculate the mean profits. For robust
optimization one usually assumes to have only very crude information on the dis-
tribution function. Nevertheless, if we denote the mean profits of each solution by
p̄RO1, p̄RO2 , p̄LDR1 , p̄LDR2 , p̄N DR1 and p̄N DR2 , then we have

p̄N DR1 > p̄LDR1 > p̄RO1 > p̄LDR2 > p̄N DR2 > p̄RO2

for a large class of distribution functions. All these inequalities are valid if (1) not all
probability mass of b lies on the extremes, i.e. P(b = 0 or b = 1) �= 1 and (2) the
mean value of a and b is such that E(a) > 1

2E(b).
Note that for this toy example, contrary to the model from [2], there could be

a significant gain from the two-step method in the folding horizon approach. The
variable x has to be chosen in the first step of the optimization. As we have seen, the
optimal robust value is indifferent between any x in [0, 1]. In the second step we shall
always choose y = −b2 − b. However, choosing x = 0 instead of x = 1 gives us a
difference ofa in the objective value. The two-step approach combinedwith the folding
horizon approach returns the optimal (folding horizon) solution, which equals NDR1.

Similar to our extended experiments for the numerical production-inventory exam-
ple,we can also replace theworst-case objective by an expected value objective.Again,
we find a unique solutions when using an expected value objective to the following
optimization model:

max
x,y

E(a)x − E (y(b))

subject to y(b) + b2 + b ≥ 0 ∀b ∈ [0, 1]
0 ≤ x ≤ 1.

(toy-1-mean)

Now, if E(a) > 0, then the solver returns the unique optimal x = 1. The only optimal
(and unique) static and linear decision rules are given by y(b) = 0 and y(b) = −b,
respectively. These are the same solutions as the best decision rules for the optimization
problem with worst-case objective value. For the nonlinear decision rule we find that
the optimal decision rule is

y(b) = −b − b2 (almost surely).

Our second toy example is a simple facility location problem with two facilities and a
set of customers {1, . . . , N }. The set of customers is such that the unit transportation
costs from facility 1 and facility 2 to customer N are both equal to 10. All other
customers are (much) closer to both facilities, but unit transportation costs from facility
2 are significantly smaller than from facility 1. This situation is depicted in Fig. 2.

The demand of the customers is uncertain. In the entire network the demand is at
most 1, but we do not know at which customers the demand will occur. We model this
via the following uncertainty set:

U =
{
(d1, d2, . . . , dN ) : di ≥ 0 i = 1, . . . , N ,

N∑
i=1

di ≤ 1

}
,
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Fig. 2 Facility location problem
with the most remote customer
N at the same distance from
both facilities. The two facilities
are depicted by triangles, the
customers by circles

Facility 1 Facility 2

Customer N

where di denotes the uncertain demand of customer i . The facility location problem
consists of two types of decisions, namely the decision to open facility 1 (x1 = 1) or
facility 2 (x2 = 1) and the actual deliveries to the customers from the opened facility.
Only one of the facilities may be opened. The total delivery to customer i from facility
1, respectively facility 2, is y1i and y2i and has unit costs c1i and c2i . The goal is to
minimize the worst-case transportation costs, which is modeled as:

min
x,y

N∑
i=1

(c1i y1i + c2i y2i )

subject to y1i + y2i ≥ di ∀i = 1, . . . , N ∀(d1, d2, . . . , dN ) ∈ U
y1i ≤ x1 ∀i = 1, . . . , N

y2i ≤ x2 ∀i = 1, . . . , N

x1 + x2 ≤ 1

x1, x2 ∈ {0, 1}.

(toy-2)

From Fig. 2 it is clear that the transportation costs when facility 1 is opened are higher
thanwhen facility 2 is opened. The optimal perfect hindsight solution is to open facility
2 and transport exactly the requested demand y2i (di ) = di to each customer. The costs
for a particular demand realization (d1, d2, . . . , dN ) is then given by

N∑
i=1

c2i di .

The worst-case costs belonging to this solution are

max
(d1,d2,...,dN )∈U

N∑
i=1

c2i di = c2N .
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In the nonadjustable robust model we decide upon all variables before we know the
demand realization d1, . . . , dN . The total demand in the network is 1, but all demand
could occur at a single customer, so we have to transport one unit to each customer.
Therefore, the first constraint in the robust model is equivalent to y1i + y2i ≥ 1. Since
c1i > c2i for all customers i = 1, . . . , N − 1, the optimal solution is x1 = 0, x2 = 1
with y1i = 0, y2i = 1 for all i = 1, . . . , N and objective value

∑N
i=1 c2i . The robust

solution vastly overestimates the worst-case costs, but it does open facility 2. In the
folding horizon approach, the transportation decisions are re-optimized and we obtain
y2i = di with costs

∑N
i=1 c2i di , which equal the costs in the perfect hindsight solution.

