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Chapter 1

Introduction

In recent years, energy conservation has been a hot topic of debate among policy makers and

researchers due to the concerns about global climate change and energy dependency. In the

1970s, the energy crisis has led to a growing attention on energy dependency and a possible

depletion of fossil fuels. Currently, climate change has emerged as one of the most important

policy issues, and energy conservation is promoted as a remedy to reduce greenhouse gas

emissions. From a policy perspective, residential sector has been an important target for

energy conservation policies as it is a major contributor to the total energy consumption

and has a high potential for saving energy through efficiency measures.

Many countries have introduced regulations targeting the energy efficiency of the

residential sector. However, whether these policies have been effective in reducing the

total residential consumption of energy is still unclear. In the first chapter of this thesis, we

analyze the impact of residential energy efficiency policies on household energy consumption

across Europe for the period 1980-2009. We examine the electricity and non-electricity

energy consumption separately, as these are generally used for different purposes (appliances

and heating) by households and are subject to different energy efficiency policies. We focus

on two distinct types of regulations – mandatory energy efficiency labels for household

appliances and building standards. We find that after controlling for the county-specific

effects and the changes in income, energy prices, demography and climate conditions over

our sample period, both the energy labeling requirements for appliances and the stricter
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building codes lead up to lower residential energy consumption.

In the second chapter, we examine how households respond to energy efficiency

measures. Policies designed to reduce energy consumption through energy efficiency

measures in the residential sector are typically based upon engineering calculations, which

may differ significantly from outcomes observed in practice. A widely acknowledged

explanation for this gap between expected and realized energy savings is household

behavior, as energy efficiency gains alter the perceived cost of comfort and may thereby

generate shifts in consumption patterns – a “rebound effect”. This chapter adds to the

ongoing discussion about the method of identification and the magnitude of this effect, by

examining the elasticity of energy consumption relative to a predicted measure of thermal

efficiency, using a sample of 563,000 dwellings and their occupants in the Netherlands.

The results show a rebound effect of 26.7 percent among homeowners, and 41.3 percent

among tenants. There is significant heterogeneity in the rebound effect across households,

determined by household wealth and income, and the actual energy use intensity (EUI).

The effects are largest among the lower income and wealth cohorts, and among households

that use more energy than the average household. We corroborate our findings through

a quasi-experimental analysis, documenting that efficiency improvements following a large

subsidy program lead to a rebound effect of about 56 percent. This confirms the important

role of household behavior in determining the outcomes of energy efficiency improvement

programs.

In the last chapter, we investigate financial aspects of energy efficiency investments in

the housing market. Much of the current policy making hinges on the assumption that

markets efficiently capitalize home energy performance into transaction prices. However,

there is limited empirical evidence supporting this assumption. We use transaction data

for a large sample of dwellings to examine the capitalization of energy efficiency in the

housing market. Using the exogenous variation in energy efficiency generated by 1973-74

oil crisis, as well as the evolution of building codes as instruments, we document that a 50

percent increase in energy efficiency leads to an increase in the transaction price by around

11 percent for an average home in the Dutch housing market. Our findings indicate that

the capitalization of energy efficiency does not vary significantly when Energy Performance
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Certificates (EPC) are present. We document that the estimated value of energy efficiency

varies over time, which might be a consequence of fluctuations in house prices, increased

energy costs, and changing consumer awareness.
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Chapter 2

The Impact of Policy on Residential

Energy Consumption

2.1 Introduction

Residential energy consumption has returned to the top of the agenda in academia, business

and policy. The first wave of residential energy debates of the early eighties succeeded a

severe oil crisis, which stressed the importance of energy efficiency from a political point

of view. Today, energy efficiency has regained importance, this time contending with the

outlook of depleting energy resources and the harmful effects of climate change that result

from increasing carbon dioxide emissions. Given that residential sector accounts for almost

40 percent of the EU’s total energy consumption, the residential sector is an obvious target

for energy conservation policies (Perez-Lombard et al., 2008). Within the EU, a wide

collection of policy instruments has been implemented over the years, all with the aim of

enhancing the energy efficiency of the residential sector. Among these, building standards

and mandatory energy labels for household appliances are the most common policy tools

that have been used by European countries over the last thirty years.

According to the Odyssee database, in 2012, nearly 67 percent of the total residential

energy consumption in EU is used for space heating.1 Therefore, minimum thermal

efficiency standards for new buildings are considered as one of the most important energy
1See http://www.odyssee-indicators.org
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conservation measures. Especially after the 1973-74 oil crisis, many countries have

introduced their first national building standards or strengthened the existing codes. The

importance of these standards also extends beyond their role in new dwellings. They are

also expected to have spillover effects on the existing dwelling stock as these standards also

serve as a benchmark for the energy efficiency refurbishments.

Energy efficiency in the appliance market is also an essential element in EU’s portfolio

of energy conservation policies. In order to facilitate the adoption of energy-efficient

technologies, the EU Commission issued the Directive 92/75/EC requiring the member

states to implement mandatory disclosure of energy labels in 1992. Following this directive,

national governments have gradually introduced labeling schemes for different appliance

groups. These energy-efficieny labeling regulations aim to remove the information barriers

to the diffusion of energy efficient products in the market. The lack of sufficient information

is generally accepted as one of the main reasons why households underinvest in energy

efficient technologies (Gillingham et al., 2009). In the absence of information, consumers

are not able to incorporate the operating costs into their purchasing decisions, which in

return leads to lower investments in energy efficient products. The provision of energy labels

may create market incentives for appliance manufacturers to design more energy-efficient

products (Mills and Schleich, 2010). Newell et al. (1999) document that the mean energy

efficiency of water heaters and air conditioners sold in the US increased significantly after

the introduction of the labeling scheme in 1975. Therefore, greater transparency may enable

both consumers and producers to incorporate energy efficiency in their decision-making

process.

However, whether the building standards and the labeling schemes have been effective

in reducing the total residential consumption of energy is still unclear. Thus far, the

impact of these energy efficiency regulations has been mostly studied by use of the so-called

bottom-up modeling approach, in which consumers are assumed to readily adopt new

technologies without adjusting their energy behavior. While these studies provide useful

ex-ante information on the potential impact of policies, they are not able to accurately assess

the actual outcome. The uptake of building standards may be less than expected if they are

poorly enforced or not stringent enough to be binding. Greening et al. (2000) argue that
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the voluntary uptake of energy efficiency innovations is modest, and part of the predicted

efficiency gains are offset by a shift in energy demand through the so-called “rebound effect”.

Considering the labeling regulations, even if the energy efficiency information is provided,

price-driven temptation can lead to purchase of an energy-inefficient appliance with a low

purchase price, in spite of its relatively high operating costs that will be incurred in the

future (Tsvetanov and Segerson, 2013). As a consequence of these, the actual impact of

energy efficiency regulations may well be lower than the expected.

The empirical evidence on the actual impact of these regulations is relatively scarce.

There are only a couple of studies investigating the “actual” effects of building standards

on residential energy consumption. Using a panel of 48 US states from 1970 to 2006,

Aroonruengsawat et al. (2012) analyze the impact of the introduction of state level building

codes. They find that the states, which adopted building codes, have experienced a

reduction in electricity use by around 3-5 percent in 2006. In a recent study, Jacobsen

and Kotchen (2013) find that the introduction of stricter building codes in Florida in 2002

has generated a 4 percent reduction in electricity use and 6 percent reduction in gas use for

the dwellings that are constructed after the implementation of these regulations. As far as

we know, there is not any study available in the literature, which investigates the actual

impact of energy labeling schemes on residential energy use. Many ex-post evaluations of

appliance labeling programs have focused on consumer awareness of the label and have not

explicitly examined the impact of these programs on actual behavior (Vine et al., 2001).

Our study contributes to this literature by using actual data from a sample of EU

countries and analyzing the impact of common policy indicators that are varying across

these countries and over time. We explore and examine the time series of the largest real

estate sector, the residential market across 13 EU countries (Austria, Belgium, Denmark,

France, Finland, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, and the

UK) using three decades of data. We analyze the importance of various factors identified

by the available literature; income, energy prices, demography and climate. The main

contribution of our paper, however, lies in our analysis of the impact of two distinct types

of energy efficiency policies – the mandatory disclosure of energy labels for household

appliances and the stringency of building standards.
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Residential energy use can be mainly separated into two main components based on

the purpose of use: the energy used for space heating and the energy used by household

appliances (including lighting). We assume that non-electricity is mainly used for the first

and electricity is mainly used by household appliances and lighting.2 We track residential

electricity and non-electricity energy consumption separately, as these are covered by

different type of energy efficiency regulations. In order to examine the impact of building

standards on non-electricity energy consumption, we developed a policy indicator based

on the evolution of national U-value requirements, the measure for the thermal quality

of construction materials in new construction. As these requirements vary over time, we

are able to identify the impact of the building codes on residential energy consumption,

while controlling for unobserved country-specific factors. Similarly, we constructed a

policy indicator representing the extent of the mandatory labeling regulations. As the EU

governments gradually increased the product coverage of the labeling schemes, we are able

to identify the influence of the labeling requirements on residential electricity consumption.

Our results show that energy efficiency labeling policies in the appliance market and

stricter building standards lead to significant reductions in residential energy consumption.

According to the estimation results, if the government introduces mandatory disclosure of

energy labels for an appliance group that represent ten percent of households’ electricity

use, this leads to a decrease in per capita electricity use by around 0.2 percent in the

subsequent years. Similarly, given that U-values proxy the thermal quality of the new

dwellings (the insulation level of outer walls), and is calibrated as an inverse index, which

decreases as the thermal quality improves, we find that a 0.1 unit decrease in the U-value

requirement triggers a lasting 0.3 percent annual decrease in residential non-electricity

energy consumption. We also document that the impact of these regulations is stronger in

countries with higher shares of new appliances and constructions.

The rest of this paper is organized as follows. We first introduce the data and provide

the main statistics for our sample of countries. Section three explains the methodology

employed in the study. In section four, we present our empirical results both for electricity

2In some of the EU countries electricity heating systems are still very common. We take this into
account in the sample selection and the analysis.
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and non-electricity energy consumption, and subsequently examine the validity of these

results. In the final section, we conclude with a summary of our key findings and discuss

their policy implications.

2.2 Data and Descriptive Statistics

Residential energy (electricity or non-electricity) consumption per capita for country i in

year t, cit, can be mainly described as a function of the energy price, pit, per capita income,

yit, annual heating and cooling degree-days as measures of the annual climatological demand

for heating and cooling, hddit, cddit, average demographic characteristics, dit, and the

energy efficiency level of the residential sector, eeit:

cit = f(pit, yit, hddit, cddit, dit, eeit) (2.1)

for i = 1, ..., N and t = 1, ..., T .

An increase in income and/or the demand for heating-cooling are expected to increase

the consumption of residential energy. On the other hand, higher energy prices and

improved energy efficiency are expected to have an opposite impact. Therefore, residential

energy conservation policies are mostly designed in a way to alter these two factors.

Increasing the tax rates on energy consumption, improving the thermal quality of the

dwelling stock and the efficiency level of household appliances are the common policy

instruments that many countries have been implementing over the last three decades.

In this study, we specifically examine the impact of two main energy efficiency

regulations that are common across many EU countries: the stringency of building

standards, and the energy label requirement for household appliances. We analyze the

residential energy consumption by using a panel of 13 EU countries including Austria,

Belgium, Denmark, France, Finland, Germany, Greece, Ireland, Italy, Netherlands,

Portugal, Spain, and the UK, covering the period from 1980 to 2009. The sample is selected

based on the availability of the data, and for the sake of comparability, we excluded the

countries where electricity is used as the main source of residential heating.
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Our dataset is gathered from different sources. We obtained the energy consumption

and tax-included real price data from the International Energy Agency (IEA). OECD

provides the data for the annual Gross Domestic Product (GDP) that is used as a proxy

for the per capita disposable income in the analysis. The series for heating degree-days, and

demographics are obtained from EUROSTAT database. We calculated the annual cooling

degree-days by using the average daily temperature data that is provided by Data Center

of US National Oceanic and Atmospheric Administration (NOAA).3 The policy variables

are constructed based on the information provided by the MURE database and national

sources.4

Figure 2.1 illustrates the cross-country variation of average per capita residential energy

consumption in 2009. The higher level of residential energy use in Northern countries

can be partly explained by the cold climate conditions. Besides that, the differences in

socio-economic conditions and the energy-efficiency level of the residential sector may also

explain the variation in the residential energy use for the countries with similar climate

conditions (e.g., Belgium and the Netherlands). There might also exist some unobserved

country-specific factors generating this variation. Therefore, in order to isolate the impact

of regulations from these unobserved country-specific factors, we pay attention to the

over-time variation instead of cross-country differences.

3According to the EUROSTAT, hdd is calculated as: hdd = 18◦C − Tm if Tm ≤ 15◦C and hdd = 0
if Tm > 15◦C, where Tm is the mean outdoor temperature realized during the day. cdd is calculated as:
cdd = Tm − 18.3◦C if Tm ≥ 18.3◦C and cdd = 0 if Tm < 18, 3◦C. Calculations are executed on a daily
basis and added up to a year.

4See “http://www.muredatabase.org/” for a detailed information about MURE database.
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Figure 2.1: Residential Energy Consumption per Capita across Europe (Kwh, 2009)

Source: International Energy Agency

Residential energy use can be mainly specified as a combination of the energy used

for space heating and the energy used by household appliances (including lighting). Due

to the absence of proper data for these two types of energy use, we approximate these

measures by separating the total residential energy use into two components: electricity

and non-electricity energy consumption. Figure 2.2 exhibits the change in the use of these

two energy sources from 1980 to 2009. For all countries in our sample, per capita residential

electricity consumption has increased over the last three decades. This change might be a

combined result of the socio-economic and technological developments that have drastically

changed household lifestyles. Considering the non-electricity component of residential

energy use, we observe that its use has increased for the Southern countries while it is the

other way around for the Northern countries. The decrease of non-electricity consumption

in Northern countries can be mainly explained by the change of climate conditions and the

10



change in the energy efficiency level of the dwelling stock.5

Figure 2.2: Residential Electrcity and Non-electricity Consumption per Capita

Source: International Energy Agency

According to the ODYSSEE database, in 2008, nearly two-thirds of household energy

consumption in EU-27 countries is used for space heating.6 Therefore, one can expect

a close relationship between climate conditions and the amount of energy consumed by

households. In Figure 2.3, we plot the annual fluctuations in electricity and non-electricity

consumption against heating and cooling degree-days (HDD and CDD). Although there

appears to be some similarity between heating degree-days and non-electricity consumption

volatility, no compelling evidence is provided for a relationship between cooling degree-days

and residential electricity use. This can be expected since electrical cooling systems are

not very common in the sampled European countries.7

5Haas and Schipper (1998) point out that after the substantial decrease in residential energy demand
following the 1973-74 oil crisis, energy demand did not rebound when the energy prices declined considerably
in 1985. They suggest that irreversible efficiency improvements, which took place after the 1973-74 oil crisis,
might be a reason for this moderate change in energy demand in times of declining energy prices.

6See http://www.odyssee-indicators.org/
7According to the data provided by Odyssee database, in 2009, around 16 percent of households in our

sample of EU countries uses air conditioning equipment, while this share is around 83 percent in the US
according to the Residential Energy Consumption Survey (RECS).
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Figure 2.3: Climate Indicators and Residential Energy Consumption per Capita

Source: International Energy Agency & EUROSTAT & NOAA

While there are only a couple of studies in the literature investigating the relationship

between energy efficiency regulations and residential energy consumption, there exist more

which focus on the effect of economic factors, e.g. income and price, as determinants

of residential energy demand. Over the time period we analyze, the average GDP level

in European countries has increased from a level of 22,000 USD to 35,000 USD, and

as pictured in Figure 2.4, the real energy prices have more than doubled over the last

three decades. Economic theory suggests that household income affects residential energy

demand positively, while the reverse is true regarding energy prices (Becker, 1965). Based

on these income and price elasticity assumptions, many countries have implemented energy

taxes as means of reducing consumption levels and carbon emissions. Therefore, in our

analysis, in order to isolate the impact of energy efficiency regulations, we control for the

12



changes in income and energy prices.

Figure 2.4: Residential Energy Prices in Europe

Source: International Energy Agency

Over the last thirty years, many European countries have introduced regulations

targeting the energy efficiency of household appliances and dwellings. In this study, we

empirically estimate the impact of these energy efficiency regulations, and exploit the

over-time variation associated with the implementation and diffusion process. Firstly,

we analyze the impact of the introduction of energy labels on residential electricity

consumption. In 1992, the EU Commission introduced a framework directive on energy

labeling of electric appliances, which was followed by the introduction of implementing

directives targeting specific appliance groups.8 Based on these directives, each country

issued national regulations in the subsequent years. For each country in our sample, we

derived an index indicating the average electricity consumption share (in total residential

electricity use) of appliances that are subject to a mandatory labeling regulation, benefiting

from the over-time variation of the coverage of the labeling regulation.9 This variable takes
8The implementing EU directives are introduced for refrigerators, frozen food storage cabinets, food

freezers and their combinations in 1994, for washing machines and driers in 1995, for dishwashers in 1997,
for lamps in 1998, for air-conditioners and ovens in 2002 and for televisions in 2010.

9Each country implemented the labeling regulations by extending the appliance coverage over time. We
predicted the average electricity usage share of these appliances for each year based on the appliance-specific
energy consumption statistics provided by Dubin and McFadden (1984), and Larsen and Nesbakken (2004)
and the ownership statistics provided by Odyssee database.
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a maximum value of one if all household appliances in the market have to be sold with a

label according to legislations, and takes a minimum value zero if there is no regulation

for the disclosure of energy labels. In Figure 2.5, we present the over-time variation of

the label index and per-capita electricity consumption for each country in our sample of

analysis. Although the general trends look similar, there exist cross-country differences in

the evolution of the label index and electricity use. By exploiting these differences, we aim

to identify the impact of appliance labeling regulations on per-capita residential energy

demand in the following years.

Figure 2.5: Residential electricity Consumption and Coverage of Mandatory Energy Labels

Source: International Energy Agency & MURE Database

As a policy measure targeting the thermal efficiency of new dwellings, we examine the

influence of the stringency of building codes on the energy consumed for heating purpose

(non-electricity energy). The maximum allowable U-value requirement for external walls is

used as a proxy for the stringency of building codes. This U-value is consistently defined as

14



the amount of heat loss through one square meter of the material for one-degree difference

in temperature at the either side of the material.10 The first U-value requirements were

implemented in Northern European countries during the 1960s, and were motivated by

the demand for thermal comfort. After the oil crisis in the early 1970s, many European

countries set or raised U-value requirements in order to reduce the residential energy

consumption and decrease their dependency to oil. Figure 2.6 plots the over-time variation

of the U-value requirements for the external walls of new construction in the sample of

analyzed countries, and clearly shows that the colder Northern European countries have

the strictest U-value requirements.

Figure 2.6: Residential Non-electricity Consumption and U-value Requirements

Source: International Energy Agency & MURE Database

10As an example; one square meter of a standard single glazed window transmits about 5.6 watts of
energy for each degree difference either side of the window and so has a U-Value of 5.6 W/m2. On the
other hand, a double glazed window has a U-value of 2.8 W/m2.
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2.3 Methodology

In order to analyze the dynamics of residential electricity and non-electricity energy

consumption (based on a standard constant elasticity demand function which is specified

in equation 2.1), we propose the following empirical model:

cit = β1pit + β2yit + β3hddit + β4cddit + β5dit + β6eeit + β6itit + αi + εit (2.2)

for i = 1, ..., N and t = 1, ..., T , where cit is the logarithm of per capita residential energy

(electricity or non-electricity) consumption, pit is the logarithm of tax-included real price

(USD/kWh) of the corresponding energy type, yit is the logarithm of income variable that

is proxied by per capita Gross Domestic Product in real terms (USD), hddit and cddit

are the logarithm of annual heating and cooling degree-days.11 We include the share of

elderly (age over 65) in the population, dit, as one of the most important demographic

characteristics expected to affect residential energy consumption, which is also verified

by some of the household level studies (Baker et al., 1989; Brounen et al., 2012). αi

represents the individual country fixed-effects and εit is the error term assumed to be

distributed independently across countries and years. In order to eliminate the unobserved

country fixed-effects, we transform equation (2.2) into a first-difference model. The use of

first-differenced variables also enables us to take the existence of non-stationary variables

into account, which might lead to the estimation of spurious relationships between variables.

The first-difference specification of equation (2.2) can be written as below:

∆cit = γ1∆pit + γ2∆yit + γ3∆hddit + γ4∆cddit + γ5∆dit + γ6∆eeit + ∆εit (2.3)

Our aim in this study is to identify the influence of energy efficiency regulations on

per capita residential energy use. Since the energy efficiency regulations are expected to

influence the energy efficiency level of the residential sector through the construction of

new dwellings and the purchase of new appliances, they are expected to have a cumulative

11Due to the data limitations, we use the unit price of gas as a proxy for the price of non-electricity
energy.
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effect on the energy efficiency level (and on the energy consumption in the subsequent

years). According to this, the impact of policy on residential energy efficiency level can be

described as below:

∆eeit = θ1policyit + θ2∆xit + ∆εit (2.4)

where, depending on the type of energy that is analyzed, policyit denotes either the legal

maximum U-value requirement for the external walls of the new buildings, or the share

of electricity that is used by the appliances that needs to be marketed with an energy

label.12 xit is a vector of potential determinants of energy efficiency, which are also

included in equation (2.3) as control variables (income, energy prices, climate conditions and

demographics). εit represents the error term which captures the unobserved determinants of

the residential energy efficiency. In order to measure the annual impact of energy efficiency

regulations on residential energy consumption, we transform equation (2.3) by replacing

the energy efficiency variable with equation (2.4):

∆cit = γ1∆pit + γ2∆yit + γ3∆hddit + γ4∆cddit + γ5∆dit + γ6policyit + ∆ξit (2.5)

Our estimation methodology is based on the assumption that residential energy efficiency

regulations are independent of the error term (ξit), which captures the unobserved

determinants of residential energy efficiency (εit) and the other unobserved factors that

might influence energy consumption (εit). Unfortunately, due to the data limitations, we

are not able to test the validity of this assumption. However, we check the robustness of our

findings by applying different approaches. First, we examine the impact of these regulations

separately for sub-samples of countries having high or low shares of new appliances and new

construction. We expect a larger impact of energy efficiency regulations for the countries

with higher shares of new appliances and newly constructed dwellings. Second, as the

12In this model, we assume that the annual impacts of energy efficiency policies are constant during
our period of analysis. This assumption might seem unrealistic in case of a longer time horizon. As the
efficiency levels of the dwelling and appliance stocks increase over time, we can expect a decreasing impact
of the regulations. That is why, the policy coefficients need to be interpreted as the average annual impacts
of legislations between 1980 and 2009 for our sample of countries.
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over-time change in the usage of heating systems might be correlated with the evolution

of building standards, we include the share of electrical and gas heating systems in the

analysis of non-electricity consumption as control variables.

2.4 Empirical Results

We first estimate the model in equation (2.5) to investigate the impact of labeling

regulations on per capita residential electricity usage.13 The first column of Table 2.1

reports the estimation results for the 12 countries in our sample.14 Our results imply that

the introduction of mandatory energy efficiency certificates for household appliances has

a significant negative impact on residential electricity use. According to the estimated

coefficient, if the government introduces mandatory disclosure of energy labels for the

appliances that represent ten percent of households’ electricity use, this leads to an annual

decrease in per capita electricity use by around 0.2 percent in the subsequent years.

This result can be explained by policy-induced changes in the demand and supply of

energy-efficient products in the market. Given that consumers are willing to pay for

energy-efficient products conditional on the provision of information (Galarraga et al.,

2011), the mandatory disclosure of information on energy efficiency is expected to lead to

a shift in the supply of more energy-efficient appliances, and thus lead to lower residential

13We also estimate the linear regression model based on levels instead of a first-differenced variables.
In this model, we include country fixed-effects and country-specific linear time trends. We provide the
estimation results in Appendix Table 2.A.1. The estimated coefficients of policy variables are significantly
larger compared to first-differenced model. However, these coefficients are not easy to interpret as they
do not represent the annual impact of the regulations. They indicate the average difference in per capita
energy use between the time periods with different regulations. That is why, assuming that the policies have
cumulative impacts, we prefer to use first-differenced model which provides us coefficients that represent
the average annual impacts of legislations during our period of analysis.

14Due to the high share of electrical heating systems, and the extreme climate conditions, Finland has
a relatively much higher per-capita electricity consumption level compared to the other EU countries in
our sample (see Figure 2.2). Therefore, in order to avoid any distorting effects associated with the heating
demand, we do not include Finland in our analysis of electricity. In Appendix Table 2.A.2, we also report
the estimation results for electricity consumption including Finland. We do not find a significant difference
in the estimated policy impact compared to the estimate based on the sample without Finland.
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electricity use.15

Table 2.1: First-Difference Estimation Results

Electricity Non-Electricity

Coverage of Label Policy (between 0 and 1) -0.019***
[0.006]

Maximum U-value Requirement for External Walls 0.032***
[0.010]

∆Ln(Price) -0.015 0.018
[0.017] [0.033]

∆Ln(GDP) 0.216** 0.274
[0.086] [0.172]

∆Ln(Heating Degree-days) 0.122*** 0.420***
[0.024] [0.049]

∆Ln(Cooling Degree-days) 0.002
[0.002]

∆Share of population over age 65 0.029** -0.003
[0.012] [0.026]

Constant 0.020*** -0.024***
[0.003] [0.009]

R-square 0.116 0.203
Number of Observations 348 348

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
“Coverage of Label Policy” takes a maximum value of one if all household appliances in the market have to be sold with
a label according to legislations, and takes a minimum value zero if there is no regulation for the disclosure of energy
labels.
Since Finland has a relatively much higher per-capita electricity consumption level compared to the other EU countries
in our sample, we do not include Finland in our analysis of electricity.
We do not include Greece in our analysis of non-electricity energy consumption as there is no available data indicating
the over-time change in national U-value requirements.

