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Decomposition of Network Communication Games

Bas Dietzenbacher∗† Peter Borm∗ Ruud Hendrickx∗

December 9, 2015

Abstract

Using network control structures this paper introduces network communication
games as a generalization of vertex games and edge games corresponding to communi-
cation situations and studies their decomposition into unanimity games. We obtain a
relation between the dividends of the network communication game and the underlying
transferable utility game, which depends on the structure of the undirected graph. This
relation extends the computational results for tree communication networks to general
undirected graphs and is used to derive new characterizations of the Myerson value
and the position value. Moreover, network communication games also allow to consider
both the vertices and the edges of the graph as players, leading to a new network value.

Keywords: network communication games, network control structures, decomposition
theorems, Myerson value, position value
JEL classification: C71

1 Introduction

Cooperative game theory analyzes allocations of joint revenues among cooperating players,
taking the economic possibilities of subcoalitions into account. To describe an allocation
problem for a set of players, Von Neumann and Morgenstern (1944) introduced the model of
a transferable utility game, in which a characteristic function assigns to each subgroup of the
cooperating players its worth, a number reflecting the economic possibilities of the coalition
if it acts on its own. Shapley (1953) introduced a well-known solution for this model, known
as the Shapley value, which divides the dividend of each coalition (cf. Harsanyi (1959))
equally among its members.

In a cooperative game with communication structure the players are subject to coop-
eration restrictions. Myerson (1977) introduced communication situations in which these
cooperation restrictions are modeled by an undirected graph. Vertices of the undirected
graph represent the players of the game and there is an edge between two vertices if and
only if the corresponding players are able to communicate directly. A coalition can attain
its worth if its members are able to communicate, i.e. if their corresponding vertices induce
a connected subgraph.

Myerson (1977) introduced the graph-restricted game corresponding to a communica-
tion situation in which each coalition of vertices is assigned the sum of the worths of the
components of players of its induced subgraph. We refer to this game as the corresponding
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vertex game. Owen (1986) further studied these vertex games for the special case that the
undirected graph is a tree. The Myerson value of a communication situation is defined as
the Shapley value of the corresponding vertex game.

Borm et al. (1992) introduced a game on the edges corresponding to a communication
situation in which each coalition of edges is assigned the sum of the worths of the components
of players of its induced subgraph. We refer to this game as the corresponding edge game.
The position value of a communication situation assigns to each player half of the sum of the
payoffs allocated to its incident edges by the Shapley value of the corresponding edge game.

In this paper we introduce network communication games as a generalization of both
vertex games and edge games. A network communication game is a transferable utility
game integrating the features of a communication situation and a network control structure
on an undirected graph. Here, a network control structure models the way in which the
vertices and edges of the graph are controlled. Where Myerson (1977) considers the vertices
and Borm et al. (1992) considers the edges as controllers of the network; a network control
structure allows any set of controllers to control the graph. In the corresponding network
communication game each coalition of controllers is assigned the sum of the worths of the
components of players of the part of the network which the members control together.

In order to simultaneously study the decomposition into unanimity games of vertex games
and edge games, we focus on this decomposition for network communication games. It turns
out that a communication situation with an underlying unanimity game induces a simple
network communication game for any network control structure. The minimal winning coali-
tions in this game play a central role in the decomposition. We obtain a relation between
the dividends of the network communication game and the underlying transferable utility
game, which depends on the structure of the undirected graph. This relation extends the
computational results using dividends from Owen (1986) and Borm et al. (1992) for trees to
general undirected graphs. From these dividends a general expression for the Shapley value
is derived, which is used for characterizing the Myerson value and the position value.

The main aim of this paper is to develop the decomposition theory for network communi-
cation games as a mathematical tool which can be used to derive the vertex game, the edge
game and their related solution concepts for communication situations in a structured way.
Besides, the notions of a network communication game and the underlying network control
structure provide a general framework which allows for existing and new interpretations and
can be used to study a wide range of interesting problems. We give one example of its
applicability by introducing the vertex-edge game and a corresponding network value as an
alternative for the Myerson value and the position value. Future research should investigate
further applications and potential approaches to this new framework. Moreover, one could
extend the decomposition theory to hypergraph communication situations, as introduced by
Myerson (1980) and further studied by Van den Nouweland et al. (1992), or to more general
communication structures (cf. Bilbao (2000)).

This paper is organized in the following way. Section 2 provides an overview of the basic
game theoretic and graph theoretic notions and notations. Section 3 formally introduces
network control structures, defines the corresponding network communication games and
studies their decomposition into unanimity games. In Section 4 we discuss the decomposi-
tion theory of vertex games and edge games for the special case that the underlying graph
is a tree and we introduce vertex-edge games and a corresponding network value. Section
5 illustrates how the decomposition of network communication games can be extended to
more general communication networks such as multigraphs and hypergraphs.
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2 Preliminaries

