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Erik von Schvedin, Nazlıhan Uğur, Burak Uras, the componist Sam Wamper and all fishes at Kaş Sea.
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Chapter 1

Introduction

The dissertation consists of three chapters that represent separate papers in the area of asset pricing.

The first chapter studies investors optimal asset allocation problem in which mean reversion in stock

prices is captured by explicitly modeling transitory and permanent shocks. The second chapter focuses

on option pricing with stochastic dividend yield. In this paper, we present an option formula which

does not depend on the dividend yield risk premium. In the final chapter, we work on commodity

derivative pricing under the existence of stochastic convenience yield. In this paper, we discuss a

Gaussian complete market model of commodity prices in which the stochastic convenience yield is

assumed to be an affine function of a weighted average of past commodity price changes. All chapters

are joint works with Juan Carlos Rodriguez.

In chapter one, we study portfolio selection problem of an investor when stock price is decom-

posed into temporary and permanent components. In our setting, the permanent component of the

stock price is a random walk with drift and the transitory component is an autoregressive process of

order one. The portfolio model is formulated in continuous time framework. We investigate two cases:

complete information, in which investors are able to distinguish between shocks, and incomplete in-

formation, in which investors are not. Accordingly, the model generates a small hedging demand that

becomes flat at relatively short investment horizons. Interestingly, the hedging demand is smallest

under incomplete information.

In this paper, we show that standard models forecast a large allocation to stocks since they im-

plicitly assume that transitory shocks dominate the stock price dynamics. Moreover, we discuss that

a stock price model with dominant permanent shocks will produce asset allocations more in line with

empirical observations. We find that our model generates a smaller and less horizon-dependent allo-

cation to stocks under both complete information (investors can distinguish transitory from permanent

shocks) and incomplete information (investors cannot). We estimate the model using the Kalman fil-

ter, avoiding in this way the use of proxies, and find that it captures the time variation in expected

returns, even though the permanent component dominates the dynamics of the stock price. We cal-

ibrate the model to stock price data and show that it generates asset allocations that are smaller and

less dependent on the investment horizon.
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In chapter 2, we study option pricing when dividend yield is stochastic. We presented a simple

framework that renders option formulas not depending on the dividend yield risk premium. These

formulas can be applied to derivatives written on an index in complete markets, and can be extended

to incomplete markets. We assume that shocks orthogonal to the returns on the index are not priced.

Given that indexes are broad portfolios of stocks, this assumption is equivalent to the CAPM assertion

that only systematic risk (covariance with the returns on the index) is priced. In this case it is possible

to obtain valid pricing formulas in complete and in incomplete markets for which no risk premia has

to be estimated.

We postulate a regression model in which changes in dividend yield are linearly related to the

dividend yield level and to the index return, the regression error being pure dividend yield risk. The

model restricts the mean of the dividend yield to be a function of the index expected return, and we

exploit this fact, at the time of risk-neutralizing the model, to extract the index risk premium from the

mean dividend yield. We show that, when the market is complete, this is sufficient to obtain option

prices in which no risk premium has to be estimated. When the market is incomplete we still need to

deal with the risk premium on pure dividend yield risk.

We showed that neglecting the randomness in the dividend yield leads to signicant mispricing

stemming from two main sources. These are mispecied dividend yield and mispecied volatility. Con-

sequently, we show that the standard Black-Scholes model underprices options at all maturities. It

is observed that the underpricing is economically signicant, especially for out of the money options.

Furthermore, our results have also consequences for hedging. We computed the greeks of European

calls and puts from our model and show the they are different from the ones implied by the Black-

Scholes model with constant dividend yield. In particular, the delta of a call is larger in our model,

and it can even be larger than one. The main reason is that the option seller must hedge not only index

price but also dividend yield risk, which is mostly explained by index price risk.

In chapter 3, we study commodity derivative pricing under the existence of stochastic convenience

yield. In this paper, we present a complete market model of commodity prices that exhibits price

nonstationarity and mean reversion under the risk neutral measure, and, as a consequence, it is able

to fit a slowly decaying term structure of futures return volatilities. The model has strong mean

reversion and geometric Brownian motion as special cases, and renders formulas for the prices of

futures contracts and European options for which no risk premium must be estimated. Our model is

parsimonious and provides a useful benchmark to value complex contracts for which no closed form

solutions are known. From this point of view, it can be seen as a good alternative to widely used

one-factor models.

In our model, in particular, the stochastic convenience yield is assumed to be an affine function of

a weighted average of past commodity price changes. This assumption captures the dependence of the

convenience yield on the state of the market, and generalizes the Ornstein-Uhlenbeck (O-U) process,

which can be interpreted as one in which the convenience yield is a linear function of the spot price.

We provide an empirical assessment of the model on a sample of oil futures prices. It is found that the

model outperforms the O-U process both in terms of model fit and in terms of pricing errors

3
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Chapter 2

Permanent Shocks, Signal Extraction,
and Portfolio Selection

Abstract
Recent empirical research in portfolio selection shows that investor’s allocation to risky assets is low

at young ages and that it does not exhibit a clear pattern of change as investors grow old. We show that

standard models in the current literature predict a large allocation to stocks because they implicitly

assume that transitory shocks dominate the stock price dynamics, and study a portfolio selection

model in which the stock price is driven by a transitory and a dominant permanent component. The

model captures the time variation in expected returns and generates asset allocations that are small

relative to the ones obtained in the current literature, and less dependent on the investor’s horizon.

We investigate our model under complete and incomplete information, and find that under incomplete

information our results are stronger.
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2.1 Introduction

Recent empirical research in portfolio selection shows that investor’s allocation to risky assets is low at

young ages and that it does not exhibit a clear pattern of change as investors grow old: it may increase

or exhibit a hump-shaped pattern, depending on the study 1. These findings contradict the theoretical

results in the academic literature 2. When calibrated to historical values of the equity premium and

stock market return volatility, standard academic models predict that reasonably risk averse young

investors must allocate more than 100% of their wealth to risky assets, and that this allocation must

decrease as they grow old (for a survey on this literature, see Campbell and Viceira (1999) and Brandt

(1999)).

Investors form their portfolios by investing in two ”funds”. The first fund is the tangency portfolio,

aimed to provide optimal diversification. The second fund is the hedging portfolio, aimed to hedge

adverse movements in the investment opportunity set (see Ingersoll (1987)). The hedging portfolio,

whose purpose is to minimize consumption volatility, explains the ultimate size and shape of the

investor’s allocation to the risky asset. It is stylized fact that stock prices exhibit some degree of

mean reversion, and this leads to a positive (long the stock) hedging portfolio that increases with the

investment horizon. Positive, however, does not necessarily mean large.

In this paper we show that standard models predict a large allocation to stocks because they im-

plicitly assume that transitory shocks dominate the stock price dynamics. Next, we argue that a stock

price model with dominant permanent shocks will generate asset allocations more in line with empir-

ical results. We set up such a model, take it to data, and find that it indeed generates a smaller and less

horizon-dependent allocation to stocks under both complete information (investors can distinguish

transitory from permanent shocks) and incomplete information (investors cannot).

Standard models3 capture mean reversion through a stochastic expected return whose changes are

negatively correlated to realized stocks returns4. Because the expected return is unobservable, the

models must be calibrated to the parameters of a proxy -typically, the dividend yield. For instance,

Wachter (2002) formulates the optimal consumption and asset allocation problem in which the time

varying expected return is proxied by the dividend yield. In this paper we show, however, that to

every model with a time-varying expected return there is an associated transitory-permanent compo-

nent model with correlated components, so there is no clear way out from transitory shocks when

describing mean reversion. To complicate matters, the properties of the proxy used to characterize the

unobservable expected return -typically, the dividend yield- may end up inflating the importance of
1Bertaut and Haliassos (1995) states that majority of household investors do not have stocks. On the other hand, Ameriks

and Zeldes (2000) documents several empirical findings of hump-shaped investment pattern. Furthermore, Heaton and
Lucas(2000) indicates that investing in stocks becomes less important for middle-aged households who mainly prefers
private businesses activities.

2Campbell and Viceira (2002) presents a comprehensive survey on life-cycle portfolio choice.
3For example Wachter (2002), Kim and Omberg (1996)
4The finance literature widely discusses the risk factors affecting the dynamics of the expected return. The sources of

risk can be linked to business cycles and general macroeconomic environment (See for example Fama and French (1989,
1993), for the further discussion)
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transitory shocks. Moreover, we show that standard models predict a large hedging portfolio because

they implicitly assume a large transitory component in stock prices. We find that in Wachter (2002),

for example, 84% of the stock price variation is explained by the transitory component.

In this paper we propose a model to capture mean reversion in stock prices by explicitly modeling

transitory and permanent shocks5. That is, we implement a transitory-permanent component model

in which the transitory component is stationary and the permanent component is a random walk. In

this setting, the permanent component reflects the fundamental stock price level such that any shock

occurred to the permanent component shifts the stock price level to another equilibrium price level.

The transitory component captures cyclical price variations in stock return. In a transitory-permanent

component model, the transitory component explains stock return mean reversion. Our paper is the

first to use a transitory-permanent framework in the asset allocation literature.

Next, we explore the asset allocation consequences of assuming that the stock price is explicitly

driven by transitory and permanent shocks. The permanent component of the stock price is a random

walk with drift and the transitory component is an autorregressive process of order one. We estimate

the model using the Kalman filter, avoiding in this way the use of proxies, and find that it captures the

time variation in expected returns, even though the permanent component dominated the dynamics of

the stock price. We calibrate the model to stock price data and show that it generates asset allocations

that are smaller and less dependent on the investment horizon. We investigate two cases: complete

information, in which investors are able to distinguish between shocks, and incomplete information,

in which investors are not. The model generates a small hedging demand that becomes flat at rel-

atively short investment horizons. Interestingly, the hedging demand is smallest under incomplete

information.

Summers (1986) was the first to use the transitory-permanent component model to describe mean

reversion in stock prices (see also Poterba and Summers (1988) and Fama and French (1988)). Cochrane

(1994) finds that even though permanent shocks dominate the dynamics of stock prices, there is still

a substantial transitory component. More recently, Gonzalo (2008) reports that the transitory compo-

nent is sizable but much smaller than Cochrane’s estimates. These results suggest that a model with

transitory and dominant permanent shocks provides a plausible description of stock prices. Our own

empirical results (see Section 6) add evidence in support of the model.

Filtered expected return has been discussed by the several authors in the asset pricing literature.

Conrad and Kaul (1988) and Khil and Lee (2002) estimated expected returns out of realized return

data with the Kalman filter. They focus on the time series properties of the filtered expected return.

More recently, Binsbergen and Koijen (2010) (see also Rytchkov, 2012) exploit present value relations

to estimate simultaneously the expected returns and the expected dividend growth on an index. As

these two variables are unobservable to the econometrician, they filter them out from observable data

using a state space framework and the Kalman filter. Binsbergen and Koijen (2010) take the dividend

yield and dividend growth as observables; Rytchkov (2012), the realized return and dividend growth.
5See Summers (1986), Poterba and Summers (1988) and Fama and French (1988)
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They both find that expected returns and expected dividend growth are time varying and stochastic.

We study the asset allocation problem under two hypotheses: complete information (investor

can distinguish transitory from permanent shocks) and incomplete information (investors cannot).

Our discussion of incomplete information is based on Dothan and Feldman (1986), Feldman (1986),

and Gennotte (1986). These authors introduced in the finance literature the concept of a partially

observable economy and the tools of non-linear filtering. Gennotte (1986) studies portfolio selection

and shows that uncertainty about expected returns reduces the position that a risk averse investor

takes in risky assets. Feldman (1986) investigates the term structure of interest rates and finds that

incomplete information gives rise to richer term structure curves. Dothan and Feldman (1986) point

out that estimation risk does not necessarily mean higher volatility of the spot rate relative to an

economy with complete information. In contrast, low volatility of the interest rate might be related to

low learning ability about changes in the investment opportunity set. We contribute to this literature

by studying asset allocation when there is a signal extraction problem in which the investor cannot

distinguish transitory from permanent shocks to the stock price.

Our results can be summarized as follows: we estimate the two-component model using the

Kalman filter and find that both transitory and permanent shocks are important for the stock price dy-

namics, but the permanent component dominates: 68% of the total stock price variation is explained

by the permanent component. The transitory component is less persistent than what is implied by

the dividend yield as a proxy for expected returns, with a half life of 1.07, much lower than, for ex-

ample, Wachter’s model half life of 3.07. These two results lead to a hedging demand that is small

and less dependent on the investment horizon than the hedging demand obtained in the extant liter-

ature. For example, an investor responding to our model, with a 10-year investment horizon, a risk

aversion level of 10, and complete information, allocates 27.54% of her wealth to the stock with a

positive hedging demand of 9.23%. The same investor, responding to the standard model, and with

Wachter’s parameters, would allocate to the hedging portfolio 60% of her wealth. Also, in our model

the hedging demand becomes flat at relatively short investment horizons. Risk averse investors with a

risk aversion level of 10 and with investment horizons longer than 10 years have essentially the same

hedging demands. With incomplete information the hedging demand is smaller and becomes flat at

an even shorter investment horizon.

We make the following contributions to the asset allocation literature. First, we show that to ev-

ery model with a time-varying expected return there is an associated transitory-permanent component

model with correlated components. Second, we are the first to state and solve the optimal portfolio

selection problem with transitory and permanent shocks under complete and incomplete information.

Third, we show that when the model is calibrated to data, it generates a low less investment hori-

zon dependent hedging demand, and that this result is stronger with incomplete information. The

direct relation between incomplete information and lower hedging demand is already discussed by

Gennotte(1986) (see also Xia(2001), Veronesi(2000)), but we provide a new, and perhaps surpris-

ing, rationale for it: under incomplete information, the Bayesian updating rule makes the transitory

component smaller, and so shrinks the hedging demand.
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The paper is organized as follows. Section-2 explains the standard model and transitory shocks.

Section-3 documents our basic permanent-temporary component model. In the next section, Section-

4, there are two subsections. The first subsection investigates investor’s optimal portfolio problem

with complete information, and the second subsection is about the optimal investment problem with

incomplete information. In section-5 and section-6, we present parameter estimations and empirical

results respectively. The asset allocation problem is discussed in section 7, and the paper concludes at

the final section. The technical details are documented in the appendix.

2.2 The standard model and transitory shocks

Two seminal papers investigate the portfolio problem with stochastic expected return: Kim and

Omberg(1996) and Wachter (2002). Both papers model time varying risk premium with Ornstein-

Uhlenbeck process in continuous time. Kim and Omberg (1996) obtain the optimal stock allocation

for investor who aims to maximize only terminal wealth, while Wachter (2002) extends the optimal

portfolio and consumption problem to an investor with utility over consumption. Both papers find that

the optimal risky asset weight increases with investors investment horizon due to the hedging demand

induced by the stochastic expected return.

In this section we present the standard stock price-stochastic expected return model as it is de-

scribed in Kim and Omberg (1996) and Wachter (2002), and show that it can be expressed as a

transitory-permanent component model with correlated components. We provide conditions un-

der which the standard model is driven only by transitory shocks and show that under Wachter’s

parametrization, transitory shocks dominate the stock price dynamics.

We assume that st, the log of the stock price, follows arithmetic Brownian motion with a mean-

reverting drift:

dst = (µt −
1

2
σ2
s)dt+ σsdWt, (2.1)

dµt = −κ (µt − µ) dt+ σµdBt, (2.2)

where σs is the instantaneous return volatility on the stock, µt is the instantaneous expected return,

κ its mean reversion speed, σµ its instantaneous volatility, and µ is the long run expected return.

There are two sources of risk in the economy: Wt and Bt, with dWt × dBt = ρdt,and ρ denotes the

instantaneous correlation between dWt and dBt. Both are standard Wiener processes defined on a

filtered probability space (Ω, ,Π). Equation (1) can also be written as:

dst = (µt −
1

2
σ2
s)dt+ σ1dBt + σ2dZt, (2.3)

10



where

σ1 = σsρ

σ2 = σs
√

1− ρ2

and dZt × dBt = 0.

Define the ”transitory component” as:

ut =
µ− µt
κ

. (2.4)

From equation (2), the dynamics of the transitory component can be written as:

dut = −κutdt−
σµ
κ
dBt. (2.5)

Now we define a new constant ε such that:

σ1 = −σµ
κ

+ ε. (2.6)

Finally, we introduce the ”permanent component” qt as a random walk with drift satisfying the

following SDE:

dqt = (µ− 1

2
σ2
s)dt+ εdBt + σ2dZ. (2.7)

Replacing equations (2.4) and (2.7) in (2.3), we get:

dst = (µ− 1

2
σ2
s)dt− κutdt−

σµ
κ
dBt + εdBt + σ2dZt (2.8)

= dqt + dut. (2.9)

That is, we have decomposed the log stock price into a transitory and a permanent components,

where the components are correlated. In particular:

dqt × dut = −εσµ
κ
dt.

The fraction fu of the total stock price variation explained by the transitory component is:

fu =
σµ
κ

(σµ
κ − ε

)
σ2
s

11



In Wachter’s (2002) parametrization,

ρ = −1

σs = 0.0436

σµ = 8.24× 10−4

κ = 0.0226.

From equation (2.6), ε = −0.0075 and so fu = 0.84. That is, in Wachter’s model the transitory

component explains 84% of the total variation in the log stock price.

Note that in Wachter’s parametrization, ρ = −1, so σ2 = 0. There is only one shock, dBt,

affecting both the transitory and the permanent components. Because ε < 0, the two components are

positively correlated: a shock to qt (the fundamentals) is associated to a simultaneous larger shock

(because σµ
κ >−ε) of the same sign to the transitory component (an overreaction) that will fade away

as time passes. Therefore, Wachter’s model can be interpreted as a model of investor’s overreaction.

Given σs, the size of the transitory component depends on σµ, κ, and ρ. The larger σµ, the

smaller κ, and the closer ρ to −1, the larger the transitory component. In the standard literature, a

widely chosen proxy for the expected return is the dividend yield, which is very persistent (small κ)

and whose changes are highly negatively correlated to actual returns (ρ close to −1). These values

lead to a large implied transitory component, and explain why asset allocation models predict such a

large hedging demand.

A model with a time-varying expected return provides a way to capture stock return mean re-

version, which is usually proxyed in the literature by a variable such as dividend yield (as in Wac-

ther(2002)). However, we just showed that to every model with time-varying expected return there

is an associated transitory-permanent component model. To complicate matters, the proxy used to

describe the unobservable expected return may end up inflating the importance of the transitory com-

ponent. In the next section we propose an explicit model of the transitory and permanent components,

and explore its consequences for asset allocation under complete and incomplete information.

2.3 The Model

2.3.1 Basic Settings

We model the log stock price as the sum of a permanent and a temporary components. The temporary

component is mean-reverting and can be interpreted as capturing deviations of the stock price from

its fundamental path, as in Poterba and Summers (1988), or as capturing time variation due to funda-

mental forces themselves (for example, in the form of a stochastic expected return), as in Fama and

French (1988). The permanent component represents the persistent stochastic behavior of the stock

12



price. Such a stock price decomposition has been extensively studied in the asset pricing6 and the

macroeconomics literature7, but it has not been discussed in the portfolio literature so far.

Let us denote St as the price and st = log(St) as the log price of a risky asset at time t. We model

the log price as sum of two factors:

st = qt + ut , (2.10)

where qt and ut are the permanent and temporary price components, respectively.

The permanent component characterizes the stochastic trend and is assumed to follow a standard

geometric Brownian motion:

dqt = µqdt+ σqdZ
q
t . (2.11)

where the constants µq and σq are the drift and the diffusion term respectively.