In the adjustable robust model there are multiple optimal solutions. In the first
solution we open facility 1 and transport y1i = di to customer i = 1, . . . , N . In the
second solution we open facility 2 and transport y2i = di to each customer. Clearly,
we obtain the same worst-case costs c1N = c2N as in the perfect hindsight case.
However, the costs when (d1, d2, . . . , dN ) realizes equals

∑N
i=1 c1i di and

∑N
i=1 c2i di

respectively. If the expected demand is di = 1
N for all i = 1, . . . , N , or any other

scenario that does not place all probability mass on the demand realization with dN =
1, then the two-step approach picks the solution that opens facility 2.

To conclude, in the first toy-example the here-and-now decisions matter in the
folding horizon approach for the costs, but there is no impact of the existence of
multiple here-and-now decisions on the choice of the optimal wait-and-see decision
in the re-optimization step. In the second toy example we do see an impact: once the
wrong facility is opened in the first stage, all demand has to be fulfilled from that
location at high expected costs in the re-optimization step.

3 Implications for robust optimization

The inventory-production problem and the toy examples from the previous section
allow us to present some important implications. First, if we analyze and compare
the mean objective values of arbitrary optimal robust solutions for RO and ARO,
then false conclusions can be drawn regarding the added value of ARO over RO. The
mean objective value of an arbitrary optimal robust solution, obtained by solving the
original RO or ARO problem formulations, might very well be much worse than the
solution with best mean objective value among all optimal robust solutions. This best
performing solution can be obtained by carrying out the two-step approach. In the
production-inventory problem with uncertainty level 2.5%, the worst-case objective
values of the RO and ARO solution are nearly the same: the difference is only 0.5%. If
we compare the RO and ARO solutions on average costs, then the worst ARO solution
is also only 0.5% better than the RO solution. The best ARO solution, however, is
3.5% better on average, which could be overlooked if the two-step approach is not
carried out. For the 20% uncertainty level, the gap between the average performances
of all optimal robust ARO solutions can be as much as 21.9%. The first toy example
illustrates that an arbitrary ARO solution is not guaranteed to do better than a RO
solution with respect to average performance. For instance, the average performance
of robust solution RO1 is better than the performance of ARO solution LDR2. On
the other hand, the optimal ARO solution LDR1 is guaranteed to do better than any
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RO solution on the average performance. In our small facility location example we
have seen that the robust solution results in a much higher objective value, but that it
does open the best facility for folding horizon approaches. The linear decision rule on
the other hand results in multiple optimal solutions which could lead to undesirable
choices for opening the facilities. The two-step approach results in a solution that
opens the cheapest facility, mimicking the solution of perfect hindsight.

Second, one might be inclined to jump to the conclusion that ARO can be safely
ignored, when it is a priori known that ARO and RO are equivalent with respect
to the worst-case objective value. One of the situations that we know where ARO
is equivalent to RO is the case of constraint-wise uncertainty see [2, Theorem 2.1].
However, the equivalence is not necessarily true for the mean objective value as well.
Therefore, one should not ignore ARO for such problems. This is illustrated by the
first toy example: the worst-case objective value is zero for both the RO and ARO
solutions, but the mean objective values differ significantly.

Third, even if affine decision rules yield (near) optimal worst-case performance,
nonlinear decision rules, such as quadratic decision rules, can yield much better per-
formance on the mean objective value. Most applications of ARO restrict decision
rules to affine functions, which is referred to as affinely adjustable robust optimization
(AARO) [2]. Affine decision rules are known to perform optimal or nearly optimal
in many situations [1,4]. However, once again, this observation is with respect to the
worst-case objective value, and not for the mean objective value. This is illustrated by
the first toy example. Here, the quadratic decision rule NDR1 has the same worst-
case objective value as any of the other decision rules, but the mean objective value
is much better, and, in this particular case, even optimal for each scenario (Bellman
optimal).

The encompassing recommendation that follows from these implications is that the
two-step approach should always be conducted in any application of robust optimiza-
tion. The two-step approach enables the optimizer to fully exploit the performance on
the mean objective value of the solution, while guaranteeing no deterioration in the
worst-case performance. This is especially relevant for ARO, where decision rules can
be utilized to enhance the solution’s performance in other than worst-case scenarios.
We also recommend the use of the two step approach in folding horizon methods, but
we do note that the impact of multiple solutions may be less severe.
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