Let N be a nonempty and finite set of players. The set of all coalitions is denoted by
2N = {S | S ⊆ N}. A set of coalitions B ⊆ 2N is called a Sperner family if R 6⊂ S for all
R,S ∈ B. A transferable utility game (cf. Von Neumann and Morgenstern (1944)) is a pair
(N, v) in which v : 2N → R is a characteristic function assigning to each coalition S ∈ 2N

its worth v(S) ∈ R such that v(∅) = 0. The worth of a coalition can be considered as the
maximal joint revenue of the members which can be obtained without any assistance of a
player which is not a member. Let TUN denote the class of all transferable utility games
with player set N . For convenience, we abbreviate (N, v) ∈ TUN to v ∈ TUN . A TU-game
v ∈ TUN is called simple if the following three conditions are satisfied:

(i) v(S) ∈ {0, 1} for all S ∈ 2N ;

(ii) v(N) = 1;

(iii) v(R) ≤ v(S) for all R,S ∈ 2N for which R ⊆ S.

Let SIN denote the class of all simple games with player set N . A coalition S ∈ 2N is called
winning in v ∈ SIN if v(S) = 1 and losing if v(S) = 0. The set of minimal winning coalitions
in v ∈ SIN is given by

M(v) =
{
S ∈ 2N

∣∣ v(S) = 1,∀R⊂S : v(R) = 0
}
. (1)

The maximum game max{v | v ∈ G} ∈ TUN of a nonempty and finite set of transferable
utility games G ⊂ TUN is defined by max{v | v ∈ G}(S) = max{v(S) | v ∈ G} for all
S ∈ 2N . The minimum game is defined analogously. Note that both the maximum game
and the minimum game of a nonempty set of simple games are simple. The unanimity game
uR ∈ SIN on R ∈ 2N \ {∅} is for all S ∈ 2N defined by

uR(S) =

{
1 if R ⊆ S;

0 if R 6⊆ S.

Note that v ∈ SIN and M(v) = B if and only if B ⊆ 2N \ {∅} is a nonempty Sperner family
and v = max{uR | R ∈ B}.

A TU-game v ∈ TUN can be uniquely decomposed into unanimity games,

v =
∑

S∈2N\{∅}

∆v(S)uS , (2)

where ∆v : 2N \ {∅} → R assigns to each nonempty coalition S ∈ 2N \ {∅} its dividend (cf.
Harsanyi (1959))

∆v(S) =
∑
R⊆S

(−1)|S|−|R|v(R). (3)

A solution for transferable utility games f : TUN → RN assigns to any TU-game v ∈
TUN a payoff allocation f(v) ∈ RN such that

∑
i∈N fi(v) = v(N). The Shapley value (cf.

Shapley (1953)) Φ : TUN → RN is for all v ∈ TUN and all i ∈ N given by

Φi(v) =
∑

S∈2N :i∈S

1

|S|
∆v(S). (4)
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Let E ⊆ {S ∈ 2N | |S| = 2} be a set of unordered pairs of players. The pair (N,E)
represents an undirected graph in which N is the set of vertices and E is the set of edges. A
subset H ∈ 2N × 2E is called a subnetwork. For all i ∈ N we denote Ei = {e ∈ E | i ∈ e}.
For all S ∈ 2N we denote E[S] = {e ∈ E | e ⊆ S}. A subnetwork (S, T ) ∈ 2N × 2E is called
a subgraph if T ⊆ E[S]. The subgraph induced by S ∈ 2N is (S,E[S]). For all T ∈ 2E we
denote N [T ] = {i ∈ N | i ∈

⋃
e∈T e}. The subgraph induced by T ∈ 2E is (N [T ], T ).

A path in (S, T ) ∈ 2N × 2E from i1 ∈ S to in ∈ S is a sequence (ik)nk=1 of n ≥ 2 distinct
vertices in S for which {ik, ik+1} ∈ T for all k ∈ {1, . . . , n− 1}. A subnetwork H ∈ 2N × 2E

connects R ∈ 2N \ {∅} if for any i, j ∈ R, i 6= j there exists a path in H from i to j. A
coalition C ∈ 2N \{∅} is called a component of H ∈ 2N×2E if H connects C and H does not
connect any R ⊃ C. The set of all components of the subnetwork H ∈ 2N × 2E is denoted
by K(H). A subgraph (S, T ) ∈ (2N \{∅})×2E is called connected if it connects S. Note that
for each connected subgraph (S, T ) ∈ 2N × 2E with |S| ≥ 2 we have S = N [T ]. A connected
subgraph (N [T ], T ) ∈ 2N × (2E \ {∅}) is called a tree if for any i, j ∈ N [T ], i 6= j there exists
a unique path in (N [T ], T ) from i to j.

A subgraph (S,E[S]) ∈ 2N × 2E is called a minimal R-connecting vertex-induced sub-
graph if it connects R ∈ 2N \ {∅} and any (S′, E[S′]) with S′ ⊂ S does not connect R. Let
VR
E ⊆ 2N \ {∅} denote the set of coalitions of vertices which induce a minimal R-connecting

vertex-induced subgraph. A tree (N [T ], T ) ∈ 2N × 2E is called a minimal R-connecting tree
if it connects R ∈ 2N , |R| ≥ 2 and any tree (N [T ′], T ′) with T ′ ⊂ T does not connect R. Let
T R
N ⊆ 2E \ {∅} denote the set of coalitions of edges which induce a minimal R-connecting

tree.