Equation(2.11) can be solved explicitly as:

qt = qt0 + µq(t− t0) + σ(Zt − Zt0) . (2.12)

The temporary component ut follows an Ornstein-Uhlenbeck process and satisfies the following

stochastic differential equation:

dut = −κutdt+ σudZ
u
t . (2.13)

where σu is the instantaneous constant volatility and dZqt and dZut are changes in Wienner processes

that are assumed uncorrelated8, with associated filtration Ft on probability space (Ω, P, F ). The

parameter κ indicates the speed of mean reversion. It determines how long a transitory shock affects

the stock price. A large κ implies that transitory shocks die down fast; a small κ implies that they die

down more slowly.

The explicit solution of the temporary component in equation (2.13):

ut = ut0e
−κ(t−t0) + σu

∫ t

t0

e−κ(t−v)dZuv . (2.14)

Finally, note that the variance of log price changes is σ̄2 = σ2
q + σ2

u and µq =µ̄− 1
2 σ̄

2 where µ̄ is

the long run expected log return.

Combining equation (2.11) and equation (2.13), we reach the following expression for the log
6For example see Fama and French (1988) discuss the idea of permanent and temporary price components of the stock

return in a discrete time setting. Besides, Schwartz and Smith (2001) decompose commodity prices in continuous time
which is technically similar to our settings.

7Decomposition of macroeconomic variables have been used in several analysis in macroeconomic literature. For ex-
ample, real GNP and GDP, the unemployment rate or consumption are examined by Clark(1987) and Nelson and Plosser
(1982).

8E[dZudZq] = ρdt = 0
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price change:

dst = (µq − κut)dt+ σqdZ
q
t + σudZ

u
t . (2.15)

Integrating both sides of equation (2.15), we get

st = qt0 + µq(t− t0) + σ(Wt −Wt0) + ut0e
−κ(t−t0) + σu

∫ t

t0

e−κ(t−v)dZuv ,

where

µq∆t+ σq(Z
q
t − Z

q
t−∆t) = qt − qt−∆t (2.16)

and

−κ
∫ t

t−∆t
uνdν + σu(Zut − Zut−∆t) = ut − ut−∆t. (2.17)

Thus, the expectation and the variance of the st process:

E[st] = q0 + µqt+ e−κtu0 , (2.18)

V ar[st] = (1− e−2κt)
σ2
u

2κ
+ σ2

q t , (2.19)

where q0 and u0 are the initial values, assumed constant from now on.

Finally, the covariance matrix 9 of the transitory and permanent components is:

Σ = Cov[qt, ut] =

[
σ2
q t 0

0 (1− e−2κt)σ
2
u

2κ

]
. (2.20)

2.3.2 Expected return

It is not difficult to recast the model of the previous section as a stock price-stochastic expected return

model, as in the standard literature. Define

µt = µq − κut (2.21)

as the expected return on the log stock price. Therefore,

dµt = −κ (µt − µq) dt+ σµdZ
u
t ,

where:

σµ = −κσu. (2.22)
9See Schwartz and Smith (2000) for the details of the derivation.
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Denote by φ the instantaneous correlation between dst and dµt.That is:

dst × dµt = φσsσµdt, (2.23)

where:

φ =
κσ2

u

κσu
√
σ2
q + σ2

u

(2.24)

=
σu√
σ2
q + σ2

u

.

From equation (2.23) we get immediately that φ = −1, as in Wachter(2002), implies

√
σ2
q + σ2

u = σu,

but because
√
σ2
q + σ2

u = σs, from equation (2.22) we get,

σu = −σµ
κ
.

We obtain an even stronger result. From equation (2.24) and |φ| < 1 we get:

σ2
u =

φ2

1− φ2
σ2
q .

This equation shows that in the simplified model, when φ is close to minus one, transitory shocks

dominate the dynamics of the stock price. For example, if φ = −0.85,

σ2
u = 2.6σ2

q ,

that is, the variance of the transitory component is almost three times the variance of the permanent

component.

2.4 The Investor’s Problem

In a strategic asset allocation problem, a rational investor decides her intertemporal consumption plan

and the allocation of her wealth across different asset classes to maximize her expected utility over

a given time horizon. If the investor is also risk-averse, she aims to diversify her asset holdings to

minimize the risk of her portfolio and to smooth her consumption over the investment cycle10. When

stock returns are normally distributed, the investor cares only about returns mean and variance if the
10For example, see Markowitz(1952) from the early literature or the text book by Campbell and Viciera(2002) from the

recent literature.
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investment opportunity set is constant, and also engages in market timing if the investment opportunity

set is time-varying.

The investor solves the portfolio selection problem applying Dynamic Programming. There is

a vast literature in finance using this technique (see Merton (1971), Brennan et al. (1997) and Xia

(2001) for representative examples).

We assume a simple portfolio problem with one risky stock with price S and one risk-free bond

with price B. We formulate the state dependent continuous stochastic dynamics as11

dSt
St

= µS(X, t)dt+ σS(X, t)dZS . (2.25)

dBt
Bt

= rdt (2.26)

dXt = µX(X, t)dt+ σX(X, t)dZX (2.27)

where µS(X, t) and σS(X, t) are the state and time dependent drift and volatility terms, respectively.

For simplicity we assume that r, the interest rate, is constant, but it is not difficult to make it state

dependent as well (see Munk and Sorensen (2004)). We denote by Xt the state variable, whose evo-

lution is described by equation (2.27). Finally, ZS and ZX are Wiener processes defined on a filtered

probability space (Ω, ,Π), with correlated changes: E[dZSdZX ] = ρdt, where ρ is the correlation

coefficient.

As it is stated by Merton(1971), an investor with a T-year investment horizon solves the following

optimization problem:

max
αt,ct

E[

∫ T

0
U(ct, t)dt+ UBeq(WT , T )|F I0 ] (2.28)

subject to the budget constraint

dWt = [(α(µS − r) + r)Wt − ct]dt+ αWtσSdZS (2.29)

where F I0 is the investor’s filtration containing all information of investor at t = 0 , Wt > 0 is accu-

mulated wealth, U(.) is the time separable strictly concave utility function, and UBeq is the bequest

function which is also assumed to be strictly concave. Finally, α is the fraction of wealth allocated to

the stock, and ct is the positive consumption rate.

The investor chooses α and ct optimally using Dynamic Programming. For details on the solution

applied to the case in which the investor has a CRRA utility function, we refer the reader to the

appendix.

The optimal allocation to stocks satisfies the following equation:
11See Campbell and Viciera(2002) comprehensive technical review on this standard problem.
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α∗ = − JW
WJWW

(µS − r)
σ2
S

− JWX

WJWW

ρσ2
X

σ2
S

, (2.30)

where the first term is the ”myopic demand”, a portfolio implemented to achieve optimal diversifica-

tion, and the second term is the ”hedging demand”, a portfolio implemented to hedge adverse move-

ments in the investment opportunity set (see Ingersoll (1987)). We discuss this optimal allocation in

the next section.

2.4.1 The Investor’s Portfolio Problem Under Complete Information

In this section we solve the investor’s optimal portfolio problem for the case of complete information,

where the investors can perfectly disentangle the stochastic processes ut and qt.

Let’s assume an economy with two securities, one risky and one risk-free. The risky security is

a non-dividend paying stock with price St; a risk-free is a bond with price Bt. The dynamics of the

stock price is as described in the previous section. The bond pays a constant interest per period equal

to r.

The investor has CRRA utility

U(W, t) =
W 1−γ
t

1− γ
,

where γ is the constant coefficient of relative risk aversion, and trades continuously in a frictionless

market.

For simplicity, and without loss of generality, we assume away intermediate consumption. The

investor, therefore, aims to determine the proportions of the stock and the risk free assets in her

portfolio to maximize her terminal wealth.

Let us denote the stock weight in the investor’s portfolio at time t, as αt. The wealth process Wt

can be written as

dWt

Wt
= (αt(µq − κut − r) + r)dt+ αt(σqdZq + σudZu). (2.31)

The investor chooses αt to maximize

E[
W 1−γ
T

1− γ
| F It ] , (2.32)

subject to equation(2.31), where F I
t is the filtration containing all information available to the investor

up to time t.

In the optimization procedure, we follow the Hamilton-Jacobbi-Bellman (HJB) approach12. We

define the value function as
12This standard problem is originally solved by Merton(1971) for power utility and finite horizon. It is also studied

by Kim and Omberg’s (1996) and Brennan, Schwartz and Lagnado (1997). In Duffie (1996), the problem is solved by
backwardation in a discrete time setting. For a comprehensive textbook on strategic asset allocation, the book by Campbell
and Vicieira (2002) can be suggested.
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J(W,X, t) = max
αt

E[U(WT , T ) | F It ] , (2.33)

which implies

0 = max
αt

[
1

dt
E[dJ(W,X, t)] | F It ]. (2.34)

After solving the problem13, we obtain the proportion of the risky asset in the investor’s portfolio:

α∗ = − JW
WJWW

(µq − κut − r)
σ2
q + σ2

u

− JWu

WJWW

σ2
u

σ2
q + σ2

u

. (2.35)

The first term in equation (2.35) is the myopic demand, which can be interpreted as the allocation

to obtain optimal diversification. The myopic demand can be decomposed as

1

γ
[
(µ− r)
σ2
q + σ2

u

− κut
σ2
q + σ2

u

] =
1

γ
[

λ√
σ2
q + σ2

u

− κut
σ2
q + σ2

u

] (2.36)

The first component is the allocation to stocks corresponding to the case in which the investment

opportunity set is constant. It is proportional to the risk premium (λ) and inversely proportional to the

stock return volatility and the risk aversion coefficient. The second component is a ”market timing”

portfolio that depends negatively on ut. When ut is positive (that is, above its long run mean of

zero), this portfolio becomes negative, reducing the total myopic demand. This is because, due to the

mean reversion of the transitory component, a positive ut reduces the stock’s expected return, as the

investor expects that the transitory component reverts to its mean. When ut is negative, the market

timing portfolio becomes positive through the same mechanism. In this way, the investor in our model

behaves as a contrarian trader.

The second component is the hedging demand, which can be described as the portfolio aimed to

hedge adverse changes in the investment opportunity set (Merton, (1973)). Interestingly, the hedging

demand is proportional to the fraction of the variance of stock returns explained by the transitory

component. The more important the transitory component, the larger the hedging demand.

2.4.2 The Investor’s Portfolio Problem Under Incomplete Information

In this part, we solve the investor’s optimal portfolio selection problem when she cannot distinguish

transitory from permanent components. This means that now and are not observable. Recalling

equation (2.15):

dst = (µq − κut)dt+ σqdZ
q
t + σudZ

u
t , (2.37)

it is clear that the unobservability of makes the expected rate of growth of the log endowment unob-

servable, no matter that consumers know the long run expected rate of growth µq.

13See appendix for the details of the solution
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As in Dothan and Feldman (1986), the representative consumer is assumed to use a nonlinear

filtering algorithm to estimate the unobservable variables. The equation describing the dynamics of

the innovations process is:

dν =
ds− (µ− κût)dt√

σ2
q + σ2

u

(2.38)

=
dst − Et(dst)√

σ2
q + σ2

u

, (2.39)

where Et is the operator expectation, conditined on information observed up to time t.

The innovations process is Brownian motion with respect to the σ-algebra generated by the ob-

servations st (see Dothan and Feldman (1986) and references therein). In the partially observable

economy neither Zqt nor Zut are observable. The innovations process is defined as the normalized

deviation of the growth rate from its conditional mean and is therefore observable. This fact shows an

important aspect of the partially observable economy, which was pointed out by Feldman (1986): the

inference process reduces the martingale multiplicity of the economy, because the innovations process

is measurable with respect to the observations.

The estimates of the transitory and permanent components are, respectively:

dût = −κûtdt+
σ2
u − ξtκ√
σ2
q + σ2

u

dνt , (2.40)

dq̂t = ds− dût (2.41)

= µqdt+
σ2
q + ξtκ√
σ2
q + σ2

u

dνt , (2.42)

where ξt is the estimation error -a measure of the precision of the estimates. Note that equations (2.40)

and (2.42) can be rewritten, in terms of the estimation errors, as:

dût = −κûtdt+
σ2
u − ξtκ
σ2
q + σ2

u

[dst − Et(dst)] , (2.43)

dq̂t = µdt+
σ2
q + ξtκ

σ2
q + σ2

u

[dst − Et(dst)] . (2.44)

In the partially observable economy, the representative consumer faces a signal extraction prob-

lem. She must distinguish transitory from permanent shocks based on the observations. In equation

(2.38), the stationary component appears as an adjustment to the long run rate of growth, to take into

account cyclical variation. This information is used by the estimates in equation (2.40) and (2.42) to

distinguish components. As equation (2.40) and (2.42) show, random shocks have been replaced by
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estimation errors. In this context, a positive (negative) shock means that the rate of growth has been

higher (lower) than expected.

The fraction of a positive (negative) innovation assigned to the transitory component can be di-

vided into two parts: the first part reflects the proportion of the total variance explained by the tran-

sitory component: σ2
u

σ2
q+σ2

u
. The second part, −ξtκ

σ2
q+σ2

u
, reflects that the transitory component is adjusted

down (up), because a positive (negative) estimation error, due to the positive (negative) transitory

shock, means that the stock rate of return has been higher (lower) than expected. By the same mech-

anism, the fraction of an innovation assigned to the permanent component will reflect the proportion

of the total variance explained by the permanent component, σ2
q

σ2
q+σ2

u
, and the adjustment, ξtκ

σ2
q+σ2

u
, to

reflect revisions in the stock rate of return. By reducing the importance of the transitory component

relative to the perfect information case, this updating rule lowers the hedging demand in the portfolio

selection problem.

The path of the estimation error, which measures the precision of the estimates, is governed by

the following differential equation of the Ricatti type:

dξt
dt

= σ2
u − 2ξtκ−

(σ2
u − κξt)2

σ2
q + σ2

u

. (2.45)

The estimation error is a deterministic function of time. As t → ∞, the estimation error approaches

the constant ξ∞, where

ξ∞ =
1

κ

 σ2
u

1 +

√
1 + σ2

u
σ2
q

 . (2.46)

From equation (2.38) we can write the stock log return as:

ds = dû+ dq̂ = (µ− κût)dt+
√
σ2
q + σ2

udν . (2.47)

Therefore, under incomplete information the wealth process evolves as:

dWt

Wt
= (α(µq − κût − r) + r)dt+ α

√
σ2
u + σ2

qdv. (2.48)

Following the same argument used in the previous section, we obtain the optimal allocation to

stock:

α = − JW
WJWW

µ− κû− r
σ2
u + σ2

q

− JWu

WJWW

σ2
u − ξ∞κ
σ2
u + σ2

q

(2.49)

Incomplete information reduces the importance of the hedging component, and so it changes the

hedging demand. The higher the estimation error, or the higher the mean reversion speed of the

transitory component, the smaller the hedging demand.
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2.5 Parameter Estimation

To estimate our model we use quarterly returns on the value-weighted index from the CRSP data base.

Our estimation period ranges from December 1946 to December 2007. As the expected return in our

model depends on the transitory component, which is unobservable, we estimate the model parameters

by means of the Kalman filter. However, in contrast to other papers employing the same estimation

framework (Binsbergen and Koijen (2010), Rytchkov (2012)), we avoid noisy aggregate dividends

and use only realized returns in our estimations. Time-varying expected returns do not necessarily

imply that the market is inefficient, and in a nearly efficient market realized returns must have most

relevant information about conditional expected returns; besides, realized returns are the best quality

data. The main advantage of using only returns is that we can work at the quarterly frequency, which

increases efficiency. In contrast, Binsbergen and Koijen (2010) and Rytchkov (2012) must work at the

annual frequency to avoid modeling the seasonal pattern in aggregate dividends.

Finally, for parameter identification, we assume that the transitory and permanent components are

uncorrelated. This assumption is common in the literature (Zivot et al (2003)), and we also provide a

detailed explanation in appendix 2.

The endowment’s components admit an exact discretization, which correspond to an autoregres-

sive process of order 1, with autoregressive parameter ϕ = e−κ, and a random walk with drift, respec-

tively:

ut = e−κ∆ut−∆ + σu

√
1− e−2κ∆

2κ
εut

qt = µq∆ + qt−∆ + σqε
q
t ,

where ∆ = 1
4 and εit (i = u, q) is a sequence of random variables iid, normally distributed with 0

mean and unit variance.

The transitory-permanent component can be written in state-space form as:

log (st) = [1 1]

[
ut

qt

]
[
ut

qt

]
=

[
0

µq∆

]
+

[
e−κ∆ 0

0 1

][
ut−∆

qt−∆

]
+

 σu

√
1−e−2κ∆

2κ 0

0 σq

[ εut

εqt

]
.

Based on Clark (1987), we use state space methods to find the likelihood function of the sam-

ple log (st). Define Pt|t the as the variance-covariance matrix The Kalman prediction and updating

equations are as follows:
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i) Initialization:

H = [1 1]

F =

[
e−κ 0

0 1

]

β0 =

[
u0

q0

]
−

[
0

s0

]

P0 =

 σu

√
1−e−2κ

2κ 0

0 106


ii) Prediction equations:

βt|t−1 = µ+ Fβt−1|t−1 (2.50)

Pt|t−1 = FPt−1|t−1F
′ +Q (2.51)

ηt|t−1 = yt −Htβt|t−1 (2.52)

ft|t−1 = HtPt|t−1H
′
t +R (2.53)

iii) Updating equations:

βt|t = βt|t−1 +Ktηt|t−1 (2.54)

Pt|t = Pt|t−1 −KtHtPt|t−1 (2.55)

whereKt = Pt|t−1H
′
tf
−1
t|t−1 known as Kalman gain which determines how new information contained

in the prediction error alters the β vector.

The likelihood function can be written as:

lnL = −1

2

T∑
t=0

ln(2πft|t−1)− 1

2

T∑
t=1

η′t|t−1f
−1
t|t−1ηt|t−1 (2.56)

A nonlinear algorithm that searches the parameter space maximizes this likelihood function. We

show our estimation results in the next section.

2.6 Empirical Results

Empirical results are depicted in Table 1. The instantaneous volatilities of the permanent and transitory

components are 0.1199 and 0.0817, respectively, both significantly different from zero. The values

show that the transitory component is important in explaining the total variation in stock prices, even
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though it is not its dominant force. The transitory component explains 32% of the log price changes

variance, while the permanent component explains the remaining 68%. These results are consistent

with Cochrane (1994) (see also Gonzalo (2008)).

The estimated mean reversion speed of the transitory component, κ, is 0.65, also significantly

different from zero. This value may seem too high, given that this parameter is also the mean reversion

speed of the expected return (see equation (2.15)). In the Wachter’s parameterization14 of the standard

model, the mean reversion speed of the expected return is 0.2712 (on an annual basis). It must be

noted, however, that the two models are no equivalent. In the standard model, a low κ makes the

expected return very persistent without affecting its standard volatility, and leads to a large hedging

demand. In the transitory-permanent model, instead, a low κ reduces both the mean reversion speed

and the instantaneous volatility of the expected return. In the limit, as κ → 0,the expected return

becomes a constant, and the hedging demand shrinks to zero. For this reason, the expected return is

much less sensitive to κ in the transitory-permanent model than in the standard model. Both models -

Wachter’s and ours-, however, estimate the long run volatility of the annualized expected return almost

identically: 0.0465 and 0.0466, respectively.

If our estimate of the transitory component makes sense, equation (2.21):

µt = µq − κut (2.57)

should estimate the expected return on the stock. According to the present value restriction (See

Campbell and Shiller (1988)), the one-period return, the dividend yield, and dividend growth are not

independent. If dividend growth is nearly unpredictable, returns must be predictable (see Cochrane

(2006)) and, moreover, the expected return must look like the dividend yield. Figure-1 shows filtered

annual expected returns computed from equation (2.1) and (2.2) against an estimate of expected re-

turns obtained from a regression of realized returns on the lagged dividend yield. The filtered annual

expected return is constructed by taking all December filtered expected returns from the quarterly

estimates. The two series look strikingly similar, even though our filtered estimates are obtained from

return data (capital gains) alone, suggesting that our model indeed captures the existing time variation

in expected returns.