We also find that electricity consumption is significantly affected by income (one percent

increase in income leads to a 0.22 percent increase in per capita residential electricity use),

a result which is plausible in light of previous studies for developed countries [the income

elasticities reported by the available literature are in the range of: 0.2-0.4 for the G7
15The policy results, which are provided in Table 2.1, are based on the assumption that the policy

indicators are not correlated with potential non-linear trends in unobserved determinants of residential
electricity use. In order to examine how the results differ when we control for common year-specific effects,
we introduce year fixed-effects in our model. In Appendix Table 2.A.3, when we include year fixed-effects
in our estimations, the impact of label policy becomes statistically insignificant, while the coefficient of
building standards remains significant. This indicates that the label policy might be correlated with other
non-linear time-varying common factors that affect residential electricity use. Another explanation might
be; as the evolution of coverage of label policy is very similar across our sample of countries, the impact of
over-time variation in the label policy is mostly captured by the year fixed-effects. Since both explanations
might be valid, we should be cautious while interpreting the estimated impact of label policy.
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countries by Narayan et al. (2007), 0.5 for the U.S. by Silk and Joutz (1997)]. Within our

sample, the price elasticity is found to be -0.15 (although not significant) which is within the

range of previous findings (between -0.04 and -2.25) reported by Espey and Espey (2004).16

We also find that the higher the number of heating degree-days, the higher the residential

use of electricity. According to the estimated coefficient, an increase of heating degree-days

of one percent results in an increase in residential energy demand of 0.12 percent. This

effect is probably caused by the use of electrical heating systems, which is more intense

during cold days. Considering the household cooling demand, we find that the number of

cooling degree-days does not have a significant impact on residential electricity use for our

sample of EU countries where the use of air conditioning is scarce. Finally, we document

that as the share of elderly individuals in the population increases by one percentage point,

per capita electricity consumption increases by around three percent, which is in line with

the findings of Barnes et al. (1981) and Brounen et al. (2012). Elderly people are more

inclined to spend time at home and use appliances during this time.17

In Column 2 of Table 2.1, we report the results for residential non-electricity energy

consumption.18 Here, we find significant evidence for the effect of stricter building standards

on per capita residential energy consumption. The higher the allowable maximum U-value

requirement for external walls, the higher the non-electricity energy consumption. Given

that U-values proxy the thermal quality of the new dwellings (the insulation level of
16The literature also identifiy a long-run relationship between residential electricity consumption, income

and energy prices (Narayan et al., 2007). Although our main objective in this study differs from this
literature, we also apply the cointegration framework (described in Apenndix B) in order to see how the
estimation results differ. According to the test statistics provided in Table 2.B.3, there is not a significant
cointegrating relationship between non-stationary variables. Assuming that there exist a cointegrating
relationship between consumption, income and energy prices as it is the case in Narayan et al. (2007), we
estimate an error correction model. The results that are reported in Table 2.B.4 confirm that there is not a
long run equilibrium between these variables, as the coefficients of the error correction terms are positive.
Considering the other coefficient estimates, we see that there is a positive long run impact of income on
residential electricity use. The results also imply that households respond to short run price changes in
electricity. Although the signs of the coefficients of policy variables are in line with the OLS results, they
are not statistically significant.

17We also examine whether the share of children and the share of female has a significant impact
on residential energy use. The results provided in Appendix Table 2.A.4 imply that share of children
significantly reduces the electricity use, while there is no evidence for the impact of share of females and
elderly in the population. These results needs to be interpreted carefully as the population share of children
and elderly are highly correlated.

18We do not include Greece in our analysis of non-electricity energy consumption as there is no available
data indicating the over-time change in national U-value requirements.
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outer walls), and is calibrated as an inverse index, which decreases as the thermal quality

improves, this result is both intuitive and significant. We find that a 0.1 unit decrease in the

U-value requirement results in a 0.3 percent annual decrease in residential non-electricity

energy consumption in the subsequent years. This impact is close to the engineering

expectations. For our sample of EU countries, the average annual dwelling construction rate

during the period of analysis is nearly three percent, and the average U-value requirement in

1980 is around 1 W/m2. We can assume that a 0.1 unit decrease in the U-value requirement

generates a 10 percent reduction in the required heating energy for the new dwellings built

after 1980 (ignoring the rebound effect). Multiplying this with the average rate of new

dwellings entering to the dwelling stock, we can expect that the regulation leads to a

0.3 percent annual reduction in the total residential heating energy consumption. The

prevalence of rebound and the spillover effects will have opposite effects on this expected

impact.

In line with our assumption that non-electricity energy is mainly used for space heating

purpose, we find stronger effects of heating degree-days on residential non-electricity energy

consumption. According to the estimated coefficient, if the number of heating degree-days

increases by one percent, per capita non-electricity energy consumption increases by around

0.4 percent. Our estimation results imply that non-electricity energy consumption is not

significantly associated with contemporaneous income and price changes. We suspect that

there might be a delay in households’ response to changes in income and energy prices.

As also pointed out by Ito (2014), households may receive energy bills at the end of

billing periods, and thus they may respond to lagged prices rather than contemporaneous

prices. It is also likely that energy prices have a lagged impact on residential energy

efficiency investments (purchase of energy-efficient appliances and investment on energy

efficiency retrofits), and thus on energy consumption. On the other hand, increased

income might have a delayed positive effect on energy consumption through the purchase

of additional appliances and/or the switch to more energy-consuming heating systems

that provide higher thermal comfort (switch from one-room heating equipment to central

heating systems). Therefore, in order to control for the lagged effects of income and

energy prices, we estimate the same model by including one-year lagged variables instead of
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contemporaneous variables. According to the results provided in Table 2.2, non-electricity

energy consumption is significantly affected by the lagged price and income changes. These

results imply a price elasticity of around six percent and an income elasticity of around 70

percent, which are significantly larger than the elasticities that we reported for electricity

usage. The other coefficient estimates are comparable to the estimates that are provided

in Table 2.1. In the subsequent analyses, we continue to use the lagged price and income

measures as control variables.19

Table 2.2: First-Difference Estimation Results: Including Laged Price and GDP

Electricity Non-Electricity

Coverage of Label Policy (between 0 and 1) -0.023***
[0.006]

Maximum U-value Requirement for External Walls 0.029***
[0.010]

Lag.∆Ln(Price) 0.000 -0.059*
[0.017] [0.033]

Lag.∆Ln(GDP) 0.190* 0.733***
[0.100] [0.203]

∆Ln(Heating Degree-days) 0.109*** 0.407***
[0.023] [0.048]

∆Ln(Cooling Degree-days) 0.002
[0.002]

∆Share of population over age 65 0.020* -0.007
[0.012] [0.026]

Constant 0.023*** -0.028***
[0.004] [0.009]

R-square 0.116 0.203
Number of Observations 348 348

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
“Coverage of Label Policy” takes a maximum value of one if all household appliances in the market have to be sold with
a label according to legislations, and takes a minimum value zero if there is no regulation for the disclosure of energy
labels.
Since Finland has a relatively much higher per-capita electricity consumption level compared to the other EU countries
in our sample, we do not include Finland in our analysis of electricity.
We do not include Greece in our analysis of non-electricity energy consumption as there is no available data indicating
the over-time change in national U-value requirements.

19Additional analysis show that our findings regarding the impacts of regulations do not depend on
whether lagged or current price and income variables are used as control variables. We also test the
robustness of our policy results to the use of lagged policy measures, as there might be a delay in the
implementation of regulations. When we include the lagged values of the policy measures instead of
current variables, the estimated impact of regulations is found to be not significantly different from the
previous estimates.
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In order to verify the validity of our policy findings, we also examine the impact of

regulations separately for countries having high and low shares of new appliances and

construction. If we are able to identify the impact of these regulations, we expect to find

a stronger impact for the countries where appliances and dwelling stock are rather new.

We first examine the impact of labeling regulations on residential electricity consumption.

Using the appliance ownership data provided by Odyssee, we separate our sample of

countries into two groups based on the electricity consumption share of new appliances

that are purchased by households after 2000.20 Our results (see Table 2.3) imply that the

impact of energy labeling schemes is indeed stronger (although not significantly different)

for the countries in which households’ adoption rate of new appliances between 2000-2009

is larger than the sample median.

20Odyssee provides annual data on the average share of appliance ownership for each type of appliance for
each country starting from 2000. Using this database and the statistics provided by Dubin and McFadden
(1984), and Larsen and Nesbakken (2004), we calculated the expected change in households’ average
electricity consumption from 1999 to 2009 for each country, which results from the purchase of new
appliances. The median expected change in electricity consumption for our sample of countries is 812
KWh. Based on this median value, we divide the countries in our sample into two sub-samples. The
countries for which the expected change is higher than the median level is considered as the countries
having a high level of new appliance stock.
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Table 2.3: First-Difference Estimation Results: Low-High Share of New Appliances

Low High

Coverage of Label Policy (between 0 and 1) -0.017** -0.029***
(0.008) (0.008)

Lag.∆Ln(Price) -0.026 0.024
(0.025) (0.024)

Lag.∆Ln(GDP) 0.065 0.237**
(0.187) (0.117)

∆Ln(Heating Degree-days) 0.120*** 0.098***
(0.035) (0.032)

∆Ln(Cooling Degree-days) 0.001 0.002
(0.004) (0.002)

∆Share of population over age 65 0.014 0.025
(0.018) (0.016)

Constant 0.021*** 0.025***
(0.005) (0.005)

R-square 0.096 0.154
Number of Observations 168 168

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Electricity consumption per capita).
We separate our sample of countries into two groups based on the electricity consumption share of new appliances that
are purchased by households after 2000.
“Coverage of Label Policy” takes a maximum value of one if all household appliances in the market have to be sold with
a label according to legislations, and takes a minimum value zero if there is no regulation for the disclosure of energy
labels.
Since Finland has a relatively much higher per-capita electricity consumption level compared to the other EU countries
in our sample, we do not include Finland in our analysis of electricity.

We employ a similar approach to examine the validity of our findings regarding the

impact of building standards. We assign the countries into two sub-samples based on their

average annual construction rates between 1980-2009. According to statistics provided by

Entranze Project, the median share of dwellings constructed during this time period is 33

percent of the existing dwelling stock for the countries in our sample.21 The countries having

a rate above this value are considered as high-construction countries and the countries

having a rate below this value are considered as low-construction countries. The results

that are provided in Table 2.4 indicate that the building standards have a larger (although

not significantly different) impact on residential energy use in high-construction countries.

For the low-construction countries, the estimated impact of building standards is lower and

21See http://www.entranze.enerdata.eu/
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statistically insignificant.22

Table 2.4: First-Difference Estimation Results: Low-High Share of New Constructions

Low High

Maximum U-value Requirement for External Walls 0.008 0.031**
[0.014] [0.015]

Lag.∆Ln(Price) -0.098*** -0.021
[0.033] [0.055]

Lag.∆Ln(GDP) 0.556** 0.763***
[0.269] [0.282]

∆Ln(Heating Degree-days) 0.705*** 0.209***
[0.055] [0.072]

∆Share of population over age 65 -0.025 0.053
(0.022) (0.057)

Constant -0.009 -0.038**
[0.011] [0.015]

R-square 0.541 0.139
Number of Observations 168 168

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Non-electricity energy consumption per capita).
We assign the countries into two sub-samples based on their average annual construction rates between 1980-2009. The
countries having a rate above median construction rate are considered as high-construction countries and the countries
having a rate below this value are considered as low-construction countries.
We do not include Greece in our analysis of non-electricity energy consumption as there is no available data indicating
the over-time change in national U-value requirements.

Finally, as a robustness check, we also consider the transition between energy sources

that are used for heating purposes. In some of the EU countries, the use of electricity as

a heating source has varied over time, which led to a change in residential non-electricity

consumption. In case this transition is correlated with the evolution of building standards,

the estimated impact of building standards might be biased. Therefore, we include the

over-time variation in the shares of heating systems as control variables in the analysis

of non-electricity energy consumption.23 According to the results provided in Table 2.5,

22Since there might be some differences in the energy consumption dynamics of low and high income
countries, we also examine these countries separately based on the median GDP level in 1980. According to
results provide in Appendix Table 2.A.5, the impact of building standards is only significant in low-income
countries, which might be associated to the higher construction rates in these countries. We find that the
impacts of price and heating degree days on residential non-electricity consumption is larger in high-income
countries. This might be related to the higher heating demand in northern countries, which are included
in the sample of high-income countries.

23Odyssee provides data on the shares of electrical and gas heating systems that are used by the
households. However, this data is not available for all years and countries in our sample.
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the estimated impact of building standards does not differ when we include the share of

electrical and gas heating systems. 24

Table 2.5: First-Difference Estimation Results: Controling for Share of Heating Systems

Dep. Variable: ∆Ln(Non-electricity Consumption per Capita) (1) (2)

Maximum U-value Requirement for External Walls 0.032*** 0.032***
[0.011] [0.011]

∆Share of Dwellings with Electricity Heating -0.522 -0.530
[0.338] [0.346]

∆Share of Dwellings with Gas Heating 0.034
[0.354]

Lag.∆Ln(Price) -0.068* -0.071*
[0.039] [0.040]

Lag.∆Ln(GDP) 0.267 0.259
[0.222] [0.226]

∆Ln(Heating Degree-days) 0.503*** 0.493***
[0.052] [0.053]

∆Share of population over age 65 0.017 0.018
[0.029] [0.029]

Constant -0.022** -0.022**
[0.009] [0.010]

R-square 0.445 0.432
Number of Observations 162 157

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Non-electricity energy consumption per capita).
We do not include Greece in our analysis of non-electricity energy consumption as there is no available data indicating
the over-time change in national U-value requirements.
The number of observations decreases considerably as the data on heating equipment is missing for some countries and
years.

2.5 Conclusions

Energy efficiency improvements in the residential sector can play an essential role in the

reduction of global carbon emissions. Accordingly, over the last three decades, many

countries have introduced regulations targeting the energy efficiency of the residential

sector. Among these, stricter building codes and mandatory disclosure of energy efficiency

information for household appliances have been the most common policy instruments.

24In Appendix, Table 2.A.6, we include the share of electricity heating systems as a control variable
in our model for electricity consumption. The coefficient of share of electricity heating systems is not
statistically significant.
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However, whether these policies have been effective in reducing the total residential energy

consumption is still unclear. Thus far, the impact of these energy efficiency regulations

has been mostly studied by use of the so-called bottom-up modeling approach, in which

market agents are assumed to readily adopt new standards without adjusting their energy

behavior. While these studies provide useful ex-ante information on the potential impact of

policies, they have some limitations to accurately assess the actual outcome. Their results

might be misleading if the policies are not perfectly adopted by the target group or if

households change their behavior as a response to the prospective efficiency improvements.

In this paper, using actual data from a sample of thirteen EU countries, we analyze the

impact that energy efficiency policy has had on household energy consumption during the

period 1980-2009. We measure and track the time variation of labeling requirements for

household appliances and the stringency of building standards, and study their impact on

the per capita residential energy use. We examine the electricity and non-electricity energy

consumption separately, as these are generally used for different purposes (appliances and

heating) and are subject to different energy efficiency policies.

Our results underline the importance of residential efficiency policies in reaching the EU

policy targets regarding primary energy and CO2 emissions. We find that a ten percent

increase in the coverage of mandatory labeling regulation (in terms of energy consumed by

household appliances) results in a 0.2 percent annual reduction in the per capita residential

electricity use in subsequent years. For policy makers, this result may help in stimulating

more extensive dissemination of energy labels. Similarly, our results suggest that stricter

building codes lead up to lower residential energy consumption. A 0.1 unit decrease in the

maximum allowable U-value, which corresponds to a ten percent reduction in the energy

required to heat a building constructed in 1980, leads up to a 0.3 percent annual decrease in

total non-electricity energy use in the following period. This confirms that the residential

sector in EU countries has a high potential for saving energy by lowering the heating

demand through insulation measures. We also document that, in markets where the share

of new appliance and new construction is high, the effects of these regulations are stronger.

Although we provide some evidence on the impact of residential energy efficiency

regulations on actual energy consumption, we are not able to explore the underlying
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mechanism through which the regulations influence the residential energy use. Detailed

information on market agents’ preferences, decisions and actions would allow us to further

disentangle the influence of these regulations. This is left for future research.
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Appendix

2.A Suplementary Tables

Table 2.A.1: OLS Estimation Results: Models in Levels

Electricity Non-Electricity

Coverage of Label Policy (between 0 and 1) -0.120***
[0.025]

Maximum U-value Requirement for External Walls 0.122**
[0.052]

Ln(Price) -0.019 -0.045*
[0.020] [0.027]

Ln(GDP) 0.514*** 0.746***
[0.078] [0.144]

Ln(Heating Degree-days) 0.113** 0.320***
[0.048] [0.087]

Ln(Cooling Degree-days) 0.003
[0.004]

Share of population over age 65 -0.003 -0.023
[0.007] [0.014]

Constant 0.020*** -0.024***
[0.003] [0.009]

Country fixed-effects Yes Yes
Country-specific liner time trends Yes Yes

R-square 0.980 0.966
Number of Observations 360 360

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: Ln(Consumption per capita).
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Table 2.A.2: First-Difference Estimation Results: Sample Including Finland

Electricity

Coverage of Label Policy (between 0 and 1) -0.022***
[0.006]

∆Ln(Price) -0.016
[0.016] ]

∆Ln(GDP) 0.173**
[0.079]

∆Ln(Heating Degree-days) 0.137***
[0.023]

∆Ln(Cooling Degree-days) 0.001
[0.002]

∆Share of population over age 65 0.028**
[0.012]

Constant 0.023***
[0.003] ]

R-square 0.128
Number of Observations 377

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
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Table 2.A.3: First-Difference Estimation Results: Including Year Fixed-effects

Electricity Non-Electricity

Coverage of Label Policy (between 0 and 1) 0.021
[0.023]

Maximum U-value Requirement for External Walls 0.031***
[0.011]

∆Ln(Price) -0.022 0.021
[0.029] [0.045]

∆Ln(GDP) 0.103 0.401
[0.125] [0.258]

∆Ln(Heating Degree-days) 0.047 0.263***
[0.034] [0.073]

∆Ln(Cooling Degree-days) 0.000
[0.002]

∆Share of population over age 65 0.040*** -0.012
[0.012] [0.028]

Year fixed-effects Yes Yes

Constant 0.022* -0.046*
[0.011] [0.024]

R-square 0.260 0.312
Number of Observations 348 348

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
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Table 2.A.4: First-Difference Estimation Results: Additional Demographic Controls

Electricity Non-Electricity

Coverage of Label Policy (between 0 and 1) -0.012*
[0.006]

Maximum U-value Requirement for External Walls 0.030***
[0.011]

∆Ln(Price) 0.007 -0.047
[0.017] [0.031]

∆Ln(GDP) 0.120 0.818***
[0.101] [0.199]

∆Ln(Heating Degree-days) 0.099*** 0.386***
[0.023] [0.046]

∆Ln(Cooling Degree-days) 0.002
[0.002]

∆Share of population over age 65 0.009 -0.000
[0.012] [0.025]

∆Share of population below age 15 -0.036*** 0.007
[0.009] [0.020]

∆Share of female -0.023 0.054
[0.048] [0.103]

Constant 0.013*** -0.031***
[0.004] [0.009]

R-square 0.150 0.256
Number of Observations 326 326

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
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Table 2.A.5: First-Difference Estimation Results: High-Low Income Countries

Electricity Non-electricity

Low-income High-income Low-income High-income

Coverage of Label Policy (between 0 and 1) -0.024*** -0.029***
[0.008] [0.009]

Maximum U-value Requirement for External Walls 0.030** 0.006
[0.013] [0.020]

Lag.∆Ln(Price) -0.030 0.008 -0.008 -0.133***
[0.021] [0.025] [0.048] [0.041]

Lag.∆Ln(GDP) 0.149 0.062 0.719*** 0.548
[0.100] [0.214] [0.243] [0.359]

∆Ln(Heating Degree-days) 0.101*** 0.164*** 0.144** 0.728***
[0.029] [0.037] [0.067] [0.062]

∆Ln(Cooling Degree-days) 0.002 0.002
[0.002] [0.003]

∆Share of population over age 65 0.011 0.018 0.036 -0.031
[0.017] [0.018] [0.043] [0.030]

Constant 0.032*** 0.021*** -0.038*** -0.005
[0.005] [0.006] [0.014] [0.015]

R-square 0.124 0.160 0.124 0.499
Number of Observations 196 168 168 168

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
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Table 2.A.6: First-Difference Estimation Results: Including Heating Type

Electricity

Coverage of Label Policy (between 0 and 1) -0.008
[0.007]

∆Share of Dwellings with Electricity Heating 0.302
[0.203]

∆Ln(Price) -0.020
[0.023]

∆Ln(GDP) 0.292**
[0.126]

∆Ln(Heating Degree-days) 0.088***
[0.031]

∆Ln(Cooling Degree-days) 0.002
[0.002]

∆Share of population over age 65 0.302
[0.203]

Constant 0.011**
[0.005]

R-square 0.100
Number of Observations 181

Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
The number of observations decreases considerably as the data on heating equipment is missing for some countries and
years.
Finland is included in the sample as we control for share of electricity heating.
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2.B Cointegration Analysis

We also estimate our model using recently developed panel data econometric techniques,

which allow us to deal with the existence of non-stationary variables, with heterogeneous

effects, and with the cross sectional dependence across panel members. We first test for the

existence of cross-country dependence of time series. In light of the results of this test, we

apply the proper panel unit root tests to identify the non-stationary variables. As a next

step, we test for the existence of any cointegrating relationship among the non-stationary

variables. Finally, assuming the existence of a long-run cointegrating relationship, we

estimate the long-run and short-run effects.

2.B.1 Cross Section Dependence Tests

Due to the geographic proximity and the socioeconomic connections which can lead to

common shocks or spillover effects, there is a possibility that the variables are correlated

across countries. This correlation should be taken into account in the test and estimation

procedures, since it can lead to imprecise estimates or identification problems. Therefore,

as a first step in the analysis, we examine the existence of this correlation by using the

cross-sectional dependence (CD) test proposed by Pesaran (2004), which tests the null

hypothesis of independence of variables across the panel members. The test is based on an

average of all pairwise correlations of the raw variables. The CD statistic can be defined

as:

CD =
√

2T
N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij

→ N(0, 1) (2.B.1)

where ρ̂ij is the estimate of the pairwise correlation.

Table 2.B.1 reports the CD test statistics and the corresponding p-values for the

variables we use. According to these results, the independence hypothesis is rejected for

all of variables. Therefore, cross sectional dependence should be taken into account in the

further steps of the analysis.
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Table 2.B.1: Cross Section Dependence Tests

Variable CD-test p-value Correlation

Ln (Non-electricity consumption per capita) 4.83 0.000 0.393
Ln (Electricity consumption per capita) 35.57 0.000 0.799
Ln (Gas price) 35.21 0.000 0.791
Ln (Electricity price) 37.25 0.000 0.837
Ln (GDP) 43.21 0.000 0.971
Ln (Heating degree-days) 29.89 0.000 0.672
Ln (Cooling degree-days) 17.35 0.000 0.691
Share of population over age 65 30.55 0.000 0.454
Maximum U-value requirement for external walls 33.60 0.000 0.755
Coverage of label policy 42.16 0.003 0.947

Notes:
Under The null hypothesis of cross-section independence CD N(0,1)

2.B.2 Unit Root Tests

As a next step in the analysis, we examine whether we are dealing with non-stationary

variables in our demand model. This we test using the alternative unit root method of

Pesaran (2007), which accounts for the cross sectional dependence:

∆yit = αi + β1iyi,t−1 + β2iȳt−1 + β3i∆ȳt−1 + εit (2.B.2)

where i represents the panel member, t is the time period and ȳt−1 is the cross section

average of the lagged variable and εit is the error term. The test statistic is based on the

mean of individual Augmented Dickey Fuller (ADF) t-statistics of each unit in the panel.

To eliminate the cross dependence, the standard ADF regressions are augmented with the

cross section averages of lagged levels and first-differences of the individual series. The null

hypothesis claims that all series are non-stationary.

Table 2.B.2 reports the panel unit root test results based on the specifications with and

without trend variable. The test statistics suggest that most of the variables, except the

heating degree days, cooling degree days and the coverage of label policy contain unit roots.

On the other hand, the hypothesis of unit root is rejected for all of the first-differenced

variables except share of elderly. Thus, we can conclude that the consumption, prices, GDP

and U-value variables are integrated of order one, which leads us to examine the existence
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of any long run equilibrium relationship between these variables.