A communication situation (cf. Myerson (1977)) is a triple (N, v,E) in which v ∈ TUN

is a transferable utility game and (N,E) is an undirected graph representing the commu-
nication possibilities between the players. We assume that v ∈ TUN is zero-normalized,
i.e. v({i}) = 0 for all i ∈ N , and that (N,E) is connected in any communication situation
(N, v,E). Let CSN

N,E denote the class of all such communication situations with player set N

and communication network (N,E). For convenience, we abbreviate (N, v,E) ∈ CSN
N,E to

v ∈ CSN
N,E . A solution for communication situations f : CSN

N,E → RN assigns to any com-

munication situation v ∈ CSN
N,E a payoff allocation f(v) ∈ RN such that

∑
i∈N fi(v) = v(N).

The vertex game rvE ∈ TUN corresponding to v ∈ CSN
N,E (cf. Myerson (1977)) is for all

S ∈ 2N defined by

rvE(S) =
∑

C∈K(S,E[S])

v(C). (5)

The Myerson value µ : CSN
N,E → RN is for all v ∈ CSN

N,E and all i ∈ N given by

µi(v) = Φi(r
v
E). (6)

The edge game rvN ∈ TUE corresponding to v ∈ CSN
N,E (cf. Borm et al. (1992)) is for all

T ∈ 2E defined by

rvN (T ) =
∑

C∈K(N [T ],T )

v(C). (7)

The position value π : CSN
N,E → RN is for all v ∈ CSN

N,E and all i ∈ N given by

πi(v) =
1

2

∑
e∈Ei

Φe(r
v
N ). (8)

4



3 Decomposition of Network Communication Games

In this section we introduce network communication games and study their decomposition
into unanimity games. Network communication games are proposed as a generalisation of
vertex games (cf. Myerson (1977)) and edge games (cf. Borm et al. (1992)) in order to
study their decomposition by means of a unifying approach. We explicitly model the control
of the vertices and edges of an undirected graph by a network control structure.

Definition 3.1 (Network Control Structure).
A network control structure on the undirected graph (N,E) is a pair (P,G) in which P is a
nonempty and finite set of controllers and G : 2P → 2N × 2E is a control function assigning
to each coalition of controllers a subnetwork such that

(i) G(∅) = (∅, ∅);

(ii) G(P ) = (N,E);

(iii) G(Q) ⊆ G(Q′) for all Q,Q′ ∈ 2P for which Q ⊆ Q′.

Let NCSP
N,E denote the class of all network control structures on (N,E) with controller

set P . For convenience, we abbreviate (P,G) ∈ NCSP
N,E to G ∈ NCSP

N,E . Controllers
in a network control structure can be interpreted as controllers of the vertices and edges
of the underlying network. The controllers all together control the full network, but each
individual may control some vertices and edges by itself or in a subgroup, which is modeled
by G ∈ NCSP

N,E .

From the viewpoint of Myerson (1977) the vertices of the graph control the network, i.e.
P = N , such that each vertex controls itself and each edge is controlled by its two endpoints
together. In other words, each coalition of vertices controls its induced subgraph. This can
be described by the network control structure G ∈ NCSN

N,E in which G(S) = (S,E[S]) for

all S ∈ 2N .
From the viewpoint of Borm et al. (1992) the edges of the graph control the network, i.e.

P = E, such that each edge controls itself and its endpoints. In other words, each coalition of
edges controls its induced subgraph. This can be described by the network control structure
G ∈ NCSE

N,E in which G(T ) = (N [T ], T ) for all T ∈ 2E .

A network communication game combines a communication situation v ∈ CSN
N,E and a

network control structure G ∈ NCSP
N,E into a transferable utility game with player set P in

which the worth of a coalition of controllers is measured by the sum of the worths of the
components of players of the part of the network which the members control together. To
avoid confusion with the transferable utility game underlying its corresponding communica-
tion situation, we use the term ’reward’ to refer to ’worth’ of a coalition of controllers in a
network communication game.

Definition 3.2 (Network Communication Game).
Let v ∈ CSN

N,E be a communication situation and let G ∈ NCSP
N,E be a network control

structure. In the corresponding network communication game rvG ∈ TUP the reward of each
coalition of controllers Q ∈ 2P is given by

rvG(Q) =
∑

C∈K(G(Q))

v(C). (9)
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The network communication game corresponding to the communication situation v ∈
CSN

N,E and the network control structure G ∈ NCSN
N,E with G(S) = (S,E[S]) for all S ∈ 2N

coincides with the vertex game (cf. Myerson (1977)) for which we can write the reward of
each coalition of vertices S ∈ 2N as

rvG(S)
(9)
=

∑
C∈K(G(S))

v(C) =
∑

C∈K(S,E[S])

v(C)
(5)
= rvE(S).