In the next section we explore the asset allocations implied by our model.

2.7 Asset Allocations

In this section, we investigate the implications of our model for strategic asset allocation. We examine

the term structure of the hedging demand for both cases: complete and incomplete information. For

simplicity we assume ξt = ξ∞, that is, there is no learning by the investor (for a model with learning,

see Xia (2001)).

Figure-2 and Figure-3 depicts how the optimal stock allocation and the hedging demand vary
14Note that Wachters parameterization is based on the estimations of Barberis ((2000), Table 2)
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with the investors horizon. We also show the optimal investment strategies numerically for different

risk aversion levels. Table-2 portrays the optimal stock allocations, myopic demands and hedging

demands with perfect information for different investment horizons and risk aversion coefficients.

In table-2, the second row block represents the myopic demand of the investor as in Markow-

itzs mean variance portfolio paradigm. The myopic stock allocation mainly depends on investment

risk appetite, assets risk premium and volatility, but not investments horizon. The more (less) risk

averse investor allocates smaller (higher) myopic demand. For instance, for γ=10, myopic demand

is 0.1831, whereas for γ=3 it is 0.6102. Furthermore, the myopic stock allocation also depends on

the current value of the transitory component. When u(t) is larger(smaller), the stock price becomes

higher(lower) than its long run equilibrium level, and so the investor reduces (increases) her expected

return, consequently reducing (increasing) the myopic demand in her portfolio. Thus, our investors

myopic demand exhibits a contrarian investment style. For example, when u(t)=0.02, the myopic de-

mand becomes 25 percent for an investor with risk aversion level γ=5; when u(t)=-0.02 the myopic

becomes 50 percent.

The third row block in table-3 indicates the hedging demand of the investor for different risk aver-

sion and time horizon level in complete information. The hedging demand represents the investors

incentive to hedge her portfolio against adverse changes in the investment opportunity set. The source

of adverse movements in our model is captured by the transitory variations in stock price. In our

model the hedging demand is positive because the transitory component induces mean reversion in

stock returns, so the allocation to the risky asset must be larger than in the random walk (constant

investment opportunity set) case. Also due to mean reversion, accordingly, the hedging demand in-

creases monotonically with the investment horizon. However, the hedging demand we obtain from

our model is small relative to the levels obtained in the extant literature.

In table-2, for example, an investor responding to our model, with a 10-year investment horizon

and a risk aversion level of γ = 10, allocates 27.54 percent of her wealth to the stock with a positive

hedging demand of 9.23 percent. The same investor, responding to the standard model, and with

Wachters parameters, would allocate to the hedging portfolio 60 percent of her wealth. Also, in our

model the hedging demand becomes at at relatively short investment horizons. Risk averse investors

with γ = 10 and with investment horizons longer than 10 years have essentially the same hedging

demands (see Figure-2)

With incomplete information, as discussed in section-(4.2), the impact of transitory shocks is seen

as weaker by the investor, and hedging demands become even smaller. Table-2.3 summarizes the

results. For example, the investor of the previous paragraph, but now with incomplete information,

would allocate just 4% of her wealth to the hedging portfolio. This happens because with incomplete

information, permanent shocks are perceived as more important by the investor, and these are precisely

the shocks that do not generate any hedging demand. Also, the hedging demand becomes flat at an

even shorter investment horizon.
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2.8 Conclusion

Recent empirical research in portfolio selection shows that investor’s allocation to risky assets is low

at young ages and that it does not exhibit a clear pattern of change as investors grow old. In this

paper we showed that standard models predict a large allocation to stocks because they implicitly

assume that transitory shocks dominate the stock price dynamics. Next, we investigated a stock price

model with dominant permanent shocks and found that it generates asset allocations more in line with

empirical results: smaller and less dependent on the investor’s horizon than in the current literature.

Our results are stronger under incomplete information.
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2.9 Appendix

2.9.1 The Optimal Investment Problem

The Complete Information Case

Let us consider the simple investment problem with one risky stock and the risk free asset. The wealth

process can be formulated as

dWt

Wt
= (α(µq − κut − r) + r)dt+ α(σqdZq + σudZu). (2.58)

where µq = µ̄ − 1
2(σ2

q + σ2
u) and the Zq and Zu are the uncorrelated Wienner processes. Basically,

the portfolio problem is based on maximizing individual’s utility over investment period such that

max
αt

E[
W 1−γ
T

1− γ
| F It ] (2.59)

where γ is risk aversion coefficient, αt is the optimal stock weight at time t, and F It is the investor’s

filtration. The optimization problem can be solved with continuous Bellman’s dynamic programing

approach. We formulate the value function as

J(W,u, t) = max
αt

E[U(WT , T ) | F It ] (2.60)

implying that

0 = max
αt

[
1

dt
E[dJ(W,u, t)] | F It ]. (2.61)

Then, we obtain the Hamilton–Jacobi–Bellman (HJB) equation:

0 = max
α
{JWW (α(µq − κut − r) + r)− Juκut +

∂J

∂t

+
1

2
JWWW

2α2(σ2
q + σ2

u) + JWuαWσ2
u +

1

2
Ju uσ

2
u}. (2.62)

Applying the first-order-condition with respect to α, we can derive the optimal portfolio rule as fol-

lows:

α∗ =
1

W
[− JW
JWW

(µq − κut − r)
σ2
q + σ2

u

− JWu

JWW

σ2
u

σ2
q + σ2

u

] (2.63)

Since we deal with CRRA time additive utility in preferences, the value function J(W,u, t) can be

defined as the multiplication of two functions. Therefore, we can reduce the three dimensional partial

differential equation ( in equation (2.11)) into two dimensional one which is much easier to deal with

(See Liu (1999) for the technical details).
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Let us define the value function as J(W,u, t) = g(u,t)γW 1−γ

1−γ . Plugging this expression and its

corresponding derivatives15 into the HJB, we can reformulate the partial differential equation and the

optimal portfolio rule as follows:

0 =
gu
g

[
(µq − κut − r)

(
σ2
u

σ2
u + σ2

q

)
+

(
utγκ

γ − 1

)]
+ (

gu
g

)2

[
−γ

2

(σqσu)2

σ2
u + σ2

q

]
+
gu u

g

(
γσ2

u

2(1− γ)

)
+
gt
g

(
γ

1− γ

)
+

(µq − κut − r)2

2γ(σ2
q + σ2

u)
+ r (2.64)

where

αt =
1

γ

(
µq − κut − r
σ2
q + σ2

u

)
+

(
σ2
u

σ2
q + σ2

u

)
gu(u, t)

g(u, t)
(2.65)

We solve this partial differential equation (PDE) by using the method of undetermined coefficients by

first assigning a guess analytical solution, then reducing the PDE into system of ordinary nonlinear

differential equations (Brennan, Schwartz and Lagnado(1997)). In particular, it is assumed that the

solution of this PDE has quadratic representation such that

g(u, t) = exp{− δ
γ

(T − t) +
1− γ
γ

A1(T − t) +
1− γ
γ

A2(T − t)u+
1− γ

2γ
A3(T − t)u2} (2.66)

whose partial derivatives are

gu(u, t) =
1− γ
γ

(A2(T − t) +A3(T − t)u)g(u, t)

guu(u, t) =
1− γ
γ

(A3(T − t) +
1− γ
γ

[A2(T − t) +A3(T − t)u]2)g(u, t)

∂g

∂t
(u, t) = (

δ

γ
− 1− γ

γ
A′1(T − t)− 1− γ

γ
A′2(T − t)u

− 1− γ
2γ

A′3(T − t)u2)g(u, t)

We can express the PDE in a quadratic polynomial form. Since the coefficients of this polynomial

must be equal to zero, the original problem can be transformed into the following system of differential

equations with the boundary conditions A1(0) = A2(0) = A3(0) = 0,

dA3(τ)

dτ
= k1A

2
3(τ) + k2A3(τ) + k3 (2.67)

15JW = gγW−γ ; JWW = −γgγW−γ−1 ; Ju = γgγ−1gu
W1−γ

1−γ ; Ju u = γ(γ− 1)gγ−2g2
u
W1−γ

1−γ + γgγ−1gu u
W1−γ

1−γ ;

JWu = γgγ−1guW
−γ ; ∂J

∂t
= γgγ−1gt

W1−γ

1−γ
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dA2(τ)

dτ
= k4A3(τ) +

k2

2
A2(τ) + k1A2(τ)A3(τ) + k5 (2.68)

dA1(τ)

dτ
=
k1

2
A2

2(τ) + k4A2(τ) +
σ2
u

2
A3(τ) + k6 (2.69)

with the coefficients

k1 = −
σ2
u(γ − 1)((σ2

u + σ2
q )γ − (γ − 1)σ2

u)

(σ2
u + σ2

q )γ
(2.70)

k2 =
−2κ

(
(σ2
u + σ2

q )γ + σ2
u(1− γ)

)
(σ2
u + σ2

q )γ
(2.71)

k3 =
κ2

(σ2
u + σ2

q )γ
(2.72)

k4 =
(γ − 1)(r − µ)ω

(σ2
u + σ2

q )γ
(2.73)

k5 =
κ(r − µ)

(σ2
u + σ2

q )γ
(2.74)

k6 = − δ

γ − 1
+

(µ− r)2

2(σ2
u + σ2

q )γ
+ r (2.75)

where the time parameter τ is time to maturity (τ = T − t). Consequently, the analytical solution of

this system of differential equation has a recursive representation such that

A3(τ) =
1

2k1

[
−k2 + ∆Tan[

1

2
(∆τ ± 2Arc cos(ζ))]

]
(2.76)

A2(τ) =
2(A3(τ)k4 + k5)[−1 + exp(1

2(2A3(τ)k1 + k2))τ ]

2A3(τ)k1 + k2
(2.77)

A1(τ) =
1

2

[
k1A

2
2(τ) + 2k4A2(τ) + 2k6 + σ2

uA3(τ)
]
τ (2.78)

where ∆ =
√
−k2

2 + 4k1k3 and ζ = −

√
−
k2
2
k1

+4k3

2
√
k3

.

The Incomplete Information Case

In the case of incomplete information, the HJB equation is formulated as follows

0 = max{JWW (α(µq − κû− r)) + Ju(−κû) +
∂J

∂t
+

1

2
JWWW

2α2(σ2
q + σ2

u)

+ JWuαW (−ξ∞κ+ σ2
u) +

1

2
Ju u

(−ξ∞κ+ σ2
u)2

σ2
q + σ2

u

} (2.79)
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where ξ∞ is the variance of the estimation when t→∞, such that

ξ∞ =
1

κ

 σ2
u

1 +
√

1 + (σ2
u/σ

2
q )

 (2.80)

Following the same procedure, we can formulate the optimal stock allocation problem of an in-

vestor:

α∗ = − 1

W

JW
JWW

(µq − κû− r)
σ2
q + σ2

u

− 1

W

JWu

JWW

(
−ξ∞κ+ σ2

u

σ2
q + σ2

u

)
(2.81)

Considering the same guess function (J(W,u, t) = g(u,t)γW 1−γ

1−γ ), the optimal portfolio rule becomes

α∗ = −(µq − κut − r)
γ(σ2

q + σ2
u)

+

(
−ξ∞κ+ σ2

u

σ2
q + σ2

u

)
gu
g

(2.82)

=
1

γ

(
µq − κut − r
σ2
q + σ2

u

)
+

(
−ξ∞κ+ σ2

u

σ2
q + σ2

u

)
(A2(τ) +A3(τ)ut). (2.83)

The PDE becomes

0 =
gu
g

(
γuκ

γ − 1

)
+
guu
g

γ(−ξ∞κ+ σ2
u)2

2(1− γ)(σ2
q + σ2

u)
+
gt
g

(− γ

γ − 1
) +

(µ− κu− r)2

2(σ2
q + σ2

u)γ
+ r. (2.84a)

The system of differential equations in case of incomplete information:

dA3(τ)

dτ
= c1A

2
3(τ) + c2A3(τ) + c3 (2.85)

dA2(τ)

dτ
= c4A3(τ) +

c2

2
A2(τ) + c1A2(τ)A3(τ) + c5 (2.86)

dA1(τ)

dτ
=
c1

2
A2

2(τ) + c4A2(τ) +
(−ξ∞κ+ σ2

u)2

2
√

(σ2
q + σ2

u)
A3(τ) + c6 (2.87)

with the coefficients
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c1 = −
(γ − 1)(1 + (

√
(σ2
q + σ2

u)− 1)γ)(−ξ∞κ+ σ2
u)2

(σ2
q + σ2

u)γ
(2.88)

c2 = −
2κ((σ2

q + σ2
u)γ + (−ξ∞κ+ σ2

u)(1− γ))

(σ2
q + σ2

u)γ
(2.89)

c3 =
κ2

(σ2
q + σ2

u)γ
(2.90)

c4 =
(−1 + γ)(r − µ)(−ξ∞κ+ σ2

u)

(σ2
q + σ2

u)γ
(2.91)

c5 =
κ(r − µ)

(σ2
q + σ2

u)γ
(2.92)

c6 =
(µ− r)2

2(σ2
q + σ2

u)γ
− δ

(−1 + γ)
+ r. (2.93)

The closed form solution is

A3(τ) =
1

2k1

[
−c2 + ∆Tan[

1

2
(∆τ ± 2Arc cos(ζ))]

]
(2.94)

A2(τ) =
2(A3(τ)c4 + c5)[−1 + exp(1

2(2A3(τ)c1 + c2))τ ]

2A3(τ)c1 + c2
(2.95)

A1(τ) =
1

2

c1A
2
2(τ) + 2c4A2(τ) + 2c6 +

(−ξ∞κ+ σ2
u)2√

(σ2
q + σ2

u)
A3(τ)

 τ (2.96)

where ∆ =
√
−c2

2 + 4c1c3 and ζ = −

√
−
c22
c1

+4c3

2
√
c3

; and the boundary conditions A3(0) = 0, A2(0) =

0 and A2(0) = 0.

2.9.2 Identifying Restrictions of Trend and Cycle Decomposition Models

Several authors within the econometrics literature have discussed the identifying restriction issue of

trend & cycle decomposition models. A remarkable work by Zivot et al(2003) examines the iden-

tifying restrictions of the unobserved component models in discrete time framework. In particular,

they focus on the differences between two well known decomposition approach Beveridge- Nelson

(BN)decomposition (Beveridge and Nelson (1981)) and the unobserved-components (UC) models

(Harvey(1985) and Clark(1987)). Once they work with the macroeconomic data (GDP), it is shown

that both models are identical if they have same autocovariance structure and joint distribution. Never-

theless, in practice, they usually exhibit different trend and cycle behaviors due to particular underly-

ing empirical factors. For example, once we impose zero identifying restriction, one can observe that

BN model yields more dominant trend but noisy and smaller cyclical behavior. On the other hand, UC
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models with zero covariance assumption exhibit dominance of cyclical component, and very smooth

persistent behavior for each component on contrary to BN model.

It is well documented that the empirical differences between these two models do not stem from

the fundamental structure of the models, but mainly from the empirical implementations (see Zivot et

al.(2003)). In most of the trend and cycle models, for example, the correlation between the stochastic

variations of the components is assumed to be zero in order to overcome a possible identification

problem (for example Proietti (2002)).

The most fundamental technical distinction between these two models is that the unobserved

component models (UC) are typically represented in state space framework while Beveridge- Nelson

(BN)decomposition16 is based on discrete time integrated autoregressive representation (ARIMA).

Let us reconsider our trend&cycle decomposition in discrete time framework:

st = qt + ut (2.97)

where st, qt and ut are the observed series, unobserved trend (permanent) and cyclical (temporary)

components respectively. Explicitly, we can formulate the model within an ARMA(P,Q) represen-

tation:

qt = qt−1 + µ+ ηt (2.98)

φP (L)ut = θQ(L)εt (2.99)

with the distributional properties ηt ∼ N(0, σ2
q ) and εt ∼ N(0, σ2

u); and ut is stationary and ergodic;

the covariance between stochastic components is assumed to be zero (σqu = 0). For avoiding any

confusion, let us call such unobserved component model as UC − ARMA(P,Q) model. P and Q

terms represent the autoregresive and moving average lags respectively 17.

It is widely discussed in the literature that UC models can be represented in an equivalentARIMA

process18. Following conventional literature19, the canonical ARIMA(P, d,Q) representation of st
with the first difference (d = 1) can be written as follows:

φP (L)(1− L)st = φp(1)µ+ φP (L)ηt + θQ(L)(1− L)εt (2.100)

By using Granger Lemma (Granger and Newbold (1986)), the equivalentARIMA representation

of equation (2.100) is:

φP (L)(1− L)st = µ∗ + θQ∗(L)kt (2.101)

while kt ∼ iid N(0, σ2
k) and Q∗ = max(P,Q+ 1).

16See Beveridge and Nelson (1981)
17In our notation, one should notice that small pt and qt are used for the price components while the capital P and Q is

used for the lag of the ARMA process
18For example Cochrane(1988) points out that one can formulate an ARIMA process with at least one UC representation.
19Nerlove, Grether and Carvalho(1979) shows UC − ARMA(P,Q) representation in a canonical form of an

ARIMA(P, d,Q) representation of the observed series.
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The order condition for parameter identification is P ≥ Q + 2. In this case, there will be at least

as many nonzero autocovariances as number of parameters.

Let us consider UC−ARMA(1, 0) process which is discrete time equivalence of our continuous

time stock price process. The reduced form ARIMA form of UC − ARMA(1, 0) model can be

derived as follow:

Take the first difference of st process:

∆st = (1− L)qt + (1− L)ut (2.102)

= µ+ ηt + (1− L)(1− κL)−1εt , (2.103)

and then multiplying the both sides with (1− φL)

(1− κL)∆st = µ∗ + ηt − κηt + εt − εt−1 (2.104)

= µ∗ + kt + θ∗1kt−1, (2.105)

it can be seen that the right hand side of the equation is MA(1) process that indicates the maximum

length of such process is one. Also the equivalent ARIMA process of st becomes ARIMA(1, 1, 1)

such that

φ(L)(1− L)st = µ∗ + kt + θ1kt−1 (2.106)

kt ∼ iid N(0, σ2
k) and Q∗ = max(P,Q+ 1) = 1.

Then, we can formulate the autocovariances of (1− φL)∆st as follows

Γ0 = σ2
q (1 + κ2) + 2σqu + 2σ2

u (2.107)

Γ1 = −κσ2
q − (κ+ 1)σqu − σ2

u (2.108)

Γj = 0 for j ≥ 2. (2.109)

In matrix representation Γ0

Γ1

Γ2

 =

 (1 + κ)2 2 2

−φ −1 −(κ+ 1)

0 0 0


 σ2

q

σ2
u

σqu

 (2.110)

or in compact form Γ = ΦΣ (we assume that Φ is invertible).

Also we can drive the autocovariance of right hand side of the equation in terms of the reduced
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form ARIMA(1,1,1) parameters:

Γ0 = σ2
k + θ2σ2

k

Γ1 = θσ2
k

Γj = 0 for j ≥ 2

As it is seen from the equation(2.107)-(2.108)-(2.109), we have two non-zero autocovariance re-

lations with three unknown parameters such as σq, σqu, and σu. Although the autocovariances can be

calculated from time series, there exist infinitely many solution for the covariance of the innovations.

