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Chapter 1

Introduction

This dissertation aims to extend the academic literature on optimal consumption and

portfolio choice over the life cycle. In particular, we analyze optimal choice under

preference specifications that incorporate loss aversion, internal habit formation and

probability weighting. Furthermore, this dissertation formalizes and analyzes a new

pension contract, a so-called personal pension plan with risk sharing (PPR), that plays

a dominant role in recent policy reform discussions in the Netherlands. This dissertation

has implications for a wide variety of real world pension contracts. We analyze (dis)saving

and investing in not only the accumulation phase but also the decumulation (payout)

phase of defined contribution (DC) pension plans. This is highly relevant as many retirees

worry about the lack of guidance and regulation on how to draw-down accumulated

wealth in retirement. This dissertation is equally relevant to analyze reform options for

defined benefit (DB) pension plans. In many countries, employers are no longer able

or willing to absorb the (investment) risks of their pension plans. We analyze pension

plans (without external risk sponsors) that aim to retain key attractive features of DB

pension plans (such as stable lifelong income streams). Adequate design of consumption

and portfolio strategies, which is the central theme of this dissertation, is thus of great

importance to many workers and retirees around the world.

Part I

The classical workhorse model for the determination of an agent’s optimal consumption

and portfolio choice is the Merton model (Merton, 1969). This model advocates to

invest a constant fraction of total wealth into risk-bearing assets, and to consume at a

constant fraction of wealth. The Merton model implies life cycle investment of financial

wealth (net of human capital); see also Bodie, Merton, and Samuelson (1992). These

results are driven by strong simplifying assumptions about preferences, labor income,

1



Chapter 1: Introduction

and future investment opportunities. The first part of my dissertation (Chapters 2, 3

and 4) explores novel extensions of the classical Merton model. In particular, we focus

on deriving and studying optimal consumption and portfolio choice under alternative

preference specifications. To keep the analysis tractable and to isolate the effect of

preference specifications, we retain the assumptions of risk-free (tradable) labor income

(see, e.g., Cocco, Gomes, and Maenhout, 2005; Benzoni, Collin-Dufresne, and Goldstein,

2007, for extensions), and independent and normally distributed stock returns (see, e.g.,

Liu, 2007, for extensions). Figure 1.1 illustrates the central idea of the first part of my

dissertation: the analysis of optimal consumption and portfolio choice under alternative

preferences. By contrast, the second part of my dissertation (Chapters 5, 6 and 7)

abstains from explicit preference assumptions, and takes the consumption and portfolio

decisions as given.

Figure 1.1.

The first part of my dissertation focuses on deriving and studying optimal consumption and
portfolio decisions under alternative preference specifications.

Chapter 2 derives and analyzes the optimal consumption and portfolio choice of a loss

averse agent. His reference level, which divides consumption into gains and losses, is

endogenously updated over time. Loss aversion and reference dependence constitute

two key aspects of prospect theory (PT for short), developed by Tversky and Kahneman

(1992). While the PT literature typically considers an exogenous reference level, Chapter

2



Introduction

2 assumes that the current reference level is a function of past consumption choices,

reflecting internal habit formation.1 We find that, compared to the Merton model,

consumption is shifted from good to bad economic scenarios. As a result, the agent can

maintain consumption above the reference level in many economic scenarios; he only

consumes below the reference level when the economy is doing really bad. This finding

is due to loss aversion, and triggers a demand for “guarantee like” features in pension

products. We also find that consumption adjusts gradually (and not directly as in the

Merton consumption strategy) to unexpected financial shocks. This finding is due to

endogenous updating of the reference level, and justifies a mechanism for smoothing the

change in consumption due to financial shocks. The fraction of total wealth invested

in risk-bearing assets is low in economic scenarios where consumption is close to the

reference level. Indeed, the coefficient of relative risk aversion increases as consumption

approaches the reference level. As is well-known, under the Merton model, the individual

invests a constant (age independent) fraction of wealth into risk-bearing assets. Chapter

2 shows that the endogenous reference specification triggers life cycle investing, not only

in the accumulation phase but also in the decumulation phase (i.e., life cycle investment

of not only financial wealth but also total wealth). Intuitively, households with a shorter

investment horizon are less flexible in absorbing financial shocks. Hence, older households

take less investment risk and thus own smaller investment portfolios. Furthermore,

our model is consistent with two stylized facts about consumption data: hump-shaped

consumption profiles, and excess smoothness and sensitivity in consumption.

The third key aspect of PT is probability weighting. Chapter 3 analyzes the impact of

probability weighting on the agent’s optimal consumption and investment decisions. This

chapter – which extends Chapter 2 – explores a dynamic consumption and investment

choice problem featuring loss aversion, endogenous updating of the reference level, as

well as probability weighting. We show that an inverse S-shaped probability weighting

function is able to generate an endogenous floor on consumption (i.e., a “hard” guarantee

rather than a “soft” guarantee as in Chapter 2).

1Our preference model implies that the elasticity of intertemporal substitution and the coefficient of
relative risk aversion are not constant (as assumed by the Merton model) but rather depend on age or
financial shocks. In particular, in the case of habit formation, the elasticity of intertemporal substitution
and the coefficient of relative risk aversion depend on the investment horizon and thus on age. With loss
aversion, the coefficient of relative risk aversion depends on financial shocks, giving rise to a dynamic
investment policy.

3
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In Chapter 4, we build a consumption and investment choice model that combines

the ratio model of (internal) habit formation with stochastic differential utility (i.e.,

continuous-time limit of recursive utility; see Duffie and Epstein, 1992). These two

utility models are particularly popular in the life cycle literature. We obtain closed-form

solutions by applying a linearization to the agent’s budget constraint. Our results

show that the agent gradually adjusts consumption to financial shocks. This justifies

a return smoothing mechanism. We are able to fully characterize (in terms of the

preference parameters) this return smoothing mechanism. The ratio model of habit

formation analyzed in this chapter differs from the additive model of habit formation

(analyzed in Chapters 2 and 3), in that relative risk aversion is constant. As a result, the

optimal investment strategy is state-independent, and thus easy to implement. This is

a clear advantage of the ratio model of habit formation over the additive model of habit

formation. While in the Merton model the coefficient of relative risk aversion and the

elasticity of intertemporal substitution are intimately related, this is not the case in the

model of Chapter 4.

Part II

The pension plans proposed by Bovenberg and Nijman (2015) promise to play a new

role in the provision of retirement income in the Netherlands.2 These pension plans,

which are called personal pension plans with risk pooling (PPRs), unbundle the various

functions of variable annuities. In particular, a PPR individualizes the (dis)savings and

investment functions of variable annuities, and arranges the insurance function (i.e.,

pooling of idiosyncratic longevity risk) collectively. A PPR defines property rights in

terms of a personal investment account, rather than in terms of payouts or annuity

units (as in variable annuities). Policyholders can adopt an investment approach or a

consumption approach to a PPR. The investment approach takes the investment policy,

the assumed rate of return (ARR) and the initial amount of capital as given. The

consumption stream is derived endogenously (i.e., volatility of consumption, growth rate

2At the time of completion of this dissertation, the Dutch government has proposed new regulation on
the decumulation of Dutch DC pension plans based on the PPR concept. Furthermore, the Dutch
government has announced to consider PPRs as a very important option for the reform of the current
Dutch DB pension plans (e.g., to overcome the conflicts of interest between policyholders and to clarify
property rights).
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of consumption and initial consumption). By contrast, the consumption approach takes

the consumption stream as given, and derives the investment policy, the ARR and the

initial amount of capital endogenously.

Chapter 5 explores the investment approach and the consumption approach in more

detail. This chapter also explores a collective defined contribution (CDC) and a collective

defined ambition (CDA) pension system. These collective pension systems define property

rights in terms of annuity units, rather than in terms of personal investment accounts.

A CDC and a CDA pension system feature one general investment account and thus

cannot tailor (dis)saving and investment policies to individual preferences and individual

investment beliefs. Furthermore, valuation of annuity units can be difficult as assets are

not assigned to individual policyholders. This may result in conflicts of interests between

policyholders. An advantage of a collective pension system is that non-traded risks (e.g.,

systematic longevity risk) can be shared between generations.

The pension plans considered in the second part of my dissertation can be classified

along two criteria: the definition of property rights (personal investment account versus

annuity units) and the framing of pension plans (investment frame versus consumption

frame). Figure 1.2 classifies the various sections of Chapters 5, 6 and 7 along these two

criteria. The horizontal axis shows the first criterium, while the vertical axis depicts the

second criterium.

The pension plan considered in Chapter 6 adopts a consumption frame and defines

property rights in terms of annuity units; see also Figure 1.2. In this chapter, we assume

that annuity units respond gradually to financial shocks.Gradual absorption of financial

shocks is consistent with internal habit formation (this is formally shown in Chapter 4).

This chapter values the annuity units in a market-consistent fashion. In particular, we

show that the market-consistent discount rate includes a risk premium that rises with

the horizon and that the optimal fraction of accumulated wealth invested in risk-bearing

assets decreases as the policyholder ages. Also, we show that gradual absorption of

financial shocks leads to predictable changes in annuity units.

Chapter 7 investigates the pricing and risk management of variable annuities. We

consider an economy with three risk factors: real interest rate risk, expected inflation risk

and stock market risk (Chapters 5 and 6 only consider stock market risk). This chapter

shows that the prices of variable real annuities can be less sensitive to the nominal

5
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Figure 1.2.

The figure classifies the sections of Chapters 5, 6 and 7 along two criteria: the definition of
property rights (horizontal axis) and the framing of pension plans (vertical axis). For example,
the pension plan considered in Chapter 6 adopts the consumption approach and defines property
rights in terms of annuity units.

interest rate than the prices of fixed nominal annuities. This finding is of key importance

to determine the optimal hedging of interest rate risk, and is driven by three factors.

First, the desired growth rate of the annuity payment may change with the interest rate

due to intertemporal substitution in consumption. Second, the desired growth rate of

the annuity payment increases with the expected inflation rate. Hence, the prices of real

annuities depend on the real rather than the nominal interest rate. In an incomplete

financial market in which expected inflation risk and real interest rate risk cannot be

hedged at the same time, insurers must trade-off hedging expected inflation risk against

hedging real interest rate risk. This reduces the nominal interest sensitivity of the annuity

factor, especially when fluctuations in the nominal interest rate are driven by changes in

the expected inflation rate rather than by changes in the real interest rate. Third, the

expected returns on risky securities tend to be less sensitive to the nominal interest rate

as compared to the returns on safe securities. Hence, the nominal interest sensitivity of

real annuities is relatively low if the policyholder takes speculative stock market risk.
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Chapter 2

Consumption and Portfolio Choice

under Loss Aversion and

Endogenous Updating of the

Reference Level3

This chapter explicitly derives the optimal dynamic consumption and portfolio choice of a

loss averse agent who endogenously updates his reference level. His optimal choice seeks

protection against consumption losses due to downside financial shocks. This induces a

(soft) guarantee on consumption and is due to loss aversion. Furthermore, his optimal

consumption choice gradually adjusts to financial shocks. This resembles the payout

streams of financial plans that respond sluggishly, smoothing investment returns to reduce

payout volatility, and is due to endogenous updating. The welfare losses associated with

various suboptimal consumption and portfolio strategies are also evaluated. They can be

substantial.

2.1. Introduction

The pension fund industry has grown dramatically over the past four decades: total

U.S. retirement assets rose from 369 billion dollars in 1974 to 23 trillion dollars in

2013 (Investment Company Institute, 2014). During the same period, we have seen

in particular a pronounced increase in retirement saving through personal retirement

accounts, such as IRAs and DC plans (Poterba, Venti, and Wise, 2009). More specifically,

the percentage of total U.S. retirement assets accounted for by IRAs and DC plans grew

3This chapter is co-authored with Roger Laeven and Theo Nijman.
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from about 18% in 1974 to about 54% in 2013 (Investment Company Institute, 2014).

These figures highlight the importance of adequate individual consumption, savings and

investment decisions over the life cycle, and of the design of such individual financial

plans.

Since the seminal works of Merton (1969, 1971) and Samuelson (1969), a considerable

number of authors have studied optimal consumption and portfolio choice over the life

cycle in a wide variety of settings. Standard life cycle models assume that preferences

are represented by expected utility with constant relative risk aversion (CRRA); see,

e.g., Wachter (2002), Cocco et al. (2005), Liu (2007), Gomes, Kotlikoff, and Viceira

(2008), to name just a few. With such standard preferences (and without constraints),

the optimal log consumption choice is a linear function of the log state price density (see,

e.g., Karatzas and Shreve, 1998, p. 103). Furthermore, under such standard preferences,

financial shocks are directly absorbed into the optimal log consumption choice: a CRRA

agent chooses to instantaneously adjust consumption to financial shocks.

These predictions of standard life cycle models stand in sharp contrast to actual

income streams generated by financial and insurance products. Financial fiduciaries

have developed a variety of features, options and guarantees so as to make base financial

products more attractive for individuals (see, e.g., Van Rooij, Kool, and Prast, 2007;

Antoĺın, Payet, Whitehouse, and Yermo, 2011; Bodie and Taqqu, 2011). These include

guaranteed minimum income benefits, guaranteed minimum withdrawal benefits and

minimum rate of return guarantees. In addition, many actively traded financial derivative

securities have a nonlinear payoff structure, and provide some degree of protection against

downside risk. The popularity of these products contradicts the linearity of the standard

consumption rule.

Also, a substantial body of literature (see, e.g., Sundaresan, 1989; Constantinides,

1990) argues that agents become accustomed to a certain level of consumption. This

strand of the literature suggests that agents evaluate and adjust consumption relative to

a reference (or a habit) level. The empirical literature (see, e.g., Lupton, 2003) provides

evidence of habit persistence in consumption, with consumption being smooth relative

to wealth. Moreover, financial fiduciaries (such as life insurers and pension funds)

increasingly offer plans with payout streams that are not directly but only sluggishly
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linked to the performance of the underlying investment portfolio.4 There have been

numerous attempts to reconcile theory and practice of life cycle consumption and portfolio

choice. However, to the best of our knowledge, the literature has not yet been able to

provide a fully satisfactory answer that accommodates these features — nonlinearity of

the consumption rule and smoothing of financial shocks — all together.

This chapter explores consumption and portfolio choice under reference-dependent

preferences. More specifically, we analyze optimal consumption and portfolio choice

under the utility (or value) function of prospect theory (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992) and adopt an endogenous updating mechanism for the

dynamics of the reference level.5 The consumption and portfolio choice model we consider

is able to generate both a nonlinear consumption rule and smoothing of financial shocks

in an integrated framework. The optimal choice seeks protection against consumption

losses due to financial shocks inducing a (“soft”) guarantee on consumption. Furthermore,

the optimal consumption choice exhibits sluggish response to financial shocks.

Following prospect theory, we assume that the agent’s instantaneous utility function

is represented by the two-part power utility function. This utility function incorporates

several behavioral properties, such as reference dependence (i.e., the carriers of utility

are gains and losses rather than absolute levels of consumption), loss aversion (i.e.,

losses hurt more than gains satisfy), and diminishing sensitivity (i.e., the impact of a

marginal change in consumption decreases as the agent moves further away from the

reference level).6,7 Diminishing sensitivity implies a convex utility function below the

reference level.8 The empirical literature is, however, inconclusive as to whether the

utility function is convex in the loss domain; see, e.g., Abdellaoui, Vossmann, and Weber

(2005).9 Therefore, the current chapter considers not only the case of a convex utility

4In many European countries, but also in the US and Japan, the importance of participating (or with
profits) annuities is growing (see, e.g., Guillén, Jørgensen, and Nielsen, 2006; Maurer, Mitchell, and
Rogalla, 2010). A key characteristic of participating annuities is that investment returns are smoothed
so as to reduce payout volatility. For example, in the Netherlands, pension funds are allowed to
gradually absorb financial shocks into pension entitlements. Also, life insurers use special smoothing
techniques in an attempt to stabilize payouts.

5We abstract away from probability weighting.
6Kőszegi and Rabin (2006, 2007) develop a class of reference-dependent preferences with endogenous
updating (and without probability weighting). See Section 2.4 for further details about the connection
between the class of Kőszegi and Rabin (2006, 2007) and our model.

7According to Wakker (2010, p. 242), “reference dependence, in combination with loss aversion, is one
of the most pronounced empirical phenomena in decision under risk and uncertainty.”

8We note that, in our context, a convex utility function implies risk-seeking behavior.
9Etchart-Vincent (2004) investigated the sensitivity of the utility function to the magnitude of the
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function in the loss domain, but also the case of a concave utility function in the loss

domain.10

Our main results can be summarized as follows. First, we demonstrate that the

agent optimally chooses to divide the states of the economy into two categories: insured

states (i.e., good to intermediate economic scenarios or, equivalently, low to intermediate

state prices) and uninsured states (i.e., bad economic scenarios or high state prices). In

insured states, consumption is guaranteed to be larger than the reference level, while

in uninsured states, consumption is smaller than the reference level. If consumption is

larger (smaller) than the reference level, then the agent experiences a gain (loss). Because

of loss aversion, the agent has a strong preference to maintain consumption above the

reference level, but when the state of the economy is really bad, the (soft) guarantee on

consumption can no longer be maintained. More specifically, the optimal consumption

profile (i.e., the optimal consumption choice as a function of the log state price density)

displays a 90◦ rotated S-shaped pattern.11 We show that when the agent becomes more

afraid of incurring losses, the probability of consumption falling below the reference level

decreases. At the same time, the agent must give up some upward potential in order to

finance this more conservative consumption profile.

Second, under our preference assumptions, the optimal consumption choice gradually

adjusts to financial shocks. Kahneman and Tversky (1979) argue that the status quo, an

expectation or an aspiration level can serve as a reference level, but do not specify how the

reference level is formed and updated over time. Following the internal habit formation

literature (see, e.g., Constantinides, 1990), we assume that the reference level depends

on the agent’s own past consumption choices. More specifically, we assume that the

reference level can be decomposed into two components: a stochastic and a deterministic

component.12 The stochastic component is given by an exponentially weighted average

underlying payoffs. She found that a larger proportion of the subjects exhibited concavity when facing
large losses than when facing small losses.

10The literature also provides some support for the idea that agents exhibit an inverted S-shaped utility
function in the loss domain. For example, Laughhunn, Payne, and Crum (1980) found that a large
proportion of the subjects (64%) switched from risk-seeking to risk-averse behavior when facing ruinous
losses.

11The exact behavior of the agent below the reference level depends on the shape of utility function in
the loss domain.

12The reference level is characterized by three parameters: the initial reference level, an endogeneity
parameter (which measures the degree of endogeneity) and a deprecation parameter (which measures
the rate at which the agent depreciates the reference level).
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of the agent’s own past consumption choices. The specification of the reference level is

motivated by the idea that agents become accustomed to a certain level of consumption.

A main implication of the consumption and portfolio choice model we consider is that

after a financial shock, optimal consumption adjustment is sluggish (at least in the short

run). That is, a current financial shock has a larger impact on consumption in the

distant future than on consumption in the near future. Part of the financial shock will

be directly reflected into gains and losses, another part will smoothly enter through the

reference level, which is endogenously updated over time.

Third, the optimal portfolio profile displays a U-shaped pattern: the total dollar

amount invested in risk-bearing assets will be lower in intermediate economic scenarios

than in good or bad economic scenarios. As a by-product of interest in its own right, the

agent implements a life cycle investment strategy, even without taking human capital

into account.13 Since the agent has less time to absorb financial shocks as he grows older,

the equity risk exposure, on average, decreases over the life cycle.

Finally, to investigate the impact of implementing suboptimal consumption and

portfolio strategies on the agent’s welfare, we conduct a welfare analysis. We compute

the welfare losses (in terms of the relative decline in certainty equivalent consumption)

associated with implementing suboptimal consumption and portfolio strategies. Because

of the endogeneity of the reference level, this requires a non-standard computation

of certainty equivalents. The results indicate that welfare losses can be substantial.

Particularly, for our realistic parameter values, we find that the welfare loss associated

with implementing the classical Merton strategy (see Merton, 1969) can be as large

as 40%. We also compute the welfare losses of suboptimal behavior due to incorrect

assumptions on the underlying agent’s preference parameters. We find that consumption

and portfolio strategies based on incorrectly assuming a constant exogenous reference

level (or only a very limited degree of endogeneity), thus implying no (or only very

limited) smoothing of financial shocks, substantially reduce welfare.

In order to solve the consumption and portfolio choice model, we first apply the

13Under CRRA utility, the agent has a constant equity risk exposure if the investment opportunity set
is assumed to be constant. Bodie et al. (1992) give a justification for adopting a life cycle investment
strategy based on human capital considerations. If human capital is risk-free, then agents implicitly
hold a risk-free asset. To offset this implicit risk-free asset holding, financial wealth should be tilted
toward risky assets. As the share of human capital in total wealth decreases from one to zero during
the working period, the optimal proportion of financial wealth invested in risk-free assets increases
over the life cycle.
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solution technique of Schroder and Skiadas (2002). This method enables us to convert

the consumption and portfolio choice model with endogenous updating into a dual

consumption and portfolio choice model without endogenous updating. The dual utility

function is time-additive and separable. This fact facilitates the derivation of the optimal

consumption and portfolio choice. Next, we solve the dual problem by using convex

duality (or martingale) techniques, and by using techniques proposed by Basak and

Shapiro (2001) and Berkelaar, Kouwenberg, and Post (2004) in order to deal with

pseudo-concavity and non-differentiability aspects of the problem. We adapt the latter

techniques to our setting with intertemporal consumption. Upon transforming our

solutions under the dual model back into the primal model, we finally arrive at explicit

closed-form solutions to our initial problem under consideration.

The remainder of this chapter is structured as follows. Section 2.2 provides a literature

review. The economy is described in Section 2.3. The agent’s instantaneous utility

function is introduced in Section 2.4. Section 2.5 derives the optimal consumption and

portfolio choice. The properties of the optimal strategies are explored in Section 2.6.

Section 2.7 considers, as a robustness check, the optimal consumption and portfolio choice

under a slightly alternative specification of the agent’s instantaneous utility function.

Finally, Section 2.8 concludes the chapter. The proofs of the theorems and propositions

and the details of the certainty equivalent computations are relegated to the Appendix.

2.2. Literature Review

In this chapter, we extend the existing life cycle literature by analyzing an alternative

preference specification that embeds two key aspects of prospect theory (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1992) – loss aversion and reference dependence –

in a continuous-time framework.14 To isolate the effect of preferences, we assume risk-free

(tradable) labor income (see, e.g., Cocco et al., 2005; Benzoni et al., 2007; Lynch and

Tan, 2011, for extensions), and independent and normally distributed stock returns (see,

e.g., Liu, 2007; Buraschi, Porchia, and Trojani, 2010, for extensions). In an extension

14Prospect theory has been actively studied in the finance literature to explain the equity premium
puzzle (Benartzi and Thaler, 1995), the cross section of average returns (Barberis and Huang, 2008),
and the deposition effect (Barberis and Xiong, 2009).
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of our model, we also explore the implications of probability weighting as a third key

aspect of prospect theory (see Chapter 3).

The literature on optimal consumption and portfolio choice under prospect theory

type preferences is scarce. Berkelaar et al. (2004) examine analytically optimal portfolio

choice under the two-part power utility function. Their model differs from ours in at

least two main respects. First and foremost, we assume that the agent is concerned not

with terminal wealth, but with intertemporal consumption. This allows us to examine

how the agent’s consumption strategy evolves as time proceeds and risk resolves, which

is our prime focus. Second, in this setting with intertemporal consumption, we allow

the agent to not just stochastically but also endogenously update his reference (or habit)

level of consumption over time. Guasoni, Huberman, and Ren (2014) explore the optimal

consumption (or spending) and portfolio choice of a short fall averse agent. This paper

considers a multiplicative habit formation model in which, in contrast to the traditional

approach of Abel (1990), the habit level (or reference level) equals past peak spending.

By contrast, we assume that the agent’s preferences are characterized by the two-part

power utility function, and that the reference level is equal to a weighted average of

past consumption choices. Jin and Zhou (2008) and He and Zhou (2011, 2014) consider

optimal portfolio choice under prospect theory. They focus on the impact of probability

weighting on optimal portfolio (not consumption) choice, developing an analytic solution

method based on a quantile formulation. They do not consider endogenous updating of

the reference level. Our model specification has the attractive feature that it allows to

analyze both separately and jointly the effects on consumption and portfolio choice of loss

aversion and of endogenous updating of the reference level, which are controlled in the

model by separate parameters. Furthermore, our model nests traditional models, such as

models with internal habit formation, with an exogenous minimum level of consumption,

and with CRRA utility, as special (limiting) cases.

Our first finding is that loss aversion, entailing that negative changes in consumption

are perceived more severely than equivalent positive changes in consumption, triggers a

demand for “guarantee like” features in the consumption profile that we also encounter

in many real life financial plans. This finding is consistent with the related strand of

the literature on regret aversion, driven by fears of unfavorable outcomes, initiated by

Bell (1982) and Loomes and Sugden (1982). For example, Muermann, Mitchell, and
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Volkman (2006) show, in a static portfolio choice problem, that regret aversion has a

positive impact on the willingness to pay for a rate of return guarantee on the risky

asset; see also Merton and Bodie (2005). Different from the above mentioned papers,

our paper generates this implication in a dynamic consumption-portfolio choice setting

in which guarantees take the form of a stable consumption profile at (typically) or above

(in good states of the world) the reference level of consumption, rather than, e.g., a rate

of return guarantee. Only in very bad states of the world, consumption falls below the

reference level. Traditional life cycle models (see, e.g., Merton, 1969) cannot explain the

demand for “guarantee like” features in the consumption profile.

We combine our model of loss aversion with an endogenous reference level that is

a arithmetic function of past consumption choices (Constantinides, 1990). However

different from traditional habit formation models, we allow consumption to fall below the

reference level (see also Detemple and Karatzas, 2003). Under our endogenous updating

mechanism of the reference level, consumption responds gradually to financial shocks.

Shocks are absorbed in not only the level of consumption but also future growth rates

of consumption.

Building on their earlier work, Kőszegi and Rabin (2009) explore a model that

embeds loss aversion and reference dependence into a discrete-period model. In their

model, the agent receives utility from the difference between current consumption and

last period’s expectation of current consumption (“contemporaneous gain-loss utility”)

and from changes in expectations regarding future consumption (“prospective gain-loss

utility”). The agent is loss averse in the sense that losses loom larger than same-sized

gains. Also, a contemporaneous loss is more painful than a prospective loss. Kőszegi

and Rabin (2009) find that the agent has a first-order precautionary savings motive:

the agent increases savings to reduce the marginal utility associated with a future loss.

Furthermore, the fact that news about future consumption affects current utility less

than news about current consumption creates an immediate incentive to overconsume

relative to his optimal pre-committed consumption path. The agent of Kőszegi and

Rabin (2009) thus behaves inconsistently while our agent is time consistent.

Pagel (2012) shows that the model of Kőszegi and Rabin (2009) can explain a number

of stylized facts about consumption. First, she finds that the precautionary saving motive

together with the tendency to overconsume can produce a realistic hump-shaped profile
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of consumption over the lifetime. Second, she finds that the model of Kőszegi and Rabin

(2009) generates excess smoothness and sensitivity in consumption (i.e., consumption

adjusts gradually to financial shocks). Intuitively, unexpected losses today are more

painful than expected losses tomorrow. Our model is also able to generate a hump-shaped

pattern of consumption as a result of two competing effects: the endogeneity of the

reference level (which causes a precautionary savings motive) and an uncertain lifetime

(which causes a tendency to consume early in life). Excess smoothness and sensitivity

in consumption are also present in our model.

2.3. The Economy

We define a continuous-time financial market following Karatzas and Shreve (1998) and

Back (2010). Let T > 0 be a fixed finite terminal time. The uncertainty in the economy

is represented by a filtered probability space (Ω,F ,F,P), on which is defined a standard

N -dimensional Brownian motion {Zt}t∈[0,T ]. Let the filtration F ≡ {Ft}t∈[0,T ] be the

augmentation under P of the natural filtration generated by the standard Brownian

motion {Zt}t∈[0,T ]. Throughout, (in)equalities between random variables are meant to

hold P-almost surely.

The financial market consists of an instantaneously risk-free asset and N risky stocks,

which are traded continuously on the time horizon [0, T ]. The price of the risk-free asset,

B, evolves according to

dBt

Bt

= rt dt, B0 = 1.

The scalar-valued risk-free rate process, r, is assumed to be Ft-progressively measurable

and uniformly bounded. The N -dimensional vector of risky stock prices, S, satisfies the

following stochastic differential equation:

dSt
St

= µt dt+ σt dZt, S0 = 1N .

Here, 1N denotes an N -dimensional vector of all ones. The N -dimensional mean rate of

return process, µ, and the (N×N)-matrix-valued volatility process, σ, are both assumed
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to be Ft-progressively measurable and uniformly bounded.

We assume that, for some positive ε,

ϑ>σtσ
>
t ϑ ≥ ε||ϑ||2, for all ϑ ∈ RN . (2.3.1)

Here, > denotes the transpose sign. The strong non-degeneracy condition (2.3.1) implies

that the inverse of σt exists and is bounded. The Ft-progressively measurable market

price of risk process, λ, solves the following equation:

σtλt ≡ µt − rt1N .

The unique positive-valued state price density process, M , can now be defined as follows:

Mt ≡ exp

{
−
∫ t

0

rs ds−
∫ t

0

λ>s dZs −
1

2

∫ t

0

||λs||2 ds

}
.

The economy is populated by a single price-taking agent endowed with initial wealth

W0 ≥ 0. The agent’s objective is to choose an Ft-progressively measurableN -dimensional

process π, referred to as the portfolio process and representing the dollar amounts

invested in the N risky stocks, and an Ft-progressively measurable process c, referred to

as the consumption process, so as to maximize the expectation of lifetime utility.15 We

impose the following integrability conditions, which we assume throughout to be satisfied

for any consumption and portfolio process:

∫ T

0

π>t σtσ
>
t πt dt <∞,

∫ T

0

∣∣πt (µt − rt1N)
∣∣ dt <∞, E

[∫ T

0

|ct|2 dt

]
<∞.

The wealth process, W , associated with a consumption and portfolio strategy (c, π)

satisfies the following dynamic budget constraint :

dWt =
(
rtWt + π>t σtλt − ct

)
dt+ π>t σt dZt, W0 ≥ 0 given. (2.3.2)

Equation (2.3.2) reveals that the agent’s wealth equals initial wealth, plus trading gains,

minus cumulative consumption. The total dollar amount invested in the risk-free asset

at time t ∈ [0, T ] is given by Wt − π>t 1N . We call a consumption and portfolio strategy

15The agent’s utility function is introduced in the next section.
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admissible if the associated wealth process is uniformly bounded from below. Then the

static budget constraint is also satisfied; see, e.g., Karatzas and Shreve (1998, p. 91-92)

for further details.

2.4. The Agent’s Utility Function

This section introduces the agent’s (instantaneous) utility function u (ct; θt). Here, θt

represents the agent’s reference level to which consumption is compared. We assume that

the agent derives utility from the difference between consumption ct and the reference

level θt. Specifically, following the prospect theory literature (see, e.g., Tversky and

Kahneman, 1992), we assume that the agent’s utility function u (ct; θt) is represented by

the two-part power utility function:

u (ct; θt) = v (ct − θt) ≡

−κ (θt − ct)
γ1 , if ct < θt;

(ct − θt)
γ2 , if ct ≥ θt.

(2.4.1)

Here, γ1 > 0 and γ2 ∈ (0, 1) are curvature parameters, and κ ≥ 1 stands for the loss

aversion index. If consumption is larger (smaller) than the reference level, then the agent

experiences a gain (loss).

Figure 2.1 illustrates the two-part power utility function (2.4.1) for γ1 = 1.3 (solid

line) and γ1 = 0.7 (dash-dotted line). The figure shows that the two-part power utility

function exhibits a kink at the reference level. The kink is due to the different treatment

of gains and losses. We note that even in the case of κ = 1, the agent’s utility function

displays a kink at the reference level whenever γ1 6= γ2.

A simple calculation shows that the two-part power utility function (2.4.1) is convex

below the agent’s reference level if γ1 ≤ 1, and concave otherwise. Convexity corresponds

to risk-seeking behavior and concavity to risk-averse behavior.16 Tversky and Kahneman

(1992) found that the agent’s utility function is convex in the loss domain. Table 2.1

reviews the empirical literature regarding the shape of the utility function for losses. The

16This statement is not true if probabilities are distorted (see Chateauneuf and Cohen, 1994). For
example, an S-shaped utility function and overweighting of small probabilities can together explain
the fourfold pattern of risk attitudes: risk-averse behavior when gains have large probabilities and
losses have small probabilities, and risk-seeking behavior when losses have large probabilities and
gains have small probabilities.
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Figure 2.1.

Illustration of the two-part power utility function
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The figure illustrates the two-part power utility function for γ1 = 1.3 (solid line) and γ1 = 0.7
(dash-dotted line). The agent’s reference level is set equal to 10, the loss aversion index κ to
2.5 and γ2 to 0.5.

table shows that the literature is inconclusive as to whether the utility function is convex

below the reference level. Among the mentioned studies, Etchart-Vincent (2004) explored

the sensitivity of the agent’s utility function to the magnitude of the underlying payoffs.

She found that a larger proportion of the subjects exhibited concavity when facing large

losses than when facing small losses. Etchart-Vincent (2004) argued that this finding

may be due to the size of the losses at stake. Therefore, the current chapter considers

not only the case of a convex utility function in the loss domain (0 < γ1 ≤ 1), but also

the case of a concave utility function in the loss domain (γ1 > 1).

Motivated by the literature on internal habit formation (see, e.g., Constantinides,

1990; Detemple and Zapatero, 1992; Detemple and Karatzas, 2003), we assume that the

agent’s reference level evolves according to:

dθt = (βct − αθt) dt, θ0 ≥ 0 given.

Here, θ0 denotes the agent’s initial reference level, α ≥ 0 corresponds to the depreciation
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Table 2.1.
Classification of the utility function for losses

Shape of the utility function for losses

Study Convex Concave Linear Mixed

Abdellaoui (2000) 42.5 20.0 25.0 12.5
Abdellaoui et al. (2005) 24.4 22.0 22.0 31.7
Abdellaoui, Bleichrodt, and Paraschiv (2007) 68.8 8.3 22.9 -
Booij and van de Kuilen (2009) 47.1 22.5 30.4 -
Etchart-Vincent (2004)∗ 37.1 25.7 25.7 11.4
∗The reported results are for the case of large losses.

The table reviews the empirical literature regarding the shape of the utility function for losses.
Numbers are expressed as a percentage of total subjects. All the mentioned studies use the
trade-off method (see Wakker and Deneffe, 1996) to elicit the utility functions of the subjects.

(or persistence) parameter, and β ≥ 0 indexes the extent to which the current reference

level responds to current consumption. The agent’s reference level exhibits a low degree

of depreciation (or a high degree of persistence) if α is low. The impact of current

consumption on the current reference level increases as β increases. We can explicitly

write the agent’s reference level as follows:

θs = β

∫ s

t

exp {−α(s− u)} cu du+ exp {−α(s− t)} θt, s ≥ t ≥ 0. (2.4.2)

Equation (2.4.2) shows that the reference level can be decomposed into two components:

a stochastic and a deterministic component. The parameter β measures the importance

of the stochastic component relative to the deterministic component. In what follows,

we refer to β as the endogeneity parameter. The stochastic component becomes more

important as β increases. The first component on the right-hand side of equation (2.4.2)

is an exponentially weighted integral of the agent’s own past consumption choices (i.e.,

the reference level is backward-looking). We observe that the current reference level

depends more on consumption in the recent past than on consumption in the distant

past. The second component on the right-hand side of equation (2.4.2) is independent

of past consumption choices and decreases exponentially at a rate of α.

The two-part utility function (see equation (2.4.1)) is a member of the class of

reference-dependent preferences introduced by Kőszegi and Rabin (2006, 2007). They

assume that the agent’s instantaneous utility function can be decomposed into two
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components. The first component represents classical utility from consumption; that

is, utility derived from absolute levels of consumption. The second component captures

reference-dependent gain-loss utility; that is, utility derived from the difference between

classical consumption utility and the reference level of utility. Specifically, Kőszegi and

Rabin (2006, 2007) consider the following agent’s utility function:

u (ct; θt) = η ·m (ct) + (1− η) · w (m (ct)−m (θt)) . (2.4.3)

Here, m stands for the classical consumption utility function, w denotes the gain-loss

utility function and η ∈ [0, 1] is a weight parameter controlling the relative importance

of the two components. The two-part utility function (2.4.1) emerges as a special case

of (2.4.3) if the gain-loss utility function w is represented by the two-part power utility

function (2.4.1), the weight parameter η is set equal to zero and m (ct) = ct. Section

2.7 considers another special case of (2.4.3), where the weight parameter η is unequal to

zero. Kőszegi and Rabin (2006, 2007) do not assume that the agent’s reference level is

a weighted integral of past consumption choices. Instead, they assume that the agent’s

reference level represents an expectation. Both Kőszegi and Rabin (2006, 2007) and our

model assume that the reference level is chosen endogenously.17

The two-part power utility function (2.4.1) displays loss aversion in the sense that

the disutility of a loss of one unit is κ times larger than the utility of a gain of one

unit.18 There is, however, no agreed-upon definition of loss aversion in the literature.

According to Kahneman and Tversky (1979), loss aversion refers to the fact that losses

loom larger than same-sized gains, i.e., −w(−x) > w(x) for all x > 0. A loss aversion

index can then be defined as the mean or median value of −w(−x)/w(x) over relevant x

(see Abdellaoui, Bleichrodt, and L’Haridon, 2008). Köbberling and Wakker (2005) define

the loss aversion index as the ratio between the left-hand and right-hand derivative of

the gain-loss utility function at the reference level. The loss aversion index κ is equal to

the loss aversion index proposed by Köbberling and Wakker (2005) if γ1 = γ2.

Finally, we note that the two-part power utility function (2.4.1) with reference level

dynamics given by (2.4.2) includes several important special (limiting) cases. The

17Yogo (2008) analyzes asset pricing implications of reference-dependent preferences, with an
exogenously given reference level.

18As pointed out by Wakker (2010, p. 267), the degree of loss aversion depends on the monetary unit.
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internal habit formation model studied by Constantinides (1990) arises as a special case

if the agent is infinitely loss averse. The assumption of infinite loss aversion implies

that consumption is not allowed to fall below the reference level. If the reference level

is also assumed to be exogenous, then the two-part power utility function reduces to a

utility function with an exogenous minimum consumption level. Such a utility function

has been studied by Deelstra, Grasselli, and Koehl (2003). The constant relative risk

aversion (CRRA) utility function emerges as a special case if the reference level is equal

to zero and consumption is non-negative. The CRRA utility function has been widely

explored in the economics literature since at least Merton (1969).

2.5. The Consumption and Portfolio Choice Problem

This section derives the agent’s optimal consumption and portfolio choice. Section 2.5.1

formulates the agent’s maximization problem. To determine the optimal consumption

and portfolio choice, we transform the agent’s (primal) maximization problem into a

dual problem. The technique that solves this dual problem is outlined in Section 2.5.2.

Section 2.5.3 presents the optimal consumption choice and Section 2.5.4 gives the optimal

portfolio choice.

2.5.1. The Agent’s Maximization Problem

The agent’s dynamic consumption and portfolio choice problem of Section 2.3 with the

agent’s utility function given in Section 2.4 can, by virtue of the martingale approach

(Pliska, 1986; Karatzas, Lehoczky, and Shreve, 1987; Cox and Huang, 1989, 1991), be

transformed into the following equivalent static variational problem:

maximize
c

E
[∫ T

0

exp {−δt} v (ct − θt) dt

]
subject to E

[∫ T

0

Mtct dt

]
≤ W0, dθt = (βct − αθt) dt,

ct ≥ θt − Lt for all t ∈ [0, T ].

(2.5.1)
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Here, δ ≥ 0 stands for the subjective rate of time preference. We require that consumption

is not allowed to fall more than Lt ≥ 0 below the agent’s reference level θt.
19 In addition,

we assume that Lt only depends on time t (and not on the state of nature ω ∈ Ω).20 If

Lt = exp {−αt} θ0, then consumption is guaranteed to be non-negative. We can view

θt − Lt as the agent’s minimum consumption level.

2.5.2. The Dual Technique

To derive the optimal consumption and portfolio choice in our model, we first apply the

solution technique proposed by Schroder and Skiadas (2002). These authors show that

a generic consumption and portfolio choice model with linear internal habit formation

can be mechanically transformed into a dual consumption and portfolio choice model

without linear internal habit formation.21 Hereinafter, we refer to the solution technique

considered by Schroder and Skiadas (2002) as the dual technique. This section sketches

the basic ideas underlying the dual technique. The Appendix provides more details.

The dual consumption and portfolio choice model (see (2.9.1) in the Appendix) is

solved in a dual financial market. This dual financial market is characterized by the dual

state price density M̂t, the dual (instantaneously) risk-free rate r̂t, the dual volatility σ̂t

and the dual market price of risk λ̂t:

M̂t ≡Mt (1 + βAt) ,

r̂t ≡ β +
rt − αβAt
1 + βAt

,

σ̂t ≡ σt,

λ̂t ≡ λt −
β

1 + βAt

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Here, Pt,s corresponds to the time t price of a default-free unit discount bond that matures

at time s ≥ t ≥ 0, and Ψt,s stands for the time t volatility of the instantaneous return

19In the case of risk-seeking behavior in the loss domain, the agent’s maximization problem is ill-posed
if consumption is not bounded from below (a maximization problem is called ill-posed if its supremum
is infinite).

20One could argue that Lt should also depend on the agent’s past consumption choices. However, this
would complicate the agent’s maximization problem considerably. We leave it for future research to
explore the impact of an endogenous Lt on the agent’s optimal consumption and portfolio choice.

21The consumption and portfolio choice model considered in the current chapter features a utility
specification that incorporates linear internal habit formation.
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on such a bond (both in the primal financial market). We can view At ≥ 0 as the time

t price of a bond paying a continuous coupon:

At ≡
1

Mt

Et
[∫ T

t

Ms exp {−(α− β)(s− t)} ds

]
.

In case the investment opportunity set is constant, At only depends on time t. As a

consequence, the optimal portfolio choice can be computed explicitly in this case (see

Section 2.5.4).

Dual wealth Ŵt is subject to the following dynamic equation:

dŴt =
(
r̂tŴt + π̂>t σ̂tλ̂t − ĉt

)
dt+ π̂>t σ̂t dZt, Ŵ0 =

W0 − A0θ0

1 + βA0

. (2.5.2)

Here, ĉt ≡ ct − θt stands for the agent’s surplus consumption choice and π̂t denotes the

dual portfolio choice. Dual wealth Ŵt is equal to the discounted value of future surplus

consumption choices. Hence, we can view Ŵt as wealth needed to finance future gains

and losses. In what follows, we refer to Ŵt as surplus wealth.

The condition of consumption being bounded from below in (2.5.1) implies that the

agent’s initial wealth W0 must be sufficiently large to ensure the existence of an optimal

consumption strategy. Specifically, we require

W0 ≥ −E

[∫ T

0

M̂t

M̂0

Lt dt

]
− βA0E

[∫ T

0

M̂t

M̂0

Lt dt

]
+ A0θ0. (2.5.3)

The right-hand side of equation (2.5.3) corresponds to initial wealth that is required

to finance the minimum consumption stream {θt − Lt}t∈[0,T ]. We note that W0 is also

required to be non-negative; see equation (2.3.2).

2.5.3. The Optimal Consumption Choice

This section derives the optimal consumption choice. We obtain the optimal consumption

choice as follows. First, the agent’s maximization problem (2.5.1) is converted into its

dual problem (Section 2.5.2). The dual utility function is time-additive and separable.

This fact facilitates the derivation of the optimal consumption and portfolio choice.

Second, the dual problem is solved using martingale techniques and by adapting to our

setting with intertemporal consumption the solution technique as described by Basak
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and Shapiro (2001) and Berkelaar et al. (2004). The central idea of the latter solution

technique is to split the agent’s (dual, in our case) problem into two maximization

problems: a gain part problem and a loss part problem. The optimal solution to each

problem represents a local maximum of the dual problem. The global maximum of the

dual problem is determined by comparing, in a particular way, the two local maxima.

Finally, the optimal surplus consumption choice ĉ ∗t is translated back into the agent’s

optimal consumption choice c∗t . Theorem 1 below presents the optimal consumption

choice c∗t . We note that the theorem distinguishes between risk-averse and risk-seeking

behavior in the loss domain. Indeed, in the case of risk-averse behavior in the loss

domain, the utility function is concave below the reference level, whereas in the case of

risk-seeking behavior in the loss domain, the utility function is convex in the loss domain.

Theorem 1. Consider an agent with the two-part power utility function (2.4.1) and

reference level dynamics (2.4.2) who solves the consumption and portfolio choice problem

(2.5.1). Let θ∗ be the agent’s optimal reference level implied by substituting the (past)

optimal consumption choice in (2.4.2) and let y be the Lagrange multiplier associated

with the static budget constraint in (2.5.1). Define

kt ≡
y exp {δt}

γ2

and lt ≡
y exp {δt}

κγ1

.

Then:

• If the agent is risk-averse in the loss domain, the optimal consumption choice c∗t

at time t ∈ [0, T ] is given by

c∗t =


θ∗t +

(
ktM̂t

) 1
γ2−1

, if M̂t ≤ ξt;

θ∗t −
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
, if M̂t > ξt.

The threshold ξt is determined in such a way that f (ξt) = 0 where the function f

is defined as follows:

f(x) ≡ exp {−δt} (1− γ2) (ktx)
γ2
γ2−1 + κ exp {−δt}

[
(ltx)

1
γ1−1 ∧ Lt

]γ1

− yx
[
(ltx)

1
γ−1 ∧ Lt

]
.

(2.5.4)
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• If the agent is risk-seeking in the loss domain, the optimal consumption choice c∗t

at time t ∈ [0, T ] is given by

c∗t =


θ∗t +

(
ktM̂t

) 1
γ2−1

, if M̂t ≤ ξt;

θ∗t − Lt, if M̂t > ξt.

The threshold ξt is determined in such a way that g (ξt) = 0 where the function g

is defined as follows:

g(x) ≡ exp {−δt} (1− γ2) (ktx)
γ2
γ2−1 + κ exp {−δt}Lγ1

t − yxLt. (2.5.5)

The Lagrange multiplier y is chosen such that the static budget constraint holds with

equality.

Theorem 1 demonstrates that the agent optimally chooses to divide the states of the

economy into two categories: insured states (good to intermediate economic scenarios

or, equivalently, low to intermediate state prices) and uninsured states (bad economic

scenarios or high state prices). In insured states, consumption is guaranteed to be larger

than the reference level, while in uninsured states, consumption is smaller than the

reference level. The optimal consumption choice is, however, never equal to the reference

level. Section 2.6 further explores the properties of the optimal consumption choice.

2.5.3.1. Comparative Statics

The threshold ξt and the Lagrange multiplier y depend on the preference parameters.

Proposition 1 summarizes the impact of an increase in the agent’s preference parameters

on the threshold ξt and the Lagrange multiplier y, ceteris paribus.

Proposition 1. Consider an agent with the two-part power utility function (2.4.1) and

reference level dynamics (2.4.2) who solves the consumption and portfolio choice problem

(2.5.1). Then:

• All else being equal, if the loss aversion index κ increases, then both the threshold

ξt and the Lagrange multiplier y increase.
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• All else being equal, if the agent’s initial reference level θ0 increases, then the

threshold ξt decreases and the Lagrange multiplier y increases.

Suppose that initial surplus wealth Ŵ0 is non-negative.

• All else being equal, if the depreciation parameter α increases, then the threshold

ξt increases and the Lagrange multiplier y decreases.

• All else being equal, if the endogeneity parameter β increases, then the threshold ξt

decreases and the Lagrange multiplier y increases.

Proposition 1 shows that when the agent becomes more afraid of incurring losses, the

probability of consumption falling below the reference level decreases. At the same

time, the agent must give up some upward potential to finance the new consumption

profile. When the agent’s initial reference level increases (or the depreciation parameter

α decreases or the endogeneity parameter β increases), more wealth is required to finance

future reference levels. As a consequence, the probability of incurring a loss increases.

2.5.4. The Optimal Portfolio Choice

To derive the optimal portfolio choice, we first need to derive the agent’s optimal wealth

W ∗
t . As pointed out in the Appendix (see Proposition 4), the agent’s optimal wealth W ∗

t

can be decomposed as follows:

W ∗
t = Ŵ ∗

t + W̃ ∗
t . (2.5.6)

Here, Ŵ ∗
t denotes optimal surplus wealth, and W̃ ∗

t stands for wealth required to finance

future optimal reference levels. We refer to W̃ ∗
t as optimal required wealth. Optimal

surplus wealth Ŵ ∗
t and optimal required wealth W̃ ∗

t can be further decomposed as follows:

Ŵ ∗
t = ŴG∗

t + ŴL∗
t and W̃ ∗

t = βAtŴ
∗
t + Atθ

∗
t . (2.5.7)

Here, ŴG∗
t denotes wealth required to finance future optimal gains, ŴL∗

t corresponds to

wealth required to finance future optimal losses, βAtŴ
∗
t stands for wealth required to

finance the stochastic part of future optimal reference levels, and Atθ
∗
t represents wealth
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required to finance the deterministic part of future optimal reference levels. Figure 2.2

illustrates the decomposition of the agent’s optimal wealth W ∗
t .

Figure 2.2.

Decomposition of the agent’s optimal wealth W ∗
t

Optimal wealth W ∗
t

Optimal surplus wealth Ŵ ∗
t Optimal required wealth W̃ ∗

t

ŴG∗
t ŴL∗

t βAtŴ
∗
t Atθ

∗
t

The figure illustrates the decomposition of the agent’s optimal wealth W ∗t .

Proposition 2 below presents ŴG∗
t and ŴL∗

t for the case of a constant investment

opportunity set (i.e., rt = r, σt = σ and λt = λ). The general expressions for ŴG∗
t

and ŴL∗
t are given in the Appendix.

Proposition 2. Consider an agent with the two-part power utility function (2.4.1) and

reference level dynamics (2.4.2) who solves the consumption and portfolio choice problem

(2.5.1) assuming a constant investment opportunity set. Let N denote the cumulative

distribution function of a standard normal random variable. Define Γu, Πu, d1(x), d2(x)

and d3(x) as follows:

Γu =
δ − γ2r̂u
1− γ2

− 1

2

γ2

(1− γ2)2 ||λ||
2, Πu =

δ − γ1r̂u
1− γ1

− 1

2

γ1

(1− γ1)2 ||λ||
2,

d1(x) =
1

||λ||
√
s− t

[
log(x)− log

(
M̂t

)
+

∫ s

t

r̂u du− 1

2
||λ||2(s− t)

]
,
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d2(x) = d1(x) +
||λ||

1− γ2

√
s− t, d3(x) = d1(x) +

||λ||
1− γ1

√
s− t.

Then:

• If the agent is risk-averse in the loss domain, we find

ŴG∗
t =

(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] ds,

ŴL∗
t =

(
ltM̂t

) 1
γ1−1

∫ T

t

exp

{
−
∫ s

t

Πu du

}(
N [d3 (ζs ∨ ξs)]−N [d3 (ξs)]

)
ds

−
∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ζs ∨ ξs)] ds.

Here, ζs ≡ exp {δs} γ1κL
γ1−1
s y−1. The threshold ξs is determined in such a way

that f (ξs) = 0 where the function f is given by equation (2.5.4).

• If the agent is risk-seeking in the loss domain, we find

ŴG∗
t =

(
ltM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] ds,

ŴL∗
t =

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs)] ds.

The threshold ξs is determined in such a way that g (ξs) = 0 where the function g

is given by equation (2.5.5).

When the dual state price density tends to zero (so that the probability of the dual state

price density M̂s being smaller than the threshold ξs approaches one), optimal surplus

wealth Ŵ ∗
t converges to the optimal wealth of an agent with CRRA utility. Hence, in

good economic scenarios, the agent behaves like a CRRA agent.