Table 2.B.2: Panel Unit Root test (CIPS)

Raw Data First-differenced Data

Without trend With trend Without trend With trend

Variables Zt-bar p-value Zt-bar p-value Zt-bar p-value Zt-bar p-value

Ln (Non-electricity cons.) -1.187 0.118 1.367 0.914 -7.878 0.000 -6.456 0.000
Ln (Electricity cons.) -1.193 0.117 0.498 0.691 -5.563 0.000 -3.706 0.000
Ln (Gas price) -0.429 0.334 2.146 0.984 -6.379 0.000 -6.033 0.000
Ln (Electricity price) 0.807 0.790 -1.126 0.130 -5.771 0.000 -4.580 0.000
Ln (GDP) -2.237 0.013 0.262 0.603 -3.977 0.003 -2.852 0.002
Ln (Heating degree-days) -3.933 0.000 -2.116 0.017 -7.025 0.000 -5.092 0.000
Ln (Cooling degree-days) -2.278 0.011 -2.499 0.006 -11.379 0.000 -9.765 0.000
Share of elderly 1.145 0.874 2.427 0.992 o.990 0.839 1.604 0.946
Maximum U-value requirement -0.981 0.163 1.703 0.956 -7.302 0.000 -6.853 0.000
Coverage of label policy -9.087 0.000 -7.876 0.000 -10.052 0.000 -8.109 0.000

Notes:
Under the null hypothesis series are I (1).
CIPS test assumes cross-section dependence is in form of a single unobserved common factor.
Number of lags included in ADF regressions is (2).

2.B.3 Cointegration Tests

After confirming that there exist unit roots in some of the series, we check whether there

is a long run equilibrium relationship between these variables. For this purpose, we benefit

from four different panel cointegration test statistics proposed by Westerlund (2007), which

are based on the test of error correction. Considering the following error correction model

where all variables are I(1),

∆yit = δidt + θi(yi,t−1 − βixi,t−1) +
pi∑
j=1

λij∆yi,t−j +
pi∑

j=−qi

γij∆xi,t−j + eit (2.B.3)

the θi determines the speed at which the system corrects back to the equilibrium relationship

(yi,t−1 − βixi,t−1)after a sudden shock. If θi < 0 , then there exist error correction which

implies that yit and xit are cointegrated; if θi = 0 , then the null hypothesis of no

cointegration for all panel members is true. The statement of the alternative hypothesis

depends on the homogeneity assumption regarding the error correction parameter θi. Two

of the proposed tests which are named as “Group-Mean Tests” assume heterogeneity of θ

while the other two, called “Panel Tests”, assume that θi is equal for all panel members.

In all of these test procedures, the cross-section dependence is accounted for by the use of
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bootstrap approach of Westerlund (2007).

After carrying out the cointegration tests for different combinations of the

non-stationary variables, we concluded that there do not exist a long run equilibrium

relationship between any group of non-stationary variables. Table 2.B.3 reports the results

of Westerlund (2007) panel cointegration tests for residential energy consumption and the

economic factors (GDP and energy prices). According to these results, both mean-group

test statistics Gt and Ga statistics verify the null hypothesis of no cointegration between

variables.

Table 2.B.3: Error Correction Model Panel Cointegration Tests

“Ln(Gas Cons.)& Ln(Gas Price)& Ln(GDP)” “Ln(Elec. Cons.)& Ln(Elec. Price)& Ln(GDP)”

Statistic Value Z-value P-value Robust P-value Value Z-value P-value Robust P-value

Gt -1.321 0.201 0.580 0.333 -1.312 0.231 0.591 0.300
Ga -5.071 0.477 0.683 0.347 -3.276 1.614 0.947 0.497
Pt -4.262 -0.765 0.222 0.237 -3.526 -0.211 0.417 0.313
Pa -3.478 -0.692 0.244 0.267 -2.225 -0.193 0.577 0.310

Notes:
Bootstrapping critical values under H0: no cointegration
Number of lags included in ECM is (2).

2.B.4 Estimation Methodology and Results

Assuming that long run stable relationships between variables exist, we now employ an

error correction model of which the parameters are estimated using the Mean Group (MG)

estimator as it is developed by Pesaran et al. (1997, 1999). This estimator allows for

heterogeneous short run and long run dynamics. The error correction parameterization of

our energy demand model can be written as;

∆ln(cit) = θi [ln(ci,t−1)− β0i − β1iln(yit)− β2iln(pit)] + λ1i∆ln(yit) + λ2i∆ln(pit)

+λ3i∆ln(hddit) + λ4i∆ln(cddit) + λ5i∆dit + λ6ipolicyit + εit

(2.B.4)

where θi is the error correction speed of adjustment parameter, β1i and β2i are the long run

income and price elasticities respectively.

The results that are reported in Table 2.B.4 indicate that there is not a long run

equilibrium between energy prices, income and energy consumption, as the coefficients of
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the error correction terms are positive. Assuming that these variables are cointegrated, we

find that there is a positive long run relationship between income and electricity use. The

results also imply that households respond to short run price changes in electricity. The

signs of the coefficients of policy variables are in line with the previous results although

statistically insignificant.

Table 2.B.4: “Mean Group” Estimation Results

Electricity Non-electricity

Long run Estimates

Ln(Price) 0.024 0.225
[0.125] [0.142]

Ln(GDP) 0.837** 0.239
[0.368] [0.261]

Short run Estimates

EC 0.308*** 0.383***
[0.058] [0.064]

∆ Ln( Price) -0.031* -0.019
[-0.016] [-0.036]

∆ Ln(GDP) -0.152 0.297
[0.155] [0.206]

∆ Ln(Heating Degree-days) 0.146*** 0.467***
[0.034] [0.080]

∆ Ln(Cooling Degree-days) -0.005
[0.010]

∆ Share of population over age 65 0.008 -0.019
[0.027] [0.044]

Coverage of label policy (between 0 and 1) -0.025
[0.028]

Maximum U-value Requirement for External Walls 0.086
[0.094]

Observations 348 348
Notes:
* P<0.05. ** P<0.01. *** P<0.001
Dependent variable: ∆Ln(Consumption per capita).
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Chapter 3

Energy Efficiency and Household

Behavior: The Rebound Effect in the

Residential Sector

3.1 Introduction

Energy consumption in the durable building stock has, once again, returned to the agenda

of policy makers. Around the world, regulatory measures are introduced to reduce and

mitigate the harmful effects of climate change that result, in part, from the carbon emission

externality of energy consumption in buildings. While stricter building codes seem to have

reduced the energy consumption of newly constructed dwellings (Jacobsen and Kotchen,

2013), codes as a policy instrument alone may be insufficient to meet broader energy

reduction targets for the built environment (Majcen et al., 2013). Irrespective of the

effectiveness of policies in increasing the thermal quality of the building stock, a critical

debate focuses on how households respond to these improvements in energy efficiency.

Research has shown that, as a consequence of the associated changes in consumer

behavior, technological improvements may lead to lower energy savings than expected

(Jevons, 1906; Brookes, 1990; Khazzoom, 1980, 1987; Wirl, 1997). The mechanism

underlying this behavioral change can be derived from the neoclassical economic theory. As
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described by the “household production” model of Becker (1965), households use energy

as one of the inputs in the production of services – such as driving, space heating, and

cooking. Households acquire utility from consuming energy services, rather than from

consuming energy itself. When the energy efficiency of a particular service is improved,

without leading to an offsetting change in the price of energy, households realize a reduction

in the effective price of that service due to the decrease in the amount of energy that is

required for its production. Consequently, under the condition that the demand for the

energy service is price-elastic, improved energy efficiency leads to an increase in its demand,

so the amount of energy that is required for its production. This implicit price mechanism

generates the so-called “rebound effect” as it partially offsets the initial efficiency gains.1

While the existence of such rebound effect is widely acknowledged, the real debate lies

in the identification and the size of the effect (Gillingham et al., 2013; Greening et al.,

2000). The discussion on the extent of rebound effect has led to different views on the

role of energy efficiency policies in addressing climate change (Borenstein, 2015). So far,

due to the uncertainty regarding its actual size, the rebound effect has been disregarded

in ex-ante impact assessments of energy conservation measures (e.g. building regulations

and energy efficiency subsidy programs), leading to higher expectations about their role in

saving energy (Jacobsen and Kotchen, 2013). This is of importance, as it determines the

success of energy efficiency policies in reducing energy consumption and carbon emissions.

Incorporating the rebound effect into policy evaluations can help to develop cost-effective

energy conservation policies.2

Furthermore, as the size of the rebound effect may vary across different socio-economic

segments of the society, identification of the heterogeneity in the rebound effect may

1The literature identifies three types of rebound effects that encompass both the microeconomic
and macroeconomic perspectives (Greening et al., 2000; Sorrell et al., 2009): the direct rebound effect,
the indirect rebound effect and the economy-wide effects. The direct rebound effect occurs when an
improvement in energy efficiency for a particular energy service reduces the effective cost of the service,
which subsequently leads to increased consumption.The indirect rebound effect occurs when the reduction
of the effective cost of the energy service leads to changes in demand of other goods, services and
productive services that also require energy. The sum of direct and indirect rebound effects represents
the economy-wide rebound effect. In this study, we focus on direct rebound effect.

2It is important to note that, since rebound effect is a re-optimization as a response to implicit price
changes, it can be seen as welfare improving according to the neoclassical economic theory. On the other
hand, its extend has important implications on the outcomes of energy conservation policies.
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also contribute to the assessment of potential outcomes of energy efficiency policies. As

Borenstein (2015) mentions, the size of the rebound effect might be different for the

households who are targeted by energy efficiency regulations. For instance, low-income

households, who are more likely to accommodate in poorly insulated houses, might be more

responsive to the efficiency improvements as they are expected to be more cost-sensitive. In

that case, the regulations, which are specifically targeting energy-inefficient dwelling stock,

will result with a higher rebound effect than the average. Another source of heterogeneity

might be the variation in energy use intensity level of the households. Since the cost of

heating is higher for the households who are more energy dependent, these households

might show a stronger response to energy efficiency changes. Identification of household

level heterogeneity can also guide us to form policy expectations for different regions of the

world with different income and energy use intensity levels, and for the other residential

energy services that require different amounts of energy input. Thus, for policy purposes,

an important question is how rebound effect differs by income and energy use intensity.

Measuring the rebound effect is not straightforward, as it involves an estimation of the

elasticity of the demand for a particular energy service with respect to energy efficiency.

Instead of using this definition, the majority of studies on the topic have estimated the

rebound effect using price elasticity, since data on energy efficiency measurements is

generally limited. In principle, under neoclassical assumptions, rational consumers should

respond in the same way to a decrease in energy prices as they would respond to an

improvement in energy efficiency. This symmetry assumption, however, does not always

hold, as consumers may respond differently to these alternatives due to the “bounded

rationality”. While making consumption decisions, as a result of cognitive limitations and

attention scarcity, households may overweight information that is prominent (Simon, 1955;

Tversky and Kahneman, 1974). For instance, Sexton et al. (2015) documents that, for

a sample of consumers who are enrolled in an automatic bill payment program, perceived

energy costs decline, and the electricity consumption significantly increases after the change

of payment method. The difference between the perceived persistence of price changes and

the efficiency changes might also lead to asymmetric responses. Li et al. (2014) report that

households’ response to gasoline tax changes is six times as large as that from tax-exclusive
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price changes, which might be a result of the difference in the perception of longevity of these

changes. Finally, even if the symmetry assumption is satisfied, many studies estimating

price elasticity of energy demand fail to address endogeneity concerns, as the adoption

of energy-efficient technologies itself may be affected by changes in energy prices (Sorrell

et al., 2009).3

In the literature, the transport sector and the residential sector are the two

main areas where improvements in energy efficiency have previously been studied, as

energy consumption levels are high in both sectors, and technological innovations are

fast-evolving.4 However, due to limited availability of data, the literature on the housing

market has been relatively scant. For the housing market, residential heating is of key

interest, since there are many ways in which consumer behavior may influence the level of

this energy demand, for example, by means of choosing temperature levels, share of space

heated, ventilation rates, etc.

One strand of the available literature on the topic is based upon cross-section analysis

of household survey data (Dubin et al., 1986; Hsueh and Gerner, 1993; Haas and Biermayr,

2000). Dubin et al. (1986) study the relationship between actual electricity consumed

for heating and the cost of heating for 252 single-family dwellings in Florida. Using

the variations in energy price and energy efficiency indicators, the authors report a price

elasticity of heating demand ranging from 52 to 81 percent. Similarly, Hsueh and Gerner

(1993) use data from 1,281 single-family homes in the U.S., and document that the

engineering estimates are two to eight times as large as the realized savings for different

insulation measures (roof, wall and windows), depending on region and type of fuel.

Using a cross-section database of about 500 Austrian households, Haas and Biermayr

(2000) estimate a rebound effect about 30 percent based on the variation in the thermal

characteristics of the dwellings. Although this literature provides more reliable estimates of

3Sorrell et al. (2009) also mentions that, due to the irreversibility of efficiency improvements and
regulations, energy price elasticities are found to be higher for periods with rising prices than those for
falling prices. Given that reduction in energy prices is the appropriate proxy for efficiency improvements,
studies that are based on time series data including periods of rising prices may overestimate the rebound
effect.

4See, for example, Wheaton (1982) and Small and Van Dender (2007) for the case of vehicle fuel
economy, Hausman (1979) for the case of air conditioners, Davis et al. (2014) for the case of refrigirators,
and Davis (2008) for the case of clothes washers.
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the rebound effect compared to the evidence based upon price elasticities only, it also has

some drawbacks in terms of data and methodology used in the estimations. These studies

are based on small samples which lead to imprecise (or even statistically insignificant)

estimates of the rebound effect. Besides, given the lack of detailed information on dwelling

and household characteristics, the use of cross-sectional analysis may lead to a bias arising

due to unobserved heterogeneity. Finally, since an analysis of efficiency measures require

detailed information regarding the technical characteristics of dwellings, which is not easy

to measure with survey questions, the measurement error in calculated (or self-reported)

efficiency indicators potentially leads to a bias in the estimated rebound effect.

Another methodological approach in the literature is to compare the demand for heating

before and after an energy efficiency improvement (Hirst et al., 1985; Milne and Boardman,

2000; Haas and Biermayr, 2000). For instance, Hirst et al. (1985) compares the internal

temperature settings before and after efficiency improvements for 79 U.S. households who

received subsidies. They document that 11 percent of the potential savings is not achieved

(although not statistically significant) due to the change in internal temperature. Milne

and Boardman (2000) examine the average change of internal temperature after efficiency

improvements using data from 13 UK efficiency projects, and conclude that the average

rebound effect observed in these projects is around 30 percent. Haas and Biermayr (2000)

study the gap between theoretically calculated and realized energy savings after energy

retrofit measures for 12 large multi-family dwellings in Austria. They document that the

actual savings are 40 to 100 percent less than the expected savings. However, as well as the

problems associated with the limited sample size, there are also some concerns regarding

the methodological quality of these studies. The results provided by these studies are based

upon simple before-after comparisons, without use of a control group. Since there might be

other factors which may also have affected the observed outcome (e.g. thermostat settings),

the use of simple before-after comparisons might lead to biased results (Meyer, 1995).

Besides, these studies potentially suffer from sampling bias, resulting from non-random

selection of the project participants (Hartman, 1988). Finally, the thermostat setting might

be a poor proxy for the heating demand, since it does not take the other determinants of

thermal comfort (such as the share of heated area, humidity, and airflow) into account.
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In this study, we address some of the methodological limitations in the current literature

on the identification of rebound effect. This is the first study in the literature that is

based on a large representative sample of dwellings using a continuous energy efficiency

measure. We analyze a detailed panel dataset that covers both the engineering estimations

and the actual energy consumption of 560,000 households in the Dutch housing market.

Exploiting the widespread diffusion of home energy performance certificates (EPCs), which

are mandatory in all Member states of the European Union, we investigate the elasticity of

actual energy consumption relative to the engineering predictions of energy performance. In

order to account for the potential measurement error in engineering estimates, we use an

instrumental variable approach by including the year of construction as an instrument.

Although we control for the observed household characteristics such as income, size,

employment status, gender and age, we also estimate a fixed-effects model to control for

unobserved household characteristics that might be correlated with the thermal quality of

the dwelling.

Using the large number of covariates in our dataset, we then explore the heterogeneity

of the rebound effect, which may help to better understand the findings. We separately

estimate the model for cohorts of households with different income and/or wealth levels

and differences in tenure (i.e., households that own a home versus households that rent a

place). Using a quantile regression approach, we also examine whether the magnitude of

the rebound effect depends upon the actual energy use intensity of households. Finally, as

a robustness check, we estimate the rebound effect based on a quasi-experimental design for

a subsample of dwellings that benefited from an energy efficiency subsidy program initiated

by Dutch government.

Our findings suggest that, on average, the rebound effect for residential heating is

41.3 percent for tenants and 26.7 percent for the homeowners. We document that the

rebound effect is strongest among lower income groups – these households are further from

their satiation in consumption of energy services, including thermal comfort (Milne and

Boardman, 2000). Based on the results of quantile regression analysis, we also report that

the rebound effect is larger among consumers with relatively high energy consumption. For

the dwellings that benefited from an energy efficiency subsidy program, we show that the
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efficiency improvements lead to a rebound effect of around 55 percent. The relative large

size of this estimated rebound effect for these households supports our findings, as well

as the heterogeneity hypothesis. Households that invest in the efficiency improvements

are at the upper quantiles of the actual gas consumption distribution in the population.

Clearly, income and usage patterns are key aspects to take into account in the design and

implementation of energy efficiency policies.

The results of this paper have some implications for policy makers. There is much

excitement about the potential for energy savings, and thus reductions of carbon emissions,

from the residential and commercial building sectors. Some estimates indicate that it is

the built environment where such savings come at a financial return rather than just a

capital cost (Enkvist et al., 2007). But in the current debate on energy efficiency, program

evaluations on for example the effects of subsidies and rebates are often based on engineering

calculations of energy savings. While the behavioral response of consumers through a

rebound effect should be ”no excuse for inaction” (Gillingham et al., 2013), it needs to

be incorporated in models of projected energy savings through energy efficiency measures

that governments and public policy outfits often use. Using these adjusted, more realistic

models may increase the effectiveness of policies regarding energy efficiency measures. This

holds for governments in EU Member States when it comes to, for example, the deployment

of mandatory disclosure schemes through Energy Performance Certificates, but also more

generally for countries outside the European Union when designing (incentive) programs

for improving energy efficiency.

The remainder of this paper is organized as follows. The next section discusses the

engineering models used to predict residential energy efficiency. Section 3 describes the

data, and provides some descriptive statistics. In section 4, we present the methodology

and the results. Section 5 provides a brief conclusion.

3.2 Energy Labels and Consumption Predictions

Mandated by EU regulation, all leasing and sales transactions in the housing market of

every EU Member State need to be accompanied by an energy performance certificate
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(EPC). Based on an energy index, the energy performance certificates range from “A++”

for exceptionally energy-efficient dwellings, to “G” for highly inefficient buildings. The

energy index measures the energy efficiency level, based on thermal characteristics of

the building. Professionally trained and certified assessors issue the certificates using

standardized software. In order to classify the dwelling into one of the energy classes;

an engineer visits a dwelling and inspects its physical characteristics (e.g., size, quality of

insulation, type of windows, etc.). The collected information is then used to predict the

total energy consumption of the dwelling.5 After scaling by the size and the heating loss

area of the dwelling, the prediction is transformed into an energy index, which corresponds

to a certain label class, and this information is reported to a government managed database.

Once the information has been verified, the certificate is registered and issued to the

seller. Appendix 3.A provides a stylized example of the energy label in the Netherlands,

which is comparable across the EU. Obtaining the certificate requires an investment of

approximately e200, which is incurred by the seller of the dwelling. Dwellings that have

been constructed after 1999, or that are classified as monuments, are exempted from

mandatory disclosure of the energy performance certificate.6

In this study, we use predicted gas consumption, which is provided by EPC, as a measure

of thermal efficiency. In Appendix 3.B, we briefly describe the framework of the engineering

model that is used to predict the amount of residential gas that is required to achieve a

fixed level of thermal comfort.7 As mentioned by Pérez-Lombard et al. (2009), these “asset

rating” engineering models are based on standard usage patterns, standard set of operating

parameters (e.g., for thermostat settings) and climatic conditions that do not depend on

occupant behavior, actual weather and indoor conditions, and are developed to rate the

5The predicted total energy consumption based on the EPC is a combination of predicted gas and
electricity consumption. However, the electricity component does not include the electricity consumption
from household appliances, which are expected to make up nearly 40 percent of total residential electricity
consumption (Majcen et al., 2013). Therefore, since the predicted electricity consumption is not comparable
with actual electricity use, we focus on residential heating only.

6Importantly, if the buyer of the dwelling signs a waiver, the seller is also exempt from providing the
certificate. The sell-side real estate agent typically offers such a waiver.

7The engineering model and software tool that are used in the calculations comply with “BRL 9501”
describing the quality of the calculation method according to ISSO-publication 54 “Energy Diagnosis
Reference (EDR)”. EDR describes the test procedures (case studies etc.) that need to be carried out to
check the validity of the calculations, and it serves as a guarantee of quality for the tested application.
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building and not the occupant. Use of asset rating model enables us to compare different

houses using a consistent methodology (SENTECH, Inc., 2010). For instance, these models

assume that the occupants heat the complete usable floor area of the dwelling at a fixed

level of temperature. This assumption may seem unrealistic, since occupants can opt to

heat only some of the rooms (because of the higher cost of heating the complete space).

However, in the context of our model, this assumption is acceptable and even required, as

we estimate the response of the occupants to the changing cost of thermal comfort. So,

if the occupant prefers to heat only part of the dwelling, we interpret this as a behavioral

response to the higher cost of heating the complete space. Therefore, we do not consider

these standard assumptions to represent a source of systematic measurement error in the

predicted energy efficiency; instead, these assumptions are necessary in order to obtain a

correct measure of energy efficiency.

In the engineering literature, there are also some studies examining whether engineering

predictions of energy consumption fit with the actual energy consumption. For

example, comparing the predictions of different engineering models with the utility bills,

Edwards et al. (2013) report that engineering models over-predict the average actual

gas consumption. However, since average actual gas consumption is also determined by

average occupant behavior which is preferably not included in the asset rating models, this

comparison do not provide any evidence for a systematic mistake in the energy efficiency

rating models.8 In this study, we benefit from this occupant-independent characteristic of

gas use predictions. In order to identify the rebound effect, instead of investigating the

gap between average predicted and actual gas use, we focus on the gap between relative

changes in these variables. Thus, what is of importance for this study is the systematic

accuracy of the asset rating model.

The accuracy of asset rating models is typically based upon evaluations of tools against

accepted baseline standards. National Laboratory of the U.S. Department of Energy

has developed a number of building energy simulation test (BESTEST) instruments for

8It should be noted that the standard occupant behavior and standard set of operating parameters are
not determined based on average behaviour observed in the population. They are chosen based on a set of
conditions that satisfy a sufficient level of thermal comfort.
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assessment and identification of errors in engineering software that is used for analysis

of energy efficiency in building sector (Judkoff et al., 2011).9 Given the fact that the

engineering model that is used in the calculation procedure is examined through energy

simulation tests (Judkoff and Neymark, 1995; Neymark and Judkoff, 2004) and verified by

pilot studies in each EU country which are implementing a similar labeling policy (Poel

et al., 2007), we assume that there is not a systematic measurement error that is related

to the engineering model.

On the other side, although the predicted energy efficiency is based on an advanced

engineering model using detailed information on thermal characteristics of the dwelling, it

is still based on some assumptions regarding some characteristics of the dwelling, which are

not easy to observe. Especially for older dwellings, the inspector has to make assumptions

regarding the thermal quality (U-value) of building envelope and the rates of ventilation

and infiltration. Besides that, the installation quality of insulation might be lower than

expected because of the moral hazard problem. However, Maldonado (2013) reports that

when analyzing the housing stock in the Netherlands, 184 reference buildings were used to

verify the assumptions made on the components of buildings. These reference dwellings

are used to determine the energy saving potential of dwellings’ technical installations.

Furthermore, a sample of reference houses were used the check the validity for packages

(combinations of thermal envelope and technical systems improvements) of energy saving

measures. Therefore, while we acknowledge the presence of measurement error through

engineering assumptions, we do not expect this to be significantly correlated with the

degree of efficiency of a dwelling.

The other potential source of measurement error is the quality of the inspection. In

2011, it was documented that 16.7 percent of the labeled dwellings exceeded the maximum

acceptable level of the deviation from the real energy index (VROM-Inspectie, 2011). These

9There is also a discussion on the effectiveness of these instruments (SENTECH, Inc., 2010). However,
the debate stems from the observed differences between predicted and realized energy consumption levels,
which might be explained by the behavioral factors that are preferably not included in the asset rating
models. For instance, Hendron et al. (2003) suggest incorporating a set of operational assumptions that
mimic realistic occupant behavior into engineering models. As this example represents, most of the
discussion relates to the accuracy of the models in predicting realized energy consumption, which is not
the main objective of the asset rating models.
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labels, which deviate from the real energy index more than eight percent, are considered

as labels with a critical defect. However, examination of the data on re-inspection of

a sample of labeled dwellings indicates that this inspection error is not systematically

and significantly correlated with the true efficiency value. By using the data on 47

re-inspections, provided by VROM-Inspectie (2011), we found that there is not a significant

relationship between the true energy index and the inspection error.10

3.3 Data

AgencyNL, a government agency, maintains a repository with information on the

characteristics of the certified dwellings as well as their predicted gas consumption. We

merge the dwelling information with information on occupant characteristics and their

actual gas consumption, provided by the Bureau of Statistics in the Netherlands (CBS).