In this case, MA(1) is insufficient to identify all parameters, the process does not satisfy the order

condition (P ≥ Q+ 2,). In order to overcome the identification problem, we can consider adding one

more autoregressive term or imposing zero-covariance restriction.
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2.9.3 A Summary of Nonlinear Filtering Theory

In this section, we present the main results of nonlinear filtering theory which is utilized in our

paper20.This section is based on David(1977), Krishnan(1984) and Oksendal(2000). Let us define

(Ω,F,P ) as a complete probability space. Also define Ft as the filtration of the probability space

(Ω, F, P ) satisfying21

σ {X0, Xs,Ws, Ys, Vs, s ≤ t} ⊂ Ft

Xt ∈ Rn is the (unobservable) state vector with dynamics described by the stochastic differential

equation:

dXt = a(t,Xt)dt+ σ(t,Xt)dWt (2.111)

where a : Rn+1 → Rn, σ : Rn+1 → Rn×p satisfy standard measurability, Lipschitz and growth

conditions See Oksendal(2001) for details, and Wt is p-dimensional Brownian motion 22 defined with

with respect to Ft and with σ {Wt −Ws, s < t} independent from {Fs, s < t} .
Yt ∈ Rm is defined as the observations process, with dynamics described by

dYt = b(t,Xt)dt+ ϑdVt (2.112)

where b : Rn+a → Rm satisfies also standard conditions, ϑ is anRm×r vector of constants23, and Yt is

r-dimensional Brownian motion defined with respect to Ft, and with σ {Vt − Vs, s < t} independent

from {Ft, s < t} and σ {Ys, 0 ≤ s ≤ t}.
Finally, X0 is the initial condition for equation(2.111), with E|X0|2 < ∞ and independent of

σ {Ys, 0 ≤ s ≤ t}, σ {Ws, 0 ≤ s ≤ t} and σ {Vs, 0 ≤ s ≤ t}
The filtering problem can be stated as follows:

Given the observations {Ys, 0 ≤ s ≤ t} is that, find the best estimate X̂t being based on the ob-

servations.

The precise meaning of X̂t being based on the observations {Ys, 0 ≤ s ≤ t} is that X̂t must be Γt

measurable, where Γt is the σ -algebra generated by {Ys, 0 ≤ s ≤ t}. Also, X̂t is the best estimate in

the sense that it minimizes mean square error:

E
[
|Xt − X̂t|2

]
= inf

{
|Xt −Mt|2;M ∈ K

}
,

where E is the expectation operator with respect to P, and:
20Main results on non-linear filtering theory can be found in Lipster and Shyriayev (2001), Davis(1977), Krishnan(1984)

and Oksendal(2000)
21σH is the σ algebra generated by H.
22Restricting Wt to be a Brownian motion is not necessary to get the results. Wt can be defined as a general right-

continuous L2 martingale with increments independent of Ft.
23The assumption of a vector of constants is unnecessarily restrictive and is made for simplicity. All results are valid also

if the vector is a function of the observations which satisfies standard regularity conditions.
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K =
{
M : Ω→ Rn;M ∈ L2(P ) and M is Γt −measurable

}
.

Once the filtering problem has been formulated in this way, it can be shown 24 that:

X̂t = E [Xt|Γt] ,

where E [A|B] refers to the expectation of A, conditional on B. Therefore, from the investor’s point

point of view, the filtering problem reduces to compute the expectation ofXt based on the information

generated by the observations {Ys, 0 ≤ s ≤ t}. The nonlinear filtering algorithm provides a means to

calculate recursively this conditional expectation, so that the estimate is updated as new information

unfolds.

Define b̂(t,Xt) as the expectation of b(t,Xt) conditional on the σ-field generated by the observa-

tions. That is:

b̂(t,Xt) = E [b(t,Xt)|Γt] .

The innovation process ν is given by:

dνt = Θ−1/2(dYt − b̂(t,Xt)), (2.113)

where Θ is the variance-covariance matrix of the changes in Y. Equation(2.113) shows that the innova-

tion process is the new information that arrives to the system, normalized by the variance-covariance

matrix. This can be seen more clearly noting that

b̂(t,Xt) = E [dYt|Γt] .

Therefore:

dνt = Θ−1/2(Yt+dt − Yt − E[Yt+dt − Yt|Γt]) (2.114)

= Θ−1/2(Yt+dt − E[Yt+dt|Γt]) . (2.115)

The following is a fundamental results in non-linear filtering theory:

Theorem: The innovation process νt is a Γt measurable Brownian motion.

Proof : The proof is based on Krishnan(1984), Theorem 8.1.1. The idea of the proof is to show that

the characteristic function of the innovations process is identical to that of an independent increment,

Gaussian process, i.e. a Brownian motion. The results then follows from the uniqueness of the

characteristic function.

Note that from equation(2.114), as the observations and b̂(t,Xt) are Γt-measurable, the innovation

24See Oksendal(2001), Theorem 6.1.2 for a proof.
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process is also Γt-measurable.

To prove that the innovations process is Brownian motion, rewrite equation(2.114) as 25

dνt =
b(t,X)− b̂(t,Xt))dt

ϑ
+ dVt

and define J = eiuνt as a twice continuously differentiable function of the innovations process. i is

the imaginary unit 26. Then applying Ito’s lemma to J :

deiuνt = iuνt = iueiuνt(
bt − b̂t
ϑ

)dt+ iueiuνtdVt −
u2

2
eiuνtdt.

Taking conditional expectations on both sides with respect to Γs, (s ≤ t), it follows that:

dEΓteiuνt = −u
2

2
EΓseiuνtdt. (2.116)

This results follows since:

EΓseiuνt

(
bt − b̂t
ϑ

)
dt = EΓsEΓteiuνt(

bt − b̂t
ϑ

)dt

= EΓseiuνtEΓt(
bt − b̂t
ϑ

)dt

= 0

which results from properties of the conditional expectations operator27.

Also, as Vt is a martingale and Vt, Vs independent of Γt, ∀s < t.

EΓseiuνtdVt = EΓsEΓteiuνtdVt

= EΓsEΓteiuνtEΓtdVt

= 0

Expression(2.116) defines a differential equation in the conditional expectation of J. Integrating this

differential equation between s and t yields the result:

EΓseiu(νt−νs) = e(−1/2)u2(t−s)

This is the characteristic function of a Brownian motion process. Therefore, νt is Brownian motion

process.

In the partially observable economy, unobservable random shocks are replaced by the innovation
25To simplify notation it is assumed that ϑ is a 1-dimensional process. All results carry to dimensions higher than one.
26i2 = −1
27For an account of properties of the conditional expectations operator, see Williams(1991)
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process, which means that the uncertainty is now generated by estimation errors. Moreover, it is pos-

sible to show that the innovations process is equivalent to the σ-algebra generated by the innovations

process is equivalent to the σ algebra generated by the observations 28.

In what follows, we will state that the Nonlinear Filtering Theorem. As the proof is very involved,

we will only present the essentials of it. The details can be found in Krishnan(1984), Theorem 8.4.2.,

pp. 231-239, and Lipster and Shiryaev (2001), Theorem 8.1, pp 318-326.

Theorem (Nonlinear Filtering Theorem)

Let the probability space and the processes Xt and Yt be as described above. Then the estimate X̂t is

given by

dX̂t = b̂tdt+
1

ϑ
[
d

dt
< W, V >t +EΓt(Xtbt)− EΓtXtE

Γtbt]dνt

where < W,V >t is the quadratic covariance process between Wt and Vt.

Proof: (based on Krishnan (1984)): I present only a sketch. The key of the proof is to show that

the process:

mt = X̂t − EX0 −
∫ t

0
EΓuaudu (2.117)

is a square integrable martingale. A martingale Representation Theorem 29 can than be invoked to

express mt as a stochastic integral with respect to the innovation process:

mt =

∫ t

0
ϕudνu, (2.118)

where νt is a Γt-adapted predictable process 30.

The quadratic covariance between m and ν is:〈
m,

∫ t

0
ϑdνu

〉
t

=

〈∫
ϕudνu,

∫ t

0
ϑdνu

〉
t

=

∫ t

0
ϕuϑdu.

Therefore, nu can be given in terms of 〈m, ν〉t as:

ϕt =
1

ϑ

d

dt

〈
m,

∫ t

0
ϑdνu

〉
t

. (2.119)

Using (4) and (5), the estimate X̂t can be written as:

X̂t = EX0 +

∫ t

0
âudu+

∫ t

0

1

ϑ

d

du

〈
m,

∫ t

0
ϑdνu

〉
u

dνu (2.120)

To finish the proof it is necessary to determine the quadratic covariance between m and ν. Defining
28A proof of this result can be found in Lipster and Shiryayev(2001), Theorem 12.5
29See Krishnan (1984), Section 6.6
30The process νt satisfies the regularity conditions described in Krishnan (1984), 6.1.3

40



X̃t = X̂t −Xt and b̃t = b̂t − bt, it is possible to show that:

〈m, ν〉t =

∫ t

0
[EΓu(X̃ub̃u) +

d

du
〈W,V 〉u]du. (2.121)

Replacing (2.121) in (2.120), and noting that

EΓs [(X̂t −Xt)b̂t − bt] = EΓsXtb̂t − EΓsXtE
Γs b̂t, (2.122)

it follows that:

X̂t = EX0 +

∫ t

0
âudu+

∫ t

0

1

ϑ
[EΓu(X̃ub̃u) +

d

du
〈W,V 〉u]dνu, (2.123)

which completes the proof.

Equation(2.123) gives a closed form expression, but not a closed form solution for the estimate.

The first order moment (the conditional expectation) depends on the second order moment (the co-

variance inside of the second integral), which depends on the third order moment, and so on, because

of the nonlinearity of b. In contrast, when a and b are linear, the first moment depends on the second,

which is independent of higher order moments. This is the case of the continuous Kalman filter. Only

two equation is needed in the linear case to provide an estimator of the state variable: an equation

for the estimate itself and an equation for the estimation error. In the nonlinear case, the system of

equations needed is infinite-dimensional.

In the complete information economy, the investor’s program -i.e., maximizing the utility func-

tional subject to restrictions that are expressed as functions of the state variables - is Markovian.

Controls are chosen as functions of the current values of the state variables, which summarize all

past behavior of the economy. The partially observable economy looses the Markovian property. The

solution of the investor’s program no longer can be expressed as function of the state variables. The

Seperation Principle Theorem shows that it is optimal for the consumer to estimate first the states us-

ing a filtering algorithm, and then solve the optimization problem. The dynamic programming scheme

uses now as state variables the observations, the estimates of the states, and the estimation errors. Note

that in the linear case this is the only information needed to update the estimates of the states as new

information unfolds.

2.9.4 Figures and Tables
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The Parameter Estimations
Parameter Description Notation Values Standard Error
volatility of the permanent component σq 0.1199 0.0253
volatility of temporary component σu 0.0817 0.0413
Long run mean of the stock return µ 0.0845 0.0268
Mean reversion coefficient κ 0.6540 0.0790

Table 2.1: Parameters. This table reports parameter definitions, notations and their values. In our
estimations, we use quarterly return on the value weighted index from CRSP database. Our observa-
tion period ranges from December 1946 to December 2007. The parameters are estimated by Kalman
filtering algorithm which uses maximum likelihood.

Optimal Stock Allocation (Complete Information Case)
Risk Aversion/Maturity 1month 1-year 3-year 5-year 10-year 30-year

Hedging Demand
γ = 3 0.0088 0.0889 0.1709 0.1960 0.2068 0.2074
γ = 5 0.0064 0.0658 0.1286 0.1484 0.1572 0.1577
γ = 10 0.0036 0.0378 0.0748 0.0868 0.0923 0.0926

Myopic Demand
γ = 3 0.6102 0.6102 0.6102 0.6102 0.6102 0.6102
γ = 5 0.3661 0.3661 0.3661 0.3661 0.3661 0.3661
γ = 10 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831

Stock Weight
γ = 3 0.6190 0.6991 0.7811 0.8062 0.8170 0.8176
γ = 5 0.3725 0.4319 0.4947 0.5145 0.5233 0.5238
γ = 10 0.1867 0.2208 0.2579 0.2699 0.2754 0.2757

Table 2.2: The Horizon Effect on Optimal Stock Allocation with Complete Information This ta-
ble presents the optimal stock allocation, the myopic stock allocation and hedging demand at different
investment horizons for different risk aversion levels when the information is assumed to be complete.
The parameters are estimated by Kalman filtering technique (see Table-2.1) by using quarterly obser-
vations on the value weighted index from CRSP database.The results are obtained from closed form
solution. The columns in the graph show the hedging demands, myopic demands and stock weights
when the investor maximizes the expected utility of terminal wealth. Accordingly, the proportion of
the risky asset in portfolio and the investor’s hedging demand are positive and monotonically increas-
ing under complete information case.
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Figure 2.1: The filtered annualized expected return on CRSP value weighted index: This figure
represents comparative picture of the filtered annual expected return and the dividend-based return.
The observation is based on CRSP value weighted quarterly return index from the period of 01/1946
- 12/2007. The x-axis and y-axis show time horizon and the filtered expected return values respec-
tively. Here, the steady line(blue), the bold steady line(green) and the dotted-line(red) are respectively
realized annual return, the filtered annual return and the dividend yield estimates.
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Figure 2.2: Term Structure of Hedging Demand and Optimal Stock Allocation(γ = 10, ). This
graph shows the term structure of the optimal hedging demand and stock allocation. The risk aver-
sion level is ten, and the initial level of the temporary component is zero. The other parameters are
based on the Table-2.1. The dotted and solid line describes the incomplete information and complete
information cases respectively. With complete information, the investor has higher hedging demand
than the investor with incomplete information. In each case, the optimal stock allocation increases
monotonically with respect to time to maturity.
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Figure 2.3: Term Structure of Hedging Demand and Optimal Stock Allocation(γ = 5, ). This
graph shows the term structure of the optimal hedging demand and stock allocation. The risk aversion
level is five, and the initial level of the temporary component is zero. The other parameters are
based on the Table-2.1. The dotted and solid line describes the incomplete information and complete
information cases respectively. With complete information, the investor has higher hedging demand
than the investor with incomplete information. In each case, the optimal stock allocation increases
monotonically with respect to time to maturity.
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Optimal Stock Allocation (Incomplete Information Case)
Risk Aversion/Maturity 1month 1-year 3-year 5-year 10-year 30-year

Hedging Demand
γ = 3 0.0094 0.0590 0.0829 0.0917 0.0964 0.0967
γ = 5 0.0066 0.0432 0.0619 0.0688 0.0725 0.0728
γ = 10 0.0037 0.0247 0.0358 0.0399 0.0422 0.0424

Myopic Demand
γ = 3 0.6102 0.6102 0.6102 0.6102 0.6102 0.6102
γ = 5 0.3661 0.3661 0.3661 0.3661 0.3661 0.3661
γ = 10 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831

Stock Weight
γ = 3 0.6196 0.6692 0.6931 0.7019 0.7066 0.7069
γ = 5 0.3727 0.4093 0.4280 0.4349 0.4386 0.4389
γ = 10 0.1868 0.2078 0.2189 0.2230 0.2253 0.2255

Table 2.3: The Horizon Effect on Optimal Stock Allocation with incomplete information This ta-
ble presents the optimal stock allocation, the myopic stock allocation and hedging demand at different
investment horizons for different risk aversion levels when the information is assumed to be incom-
plete. The parameters are estimated by Kalman filtering technique (see Table-2.1) by using quarterly
observations on the value weighted index from CRSP database.The results are obtained from closed
form solution. The columns in the graph show the hedging demands, myopic demands and stock
weights when the investor maximizes the expected utility of terminal wealth. Accordingly, the propor-
tion of the risky asset in portfolio and the investor’s hedging demand are positive and monotonically
increasing under complete information. But stock weight with complete information is significantly
lower than the complete information case
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Chapter 3

Revisiting option pricing with stochastic
dividend yield

Abstract
We present a simple framework that renders option formulas on an underlying with stochastic dividend

yield, in which no risk premium has to be estimated. Our formulas apply to derivatives written on an

index in complete markets, and can be extended to incomplete markets under the assumption that the

dividend yield risk uncorrelated to index risk is not priced. Given that indexes are broad portfolios

of stocks, this assumption is equivalent to the CAPM assertion that only systematic risk (covariance

with the returns on the index) is priced.
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3.1 Introduction

Stock indexes are typically modeled as paying a continuous dividend yield, and futures and options

on indexes are among the most traded derivatives1, so it is important to find easily implementable

formulas, or algorithms, to value them. Traditionally, traders priced these derivatives under the sim-

plifying assumption of a constant dividend yield. Harvey and Whaley (1992) show, however, that this

assumption leads to large pricing errors.

What makes valuation challenging in this case, is that the dividend yield is non-tradable and its

changes are imperfectly correlated with the stock return, all of which induces market incompleteness.

Pricing formulas must include the dividend yield risk premium, which cannot be estimated with preci-

sion. This difficulty has hindered the development of models that take the randomness of the dividend

yield explicitly into account.

In an early contribution, Geske (1978) proposed a valuation model, but to sort out the dividend

yield risk premium issue and obtain option formulas he relied on an equilibrium argument based on

the CAPM. Chance, Kumar, and Rich (2002) priced options on an underlying that pays a stochastic

dividend; however, they assumed that there is a forward contract written on the present value of all

future dividends, an assumption that makes the market effectively complete. More recently, Lioui

(2006) argued that we cannot avoid computing the risk premium on the dividend yield, even when the

market is complete.

In this paper we present a simple framework that renders option formulas not depending on the

dividend yield risk premium. This formula can be applied to derivatives written on an index in com-

plete markets, and can be extended to incomplete markets under the assumption that dividend yield

risk orthogonal to index risk is not priced.

Empirical evidence shows that dividend yield changes and index returns are contemporaneously

correlated, with correlation close to minus one, suggesting that most dividend yield risk is actually

index price risk. We postulate a regression model in which dividend yield changes are linearly related

to the dividend yield level and to the index return, the regression error being pure dividend yield risk.

The model restricts the mean of the dividend yield to be a function of the index expected return, and

we exploit this fact, at the time of risk-neutralizing the model, to extract the index risk premium from

the mean dividend yield. We show that, in contrast to Lioui’s results, when the market is complete,

this is enough to obtain prices in which no risk premium has to be estimated. When the market is

incomplete we still need to deal with the risk premium on pure dividend yield risk. We assume that

shocks orthogonal to the returns on the index are not priced. Given that indexes are broad portfolios

of stocks, this assumption is equivalent to the CAPM assertion that only systematic risk (covariance

with the returns on the index) is priced. In this way we obtain formulas -valid in complete and in

incomplete markets- for which no risk premia has to be estimated.

Our formulas have more than a theoretical interest. In derivatives pricing, dividend yields are
1According to the Futures Industry Association, derivatives on stock indexes explain more than one quarter of the global

futures and options volume over the last ten years.
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usually modeled as constant. We show that ignoring the randomness in the dividend yield leads

to significant mispricing. Mispricing comes from two sources: a mispecified dividend yield, and a

mispecified volatility. The dividend yield affects the stock drift under the risk-neutral distribution, so

using the wrong yield has a direct impact on derivative prices. A mispecified volatility has a more

subtle effect. Under the assumption of a constant dividend yield, the log stock price follows a random

walk, and the stock return variance increases linearly with the investment horizon. Due to the negative

correlation between changes in the dividend yield and returns, a stochastic dividend yield induces

return continuation, or momentum, which implies that the variance of stock returns is larger than the

variance corresponding to a random walk at all horizons. As a consequence, the Black-Scholes model

underprices options at all maturities. The underpricing is economically significant, especially for out

of the money options.

For example, suppose that the current index price is 100, and that the strike price is 110. The

dividend yield is stochastic and currently equal to its mean of 3.43%. The instantaneous volatility

of the index return is 14.46%, and the long term dividend yield volatility is 1.32%. The interest rate

is constant and equal to 2.08%. Under these assumptions2, the price of a 3-month call option, using

our model, is 0.3028. The price of the same call assuming a constant dividend yield of 3.43% and

calibrating the instantaneous volatility of the random walk to match the weekly volatility of index

returns generated by the random dividend yield model, is 0.2997, a difference of 1% over three-

months. This difference is mainly due to the volatility effect and increases with option maturity.