The network communication game corresponding to the communication situation v ∈
CSN

N,E and the network control structure G ∈ NCSE
N,E with G(T ) = (N [T ], T ) for all T ∈ 2E

coincides with the edge game (cf. Borm et al. (1992)) for which we can write the reward of
each coalition of edges T ∈ 2E as

rvG(T )
(9)
=

∑
C∈K(G(T ))

v(C) =
∑

C∈K(N [T ],T )

v(C)
(7)
= rvN (T ).

In this paper we study the decomposition of network communication games into unanim-
ity games. We focus on the relation between the decomposition of a network communication
game and the decomposition of the transferable utility game underlying its corresponding
communication situation. It turns out that a communication situation with an underly-
ing unanimity game corresponds to a simple network communication game for any network
control structure.

Lemma 3.1.
Let G ∈ NCSP

N,E and let R ∈ 2N \ {∅}. Then ruR

G ∈ SIP . Moreover,

M (ruR

G ) =
{
Q ∈ 2P | ∃C∈K(G(Q)) : R ⊆ C,∀Q′⊂Q∀C∈K(G(Q′)) : R * C

}
. (10)

Proof. Using that for any coalition of controllers Q ∈ 2P there is at most one component
C ∈ K(G(Q)) for which R ⊆ C, we can write for each Q ∈ 2P

ruR

G (Q)
(9)
=

∑
C∈K(G(Q))

uR(C) = |{C ∈ K(G(Q)) | R ⊆ C}|

=

{
1 if ∃C∈K(G(Q)) : R ⊆ C;

0 if ∀C∈K(G(Q)) : R * C
=

{
1 if G(Q) connects R;

0 if G(Q) does not connect R.
(11)

Since (N,E) is connected, G(P ) = (N,E) connects R, so ruR

G (P ) = 1. If G(Q) ∈ 2N × 2E

connects R for some Q ∈ 2P , then G(Q′) ⊇ G(Q) connects R for all Q′ ∈ 2P for which
Q ⊆ Q′, so ruR

G (Q) ≤ ruR

G (Q′) for all Q,Q′ ∈ 2P for which Q ⊆ Q′. This means that
ruR

G (Q) ∈ {0, 1} for all Q ∈ 2P , ruR

G (P ) = 1 and ruR

G (Q) ≤ ruR

G (Q′) for all Q,Q′ ∈ 2P

for which Q ⊆ Q′. Hence, ruR

G ∈ SIP . Moreover, equation (10) is a direct consequence of
equation (1) and equation (11).

The set of minimal winning coalitions in the vertex game ruR

E ∈ SIN with R ∈ 2N \{∅} is
given byM(ruR

E ) = VR
E , the set of coalitions of vertices which induce a minimal R-connecting

vertex-induced subgraph. The set of minimal winning coalitions in the edge game ruR

N ∈ SIE

with R ∈ 2N , |R| ≥ 2 is given by M(ruR

N ) = T R
N , the set of coalitions of edges which induce

a minimal R-connecting tree.
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Lemma 3.2.
Let v ∈ SIN . Then

v =
∑

B⊆M(v):B6=∅

(−1)|B|+1u(
⋃

R∈B R). (12)

Moreover, for each S ∈ 2N \ {∅} we have

∆v(S) =
∑

B⊆M(v):
⋃

R∈B R=S

(−1)|B|+1. (13)

Proof. Since equation (13) is a direct consequence of equation (12), it suffices to show equa-
tion (12). We first show that for each R′ ∈ 2N \ {∅} we have

min{v, uR′} =
∑

R∈2N\{∅}

∆v(R)uR∪R′ . (14)

We know v =
∑

R∈2N\{∅}∆v(R)uR. Let S ∈ 2N . Then v(S) ∈ {0, 1}. Let R′ ∈ 2N \{∅} and

suppose we have R′ 6⊆ S. Then we have uR′(S) = 0 and R ∪ R′ 6⊆ S for any R ∈ 2N \ {∅},
which implies that uR∪R′(S) = 0 for any R ∈ 2N \ {∅}. Consequently,

min{v, uR′}(S) = min{v(S), uR′(S)} = min{v(S), 0} = 0 =
∑

R∈2N\{∅}

∆v(R)uR∪R′(S).

Next suppose we have R′ ⊆ S. Then we have uR′(S) = 1, and R ∪ R′ ⊆ S if and only if
R ⊆ S for any R ∈ 2N \ {∅}, which implies that uR∪R′(S) = uR(S) for any R ∈ 2N \ {∅}.
Consequently,

min{v, uR′}(S) = min{v(S), uR′(S)} = min{v(S), 1} = v(S)

=
∑

R∈2N\{∅}

∆v(R)uR(S) =
∑

R∈2N\{∅}

∆v(R)uR∪R′(S).

Hence, equation (14) applies.

Next, we prove equation (12) by induction on |M(v)|. Suppose we have |M(v)| = 1 and
denote M(v) = {R1}. Then we can write

v = max{uR | R ∈M(v)} = max{uR1
} = uR1

=
∑

B⊆M(v):B6=∅

(−1)|B|+1u(
⋃

R∈B R).

Let n ∈ N and assume that for any simple game v′ ∈ SIN for which |M(v′)| = n we
have v′ =

∑
B⊆M(v′):B6=∅(−1)|B|+1u(

⋃
R∈B R). Suppose we have |M(v)| = n + 1. Denote

M(v) = {R1, . . . , Rn+1}.