This leads to a panel of 610,000 dwellings and their occupants, which adopted an Energy

Performance Certificate (EPC) in the years 2011 and 2012. Additionally, in order to assess

whether there are significant differences between the characteristics of the dwellings with

and without label, we also use a sample of 122,119 dwellings that are not labeled. These

are the dwellings that were sold in years 2011 and 2012, and registered by the National

Association of Realtors (NVM). The final dataset includes information on the dwelling

characteristics, household characteristics and the household’s annual gas consumption from

2008 to 2011.

We exclude the years in which occupants change their address, since it is not possible

to exactly identify the amount of energy used by the occupant in that year. We also drop

the observations with a gas or electricity consumption of zero, and we exclude outliers that

are detected based on the sample distribution of house size, actual and predicted energy

consumption (electricity and gas) – the upper and lower boundaries for the outliers are

set at the first and 99th percentile. The complete dataset includes an unbalanced panel of

563,010 dwellings.

According to CBS statistics, 59.3 percent of the housing stock consisted of

10The estimated correlation coefficient is equal to 0.105 with a p-value 0.482.
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owner-occupied dwellings in 2011. However, since the diffusion of energy labels among

owner-occupied dwellings in the Netherlands is relatively slow, the share of owner-occupied

dwellings in our sample is only around eight percent, which is below the population average.

Therefore, the rental housing stock is overrepresented in our sample. Since this might

cause a sampling bias in the estimation of the average rebound effect, we analyze the

owner-occupied and rental sample separately.

Table 3.1 presents the summary statistics for dwelling and household characteristics.

The sample statistics indicate that there are only few differences in the average

characteristics of the two samples (rental versus owner-occupied dwellings). The gas

consumption in the owner-occupied market seems to exceed the consumption in the rental

market, but once correcting for the variation in dwelling size, the differences disappear. For

both the rental and owner-occupied homes in our sample, we find that gas consumption

predictions that are based on the labels are higher than the actual gas bills.11 This difference

is 17 percent for the rental dwellings, and about 16 percent for the owner-occupied dwellings.

Regarding the distribution of energy label categories, we find almost no difference between

the subsamples. The other variables indicate that there is overrepresentation of apartments

in our rental sample, that rental homes are typically more recently constructed, are smaller

in size and accommodate households that are more often elderly with lower income and

wealth. We also compare the labeled owner-occupied dwellings with the owner-occupied

dwellings that are not labeled. The average actual gas consumption and the occupant

characteristics are quite similar for both samples. However, the non-labeled sample contains

more dwellings that are built after the year 2000. This is in line with expectations, as the

energy label is not mandatory for the dwellings constructed after 1999.

11Since the predicted gas use is calculated based on a fixed number of heating degree days (212 days with
an average outside temperature equal to 5.64 degree Celsius), in order to provide comparable descriptive
statistics, the actual gas consumption in each year is corrected for the annual heating degree days (HDD)
in that year. We multiply the actual gas consumption of the household by the ratio of the “fixed HDD”
to the “actual HDD” of that year. Fixed HDD, which is used in engineering predictions, is equal to
212 ∗ (18 − 5.64) = 1, 620. We apply this correction in order to better evaluate the average gap between
engineering predictions and realized consumption in Table 3.1. In the analysis, we do not apply this
correction as we include year and location dummies in our model, which control for varying climatic
conditions.
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Table 3.1: Descriptive Statistics

Rental Owner-Occupied Owner-Occupied
(With Label) (With Label) (Without Label)

Number of Observations 519,512 43,498 122,119

Variables Mean St.Dev. Mean St.Dev. Mean St.Dev.

Actual Gas Consumption (m3) 1,245 (526) 1,588 (665) 1,573 (632)
Predicted Gas Consumption (m3) 1,492 (624) 1,887 (759)
Actual Gas Consumption (m3/m2) 15.7 (7.1) 15.3 (6.2)
Predicted Gas Consumption (m3/m2) 18.7 (8.1) 18.2 (7.1)
Size (m2) 82.2 (21.6) 106.7 (34.7)
Label:
Label-A (EI<1.06) 0.02 0.03
Label-B (1.05<EI<1.31) 0.16 0.17
Label-C (1.30<EI<1.61) 0.33 0.32
Label-D (1.60<EI<2.01) 0.25 0.24
Label-E (2.00<EI<2.41) 0.14 0.14
Label-F (2.40<EI<2.91) 0.07 0.08
Label-G (2.90<EI) 0.03 0.02
Dwelling Type:
Apartment 0.49 0.27 0.21
Semi-detached 0.32 0.21 0.32
Corner 0.19 0.32 0.32
Detached 0.00 0.20 0.15
Construction Period:
1900-1929 0.07 0.10 0.12
1930-1944 0.03 0.08 0.09
1945-1959 0.17 0.14 0.08
1960-1969 0.20 0.19 0.15
1970-1979 0.19 0.25 0.17
1980-1989 0.20 0.12 0.14
1990-1999 0.11 0.09 0.16
>2000 0.03 0.03 0.09
Household Characteristics:
Number of Household Members 1.91 (1.12) 2.36 (1.21) 2.28 (1.21)
Number of Elderly (Age>64) 0.46 (0.68) 0.29 (0.62) 0.31 (0.61)
Number of Children (<18) 0.34 (0.78) 0.50 (0.89) 0.53 (0.91)
Number of Females in Household 1.01 (0.74) 1.16 (0.77) 1.13 (0.79)
Number of Working Household Members 0.84 (0.94) 1.48 (0.99) 1.35 (0.96)
Household Annual Net Income (1000 Euro) 23.8 (11.5) 36.9 (17.1) 37.3 (26.2)
Household Wealth (1000 Euro) 22.6 (91.6) 177.8 (393.8) 191.3 (531.5)
Share of Households Receiving Rent Subsidy 0.41

Notes:
The sample of labeled dwellings consists of the dwellings that have adopted an EPC in 2011 or 2012. The sample of
dwellings without a label includes dwellings that have been sold in years 2011 and 2012. Since the label categories “A+”
and “A++” have a small share in the full sample, we merged these categories with label “A”.
The statistics on actual gas consumption and household characteristics are calculated based on both the cross-sectional
and the time-series variation (2008, 2009, 2010, 2011) in the sample.
“Apartment” category is a combination of four different apartment types which are reported in the AgentschapNL data.

Figure 3.1 shows the descriptive statistics of actual versus predicted energy consumption

across label categories, in cubic meters per unit of floor area, measured in square meters.

The figure also includes the 95-percent confidence interval. On average, gas consumption

predictions correspond quite precisely with the label categorization. Of course, this is a

result by design, as these predictions determine the categorization. When comparing the
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descriptives with the box-plots that represent actual gas consumption, we observe a similar

trend, but also clear deviations in the tails. The predictions of consumption are lower than

the realized gas consumption for efficient dwellings and the reverse is true for inefficient

dwellings. Moreover, we also observe that the variation in actual gas consumption is much

larger than for the predictions. The higher variation in actual gas consumption may be

explained by behavioral factors, such as time at home, comfort preferences, etc., that are

not included in the engineering predictions.

Figure 3.1: Predicted versus Actual Gas consumption

Source: Bureau of Statistics in the Netherlands (CBS), AgentschapNL, authors’ calculations

We also stratify the sample across dwelling types, to assess whether the deviations

between predicted and actual consumption are common across dwellings or whether they

are type-specific. Comparing the statistics plotted in Figure 3.2, we document quite

similar patterns. The dwelling type cannot explain why actual gas consumption is so
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different from what would be expected from the label. For all different dwelling types

(apartments, semi-detached dwelling, corner dwelling and detached dwellings), we find

underestimations of gas consumption for energy-efficient dwellings, and overestimations for

inefficient dwellings.

Figure 3.2: Predicted versus Realized Gas consumption by Dwelling Type

Source: Bureau of Statistics in the Netherlands (CBS), AgentschapNL, authors’ calculations

In Figure 3.3, we plot the relationship between the predicted gas consumption and the

ratio of actual versus predicted gas consumption. Here, we can consider the “predicted gas

consumption” as the cost of heating the whole area of the dwelling at a fixed temperature,

and the “actual/predicted” ratio can be considered as an indicator of the household demand

for heating. The graph shows that as the cost of heating decreases (efficiency increases),

the “actual/predicted” ratio increases, which provides some support for the rebound effect

hypothesis. Moreover, the deviations between predicted and realized gas consumption are

larger for tenants. This difference may be explained by the income and wealth differences

between the two subsamples, as we expect the households with lower income and wealth

levels to be more sensitive to cost changes from energy efficiency.
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Figure 3.3: Realized/Predicted Gas Consumption

Source: Bureau of Statistics in the Netherlands (CBS), AgentschapNL, authors’ calculations

Finally, we compare the most energy-efficient and inefficient houses, and their residents

based on their observable characteristics. Table 3.2 documents the descriptive statistics

for the houses that are at the lower (below 10th) and upper (above 90th) quantiles

of the energy index distribution, which represent the energy-efficient and inefficient

houses respectively. The statistics indicate that the percentage difference in actual gas

consumption between these samples is significantly smaller than the percentage difference

in their predicted gas consumption. Considering the other house characteristics, we observe

that, as a main determinant of energy efficiency, the distribution of year of construction

is significantly different between energy-efficient and inefficient houses. Examining the

household characteristics, we do not observe significant differences between the households

who are residing in these houses. On the other hand, we should note that the households

who are accommodating in energy-efficient houses are wealthier compared to the households

in energy-inefficient houses, although not statistically significant.
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Table 3.2: Descriptive Statistics for Energy-efficient and Inefficient Houses

Rental Owner-occupied

Efficient Inefficient Efficient Inefficient
(EI<1.2) (EI>2.3) (EI<1.2) (EI>2.3)

Number of Observations 59,595 53,502 4,381 4,713

Actual Gas Consumption (m3) 1,046 1,396 1,391 1,546
(499) (567) (688) (601)

Predicted Gas Consumption (m3) 873 2,513 1,240 2,598
(249) (639) (538) (771)

Actual Gas Consumption (m3/m2) 12.9 19.1 12.3 18.2
(6.3) (7.9) (6.0) (7.1)

Predicted Gas Consumption (m3/m2) 10.7 34.3 10.6 30.8
(2.8) (8.0) (2.9) (8.3)

Size (m2) 84.0 75.2 117.4 87.5
(22.6) (18.8) (40.3) (25.6)

Dwelling Type:
Apartment 0.58 0.54 0.37 0.48
Semi-detached 0.27 0.24 0.17 0.20
Corner 0.15 0.22 0.25 0.27
Detached 0.00 0.00 0.21 0.05
Construction Period:
1900-1929 0.03 0.13 0.06 0.15
1930-1944 0.01 0.07 0.03 0.14
1945-1959 0.06 0.39 0.08 0.26
1960-1969 0.08 0.27 0.10 0.21
1970-1979 0.09 0.12 0.12 0.23
1980-1989 0.14 0.02 0.07 0.01
1990-1999 0.31 0.00 0.19 0.00
>2000 0.28 0.00 0.35 0.00
Household Characteristics:
Number of Household Members 1.80 1.92 2.36 2.04

(1.04) (1.14) (1.23) (1.12)
Number of Elderly (Age>64) 0.55 0.44 0.33 0.32

(0.55) (0.68) (0.65) (0.62)
Number of Children (<18) 0.29 0.35 0.53 0.33

(0.72) (0.80) (0.93) (0.73)
Number of Females in Household 0.99 1.00 1.16 1.02

(0.69) (0.76) (0.77) (0.71)
Number of Working Household Members 0.75 0.82 1.43 1.30

(0.88) (0.90) (1.00) (0.93)
Household Annual Net Income (1000 Euro) 23.7 23.0 38.0 32.9

(11.0) (11.1) (18.1) (16.4)
Household Wealth (1000 Euro) 30.3 20.4 220.3 135.7

(110.9) (69.6) (310.1) (120.5)
Share of Households Receiving Rent Subsidy 0.40 0.38

Notes:
Energy-efficient and inefficient houses are selected based on the distribution of energy index (EI). Energy-efficient houses
are the houses having an energy index lower than the 10th quantile of the distribution (EI<1.2), and energy-inefficient
houses are the houses with an energy index higher than the 90th quantile of the distribution (EI>2.3).
The statistics on actual gas consumption and household characteristics are calculated based on both the cross-sectional
and the time-series variation (2008, 2009, 2010, 2011) in the sample.
“Apartment” category is a combination of four different apartment types which are reported in the AgentschapNL data.
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3.4 Methodology and Results

The rebound effect can be described as the elasticity of demand for a particular energy

service with respect to energy efficiency. In this paper, the energy service is represented by

the “thermal comfort” (heating), which is a combination of occupant’s preferences regarding

the temperature level, the share of heated space, the heating duration, and the shower

duration. Thus, we can define the rebound effect for residential heating as:

τG = ∂ln(H)/∂ln(µH) (3.4.1)

where H denotes the residential heating that is consumed by households (the temperature

level, percentage of the heated space and heating duration, quantity of hot water used per

person in a day) and µH is the heating efficiency of the dwelling (heating system, dwelling

characteristics, size, etc.) The heating efficiency can be defined as the heating level that

can be achieved with one m3 of gas:

µH = Hr/G
∗ (3.4.2)

In equation (3.4.2), Hr is the reference heating level that is taken as fixed in the

calculation of the EPC and G∗ is the amount of gas that is required in order to reach

that heating level. This reference heating level can be described by: indoor temperature

fixed at 18 degree Celsius for the complete space of the dwelling during the heating season

(212 days), and a fixed amount of hot water per person per day. Assuming there is

one-to-one relationship between the actual gas consumption and the actual residential

heating consumption, we can define the actual level of heating that is consumed by

households as follows:

H = Hr(Ga/G∗) (3.4.3)

where Ga denotes the actual gas consumption. By using Equations (3.4.2) and (3.4.3), the
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rebound effect (3.4.1) can be redefined as:

τG = ∂ln[Hr(Ga/G∗)]/∂ln[Hr/G
∗] (3.4.4)

Since Hr is fixed in the above equation, the rebound effect is equal to:

τG = 1− ∂ln(Ga)/∂ln(G∗) (3.4.5)

which describes the relationship between actual and theoretical gas use.

3.4.1 Empirical Results

In order to identify the rebound effect in residential heating demand, we estimate the

relationship between actual and theoretical gas use by applying a set of different estimation

methods. The standard econometric model used to estimate this relationship can be defined

as:

ln(Ga
it) = β0 + β1ln(Gp

it) +
j∑
j=2

βjZjit + αi + εit (3.4.6)

where i is the household identifier, t is year, and Gp is the predicted gas consumption, which

is used as the measure of theoretical gas use (G∗). Z is a vector of observed control variables

that are not included in the calculation of EPC, but that are affecting the household’s gas

consumption, such as household size and composition, province, year, income, employment

status of the household members, and ownership of the house. The composite error term

is a combination of αi which denotes the unobserved household-specific effects and the

independent and normally distributed error term; εit. The coefficient of interest is:

β1 = ∂ln(Ga)/∂ln(Gp) (3.4.7)

which is used to estimate the rebound effect formulated in equation (3.4.5):

τG = 1− β1 (3.4.8)
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We first estimate this model using pooled ordinary least squares (OLS), assuming that

Gp
it is independent of (αi + εit). The results of these estimations are presented in Table

3.3. When explaining actual gas consumption by the predicted gas consumption and the

province and year fixed effects (column 1), the explanatory power of our model is about 21

percent of the variation in the residential gas use of the rental dwellings. The explanatory

power of the model for the owner-occupied dwellings is 36 percent. The explanatory power

increases to 25 and 40 percent, respectively, when we include the household characteristics.

The signs and magnitudes of the estimated effects for our control variables are in line

with expectations. We find that, as the household size increases by one person, there is an

increase in residential gas consumption by about 10 percent, with a decreasing marginal

effect in larger households. In line with the findings of Brounen et al. (2012), demographics

such as the number of elderly people and the number of females in the household also

have a positive effect on residential gas consumption. We also control for the employment

status of the household members. By including a dummy variable that indicates whether

all household members are working or not, we aim to control for the time spent at home.

The estimated coefficient indicates that if all household members are working, the gas

consumption of that household decreases by six percent in rental units and by four percent

in owner-occupied dwellings.

The income elasticity of residential gas consumption is about five percent for tenants

and eight percent for homeowners. This is comparable to results obtained by Meier and

Rehdanz (2010). Analyzing a sample of UK households, the authors document an income

elasticity of residential heating of three percent for tenants and four percent for homeowners.

In line with this income effect, for the rental sample we also document that receiving a rent

subsidy (which is only available for the lowest income groups) is also related to lower gas

consumption.

Importantly, β1 ranges between 0.441 and 0.589, depending on the model specification

and the ownership status. In columns (3) and (4), we control for household characteristics,

leading to a decrease in the estimated coefficient. These estimates indicate a quite

sizable difference between relative changes in actual energy consumption and engineering
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predictions.12 We interpret this as evidence on the influence of household behavior on

residential energy consumption.

Table 3.3: Pooled OLS Estimations

(1) (2) (3) (4)
Rental Owner- Rental Owner-

Occupied Occupied

Log (Predicted Gas Consumption) 0.485*** 0.589*** 0.441*** 0.528***
[0.011] [0.011] [0.010] [0.010]

Number of Household Members 0.118*** 0.132***
[0.003] [0.008]

Number of Household Members2 -0.012*** -0.014***
[0.000] [0.001]

Number of Children (<18) -0.009*** 0.001
[0.001] [0.003]

Number of Elderly (Age>64) 0.031*** 0.049***
[0.002] [0.005]

Number of Female 0.037*** 0.016***
[0.001] [0.002]

All Household Members Are Working (1=yes) -0.060*** -0.042***
[0.002] [0.004]

Log (Household Income) 0.054*** 0.075***
[0.003] [0.007]

Receiving Rent Subsidy (1=yes) -0.032***
[0.002]

Province Dummy Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes
Constant 3.725*** 3.038*** 3.295*** 2.481***

[0.080] [0.083] [0.058] [0.089]
R2 0.210 0.361 0.255 0.402
Number of observations 1,664,113 87,282 1,664,113 87,282
Number of dwellings 519,512 43,498 519,512 43,498

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001

12In order to check whether this gap is mainly driven by a systematic error that is related to the
unobserved characteristics of the older houses, we also estimate our model for a restricted sample including
the houses that are constructed after 1999. The estimates of β1, which are provided in Appendix
Table 3.C.1, are slightly larger compared to the full sample estimates, which might be associated to the
heterogeneity of the rebound effect. We examine the heterogeneity issue in more detail in the further
sections of the paper.
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3.4.2 Measurement Error in Engineering Predictions

Although we use a large representative sample and control for the household characteristics

in the OLS estimations, there is a potential for bias in the estimated rebound effect, which

originates from the measurement error in engineering predictions. As a next step, we

therefore explicitly take this measurement error into account.

The assumption that Gp
it is independent of the error term may not be valid, due to the

potential error in engineering predictions. It can be expected that the engineering prediction

includes a measurement error, because of the assumptions made in the calculation

procedure, and the potential mistakes made during the inspection. Therefore, we assume

that the predicted theoretical gas use (Gp) is a combination of the true value (G∗) and a

random multiplicative error component (e) as shown below:

Gp = G∗e (3.4.9)

As discussed previously, the allowable inspection error is described by percentage values

(8 percent) by the engineers, which means that the inspection error is expected to be

multiplicative (proportional). We also assume that the error is not correlated with the true

theoretical gas consumption level.

The presence of this random measurement error leads to a downward bias in the OLS

estimate of β1. In order to overcome this bias, a common approach is to use an instrumental

variable (IV) method. Such an IV needs to be correlated with the predicted gas use

(Gp), but has to be independent of the measurement error (e). In our case, the year of

construction (T ) can be considered as an instrument satisfying both of these conditions.

We assume that there is a significant correlation between predicted gas consumption and

construction year. This assumption relies on the improvements in the quality of building

materials and introduction of stricter building codes. Besides, we can expect that the

mean measurement error does not depend on the year of construction, unless there is a

systematic mistake in the prediction model. If these assumptions are satisfied, we are able

to disentangle the true variation in theoretical gas use (G∗).

We estimate the model in equation (3.4.6) using two-stage least squares (2SLS)

61



estimation approach, with year of construction (specified as dummy variables) as an

instrument for theoretical gas consumption. Table 3.4 reports the results of the IV

estimations.13 Compared to OLS estimates that are provided in Table 3.3, we now

document β1 estimates of 0.587 and 0.733 for the rental and owner-occupied samples,

respectively.14 While the coefficients of control variables all remain comparable in sign

and size, the use of IV estimators significantly reduces the rebound effect estimates, to 41.3

percent and 26.7 percent for the rental and owner-occupied samples, respectively. According

to these results, if the efficiency of an average dwelling is increased by 100 percent, this

will lead to a 59 percent energy saving in rental dwellings and 73 percent energy saving in

owner-occupied dwellings, ceteris paribus. The difference between the estimated rebound

effects for rental and owner-occupied dwellings is also in line with expectations that more

wealthy households are less sensitive to changes in the cost of thermal comfort. Madlener

and Hauertmann (2011) analyze the price elasticity of the residential heating for tenants

and homeowners and find similar results for German households. In the following sections,

we further analyze the heterogeneity of the rebound effect based on the wealth and income

levels.

13When we estimate the first stage model by using the the year of construction as the only explanatory
variable (specified as dummy variables), the estimated R2 is 0.225 for the rental houses and 0.256 for the
owner-occupied houses. This implies that our instrument satisfies the relevance assumption. The total R2

for the first stage model (including the other control variables) is 0.323 for the rental houses, and 0.378 for
the owner-occupied houses.

14Including the houses that are constructed before 1900 in the analysis leads to comparable results. We
estimate the same IV model by grouping these houses in one age category in our IV estimations. The total
share of these houses in our sample is nearly 0.26 percent. The estimated coefficient becomes 0.597 for
rental houses and 0.743 for owner-occupied houses. The results are not significantly different compared to
the estimates that are based on the restricted sample
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Table 3.4: Pooled OLS-Instrumental Variable Estimations

(1) (2)
Rental Owner-

Occupied

Log (Predicted Gas Consumption) 0.587*** 0.733***
[0.012] [0.016]

Number of Household Members 0.093*** 0.105***
[0.004] [0.009]

Number of Household Members2 -0.010*** -0.011***
[0.001] [0.001]

Number of Children (<18) -0.004*** 0.001
[0.001] [0.003]

Number of Elderly (Age>64) 0.034*** 0.043***
[0.002] [0.004]

Number of Female 0.037*** 0.015***
[0.001] [0.002]

All Household Members Are Working (1=yes) -0.056*** -0.038***
[0.002] [0.004]

Log (Household income) 0.052*** 0.051***
[0.002] [0.006]

Receiving Rent Subsidy (1=yes) -0.034***
[0.002]

Province Dummy Yes Yes
Year Dummy Yes Yes
Constant 2.276*** 1.208***

[0.078] [0.130]
R2 0.239 0.375
R2 (First stage regression) 0.225 0.256
First-stage F-statistic on the excluded IVs 34123 1191
Number of observations 1,664,113 87,282
Number of dwellings 519,512 43,498

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
“Predicted Gas Consumption” is instrumented by “Year of Construction”
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001

In order to test the robustness of our IV results, we also estimate the 2SLS model

based on an alternative instrument – the stringency of the building codes at the time

of construction. Starting in 1965, the Dutch government introduced minimum legal

requirements for the thermal efficiency level of new constructions. These legislations set

a maximum allowable U-value for each component (walls, windows, floor and roof) of the

constructions. U-value is defined as a measure of heat loss through one square meter of the
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material for one-degree difference in temperature at the either side of the material. The

maximum allowable U-value for external walls decreased over-time from 2.00 W/m2 to 0.25

W/m2 by the regulations that were introduced in 1965, 1974, 1978, 1981, 1986, 1989, 1995,

2000, 2002, and 2006. Using this variation in the legal U-value requirement for external

walls as an instrument for the predicted gas consumption, we estimate the IV model.15

The results provided in Appendix Table 3.C.2 are comparable to the IV results that are

estimated using the year of construction as an instrument.

Finally, we check whether our results are robust to inclusion of house size as a control

variable. Households might respond the changing cost of thermal comfort through different

mechanisms. One potential response might be changing the share of heated area. In order

test whether our results are mainly driven by this kind of behavioral response, we control

for the size of the house in the estimations. This also enables us to test the robustness of

our findings regarding the engineering assumptions on the size of heating area. In Appendix

Table 3.C.3, we report the estimation results for the models including the size of the house

as a control variable (both linear and quadratic specifications). The results indicate that,

keeping the house size constant, the estimated rebound effect is not significantly different

than the results provided in Table 3.4. This implies that the estimated average rebound

effect is not driven by the engineering assumptions on the size of heated space.