Our results have also consequences for hedging. We compute the ”Greeks” of European calls and

puts from our model and show that they are different from the ones implied by the Black-Scholes

model with constant dividend yield. In particular, the delta of a call is larger in our model, and it can

even be larger than one. We show in Section 4 that this result is due to the autocorrelation of stock

returns induced by the dividend yield under the risk-neutral measure.

The literature on option pricing with stochastic dividend yield is scarce. Geske (1978) was the

first to derive an option pricing formula when the underlying pays a stochastic dividend yield. Due

to market incompleteness (he assumes that stock returns and dividend yield changes are imperfectly

correlated) Geske (1978) had to rely on an equilibrium argument (Rubinstein (1976)) to obtain the

option formula, which, in the end, depends on the CAPM market price of risk. We propose a dividend

yield model that renders derivative prices for which no market price of risk has to be computed. Geske

also suggests that a major channel through which stochastic dividends may affect the option price is

their impact on the variance of stock returns. We further explore this issue, and show that when we

calibrate our model to indexes on which derivatives are typically written, the variance effect leads to

significant mispricing.

More recently, Lioui (2006) discusses derivative valuation on an underlying paying a stochastic

dividend yield under complete markets. One of Lioui’s (2006) points is that, even under market com-

pleteness, the stochastic dividend yield complicates the implementation of option formulas, because
2These values correspond to the CRSP value-weighted index over the period 1-1946, 12-2007, which we take as refer-

ence in our calibration exercise.
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it is necessary to compute a risk premium. We show that our dividend yield model, which can be

interpreted as a reparameterization of Lioui’s, renders option prices for which no risk premium must

be estimated, suggesting that Lioui’s (2006) results are not general.

Our paper is also related to the literature on option pricing with autocorrelated returns. In an

early contribution, Lo and Wang (1995) study option pricing when stock returns are predictable. They

argue that if returns are predictable, the estimate of the instantaneous variance can be mispecified

if computed under the wrong assumption that the stock price follows a random. In particular, the

variance will be underestimated when stock returns are negatively autocorrelated, and overestimated

when stock returns are positively autocorrelated. Note that this implies that Black-Scholes underprices

options when returns exhibit mean reversion, and overprices options when returns exhibit momentum.

Lo and Wang (1995) assume a nondividend paying stock. In contrast, in our model predictability is

induced by a stochastic dividend yield and it affects capital gains, not the total return. We obtain

that, in contrast to Lo and Wang (1995), but consistent with Geske’s intuition, returns (capital gains)

continuation implies that Black-Scholes underprices options at all maturities.

Following Lioui (2006), we assume that the dividend yield is Gaussian to obtain closed form

expressions for forward and option prices. This assumption has the negative implication that there is

a positive probability that the dividend yield may become negative, even though this probability can

be made negligible by a careful choice of parameters. We also show that the model can be extended

to the more realistic assumption that the dividend yield is lognormal (as does Geske (1978)), and that

the same results are obtained: that under complete markets there exists a formula to value derivative

securities with stochastic dividend yield, in which no risk premium has to be estimated, and that this

results also apply to the case of incomplete markets under the assumption that shocks orthogonal to

stocks returns are not priced. With a lognormal dividend yield, however, no explicit option formulas

can be derived.

The structure of the paper is as follows. In Section 2 we present the stock price dynamics. In

Section 3 we discuss the stock price under the risk neutral measure, and derive conditional and un-

conditional moments of returns. We also extend our discussion to the case on lognormal dividends.

In Section 4 we present derivative formulas and discuss hedging. In Section 5 we calibrate the model

and show its pricing implication. In Section 6 we conclude.

3.2 Stock price dynamics

Let’s assume a frictionless financial market in which trading is continuous. The stock price St satisfies

the following differential equation:

dSt
St

= (µt − δt) dt+ σdWt, (3.1)

where µt is the total instantaneous expected return on the stock, δt is the stochastic dividend yield,

and σ is the instantaneous return volatility. Although we do not model it explicitly, we assume that
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the expected return is stochastic.

There are two sources of risk in the economy: Wt, which affects both the stock price and the

dividend yield, and Zt, which affects only the dividend yield and is uncorrelated with Wt (see below).

Both are standard Wiener processes defined on a filtered probability space (Ω, ,Π). There is also a

risk-free bond with dynamics:
dBt
Bt

= rdt, (3.2)

where r, the instantaneous interest rate, is constant.

Assume now that changes in the dividend yield depend on its past level and on changes in the

stock through the following equation:

dδt = −ω (δt − α) dt+ φ
dSt
St

+ υdZt, (3.3)

where α, ω ≥ 0. The constant φ is assumed to be negative to capture the empirical fact that changes

in the dividend yield and stock returns are negatively correlated. Equation (3) can be interpreted as a

regression of changes in the dividend yield against its own past, a constant αω, and stock returns3. The

regression constant is expressed as αω for simplicity and without loss of generality. The regression

error is dZt, so dSt
St
× dZt = 0. This means that Zt is pure dividend yield risk 4.

Solving equation (3) gives:

δt = α+ (δ0 − α) e−ωt + φ

∫ t

0
e−ω(t−u)dSu

Su
+ υ

∫ t

0
e−ω(t−u)dZu, (3.4)

that is, the dividend yield is the sum of a deterministic function, a weighted average of past stock

returns, and a weighted average of errors.

It is straightforward to show that equations (1) and (2) are consistent with Lioui’s (2006) model,

in which the dividend yield follows an Ornstein-Uhlenbeck process. The main difference is that, in

the case of model (1)-(3), the long run mean of the dividend yield is a weighted average of α and of

the total expected return on stock µ, while in Lioui’s (2006) it is just an arbitrary constant. This is

shown in Proposition 1:

The dividend yield is a stationary process satisfying the following stochastic differential equation:

dδt = −κ (δt −Θt) dt+ σδdWt + υdZt, (3.5)

3Binsbergen and Koijen(2010) also use a regression model for the dividend growth rate in which the expected dividend
growth is regressed to its own past. However, in their setting, the regression equation is defined as a transition equation which
is embedded into a state-space structure. By using the Kalman filtering algorithm, they filter-out the expected dividend
growth from the real observations of price dividend ratio and dividend growth.

4From technical point of view, our assumption - that dividend yield risk uncorrelated to index risk is not priced - ’resem-
bles’ to Merton(1976)’s orthogonality assumption on jumps. However, the economic motivation between these two models
is different. In Merton’ s paper, he particularly focused on a single stock, while we focus on an index.
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where:

κ = ω + φ

Θ =
ω

κ
α+

φ

κ
µt (3.6)

σδ = φσ

Plugging equation (2) in (3), we get:

dδt = ωαdt− ωδtdt+ φ [(µt − δt) dt+ σdWt] + υdZt (3.7)

= − (ω + φ)

(
δt −

ωα+ φµt
ω + φ

)
dt+ φσdWt + υdZt.

The last equality proves the proposition.

Equation (5) restricts the long run mean of the dividend yield to be a function of the total expected

return on the stock (and other variables). This restriction comes from equation (3), and makes it

possible to extract the risk premium on the stock from both equations (1) and (3) when, later, we

risk-neutralize the model.

3.3 The price process under the Q-measure

By parametrization the dividend yield as in equation (3), only the risk premium representing compen-

sation for bearing pure dividend yield risk enters the derivative formulas. If the market is complete,

or if this risk is not priced, the model renders prices for which no risk premium has to be estimated.

This is a key advantage of using equation (3) to describe the dynamics of the dividend yield. This

equation restricts the long run mean of the dividend yield to be a function of the expected return on

the stock price. Should the mean dividend yield be left unrestricted, as in Lioui (2006), then the risk

premium on the stock would enter the dividend yield formula, and then both risk premia would have

to be estimated.

Equation (1) defines µt as the total expected return on the stock. Define now r as the constant5

instantaneous risk-free interest rate, and λt as the stock risk premium. Then, the total expected return

can be decomposed as:

µt ≡ r + λt. (3.8)

Plugging equation (8) back in (1) gives the risk-neutralized commodity price process:

dSt
St

= (r − δt) dt+ σ

(
λt
σ
dt+ dWt

)
= (r − δt) dt+ σdW ∗t , (3.9)

5We assume for simplicity that the risk-free rate is constant. The model can be straightforwardly extended to accommo-
date time-varying interest rates.
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where, by Girsanov’s theorem, W ∗t =
∫ t

0
λs
σ ds + Wt is a Brownian motion under the risk neutral

measureQ. Thus, the total expected return on the stock underQ is r. Interestingly, the risk-neutralized

process for δt does not depend on the stock risk premium either, even though the dividend yield is

affected by stock price risk. To see this, plug (9) in (3) to get:

dδt = −κ (δt −Θ∗) dt+ σδ

(
λt
σ
dt+ dWt

)
+ υ

(
λδ
υ
dt+ dZt

)
= −κ (δt −Θ∗) dt+ σδdW

∗
t + υdZ∗t (3.10)

where λδ is the risk premium on pure dividend yield risk (assumed constant for simplicity), Z∗t =
λδ
σ t+ Zt is a Brownian motion under the risk neutral measure Q. and:

Θ∗ =
ωα− λδ

κ
+
φ

κ
r. (3.11)

So neither St nor δt depend on λt under Q. Moreover, if the market is complete (υ ≡ 0) , or if pure

dividend yield risk is not priced (λδ ≡ 0) , no risk premium will affect the derivatives formulas.

3.3.1 A taxonomy of shocks

In this section we show that, with constant interest rates, φ < 0 is a sufficient condition for stock

returns to exhibit momentum under the the risk-neutral measure. Note that this is true even if a time

varying risk premium induces return mean-reversion under the statistical measure. In this subsec-

tion we present a taxonomy of shocks and discuss the conditional variance of returns. In the next

subsection we discuss unconditional second moments in general.

Solving equation (10) we obtain the dividend yield process under the risk-neutral measure:

δt = Θ∗ + (δt −Θ∗) e−κt + σδ

∫ t

0
e−κ(u−t)dW ∗t + υ

∫ t

0
e−κ(u−t)dZ∗t (3.12)

Define st = log (St) .Then:

dst =

(
r − 1

2
σ2 − δt

)
dt+ σdW ∗t , (3.13)

We now integrate equation (13) to get the log index return:

st+τ − st = Ωτ +
σ

κ

∫ t+τ

t

(
ω + φe−κ(t+τ−u)

)
dW ∗t −

υ

κ

∫ t

0

(
1− e−κ(t+τ−u)

)
dZ∗t , (3.14)

where:

Ωτ =

(
r − 1

2
σ2 −Θ∗

)
τ − (δt −Θ∗)

(1− e−κτ )

κ
, (3.15)

W ∗t has direct and indirect (through the dividend yield) effects on the index log return. Z∗t has
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only indirect effects. The parameter φ < 0 implies that direct shocks to the index tend to propagate

in the long run. To see this, note that, in equation (14), the expressions in the integrals inside the

parentheses give the ”term structure of shocks”. A direct shock of mean zero and variance σ2, that

occurred at t, has a residual impact on st+τ of 1− φ
κ (1− e−κτ ) = ω

κ + φ
κe
−κτ . As τ grows without

bound, this residual impact converges to:
ω

κ
≥ 1. (3.16)

To see this, let us assume ω > 0. When φ = 0, W ∗t −shocks have a residual impact of exactly 1.

In contrast, when φ < 0, we have 0 < κ = ω+φ < ω, and the residual impact of a shock experienced

at t, as τ grows without bound, is ω
κ > 1. This means that W ∗t −shocks further propagate in the long

run.

Z∗t−shocks have a residual impact of: 1
κ

As 0 < κ < 1, Z∗t shocks also further propagate in the log run.

Therefore, under Q, the logarithm of ST is normally distributed, with conditional mean Ωτ and

conditional variance Στ , where:

Στ =

(
σ2

κ2
ω2 +

υ2

κ2

)
τ + 2

(
σ2

κ2
φω − υ2

κ2

)
1− e−κτ

κ
+

(
σ2

κ2
φ2 +

υ2

κ2

)
1− e−2κτ

2κ
(3.17)

where τ = T − t; that is, the moments are calculated conditional on information up to time t.

Note that if φ = υ = 0, Στ = σ2τ. That is, the variance grows linearly with time to maturity,

which corresponds to the random walk case. If φ < 0, we can show that Στ > σ2τ. To see this, write:

Στ = σ2τ

(
κ2 − 2φωc1 − φ2c2

κ2

)
+ υ2τ

(
2c1 − c2

κ2

)
, (3.18)

where:

c1 = 1− 1− e−κτ

κτ
,

and:

c2 = 1− 1− e−2κτ

2κτ
,

It can be shown that for κ > 0 and τ > 0, 2c1 > c2 (see Appendix). Then, it follows from

ω + φ > 0 that:

−2φωc1 − φ2c2 > φ2 (2c1 − c2) > 0,

so
(
κ2−2φωc1−φ2c2

κ2

)
> 1,which means that the stock return variation due to pure stock price risk is

larger than σ2τ.

Note also that for large values of τ,

2c1 − c2 ≈ 1,
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so the term multiplying υ2τ in equation (18) will be close to 1
κ2 > 1 under our assumptions. This

means that the contribution of pure dividend yield variation to the variance of stock returns is larger

than υ2τ.

3.3.2 Unconditional moments

In this subsection we show that stock price changes will exhibit continuation, or positive autocorrela-

tion, when they are negatively correlated to changes in the dividend yield.

The argument below shows this formally. First, define the τ -period price change as:

rt+τ = st+τ − st.

Then, integrating equation (13) gives:

rt+τ = Ωτ +
σ

κ

∫ t+τ

t

(
ω + φe−κ(t+τ−u)

)
dW ∗t −

υ

κ

∫ t

0

(
1− e−κ(t+τ−u)

)
dZ∗t (3.19)

From equation (19) it is possible to calculate the unconditional variance of rt+τ :

V ar (rt+τ ) =
σ2

κ2

[
ω2τ +

2φ

κ

(
ω +

φ

2

)(
1− e−κτ

)]
+
υ2

κ2

[
τ − (1− e−κτ )

κ

]
, (3.20)

and the covariance between rt and rt+τ (see the Appendix for details on the derivations of these two

equations):

Cov (rt, rt+τ ) = −σ
2

κ2

φ

κ

(
ω +

φ

2

)(
1− e−κτ

)2
+
υ2

κ2

(1− e−κτ )
2

2κ
(3.21)

= −
[
σ2

κ2
2φ

(
ω +

φ

2

)
− υ2

κ2

]
(1− e−κτ )

2

2κ
.

Therefore, the first autocorrelation of τ -period price changes can be expressed as:

ρ (rt, rt+τ ) =
−σ2

κ2
φ
κ

(
ω + φ

2

)
(1− e−κτ )

2
+ υ2

κ2

(1−e−κτ)
2

2κ

σ2

κ2

[
ω2τ + 2φ

κ

(
ω + φ

2

)
(1− e−κτ )

]
+ υ2

κ2

[
τ − (1−e−κτ )

κ

] . (3.22)

The denominator in equation (22) is the unconditional variance of stock returns, so it is positive.

The second term in the numerator is also positive. In the first term we have (remember that φ < 0):

0 < κ = ω + φ < ω +
φ

2

So φ < 0 is a sufficient condition for momentum (ρ (rt, rt+τ ) > 0).

This result applies to the risk-neutral dynamics of stock price changes. Under the statistical dy-

namics, price changes may be mean reverting (mean reversion may be induced by a time-varying risk
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premium, for example). What the previous result shows is that they will exhibit momentum under Q

if the interest rate is constant and φ < 0.

3.3.3 Lognormal dividends

A normally distributed dividend yield may become negative with positive probability, although this

probability can be made as small as desired by a judicious choice of parameters. Geske (1978),

studied the more realistic case in which the dividend yield is lognormal distributed, but he relied on

an equilibrium argument (Rubinstein (1976)) to obtain option formulas, which, in the end, depended

on the CAPM market price of risk. In this subsection we show that our method of extracting the index

risk premium still applies when the dividend yield is lognormal distributed, and so cannot become

negative.

Let δLt be the natural logarithm of the dividend yield, and Vt the total return process on the index:

dVt
Vt

=
dSt
St

+ δLt dt

Assume now the dynamics of the log dividend is described by the regression:

dδLt = −κ
(
δLt − αL

)
dt+ φL

dVt
Vt

+ υLdZt, (3.23)

Replacing the total return with (23), we get:

dδLt = −κ
(
δLt − αL −

φLµt
κ

)
dt+ φLσdWt + υLdZt, (3.24)

Then, we define, as before, W ∗t =
∫ t

0
λs
σ ds + Wt and Z∗t = λδ

σ t + Zt, where λt and λδ are the

index and pure (log) dividend yield risk premia. By Girsanov’s theorem6, W ∗t and Z∗t are Brownian

motions under the risk neutral measure Q. Again, the risk-neutralized process for δLt does not depend

on the stock risk premium. To see this, plug (9) in (23) to get:

dδLt = −κ
(
δLt −Θ∗

)
dt+ φLσ

(
λt
σ
dt+ dWt

)
+ υ

(
λδ
υ
dt+ dZt

)
= −κ

(
δLt −Θ∗

)
dt+ φLσdW ∗t + υdZ∗t (3.25)

where λδ is the risk premium on pure dividend yield risk, Z∗t = λδ
σ t+Zt is a Brownian motion under

the risk neutral measure Q and:

Θ∗ = α− λδ +
φL

κ
r. (3.26)

Neither St nor δLt depend on λt under Q. Moreover, if the market is complete (υ ≡ 0) , or if pure

6There are technical conditions to be met in order to apply Girsanov’s theorem, but they are automatically satisfied when
the risk premium is constant. See Karatzas and Shreve (1991).
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dividend yield risk is not priced (λδ ≡ 0) , no risk premium will affect the derivatives formulas.

3.4 Derivative Formulas

In this section we derive derivative formulas under the assumption that λδ = 0, that is, pure dividend

yield risk is not priced. This assumption is equivalent to choosing a given probability measure Q,

equivalent to Π, such that the discounted prices of the stock (cum dividend) and of other traded assets

are martingales under Q (Harrison and Kreps (1979)).

In the last section we obtained the stock price process under the Q-measure; now we derive for-

mulas for futures and European option prices. These formulas allow us to price derivative contracts

without the need to estimate any risk premia.The futures price7 for delivery of one share of the stock

τ periods ahead is the expected stock price under the risk-neutral measure. Given the normality of log

(St) under Q, the futures price is easily obtained in closed form:

Fτ = EQt (ST )

= St × exp

(
Ωτ +

1

2
Στ

)
. (3.27)

The price of a European call option written on the stock, with maturity T and strike K, is the

expectation under Q of its payoff at maturity, discounted by the risk-free rate:

Ct = e−rτEQt
[
ST × 1{ST>K}

]
− e−rτKPQ (ST > K) , (3.28)

where 1{ST>K} is the indicator function of the event {ST > K} , EQt
[
(ST )× 1{ST>K}

]
is the Q-

expected value of the stock at maturity, conditioned on the event that the option will be exercised at

maturity, and PQ (ST > K) is the probability under Q of this event. Due to the normality of log (St),

the expectation in the first term of equation (29) can be solved as:

EQt
[
ST × 1{ST>K}

]
= Ste

Ωτ+ 1
2

ΣτN (d1) , (3.29)

where N (d1) is the value of the Normal cumulative distribution function at d1, and:

d1 =
log
(
St
K

)
+ Ωτ + Στ√
Στ

. (3.30)

The probability of the option finishing in -the-money is PQ (ST > K) = N (d2) , where: d2 =

d1 −
√

Στ . So:

Ct =
[
Ste

Ωτ+ 1
2

ΣτN (d1)−KN (d2)
]
e−rτ . (3.31)

The price of a European put on the same index can be found using put-call parity. That is, because
7Note that the words ”futures price” and ”forward price” can be used interchangeably in this context, because they are

equal under the current assumption of a constant risk-free rate.
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buying a call and shorting a put, both with maturity T and strike K, is equivalent to having a long

position in a forward contract with maturity T and forward price K, we can express the put price as:

Pt = Ct −
[
EQt (ST )−K

]
e−rτ (3.32)

Plugging (30) and (32) in (33) we get:

Pt =
[
KN (−d2)− SteΩτ+ 1

2
ΣτN (−d1)

]
e−rτ . (3.33)

3.4.1 Hedging index risk and delta

The financial market in this paper is incomplete, because there are two sources of risk, one of them

nontradable. It is not possible to construct a riskless hedge by continuously trading in the stock and

a riskless bond: the investor cannot avoid bearing pure dividend yield risk, for which she demands

compensation in the form of a risk premium. The investor can, however, completely eliminate index

risk, but to do that she must choose a delta differente from the BS delta. This section shows how to

construct such a hedge.