The optimal dual portfolio choice can be constructed using hedging arguments. We

explicitly determine the optimal dual portfolio choice for the case of a constant investment

opportunity set. To this end, it is convenient to express Ŵ ∗
t as a function of time t and

the dual state price density M̂t; that is, Ŵ ∗
t = h

(
t, M̂t

)
for some (regular) function h.

Straightforward application of Itô’s Lemma to the function h yields

dŴ ∗
t =

[
∂h

∂t
− ∂h

∂M̂t

M̂tr̂t +
1

2

∂2h

∂M̂ 2
t

M̂ 2
t ||λ||2

]
dt− ∂h

∂M̂t

M̂tλ̂
> dZt. (2.5.8)
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Comparing the diffusion part of the dynamic budget constraint (2.5.2) with the diffusion

part of equation (2.5.8) yields the dual optimal portfolio choice:

π̂∗t = − ∂h

∂M̂t

M̂tλ̂
>σ̂−1. (2.5.9)

The agent’s optimal (primal) portfolio choice follows from Schroder and Skiadas (2002):

π∗t = π̂∗t + βAtπ̂
∗
t . (2.5.10)

The optimal dual portfolio choice π̂∗t can be further decomposed as follows:

π̂∗t = π̂G∗t + π̂L∗t .

Here, π̂G∗t denotes the optimal dual portfolio choice that finances gains, and π̂L∗t is the

optimal dual portfolio choice that finances losses. Theorem 2 below presents π̂G∗t and

π̂L∗t for the case of a constant investment opportunity set. This theorem follows from

application of equation (2.5.9). The optimal primal portfolio choice then follows from

equation (2.5.10).

Theorem 2. Consider an agent with the two-part power utility function (2.4.1) and

reference level dynamics (2.4.2) who solves the consumption and portfolio choice problem

(2.5.1) assuming a constant investment opportunity set. Let φ denote the standard

normal probability density function. Then:

• If the agent is risk-averse in the loss domain, we find

π̂G∗t = λ̂>σ̂−1

[
1

1− γ2

ŴG∗
t

+
(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
φ [d2 (ξs)]

||λ||
√
s− t

ds

]
,
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π̂L∗t = λ̂>σ̂−1

[
1

γ1 − 1

(
ŴL∗
t +

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ζs ∨ ξs)] ds

)
+
(
ltM̂t

) 1
γ1−1

∫ T

t

exp

{
−
∫ s

t

Πu du

}
φ [d2 (ζs ∨ ξs)]− φ [d2 (ξs)]

||λ||
√
s− t

ds

+

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
Ls
φ [−d1 (ζs ∨ ξs)]
||λ||
√
s− t

ds

]
.

• If the agent is risk-seeking in the loss domain, we find

π̂G∗t = λ̂>σ̂−1

[
1

1− γ2

ŴG∗
t

+
(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
φ [d2 (ξs)]

||λ||
√
s− t

ds

]
,

π̂L∗t = λ̂>σ̂−1

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
Ls
φ [−d1 (ξs)]

||λ||
√
s− t

ds.

Theorem 2 reveals that in good economic scenarios, the optimal dual portfolio strategy

π̂∗t can be approximated by λ̂>σ̂−1/ (1− γ2) Ŵ ∗
t . In these economic scenarios, the agent

behaves like a CRRA agent and invests a constant proportion of surplus wealth in

risk-bearing assets.

2.6. Analysis of the Solution

With the analytical solutions and comparative statics to the general consumption and

portfolio choice problem provided in Section 2.5 (and the Appendix), we proceed in this

section to their numerical analysis. Section 2.6.1 introduces the underlying assumptions

and discusses the key parameter values used in the numerical analysis. Section 2.6.2

illustrates the agent’s optimal consumption and portfolio choice. Finally, Section 2.6.3

conducts a welfare analysis.

2.6.1. Assumptions and Key Parameter Values

We allow the agent to invest his wealth in a risk-free asset and a single risky stock. The

investment opportunity set is assumed to be constant (i.e., rt = r, σt = σ and λt = λ).

The equity premium σλ = µ− r is set at 4%. The risk-free rate r is set at 1%, and the
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volatility of innovations to the risky stock price σ is set at 20%. These estimates coincide

with the estimates reported by Gomes et al. (2008).

The terminal time T equals 20 years. We view T as the total number of years

of retirement. Initial wealth W0 can be viewed as total pension wealth at the age of

retirement.22 For the ease of illustration, we assume that the agent retires at 65.

The loss aversion index κ is set equal to 2.5. The estimates of the median loss aversion

index reported in the literature vary from 1 to 5 (see, e.g., Abdellaoui et al., 2008). The

degree of loss aversion largely differs among individuals, and typically depends on the

model. In the welfare analysis, we consider, among other things, the impact of a change

in the loss aversion index κ on the agent’s welfare. Finally, the subjective rate of time

preference δ is set equal to 1%.

2.6.2. The Optimal Consumption and Portfolio Choice

2.6.2.1. Loss Aversion Only

This section illustrates the optimal consumption and portfolio choice of a loss averse

agent without endogenous updating of the agent’s reference level (i.e., the endogeneity

parameter β is set equal to zero). In addition, we assume that the agent’s reference

level is constant (i.e., the depreciation parameter α is also set equal to zero). Inspired

by Barberis, Huang, and Santos (2001), the agent’s constant reference level θt = θ is

assumed to be equal to the level of consumption that would be obtained if the agent’s

initial wealth W0 was kept in the money market account for the entire retirement phase.23

The assumption here is that the agent is likely to be disappointed if consumption is less

than the payment he would receive from a fixed annuity. The agent’s constant reference

level θ solves the following equation:

W0 = θ

∫ T

0

exp {−rt} dt ≡ θA0. (2.6.1)

Simple algebra yields θ = 5.5% ·W0; that is, the annuity factor A0 ≡
∫ T

0
exp {−rt} dt

is equal to 1/5.5% ≈ 18 < T = 20. Equation (2.6.1) implies that initial surplus wealth

22In the analysis, W0 equals 500 (×1,000 dollars) units, and we report our results relative to W0.
23Barberis et al. (2001) argue that the risk-free interest rate serves as a natural benchmark for evaluating

gains and losses. In our context, this assumption implies that the agent is likely to be disappointed if
consumption is less than the payment he would receive from a fixed annuity.
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Ŵ0 ≡ ŴG
0 − ŴL

0 is equal to zero. This assertion follows from equations (2.5.6) and

(2.5.7) with α = β = 0%. Put differently, initial wealth required to finance future gains

ŴG
0 is equal to initial wealth required to finance future losses ŴL

0 . We note that ŴG
0

and ŴL
0 are not equal to zero unless the agent is infinitely loss averse.

Figure 2.3 illustrates the optimal consumption choice (expressed as a percentage of the

agent’s initial wealth W0) at age 70 (i.e., t = 5) as a function of the then-current log state

price density for the case of risk-averse behavior in the loss domain. Here, consumption is

constrained to be non-negative; that is, L = θ. Under the optimal choice, the loss averse

agent seeks protection against consumption losses due to financial shocks, thus inducing

a (soft) guarantee on consumption. The agent optimally desires to maintain consumption

above the reference level, but under really adverse circumstances this (soft) guarantee on

consumption cannot be maintained. As a direct consequence, we can divide the states of

the economy into two categories: good to intermediate states (i.e., logMt ≤ log ξt) and

bad states (i.e., logMt > log ξt). In good to intermediate states, optimal consumption is

guaranteed to be larger than the reference level, while in bad states, optimal consumption

is smaller than the reference level. The dotted line shows the probability density function

(PDF) of the then-current log state price density conditional upon information available

at the age of retirement. The probability of consumption being smaller than the reference

level can be controlled by choosing appropriate values for the preference parameters. We

observe that the optimal consumption profile displays a 90◦ rotated S-shaped pattern

with a discontinuity at the point logMt = log ξt. Hence, optimal consumption is never

equal to the reference level. The dash-dotted line illustrates the consumption choice of

an agent with CRRA utility. The relative risk aversion coefficient γ is set equal to two.

The (log) consumption choice of a CRRA agent varies linearly with the (log) state price

density. As a consequence, for typical values of the relative risk aversion coefficient γ,

a CRRA agent incurs more frequently a loss than a loss averse agent (where we define

gains and losses relative to the reference level).

Next, Figure 2.4 displays the optimal consumption choice (expressed as a percentage

of the agent’s initial wealth W0) at age 70 as a function of the then-current log state price

density for the case of risk-seeking behavior in the loss domain. Here, consumption is

allowed to fall 2% point below the (normalized) reference level θ/W0. We observe again

that, because of loss aversion, the agent has a strong preference to maintain consumption
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Figure 2.3.

Consumption profile for the case of risk-averse behavior in the loss domain

P
D
F

−1 −0.5 0 0.5 1
2

5.5

9

⇐= Good States Bad States =⇒

C
o
n
su

m
p
ti
o
n
C
h
o
ic
e
(a

s
a
%

o
f
W

0
)

logξ
t

 

 

Optimal Strategy
CRRA Strategy
PDF

The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The
curvature parameter γ1 (γ2) is set equal to 1.2 (0.7). Consumption is constrained to be
non-negative by taking L = θ. The dashed line corresponds to the agent’s reference level
(expressed as a percentage of W0). The dotted line shows the probability density function
(PDF) of the then-current log state price density conditional upon information available at
the age of retirement. The dash-dotted line illustrates the consumption choice (expressed as a
percentage of W0) of an agent with CRRA utility. The relative risk aversion coefficient γ is set
equal to two.

above the reference level. As in the case of risk-averse behavior in the loss domain, we

can divide the states of the economy into two categories: good to intermediate states

(i.e., logMt ≤ log ξt) and bad states (i.e., logMt > log ξt). In good to intermediate

states, optimal consumption is guaranteed to be larger than the reference level, while

in bad states, optimal consumption is equal to the minimum consumption level θ − L.

We also observe that at the threshold logMt = log ξt, optimal consumption jumps to

the lower bound θ − L. This behavior can be explained by the fact that the agent is

risk-seeking in the loss domain.

Figure 2.5 shows the optimal portfolio choice (i.e., the total dollar amount invested

in the risky stock) at age 70 as a function of the then-current log state price density

for the case of risk-averse behavior in the loss domain. The optimal portfolio choice
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Figure 2.4.

Consumption profile for the case of risk-seeking behavior in the loss domain
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The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The
curvature parameter γ1 (γ2) is set equal to 0.8 (0.6). Consumption is allowed to fall 2% point
below the (normalized) reference level θ/W0. The dashed line corresponds to the agent’s
reference level (expressed as a percentage of W0). The dotted line shows the probability
density function (PDF) of the then-current log state price density conditional upon information
available at the age of retirement. The dash-dotted line illustrates the consumption choice
(expressed as a percentage of W0) of an agent with CRRA utility. The relative risk aversion
coefficient γ is set equal to two.

is expressed as a percentage of the agent’s initial wealth W0. We observe that the

optimal portfolio profile displays a U-shaped pattern: the total dollar amount invested

in the risky stock will be lower in intermediate economic scenarios than in good or bad

economic scenarios. When the (non-log) state price density tends to zero, the fraction of

surplus wealth Ŵ ∗
t invested in the risky stock converges to the constant λ/ [σ (1− γ2)].

Hence, in good economic scenarios, the optimal portfolio choice behaves in a similar

fashion as the portfolio choice of a CRRA agent.24 We note that W ∗
t − Ŵ ∗

t = Atθ is

fully invested in the money market account. When the state price density is relatively

high, the fraction of surplus wealth invested in the risky stock can be approximated by

24This is not directly visible in Figure 2.5, where the portfolio choice of the CRRA agent does not match
the portfolio choice of the loss averse agent in good (or bad) states, because the relative risk aversion
coefficient γ (CRRA agent) differs from its counterpart 1 − γi (loss averse agent) specified by the
curvature parameters γi, i = 1, 2, and because total wealth differs from surplus wealth.
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the constant λ/ [σ (1− γ1)] < 0.25 Not only in good but also in bad economic scenarios,

a loss averse agent behaves like a CRRA agent. In intermediate economic scenarios, the

total dollar amount invested in the risky stock is relatively small.

Figure 2.5.

Portfolio profile for the case of risk-averse behavior in the loss domain
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The figure shows the optimal portfolio choice (i.e., the total dollar amount invested in the risky
stock) at age 70 as a function of the then-current log state price density. The portfolio choice
is expressed as a percentage of the agent’s initial wealth W0. The curvature parameter γ1 (γ2)
is set equal to 1.2 (0.7). Consumption is constrained to be non-negative; that is, L = θ. The
dash-dotted line illustrates the portfolio choice (expressed as a percentage of W0) of an agent
with CRRA utility. The relative risk aversion coefficient γ is set equal to two. The increasing
dotted line represents π̂L∗t /W0 while the decreasing dotted line corresponds to π̂G∗t /W0.

Figure 2.6 shows the optimal portfolio choice (i.e., the total dollar amount invested in

the risky stock) at age 70 as a function of the then-current log state price density for

the case of risk-seeking behavior in the loss domain. The portfolio choice is expressed as

a percentage of the agent’s initial wealth W0. As in the case of risk-averse behavior in

the loss domain, the optimal portfolio profile displays (primarily) a U-shaped pattern.

When the state price density tends to zero, the fraction of surplus wealth invested in the

risky stock converges to the constant λ/ [σ (1− γ2)]. Hence, in good economic scenarios,

the portfolio choice of a loss averse agent behaves in a similar fashion as the portfolio

25We note that in bad states (i.e., high state prices), surplus wealth is negative.
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choice of a CRRA agent. When the state price density tends to infinity, the fraction of

surplus wealth invested in the risky stock ultimately converges to zero. Indeed, in bad

economic scenarios, the minimum consumption level θ − L must be guaranteed.

Figure 2.6.

Portfolio profile for the case of risk-seeking behavior in the loss domain
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The figure shows the optimal portfolio choice (i.e., the total dollar amount invested in the risky
stock) at age 70 as a function of the then-current log state price density. The portfolio choice is
expressed as a percentage of the agent’s initial wealth W0. The curvature parameter γ1 (γ2) is
set equal to 0.8 (0.6). Consumption is allowed to fall 2% point below the (normalized) reference
level θ/W0. The dash-dotted line illustrates the portfolio choice (expressed as a percentage of
W0) of an agent with CRRA utility. The relative risk aversion coefficient γ is set equal to two.
The increasing dotted line represents π̂L∗t /W0 while the decreasing dotted line corresponds to
π̂G∗t /W0.

Figure 2.7 shows the optimal portfolio choice measured as a fraction of total wealth

invested in the risky stock at age 70 as a function of the then-current log state price

density. We recall that Figures 2.5 and 2.6 show the optimal portfolio choice measured

as a fraction of initial wealth invested in the risky stock. We observe that the optimal

portfolio profile still displays (primarily) a U-shaped pattern. The portfolio choice of a

CRRA agent is no longer a decreasing line but a straight line: a CRRA agent always

invests a constant fraction λ/ (σγ) of total wealth in the risky stock, irrespective of the

state of the economy.
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Figure 2.7.

Fraction of total wealth invested in the risky stock
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(a) γ1 = 1.2 and γ2 = 0.7
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(b) γ1 = 0.8 and γ2 = 0.6

The figure shows the optimal portfolio choice measured as a fraction of total wealth invested
in the risky stock at age 70 as a function of the then-current log state price density. Panel (a)
displays the case of risk-averse behavior in the loss domain (taking, as before, γ1 = 1.2 and
γ2 = 0.7), while panel (b) displays the case of risk-seeking behavior in the loss domain (taking,
as before, γ1 = 0.8 and γ2 = 0.6). The dash-dotted line illustrates the portfolio choice of a
CRRA agent. The relative risk aversion coefficient γ is set equal to two.

2.6.2.2. Loss Aversion and Endogenous Updating

This section considers the case where the loss averse agent endogenously updates his

reference level over time. We assume that the endogeneity parameter β as well as the

depreciation parameter α are equal to 20%. Also, we assume that the initial reference

level θ0 equals 5.5% of initial wealth W0, and Lt equals the initial reference level (i.e.,

Lt = L = θ0). These parameter values imply that initial surplus wealth Ŵ0 equals zero.

Figure 2.8 illustrates the impact of a positive shock in initial wealth on median

consumption for the case of risk-averse behavior in the loss domain. The left panel

applies to the case in which the loss averse agent endogenously updates his reference level

over time (i.e., α = β = 20%), while the right panel displays the case of no endogenous

updating (i.e., α = β = 0%). The dash-dotted lines in both panels represent the agent’s

median consumption choice with the shock in initial wealth. We observe that with

endogenous updating a financial shock is gradually absorbed into future consumption

(i.e., consumption adjusts sluggishly to financial shocks): the impact of a financial shock

on consumption is smoothed over time, having a larger impact in the distant future
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than in the near future. By contrast, in the case of no endogenous updating, a financial

shock is directly absorbed into future consumption, leading to an even distribution of

the shock’s impact on future consumption choice.

Figure 2.8.

Gradual adjustment to financial shocks
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(a) With endogenous updating
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(b) No endogenous updating

The figure illustrates the impact of a positive shock in initial wealth on median consumption
(expressed as a percentage of the agent’s initial wealth W0) for the case of risk-averse behavior
in the loss domain (i.e., γ1 = 1.2). The curvature parameter γ2 is set equal to 0.7 as before,
and L to θ0. The right panel displays the case of no endogenous updating (i.e., α = β = 0%),
while the left panel presents the case in which the agent endogenously updates the reference
level over time (i.e., α = β = 20%). The dash-dotted lines in both panels represent the agent’s
median consumption choice with a shock in initial wealth from 500 to 750 (×1,000 dollars)
units.

Figure 2.9 shows the optimal consumption choice (expressed as a percentage of the agent’s

initial wealth W0) at age 70 as a function of the then-current log state price density

and the then-current reference level. Indeed, we note that the optimal consumption

profile depends not only the then-current state price density but also on the then-current

reference level (i.e., the optimal consumption profile is path-dependent). The threshold ξt

is however state independent. The agent is assumed to be risk-averse in the loss domain.

The figure shows that the optimal consumption choice increases with the reference level,

and decreases with the state price density. Compared to the case of loss aversion only as

in the previous subsection, endogeneity of the reference level has the reinforcing effect

that the agent gives up even more upward potential in then-current consumption to

guarantee consumption above the reference level. At the same time, the agent is also
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willing to accept somewhat larger consumption losses if the state of the economy is really

adverse.

Figure 2.9.

Consumption profile for the case of risk-averse behavior in the loss domain
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The figure illustrates the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density and the
then-current reference level. The curvature parameter γ1 (γ2) is set equal to 1.2 (0.7).

Figure 2.10 illustrates the optimal portfolio choice (i.e., the total dollar amount invested

in the risky stock expressed as a percentage of the agent’s initial wealth W0) at age 70 as

a function of the then-current log state price density for the case of risk-averse behavior

in the loss domain. As in the case of loss aversion only, the optimal portfolio profile is

U-shaped. While the then-current reference level affects the optimal consumption profile

(see Figure 2.9), it does not impact the optimal portfolio profile. However, because of

endogenous updating, optimal required wealth W̃ ∗
t (i.e., wealth required to finance future

optimal reference levels) is partly invested in the risky stock. Put differently, the dual

portfolio choice no longer coincides with the agent’s optimal (primal) portfolio choice.

By contrast, in the case of no endogenous updating as in the previous subsection, optimal

required wealth W̃ ∗
t is fully invested in the money market account. Since the reference

level depends on the agent’s own past consumption choices (i.e., the reference level is
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path-dependent), the agent typically invests more in the risky stock under endogenous

updating.

Figure 2.10.

Portfolio profile for the case of risk-averse behavior in the loss domain
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The figure illustrates the optimal portfolio choice (i.e., the total dollar amount invested in the
risky stock) at age 70 as a function of the then-current log state price density. The curvature
parameter γ1 (γ2) is set equal to 1.2 (0.7). The dash-dotted line represents the optimal dual
portfolio choice π̂∗t /W0.

Figure 2.11 illustrates the median optimal portfolio choice measured as a fraction of

total wealth invested in the risky stock as a function of the horizon, which represents the

number of years spent in retirement. We observe that the agent implements a life cycle

investment strategy (i.e., the fraction of wealth invested in the risky stock, on average,

decreases as the agent ages). Indeed, since the agent has less time to absorb financial

shocks as he grows older, the equity risk exposure, on average, decreases over the life

cycle.26

2.6.3. Welfare Analysis

This section conducts a welfare analysis. Section 2.6.3.1 reports the welfare losses

(in terms of the relative decline in certainty equivalent consumption) associated with

26The slight increase in median optimal portfolio choice towards the end of the life span can be explained
from the fact that the median optimal dual portfolio choice, which dictates the median optimal (primal)
portfolio choice, displays a U-shaped pattern as a function of the horizon. This, in turn, is due to the
fact that the absolute difference between optimal median consumption and the reference level as a
function of the horizon is U-shaped, being smaller for intermediate horizons than for large and small
horizons.
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Figure 2.11.

Median portfolio choice
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The figure illustrates the median optimal portfolio choice measured as a fraction of total wealth
invested in the risky stock as a function of the horizon. The curvature parameter γ1 (γ2) is set
equal to 1.2 (0.7). The dash-dotted line represents the optimal dual portfolio choice π̂∗t /W0.

incorrect values of the agent’s preference parameters.27 Precisely, we compute the

welfare losses due to implementing suboptimal consumption and portfolio strategies

derived by solving the agent’s maximization problem on the basis of wrong values of

the loss aversion index κ, the depreciation parameter α and the endogeneity parameter

β. Section 2.6.3.2 reports the welfare losses associated with implementing alternative

(simpler) consumption and portfolio strategies. Throughout the welfare analysis, we

assume that the agent’s optimal consumption and portfolio choice is characterized by

the following (“true”) values of the preference parameters: θ0 = 5.5% · W0, κ = 2.5,

α = β = 20%, γ1 = 1.2 and γ2 = 0.7. Thus, the agent is risk-averse in the loss

domain. The welfare losses are computed relative to the agent’s optimal consumption

and portfolio strategy. The Appendix outlines the numerical procedure employed to

compute the welfare losses. This procedure is non-standard due to the endogeneity

of the reference level. The numerical procedure is implemented with ∆t = 1/8 and

27We define the certainty equivalent of an uncertain consumption strategy to be the constant, certain
consumption level that yields indifference to the uncertain consumption strategy.
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S = 1, 000, 000. Here, ∆t denotes the time step and S represents the total number of

simulations.

2.6.3.1. Welfare Losses Due to Incorrect Parameter Values

Tables 2.2 and 2.3 report welfare losses due to implementing suboptimal consumption

and portfolio strategies derived on the basis of wrong values of the loss aversion index κ,

the depreciation parameter α and the endogeneity parameter β. In Table 2.2 we assume

that the agent’s initial surplus wealth is equal to zero, while in Table 2.3 we assume that

the agent has positive initial surplus wealth.28 Table 2.2 shows that the welfare losses

associated with incorrectly assuming a constant reference level (i.e., α = β = 0%) are

substantial. Specifically, the welfare loss is about 30%. If the agent has positive initial

surplus wealth, as in Table 2.3, this welfare loss is even larger. More generally, the tables

reveal that consumption and portfolio strategies based on a constant exogenous reference

level or on a very limited degree of endogeneity, thus implying no or only very limited

smoothing of financial shocks, substantially reduce welfare. At the same time we observe

that the impact of a change in the loss aversion index κ is larger when the agent’s initial

surplus wealth is equal to zero than when the agent’s initial surplus wealth is positive.

Indeed, κ determines the multiplicity of states in which consumption falls below the

reference level. As a consequence, the impact of a change in κ is more pronounced when

initial surplus wealth is small.

Table 2.2.
Welfare losses due to incorrect parameter values (zero initial surplus wealth)

Loss aversion index (κ) Endogeneity parameter (β)

0 0.05 0.10 0.20

2.5 31.93 17.50 8.25 0
5 28.58 22.56 18.33 11.85

10 28.00 25.99 24.87 22.40

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing suboptimal consumption and portfolio strategies derived
on the basis of wrong values of the loss aversion index κ, the depreciation parameter α, and
the endogeneity parameter β. The depreciation parameter α always equals the endogeneity
parameter β. The agent has zero initial surplus wealth. The numbers represent a percentage.

28More specifically, Table 2.2 assumes that the agent’s initial wealth W0 equals 500 (×1,000 dollars)
units, while Table 2.3 assumes that W0 is equal to 750 (×1,000 dollars) units.
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Table 2.3.
Welfare losses due to incorrect parameter values (positive initial surplus wealth)

Loss Aversion Index (κ) Endogeneity Parameter (β)

0 0.05 0.10 0.20

2.5 89.33 13.32 0.93 0
5 88.97 13.22 1.14 0.42

10 88.86 13.20 1.17 0.51

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing suboptimal consumption and portfolio strategies derived
on the basis of wrong values of the loss aversion index κ, the depreciation parameter α, and
the endogeneity parameter β. The depreciation parameter α always equals the endogeneity
parameter β. The agent has positive initial surplus wealth. The numbers represent a
percentage.

2.6.3.2. Welfare Losses Due to Alternative Strategies

Table 2.4 reports the welfare losses, compared to the optimal strategies of a loss averse

agent who endogenously updates his reference level, due to implementing the consumption

and portfolio strategy of an agent with CRRA utility (i.e., the Merton strategy). The

welfare losses are reported for various values of the coefficient of relative risk aversion

γ underlying the Merton strategy. The implementation of the Merton strategy, under

which log consumption varies linearly with the log state price density and financial shocks

are directly absorbed into future consumption, leads to substantial welfare losses of about

40%. The welfare losses are minimal for intermediate values of γ (γ = 5 in the table).

We note that γ =∞ corresponds to a risk-free strategy.

Table 2.4.
Welfare losses due to implementing the Merton strategy

Relative Risk Aversion Coefficient (γ)
1 2 5 10 ∞

44.11 37.47 37.39 38.87 40.11

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing the consumption and portfolio strategy of an agent with
CRRA utility (i.e., the Merton strategy). The table reports the welfare losses for various values
of the coefficient of relative risk aversion γ underlying the Merton strategy. The agent has zero
initial surplus wealth. The numbers represent a percentage.

Finally, we consider the following practical consumption and portfolio strategy: we

assume that the agent consumes a fraction 1/(T − t) of wealth Wt. Furthermore,
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we assume that a constant fraction of wealth is invested in the risky stock (i.e., we

assume πt/Wt to be constant), as under the Merton strategy. Table 2.5 reports the

welfare losses for various values of the fraction of wealth invested in the risky stock. We

observe that the welfare losses are again substantial, but smaller than when implementing

the Merton consumption rule. Indeed, our numerical results reveal that the Merton

strategy generates a more volatile consumption profile, with consumption falling below

the reference level more often than when implementing the 1/(T − t) consumption rule.

Thus, from the perspective of a loss averse agent, who strongly prefers to maintain

consumption above the reference level, the 1/(T − t) consumption rule is less suboptimal

than the Merton consumption rule. Furthermore, the welfare losses in Table 2.5 are

relatively insensitive to changes in πt/Wt. The welfare losses are minimal for relatively

low fractions of wealth invested in the risky stock (πt/Wt = 10% in the table). We

also computed, under the 1/(T − t) consumption rule, the welfare losses associated with

implementing various state-independent life cycle investment strategies. We find that

the welfare losses do not substantially reduce when implementing a state-independent

life cycle investment strategy.

Table 2.5.
Welfare losses due to implementing a practical alternative consumption and portfolio
strategy

Fraction of Wealth Invested in the Risky Stock
0 0.10 0.20 0.30 0.40

30.03 28.71 28.73 29.64 30.90

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing a practical alternative consumption and portfolio strategy.
The table reports the welfare losses for various values of the fraction of wealth invested in the
risky stock (i.e., πt/Wt). The agent has zero initial surplus wealth. The numbers represent a
percentage.

2.7. An Alternative Utility Function

This section explores, as a robustness check, the agent’s optimal consumption and

portfolio choice under an alternative specification of the agent’s instantaneous utility

function. More specifically, we assume that the agent’s utility function is represented
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by the kinked HARA utility function. The kinked HARA utility function emerges as a

special case of (2.4.3) if (i) classical consumption utility m is represented by the HARA

utility function and (ii) the gain-loss utility function w equals the two-part power utility

function v with γ1 = γ2 = 1. The HARA classical consumption utility function is defined

as follows:29

m (ct) =
ϕ

1− ϕ

(
ρ

ϕ
ct + ψ

)1−ϕ

.

Here, ϕ ∈ (0,∞)\{1}, ρ > 0 and ψ ≥ 0 are preference parameters.

Figure 2.12 illustrates the kinked CRRA utility function, which appears as a special

case when ρ = ϕ and ψ = 0, for κ = 2.5 and κ = 5. The figure shows that the

kinked CRRA utility function has a kink at the reference level, with the slope of the

utility function over losses being steeper than the slope of the utility function over gains.

Furthermore, we observe that the kinked CRRA utility function is concave everywhere.

Hence, the agent exhibits risk averse behavior in both the gain and the loss domain.

Unfortunately, the kinked HARA utility function cannot be expressed in terms of the

agent’s surplus consumption choice ĉt ≡ ct − θt. As a direct consequence, the solution

technique of Schroder and Skiadas (2002) is not applicable here. However, we can still

obtain an analytical solution to the optimal consumption and portfolio choice problem

if the agent’s reference level is exogenously given. The assumption of an exogenous

reference level implies that the agent’s own (past) consumption choices do not affect the

reference level. However, factors beyond the control of the agent are allowed to influence

the reference level. Hence, the consumption and portfolio choice model considered in

this section can be viewed as an external, rather than an internal, habit formation model

(see, e.g., Abel, 1990). In what follows, the reader should keep in mind that the reference

level is independent of the agent’s own (past) consumption choices.

Theorem 3 below presents the optimal consumption choice for an agent with the

kinked HARA utility function.

29The HARA class of utility functions contains several important special cases. With suitable choice
of preference parameters, the HARA utility function can exhibit increasing, decreasing or constant
relative risk aversion. Important special cases are the commonly used CRRA (ρ = ϕ and ψ = 0),
exponential (ψ = 1 and ϕ→∞) and logarithmic (ρ = 1 and ϕ→ 1) utility functions.
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Figure 2.12.

The kinked CRRA utility function
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The figure illustrates the kinked CRRA utility function (i.e., ρ = ϕ and ψ = 0) for κ = 2.5
(solid line) and κ = 5 (dash-dotted line). The reference level θt is set equal to 10, the weight
parameter η to 0 and the curvature parameter ϕ to 5.

Theorem 3. Consider an agent with the kinked HARA utility function and an exogenously

given reference level process θ who solves the consumption and portfolio choice problem,

with consumption constrained to be non-negative. Then the optimal consumption c∗t at

time t ∈ [0, T ] is given by

c∗t =



ϕ
ρ

(
y exp{δt}Mt

ρ

)− 1
ϕ − ψϕ

ρ
, if Mt < ξ

t
;

θt, if ξ
t
≤Mt ≤ ξt;[

ϕ
ρ

(
y exp{δt}Mt

ρκ̄

)− 1
ϕ − ψϕ

ρ

]
∨ 0, if Mt > ξt.

Here, κ̄ ≡ η+ (1−η)κ stands for the adjusted loss aversion index. The thresholds ξ
t

and

ξt are defined as follows:

ξ
t

=
ρ

y
exp {−δt}

(
ξ

ϕ
θt + ψ

)−ϕ
, ξt =

ρκ̄

y
exp {−δt}

(
ξ

ϕ
θt + ψ

)−ϕ
.
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The Lagrange multiplier y is chosen such that the static budget constraint holds with

equality.

Theorem 3 shows that the state price density can be divided into three regions. In good

scenarios (i.e., low state prices), consumption is (strictly) larger than the reference level;

in these scenarios, the agent can afford to consume above the reference level. Next, in

intermediate economic scenarios (i.e., intermediate state prices), consumption is equal

to the reference level. The adjusted loss aversion index κ̄ determines the multiplicity

of states in which consumption is equal to the reference level. Finally, in bad economic

scenarios (i.e., high state prices), the agent’s wealth is insufficient to finance consumption

at the reference level. In the case of two-part power utility (see Section 2.5), similarly,

the optimal consumption choice also falls below the reference level in bad states of the

world. Figure 2.13 illustrates the optimal consumption profile of an agent with kinked

CRRA utility. We observe that, as before, the optimal consumption choice as a function

of the log state price density is 90◦ rotated S-shaped, thus confirming the impact of loss

aversion on the optimal consumption profile. We also observe that c∗t is a continuous

function of the state price density. In particular, the optimal consumption profile does

not exhibit a jump at the reference level. Indeed, marginal utility at the reference level

is finite.

The agent’s optimal wealth W ∗
t can be decomposed in the same way as in Section

2.5:

W ∗
t = Ŵ ∗

t + W̃ ∗
t = ŴG∗

t + ŴL∗
t + W̃ ∗

t

Proposition 3 presents ŴG∗
t , ŴL∗

t and W̃ ∗
t for the case of a constant investment opportunity

set (i.e. rt = r, σt = σ and λt = λ).

Proposition 3. Consider an agent with the kinked HARA utility function and a reference

level process θ who solves the consumption and portfolio choice problem, with consumption

constrained to be non-negative and assuming a constant investment opportunity set. Let

N be the cumulative distribution function of a standard normal random variable. Define

C, d1(x) and d2(x) as follows:

C ≡ δ + r(ϕ− 1)

ϕ
+

1

2

ϕ− 1

ϕ2 ||λ||
2,
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d1(x) =
1

||λ||
√
s− t

[
log(x)− log (Mt) +

(
r − 1

2
||λ||2

)
(s− t)

]
,

d2(x) = d1(x) +
||λ||
ϕ

√
s− t.

Then:

ŴG∗
t =

ϕ

ρ

(
y exp {δt}

ρ

)− 1
ϕ

M
− 1
ϕ

t

∫ T

t

exp {−C(s− t)}N
[
d2

(
ξ
s

)]
ds

− ψϕ

ρ

∫ T

t

exp {−r(s− t)}N
[
d1

(
ξ
s

)]
ds,

ŴL∗
t =

ϕ

ρ

(
y exp {δt}

ρκ̄

)− 1
ϕ

M
− 1
ϕ

t

×
∫ T

t

exp {−r(s− t)}
(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

ds

− ψϕ

ρ

∫ T

t

exp {−r(s− t)}
(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

ds,

W̃ ∗
t =

∫ T

t

θs exp {−r(s− t)}
(
N
[
d1

(
ξs
)]
−N

[
d1

(
ξ
s

)])
ds.

Here, ξ
∗
s ≡ ψ

−ϕ
ρκ̄

y exp{δt} .

The agent’s optimal portfolio choice π∗t can be computed in a similar way as in Section

2.5. Figure 2.14 illustrates the optimal portfolio profile of an agent with kinked CRRA

utility. We observe that the optimal portfolio profile displays again a U-shaped pattern.

In good as well as in bad states, the agent behaves like a CRRA agent. In particular, in

these states, the fraction of wealth invested in the risky stock is equal to the constant

λ/ (σϕ).

2.8. Conclusion

We have derived the optimal consumption and portfolio choice under the two-part

power utility function of Tversky and Kahneman (1992) while allowing the agent to

endogenously update his reference level over time. We have shown that loss aversion

gives rise to a nonlinear consumption profile, inducing a (soft) guarantee on consumption,

and that endogenous updating of the reference level implies smoothing of shocks.

50



Conclusion

Figure 2.13.

Optimal consumption profile of an agent with kinked CRRA utility
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The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The
curvature parameter ϕ is set equal to 4. The remaining parameter values are the same
as in Section 2.6. The dashed line corresponds to the agent’s reference level (expressed
as a percentage of W0). The dotted line shows the probability density function (PDF) of
the then-current log state price density conditional upon information available at the age of
retirement.

We have assumed that agents can objectively evaluate the probabilities associated with

future outcomes. A large body of research suggests that agents subjectively weight

probabilities and e.g., have a tendency to overweight unlikely extreme outcomes (see,

e.g., Abdellaoui, 2000). Jin and Zhou (2008) and He and Zhou (2011, 2014) consider

optimal portfolio choice under subjective probability weighting; see also Laeven and

Stadje (2014). However, these authors do not consider intertemporal consumption or

endogenous updating of the reference level. In future work we intend to extend our

setting with intertemporal consumption and endogenous updating of the reference level

to explore the impact of probability weighting on the optimal consumption and portfolio

choice. Interestingly, as already shown by He and Zhou (2014), probability weighting

may generate an endogenous insurance if small probabilities are sufficiently overweighted.
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Figure 2.14.

Optimal portfolio profile of an agent with kinked CRRA utility
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The figure shows the optimal portfolio choice measured as a fraction of total wealth invested in
the risky stock at age 70 as a function of the then-current log state price density. The curvature
parameter ϕ is set equal to 4. The remaining parameter values are the same as in Section 2.6.

2.9. Appendix

2.9.1. The Dual Technique

Schroder and Skiadas (2002) show that a generic consumption and portfolio choice

model with linear internal habit formation can be mechanically transformed into a dual

consumption and portfolio choice model without linear internal habit formation. The

dual technique can be applied to an arbitrary utility function, including the two-part

power utility function v (see expression (2.4.1)). To formulate the dual consumption and

portfolio choice model, let us define the agent’s surplus consumption choice ĉt as the

agent’s consumption choice ct minus the agent’s reference level θt; that is, ĉt ≡ ct − θt.

We can view ĉ as a gain process.30 The agent’s maximization problem (2.5.1) is now

30We note that a negative gain corresponds to a (positive) loss.
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equivalent to the following dual problem:

maximize
ĉ

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Ŵ0 (1 + βA0) , ĉt ≥ −Lt for all t ∈ [0, T ].

(2.9.1)

Here, M̂t and Ŵ0 represent the dual counterparts of the state price density Mt and the

agent’s initial wealth W0, respectively.

The relationship between the agent’s maximization problem (2.5.1) and the dual

problem (2.9.1) is characterized in terms of the auxiliary process A:

At ≡
1

Mt

Et
[∫ T

t

Ms exp {− (α− β) (s− t)} ds

]
.

We can view At as the time t price of a bond paying a continuous coupon. In case

the investment opportunity set is constant, At only depends on time t. As a direct

consequence, the optimal portfolio choice can be computed explicitly in this case. The

dual state price density M̂t and the dual initial wealth Ŵ0 are given by

M̂t ≡Mt (1 + βAt) , Ŵ0 ≡
W0 − A0θ0

1 + βA0

.

Furthermore, the dual reference level

θ̂s = β

∫ s

t

exp {− (α− β) (s− u)} ĉu du+ exp {− (α− β) (s− t)} θ̂t, s ≥ t ≥ 0,

is equal to the agent’s reference level θs.

Surplus wealth Ŵt is defined as follows:

Ŵt ≡
1

M̂t

Et
[∫ T

t

M̂sĉs ds

]
.

Surplus wealth Ŵt is invested in a dual financial market that is characterized by the dual

risk-free rate r̂t, the dual volatility σ̂t and the dual market price of risk λ̂t:

r̂t ≡ β +
rt − αβAt
1 + βAt

, σ̂t ≡ σt,
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λ̂t ≡ λt −
β

1 + βAt

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Here, Pt,s corresponds to the time t price of a default-free unit discount bond that matures

at time s ≥ t and Ψt,s stands for the time t volatility of the instantaneous return on

such a bond (all in the primal financial market). The optimal dual portfolio choice π̂∗t is

determined such that it finances the optimal surplus consumption choice ĉ ∗t .

The next proposition is adapted from Schroder and Skiadas (2002).

Proposition 4. Suppose that we have solved the dual problem (2.9.1). Let us denote

the optimal surplus consumption choice by ĉ ∗t , the optimal dual reference level by θ̂ ∗t , the

optimal surplus wealth by Ŵ ∗
t and the optimal dual portfolio choice by π̂∗t . Then:

• The optimal consumption for the agent at time 0 ≤ t ≤ T is given by

c∗t = ĉ ∗t + θ̂ ∗t .

• The optimal wealth for the agent at time 0 ≤ t ≤ T is given by

W ∗
t = Ŵ ∗

t + βAtŴ
∗
t + Atθ̂

∗
t .

• The optimal portfolio choice for the agent at time 0 ≤ t ≤ T is given by

π∗t = π̂∗t + βAtπ̂
∗
t +

(
βŴ ∗

t + θ̂ ∗t

)
(σ̂t)

−1

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Proposition 4 shows how to transform the optimal solution to the dual problem (2.9.1)

back into the optimal solution to the agent’s maximization problem (2.5.1).

2.9.2. Proofs

Proof of Theorem 1

The proof uses some of the techniques developed by Basak and Shapiro (2001) and

Berkelaar et al. (2004) to deal with pseudo-concavity and non-differentiability aspects of

the problem and adapts these to our setting with intertemporal consumption.
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The dual problem, equivalent to the agent’s maximization problem (2.5.1), is given

by

maximize
ĉ

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Ŵ0 (1 + βA0) , ĉt ≥ −Lt for all t ∈ [0, T ].

The corresponding Lagrangian L is defined as follows:

L = E
[∫ T

0

exp {−δt} v (ĉt) dt

]
+ y

(
Ŵ0 (1 + βA0)− E

[∫ T

0

M̂tĉt dt

])
=

∫ T

0

E
[
exp {−δt} v (ĉt)− yM̂tĉt

]
dt+ yŴ0.

Here, y denotes the Lagrange multiplier associated with the static budget constraint. The

agent wishes to maximize exp {−δt} v (ĉt)− yM̂tĉt subject to ĉt ≥ −Lt. Denote the part

of the two-part power utility function with domain below zero by v1, and the part with

domain above zero by v2. Let us denote by c∗1t the agent’s optimal surplus consumption

choice for utility function v1, and by c∗2t the agent’s optimal surplus consumption choice

for utility function v2.

We first consider the case where the agent is risk-averse in the loss domain. Due to

the concavity of v1 and v2, the optimal surplus consumption choices c∗1t and c∗2t satisfy

the following optimality conditions:31

exp {−δt} v′j
(
c∗jt
)

= yM̂t − xjt, c∗jt ≥ −Lt, for j = 1, 2,

xjt
(
c∗jt + Lt

)
= 0, xjt ≥ 0, for j = 1, 2.

Here, xjt denotes the Lagrange multiplier associated with the constraint on surplus

consumption. After solving the optimality conditions, we obtain the following two local

maxima:

c∗1t = −
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
, c∗2t =

(
ktM̂t

) 1
γ2−1

.

Here, lt ≡ y exp {δt} · 1
κγ1

and kt ≡ y exp {δt} · 1
γ2

.

31The derivative of a function f at a point a is denoted by f ′(a).
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To determine the global maximum ĉ ∗t , we introduce the following function:

f
(
M̂t

)
= exp {−δt} v (c∗2t)− yM̂tc

∗
2t −

[
exp {−δt} v (c∗1t)− yM̂tc

∗
1t

]
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

+ κ exp {−δt}
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]γ1

− yM̂t

[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
.

The global maximum ĉ ∗t is equal to c∗2t if f
(
M̂t

)
≥ 0; and equals c∗1t otherwise. It

follows that limM̂t→∞
f
(
M̂t

)
= −∞, limM̂t→0 f

(
M̂t

)
=∞ and f ′

(
M̂t

)
< 0 for all M̂t.

Hence, f
(
M̂t

)
is strictly decreasing. As a direct consequence, f

(
M̂t

)
has one zero in

the interval (0,∞). Define ξt to be such that f (ξt) = 0. The global maximum ĉ ∗t is

equal to c∗2t if M̂t ≤ ξt; and equals c∗1t otherwise.

We now consider the case where the agent is risk-seeking in the loss domain. Due

to the concavity of v2, the optimal surplus consumption choice c∗2t satisfies the following

optimality conditions:

exp {−δt} v′2
(
c∗jt
)

= yM̂t − x2t, c∗2t ≥ −Lt,

x2t (c∗2t + Lt) = 0, x2t ≥ 0.

After solving the optimality conditions, we obtain the following local maximum:

c∗2t =
(
ktM̂t

) 1
γ2−1

.

Due to the convexity of v1, the optimal surplus consumption choice c∗1t lies at a corner

point of the feasible region. Hence, the only two possible candidates for c∗1t are −Lt and

0.

To determine the global maximum ĉ ∗t , we introduce the following function:

g
(
M̂t

)
= exp {−δt} v (c∗2t)− yM̂tc

∗
2t −

[
exp {−δt} v (c∗1t)− yM̂tc

∗
1t

]
.

The global maximum ĉ ∗t is equal to c∗2t if g
(
M̂t

)
≥ 0; and equals c∗1t otherwise. We

distinguish between the following two cases:
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• c∗1t = 0. Straightforward computations show that g
(
M̂t

)
is given by

g
(
M̂t

)
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

.

Since 0 < γ2 < 1 and y > 0, it follows that g
(
M̂t

)
> 0 for all M̂t. We conclude

that c∗1t = 0 is never optimal.

• c∗1t = −Lt. Straightforward computations show that g
(
M̂t

)
is given by

g
(
M̂t

)
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

+ exp {−δt}κLγ1
t − yM̂tLt.

It follows that g
(
M̂t

)
> 0 for all M̂t ≤ κ

y
exp {−δt}Lγ1−1

t . Also, limM̂t→∞
g
(
M̂t

)
=

−∞ and g′
(
M̂t

)
< 0 for all M̂t. Hence, g

(
M̂t

)
is strictly decreasing. As a direct

consequence, g
(
M̂t

)
has one zero in the interval

(
κ
y

exp {−δt}Lγ1−1
t ,∞

)
. Define

ξt to be such that g (ξt) = 0. It follows that the global maximum ĉ ∗t is equal to c∗2t

if M̂t ≤ ξt; and equals c∗1t otherwise.

A standard verification (see, e.g., Karatzas and Shreve, 1998, p. 103) that the optimal

solutions obtained from the Lagrangian are the optimal solutions to the dual problem

completes the proof. Q.E.D.

Proof of Proposition 1

We distinguish between the following two cases:

• Risk-averse behavior in the loss domain. Define the following function:

f̃(x) ≡ (1− γ2)

(
x

γ2

) γ2
γ2−1

+ κ

[(
x

γ1κ

) 1
γ1−1

∧ Lt

]γ1

− x

[(
x

γ1κ

) 1
γ1−1

∧ Lt

]
.

Let ξ̃t be such that f̃
(
ξ̃t

)
= 0. It follows that ξ̃t = y exp {δt} ξt. The quantity ξ̃t

increases as the loss aversion index κ increases. Furthermore, initial surplus wealth

Ŵ0 decreases with the initial reference level θ0, increases with the depreciation

parameter α (provided that Ŵ0 is non-negative), and decreases with the endogeneity

parameter β (provided that Ŵ0 is non-negative).
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• Risk-seeking behavior in the loss domain. Define the following function:

g̃ (x) ≡ (1− γ2)

(
x

γ2

) γ2
γ2−1

+ κLγ1
t − xLt.

Let ξ̃t be such that g̃
(
ξ̃t

)
= 0. It follows that ξ̃t = y exp {δt} ξt. The quantity ξ̃t

increases as the loss aversion index κ increases. Furthermore, initial surplus wealth

Ŵ0 decreases with the initial reference level θ0, increases with the depreciation

parameter α (provided that Ŵ0 is non-negative), and decreases with the endogeneity

parameter β (provided that Ŵ0 is non-negative).

The proposition now follows straightforwardly from Berkelaar et al. (2004). Q.E.D.

Proof of Proposition 2

Optimal surplus wealth is given by

Ŵ ∗
t =

1

M̂t

Et
[∫ T

t

M̂sĉ
∗
s ds

]
. (2.9.2)

We first consider the case where the agent is risk-averse in the loss domain. Substituting

the optimal surplus consumption choice ĉ ∗s into equation (2.9.2) yields

Ŵ ∗
t =

1

M̂t

Et

[∫ T

t

M̂s

(
ksM̂s

) 1
γ2−1

1[M̂s≤ξs] ds

−
∫ T

t

M̂s

(
lsM̂s

) 1
γ1−1

1[ξs<M̂s<ξs∨ζs] ds−
∫ T

t

M̂sLs1[M̂s≥ξs∨ζs] ds

]

=
(
ktM̂t

) 1
γ2−1 Et

∫ T

t

(
M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs] ds


−
(
ltM̂t

) 1
γ1−1 Et

∫ T

t

(
M̂s

M̂t

) γ1
γ1−1

exp

{
δ(s− t)
γ1 − 1

}
1[ξs<M̂s<ξs∨ζs] ds


− Et

[∫ T

t

M̂s

M̂t

Ls1[M̂s≥ξs∨ζs] ds

]
.

(2.9.3)

Here, ζs ≡ exp {−δs} γ1κ
y
Lγ1−1
s . The closed-form expression for Ŵ ∗

t can be determined

by computing the conditional expectations. In case the investment opportunity set is
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constant, we find

Et

[
M̂s

M̂t

Ls1[M̂s≥ξs∨ζs]

]
= exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs ∨ ζs)] , (2.9.4)

Et

(M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs]

 = exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] , (2.9.5)

Et

(M̂s

M̂t

) γ1
γ1−1

exp

{
δ(s− t)
γ1 − 1

}
1[ξs<M̂s<ξs∨ζs]

 = exp

{
−
∫ s

t

Πu du

}
×
(
N [d3 (ξs ∨ ζs)]−N [d3 (ξs)]

)
.

(2.9.6)

Here, N is the cumulative distribution function of a standard normal random variable,

and Γu, Πu, d1(x), d2(x) and d3(x) are defined as follows:

Γu ≡
δ − γ2r̂u
1− γ2

− 1

2

γ2

(1− γ2)2 ||λ||
2, Πu ≡

δ − γ1r̂u
1− γ1

− 1

2

γ1

(1− γ1)2 ||λ||
2,

d1(x) ≡ 1

||λ||
√
s− t

·
[
log(x)− log

(
M̂t

)
+

∫ s

t

r̂u du− 1

2
||λ||2(s− t)

]
,

d2(x) ≡ d1(x) +
||λ||

1− γ2

√
s− t, d3(x) ≡ d1(x) +

||λ||
1− γ1

√
s− t.

Substituting the conditional expectations (2.9.4), (2.9.5) and (2.9.6) into equation (2.9.3)

yields the optimal surplus wealth.
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We now consider the case where the agent is risk-seeking in the domain of losses.

Substituting the optimal surplus consumption choice ĉ ∗s into equation (2.9.2) yields

Ŵ ∗
t =

1

M̂t

Et

[∫ T

t

M̂s

(
ksM̂s

) 1
γ2−1

1[M̂s≤ξs] ds−
∫ T

t

M̂sLs1[M̂s>ξs] ds

]

=
(
ktM̂t

) 1
γ2−1 Et

∫ T

t

(
M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs] ds


− Et

[∫ T

t

M̂s

M̂t

Ls1[M̂s>ξs] ds

]
.

(2.9.7)

The closed-form expression for Ŵ ∗
t can be determined by computing the conditional

expectations. In case the investment opportunity set is constant, we find

Et

[
M̂s

M̂t

Ls1[M̂s>ξs]

]
= exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs)] , (2.9.8)

Et

(M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs]

 = exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] . (2.9.9)

Substituting the conditional expectations (2.9.8) and (2.9.9) into equation (2.9.7) yields

the optimal surplus wealth. Q.E.D.

Proof of Theorem 3

The proof uses some of the techniques developed by Basak and Shapiro (2001) and

Berkelaar et al. (2004) and adapts these to our setting with intertemporal consumption.

The agent’s maximization problem is given by

maximize
c

E
[∫ T

0

exp {−δt}u (ct; θt) dt

]
subject to E

[∫ T

0

Mtct dt

]
≤ W0, ct ≥ 0 for all t ∈ [0, T ].

60



Appendix

The corresponding Lagrangian L is defined as follows:

L = E
[∫ T

0

exp {−δt}u (ct; θt) dt

]
+ y

(
W0 − E

[∫ T

0

Mtct dt

])
=

∫ T

0

E [exp {−δt}u (ct; θt)− yMtct] dt+ yW0.