3.4.3 Endogeneity

Another econometric issue that may cause a biased estimate is the potential presence of

household-specific factors that affect both the actual gas consumption and thermal quality

of the dwelling. One reason for this potential correlation is that energy-efficient households

sort into energy-efficient dwellings. This sorting may lead to an overestimation of β1, and

thus an underestimation of the rebound effect. On the other hand, low-wealth households

might be sorting into more affordable housing, that has a lower thermal quality and is thus

less efficient (this is sometimes referred to as “energy poverty”). In this case, there will

be a downward bias in the estimation of β1. Thus, our estimate will be biased if there
15Based on the statistics provided by AgentschapNL, we assume that the average U-value for the external

walls of the houses constructed before 1965 is equal to 2.5 W/m2.
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exists any correlation between the theoretical gas use and unobserved household-specific

factors. In order to account for this correlation, we use a fixed-effects instrumental variable

(FE-IV) estimator, benefiting from the panel structure of our dataset. By tracking the

same households over time, we are able to identify their movements from one address to

another. The address change generates a variation in theoretical gas consumption due to

the change of the characteristics of the dwelling in which the household resides. So, we

can observe the change in the energy efficiency of the dwelling, and the resulting change

in actual gas consumption, keeping the characteristics of the household fixed. By using a

FE estimator, we are able to eliminate any unobserved household-specific effects (αi) that

are correlated with the thermal quality of the house. This allows us to obtain consistent

estimates of β1 under the presence of a relationship between household-specific effects and

the thermal efficiency of the dwelling.

According to the FE estimation results, in Table 5, the rebound effect for rental

dwellings is nearly the same as the pooled OLS estimates.16 The rebound effect for

homeowners is higher as compared to the OLS estimations. However, the standard error of

this point estimate is relatively large due to the limited number of homeowners who have

changed their addresses. This leads to a larger confidence interval for the estimated rebound

effect for homeowners. When we test the differences between OLS and FE estimates,

we conclude that there is no systematic difference between these estimates, according to

Hausman test statistics. We also estimate a random-effects model, assuming that the

household-specific effects are randomly distributed and are independent of the theoretical

gas consumption. In Appendix Table C.4, the results show that the RE estimates of the

rebound effect are quite comparable to the pooled OLS results.

16When we restrict the sample of fixed-effects estimation to those households that changed their address
(i.e., moved) during the sample period (12,919 tenants and 475 homeowners), the estimated effect (0.586
for tenants and 0.658 for homeowners) is found to be very close to the fixed-effects estimate based on the
unrestricted sample.
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Table 3.5: Fixed-Effects (IV) Estimations

Rental Owner-
occupied occupied

Log (Predicted Gas Consumption) 0.584*** 0.663***
[0.011] [0.051]

All Household Members Are Working(1=yes) 0.000 0.004
[0.001] [0.006]

Log (Household income) 0.001 0.008
[0.002] [0.007]

Receiving Rent Subsidy (1=yes) 0.001
[0.001]

Province Dummy Yes Yes
Year Dummy Yes Yes

Constant 3.961*** 2.138***
[0.110] [0.423]

R2 0.165 0.243
R2 (within) 0.024 0.021
R2 (between) 0.176 0.249
Number of observations 994,804 44,876
Number of households 351,462 21,595

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
“Predicted Gas Consumption” is instrumented by “Year of Construction”
We exclude the households that had a change in their composition between 2008 and 2011.
* P<0.05. ** P<0.01. *** P<0.001

3.4.4 Heterogeneous Effects

Another important issue regarding the identification of the rebound effect relates to the

heterogeneity of the effect within the population. As shown by the results, the rebound

effect differs by tenure – households that rent are more prone to behavioral changes than

homeowners. In this section, we further analyze the effects of wealth and income on the

magnitude of the rebound effect. The literature on price elasticity of energy indicates that

the price elasticity parameter strongly depends on the socio-economic characteristics of the

consumers (Madlener and Hauertmann, 2011; Ida et al., 2013). We expect that wealthier

households are less sensitive to cost changes, and the rebound effect may thus be lower

for these households. Besides, it can be expected that these households already maximize
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their comfort from residential heating. So, the utility that can be gained from heating

the dwelling above a comfortable room temperature will be lower. In order to test for

the impact of wealth on the rebound effect, we estimate our model separately for different

wealth cohorts, and analyze whether there is a significant difference between the estimated

rebound effects.

In Panel A of Table 3.6, we provide the results for different wealth cohorts among

homeowners. We divide the sample into quantiles, based on the position of each household

in the wealth distribution. The results show that as household becomes richer, the estimated

rebound effect decreases. The rebound effect for the lowest quantile is nearly 40 percent,

while it is “just” 19 percent for the upper quantile.17

We also analyze the heterogeneity of the rebound effect among tenants with different

income levels. We classify the households in rental units according to their income level,

since there is limited variation in the wealth levels of tenants. The results provided in Panel

B of Table 3.6 indicate that the rebound effect is heterogeneous among different income

groups. For the lowest quantile, the rebound effect is nearly 49 percent, while it is in the

range of 38-40 percent for the upper quantiles. These results imply that wealth and income

matter for the behavioral response of homeowners and tenants to the energy efficiency of

a dwelling.

17Note that the average rebound effect for the homeowners in the lowest quantile is nearly the same as
the estimated rebound effect for the average household living in a rental dwelling.
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Table 3.6: Pooled OLS-IV Estimations for Wealth and Income Cohorts

Panel A: Wealth Cohorts (Owners)

0-20% 20-40% 40-60% 60-80% 80-100%
Wealth Interval (e1000) (< 10) (10 − 69) (69 − 171) (171 − 300) (> 300)

Log (Predicted Gas Consumption) 0.602*** 0.676*** 0.724*** 0.811*** 0.811***
[0.040] [0.028] [0.033] [0.022] [0.027]

R2 0.300 0.330 0.352 0.335 0.339
Number of observations 11,342 11,342 11,342 11,342 11,342

Panel B: Income Cohorts (Tenants)

0-20% 20-40% 40-60% 60-80% 80-100%
Income Interval (e1000) (< 16) (16 − 20) (20 − 24) (24 − 32) (> 32)

Log (Predicted Gas Consumption) 0.515*** 0.597*** 0.599*** 0.625*** 0.598***
[0.020] [0.014] [0.012] [0.010] [0.011]

R2 0.169 0.213 0.245 0.243 0.243
Number of observations 332,299 332,225 332,275 332,284 332,305

Notes:
Dependent variable: Log (Actual Gas Consumption).Control variables are included in all regressions.
Years included in the analysis: 2008, 2009, 2010 and 2011. 2010, 2011 are excluded from the analysis of wealth cohorts,
since the information is not available for these years.
“Predicted Gas Consumption” is instrumented by “Year of Construction”.
Households are assigned to the groups based on their wealth and income levels (percentiles).
Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001

Another source of heterogeneity relates to the actual gas consumption level of the

household. Using OLS-IV and FE-IV estimators, we obtain the conditional mean of β1,

which leads to the estimation of a uniform rebound effect for all households. However, the

rebound effect may vary depending on the actual gas use intensity of the household. For

example, we expect that households that use more gas because of lower efficiency levels

(including dwelling size) are more sensitive to changes in efficiency. Therefore, the rebound

effect might be larger for these households. In order to capture this heterogeneity, we

use a quantile regression approach (using instrumental variable). This enables estimating

the model for different quantiles of the actual gas use distribution. The linear conditional

quantile function can be estimated by minimizing the sum of absolute residuals at quantile

k for the model specified in Equations (3.4.10)-(3.4.11) as follows:

minβj

n∑
i=1

t∑
t=1
|αi + εit| (3.4.10)
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which can be also written as:

minβj

n∑
i=1

t∑
t=1
|ln(Ga

it)− [β0 + β1 ̂ln(Gp
it) +

j∑
j=2

βjZjit]| (3.4.11)

Another advantage of the quantile regression approach is its robustness in the presence of

outliers. Therefore, we are also able to check any potential effect of outliers by comparing

the conditional mean estimate of β1 with the quantile regression estimate for the 50th

quantile (median) of actual gas consumption.

In Table 3.7, we estimate the rebound effect for different quantiles of the actual gas

consumption distribution. The 50th quantile (median) estimates of the rebound effect are

quite similar to the conditional mean estimates. We therefore conclude that outliers do

not significantly affect our results. Considering the other quantiles of the distribution,

we observe that as the actual gas consumption intensity of the household increases, the

rebound effect becomes more noticeable. Moving from the 10th quantile to 90th quantile

of the actual gas consumption distribution, the effect increases from 30 percent to 50 percent

for rental dwellings, and from eight percent to 51 percent for owner-occupied dwellings.18

These results imply that the response of households to improvements in energy efficiency

depends on their actual gas consumption intensity level. This can be partly explained

by the non-linear characteristic of the rebound effect – if a household resides in a highly

inefficient dwelling (with a higher theoretical and actual gas consumption level), we can

expect that this household will have a stronger behavioral response to energy efficiency

improvements.

18In Appendix Table 3.C.5, we report the non-IV quantile regression estimation results. As expected,
the coefficient estimates are lower compared to the IV estimates because of the potential measurement
error in the predicted gas consumption variable. For the sample of homeowners, the relative magnitudes
of the quantile coefficients is similar to the IV estimation results. However, we do not observe the same
order for the rental sample, although the estimated rebound effect is still lower for the lowest quantile of
the distribution. This might be associated to the unknown differences in the relative magnitudes of the
measurement error bias.
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Table 3.7: Quantile Regression-IV Estimations for Actual Gas Consumption Levels

Panel A: Sample of Owners

10th 25th 50th 75th 90th

Actual Gas Consumption (m3) (707) (1,039) (1,481) (2,003) (2,454)

Log (Predicted Gas Consumption) 0.922*** 0.826*** 0.750*** 0.644*** 0.492***
[0.003] [0.002] [0.002] [0.002] [0.002]

Panel B: Sample of Tenants

10th 25th 50th 75th 90th

Actual Gas Consumption (m3) (590) (846) (1,166) (1,539) (1,917)

Log (Predicted Gas Consumption) 0.699*** 0.647*** 0.599*** 0.553*** 0.494***
[0.003] [0.002] [0.002] [0.002] [0.002]

Notes:
Dependent variable: Log (Actual Gas Consumption). Control variables are included in all regressions.
The values in parentheses represent the actual gas consumption (m3) level for each quantile.
Years included in the analysis: 2008, 2009, 2010 and 2011.
“Predicted Gas Consumption” is instrumented by “Year of Construction”.
Quantiles are chosen based on the actual gas use level of the households.
* P<0.05. ** P<0.01. *** P<0.001

3.4.5 Quasi-Experimental Evidence

Thus far, we examined the rebound effect in the residential sector based either on the

cross-sectional variation in energy efficiency levels, or on the over-time variation that is

created by households changing their address. Although the fixed-effect estimation results

indicate there is no evidence of omitted variable bias, we further examine the rebound effect

from energy efficiency improvements by using a quasi-experimental setting.

In 2008, the Dutch government initiated a program named “Meer met Minder” (more

with less), to stimulate energy efficiency improvements in the residential sector. In this

program, homeowners received tailored advice on energy saving measures, and in addition,

those homeowners increasing the energy label of their dwelling by one or two steps received

a premium of e300 or e750, respectively. Based on data provided by the program

administrator, AgentschapNL, we estimate the realized savings for these dwellings by using

a standard difference-in-differences (DID) approach. Using a sample of 605 owner-occupied

dwellings that benefited from the subsidy program in 2010, we compare the realized savings

with predicted savings on the consumption levels of these dwellings between 2009 and 2011,

the years just before and after the energy efficiency improvement. We use a large control
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group to isolate any time-specific effects (such as changes in climatic conditions or general

trends in the macro economy that may affect energy consumption). The control group

consists of 4,593 owner-occupied dwellings, that were transacted in 2008 (with a label) and

did not apply to any of the energy efficiency subsidy programs (e.g., tailored advice without

premium, double glazing, solar panel subsidies, etc.) offered by the government during the

period of the analysis.19

In Table 3.8, we report the summary statistics for the treatment and control groups.

The treatment sample shows a slightly higher actual gas consumption and a lower level

of energy efficiency (i.e., a higher energy index) compared to the control group. The

subsidy applicants appear to be wealthier than the households in our control group. The

change in average actual gas consumption for our control group between 2009 and 2011,

which is around nine percent, is assumed to be due to other time variant factors (such

as climate conditions). In order to isolate these time-specific effects in the non-parametric

comparisons, we subtract this change from the percentage change in actual gas consumption

between 2009 and 2011 that is documented for the treatment group. The simple calculation

indicates that there is a reduction of about 15 percent in the actual gas consumption as a

result of a 35 percent increase in the theoretical energy efficiency level of the dwellings in

the treatment group. This points at an average rebound effect of 57 percent for the treated

dwellings.

We estimate the rebound effect based on a regression analysis in order to control for

other factors that might affect the savings in residential energy consumption. We use a

first-difference estimator to identify the average rebound effect for the treated dwellings,

isolating the exogenous variation in the energy efficiency of the dwellings in our treatment

group, generated by the efficiency improvements:

∆ln(Gi) = β0 + β1∆ln(EIi) +
J∑
j=2

βj∆Zji + ∆εi (3.4.12)

where ∆ln(Gi) is the change in the logarithm of actual gas consumption from 2009 to 2011

19For both treatment and control groups, we exclude the dwellings in which the household composition
changed from 2009 to 2011.
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Table 3.8: Descriptive Statistics for Quasi-Experimental Analysis

Treatment Group Control Group
Number of Observations 605 4,593

Variables 2009 2011 %Change 2009 2011 %Change

Actual Gas Consumption (m3) 2,318 1,766 -23.81 1,543 1,399 -9.33
(822) (680) (731) (634)

Energy Index 2.34 1.52 -35.04 1.90 1.90 0.00
(0.39) (0.30) (0.58) (0.58)

Size (m2) 127.8 127.8 104.6 104.6
(35.4) (35.4) (33.2) (33.2)

Construction Year (Median) 1961 1961 1970 1970

Number of Household Members 2.41 2.41 2.04 2.04
(1.08) (1.08) (1.11) (1.11)

Household Annual Net Income (1000 Euro) 40.1 39.8 33.9
(19.5) (17.4) (14.8) (16.8)

Household Wealth (1000 Euro) 285.8 80.3
(265.8) (252.8)

Notes:
Standard deviations are indicated in paranthesis.
Energy index of the dwellings in the control group is assumed to be constant between 2009 and 2011.
We report the infromation on household wealth for only 2009, as it is not available for 2011.

for dwelling i, and ∆ln(EIi) is the change in logarithm of energy index for that dwelling.20

For the dwellings in the control group, the change in energy index is assumed to be equal

to zero. Thus, β1 is the elasticity of the actual gas consumption with respect to energy

efficiency. As there might be a random measurement error in the predicted energy index,

which might cause a downward bias in the estimated β1, we apply an IV approach by using

the assignment to treatment as an instrument for the change in energy index. ∆Zji denotes

the change in household characteristics, and ∆εi is the change in error component which

is assumed to be independent of the change in energy index. However, as the treatment

and control groups are not randomly assigned, this assumption may not be valid, and

the estimated β1 might be biased. In order to reduce this potential selection bias, we

apply a propensity score matching (PSM) method, where the probability of being treated

is estimated by using a logit model including dwelling characteristics as regressors. This

20The Energy Index is calculated based on the predicted level of energy that is required for heating and
lighting. We assume that the efficiency improvements only affect the energy used for heating, as the energy
required for lighting is calculated based on the size of the dwelling and constitutes a negligible share of
total energy demand.
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probability is used as a balancing score between groups, as suggested by Rosenbaum and

Rubin (1983). For the dwellings in treatment and control groups with the same balancing

score, the distribution of the dwelling characteristics are the same. Thus, by applying

PSM method, we rely on the assumption that conditional on the dwelling characteristics,

the counterfactual change in actual gas consumption is independent of the assignment to

treatment. In other words, we assume that assignment to treatment is not correlated with

unobserved determinants of household’s gas consumption, which might change during the

period of analysis.

Table 3.9 reports the findings. The first-difference estimator leads to an elasticity

parameter of about 41 percent. When we apply the IV approach, the elasticity of actual gas

consumption with respect to efficiency is found to be 44.5 percent. The use of the PSM-IV

method leads to a similar estimate (44.9 percent). These results indicate that the average

rebound effect is around 55 percent for the dwellings in our treatment group. Accordingly,

the estimated average rebound effect for the treatment group is larger compared to the

average estimate that we documented for the full sample of owner-occupied dwellings (27

percent). This difference might be related to the heterogeneity of rebound effect based on

the actual gas use intensity level, as the dwellings that benefited from the subsidy have

higher actual gas consumption as compared to the other dwellings. As documented in Table

3.7, the estimated rebound effect highly depends on the actual gas use intensity level of the

dwelling. The median actual gas consumption for the treatment group is 2,289 m3, which

corresponds to the 80th quantile of actual gas consumption distribution in the full sample.

The estimated average rebound effect for our treatment group is close to the rebound effect

estimated for 90th quantile in the full sample, which is around 52 percent.
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Table 3.9: Difference-in-Differences and Propensity Score Matching Estimations

(1) (2) (3)
First-Diff. IV PSM-IV

∆ Log (Energy Index) 0.408*** 0.445*** 0.449***
[0.031] [0.032] [0.036]

R2 0.034 0.034 0.032
Number of households 5,198 5,198 5,198

Notes:
Dependent variable: ∆ Log (Actual Gas Consumption)
Standard errors are indicated in paranthesis.
Years included in the analysis: 2009 and 2011
Income and working status of the household are included as control variables in all regressions.
For the IV and PSM estimations, we use assignment to treatment as an instrument for the change in energy index.
For the PSM estimation, we use dwelling characteristics (age, size, type, province) as determinants of assignment to
treatment.
* P<0.05. ** P<0.01. *** P<0.001

3.5 Conclusions and Implications

In the current debate about the reduction of externalities from global carbon emissions,

economists and policy makers increasingly focus on energy efficiency improvements as a

means to affect energy consumption in the building stock. However, it has been asserted

that technological improvements change household behavior, as the corresponding energy

efficiency gains decrease the perceived cost of energy services, thus increasing demand

(Brookes, 1990; Khazzoom, 1980, 1987; Wirl, 1997). This phenomenon has been termed

the “rebound effect”. The existence of the rebound effect is widely acknowledged, but the

real debate lies in the identification and the size of the effect. This is of importance, as

energy conservation policies should be designed to achieve actual energy savings, and not

just to increase the engineering energy efficiency of buildings.

Due to the limited availability of energy efficiency data, empirical estimates of the

rebound effect in the existing literature are mostly based upon households’ response to

variations in energy prices. However, there are significant drawbacks to this methodological

approach, as it may lead to biased estimates (Sorrell et al., 2007). This is the first

study to analyze the rebound effect based on a unique combination of information on the

thermal efficiency of dwellings, their actual energy consumption, and characteristics of the
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occupants. Furthermore, the use of an IV approach and the panel structure of the dataset

enable a more precise identification of a direct rebound effect in residential heating. We use

a large sample of dwellings in the Netherlands to estimate the rebound effect for residential

energy consumption. Examining the association between the engineering predictions on

the energy consumption with the realized gas consumption of some 560,000 dwellings, we

estimate the direct rebound effect. In order to account for random measurement error

in the engineering predictions, we use an instrumental variable approach by including the

dwelling age as an instrument. We document that the average rebound effect is about

41 percent for tenants and 27 percent for homeowners. According to these results, if the

efficiency of an average dwelling is doubled, this will lead to a 59 percent energy reduction

in rental dwellings and a 73 percent energy reduction in owner-occupied dwellings.

The comparison of OLS and IV estimation results indicates the importance of controlling

for the measurement error in engineering predictions. Thus, studies neglecting this error

have the potential of overestimating the rebound effect. We also estimate our model

separately for different wealth cohorts, and document that there is significant heterogeneity

in the estimated rebound effect. The results show that as households becomes wealthier,

the rebound effect decreases. The rebound effect for the lowest wealth quantile is about 40

percent, while it is just 19 percent for the highest wealth quantile. We analyze separately

the heterogeneity of the rebound effect among tenants with different income levels. For the

lowest income quantile, the rebound effect is nearly 49 percent, while it is in the range of

38-40 percent for the upper quantiles. Additionally, using a quantile regression approach,

we examine the heterogeneity of the rebound effect based on the actual gas use intensity

level of the households. The results indicate that the rebound effect is more significant for

the households that are consuming a larger amount of gas to heat their homes. We also

confirm our findings by applying a quasi-experimental analysis. Using the data obtained

from an energy efficiency subsidy program, we show that the efficiency improvements lead

to a rebound effect of around 55 percent. The relative large size of the rebound effect as

compared to the estimates found for the full sample supports the heterogeneity hypothesis,

as the households that invest in the efficiency improvements are at the upper quantiles of

the actual gas consumption distribution in the population.
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Our findings stress the importance of considering the rebound effect in the design of

efficiency improvement policies in residential sector. Policy makers have to incorporate this

effect into the assessment of the effectiveness of energy efficiency improvement measures

and programs, including subsidies and rebates. As confirmed by the quasi-experimental

evidence, there is a significant potential for energy savings in residential sector through

energy efficiency improvements, but the behavioral response of the households offsets part

of the projected energy savings. The heterogeneity of the rebound effect also has some

policy implications. The results in this paper indicate that the magnitude of the rebound

effect varies by wealth, income and energy use level of the household. Thus, in order to

increase the effectiveness of the energy efficiency policy measures, the characteristics of

the target group should be incorporated in decision-making, as well as estimates of the

predicted savings.
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Appendix

3.A Cover Page of the EPC

Source: AgentschapNL
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3.B Calculation of Theoretical Gas Consumption

The calculated gas use (Gp) is assumed to be a combination of gas used for space heating

(Gh) and water heating (Gw).

Gp = Gh +Gw (3.B.1)

The gas used for cooking is not included in the calculations, since it strongly depends

on household behavior. However, we do not expect this to lead to biased estimations, since

cooking typically represents just three percent of the total residential gas consumption.

The gas used for space heating is calculated by the following formula:

Gh = [(Gd/µd)−Gsb]/µi +Gpf (3.B.2)

where Gd is the heating demand of the dwelling. The parameters µd and µi denote the

efficiency of the distribution and installation systems, respectively. Any potential gains

from use of a solar boiler (Gsb) and the additional energy used for pilot flame (Gpf ) are

also accounted for in the prediction. As shown below, in order to calculate the demand for

heating, the transmission (Gt) and ventilation (Gv) losses are summed up, and the internal

(Gi) and solar (Gsg) heating gains are deducted from this aggregate.

Gd = Gt +Gv −Gi −Gsg (3.B.3)

The transmission loss component in the equation above is calculated based on the

following formula:

Gt = (
K∑
k=1

wkAkUk)(Ti − To)t (3.B.4)

where wk is the weighting factor for surface k, which ranges from 0 to 1 depending on

the position of the surface. Ak is the area of the surface and Uk is the U-value of that

surface (an indication of its isolation quality). The heating season duration is denoted by t

and it is assumed to be 212 days. The average indoor (Ti) and outdoor (To) temperatures

are assumed to be 18 degrees Celsius and 5.64 degrees Celsius, respectively. The other

component of equation (3.B.3) is the loss of energy through ventilation, which is calculated
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as follows:

Gv = [f1Af + f2qr(Af/Ar)][δ(Ti − To)t]ρaca (3.B.5)

where f1 and f2 are the ventilation coefficients which depend on the type of ventilation

and the infiltration rate. The usable floor area of the dwelling is denoted by Af , and qr,

Ar are the ventilation loss and the floor area values of a reference house of same type. δ is

the correction factor, ρa is the density of the air, ca is the heat capacity of the air.

The second component of the residential gas consumption is the gas used for water

heating, which is a combination of the gas used by the main boiler (Gmb) and the kitchen

boiler (Gkb).