Assume that a call has been written on the stock and that a hedging portfolio is started consisting

on the shorted call and a long position in the underlying stock. The initial value of the portfolio is:

Πt = ∆St − C (St, δt, t) . (3.34)

where ∆ is the number of long units on the stock. The change in the value of the portfolio over the

next period is:

dΠt = ∆dSt + ∆δtStdt (3.35)

− ∂C

∂S
dSt −

∂C

∂δ

[
−ω (δt − α) dt+ φ

dSt
St

+ υdZt

]
− ∂C

∂t
dt− 1

2

∂2C

∂S2
σ2S2

t dt−
1

2

∂2C

∂δ2

(
σ2
δ + υ2

)
dt− ∂2C

∂S∂δ
σσδdt,

where in the second term of the second equation line we replace dδt with the right-hand side of

equation (3).

The index risk in the portfolio comes from its exposure to Wt. To eliminate this risk, choose:

∆ =
∂C

∂S
+
∂C

∂δ

φ

St
. (3.36)

The option delta has two components: the traditional delta of the BS formula (∂C∂S ), and a second

component needed to hedge the dividend yield exposure to index risk (∂C∂δ
φ
St

). Given the option type

(call or put), the sign of this last component depends on φ, the parameter capturing the correlation

between dividend yield changes and stock returns. In the call case, ∂C
∂δ is negative. As φ is also
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negative, due to the negative correlation between changes in the dividend yield and stock returns, the

call delta is larger than the BS delta, and, as we show later, can become even larger than one when the

option is deep in the money.

Plugging (36) in (35) cancels the portfolio’s overall exposure to Wt. To preclude arbitrage, the

portfolio must earn an average rate that compensates the investor for waiting and for bearing pure

dividend yield risk:(
∂C

∂S
+
∂C

∂δ

φ

St

)
δtSt +

∂C

∂δ
ω (δt − α)−A (t) = (r + λδ) Πt, (3.37)

where:

A (t) =
∂C

∂t
dt+

1

2

∂2C

∂S2
σ2S2

t +
1

2

∂2C

∂δ2

(
σ2
δ + υ2

)
+

∂2C

∂S∂δ
σσδ. (3.38)

Operating on (33) we get:

∂C

∂S
St (r + λδ − δt) +

∂C

∂δ
[φ (r + λδ) + ω (δt − α)] +A (t)− (r + λδ)C = 0, (3.39)

Equation (35) is the fundamental partial differential equation that all contingent claims written

on the stock must satisfy. The nature of the derivative at hand will be determined by the boundary

conditions.

In Proposition-2 we compute the delta of the call:

The delta of a European call option is:

∆ =
∂C

∂S
+
∂C

∂δ

φ

S
(3.40)

=
∂C

∂S

[
1− φ

κ

(
1− e−κτ

)]
. (3.41)

See Appendix.

Note that ∆ ≥ 0. Even though as expected, ∆ →
{

1 if St>K
0 if St≤K as τ → 0, ∆ can be above 1 if

φ < 0, that is, if changes in the dividend yield and stock returns are negatively correlated. In this case,

changes in the dividend yield induce positive autocorrelation in stock returns under the risk neutral

distribution, which lead stock returns over discrete time intervals to be more volatile than when the

dividend yield is constant, and so delta is larger accordingly. This result depends on the sign of φ and

not on the fact that now the option seller must use the stock to hedge also part of the dividend yield

risk. Should φ be positive, inducing negative correlation of stock returns over discrete time intervals,

delta would be always below 1, and even below the Black-Scholes delta.

3.5 Pricing implications

In this section we investigate the empirical consequences of our model. We take as a reference the

CRSP value-weighted index and calibrate the model in equation (8) to reproduce its first and second
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moments over the period 01-1946, 12-2007. Although no options are written on this index, its behav-

ior is similar to other indexes on which options are written, such as the SP100 or the SP500. Then, we

compare our pricing results to Black-Scholes prices under the constant dividend yield hypothesis.

The moments to match are summarized in Table 1:

Table 1: Moments
Monthly Volatility of dSS 0.0418

Volatility of δ 0.0132

Average δ 0.0343

Correlation (dSS , dδ) -0.850

Mean rev speed of δ (year) 0.10

The stock has total average return µ = 0.0808, and instantaneous volatility σ = 0.1446. The

instantaneous volatility of the dividend yield is
√
σ2
δ + ν2 = 0.0059, and κ, the annualized mean

reversion speed is given a value of 0.10, which is the actual annualized mean reversion speed of the

index dividend yield. These values imply an unconditional dividend yield volatility of:√
σ2
δ + ν2

√
2κ

= 0.0132,

also in line with data.

The parameter κ is decomposed as:

κ = ω + φ,

where φ = −0.0347, and ω = 0.1347. We obtain φ by solving the equation:

φ =
ρ
√
σ2
δ + ν2

σ
,

where ρ = −0.85 is the contemporaneous correlation between dividend yield changes and index

returns found in the data. Finally, we obtain ν as

ν = 0.0059
√

1− ρ2.

These parameters imply an α = 0.0463. The annual risk-free interest rate is assumed r = 0.0208, to

obtain an equity premium equal to 6%.

We plug these parameters in equation (21) to match exactly the monthly unconditional return

volatility of 0.0418. The implied annual return volatility is 0.1476, sightly higher than the volatility

obtained by multiplying 0.0418 by
√

12, which is what we would do if the index price were geometric

Brownian motion. The difference in the volatilitites, due to the momentum induced by the dividend

yield under the Q measure, will partly explain why Black-Scholes missprices options in our model.

Results should not depend on an artificially inflated momentum, or on a dividend yield likely to
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become negative, so a main is to guarantee that the first autocorrelation of returns and the probability

of a negative dividend yield are sufficiently low. The monthly autocorrelation of stock returns implied

by our parameters is 0.0035, lower than the data (2.2%). With our parameterization, the probability of

a negative dividend yield is 0.45% (that is, we will observe a negative dividend once every 213 years).

These values seem low enough to conduct the exercise. The values of the parameters are summarized

in Table 2.

Table 2: Parameter values
Parameters

µ 0.0808

δ 0.0343

σ 0.1446

υ 0.0031

φ -0.0347

ω 0.1347

r 0.0208

As noted above, the benchmark case is the Black-Scholes price, computed under the assumption

that the stock is a random walk. In the benchmark case, the dividend yield is constant and equal to

3.43%. Also, the instantaneous volatility of the benchmark case is σBS = 0.1448. We obtain this

value by assuming a trader who estimates the volatility on a weekly basis and, ignoring time variation

in the dividend yield, extrapolates to longer horizons using the rule of the square root.

Table 3 compares Black-Scholes prices and prices obtained from equation (31) and (33) for var-

ious holding periods (one week to one year) and strikes, and for three different values of the of the

dividend yield δt: the mean dividend yield, and the mean plus and minus one standard deviation.

There are two forces explaining the differences between Black-Scholes prices and prices obtained

from equations (31) and (33) reported in Table 3. On the one hand, there is the volatility effect, arising

from the fact that V ar (rt+τ ) > σ2τ . On the other hand there is a level effect, stemming from the

influence of current state of the dividend yield. Note that the level effect is not affected by the risk

premium, because formulas (32) and (34) do not include it. The volatility effect increases the prices

of options relative to Black-Scholes prices for all maturities and across all strikes, although this effect

is relatively more pronounced for out-of-the money options. The level effect increases the prices of

calls and reduces the prices of puts when the dividend yield is relatively low (for example, after a

stock price rally), and reduces the prices of calls and increases the prices of puts when the dividend

yield is relatively high. The level effect applies also for all maturities and across strikes.

Results reported in table 3 can be summarized as follows. Call prices are higher than the corre-

sponding Black-Scholes prices when δt = δ− vol, and decrease with δt and eventually become lower

than Black-Scholes prices as δ+vol. Interestingly, they are still higher that their Black-Scholes coun-

terparts when δt = δ, which shows that the pure volatility effect is strong, especially for longer matu-

rities. As an example, the price of a 3-month out-of-the-money call struck at 110 is 11% higher than
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the Black-Scholes price when δt = δ− vol, while it is 1% higher when δt = δ, and 8.5% lower when

δt = δ + vol. Put prices are lower than the corresponding Black-Scholes prices when δt = δ − vol,
and increase with δt and eventually become higher than Black-Scholes prices as δt = δ + vol. The

pure volatility effect also works for puts. As a final example, the price of a 3-month out-of-the-money

put struck at 90 is 8% lower than the Black-Scholes price when δt = δ − vol, while it is 1% higher

when δt = δ, and 11% higher when δt = δ + vol.

The economic significance of our results is centered on stock momentum which is induced by

stochastic dividend yield. Momentum amplifies the volatility effect relative to the case in which div-

idend yield is assumed constant. Ignorance of momentum not only leads the investor to an economic

loss due to mispricing but also to imperfect hedging.
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Table 3: Call and Put Prices

Table 3 compares Black-Scholes call (BS call) and put (BS put) option prices under geometric

Brownian motion to call and put prices from equations (31) and (33). Parameters are as in table

1. The stock on which the options are written has a current value of $100. In the case of Black-

Scholes, the dividend yield is assumed constant and equal to 4%. In the case of equations (31) and

(33), the average dividend yield is 4%. Prices are compared for three values of the state variable δt
corresponding to negative, constant, and positive performance of the stock, respectively. Please find

the table in the next page.
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Table 3: Call and Put Prices

BS Call (Eq. 31) BS Put (Eq. 33)

Strike Call δt=δ−vol δt=δ δt=δ+vol Put δt=δ−vol δt=δ δt=δ+vol

Time to maturity: 7 days (T − t = 7/3604)

80 19.9661 19.9914 19.9660 19.9407 0.0000 0.0000 0.0000 0.0000

90 9.9701 9.9954 9.9700 9.9447 0.0000 0.0000 0.0000 0.0000

100 0.7877 0.7996 0.7869 0.7743 0.8137 0.8002 0.8129 0.8256

110 0.0000 0.0000 0.0000 0.0000 10.0219 9.9966 10.0220 10.0473

120 0.0000 0.0000 0.0000 0.0000 20.0179 19.9926 20.0180 20.0433

Time to maturity: 91 days (T − t = 91/364)

80 19.5633 19.8825 19.5592 19.2370 0.0022 0.0019 0.0022 0.0026

90 9.8582 10.1578 9.8573 9.5600 0.2453 0.2253 0.2486 0.2738

100 2.7034 2.8731 2.7097 2.5527 3.0386 2.8888 3.0491 3.2146

110 0.2997 0.3340 0.3028 0.2740 10.5830 10.2979 10.5902 10.8841

120 0.0129 0.0152 0.0132 0.0114 20.2443 19.9272 20.2488 20.5696

Time to maturity 182 days (T − t = 182/364)

80 19.1835 19.7957 19.1703 18.5504 0.0562 0.0500 0.0593 0,0701

90 10.0860 10.6292 10.0895 9.5627 0.8552 0.7799 0.8750 0.9790

100 3.7030 4.0451 3.7237 3.4201 4.3687 4.0924 4.4058 4.7329

110 0.8871 1.0182 0.9028 0.7982 11.4494 10.9621 11.4814 12.0075

120 0.1402 0.1707 0.1454 0.1234 20.5990 20.0111 20.6206 21.2293

Time to maturity: 273 days (T − t = 273/364)

80 18.8999 19.7757 18,8773 17,9935 0.2013 0.1794 0.2147 0.2557

90 10.3554 11.1153 10.3665 9.6448 1.5020 1.3643 1.5491 1.7522

100 4.4173 4.9286 4.4550 4.0135 5.4091 5.0228 5.4828 5.9662

110 1.4387 1.6882 1.4718 1.2781 12.2757 11.6276 12.3449 13.0759

120 0.3637 0.4529 0.3801 0.3176 21.0459 20.2375 21.0983 21.9606

Time to maturity: 364 days (T − t = 364/364)

80 18.6896 19.8035 18.6587 17.5416 0.4147 0.3707 0.4466 0.5349

90 10.6084 11.5674 10.6284 9.7334 2.1276 1.9288 2.2105 2.5209

100 4.9826 5.6583 5.0382 4.4669 6.2959 5.8138 6.4144 7.0485

110 1.9301 2.3068 1.9832 1.6965 13.0376 12.2564 13.1536 14.0723

120 0.6267 0.7948 0.6589 0.5432 21.5283 20.5386 21.6234 22.7131

3.6 Conclusions

We presented a simple framework that renders option formulas not depending on the dividend yield

risk premium. These formulas can be applied to derivatives written on an index in complete markets,
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and can be extended to incomplete markets under the assumption that dividend yield risk uncorrelated

to the index is not priced. In this case, we assume that shocks orthogonal to the returns on the index

are not priced. Given that indexes are broad portfolios of stocks, this assumption is equivalent to the

CAPM assertion that only systematic risk (covariance with the returns on the index) is priced. In this

way we were able to obtain formulas valid in complete and in incomplete markets- for which no risk

premia has to be estimated.

Our formulas have more than a theoretical interest. We showed that ignoring the randomness in

the dividend yield leads to significant mispricing stemming from two sources: a mispecified dividend

yield, and a mispecified volatility. The underpricing is economically significant, especially for out of

the money options.

Our results have also consequences for hedging. We computed the ”greeks” of European calls

and puts from our model and show the they are different from the ones implied by the Black-Scholes

model with constant dividend yield. In particular, the delta of a call is larger in our model, and it can

even be larger than one. This is because the option seller must hedge not only index price but also

dividend yield risk, which is mostly explained by index price risk.
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3.7 Appendix

In this Appendix I provide an overview of the derivation of second moments of returns, and show how

to obtain the delta of a call.

3.7.1 Proof of 2c1 − c2 > 0.

Proposition: For τ > 0, 2k1 − k2 > 0.

First I prove the following lemma:

Lemma: Define f (τ) = κτ, and g (τ) = 3−4e−κτ+e−2κτ

2 . Then, for τ > 0:

f (τ) > g (τ)

Proof: First note that:

f (0) = g (0) = 0,

and that:

f ′ (τ) = κ.

Also:

g′ (τ) = 2κe−κτ − κe−2κτ .

Adding and subtracting κ, this last equation can be written as:

g′ (τ) = κ
[
1−

(
1− e−κτ

)2]
< κ.

Now define:

h (τ) = f (τ)− g (τ) .

Then:

h (0) = f (0)− g (0) = 0,

and that for τ > 0:

h′ (τ) = f ′ (τ)− g′ (τ) > 0,

which implies h (τ) > 0. Therefore, it must be that:

f (τ) > g (τ) ,

for τ > 0, and the lemma is proved.

Proof of the proposition:
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Assume, on the contrary, that 2c1 − c2 ≤ 0. Then:

2

(
1− 1− e−κτ

κτ

)
≤ 1− 1− e−2κτ

2κτ
.

Operating on both sides:

2κτ − 2 (1− e−κτ )

κτ
≤

2κτ −
(
1− e−2κτ

)
2κτ

.

Multiplying both sides by κτ :

2κτ − 2
(
1− e−κτ

)
≤

2κτ −
(
1− e−2κτ

)
2

.

Operating again:

κτ ≤ 3− 4e−κτ + e−2κτ

2
.

But this contradicts the previous lemma. So it must be that:

2c1 − c2 > 0,

completing the proof.

3.7.2 Second moments of price changes

First, define qt = mt − θ and qt−τ = mt−τ − θ. Then, from equation (7) in the main text we have:

qt = qt−τe
−κτ +

∫ t

t−τ
e−κ(t−u)dWu,

and:

E (qtqt−τ ) = e−κτV ar (qt−τ ) = e−κτ
σ2
δ + ν2

2κ
. (3.42)
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From equation (8), the unconditional variance of price changes is:

V ar (rt+τ ) = E

(
φ
κqt (1− e−κτ ) + ...

+σ
∫ t+τ
t

[
1 + φ

κ

(
1− e−κ(t+τ−u)

)]
dWu − υ

κ

∫ t
0

(
1− e−κ(t+τ−u)

)
dZ∗t

)2

(3.43)

=

(
φ

κ

)2 σ2

2κ

(
1− e−κτ

)2
+ ... (3.44)

+
σ2

κ2

∫ t+τ

t

[
1− φe−κ(t+τ−u)

]2
du+

υ2

κ2

∫ t

0

(
1− e−κ(t+τ−u)

)2
du. (3.45)

Solving the integral, and after some messy algebra, we get equation (21). The difference between

(21) and (18) is that (18) is a conditional variance, so only the second and third terms in (18) is used

in the computation.

The formula for Cov (rt, rt+τ ) is calculated in the same way, using now equation (20) and taking

care that the cross-products overlap.

3.7.3 Derivation of delta

The following lemma will be useful in the derivation of delta:

Lemma: Define Fτ = Ste
Ωτ+ 1

2
Στ . Then:

FτN
′ (d1)−KN ′ (d2) = 0,

where d1 and d2 are as in equations (23) and (25).

Proof: Recall that:

N ′ (x) =
1√
2π
e−

x2

2

and write d1 = d2 +
√

Στ . Then:

N ′ (d1) =
1√
2π

exp

(
−d

2
2 + 2d2

√
Στ + Στ

2

)
= N ′ (d2) exp

(
−d2

√
Στ −

1

2
Στ

)
= N ′ (d2)

K

Fτ
.

So:

FτN
′ (d1)−KN ′ (d2) = FτN

′ (d2)
K

Fτ
−KN ′ (d2) = 0,

and the lemma is proved.

Now it is straightforward to derive delta.
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Proposition:

∆ =
∂C

∂S

[
1− φ

κ

(
1− e−κτ

)]
Proof: Recall that:

∆ =
∂C

∂S
+
∂C

∂δ

φ

St
.

Deriving equation (26) with respect to St gives:

∂C

∂S
=

[
∂Fτ
∂S

N (d1) + FτN
′ (d1)

∂d1

∂S
−KN ′ (d2)

∂d2

∂S

]
e−rτ .

Noting that ∂d1
∂S = ∂d2

∂S ,

∂C

∂S
=

[
∂Fτ
∂S

N (d1) +
[
FτN

′ (d1)−KN ′ (d2)
] ∂d2

∂S

]
e−rτ ,

which, from the previous lemma, is:

∂C

∂S
=
∂Fτ
∂S

N (d1) e−rτ .

Now,
∂C

∂δ
=

[
∂Fτ
∂δ

N (d1) + FτN
′ (d1)

∂d1

∂S

∂S

∂δ
−KN ′ (d2)

∂d2

∂S

∂S

∂δ

]
e−rτ .

Proceeding as before, we get:

∂C

∂δ
=
∂Fτ
∂δ

N (d1) e−rτ

= −S∂C
∂S

1− e−κτ

κ
,

and the result follows.