Here, y denotes the Lagrange multiplier associated with the static budget constraint.

The agent wishes to maximize exp {−δt}u (ct; θt)− yMtct subject to ct ≥ 0. Denote the

part of the utility function with domain below zero by u1, and the part with domain

above zero by u2. Let us denote by c∗1t the agent’s optimal consumption choice for utility

function u1, and by c∗2t the agent’s optimal consumption choice for utility function u2.

Due to the concavity of u1 and u2, the optimal consumption choices c∗1t and c∗2t satisfy

the following optimality conditions:

exp {−δt}u′j
(
c∗jt; θt

)
= yMt − xjt, c∗jt ≥ 0, for j = 1, 2,

xjtc
∗
jt = 0, xjt ≥ 0, for j = 1, 2.

Here, xjt denotes the Lagrange multiplier associated with the non-negativity constraint

on consumption. After solving the optimality conditions, we obtain the following two

local maxima:

c∗1t = min

{
θt,

[
ϕ

ρ

(
y exp {δt}Mt

ρκ̄

)− 1
ϕ

− ψϕ

ρ

]
∨ 0

}
,

c∗2t = max

{
θt,

ϕ

ρ

(
y exp {δt}Mt

ρ

)− 1
ϕ

− ψϕ

ρ

}
.

Here, κ̄ ≡ η + (1− η) · κ.

To determine the global maximum c∗t , we introduce the following function:

f (Mt) = exp {−δt}u (c∗2t; θt)− yMtc
∗
2t − [exp {−δt}u (c∗1t; θt)− yMtc

∗
1t] .

The global maximum is equal to c∗2t if f (Mt) ≥ 0; and equals c∗1t otherwise. It follows that

f (Mt) changes sign at ξ
t

= ρ
y

exp {−δt}
(
ρ
ϕ
θt + ψ

)−ϕ
and ξt = ρκ̄

y
exp {−δt}

(
ρ
ϕ
θt + ψ

)−ϕ
.

We consider the following three cases:
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Chapter 2. Optimal Choice under Loss Aversion and Endogenous Updating

• ξ
t
≤ Mt ≤ ξt. It follows that θt is the only candidate solution. We conclude that

c∗t = θt is the global maximum.

• Mt > ξt. We compare the candidate solutions c∗1t =

[
ϕ
ρ

(
y exp{δt}Mt

ρκ̄

)− 1
ϕ − ψϕ

ρ

]
∨ 0

and c∗2t = θt. Some straightforward computations show that f
(
ξt
)

= 0, f ′
(
ξt
)

= 0

and f ′′ (Mt) < 0 for all Mt > ξt. Hence, f (Mt) < 0 for all Mt > ξt. We conclude

that c∗t = c∗1t is the global maximum.

• Mt < ξ
t
. We compare the candidate solutions c∗1t = θt and c∗2t = ϕ

ρ

(
y exp{δt}Mt

ρ

)− 1
ϕ−

ψϕ
ρ

. Some straightforward computations show that f
(
ξ
t

)
= 0, f ′

(
ξ
t

)
= 0 and

f ′′
(
ξ
t

)
> 0 for all Mt < ξ

t
. Hence, f (Mt) > 0 for all Mt < ξ

t
. We conclude that

c∗t = c∗2t is the global maximum.

A standard verification (see, e.g., Karatzas and Shreve, 1998, p. 103) that the optimal

solution obtained from the Lagrangian is the optimal solution to the static maximization

problem completes the proof. Q.E.D.

Proof of Proposition 3

Optimal wealth is given by

W ∗
t =

1

Mt

Et
[∫ T

t

Msc
∗
s ds

]
. (2.9.10)
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Substituting the optimal consumption choice into equation (2.9.10) yields

W ∗
t =

1

Mt

Et
[∫ T

t

Msθs1[ξs≤Ms≤ξs] ds

+

∫ T

t

Ms

{
ϕ

ρ

(
y exp {δs}Ms

ρ

)− 1
ϕ

− ψϕ

ρ

}
1[Ms<ξs]

ds

+

∫ T

t

Ms

{
ϕ

ρ

(
y exp {δs}Ms

ρκ̄

)− 1
ϕ

− ψϕ

ρ

}
1[ξs<Ms<ξ

∗
s] ds

]

= Et
[∫ T

t

Ms

Mt

θs1[ξs≤Ms≤ξs] ds

]
+
ϕ

ρ

(
y exp {δt}

ρ

)− 1
ϕ

M
− 1
ϕ

t Et

[∫ T

t

{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[Ms<ξs]

ds

]

− ψϕ

ρ
Et
[∫ T

t

Ms

Mt

1[Ms<ξs]
ds

]
+
ϕ

ρ

(
y exp {δt}

ρκ̄

)− 1
ϕ

M
− 1
ϕ

t Et

[∫ T

t

{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[ξs<Ms<ξ

∗
s] ds

]

− ψϕ

ρ
Et
[∫ T

t

Ms

Mt

1[ξs<Ms<ξ
∗
s] ds

]
.

(2.9.11)

Here, ξ
∗
s ≡ ψ

−ϕ
ρκ̄

y exp{δt} . The closed-form expression for W ∗
t can be determined by computing

the conditional expectations. In case the investment opportunity set is constant, we find

Et

[{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[Ms<ξs]

]
= exp {−C(s− t)}N

[
d2

(
ξ
s

)]
, (2.9.12)

Et

[{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[ξs<Ms<ξ

∗
s]

]
= exp {−C(s− t)}

×
(
N
[
d2

(
ξ
∗
s

)]
−N

[
d2

(
ξs
)] )

,

(2.9.13)

Et
[
Ms

Mt

θs1[ξs≤Ms≤ξs]

]
= θs exp {−r(s− t)}

(
N
[
d1

(
ξs
)]
−N

[
d1

(
ξ
s

)])
, (2.9.14)
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Et
[
Ms

Mt

1[ξs<Ms<ξ
∗
s]

]
= exp {−r(s− t)}

(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

, (2.9.15)

Et
[
Ms

Mt

1[Ms<ξs]

]
= exp {−r(s− t)}N

[
d1

(
ξ
s

)]
. (2.9.16)

Here, N is the cumulative distribution function of a standard normal random variable,

and C, d1(x) and d2(x) are defined as follows:

C =
δ + r(ϕ− 1)

ϕ
+

1

2

ϕ− 1

ϕ2 ||λ||
2,

d1(x) =
1

||λ||
√
s− t

[
log(x)− log(Mt) +

(
r − 1

2
||λ||2

)
(s− t)

]
,

d2(x) = d1(x) +
1

ϕ
||λ||
√
s− t.

Substituting the conditional expectations (2.9.12) – (2.9.16) into equation (2.9.11) yields

the optimal wealth. Q.E.D.

2.9.3. Welfare Analysis

This appendix describes a numerical procedure for computing welfare losses. This

procedure is based on the assumptions that the investment opportunity set is constant

and the agent can only invest in one risky stock. We introduce the following notation:

• ∆t: time step;

• tn ≡ n∆t for n = 0, ...,
⌊
T
∆t

⌋
;

• S: total number of simulations.

The floor operator b·c rounds a number downward to its nearest integer.

To compute the welfare loss associated with a suboptimal consumption strategy ct,

we apply the following steps:
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1. We generate S trajectories of the pricing kernel:

M s
tn+1

= M s
tn
− rM s

tn
∆t− λM s

tn

√
∆tεstn , n = 0, ...,

⌊
T

∆t

⌋
, s = 1, ...,S.

Here, εstn is a standard normally distributed random variable.

2. We compute the optimal surplus consumption choice ĉ ∗stn for n = 0, ...,
⌊
T
∆t

⌋
and

s = 1, ...,S. We note that the optimal surplus consumption choice ĉ ∗stn is a function

of the dual state price density M̂ s
tn
≡M s

tn

(
1 + βAtn

)
. Expected utility can now be

approximated by

E
[∫ T

0

exp {−δt} v (ĉ ∗t ) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ ∗stn
)

∆t. (2.9.17)

The right-hand side of (2.9.17) approximates of E
[∫ T

0
exp {−δt} v (c∗t − θ∗t ) dt

]
.

3. We solve for certainty equivalent consumption ce∗:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ ∗stn
)

∆t =

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ce∗ − θ∗tn

)
∆t,

where

θ∗tn = θ0 exp {−αtn}+ β
n−1∑
i=0

exp {−α (tn − ti)} ce∗∆t.

4. We compute the suboptimal consumption strategy ĉ stn ≡ cstn−θ
s
tn

for n = 0, ...,
⌊
T
∆t

⌋
and s = 1, ...,S. Expected utility can now be approximated by

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ stn
)

∆t.

5. We solve for certainty equivalent consumption ce:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ stn
)

∆t =

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ce− θtn

)
∆t,
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where

θtn = θ0 exp {−αtn}+ β

n−1∑
i=0

exp {−α (tn − ti)} ce∆t.

6. Finally, we compute the welfare loss WL:

WL =
ce∗ − ce
ce∗

.
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Chapter 3

Dynamic Consumption and

Portfolio Choice under

Cumulative Prospect Theory32

This chapter explicitly derives the optimal dynamic consumption and portfolio choice

of an agent with cumulative prospect theory preferences. Specifically, the agent is loss

averse, distorts probabilities, and endogenously updates his reference level over time. The

optimal strategy seeks to mitigate large year-on-year fluctuations in consumption and

aims to provide protection against downside risk. The first effect is due to endogenous

updating of the reference level while the second effect is due to loss aversion and probability

weighting. We show that if small probabilities are sufficiently overweighted, our model

generates an endogenous floor on consumption.

3.1. Introduction

Since the seminal papers of Merton (1969) and Samuelson (1969), optimal consumption

and portfolio choice over the life cycle has been extensively studied in the economics and

finance literature. Most authors assume that preferences over consumption choices are

represented by CRRA utility (see, e.g., Wachter, 2002; Liu, 2007), by Epstein-Zin utility

(see, e.g., Chacko and Viceira, 2005; Gomes and Michaelides, 2008) or by habit formation

utility (see, e.g., Gomes and Michaelides, 2003; Munk, 2008). However, an extensive body

of literature in behavioral economics and finance documents experimentally as well as

empirically departures from the key assumptions underlying these preference models, in

a wide variety of risky choice situations. In response, the literature has developed several

32This chapter is co-authored with Roger Laeven.
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alternative theories of decision making under risk. Cumulative prospect theory (CPT

for short), introduced by Tversky and Kahneman (1992), is currently perhaps the most

promising descriptive theory of decision making under risk. This chapter derives and

analyzes the optimal dynamic consumption and portfolio choice of an agent with CPT

preferences.

Specifically, we consider an agent that derives value from the difference between

consumption and a so-called reference level. If consumption exceeds the reference level,

the agent experiences a gain, while if consumption falls short of the reference level, the

agent experiences a loss. CPT is silent on how to update the reference level over time.

We follow the (internal) habit formation literature (see, e.g., Constantinides, 1990) and

assume that the reference level depends on the agent’s own past consumption choices.33

As a direct consequence, consumption responds gradually to financial shocks (see Chapter

2). Our agent has a two-part power utility function and two inverse S-shaped probability

weighting (or distortion) functions (one for gains and one for losses). The utility function

incorporates loss aversion (i.e., losses hurt more than gains satisfy), and the probability

weighting functions overweight small probabilities and underweight large probabilities.34

The literature on optimal consumption and portfolio choice under CPT preferences

is still immature.35 Gomes (2005) explores the optimal portfolio choice of a loss averse

agent in an economy with two states of nature, and analyzes the impact of loss aversion

on trading volume. Berkelaar et al. (2004) examine the optimal portfolio choice of a

loss averse agent in a setting with terminal wealth and a continuum of states of nature.

Chapter 2 includes intertemporal consumption choice in this setting and allows the agent

to endogenously update his reference level over time. The model of Chapter 2 does,

however, not accommodate probability weighting. Jin and Zhou (2008) and He and

Zhou (2011) study the optimal portfolio choice of an agent that maximizes CPT value of

terminal wealth. Although these authors take probability weighting into consideration,

they do not consider intertemporal consumption choice and an endogenous reference

level. The present chapter considers a preference model that encompasses intertemporal

33The reference level is backward-looking and not forward-looking as in Kőszegi and Rabin (2006, 2007,
2009).

34An extensive body of literature shows that individuals overweight low probabilities and underweight
large probabilities (see, e.g., Wu and Gonzalez, 1996; Abdellaoui, 2000; Bleichrodt and Pinto, 2000).

35Several authors use CPT preferences to explain interesting features observed in financial data. For
example, Benartzi and Thaler (1995) find that loss aversion helps to explain the equity premium
puzzle.
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consumption choice, an endogenous reference level, as well as probability weighting.

Our results can be summarized as follows. First, we find that the agent divides the

state of the economy into two categories: good states and bad states. In good states,

consumption is larger than the reference level, while in really bad states, consumption is

smaller than the reference level. The consumption profile (i.e., consumption as a function

of the log state price density) displays a 90◦ rotated S-shaped pattern. Second, the two

inverse S-shaped probability weighting functions impede the sensitivity of the optimal

consumption choice to the state of the economy, inducing endogenous guarantees. In

particular, both the occurrence of really bad states and of fairly good states impact the

optimal consumption choice only to a limited degree. Thus, under probability weighting,

optimal consumption is fairly unresponsive to a wide range of shocks to the economy.

Finally, if small probabilities are sufficiently overweighted, our preference model generates

an endogenous floor level. We explicitly derive the level of this floor on consumption.

Probability weighting may thus explain why some individuals buy financial products

with minimum guaranteed payments.

The optimal portfolio profile (i.e., the fraction of wealth invested in the risky stock

as a function of the log state price density) displays a U-shaped pattern if probabilities

are not distorted (see Chapter 2): the fraction of wealth invested in the risky stock is

relatively low in economic scenarios where consumption is close to the reference level

(i.e., intermediate economic scenarios). If the agent overweights probabilities of bad

outcomes, then the fraction of assets invested in the risky stock is relatively low in not

only intermediate economic scenarios but also bad economic scenarios.

We conduct a welfare analysis to investigate the impact of implementing alternative

(suboptimal) consumption strategies on the agent’s welfare. More specifically, all else

equal, we compute welfare losses (in terms of the relative decline in certainty equivalent

consumption) associated with incorrect probability weighting functions. We still assume

that the (incorrectly specified) probability weighting functions are inverse S-shaped. Our

results show that welfare losses can be (relatively) modest. This is so because, due to loss

aversion, consumption already displays a 90◦ rotated S-shaped pattern, and the inverse

S-shaped probability weighting functions, whether correctly or incorrectly specified, make

this pattern even more pronounced.

To obtain the optimal consumption and portfolio choice, we first invoke the solution
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technique proposed by Schroder and Skiadas (2002). With this method, we are able to

convert our consumption and portfolio choice model with endogenous updating into a

dual consumption and portfolio choice model without endogenous updating. Then, we

solve the dual problem by extending to our setting the quantile method introduced

by Jin and Zhou (2008) and He and Zhou (2011). These authors show that in a

setting with terminal wealth and no endogenous updating of the reference level, the

agent’s maximization problem can be transformed into a quantile formulation. As a

result, conventional techniques (such as the Lagrange method) can be used to obtain

the optimal solution. We adapt the quantile method to our setting with intertemporal

consumption choice. By using the equivalence relationship between the dual model and

the primal model, we finally obtain explicit closed-form solutions to our initial problem

under consideration.

The remainder of this chapter is structured as follows. Section 3.2 describes the

economy. The agent’s preferences are introduced in Section 3.3. Section 3.4 formulates

the agent’s maximization problem. This section also outlines the dual technique and

splits the dual problem into three related sub-problems. Section 3.5 solves the agent’s

maximization problem. An illustration of the optimal strategies is presented in Section

3.6. Section 3.7 concludes the chapter. Proofs are relegated to the Appendix.

3.2. The Economy

Let T > 0 be a fixed terminal time. The randomness in the economy is represented by a

filtered probability space (Ω,F ,F,P). We define on this space a standard N -dimensional

Brownian motion {Zt}t∈[0,T ]. The filtration F ≡ {Ft}t∈[0,T ] is the augmentation under P of

the natural filtration generated by the standard Brownian motion {Zt}t∈[0,T ]. Throughout,

(in)equalities between random variables hold P-almost surely.

We consider a financial market consisting of an instantaneously risk-free asset and N

risky stocks. We assume that trading takes place continuously over [0, T ] and transaction

costs are absent. The price of the risk-free asset, B, satisfies

dBt

Bt

= rt dt, B0 = 1. (3.2.1)
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The scalar-valued risk-free rate process, r, is assumed to be Ft-progressively measurable

and uniformly bounded. The N -dimensional vector of risky stock prices, S, obeys the

following stochastic differential equation:

dSt
St

= µt dt+ σt dZt, S0 = 1N . (3.2.2)

Here, 1N represents an N -dimensional vector consisting of all ones. The N -dimensional

mean rate of return process, µ, and the (N ×N)-matrix-valued volatility process, σ, are

both assumed to be Ft-progressively measurable and uniformly bounded.

We impose the following condition on σt. For some ε > 0,

ζ>σtσ
>
t ζ ≥ ε||ζ||2, for all ζ ∈ RN , (3.2.3)

where > is the transpose sign. This condition implies that σt is invertible and bounded.

The Ft-progressively measurable market price of risk process, λ, satisfies

σtλt ≡ µt − rt1N . (3.2.4)

The unique positive-valued state price density process, M , is defined as follows (see, e.g.,

Karatzas and Shreve, 1998):

Mt ≡ exp

{
−
∫ t

0

rs ds−
∫ t

0

λ>s dZs −
1

2

∫ t

0

||λs||2 ds

}
. (3.2.5)

The economy consists of a single agent endowed with initial wealth W0 ≥ 0. The agent

chooses an Ft-progressively measurable N -dimensional portfolio process π (representing

the dollar amounts invested in the N risky stocks) and an Ft-progressively measurable

consumption process c in order to maximize the CPT value of consumption.36 We impose

the following integrability conditions:

∫ T

0

π>t σtσ
>
t πt dt <∞,

∫ T

0

∣∣πt (µt − rt1N)
∣∣ dt <∞, E

[∫ T

0

|ct|2 dt

]
<∞.

(3.2.6)

36We introduce the agent’s preferences in Section 3.3.
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The wealth process, W , satisfies the following dynamic budget constraint:

dWt =
(
rtWt + π>t σtλt − ct

)
dt+ π>t σt dZt, W0 ≥ 0 given. (3.2.7)

A consumption-portfolio pair (c, π) is said to be admissible if the associated wealth

process is uniformly bounded from below.

3.3. Preferences

This section describes the preferences. Denote by θt the agent’s reference level at time t.

The instantaneous preferences are defined over gains and losses relative to this reference

level. Inspired by CPT, we assume that the instantaneous preferences over gains and

losses ĉt ≡ ct − θt are given by

V (ĉt) ≡ V+

(
ĉ+
t

)
− V−

(
ĉ−t
)
. (3.3.1)

Here V+

(
ĉ+
t

)
denotes the CPT value derived from gains ĉ+

t ≡ max {ĉt, 0} and V−
(
ĉ−t
)

stands for the CPT value derived from losses ĉ−t ≡ −min {ĉt, 0}. More specifically,

V+

(
ĉ+
t

)
≡
∫ ∞

0

v+ (x) d
[
−w+

(
1− F

ĉ
+
t

(x);ϑt

)]
, (3.3.2)

V−
(
ĉ−t
)
≡
∫ ∞

0

v− (x) d
[
−w−

(
1− F

ĉ
−
t

(x);ϑt

)]
. (3.3.3)

Equations (3.3.2) and (3.3.3) show that the agent’s preferences consist of various elements:

two probability weighting functions w+ (·;ϑt) and w− (·;ϑt) (one for gains and one for

losses), an endogenous reference level θt, and two instantaneous utility functions v+ (·)

and v− (·) (one for gains and one for losses). Here ϑt is a vector of (time-varying)

parameters affecting the shape of the probability weighting functions. Indeed, since

uncertainty changes over time, the agent may want to change the shape of the probability

weighting functions as time passes.
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3.3.1. Probability Weighting Functions

The probability weighting function w+ (·;ϑt) transforms the decumulative distribution

function 1 − F
ĉ

+
t

(·) of gains ĉ+
t whereas the probability weighting function w− (·;ϑt)

transforms the decumulative distribution function 1− F
ĉ
−
t

(·) of losses ĉ−t . Throughout,

we impose the following conditions on w+ (·;ϑt) and w− (·;ϑt):

Assumption 1. Let Θ be the parameter space. For all t ∈ [0, T ] and all ϑt ∈ Θ,

w+ (·;ϑt) and w− (·;ϑt) : [0, 1] 7→ [0, 1] are strictly increasing and differentiable, with

w+ (0;ϑt) = w− (0;ϑt) = 0 and w+ (1;ϑt) = w− (1;ϑt) = 1.

If w+ (·;ϑt) is equal to the identity function, then equation (3.3.2) reduces to the ordinary

expectation E
[
v+

(
ĉ+
t

)]
. Hence, expected utility maximization emerges as a special case

of (3.3.1).

3.3.2. Utility Functions

This section introduces the utility function for gains v+ (·) and the utility function for

losses v− (·). Following the CPT literature (see, e.g., Tversky and Kahneman, 1992), we

assume that

v+

(
ĉ+
t

)
=
(
ĉ+
t

)γ2 , (3.3.4)

v−
(
ĉ−t
)

= κ
(
ĉ−t
)γ1 , (3.3.5)

where γ1 > 0 and γ2 ∈ (0, 1) are curvature parameters, and κ ≥ 1 denotes the loss

aversion index. Figure 3.1 shows the two-part power utility function

v (ĉt) ≡ v+

(
ĉ+
t

)
− v−

(
ĉ−t
)

(3.3.6)

for γ1 = 1.3 (solid line) and γ1 = 0.7 (dash-dotted line). The figure shows that the

two-part power utility function has a kink at the reference level, even in the case of

κ = 1.
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Figure 3.1.

Illustration of the two-part power utility function
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The figure shows the two-part power utility function for γ1 = 1.3 (solid line) and γ1 = 0.7
(dash-dotted line). The agent’s reference level is set equal to 10, the loss aversion index κ to
2.5 and γ2 to 0.5.

3.3.3. Reference Level

This section describes the dynamics of the reference level θt. Motivated by the literature

on internal habit formation (see, e.g., Constantinides, 1990; Detemple and Zapatero,

1992; Detemple and Karatzas, 2003), we assume that the agent’s reference level satisfies

dθt = (βct − αθt) dt, θ0 ≥ 0 given. (3.3.7)

Here θ0 represents the agent’s initial reference level, α ≥ 0 indexes the rate at which the

reference level depreciates over time, and β ≥ 0 measures the sensitivity of the current

reference level to current consumption. We can explicitly write the agent’s reference level

as follows (s ≥ t):

θs = β

∫ s

t

exp {−α(s− u)} cu du+ exp {−α(s− t)} θt. (3.3.8)
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The first component on the right-hand side of equation (3.3.8) is an exponentially

weighted integral of the agent’s own past consumption choices. Hence, the agent’s

reference level is backward-looking and not forward-looking as in Kőszegi and Rabin

(2006, 2007). The second component does not depend on the agent’s past consumption

choices and decreases exponentially at a rate of α.

3.4. Problem Formulation

This section formulates the agent’s maximization problem. The agent aims to maximize

∫ T

0

e−δtV (ct − θt) dt, (3.4.1)

over all admissible consumption-portfolio pairs (c, π) subject to the dynamic budget

constraint (3.2.7) and the reference level process (3.3.7). Here δ stands for the subjective

rate of time preference. By virtue of the martingale approach (Pliska, 1986; Karatzas

et al., 1987; Cox and Huang, 1989, 1991), we can transform the dynamic consumption

and portfolio choice problem into the following equivalent static problem:

Maximize
c

∫ T

0

e−δtV (ct − θt) dt

subject to E
[∫ T

0

Mtct dt

]
≤ W0, dθt = (βct − αθt) dt.

(3.4.2)

The optimal portfolio strategy π∗t is determined in such a way that it finances the optimal

consumption strategy c∗t .

3.4.1. A Dual Problem

This section transforms the agent’s maximization problem (3.4.2) into a dual (equivalent)

maximization problem. Specifically, by invoking the method used in Schroder and

Skiadas (2002), we can transform the agent’s maximization problem (3.4.2) into the
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following dual problem:

Maximize
ĉ

∫ T

0

e−δtV (ĉt) dt

subject to E
[∫ T

0

M̂tĉt dt

]
≤ Ŵ0 (1 + βA0) , dθ̂t =

(
β ĉt − (α− β)θ̂t

)
dt.

(3.4.3)

Here the dual state price density M̂t and dual wealth Ŵt are defined as follows:

M̂t ≡Mt (1 + βAt) , (3.4.4)

Ŵt ≡
Wt − Atθ̂t
1 + βAt

, (3.4.5)

with

At ≡
1

Mt

Et
[∫ T

t

Ms exp {− (α− β) (s− t)} ds

]
. (3.4.6)

The dual reference level is given by (s ≥ t)

θ̂s = β

∫ s

t

exp {− (α− β) (s− u)} ĉu du+ exp {− (α− β) (s− t)} θ̂t. (3.4.7)

and equals the (primal) reference level θs. The agent invests his dual (or surplus) wealth

Ŵt in a dual financial market. This dual market is characterized by the dual risk-free

rate r̂t, the dual volatility σ̂t and the dual market price of risk λ̂t:

r̂t ≡ β +
rt − αβAt
1 + βAt

, (3.4.8)

σ̂t ≡ σt, (3.4.9)

λ̂t ≡ λt −
β

1 + βAt

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds, (3.4.10)

where Pt,s represents price at time t of a zero-coupon bond that matures at time s ≥ t,

and Ψt,s denotes the volatility at time t of the instantaneous return on a zero-coupon

bond with maturity date s ≥ t.

The optimal dual portfolio choice π̂∗t is determined such that it finances the optimal

dual consumption choice ĉ ∗t . The optimal dual reference level θ̂ ∗t can be computed from

substituting the optimal past consumption choices into (3.4.7). The next proposition
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follows from Schroder and Skiadas (2002).

Proposition 5. Denote by ĉ ∗t the optimal dual consumption choice, by θ̂ ∗t the optimal

dual reference level, by Ŵ ∗
t optimal dual wealth, and by π̂∗t the optimal dual portfolio

choice. Then:

• The optimal consumption for the agent at time 0 ≤ t ≤ T is given by

c∗t = ĉ ∗t + θ̂ ∗t .

• The optimal wealth for the agent at time 0 ≤ t ≤ T is given by

W ∗
t = Ŵ ∗

t + βAtŴ
∗
t + Atθ̂

∗
t .

• The optimal portfolio choice for the agent at time 0 ≤ t ≤ T is given by

π∗t = π̂∗t + βAtπ̂
∗
t +

(
βŴ ∗

t + θ̂ ∗t

)
(σ̂t)

−1

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

3.4.2. Three Related Sub-Problems

Jin and Zhou (2008) explore a problem with a similar structure as our dual problem

(3.4.3). However, they do not consider intertemporal consumption choice. Jin and Zhou

(2008) show that their problem can be solved by splitting it into three sub-problems.

We define the first sub-problem (called the gain part problem) as follows:

Maximize
ĉ

+

∫ T

0

e−δtV+

(
ĉ+
t

)
dt

subject to E
[∫ T

0

M̂tĉ
+
t dt

]
≤ Ŵ+ (1 + βA0) , ĉ+

t = 0 if M̂t ≥ ξt.

(3.4.11)

The gain part problem is parameterized by Ŵ+ ≥ Ŵ0 (i.e., initial wealth needed to

finance gains) and the process {ξt}. The optimal value V+

(
Ŵ+, {ξt}

)
is defined to be

the supremum of (3.4.11).37

37If Ŵ+ > 0 and ξt = 0 for every t ∈ [0, T ], then there is no feasible solution and V+

(
Ŵ+, {ξt}

)
= −∞.
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The second sub-problem (called the loss part problem) is defined as follows:

Minimize
ĉ
−

∫ T

0

e−δtV−
(
ĉ−t
)

dt

subject to E
[∫ T

0

M̂tĉ
−
t dt

]
≤
(
Ŵ+ − Ŵ0

)
(1 + βA0) , ĉ−t = 0 if M̂t < ξt.

(3.4.12)

The loss-part problem is also parameterized by Ŵ+ ≥ Ŵ0 and the process {ξt}. The

optimal value V−
(
Ŵ+, {ξt}

)
is now defined to be the infimum of (3.4.12).38

Finally, the last problem amounts to finding the ‘best’ Ŵ+ and {ξt}:

Maximize
Ŵ+,{ξt}

V+

(
Ŵ+, {ξt}

)
− V−

(
Ŵ+, {ξt}

)
subject to Ŵ+ ≥ Ŵ0.

(3.4.13)

The next proposition is adapted from Jin and Zhou (2008).

Proposition 6. Suppose that
(
Ŵ ∗

+, {ξ∗t }
)

is optimal for problem (3.4.13),
(
ĉ+
t

)∗
is

optimal for problem (3.4.11) with parameters
(
Ŵ ∗

+, {ξ∗t }
)

, and
(
ĉ−t
)∗

is optimal for

problem (3.4.12) with parameters
(
Ŵ ∗

+, {ξ∗t }
)

. Then ĉ ∗t =
(
ĉ+
t

)∗ − (ĉ−t )∗ is optimal

for problem (3.4.3).

3.5. Solving the Problem

3.5.1. Quantile Method

This section demonstrates how we can convert the gain part problem (3.4.11) into a

quantile maximization problem.39 In the quantile formulation, the agent chooses the

quantile function (i.e., inverse cumulative distribution function) of dual consumption.

After changing the agent’s decision variable from dual consumption to the quantile

function of dual consumption, the agent’s preference measure reduces to an ordinary

linear expectation. Hence, conventional techniques (such as the Lagrange method) can

38If Ŵ+ 6= Ŵ0 and ξt = ∞ for every t ∈ [0, T ], then there is no feasible solution and V−
(
Ŵ+, {ξt}

)
=

+∞.
39The loss part problem (3.4.12) can be converted into a quantile minimization problem.
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be used to obtain the optimal dual consumption choice.40 He and Zhou (2011) give

a systematic account of the quantile method. The quantile method relies upon the

following three crucial assumptions:

Assumption 2. The agent’s preference measure is law-invariant; that is, if X
d∼ Y ,

then V (X) = V (Y ).

Assumption 3. The agent is strictly better off with more initial dual wealth.

Assumption 4. The dual state price density admits no atoms; that is P
{
M̂t = a

}
= 0

for all a ∈ R+.

The agent’s preference measure in our setting is clearly law-invariant. Assumption 3

holds true if the probability weighting function is strictly increasing (for a proof, see He

and Zhou, 2011). The last assumption is satisfied if, e.g., the investment opportunity set

is deterministic. The preference measure V+

(
ĉ+
t

)
(as defined in (3.3.2)) is equivalent to

E
[
v+

(
F−1

ĉ
+
t

(Z)
)
w′+ (1− Z;ϑt)

]
= E

[
v+

(
Q
ĉ

+
t

(Z)
)
w′+ (1− Z;ϑt)

]
. (3.5.1)

Here Z is any uniformly distributed random variable on [0, 1] and Q
ĉ

+
t

(·) corresponds

to the quantile function41 of positive dual consumption ĉ+
t . The equivalence between

(3.5.1) and V+

(
ĉ+
t

)
follows from Assumption 2. In a similar fashion, V−

(
ĉ−t
)

(as defined

in (3.3.3)) is equivalent to

E
[
v−

(
F−1

ĉ
−
t

(Z)
)
w′− (1− Z;ϑt)

]
= E

[
v−

(
Q
ĉ
−
t

(Z)
)
w′− (1− Z;ϑt)

]
. (3.5.2)

Here Q
ĉ
−
t

(·) corresponds to the quantile function of negative dual consumption ĉ−t . Let

us denote by F
M̂t

(·) the cumulative distribution function of the dual state price density

M̂t. By Assumptions 3 and 4, we can rewrite the left-hand sides of the static dual

budget constraints as follows (the static dual budget constraints are defined in (3.4.11)

40The optimal solution is typically time-inconsistent. Therefore, we assume that the agent solves the
maximization problem at time 0 and then commits himself to follow the optimal solution during the
rest of his life.

41A quantile function is non-decreasing and continuous from the left.
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and (3.4.12)):

E
[∫ T

0

M̂tĉ
+
t dt

]
= E

[∫ T

0

Q
M̂t

(
1− Z

M̂t

)
Q
ĉ

+
t

(
Z
M̂t

)
dt

]
, (3.5.3)

E
[∫ T

0

M̂tĉ
−
t dt

]
= E

[∫ T

0

Q
M̂t

(
1− Z

M̂t

)
Q
ĉ
−
t

(
Z
M̂t

)
dt

]
. (3.5.4)

Here Q
M̂t

(·) is the quantile function of the dual state price density M̂t and Z
M̂t
≡

1 − F
M̂t

(
M̂t

)
. It follows that Z

M̂t
is a uniformly distributed random variable on [0, 1].

Equations (3.5.1) and (3.5.2) hold true for any uniformly distributed random variable

Z, whereas equations (3.5.3) and (3.5.4) are only valid for one particular uniformly

distributed random variable Z
M̂t

.

Define Q to be the set of all quantile functions. The gain part problem (3.4.11) is

equivalent to the following quantile maximization problem:

maximize
Q
ĉ

+
t
∈Q

E
[∫ T

0

e−δtv+

(
Q
ĉ

+
t

)
w′+

(
1− Z

M̂t
;ϑt

)
dt

]
subject to E

[∫ T

0

Q
M̂t

(
1− Z

M̂t

)
Q
ĉ

+
t

dt

]
≤ Ŵ+ (1 + βA0)

Q
ĉ

+
t

= 0 if Q
M̂t

(
1− Z

M̂t

)
≥ ξt.

(3.5.5)

The quantile maximization problem (3.5.5) is called the quantile formulation. The agent’s

decision variable is the quantile function of positive dual consumption. In a similar

fashion, the loss part problem (3.4.12) is equivalent to

minimize
Q
ĉ
−
t
∈Q

E
[∫ T

0

e−δtv−

(
Q
ĉ
−
t

)
w′−

(
1− Z

M̂t
;ϑt

)
dt

]
subject to E

[∫ T

0

Q
M̂t

(
1− Z

M̂t

)
Q
ĉ
−
t

dt

]
≤
(
Ŵ+ − Ŵ0

)
(1 + βA0)

Q
ĉ
−
t

= 0 if Q
M̂t

(
1− Z

M̂t

)
< ξt.

(3.5.6)

The next proposition is adapted from He and Zhou (2011).

Proposition 7. Suppose that Q∗
ĉ

+
t

is optimal for problem (3.5.5) and Q∗
ĉ
−
t

is optimal for

problem (3.5.6). Then
(
ĉ+
t

)∗
= Q∗

ĉ
+
t

is optimal for problem (3.4.11) and
(
ĉ−t
)∗

= Q∗
ĉ
−
t

is

optimal for problem (3.4.12).
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3.5.2. Solution Procedure

This section summarizes the solution technique for solving the agent’s maximization

problem (3.4.2). The solution procedure consists of the following steps:

1. Solve the quantile problems (3.5.5) and (3.5.6);

2. Use Proposition 7 to obtain
(
ĉ+
t

)∗
and

(
ĉ−t
)∗

;

3. Solve problem (3.4.13);

4. Use Proposition 6 to obtain the optimal dual consumption choice ĉ ∗t ;

5. Use Proposition 5 to obtain the optimal consumption choice c∗t .

The following sections explore how to solve problems (3.5.5), (3.5.6) and (3.4.13).

3.5.2.1. Solving the Gain Part Problem

This section presents the solution to problem (3.5.5). We can apply standard techniques

to obtain Q∗
ĉ

+
t

. Let us introduce the following assumption:42

Assumption 5. The quantity

Q
M̂t

(
1− Z

M̂t

)
w′+

(
1− Z

M̂t
;ϑt

) (3.5.7)

is non-increasing in Z
M̂t
∈ [0, 1].

Section 3.6 considers a class of probability weighting functions that satisfy Assumption

5. The optimal quantile function of positive dual consumption choice is now given by

(see Appendix)

Q∗
ĉ

+
t

=

 eδtyQM̂t

(
1− Z

M̂t

)
γ2w

′
+

(
1− Z

M̂t
;ϑt

)


1
γ2−1

1[
Q
M̂t

(
1−Z

M̂t

)
≤ξt

]. (3.5.8)

Assumption 5 ensures that the quantile function Q∗
ĉ

+
t

is non-increasing in M̂t. The

Lagrange multiplier y is chosen such that the static budget constraint holds with equality.

42We note that Assumption 5 can be relaxed (see Xia and Zhou, 2014; Xu, 2014).
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Straightforward computations show that the Lagrange multiplier y is given by (substitute

(3.5.8) into the dual budget constraint and solve for y)

y = γ2

[
Ŵ+ (1 + βA0)∫ T

0
ϕ (ξt) dt

]γ2−1

. (3.5.9)

Here

ϕ (ξt) ≡ E

QM̂t

(
1− Z

M̂t

)eδtQM̂t

(
1− Z

M̂t

)
w′+

(
1− Z

M̂t
;ϑt

)


1
γ2−1

1[
Q
M̂t

(
1−Z

M̂t

)
≤ξt

]
 . (3.5.10)

Hence, the optimal positive dual consumption choice can be written as follows (substitute

(3.5.9) into (3.5.8)):

Q∗
ĉ

+
t

=
Ŵ+ (1 + βA0)∫ T

0
ϕ (ξt) dt

eδtQM̂t

(
1− Z

M̂t

)
w′+

(
1− Z

M̂t
;ϑt

)


1
γ2−1

1[
Q
M̂t

(
1−Z

M̂t

)
≤ξt

]. (3.5.11)

The supremum of the gain part problem (3.4.11) is given by

V+

(
Ŵ+, {ξt}

)
=
(
Ŵ+ (1 + βA0)

)γ2

(∫ T

0

ϕ (ξt) dt

)1−γ2

. (3.5.12)

3.5.2.2. Solving the Loss Part Problem

This section presents the optimal solution to the quantile minimization problem (3.5.6).

The two-part power utility function (3.3.6) is convex below the agent’s reference level

if γ1 ≤ 1, and concave otherwise. The literature is inconclusive about the shape of the

utility function below the reference level (see, e.g., Etchart-Vincent, 2004; Abdellaoui

et al., 2005; Booij and van de Kuilen, 2009). Etchart-Vincent (2004) found that in the

case of large payoffs, the majority of subjects preferred a concave utility function below

the reference level. Therefore, the present chapter considers the case of a concave utility

function in the loss domain (γ1 > 1). In future work, we intend to investigate the case

where the utility function is convex below the reference level. We can apply the Lagrange

method to obtain Q∗
ĉ
−
t

. Let us introduce the following assumption:
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Assumption 6. The quantity

Q
M̂t

(
1− Z

M̂t

)
w′−

(
1− Z

M̂t
;ϑt

) (3.5.13)

is non-increasing in Z
M̂t
∈ [0, 1].

The optimal quantile function of negative dual consumption choice is given by (see

Appendix)

Q∗
ĉ
−
t

=

 eδtyQ
M̂t

(
1− Z

M̂t

)
κγ1w

′
−

(
1− Z

M̂t
;ϑt

)


1
γ1−1

1[
Q
M̂t

(
1−Z

M̂t

)
>ξt

]. (3.5.14)

The Lagrange multiplier y is chosen such that the static budget constraint holds with

equality. Straightforward computations show that the Lagrange multiplier y is given by

(substitute (3.5.14) into the dual budget constraint and solve for y)

y = κγ1


(
Ŵ+ − Ŵ0

)
(1 + βA0)∫ T

0
ς (ξt) dt

γ1−1

. (3.5.15)

Here

ς (ξt) ≡ E

QM̂t

(
1− Z

M̂t

)eδtQM̂t

(
1− Z

M̂t

)
w′−

(
1− Z

M̂t
;ϑt

)


1
γ1−1

1[
Q
M̂t

(
1−Z

M̂t

)
>ξt

]
 . (3.5.16)

Hence, the optimal negative dual consumption choice can be written as follows (substitute

(3.5.15) into (3.5.14)):

Q∗
ĉ
−
t

=

(
Ŵ+ − Ŵ0

)
(1 + βA0)∫ T

0
ς (ξt) dt

eδtQM̂t

(
1− Z

M̂t

)
w′−

(
1− Z

M̂t
;ϑt

)


1
γ1−1

1[
Q
M̂t

(
1−Z

M̂t

)
>ξt

]. (3.5.17)

The infimum of the loss part problem (3.4.12) is given by

V−
(
Ŵ+, {ξt}

)
= κ

(
Ŵ+ − Ŵ0

)γ1

(1 + βA0)γ1

(∫ T

0

ς (ξt) dt

)1−γ1

. (3.5.18)

83



Chapter 3. Optimal Choice under Cumulative Prospect Theory

3.5.2.3. Optimal Dual Solution

To determine the optimal dual consumption choice, the agent needs to solve problem

(3.4.13). Substituting (3.5.12) and (3.5.18) into (3.4.13) yields

Maximize
Ŵ+,{ξt}

(
Ŵ+ (1 + βA0)

)γ2

(∫ T

0

ϕ (ξt) dt

)1−γ2

− κ
(
Ŵ+ − Ŵ0

)γ1

(1 + βA0)γ1

(∫ T

0

ς (ξt) dt

)1−γ1

subject to Ŵ+ ≥ Ŵ0.

(3.5.19)

This problem can be solved numerically.

3.6. Numerical Analysis

3.6.1. Assumptions and Key Parameter Values

The agent invest his wealth in a risk-free asset and a single risky stock. We assume a

constant investment opportunity set. That is, rt = r, σt = σ and λt = λ. The equity

risk premium σλ = µ − r is set at 4%, the risk-free rate r at 1%, and the volatility of

innovations to the risky stock price σ at 20%. These estimates are the same as those

used by Gomes et al. (2008).

The terminal time T is set equal to 4, the agent’s initial wealth to 100, the curvature

parameter γ1 to 1.2, the curvature parameter γ2 to 0.7, the subjective rate of time

preference to 0.01, and the loss aversion index κ to 2.5. The literature reposts that

estimates of the (median) loss aversion index range from 1 to 5 (see, e.g., Abdellaoui

et al., 2008). We choose the agent’s initial reference level θ0 such that it solves the

following equation:

W0 = θ0

∫ T

0

exp {−rt} dt. (3.6.1)

We can view θ0 as the payment from a fixed annuity with a value of W0. The parameters

α and β are set equal to zero. The reference level is thus constant over time. The impact

of an endogenous reference level on the agent’s optimal choice is analyzed in Chapter 2.
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3.6.2. Probability Weighting Functions

Inspired by Jin and Zhou (2008) and He and Zhou (2011), we define the derivatives of

the probability weighting functions w+ (·;ϑt) and w− (·;ϑt) as follows:

w′+

(
F
M̂t

(
M̂t

)
;ϑt

)
=

k+ (ϑt)
(
M̂t

)a+

, if M̂t ≤ Q
M̂t

(p̄+) ,

k+ (ϑt)
(
Q
M̂t

(p̄+)
)a+−b+ (

M̂t

)b+
, if M̂t > QM̂t

(p̄+) ,

(3.6.2)

w′−

(
F
M̂t

(
M̂t

)
;ϑt

)
=

k− (ϑt)
(
M̂t

)a−
, if M̂t ≤ QM̂t

(p̄−) ;

k− (ϑt)
(
QM̂t

(p̄−)
)a−−b− (

M̂t

)b−
, if M̂t > QM̂t

(p̄−) .

(3.6.3)

Here a+ ≤ 0, a− ≤ 0, 0 ≤ b+ ≤ 1, 0 ≤ b− ≤ 1, p̄+ > 0 and p̄− > 0 are preference

parameters. The parameter restrictions ensure that w+ (·;ϑt) and w− (·;ϑt) satisfy

Assumptions 1, 5 and 6. The expressions for w+ (·;ϑt) and w− (·;ϑt) are given in the

Appendix which also defines ϑt, k+ (ϑt) and k− (ϑt). The parameter p̄+ is called the

inflection point.43 The probability weighting function w+ (·;ϑt) is concave up to p̄+, and

convex beyond p̄+. The parameter a+ ≤ 0 determines the degree of concavity in the

domain 0 ≤ p ≤ p̄+, while the parameter 0 ≤ b+ ≤ 1 determines the degree of convexity

in the domain p̄+ ≤ p ≤ 1. Figure 3.2 illustrates the probability weighting function

w+ (·;ϑt) for various sets of parameter values. The figure shows that the probability

weighting function displays an inverse S-shaped pattern, consistent with CPT.

43It has been reported in the literature that p̄+ and p̄− are about 1/3 (see, e.g., Wu and Gonzalez, 1996;
Abdellaoui, 2000).
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Figure 3.2.

Illustration of probability weighting function
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The figure illustrates the probability weighting function w+ (·;ϑt) for various sets of parameter
values. We set ϑt equal to (−0.28, 0.16), and p̄+ to 1/3.

3.6.3. Optimal Consumption Choice

The optimal consumption choice for the agent at time 0 ≤ t ≤ T is given by (this follows

from (3.6.2), (3.6.3), (3.5.8), (3.5.14), and Propositions 6 and 5)

c∗t =



θ∗t + d1,t

(
M̂t

)a+−1

1−γ2 if M̂t ≤ min
{
QM̂t

(p̄+) , ξt

}
,

θ∗t + d2,t

(
M̂t

) b+−1

1−γ2 if QM̂t
(p̄+) < M̂t ≤ ξt,

θ∗t − d3,t

(
M̂t

)a−−1

1−γ1 if ξt < M̂t ≤ QM̂t
(p̄−) ,

θ∗t − d4,t

(
M̂t

) b−−1

1−γ1 if M̂t > max
{
QM̂t

(p̄−) , ξt

}
.

(3.6.4)
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where

d1,t ≡
[
ye−δtk+ (ϑt) /γ2

] 1
1−γ2 , (3.6.5)

d2,t ≡
[
ye−δtk+ (ϑt)

(
QM̂t

(p̄+)
)a+−b+

/γ2

] 1
1−γ2

, (3.6.6)

d3,t ≡
[
ye−δtk− (ϑt) / (κγ1)

] 1
1−γ1 , (3.6.7)

d4,t ≡
[
ye−δtk− (ϑt)

(
QM̂t

(p̄−)
)a−−b−

/ (κγ1)

] 1
1−γ1

, (3.6.8)

and θ∗t denotes the optimal reference level implied by substituting the optimal past dual

consumption choice into (3.4.7).

Equation (3.6.4) shows that the agent divides the states of the economy into two

categories: good scenarios (low to intermediate state prices) and bad scenarios (high

state prices). In good scenarios, consumption is larger than the reference level, while in

bad scenarios, consumption is smaller than the reference level. The parameters a+, b+,

a− and b− determine the sensitivity of consumption to the (dual) pricing kernel M̂t. The

sensitivity of consumption to the pricing kernel is (relatively) low in very bad scenarios,

i.e., M̂t > max
{
QM̂t

(p̄−) , ξt

}
, and in fairly good scenarios, i.e., QM̂t

(p̄+) < M̂t ≤ ξt.

We observe that if b− equals unity, then the agent consumes θt−d4,t in very bad scenarios.

In that case, consumption does not depend on the pricing kernel at all. Figure 3.3 shows

the optimal consumption choice of an agent at time t = 4 as a function of the log dual

pricing kernel for various sets of parameter values. The dashed-dotted lines represent

the optimal ‘Merton’ consumption strategy (see Merton, 1969).
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Figure 3.3.

Optimal consumption choice as function of the log dual pricing kernel
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(b) a+ = −1.5, b+ = 1, a− = 0 and b− = 0
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(c) a+ = 0, b+ = 0, a− = −2.5 and b− = 1
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(d) a+ = −1.5, b+ = 1, a− = −2.5 and b− = 1

The figure illustrates the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) of an agent at time t = 4 as a function of the log dual pricing kernel for
various sets of parameter values. We set the inflection points p̄+ and p̄− both equal to 1/3. The
dashed line corresponds to the reference level (expressed as a percentage of W0). The dotted line
shows the probability density function (PDF) of the current log dual pricing kernel conditional
upon information available at time 0. The dash-dotted line illustrates the consumption choice
(expressed as a percentage of W0) of an agent with CRRA utility. The relative risk aversion
coefficient is set equal to two.

3.6.3.1. Welfare Analysis

This section conducts a welfare analysis. We compute the welfare losses (in terms of

the relative decline in certainty equivalent consumption) associated with implementing

suboptimal consumption and portfolio strategies derived by solving the agent’s problem
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on the basis of incorrect values of a+, b+, a− and b−.44 We assume that the agent’s optimal

consumption and portfolio choice is characterized by the following ‘true’ parameter

values: a+ = −1.5, b+ = 1, a− = −2.5 and b− = 1. Table 3.1 reports the welfare

losses. This table shows that the welfare losses associated with incorrectly assuming

incorrect parameter values are (relatively) small (all welfare losses are lower than 1%).

Welfare losses are largest for the case where no probability weighting in the loss domain

is applied (first column of Table 3.1).

Table 3.1.
Welfare losses

(a−, b−)

(a+, b+) (0,0) (-1,0.3) (-1.5,0.7) (-2.5,1)

(0,0) 0.5385 0.3173 0.2691 0.2582
(-0.5,0.3) 0.4846 0.2651 0.2086 0.1887

(-1,0.7) 0.4647 0.1970 0.1162 0.0869
(-1.5,1) 0.6571 0.1713 0.0214 0

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing suboptimal consumption and portfolio strategies derived
on the basis of incorrect values of a+, b+, a− and b−. The numbers represent a percentage.

3.6.4. Optimal Portfolio Choice

The optimal portfolio choice can be derived in closed-form by using standard hedging

methods. Figure 3.4 illustrates the fraction of wealth invested in the risky stock (expressed

as a percentage) of an agent at time t = 4 as a function of the log dual pricing kernel for

various sets of parameter values. The figure shows that if consumption is close to the

reference level, the fraction invested in the risky stock is relatively low. In addition, if

the agent overweights unlikely extreme events (see the two panels at the bottom of the

figure), the fraction of wealth invested in the risky stock tends to zero as the state of the

economy worsens.

44We define the certainty equivalent of an uncertain consumption strategy to be the constant, certain
consumption level that yields indifference to the uncertain consumption strategy.

89



Chapter 3. Optimal Choice under Cumulative Prospect Theory

Figure 3.4.

Optimal portfolio choice as function of the log dual pricing kernel
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(b) a+ = −1.5, b+ = 1, a− = 0 and b− = 0
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(c) a+ = 0, b+ = 0, a− = −2.5 and b− = 1
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(d) a+ = −1.5, b+ = 1, a− = −2.5 and b− = 1

The figure illustrates the fraction of wealth invested in the risky stock (expressed as a
percentage) of an agent at time t = 4 as a function of the log dual pricing kernel for various sets
of parameter values. We set the inflection points p̄+ and p̄− both equal to 1/3. The dotted line
shows the probability density function (PDF) of the current log dual pricing kernel conditional
upon information available at time 0.
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3.7. Conclusion

We have explored dynamic consumption and portfolio choice of an agent with CPT

preferences. Our agent is loss averse, endogenously updates his reference level over time,

and distorts probabilities. We have shown that the optimal consumption profile displays

a 90◦ rotated S-shaped pattern and that, if probabilities are sufficiently overweighted,

the model generates a floor level on consumption.

3.8. Appendix

3.8.1. Proofs

Derivation of (3.5.8)

The Lagrangian L is given by

L = E
[∫ T

0

e−δtv+

(
Q
ĉ

+
t

)
w′+

(
1− ZM̂t

;ϑt

)
dt

]
+ y

{
Ŵ+ (1 + βA0)− E

[∫ T

0

Q
M̂t

(
1− ZM̂t

)
Q
ĉ

+
t

dt

]}
=

∫ T

0

E
[
e−δtv+

(
Q
ĉ

+
t

)
w′+

(
1− ZM̂t

;ϑt

)
− yQ

M̂t

(
1− ZM̂t

)
Q
ĉ

+
t

]
dt

+ yŴ+ (1 + βA0) .