7



Then we can write

v = max{uR | R ∈M(v)}
= max{uR1

, . . . , uRn+1
}

= max{max{uR1
, . . . , uRn

}, uRn+1
}

= max{uR1
, . . . , uRn

}+ uRn+1
−min{max{uR1

, . . . , uRn
}, uRn+1

}
(14)
=

∑
B⊆{R1,...,Rn}:B6=∅

(−1)|B|+1u(
⋃

R∈B R) + uRn+1
−

∑
B⊆{R1,...,Rn}:B6=∅

(−1)|B|+1u(
⋃

R∈B R)∪Rn+1

=
∑

B⊆{R1,...,Rn+1}:B6=∅

(−1)|B|+1u(
⋃

R∈B R)

=
∑

B⊆M(v):B6=∅

(−1)|B|+1u(
⋃

R∈B R).

Example 1.
Let N = {1, 2, 3}, let E =

{
{1, 2}, {1, 3}, {2, 3}

}
and consider the communication situation

u{1,2} ∈ CSN
N,E . The graph (N,E) is depicted below.

1 2

3

The set of coalitions of vertices which induce a minimal {1, 2}-connecting vertex-induced

subgraph is given by V{1,2}E =
{
{1, 2}

}
. Using M(r

u{1,2}
E ) = V{1,2}E , we know from Lemma

3.2 that
r
u{1,2}
E = u{1,2}.

The set of coalitions of edges which induce a minimal {1, 2}-connecting tree is given by

T {1,2}N =
{{
{1, 2}

}
,
{
{1, 3}, {2, 3}

}}
. Using M(r

u{1,2}
N ) = T {1,2}N , we know from Lemma 3.2

that
r
u{1,2}
N = u{{1,2}} + u{{1,3},{2,3}} − u{{1,2},{1,3},{2,3}}.

4

The dividends in general network communication games can be derived from the divi-
dends in the underlying transferable utility game and the dividends in network communica-
tion games with an underlying unanimity game.

Lemma 3.3.
Let v ∈ CSN

N,E, let G ∈ NCSP
N,E and let Q ∈ 2P \ {∅}. Then

∆rvG(Q) =
∑

R∈2N\{∅}

∆v(R)∆r
uR
G (Q). (15)

8



Proof. We can write

∆rvG(Q)
(3)
=
∑

Q′⊆Q

(−1)|Q|−|Q
′|rvG(Q′)

(9)
=
∑

Q′⊆Q

(−1)|Q|−|Q
′|

∑
C∈K(G(Q′))

v(C)

(2)
=
∑

Q′⊆Q

(−1)|Q|−|Q
′|

∑
C∈K(G(Q′))

 ∑
R∈2N\{∅}

∆v(R)uR(C)


=

∑
R∈2N\{∅}

∆v(R)
∑

Q′⊆Q

(−1)|Q|−|Q
′|

∑
C∈K(G(Q′))

uR(C)

(9)
=

∑
R∈2N\{∅}

∆v(R)
∑

Q′⊆Q

(−1)|Q|−|Q
′|ruR

G (Q′)

(3)
=

∑
R∈2N\{∅}

∆v(R)∆r
uR
G (Q).

Using Lemma 3.3 we can extend the results for the decomposition of network communi-
cation games with an underlying unanimity game to the decomposition of general network
communication games.

Theorem 3.4 (Decomposition of Network Communication Game).
Let v ∈ CSN

N,E be a communication situation and let G ∈ NCSP
N,E be a network control

structure. Then

rvG =
∑

R∈2N\{∅}

∆v(R)
∑

B⊆M(r
uR
G ):B6=∅

(−1)|B|+1u(
⋃

Q∈B Q).

Proof. From Lemma 3.1 we know ruR

G ∈ SIP for any R ∈ 2N \ {∅}. Using Lemma 3.2 and
Lemma 3.3 we can write

rvG
(2)
=

∑
Q∈2P \{∅}

∆rvG(Q)uQ

(15)
=

∑
Q∈2P \{∅}

 ∑
R∈2N\{∅}

∆v(R)∆r
uR
G (Q)uQ


=

∑
R∈2N\{∅}

∆v(R)
∑

Q∈2P \{∅}

∆r
uR
G (Q)uQ

(2)
=

∑
R∈2N\{∅}

∆v(R)ruR

G

(12)
=

∑
R∈2N\{∅}

∆v(R)
∑

B⊆M(r
uR
G ):B6=∅

(−1)|B|+1u(
⋃

Q∈B Q).

9



Using Theorem 3.4 we find the decomposition into unanimity games of vertex games
and edge games in terms of the dividends of the transferable utility game underlying the
corresponding communication situation.

Corollary 3.5.
Let v ∈ CSN

N,E. Then

rvE =
∑

R∈2N\{∅}

∆v(R)
∑

B⊆VR
E :B6=∅

(−1)|B|+1u(
⋃

S∈B S)

and rvN =
∑

R∈2N\{∅}

∆v(R)
∑

B⊆T R
N :B6=∅

(−1)|B|+1u(
⋃

T∈B T ).