Gw = Gmb +Gkb (3.B.6)

If there is a hot water system in the kitchen, then the energy consumed by the kitchen

boiler is assumed to be equal to a fixed amount. The gas consumed by the main hot water

installation is calculated as below:

Gmb = (γQ/µb)rq +Gs +Gsc(Af/100)(1− τu) (3.B.7)

Q = Qk +Qb +N(Qp +QsFsNs +QbaNbDb) (3.B.8)

where γ is the conversion factor, Q is the quantity of hot water consumed in a day, µb is

the efficiency of the boiler, rq is a correction factor for short piping, Gs is a fixed value

assigned based on the type of boiler, Gsc is the circulation loss depending on the insulation

level and τu is the used part of the circulation loss. The quantity of the hot water (Q) is

a combination of hot water used in kitchen (Qk), quantity used for basins (Qb), quantity

used for showering (Qs) and quantity used for bath (Qba). N is the assumed number of

people living in the house, which is assigned based on the dwelling size. Fs is the efficiency

of the shower head and Ns is the assumed number of showering per person in a day. Nb is

the assumed number of baths per person in a day and Db is the indicator of existence of

bath (1 or 0).
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3.C Suplementary Tables

Table 3.C.1: Pooled OLS Estimations: Dwellings Constructed after 1999

(1) (2)
Rental Owner-

Occupied

Log (Predicted Gas Consumption) 0.492*** 0.588***
[0.015] [0.028]

Number of Household Members 0.094*** 0.157***
[0.013] [0.022]

Number of Household Members2 -0.007*** -0.013***
[0.002] [0.004]

Number of Children (<18) 0.002 - 0.025
[0.006] [0.021]

Number of Elderly (Age>64) 0.002 0.009
[0.004] [0.016]

Number of Female 0.019*** 0.030
[0.004] [0.017]

All Household Members Are Working (1=yes) -0.057*** -0.044**
[0.006] [0.014]

Log (Household income) 0.007 0.032
[0.007] [0.017]

Receiving Rent Subsidy (1=yes) -0.020*
[0.008]

Province Dummy Yes Yes
Year Dummy Yes Yes
Constant 3.298*** 2.336***

[0.111] [0.262]
R2 0.161 0.285
Number of observations 68,112 4,214

Notes:
We restrict the sample to the dwellings which were constructed after 1999.
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001
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Table 3.C.2: Instrumental Variable Estimations: U-value Requirement for External Walls

(1) (2)
Rental Owner-

Occupied

Log (Predicted Gas Consumption) 0.567*** 0.764***
[0.014] [0.022]

Number of Household Members 0.096*** 0.101***
[0.004] [0.009]

Number of Household Members2 -0.010*** -0.011***
[0.001] [0.001]

Number of Children (<18) -0.005*** 0.002
[0.001] [0.003]

Number of Elderly (Age>64) 0.034*** 0.042***
[0.002] [0.004]

Number of Female 0.037*** 0.015***
[0.001] [0.002]

All Household Members Are Working (1=yes) -0.057*** -0.038***
[0.002] [0.004]

Log (Household income) 0.052*** 0.048***
[0.002] [0.006]

Receiving Rent Subsidy (1=yes) -0.034***
[0.002]

Province Dummy Yes Yes
Year Dummy Yes Yes
Constant 2.416*** 1.020***

[0.091] [0.164]
R2 0.243 0.366
Number of observations 1,664,113 87,282
Number of dwellings 519,512 43,498

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
“Predicted Gas Consumption” is instrumented by “Maximum U-value requirement for external walls at the time of
construction”
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001

81



Table 3.C.3: IV Estimations: Controling for House Size

(1) (2) (3) (4)
Rental Owner- Rental Owner-

Occupied Occupied

Log (Predicted Gas Consumption) 0.562*** 0.711*** 0.563*** 0.710***
[0.011] [0.015] [0.012] [0.015]

Number of Household Members 0.088*** 0.098*** 0.088*** 0.099***
[0.003] [0.007] [0.003] [0.007]

Number of Household Members2 -0.009*** -0.010*** -0.009*** -0.011***
[0.000] [0.001] [0.000] [0.001]

Number of Children -0.005*** -0.002 -0.004*** -0.002
[0.001] [0.003] [0.001] [0.003]

Number of Elderly (Age>64) 0.032*** 0.038*** 0.032*** 0.038***
[0.002] [0.004] [0.002] [0.004]

Number of Female 0.033*** 0.014*** 0.033*** 0.014***
[0.001] [0.002] [0.002] [0.002]

All Household Members Are Working (1=yes) -0.051*** -0.036*** -0.052*** -0.036***
[0.001] [0.004] [0.001] [0.004]

Log (Household Income) 0.033*** 0.035*** 0.034*** 0.034***
[0.004] [0.007] [0.004] [0.007]

Receiving Rent Subsidy (1=yes) -0.032*** -0.032***
[0.002] [0.002]

Log (House Size) 0.111*** 0.093*** - 0.433* -0.132
[0.012] [0.018] [0.195] [0.203]

Log (House Size)2 0.063*** 0.025
[0.021] [0.022]

Province Dummy Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes
Constant 2.160*** 1.114*** 3.324*** 1.638***

[0.060] [0.098] [0.402] [0.490]
R2 0.247 0.383 0.247 0.383
Number of observations 1,664,113 87,282 1,664,113 87,282
Number of dwellings 519,512 43,498 519,512 43,498

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
“Predicted Gas Consumption” is instrumented by “Year of Construction”
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by province and year.
* P<0.05. ** P<0.01. *** P<0.001
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Table 3.C.4: Random-Effects (IV) Estimations

Rental Owner-
occupied

Log (Predicted Gas Consumption) 0.582*** 0.722***
[0.002] [0.009]

Number of Household Members 0.086*** 0.094***
[0.001] [0.005]

Number of Household Members2 -0.008*** -0.009***
[0.000] [0.001]

Number of Children (<18) 0.001 0.004
[0.001] [0.003]

Number of Elderly (Age>64) 0.026*** 0.034***
[0.001] [0.003]

Number of Female 0.027*** 0.011***
[0.001] [0.003]

All Household Members Are Working(1=yes) -0.026*** -0.016***
[0.001] [0.003]

Log (Household income) 0.054*** 0.075***
[0.001] [0.003]

Receiving Rent Subsidy (1=yes) -0.013***
[0.001]

Province Dummy Yes Yes
Year Dummy Yes Yes

Constant 2.705*** 1.568***
[0.019] [0.067]

R2 0.209 0.355
R2 (within) 0.032 0.017
R2 (between) 0.222 0.357
Number of observations 1,664,113 87,282
Number of households 519,512 43,498

Notes:
Dependent variable: Log (Actual Gas Consumption)
Years included in the analysis: 2008, 2009, 2010, and 2011
“Predicted Gas Consumption” is instrumented by “Year of Construction”
* P<0.05. ** P<0.01. *** P<0.001
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Table 3.C.5: Quantile Regression (Non-IV) Estimations for Actual Gas Consumption Levels

Panel A: Sample of Owners

10th 25th 50th 75th 90th

Log (Predicted Gas Consumption) 0.663*** 0.609*** 0.548*** 0.463*** 0.372***
[0.007] [0.004] [0.004] [0.004] [0.004]

Panel B: Sample of Tenants

10th 25th 50th 75th 90th

Log (Predicted Gas Consumption) 0.541*** 0.323*** 0.447*** 0.393*** 0.494***
[0.002] [0.001] [0.001] [0.001] [0.001]

Notes:
Dependent variable: Log (Actual Gas Consumption).Control variables are included in all regressions.
Years included in the analysis: 2008, 2009, 2010 and 2011.
Quantiles are chosen based on the actual gas use level of the households.
* P<0.05. ** P<0.01. *** P<0.001
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Chapter 4

Capitalization of Energy Efficiency in

the Housing Market

4.1 Introduction

In today’s heated debate about climate change, and related, the carbon externality from

energy consumption, energy efficiency seems the panacea that is globally embraced by

policy makers. For example, the recent Clean Power Plan proposed by the United States

Environmental Protection Agency (EPA) allows for investment in energy efficiency as a

substitute for cutting carbon emissions from actual energy generation. Across the ocean,

the EU aims for a 20 percent reduction in energy consumption, based solely on “cost

effective” measures that are paid back from reduction in energy bills. And China has

included energy efficiency as a cornerstone of its current five-year plan, with the ambition

to retrofit four million square feet of non-residential space. But of course, the success of

such programs depends on the willingness of homeowners, developers, and commercial real

estate investors to invest in building upgrades.

Economists have long recognized that market failures can lead to what has been termed

the “energy efficiency gap” – the difference between the optimal level of energy efficiency

and the level actually realized (Allcott and Greenstone, 2012). Following on Akerlof (1970)’s

classic “lemons” model, information asymmetry between seller and buyer is generally
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accepted as one of the main reasons leading to underinvestment in energy efficiency in the

housing market. In the absence of information, buyers are not able to incorporate future

energy costs of the home into their purchasing decisions, and therefore, sellers prefer not to

invest in energy efficiency improvements. In recent years, energy labels have been proposed

as a remedy to this potential market failure. In 2009, in order to provide information

transparency in the relative energy consumption of buildings, EU member states were

required to implement energy performance certification (EPC) schemes for residential

dwellings. By providing information to market participants about energy performance

of buildings, policy makers expect an increase in the demand for energy-efficient dwellings,

which in return, may lead to higher investment in energy efficiency.

However, the effectiveness of this policy hinges on the extent to which buyers are willing

to pay for increased energy efficiency. Furthermore, as upgrading a dwelling to improve its

energy efficiency could involve a significant financial investment, the uncertainty regarding

its financial return may be another reason for households not to undertake seemingly

profitable investments in energy efficiency. Therefore, from both the policy maker’s and

investor’s perspective, it is important to identify the market value of energy efficiency in

the housing sector.

Previous literature provides some empirical evidence on the relationship between

energy efficiency and home prices. Using a sample of dwellings with Energy Performance

Certificates, Brounen and Kok (2011) document that consumers pay a four percent premium

for green-labeled (labels A, B and C) houses in the Netherlands. Similarly, analyzing the

property market in the Republic of Ireland, Hyland et al. (2013) find that the transaction

price increases as the energy efficiency rating of the dwelling improves. Kahn and Kok

(2014), using the transaction data from California housing market, find that houses labeled

with a green label is sold at a small price premium compared to the non-labeled houses.

As energy labels are not necessarily available in other countries, researchers have also

used other approaches to identify the market value of energy efficiency. Thorsnes and

Bishop (2013) examine the capitalization of building standards that were introduced in

New Zealand in 1978, and find a positive premium for the dwellings that were constructed

after the legislation. Similarly, Koirala et al. (2014) estimate the value of energy efficiency
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building codes for American households, and find that building codes are capitalized into

housing rents. Laquatra (1986) analyzes a sample of houses constructed through the Energy

Efficient Housing Demonstration Program of the Minnesota Housing Finance Agency, and

identifies the market values of energy efficiency investments based on a vector of thermal

integrity factors. Zheng et al. (2012) document that “green” buildings, which are identified

based on an index created using Google search, are sold at a price premium at the pre-sale

stage. Comparable to these findings, Dastrup et al. (2012) find that solar panel installations

are capitalized into house prices at around a 3.5 percent price premium in California.

While this body of literature is significant and growing, the most common

methodological drawback of the evidence provided is the potential bias that may arise

due to omission of unobserved dwelling characteristics that are correlated with measures of

energy efficiency, as indicated by Zheng et al. (2012), Hyland et al. (2013) and Thorsnes and

Bishop (2013). Klier and Linn (2012) also document the same problem while analyzing

the capitalization of energy efficiency for the automobile sector. Typically, in order to

minimize the omitted variable bias, the empirical strategy is to include detailed dwelling

characteristics in hedonic model. However, this method does not rule out the presence of

unobservable factors, and multicollinearity among the observed characteristics often leads

to imprecise and implausible estimates of attribute prices. Atkinson and Halvorsen (1984)

mention that the difficulties caused by multicollinearity are more apparent while analyzing

energy efficiency, leading to insignificant and/or theoretically incorrect estimates for the

coefficients of energy efficiency.

In this study, using a large representative dataset from the Netherlands, we propose an

instrumental variable approach in order to identify the capitalization of energy efficiency in

the housing market. Our analysis benefits from a continuous measure of energy efficiency

provided by Energy Performance Certificates, which enables us to estimate the elasticity

of home prices with respect to its energy efficiency. As well as including detailed dwelling

characteristics in the hedonic model, we use an instrumental variable approach to solve the

issue of a potential omitted variable bias. We exploit the 1973-74 oil crisis, which created an

exogenous discontinuity in the energy efficiency levels of the dwellings constructed before

and after this date, and the evolution of building codes as instruments for energy efficiency.
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Our results indicate that the OLS estimates are biased downwards: using an IV approach,

we find that as the energy efficiency level increases by 50 percent, the market value of

the dwelling increases by around 11 percent for an average dwelling in the Dutch housing

market.

Furthermore, in order to investigate whether the value of energy efficiency increases

when information transparency is higher through disclosure of an Energy Performance

Certificate, we create a common energy efficiency measure for certified and non-certified

dwellings, which is based on their actual energy consumption. We find that the market

value of a percentage change in actual gas consumption is close to the value of the energy

efficiency change that is estimated based on the energy efficiency indicator provided by

Energy Performance Certificate. Our findings do not provide any evidence suggesting

a higher capitalization rate for dwellings that are transacted with Energy Performance

Certificate. We also use a regression discontinuity approach to test whether the label

(classification) itself has a market value. Our results do not indicate a significant change

in the transaction price at the threshold energy efficiency level that is used to assign the

dwellings into different label classes. This implies that, after controlling for the continuous

energy efficiency level, the labeling itself does not lead to a significant change in buyer’s

valuation of the dwelling.

Finally, in order to examine the over-time variation in the market value of energy

efficiency, we estimate the hedonic model for each year separately from 2003 to 2011. We

document that, although not statistically significant, the value of energy efficiency has

doubled from 2003 to 2011, which might be partly related to the increase of energy prices,

the relative decrease in house prices after 2008 and the general impact of policies and

campaigns indicating the importance of energy efficiency.

Our findings suggest that, regardless of the provision of energy label, energy efficiency

is significantly capitalized in the housing market. This implies that, in addition to the

immediate financial benefits from lower energy expenses, energy efficiency improvements

lead to higher transaction prices at the time of sale. Our results do not provide any

significant evidence for intangible effects of energy labels on sale prices. For policy makers,

the results of this paper may help in refining energy performance certification programs in a

88



way that stresses the financial benefits of energy efficiency. Furthermore, as also mentioned

by Allcott and Greenstone (2012), information campaigns might have a substantial role in

the diffusion of energy efficiency investments. Therefore, the benefits that households and

investors can derive (in terms of higher transaction prices) need to be highlighted in the

public awareness campaigns.

The remainder of this paper is organized as follows. The next section describes the

empirical specification and the data. In section 3, we present the methodology and the

results. Section 4 provides a brief conclusion.

4.2 Empirical Specification and Data

Hedonic models are commonly used in the economics literature to estimate the value of

individual attributes of a product (Rosen, 1974). When analyzing the property market,

the size of the estimated coefficient on each variable represents the implicit value of that

characteristic. Accordingly, our basic hedonic model takes the following form:

Log(Pricei) = β0 + β1Log(Ei) + βjXi + αn + ti + εi (4.1)

where the dependent variable, Pricei, is the transaction price of dwelling i. Ei is the

variable of interest which represents the energy efficiency level of the dwelling, and Xi is

a vector of other dwelling characteristics. By using a log-log specification, we are able to

estimate the elasticity of house price with respect to energy efficiency, which is denoted

by β1. To control for the unobserved location amenities, we include neighborhood fixed

effects (αn) in our model. ti is a vector of transaction year dummies, which accounts for

the macroeconomic factors that may influence house prices.

In order to estimate this model, we benefit from the transaction data provided by the

National Association of Realtors (NVM) in the Netherlands. This data set contains detailed

information on the characteristics of the dwellings transacted between 2003-2011, as well

as their transaction price. To analyze the energy efficiency of dwellings, we match this data

set with the Energy Performance Certificate (EPC) database managed by AgencyNL.

Following the EU directive 2002/91/EC on the energy performance of buildings, energy
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performance certification for transacted dwellings was introduced in the Netherlands in

January 2008.1 The energy performance certificate is issued by a professionally trained

expert. The expert visits the dwelling and inspects its physical characteristics such as size,

structure, quality of insulation, heating installation, ventilation, solar systems, and built-in

lighting. The collected information is then used to predict the total energy consumption

of the dwelling by using an engineering model, which is described in detail by Aydin et al.

(2014). After scaling by the size and the heating loss area of the dwelling, the prediction is

transformed into an Energy Performance Index (EPI), which is used to assign the dwelling

to a certain label class ranging from “A++” for exceptionally energy-efficient dwellings, to

“G” for highly inefficient dwellings. The EPC database includes detailed information on

energy performance of dwellings, as well as information on some other characteristics (such

as year of construction) of these dwellings.

As the certification program started in 2008, we limit our sample to the dwellings that

were transacted between 2008-2011. We also exclude the dwellings that were constructed

before 1900 or after 1999, as these dwellings are exempted from mandatory disclosure of

an EPC label. For the sake of simplicity, we restrict our sample to single-family dwellings,

which account for nearly 70 percent of the total transactions.2 Finally, we eliminate

outliers that are detected based on the sample distribution of house size, price, and energy

performance index – the upper and lower boundaries for the outliers are set at the first

and 99th percentile. This leads to a sample of 30,036 single-family dwellings that were

transacted with an EPC between 2008-2011.

Figure 4.1 presents the distribution of transaction price, energy performance index and

construction year of the dwellings in our sample. A higher energy performance index

(EPI) indicates a lower energy efficiency level. According to this simple graph, most of

the dwellings in the sample have an EPI value between 1-3, are constructed after 1950,

1Dwellings that have been constructed after 1999, or that are registered as monuments, are exempted
from mandatory disclosure of the energy performance certificate. If the buyer of the dwelling signs a waiver,
the seller is also exempt from providing the certificate.

2Bailey (1966) notes that, compared to single-family dwellings, apartment units may present special
diffuculties of specification and measurement, and differences in the valuation of attributes between these
two type of dwellings might exist. Similarly, Ridker and Henning (1967) and Kahn and Kok (2014) pay
attention to single-family dwellings when analyzing the energy efficiency and house prices.
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and sold at a price ranging from e100,000 to e300,000. Table 4.1 further documents

the summary statistics for some of the main characteristics of the sample, distinguishing

between “energy-efficient” (EPI<median) and “inefficient” (EPI>median) dwellings in our

sample. According to these statistics, on average, efficient dwellings are sold at a higher

price, have a larger size, and are more recently constructed as compared to the inefficient

dwellings.

Figure 4.1: Distribution of Energy Performance Index, Construction Year and Transaction
Price

Source: AgentschapNL, National Association of Realtors (NVM)
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Table 4.1: Descriptive Statistics for Energy Efficient and Inefficient Dwellings

Energy-efficient dwellings Energy-inefficient dwellings
EPI≤1.8 EPI>1.8

Number of Observations 15,170 14,866

Variables Mean Std.Dev. Mean Std.Dev.

Transaction Price (e1000) 229.3 (108.3) 210.8 (109.6)
Energy Performance Index (EPI) 1.507 (0.171) 2.342 (0.417)
Size (m2) 122.9 (34.2) 116.3 (33.4)
Number of Rooms 4.822 (1.050) 4.835 (1.077)
Number of Floors 2.750 (0.545) 2.750 (0.592)
Year of Construction(Median) 1981 1965
Type (fraction)
Corner 0.249 0.257
Semi-detached 0.103 0.139
Between or Townhouse 0.552 0.508
Detached 0.096 0.096
Transaction Year (fraction)
2008 0.435 0.425
2009 0.206 0.218
2010 0.172 0.176
2011 0.187 0.181

As a first analysis of the relationship between energy efficiency and house price, we plot

the observed house price for varying levels of energy efficiency in Figure 4.2. In Panel A,

using unadjusted prices, we obtain a U-shaped relationship between EPI and the value of

the dwelling, which is not fully in line with expectations. This may be due to the omission

of the other determinants of the house price, which are correlated with energy efficiency

(such as dwelling type, location, construction year, etc.). In panel B, we plot the residuals

estimated based on a hedonic model that includes all determinants of home price except the

EPI. We observe a more distinct relationship in this graph, indicating that as the energy

efficiency of a dwelling is lower, the transaction price decreases.
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Figure 4.2: Transaction Prices and the Level of Energy Efficiency

Source: AgentschapNL, National Association of Realtors (NVM), authors’ calculations

4.3 Methodology and Results

4.3.1 OLS Estimations

We first estimate the model in equation (4.1) using an ordinary least squares (OLS)

estimation, assuming that the energy performance index (EPIi), which is used as a measure

of energy efficiency (Ei), is independent of the error term (εi). The results are presented

in Table 4.2.3 When we include the EPI as the sole regressor (column 1), the estimated

impact of a 100 percent increase in the EPI is about 23 percent decrease in the value

3You can see detailed estimation results in Appendix Table 4.B.1
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of the house. This impact decreases to 11 percent when we include the other dwelling

characteristics. In column 3, we also include the construction year of the dwelling, as it is

expected to be strongly correlated with the energy efficiency level. Controlling for all other

factors, we document that a 100 percent increase in the energy performance index leads to

a five percent decrease in the market value of the house.4 This implies that if the energy

requirements are halved, the market value of that dwelling increases by 2.5 percent, which

corresponds to a price premium of e5,000 for the average dwelling in our sample. This

result does not show a significant variation when we specify year of construction as dummy

variables, instead of a continuous variable (column 4).

Table 4.2: OLS Estimation Results: House Prices and Energy Efficiency

(1) (2) (3) (4)

Log(Energy Performance Index) -0.235*** -0.106*** -0.052*** -0.048***
[0.019] [0.007] [0.007] [0.007]

Dwelling Characteristics No Yes Yes Yes
Construction Year No No Yes Yes

R2 0.106 0.836 0.843 0.846
Number of observations 30,036 30,036 30,036 30,036

Notes:
Dependent variable is logarithm of transaction price.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Construction year is included as a third order polynomial in specification (3). In specification (4), we included dummy
variables representing each construction year.
In all regressions, neighborhood and year of transaction dummies are included.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01

Although we use a large representative sample and control for the detailed dwelling

characteristics in the OLS estimations, there is a potential bias in the estimated value

of energy efficiency. The presence of unobserved determinants of the house price, which

might be correlated with the energy efficiency level may influence the estimated coefficient.
4We also examine whether the unobserved determinants of label adoption is correlated with the error

term in equation (4.1), which might lead to biased estimates. In order to test this, we first estimate a probit
model to predict the individual probability of label adoption in our sample of labeled and non-labeled
houses. Next, as proposed by Heckman (1979), we include the inverse Mills ratio in our model. The results
indicate that there is not a significant correlation between the error term of model specified in equation (4.1)
and the error term of the estimated probit model (p-value of the log-likelihood test is 0.176). Therefore,
we conclude that there is not evidence for a sample selectivity bias.

94



Depending on the direction of the correlation between these unobserved factors and price,

and between the unobserved factors and the energy efficiency level, this can either be a

downward or upward bias. Furthermore, in case we control for the construction year in

OLS estimates, the high level of multicollinearity between construction year and the energy

performance index may increase the magnitude of a bias.5

Another econometric issue that may cause a biased estimate is the presence of

measurement error in the engineering calculations. It could be the case that the engineering

calculations include a measurement error, because of the assumptions made in the

calculation method, and the potential mistakes made during the inspection.6 We assume

that the predicted energy efficiency (EPI) is a combination of the true value (EPI∗) and a

random error component (e) that has a mean value equal to zero and that is not correlated

with the true energy efficiency level. In this case, the OLS assumption that the EPI is

independent of the error term may not be valid. The presence of this random measurement

error leads to a downward bias in the OLS estimate of β1.

In order to overcome the potential bias originating from unobserved factors and

measurement error, a common approach is to use the instrumental variable (IV) method.

Such an IV needs to be correlated with the true energy efficiency level (EPI∗), but has to

be independent of both the measurement error (e) and the unobserved determinants of the

dwelling price. In our case, an exogenous variation in energy efficiency can be considered as

an instrument satisfying both of these conditions. Accordingly, we focus on the evolution

of energy efficiency based on construction year of the dwelling.

5See Mela and Kopalle (2002) for a theoretical explanation of the relationship between multicollinearity
and the magnitude of bias.

6Especially for older dwellings, the engineer has to make assumptions regarding the U-value of outside
walls and the rates of ventilation and infiltration. As the engineering models are examined through energy
simulation tests and verified by pilot studies, we do not expect a significant systematic bias in the calculated
energy efficiency level (Poel et al., 2007). Besides, a simple examination of the data on re-inspection of
a sample of labeled dwellings indicates that the inspection error is not systematically and significantly
correlated with the true value (Aydin et al., 2014).
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4.3.2 Instrumental Variable Approach

Energy prices are one of the main drivers of the energy efficiency investments, as rising

prices make thermal comfort more costly for households and decreases the payback

period.7 Appendix 4.A presents the development of oil prices from 1900 to 2000. The

most remarkable increase in oil prices took place in 1974, when oil prices rose by 260

percent. Therefore, dwellings that were constructed just after the oil crisis may be more

energy-efficient than the previously constructed dwellings. Indeed, as presented in Figure

4.3, there is a clear structural break and discontinuity in the average energy efficiency level

of the dwellings constructed after this increase of energy prices.8 The increased energy

efficiency level can be considered as a combined result of the households’ demand for more

energy-efficient dwellings (and appliances), as well as the revision of building codes after

the oil crisis.

Figure 4.3: Efficiency Level of the Dwellings by Year of Construction

Source: AgentschapNL, authors’ calculations

7See Knittel (2011), Li et al. (2009) and Klier and Linn (2010) for the analysis of how gasoline prices
drive the fuel efficiency in the automobile sector.

8Haas and Schipper (1998) mention that after the decrease in residential energy demand following the
1973-74 oil crisis, energy demand did not rebound in times of declining energy prices (e.g., in 1985). They
argue that irreversible efficiency improvements, which took place after the 1973-74 oil crisis, might be a
reason for this observation.
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Starting in 1965, the Dutch government introduced minimum legal requirements for

the thermal efficiency level of new construction. This legislation set a maximum allowable

U-value for each component (walls, windows, floor and roof) of the dwelling. The U-value

is defined as the amount of heat loss through a single square meter of material, for every

degree difference in temperature at either side of the material.9 Figure 4.4 presents the

over-time variation in the maximum allowable U-value requirements for the external walls

of new constructions in the Netherlands. In order to reach the goal of zero energy buildings,

these requirements have been strengthened over time. Figure 4.3 shows that the average

efficiency level of constructed dwellings is quite stable until the 1960s, and starts increasing

(decreasing EPI) at the time of the introduction of the first building code in 1965. After

the substantial increase in energy costs in 1973-74, the increasing trend in energy efficiency

accelerates, forced by stricter building codes.