Here y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

The agent maximizes e−δtv+

(
Q
ĉ

+
t

)
w′+

(
1− ZM̂t

;ϑt

)
− yQ

M̂t

(
1− ZM̂t

)
Q
ĉ

+
t

subject to

Q
ĉ

+
t

= 0 if Q
M̂t

(
1− Z

M̂t

)
> ξt. The optimal dual positive consumption choice Q∗

ĉ
+
t

satisfies the following first-order optimality condition:

e−δtγ2

(
Q
ĉ

+
t

)γ2−1

w′+

(
1− ZM̂t

;ϑt

)
= yQ

M̂t

(
1− ZM̂t

)
.

After solving the first-order optimality condition, we obtain the following maximum:

Q∗
ĉ

+
t

=

 eδtyQM̂t

(
1− ZM̂t

)
γ2w

′
+

(
1− ZM̂t

;ϑt

)


1
γ2−1

1[
Q
M̂t

(
1−Z

M̂t

)
≤ξt

].
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Derivation of (3.5.14)

The Lagrangian L is given by

L = E
[∫ T

0

e−δtv−

(
Q
ĉ
−
t

)
w′−

(
1− ZM̂t

;ϑt

)
dt

]
+ y

{(
Ŵ+ − Ŵ0

)
(1 + βA0)− E

[∫ T

0

Q
M̂t

(
1− ZM̂t

)
Q
ĉ
−
t

dt

]}
=

∫ T

0

E
[
e−δtv−

(
Q
ĉ
−
t

)
w′−

(
1− ZM̂t

;ϑt

)
− yQ

M̂t

(
1− ZM̂t

)
Q
ĉ
−
t

]
dt

+ y
(
Ŵ+ − Ŵ0

)
(1 + βA0) .

Here y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

The agent maximizes e−δtv−

(
Q
ĉ
−
t

)
w′−

(
1− ZM̂t

;ϑt

)
− yQ

M̂t

(
1− ZM̂t

)
Q
ĉ
−
t

subject to

Q
ĉ
−
t

= 0 if Q
M̂t

(
1− Z

M̂t

)
≤ ξt. The optimal dual negative consumption choice Q∗

ĉ
−
t

satisfies the following first-order optimality condition:

e−δtκγ2

(
Q
ĉ
−
t

)γ1−1

w′−

(
1− ZM̂t

;ϑt

)
= yQ

M̂t

(
1− ZM̂t

)
.

After solving the first-order optimality condition, we obtain the following maximum:

Q∗
ĉ
−
t

=

 eδtyQ
M̂t

(
1− ZM̂t

)
κγ2w

′
−

(
1− ZM̂t

;ϑt

)


1
γ1−1

1[
Q
M̂t

(
1−Z

M̂t

)
>ξt

].

3.8.2. Probability Weighting Functions

This section specifies the probability weighting function for gains w+ (·;ϑt) and the

probability weighting function for losses w− (·;ϑt):

w+ (p;ϑt) =


k+ (ϑt) f (a+;ϑt) Φ

(
Φ−1 (p)− a+σ̄t

)
, if 0 < p < p̄+;

k+ (ϑt)
(
QM̂t

(p̄+)
)a+−b+

f (b+;ϑt)

×Φ
(
Φ−1 (p)− b+σ̄t

)
+ k+ (ϑt)h+ (ϑt) ,

if p̄+ ≤ p < 1.
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w− (p;ϑt) =


k− (ϑt) f (a−;ϑt) Φ

(
Φ−1 (p)− a−σ̄t

)
, if 0 < p < p̄−;

k− (ϑt)
(
QM̂t

(p̄−)
)a−−b−

f (b−;ϑt)

×Φ
(
Φ−1 (p)− b−σ̄t

)
+ k− (ϑt)h− (ϑt) ,

if p̄− ≤ p < 1.

Here,

ϑt ≡
(
µ̄t, σ̄

2
t

)
µ̄t ≡ log M̂t −

(
r̂t +

1

2
λ2

)
t,

σ̄2
t ≡ λ2t,

f (a+;ϑt) ≡ exp

{
a+µ̄t +

1

2
a2

+σ̄
2
t

}
,

h+ (ϑt) ≡ h (p̄+, a+, b+;ϑt)

≡ Φ
(
Φ−1 (p̄+)− a+σ̄t

)
f (a+;ϑt)

− Φ
(
Φ−1 (p̄+)− b+σ̄t

) (
QM̂t

(p̄+)
)a+−b+

f (b+;ϑt) ,

k+ (ϑt) ≡ k (p̄+, a+, b+;ϑt) ≡
(
h+ (ϑt) +

(
QM̂t

(p̄+)
)a+−b+

f (b+;ϑt)

)−1

.
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Chapter 4

How to Invest and Draw-Down

Accumulated Wealth in

Retirement? A Utility-Based

Analysis45

This chapter explores how Baby Boomers should invest and draw-down their accumulated

wealth over the rest of their lives. To answer this question we build a consumption

and portfolio choice model with multiplicative internal habit formation and stochastic

differential utility. We show analytically that after a wealth shock it is optimal to adjust

both the level and future growth rates of consumption, implying gradual response of

consumption to financial shocks. Furthermore, fostering the ability to keep catching up

with the internal habit creates upward pressure on expected consumption growth. Welfare

losses associated with popular alternative investment and draw-down strategies can be

large.

4.1. Introduction

As the first wave of Baby Boomers moves into retirement, their future promises to be

very different from that of their parents who enjoyed resilient Social Security and defined

benefit pension plans. Retirees today face a very different challenge regarding retirement

security, in that they are the first generation where retirement wealth was accumulated

primarily in personal retirement accounts.46 As their nest eggs will not automatically be

45This chapter is co-authored with Lans Bovenberg and Roger Laeven.
46The percentage of total U.S. retirement assets accounted for by individual retirement accounts and

defined contribution pension plans rose from about 18% in 1974 to 54% in 2013 (Investment Company
Institute, 2014).
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annuitized, Baby Boomers thus confront the important question of how they should invest

and draw-down their accumulated wealth over the rest of their lives. The objective of the

present chapter is to analyze this question from the perspective of a utility maximizing

individual.

Financial advisors commonly recommend to split the investment portfolio into 60%

risky assets and 40% risk-free assets, and to draw-down 4 to 5% of retirement wealth

per year (Polyak, 2005; Whitaker, 2005). Other popular draw-down strategies include

the fixed benefit approach (i.e., the individual withdraws a specified dollar amount each

year until his retirement wealth is depleted), and the remaining lifetime approach (i.e.,

the withdrawal fraction rises with the remaining lifetime); see, e.g., Dus, Maurer, and

Mitchell (2005); Horneff, Maurer, Mitchell, and Dus (2008). However, these popular

draw-down strategies are arguably ad hoc, and are typically neither founded upon nor

corroborated by the individual’s preferences (MacDonald, Jones, Morrison, Brown, and

Hardy, 2013). Alternatively, retirees can buy annuities. But while fixed annuities are

usually too expensive to be an attractive financial product (especially in low interest

rate regimes), variable annuities often generate volatile fluctuations in payouts (see, e.g.,

Chai, Horneff, Maurer, and Mitchell, 2011; Maurer, Mitchell, Rogalla, and Kartashov,

2013b).47

Thus, the need for a utility-based approach to analyze the investment and draw-down

strategies implemented by Baby Boomers is evident. Expected utility theory with

constant relative risk aversion (CRRA) is the most commonly adopted preference model

to derive an agent’s optimal consumption and portfolio choice. As is well-known at

least since Merton (1969, 1971) and Samuelson (1969), a CRRA agent fully absorbs a

wealth shock into the level (and not future growth rates) of consumption. Under CRRA,

the year-on-year volatility of consumption thus matches the year-on-year volatility of

wealth. However, evidence of violations of the assumptions underlying CRRA utility –

in our setting, the intertemporal independence assumption in particular – has led authors

to seek for alternative models. The literature has put forward a variety of alternatives,

perhaps most noticeably habit formation utility and (continuous-time) recursive utility

47Insurers have more recently developed variable annuities for which surpluses earned in good years
support payouts in bad years (see, e.g., Guillén et al., 2006; Maurer, Rogalla, and Siegelin, 2013a;
Maurer, Mitchell, Rogalla, and Siegelin, 2014). This rapidly growing form of variable annuities is,
however, opaque and difficult to value.
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or stochastic differential utility (SDU).48 The present chapter proposes and analyzes a

model with internal habit formation and SDU, and derives the resulting investment and

draw-down strategies in closed-form.

Our contribution is three-fold. First, we build a rich consumption and portfolio choice

model with multiplicative habit formation, an endogenous internal habit level, and SDU.

Our general model encompasses many interesting special cases such as SDU without

multiplicative internal habit formation, multiplicative internal habit formation without

SDU, multiplicative habit formation with an external (deterministic) habit, and CRRA

utility. Second, we develop an approximation method to accurately solve our general

consumption and portfolio choice problem analytically. Third, we analyze the resulting

optimal investment and draw-down strategies for a Baby Boomer, and conduct a welfare

analysis. We now specify each of our contributions in more detail.

We assume that the agent derives utility from the ratio between consumption and the

habit level. The ratio (or multiplicative) model of habit formation, first analyzed by Abel

(1990), is the only model we know of that allows consumption to fall below the habit

level while simultaneously maintaining the property of constant (i.e., state-independent)

relative risk aversion. A number of authors consider an agent who derives utility from

the difference – rather than the ratio – between consumption and the habit level.49

The optimal consumption choice implied by the difference (or additive) model of habit

formation (Constantinides, 1990) exceeds the habit level in each economic scenario.

This addictive behavior of consumption is, however, doubtful (see, e.g., Detemple and

Karatzas, 2003). Indeed, empirical evidence showing significant declines in consumption

levels during recessions contradicts the addictive property. Furthermore, in the difference

model of habit formation, relative risk aversion depends on (surplus) wealth. This may

be undesirable from a normative point of view as it leads to very low equity holdings

in bad economic scenarios.50 Also, in our ratio model of habit formation, the portfolio

48The notion of SDU was introduced by Duffie and Epstein (1992) as a continuous-time limit of the
preference models studied by Epstein and Zin (1989) and by Kreps and Porteus (1978). Life cycle
models with Epstein-Zin preferences or internal habit formation have been widely studied in the
literature. For Epstein-Zin preferences, see, e.g., Chacko and Viceira (2005); Gomes and Michaelides
(2008); for the ratio model of habit formation, see, e.g., Gomes and Michaelides (2003).

49See, e.g., Constantinides (1990); Detemple and Zapatero (1991, 1992); Schroder and Skiadas (2002);
Bodie, Detemple, Otruba, and Walter (2004); Munk (2008).

50Chapter 2 extends the difference model of habit formation to allow consumption to fall below the habit
level. However, in the model of Chapter 2, relative risk aversion still depends on (surplus) wealth.
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strategy is state-independent, and thus easy to implement. We assume that the habit

level is a geometric (rather than an arithmetic) weighted average of the agent’s own past

consumption choices. Hence the habit level is internal to the agent and endogenously

determined.51 In the model of Abel (1990), the habit level depends only on consumption

in the previous period.

Due to the endogeneity of the habit level, our consumption and portfolio choice

problem cannot be solved in closed-form. By developing a linearization to the budget

constraint, we are able to derive an analytical closed-form solution to the approximate

optimization problem. Linearization of the agent’s budget constraint is not uncommon

in the economic literature; see, in a different context, e.g., Campbell and Mankiw

(1991); Fuhrer (2000). Our approximation method is shown to be very accurate when

consumption stays close to the habit level, and when the habit level responds slowly to

consumption. Indeed, our numerical results show that the approximation error (measured

in terms of the relative decline in certainty equivalent consumption) is typically of order

0.01.

Our results can be summarized as follows. First, we show analytically that after

a wealth shock, it is optimal to adjust both the level and the future growth rates

of consumption, implying gradual response of consumption to financial shocks. This

justifies a mechanism for smoothing the change in consumption due to financial shocks.

The parameters in our model (i.e., the coefficient of relative risk aversion, the strength of

internal habit formation, and the deprecation rate of the habit level) have clear economic

interpretations, controlling the features of the optimal strategy. The coefficient of relative

risk aversion determines the effect of a wealth shock on the level of consumption. The less

risk averse the agent, the larger the effect of a wealth shock on the level of consumption.

The strength of internal habit formation determines the effect of a wealth shock on future

growth rates of consumption. The larger the strength of internal habit formation, the

larger the effect of a wealth shock on future growth rates of consumption. We also show

that the lower the deprecation rate of the habit level, the longer it takes to fully absorb

a wealth shock into current and future consumption.

51Corrado and Holly (2011) show that for the ratio model of habit formation, a geometric habit
specification is more desirable than an arithmetic habit specification. In particular, they prove that
under the geometric habit specification, overall utility decreases as the strength of internal habit
formation increases.
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Second, as the agent adjusts both the level and future growth rates of consumption

after a shock, the year-on-year volatility of consumption is less than the year-on-year

volatility of wealth. Thus, a risky investment portfolio does not automatically imply

a high year-on-year volatility of consumption. This finding stands in sharp contrast to

many popular portfolio and draw-down strategies (e.g., the remaining lifetime approach)

where an increase in the risk of the investment portfolio directly translates into a higher

year-on-year volatility of consumption. Furthermore, we show that the agent chooses to

reduce the fraction of wealth invested in risk-bearing assets as the end of life approaches.

Indeed, the agent has less time to absorb a wealth shock as he ages.

Third, we show that for a finitely-lived agent with a fixed lifetime, the expected

growth rate of consumption increases with the strength of internal habit formation as

well as with age.52 If the agent were to live forever, the effects of the strength of internal

habit formation and age on the expected growth rate of consumption would be absent.

Indeed, in the case of an infinite horizon, the effect of a marginal change in consumption

on future habit levels is independent of age, while in the more realistic case of a finite

horizon, the effect of a marginal change in consumption on future habit levels decreases

with age. Thus, in the finite horizon case, fostering the ability to keep catching up with

the internal habit creates an upward pressure on expected consumption growth. That is,

the agent prefers to postpone consumption because the utility gain of a marginal increase

in consumption rises with age.

The elasticity of intertemporal substitution is in our base model, which combines

CRRA utility with multiplicative internal habit formation, intimately related to the

coefficient of relative risk aversion: the lower the degree of relative risk aversion, the

higher the agent’s willingness to engage in intertemporal substitution. In an extension of

our model, we study the consumption and portfolio choice of an agent with preferences

that combine SDU with multiplicative internal habit formation. This extended preference

model allows us to disentangle the elasticity of intertemporal substitution from the

coefficient of relative risk aversion while simultaneously maintaining the property of

multiplicative internal habit formation. As a result, the change in the median growth

52We note that in the case of an uncertain lifetime and the absence of longevity insurance, survival
probabilities create a downward pressure on expected consumption growth (see Yaari, 1965). In that
case, expected consumption growth is determined by internal habit formation as well as the shape of
the survival curve.
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rate of consumption following a change in the interest rate is no longer related to the

coefficient of relative risk aversion. Applying our linearization of the budget constraint,

we are still able to derive the agent’s consumption and portfolio choice under the extended

model in closed-form. A model that combines SDU with multiplicative internal habit

formation has, to the best of our knowledge, not yet been studied in existing literature.

The closest to the current chapter in this respect is Schroder and Skiadas (1999), who

analytically study SDU but do not consider multiplicative internal habit formation.

Finally, we conduct a welfare analysis in order to assess the impact of pursuing

alternative suboptimal investment and draw-down strategies on the agent’s welfare.

More specifically, we compute welfare losses (in terms of the relative decline in certainty

equivalent consumption) associated with implementing the remaining lifetime approach,

the Merton approach (Merton, 1969) and the difference model of habit formation. Our

results show that welfare losses can be large, especially when the agent exhibits a high

degree of internal habit formation. We also show that welfare losses are typically larger

for the remaining lifetime approach than for the Merton approach.

The remainder of this chapter is structured as follows. Section 4.2 describes the

financial market, the preferences and the maximization problem. Section 4.3 presents the

solution method used to solve the maximization problem. This solution method involves

applying a linearization to the budget constraint. Section 4.4 derives and studies the

agent’s consumption and portfolio choice. This section also conducts a welfare analysis.

Section 4.5 explores the consumption and portfolio choice of an agent with preferences

that combine SDU with multiplicative internal habit formation. Section 4.6 studies the

approximation error due to applying a linearization to the budget constraint. Finally,

Section 4.7 provides concluding remarks. Proofs are relegated to the Appendix.

4.2. An Internal Habit Formation Model

4.2.1. The Financial Market

We consider a Black and Scholes financial market. Let T > 0 be a (possibly infinite)

terminal time. The financial market consists of a money market account and a risky

stock, which are traded continuously. The price of the money market account, i.e., Bt,
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evolves according to

dBt

Bt

= r dt. (4.2.1)

Here r stands for the interest rate. The risky stock price St satisfies

dSt
St

= (r + λσ) dt+ σ dWt. (4.2.2)

Here λ denotes the equity risk premium per unit of risk (i.e., Sharpe ratio), σ stands for

the diffusion parameter (i.e., stock return volatility), and Wt corresponds to a standard

Brownian motion.

It is well-known that if we exclude arbitrage opportunities in this financial market,

the pricing kernel (or stochastic discount factor) Mt satisfies (see, e.g., Karatzas and

Shreve, 1998)

dMt

Mt

= −r dt− λ dWt. (4.2.3)

In the numerical computations, we use the following financial market parameter values:

the Sharpe ratio λ = 20%, the risk-free rate r = 1%, and the stock return volatility

σ = 20%. These parameter values are the same as those used by Gomes et al. (2008).

4.2.2. Preferences

The agent’s preferences are represented by the multiplicative habit specification originally

introduced by Abel (1990). More precisely, the instantaneous utility function is given

by53

u (ct, ht) = v

(
ct
ht

)
=

1

1− γ

(
ct
ht

)1−γ

. (4.2.4)

Here γ > 0 is the coefficient of relative risk aversion, ct stands for consumption at time

t, and ht denotes the habit level at time t to which the agent compares consumption ct.

In the difference model of habit formation (Constantinides, 1990), relative risk aversion

depends on (surplus) wealth. As a result, the optimal solution of the difference model

53If γ = 1, then u (ct, ht) = v (ct/ht) = log {ct/ht}.
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differs substantially from the optimal solution of the ratio model (see Section 4.4 for

further details).

Inspired by Kozicki and Tinsley (2002) and Corrado and Holly (2011), the log habit

level log ht satisfies the following dynamic equation:

d log ht = (β log ct − α log ht) dt, log h0 = 0. (4.2.5)

Here log h0 denotes the initial log habit level. We normalize log h0 to zero (i.e., h0 = 1).

We thus measure initial retirement wealth, consumption and the habit level in terms of

h0.54 The preference parameter α ≥ 0 represents the rate at which the log habit level

depreciates. If α is small, then the log habit level exhibits a low degree of depreciation

(or, equivalently, a high degree of persistence). The preference parameter β ≥ 0 indexes

the extent to which the current log habit level responds to current log consumption. If

β is large, then current log consumption has a large impact on the log habit level. We

impose the following restriction on the agent’s preference parameters:

α ≥ β. (4.2.6)

The parameter restriction (4.2.6) prevents the habit level from growing exponentially

over time.

The habit level hs conditional on information available at time t is explicitly given

by55

hs = exp

{∫ s

t

β exp {−α(s− u)} log cu du

}
× exp {exp {−α(s− t)} log ht} . (4.2.7)

Equation (4.2.7) shows that we can factor the habit level hs into two components:

one dependent upon the agent’s consumption choices between time t and time s (i.e.,

54The utility function is not invariant to the unit of measurement. The agent should thus change the
values of the preference parameters if the unit of measurement changes.

55Equation (4.2.7) is equivalent to:

hs = (ht)
exp{−α(s−t)} ×

s∏
t

(cu)
β exp{−α(s−u)} du

.

Here
∏s
t (cu)

β exp{−α(s−u)} du
= lim∆u→0 exp

{∑s/∆u
i=t/∆u β exp {−α (s− i∆u)} log ci∆u∆u

}
denotes

the geometric integral.
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the stochastic component) and the other not (i.e., the deterministic component). The

preference parameter β indexes the importance of the stochastic component relative

to the deterministic component (given α). The stochastic component becomes less

important as β decreases. Indeed, if β equals zero, then

exp {β exp {−α(s− u)} log cu} = 1. (4.2.8)

The stochastic component is an exponentially weighted product (and not an exponentially

weighted sum) of the agent’s consumption choices between time t and time s. The

habit level thus depends more on consumption in the recent past than it depends on

consumption in the distant past.

Corrado and Holly (2011) demonstrate that for the ratio model of habit formation,

a specification in which the habit level is geometric in consumption is more desirable

than a specification in which the habit level is arithmetic in consumption. In particular,

they prove that under the geometric habit specification, overall utility decreases as the

endogeneity parameter β increases, provided that consumption is larger than unity.56

This property does not hold true in the arithmetic habit specification. Futhermore, the

assumption of a geometric habit specification makes the agent’s maximization problem

analytically tractable.

4.2.3. Maximization Problem

This section formulates the agent’s maximization problem. Denote by At the agent’s

retirement wealth at time t, and by πt the fraction of wealth invested in the risky stock

at time t. Wealth evolves according to

dAt = (r + πtλσ)At dt− ct dt+ πtσAt dWt, A0 ≥ 0 given. (4.2.9)

Equation (4.2.9) is referred to as the agent’s dynamic budget equation. This equation

shows that the agent’s retirement wealth equals the agent’s initial retirement wealth,

plus any gains from trading, minus cumulative consumption.

56Consumption is typically larger than unity because with internal habit formation, the agent has a
tendency to postpone consumption (i.e., consumption tends to exhibit a positive expected growth
rate); see Section 4.4.
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The agent aims to maximize expected lifetime utility

U0 = E
[∫ T

0

e−
∫ t
0 δu duv

(
ct
ht

)
dt

]
, (4.2.10)

over the set of all admissible consumption and portfolio strategies subject the agent’s

dynamic budget constraint (4.2.9) and the habit formation process (4.2.5).57 Here E [·]

corresponds to the (unconditional) expectation operator, δu stands for the subjective rate

of time preference at time u, and v (ct/ht) represents the agent’s instantaneous utility

function (see equation (4.2.4)).58

We can, by virtue of the martingale approach (Pliska, 1986; Karatzas et al., 1987; Cox

and Huang, 1989, 1991), transform the agent’s maximization problem into the following

equivalent problem:

maximize
c

E
[∫ T

0

e−
∫ t
0 δu duv

(
ct
ht

)
dt

]
subject to E

[∫ T

0

Mtct dt

]
≤ A0, d log ht = (β log ct − α log ht) dt.

(4.2.11)

The optimal portfolio choice π∗t is determined in such a way that it finances the optimal

consumption choice c∗t .

The optimal consumption choice c∗t (if it exists) satisfies the following first-order

optimality condition:

e−
∫ t
0 δu du 1

ht

(
ct
ht

)−γ
− β

ct
Et

[∫ T

t

e−
∫ s
0 δu due−α(s−t)

(
cs
hs

)1−γ

ds

]
= yMt. (4.2.12)

57For the definition of admissible consumption and portfolio strategies, see, e.g., Karatzas and Shreve
(1998).

58Alternatively, we can view δu as the sum of the subjective rate of time preference at time u and the
force of mortality at time u. More specifically, in the case of deterministic mortality risk, expected
lifetime utility is given by (see Yaari, 1965)

U0 = E

[∫ T

0

e−
∫ t

0
ρu du

1[t≤D]v

(
ct
ht

)
dt

]
= E

[∫ T

0

e−
∫ t

0
ρu du

tpxv

(
ct
ht

)
dt

]

= E

[∫ T

0

e−
∫ t

0
ρu due−

∫ t

0
µx+u duv

(
ct
ht

)
dt

]
= E

[∫ T

0

e−
∫ t

0
δu duv

(
ct
ht

)
dt

]
.

Here ρu represents the subjective rate of time preference at time u, D is the stochastic date of death,

tpx denotes the probability that an agent aged x at time 0 will survive to time x+ t, and µx+u is the
deterministic force of mortality at age x+ u.
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Here y ≥ 0 denotes the Lagrange multiplier. The left-hand side of equation (4.2.12)

represents marginal utility, whereas the right-hand side denotes marginal cost. We can

decompose marginal utility into two components: the first representing the effect of an

increase in consumption on current instantaneous utility, and the second representing the

effect of an increase in consumption on future instantaneous utilities. We cannot obtain

the optimal consumption choice c∗t in closed-form due to the presence of the conditional

expectation operator Et [·] in the second component. The next section presents an

approximate problem to problem (4.2.11) that can be solved analytically.

4.3. The Solution Method

4.3.1. Applying a Change of Variable

By applying a change of variable, we can transform the agent’s maximization problem

(4.2.11) into an equivalent dual problem. Denote by ĉt the ratio between the agent’s

consumption choice and the habit level; that is,

ĉt ≡
ct
ht
. (4.3.1)

We refer to ĉt as the agent’s dual consumption choice. We can express the dynamics of

the log habit level in terms of the agent’s log dual consumption choice log ĉt (substitute

log ct = log ht + log ĉt into equation (4.2.5)):

d log ht = (β [log ht + log ĉt]− α log ht) dt

= (β log ĉt − [α− β] log ht) dt.
(4.3.2)
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Hence the agent’s habit level hs conditional on all information available at time t is

explicitly given by59

hs = exp

{∫ s

t

β exp {−(α− β)(s− u)} log ĉu du

}
× exp {exp {−(α− β)(s− t)} log ht} .

(4.3.3)

Equation (4.3.3) shows that due to the parameter restriction (4.2.6), the habit level does

not grow exponentially over time. We define the dual static budget constraint as follows:

E
[∫ T

0

Mthtĉt dt

]
≤ A0. (4.3.4)

Equation (4.3.4) follows from substituting ct ≡ htĉt into the original static budget

constraint. The agent’s dual maximization problem is thus given by

maximize
ĉt

E
[∫ T

0

e−
∫ t
0 δu duv (ĉt) dt

]
subject to E

[∫ T

0

Mthtĉt dt

]
≤ A0, d log ht = (β log ĉt − [α− β] log ht) dt.

(4.3.5)

We can obtain the optimal consumption choice c∗t from the optimal dual consumption

choice ĉ ∗t as follows:

c∗t = h∗t ĉ
∗
t . (4.3.6)

Here h∗t is the optimal habit level at time t implied by substituting the agent’s optimal

past dual consumption choices c∗u (u ≤ t) into equation (4.3.3).

To solve the agent’s maximization problem (4.2.11), we can thus restrict ourselves

to finding a solution to problem (4.3.5). The agent’s optimal consumption choice c∗t

then follows from applying equation (4.3.6). We can however still not solve the agent’s

maximization problem (4.2.11) analytically because the dual static budget constraint

59Equation (4.3.3) is equivalent to:

hs = (ht)
exp{−(α−β)(s−t)} ×

s∏
t

(ĉu)
β exp{−(α−β)(s−u)} du

.
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(4.3.4) depends on the agent’s dual consumption choice in a nonlinear way. Indeed,

substitution of ht into equation (4.3.4) shows that the dual static budget constraint

depends on the agent’s dual consumption choice ĉt nonlinearly. The next section develops

a linearization to the agent’s dual static budget constraint (4.3.4). After applying this

linearization, we can obtain the agent’s dual consumption choice in closed-form.

4.3.2. Linearizing the Budget Constraint

This section linearizes the left-hand side of the agent’s dual budget constraint (4.3.4)

around the consumption trajectory ĉ = c/h = 1. We expect (and verify in Section

4.6) that the approximation error is accurate when the agent’s consumption choice ct

stays close to the habit level ht, and when the endogeneity parameter β is small or the

depreciation parameter α is large. Indeed, if the habit level is completely exogenous

(i.e., β = 0 or α = ∞), the solution to problem (4.3.5) coincides with the solution to

problem (4.2.11) (see also equation (4.2.12), which shows that we can solve the first-order

optimality condition analytically if β = 0 or α =∞). We expect the approximation to be

less accurate when the agent’s consumption choice ct deviates much from the habit level

ht. Section 4.6 examines the approximation error induced by applying a linearization to

the agent’s dual budget constraint.

By applying a first-order Taylor series approximation, we can write the left-hand side

of the agent’s dual budget constraint (4.3.4) as follows (see Appendix)

E
[∫ T

0

Mthtĉt dt

]
≈ E

[∫ T

0

Mt dt

]
+ E

[∫ T

0

Mt (1 + βPt) (ĉt − 1) dt

]
= −βE

[∫ T

0

MtPt dt

]
+ E

[∫ T

0

M̂tĉt dt

]
.

(4.3.7)

Here M̂t ≡Mt (1 + βPt) denotes the adjusted pricing kernel, and Pt stands for the price

of a bond paying a continuous coupon, i.e.,60

Pt ≡ Et
[∫ T

t

Ms

Mt

e−(α−β)(s−t) ds

]
=

1

r + α− β

(
1− e−(r+α−β)(T−t)

)
. (4.3.8)

60We can also view Pt as the amount of wealth needed to finance the consumption stream log cs/ log ht
if cs = hs for every s ≥ t.
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4.3.3. The Approximate Problem

This section presents an approximate problem to problem (4.3.5) based on linearizing

the left-hand side of the dual budget constraint (4.3.4). The approximate problem is

given by

maximize
ĉt

E
[∫ T

0

e−
∫ t
0 δu duv (ĉt) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Â0.

(4.3.9)

Here Â0 denotes the adjusted initial wealth. We can obtain the agent’s maximization

problem (4.3.9) from (4.3.5) as follows. First, we replace the left-hand side of the static

dual budget constraint in (4.3.5) by equation (4.3.7). Second, we eliminate the constant

term

−βE
[∫ T

0

MtPt dt

]
(4.3.10)

from the new static dual budget constraint. We are allowed to do this because the

constant term (4.3.10) does not play a role in determining the first-order optimality

condition. Finally, we redefine the agent’s initial wealth A0 in such a way that the

optimal solution ĉ ?t is budget-feasible. That is, we determine the initial level of the

agent’s optimal dual consumption choice (i.e., the Lagrange multiplier) in such a way

that

E
[∫ T

0

Mth
?
t ĉ

?
t dt

]
= A0. (4.3.11)

Here h ?t is the agent’s habit level at time t implied by substituting the agent’s optimal

past dual consumption choices ĉ ?u (u ≤ t) into (4.3.3). Straightforward computations

show that the agent’s adjusted initial wealth Â0 is given by

Â0 = A0 +

(
E
[∫ T

0

M̂tĉ
?
t dt

]
− E

[∫ T

0

Mth
?
t ĉ

?
t dt

])
= E

[∫ T

0

M̂tĉ
?
t dt

]
.

(4.3.12)
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Equation (4.3.12) shows that the agent’s adjusted initial wealth Â0 equals the agent’s

initial wealth A0 plus the approximation error evaluated at the optimal solution. We can

only compute the value of Â0 after problem (4.3.9) has been optimized.

4.4. Dynamic Consumption and Portfolio Choice

4.4.1. Consumption Choice

Theorem 4 below presents the optimal solution to the agent’s maximization problem

(4.3.9).

Theorem 4. Consider an agent with the utility function (4.2.4) and habit formation

process (4.2.5) who solves the consumption and portfolio choice problem (4.3.9). Denote

by h?t the habit level implied by substituting the agent’s optimal past dual consumption

choices ĉ ?u ≡ c?u/h
?
u (u ≤ t) into equation (4.3.3), and by y the Lagrange multiplier

associated with the static budget constraint in (4.3.9). Then the optimal consumption

choice c?t is given by

c?t = h?t

(
ye
∫ t
0 δu duM̂t

)− 1
γ
. (4.4.1)

The Lagrange multiplier y ≥ 0 is determined in such a way that the agent’s original

budget constraint holds with equality.

4.4.1.1. Infinite Terminal Time

This section analyzes the agent’s consumption choice for the case where the terminal

time T equals infinity. This assumption does not necessarily imply that the agent lives

forever. Indeed, if we also take into account mortality risk (see footnote 58), then T

stands for the maximum age the agent can possibly reach. The Appendix shows that we

can write the agent’s consumption choice c?t (see (4.4.1) where c?t is expressed in terms

of the state variables h?t and M̂t) in terms of past financial shocks as follows:

c?t = (c?0)
qt/q0 exp

{∫ t

0

qt−u
1

γ

(
r +

1

2
λ2 − δu

)
du+

∫ t

0

qt−u
1

γ
λ dWu

}
. (4.4.2)
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The parameter qu is defined as follows:

qu ≡ 1 +
β

α− β
(1− exp {−(α− β)u})

= q0 + (q∞ − q0) (1− exp {−ηu}) .
(4.4.3)

Here

q0 = 1, (4.4.4)

q∞ = 1 +
β

α− β
, (4.4.5)

η ≡ α− β. (4.4.6)

We can view

q̄u ≡ qu/γ (4.4.7)

as the exposure of future log consumption log c?t+u to a current financial shock λ dWt. We

make the following observations. First, the risk exposure q̄u increases with the horizon

u: a current financial shock has a larger impact on log consumption in the distant

future than it has on log consumption in the near future. This implies that consumption

responds gradually to financial shocks. It provides a utility-based foundation for the

existence of smoothing mechanisms in drawing-down accumulated wealth by dampening

the change in consumption due to financial shocks. Second, the risk exposure of current

log consumption log c?t to a current financial shock λ dWt, i.e., q̄0, decreases with the

coefficient of relative risk aversion γ. Hence the coefficient of relative risk aversion γ

determines the effect of a current financial shock on the level of log consumption (i.e.,

current log consumption). Third, β/(α − β) determines the effect of a current financial

shock on future growth rates of consumption. If the endogeneity parameter β is large or

the depreciation parameter η is small, then a current financial shock has a large effect

on future growth rates of consumption (see also equation (4.3.3)). Fourth, we can view

η = α − β as the rate at which q̄u converges to q̄∞. If η is small (i.e., the habit level

depreciates at a slow pace), then it takes a long time to fully absorb a financial shock

into current and future consumption. Finally, the Merton consumption strategy (see
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Merton, 1969) emerges as a special case when q̄u = 1/γ for all u. The risk exposure of

an agent with CRRA utility is always smaller than the risk exposure of an agent with

utility function (4.2.4), given γ. Figure 4.1 shows q̄u (expressed relative to σ = 20%) as a

function of the horizon u for various sets of parameter values. We choose the parameter

values such that the average risk exposure matches the risk exposure of a CRRA agent.

Figure 4.1.

Illustration of the risk exposure of future log consumption to a current financial shock

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Merton (RRA = 5)

Merton (RRA = 2)

Future horizon u

R
is
k
e
x
p
o
su

re
q̄
u

 

 

α = 0.64, β = 0.56, γ = 20

α = 0.80, β = 0.76, γ = 20

α = 0.5, β = 0.3, γ = 5

α = 0.66, β = 0.54, γ = 5

The figure illustrates the risk exposure q̄u (i.e., the risk exposure of future log consumption
log c?t+u to a current financial shock λ dWt) as a function of the horizon u for various sets of
parameter values. The figure also shows the Merton risk exposure for RRA = 2 and RRA =
5. Here RRA stands for relative risk aversion.

Equation (4.4.7) demonstrates that the parameters q̄0 (i.e., the exposure of current log

consumption to a current shock), q̄∞ (i.e., the exposure of long-term log consumption

to a current financial shock), and η (i.e., the time it takes to absorb a financial shock)

fully characterize the risk exposure q̄u. We can uniquely identify the agent’s original
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preference parameters α, β and γ from q̄0, q̄∞ and η:

α =
q̄∞
q̄0

η, (4.4.8)

β =
q̄∞ − q̄0

q̄0

η, (4.4.9)

γ =
1

q̄0

. (4.4.10)

The Appendix shows that log consumption log c?t evolves according to

d log c?t = logF dt
t + q0

1

γ

(
r +

1

2
λ2 − δt

)
dt+ q0

1

γ
λ dWt. (4.4.11)

Here

logF v
t ≡

∫ t

0

(qt+v−u − qt−u)
1

γ

(
r +

1

2
λ2 − δu

)
du+

(
qt+v
q0

− qt
q0

)
1

γ
log c?0

+

∫ t

0

(qt+v−u − qt−u)
1

γ
λ dWu.

(4.4.12)

The left-hand side of equation (4.4.11) consists of three terms. The first two terms

represent the median (or expected) growth rate of log consumption. The term logF dt
t

represents past financial shocks that are reflected into the current median growth rate of

log consumption. This term disappears if β = 0 or q̄u = 1/γ for all u. The second term

represents the desired growth rate of consumption. The median value of log consumption

stays constant over time if β = 0, δu = δ and r = δ − 1
2
λ2 for all u. Finally, the last

term corresponds to current financial shocks that are absorbed into the level of log

consumption. The (annualized) volatility of d log c?t equals q0/γ · λ.

Figure 4.2 shows the median growth rate of consumption as a function of age for

various sets of parameter values. The black dashed line corresponds the case where

δu = r + 1
2
λ2 = 3% for all u. In that case, the median growth rate of consumption is

zero (i.e., median consumption stays constant over time). The other lines illustrate the

median growth rate of consumption if δ changes at the age of retirement (65 years) from

3% to 2%. The parameter δ can change because of a (discretionary) change in the force

of mortality (see also footnote 58). We observe that the agent reallocates consumption

from the short-run to the long-run. Indeed, the agent expects to live longer so that he

postpones consumption and saves more for the future. The effect of a decrease in δ on
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the median growth rate of consumption is more pronounced for large values of β and

small values of γ. Hence, if β is large or γ is small, then the agent is more willing to

substitute consumption over time. Section 4.5 considers a utility specification in which

the coefficient of relative risk aversion does not affect the agent’s willingness to substitute

consumption over time.

Figure 4.2.

Illustration of the median growth rate of consumption (T =∞)
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The figure illustrates the median growth rate of consumption as a function of age for various
sets of parameter values. The depreciation parameter α is set equal to 0.6, the subjective rate
of time preference δ to 0.02, and the Lagrange multiplier y to unity. The black dashed line
represents the median growth of consumption in the case of δ = r + 1

2λ
2 = 0.03.

4.4.1.2. Finite Terminal Time

This section analyzes the agent’s consumption choice for the case where the terminal

time T is finite (i.e., T < ∞). The Appendix shows that we can write the agent’s

consumption choice c?t in terms of past financial shocks as follows:

c?t = (c?0)
qt/q0 exp

{∫ t

0

qt−u
1

γ

(
r̂u +

1

2
λ2 − δu

)
du+

∫ t

0

qt−u
1

γ
λ dWu

}
. (4.4.13)
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Here

r̂u ≡ β +
r − αβPu
1 + βPu

(4.4.14)

We can obtain equation (4.4.13) from equation (4.4.2) by replacing the interest rate r

with the adjusted interest rate r̂u. The Appendix proofs the following theorem.

Theorem 5. Let the adjusted interest rate r̂u be defined by equation (4.4.14). Then:

1. The adjusted interest rate r̂u increases as the endogeneity parameter β increases,

given η = α− β.

2. The adjusted interest rate r̂u decreases as the terminal time T increases. In particular,

r̂u → r if T →∞.

Current consumption has a large impact on future habit levels if β is large. Furthermore,

the utility gain of an infinitesimal increase in consumption is smaller when the agent is

(relatively) young (i.e., small t) than when the agent is (relatively) old (i.e., large t).

These two facts together explain why the median consumption choice tends to go up

with age if the endogeneity parameter β is large. Indeed, as already pointed out by

Deaton (1992), the agent derives utility not only from consumption levels but also from

consumption growth. If T equals infinity, the utility gain of an infinitesimal increase

in consumption is age-independent. Hence, the agent does no longer have a desire to

postpone consumption. In our model, four factors thus affect the median consumption

choice (see also equation (4.4.13)): the financial market (i.e., r, λ and σ), the subjective

rate of time preference, the survival curve, and the strength of internal habit formation.

Figure 4.3 illustrates the median growth rate of consumption for various values of the

endogeneity parameter β.

4.4.2. Portfolio Choice

This section analyzes the agent’s portfolio choice π?t . The Appendix shows that the

replicating portfolio strategy π?t is given by

π?t = q̂t
λ

σ
. (4.4.15)
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Figure 4.3.

Illustration of median growth rate of consumption (T <∞)
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The figure illustrates the median growth rate of consumption as a function of age for various
values of the endogeneity parameter β. The parameter η ≡ α − β is set equal to 0.2, the
coefficient of relative risk aversion γ to 5, the subjective rate of time preference δ to 0.01, the
terminal time T to 20, and the Lagrange multiplier y to unity.

Here 0 ≤ q̂t ≤ 1 denotes the (weighted) average risk exposure. That is,

q̂t =

∫ T

t

q̄u
V u
t

Vt
du, (4.4.16)

where Vt ≡
∫ T
t
V u
t du and V u

t denotes the (market) value at time t of c?t+u:

V u
t ≡ c?tF

u
t C

u
t . (4.4.17)

Equation (4.4.17) shows that the market value of future consumption, i.e., V u
t /c

?
t , consists

of two factors. The first factor, i.e., F u
t , represents past financial shocks that are absorbed

into future growth rates of consumption. This factor equals unity if the agent directly

adjusts consumption after unexpected financial shocks (i.e., q̄u = 1/γ for all u). The

horizon-dependent annuity factor Cu
t summarizes the impacts of desired consumption

streams and future rates of return on the market value of future consumption. The

Appendix provides an explicit analytical expression for the horizon-dependent annuity
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factor Cu
t (see equation (4.8.3) in the Appendix).

Table 4.1 shows the median portfolio choice as a function of age for various sets of

parameter values. The agent implements a life cycle investment strategy (that is, the

fraction of wealth invested in the risky stock decreases on average as the agent ages),

even without taking human capital into account. Indeed, the agent has less time to

absorb a wealth shock as he grows older.

Table 4.1.
The agent’s median portfolio choice

Age (1) (2) (3) (4) Merton (RRA = 2) Merton (RRA = 5)

65 0.20 0.27 0.41 0.65 0.50 0.20
70 0.18 0.24 0.39 0.64 0.50 0.20
75 0.15 0.19 0.36 0.56 0.50 0.20
80 0.10 0.12 0.29 0.40 0.50 0.20
85 0.05 0.05 0.20 0.20 0.50 0.20

The table reports the agent’s median portfolio choice (i.e., the median fraction of assets invested
in the risky stock) as a function of age for various sets of parameter values. The table also
reports the Merton portfolio strategy. (1) corresponds to α = 0.64, β = 0.56, γ = 20; (2) to
α = 0.80, β = 0.76, γ = 20; (3) to α = 0.5, β = 0.3, γ = 5; and (4) to α = 0.66, β = 0.54,
γ = 5.

Table 4.2 shows the (annualized) volatility of the relative change in consumption and the

(annualized) volatility of the relative change in wealth. With internal habit formation,

the volatility of the relative change is consumption is smaller than the volatility of the

relative change in wealth. Hence the agent can take substantial stock market risk without

affecting the year-on-year volatility of consumption. Indeed, the degree of internal habit

formation largely determines the fraction of wealth invested in the risky stock, while

the coefficient of relative risk aversion largely determines the year-on-year fluctuations

in consumption.

4.4.3. Welfare Analysis

This section conducts a welfare analysis. More specifically, we compare a number of

alternative popular draw-down and investment strategies to the draw-down and investment

strategy implied by the agent’s maximization problem (4.3.9). The welfare loss associated

with implementing an alternative draw-down and investment strategy is computed relative

to the agent’s optimal draw-down and investment strategy. More precisely, the performance
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Table 4.2.
Volatility of the change in consumption and the volatility of the change in wealth

Age (1) (2) Merton (RRA = 2) Merton (RRA = 5)

σc σA σc σA σc σA σc σA
65 1.00 3.95 4.00 12.99 10.00 10.00 4.00 4.00
70 1.00 3.56 4.00 12.81 10.00 10.00 4.00 4.00
75 1.00 2.92 4.00 11.12 10.00 10.00 4.00 4.00
80 1.00 1.99 4.00 7.90 10.00 10.00 4.00 4.00
85 1.00 1.00 4.00 4.00 10.00 10.00 4.00 4.00

The table reports the volatility of the change in consumption σc and the volatility of the
change in wealth σA as a function of age for various sets of parameter values. (1) corresponds
to α = 0.64, β = 0.56, γ = 20; and (2) to α = 0.66, β = 0.54, γ = 5. The numbers represent a
percentage.

of an alternative strategy is evaluated by measuring the relative decline in certainty

equivalent consumption. We define the certainty equivalent of an uncertain consumption

strategy to be the constant, certain consumption level that yields indifference to the

uncertain consumption strategy. Certainty equivalents are computed using the lifetime

utility function (4.2.10). Due to the presence of internal habit formation, the computation

of certainty equivalents is non-standard; see also Chapter 2. In the welfare analysis, we

consider the following alternative draw-down and investment strategies:

• The remaining lifetime approach (i.e., the 1/T -rule): the proportion of wealth

withdrawn from the agent’s retirement wealth is given by

ct
At

=
1

T − t
. (4.4.18)

Here T−t denotes the agent’s remaining lifetime which is assumed to be non-random.

We assume that the agent invests a fixed percentage (0, 20, 40, 60 or 80 percent)

of wealth into the risky stock. Equation (4.4.18) shows that consumption responds

directly to a financial shock.

• The Merton approach: the proportion of wealth withdrawn from the agent’s retirement

wealth is given by

ct
At

=
x1 − x2

exp {(x1 − x2)(T − t)} − 1
, (4.4.19)
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where

x1 ≡
1− γ
γ

(
r +

1

2
λ2

)
+

1

2

(
1− γ
γ

)2

λ2 (4.4.20)

x2 ≡
1

γ
δ. (4.4.21)

We assume that the coefficient of relative risk aversion equals 2, 5 or 20. Like the

remaining lifetime approach, consumption is directly adjusted after a wealth shock.

• Difference model of habit formation. We assume that the agent maximizes

U0 = E
[∫ T

0

e−
∫ t
0 δu du 1

1− γ
(ct − ht)

1−γ dt

]

subject to the dynamic budget constraint (4.2.9) and the habit formation process

dht = (βct − αht) dt.

The consumption strategy is given by

ct = ht +
(
M̂tye

∫ t
0 δu du

)− 1
γ
. (4.4.22)

Here y is a Lagrange multiplier. Consumption (4.4.22) responds gradually to a

financial shock. The investment strategy follows from replicating the consumption

strategy (4.4.22). Unlike the investment strategy implied by the ratio model (see

equation (4.4.15)), the investment strategy implied by the difference model depends

on the habit level. Indeed, if the habit level approaches consumption, the agent

reduces the fraction of wealth invested in the risky stock.

Table 4.3 reports welfare losses associated with implementing the remaining lifetime

approach. The welfare losses are relatively large if the agent exhibits a significant degree

of internal habit formation; see the first two rows of Table 4.3. Table 4.4 reports the

welfare losses due to implementing the Merton strategy. The welfare losses are smaller

compared to the remaining lifetime approach. Indeed, the Merton strategy emerges

as a special case of our model when β = 0. However, welfare losses associated with

implementing the Merton strategy may still be significant when the strength of internal
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habit formation is large. Finally, Table 4.5 reports the welfare losses due to implementing

the difference model of habit formation. Again, the welfare loss increases as the strength

of internal habit formation (i.e., β) increases. Also, the welfare losses are larger compared

to the Merton approach.

Table 4.3.
Welfare losses due to implementing the remaining lifetime approach

Optimal Strategy
Fraction of Assets Invested in the Risky Stock

0% 20% 40% 60% 80%

α = 0.64, β = 0.56, γ = 20 35.16 34.07 36.97 42.76 50.37
α = 0.80, β = 0.76, γ = 20 42.93 42.35 43.84 46.97 51.45
α = 0.50, β = 0.30, γ = 5 7.45 2.90 2.79 7.11 15.44
α = 0.66, β = 0.54, γ = 5 8.85 3.16 1.71 4.79 11.87

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing the remaining lifetime approach. The table reports the
welfare losses for various values of the fraction of wealth invested in the risky stock. The
numbers represent a percentage. We assume that δu = δ = 3% for all u and T = 20.

Table 4.4.
Welfare losses due to implementing the Merton approach

Optimal Strategy
Relative Risk Aversion Coefficient

2 5 20

α = 0.64, β = 0.56, γ = 20 23.85 5.19 2.44
α = 0.80, β = 0.76, γ = 20 29.55 13.13 8.50
α = 0.50, β = 0.30, γ = 5 2.95 0.63 3.93
α = 0.66, β = 0.54, γ = 5 2.85 1.86 5.31

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to the consumption and portfolio strategy of an agent with CRRA utility
(i.e., the Merton strategy). The table reports the welfare losses for various values of the
coefficient of relative risk aversion γ underlying the Merton strategy. The numbers represent a
percentage. We assume that δu = δ = 3% for all u and T = 20.
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Table 4.5.
Welfare losses due to implementing the difference model of habit formation

Optimal Strategy Welfare Loss

α = 0.64, β = 0.56, γ = 20 5.63
α = 0.80, β = 0.76, γ = 20 9.10
α = 0.50, β = 0.30, γ = 5 4.33
α = 0.66, β = 0.54, γ = 5 4.31

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing the difference model of habit formation. The numbers
represent a percentage. We assume that δu = δ = 3% for all u and T = 20.

4.5. Stochastic Differential Utility

4.5.1. Preferences and Maximization Problem

This section considers consumption and portfolio choice of an agent with preferences

that combine SDU with multiplicative internal habit formation. We specify the agent’s

utility process {Vt}t∈[0,T ] in terms of the intertemporal aggregator f . More specifically,

{Vt}t∈[0,T ] satisfies the following integral equation (t ∈ [0, T ]):

Vt = Et
[∫ T

t

f

(
cs
hs
, Vs, s

)
ds

]
. (4.5.1)

As in the previous sections, the log habit level log ht evolves according to equation (4.2.5).

The intertemporal aggregator f is characterized by61

f

(
ct
ht
, Vt, t

)
= (1 + ζ)


(
ct
ht

)ϕ
ϕ
|Vt|

ζ
1+ζ − δVt

 . (4.5.2)

Here ζ > −1 and ϕ < min {1, 1/ (1 + ζ)} are preference parameters. Equation (4.5.2)

is usually referred to as the Kreps-Porteus aggregator. If ζ = 0 and the habit level ht

equals unity (i.e., α = β = 0), then f (ct/ht, Vt, t) reduces to

f

(
ct
ht
, Vt, t

)
=

1

ϕ
cϕt − δVt. (4.5.3)

61If ζ = 0, then f (ct/ht, Vt, t) = (1 + ζVt) [log {ct/ht} − (δ/ζ) log {1 + ζVt}].
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Equation (4.5.1) is then equivalent to the additive utility specification

Vt = Et
[∫ T

t

e−δ(s−t)
1

ϕ
cϕs ds

]
. (4.5.4)

The agent aims to maximize V0 in equation (4.5.1) (at t = 0) with f
(
ct
ht
, Vt, t

)
given by

equation (4.5.2) subject to the habit formation process (4.2.5) and the dynamic budget

constraint (4.2.9).

We can transform this dynamic consumption and portfolio choice problem into an

equivalent static consumption and portfolio choice problem (similar to what we did in

Section 4.2.3). After transforming this static problem into a dual problem and applying

a linearization to the static dual budget constraint (which takes the same form as in our

base model; see Section 4.3.2 for further details), we obtain the following maximization

problem:

maximize
ĉt

E
[∫ T

0

f (ĉt, Vt, t) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Â0.

(4.5.5)

The next section presents the optimal solution to problem (4.5.5).

4.5.2. Dynamic Consumption and Portfolio Choice

The agent’s maximization problem (4.5.5) obtained in the dual model upon linearizing

the dual budget constraint can be solved by invoking the approach of Schroder and

Skiadas (1999). The next theorem presents the optimal consumption choice.