Using Lemma 3.3 we can also derive an explicit formula for the Shapley value (cf. Shapley
(1953)) of any network communication game.

Theorem 3.6 (Shapley Value of Network Communication Game).
Let v ∈ CSN

N,E be a communication situation, let G ∈ NCSP
N,E be a network control structure

and let i ∈ P be a controller. Then

Φi(r
v
G) =

∑
Q∈2P :i∈Q

1

|Q|
∑

R∈2N\{∅}

∆v(R)
∑

B⊆M(r
uR
G ):

⋃
Q′∈B Q′=Q

(−1)|B|+1.

Proof. From Lemma 3.1 we know ruR

G ∈ SIP for any R ∈ 2N \ {∅}. Using Lemma 3.2 and
Lemma 3.3 we can write

Φi(r
v
G)

(4)
=

∑
Q∈2P :i∈Q

1

|Q|
∆rvG(Q)

(15)
=

∑
Q∈2P :i∈Q

1

|Q|
∑

R∈2N\{∅}

∆v(R)∆r
uR
G (Q)

(13)
=

∑
Q∈2P :i∈Q

1

|Q|
∑

R∈2N\{∅}

∆v(R)
∑

B⊆M(r
uR
G ):

⋃
Q′∈B Q′=Q

(−1)|B|+1.

Using Theorem 3.6 we find new characterizations of the Myerson value (cf. Myerson
(1977)) and the position value (cf. Borm et al. (1992)) in terms of the dividends of the
transferable utility game underlying the corresponding communication situation.

Corollary 3.7.
Let v ∈ CSN

N,E and let i ∈ N . Then

µi(v) =
∑

S∈2N :i∈S

1

|S|
∑

R∈2N\{∅}

∆v(R)
∑

B⊆VR
E :

⋃
S′∈B S′=S

(−1)|B|+1

and πi(v) =
1

2

∑
e∈Ei

∑
T∈2E :e∈T

1

|T |
∑

R∈2N\{∅}

∆v(R)
∑

B⊆T R
N :

⋃
T ′∈B T ′=T

(−1)|B|+1.
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4 Tree Communication Networks

In this section we discuss the decomposition theory of vertex games (cf. Myerson (1977))
and edge games (cf. Borm et al. (1992)) as presented in Section 3 for the special case that
the undirected graph (N,E) is a tree. Note that a tree (N,E) contains a unique minimal
R-connecting vertex-induced subgraph, i.e. |VR

E | = 1, for any R ∈ 2N \ {∅}. Moreover,
(N,E) is a tree if and only if it contains a unique minimal R-connecting tree, i.e. |T R

N | = 1,
for each R ∈ 2N with |R| ≥ 2. These unique minimal R-connecting vertex-induced subgraph
and unique minimal R-connecting tree coincide, i.e. for any R ∈ 2N , |R| ≥ 2 we have
(S,E[S]) = (N [T ], T ) for S ∈ VR

E and T ∈ T R
N . If (N,E) is a tree, let TR

N ∈ 2E \ {∅}
denote for any R ∈ 2N with |R| ≥ 2 the unique set of edges such that T R

N = {TR
N } and

VR
E = {N [TR

N ]}.

If the underlying network is a tree, any vertex game or edge game for which a unanimity
game underlies its corresponding communication situation is a unanimity game too. If (N,E)
is a tree, we know from Lemma 3.2 that ruR

E = uN [TR
N ] and ruR

N = uTR
N

for any R ∈ 2N with

|R| ≥ 2. Combining these observations with Lemma 3.3 we find the following relations.

Corollary 4.1.
Let v ∈ CSN

N,E. If (N,E) is a tree, then

∆rvE (S) =
∑

R∈2N\{∅}:N [TR
N ]=S

∆v(R) for all S ∈ 2N \ {∅}

and ∆rvN (T ) =
∑

R∈2N\{∅}:TR
N=T

∆v(R) for all T ∈ 2E \ {∅}.

Corollary 4.1 offers results which were also found by Owen (1986) and Borm et al. (1992).
The following results are derived from Corollary 3.5 and Corollary 3.7, respectively.

Corollary 4.2.
Let v ∈ CSN

N,E. If (N,E) is a tree, then

rvE =
∑

R∈2N\{∅}

∆v(R)uN [TR
N ]

and rvN =
∑

R∈2N\{∅}

∆v(R)uTR
N
.

Corollary 4.3.
Let v ∈ CSN

N,E and let i ∈ N . If (N,E) is a tree, then

µi(v) =
∑

R∈2N\{∅}:i∈N [TR
N ]

1

|N [TR
N ]|

∆v(R)

and πi(v) =
∑
e∈Ei

∑
R∈2N\{∅}:e∈TR

N

1

2|TR
N |

∆v(R).

11



Example 2.
Let N = {1, 2, 3, 4, 5} and let E =

{
{1, 2}, {2, 3}, {3, 4}, {3, 5}

}
. The graph (N,E) is de-

picted below.