Similarly, it is possible to calculate the other ”Greeks”. In particular:

Γ =
∂∆

∂S
=
∂2C

∂S2

[
1− φ

κ

(
1− e−κτ

)]
,

where:

∂2C

∂S2
= eΩτ+ 1

2
ΣτN ′ (d1)

∂d1

∂S
e−rτ

= eΩτ+ 1
2

Στ N
′ (d1)

S
√

Στ
e−rτ
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Chapter 4

A generalized mean-reverting model of
commodity prices

Abstract
We introduce a tractable model of commodity prices in which the stochastic convenience yield de-

pends on a weighted average of past commodity price changes. Our model preserves market com-

pleteness and exhibits mean reversion under the martingale measure, as a consequence of which it is

able to fit a slowly decaying term structure of futures return volatilities. The model nests the Ornstein-

Uhlenbeck process and geometric Brownian motion, and renders formulas for the prices of futures

contracts for which no risk premium must be estimated.
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4.1 Introduction

We study a new, Gaussian complete market model of commodity prices in which the stochastic con-

venience yield is assumed to be an affine function of a weighted average of past commodity price

changes. This assumption captures the dependence of the convenience yield on the state of the mar-

ket, and generalizes the Ornstein-Uhlenbeck (O-U) process, which can be interpreted as one in which

the convenience yield is a linear function of the spot price (see Schwartz (1997), model 1). Our model

exhibits weak mean reversion1under the martingale measure, and, as a consequence, it is able to fit a

slowly decaying term structure of futures return volatilities. Also, the model has the O-U process and

geometric Brownian motion as special cases, and renders closed form derivative prices that do not

depend on the spot risk premium.

Commodity prices have empirical characteristics, such as spikes, seasonality and mean reversion,

that distinguish them from the prices of stocks and bonds. Spikes are the result of random shocks

in markets in which the supply is relatively fixed in the short run, while seasonal patterns appear as

a response of supply and demand to cyclical fluctuations due mainly to changes in weather2. Mean

reversion arises as free entry and exit in competitive markets forces prices to gravitate towards the

minimum average cost of production. As it reflects a phenomenon affecting commodities as a class,

mean reversion is probably the most pervasive of all empirical characteristics of commodities. More-

over, Bessembinder, Coghenour, Seguin and Smoller (1996) argue that mean reversion explains the

term structure of futures returns volatilities, and, in a more recent paper, Casassus and Dufresne (2005)

show that mean reversion is necessary to capture the cross section of commodity futures prices.

There exists a rich array of multifactor models aimed to describe the complex dynamics of com-

modity prices. Gibson and Schwartz (1990) introduced a model that combines nonstationarity and

mean reversion through a stochastic convenience yield3 (see also Schwartz (1997)). Most of the lit-

erature that followed can be seen as an extension of Gibson and Schwartz (1990) seminal paper. To

mention just a few representative examples, Hilliard and Reis (1998) add jumps to the spot price

through a Poisson component4. Sorensen (2002) and Richter and Sorensen (2002) combine seasonal

effects and stochastic volatility, and apply the model to the study of agricultural futures markets. Yan

(2002) incorporates stochastic volatility and jumps in both the spot price and the spot volatility. In

a recent study, using oil, copper, gold and silver data, Casassus and Dufresne (2005) find that three
1In this paper we use the expression ”mean reversion” to refer to negative autocorrelation of price changes generated

by a temporary component in the spot price. This use of words is common in the literature (see Schwartz (1997)). We
distinguish situations in which shocks partially vanish in the long run, from situations in which shocks totally vanish in the
long run. In the first case, in which the spot price is nonstationary, although it exhibits a tendency to mean-revert, we use the
expression ”weak mean reversion”. In the second case, in which the spot price is stationary, we use the expression ”strong
mean reversion”.

2Schwartz and Smith (2000) characterize the oil prices based on the temporary-permanent price component analysis
in which transitory component captures mean reversion. Sorensen (2002) investigates seasonality in a similar setting of
Schwartz and Smith (2000). He defines logarithmic commodity prices as summation of permanent (non-stationary), tempo-
rary (stationary) and a deterministic seasonal component.

3The convenience yield is defined (Brennan (1958)) as the benefit, net of storage costs, that accrues to the holder of
inventories rather than to the owner of a derivative contract written on the commodity.

4See also Cassassus and Dufresne (2005).
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factors are needed to describe the dynamics of futures prices. However, and perhaps due to the very

complexity that makes them successful in capturing key features of data, multifactor models have

been “adopted rather slowly by practitioners”5.

On the other hand, one-factor models, such as geometric Brownian motion (Black (1976), Brennan

and Schwartz (1985)) and the one factor Ornstein-Uhlenbeck (O-U) process (Bjerksund and Ekert

(1995), Schwartz (1997), model 1), may look too simple in comparison, but are still popular in the

industry. Their popularity is partly explained by the practitioners’ tendency to use models as means

to extrapolate prices of liquid instruments to prices of illiquid instruments, which creates a strong

demand for simple and parsimonious models. Market completeness is another reason that makes

one-factor models popular. Under market completeness, unique option prices can be obtained by a

straightforward arbitrage argument, and it is also possible to hedge a derivatives position using just

the underlying asset (or a futures contract written on it) and a bond. A complete market model may

also prove useful in the risk management of a derivatives book. In addition, both Geometric Brownian

motion and the O-U process make it possible to obtain closed form solutions for futures prices and

European option premia.

But simplicity comes at a cost, and one-factor models are not free of shortcomings. First, they

imply that futures prices are perfectly correlated at all maturities, a prediction that is not supported

by the data. Futures prices are in general imperfectly correlated, with correlations decreasing steadily

with maturity. Second, one-factor models are unable to fit the term structure of futures return volatili-

ties. For commodities, this term structure is negatively sloped, a stylized fact that can be explained by

mean reversion (see Bessembinder et al. (1996)). However, although volatilities in the data go down

uniformly as maturity increases, they do not seem to converge to zero, which suggests that random

shocks to prices are only partially reversed in the long run. One-factor models are not able to capture

this stylized fact: geometric Brownian motion implies a flat term structure, while the O-U process

exhibits volatilities that converge quickly to zero. However, one-factor models may still be useful for

derivatives that do not depend on the correlation between different futures prices, or when the maturi-

ties of the futures prices involved are not too far from each other. The inability to fit the term structure

of futures return volatilities is more problematic, because most derivatives on commodities use futures

as the underlying asset, and so it is important for accurate valuation that models fit this term structure

properly.

Our model has several of the features making one-factor models widely used, such as simplicity,

complete markets, and availability of closed form solutions. At the same time, it improves on them

by being able to fit a slowly decaying term structure of futures return volatilities. The key assumption

of the model is that the convenience yield is an affine function of a weighted sum of past commodity

price changes6. This assumption makes innovations to the convenience yield perfectly correlated with
5Cortazar and Schwartz (2003), page 216.
6Cassasus and Dufresne (2005) argue that the convenience yield is implied by the equilibrium relation among supply,

demand and inventories, and that this dependence provides a rationale to model the convenience yield as a function of the
spot price. The model studied in this paper uses a more general measure of performance, based on the history of past price
changes. The advantage of this measure of performance is that it allows the effect of random shocks to partially vanish in
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spot price changes, and is the source of market completeness in the model. Although strong, perfect

correlation is a reasonable approximation for some commodities, like oil and copper, which exhibit

strong comovement between convenience yield and spot price changes. For example, using 10 years

of weekly data, Schwartz (1997) finds a correlation between 70 and 90% for oil, depending on the

subperiod analyzed, and 82% for copper. In a more recent study, Casassus and Dufresne (2005) find

79% and 78% for oil and copper, respectively. On the other hand, the convenience yield can be seen

as a construction used to generate weak mean reversion under the risk-neutral measure, and this paper

presents a new model that accommodates it in a complete market.

The model also renders derivative prices for which no risk premium must be estimated. The avail-

ability of closed form solutions is not an issue in Gaussian models like the one studied in this paper7.

What is an issue, however, is whether we can obtain formulas, even in complete markets, in which

there is no need to compute the risk premium on the spot. This is especially important in commodity

pricing models, where the convenience yield is nontradable. Also, some authors have shown that the

formulas for the prices of futures contracts for which no risk premium must be estimated are not just

a consequence of market completeness. Duan(2001) presents an example of a market in which all

contingent claims can be perfectly replicated, but in which the prices of contingent claims are still

function of the risk premium on the underlying asset8. Based on this example, Duan (2001) concludes

that risk-neutral prices do not follow necessarily from the complete market assumption. More re-

cently, Lioui (2006) studies the problem of pricing derivatives in complete markets in which the stock

pays a stochastic dividend yield, an shows that, even if there is a single source of uncertainty, the risk

premium on the stock will appear in the derivatives formulas as an adjustment to the long run mean

of the dividend yield. This paper presents a parameterization of the convenience yield (equivalent

to the dividend yield in Lioui) that renders derivatives formulas for which no risk premium must be

estimated.

We provide an empirical assessment of the model on a sample of oil futures prices. Oil is one

of the most important traded commodities, and it has been widely studied in the literature. It has

also been shown to exhibit mean reversion under the martingale measure (see Casassus and Dufresne

(2005)). We find that the model outperforms the O-U process both in terms of model fit and in terms

of pricing errors.

Practitioners usually estimate volatilities by calculating the volatilities implied by the Black-

Scholes formula and the prices of a set of liquid options. These implied volatilities are then used

to price less liquid contracts. If the underlying asset exhibits mean reversion under the martingale

measure, this procedure will overestimate volatilities -and prices- especially for longer term contracts.

Imposing strong mean reversion is a step towards the solution of this problem, but it may lead to the

the log run, which produces spot price weak mean reversion in a complete market setting.

7Schwartz (1997), for example, presents a collection of Gaussian models and their closed form solutions.
8Duan(2001) proposed an alternative complete market world by using a semi-recombined binomial lattice model - which

is nested on the GARCH option pricing model of Kallsen and Taqqu (1998). In this model, he showed that although all
contingent claims can be perfectly replicated, risk neutral values are still a function of the risk premium.
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underestimation of volatilities when shocks to the underlying do not vanish completely in the long

run. This seems to be the case for most commodities. This paper contributes to the literature by in-

troducing a complete market model that exhibits weak mean reversion under the martingale measure,

and that is capable to fit the term structure of futures return volatilities. As the model renders formulas

for futures and European option prices for which no risk premium must be estimated, it provides a

useful benchmark to value more complex contracts for which no closed form solutions are known.

The structure of the paper is as follows. The model is presented in section 2. The price distribution

under the martingale measure is obtained in section 3. Futures and option prices are derived in section

4. Section 5 presents empirical results. Finally, section 6 concludes.

4.2 Commodity price dynamics

Let’s assume a frictionless financial market in which trading is continuous. The commodity spot price

St satisfies the following differential equation:

dSt
St

= (µ− δt) dt+ σdWt, (4.1)

where µ is the total instantaneous expected return on the spot, δt is the stochastic convenience yield,

and σ is the instantaneous return volatility. The only source of risk in the economy is a standard

Wiener process, Wt, defined on a filtered probability space (Ω, ,Π).

In this model, as it is common in the literature since the seminal Gibson and Schwartz (1991)

paper, weak mean reversion in the spot is induced by a stationary convenience yield whose innovations

are positively correlated to spot price changes. The convenience yield is implied by the equilibrium

relation among supply, demand and inventories9, in such a way that when the market is tight, with

strong demand and raising prices, the convenience yield is large, and when the market is loose, with

weak demand and falling prices, the convenience yield is small. As Cassasus and Dufresne (2005)

point out, this provides a rationale to model the convenience yield as a function of the spot price.

Consistent with this, recent empirical work finds that, for certain commodities, spot price changes and

innovations to the convenience yield are highly correlated. For example, Schwartz (1997) and, more

recently, Casassus and Dufresne (2005) find that in the case of oil this correlation is about 80%.

Let st = log (St) . Then, from equation (1):

dst =

(
µ− 1

2
σ2 − δt

)
dt+ σdWt, (4.2)

Assume now that changes in the convenience yield depend on its past level and on changes in the

log spot price through the following equation:

dδt = −ω (δt − α) dt+ φdst, (4.3)

9See Cassasus and Dufresne (2005).
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where α, ω ≥ 0, and φ > 0. Equation (3) is aimed to capture the relation between changes in the

convenience yield and spot price changes implied by the theory of storage and observed in the data. It

can be interpreted as a regression of changes in the convenience yield against its own past, a constant

αω, and spot price changes. The complete market assumption implies that the regression error is

identically zero, so there is no autonomous convenience yield risk.

Solving equation (3) gives:

δt = α+ (δ0 − α) e−ωt + φ

∫ t

0
e−ω(t−u)dsu, (4.4)

that is, the convenience yield is the sum of a deterministic function and a weighted average of past

(log) commodity price changes. Given φ > 0, two polar cases are of interest10: ω = 0, and ω = ∞.
When ω = 0 we have:

δt = δ0 + φ

∫ t

0
dsu

= δ0 + φ (st − s0) . (4.5)

Plugging equation (5) in (2) we obtain that the log spot price follows an O-U process. This shows

that the strong mean reverting model is a special case of the model introduced in this paper. The

difference between the O-U process and the model introduced in this paper can be seen as follows: in

both models the convenience yield depends on the past history of spot price changes, but in the model

introduced in this paper the most recent price innovations are given more weight (assuming ω > 0),

while in the O-U process all past innovations are equally weighted.

The second polar case arises when ω =∞. In this case, the constant dividend yield model obtains

:

δt = α. (4.6)

This shows that Geometric Brownian motion is also a special case the model introduced in this paper.

Although equation (4) looks unfamiliar, it is straightforward to show that it is consistent with

the dividend yield following an Ornstein-Uhlenbeck process, as it is common in the literature (see

Schwartz (1997)). In this case, the long run mean of the convenience yield is a weighted average of α

and the expected returns of the log spot price µ− 1
2σ

2. This is shown in Proposition 1:

The convenience yield is a stationary process satisfying the following stochastic differential equa-

tion:

dδt = −κ (δt −Θ) dt+ σδdWt, (4.7)

10We consider only the case φ > 0. because it is the one relevant to commodity prices.
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where:

κ = ω + φ

Θ =
ω

κ
α+

φ

κ

(
µ− 1

2
σ2

)
σδ = φσ

See Appendix 1.

The log spot price change over a discrete interval of length τ can be found by integrating equation

(2):

st+τ − st =

(
µ− 1

2
σ2 −Θ

)
τ − (δt −Θ)

1− e−κτ

κ
+ σ

∫ t+τ

t

[
1− φ

κ

(
1− e−κ(t+τ−u)

)]
dWu.

(4.8)

The expression in the integral inside the brackets gives the impulse-response function of the

model. As it will be shown later, this ”term structure of shocks” plays a key role in the determi-

nation of futures return volatilities. As equation (8) shows, a shock that occurred at t has a residual

impact on st+τ of 1− φ
κ (1− e−κτ ) . As τ grows without bound, this residual impact converges to:

1− φ

κ
=
ω

κ
.

Assuming φ > 0, there are three cases to consider: 1) ω = 0, 2) ω > 0, 3) ω =∞. When ω = 0,

the effect of shocks completely vanish in the long run, so the process exhibits strong mean reversion.

When ω is positive, the residual impact of a shock experienced at t, as τ grows without bound11, is
ω
κ < 1. Shocks have permanent effects, although a part of any shock vanishes in the long run. This is

the case of weak mean reversion. Finally, when ω =∞, shocks still have permanent effects, but their

residual impact is exactly 1. In this case, the spot is a random walk. Similarly, it can be shown that the

unconditional variance of spot price changes in case 1 dominates the unconditional variance of spot

price changes in cases 2 and 3, and that φ > 0 is sufficient for spot price changes to be negatively

autocorrelated (see Appendix 2).

The financial market is naturally complete through the dependence of δt on Wt, the spot source

of risk. Assume additionally that there are no arbitrage opportunities. Then, there exists a unique

probability measure Q, equivalent to Π, such that the discounted prices of the spot (cum dividend)

and of other traded assets are martingales under Q (Harrison and Kreps (1979)). In the next section

we obtain the spot price process under the Q-measure and derive formulas for futures prices.
11Recall that κ = ω + φ.
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4.3 The price process under the Q-measure

In this section We derive the risk-neutral spot price process and a closed form solution for futures

prices. The main objective of this section is to obtain the term structure of futures returns volatilities

as a function of φ and ω. We also show that the term structure of futures returns volatilities coincides

with the impulse response function of the spot price shocks.

To compute the futures price, we need first the spot price process under the risk-neutral measure.

An interesting consequence of the convenience yield parameterization of equation (3) is that the risk

premium does not enter the futures price formula. Equation (1) defines µ as the total expected return

on the commodity (capital gains plus convenience yield). As in Schwartz (1997), µ is assumed con-

stant. Define now r as the constant12 instantaneous risk-free interest rate, and λ as the risk premium13.

Then, the total expected return can be decomposed as:

µ ≡ r + λ (4.9)

Plugging equation (9) back in (1) gives the risk-neutralized commodity price process:

dSt
St

= (r − δt) dt+ σ

(
λ

σ
dt+ dWt

)
,

= (r − δt) dt+ σdBt, (4.10)

where, by Girsanov’s theorem14, Bt = λ
σ t+Wt is a Brownian motion under the risk neutral measure

Q. Thus, the total expected return on the commodity under Q is r. Interestingly, the risk-neutralized

process for δt does not depend on the spot risk premium either. To see this, plug (9) in (7) to get:

dδt = −κ (δt −Θ∗) dt+ σδ

(
λ

σ
dt+ dWt

)
= −κ (δt −Θ∗) dt+ σδdBt, (4.11)

where now:

Θ∗ =
ω

κ
α+

φ

κ

(
r − 1

2
σ2

)
. (4.12)

So neither St nor δt depend on λ under Q. As a consequence, the model renders formulas for contin-

gent claims for which no risk premium must be estimated.

Under Q, the logarithm of ST is normally distributed, with conditional mean Ωτ and conditional

variance Στ , where:
12We assume for simplicity that the risk free rate is constant. The model cen be straightforwardly extended to accommo-

date time-varying interest rates along the lines of Schwartz (1997) model 3.
13As the risk premium does not enter the derivatives formulas, all results in this and the next sections carry through even

if the risk premium is stochastic and time-varying.
14There are technical conditions to be met in order to apply Girsanov’s theorem, but they are automatically satisfied when

the risk premium is constant. See Karatzas and Shreve (1991).
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Ωτ =

(
r − 1

2
σ2 −Θ∗

)
τ − (δt −Θ∗)

(1− e−κτ )

κ
, (4.13)

and:

Στ =
σ2

κ2

(
ω2τ +

2φω

κ

(
1− e−κτ

)
+
φ2

2κ

(
1− e−2κτ

))
, (4.14)

where τ = T − t; that is, the moments are calculated conditional on information up to time t. Note

that ω = 0 implies Στ = σ2

2φ

(
1− e−2φτ

)
, the variance of a mean reverting process with reversion

rate φ. On the other hand, if ω → ∞, Στ = σ2τ. That is, the variance grows linearly with time to

maturity, which corresponds to the random walk case.

The futures price15 for delivery of one unit of the commodity τ periods ahead is the expected

commodity price under the risk-neutral measure. Given the normality of log (St) under Q, the futures

price is easily obtained in closed form:

Fτ = EQt (ST )

= St × exp

(
Ωτ +

1

2
Στ

)
. (4.15)

From equations (13) and (14), this formula does not include the risk premium.

The futures price process has no drift underQ, because no money is paid to enter the contract. The

dynamics of the futures price is described, after applying Ito’s lemma, by the following differential

equation:
dFτ
Fτ

= σ (τ) dBt,

where:

σ (τ) =


σe−φτ if ω = 0

σ
[
1− φ

κ

(
1− e−(ω+φ)τ

)]
if 0 < ω <∞

σ if ω →∞
(4.16)

The volatility term structure reflects the term structure of shocks: When ω →∞, the volatility of

the futures return is independent of time to maturity. This is the case in which the spot is a random

walk. When 0 < ω < ∞, the volatility of the futures return decreases slowly with time to maturity.