Theorem 6. Consider an agent with utility process (4.5.1), intertemporal aggregator

(4.5.2) and habit formation process (4.2.5) who solves the consumption and portfolio

choice problem (4.5.5). Let h?t be the agent’s habit level implied by substituting the agent’s

optimal past dual consumption choices ĉ ?u ≡ c?u/h
?
u (u ≤ t) into equation (4.3.3) and let

y be the Lagrange multiplier associated with the static budget constraint in (4.5.5). Then

the agent’s optimal consumption choice c ?t is given by

c ?t = h?t exp

{∫ t

0

(
ψ

[
r̂u +

1

2

λ2

γ
− δ
]

+
1

2

λ2

γ2 [γ − 1]

)
du+ ψy +

λ

γ

∫ t

0

dWu

}
, (4.5.6)

121



Chapter 4. How to Invest and Draw-Down Wealth? A Utility-Based Analysis

where

ψ =
1

1− ϕ
,

ζ =
1− γ
ϕ
− 1.

We can write the agent’s consumption choice c?t in terms of past financial shocks as

follows:

c?t = (c?0)
qt
q0 exp

{∫ t

0

qt−u

(
ψ

[
r̂u +

1

2

λ2

γ
− δ
]

+
1

2

λ2

γ2 [γ − 1]

)
du+

+qt−u
1

γ
λ

∫ t

0

dWu

}
.

(4.5.7)

The optimal portfolio choice π?t is the same as in Section 4.4.2. Equation (4.5.7) shows

that with SDU, the parameter ψ determines the willingness to substitute consumption

over time. Relative risk aversion is thus decoupled from the elasticity of intertemporal

substitution. Figure 4.4 shows the median growth rate of consumption as a function of

age for various values of ψ and δ. We observe that the change in the median growth rate

of consumption following a (permanent) change in the subjective rate of time preference

δ at the age of retirement (65 years) is small if ψ is small in absolute terms.

4.6. The Accuracy of the Approximation Method

The consumption and portfolio strategies presented in Section 4.4 are exact only in the

case of β = 0 and/or α =∞. In all other cases the consumption and portfolio strategies

are approximate based upon linearizing the left-hand side of the agent’s dual budget

constraint (4.3.4) around the consumption trajectory c/h = 1. This section analyzes the

approximation error due to applying a linearization to the dual budget constraint.62

We determine the optimal consumption choice c∗t by using the method of backward

induction. That is, first, we determine the optimal consumption choice at the terminal

time T . Then, the optimal consumption choice at time T − 1 is determined taking the

62The Appendix linearizes the left-hand side of the dual budget constraint (4.3.4) in a multi-period,
discrete-time setting.
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Figure 4.4.

Illustration of median growth rate of consumption (SDU utility)
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δ = 0.03, ψ = 0.05
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The figure illustrates the median growth rate of consumption as a function of age for various
values of ψ and δ. The endogeneity parameter β is set equal to 0.4, the depreciation parameter
α to 0.6, the coefficient of relative risk aversion γ to 5, the terminal time T to infinity, and
the Lagrange multiplier y to unity. The black solid line corresponds to the case where median
consumption growth is zero.

optimal consumption choice at time T as given. We continue this process backwards in

time until all optimal consumption choices have been determined. The terminal time T is

set equal to three (we also consider the case where the terminal time T equals four), the

time interval ∆t equals unity and the underlying uncertainty is described by a binomial

tree.63 The computation of the optimal consumption choice c∗t rapidly becomes infeasible

as the number of time steps increases.

We evaluate the performance of the (sub-optimal) consumption choice c?t by measuring

the relative decline in certainty equivalent consumption (see Section 4.4.3 for the definition

of certainty equivalent consumption).64 Tables 4.6 – 4.9 report our results. The first three

tables show the welfare losses (in terms of the relative decline in certainty equivalent

63By considering a binomial tree, we can exactly compute the conditional expectations involved in the
optimization technique.

64The certainty equivalent consumption choice c̄ always exists if α ≥ β. In particular, ∂U0

∂c̄ ≥ 0 if

β
∫ T

0
e−αt dt ≤ 1. If T is large, then

∫ T
0
e−αt dt ≈ 1

α . Hence we can always compute (for any T ) the

certainty equivalent consumption choice c̄ if β
α ≤ 1.
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consumption) for the case where the terminal time equals three. We find that the

approximation error is an increasing function of β, and an decreasing function of α

and γ. Indeed, if α is large and/or β is small, the impact of an increase in consumption

on future habit levels is limited. Also, if γ is large, consumption stays close to the habit

level. In all cases, the approximation error is smaller than 1%. Table 4.9 reports the

approximation error for case where the terminal time T equals four. The approximation

error is still very small.

Table 4.6.
Welfare losses (γ = 2 and T = 3)

β

α 0 0.15 0.2 0.3 0.6

0 0 – – – –
0.15 0 0.0229 – – –
0.2 0 0.0178 0.0516 – –
0.3 0 0.0149 0.03053 0.1263 –
0.6 0 0.0153 0.0293 0.0689 0.6840

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) associated with implementing the consumption choice c?t . The numbers represent
a percentage. We only report welfare losses for the case α ≥ β. The terminal time T is set
equal to 3, initial wealth to 3, and the subjective rate of time preference δ to 3%.

Table 4.7.
Welfare losses (γ = 5 and T = 3)

β

α 0 0.15 0.2 0.3 0.6

0 0 – – – –
0.15 0 0.0078 – – –
0.2 0 0.0012 0.0101 – –
0.3 0 0.0164 0.0021 0.0197 –
0.6 0 0.0017 0.0285 0.0096 0.0479

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) associated with implementing the consumption choice c?t . The numbers represent
a percentage. We only report welfare losses for the case α ≥ β. The terminal time T is set
equal to 3, initial wealth to 3, and the subjective rate of time preference δ to 3%.
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Table 4.8.
Welfare losses (γ = 20 and T = 3)

β

α 0 0.15 0.2 0.3 0.6

0 0 – – – –
0.15 0 0.0000 – – –
0.2 0 0.0002 0.0003 – –
0.3 0 0.0019 0.0008 0.0024 –
0.6 0 0.0000 0.0008 0.0012 0.0017

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) associated with implementing the consumption choice c?t . The numbers represent
a percentage. We only report welfare losses for the case α ≥ β. The terminal time T is set
equal to 3, initial wealth to 3, and the subjective rate of time preference δ to 3%.

Table 4.9.
Welfare losses (γ = 2 and T = 4)

β

α 0 0.15 0.2 0.3 0.6

0 0 – – – –
0.15 0 0.0486 – – –
0.2 0 0.0561 0.0989 – –
0.3 0 0.0777 0.1025 0.2309 –
0.6 0 0.3997 0.2779 0.2081 1.3957

The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) associated with implementing the consumption choice c?t . The numbers represent
a percentage. We only report welfare losses for the case α ≥ β. The terminal time T is set
equal to 4, initial wealth to 4, and the subjective rate of time preference δ to 3%.

4.7. Concluding Remarks

In this chapter, we have built a rich consumption-portfolio choice model with preferences

that combine both multiplicative internal habit formation and stochastic differential

utility. To solve our preference model, we have developed an approximation method

based upon linearizing the agent’s (dual) budget constraint. For reasonable values of the

preference parameters, the approximation error induced by our method is very small. We

have shown that after a wealth shock, the agent optimally chooses to adjust both the level

and future growth rates of consumption, giving rise to gradual response of consumption

to financial shocks. Furthermore, expected consumption tends to grow with age, and
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relative risk aversion does not affect the willingness to substitute consumption over time.

A possible venue for future research would be to confront our preference model with

actual consumption data.

4.8. Appendix

4.8.1. Proofs

Derivation of (4.3.7)

This appendix linearizes the left-hand side of the agent’s dual static budget constraint

(4.3.4) around the consumption trajectory ĉ = c/h = 1. The partial derivative of hs with

respect to ĉt dt is given by

∂hs
∂ĉt

1

dt
= β exp {−(α− β)(s− t)} hs

ĉt
. (4.8.1)

Equation (4.8.1) follows from differentiating (4.3.3) with respect to ĉt dt. The partial

derivative (4.8.1) evaluated along the consumption trajectory ĉ = 1 yields

∂hs
∂ĉt

1

dt

∣∣∣∣
ĉ=1

= β exp {−(α− β)(s− t)} .

Define the function f (ĉ ) as follows:

f (ĉ ) ≡ E
[∫ T

0

Mthtĉt dt

]
.

Straightforward computations show

f(1) = E
[∫ T

0

Mt dt

]
,

∂f (ĉ )

∂ĉt

1

dt

∣∣∣∣
ĉ=1

= Mt + βEt
[∫ T

t

Ms exp {−(α− β)(s− t)} ds

]
= Mt (1 + βPt) .
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We can, by virtue of Taylor series expansion, approximate the dual budget constraint

f (ĉ ) by

f (ĉ ) ≈ f(1) + E
[∫ T

0

Mt (1 + βPt) (ĉt − 1) dt

]
.

Proof of Theorem 4

The Lagrangian L is given by

L = E
[∫ T

0

e−
∫ t
0 δu duv (ĉt) dt

]
+ y

(
Â0 − E

[∫ T

0

M̂tĉt dt

])
=

∫ T

0

E
[
e−

∫ t
0 δu duv (ĉt)− yM̂tĉt

]
dt+ yÂ0.

Here y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

The agent aims to maximize e−
∫ t
0 δu duv (ĉt) − yM̂tĉt. The optimal dual consumption

choice ĉt satisfies the following first-order optimality condition:

e−
∫ t
0 δu duĉ−γt = yM̂t.

After solving the first-order optimality condition, we obtain the following maximum:

ĉ ?t =
(
e
∫ t
0 δu duyM̂t

)− 1
γ
.

Hence (use equation (4.3.6))

c?t = h?t

(
ye
∫ t
0 δu duM̂t

)− 1
γ
.

A standard verification (see, e.g., Karatzas and Shreve, 1998, p. 103) stating that the

optimal solution to the Lagrangian equals the optimal solution to the dual problem

completes the proof.

Derivation of (4.4.2), (4.4.11) and (4.4.13)

This appendix explicitly writes the agent’s consumption choice c?t in terms of past

financial shocks. We can write the adjusted pricing kernel M̂t ≡Mt (1 + βPt) as follows
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(this follows from applying Itô’s Lemma to M̂t = f (Mt, Pt) = Mt (1 + βPt)):

M̂t = M̂0 exp

{
−
∫ t

0

(
r̂u +

1

2
λ2

)
du

}
exp

{
λ

∫ t

0

dWu

}
. (4.8.2)

Substituting equation (4.8.2) into equation (4.4.1) yields

ĉ ?t ≡
c?t
h?t

= exp

{
1

γ

∫ t

0

(
r̂u +

1

2
λ2 − δu

)
du+

ȳ

γ

}
exp

{
λ

γ

∫ t

0

dWu

}
.

Here ȳ ≡ −
(

log y + log M̂0

)
.

We can write the habit level as follows:

h?t = exp

{∫ t

0

β exp {−(α− β)(t− u)} log ĉ ?udu

}
= exp

{∫ t

0

β exp {−(α− β)(t− u)}[
1

γ

∫ u

0

(
r̂v +

1

2
λ2 − δv

)
dv +

ȳ

γ
+
λ

γ

∫ u

0

dWv

]
du

}
= exp

{∫ t

0

(
q̄t−u −

1

γ

)(
r̂u +

1

2
λ2 − δu

)
du

}
exp

{(
q̄t −

1

γ

)
ȳ +

∫ t

0

(
q̄t−u −

1

γ

)
λ dWu

}
.

Here

q̄t−u ≡
1

γ

[
1 + β

∫ t

u

exp {−(α− β)(t− v)} dv

]
=

1

γ

[
1 +

β

α− β
(1− exp {−(α− β)(t− u)})

]
.

Hence,

c?t = h?t exp

{
1

γ

∫ t

0

(
r̂u +

1

2
λ2 − δu

)
du+ ȳ

}
exp

{
λ

γ

∫ t

0

dWu

}
= exp

{∫ t

0

q̄t−u

(
r̂u +

1

2
λ2 − δu

)
du+ q̄tȳ +

∫ t

0

q̄t−uλ dWu

}
= (c?0)

q̄t/q̄0 exp

{∫ t

0

q̄t−u

(
r̂u +

1

2
λ2 − δu

)
du+

∫ s

0

q̄t−uλ dWu

}
.

Equation (4.4.2) follows from equation (4.4.13) and Theorem 5.

Dividing log c?t+∆t by log c?t and taking the limit ∆t⇒ 0 yields equation (4.4.11).
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Proof of Theorem 5

We first proof that the (partial) derivate of r̂u with respect to β is positive given η = α−β.

Substituting α = η + β into equation (4.4.14) yields

r̂u = β +
r − (η + β)βPu

1 + βPu
.

The derivate of r̂u with respect to β is given by

∂r̂u
∂β

= 1 +
− (1 + βPu) (η + 2β)Pu − (r − (η + β)βPu)Pu

(1 + βPu)
2

= 1 +
−ηPu − 2βPu − ηβP 2

u − 2 (βPu)
2 − rPu + ηβP 2

u + (βPs)
2

1 + 2βPu + (βPu)
2

= 1 +
−ηPu − 2βPu − (βPu)

2 − rPu
1 + 2βPu + (βPu)

2 .

Hence

∂r̂u
∂β
≥ 0⇔ −ηPu − 2βPu − (βPu)

2 − rPu
1 + 2βPu + (βPu)

2 ≥ −1

⇔ ηPu + 2βPu + (βPu)
2 + rPu ≤ 1 + 2βPu + (βPu)

2

⇔ (r + η)Pu ≤ 1⇔ 1− exp {−(r + η)(T − u)} ≤ 1.

This last inequality is obviously true. Hence ∂r̂u/∂β is positive (given η).

Finally, we proof that the (partial) derivate of r̂u with respect to T is negative. The

derivate of r̂u with respect to T is given by

∂r̂u
∂T

= −r (1 + βPu)
−2 ∂Pu

∂T
− αβ (1 + βPu)

−2 ∂Pu
∂T

.

Using the fact that ∂Pu/∂T is positive, we find that ∂r̂u/∂T is negative. Furthermore,

simple algebra yields that r̂u = r if T =∞ (here we use the fact that Pu ⇒ 1/(r+α−β)

as T ⇒∞).
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Derivation of (4.4.15)

Straightforward computations show that

V u
t = Et

[
Mt+u

Mt

c?t+u

]
= c?tF

u
t Et

[
exp

{
−
∫ u

0

(
r +

1

2
λ2

)
dv −

∫ u

0

λ dWt+u−v

}
exp

{∫ u

0

qv
1

γ

(
r +

1

2
λ2 − δt+u−v

)
dv +

∫ u

0

qv
1

γ
λ dWt+u−v

}]
= c?tF

u
t C

u
t ,

where

Cu
t ≡ exp

{
−
∫ u

0

(
[1− q̄v] r +

1

2
q̄vλ

2 + q̄vδt+u−v −
1

2
q̄2
vλ

2

)
dv

}
. (4.8.3)

It follows from Itô’s Lemma that

∂ log Vt
∂Wt

=
1

Vt

∫ T

t

∂V u
t

∂Wt

du =

∫ T

t

q̄u
V u
t

Vt
λ du. (4.8.4)

We also have (this follows from applying Itô’s Lemma to the dynamic budget constraint

(4.2.9))

∂ logAt
∂Wt

= πtσ. (4.8.5)

Setting equation (4.8.5) equal to equation (4.8.4) and solving for πt yields (4.4.15).

Proof of Theorem 6

Schroder and Skiadas (1999) derive the optimal dual consumption choice ĉ ?t . The optimal

consumption choice c ?t follows from equation (4.3.6).

4.8.2. Multi-Period Discrete-Time Model

This section linearizes the left-hand side of the agent’s dual budget constraint (4.3.4) in

a multi-period, discrete-time setting. Let us denote by ∆t the time step (the magnitude
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of ∆t is usually taken to be small). The habit level is given by

hn∆t = exp

{
β

[
n∑
i=1

(1− [α− β]∆t)n−i log ĉi∆t

]
∆t

}

=
n∏
i=1

ĉ
β(1−[α−β]∆t)

n−i
∆t

i∆t .

Here, n ∈ {0, ..., bT/∆tc − 1}. The agent’s dual budget constraint can be written as

follows:

E

bT/∆tc−1∑
n=0

M(n+1)∆thn∆tĉ(n+1)∆t∆t

 = E

bT/∆tc−1∑
n=0

M(n+1)∆t(
×

n∏
i=1

ĉ
β(1−[α−β]∆t)

n−i
∆t

i∆t

)
ĉ(n+1)∆t∆t

]
.

Let us define the following function:

f (ĉ ) ≡ f
(
ĉ∆t, ..., ĉbT/∆tc∆t

)
≡ E

bT/∆tc−1∑
n=0

M(n+1)∆t

(
n∏
i=1

ĉ
β(1−[α−β]∆t)

n−i
∆t

i∆t

)
ĉ(n+1)∆t∆t

 .
By Taylor series expansion,

f (ĉ ) ≈ f (1) + E

bT/∆tc−1∑
n=0

∂f (ĉ )

∂ĉ(n+1)∆t

∣∣∣∣
ĉ=1

(
ĉ(n+1)∆t − 1

)
= f (1) + E

bT/∆tc−1∑
n=0

∂f (ĉ )

∂ĉ(n+1)∆t

∣∣∣∣
ĉ=1

(
ĉ(n+1)∆t − 1

) .
Straightforward computations show that

∂f (ĉ )

∂ĉ(n+1)∆t

∣∣∣∣
ĉ=1

= M(n+1)∆t∆t

+ βE(n+1)∆t

bT/∆tc−1∑
i=n+2

Mi∆t(1− [α− β]∆t)i−(n+2)∆t

∆t

= M(n+1)∆t

(
1 + βP(n+1)∆t

)
∆t,
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where

P(n+1)∆t ≡ E(n+1)∆t

bT/∆tc−1∑
i=n+2

Mi∆t

M(n+1)∆t

(1− [α− β]∆t)i−(n+2)∆t

 .
Hence,

f (ĉ ) ≈ f (1) + E

bT/∆tc−1∑
n=0

M(n+1)∆t

(
1 + βP(n+1)∆t

) (
ĉ(n+1)∆t − 1

)
∆t

 .
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Chapter 5

Personal Pension Plans with Risk

Pooling: Investment Approach

versus Consumption Approach65

Personal pension plans with risk pooling (PPRs) promise to play a new role in the

provision of retirement income. These plans unbundle the main functions of variable

annuities. In particular, a PPR individualizes the savings, investment and withdrawal

functions of variable annuities, and organizes the insurance function collectively. A

policyholder can adopt an investment approach or a consumption approach to a PPR.

This chapter explores these two approaches in detail. We show that in the investment

approach, a policyholder can freely adjust the investment policy without affecting the

intertemporal allocation of the market value of the consumption stream. This is not

the case for the consumption approach. We also explore the collective versions of the

investment approach and the consumption approach.

5.1. Introduction

Private pension provision is in transition, moving from defined benefit (DB) pension

plans towards defined contribution (DC) pension plans (Investment Company Institute,

2014). The global financial crisis and its aftermath have accelerated this trend. The

move towards DC pension plans, however, may be problematic as these pension plans

primarily focus on wealth accumulation rather than providing stable lifelong income

streams. Indeed, according to The Melbourne Mercer Global Pension Index (2013),

“there is an urgent need to find a better balance between the individual orientation of

65This chapter is co-authored with Lans Bovenberg.
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a DC plan and a collective (or pooled) approach where there is some sharing of risks

within and between generations.”

The pension plans being proposed by Bovenberg and Nijman (2015) promise to play

a new role in the provision of retirement income. These pension plans, which are called

personal pension plans with risk pooling (PPRs), unbundle the main functions of variable

annuities. In particular, a PPR individualizes the savings, investment and withdrawal

functions of variable annuities66 and arranges the insurance function (i.e., pooling of

idiosyncratic longevity risk) collectively. By pooling idiosyncratic longevity risk and

taking systematic risks on behalf of the policyholders, pension funds can provide lifelong

income streams during retirement at relatively low costs.67 A policyholder can adopt an

investment approach or a consumption approach to a PPR. This chapter examines these

two approaches in detail.

In the investment approach, the policyholder exogenously specifies the contribution

level, the investment policy and the assumed interest rate. The annuity units (i.e., the

lifelong consumption streams in retirement) are derived endogenously. We show that in

this approach, the policyholder can freely adjust the investment policy without affecting

the intertemporal allocation of the market value of the consumption stream. This

property facilitates pooling of idiosyncratic longevity risk. Indeed, a myopic policyholder

cannot reallocate market value from the long-run to the short-run by changing the

investment policy.

In the consumption approach, the policyholder exogenously specifies the volatility of

annuity units, the expected growth rate of annuity units and the initial annuity units.

The contribution level, the investment policy and the assumed interest rate are derived

endogenously. Brown, Kling, Mullainathan, and Wrobel (2008, 2013) find that people

value annuities more when framed in terms of consumption than when framed in terms

of investment. In the consumption approach, policyholders can reallocate value from

the long-run to the short-run by raising the volatility of annuity units. Hence, myopic

policyholders face an incentive to raise the risk of annuity units to consume more today.

66Individualization of these functions is possible without any welfare losses. Indeed, pooling of systematic
risks does not generate any welfare gain. In fact, individualization of these functions may even lead
to an improvement in welfare because these functions can now be tailored to the specific needs of the
policyholders (see Mehlkopf, Boelaars, Bovenberg, and van Bilsen, 2015).

67We can view a PPR as a middle ground between a DB and a DC pension plan. It aims to provide
a stable lifelong income stream during retirement (as in DB pension plans), while property rights are
defined in terms of a personal investment account (as in DC pension plans).
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We also examine a collective defined contribution (CDC) pension system (which is the

collective analogue of the investment approach) and a collective defined ambition (CDA)

pension system (which is the collective analogue of the consumption approach). These

pension plans allow policyholders to share non-traded risk factors. However, collective

pension systems have several disadvantages. In particular, they allow for less tailor-made

solutions, require the valuation of annuity units, and may well lead to intergenerational

conflicts about the (unobservable) parameters.

The remainder of this chapter is structured as follows. Section 5.2 describes the

underlying assumptions. Section 5.3 formalizes the investment approach and Section 5.4

the consumption approach. Section 5.5 explores a CDC pension system and Section 5.6

a CDA pension system. Section 5.7 concludes the chapter. Proofs are relegated to the

Appendix.

5.2. Assumptions

5.2.1. Financial Market

The financial market consists of a money market account and a risky stock. The price

of the money market account, i.e., Pt, satisfies

dPt
Pt

= rdt. (5.2.1)

Here r can be viewed as the risk-free interest rate. The price of the risky stock, i.e., St,

evolves according to

dSt
St

= (r + λσ) dt+ σdWt. (5.2.2)

Here λ denotes the equity risk premium per unit of risk (i.e., Sharpe ratio), σ stands for

the diffusion parameter (i.e., stock return volatility), and Wt corresponds to a standard

Brownian motion. The pricing kernel (or stochastic discount factor) mt is subject to

(see, e.g., Karatzas and Shreve, 1998):

dmt

mt

= −rdt− λdWt. (5.2.3)

137



Chapter 5. PPRs: Investment Approach versus Consumption Approach

5.2.2. Longevity Insurance

The insurer pools idiosyncratic longevity risk, so that policyholders are protected from

outliving their retirement wealth. Denote by y the date of birth, by xr the age at

which policyholders retire, and by xmax the maximum age policyholders can reach. The

policyholder receives a pension payment at time t if he is alive and his birthdate y falls

between time t−xr and time t−xmax. The probability that a policyholder aged x = t−y

will survive to age x+ h is given by

hpx ≡ exp

{
−
∫ h

0

µx+vdv

}
, (5.2.4)

where µx+v corresponds to the force of mortality at age x+ v.

5.3. The Investment Approach

The investment approach defines pension entitlements in terms of a personal investment

account. The policyholder exogenously specifies the (current) value of his account,

the investment policy (i.e., the fraction of assets invested in the risky stock) and the

assumed interest rate. The assumed interest rate determines how fast retirement wealth

is depleted. Current annuity units, the volatility of annuity units and the expected

growth rate of annuity units are determined endogenously. Figure 5.1 summarizes the

investment approach. The left-hand side of the figure shows the exogenous parameters of

the pension contract. These exogenous parameters determine the endogenous variables

on the right-hand side of the figure. A green line describes a positive relationship between

an exogenous parameter and an endogenous variable whereas a red line describes a

negative relationship. Section 5.3.1 formalizes the pension contract. This section also

derives the rate at which retirement wealth is depleted. Section 5.3.2 determines the

endogenous variables of the pension contract. Finally, Section 5.3.3 explores the impact

of (discretionary) changes in the exogenous parameters on the endogenous variables.

138



The Investment Approach

Figure 5.1.

Illustration of the investment approach

The figure illustrates the investment approach. The left-hand side of the figure shows the
exogenous parameters of the pension contract. These exogenous parameters determine the
variables on the right-hand side of the figure.

5.3.1. The Pension Contract

Denote by X i
y,t the value of the personal investment account at time t of policyholder i

born at time y, and by φi the fraction of wealth invested in the risky stock by policyholder

i. The value of the personal investment account evolves according to68

dX i
y,t

X i
y,t

=
(
µt−y + r + φiλσ

)
dt+ φiσdWt − diy,tdt, X i

y,t ≥ 0 given. (5.3.1)

Here diy,t is the decumulation rate (or withdrawal fraction) at time t of policyholder i

born at time y. Equation (5.3.1) shows that the expected rate of return on the assets

X i
y,t is equal to the sum of the biometric rate of return µt−y and the expected financial

rate of return r + φiλσ. The assumed interest rate determines the decumulation rate

diy,t. Denote by δit+v the (forward) assumed interest rate at time t for horizon v ≥ 0. The

68The value of policyholder i’s personal investment account accrues to the insurer if policyholder i passes
away.
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decumulation rate is now given by

diy,t ≡

1/Aiy,t, if t > y + xr;

0, if t ≤ y + xr.

(5.3.2)

Here Aiy,t denotes the annuity (or conversion) factor:

Aiy,t ≡
∫ xmax+y−t

max{xr+y−t,0}
exp

{
−
∫ h

0

(
µt−y+v + δit+v

)
dv

}
dh. (5.3.3)

Equations (5.3.2) and (5.3.3) show that the decumulation rate increases with the assumed

interest rate. Hence an increase in the assumed interest rate reallocates consumption

from the long-run to the short-run.

5.3.2. The Endogenous Variables

Denote by Bi
y,t the annuity units at time t of policyholder i born at time y. The value

of the personal investment account X i
y,t together with the annuity factor Aiy,t determine

current annuity units Bi
y,t as follows:

Bi
y,t =

X i
y,t

Aiy,t
. (5.3.4)

Applying Itô’s Lemma to equation (5.3.4) shows

dBi
y,t

Bi
y,t

=
1

Aiy,tB
i
y,t

dX i
y,t −

X i
y,t(

Aiy,t
)2
Bi
y,t

dAiy,t =
dX i

y,t

X i
y,t

−
dAiy,t

Aiy,t
. (5.3.5)

Hence current annuity units Bi
y,t fully absorb the mismatch between assets and the

annuity factor. The dynamic equation of the annuity factor is given by (this follows

from applying Itô’s Lemma to equation (5.3.3))

dAiy,t

Aiy,t
=
(
µt−y + δit

)
dt− diy,tdt. (5.3.6)
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Accordingly, current annuity unitsBi
y,t satisfy (this follows from equations (5.3.1), (5.3.5),

and (5.3.6))

dBi
y,t

Bi
y,t

=
(
r + φiλσ − δit

)
dt+ φiσdWt. (5.3.7)

The (annualized) volatility of annuity units ωi is thus given by

ωi = φiσ. (5.3.8)

Furthermore, equation (5.3.7) shows that the current expected growth of annuity units

πit is equal to the difference between the expected financial rate of return r + φiλσ and

the assumed interest rate δit:

πit = r + φiλσ − δit. (5.3.9)

A high assumed interest rate thus implies not only a high decumulation rate but also a

low expected growth rate of annuity units.

5.3.3. Changes in Parameters

This section explores the impact of (discretionary) changes in the exogenous parameters

(i.e., the investment policy and the assumed interest rate) on the endogenous variables.

We also consider changes in the Sharpe ratio and the force of mortality. Whereas

the investment policy and the assumed interest rate are parameters specified by the

policyholder, the Sharpe ratio and the force of mortality are parameters describing the

external environment (i.e., non-traded risk factors). Changes in parameters are not

traded on financial markets, and are thus not valued ex ante.

5.3.3.1. Investment Policy

Policyholder i can freely adjust its investment policy φi before or during the retirement

period. A change in the investment policy of ∆φi causes – ceteris paribus – the expected

growth rate of annuity units πit to change by λσ∆φi (see equation (5.3.9)). The expected

growth rate of annuity units thus changes as a result of a change in the investment policy.

The assumed interest rate is not affected by a change in the investment policy. A change
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in the investment policy thus impact neither the speed with which retirement wealth is

depleted nor the horizon-dependent market value V i,h
y,t :

V i,h
y,t ≡ Bi

y,t exp

{
−
∫ h

0

(
µt−y+v + δit+v

)
dv

}
. (5.3.10)

Hence the investment policy is not mixed up with the intertemporal allocation of the

market value of the consumption stream. Perverse incentives in the investment policy are

thus absent: a myopic policyholder (whose discount rate exceeds the assumed interest

rate because of hyperbolic discounting or a short life expectancy) does not face incentives

to change the investment policy in order to reallocate consumption away from the future

to the present. This property facilitates pooling of idiosyncratic longevity risk. Indeed,

policyholders whose life expectancy declines as a result of adverse health shocks cannot

reallocate market value from the long-run to the short-run by increasing the fraction of

wealth invested in the risky stock. A change in investment policy does, however, impact

expected annuity units. More specifically, we find (see Appendix)

∆Et
[
Bi
y,t+h

]
Et
[
Bi
y,t+h

] ≈ hλσ∆φi. (5.3.11)

Hence an increase in φi leads to an increase in not only the volatility of annuity units but

also expected annuity units. Indeed, a change in the investment policy causes a different

position on the risk-return frontier.

5.3.3.2. Assumed Interest Rate

The policyholder can also change the assumed interest rate δit+v.
69 We assume that

a change in the assumed interest rate δit+v is a weighted average of a change in the

short-term assumed interest rate δit and a change in the long-term assumed interest rate

δi∞:

∆δit+v = e−κv∆δit +
(
1− e−κv

)
∆δi∞. (5.3.12)

69In a model with interest rate risk and/or (expected) inflation risk, also changes in these risk factors
may affect the assumed interest rate.
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Here κ ≥ 0 is a weight parameter. If κ is small, then ∆δit+v is largely determined by the

short-term shock ∆δit. Policyholder i thus only needs to specify ∆δit, ∆δi∞ and κ.

A change in the assumed interest rate of ∆δit+v causes – ceteris paribus – current

annuity units to change by (see Appendix)

∆Bi
y,t

Bi
y,t

≈ D̂i,0
y,t∆δ

i
∞ + D̂i,κ

y,t

(
∆δit −∆δi∞

)
. (5.3.13)

Here the κ-adjusted duration D̂i,κ
y,t is defined as follows:70

D̂i,κ
y,t ≡

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,tD

κ,hdh, (5.3.14)

where

Dκ,h ≡ 1

κ

(
1− e−κh

)
, (5.3.15)

γi,hy,t ≡
V i,h
y,t

V i
y,t

. (5.3.16)

An increase in the assumed interest rate causes not only an increase in current annuity

units (see equation (5.3.13)) but also a decrease in the expected growth rate of annuity

units πit+v (v ≥ 0) (see equation (5.3.9)). We note that a change in the investment policy

leaves current annuity units unaffected (see Section 5.3.3.1).

A change in the assumed interest rate also affects expected annuity units and the

intertemporal allocation of the market value of the consumption stream. We find (see

Appendix)

∆Et
[
Bi
y,t+h

]
Et
[
Bi
y,t+h

] ≈ (D̂i,0
y,t − h

)
∆δi∞ +

(
D̂i,κ
y,t −D

κ,h
) (

∆δit −∆δi∞
)
, (5.3.17)

∆V i,h
y,t

V i,h
y,t

≈
(
D̂i,0
y,t − h

)
∆δi∞ +

(
D̂i,κ
y,t −D

κ,h
) (

∆δit −∆δi∞
)
. (5.3.18)

70We note that

D̂i,0
y,t ≡

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,thdh ≥ D̂i,κ

y,t .

Indeed, whereas D̂i,0
y,t denotes the impact of a permanent shock, D̂i,κ

y,t represents the impact of a
temporary shock. The impact of the temporary shock declines with the speed κ with which a
temporary shock dies out.
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An increase in the assumed interest rate thus reallocates market value from the long-run

to the short-run. In particular, a permanent shock ∆δi∞ > 0 raises the market value at

horizon h as long as h is smaller than the average duration, i.e., h < D̂i,0
y,t. Similarly,

a temporary shock ∆δit −∆δi∞ > 0 raises the market value at horizon h as long as the

κ-adjusted duration is smaller than the average κ-adjusted duration, i.e., Dκ,h < D̂i,κ
y,t .

Intuitively, a higher assumed interest rate yields two effects. First, the direct effect is to

reduce the annuity factor. Second, the indirect effect is through an immediate increase

in current annuity units on account of a lower annuity factor (see equation (5.3.4)).

Whereas the first effect (i.e., the reduction in the annuity factor) increases with the

horizon, the second effect (i.e., the increase in current annuity units) is uniform for all

horizons and amounts (in absolute value) to the weighted average of the first effects.

Hence the sum of the two effects declines with the horizon and adds up to zero (weighted

with the market shares).

5.3.3.3. Sharpe Ratio

A change in the Sharpe ratio of ∆λ leads to similar effects on the endogenous variables

as a change in the investment policy. That is, the intertemporal allocation of the market

value of the consumption stream is unaffected, while expected annuity units change as

follows:

∆Et
[
Bi
y,t+h

]
Et
[
Bi
y,t+h

] ≈ hφiσ∆λ. (5.3.19)

5.3.3.4. Force of Mortality

This section considers a change in the force of mortality µt−y+v. Inspired by Lee and

Carter (1992), we assume that a change in the force of mortality µt−y+v, is driven by a

change in a common risk factor f :

∆µt−y+v = gt−y+v∆f. (5.3.20)

Here gt−y+v ≥ 0 represents the exposure of µt−y+v to the risk factor f . We can view

gt−y+v∆f as the change in the assumed biometric rate of return.
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The Appendix shows that current annuity units change as follows:

∆Bi
y,t

Bi
y,t

≈ Ĝi
y,t∆f, (5.3.21)

where Ĝi
y,t can be viewed as the g-adjusted duration:

Ĝi
y,t ≡

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,tG

h
y,tdh (5.3.22)

with

Gh
y,t ≡

∫ h

0

gt−y+v dv. (5.3.23)

The intertemporal allocation of the market value of the consumption stream also changes

following a change in the force of mortality. We find (see Appendix)

∆V i,h
y,t

V i,h
y,t

≈
(
Ĝi
y,t −Gh

y,t

)
∆f. (5.3.24)

Improved longevity (i.e., ∆f < 0) thus reallocates market value from the short-run to

the long-run. Intuitively, after a positive longevity shock, policyholders on average live

longer so that it is optimal to save more for the future. We note that the expected growth

rate of annuity units is unaffected by a change in the force of mortality.

5.4. The Consumption Approach

The consumption approach defines pension entitlements in terms of a personal investment

account, just like the investment approach. However, the policyholder now exogenously

specifies current annuity units, the expected growth rate of annuity units and the volatility

of annuity units. These parameters characterize the entire consumption stream in

retirement under the assumption that future annuity units are log-normally distributed.

The current value of the personal investment account, the assumed interest rate (i..e, the

discount rate used to determine the current account value) and the investment policy

(i.e., the fraction of assets invested in the risky stock) are determined endogenously.
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Figure 5.2 summarizes the consumption approach, where the assumed interest rate is

an intermediate variable that links the current account value with the expected growth

rate of annuity units and the volatility of annuity units. The left-hand side of the figure

shows the exogenous parameters of the pension contract. These exogenous parameters

determine the endogenous variables on the right-hand side of the figure. A green line

describes a positive relationship between an exogenous parameter and an endogenous

variable whereas a red line describes a negative relationship. Section 5.4.1 formalizes the

pension contract. This section also derives the entire consumption stream in retirement.

Section 5.4.2 determines the endogenous variables of the pension contract. Finally,

Section 5.4.3 explores the impact of (discretionary) changes in the exogenous parameters

on the endogenous variables.

Figure 5.2.

Illustration of the consumption approach

The figure illustrates the consumption approach. The left-hand side of the figure shows the
exogenous parameters of the pension contract. These exogenous parameters determine the
variables on the right-hand side of the figure.

5.4.1. The Pension Contract

Policyholder i exogenously specifies current annuity units Bi
y,t, the expected growth rate

of annuity units πit and the volatility of annuity units ωi. We can view the consumption

approach as a generalization of defined benefit to stochastic retirement consumption

streams. Indeed, the consumption approach in a stochastic setting is sometimes called
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defined ambition. The annuity units Bi
y,t, which can be viewed as the liabilities of the

pension contract, evolve according to:

dBi
y,t

Bi
y,t

= πitdt+ ωidWt, Bi
y,t ≥ 0 given. (5.4.1)

Straightforward application of Itô’s Lemma to (5.4.1) shows that the annuity units at

time t+ h (h ≥ 0) are given by

Bi
y,t+h = Bi

y,t exp

{∫ t+h

t

(
πis −

1

2
ωiωi

)
ds+ ωi

∫ t+h

t

dWs

}
. (5.4.2)

The exogenous parameters of the pension contract (i.e., Bi
y,t, π

i
t and ωi) thus characterize

the entire consumption stream in retirement.

5.4.2. The Endogenous Variables

The Appendix shows that the market value of the consumption stream in retirement V i
y,t

is equal to

V i
y,t = X i

y,t = Bi
y,tA

i
y,t, (5.4.3)

where the annuity factor Aiy,t is given by (5.3.3). The assumed interest rate can be

computed from the expected growth rate of annuity units and the volatility of annuity

units as follows:

δit = r + ωiλ− πit. (5.4.4)

With a non-stochastic consumption stream (i.e., ωi = 0), equation (5.4.4) boils down to

the assumed interest rate of a DB pension plan. The fraction of assets invested in the

risky stock is given by (see equation (5.3.8))

φi =
ωi

σ
. (5.4.5)

Equation (5.4.5) shows that the volatility of annuity units determines the investment

policy (see also Figure 5.2): the more volatile annuity units are, the higher the fraction

of assets invested in the risky stock. Equation (5.4.5) also implies that financial shocks
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φiσdWt = ωidWt are directly absorbed into current annuity units Bi
y,t (see also equation

(5.4.1)). Chapter 6 considers a pension contract in which annuity units respond gradually,

rather than directly, to financial shocks.

5.4.3. Changes in Parameters

This section explores the impact of (discretionary) changes in the exogenous parameters

(i.e., the volatility of annuity units and the expected growth rate of annuity units) on

the endogenous variables. We also investigate changes in the Sharpe ratio and the force

of mortality. Whereas the volatility of annuity units and the expected growth rate of

annuity units are parameters specified by the policyholder, the Sharpe ratio and the

force of mortality are parameters describing the external environment (i.e., non-traded

risk factors).

5.4.3.1. Ex Ante Changes in Parameters

This section considers changes in parameters before or at the beginning of the retirement

period (i.e., ex ante). We assume that a change in the expected growth rate of annuity

units πit+v is a weighted average of a change in the short-term expected growth rate of

annuity units πit and a change in the long-term expected growth rate of annuity units

πi∞:

∆πit+v = e−θv∆πit +
(

1− e−θv
)

∆πi∞. (5.4.6)

Here θ ≥ 0 is a weight parameter. As in Section 5.3.3.4, we assume that a change in the

force of mortality µt−y+v is driven by a change in a common risk factor f :

∆µt−y+v = gt−y+v∆f. (5.4.7)

The market value of future annuity units (i.e., the current account value which is an

endogenous variable in the consumption approach) now changes as follows (see Appendix):

∆V i
y,t

V i
y,t

≈ D̂i,0
y,t

(
∆πi∞ − ωi∆λ−∆ωiλ

)
+ D̂i,θ

y,t

(
∆πit −∆πi∞

)
− Ĝi

y,t∆f. (5.4.8)
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Equation (5.4.8) shows that the market value of future annuity units is an increasing

function of the expected growth rate of annuity units, and a decreasing function of the

volatility of annuity units, the Sharpe ratio and the force of mortality. The market value

of the future consumption stream decreases if the policyholder increases the volatility of

annuity units. This tempts myopic policyholders to raise the volatility of annuity units

in order to consume more today. We note that in the investment approach, an increase

in the investment policy (which implies an increase in the volatility of annuity units)

does not affect the market value of the future consumption stream.

5.4.3.2. Ex Post Changes in Parameters

Parameters may also change during the retirement period (i.e., ex post). Ex post we allow

for a more general closure rule than ex ante. In particular, the policyholder can adjust

not only the current account value (which was endogenous ex ante) but also current

annuity units and/or the expected growth rate of annuity units (which were exogenous

ex ante). Figure 5.3 summarizes the consumption approach (ex post).

Figure 5.3.

Illustration of the consumption approach (ex post)

The figure illustrates the consumption approach (ex post). The left-hand side of the figure shows
the exogenous parameters of the pension contract. These exogenous parameters determine the
variables on the right-hand side of the figure.

Changes in parameters lead to mismatch between assets and liabilities (see equation

(5.4.8)). Mismatch causes the funding rate, which is defined as the ratio between the
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value of the assets and the value of the liabilities, to deviate from unity. We assume

that the policyholder contributes a fraction 0 ≤ α ≤ 1 of the mismatch (or funding

gap) between assets and liabilities ∆V i
y,t into his personal investment account. As a

consequence, a fraction (1 − α) of ∆V i
y,t is absorbed into current annuity units and the

expected growth rate of annuity units. The new balance of the investment account

X i
y,t + α∆V i

y,t must match the new market value of future annuity units:

X i
y,t + α∆V i

y,t = V i
y,t + α∆V i

y,t

=

∫ xmax+y−t

max{xr+y−t,0}

(
V i,h
y,t + ∆V i,h

y,t

)
dh,

(5.4.9)

where V i,h
y,t +∆V i,h

y,t stands for the horizon-dependent market value of future annuity units

after annuity units are adjusted:

V i,h
y,t + ∆V i,h

y,t = Bi
y,t exp

{
qh

q̂ iy,t
M i

y,t

}
exp

{
−
∫ h

0

[
µt−y+v + ∆µt−y+v + r

−
(
πit+v + ∆πit+v

)
+
(
ωi + ∆ωi

)
(λ+ ∆λ)

]
dv

}
.

(5.4.10)

Here M i
y,t is given by (see Appendix)

M i
y,t ≈ −(1− α)

[
D̂i,0
y,t

(
πi∞ − ωi∆λ−∆ωiλ

)
+ D̂i,θ

y,t

(
∆πit − πi∞

)
− Ĝi

y,t∆f
]
, (5.4.11)

and qh denotes the exposure of logBi
y,t+h to M i

y,t/q̂
i
y,t. If qh strictly increases with the

horizon h, then annuity units in the distant future are more exposed to mismatch risk

as compared to annuity units in the near future. We have

q̂ iy,t ≡
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,tqhdh (5.4.12)

so that

1

q̂ iy,t

∫ xmax+y−t

max{xr+y−t,0)

γi,hy,tqhdh = 1. (5.4.13)

We note that the ex post closure rule coincides with the ex ante closure rule if α = 1

(mismatch risk is not absorbed into current and future annuity units at all). We can
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consider the following special case for qh (see also Chapters 4 and 6).

qh = q0 +
1

η

(
1− e−ηh

)
(1− q0) . (5.4.14)

The so-called growth rate method (i.e., qh = h) is given by q0 = 0 and η ⇓ 0. With

q0 = 0, we model exponential decay, i.e., qh = 1
η

(
1− e−ηh

)
.

The relative change in V i,h
y,t is given by (see Appendix)

∆V i,h
y,t

V i,h
y,t

≈

(
h− qh

q̂ iy,t
(1− α)D̂i,0

y,t

)(
∆πi∞ − ωi∆λ−∆ωiλ

)
+

(
Dθ,h − qh

q̂ iy,t
(1− α)D̂i,θ

y,t

)(
∆πit −∆πi∞

)
−

(
Gh
y,t −

qh

q̂ iy,t
(1− α)Ĝi

y,t

)
∆f.

(5.4.15)

Permanent shocks do not affect V i,h
y,t if the growth rate method is adopted (i.e., α = 0

and qh = h). A temporary shock in the expected growth rate of annuity units leaves

the intertemporal allocation of the market value of the consumption stream unaffected

if q0 = α = 0 and η equals the speed θ with which the temporary shock dies out.

Endogenous changes in the assumed interest rate (through endogenous changes in the

expected growth rate of annuity units) exactly offset the exogenous changes in the

assumed interest through the exogenous changes in the parameters. Finally, we note

that a myopic policyholder has an incentive to raise the volatility of annuity units if

current annuity units (rather than the expected growth rate of annuity units) is the

endogenous closure variable.

5.5. Collective Defined Contribution

5.5.1. The Pension Contract

This section considers a collective defined contribution (CDC) pension system. In such a

pension system, the insurer has one general pooled account. Property rights are defined

in terms of annuity units, rather than in terms of a personal investment account. The

current value of the collective investment account, the investment policy and the assumed
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interest rate are specified exogenously. In addition, the insurer specifies the annuity units

at time t for each generation y. The value of the collective investment account Xt evolves

according to:

dXt

Xt

= (µ̂t + r + φλσ) dt+ φσdWt − d̂tdt, Xt ≥ 0 given. (5.5.1)

Here

µ̂t ≡
∫ t−xs

t−xmax

µt−y c̄y,t dy, (5.5.2)

d̂t ≡
∫ t−xs

t−xmax

dy,tc̄y,t dy, (5.5.3)

c̄y,t ≡ cyVy,t/Vt, (5.5.4)

where cy denotes the number of policyholders born at time y, xs stands for the age at

which policyholders enter the pension fund, Vy,t represents the price at time t of the

consumption stream in retirement for a policyholder born at time y:

Vy,t ≡ By,t

∫ xmax+y−t

max{xr+y−t,0}
exp

{
−
∫ h

0

(
µt−y+v + δt+v

)
dv

}
dh, (5.5.5)

Vt stands for the market value of the total liabilities:

Vt ≡
∫ t−xs

t−xmax

cyVy,t dy, (5.5.6)

and dy,t denotes the decumulation rate at time t for a policyholder born at time y:

dy,t =

By,t/Vy,t, if t > y + xr;

0, if t ≤ y + xr.

(5.5.7)

The assumed interest rate and the investment policy do no longer depend on i (i.e., all

policyholders face the same risk profile). Hence, a pension system with a single collective

asset pool allows for less tailor-made solutions. It follows from equations (5.5.1), (5.5.5)
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and (5.5.6) that the current annuity units By,t evolve according to:

dBy,t

By,t

= (r + φλσ − δt) dt+ φσ dWt, By,t ≥ 0 given. (5.5.8)

5.5.2. Changes in Parameters

5.5.2.1. Investment Policy and Sharpe Ratio

Discretionary changes in the investment policy and/or the Sharpe ratio do not affect the

horizon-dependent market value

V h
y,t ≡ By,t exp

{
−
∫ h

0

(
µt−y+v + δt+v

)
dv

}
. (5.5.9)

Hence, in a CDC pension system, the insurer can adjust the investment policy and/or

the Sharpe ratio without causing value transfers between generations.

5.5.2.2. Assumed Interest Rate and Force of Mortality

The market value of the total liabilities Vt changes as a result of changes in the assumed

interest rate δt+v and/or the force of mortality µt+v. We assume that the change in the

assumed interest rate and the change in the force of mortality are given by equations

(5.3.12) and (5.3.20), respectively. The policyholders of the pension system contribute a

fraction 0 ≤ α ≤ 1 of the mismatch between assets and liabilities ∆Vt into the collective

asset pool. As a consequence, a fraction (1 − α) of ∆Vt is absorbed into current and

future annuity units. Figure 5.4 illustrates a CDC pension system. If we allow for value

transfers between generations, then Vy,t changes as follows (see Appendix):

∆Vy,t
Vy,t

≈
(
q̂y,t
q̂t

(1− α)D̂0
t − D̂0

y,t

)
∆δ∞

+

(
q̂y,t
q̂t

(1− α)D̂κ
t − D̂κ

y,t

)
(∆δt −∆δ∞)

−
(
Ĝy,t −

q̂y,t
q̂t

(1− α)Ĝt

)
∆f,

(5.5.10)
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where

q̂y,t ≡
∫ xmax+y−t

max{xr+y−t,0}
γhy,tqhdh, (5.5.11)

q̂t ≡
∫ t−xs

t−xmax

c̄y,tq̂y,tdy, (5.5.12)

D̂κ
t ≡

∫ t−xs

t−xmax

c̄y,tD̂
κ
y,t dy, (5.5.13)

Ĝt ≡
∫ t−xs

t−xmax

c̄y,tĜy,t dy, (5.5.14)

with

γhy,t ≡
V h
y,t

Vy,t
(5.5.15)

D̂κ
y,t ≡

∫ xmax+y−t

max{xr+y−t,0}
γhy,tD

κ,hdh, (5.5.16)

Ĝy,t ≡
∫ xmax+y−t

max{xr+y−t,0}
γhy,tG

h
y,tdh. (5.5.17)

Permanent shocks do not affect Vy,t if the growth rate method is adopted (i.e., α = 0

and qh = h). If, however, the level method is adopted (i.e., α = 0 and qh = 1), then a

change in the assumed interest rate redistributes value from long horizons (i.e., young

policyholders) to short horizons (i.e., old policyholders). Intuitively, a higher assumed

interest rate raises the funding rate, thereby increasing the scope to pay out today.

There are no value transfers between generations if the insurer chooses qh such that

∆Vy,t/Vy,t = 0. Alternatively, the insurer can ring-fence the assets of each generation.

In that case, adjustments in current annuity units typically depends on the age of the

policyholder.

5.6. Collective Defined Ambition

5.6.1. The Pension Contract

This section considers a collective defined ambition (CDA) pension system. The pension

fund has one general pooled account and defines property rights in terms of annuity

units. As in the consumption approach, current annuity units, the expected growth
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Figure 5.4.

Illustration of a CDC pension contract

The figure illustrates a CDC pension contract. The left-hand side of the figure shows the
exogenous parameters of the pension contract. These exogenous parameters determine the
variables on the right-hand side of the figure.

rate of annuity units, and the volatility of annuity units are specified exogenously. The

annuity units are adjusted according to a collective version of (5.4.1):

dBy,t

By,t

= πtdt+ ωdWt, By,t ≥ 0 given. (5.6.1)

The volatility of annuity units and the expected growth rate of annuity units do no longer

depend on i.

In a collective pension system without personal investment accounts, proper pricing

of future annuity units is essential. Indeed, if annuity units are not priced properly, some

generations may sponsor other generations, thereby giving rise to intergenerational value

transfers. The price at time t of the consumption stream in retirement for a policyholder

born at time y is given by

Vy,t =

∫ xmax+y−t

max{xr+y−t,0}
V h
y,t dh. (5.6.2)

Here V h
y,t represents the price at time t of annuity units at time t+ h for a policyholder
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born at time y:

V h
y,t = By,t exp

{
−
∫ h

0

(
µt−y+v + r − πt+v + ωλ

)
dv

}
. (5.6.3)

The total market value is now defined as follows:

Vt ≡
∫ t−xs

t−xmax

cy

∫ xmax+y−t

max{xr+y−t,0}
V h
y,t dh dy, (5.6.4)

5.6.2. Changes in Parameters

5.6.2.1. Ex Ante Changes in Parameters

In a CDA pension system, changes in parameters before or at the beginning of retirement

(i.e., ex ante) typically lead to a change in the purchase price of annuity units. As in

Section 5.4.3, we consider changes in the volatility of annuity units, the expected growth

rate of annuity units, the Sharpe ratio and the force of mortality. The change in the

expected growth of annuity units and the change in the force of mortality are given by

equations (5.4.6) and (5.4.7), respectively. As a result, the purchase price of annuity

units Vy,t changes as follows (see Appendix):71

∆Vy,t
Vy,t

≈ D̂0
y,t (∆π∞ − ω∆λ−∆ωλ) + D̂θ

y,t (∆πt −∆π∞)− Ĝy,t∆f. (5.6.5)

Younger policyholders (i.e., larger h) are more affected by a change in parameters than

older policyholders (i.e., smaller h).