Figure 4.4: Maximum Allowable U-value for External Walls of New Constructions in NL

Source: AgentschapNL

In order to identify the impact of energy efficiency on house prices, we first exploit the

exogenous change in energy efficiency that took place in 1974 as an instrument, assuming

9For example, one square meter of a standard single glazed window transmits about 5.6 watts of energy
for each degree difference at either side of the window, and thus has a U-Value of 5.6 W/m2. On the other
hand, a double glazed window has a U-value of 2.8 W/m2.
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that unobservable characteristics do not vary discontinuously in 1974. Based on the year

of construction, we assign the dwellings which were constructed after 1974 as the dwellings

which were exposed to significantly higher energy costs during their construction. Our

main identifying assumption is that unobserved characteristics vary continuously with the

year of construction. Thus, any discontinuity of the conditional distribution of the energy

efficiency as a function of the year of construction in 1974 can be considered as the evidence

of a causal effect of the oil crisis.10

To obtain more accurate estimates of the trends in energy efficiency before and after

the exogenous shock, and to be able to compare dwellings having similar characteristics,

we limit our sample of dwellings to those that were constructed between 1967-1982. This

enables us to identify the discontinuity in energy efficiency by isolating the trend effect

that might be correlated with the over-time change in unobserved characteristics of the

constructed dwellings (such as time-variant luxury attributes in homes). Figure 4.5 (Panel

A) presents the discontinuity in energy efficiency of dwellings in 1974. We benefit from this

exogenous change as an instrument for the energy efficiency in our hedonic model. As can

be observed in Panel B of Figure 4.5, there is a clear jump in house prices for the dwellings

that were constructed after 1974.

10Vollaard and Van Ours (2011) use a similar approach when analyzing the impact of stricter built-in
security standards on burglary rate.
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Figure 4.5: Energy Efficiency and Price of the Dwellings Constructed Before and After
1974

Source: AgentschapNL, National Association of Realtors (NVM), authors’ calculations

Using the discontinuity in energy efficiency as an instrument for the energy performance

index (EPI), we are able to disentangle the true (and exogenous) variation in energy

efficiency. Thus, the first and second stage regression models of the IV estimation can

be written as:

Log(EPIi) = α0 + α1D
1974
i + α2Ti + α3D

1974
i Ti + αjXi + τi + ηn + εi (4.2)

Log(Pricei) = δ0 + δ1 ̂Log(EPIi) + δ2Ti + δ3D
1974
i Ti + δjXi + ti + αn + εi (4.3)
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where T indicates the construction year of the dwelling and D1974 is a dummy variable

which is equal to one for the dwellings that were constructed after 1974 and zero otherwise.

By specifying time trends separately before and after 1974, we are able to capture the

exogenous variation in energy efficiency.

Table 4.3 reports the results of the IV estimations that are based on different sample

specifications. Results of the first stage regression model imply that average energy

requirement of the dwellings that were constructed after 1974 oil crisis is about 6-8 percent

lower than previously constructed dwellings.11 The results in column (1), which are based

on the sample of dwellings constructed between 1967-1982, indicate that a 100 percent

increase in energy performance index will lead to a decrease in the market value of the

dwelling by around 22 percent. The estimated coefficient does not vary significantly as we

extend our sample further by including the dwellings that were constructed long before and

after the oil shock (columns 2 and 3). Thus, assuming that the change in energy efficiency

in 1974 is exogenous, the IV results provide evidence that the value of energy efficiency is

underestimated in the OLS regressions.

11You can see the detailed first-stage and second stage estimation results in Appendix Table 4.B.2 and
Table 4.B.3, respectively
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Table 4.3: IV Estimation Results (Discontinuity in 1974): House Prices and Energy
Efficiency

Construction Period (1967-1982) (1959-1990) (1950-1999)

Log(Energy Performance Index) -0.227*** -0.185** -0.198***
[0.090] [0.085] [0.064]

Dwelling Characteristics Yes Yes Yes
Construction Year Yes Yes Yes

R2 0.852 0.852 0.854

First Stage

D1974 -0.080*** -0.060*** -0.073***
[0.009] [0.007] [0.006]

F statistic for excluded instrument 74.03 73.20 134.85

Number of observations 12,513 20,270 25,311

Notes:
Dependent variable is logarithm of transaction price.
Energy Index is instrumented by D1974

In all regressions, we include dwelling characteristics, linear construction year variable (before and after 1974),
neighborhood and year of transaction dummies as control variables.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01

The identifying assumption of using a discontinuity in energy efficiency as an instrument

is that the timing of the oil shock does not coincide with a discontinuity in unobserved

dwelling characteristics that might also affect the price of the house. Although this

assumption cannot be tested directly, we examine the validity of our findings by using

an alternative instrument that is specifically targeted at energy efficiency of new buildings

and that exhibits more variation (compared to a one-time energy price shock). We use the

over-time variation in the stringency of building codes as an alternative instrument for the

energy performance index (EPI). We use the maximum allowable U-value requirement for

outside walls as a proxy for the stringency of the building codes (see Figure 4.4).

Table 4.4 documents the IV estimation results that are based on the evolution of U-value

requirements for external walls of newly constructed homes.12 The first stage regression
12You can see the detailed first-stage and second stage estimation results in Appendix Table 4.B.4 and

Table 4.B.5, respectively
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results indicate that the U-value requirement is significantly associated with the energy

efficiency level of the dwellings that were constructed under that requirement, which is

in line with the findings of Jacobsen and Kotchen (2013). According to the estimated

coefficient on energy performance index (EPI), as the predicted energy requirement of an

average dwelling doubles, the market value of that dwelling decreases by around 21 percent,

which is close the results of the discontinuity approach.13 These findings imply that if the

energy requirement of a dwelling is reduced by half, its market value increases by around

11 percent, which corresponds to about e23,000 for the average dwelling in our sample.

Table 4.4: IV Estimation Results (Building Codes): House Prices and Energy Efficiency

Log(Energy Performance Index) -0.214***
[0.074]

Dwelling Characteristics Yes
Construction Year Yes

R2 0.837

First Stage Results

U-value 0.071***
[0.006]

F statistic for excluded instrument 138.00

Number of observations 30,036

Notes:
Dependent variable is logarithm of transaction price.
We include dwelling characteristics, construction year variable, neighborhood and year of transaction dummies as control
variables in the regression.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01

13According to the results provided by Brounen and Kok (2011), green labeled (A, B, C) houses are sold
with a 3.6 percent price premium compared to the non-green (D, E, F, G) houses. Our sample statistics
indicate that the average energy performance index of green houses are 40 percent less than the non-green
houses. Thus, assuming linearity, we can conclude that their results imply an elastcity around nine percent
which is lower than our estimate. On the other side, Thorsnes and Bishop (2013) document that the
building code legislation that was introduced in 2002 in New Zealand (leading to a 39 percent increase in
energy efficiency) has led to a 14 percent increase in the market value of dwellings that were constructed
after the legislation. Again assuming linearity, this result implies an elasticity around 35 percent which is
larger compared to our estimate. However, it should be noted that the calculated elasticity parameters in
both studies fall within our estimate of 95 percent confidence interval.
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From the homeowner’s perspective, the question of interest is, of course, what our

findings suggest about the value of energy efficiency relative to its cost. According to the

statistics provided by MilieuCentraal (Center for Environment) – a government agency,

in order to decrease the energy requirement of the average dwelling in our sample by

50 percent, the required saving measures cost around e15,000.14 This implies that, for

homeowners, more than the invested amount is paid back in the resale stage. In addition

to this price premium, households realize lower energy bills as a result of the improved

energy efficiency. Given that in 2011 the gas consumption of an average house in our

sample was 1,650 m3 and the price of gas was 0.65 cent per m3, households realize an

estimated e535 annual saving as a result of a 50 percent decrease in the required level of

energy.15

4.3.3 The Impact of Information Provision

Information asymmetry is generally accepted as one of the main reasons why households

underinvest in profitable energy efficiency investment projects (Gillingham et al., 2009).

14According to the information provided by MilieuCentraal, the estimated unit costs of insulating the
components of a dwelling are; e40/m2 for floors, e100/m2 for outside walls, e60/m2 for the roof, e160/m2

for windows and e2,900 for a boiler (see “http://www.milieucentraal.nl/” for detailed information). Given
that the average dwelling in our sample has a 59 m2 of floor area, 82 m2 of roof area, 65 m2 of external
wall area and 25 m2 of window area, if all the saving measures are implemented for the average dwelling
in our sample, this leads to a 70 percent reduction in the expected energy use. The total cost of this
reurbishment is e20,680. Assuming linearity, a 50 percent reduction in the required energy costs around
e15,000. However, it should be noted the effectiveness of different saving measures might vary based on
their simplicity. Our calculation is based on the saving measures that are necessary in order to decrease
the energy requirement of an average dwelling by 70 percent.

15Energy efficiency investments at the time of construction might be even more profitable. According
to a study published by Energy Research center of the Netherlands (Menkveld, Leidelmeijer, Tigchelaar,
Vethman, Cozijnsen, Heemskerk, and Schulenberg, Menkveld et al.), the material cost of a dwelling that
is constructed with an energy performance index (EPI) value of 0.8 is e3,500 higher relative to a dwelling
with an EPI value of 1.0. Assuming that the difference between the expected energy requirements of
these dwellings is 20 percent ((1.0-0.8)/1.0=0.2), and the relationship between energy efficiency and its
cost is linear, a 50 percent reduction in energy requirement of a dwelling (with an EPI value of 1.0) costs
around e8,750 at the time of its construction. Comparing this estimated cost with the estimated value
of energy efficiency in the housing market (e23,000), we can conclude that there is a significant financial
return for the energy efficiency investments made during construction. However, it should be noted that
this comparison needs to be interpreted carefully as the estimated value of energy efficiency represents
the average dwelling in our sample with an EPI value of 1.8 and, on the other side, the estimated cost
represents a dwelling with an EPI value of 1.0. We might expect diminishing returns to investing in energy
efficiency. If so, the the market value of energy efficiency for a dwelling with an EPI value of 1.0 will be
lower than the average dwelling and thus, the financial return of investment might be lower.
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The underlying mechanism is that, if energy efficiency information is not available,

consumers are not able to incorporate the operating costs into their purchasing decisions,

which in return leads to lower investments in energy efficiency. So far, in order to

enhance the transparency of energy efficiency in the real estate market, energy performance

certificates have been used as the main policy instrument in many of the EU countries.

This provision of information is expected to enable households and investors to take energy

efficiency into account in their purchasing and investment decisions, thus leading to a higher

capitalization rate of energy efficiency. Given that our results show that energy efficiency

is capitalized in a sample of the certified dwellings, the question that remains is how the

provision of an energy label affects the capitalization rate of energy efficiency in the market

for single-family dwellings.

In order to test whether the capitalization of energy efficiency varies with the disclosure

of an EPC, we create a common energy efficiency measure for certified and non-certified

dwellings. Since the energy performance index is not available for non-certified dwellings, we

benefit from the variation in actual energy consumption to estimate the model in equation

(4.1). We match our data set with annual gas consumption data provided by Central

Bureau of Statistics (CBS) for the years between 2004-2011.16 We calculate the average

annual gas consumption (per m2) level for each dwelling, and use this as a proxy for the

energy efficiency level of that dwelling (See Figure 4.6, Panel A for the relationship between

gas consumption per m2 and the EPI).17 CBS also provides information on the household

characteristics, including household composition and their income level. We calculate the

average characteristics of the households that reside in each dwelling between 2004-2011.

We include these average household characteristics in the model as control variables, as

they might be correlated with gas consumption (Brounen et al., 2012). In order to obtain

information on the exact year of construction of the non-certified dwellings, we merge our

16Since residential electricity consumption in the Netherlands highly depends on the use of household
appliances instead of the characteristics of the dwelling, we do not include household’s electricity
consumption as a measure of home’s energy efficiency in our analysis. According to the statistics provided
by Odyssee database, in 2011, nearly 85 percent of residential electricity consumption is used for household
appliances in the Netherlands, and the share of electricity used for air cooling is about 0.3 percent.

17The gas consumption data is not available for the years 2005 and 2007. While calculating the
dwelling’s average gas consumption level, we correct for annual heating degree days and exclude the years
of transaction.
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data set with the housing data provided by CBS. Finally, we exclude the outliers detected

based on the sample distribution of gas consumption per m2, transaction price, house size

and household income level (the upper and lower boundaries for the outliers are set at the

first and 99th percentile). The complete sample includes 103,834 dwellings that transacted,

without EPC, between 2008-2011.

Figure 4.6: Gas Consumption per m2, Energy Performance Index and Year of Construction

Source: AgentschapNL, Central Bureau of Statistics (CBS), authors’ calculations

In Table 4.5, we report some of the descriptive statistics for certified and non-certified

dwellings separately. The transaction price for non-certified dwellings is significantly larger

compared to certified dwellings. This might be due to the larger fraction of detached and

semi-detached houses in the sample of non-certified dwellings. The efficiency indicator,

which is proxied by gas consumption per m2, is not statistically different for certified and
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non-certified dwellings. The average dwelling in our sample is occupied by two people

who have an average annual income around e35,000 (e31,000 for certified dwellings). The

average annual gas consumption is 1,800 m3 for non-certified dwellings and 1,650 m3 for

certified dwellings. According to these statistics, given that the consumer price of gas was

65 cents per m3 in 2011, the annual gas expenditure of the average consumer corresponds

to nearly four percent of the income of the average household in our sample – a sizable

expenditure.

Table 4.5: Descriptive Statistics for Non-certified and Certified Dwellings

Non-certified Dwellings Certified Dwellings
Number of Observations 103,834 23,187

Variables Mean Std.Dev. Mean Std.Dev.

Transaction Price (e1000) 257.0 (113.3) 214.5 (100.1)
Gas Consumption (m3) 1,795 (646) 1,647 (581)
Size (m2) 126.9 (31.1) 117.5 ( 29.8 )
Gas Consumption Intensity(m3/m2) 14.44 (4.82) 14.35 (4.67)
Number of Rooms 4.976 (1.073) 4.807 (1.032)
Number of Floors 2.790 (0.556) 2.756 (0.560)
Year of Construction(Median) 1965 1968
Type (fraction)
Corner 0.205 0.258
Semi-detached 0.164 0.121
Between or Townhouse 0.490 0.537
Detached 0.141 0.084
Transaction Year (fraction)
2008 0.277 0.434
2009 0.230 0.205
2010 0.257 0.173
2011 0.236 0.188
Household Characteristics
Number of Household Members 2.405 (1.011) 2.270 (0.934)
Number of Elderly (Age>65) 0.343 (0.547) 0.332 (0.513)
Number of Children (Age<18) 0.597 (0.774) 0.529 (0.696)
Number of Female Household Members 1.209 (0.625) 1.158 (0.585)
Household Income (e1000) 35.34 (14.74) 31.21 (13.32)

First, we use OLS to estimate the market value of energy efficiency for non-certified

dwellings. The gas consumption per m2 is used as a proxy for the energy efficiency level

of the dwelling. In column (1) of Table 4.6, we report the results of the estimation of the
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model without including control variables.18 According to the estimated coefficient, if the

actual gas consumption per m2 is doubled, the value of the house decreases by around seven

percent. However, when we include control variables, the sign of the estimated coefficient

becomes significantly positive, which is contrary to expectations. According to the results

reported in column (4), keeping the dwelling and household characteristics fixed, if the

gas expenditure is doubled, the value of the dwelling increases by around ten percent for

non-certified dwellings. The estimated coefficient is nearly the same when we estimate the

model for the certified dwellings (column 5).19

Table 4.6: OLS Estimation Results for Non-certified and Certified Dwellings

(1) (2) (3) (4) (5)

Log(Actual Gas Cons. per m2) -0.071*** 0.049*** 0.112*** 0.105*** 0.086***
[0.008] [0.004] [0.003] [0.003] [0.005]

Dwelling Characteristics No Yes Yes Yes Yes
Construction Year No No Yes Yes Yes
Household Characteristics No No No Yes Yes

R2 0.010 0.756 0.774 0.794 0.855
Number of observations 103,834 103,834 103,834 103,834 23,187

Notes:
Dependent variable is logarithm of transaction price.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Household characteristics are: number of household members, number of children (age<18), number of elderly (age>65),
number of females and household net income
Construction year is included as a third order polynomial.
In column (5), we estimate the same model for the sample of certified dwellings.
In all regressions, neighborhood and year of transaction dummies are included.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01

A potential explanation for these findings is that, due to the omission of unobserved

factors and the presence of multicollinearity between actual gas consumption and other

dwelling characteristics, the OLS estimation leads to a biased result (Atkinson and

Halvorsen, 1984; Mela and Kopalle, 2002). Therefore, we again use an IV approach in

order to isolate the exogenous variation in actual gas consumption resulting from stricter

building codes (See Figure 4.6, Panel B for the over-time variation in gas consumption per
18You can see the detailed estimation results in Appendix Table 4.B.6
19Using a similar approach, Cerin et al. (2014) also reports a positive price premium for decreased level

of energy efficiency for the average dwelling in Sweden.
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m2 of new dwellings). We estimate the same model using the evolution of building codes

as an instrument for actual gas consumption per m2. Table 4.7 documents the results of

the IV estimation using the maximum U-value requirement for external walls at the time

of construction as an instrument for actual gas consumption per m2.20 The results show

that, keeping the other dwelling and household characteristics constant, as the actual gas

consumption is doubled, the market value of the dwelling decreases by around 24 percent

for non-certified dwellings and 20 percent for certified dwellings, which is in line with our

previous findings. The estimated coefficient is not statistically different for certified and

non-certified dwellings, which provides some indication that there is limited evidence to

argue that the salience of energy efficiency increases with the adoption of an EPC.21

20You can see the detailed first-stage and second stage estimation results in Appendix Table 4.B.7 and
Table 4.B.8, respectively

21It is important to note that, as documented by Aydin et al. (2014), the actual energy consumption
does not represent the exact efficiency level due to the existence of rebound effect. Therefore, the estimated
market value of a decrease in the level of actual gas consumption is expected to be larger than the value
of a decrease in the energy performance index (EPI), as it also captures the increased level of thermal
comfort. The first stage results also support the rebound effect hypothesis, as the increased U-value
has less impact on the actual gas consumption then it has on energy performance index, although not
statistically significant (Columns 2 and 3). This might also explain the larger coefficient we find by using
actual gas consumption compared to using the EPI.
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Table 4.7: IV Estimation Results for Non-certified and Certified Dwellings

(Non-certified) (Certified) (Certified)

Log(Actual Gas Cons. per m2) -0.239*** -0.195**
[0.052] [0.090]

Log(Energy Performance Index) -0.185***
[0.080]

Dwelling Characteristics Yes Yes Yes
Construction Year Yes Yes Yes
Household Characteristics Yes Yes Yes

R2 0.740 0.818 0.844

First Stage Results

U-value 0.068*** 0.065*** 0.069***
[0.004] [0.009] [0.006]

F statistic for excluded instrument 307.10 50.07 113.37

Number of observations 103,834 23,187 23,187

Notes:
Dependent variable is logarithm of transaction price.
In all regressions, we include household characteristics, dwelling characteristics, construction year variable, neighborhood
and year of transaction dummies as control variables.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Household characteristics are: number of household members, number of children (age<18), number of elderly (age>65),
number of females and household net income.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01

We also examine directly whether the energy label itself has an additional impact on

the transaction price. We apply a regression discontinuity (RD) approach based on the

rule that is used to assign dwellings in energy efficiency classes. The basic idea behind

this approach is that assignment to treatment is determined by the value of an observed

characteristic being on either side of a cutoff value (Imbens and Lemieux, 2008). The

main identifying assumption is that unobserved characteristics vary continuously with the

observable characteristic that is used in the assignment rule (Jacob and Lefgren, 2004).

We test whether there exists discontinuity in the transaction price of the dwelling around

the threshold values of EPI for different label categories. We focus on a narrow bandwidth

(±0.2 EPI) around the threshold values. In Figure 4.7, comparing the subsequent label
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categories, we plot the variation in the adjusted transaction price based on the energy

performance index around the cutoff points. We do not observe a clear discontinuity in

transaction price at the threshold points that are used to assign dwellings in different label

categories.

Figure 4.7: Transaction Price (adjusted) by Label Category and Energy Performance Index

Source: AgentschapNL, National Association of Realtors (NVM), authors’ calculations
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In order to formally test the potential labeling effect, we estimate the following model

for each threshold level:

Log(Pricei) = φ0 + φ1Log(EPI) + φ2D
L.label
i Log(EPI) + φ3D

L.label
i + φjXi + εi (4.4)

where DL.label is a dummy variable which is equal to one for the dwellings that were assigned

to the label indicating lower energy efficiency level, and zero otherwise. Xi is a vector of

dwelling characteristics. Log(EPI) and DL.label
i Log(EPI) control for the continuous effect

of the EPI on transaction price within each label category, and thus φ3 represents the impact

of label itself on transaction price, which is our parameter of interest. Table 4.8 reports the

estimates of φ3 for each threshold value that is used in the assignment to different label

categories. For all cutoff points, the estimated change in transaction price that results from

the assignment to a lower energy efficiency class is negative but not statistically significant.

Thus, there is not enough evidence to argue that the labeling itself has a significant impact

on the transaction price.

Table 4.8: Regression Discontinuity Estimation Results for Label Effect

(A-B) (B-C) (C-D) (D-E) (E-F) (F-G)

DL.label=1 -0.013 -0.012 -0.002 -0.000 - 0.007 -0.015
[0.029] [0.008] [0.007] [0.008] [0.011] [0.018]

Log(EPI) 0.171 -0.011 -0.019 -0.052 0.300** -0.055
[0.262] [0.085] [0.059] [0.089] [0.136] [0.270]

Log(EPI)*DL.label -0.433 -0.060 -0.088 -0.037 -0.494** 0.530
[0.312] [0.107] [0.093] [0.152] [0.224] [0.464]

Dwelling Characteristics Yes Yes Yes Yes Yes Yes
Construction Year Yes Yes Yes Yes Yes Yes

R2 0.841 0.863 0.848 0.841 0.843 0.825
Number of obs. 1,461 6,879 11,009 6,899 4,606 2,146

Notes:
Dependent variable is logarithm of transaction price.
We include dwelling characteristics, construction year variable, neighborhood and year of transaction dummies as control
variables in the regression.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood and transaction
year.
* P<0.1. ** P<0.05. *** P<0.01
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Finally, we examine whether the estimated value of energy efficiency varies over time.

By using actual gas consumption per m2 as a proxy for energy efficiency, we are able to

estimate the market value of residential energy efficiency for each year from 2003 to 2011.

As reported in Table 4.9, we find that the estimated coefficient increases from 2003 to 2011,

although the difference is not statistically significant. This can be partly explained by the

decreasing house prices after 2008 and the relative increase in energy costs (see Figure

4.8).22 Besides, the introduction of EPC in 2008 might also have a general influence on the

capitalization of energy efficiency (for both certified and non-certified dwellings), as it may

change the households’ perception of importance of energy efficiency.

22See Kahn (1986), Allcott and Wozny (2014), Busse et al. (2013) for the anlysis of how the market
value of fuel economy in the automobile sector is associated to the changes in gasoline prices.
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Table 4.9: Market Value of Energy Efficiency Over Time

Year Log(Gas Cons. per m2) N

2003 -0.156*** 42,346
[0.056]

2004 -0.177*** 42,847
[0.053]

2005 -0.144*** 48,702
[0.049]

2006 -0.202*** 48,632
[0.054]

2007 -0.160*** 47,976
[0.054]

2008 -0.175*** 39,030
[0.052]

2009 -0.302*** 28,742
[0.085]

2010 -0.319*** 30,768
[0.092]

2011 -0.248*** 28,936
[0.084]

Notes:
Dependent variable is logarithm of transaction price.
In all regressions, we include household characteristics, dwelling characteristics, construction year variable, and
neighborhood dummies as control variables.
Dwelling characteristics are: dwelling size, dwelling type, quality, number of floors, number of rooms, type of parking
place, location of the dwelling relative to center, road, park, water and forest.
Household characteristics are: number of household members, number of children (age<18), number of elderly (age>65),
number of females and household net income.
We include both certified and non-certified dwellings in the analysis.
Heteroskedasticity-robust standard errors in parentheses. Standard errors are clustered by neighborhood.
* P<0.1. ** P<0.05. *** P<0.01
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Figure 4.8: Value of Energy Efficiency and Gas Prices

Source: Central Bureau of Statistics (CBS), International Energy Agency, National Association of Realtors (NVM), authors’
calculations

4.4 Conclusion

Enhancing residential energy efficiency has been a key element of debate among policy

makers, investors, and academics. Notwithstanding promising engineering estimates,

large-scale diffusion of energy efficiency enhancements in the single-family housing market

has been far from easy. One of the causes of such slow uptake is that the associated returns

to efficiency upgrades have not been identified convincingly. Requiring households to make

upfront investment for an uncertain return has been complicated further during the recent

period of financial liquidity constraints.

In this paper, we investigate how consumers capitalize energy efficiency in the
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housing market, and how the provision of an energy performance certificate affects this

capitalization rate. Although this is not the first paper to address this capitalization

process, most of the available evidence suffers from a common methodological drawback –

the potential bias that may arise due to omission of unobserved dwelling characteristics that

are correlated with measures of energy efficiency. This paper contributes to this literature

by proposing an instrumental variable approach to estimate the capitalization of energy

efficiency in the residential sector. We also contribute to the literature by examining the

impact of information provision, in the form of energy labels, on consumers’ valuation of

energy efficiency.