1 2 3 4

5

Let v ∈ CSN
N,E be the communication situation in which

v = u{1,3} + 2u{1,2,3} + 2u{1,4,5} + 4u{2,3,4,5} + 3u{1,2,3,4,5}.

Using Corollary 4.2 we can write the corresponding vertex game as

rvE = u{1,2,3} + 2u{1,2,3} + 2u{1,2,3,4,5} + 4u{2,3,4,5} + 3u{1,2,3,4,5}

= 3u{1,2,3} + 4u{2,3,4,5} + 5u{1,2,3,4,5}

and we can write the corresponding edge game as

rvN = u{{1,2},{2,3}} + 2u{{1,2},{2,3}} + 2u{{1,2},{2,3},{3,4},{3,5}} + 4u{{2,3},{3,4},{3,5}}

+ 3u{{1,2},{2,3},{3,4},{3,5}}

= 3u{{1,2},{2,3}} + 4u{{2,3},{3,4},{3,5}} + 5u{{1,2},{2,3},{3,4},{3,5}}.

Using Corollary 4.3 we can derive the Myerson value and the position value.

µ(v) = (1 + 1, 1 + 1 + 1, 1 + 1 + 1, 1 + 1, 1 + 1) = (2, 3, 3, 2, 2)

π(v) =

(
3

4
+

5

8
,

3

2
+

4

6
+

5

4
,

3

4
+

4

2
+

15

8
,

4

6
+

5

8
,

4

6
+

5

8

)
=

(
1

9

24
, 3

10

24
, 4

15

24
, 1

7

24
, 1

7

24

)
4

Network control structures provide a framework to introduce a new, third type of com-
munication game in which the existing vertex game and edge game are combined. Instead of
regarding either the vertices or the edges of the graph as controllers of the network, one could
consider each vertex and each edge as a controller of itself, i.e. P = N∪E. For an undirected
graph (N,E) this can be described by the network control structure G ∈ NCSN∪E

N,E in which

G(Z) = (Z ∩N,Z ∩E) for all Z ∈ 2N∪E . For any communication situation v ∈ CSN
N,E , the

vertex-edge game rv ∈ TUN∪E is the corresponding network communication game in which
the reward of each coalition of vertices and edges Z ∈ 2N∪E is given by

rv(Z) = rvG(Z)
(9)
=

∑
C∈K(G(Z))

v(C) =
∑

C∈K(Z∩N,Z∩E)

v(C).

The corresponding value ψ : CSN
N,E → RN is for all v ∈ CSN

N,E and all i ∈ N defined by

ψi(v) = Φi(r
v) +

1

2

∑
e∈Ei

Φe(r
v). (16)

12



The set of minimal winning coalitions in the vertex-edge game ruR ∈ SIN∪E with R ∈ 2N ,
|R| ≥ 2 is given by {N [T ] ∪ T | T ∈ T R

N }, the set of coalitions of vertices and edges which
induce a minimal R-connecting tree. If (N,E) is a tree, we know from Lemma 3.2 that
ruR = uN [TR

N ]∪TR
N

for any R ∈ 2N with |R| ≥ 2. Using this observation we derive that the
value ψ of a communication situation with an underlying unanimity game is a specific convex
combination of the Myerson value µ and the position value π if the graph is a tree.

Theorem 4.4.
Let R ∈ 2N with |R| ≥ 2. If (N,E) is a tree, then

ψ(uR) =
|TR

N |+ 1

2|TR
N |+ 1

µ(uR) +
|TR

N |
2|TR

N |+ 1
π(uR).

Proof. Let i ∈ N and assume (N,E) is a tree. If i /∈ N [TR
N ], then e /∈ TR

N for all e ∈ Ei, so
ψi(uR) = µi(uR) = πi(uR) = 0 and the statement follows. Now suppose i ∈ N [TR

N ]. Note
that |N [TR

N ]| = |TR
N |+ 1. Then we can write

ψi(uR)
(16)
= Φi(r

uR) +
1

2

∑
e∈Ei

Φe(r
uR)

(4)
=

∑
Z∈2N∪E :i∈Z

1

|Z|
∆ruR

(Z) +
1

2

∑
e∈Ei

∑
Z∈2N∪E :e∈Z

1

|Z|
∆ruR

(Z)

=
1

|N [TR
N ] ∪ TR

N |
+

1

2

∑
e∈Ei∩TR

N

1

|N [TR
N ] ∪ TR

N |

=
1

2|TR
N |+ 1

+
1

2

∑
e∈Ei∩TR

N

1

2|TR
N |+ 1

=
|TR

N |+ 1

2|TR
N |+ 1

(
1

|N [TR
N ]|

)
+

|TR
N |

4|TR
N |+ 2

∑
e∈Ei∩TR

N

1

|TR
N |

=
|TR

N |+ 1

2|TR
N |+ 1

∑
S∈2N :i∈S

1

|S|
∆r

uR
E (S) +

|TR
N |

4|TR
N |+ 2

∑
e∈Ei

∑
T∈2E :e∈T

1

|T |
∆r

uR
N (T )

(4)
=
|TR

N |+ 1

2|TR
N |+ 1

Φi(r
uR

E ) +
|TR

N |
2|TR

N |+ 1

(
1

2

∑
e∈Ei

Φe(r
uR

N )

)
(6)&(8)

=
|TR

N |+ 1

2|TR
N |+ 1

µi(uR) +
|TR

N |
2|TR

N |+ 1
πi(uR).