5.6.2.2. Ex Post Changes in Parameters

In a CDA pension system, a change in parameters during retirement (i.e., ex post)

typically leads to intergenerational redistribution of market value. The policyholders of

the pension system contribute a fraction 0 ≤ α ≤ 1 of the mismatch between assets and

liabilities ∆Vt into the collective asset pool. A fraction (1− α) of ∆Vt is thus absorbed

71Rauh (2008) addresses a change in discounting as a result of a change in the volatility of annuity
units in the context of DB pension plans with corporate risk sponsors. He shows that if corporations
can employ the expected return on their investment portfolio to discount annuity units, corporate
sponsors face an incentive to raise the risk of future annuity units. Intuitively, by raising the risk of
future annuity units, they can reduce the cost to the corporation of sponsoring these annuity units at
the expense of the policyholders of the pension fund.
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into current and future annuity units. Figure 5.5 illustrates a CDA pension system.

If we allow for value transfers between generations, then Vy,t changes as follows (see

Appendix):

∆Vy,t
Vy,t

≈
(
D̂0
y,t −

q̂y,t
q̂t

(1− α)D̂0
t

)
(∆π∞ − ω∆λ− λ∆ω)

+

(
D̂θ
y,t −

q̂y,t
q̂t

(1− α)D̂θ
t

)
(∆πt −∆π∞)

−
(
Ĝy,t −

q̂y,t
q̂t

(1− α)Ĝt

)
∆f.

(5.6.6)

Whether one wants to ensure that discretionary changes in the Sharpe ratio do not lead

to intergenerational distribution is a matter of debate. On the one hand, one could argue

that changes in the Sharpe ratio should lead to similar intergenerational risk sharing as

with changes in the interest rate. In particular, a higher Sharpe ratio (at a given risk)

raises the expected future rates of return and thus reduces the current price of funding

an uncertain future pension. The pension contract thus allows generations to share

risk factors that are not traded on financial markets. This approach views the pension

contract as a social contract that allows for trade in risk factors (such as the Sharpe

ratio) that are not traded on financial markets. On the other hand, allowing changes

in the Sharpe ratio to redistribute market value across horizons and therefore across

generations may well lead to intergenerational conflicts about the unobservable Sharpe

ratio. Moreover, pension funds cannot hedge discretionary changes in the Sharpe ratio.

Hence, to avoid these problems, one could argue that the horizon-dependent market value

Vy,t should remain constant if λ changes. This approach views the pension contract as

a pure financial contract that includes only risk factors that are traded on financial

markets. A value neutral transfer can be accomplished by ring-fencing the assets of each

generation or choosing qh such that ∆Vy,t/Vy,t = 0.

157



Chapter 5. PPRs: Investment Approach versus Consumption Approach

Figure 5.5.

Illustration of a CDA pension contract

The figure illustrates a CDA pension contract. The left-hand side of the figure shows the
exogenous parameters of the pension contract. These exogenous parameters determine the
variables on the right-hand side of the figure.

5.7. Concluding Remarks

Private pension provision faces the challenge of providing adequate retirement income.

PPRs promise to play a new role in the provision of retirement income. These pension

plans individualize the savings, investment and withdrawal functions of variable annuities

and arrange the insurance function collectively. We have explored two approaches to a

PPR: the investment approach and the consumption approach. In the first approach,

the contribution level, the investment policy and the assumed interest rate are specified

exogenously, while in the second approach, current annuity units, the expected growth

rate of annuity and the volatility of annuity units are specified exogenously. We have

demonstrated that in the investment approach, the policyholder can freely adjust the

investment policy without affecting the intertemporal allocation of the market value of

the consumption stream. This property does not hold true in the consumption approach.
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5.8. Appendix

Proofs

Derivation of (5.3.11), (5.3.13), (5.3.17), (5.3.18), (5.3.21) and (5.3.24)

Expected annuity units are given by (this follows from equation (5.3.7))

Et
[
Bi
y,t+h

]
= Bi

y,t exp

{∫ h

0

πit+vdv

}
= Bi

y,t exp

{∫ h

0

(
r + φiλσ − δit+v

)
dv

}
.

A change in the investment policy causes expected annuity units to change by

∆Et
[
Bi
y,t+h

]
= Bi

y,t exp

{∫ h

0

(
r + φiλσ − δit+v

)
dv

}(
exp

{∫ h

0

λσ∆φidv

}
− 1

)
.

Hence, by Taylor series expansion,

∆Et
[
Bi
y,t+h

]
Et
[
Bi
y,t+h

] = exp

{∫ h

0

λσ∆φidv

}
− 1 ≈ hλσ∆φi.

A change in the assumed interest rate causes the annuity factor to change by

∆Aiy,t

Aiy,t
=

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t exp

{
−
∫ h

0

(
e−κv∆δit +

(
1− e−κv

)
∆δi∞

)
dv

}
dh− 1

≈
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t

(
1−

∫ h

0

(
e−κv∆δit +

(
1− e−κv

)
∆δi∞

)
dv

)
dh− 1

= −
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t

∫ h

0

(
e−κv∆δit +

(
1− e−κv

)
∆δi∞

)
dvdh

= −D̂i,κ
y,t

(
∆δit −∆δi∞

)
− D̂i,0

y,t∆δ
i
∞.

It follows from equation (5.3.5) that

∆Bi
y,t

Bi
y,t

≈ −
∆Aiy,t

Aiy,t
≈ D̂i,0

y,t∆δ
i
∞ + D̂i,κ

y,t

(
∆δit −∆δi∞

)
.
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The relative change in V i,h
y,t is given by

∆V i,h
y,t

V i,h
y,t

≈
∆Bi

y,t

Bi
y,t

+ exp

{
−
∫ h

0

(
e−κv∆δit +

(
1− e−κv

)
∆δi∞

)
dv

}
− 1

≈
∆Bi

y,t

Bi
y,t

−
∫ h

0

(
e−κv∆δit +

(
1− e−κv

)
∆δi∞

)
dv

≈
(
D̂i,0
y,t − h

)
∆δi∞ +

(
D̂i,κ
y,t −D

κ,h
) (

∆δit −∆δi∞
)
.

The relative change in Et
[
Bi
y,t+h

]
can be computed in a similar fashion. A change in the

force of mortality causes the annuity factor to change by

∆Aiy,t

Aiy,t
=

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t exp

{
−Gh

y,t∆f
}

dh− 1

≈
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t

(
1−Gh

y,t∆f
)

dh− 1

= −
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,tG

h
y,tdh∆f

= −Ĝi
y,t∆f.

It follows from equation (5.3.5) that

∆Bi
y,t

Bi
y,t

≈ −
∆Aiy,t

Aiy,t
≈ Ĝi

y,t∆f.

The relative change in V i,h
y,t is given by

∆V i,h
y,t

V i,h
y,t

≈
∆Bi

y,t

Bi
y,t

+ exp
{
−Gh

y,t∆f
}
− 1 ≈

∆Bi
y,t

Bi
y,t

−Gh
y,t∆f ≈

(
Ĝi
y,t −Gh

y,t

)
∆f.

Derivation of (5.4.3), (5.4.8), (5.4.11) and (5.4.15)

The market value is given by

V i
y,t =

∫ xmax+y−t

max{xr+y−t,0}
Et
[
mt+h

mt

Bi
y,t+h

]
dh.
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Straightforward computations show that

V i
y,t =

∫ xmax+y−t

max{xr+y−t,0}
Et
[
exp

{∫ h

0

−
(
r +

1

2
λ2

)
dv − λ

∫ h

0

dWt+v

}
Bi
y,t exp

{∫ h

0

(
πt+v −

1

2
ωiωi

)
dv + ωi

∫ h

0

dWt+v

}]
dh

=

∫ xmax+y−t

max{xr+y−t,0}
Bi
y,tEt

[
exp

{
−
∫ h

0

(
r +

1

2
λ2 − πt+v +

1

2
ωiωi

)
dv

}
exp

{(
ωi − λ

) ∫ h

0

dWt+v

}]
dh

= Bi
y,t

∫ xmax+y−t

max{xr+y−t,0}
exp

{
−
∫ h

0

(
r + λωi − πt+v

)
dv

}
dh = Bi

y,tA
i
y,t.

The relative change in the market value of future annuity units is given by (the second

equality follows from equations (5.4.6) and (5.4.7))

∆V i
y,t

V i
y,t

≈
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t exp

{
−
∫ h

0

(
∆µx+v −∆πit+v

+ωi∆λ+ λ∆ωi
)

dv
}

dh− 1

≈
∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t exp

{
−Gh

y,t∆f + h
(
∆πi∞ − ωi∆λ− λ∆ωi

)
+Dθ,h

(
∆πit −∆πi∞

)}
dh− 1

(5.8.1)

Here we assume that ∆ωi∆λ ≈ 0. By Taylor series expansion, we can write

∆V i
y,t

V i
y,t

≈ D̂i,0
y,t

(
∆πi∞ − ωi∆λ− λ∆ωi

)
+ D̂i,θ

y,t

(
∆πit −∆πi∞

)
− Ĝi

y,t∆f. (5.8.2)

We also have (this follows from equation (5.4.9))

α
∆V i

y,t

V i
y,t

=

∫ xmax+y−t

max{xr+y−t,0}
γi,hy,t exp

{
qh

q̂ iy,t
M i

y,t

}
×

exp
{
−Gh

y,t∆f + h
(
∆πi∞ − ωi∆λ−∆ωiλ

)
+Dθ,h

(
∆πit −∆πi∞

)}
dh− 1.

By Taylor series expansion, we can write

α
∆V i

y,t

V i
y,t

≈M i
y,t + D̂i,0

y,t

(
πi∞ − ωi∆λ−∆ωiλ

)
+ D̂i,θ

y,t

(
∆πit − πi∞

)
− Ĝi

y,t∆f. (5.8.3)
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It follows from (5.8.2) that

α
∆V i

y,t

V i
y,t

≈ α
[
D̂i,0
y,t

(
∆πi∞ − ωi∆λ− λ∆ωi

)
+ D̂i,θ

y,t

(
∆πit −∆πi∞

)
− Ĝi

y,t∆f
]
. (5.8.4)

Setting (5.8.3) equal to (5.8.4) and solving for M i
y,t yields

M i
y,t ≈ −(1− α)

[
D̂i,0
y,t

(
∆πi∞ − ωi∆λ− λ∆ωi

)
+D̂i,θ

y,t

(
∆πit −∆πi∞

)
− Ĝi

y,t∆f
]
.

(5.8.5)

We also have

∆V i,h
y,t

V i,h
y,t

= exp

{
qh

q̂ iy,t
M i

y,t + h
(
∆πi∞ − ωi∆λ− λ∆ωi

)
+Dθ,h

(
∆πit −∆πi∞

)
−Gh

y,t∆f

}
− 1.

By Taylor series expansion, we can write

∆V i,h
y,t

V i,h
y,t

≈ qh

q̂ iy,t
M i

y,t + h
(
∆πi∞ − ωi∆λ− λ∆ωi

)
+Dθ,h

(
∆πit −∆πi∞

)
−Gh

y,t∆f.

(5.8.6)

Substituting (5.8.5) into (5.8.6) yields (5.4.15).

Derivation of (5.5.10)

We have (a fraction α of ∆Vt/Vt is absorbed into current and future annuity units)

α
∆Vt
Vt

=

∫ t−xs

t−xmax

∫ xmax+y−t

max{xr+y−t,0}

cyV
h
y,t

Vt
exp

{
qh
q̂t
Mt

}
×

exp
{
−Gh

y,t∆f − h∆δ∞ −Dκ,h (∆δt −∆δ∞)
}

dh dy − 1.

By Taylor series expansion, we can write

α
∆Vt
Vt
≈Mt − D̂0

t∆δ∞ − D̂κ
t (∆δt −∆δ∞)− Ĝt∆f. (5.8.7)
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It also follows that

α
∆Vt
Vt
≈
∫ t−xs

t−xmax

∫ xmax+y−t

max{xr+y−t,0}

cyV
h
y,t

Vt
exp

{
−Gh

y,t∆f − h∆δ∞

−Dκ,h (∆δt −∆δ∞)

}
dh dy − 1

≈ α
[
−D̂0

t∆δ∞ − D̂κ
t (∆δt −∆δ∞)− Ĝt∆f

]
.

(5.8.8)

Setting (5.8.7) equal to (5.8.8) and solving for Mt yields

Mt ≈ (1− α)
[
−D̂0

t∆δ∞ − D̂κ
t (∆δt −∆δ∞)− Ĝt∆f

]
. (5.8.9)

We also have

∆Vy,t
Vy,t

=

∫ xmax+y−t

max{xr+y−t,0}
γhy,t exp

{
qh
q̂t
Mt − h∆δi∞ −Dκ,h

(
∆δt −∆δi∞

)
−Gh

y,t∆f

}
dh− 1.

By Taylor series expansion, we can write

∆Vy,t
Vy,t

≈ qh
q̂t
Mt − D̂0

y,t∆δ∞ − D̂κ
y,t

(
∆δt −∆δi∞

)
− Ĝy,t∆f. (5.8.10)

Substituting (5.8.9) into (5.8.10) yields (5.5.10).

Derivation of (5.6.5) and (5.6.6)

The relative change in the market value of future annuity units is given by

∆Vy,t
Vy,t

≈
∫ xmax+y−t

max{xr+y−t,0}
γhy,t exp

{
−
∫ h

0

(∆µx+v −∆πt+v + ω∆λ+ λ∆ω) dv

}
dh− 1

≈
∫ xmax+y−t

max{xr+y−t,0}
γhy,t exp

{
−Gh

y,t∆f + h (∆π∞ − ω∆λ− λ∆ω)

+Dθ,h (∆πt −∆π∞)

}
dh− 1

(5.8.11)
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Here we assume that ∆ω∆λ ≈ 0. By Taylor series expansion, we can write

∆Vy,t
Vy,t

≈ D̂0
y,t (∆π∞ − ω∆λ− λ∆ω) + D̂θ

y,t (∆πt −∆π∞)− Ĝy,t∆f. (5.8.12)

We also have (a fraction α of ∆Vt/Vt is absorbed into current and future annuity units)

α
∆Vt
Vt

=

∫ t−xs

t−xmax

∫ xmax+y−t

max{xr+y−t,0}

cyV
h
y,t

Vt
exp

{
qh
q̂t
Mt

}
×

exp
{
−Gh

y,t∆f + h (∆π∞ − ω∆λ−∆ωλ) +Dθ,h (∆πt −∆π∞)
}

dh dy − 1.

By Taylor series expansion, we can write

α
∆Vt
Vt
≈Mt + D̂0

t (π∞ − ω∆λ−∆ωλ) + D̂θ
t (∆πt − π∞)− Ĝt∆f. (5.8.13)

It also follows that

α
∆Vt
Vt
≈
∫ t−xs

t−xmax

∫ xmax+y−t

max{xr+y−t,0}

cyV
h
y,t

Vt
exp

{
−Gh

y,t∆f

+ h (∆π∞ − ω∆λ− λ∆ω) +Dθ,h (∆πt −∆π∞)

}
dh dy − 1

≈ α
[
D̂0
t (∆π∞ − ω∆λ− λ∆ω) + D̂θ

t (∆πt −∆π∞)− Ĝt∆f
]

(5.8.14)

Setting (5.8.13) equal to (5.8.14) and solving for Mt yields

Mt ≈ −(1− α)
[
D̂0
t (∆π∞ − ω∆λ− λ∆ω) + D̂θ

t (∆πt −∆π∞)− Ĝt∆f
]
. (5.8.15)

We also have

∆Vy,t
Vy,t

=

∫ xmax+y−t

max{xr+y−t,0}
γhy,t exp

{
qh
q̂t
Mt + h

(
∆πi∞ − ω∆λ− λ∆ω

)
+Dθ,h

(
∆πt −∆πi∞

)
−Gh

y,t∆f

}
dh− 1.
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By Taylor series expansion, we can write

∆Vy,t
Vy,t

≈ qh
q̂t
Mt + D̂0

y,t (∆π∞ − ω∆λ− λ∆ω)

+ D̂θ
y,t

(
∆πt −∆πi∞

)
− Ĝy,t∆f.

(5.8.16)

Substituting (5.8.15) into (5.8.16) yields (5.6.6).
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Chapter 6

Buffering Shocks in Variable

Annuities: Valuation, Investment

and Communication72

This chapter explores defined ambition pension plans that allocate stock market risk

among policyholders on the basis of complete pension contracts while pooling idiosyncratic

longevity risk. Entitlements respond gradually to financial shocks. We show how pension

entitlements can be valued in a market-consistent fashion. The market-consistent discount

rate includes a risk premium that rises with the horizon. Proper valuation ensures

efficient intertemporal consumption smoothing and protects the value of property rights

of existing policyholders. In the tradition of liability-driven investment, we determine the

investment policy from the stochastic pension promises. We show that gradual absorption

of financial shocks leads to life cycle investment.

6.1. Introduction

Corporations are increasingly withdrawing as sponsors from defined benefit (DB) pension

plans (Investment Company Institute, 2014). As a consequence, pension funds become

mutual insurers in which policyholders, rather than corporations, bear stock market

risk. These so-called defined ambition (DA) pension plans retain several advantages of

DB pension plans.73 In particular, by pooling idiosyncratic longevity risk, pension funds

can still provide lifelong benefits at relatively low costs. Also, by specifying (dis)saving

and investment decisions, DA pension plans protect financially illiterate policyholders

72This chapter is co-authored with Lans Bovenberg and Roel Mehlkopf.
73DA pension plans share some characteristics with non-financial defined contribution (NDC) pension

plans (Holzmann, Palmer, and Robalino, 2012). In particular, both NDC and DA pension plans lack
outside sponsors.
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against behavioral biases. To illustrate, risk management and payout policies seek to

provide policyholders with stable income streams after they retire.

Pension entitlements are adjusted gradually after an unexpected financial shock that

causes a mismatch between assets and the value of liabilities. Hence retirees take

investment risk but can take some time to adjust their standard of living after an

unexpected financial shock. Gradual absorption of financial shocks is consistent with

internal habit formation (see, e.g., Fuhrer, 2000); see also Chapter 4. It reconciles

defined benefit thinking in which current consumption is stable with defined contribution

thinking in which policyholders bear investment risk. Indeed, future rather than current

consumption bears most of current investment risk. As a consequence, the year-on-year

volatility of current consumption is smaller than the year-on-year volatility of wealth.

This property stands in sharp contrast to many (popular) variable annuity products.

Indeed, traditional variable annuities usually assume that payouts respond directly,

rather than gradually, to an unexpected financial shock (see, e.g., Chai et al., 2011;

Maurer et al., 2013b).74 Other important parameters of the pension contract are the

assumed expected rates of return on risky securities. If actual expected rates of return

exceed assumed expected rates of return, then the actual growth rate of annuity units –

ceteris paribus – exceeds the desired growth rate of annuity units, and vice versa.

We show how pension entitlements can be valued in a market-consistent fashion.

Proper valuation is relevant for determining the prices at which variable annuities can be

bought and sold. Indeed, we show how pension contributions can be derived endogenously

from the stochastic pension promises, which are the liabilities of the pension contract.

This is reminiscent of DB pension plans in which pension contributions are determined

by the costs of the desired consumption stream in retirement. The discount rate is equal

to the sum of the interest rate and a risk premium that rises with the investment horizon.

We show that the discount rate for valuing variable annuities is typically in between the

expected rate of return on the actual investment portfolio and the risk-free interest rate.

Market-consistent valuation ensures efficient intertemporal consumption smoothing and

intergenerational fairness. It also helps to protect the value of property rights of existing

policyholders. The contract can thus be changed without giving rise to value transfers.

74Insurers have also developed variable annuities for which payouts respond sluggishly to an unexpected
financial shock (see, e.g., Guillén et al., 2006; Maurer et al., 2013a, 2014). However, these variable
annuity products are often based on complex profit-sharing rules and hence difficult to value.
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We demonstrate how the investment policy can be determined endogenously from

the stochastic pension promises. The current chapter thus extends the principle of

liability-driven investment from DB pension plans to DA pension plans. We in fact

generalize asset-liability management (ALM) to stochastic liabilities. Indeed, the pension

contract is complete not only in terms of the allocation of stock market risk but also in

terms of the investment policy so that policyholders obtain the exposures that have

been communicated to them. Furthermore, we show that gradual absorption of financial

shocks leads to life cycle investment in which the stock market exposure declines with

age. This is because retired agents have less time to absorb financial shocks when their

remaining expected lifetime declines. Stock market exposures are thus tailored to the

investment horizon.

DA pension plans are based on proposed risk-sharing systems in the Netherlands,

and evolved from traditional DB pension plans with (nominally) guaranteed pension

entitlements. Also in public-sector pension plans in the United States, risk sharing is

being considered as a way to reduce the costs of these plans (see, e.g., Novy-Marx and

Rauh, 2014). This chapter contributes to the emerging literature on the implications of

moving from a DB design towards a DA design. The DA plans considered in the current

chapter encompass both the accumulation and the decumulation phases; however, a

DA plan can be limited to the decumulation phase or the accumulation phase only.

Indeed, one can view a DA pension plan as a particular way to draw-down accumulated

retirement wealth.

The remainder of this chapter is structured as follows. Section 6.2 describes the

financial market. Section 6.3 specifies the pension contract. This section also investigates

how pension funds can calibrate and communicate the risk of future pension entitlements.

Section 6.4 explores the pricing of future pension entitlements, and derives the replicating

portfolio strategy. Section 6.5 shows how the pension contract can be expressed in terms

of mismatch between assets and liabilities. This section also investigates the impact

of using an incorrect discount rate on intertemporal consumption smoothing. Section

6.6 explores a subclass of risk profiles in which adjustments in pension entitlements are

determined by a single state variable. Section 6.7 concludes the chapter and explores the

roles of public supervision. Proofs are relegated to the Appendix.
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6.2. The Financial Market

We assume a simple continuous-time financial market with a single risk factor, which we

interpret as an aggregate stock market index. Let us denote by St the value of the stock

market index at time t. Throughout, boldface type is used to denote uncertain variables

at time t. The stock market return in any discrete-time period t+ j (j > 1) is given by

St+j
St+j−1

= exp

{(
r + λσ − 1

2
σ2

)
+ σ

∫ t+j

t+j−1

dWs

}
. (6.2.1)

Here r is the nominal risk-free interest rate, λ denotes the equity risk premium per unit

of risk (i.e., Sharpe ratio), σ represents the stock return volatility, and Wt corresponds to

a standard Brownian motion. Empirically, the value of λσ−σ2/2 is found to be positive

(see, e.g., Brennan and Xia, 2002).

6.3. The Pension Contract

6.3.1. Specification

In this section, we specify the pension contract. Entitlements are defined in terms of

annuity units. Denote by By,t the annuity units at time t of a policyholder born at

time y, by xr the age at which a policyholder retires, and by xmax the maximum age

a policyholder can reach. The insurer adjusts annuity units at discrete points in time

t = t0+1, t0+2, ..., y+xmax. Here t0 represents the time at which the pension contribution

is paid. If the birth date y falls between t− xr and t− xmax and the policyholder is still

alive at time t, then this policyholder receives a pension payment at time t. We denote

the probability that a policyholder currently aged x = t− y will survive to age x+h by

hpx ≡ exp

{
−

h∑
j=1

µx+j

}
. (6.3.1)

Here µx+j represents the force of mortality between age x+ j − 1 and age x+ j.75 The

force of mortality µx+j is assumed to not change over time.

75The force of mortality µx+j can be written as follows: µx+j = − log
{

1− dx+j

}
where dx+j stands for

the one-year death probability between age x+ j − 1 and age x+ j.
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The annuity units at time t+h (h ∈ N) of a policyholder born at time y, i.e., By,t+h,

are specified in terms of past and future stock market shocks as follows:

By,t+h = By,t0
exp

{
πt0+1 + ...+ πt+h

}
exp

{
qt+h−t0ω

∫ t0+1

t0

dW ∗
s + ...+ q1ω

∫ t+h

t+h−1

dW∗
s

}
= By,t0

t∏
j=t0+1

exp

{
πj + qj+h−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
h∏
j=1

exp

{
πt+j + qjω

∫ t+h−(j−1)

t+h−j
dW∗

s

}
.

(6.3.2)

Here dW∗
s ≡ dWs + (λ− λ∗) dt where λ∗ denotes the assumed Sharpe ratio. This

assumed Sharpe ratio may differ from the actual Sharpe ratio λ.76 The parameter qh

represents the exposure of future log annuity units log By,t+h to current stock market

shocks ω
∫ t+1

t
dW∗

s . We define qh at discrete points in time. Indeed, h is an integer

because adjustments of pension entitlements occur only once per period. We require

that the marginal risk exposure qh ⇒ 1 as h ⇒ ∞. Hence the parameter ω can be

viewed as the exposure of long-term annuity units log By,∞ to current stock market

shocks. Finally, the parameter πt+1 represents the desired (or targeted) growth rate of

annuity units between time t and time t + 1. The desired growth rate of annuity units

coincides with the median growth rate of annuity units (conditional upon information

available at time t0) if the assumed Sharpe ratio λ∗ equals the actual Sharpe ratio λ (see

also Section 6.3.2).

6.3.2. Horizon Differentiation

Specification (6.3.2) allows the marginal risk exposure qh to depend on the investment

horizon h.77 Indeed, if qh strictly increases with the investment horizon h, then long

investment horizons exhibit a larger exposure to current stock market shocks than shorter

investment horizons. We impose that the marginal risk exposure qh is non-decreasing

with the investment horizon h, i.e., qh ≥ qh−1 for all h > 1. Specification (6.3.2) allows

76Merton (1980) shows that estimates of expected returns are less accurate than estimates of variances.
Therefore, we distinguish only between the assumed expected return and the actual expected return.
In particular, we assume that the actual variance matches the assumed variance.

77The present chapter assumes that the marginal risk exposure does not depend on age nor time.
Specification (6.3.2) can however be extended by allowing the marginal risk exposure to depend on
age and time.
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the marginal risk exposure to depend only on the investment horizon h and thus only

indirectly on age x = t − y. As a direct consequence, life cycle investment in which

the stock market exposure declines with age continues during the decumulation phase.

Internal habit formation can explain this type of horizon differentiation in marginal risk

exposures (see, e.g., Fuhrer, 2000); see also Chapter 4.78

Figure 6.1 shows horizon differentiation in marginal risk exposures.79 The dash-dotted

line displays the case where qh = h/N for h < N and qh = 1 for h ≥ N . In that case,

short investment horizons h < N = 10 exhibit a smaller risk exposure than longer

investment horizons h ≥ N = 10. In particular, the marginal risk exposure at a one-year

investment horizon (h = 1) is only one-tenth of the marginal risk exposure at a ten-year

investment horizon (h = 10). We can view the parameter N as the smoothing period.

If N increases, then it takes longer to fully absorb current stock market shocks into

annuity units. The solid line corresponds to the case of exponential smoothing. That

is, qh = 1 − exp {−ηh}. The parameter η can be regarded as a smoothing parameter.

If η ⇒ 0, horizon differentiation in marginal risk exposures is maximal, whereas horizon

differentiation in marginal risk exposures is absent if η ⇒∞. The dotted line illustrates

the case where horizon differentiation in marginal risk exposures is absent (i.e., qh = 1

for all h). Finally, the dashed line displays a linear combination of the last two rules,

i.e.,

qh = (1− q1)× 1 + q1 × (1− exp {−ηh}) = 1− (1− q1) exp {−ηh} (6.3.3)

with q1 ≥ 0. The rule (6.3.3) characterizes horizon differentiation in terms of two

parameters: q1 ≤ 1 (i.e., the part of current stock market shocks that is absorbed into

the level of annuity units) and η (i.e., the speed at which the remaining part of current

stock market shocks is absorbed into future growth rates of annuity units).

Dividing By,t+h by By,t yields

By,t+h

By,t

= F h
t ×

h∏
j=1

exp

{
πt+j + qjω

∫ t+h−(j−1)

t+h−j
dW∗

s

}
, (6.3.4)

78In the case where risk differentiation is based on human capital risk rather than internal habit
formation, marginal risk exposures depend on not only the investment horizon h but also age x = t−y
(see Bodie et al., 1992).

79Although adjustments in pension entitlements occur only once per period, the figures in this chapter
show continuous (rather than discrete) graphs.
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Figure 6.1.

Illustration of horizon differentiation in marginal risk exposures
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qh = 1 − exp{−ηh}
qh = h

N
for h < N and qh = 1 for h ≥ N

qh = 1 − (1 − q 1)exp{−ηh}
qh = 1

The figure illustrates horizon differentiation in marginal risk exposures. The dashed-dotted

line displays the case where qh = h/N for h < N and qh = 1 for h ≥ N (with N = 10).

The solid line corresponds to the case where qh = 1 − exp {−ηh} (with η = 0.2). The dotted

line illustrates the case where qh = 1 for all h. The dashed line represents the case where

qh = 1− (1− q1) exp {−ηh} (with q1 = 0.5 and η = 0.2).

where

F h
t ≡

∏t
j=t0+1 exp

{
πj + qj+h−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
∏t

j=t0+1 exp
{
πj + qj−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
=

t∏
j=t0+1

exp

{(
qj+h−t0 − qj−t0

)
ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

} (6.3.5)

captures how past stock market shocks affect future annuity units. In the case of no

horizon differentiation in marginal risk exposures, F h
t is equal to unity (substitute qh = 1

for all h in (6.3.5)). Indeed, in the absence of horizon differentiation in marginal risk

exposures, stock market shocks are absorbed immediately into current annuity units. The

horizon-dependent funding ratio (6.3.5) is thus the direct consequence of the gradual

adjustment of annuity units to stock market shocks. Intuitively, sluggish adjustment

of annuity units to stock market shocks gives rise to funding imbalances that must
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be absorbed in the future. As a direct consequence, future adjustments of pension

entitlements become predictable. The horizon-dependent funding ratio F h
t summarizes

the predictable changes of future annuity units By,t+h as a result of past stock market

shocks that have not yet been fully absorbed into current annuity units. Figure 6.2

illustrates the horizon-dependent funding ratio F h
t as a function of the investment horizon

h, with a single unexpected stock-market shock that occurred one year ago.

Figure 6.2.

Illustration of the horizon-dependent funding ratio
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The figure illustrates the horizon-dependent funding rate F ht as a function of the investment

horizon h, with a single unexpected stock-market shock that occurred one year ago. That is,

log {St/St−1} −
(
r + λσ − 1

2σ
2
)

= −0.3 while log
{
St−j/St−j−1

}
−
(
r + λσ − 1

2σ
2
)

= 0 for all

j ≥ 1. The figure is based on ω = 0.5 and qh = 1 − (1− q1) exp {−ηh} (with q1 = 0.5 and

η = 0.2).

The median value of future annuity units is given by (see Appendix)

Mt

[
By,t+h

]
By,t

= F h
t × exp

{
h∑
j=1

πt+j

}
× exp

{
(λ− λ∗)ω

h∑
j=1

qj

}
, (6.3.6)

where Mt [·] stands for the median operator conditional upon all information available

at time t. Equation (6.3.6) shows that the median value of future annuity units differs

from the desired benefit (or pension ambition) By,t exp
{∑h

j=1 πt+j

}
due to two factors:
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one factor capturing the past and the other factor corresponding to future stock market

returns. In particular, the first factor F h
t represents past stock market shocks that have

not yet been fully absorbed into annuity units. The second factor (λ− λ∗)ω
∑h

j=1 qj is

due to the gap between the actual Sharpe ratio λ and the assumed Sharpe ratio λ∗. The

desired growth rate of median pension entitlements can thus be increased by not only

increasing πh but also reducing the assumed Sharpe ratio λ∗.

6.3.3. Bonus Policy

This section explores how annuity units (and thus pensions in payment) change as time

proceeds. At the begin of each time period, pension entitlements are adjusted according

to (see Appendix)

By,t+1

By,t

= exp {πt+1} × exp

{
q1ω

∫ t+1

t

dW ∗
s

}
× F 1

t . (6.3.7)

Equation (6.3.7) can be viewed as the bonus (or dividend) policy of the pension scheme,

showing how annuity units develop as time proceeds. The first term at the right-hand

side of equation (6.3.7) represents the desired growth rate. The second term denotes

the impact of current stock market shocks on current annuity units while the last term

reflects the impact of past stock market shocks on current annuity units.

The bonus policy (6.3.7) can be rewritten as follows:

By,t+1

By,t

= exp {πt+1} × F̄ 0
t+1. (6.3.8)

Here F̄ h−1
t+1 denotes the horizon-dependent funding ratio before annuity units are adjusted

but after stock market shocks between time t and time t + 1, i.e.,
∫ t+1

t
dW ∗

s , have been

realized:

F̄ h−1
t+1 ≡ F h

t × exp

{
qhω

∫ t+1

t

dW ∗
s

}
. (6.3.9)

The horizon-dependent funding ratio after annuity units are adjusted is given by (see

Appendix)

F h−1
t+1 = F h

t × exp

{
qhω

∫ t+1

t

dW ∗
s

}
× 1

F̄ 0
t+1

. (6.3.10)
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The second term at the right-hand side of (6.3.10) denotes current stock market shocks

that result in the new funding ratio F̄ h−1
t+1 . The last term represents past stock market

shocks that are gradually being absorbed into annuity units so that they are no longer

included in the funding ratio.

6.3.4. Calibrating the Risk of Future Annuity Units

Future annuity units exhibit a lognormal distribution. The pth quantile of future annuity

units By,t+h conditional upon all information available at time t is given by (0 ≤ p ≤ 1)

Qp
t

[
By,t+h

]
= Mt

[
By,t+h

]
exp

Φ−1(p)ω

√√√√ h∑
j=1

q2
j

 . (6.3.11)

Here Φ(·) is the cumulative distribution function of a standard normal random variable.

We can calibrate the marginal risk exposure qh and the long-term risk exposure ω from

the desired risk of the median value of future annuity units. For example, the insurer

can set the desired difference between the log median value of future annuity units and

the log 2.5% quantile of future annuity units for each horizon h:

logQ2.5%
t

[
By,t+h

]
− logMt

[
By,t+h

]
= Φ−1 (2.5%)ω

√√√√ h∑
j=1

q2
j . (6.3.12)

The parameters qh and ω can then be endogenously derived from (6.3.12).80

6.3.5. Communicating the Risk of Future Annuity Units

Given current annuity units By,t, insurers should communicate ex ante both the median

value of future annuity units (6.3.6) and the 2.5% quantile of future annuity units

(6.3.11), and ex post the difference between the realized pension outcome and the pension

ambition. The median Mt

[
By,t+h

]
and the 2.5% quantile Q2.5%

t

[
By,t+h

]
depend on the

stochastic model used by the insurer. Supervisory authorities may have to prescribe

parameter values to prevent insurers from providing excessively optimistic projections.

Figure 6.3 illustrates the 2.5% and 97.5% quantiles of future annuity units (the

quantiles are expressed relative to the median value of future annuity units). The

80Certain restrictions need to be imposed on (6.3.12) to ensure that qh increases with the investment
horizon h.
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dashed lines represent the case of horizon differentiation in marginal risk exposures

(i.e., qh = 1 − (1− q1) exp {−ηh} with q1 = 0.5 and η = 0.2), while the dash-dotted

lines correspond to the case of no horizon differentiation in marginal risk exposures (i.e.,

qh = 1 for all h).

Figure 6.3.

Illustration of the 2.5% and 97.5% quantiles of future annuity units

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

horizon h

Q
u
a
n
ti
le

 

 

2.5% quantile (w/o horizon differentat ion)
97.5% quantile (w/o horizon differentat ion)
2.5% quantile (w horizon differentat ion)
97.5% quantile (w horizon differentat ion)

The figure illustrates the 2.5% and 97.5% (log) quantiles of future annuity units (the quantiles

are expressed relative to the median value of future annuity units). The solid lines represent

the case of horizon differentiation in marginal risk exposures (i.e., qh = 1− (1− q1) exp {−ηh}
with q1 = 0.5 and η = 0.2), while the dash-dotted lines correspond to the case of no horizon

differentiation in marginal risk exposures (i.e., qh = 1 for all h). The figure is based on ω = 0.5.

6.4. Market-Consistent Valuation

6.4.1. Useful Decomposition

Denote by V h
y,t the market-consistent value at time t of annuity units By,t+h. We can

compute V h
y,t by solving the following conditional expectation (see, e.g., Cochrane, 2001):
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V h
y,t = hpt−yEt

[
mt+h

mt

By,t+h

]
, (6.4.1)

where mt stands for the pricing kernel (or stochastic discount factor) at time t. The

Appendix provides an exact analytical expression for mt and shows that

Ch
y,t ≡ V h

y,t/By,t = F h
t A

h
y,t. (6.4.2)

Here

Ahy,t ≡ exp

{
−

h∑
j=1

δjy,t

}
. (6.4.3)

Equation (6.4.2) shows that the market price of future annuity units in terms of current

annuity units, i.e., Ch
y,t, consists of two factors. The horizon-dependent funding ratio

F h
t corresponds to past stock market shocks that have not yet been fully absorbed into

current annuity units. This factor equals unity if current stock market shocks are fully

absorbed into current annuity units (i.e., qh = 1 for all h). The horizon-dependent

annuity factor Ahy,t summarizes the impacts of desired growth and risk of annuity units,

and future assumed expected rates of return on the market price of future annuity units.

The next section gives an exact analytical expression for the forward (market-consistent)

discount rate δjy,t.

6.4.2. The Forward Discount Rate

The forward discount rate δjy,t is given by (see Appendix)

δjy,t = µt−y+j + r − πt+j + qjωλ
∗ + ξj

= µt−y+j + r − πt+j + qjω

(
λ∗ − 1

2
qjω

) (6.4.4)

where ξj ≡ −1
2
q2
jω

2 denotes a second-order term. Equation (6.4.4) collapses to the

survival premium µt−y+j plus the (forward) interest rate r if annuity units are fixed

and guaranteed (i.e., πt+j = ω = 0). More generally, the discount rate (6.4.4) is a

decreasing function of the desired growth rate πt+j, and an increasing function of future
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biometric and (assumed) expected financial rates of return provided that λ∗ > 1
2
qjω. The

survival credit µt−y+j represents the future biometric rate of return. The risk premium

qjωλ
∗ is due to the impact of stock market shocks on annuity units: riskier annuity units

yield higher expected returns, thereby raising discount rates and reducing the costs of the

consumption stream. It depends on the exposure of annuity units to stock market shocks

(determined by both the marginal risk exposure qj and the long-term risk exposure ω)

and the assumed Sharpe ratio λ∗.

6.4.3. The Discount Curve

The average discount rate δ̄hy,t is given by

δ̄hy,t ≡
1

h

h∑
j=1

δjy,t = µ̄ht−y + r − π̄ht + q̄hωλ
∗ + ξ̄h. (6.4.5)

Here 0 ≤ q̄h ≤ 1 represents the average risk exposure (or term structure of risk):

q̄h ≡
1

h

h∑
j=1

qj. (6.4.6)

The quantities µ̄ht−y, π̄
h
t and ξ̄h are defined as follows:

µ̄ht−y ≡
1

h

h∑
j=1

µt−y+j, (6.4.7)

π̄ht ≡
1

h

h∑
j=1

πt+j, (6.4.8)

ξ̄h ≡
1

h

h∑
j=1

ξj. (6.4.9)

The average and marginal risk exposure, i.e., q̄h and qh, relate to each other in an

analogous way as the YTM relates to the forward interest rate. The non-decreasing

nature of the marginal risk exposure qh (i.e., qh ≥ qh−1 for all h > 1) implies that the

average risk exposure q̄h is non-decreasing as well (i.e., q̄h ≥ q̄h−1 for h > 1). Also, it

follows that the average risk exposure does not exceed the marginal risk exposure (i.e.,

q̄h ≤ qh for all h ≥ 1). Figure 6.4 illustrates both the average risk exposure q̄h and the

marginal risk exposure qh with horizon differentiation in marginal risk exposures.
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Figure 6.4.

Illustration of the average and marginal risk exposure
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The figure illustrates the average risk exposure q̄h as well as the marginal risk exposure qh
with horizon differentiation in marginal risk exposures. The marginal risk exposure is given by

qh = 1− (1− q1) exp {−ηh} (with q1 = 0.5 and η = 0.2).

In the case of gradual adjustment of annuity units to stock market shocks, the risk

premium q̄hωλ
∗ increases with the investment horizon h. Figure 6.5 shows the risk

premium q̄hωλ
∗ with horizon differentiation in marginal risk exposures.

6.4.4. Discounting the Median Value of Future Annuity Units

We can also discount the median value of future annuity units to find the market-consistent

value V h
y,t. We find

V h
y,t = Mt

[
By,t+h

]
exp

{
−

h∑
j=1

δ̃jy,t

}
, (6.4.10)

where the forward discount rate δ̃jy,t is given by (this follows from equations (6.3.6) and

(6.4.2))

δ̃jy,t = δjy,t + πt+j + qjω (λ− λ∗) . (6.4.11)
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Figure 6.5.

Illustration of the horizon-dependent risk premium

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

ω
λ
∗
q̄
h

horizon h

The figure illustrates the horizon-dependent risk premium q̄hωλ
∗ with horizon differentiation

in marginal risk exposures. The marginal risk exposure is given by qh = 1− (1− q1) exp {−ηh}
(with q1 = 0.5 and η = 0.2). The figure is based ω = 0.5 and λ∗ = 0.2.

Whereas the actual risk premium λ features in discounting the median value of future

annuity units (see equation (6.4.11)), only the assumed risk premium λ∗ features in

discounting current annuity units By,t (see equation (6.4.4)). This implies that the

market-consistent value of annuity units does not depend on the subjective parameter

λ of the stochastic model but depends only on the parameters of the contract πt+j, λ
∗

and qj.
81 Whereas model risk (i.e., the value of λ) does not affect the market-consistent

value of future annuity units, it does impact the median value of future annuity units

(6.3.6) and the quantiles of future annuity units (6.3.11).

81Here we implicitly assume that the actual variance coincides with the assumed variance.
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6.4.5. Comparison with Traditional Annuities

6.4.5.1. Nominal Fixed Annuities

The market-consistent value at time t of a guaranteed nominal annuity payment (i.e.,

πt+j = 0 for every j and ω = 0) at time t+ h is given by

V h
y,t = By,t exp

{
−

h∑
j=1

(
µt−y+j + r

)}
. (6.4.12)

We identify three differences between the market price of variable annuities (see equation

(6.4.2)) and the market price of traditional DB pension plans (see equation (6.4.12)).

Whereas traditional DB pension plans keep current annuity unitsBy,t constant in nominal

terms, variable annuities vary with stock market returns. First, a horizon-dependent

risk premium q̄hωλ
∗ + ξ̄h, which typically rises with the investment horizon, is added

in (6.4.5) to account for the conditional, risky nature of future annuity units. Second,

desired indexation π̄ht is included in (6.4.5) to measure the costs of the desired bonus

payments. Third, a factor F h
t is included in (6.4.2) representing past stock market shocks

that have not yet been fully absorbed into current annuity units.

6.4.5.2. Traditional Variable Annuities

In the case of a traditional variable annuity in which shocks are absorbed immediately

into current annuity units (i.e., qh = q̄h = 1 for all h ≥ 1) and the median annuity

payments are constant in nominal terms (i.e., πt+j = 0 for every j), equation (6.4.2)

boils down to

V h
y,t = By,t exp

{
−
(
µ̄ht−y + r + ωλ∗ − 1

2
ω2

)
h

}
. (6.4.13)

Comparing equation (6.4.13) with equation (6.4.2), we observe that the term representing

past stock market shocks F h
t is not present in this case because stock market shocks are

absorbed immediately into current annuity units By,t. Hence, predictable future changes

in pension entitlements resulting from past stock market shocks are absent. Moreover,

the risk premium in the discount rate does not depend on the investment horizon because

there is no horizon differentiation in marginal risk exposures.
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6.4.6. Conversion Factor versus Annuity Factor

Assuming that newly bought pension entitlements share in current funding gaps, we can

calculate the market price at time t of an annuity unit for a policyholder born at time y

as follows:

Cy,t ≡
Vy,t
By,t

=

xmax+y−t∑
h=max{xr+y−t,1}

F h
t A

h
y,t. (6.4.14)

We employ the formula (6.4.14) to calculate the price of newly bought entitlements. This

is in line with the DB tradition in which the pension premium is determined by the costs

of the desired consumption stream in retirement. The conversion factor Cy,t represents

the economically fair price that a policyholder with birth year y should pay for each

annuity unit to ensure that the newly bought annuity units do not affect the value of

existing pension entitlements.

In the case of gradual adjustment of annuity units to stock market shocks, the

conversion factor differs from the aggregate annuity factor

Ay,t =

xmax+y−t∑
h=max{xr+y−t,1}

Ahy,t, (6.4.15)

because newly bought annuity units share in current funding gaps. As a consequence, the

conversion factor is smaller than the annuity factor in the presence of underfunding (i.e.,

F h
t < 1). Intuitively, underfunding reduces the growth of future consumption streams,

thereby reducing the costs of future annuity units. The conversion factor Cy,t would

coincide with the aggregate annuity factor Ay,t if newly bought annuity units do not

share in past stock market shocks.

The valuation of annuity units (6.4.2) assumes that policyholders pay a fair economic

price for new annuity units so that the value of existing annuity units is not affected by

the purchase of new annuity units. Indeed, valuation of existing annuity units (6.4.2)

relies on the premium rule (6.4.14) for newly bought annuity units. With this premium

rule, the aggregate value of the variable annuities matches the current value of aggregate

assets Xt:

Xt = Vt. (6.4.16)
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The pension contract thus exhibits a defined contribution character in the sense that

stock market shocks are absorbed into pension entitlements through adjustments in

current annuity units (i.e., the so-called bonus payments) and future predictable changes

F h
t . Outside sponsors (such as companies, future policyholders, insurance companies,

tax payers, shareholders) are absent: risks are borne by the current policyholders. The

pension promises are backed by financial assets so that the system is always fully funded

on a so-called discontinuity basis.82 Indeed, the funding ratio is unity if we measure

liabilities in terms of the market value of promised cash flows Vt.

If newly bought annuity units share in current funding gaps but pricing is based on

the annuity factor (6.4.15), the pension contract involves risk sharing between current

policyholders and new policyholders. In particular, new policyholders subsidize (tax)

current policyholders in case of underfunding, i.e., F h
t < 1 (overfunding, i.e., F h

t > 1).

6.4.7. Replicating Portfolio Strategy

This section derives the portfolio strategy that replicates the pension contract (6.3.2).

We allow the insurer to invest in a risky stock and a nominal money market account.

The portfolio strategy is determined in such a way that the value of the assets matches

the value of the liabilities in each state of the world. We thus apply the principle of

liability-driven investment familiar from DB pension plans to arrive at the replicating

portfolio strategy.

Replication of the pension contract requires a fraction q̂y,t of the assets to be invested

in the risky stock (see Appendix)

q̂y,t =
ω

σ

xmax+y−t∑
h=max{xr+y−t,1}

αhy,tqh, (6.4.17)

where αhy,t is defined as follows:

αhy,t ≡ V h
y,t/Vy,t (6.4.18)

Equation (6.4.17) shows that in the case of gradual adjustment of annuity units to stock

market shocks, the portfolio weight decreases as the policyholder ages.

82This means that the policyholders receive their promised benefits even if the insurer is wound up.
Hence, the policyholders are not exposed to the credit risk of the insurer.
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6.5. Mismatch Risk and an Incorrect Discount Rate

6.5.1. Mismatch Risk

The expression for the bonus rate (6.3.7) can be written in terms of mismatch. In

particular, we can define mismatch risk Mt+1 as follows:

Mt+1 ≡ σq̂y,t

∫ t+1

t

dWs. (6.5.1)

The bonus rate expression (6.3.7) can now be written as

By,t+1

By,t

= exp {πt+1} × exp

{
q1ω

q̂y,tσ
Mt+1

}
× F 1

t . (6.5.2)

The bonus rate log
{
By,t+1/By,t

}
is thus equal to the ambition πt+1 adjusted for past

shocks log
{
F 1
t

}
and current mismatch risk q1ω/

(
q̂y,tσ

)
Mt+1. We can rewrite the funding

ratio (6.3.5) in terms of mismatch in past (substitute (6.5.1) into (6.3.5)):

F h
t = exp

{
t∑

j=t0+1

ω
qh+j−t0 − qj−t0
q̂y,t+t0−jσ

Mt+t0−j+1

}
. (6.5.3)

We can also write (6.3.4) in terms of mismatch in the past:

By,t+h

By,t

= F h
t × exp

{
h∑
j=1

πt+j

}
× exp

{
h∑
j=1

qjω

q̂y,t+t0+h−jσ
Mt+t0+h−j+1

}
. (6.5.4)

6.5.2. Discounting with Expected Returns

A popular way to compute the value of annuity units is to employ the expected return

on the investment portfolio q̂y,t0 as the discount rate:

V̂y,t0 =

xmax+y−t0∑
h=max{xr+y−t0,1}

V̂ h
y,t0
, (6.5.5)

where

V̂ h
y,t0
≡ By,t0

exp
{
−
(
µ̄ht−y + r − π̄ht + λ∗σq̂y,t0 + ξ̄h

)
h
}
. (6.5.6)
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Linearization of V̂ h
y,t0

around q̂y,t0 = ω/σq̄h yields

V̂ h
y,t0
− V h

y,t0

V h
y,t0

≈ −σλ∗h
(
q̂y,t0 −

ω

σ
q̄h

)
, (6.5.7)

so that

V̂y,t0 − Vy,t0
Vy,t0

≈ σλ∗D̂y,t0

(ω
σ
θy,t0 − q̂y,t0

)
, (6.5.8)

where the duration D̂y,t0
is defined as follows:

D̂y,t0
≡

xmax+y−t0∑
h=max{xr+y−t0,1}

αhy,t0h (6.5.9)

and

θy,t0 ≡
1

D̂y,t0

×
xmax+y−t0∑

h=max{xr+y−t0,1}

αhy,t0hq̄h =

xmax+y−t0∑
h=max{xr+y−t0,1}

βhy,t0 q̄h (6.5.10)

with βhy,t0 ≡ αhy,t0 ×
h

D̂y,t0
.

For traditional variable annuities without gradual absorption of shocks (i.e., qh =

q̄h = 1), the traditional method of using expected returns on the current portfolio yields

the correct result (since in equation (6.5.8), ω/σθy,t0 = q̂y,t0 = 1 if qh = q̄h = 1 for all

horizons h ≥ 1). With horizon differentiation, in contrast, the method of using current

expected returns tends to understate the value of actual liabilities since ω/σθy,t0 <

q̂y,t0 .83 Hence the overall discount curve for valuing variable annuities is typically in

between the expected return on the actual investment portfolio and the risk-free term

structure. Intuitively, current expected returns exceed future returns because with life

cycle investment, risk is taken back when policyholders age. Also, using an incorrect

discount rate leads to inefficient intertemporal consumption smoothing. Indeed, a higher

discount rate raises the funding ratio (i.e., Vy,t0/V̂y,t0 > 1), thereby increasing the scope

to pay out today (i.e., consumption is reallocated from the long-run to the short-run).