We examine a large representative dataset from the Netherlands, exploiting the

discontinuity in the energy efficiency levels of the newly constructed homes during the

1973-74 oil crisis, and the stringency of building codes at the time of construction as

instruments for energy efficiency. Our results indicate that the use of OLS leads to biased

estimates of the market value of energy efficiency. Using an IV approach, we find that if

the energy requirement of a dwelling is reduced by half, the market price of the dwelling

increases by around 11 percent for an average dwelling in the Dutch housing market. In

order to examine whether the capitalization of energy efficiency varies with the disclosure

of an EPC, we estimate the same model by using actual energy consumption as a proxy for

a common energy efficiency measure for certified and non-certified homes. Our findings do

not provide a significant evidence suggesting a higher capitalization rate for dwellings that

transacted with an energy performance certificate. We also use a regression discontinuity

approach to test whether labeling itself has a market value. The results show that there is

not a significant change in the transaction price at the threshold energy efficiency level that

is used to assign the dwellings into different label classes, which implies that the labeling

itself does not lead to a significant change in buyer’s valuation of the dwelling. Finally,

we examine the over-time change in the market value of energy efficiency, and document

that the value of energy efficiency has doubled from 2003 to 2011, which might be a result

of the increase in energy prices, the relative decrease in house prices after 2008 and the

general influence of policies and information campaigns stressing the importance of energy

efficiency.
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Our findings imply that, beyond the direct financial benefits from lower energy expenses,

residential energy efficiency improvements lead to higher transaction prices, regardless of

the provision of an energy label. From a policy perspective, the results of this paper

may be used to enhance the public awareness regarding the financial benefits of energy

efficiency investments. In order to facilitate the uptake of energy efficiency measures, the

financial benefits that homeowners can derive from energy efficiency improvements need to

be emphasized in the public information campaigns, and can also be incorporated into the

energy performance certification programs. In relation to “energy efficiency gap” literature,

our results also raise the question why energy efficiency investments in the housing sector

are far below the optimal level, given that the market value of, for example, insulation

is so much higher than its cost. The additional costs (such as the nuisance during the

retrofit work and the information costs), the risk of undervaluation of the energy efficiency

improvement in the market, liquidity constraints and the future discounting behavior might

be some of the reasons that lead to this sub-optimal outcome. Thus, more research needs

to be done to understand homeowners’ investment decisions, and accordingly cost-effective

policies need to be designed in a way to deal with these underlying reasons.
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Appendix

4.A Development of Oil Prices

Source: International Energy Agency
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4.B Supplementary Tables

Table 4.B.1: OLS Estimation Results: House Prices and Energy Efficiency
(1) (2) (3) (4)

Log (Energy performance index) -0.235*** -0.106*** -0.052*** -0.048***
(0.019) (0.007) (0.007) (0.007)

Log (House size) 0.673*** 0.671*** 0.676***
(0.012) (0.013) (0.013)

Number of rooms 0.015*** 0.019*** 0.019***
(0.002) (0.002) (0.002)

Number of floors -0.013*** -0.017*** - 0.018***
(0.004) (0.003) (0.003)

House type=Semi-detached 0.129*** 0.112*** 0.109***
(0.005) (0.005) (0.005)

House type=Between or Townhouse -0.031*** -0.033*** 0.033***
(0.002) (0.002) (0.002)

House type=Detached house 0.318*** 0.296*** 0.292***
(0.006) (0.007) (0.007)

Parking place 0.055*** 0.049*** 0.045***
(0.006) (0.006) (0.006)

Only carport 0.072*** 0.075*** 0.074***
(0.008) (0.007) (0.007)

Only garage 0.147*** 0.146*** 0.143***
(0.004) (0.004) (0.004)

Garage and carport 0.175*** 0.172*** 0.171***
(0.009) (0.009) (0.009)

Garage for multiple cars 0.188*** 0.192*** 0.190***
(0.009) (0.009) (0.009)

Location relative to the center (unspecified) -0.154*** -0.142*** -0.144***
(0.016) (0.016) (0.016)

Location relative to the center (residential area) -0.175*** -0.160*** -0.160***
(0.016) (0.016) (0.016)

Location relative to the center (center) -0.127*** -0.130*** -0.133***
(0.017) (0.017) (0.017)

Near forest 0.116*** 0.127*** 0.126***
(0.010) (0.010) (0.010)

Near waterside 0.087*** 0.078*** 0.076***
(0.006) (0.006) (0.006)

Near park 0.043*** 0.044*** 0.041***
(0.006) (0.006) (0.006)

Clear view 0.027*** 0.028*** 0.028***
(0.004) (0.003) (0.003)

Location relative to the road (unspecified) -0.012*** -0.012*** -0.012***
(0.003) (0.003) (0.002)

Location relative to the road (near a busy road) -0.033*** -0.041*** -0.042***
(0.009) (0.009) (0.009)

Quality==0 -0.058** -0.055** -0.046*
(0.028) (0.027) (0.026)

Quality==1 -0.062*** -0.056*** -0.051***
(0.020) (0.018) (0.018)

Quality==2 0.458*** 0.450*** 0.443***
(0.097) (0.097) (0.103)

Construction-year 0.002***
(0.000)

Construction-year2 0.000***
(0.000)

Construction-year3 0.000***
(0.000)

Constant 5.580*** 1.851*** 1.779*** 1.899***
(0.017) (0.070) (0.074) (0.099)

Observations 30,036 30,036 30,036 30,036
R-squared 0.106 0.836 0.843 0.846

Notes:
Dependent variable is logarithm of transaction price.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking place”, for ”location
relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not specified”, for ”location relative to the road”
variable it is ”near a quite road”, and for ”quality” variable it is ”not specified”.
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Table 4.B.2: IV First-stage Estimation Results: Discontinuity in 1974

Construction Period (1950-1999) (1959-1990) (1967-1982)

D1974 -0.073*** -0.060*** -0.080***
(0.006) (0.007) (0.009)

Construction-year (until1974) -0.004*** -0.006*** -0.001
(0.001) (0.001) (0.002)

Construction-year (after 1974) -0.012*** -0.011*** -0.013***
(0.001) (0.001) (0.002)

Log of house size(m2) -0.064*** -0.064*** -0.066***
(0.010) (0.012) (0.015)

Number of rooms -0.002 -0.003 -0.002
(0.002) (0.002) (0.003)

Number of floors 0.009** 0.011*** 0.014**
(0.004) (0.004) (0.005)

House type=Semi-detached 0.013** 0.007 0.005
(0.005) (0.006) (0.009)

House type=Between or Townhouse -0.014*** -0.013*** -0.020***
(0.003) (0.003) (0.004)

House type=Detached house -0.005 0.002 0.020
(0.008) (0.009) (0.013)

Parking place -0.004 -0.010 -0.015
(0.006) (0.007) (0.010)

Only carport -0.004 -0.006 -0.006
(0.007) (0.008) (0.010)

Only garage 0.004 0.007 0.005
(0.004) (0.005) (0.006)

Garage and carport -0.020** -0.017 -0.027*
(0.010) (0.012) (0.016)

Garage for multiple cars -0.007 0.002 -0.001
(0.011) (0.013) (0.017)

Location relative to the center (unspecified) -0.011 0.012 -0.012
(0.022) (0.024) (0.032)

Location relative to the center (residential area) -0.021 0.004 -0.014
(0.022) (0.024) (0.032)

Location relative to the center (center) -0.007 0.025 0.017
(0.024) (0.027) (0.035)

Near forest 0.013 0.018 0.014
(0.012) (0.014) (0.017)

Near waterside -0.004 -0.002 -0.002
(0.006) (0.007) (0.010)

Near park -0.000 -0.009 -0.009
(0.007) (0.008) (0.010)

Clear view -0.003 -0.006 -0.016***
(0.004) (0.005) (0.006)

Location relative to the road (unspecified) -0.001 -0.002 -0.001
(0.003) (0.003) (0.004)

Location relative to the road (near a busy road) 0.008 0.013 0.003
(0.012) (0.013) (0.016)

Quality==0 -0.061** -0.055** -0.072**
(0.026) (0.026) (0.032)

Quality==1 -0.006 -0.017 -0.028
(0.018) (0.015) (0.022)

Quality==2 -0.094 -0.105* -0.093
(0.065) (0.060) (0.100)

Constant 0.988*** 0.947*** 0.885***
(0.062) (0.069) (0.124)

Observations 25,311 20,270 12,513
R-squared 0.445 0.362 0.258

Notes:
Dependent variable is logarithm of energy performance index.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking
place”, for ”location relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not
specified”, for ”location relative to the road” variable it is ”near a quite road”, and for ”quality” variable it is ”not
specified”.
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Table 4.B.3: IV Second-stage Estimation Results: Discontinuity in 1974

Construction Period (1950-1999) (1959-1990) (1967-1982)

Log (Energy performance index) -0.198*** -0.185** -0.227**
(0.064) (0.085) (0.090)

Log of house size(m2) 0.613*** 0.597*** 0.595***
(0.012) (0.012) (0.015)

Number of rooms 0.014*** 0.014*** 0.014***
(0.002) (0.002) (0.003)

Number of floors -0.026*** -0.030*** -0.037***
(0.004) (0.004) (0.005)

House type=Semi-detached 0.110*** 0.120*** 0.137***
(0.005) (0.006) (0.008)

House type=Between or Townhouse -0.037*** -0.035*** - 0.039***
(0.002) (0.003) (0.003)

House type=Detached house 0.324*** 0.342*** 0.365***
(0.007) (0.008) (0.011)

Parking place 0.044*** 0.039*** 0.039***
(0.006) (0.006) (0.009)

Only carport 0.076*** 0.070*** 0.059***
(0.007) (0.007) (0.008)

Only garage 0.155*** 0.154*** 0.145***
(0.004) (0.004) (0.005)

Garage and carport 0.172*** 0.171*** 0.161***
(0.009) (0.010) (0.014)

Garage for multiple cars 0.209*** 0.218*** 0.223***
(0.010) (0.011) (0.014)

Location relative to the center (unspecified) -0.176*** -0.153*** -0.144***
(0.021) (0.023) (0.028)

Location relative to the center (residential area) -0.192*** -0.168*** -0.160***
(0.020) (0.023) (0.028)

Location relative to the center (center) -0.150*** -0.128*** -0.130***
(0.022) (0.025) (0.032)

Near forest 0.130*** 0.133*** 0.113***
(0.010) (0.011) (0.013)

Near waterside 0.077*** 0.076*** 0.067***
(0.006) (0.007) (0.010)

Near park 0.037*** 0.038*** 0.040***
(0.006) (0.006) (0.008)

Clear view 0.027*** 0.023*** 0.016***
(0.003) (0.004) (0.005)

Location relative to the road (unspecified) -0.011*** -0.011*** -0.010***
(0.002) (0.003) (0.003)

Location relative to the road (near a busy road) -0.026*** -0.028** -0.035***
(0.010) (0.011) (0.013)

Quality==0 -0.113*** -0.120*** -0.162***
(0.026) (0.026) (0.032)

Quality==1 -0.097*** -0.099*** -0.132***
(0.018) (0.020) (0.028)

Quality==2 0.355** 0.350** 0.464***
(0.158) (0.165) (0.176)

Construction-year (until 1974) -0.002*** -0.001* 0.005***
(0.001) (0.001) (0.001)

Construction-year (after 1974) 0.006*** 0.005*** -0.006**
(0.001) (0.001) (0.002)

Constant 2.295*** 2.344*** 2.400***
(0.082) (0.095) (0.106)

Observations 25,311 20,270 12,513
R-squared 0.854 0.852 0.852

Notes:
Dependent variable is logarithm of transaction price.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking
place”, for ”location relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not
specified”, for ”location relative to the road” variable it is ”near a quite road”, and for ”quality” variable it is ”not
specified”.
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Table 4.B.4: IV First-stage Estimation Results: U-value Requirements for Walls

U-value requirement for external walls 0.071***
(0.006)

House type=Semi-detached 0.004
(0.005)

House type=Between or Townhouse -0.016***
(0.003)

House type=Detached house -0.014**
(0.007)

Log of house size(m2) -0.059***
(0.010)

Number of rooms -0.000
(0.002)

Number of floors 0.010***
(0.004)

Parking place -0.013**
(0.007)

Only carport -0.008
(0.007)

Only garage 0.005
(0.004)

Garage and carport -0.020**
(0.010)

Garage for multiple cars -0.020*
(0.010)

Location relative to the center (unspecified) 0.008
(0.016)

Location relative to the center (residential area) 0.001
(0.016)

Location relative to the center (center) 0.014
(0.018)

Near forest 0.003
(0.012)

Near waterside -0.005
(0.006)

Near park -0.002
(0.007)

Clear view 0.001
(0.004)

Location relative to the road (unspecified) -0.001
(0.003)

Location relative to the road (near a busy road) 0.018*
(0.010)

Quality==0 -0.061**
(0.025)

Quality==1 -0.004
(0.015)

Quality==2 -0.128***
(0.044)

Construction-year -0.008***
(0.000)

Construction-year2 -0.000***
(0.000)

Construction-year3 -0.000***
(0.000)

Constant 0.768***
(0.054)

Observations 30,036
R-squared 0.414

Notes:
Dependent variable is logarithm of energy performance index.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking
place”, for ”location relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not
specified”, for ”location relative to the road” variable it is ”near a quite road”, and for ”quality” variable it is ”not
specified”.
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Table 4.B.5: IV Second-stage Estimation Results: U-value Requirements for Walls

Log (Energy performance index) -0.214***
(0.074)

House type=Detached house 0.112***
(0.005)

House type=Between or Townhouse -0.035***
(0.003)

House type=Detached house 0.294***
(0.007)

Log of house size(m2) 0.662***
(0.014)

Number of rooms 0.019***
(0.002)

Number of floors -0.015***
(0.004)

Parking place 0.047***
(0.006)

Only carport 0.074***
(0.007)

Only garage 0.147***
(0.004)

Garage and carport 0.169***
(0.009)

Garage for multiple cars 0.188***
(0.009)

Location relative to the center (unspecified) -0.140***
(0.017)

Location relative to the center (residential area) -0.159***
(0.016)

Location relative to the center (center) -0.128***
(0.018)

Near forest 0.127***
(0.011)

Near waterside 0.077***
(0.006)

Near park 0.043***
(0.006)

Clear view 0.028***
(0.003)

Location relative to the road (unspecified) -0.013***
(0.003)

Location relative to the road (near a busy road) -0.038***
(0.009)

Quality==0 -0.065**
(0.028)

Quality==1 -0.057***
(0.018)

Quality==2 0.430***
(0.099)

Construction-year 0 .000
(0.001)

Construction-year2 0.000***
(0.000)

Construction-year3 0.000***
(0.000)

Constant 1.920***
(0.095)

Observations 30,036
R-squared 0.837

Notes:
Dependent variable is logarithm of transaction price.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking
place”, for ”location relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not
specified”, for ”location relative to the road” variable it is ”near a quite road”, and for ”quality” variable it is ”not
specified”.
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Table 4.B.6: OLS Estimation Results based on Gas Consumption per m2

(1) (2) (3) (4) (5)

Log (Gas consumption per m2) -0.071*** 0.049*** 0.112*** 0.105*** 0.086***
(0.008) (0.004) (0.003) (0.003) (0.005)

Log of house size(m2) 0.813*** 0.802*** 0.720*** 0.632***
(0.009) (0.009) (0.008) (0.013)

Number of rooms 0.012*** 0.016*** 0.013*** 0.014***
(0.001) (0.001) (0.001) (0.002)

Number of floors -0.016*** -0.017*** -0.020*** - 0.014***
(0.002) (0.002) (0.002) (0.004)

House type=Detached house 0.103*** 0.090*** 0.085*** 0.101***
(0.003) (0.003) (0.003) (0.005)

House type=Between or Townhouse -0.028*** -0.024*** -0.025*** - 0.022***
(0.002) (0.002) (0.002) (0.002)

House type=Detached house 0.259*** 0.240*** 0.239*** 0.267***
(0.004) (0.004) (0.004) (0.007)

Parking place 0.055*** 0.044*** 0.038*** 0.041***
(0.004) (0.003) (0.003) (0.006)

Only carport 0.070*** 0.070*** 0.062*** 0.063***
(0.004) (0.004) (0.004) (0.007)

Only garage 0.111*** 0.110*** 0.104*** 0.127***
(0.002) (0.002) (0.002) (0.004)

Garage and carport 0.142*** 0.133*** 0.124*** 0.149***
(0.005) (0.004) (0.004) (0.009)

Garage for multiple cars 0.140*** 0.146*** 0.143*** 0.178***
(0.004) (0.004) (0.004) (0.010)

Location relative to the center (unspecified) -0.133*** -0.140*** -0.145*** -0.186***
(0.007) (0.007) (0.007) (0.018)

Location relative to the center (residential area) -0.149*** -0.163*** -0.171*** -0.205***
(0.007) (0.008) (0.008) (0.018)

Location relative to the center (center) -0.149*** -0.158*** -0.161*** -0.176***
(0.008) (0.008) (0.008) (0.019)

Near forest 0.120*** 0.121*** 0.112*** 0.100***
(0.006) (0.006) (0.006) (0.011)

Near waterside 0.085*** 0.069*** 0.066*** 0.072***
(0.004) (0.004) (0.004) (0.007)

Near park 0.034*** 0.035*** 0.029*** 0.035***
(0.003) (0.003) (0.003) (0.006)

Clear view 0.025*** 0.025*** 0.025*** 0.025***
(0.002) (0.002) (0.002) (0.004)

Location relative to the road (unspecified)
(0.002) (0.002) (0.002) (0.003)

Location relative to the road (near a busy road) -0.066*** -0.068*** -0.057*** -0.037***
(0.005) (0.005) (0.005) (0.009)

Quality==0 -0.246*** -0.248*** -0.217*** -0.066**
(0.054) (0.053) (0.049) (0.028)

Quality==1 -0.041** -0.042** -0.046** -0.056***
(0.020) (0.019) (0.018) (0.020)

Quality==2 0.098 0.082 0.070 0.182**
(0.081) (0.080) (0.072) (0.081)

Construction-year 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000)

Construction-year2 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000)

Construction-year3 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000)

Number of household members -0.040*** -0.044***
(0.002) (0.004)

Number of children (age<18) 0.026*** 0.030***
(0.002) (0.004)

Number of elderly (age>64) 0.007*** 0.014***
(0.002) (0.003)

Number of female 0.017*** 0.015***
(0.001) (0.003)

Log (income) 0.174*** 0.158***
(0.003) (0.006)

Constant 5.701*** 1.049*** 0.887*** -0.403*** 0.211**
(0.021) (0.053) (0.053) (0.066) (0.103)

Observations 103,834 103,834 103,834 103,834 23,187
R-squared 0.010 0.756 0.774 0.794 0.855

Notes:
Dependent variable is logarithm of transaction price.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking place”, for ”location
relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not specified”, for ”location relative to the road”
variable it is ”near a quite road”, and for ”quality” variable it is ”not specified”.
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Table 4.B.7: IV Estimation First-stage Results for Non-EPC Sample
(1) (2) (3)

U-value requirement for external walls 0.068*** 0.065*** 0.069***
(0.004) (0.009) (0.006)

Construction-year -0.005*** -0.004*** -0.008***
(0.000) (0.001) (0.000)

Construction-year2 -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000)

Construction-year3 -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000)

Log of house size(m2) -0.444*** -0.477*** -0.031***
(0.006) (0.013) (0.012)

Number of rooms 0.012*** 0.009*** 0.005**
(0.001) (0.002) (0.002)

Number of floors -0.023*** -0.013*** 0.014***
(0.002) (0.004) (0.004)

House type=Detached house 0.018*** 0.015** 0.007
(0.003) (0.007) (0.006)

House type=Between or Townhouse -0.123*** -0.118*** - 0.017***
(0.002) (0.004) (0.003)

House type=Detached house 0.093*** 0.107*** - 0.023***
(0.004) (0.008) (0.008)

Parking place 0.025*** 0.024** -0.012
(0.004) (0.011) (0.008)

Only carport 0.016*** 0.024** -0.008
(0.004) (0.012) (0.009)

Only garage 0.053*** 0.057*** 0.007
(0.002) (0.005) (0.005)

Garage and carport 0.046*** 0.049*** -0.023**
(0.005) (0.015) (0.012)

Garage for multiple cars 0.036*** 0.052*** -0.015
(0.005) (0.012) (0.013)

Location relative to the center (unspecified) 0.054*** -0.008 0.035*
(0.007) (0.021) (0.020)

Location relative to the center (residential area) 0.048*** -0.014 0.032
(0.007) (0.021) (0.020)

Location relative to the center (center) 0.059*** 0.016 0.037*
(0.008) (0.023) (0.022)

Near forest 0.030*** 0.064*** 0.004
(0.006) (0.014) (0.013)

Near waterside 0.013*** 0.011 -0.007
(0.004) (0.010) (0.007)

Near park 0.016*** 0.015 -0.005
(0.004) (0.010) (0.008)

Clear view 0.002 -0.001 0.003
(0.002) (0.006) (0.005)

Location relative to the road (unspecified) -0.002 0.000 -0.001
(0.002) (0.004) (0.003)

Location relative to the road (near a busy road) 0.020*** 0.031*** 0.017
(0.006) (0.012) (0.012)

Quality==0 -0.082** -0.023 -0.061*
(0.037) (0.049) (0.031)

Quality==1 -0.075*** -0.071** 0.021
(0.020) (0.032) (0.017)

Quality==2 -0.126** -0.332 -0.073**
(0.058) (0.238) (0.030)

Number of household members 0.013*** 0.024*** -0.019***
(0.002) (0.005) (0.004)

Number of children (age<18) 0.003 0.005 0.010**
(0.003) (0.006) (0.004)

Number of elderly (age>64) 0.072*** 0.051*** 0.023***
(0.002) (0.004) (0.003)

Number of female 0.019*** 0.014*** -0.003
(0.002) (0.005) (0.003)

Log (income) 0.036*** 0.045*** -0.022***
(0.003) (0.007) (0.005)

Constant 4.179*** 4.367*** 0.825***
(0.036) (0.079) (0.075)

Observations 103,834 23,187 23,187
R-squared 0.392 0.375 0.417

Notes:
Dependent variable is logarithm of gas consumption per m2.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking place”, for ”location
relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not specified”, for ”location relative to the road”
variable it is ”near a quite road”, and for ”quality” variable it is ”not specified”.
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Table 4.B.8: IV Estimation Second-stage Results for Non-EPC Sample
(1) (2) (3)

Log (Gas consumption per m2) -0.239*** -0.195**
(0.052) (0.090)

Log (Energy performance index) -0.185**
(0.080)

Log of house size(m2) 0.569*** 0.500*** 0.587***
(0.022) (0.044) (0.013)

Number of rooms 0.018*** 0.016*** 0.015***
(0.001) (0.002) (0.002)

Number of floors -0.028*** -0.018*** -0.013***
(0.002) (0.004) (0.004)

House type=Detached house 0.091*** 0.105*** 0.104***
(0.003) (0.005) (0.005)

House type=Between or Townhouse -0.067*** -0.054*** - 0.035***
(0.007) (0.011) (0.003)

House type=Detached house 0.271*** 0.297*** 0.272***
(0.006) (0.012) (0.008)

Parking place 0.046*** 0.047*** 0.040***
(0.004) (0.007) (0.006)

Only carport 0.067*** 0.070*** 0.064***
(0.004) (0.008) (0.007)

Only garage 0.123*** 0.144*** 0.134***
(0.004) (0.007) (0.004)

Garage and carport 0.140*** 0.163*** 0.149***
(0.005) (0.011) (0.010)

Garage for multiple cars 0.155*** 0.193*** 0.180***
(0.005) (0.011) (0.010)

Location relative to the center (unspecified) -0.126*** -0.187*** -0.179***
(0.008) (0.018) (0.018)

Location relative to the center (residential area) -0.154*** -0.208*** -0.199***
(0.009) (0.018) (0.018)

Location relative to the center (center) -0.140*** -0.171*** -0.168***
(0.009) (0.020) (0.019)

Near forest 0.122*** 0.118*** 0.106***
(0.006) (0.013) (0.011)

Near waterside 0.070*** 0.075*** 0.071***
(0.004) (0.007) (0.007)

Near park 0.034*** 0.039*** 0.035***
(0.004) (0.007) (0.006)

Clear view 0.026*** 0.025*** 0.026***
(0.002) (0.004) (0.004)

Location relative to the road (unspecified) -0.012*** -0.009*** -0.009***
(0.002) (0.003) (0.003)

Location relative to the road (near a busy road) -0.051*** -0.029*** -0.032***
(0.005) (0.010) (0.009)

Quality==0 -0.246*** -0.074** -0.080***
(0.051) (0.033) (0.031)

Quality==1 -0.073*** -0.077*** -0.059***
(0.018) (0.018) (0.018)

Quality==2 0.026 0.091** 0.142**
(0.066) (0.043) (0.061)

Construction-year -0.000 0.001 0.000
(0.001) (0.001) (0.001)

Construction-year2 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000)

Construction-year3Construction-year 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000)

Number of household members -0.036*** -0.037*** -0.045***
(0.002) (0.004) (0.004)

Number of children (age<18) 0.028*** 0.031*** 0.032***
(0.002) (0.004) (0.004)

Number of elderly (age>64) 0.033*** 0.029*** 0.023***
(0.004) (0.006) (0.003)

Number of female 0.024*** 0.019*** 0.015***
(0.002) (0.003) (0.003)

Log (income) 0.187*** 0.170*** 0.158***
(0.004) (0.007) (0.006)

Constant 1.073*** 1.464*** 0.767***
(0.218) (0.418) (0.122)

Observations 103,834 23,187 23,187
R-squared 0.741 0.822 0.848

Notes:
Dependent variable is logarithm of transaction price.
The omitted categories are: for ”house type” variable it is ”Corner house”, for ”parking type” variable it is ”no parking place”, for ”location
relative to the center” variable it is ”outside the urban area”, for ”view type” variable it is ”not specified”, for ”location relative to the road”
variable it is ”near a quite road”, and for ”quality” variable it is ”not specified”.
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