Example 3.
Let N = {1, 2, 3, 4, 5} and let E =

{
{1, 2}, {2, 3}, {3, 4}, {3, 5}

}
as in Example 2. Consider

the communication situation u{1,5} ∈ CSN
N,E . We have T

{1,5}
N =

{
{1, 2}, {2, 3}, {3, 5}

}
. Then

the vertex game, the edge game and the vertex-edge game are given by

r
u{1,5}
E = u{1,2,3,5},

r
u{1,5}
N = u{{1,2},{2,3},{3,5}}

and ru{1,5} = u{1,2,3,5,{1,2},{2,3},{3,5}},

13



respectively. From the first two expressions it readily follows that the Myerson value and
the position value are given by

µ(u{1,5}) =

(
1

4
,

1

4
,

1

4
, 0,

1

4

)
and π(u{1,5}) =

(
1

6
,

2

6
,

2

6
, 0,

1

6

)
.

From Theorem 4.4 we know that

ψ(u{1,5}) =
4

7

(
1

4
,

1

4
,

1

4
, 0,

1

4

)
+

3

7

(
1

6
,

2

6
,

2

6
, 0,

1

6

)
=

(
3

14
,

4

14
,

4

14
, 0,

3

14

)
.

4

The following example illustrates that the value ψ is not necessarily a convex combination
of the Myerson value µ and the position value π if the underlying network is not a tree.

Example 4.
Let N = {1, 2, 3, 4}, let E =

{
{1, 2}, {1, 3}, {2, 4}, {3, 4}

}
and consider the communication

situation u{1,2,3} ∈ CSN
N,E . The graph (N,E) is depicted below.

1 2

3 4

Since

V{1,2,3}E =
{
{1, 2, 3}

}
and T {1,2,3}N =

{{
{1, 2}, {1, 3}

}
,
{
{1, 2}, {2, 4}, {3, 4}

}
,
{
{1, 3}, {2, 4}, {3, 4}

}}
,

the vertex game, the edge game and the vertex-edge game are given by

r
u{1,2,3}
E = u{1,2,3},

r
u{1,2,3}
N = u{{1,2},{1,3}} + u{{1,2},{2,4},{3,4}} + u{{1,3},{2,4},{3,4}}

− 2u{{1,2},{1,3},{2,4},{3,4}}

and ru{1,2,3} = u{1,2,3,{1,2},{1,3}} + u{1,2,3,4,{1,2},{2,4},{3,4}} + u{1,2,3,4,{1,3},{2,4},{3,4}}

− 2u{1,2,3,4,{1,2},{1,3},{2,4},{3,4}},

respectively. Consequently,

µ(u{1,2,3}) =

(
1

3
,

1

3
,

1

3
, 0

)
,

π(u{1,2,3}) =

(
3

12
,

4

12
,

3

12
,

2

12

)
,

ψ(u{1,2,3}) =

(
21

70
,

23

70
,

21

70
,

5

70

)
,

and ψ(u{1,2,3}) is not a convex combination of µ(u{1,2,3}) and π(u{1,2,3}). 4
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5 Concluding Remarks

We conclude this paper with two examples of possible extensions of the decomposition theory
studied in Section 3 to more general communication networks: undirected multigraphs and
hypergraphs. For convenience, we restrict ourselves in these examples to an outline of the
edge game and the corresponding position value.

Example 5.
Let {1, 2, 3} be the set of vertices and let {a, b, c, d} be the set of edges of the multigraph
depicted below, and consider the communication situation with underlying game u{1,3}.

1 2 3a
b

c

d

The set of coalitions of edges which induce a minimal {1, 3}-connecting tree is given by{
{b, c}, {b, d}

}
. The corresponding edge game can then be written as u{b,c}+u{b,d}−u{b,c,d}.

The position value of this communication situation is given by ( 2
6 ,

3
6 ,

1
6 ). 4

Example 6.
Let {1, 2, 3, 4} be the set of vertices and let

{
{1, 2}, {2, 3}, {2, 3, 4}

}
be the set of (hyper)edges

of the hypergraph depicted below, and consider the communication situation with underlying
game u{1,3}.

1 2 3

4

The set of coalitions of edges which induce a minimal {1, 3}-connecting tree is given by{{
{1, 2}, {2, 3}

}
,
{
{1, 2}, {2, 3, 4}

}}
. The corresponding edge game can then be written as

u{{1,2},{2,3}}+u{{1,2},{2,3,4}}−u{{1,2},{2,3},{2,3,4}}. The position value of this communication

situation is given by ( 12
36 ,

17
36 ,

5
36 ,

2
36 ). 4

Future research could formalize these and other extensions of the decomposition theory
for network communication games studied in this paper to more general communication
networks with or without a specific type of network control structure.
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