83This is always the case if liabilities are concentrated around a certain horizon because horizon
differentiation (i.e., qh > q1) implies qhh > q̄h and thus q̂y,t0 > ω/σθy,t0 if βhy,t0 ≈ αhy,t0 . If liabilities

are dispersed over various horizons and βhy,t0 > αhy,t0 for long horizons h, we may theoretically have

q̂y,t0 < θy,t0 because longer horizons with larger q̄h and qh receive a larger weight in the calculation
of θy,t0 than in the calculation of q̂y,t0 .
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6.6. Exponential Decay and the Cash-Flow Funding Rate

6.6.1. Exponential Decay

Equation (6.3.5) implies that for each horizon, we need a separate state variable to

summarize past stock market shocks. For a specific specification of the marginal risk

exposure qh, we can, however, summarize past stock market shocks in one state variable.

Specifically, we assume that

qh = 1− ρh. (6.6.1)

The coefficient ρ in equation (6.6.1) governs horizon differentiation in marginal risk

exposures. With ρ = 0, horizon differentiation in marginal risk exposures is absent and

qh = 1. In that case, shocks are absorbed immediately so that F h
t = 1 (see equation

(6.3.5) with qh = 1 for all h). With ρ ↑ 1, horizon differentiation in marginal risk

exposures is maximal and qh/q1 ⇒ h. Specification (6.6.1) thus implies that the risk of

future annuity units is parameterized by the long-term risk exposure ω and the parameter

0 ≤ ρ < 1.

With (6.6.1), we can write the horizon-dependent funding ratios in terms of one state

variable (use qh+j−t0 − qj−t0 = qh
(
1− qj−t0

)
= qhρ

j−t0 in equation (6.3.5))

F h
t =

(
F̂t

)qh
=
(
F̂t

)1−ρh

. (6.6.2)

Here

F̂t ≡ exp

{
ω

t∑
j=t0+1

ρj−t0
∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
. (6.6.3)

6.6.2. The Cash-Flow Funding Rate

We can write the single state variable F̂t in terms of a so-called cash-flow funding

ratio. This funding ratio is computed on the basis of an alternative definition of the

liabilities. With this alternative definition, the aggregate value of the liabilities is no

longer necessarily equal to the value of the assets so that the so-called cash-flow funding

ratio can deviate from unity. The calculation of a funding ratio unequal to one makes
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the pension system reminiscent of DB pension systems. The difference with traditional

DB pension systems is that funding disequilibria are absorbed by the policyholders

themselves rather than an outside sponsor such as a corporation.

The alternative definition of the liabilities is based on the ambition to increase current

pension entitlements By,t in line with desired indexation (in median and with the desired

risk of future annuity units). In particular, the value of the liability at horizon h of an

policyholder born at time y is given by

Lhy,t ≡
By,t

exp
{∑h

j=1 δ
j
y,t

} =
V h
y,t

F h
t

. (6.6.4)

We can view F h
t as the horizon-dependent funding ratio because it represents the ratio

between the actual value of annuity payments (‘assets’) at horizon h and the value of

the defined ambition (‘liabilities’) at horizon h, i.e., F h
t = V h

y,t/L
h
y,t.

The overall liability Ly,t corresponding to a policyholder born at time y is given by

Ly,t ≡ By,t

xmax+y−t∑
h=max{xr+y−t,1}

1

exp
{∑h

j=1 δ
j
y,t

} . (6.6.5)

These liabilities are the resources that are currently needed to consistently increase

current pension entitlements By,t in line with desired indexation (in median and with

the desired risk of future annuity units parameterized by ω and ρ). This definition of

liabilities thus abstracts from predictable changes in future annuity payments that are

the result of gradual adjustment of annuity units to past stock market shocks.

The ‘cash-flow’ funding ratio Fy,t is equal to the weighted average of horizon-specific

funding ratios (the second equality follows from equation (6.6.4) to eliminate V h
y,t)

Fy,t ≡
Vy,t
Ly,t

=

xmax+y−t∑
h=max{xr+y−t,1}

V h
y,t

Ly,t
=

xmax+y−t∑
h=max{xr+y−t,1}

γhy,tF
h
t =

xmax+y−t∑
h=max{xr+y−t,1}

γhy,tF
h
t ,

(6.6.6)
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where the aggregate value of liabilities Ly,t is defined by

Ly,t ≡
xmax+y−t∑

h=max{xr+y−t,1}

Lhy,t =

xmax+y−t∑
h=max{xr+y−t,1}

By,t

exp
{∑h

j=1 δ
j
y,t

} , (6.6.7)

and

γhy,t ≡
Lhy,t
Ly,t

. (6.6.8)

The Appendix employs a linear approximation to write the state variable F̂t (see (6.6.3))

in terms of the cash-flow funding ratio Fy,t ≡
Vy,t
Ly,t

(see (6.6.6))

(
F̂t

)q̌y,t
≈ Fy,t, (6.6.9)

where

q̌y,t ≡
xmax+y−t∑

h=max{xr+y−t,1}

γhy,tqh.

Equation (6.6.9) represents the relationship between the economy-wide state variable

F̂t, which summarizes realized economy-wide risk in the past, and the cash-flow funding

ratio Fy,t, which depends on age determining the exposure of the fund to this aggregate

risk. The older the policyholder, the less he is exposed to past macro-economic shocks

if horizon differentiation implies smoothing of adjustment to shocks. With horizon

differentiation, qh rises with h so that larger weights γhy,t of the shorter horizons reduces

the exposure q̌y,t of the fund to macro-economic shocks F̂t.

Substitution of equation (6.6.9) into equation (6.6.2) to eliminate F̂t yields

F h
t ≈

(
Fy,t
) qh
q̌y,t . (6.6.10)

We can write Vy,t as (use equation (6.6.10) to eliminate F h
t )

Vy,t = By,t

xmax+y−t∑
h=max{xr+y−t,1}

(
Fy,t
) qh
q̌y,t

exp
{∑h

j=1 δ
j
y,t

} . (6.6.11)
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Equation (6.6.11) shows how the assets Vy,t are distributed across the various horizons.

The funding ratio Fy,t = Vy,t/Ly,t is computed by using the observed actual assets Vy,t

and the liabilities Ly,t from (6.6.5). We do not need information on how past shocks have

occurred over time.

6.7. Concluding Remarks

This chapter has explored DA plans that provide variable annuities to policyholders. The

pension fund exogenously specifies the entire stochastic income stream in retirement.

In line with internal habit formation, pension payments respond gradually to financial

shocks. The specification of the pension contract endogenously determines contribution

levels and the investment policy. We have shown that the discount rate includes a risk

premium that rises with the horizon and that the fraction of assets invested in the risky

stock decreases as the policyholder ages. Also, the gradual absorption of financial shocks

leads to predictable changes in pension payments. The effects of past stock market shocks

on future adjustments in annuity units can be captured in one state variable (i.e., the

funding ratio) if financial shocks are smoothed out in an exponentially declining manner.

Public supervision plays four important roles. The first two of these four roles

involve the risk of future annuity units and the last two roles are associated with proper

valuation and ensuring intergenerational fairness. First, the supervisory authorities

should induce the funds to communicate the expected income streams and the risks

involved (e.g., based on a ‘bad weather’ scenario) on the basis of standardized stochastic

models. Second, they should monitor that the investment policy of the fund is consistent

with the desired risk of future annuity units. Third, public supervision should ensure

that the annuities are priced fairly, especially when participation is compulsory and

competition does not discipline funds. Fourth, if funds change the pension contract

(e.g., the way that annuity units are discounted), the authorities should check whether

the exchange of annuities occurs at fair prices. By preventing intergenerational transfers,

public supervision protects individual property rights.
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6.8. Appendix

Proofs

Derivation of (6.3.6), (6.3.7) and (6.3.10)

We can write (6.3.4) as

By,t+h

By,t

= F h
t exp

{
h∑
j=1

πt+j

}
exp

{
ω (λ− λ∗)

h∑
j=1

qj

}

exp

{
ω

h∑
j=1

qj

∫ t+h−(j−1)

t+h−j
dWs

}
.

(6.8.1)

Taking the median of (6.8.1) yields (6.3.6).

Equation (6.3.7) follows from (6.3.4) with h = 1 where
∫ t+1

t
dWs is now known:

By,t+1

By,t

= F 1
t exp

{
πt+1 + q1ω

∫ t+1

t

dW ∗
s

}

=

∏t
j=t0+1 exp

{
qj+1−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
∏t

j=t0+1 exp
{
qj−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
exp

{
πt+1 + q1ω

∫ t+1

t

dW ∗
s

}
= exp {πt+1} exp

{
t∑

j=t0

(
qj+1−t0 − qj−t0

)
ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}

= exp {πt+1} × F̄ 0
t+1,

where q0 = 0 by convention and F̄ h−1
t+1 is the horizon-dependent funding ratio before

annuity units are adjusted:

F̄ h−1
t+1 ≡ F h

t × exp

{
qhω

∫ t+1

t

dW ∗
s

}
= exp

{
t∑

j=t0

(
qj+1−t0 − qj−t0

)
ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}
.

(6.8.2)

The horizon-dependent funding ratio after annuity units are adjusted is given by (see
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equation (6.3.5))

F h−1
t+1 =

F h
t × exp

{
qhω

∫ t+1

t
dW ∗

s

}
F̄ 0
t+1

=
F h
t × exp

{
qhω

∫ t+1

t
dW ∗

s

}
F 1
t × exp

{
q1ω

∫ t+1

t
dW ∗

s

} ,
so that F 0

t+1 = 1.

Derivation of (6.4.2) and (6.4.17)

The pricing kernel mt is subject to the following dynamic equation:

dmt

mt

= −rdt− λ dWt.

Application of Ito’s lemma yields

d log mt = −
(
r +

1

2
λ2

)
dt− λ dWt.

Hence,

mt+h

mt

= exp

{
−
(
r +

1

2
λ2

)
h− λ

∫ t+h

t

dWs

}
= exp

{
−
(
r +

1

2
λ2

)
h− λ

h∑
j=1

∫ t+h−(j−1)

t+h−j
dWs

}
.

(6.8.3)
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Substituting equation (6.8.3) and equation (6.3.4) into equation (6.4.1), we arrive at

V h
y,t =h pt−yF

h
t By,t exp

{
h∑
j=1

πt+j

}

exp

{
ω (λ− λ∗)

h∑
j=1

qj

}
exp

{
−
(
r +

1

2
λ2

)
h

}

Et

[
exp

{
h∑
j=1

(
qjω − λ

) ∫ t+h−(j−1)

t+h−j
dWs

}]

=h pt−yF
h
t By,t exp

{
h∑
j=1

πt+j

}
exp

{
ω (λ− λ∗)

h∑
j=1

qj

}

exp

{
−
(
r +

1

2
λ2

)
h

}
exp

{
1

2

h∑
j=1

(
qjω − λ

)2

}

=h pt−yF
h
t By,t exp

{
−

h∑
j=1

(
r − πt+j + qjωλ−

1

2
q2
jω

2

)}
.

(6.8.4)

We can rewrite V h
y,t as follows:

V h
y,t = By,tF

h
t exp

{
−
(
µ̄ht−y + r − π̄ht + q̄hωλ

∗ − ξ̄h
)
h
}

=
t∏

j=t0+1

exp

{
πj + qj+h−t0ω

∫ t+t0−(j−1)

t+t0−j
dW ∗

s

}

exp
{
−
(
µ̄ht−y + r − π̄ht + q̄hωλ

∗ − ξ̄h
)
h
}
By,t0

.

Hence,

V h−1
y,t+1

V h
y,t

= exp

{
πt+1 + qhω

∫ t+1

t

dW ∗
s

}
exp

{
µt−y+1 + r − πt+1 + qhωλ

∗ − ξh
}

= exp

{
µt−y+1 + r + qhωλ

∗ − ξh + qhω

∫ t+1

t

dW ∗
s

}
.

(6.8.5)

Let Xh
y,t be the value of the assets at time t that finances By,t+h, and let q̂ hy,t be the

corresponding investment policy (i.e., q̂ hy,t denotes the fraction of Xh
y,t invested in the
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risky stock). We can write Xh
y,t as follows:

Xh
y,t = X t−t0+h

y,t0
exp

{
t−1∑
j=t0

µj+1−y + r (t− t0) +
t−1∑
j=t0

q̂ t+h−jy,j λσ

−1

2
σ2

t−1∑
j=t0

(
q̂ t+h−jy,j

)2

+
t−1∑
j=t0

q̂ t+h−jy,j

∫ j+1

j

dWs

}
,

where

X t−t0+h
y,t0

= V t−t0+h
y,t0

.

Hence,

Xh−1
y,t+1

Xh
y,t

= exp

{
µt+1−y + r + q̂ hy,tλσ −

1

2
σ2
(
q̂ hy,t

)2

+ q̂ hy,tσ

∫ t+1

t

dWs

}
. (6.8.6)

Comparing equation (6.8.5) with equation (6.8.6) and using Xh
y,t = V h

y,t, we find

q̂ hy,t = qh
ω

σ
.

We have that q̂y,tXy,t =
∑xmax

h=max{xr+y−t,1}
q̂ hy,tV

h
y,t =

∑xmax

h=max{xr+y−t,1}
q̂ hy,tα

h
y,tXy,t. Hence,

q̂y,t =
∑xmax

h=max{xr+y−t,1}
q̂ hy,tα

h
y,t = ω

∑xmax

h=max{xr+y−t,1}
qhα

h
y,t/σ.

Derivation of (6.6.9)

Linearizing
(
F̂t

)qh
around F̂t = 1, we arrive at

(
F̂t

)qh
≈ 1 + qh

(
F̂t − 1

)
so that (using

(6.6.2))

F h
t ≈ 1 + qh

(
F̂t − 1

)
.

Substitution of this approximation in (6.6.6) yields

Fy,t − 1 ≈ q̌y,t

(
F̂t − 1

)
, (6.8.7)
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where

q̌y,t ≡
xmax+y−t∑

h=max{xr+y−t,1}

γhy,tqh.

We can write (6.8.7) as

exp
{
Fy,t − 1

}
≈ exp

{
q̌y,t

(
F̂t − 1

)}
.

Subsequently using the linear approximation exp
{
Fy,t − 1

}
≈ Fy,t, we arrive at (6.6.9).
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Chapter 7

Pricing and Risk Management of

Variable Annuities in Defined

Ambition Pension Plans84

This chapter explores defined ambition pension plans, which are pension plans that

allocate various risks (i.e., real interest rate risk, expected inflation risk and stock market

risk) among policyholders on the basis of complete pension contracts while simultaneously

pooling idiosyncratic longevity risk. We demonstrate how to value these pension plans in

a market-consistent fashion. Market-consistent valuation of entitlements is important for

avoiding conflicts between the insurer’s policyholders and ensuring efficient intertemporal

consumption smoothing. We also show that the costs of variable real annuities may be less

sensitive to the nominal interest rate as compared to the costs of fixed nominal annuities,

thereby reducing the nominal interest rate duration of the intertemporal hedging portfolio.

7.1. Introduction

Around the world, many firms are declining to continue to sponsor employer-sponsored

defined benefit (DB) pension plans, due to the high risks these pension plans are now

seen to impose on corporate sponsors (Investment Company Institute, 2014). In response,

the defined ambition (DA) pension plans being designed in the Netherlands promise to

play a new role, serving as mutual insurers in which policyholders, rather than corporate

sponsors, bear investment risk. These DA pension plans aim to retain several advantages

of traditional DB pension plans. In particular, by pooling idiosyncratic longevity risk,

lifelong benefits can be provided at relatively low costs. Furthermore, risk management

84This chapter is co-authored with Lans Bovenberg.
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seeks to provide retirees with stable income streams after they leave employment. To

this end, real interest rate risk and expected inflation risk are actively managed during

both the accumulation and the decumulation phase.

This chapter investigates the pricing and risk management of DA pension plans that

provide variable annuities to policyholders.85 Property rights of individual policyholders

(i.e., pension entitlements) are defined in terms of annuity units (i.e., payouts) that vary

with financial shocks. The pension contract specifies not only how annuity units respond

to financial shocks but also how the desired (or targeted) growth rate of annuity units

develops over time. In particular, the desired growth rate depends on the expected

rate of inflation to protect the purchasing power of consumption, and on the interest

rate to account for intertemporal substitution in consumption. Traditional variable

annuities typically assume a constant (i.e., state-independent) desired growth rate (see,

e.g., Horneff, Maurer, Mitchell, and Stamos, 2009, 2010; Maurer et al., 2013b).

We show how annuity units can be valued in a market-consistent fashion. Proper

valuation of annuity units is relevant for determining the prices at which variable annuities

can be bought and sold. It ensures that buying and selling of variable annuities does not

impose externalities on other policyholders. Furthermore, market-consistent valuation

helps protect the value of property rights if the pension contract is changed. Accordingly,

the pension contract can be adapted to new circumstances without giving rise to conflicts

between the insurer’s policyholders. Also, proper pricing of annuity units ensures efficient

intertemporal consumption smoothing, and allows policyholders to endogenously set their

saving levels in order to realize a particular pension ambition in terms of a lifelong income

stream during retirement.

We show that the costs of annuity units are an increasing function of the desired

growth rate, and a decreasing function of assumed expected financial and biometric rates

of return.86 To account for the uncertain nature of future annuity units, the discount

rate includes a risk premium that depends on assumed expected financial rates of return.

Indeed, the annuity factor formalizes how the costs of annuity units depend not only on

85We define a variable annuity as an insurance contract in which annuity payments depend on the
performance of the investment portfolio. A variable annuity does not include a guarantee.

86The annuity factor depends on assumed expected returns rather than actual expected returns. Selling
and buying of annuities on the basis of prices that depend on assumed, rather than actual, expected
returns does not impose externalities on other policyholders. In that case, however, actual expected
consumption growth deviates from assumed expected consumption growth. Hence, intertemporal
consumption smoothing is inefficient.
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the median level (and desired growth rate) of future annuity units, but also on the risk

of future annuity units. The more uncertain future annuity units are, the higher – ceteris

paribus – this risk premium can be and thus the lower the costs of annuity units become.

Biometric rates of return are the survival premia that depend on mortality rates. Higher

mortality rates result in higher biometric rates of return reducing the costs of annuity

units. This chapter focuses on stochastic financial rates of return and assumes that

mortality rates are non-stochastic.

In a complete financial market, the portfolio strategy can be derived in closed-form by

generalizing the principle of liability-driven investment from DB pension plans to variable

annuities. In particular, the so-called replicating portfolio strategy can be decomposed

into two components: a speculative component and an intertemporal hedging component.

This decomposition is familiar from the literature on optimal consumption and portfolio

choice under a stochastic investment opportunity set (see, e.g., Brennan and Xia, 2002;

Wachter, 2002; Chacko and Viceira, 2005; Liu, 2007). The speculative portfolio allows

policyholders to take advantage of risk premia. We show how the exposures to the various

risk factors should be chosen if the policyholder aims to maximize the expected rate of

return on the assets subject to a given amount of consumption risk. Unlike the replicating

portfolio strategy with exogenous risk exposures, the efficient portfolio strategy depends

on actual risk premia and thus suffers from model risk. The intertemporal hedging

portfolio hedges changes in the future investment opportunity set that affect the costs of

annuity units (see Merton, 1971). These changes in the future investment opportunity

set are due to shocks in the real interest rate and the expected rate of inflation. The

intertemporal hedging portfolio depends on the extent to which the interest rate affects

the desired growth rate of annuity units. In the special case where a one percent point

increase in the interest rate leads to a one percent point increase in the desired growth

rate, the intertemporal hedging portfolio fully disappears.

We allow the actual portfolio strategy to differ from the replicating portfolio strategy.

In that case, the actual portfolio strategy determines how annuity units develop over time

(i.e., assets determine liabilities instead of the other way around). We show how annuity

units should be adjusted such that the actual portfolio strategy does not affect – ex

ante – the intertemporal allocation of the market value of annuity units. A mutual

insurer can thus change its portfolio strategy without causing value transfers between
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generational cohorts. Alternatively, a mutual insurer can ring-fence the assets of each

generation so that he needs not to worry about value transfers between generational

cohorts. An advantage of ring-fenced accounts over one general pooled account is that

the pension plan can be tailored to the needs of each generation (see also Bovenberg

and Nijman, 2015). Furthermore, we show how an incorrect interest rate sensitivity of

the intertemporal hedging portfolio gives rise to inefficient intertemporal consumption

smoothing. In a collective pension fund without ring-fenced accounts, an incorrect

interest rate sensitivity of the intertemporal hedging portfolio results in not only inefficient

intertemporal consumption smoothing but also inefficient intergenerational risk sharing

and intergenerational conflicts about the choice of the intertemporal hedging portfolio

for the pension fund as a whole.

We allow the equity risk premium to be stochastic through a negative relationship

with the nominal interest rate. Our specification of the equity risk premium causes

the intertemporal hedging portfolio to depend on the speculative portfolio: a larger

speculative portfolio renders the annuity factor less sensitive to the nominal interest

rate, thereby reducing the nominal interest rate sensitivity of the intertemporal hedging

portfolio. The stochastic model of the equity risk premium can be explained by stochastic

variations in risk aversion that cause the rates of return on safe securities to move in

an opposite direction from the rates of return on risky securities. Empirically, whereas

nominal interest rates tend to vary pro-cyclically over the business cycle, the equity risk

premium typically varies in a countercyclical fashion.87 Campbell and Cochrane (1999)

attribute this time variation in equity risk premia to the countercyclical behavior of

risk aversion. In addition, countercyclical monetary policy causes nominal interest rates

to behave pro-cyclically. These two stylized facts motivate our stochastic model of the

equity risk premium.

We show how in an incomplete financial market, a mutual insurer can determine

the intertemporal hedging portfolio so as to minimize the mismatch between the fund’s

aggregate assets and liabilities. In particular, if only a single nominal bond is available

to hedge both real interest rate risk and expected inflation risk, then the duration of

the best hedging portfolio (i.e., the portfolio that minimizes the mismatch between

87The literature has shown that equity risk premia tend to be larger in economic troughs than in booms
(see, e.g., Fama and French, 1989; Harvey, 1989; Ferson and Harvey, 1991; Li, 2001; Lettau and
Ludvigson, 2009).
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the fund’s aggregate assets and liabilities) trades-off hedging real interest risk against

hedging inflation risk. If real interest rate risk dominates expected inflation risk, then

the duration of the best hedging portfolio is close to the duration of the liabilities. The

duration of the best hedging portfolio becomes shorter, however, if expected inflation risk

dominates real interest rate risk. In an incomplete financial market, the intertemporal

hedging portfolio depends on the financial model and thus becomes subject to model

risk. The same holds true for the valuation of a variable real annuity. Indeed, in the

absence of real securities that hedge expected inflation risk, real annuities cannot be

priced objectively. We thus face a trade-off between optimal risk sharing on the one

hand and objective market-consistent pricing of annuities on the other hand. To avoid

conflicts with policyholders about the pricing of annuities, the insurer may want to

provide variable annuities that can be valued objectively. In that case, non-traded

expected inflation risk is also not traded between the insurer and its policyholders.

Alternatively, the insurer can ring-fence the assets of a each generation so that the

valuation of a variable real annuity cannot give rise to conflicts between generations. A

disadvantage of ring-fenced accounts over one general pooled account is that non-traded

risks (e.g., systematic longevity risk) can no longer be shared between generations.88

This chapter extends Chapter 6 in a number of ways. First, we consider continuous

rather than discrete adjustments of entitlements. Second, and most importantly, we

extend the number of risk factors by considering not only stock market risk but also

real interest rate risk and expected inflation risk. These additional risk factors affect

future investment opportunities so that the annuity factor becomes stochastic. With

a stochastic annuity factor, the costs of annuity units (and hence contribution levels)

depend on the macro-economic environment (i.e., the real interest rate and the expected

rate of inflation). Indeed, the nominal interest rate sensitivity of the annuity factor yields

conversion risk and thus results in intertemporal hedging demands aimed at hedging this

risk. In fact, compared to Chapter 6, we include a number of extensions that affect how

sensitive the annuity factor is with respect to changes in the nominal interest rate.

The remainder of this chapter is structured as follows. Section 7.2 describes the

economy. Section 7.3 specifies the DA pension contract. Section 7.4 values the variable

88One could conclude separate swap contracts on these risks. These swap contracts, however, cannot
be priced objectively (see also Bovenberg and Nijman, 2015).
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annuities in a market-consistent fashion and explores the sensitivity of the annuity factor

to the nominal interest rate. Section 7.5 determines the replicating portfolio strategy as

well as the efficient portfolio strategy. Section 7.6 considers the case where the actual

portfolio strategy deviates from the replicating portfolio strategy. This section also

investigates the case of ring-fenced individual accounts while idiosyncratic longevity risk

is still being pooled. Section 7.7 extends our results to a financial model with a stochastic

equity risk premium. Section 7.8 considers an incomplete financial market in which real

interest rate risk and expected inflation risk cannot be hedged simultaneously. Section

7.9 concludes the chapter. Proofs are relegated to the Appendix.

7.2. The Economy

This section outlines the economy. Section 7.2.1 describes the dynamics of the state

variables. The price of a zero-coupon bond is derived in Section 7.2.2. Throughout,

boldface type is used to denote uncertain variables at time t.

7.2.1. Dynamics of the State Variables

We consider a continuous-time economy with three state variables: the short-term real

interest rate rt, the short-term expected rate of inflation πt and the nominal stock price St.

The real interest rate and the expected rate of inflation follow mean reverting processes of

the Ornstein-Uhlenbeck type. The nominal stock price is driven by a geometric Brownian

motion. More specifically,

drt = κ (r̄ − rt) dt+ σrdWr
t , (7.2.1)

dπt = θ (π̄ − πt) dt+ σπdWπ
t , (7.2.2)

dSt
St

= (Rt + λSσS) dt+ σSdWS
t . (7.2.3)

Here κ > 0 and θ > 0 are mean reversion coefficients, r̄ and π̄ denote long-term means,

Rt stands for the short-term nominal interest rate at time t, λS is the constant equity

risk premium per unit of risk (i.e., the Sharpe ratio of the risky stock), σr > 0, σπ > 0

and σS > 0 correspond to diffusion coefficients, and W r
t , W π

t and W S
t represent standard

Brownian motions. The real interest rate, the expected rate of inflation and the nominal
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stock price follow the same dynamics as in Brennan and Xia (2002).89

The correlation coefficients between the Brownian increments are summarized in the

correlation matrix ρ:

ρ ≡


1 ρrπ ρrS

ρrπ 1 ρπS

ρrS ρπS 1

 , (7.2.4)

where ρij (i, j ∈ {r, π, S} and i 6= j) denotes the correlation coefficient between dWi
t

and dWj
t .

The real pricing kernel mt evolves according to (see, e.g., Brennan and Xia, 2002)

dmt

mt

= −rtdt+ φrdWr
t + φπdWπ

t + φSdWS
t

= −rtdt+ φ>dWt.

(7.2.5)

Here > denotes the transpose sign, φ ≡ (φr, φπ, φS)> and Wt ≡
(
W r
t ,W

π
t ,W

S
t

)>
.90 The

constant coefficients φr, φπ and φS determine the market prices of risk associated with

the state variables. More specifically, the vector of market prices of risk λ ≡ (λr, λπ, λS)

can be computed from φ as follows:

λ = −ρφ. (7.2.6)

7.2.2. Price of a Zero-Coupon Bond

Denote by P h
α,t the price at time t of a zero-coupon bond with fixed maturity date t+ h.

Here h ≥ 0 represents the time to maturity, and α ∈ [0, 1] is a parameter indicating the

extent to which the payoff of the zero-coupon bond is linked to the price index

Πt ≡ exp

{∫ t

0

πsds

}
. (7.2.7)

89In contrast to Brennan and Xia (2002), we assume that the expected rate of inflation coincides with
the realized rate of inflation. The results that follow can, however, be extended to the case where the
expected rate of inflation differs from the realized rate of inflation.

90For notational convenience, we often write a column vector in the form z = (z1, z2, ..., zn)
>

.
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If α = 1, the payoff of the bond is fully linked to the price index, while the payoff of the

bond is not linked to the price index at all if α = 0. For values of α in between zero and

one, the payoff of the bond is only partially linked to the price index. We can view Πt

as the consumer price index or the wage price index.

The price of the bond can be obtained by computing the following conditional

expectation:

P h
α,t = Et

[
mt+h

mt

Πt

Πt+h

(
Πt+h

Πt

)α]
= Et

[
exp

{
−
∫ h

0

(
rt+v + (1− α)πt+v +

1

2
φ>ρφ

)
dv

+

∫ h

0

φ>dWt+v

}]
,

(7.2.8)

where Et [·] denotes the expectation operator conditional on all information available at

time t. We find (see Appendix)

P h
α,t = exp

{
−
∫ h

0

rvα,tdv

}
. (7.2.9)

Here rvα,t stands for the instantaneous forward interest rate at time t for horizon v ≥ 0.

The exact expression for rvα,t can be found in the Appendix (see (7.10.9)).

The yield to maturity (YTM) at time t for horizon h ≥ 0 is given by (see Appendix)

r̄hα,t ≡ −
logP h

α,t

h
=
Dκ,h

h
rt + (1− α)

Dθ,h

h
πt +

Eh
α

h
. (7.2.10)

Here Dx,h ≡
(

1− e−xh
)
/x with x = κ or x = θ. We note that Dx,h/h decreases with the

horizon h and Dx,h ⇒ 0 as x⇒∞. Long-term YTMs are thus less variable as compared

to short-term YTMs, especially when the mean reversion coefficients κ and θ are large.

This property is consistent with empirical data (see Ang, Bekaert, and Wei, 2008). The

exact expression for the horizon-dependent constant Eh
α can be found in the Appendix

(see (7.10.11)).
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The bond price P h
α,t evolves according to (see Appendix)

dPh
α,t

P h
α,t

=
(
rt + (1− α)πt − λrσrDκ,h − (1− α)λπσπD

θ,h
)

dt

− σrDκ,hdWr
t − (1− α)σπD

θ,hdWπ
t .

(7.2.11)

We make the following observations. First, the expected return on the bond in excess of

rt + (1− α)πt (i.e., the bond risk premium) is given by

−λrσrDκ,h − (1− α)λπσπD
θ,h. (7.2.12)

Estimates of λr and λπ are typically negative (see, e.g., Brennan and Xia, 2002), so that

bond risk premia are usually positive. Second, Dκ,h and Dθ,h increase at a declining rate

with the horizon h, implying that long-term bond risk premia exceed short-term bond

risk premia. Third, the short-term nominal interest rate can be obtained from (7.2.11)

by taking the limit h⇒ 0. We find that the short-term nominal interest rate equals the

short-term real interest rate plus the short-term expected rate of inflation. The Fisher

equation thus holds true in this economy. Fourth, Dx,h decreases with x. Hence bond

risk premia are small if the mean reversion coefficients κ and θ are large. Finally, Dκ,h

and (1− α)Dθ,h measure the sensitivity of the bond price with respect to (unexpected)

changes in the real interest rate and the expected rate of inflation, respectively. Hence

we can view Dκ,h and (1 − α)Dθ,h as the real interest rate duration and the expected

inflation duration of the bond, respectively.

The numerical illustrations in the chapter use the parameter values contained in Table

7.1 (see Appendix).

7.3. Specification of the Pension Contract

This section specifies the pension contract. Pension entitlements are framed in terms

of (deferred) variable annuity units (i.e., payouts).91 Let us denote by By,t the annuity

units at time t of a policyholder born at time y, by xr the age at which a policyholder

91Brown et al. (2008, 2013) show that agents value annuities more when presented in a consumption
frame than when presented in an investment frame.
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retires (e.g., xr = 65 years of age), and by xmax the maximum age a policyholder can

reach (e.g., xmax = 120 years of age). If the birth date y of a policyholder falls between

time t− xr and time t− xmax and the policyholder has survived up to time t, then this

policyholder receives a pension payment at time t. The probability that a policyholder

currently aged x = t− y will survive to age x+ h is denoted by

hpx ≡ exp

{
−
∫ h

0

µx+vdv

}
. (7.3.1)

Here µx+v denotes the force of mortality at age x + v. We assume that the force of

mortality µx+v does not change over time. Systematic longevity risk is thus absent.

Furthermore, in view of the law of large numbers, the insurer pools idiosyncratic longevity

risk so that policyholders are insured against outliving their retirement assets.

The annuity units at time t+ h (h ≥ 0) of a policyholder born at time y, i.e., By,t+h,

are specified in terms of past and future financial shocks as follows:92

By,t+h = By,t0
(Πt)

β exp

{
ψ

∫ t

t0

(rs + (1− β)πs) ds+ g · (t− t0)

+

∫ t

t0

ω∗>dW ∗
s

}(
Πt+h

Πt

)β
exp

{
ψ

∫ t+h

t

(rs + (1− β)πs) ds+ g · h+

∫ t+h

t

ω∗>dW∗
s

}
= By,t

(
Πt+h

Πt

)β
exp

{
ψ

∫ h

0

(rt+v + (1− β)πt+v) dv + g · h

+

∫ h

0

ω∗>dW∗
t+v

}
.

(7.3.2)

Here t0 is the time at which the (single) contribution is paid, ω∗ ≡ (ω∗r , ω
∗
π, ω

∗
S), and

dW∗
t ≡ dWt + (λ− λ∗) dt with λ∗ ≡ (λ∗r, λ

∗
π, λ

∗
S).93 The parameter ω∗i is the exposure

of current annuity units By,t to the (observed) financial shock dWi∗
t (i ∈ {r, π, S}). The

coefficients λ∗r, λ
∗
π and λ∗S are the assumed market prices of risk. The assumed market

prices of risk are allowed to differ from the actual market prices of risk λr, λπ and λS.94

92Specification (7.3.2) assumes that no pension premia are paid after time t0. We thus adopt a
discontinuity perspective in which we only consider future annuity units on account of annuity units
that have been accumulated up to time t0.

93The financial shocks dWr∗
t and dWπ∗

t can be determined from the observed price dynamics of two
nominal zero-coupon bonds (with different times of maturity).

94As shown by Merton (1980), estimates of expected returns are less accurate than estimates of
(co)variances. Therefore, we distinguish only between actual risk premia and assumed risk premia. In
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The desired growth rate of annuity units (i.e., the growth rate of annuity units if

ω∗ = 0) is affected by three factors. First, the parameter β represents the sensitivity

of annuity units to the price index. If β = 1, then annuity units aim to keep up with

price inflation, while annuity units are not linked to the price index at all if β = 0.

Second, the parameter ψ measures how the desired growth rate varies with the interest

rate.95 If ψ is positive, then the desired growth rate increases as the interest rate (i.e.,

the return on savings) rises. The parameter ψ thus models intertemporal substitution in

consumption.96 Finally, the parameter g denotes a constant growth rate.

Log annuity units are adjusted according to (this follows from (7.3.2))

d log By,t = (βπt + ψ (rt + (1− β)πt) + g) dt+ ω∗>dW∗
t . (7.3.3)

Equation (7.3.3) can be viewed as the bonus (or dividend) policy of the pension plan,

showing how annuity units develop as time proceeds. The right-hand side of equation

(7.3.3) does not depend on age. Hence annuity units are adjusted uniformly across

policyholders: each policyholder faces the same uniform adjustment of annuity units.

The first term at the right-hand side of equation (7.3.3) represents the desired growth

rate of annuity units. The second term denotes the impact of current financial shocks

on current annuity units. We observe that current financial shocks are fully absorbed

into current annuity units. Chapter 6 considers a pension plan for which annuity units

respond gradually, rather than directly, to financial shocks. Our results that follow can

be extended to the case of gradual absorption of financial shocks.

particular, we assume that actual (co)variances coincide with assumed (co)variances.
95If annuity units are fully linked to the price index (i.e., β = 1), then the desired growth rate depends

on the real interest rate, while the desired growth rate depends on the nominal interest rate if annuity
units are not linked to the price index at all (i.e., β = 0).

96Schroder and Skiadas (1999) show that if the investment opportunity set is constant, ψ can be viewed
as the elasticity of intertemporal substitution (see also Chapter 4).
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7.4. Pricing of Future Annuity Units

7.4.1. Market-Consistent Valuation

This section computes the market-consistent value of future annuity units. Denote by

V h
y,t the market-consistent value at time t of future annuity units By,t+h. We can compute

V h
y,t by solving the following conditional expectation (see, e.g., Cochrane, 2001):

V h
y,t = hpt−yEt

[
mt+h

mt

Πt

Πt+h

By,t+h

]
. (7.4.1)

Straightforward computations show that (see Appendix)

V h
y,t = By,tA

h
y,t, (7.4.2)

where the horizon-dependent annuity factor Ahy,t is defined as follows:

Ahy,t ≡ exp

{
−
∫ h

0

δvy,tdv

}
. (7.4.3)

Here δvy,t denotes the forward discount rate at time t for maturity v ≥ 0 for a policyholder

born at time y:

δvy,t = µt−y+v + (1− ψ)rvβ,t + ω∗>λ∗ + ξv − g. (7.4.4)

The horizon-dependent annuity factor Ahy,t summarizes the impacts of the desired growth

rate and the risk of annuity units on the costs of future annuity units. The value of the

annuity factor Ahy,t is determined by the forward discount rate δvy,t which depends on the

forward biometric rate of return, the expected rate of return on the investment portfolio

and the desired growth rate of annuity units. The term ξv includes second-order and

interaction terms and represents the impact of the correlation between the underlying

speculative and intertemporal hedging portfolio on the rate of return of the investment

portfolio as a whole (see equation (7.10.12) in the Appendix).97 If annuity units are

constant over time (i.e., ψ = g = ω∗ = 0), then the forward discount rate δvy,t is equal to

97The forward interest rate rvβ,t also includes second-order and interaction terms (see equation (7.10.9)
in the Appendix).
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the sum of the survival premium µt−y+v and the forward interest rate rvβ,t. More generally,

the forward discount rate δvy,t is a decreasing function of the desired growth rate of

annuity units (i.e., β, ψ and g), and an increasing function of future (assumed) expected

biometric and financial rates of return. The biometric rate of return is represented by

the force of mortality µt−y+v, whereas future (assumed) expected financial rates of return

are represented by the other terms (except g). The risk premium ω∗>λ∗ is due to the

impact of financial shocks on future annuity units. It depends on the exposure of future

annuity units to financial shocks ω∗ and the vector of assumed market prices of risk λ∗.

The ‘speculative’ risk premium ω∗>λ∗ reflects the expected excess rate of return on the

underlying (liability-driven) speculative investment portfolio.

7.4.2. Interest Rate Sensitivity of the Annuity Factor

The horizon-dependent annuity factor Ahy,t is stochastic and depends on the real interest

rate rt and the expected rate of inflation πt. The sensitivity of the log annuity factor

logAhy,t with respect to unexpected changes in the real interest rate is given by (see

Appendix)

∂ log Ah
y,t

∂Wr
t

1

σr
= −(1− ψ)Dκ,h. (7.4.5)

Equation (7.4.5) is usually referred to as the real interest rate duration of the annuity

factor. This equation shows that changes in the real interest rate do not affect the

annuity factor Ahy,t if ψ = 1. Intuitively, by raising future returns, a higher real interest

rate reduces the price of a given consumption stream. With intertemporal substitution

in consumption (i.e., ψ > 0), a higher real interest rate also raises the desired growth

rate of future annuity units, thereby increasing the magnitude of future consumption

streams. In the special case of ψ = 1, the price and volume effects of movements in the

real interest rate cancel each other out. Figure 7.1 illustrates the interest rate sensitivity

of logAhy,t for various values of ψ.

We can also compute the sensitivity of the log annuity factor logAhy,t with respect to

unexpected changes in the expected rate of inflation (see Appendix):

∂ log Ah
y,t

∂Wπ
t

1

σπ
= −(1− ψ)(1− β)Dθ,h. (7.4.6)
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Figure 7.1.

Illustration of the interest rate sensitivity of the market price
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The figure illustrates the interest rate sensitivity of logAhy,t for various values of ψ. The financial
market parameter values are given in Table 7.1.

This equation shows that if annuity units are fully linked to the price index Πt (i.e.,

β = 1), the annuity factor Ahy,t is affected only by changes in the real interest rate while

an expected inflation shock leaves the annuity factor unaffected. Intuitively, in that case,

the pension contract is defined in real terms so that pure nominal variables do not impact

the costs of future annuity units. If annuity units are only partially linked to the price

index (i.e., β < 1), a higher expected rate of inflation – ceteris paribus – reduces the

costs of future annuity units.

7.4.3. The Conversion Factor

The market-consistent value at time t of an annuity unit for a policyholder born at time

y is given by

Ay,t ≡
∫ xmax+y−t

max{xr+y−t,0}
Ahy,tdh =

Vy,t
By,t

, (7.4.7)
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where

Vy,t ≡
∫ xmax+y−t

max{xr+y−t,0}
V h
y,tdh. (7.4.8)

The sensitivity of the log conversion factor logAy,t with respect to unexpected changes

in the real interest rate is given by (see Appendix)

∂ log Ay,t

∂Wr
t

1

σr
= −(1− ψ)D̂κ

y,t, (7.4.9)

where D̂κ
y,t is the κ-adjusted duration:

D̂κ
y,t ≡

∫ xmax+y−t

max{xr+y−t,0}
γhy,tD

κ,hdh, (7.4.10)

with γhy,t ≡ V h
y,t/Vy,t =

(
By,tA

h
y,t

)
/
(
By,tAy,t

)
= Ahy,t/Ay,t.

In an analogous way, we find (see Appendix)

∂ log Ay,t

∂Wπ
t

1

σπ
= −(1− ψ)(1− β)D̂θ

y,t. (7.4.11)

Equation (7.4.7) is relevant for computing pension contributions and the portfolio strategy

aimed at hedging conversion risk. We can distinguish between two alternative methods

for determining pension premia, depending on what is assumed to be exogenous. A first

method assumes that the newly bought annuity units By,t are exogenously set and that

the contribution Vy,t varies endogenously with the real interest rate and the expected rate

of inflation affecting the aggregate annuity factor Ay,t according to (7.4.9) and (7.4.11),

i.e., Vy,t = By,tAy,t. This is consistent with defined ambition thinking in which annuity

units (or pension ambitions) By,t endogenously determine pension contributions. The

second method assumes that the contribution Vy,t is exogenously set and that the newly

bought annuity units By,t depend on the macro-economic environment determining Ay,t,

i.e., By,t = Vy,t/Ay,t. This is consistent with defined contribution thinking in which

contributions are fixed.

The method in which Vy,t is exogenous and By,t is endogenous is also relevant for

determining the annuity units that can be bought at retirement from a capital sum.

Indeed, Ay,t can be viewed as the conversion factor at which a given amount of capital
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can be transformed into a consumption stream, i.e., By,t = Vy,t/Ay,t. More generally,

during the decumulation phase, we can view Vy,t = By,tAy,t as the value of an individual

account that corresponds to a certain number of annuity units By,t of a policyholder

born at time y. If property rights are defined in terms of (variable) annuity units (as

in defined ambition thinking), Vy,t corresponds to the market value of the annuity units

By,t.

The intertemporal hedging portfolio aims at hedging the impact of macro-economic

shocks (i.e., real interest rate shocks and expected inflation shocks) on the conversion

factor and thus the consumption stream. That is why (7.4.7) is also important for the

portfolio strategy of a policyholder who plans to buy an annuity at or during retirement.

Hedging conversion risk ensures that an individual account can buy a fixed amount of

annuity units without putting in more capital if the real interest rate and the expected

rate of inflation change. Hedging the costs of future annuity units is also essential for an

insurer providing (deferred) variable annuities. The next section explores the portfolio

strategy in more detail.

7.5. Liability-Driven Investment

7.5.1. The Replicating Portfolio Strategy

This section derives the portfolio strategy that replicates the contract (7.3.2) for a

policyholder born at time y. We allow the insurer to invest in three risky securities:

two nominal zero-coupon bonds (with different times of maturity) and a risky stock.

The number of risky securities thus equals the number of sources of risk. Let Xy,t be the

assets at time t of a policyholder born at time y, $i
y,t be the fraction of assets invested

in a nominal bond with time to maturity ni (i = 1, 2), and $3
y,t be the fraction of assets

invested in the risky stock. The fraction of assets invested in the nominal money market

account is given by 1−
∑3

i=1$
i
y,t. The replicating portfolio weights $1∗

y,t, $
2∗
y,t and $3∗

y,t are

determined such that the value of the assets matches the value of the liabilities in each

state of the world. We thus apply the principle of liability-driven investment familiar

from DB pension plans to arrive at the replicating portfolio strategy. Specifically, the
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replicating portfolio weights solve the following system of equations (see Appendix)

−
(
$1∗
y,tD

κ,n1 +$2∗
y,tD

κ,n2
)

=
ω∗r
σr
− (1− ψ)D̂κ

y,t, (7.5.1)

−
(
$1∗
y,tD

θ,n1 +$2∗
y,tD

θ,n2

)
=
ω∗π
σπ
− (1− ψ)(1− β)D̂θ

y,t, (7.5.2)

$3∗
y,t =

ω∗S
σS
. (7.5.3)

The exact expressions for $1∗
y,t, $

2∗
y,t and $3∗

y,t are given in the Appendix (see (7.10.14),

(7.10.15) and (7.10.16)). The right-hand side of equation (7.5.1) denotes the real interest

rate sensitivity of the (log) value of the liabilities, i.e.,

∂ log Vy,t

∂Wr
t

1

σr
=
ω∗r
σr
− (1− ψ)D̂κ

y,t, (7.5.4)

while the left-hand side of equation (7.5.1) corresponds to the real interest rate sensitivity

of the (log) value of the assets, i.e.,

∂ log Xy,t

∂Wr
t

1

σr
= −

(
$1∗
y,tD

κ,n1 +$2∗
y,tD

κ,n2
)
. (7.5.5)

In an analogous way, we find

∂ log Vy,t

∂Wπ
t

1

σπ
=
ω∗π
σπ
− (1− ψ)(1− β)D̂θ

y,t, (7.5.6)

∂ log Xy,t

∂Wπ
t

1

σπ
= −

(
$1∗
y,tD

θ,n1 +$2∗
y,tD

θ,n2

)
. (7.5.7)

The replicating portfolio strategy can be decomposed into two terms. The first terms

at the right-hand sides of equations (7.5.1), (7.5.2) and (7.5.3) denote the speculative

demands, whereas the second terms at the right-hand sides of (7.5.1) and (7.5.2) represent

the intertemporal hedging demands. The intertemporal hedging demands depend on the

sensitivity of the annuity factor with respect to unexpected shocks in the real interest

rate and the expected rate of inflation. The intertemporal hedging portfolio is thus

determined by the impact of financial shocks on the aggregate annuity factor. Indeed,

the intertemporal hedging portfolio hedges the impact of these shocks on the aggregate

annuity factor.
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7.5.2. Mismatch Risk

The bonus rule (7.3.3) can be rewritten as follows:

d log By,t = (βπt + ψ (rt + (1− β)πt) + g) dt+ d log My,t, (7.5.8)

where

d log My,t ≡
[
− (1− ψ)D̂κ

y,tσr (dWr∗
t + λ∗rdt)

− (1− ψ)(1− β)D̂θ
y,tσπ (dWπ∗

t + λ∗πdt) + ω∗>dW∗
t

]
−
[
− (1− ψ)D̂κ

y,tσr (dWr∗
t + λ∗rdt)

− (1− ψ)(1− β)D̂θ
y,tσπ (dWπ∗

t + λ∗πdt)
]

= ω∗>dW∗
t

(7.5.9)

can be viewed as the mismatch between the replicating portfolio strategy (i.e., the

portfolio strategy that replicates the pension contract (7.3.2)) and the intertemporal

hedging portfolio strategy (i.e., the portfolio strategy that hedges stochastic variations

in the aggregate annuity factor). Equation (7.5.8) shows that the speculative portfolio

strategy determines how annuity units develop over time.

Mismatch is the difference between the development of assets and the development

of ‘norm’ liabilities. The ‘norm’ liabilities are defined excluding unexpected shocks

(i.e., under the assumption that expectations are met). The intertemporal hedging

portfolio represents the value of these ‘norm’ liabilities. Mismatch (7.5.9) is absorbed

by the policyholders themselves. This causes liabilities (including unexpected shocks) to

continue to match assets such that the funding ratio remains unity.

7.5.3. The Efficient Portfolio Strategy

This section shows how the risk exposures ω∗r , ω
∗
π and ω∗S should be chosen if the

policyholder aims to maximize the expected rate of return on the assets subject to a

given amount of consumption risk
(
ω∗ρ
)2

= ω∗>ρω∗. Here ω∗ρ is exogenously given. The

expected return on the assets Xy,t is given by

Et
[

dXy,t

Xy,t

]
= Et

[
dVy,t

Vy,t

]
= rt + πt − (1− ψ)λrσrD̂

κ
y,t − (1− ψ)(1− β)σπλπD̂

θ
y,t + ω∗>λ.

(7.5.10)
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The policyholder maximizes (7.5.10) over ω∗ subject to
(
ω∗ρ
)2

= ω∗>ρω∗. This yields

ω? = −φ ·
ω∗ρ
φρ

= ρ−1λ
ω∗ρ
φρ
. (7.5.11)

The efficient portfolio strategy is obtained by substituting (7.5.11) for ω∗ in the replicating

portfolio weight vector. Equation (7.5.11) shows that the vector of optimal risk exposures

ω? depends on the actual risk premia λr, λπ and λS. The efficient portfolio strategy is

thus vulnerable to model risk.

7.6. Asset-Driven Liabilities

This section allows the actual portfolio strategy to differ from the replicating portfolio

strategy. As a result, assets determine liabilities instead of the other way around. We

thus speak of asset-driven liabilities instead of liability-driven investment.

7.6.1. Collective Defined Contribution

This section assumes that the mutual insurer has one general pooled account. Mismatch

risk is shared between policyholders. We call this plan collective defined contribution

(CDC): an external sponsor is absent and the annuity units are determined endogenously

by the investment policy and by how mismatch risk is measured and allocated among

policyholders with different ages.

We define total mismatch risk d log Mt as follows:

d log Mt ≡ d log M1
t + d log M2

t + d log M3
t , (7.6.1)

where

d log M1
t ≡ ω∗>dW∗

t , (7.6.2)

d log M2
t ≡ (ϕt − ω∗)

>
(dW∗

t + λ∗dt) , (7.6.3)

d log M3
t ≡ −

(
Hr
t − (1− ψ)D̂κ

t

)
σr (dWr∗

t + λ∗rdt)

−
(
Hπ
t − (1− ψ)(1− β)D̂θ

t

)
σπ (dWπ∗

t + λ∗πdt) .
(7.6.4)
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Here

D̂κ
t ≡

∫ t−xs

t−xmax

γy,tD̂
κ
y,tdy, (7.6.5)

where xs denotes the age at which policyholders start their working career and γy,t ≡

Vy,t/Vt with Vt ≡
∫ t−xs
t−xmax

Vy,tdy.98 The vector ϕt ≡
(
ϕrt , ϕ

π
t , ϕ

S
t

)
consists of the actual

speculative demands, while−Hr
t and−Hπ

t denote the actual hedging demands. Equation

(7.6.3) can be viewed as the mismatch between the actual speculative portfolio and

the ‘desired’ speculative portfolio (i.e., the speculative portfolio that finances (7.3.2)),

whereas equation (7.6.4) represents the mismatch between the actual intertemporal

hedging portfolio and the ‘desired’ intertemporal hedging portfolio (i.e., the intertemporal

hedging portfolio that finances (7.3.2)). Total mismatch risk is defined as the mismatch

between the actual portfolio and the ‘desired’ hedging portfolio (as determined by the

discount rate that is used to compute the value of the ‘norm’ liabilities). Indeed, we

measure total mismatch as the difference between the development of assets and the

development of the ‘norm’ liabilities (as measured by the ‘desired’ intertemporal hedging

portfolio).

The bonus rule is determined in such a way that the actual portfolio strategy does

not affect – ex ante – the value of the liabilities V h
y,t. This is important for avoiding

conflicts between the insurer’s policyholders. Using the requirement that the aggregate

portfolio strategy does not redistribute market value among policyholders, we find that

the bonus rule is given by (see Appendix)

d log By,t =
(
βπt + ψ (rt + (1− β)πt) + g + ξ̃y,t − ξ̂y,t

)
dt+ d log Mt. (7.6.6)

Here ξ̃y,t and ξ̂y,t are second-order terms defined in the Appendix. Equation (7.6.6) shows

that although the market value does not change as a result of a change in the actual

portfolio strategy, the median value and the risk of future annuity units do change.