Finally, when ω = 0, the spot price is stationary, and the volatility collapses to σe−φτ . In the long run,

the volatility of the random walk stays at σ, while the volatility of the stationary process goes down

to 0. In the general case, it converges to:

σ

(
1− φ

κ

)
=
σω

κ
> 0. (4.17)

Figure 1 shows the calibration of equation (16) to the term structure of futures returns volatilities

obtained from the data set described in Section 5. While the model introduced in this paper is able
15Note that the words ”futures price” and ”forward price” can be used interchangeably in this context, because they are

equal under the current assumption of a constant risk-free rate.
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to fit the term structure almost perfectly, the O-U model overestimates the mid-term volatilities, and

underestimates the volatilities of the shortest and longest maturities.

The inability to fit the volatility curve is a serious shortcoming of the O-U model, as practitioners

may want to use these volatilities to calibrate more complex derivative models to market data. With

just one additional parameter (ω), and without the need to relax the assumption of complete markets,

the model introduced in this paper produces an almost perfect fit.

The term structure of futures return volatilities is the same as the term structure of shocks (see

equation (8)). This is consistent with Bessembinder et al. (1996) explanation of the Samuelson

hypothesis. Samuelson (1965) asserted that the volatility of futures price changes should decrease

with the maturity time of the contracts. Bessembinder et al. (1996) argue that a sufficient condition

for the Samuelson hypothesis to hold is that there is a temporary component in spot price changes

such that investors expect that those changes will be at least partially reversed in the long run. This

implies mean reversion, but not necessarily stationarity of the spot price.

4.4 Pricing options

The price of a European call option written on the spot, with maturity T and strike K, is the expectation

under Q of its payoff at maturity, discounted by the risk-free rate:

Ct = e−rτEQt [Max (ST −K, 0)] . (4.18)

Equation (18) can be written as:

Ct = e−rτEQt
[
(ST )× 1{ST>K}

]
− e−rτKPQ (ST > K) , (4.19)

where 1{ST>K} is the indicator function of the event {ST > K} , EQt
[
(ST )× 1{ST>K}

]
is the Q-

expected value of the spot at maturity, conditioned on the event that the option will be exercised at

maturity, and PQ (ST > K) is the probability under Q of this event. Due to the normality of ln (St),

the expectation in the first term of (19) can be solved as:

EQt
[
(ST )× 1{ST>K}

]
= Ste

Ωτ+ 1
2

ΣτN (d1) , (4.20)

where N (d1) is the value of the Normal cumulative distribution function at d1, and:

d1 =
log
(
St
K

)
+ Ωτ + Στ√
Στ

. (4.21)

The probability of the option finishing in the money is:

PQ (ST > K) = N (d2) , (4.22)
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where:

d2 = d1 −
√

Στ . (4.23)

So:

Ct =
[
Ste

Ωτ+ 1
2

ΣτN (d1)−KN (d2)
]
e−rτ . (4.24)

It is important to note that this formula, as the formula for the futures price (eq. 16), does not

include preference parameters.

The price of a European put on the same commodity can be found using put-call parity. That is,

because buying a call and shorting a put, both with maturity T and strike K, is equivalent to having a

long position in a forward contract with maturity T and forward price K, we can express the put price

as:

Pt = Ct −
[
EQt (ST )−K

]
e−rτ (4.25)

Using equation (15) we get:

Pt =
[
KN (−d2)− SteΩτ+ 1

2
ΣτN (−d1)

]
e−rτ . (4.26)

In the case of commodities, it is usually easier to observe futures rather than spot prices. It is even

the case that in some exchanges the nearest maturity futures price is taken as a proxy for the spot price.

For this reason, many options on commodities are not written directly on the spot, but on the futures

price, and, as a consequence, it is not uncommon in the literature to deal directly with the pricing of

options on futures. It is straightforward to adapt formulas (24) and (26) to price this kind of options.

If the maturity of the option and the maturity of the futures contract are the same, the current

futures price Fτ = F (t, T ) , where T = t + τ, can be used to price options on the spot. So, as

F (T, T ) = ST , the call price can be rewritten as:

C (t, T ) = [FτN (d1)−KN (d2)] e−rτ , (4.27)

with:

d1 =
log
(
Fτ
K

)
+ 1

2Στ
√

Στ
, (4.28)

where Στ is as defined in equation (14). On the other hand, suppose that T is the maturity time of the

futures contract, and that the option matures at s < T . Then, as integration of equation (2) must be

done over the life of the option, the variance in equation (14) has to be replaced by:

Σ∗τ =
σ2

κ2

(
ω2 (s− t) +

2φω

κ

(
e−κ(T−s) − e−κ(T−t)

)
+
φ2

2κ

(
e−2κ(T−s) − e−2κ(T−t)

))
(4.29)
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4.5 Empirical Results

This section provides an empirical assessment of the model on a data set consisting of weekly ob-

servations of futures prices of oil (NYMEX WTI). To avoid repetition, we refer from now on to the

model introduced in this paper as the ”our-model”, and to its restricted version, the O-U process, as the

”O.U.-model” 16. Model estimation is complicated by the fact that the state variables -the spot price

and the convenience yield- are unobservable. Schwartz (1997) shows how in these cases the Kalman

filter can be used for parameter estimation and the recovery of state variables from futures price data,

and this technique is still widely used in the literature. So in what follows we will implement the

Kalman filter to investigate the relative performance of the our-model and O.U.-model by means of

pricing errors17.

4.5.1 Data and Estimation

The models are implemented on a data set consisting of weekly observations of futures prices of

oil (NYMEX WTI). Daily data was originally obtained from Bloomberg and then transformed into

weekly by choosing every Wednesday observation. Eleven maturities were used in the empirical

exercises, going from the contract closest to maturity (F1) to the longest term contract (F11). The

shortest maturity is about two weeks; the longest maturity, less than two years. For each contract

there are 249 observations, starting on March 17, 1999, and ending on December 31, 2003. The

interest rate is assumed constant and fixed at 4%. The data is described in Table 1:

Table 1: Oil Data Description
Mean Price Mean Maturity Standard Dev.

Futures Contract (Standard Error) (Standard Error) of futures return

F1 27.05 (4.72) 0.043 (0.024) 0.373

F2 26.41 (4.19) 0.210 (0.024) 0.313

F3 25.64 (3.81) 0.377 (0.024) 0.265

F4 25.03 (3.57) 0.544 (0.024) 0.235

F5 24.44 (3.37) 0.711 (0.024) 0.216

F6 23.94 (3.19) 0.878 (0.024) 0.199

F7 23.54 (3.06) 1.045 (0.024) 0.186

F8 23.16 (2.92) 1.212 (0.024) 0.175

F9 22.84 (2.82) 1.379 (0.024) 0.169

F10 22.58 (2.72) 1.546 (0.024) 0.161

F11 22.39 (2.66) 1.713 (0.024) 0.159

16We compare only the two models that accommodate mean reversion. Results on Geometric Brownian motion are
available upon request.

17For details about estimation, see Appendix 3.
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The mean prices go down uniformly with maturity. The futures returns are calculated as the differ-

ence between the log of the futures prices, and their volatilities also decrease steadily with maturity.

We estimate the parameters of the two models on five maturities: F1, F3, F5, F7, and F9, using the

whole set of observations, and reserve the remaining maturities for out of sample testing. Estimation

results are presented in Table 2.

Table 2: Estimation Results: our-model and O.U.-model
Parameters our-Model Std.Error O.U.-model Std.Error

µ 0.5042 (0.1656 ) 0.3606 (0.1160)

α 0.1336 (0.0051) -0.5763 (0.0422)

σ 0.3531 (0.0179) 0.2492 (0.0106)

φ 0.8482 (0.032) 0.2259 (0.0133)

ω 0.5696 (0.0257) 0.00

σε1 0.0543 (0.0025) 0.0671 (0.0023)

σε2 0.0190 (0.0008) 0.0251 (0.0010)

σε3 0.00 0.00

σε4 0.0103 (0.0005) 0.0170 (0.0008)

σε5 0.0183 (0.0009) 0.0305 (0.0014)

Likelihood 2948.4 2578.3

For the our-model, the value of the likelihood function is 2948.4. The parameter φ is positive

and significant, implying that there is mean reversion in the data. The parameter ω, which measures

the weight of past spot price changes in the convenience yield, is also positive and significant. As

discussed in section 2, a positive ω means that shocks are only partially reversed in the long run,

suggesting that the O-U process is not an adequate model for the data. The instantaneous volatility

of spot price changes, σ, is also positive and significant. The total return on the spot, µ, is 0.5042,

while α is equal to 0.1336. Both parameters are significant. Imposing ω = 0 reduces the value of

the likelihood function from 2948.4 to 2580.2. A likelihood ratio test shows that this difference is

strongly significant, with negligible p-value. Note that in the O.U.-model the parameter α is actually

the vertical intercept of the convenience yield (in st, δt space): δ0 − φs0; this explains the negative

value of the estimate.

Another way to assess the models’ ability to capture essential features of the data is to investigate

whether they are able to reproduce the shape of the term structure of futures return volatilities. Note

that these volatilities did not play an explicit role in the estimation of the parameters; only futures

prices were used. Results are shown in figure 2. The our-model captures the shape quite well; in

contrast, the O.U.-model misses the curve of empirical returns volatilities almost completely.

Following Schwartz (1997) we implement two tests to compare the models. The first one is a cross

sectional test in which pricing errors are computed on the six maturities not used in the estimation

of parameters. The second test requires reestimating the models using a subset of the observations
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per maturity, and computing price prediction errors on the remaining observations not used in the

estimation. As Schwartz (1997) pointed out, although the first test is of interest, because it involves

data not used in the estimations, only the second test is a true out of sample exercise.

Table 3 provides a cross-sectional comparison of the pricing errors generated by the three models.

Following standard practice in the literature, pricing errors are measured by the average mean square

error (RMSE) and the mean error (ME). The pricing errors are calculated on the 6 maturities that were

not used in the estimation. The our-model generates the smallest pricing errors, and the O.U.-model ,

the largest. For both models, pricing errors in percentage are larger at the short and long ends of the

price curve. Measured by the RMSE, the pricing errors are on average (across maturities) below 3%.

Table 3: Cross-Section comparison between models
Maturities not used in the estimations

RMSE ME

Model Contract OU-model our-model O.U.-model our-model

Panel A: In Dollars

F2 1.172 0.991 -0.385 0.006

F4 0.295 0.247 -0.085 -0.036

F6 0.231 0.168 0.028 0.030

F8 0.536 0.332 -0.077 0.025

F10 0.814 0.484 -0.292 -0.027

F11 1.693 0.544 -0.468 -0.113

All 0.961 0.461 -0.213 -0.019

Panel B: In Percentage

F2 4.694 3.467 -1.492 -0.088

F4 1.240 0.939 -0.347 -0.154

F6 1.007 0.690 0.120 0.119

F8 2.413 1.434 -0.327 0.064

F10 3.742 2.222 -1.304 -0.219

F11 4.453 2.578 -2.118 -0.628

All 2.925 1.888 -0.911 -0.151

Table 4 shows the results of the out of sample test, in which prediction errors are computed for

period t + 1 using all information up to period t (200 < t ≤ 248) . Implementing this test requires

the reestimation of parameters at every period t. The table shows mean square errors and mean errors

of the log prices, as they are obtained from the Kalman filter algorithm. They can be interpreted as

approximate percentage pricing errors.
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Table 4: Time series comparison between models
Last 49 observations

RMSE ME

Model Contract O.U-model our-model O.U. model our-model

Out of sample parameter estimation

F1 0.0674 0.0671 0.0205 0.0235

F3 0.0395 0.0404 0.0013 0.0074

F5 0.0299 0.0298 0.0000 -0.0007

F7 0.0300 0.0272 0.0099 -0.0033

F9 0.0406 0.0303 0.0246 -0.0038

All 0.0415 0.0390 0.0113 0.0046

In Table 4, the O.U-model is again outperformed by the our-model. This time, the O.U.-model

generates prediction errors that are on average 6.5% above the prediction errors generated by the

our-model.

4.6 Conclusions

This paper presents a complete market model of commodity prices that exhibits price nonstationarity

and mean reversion under the martingale measure, and, as a consequence, it is able to fit a slowly

decaying term structure of futures return volatilities. The model has strong mean reversion and geo-

metric Brownian motion as special cases, and renders formulas for the prices of futures contracts and

European options for which no risk premium must be estimated.

Implemented on a sample of oil futures prices, the model outperforms the strong mean reversion

model in term of pricing errors, and is capable of producing a perfect fit of the term structure of futures

return volatilities.

The model is parsimonious and provides a useful benchmark to value complex contracts for which

no closed form solutions are known. On this regard, it can be seen as a good alternative to widely

used one-factor models.
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4.7 Appendices

4.7.1 Proof of Proposition 1

Plugging equation (2) in (3), we get:

dδt = −ω (δt − α) dt+ φ

[(
µ− 1

2
σ2 − δt

)
dt+ σdWt

]
(4.30)

= − (ω + φ)

(
δt −

ωα+
(
µ− 1/2σ2

)
ω + φ

)
dt+ φσdWt. (4.31)

The last equality proves the proposition.

4.7.2 Second moments of spot price changes

Lemma 1: Define rt+τ = st+τ −st, the τ−period log price change. Then, the unconditional variance

of rt+τ can be written as:

V ar (rt+τ ) =
σ2

(ω + φ)2

[
ω2τ +

2φ

ω + φ

(
ω +

φ

2

)(
1− e−(ω+φ)τ

)]
,

and the covariance between rt and rt+τ is:

Cov (rt, rt+τ ) = − σ2

(ω + φ)2

φ

ω + φ

(
ω +

φ

2

)(
1− e−(ω+φ)τ

)2
.

Proof: First, define δ̃t = δt −Θ and δ̃t−τ = δt−τ −Θ. Then, from equation (7) in the main text

we have:

δ̃t = δ̃t−τe
−(ω+φ)τ + φσ

∫ t

t−τ
e−(ω+φ)(t−u)dWu,

and:

E
(
δ̃tδ̃t−τ

)
= e−(ω+φ)τV ar

(
δ̃t−τ

)
= e−(ω+φ)τ (φσ)2

2 (ω + φ)
. (4.32)

From equation (8), the unconditional variance of price changes is:

V ar (rt+τ ) = E

(
−δ̃t

1− e−(ω+φ)τ

ω + φ
+ σ

∫ t+τ

t

[
1 +

φ

ω + φ

(
1− e−(ω+φ)(t+τ−u)

)]
dWu

)2

=
(φσ)2

2 (ω + φ)

(
1− e−(ω+φ)τ

ω + φ

)2

+
σ2

(ω + φ)2

∫ t+τ

t

[
1 + φe−(ω+φ)(t+τ−u)

]2
du.

(4.33)
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Solving the integral, and after some messy algebra, we get:

V ar (rt+τ ) =
σ2

(ω + φ)2

[
ω2τ +

2φ

ω + φ

(
ω +

φ

2

)(
1− e−(ω+φ)τ

)]
. (4.34)

The difference between equation (34) and equation (14) is that (14) is the equation of a conditional

variance, so only the second term in (34) is used in the computation of (14).

The formula for Cov (rt, rt+τ ) is calculated in the same way, using now equation (40) with τ > 0

and taking care that the cross-products overlap.

From Lemma 1, the first autocorrelation of τ -period log price changes can be expressed as:

ρ (rt, rt+τ ) = −
φ

ω+φ

(
ω + φ

2

) (
1− e−(ω+φ)τ

)2
ω2τ + 2φ

ω+φ

(
ω + φ

2

) (
1− e−(ω+φ)τ

) . (4.35)

The following two lemmas show that φ > 0, that is, positive correlation between innovations to

the convenience yield and log price changes is a sufficient condition for mean reversion. Lemma 2

demonstrates that if φ > 0, the unconditional variance of τ -period price changes is lower than the

variance corresponding to the random walk (φ = 0) for τ > 0. The third lemma shows that the sign

of the first autocorrelation of τ -period log price changes is equal to minus the sign of φ.

Lemma 2: If φ > 0, V ar (rt+τ ) ≤ σ2τ. The inequality is strict for τ > 0.

Proof: Write:

V ar (rt+τ ) = σ2τ
ω2 + 2φ

(
ω + φ

2

)
(1−e−(ω+φ)τ)

(ω+φ)τ

(ω + φ)2 .

If τ = 0, V ar (rt+τ ) = σ2τ = 0. So it is necessary to show that for τ > 0:

ω2 + 2φ
(
ω + φ

2

)
(1−e−(ω+φ)τ)

(ω+φ)τ

(ω + φ)2 < 1.

Note that this follows from the fact that for τ > 0:(
1− e−(ω+φ)τ

)
(ω + φ) τ

< 1.

Then, for φ > 0:

ω2 + 2φ

(
ω +

φ

2

) (
1− e−(ω+φ)τ

)
(ω + φ) τ

< ω2 + 2φ

(
ω +

φ

2

)
= (ω + φ)2 .

Therefore:

V ar (rt+τ ) < σ2τ
(ω + φ)2

(ω + φ)2 = σ2τ,
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and the lemma is proved. Note that V ar (rt+τ )σ2τ for τ0, and that for large τ, V ar (rt+τ )σ2τ
(

ω
ω+φ

)2
<

σ2τ.

Lemma 3: φ > 0 implies negative first autocorrelation of τ -period log price changes.

Proof: Note that we have that:

sign Cov (rt, rt+τ ) = −sign φ.

Also, from Lemma 1, the denominator in (9) is positive. Therefore:

sign ρ (rt, rt+τ ) = −sign φ,

and this completes the proof of the lemma.

4.7.3 Parameter estimation

To estimate the model’s parameters by means of the Kalman filter it is necessary first to express the

model in state-space form. The measurement equation is:

yt = dt + Zt ×

[
St

mt

]
+ εt, t = 1, ..., NT

where T is the number of observations, N is the number of maturities, and:

yt = ln (Fτi) i = 1, ..., N

is N × 1 vector of observable log futures prices. Also, dt and Zt are N × 1 and N × 2 matrices:

dt =

[(
r −Θ∗ −

σ2
δ

2κ2
− σσδ

κ

)
τi +

σ2
δ

(
1− e−2κτi

)
4κ3

+

(
Θ∗κ+ σσδ −

σ2
δ

κ

)
1− e−κτi

κ2

]

and:

Zt =

[
1,−1− e−κτi

κ2

]
, i = 1, ..., N

The vector of observation errors, εt, is normally distributed with zero mean and covariance matrix

Λ, where:

Λij =

{
σ2
εi if i = j

0 if i 6= j

The transition equations describe the dynamics of the discretized state variables:
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[St,mt]
T = ct +Qt ×

[
St−1

mt−1

]
+ ηt,

where:

ct =

[(
µ− 1

2
σ2

)
∆t,Θκ∆t

]
,

Qt =

[
1 −∆t

0 1− κ∆t

]
,

and ηt is normally distributed with:

E (ηt) = 0, V ar (ηt) = σ2O2,

where O2 is a 2× 2 matrix of ones.
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4.7.4 Figures

Figure 4.1: This figure shows the calibration of equation (16) to the term structure of oil futures
returns volatilities obtained from weekly observations on NYMEX WTI - as described in Section
5. The model introduced in this paper is denoted as “our-model ”; and the restricted version with
the O-U process is denoted as “O.U.-model ”. Accordingly, the model introduced in this paper fits
the term structure almost perfectly, while he O-U model overestimates the mid-term volatilities, and
underestimates the volatilities of the shortest and longest maturities.
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Figure 4.2: This figure shows estimations of the term structure of futures return volatilities of five dif-
ferent maturities. Accordingly, the our-model captures the shape of the data much more significantly
than the O.U-model which misses the curve of empirical returns volatilities almost completely.
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