The ratio between the actual annuity units at time t + h and the ‘desired’ annuity

units at time t+ h (defined in (7.3.2)) is given by

exp

{∫ h

0

(
d log M2

t+v + d log M3
t+v

)
+

∫ h

0

(
ξ̃y,t+v − ξ̂y,t+v

)
dv

}
. (7.6.7)

98Vy,t now represents the market value at time t of all policyholders born at time y.
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Equations (7.6.6) and (7.6.7) show that the actual portfolio strategy determines how

future annuity units develop over time.

7.6.2. A Special Case

This section assumes that the insurer promises a real fixed annuity to its policyholders.

However, supervisory authorities force the insurer to employ the nominal term structure

to discount future annuity units (i.e., β = 0, ω∗ = 0 and ψ = 0).

7.6.2.1. Inefficient Intertemporal Consumption Smoothing

In case the actual portfolio strategy aims to mimic a real fixed annuity (i.e., ϕt = 0,

Hr
t = D̂κ

t and Hπ
t = 0), equation (7.6.1) collapses to

d log Mt = d log M3
t = D̂θ

tσπ (dWπ∗
t + λ∗πdt) . (7.6.8)

The actual sensitivity of log future annuity units log By,t+h with respect to unexpected

changes in the expected rate of inflation σπ (dWπ∗
t + λ∗πdt) is not Dθ,h (implied by (7.3.2)

with β = 1, ω∗ = 0 and ψ = 0) but rather D̂θ
t (implied by (7.6.7) and (7.6.8) with β = 0,

ω∗ = 0 and ψ = 0). Accordingly, the difference between the actual and the ‘desired’

sensitivity of log future annuity units log By,t+h is given by

D̂θ
t −Dθ,h 6= 0. (7.6.9)

An expected inflation shock leads to a shock in real consumption, even though the actual

portfolio strategy aims to mimic a real fixed annuity. Intuitively, by using a nominal

discount rate rather than a real discount rate for calculating liabilities, intertemporal

consumption smoothing is not efficient. In particular, a positive expected inflation shock

typically causes a decline in real long-term consumption (i.e., D̂θ
t < Dθ,h for large h)

and an increase in real short-term consumption (i.e., D̂θ
t > Dθ,h for small h). Indeed, a

higher nominal interest rate on account of a higher expected rate of inflation depresses

the value of the ‘norm’ intertemporal hedging portfolio, thereby understating the value

of the ‘true’ intertemporal hedging portfolio (which takes into account the impact of a

higher expected rate of inflation). The mismatch on account of an understatement of real

liabilities raises consumption in the short run. The gain of consumption at short horizons
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is at the expense of long-term consumption, which receives inadequate compensation for

a higher expected rate of inflation (the cost of a higher expected rate of inflation at

horizon h is measured by Dθ,h which exceeds D̂θ
t for large h).

7.6.2.2. Inefficient Intergenerational Risk Sharing

Equation (7.6.9) shows that an incorrect discount rate produces not only inefficient

intertemporal consumption smoothing but also inefficient intergenerational risk sharing.

In particular, in the case of a positive expected inflation shock, old generations gain

at the expense of young generations, thereby making real consumption more risky than

necessary. These inefficiencies in the allocation of consumption across generations become

larger in more heterogeneous pension funds with large discrepancies in horizons (which

causes Dθ,h to differ substantially from the average duration D̂θ
t for large and small

horizons h).

7.6.2.3. Intergenerational Conflict about the Portfolio Strategy

Inefficient intergenerational risk sharing of inflation shocks leads to intergenerational

conflicts about the investment policy. In particular, to hedge against expected inflation

shocks, young policyholders would prefer to invest in real bonds with a long duration

such that the expected inflation duration of these bonds matches the expected inflation

duration of their own consumption stream. Older policyholders, in contrast, would prefer

to invest in nominal bonds with no or small expected inflation duration. Intuitively,

each generation would like to distort the aggregate investment policy so as to offset

the distortions of intergenerational risk sharing. The changes in the investment policy

desired by old generations worsen expected inflation risk for young generations further,

thereby causing an intergenerational conflict about the aggregate intertemporal hedging

portfolio.

7.6.2.4. Inefficient Portfolio Strategy

If the insurer matches the prescribed nominal liabilities to avoid conflicts with the

supervisor, then the difference between the actual and the ‘desired’ sensitivity of log

future annuity units log By,t+h with respect to unexpected changes in the expected rate

218



Asset-Driven Liabilities

of inflation is given by

−Dθ,h. (7.6.10)

Hence inefficiencies on account of a shock in the expected rate of inflation would on

average be larger compared to (7.6.9), even though expected inflation risk for older

generations with small horizons h would be smaller. Intuitively, the mutual insurer

engages in not only inefficient intertemporal consumption smoothing and inefficient

intergenerational risk sharing but also inefficient portfolio strategy: the incorrect discount

rate introduces departures from the efficient portfolio, thereby worsening the risk-return

trade-off further.

7.6.3. Ring-Fenced Accounts

This section assumes that each generation bears its own mismatch risk. That is, the

assets belonging to cohort y are ring-fenced from the other assets in the fund. An

advantage of ring-fenced accounts over one general pooled account is that the portfolio

strategy (and hence the payout profile) can be tailored to the needs of each generation.

Hence intergenerational conflicts about the investment policy are absent. At the same

time, longevity risk is still being shared within a generation. Moreover, ring-fencing

eliminates intergenerational conflicts about the valuation of financial risks.

Allowing for the actual portfolio to differ from the replicating portfolio, we can define

total mismatch risk of each generation y in analogy of (7.6.1) as follows:

d log My,t ≡ d log M1
y,t + d log M2

y,t + d log M3
y,t, (7.6.11)

where

d log M1
y,t ≡ ω∗>dW∗

t (7.6.12)

d log M2
y,t ≡

(
ϕy,t − ω∗

)>
(dW∗

t + λ∗dt) , (7.6.13)

d log M3
y,t ≡ −

(
Hr
y,t − (1− ψ)D̂κ

y,t

)
σr (dWr∗

t + λ∗rdt)

−
(
Hπ
y,t − (1− ψ)(1− β)D̂θ

y,t

)
σπ (dWπ∗

t + λ∗πdt) .
(7.6.14)

Here the vector ϕy,t ≡
(
ϕry,t, ϕ

π
y,t, ϕ

S
y,t

)
consists of the actual speculative demands, while
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−Hr
y,t and −Hπ

y,t denote the actual hedging demands. The bonus rule is determined in

such a way that V h
y,t is not affected by changes in the actual portfolio strategy so that

a generation cannot affect the intertemporal allocation of market value. This facilitates

the pooling of idiosyncratic longevity risk (see Chapter 5). We find (see Appendix)

d log By,t =
(
βπt + ψ (rt + (1− β)πt) + g + ξ̃y,t − ξ̂y,t

)
dt+ d log My,t. (7.6.15)

Here ξ̃y,t and ξ̂y,t are second-order terms defined in the Appendix. We note that equation

(7.6.15) coincides with equation (7.5.8) if the actual portfolio strategy matches the

replicating portfolio strategy. The ratio between the actual annuity units at time t + h

and the ‘desired’ annuity units at time t+ h (defined in (7.3.2)) is given by

exp

{∫ h

0

(
d log M2

y,t+v + d log M3
y,t+v

)
+

∫ h

0

(
ξ̃y,t+v − ξ̂y,t+v

)
dv

}
. (7.6.16)

Equations (7.6.15) and (7.6.16) show that the actual portfolio strategy determines how

future annuity units develop over time.

The special case in which the mutual insurer aims to mimic a real fixed annuity

but supervisory authorities force the insurer to employ the nominal term structure

to discount future annuity units still produces inefficient intertemporal consumption

smoothing. With ring-fenced accounts, however, inefficient intergenerational risk sharing

and intergenerational conflicts about the portfolio strategy are no longer present. We

also note that supervisory authorities may grant more discretion to mutual insurers to

select and modify their own discount rates because these discount rates no longer affect

the distribution of value among policyholders.

7.7. Stochastic Equity Risk Premium

The previous sections have assumed that the equity risk premium is constant over time.

This section assumes that the equity risk premium varies stochastically over time.
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7.7.1. Specification of the Equity Risk Premium

The real interest rate rt and the expected rate of inflation πt follow the same dynamic

equations as in Section 7.2.1. The nominal stock price satisfies the following dynamic

equation:

dSt
St

= (Rt + et) dt+ σSdWS
t , (7.7.1)

where the equity risk premium et ≡ λSt σS is a linear function of the real interest rate

and the expected rate of inflation. That is,

et = ν − art − bπt (7.7.2)

for some positive constants ν, a and b. The equity risk premium et is subject to the

following dynamic equation:

det = −aκ (r̄ − rt) dt− bθ (π̄ − πt) dt− aσrdWr
t − bσπdWπ

t . (7.7.3)

If a = 1 and b = 1, then the expected nominal rate of return on the risky stock is equal

to ν, while if a = 0 and b = 0, then the equity risk premium is constant. The real pricing

kernel mt satisfies the following dynamic equation:

dmt

mt

= −rtdt+ φrtdWr
t + φπt dWπ

t + φSt dWS
t

= −rtdt+ φ>t dWt.

(7.7.4)

Here φt ≡
(
φrt , φ

π
t , φ

S
t

)
. The coefficients φrt , φ

π
t and φSt determine the market prices of

risk λr, λπ and λSt = (ν − art − bπt) /σS that are associated with the state variables. The

vector of market prices of risk λt ≡
(
λr, λπ, λ

S
t

)
can be computed from φt as follows:

λt = −ρφt. (7.7.5)

The YTM is given by equation (7.2.10).99

99See also Vasicek (1977).
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7.7.2. The Pension Contract

The annuity units at time t + h (h ≥ 0) of a policyholder born at time y, By,t+h, are

given by specification (7.3.2). Financial shocks are now defined as follows:

dW∗
t ≡ dWt + (λt − λ∗t ) dt (7.7.6)

with λ∗t ≡
(
λ∗r, λ

∗
π, λ

S∗
t

)
. The assumed equity risk premium is denoted by e∗t ≡ ν∗ −

a∗rt − b∗πt. We assume that the vector of long-term risk exposures ω∗ is constant.

7.7.3. Pricing of Future Annuity Units

7.7.3.1. Market-Consistent Valuation

Let V h
y,t be the market-consistent value at time t of By,t+h. Straightforward computations

show that (see Appendix)

V h
y,t = By,tA

h
y,t, (7.7.7)

where

Ahy,t ≡ exp

{
−
∫ h

0

δv,hy,t dv

}
, (7.7.8)

δv,hy,t = µt−y+v + (1− ψ)rvβ,t + λrσr
ω∗Sa

∗

σS
Dκ,v + λπσπ

ω∗Sb
∗

σS
Dθ,v

+ ω∗>Et [λ∗t+h−v] + ξv − g.
(7.7.9)

The second and third term at the right-hand side of equation (7.7.9) arise because

the equity risk premium is negatively linearly related to the real interest rate and the

expected rate of inflation. The risk premium ω∗>Et [λ∗t+h−v] arises because the insurer

takes speculative risk. This risk premium is not constant but time-dependent. Indeed,

the equity risk premium varies stochastically over time. The risk premium ξv includes

second-order and interaction terms. The exact expression for ξv can be found in the

Appendix.
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7.7.3.2. Interest Rate Sensitivity of the Annuity Factor

The sensitivity of logAhy,t with respect to unexpected changes in the real interest rate is

given by (see Appendix)

∂ log Ah
y,t

∂Wr
t

1

σr
=
ω∗Sa

∗

σS
Dκ,h − (1− ψ)Dκ,h. (7.7.10)

The sensitivity of logAhy,t with respect to unexpected changes in the expected rate of

inflation is given by (see Appendix)

∂ log Ah
y,t

∂Wr
π

1

σπ
=
ω∗Sb

∗

σS
Dθ,h − (1− ψ)(1− β)Dθ,h. (7.7.11)

The horizon-dependent annuity factor Ahy,t may become less sensitive to unexpected

changes in the real interest rate and the expected rate of inflation if the equity risk

premium varies stochastically over time. Intuitively, a low nominal interest rate implies

a high equity risk premium, so that the costs of future annuity units may become less

sensitive to unexpected changes in the real interest rate and the expected rate of inflation

if the insurer takes stock market risk. Figure 7.2 shows the real interest rate sensitivity

of logAhy,t for various values of a∗ (ψ = 0). We assume that the insurer invests 50% of

wealth into the risky stock. The figure shows that the real interest rate duration of the

liabilities decreases by 25% if a∗ goes up from 0 to 0.5.

7.7.4. Liability-Driven Investment

This section derives the replicating portfolio strategy for a policyholder born at time y.

We allow the insurer to invest in three risky securities: two nominal zero-coupon bonds

(with different times of maturity) and a risky stock. Let $i
y,t be the fraction of assets

invested in a nominal bond with time to maturity ni (i = 1, 2) and $3
y,t be the fraction of

assets invested in the risky stock. The fraction of assets invested in the nominal money

market account is given by 1 −
∑3

i=1 $
i
y,t. The replicating portfolio weights $1∗

y,t, $
2∗
y,t

and $3∗
y,t are determined in such a way that the value of the assets matches the value

of the liabilities in each state of the world. The replicating portfolio weights solve the
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Figure 7.2.

Illustration of the interest rate sensitivity of the annuity factor
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The figure shows the interest rate sensitivity of logAhy,t for various values of a∗ (ψ = 0). The
insurer invests 50% of wealth into the risky stock. The financial market parameter values are
given in Table 7.1.

following system of equations (see Appendix)

−
(
$1∗
y,tD

κ,n1 +$2∗
y,tD

κ,n2
)

=
ω∗r
σr
− (1− ψ)D̂κ

y,t + D̂κ
y,t

ω∗Sa
∗

σS
, (7.7.12)

−
(
$1∗
y,tD

θ,n1 +$2∗
y,tD

θ,n2

)
=
ω∗π
σπ
− (1− ψ)(1− β)D̂θ

y,t + D̂θ
y,t

ω∗Sb
∗

σS
, (7.7.13)

$3∗
y,t =

ω∗S
σS
. (7.7.14)

The replicating portfolio strategy can be decomposed into two terms. The first terms at

the right-hand sides of equations (7.7.12), (7.7.13) and (7.7.14) denote the speculative

demands, while the second and third terms at the right-hand sides of (7.7.12) and (7.7.13)

correspond to the intertemporal hedging demands. The intertemporal hedging portfolio

now depends on ω∗S because the equity risk premium is stochastic. Indeed, a larger ω∗S

typically renders the annuity factor less sensitive to the nominal interest rate, thereby

reducing the nominal interest rate sensitivity of the intertemporal hedging portfolio.

Hence the intertemporal hedging portfolio is now affected by the speculative portfolio.
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7.7.5. An Incorrect Discount Rate

This section assumes that the actual portfolio strategy takes into account the fact that

the equity risk premium varies stochastically over time (i.e., ϕ = ω∗, Hr
t = (1− ψ)D̂κ

t −

D̂κ
t ω
∗
Sa
∗/σS and Hπ

t = (1−ψ)(1−β)D̂θ
t − D̂θ

tω
∗
Sb
∗/σS). However, supervisory authorities

force the insurer to discount liabilities by (7.4.4). The mutual insurer has one general

pooled account. Mismatch risk is thus shared between generations. We can define total

mismatch risk as follows (note that d log M2
t = 0):

d log Mt = d log M1
t + d log M3

t

= ω∗>dW ∗
t + D̂κ

t

ω∗Sa
∗σr

σS
(dWr∗

t + λ∗r dt)

+ D̂θ
t

ω∗Sb
∗σπ
σS

(dWπ∗
t + λ∗π dt) .

(7.7.15)

The bonus rule is determined in such a way that V h
y,t is not affected by a change in the

actual portfolio strategy. We find (see Appendix)

d log By,t =
(
βπt + ψ (rt + (1− β)πt) + g + ξ̃y,t − ξ̂y,t

)
dt+ d log Mt. (7.7.16)

Here ξ̃y,t and ξ̂y,t are second-order terms (see Appendix). The ratio between the actual

annuity units at time t+ h and the ‘desired’ annuity units at time t+ h is given by

exp

{∫ h

0

d log M3
t+v +

∫ h

0

(
ξ̃y,t+v − ξ̂y,t+v

)
dv

}
. (7.7.17)

The actual sensitivity of log future annuity units log By,t+h with respect to unexpected

changes in the real interest rate σr (dWr∗
t + λ∗rdt) is not ψDr,h+ω∗r/σr but rather ψDr,h+

ω∗r/σr+D̂
κ
t
ω
∗
Sa
∗

σS
. Accordingly, the difference between the actual and the desired sensitivity

of log future annuity units log By,t+h is given by

D̂κ
t

ω∗Sa
∗

σS
6= 0. (7.7.18)

An incorrect discount rate thus produces inefficient intertemporal consumption smoothing

and inefficient intergenerational risk sharing. In the same way as in Section 7.6.2.4, this

leads to intergenerational conflicts about the investment policy.
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7.8. Incomplete Financial Market

This section assumes that annuity units at time t+ h (h ≥ 0) are specified as follows:100

By,t+h = By,t

(
Πt+h

Πt

)β
. (7.8.1)

In addition, we assume that the investment opportunity set consists of a nominal money

market account and a single zero-coupon nominal bond. The pension contract (7.8.1)

can thus not be replicated unless β = 0. That is, the actual portfolio strategy is forced to

differ from the replicating portfolio strategy. As in Section 7.6, we assume that the insurer

shifts the mismatch between the actual portfolio strategy and the replicating portfolio

strategy back to its policyholders. The insurer can, to some degree, control mismatch

risk by appropriately choosing the duration of the actual portfolio strategy. We show

that the duration of the best hedging portfolio strategy (i.e., the portfolio strategy that

minimizes mismatch risk) is small (large) if fluctuations in the nominal interest rate are

largely driven by fluctuations in the expected rate of inflation (real interest rate).101

Intuitively, if changes in the nominal interest rate are primarily driven by changes in

the expected rate of inflation, then investing in short-term financial instruments (such

as a nominal money market account) provides a ‘good’ hedge against expected inflation

risk. Section 7.8.1 assumes one general account for all policyholders (i.e., mismatch

risk is shared between generations), while Section 7.8.2 considers the case of ring-fenced

accounts (i.e., mismatch risk is not shared between generations).

7.8.1. Collective Defined Contribution

In what follows, we assume that κ = θ. This assumption implies that Dκ,h = Dθ,h. The

best hedging portfolio is defined as the one that minimizes the variance of the mismatch

between the actual portfolio strategy and the replicating portfolio strategy (note that

the replicating portfolio strategy does not exist because real bonds are not available).

The mutual insurer chooses to shift the mismatch between the actual portfolio and the

100Specification (7.8.1) arises as a special case of specification (7.3.2) if ψ = g = ω∗ = 0.
101This assumes that the insurer aims to hedge a real annuity. However, if the insurer aims to hedge

a nominal annuity, then the duration of the best hedging portfolio strategy exactly matches the
duration of the liabilities.
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replicating portfolio back to all its policyholders (i.e., mismatch risk is shared between

generations). Let Dκ,n be the duration of the single zero-coupon nominal bond with

time to maturity n, and let $t be the fraction of assets invested in the zero-coupon

nominal bond (with the remaining fraction of assets being invested in the nominal money

market account). The insurer determines $t such that the variance of mismatch risk is

minimized. Mismatch risk is defined as follows:

d log Mt =
(
$tD

κ,n − D̂κ
t

)
σr (dWr∗

t + λ∗r dt)

+
(
$tD

κ,n − (1− β)D̂κ
t

)
σπ (dWπ∗

t + λ∗π dt) .
(7.8.2)

The insurer faces the following minimization problem:

Minimize
$t

V [d log Mt] . (7.8.3)

Solving (7.8.3) yields

$∗t =
σ2
r + (1− β)σ2

π + (2− β)ρrπσrσπ

σ2
r + σ2

π + 2ρrπσrσπ

D̂κ
t

Dκ,n . (7.8.4)

The ratio between the duration of the best hedging portfolio (i.e., $∗tD
κ,n) and the

duration of the liabilities (i.e., D̂κ
t ) is given by

$∗tD
κ,n

D̂κ
t

=
σ2
r + (1− β)σ2

π + (2− β)ρrπσrσπ

σ2
r + σ2

π + 2ρrπσrσπ
≤ 1. (7.8.5)

We observe that $∗tD
κ,n ⇒ D̂κ

t if σπ ⇒ 0. On the other hand, if σπ ⇒∞, then $∗tD
κ,n ⇒

0. The duration of the best hedging portfolio is thus small (large) if fluctuations in the

nominal interest rate are largely driven by fluctuations in the expected rate of inflation

(real interest rate). Figure 7.3 shows the function

σ2
r + (1− β)σ2

π + (2− β)ρrπσrσπ

σ2
r + σ2

π + 2ρrπσrσπ
Dκ,h (7.8.6)

for various values of h and β. We observe that for β = 1, the duration of the best hedging

portfolio is approximately 80% of Dκ,h.

Valuation of the pension contract (7.8.1) is relevant for determining the duration D̂κ
t .

Since the financial market is incomplete (i.e., real bonds are not traded), V h
t and D̂κ

t
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Figure 7.3.

Illustration of the interest rate sensitivity of the best hedging portfolio
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The figure illustrates the interest rate sensitivity of the best hedging portfolio for various values
of β. The financial market parameter values are given in Table 7.1.

cannot be objectively determined. The insurer thus faces a trade-off between optimal

risk sharing on the one hand and objective market-consistent pricing of annuities on

the other hand. Indeed, in order to avoid conflicts with policyholders about the pricing

of annuities, the insurer may want to provide variable annuities that can be valued

objectively. In that case, non-traded expected inflation risk is also not traded between

the insurer and its policyholders.

7.8.2. Ring-fenced Accounts

This section assumes that mismatch risk is not shared between generations. Let $y,t

be the fraction of assets invested in the zero-coupon nominal bond (with the remaining

fraction of assets being invested in the nominal money market account). The insurer

determines $y,t such that the variance of mismatch risk is minimized. Mismatch risk is

now defined as follows:

d log My,t =
(
$y,tD

κ,n − D̂κ
y,t

)
σr (dWr∗

t + λ∗r dt)

+
(
$y,tD

κ,n − (1− β)D̂κ
y,t

)
σπ (dWπ∗

t + λ∗π dt) .
(7.8.7)
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The insurer faces the following minimization problem:

Minimize
$y,t

V
[
d log My,t

]
. (7.8.8)

We find

$∗y,t =
σ2
r + (1− β)σ2

π + (2− β)ρrπσrσπ

σ2
r + σ2

π + 2ρrπσrσπ

D̂κ
y,t

Dκ,n . (7.8.9)

As in Section 7.8.1, the insurer faces a trade-off between objective market-consistent

pricing of annuities on the one hand (i.e., the value of the generational account Vy,t can

be objectively determined because the assets of cohort y are ring-fenced from the other

assets in the fund) and sharing of systemic risks (e.g., expected inflation risk) between

generations on the other hand.

7.9. Concluding Remarks

This chapter has explored pricing and risk management of variable annuities in DA

pension plans. We have shown that the costs of variable real annuities may be less

sensitive to the nominal interest rate as compared to the costs of fixed nominal annuities.

This is so because of three reasons. First of all, the desired growth rate of annuity units

may increase with the interest rate due to intertemporal substitution in consumption.

Second, the desired growth rate rises with the expected rate of inflation so that the

costs of these annuities depend on the real rather than the nominal interest rate. Hence,

changes in nominal interest rates impact the cost of an annuity only if these changes in

nominal interest rates reflect changes in real interest rates. The costs of real annuities

tend to be more stable than the costs of fixed nominal annuities because the real interest

rate is less volatile than the nominal interest rate: fluctuating inflation expectations

affect mainly the nominal rather than the real interest rate. In an incomplete financial

market in which real interest rate risk and expected inflation risk cannot be hedged

simultaneously, insurers must trade-off hedging real interest rate risk against hedging

expected inflation risk. This reduces the nominal interest sensitivity of the annuity

factor, especially when fluctuations in the nominal interest rate are driven by changes
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in the expected rate of inflation rather than by changes in the real interest rate. A

third factor reducing the nominal interest sensitivity of the annuity factor is that the

expected rates of return on risky securities tend to be less sensitive to the nominal

interest rate when compared to the rates of return on safe securities. Overall then, the

cost of real variable annuities tend to be more stable than the costs of nominal fixed

annuities because real expected rates of return on risky securities are less volatile than

nominal rates of return on safe securities. Indeed, TIAA-CREF has fixed the assumed

real expected rate of return on its variable annuities at 4% since it started to provide

this retirement product in 1952.

7.10. Appendix

7.10.1. Parameter Values

Table 7.1.
Parameter values

Parameter Value

Real Interest Rate Process κ 0.631
r̄ 0.012
σr 0.026
λr -0.209

Expected Inflation Process θ 0.027
π̄ 0.054
σπ 0.014
λπ -0.105

Stock Return Process σS 0.343
λS 0.158

Correlation Matrix ρrπ -0.061
ρrS -0.129
ρπS -0.024

The table reports the parameter values employed in the numerical illustrations. The parameter
values are taken from Brennan and Xia (2002).
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7.10.2. Proofs

Derivation of (7.2.9), (7.2.10) and (7.2.11)

We start by deriving the analytical solution to the stochastic differential equation (SDE)

for the Ornstein-Uhlenbeck process. After applying Itô’s Lemma to the function f (t, rt) ≡

eκt (rt − r̄), we find (where the second equality follows from equation (7.2.1))

df (t, rt) = κeκt (rt − r̄) dt+ eκtdrt

= κeκt (rt − r̄) dt− eκtκ (rt − r̄) dt+ eκtσrdWr
t = σre

κtdWr
t .

(7.10.1)

The solution to the SDE (7.10.1) is given by

f (t, rt+v) = f (t, rt) + σr

∫ t+v

t

eκudWr
u. (7.10.2)

The real interest rate at time t + v > t is given by (where the first and third equality

follow from the definition of f (t, rt), and the second equality follows from (7.10.2))

rt+v = r̄ + e−κ(t+v)f (t, rt+v)

= r̄ + e−κ(t+v)f (t, rt) + σr

∫ t+v

t

e−κ(t+v−u)dWr
u

= r̄ + e−κv (rt − r̄) + σr

∫ v

0

e−κ(v−u)dWr
t+u

= rt +
(
1− e−κv

)
(r̄ − rt) + σr

∫ v

0

e−κ(v−u)dWr
t+u.

(7.10.3)

In a similar fashion, we find

πt+v = πt +
(

1− e−θv
)

(π̄ − πt) + σπ

∫ v

0

e−θ(v−u)dWπ
t+u.

The (conditional) expectation of the real interest rate Et [rt+v] and the (conditional)

expectation of the expected rate of inflation Et [πt+v] are given by

Et [rt+v] = rt + κ (r̄ − rt)Dκ,v, (7.10.4)

Et [πt+v] = πt + θ (π̄ − πt)Dθ,v. (7.10.5)
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The average real interest rate řht ≡ 1
h

∫ h
0

rt+vdv and the average expected rate of inflation

π̌h
t ≡ 1

h

∫ h
0
πt+vdv play a key role in determining the yield to maturity. We find (where

the first equality follows from substituting (7.10.3) to eliminate rt+v)

řht ≡
1

h

∫ h

0

rt+vdv

=
1

h

∫ h

0

(
rt + (r̄ − rt)

(
1− e−κv

))
dv +

σr
h

∫ h

0

∫ v

0

e−κ(v−u)dWr
t+udv

=
1

h

∫ h

0

(
rt + (r̄ − rt)

(
1− e−κv

))
dv +

σr
h

∫ h

0

∫ h

v

e−κ(h−u)dudWr
t+v

=
1

h

∫ h

0

(rt + (r̄ − rt)κDκ,v) dv +
σr
κh

∫ h

0

(
1− e−κ(h−v)

)
dWr

t+v

=
1

h

∫ h

0

Et [rt+v] dv +
σr
h

∫ h

0

Dκ,h−vdWr
t+v.

(7.10.6)

In a similar fashion, we find that the average expected rate of inflation π̌h
t is given by

π̌h
t ≡

1

h

∫ h

0

πt+vdv =
1

h

∫ h

0

Et [πt+v] dv +
σπ
h

∫ h

0

Dθ,h−vdWπ
t+v. (7.10.7)

Substituting (7.10.6) and (7.10.7) into (7.2.8) to eliminate
∫ h

0
rt+vdv and

∫ h
0
πt+vdv yields

P h
α,t = exp

{
−
∫ h

0

(
Et [rt+v + ᾱπt+v] +

1

2
φ>ρφ

)
dv

}
Et
[
exp

{∫ h

0

φSdWS
t+v +

∫ h

0

(
φr − σrDκ,h−v

)
dWr

t+v

}
exp

{∫ h

0

(
φπ − ᾱσπDθ,h−v

)
dWπ

t+v

}]
= exp

{
−
∫ h

0

(
Et [rt+v + ᾱπt+v]− λrσrDκ,v − ᾱλπσπDθ,v

−1

2
(σrD

κ,v)2 − 1

2

(
ᾱσπD

θ,v
)2

− ᾱρrπσrσπDκ,vDθ,v
)

dv

}
= exp

{
−
∫ h

0

rvα,tdv

}
.

(7.10.8)

Here ᾱ ≡ 1− α. The instantaneous forward interest rate rvα,t is defined as follows:

rvα,t ≡ Et [rt+v + ᾱπt+v]− λrσrDκ,v − ᾱλπσπDθ,v

− 1

2
(σrD

κ,v)2 − 1

2

(
ᾱσπD

θ,v
)2

− ᾱρrπσrσπDκ,vDθ,v.
(7.10.9)
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The log bond price is given by (this follows from (7.10.4), (7.10.5), (7.10.8) and (7.10.9))

logP h
α,t = −

∫ h

0

(
rt + κ (r̄ − rt)Dκ,v + ᾱπt

+ ᾱθ (π̄ − πt)Dθ,v − λrσrDκ,v − ᾱλπσπDθ,v

− 1

2
(σrD

κ,v)2 − 1

2

(
ᾱσπD

θ,v
)2

− ᾱρrπσrσπDκ,vDθ,v
)

dv.

(7.10.10)

Solving the integral (7.10.10) yields102

logP h
α,t = −rth− (r̄ − rt)

(
h−Dκ,h

)
− ᾱπth− ᾱ (π̄ − πt)

(
h−Dθ,h

)
+
λrσr
κ

(
h−Dκ,h

)
+
ᾱλπσπ
θ

(
h−Dθ,h

)
+

1

2

(
σr
κ

)2(
h− 2Dκ,h +

1

2
Dκ,2h

)
+

1

2

(
ᾱσπ
θ

)2(
h− 2Dθ,h +

1

2
Dθ,2h

)
+
ᾱρrπσrσπ

κθ

(
h−Dκ,h −Dθ,h +Dκ+θ,h

)
= −rtDκ,h − ᾱπtDθ,h − Eh

α,

where the horizon-dependent constant Eh
α is defined as follows:

Eh
α ≡

(
r̄ − λrσr

κ
− 1

2

[
σr
κ

]2
)(

h−Dκ,h
)

+
1

4κ

(
σrD

κ,h
)2

+ ᾱ

(
π̄ − λπσπ

θ
− 1

2
ᾱ

[
σπ
θ

]2
)(

h−Dθ,h
)

+
1

4θ

(
ᾱσπD

θ,h
)2

+
ᾱρrπσrσπ

κθ

(
h−Dκ,h −Dθ,h +Dκ+θ,h

)
.

(7.10.11)

In order to calculate how the value of the bond with a fixed maturity t + h develops as

time proceeds (i.e., t+ h is fixed but t changes), we apply Itô’s Lemma to

P h
α,t = exp

{
−rtDκ,h − ᾱπtDθ,h − Eh

α

}
.

102The first equality follows from (Dκ,v)
2

=
(

1− 2e−κv + e−2κv
)
/ (κ)

2
and the second equality follows

from
(
Dκ,h

)2

=
(

2Dκ,h −Dκ,2h
)
/κ.
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We find

dPh
α,t

P h
α,t

=
(
rhα,t − κ (r̄ − rt)Dκ,h − ᾱθ (π̄ − πt)Dθ,h +

1

2

(
σrD

κ,h
)2

+
1

2

(
ᾱσπD

θ,h
)2

+ ᾱρrπσrσπD
κ,hDθ,h

)
dt− σrDκ,hdWr

t − ᾱσπDθ,hdWπ
t

=
(
rt + ᾱπt − λrσrDκ,h − ᾱλπσπDθ,h

)
dt− σrDκ,hdWr

t − ᾱσπDθ,hdWπ
t .

Derivation of (7.4.2), (7.4.5), (7.4.6), (7.4.9) and (7.4.11)

The market-consistent value of By,t+h is given by (where the first equality follows from

substituting equation (7.3.2) into (7.4.1) to eliminate By,t+h)

V h
y,t = hpt−yBy,t exp

{∫ h

0

ω∗> (λ− λ∗) dv

}
Et
[
exp

{
−
∫ h

0

(
rt+v + πt+v +

1

2
φ>ρφ

)
dv +

∫ h

0

φ>dWt+v

}
exp

{(
β + ψβ̄

) ∫ h

0

πt+vdv + ψ

∫ h

0

rt+vdv + g · h+

∫ h

0

ω∗>dWt+v

}]
= hpt−yBy,t exp

{∫ h

0

ω∗> (λ− λ∗) dv

}
exp

{
−ψ̄

∫ h

0

(
Et [rt+v] + β̄Et [πt+v]

)
dv − 1

2
φ>ρφ · h+ g · h

}
Et
[
exp

{∫ h

0

(
φr − ψ̄σrDκ,h−v + ω∗r

)
dWr

t+v

+

∫ h

0

(
φπ − ψ̄β̄σπDθ,h−v + ω∗π

)
dWπ

t+v +

∫ h

0

(φS + ω∗S) dWS
t+v

}]
.

Here ψ̄ ≡ 1− ψ and β̄ ≡ 1− β.
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Straightforward computations yield

V h
y,t = hpt−yBy,t exp

{∫ h

0

ω∗> (λ− λ∗) dv

}
exp

{
−ψ̄

∫ h

0

(
Et [rt+v] + β̄Et [πt+v]− λrσrDκ,v − 1

2
ψ̄ (σrD

κ,v)2

)
dv

}
exp

{
−ψ̄

∫ h

0

(
−β̄λπσπDθ,v − 1

2
ψ̄
(
β̄σπD

θ,v
)2
)

dv + g · h
}

exp

{
−ψ̄

∫ h

0

−ψ̄β̄ρrπσrσπDκ,vDθ,vdv

}
exp

{
−
∫ h

0

(
λr + ψ̄σrD

κ,v + ψ̄β̄ρrπσπD
θ,v
)
ω∗rdv

}
exp

{
−
∫ h

0

(
λπ + ψ̄β̄σπD

θ,v + ψ̄ρrπσrD
κ,v
)
ω∗πdv

}
exp

{
−
∫ h

0

(
λS + ψ̄ρrSσrD

κ,v + ψ̄β̄ρπSσπD
θ,v
)
ω∗Sdv

}
exp

{∫ h

0

1

2
ω∗>ρω∗dv

}
= By,t exp

{
−
∫ h

0

δvy,tdv

}
.

Here

δvy,t = µt−y+v + ψ̄
(
Et [rt+v] + β̄Et [πt+v]− λrσrDκ,v − β̄λπσπDθ,v

)
+ ω∗>λ∗ + ξ̂v − g

= ψ̄rvβ,t + ω∗>λ∗ + ξv + µt−y+v − g

where103

ξ̂v ≡ ψ̄
[(
σrD

κ,v + β̄ρrπσπD
θ,v
)
ω∗r +

(
ρrπσrD

κ,v + β̄σπD
θ,v
)
ω∗π

+
(
ρrSσrD

κ,h + β̄ρπSσπD
θ,v
)
ω∗S

]
− 1

2
ω∗>ρω∗

− 1

2
ψ̄2

[
(σrD

κ,v)2 +
(
β̄σπD

θ,v
)2

+ 2β̄ρrπσrσπD
κ,vDθ,v

]
,

ξv ≡ ξ̂v +
1

2
ψ̄

[
(σrD

κ,v)2 +
(
β̄σπD

θ,v
)2

+ 2β̄ρrπσrσπD
κ,vDθ,v

]
. (7.10.12)

The market-consistent value is given by (where the first and second equality follow from

103The term ξ̂v arises because we measure security price performance in terms of log (continuously
compounded) returns. Indeed, with log returns, the portfolio return is not equal to the weighted sum
of the individual returns (i.e., log returns do not aggregate across securities). However, log returns
do aggregate across time.
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equation (7.4.1))

log V h
y,t = logBy,t + logAhy,t = logBy,t −

∫ h

0

δvy,tdv. (7.10.13)

Here

logBy,t = logBy,t0
+ β

∫ t

t0

πsds+

∫ t

t0

ψ
(
rs + β̄πs

)
ds+ g · (t− t0) +

∫ t

t0

ω∗>dW ∗
s .

Applying Itô’s Lemma to equation (7.10.13) yields

∂ log Ah
y,t

∂Wr
t

1

σr
= −ψ̄Dκ,h,

∂ log Ah
y,t

∂Wπ
t

1

σπ
= −ψ̄β̄Dθ,h.

Taking the partial derivative of logAy,t = log
∫ xmax+y−t

max{xr+y−t,0}
exp

{
logAhy,t

}
dh with respect

to logAhy,t yields Ahy,t/Ay,t ≡ γhy,t. Equations (7.4.9) and (7.4.11) now follow from Itô’s

Lemma.

Derivation of (7.5.1), (7.5.2) and (7.5.3)

Assets Xy,t are subject to the following dynamic equation (this follows from equations

(7.2.3) and (7.2.11)):104

dXy,t

Xy,t

=
(
rt + πt + µt−y −

(
$1
y,tD

κ,n1 +$2
y,tD

κ,n2
)
λrσr

−
(
$1
y,tD

θ,n1 +$2
y,tD

θ,n2

)
λπσπ +$3

y,tλSσS

)
dt

−
(
$1
y,tD

κ,n1 +$2
y,tD

κ,n2
)
σrdWr

t

−
(
$1
y,tD

θ,n1 +$2
y,tD

θ,n2

)
σπdWπ

t +$3
y,tσSdWS

t .

104Without loss of generality, we assume that the current time t is smaller than y + xr.
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It follows from Itô’s Lemma that

∂ log Xy,t

∂Wr
t

1

σr
= −

(
$1
y,tD

κ,n1 +$2
y,tD

κ,n2
)
,

∂ log Xy,t

∂Wπ
t

1

σπ
= −

(
$1
y,tD

θ,n1 +$2
y,tD

θ,n2

)
,

∂ log Xy,t

∂WS
t

1

σS
= $3

y,t.

Applying the principle of liability-driven investment yields equations (7.5.1), (7.5.2) and

(7.5.3). The replicating portfolio strategy can be computed explicitly. We find

$1∗
y,t = k (n1, n2)

[(
ω∗r
σr
− ω∗π
σπ

Dκ,n2

Dθ,n2

)
− ψ̄

(
D̂κ
y,t − β̄D̂θ

y,t

Dκ,n2

Dθ,n2

)]
, (7.10.14)

$2∗
y,t = k (n2, n1)

[(
ω∗r
σr
− ω∗π
σπ

Dκ,n1

Dθ,n1

)
− ψ̄

(
D̂κ
y,t − β̄D̂θ

y,t

Dκ,n1

Dθ,n1

)]
, (7.10.15)

$3∗
y,t =

ω∗S
σS
. (7.10.16)

Here

k (n1, n2) ≡ Dθ,n2

Dκ,n2Dθ,n1 −Dκ,n1Dθ,n2
.

Derivation of (7.6.6) and (7.6.15)

The aggregate annuity factor does not change as a result of changes in the investment

strategy. It follows that

d log By,t = d log Vy,t − d log Ay,t,

where

d log Vy,t =
(
rt + πt + µt−y + ω>t λ− ψ̄σrλrD̂κ

y,t − ψ̄β̄σπλπD̂θ
y,t + ξ̃y,t

)
dt

+
(
ωrt − ψ̄σrD̂κ

y,t

)
dWr

t +
(
ωπt − ψ̄β̄σπD̂θ

y,t

)
dWπ

t + ωSt dWS
t ,

d log Ay,t =
(
ψ̄
(
rt + β̄πt

)
− g + µt−y + ω∗>λ∗ − ψ̄σrλrD̂κ

y,t − ψ̄β̄σπλπD̂θ
y,t + ξ̂y,t

)
dt

− ψ̄σrD̂κ
y,tdWr

t − ψ̄β̄σπD̂θ
y,tdWπ

t .
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Here,

ωrt ≡ ϕrt + σr

(
ψ̄D̂κ

t −Hr
t

)
,

ωπt ≡ ϕπt + σπ

(
ψ̄β̄D̂θ

t −Hπ
t

)
,

ωSt ≡ ϕSt ,

ξ̃y,t ≡ ψ̄
[(
σrD̂

κ
y,t + β̄ρrπσπD̂

θ
y,t

)
ωrt +

(
ρrπσrD̂

κ
y,t + β̄σπD̂

θ
y,t

)
ωπt

+
(
ρrSσrD̂

κ
y,t + β̄ρπSσπD̂

θ
y,t

)
ωSt

]
− 1

2
ω>t ρωt

− 1

2
ψ̄2

[(
σrD̂

κ
y,t

)2

+
(
β̄σπD̂

θ
y,t

)2

+ 2β̄ρrπσrσπD̂
κ
y,tD̂

θ
y,t

]
,

ξ̂y,t ≡ ψ̄
[(
σrD̂

κ
y,t + β̄ρrπσπD̂

θ
y,t

)
ω∗r +

(
ρrπσrD̂

κ
y,t + β̄σπD̂

θ
y,t

)
ω∗π

+
(
ρrSσrD̂

κ
y,t + β̄ρπSσπD̂

θ
y,t

)
ω∗S

]
− 1

2
ω∗>ρω∗

− 1

2
ψ̄2

[(
σrD̂

κ
y,t

)2

+
(
β̄σπD̂

θ
y,t

)2

+ 2β̄ρrπσrσπD̂
κ
y,tD̂

θ
y,t

]
,

with ωt ≡
(
ωrt , ω

π
t , ω

S
t

)
. Hence,

d log By,t =
(
βπt + ψ

(
rt + β̄πt

)
+ g + ω>t λ− ω∗>λ∗ + ξ̃y,t − ξ̂y,t

)
dt

+ ωSt dWS
t + ωrtdWr

t + ωπt dWπ
t

=
(
βπt + ψ

(
rt + β̄πt

)
+ g + ξ̃y,t − ξ̂y,t

)
dt+ d log Mt.

Equation (7.6.15) can be derived in a similar fashion as above. We now have

ωry,t ≡ ϕry,t + σr

(
ψ̄D̂κ

y,t −Hr
y,t

)
,

ωπy,t ≡ ϕπy,t + σπ

(
ψ̄β̄D̂θ

y,t −Hπ
y,t

)
,

ωSy,t ≡ ϕSy,t,

ξ̃y,t ≡ ψ̄
[(
σrD̂

κ
y,t + β̄ρrπσπD̂

θ
y,t

)
ωry,t +

(
ρrπσrD̂

κ
y,t + β̄σπD̂

θ
y,t

)
ωπy,t

+
(
ρrSσrD̂

κ
y,t + β̄ρπSσπD̂

θ
y,t

)
ωSy,t

]
− 1

2
ω>y,tρωy,t

− 1

2
ψ̄2

[(
σrD̂

κ
y,t

)2

+
(
β̄σπD̂

θ
y,t

)2

+ 2β̄ρrπσrσπD̂
κ
y,tD̂

θ
y,t

]
,

with ωy,t ≡
(
ωry,t, ω

π
y,t, ω

S
y,t

)
.
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Derivation of (7.7.7), (7.7.10), (7.7.11), (7.7.12), (7.7.13), (7.7.14) and (7.7.16)

The market-consistent value at time t+ h is given by

Vy,t+h = By,t+h

= By,t

(
Πt+h

Πt

)β
exp

{
ψ

∫ h

0

(
rt+v + β̄πt+v

)
dv + g · h

}
exp

{∫ h

0

ω∗> (λt − λ∗t ) dv

}
exp

{∫ h

0

ω∗>dWt+h−v

}
.

(7.10.17)

Denote by Xh
y,t wealth that finances By,t+h. We have

dXh
y,t

Xh
y,t

=
(
rt + πt + µt−y −

(
$h,1D

κ,n1 +$h,2D
κ,n2
)
λrσr

−
(
$h,1D

θ,n1 +$h,2D
θ,n2

)
λπσπ +$h,3et

)
dt

−
(
$h,1D

κ,n1 +$h,2D
κ,n2
)
σrdWr

t

−
(
$h,1D

θ,n1 +$h,2D
θ,n2

)
σπdWπ

t +$h,3σSdWS
t .

Here $h,i denotes the fraction of Xh
y,t invested in a nominal bond with time to maturity

ni (i = 1, 2), and $h,3 represents the fraction of Xh
y,t invested in the risky stock.

Straightforward application of Itô’s Lemma yields

Xy,t+h

Xh
y,t

=

(
Πt+h

Πt

)
exp

{∫ h

0

(
rt+v + µt−y+v −

(
$v,1D

κ,n1 +$v,2D
κ,n2
)
λrσr

)
dv

}
exp

{∫ h

0

(
−
(
$v,1D

θ,n1 +$v,2D
θ,n2

)
λπσπ +$v,3et+h−v + ξ̂v

)
dv

}
exp

{
−
∫ h

0

(
$v,1D

κ,n1 +$v,2D
κ,n2
)
σrdWr

t+h−v

}
exp

{
−
∫ h

0

(
$v,1D

θ,n1 +$v,2D
θ,n2

)
σπdWπ

t+h−v +

∫ h

0

$v,3σSdWS
t+h−v

}
,

(7.10.18)
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where

ξ̂v ≡ −
1

2

(
$v,1D

κ,n1 +$v,2D
κ,n2
)2
σ2
r −

1

2

(
$v,1D

θ,n1 +$v,2D
θ,n2
)2
σ2
π

− 1

2

(
$v,3σS

)2
+ ρrSσrσS

(
$v,1D

κ,n1 +$v,2D
κ,n2
)
$v,3

− ρrπσrσπ
(
$v,1D

κ,n1 +$v,2D
κ,n2
) (
$v,1D

θ,n1 +$v,2D
θ,n2

)
+ ρπSσπσS

(
$v,1D

θ,n1 +$v,2D
θ,n2

)
$v,3.

We note that

et+v = et − aκ (r̄ − rt)Dκ,v − bθ (π̄ − πt)Dθ,v

− aσr
∫ v

0

e−κ(v−u)dWr
t+u − bσπ

∫ v

0

e−θ(v−u)dWπ
t+u.

Simple algebra yields

1

h

∫ h

0

et+vdv =
1

h

∫ h

0

Et [et+v] dv

− aσr
h

∫ h

0

Dκ,h−vdWr
t+v −

bσπ
h

∫ h

0

Dθ,h−vdWπ
t+v,

(7.10.19)

where Et [et+v] = et − aκ (r̄ − rt)Dκ,v − bθ (π̄ − πt)Dθ,v.

Since ω∗S is constant by assumption, it follows that $∗v,3 = ω∗S/σS (this follows from

comparing equation (7.10.17) with equation (7.10.18)). Substituting equations (7.10.6),

240



Appendix

(7.10.7), (7.10.19) and $∗v,3 = ω∗S/σS into equation (7.10.18) yields

Xy,t+h

Xh
y,t

=

(
Πt+h

Πt

)β
exp

{
ψ

∫ h

0

(
rt+v + β̄πt+v

)
dv + g · h

}
exp

{
−
∫ h

0

(
ω∗Sa

∗

σS
Dκ,v − ψ̄Dκ,v +$v,1D

κ,n1 +$v,2D
κ,n2

)
σrdWr

t+h−v

}
exp

{
−
∫ h

0

(
ω∗Sb

∗

σS
Dθ,v − ψ̄β̄Dθ,v +$v,1D

θ,n1 +$v,2D
θ,n2

)
σπdWπ

t+h−v

}
exp

{∫ h

0

ω∗SdWS
t+h−v

}
exp

{
ψ̄

∫ h

0

(
Et [rt+v] + β̄Et [πt+v]

)
dv − g · h

}
exp

{
−
∫ h

0

(
$v,1D

κ,n1 +$v,2D
κ,n2
)
λrσrdv

}
exp

{
−
∫ h

0

(
$v,1D

θ,n1 +$v,2D
θ,n2

)
λπσπdv

}
exp

{∫ h

0

ω∗S
σS

Et [e∗t+h−v] dv

}
exp

{∫ h

0

(
ω∗S
σS

(et+h−v − e∗t+h−v) + ξ̂v + µt−y+v

)
dv

}
.

(7.10.20)

It follows from comparing equation (7.10.17) with equation (7.10.20) that

ω∗r = −
(
ω∗Sa

∗

σS
Dκ,h − ψ̄Dκ,h +$∗h,1D

κ,n1 +$∗h,2D
κ,n2

)
σr,

ω∗π = −
(
ω∗Sb

∗

σS
Dθ,h − ψ̄β̄Dθ,h +$∗h,1D

θ,n1 +$∗h,2D
θ,n2

)
σπ.

Hence,

$∗h,1 = k (n1, n2)

(
ω∗r
σr
− ω∗π
σπ

Dκ,n2

Dθ,n2

)
+

k (n1, n2)

[
−ψ̄

(
Dκ,h − β̄Dθ,hD

κ,n2

Dθ,n2

)
+
ω∗Sa

∗

σS

(
Dκ,h − b∗

a∗
Dθ,hD

κ,n2

Dθ,n2

)]
,

$∗h,2 = k (n2, n1)

(
ω∗r
σr
− ω∗π
σπ

Dκ,n1

Dθ,n1

)
+

k (n2, n1)

[
−ψ̄

(
Dκ,h − β̄Dθ,hD

κ,n1

Dθ,n1

)
+
ω∗Sa

∗

σS

(
Dκ,h − b∗

a∗
Dθ,hD

κ,n1

Dθ,n1

)]
.

The aggregate portfolio weight $i∗
y,t is given by $i∗

y,t =
∫ xmax+y−t

max{xr+y−t,0}
γhy,t$

∗
h,idh (i =

1, 2, 3). Equations (7.7.12), (7.7.13) and (7.7.14) now follow. The market value V h
y,t =
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Xh
y,t is given by (this follows from comparing equation (7.10.17) with equation (7.10.20))

V h
y,t = Bh

y,t exp

{
ψ̄

∫ h

0

(
Et [rt+v] + β̄Et [πt+v]

)
dv − g · h

}
exp

{
−
∫ h

0

(
µt−y+v −

(
$∗v,1D

κ,n1 +$∗v,2D
κ,n2
)
λrσr

)
dv

}
exp

{
−
∫ h

0

(
ω∗r (λ∗r − λr)−

(
$∗v,1D

θ,n1 +$∗v,2D
θ,n2

)
λπσπ

)
dv

}
exp

{
−
∫ h

0

(
ω∗π (λ∗π − λπ) + ω∗SEt

[
λS∗t+h−v

]
+ ξ̂v

)
dv

}
= Bh

y,tA
h
y,t = Bh

y,t exp

{
−
∫ h

0

δv,hy,t dv

}
.

Here,

δv,hy,t = ψ̄rvβ,t + λrσr
ω∗Sa

∗

σS
Dκ,v + λπσπ

ω∗Sb
∗

σS
Dθ,v + µt−y+v − g + ω∗>Et [λ∗t+h−v] + ξv

with

ξv = ξ̂v +
1

2
ψ̄

[
(Dκ,vσr)

2 +
(
β̄Dθ,vσπ

)2

+ 2β̄ρrπσrσπD
κ,vDθ,v

]
.

Equations (7.7.10) and (7.7.11) follow from Itô’s Lemma. The bonus rule (7.7.16) is

derived in a similar fashion as (7.6.6).
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