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Chapter 1

Introduction

Life expectancy in most parts of the world has increased substantially in the past few

decades. For example, the life expectancy at birth for a Dutch male increased from

70.3 years in 1950 to 79.9 in 2014, while this number for a Dutch female increased

from 72.6 years in 1950 to 83.3 years in 2014.1 Formally, we refer to longevity risk

as the risk due to unexpected changes of the mortality rates of populations. During

recent years, longevity risk has attracted more and more attention from pension plans

and annuity providers. In particular, as an innovative way to transfer longevity risk,

the longevity-linked capital market is developing rapidly. According to the records on

Artemis,2 the volume of transactions in the U.K. longevity-linked capital market has

increased from £3.4 billion in year 2009 to £21.9 billion in year 2014. In this thesis

we consider the management of longevity risk in the view of pension plans and annuity

providers, including the forecast of future mortality rates and the hedging of mortality

risk using longevity-linked derivatives.

Chapter 2 studies the forecast of future mortality rates. Most currently used mortal-

ity models are based on a linear extrapolation approach, meaning that the appropriately

transformed quantities are assumed to follow a linear trend. For example, the Lee and

Carter (1992) model and its variants are heavily used by actuarial and statistics agen-

cies, such as the Actuarial Society and Statistics Netherlands. However, many mortality

data sets do not show clear linear trends. For example, it is shown in Chapter 2 that,

the remaining life expectancy of U.S. and Dutch populations generated by the Lee and

Carter (1992) model, one of the most used mortality models in the past two decades,

is rather sensitive to the chosen sample size. Therefore, an important question to ask

when applying a linear extrapolation model is: What sample size should one use? The

choice of sample size should not only depend on the in-sample fit, but also the out-of-

sample forecast accuracy. Moreover, the choice of sample size might also depend on the

1Source: Statistics Netherlands, http://statline.cbs.nl/.
2http://www.artemis.bm/library/longevity swaps risk transfers.html.
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Chapter 1: Introduction

underlying population, as the mortality pattern may be different among populations. In

Chapter 2 we try to answer the above question. In particular, we propose a Bayesian

learning approach to determine the choice of (the posterior distribution of) the sam-

ple size. The posterior distribution of the sample size is allowed to be age-, gender-,

forecast-horizon-, model-, and country-specific. Using simulation studies, we find that

the Bayesian learning method is able to cope with not only linear structural breaks, but

also accelerating trends in the mortality data. Finally, we apply the Bayesian approach

to U.S. and Dutch data using the Lee and Carter (1992) and the Cairns et al. (2006)

model, and see that clear suggestions of the choice of sample size is found for most of

the age-, gender-, forecast-horizon-, and model combinations. In the out-of-sample fore-

cast analysis, we see that the Bayesian model outperforms the original models with the

minimal DIC ratio in the majority of scenarios.

Given the uncertainty regarding the distribution of future mortality rates, it is im-

portant for pension plans and annuity providers to have a risk management strategy that

is robust with respect to possible estimation inaccuracies of the probability distribution

of the mortality rates. In Chapter 3 we consider a static setting where the insurer is not

certain about the probability distribution of the future mortality rates, but optimizes

against the worst-case objective function (mean-variance or mean-conditional-value-at-

risk). The worst-case is with respect to probability distributions within a compact set

characterized by the Kullback-Leibler divergence. We choose the parameters character-

izing the compact set in the way such that it can be treated as a confidence set around

the best estimated probability distribution of the future mortalities. The robust op-

timization approach can be used in combination with the Bayesian learning approach

studied in Chapter 2. The Bayesian learning approach can be used to gain more accu-

rately forecasts when we want to fit a particular mortality model to a particular data

set. However, even though one applies the Bayesian approach, the resulting nominal

distribution of the future mortality rates might still be subject to estimation inaccuracy.

Therefore, it still makes sense to apply the robust optimization approach. Moreover, the

robust optimization approach is able to incorporate more general model risks, such as

uncertainties regarding the parametric form of the model.

As the longevity-linked capital market is at its early stage, the types of longevity-

linked derivatives are rather limited. In particular, it is difficult to buy products with

2



Introduction

payments contingent on any desired cohorts and with long maturities. Therefore, except

for the population basis risk, i.e., the mismatch of mortality experience of the portfolio-

specific population and the national population, the insurer would also be concerned

about cohort mismatch and maturity mismatch. In Chapter 3, we apply the robust

optimization method to Dutch national data and a Dutch collective pension portfolio. In

the application, we assume that the insurer is committed to annuity payments of multiple

cohorts, where she can only trade the survivor swap which has the same maturity as the

liabilities, but is contingent on one cohort. In other words, we consider as an illustration

the hedge in the presence of only population basis risk and cohort mismatch. However,

the model proposed in Chapter 3 is applicable to more general situations, e.g., we can

allow for hedging instruments with payments contingent on any desired cohorts and

with any maturities. In Chapter 4, we take into account the liquidity with respect to

longevity-linked derivatives with long maturities, and we explicitly incorporate hedging

instruments with different maturities in the framework. In the application in Chapter 3,

we show that the robust optimization performs on average better than the non-robust

optimization when moderate degrees of estimation inaccuracy exist.

Chapter 3 considers the management of longevity risk in a static setting. Although

static hedging is nowadays commonly used in longevity risk hedging, it would be helpful

to explore dynamic hedging possibilities, as is done in Chapter 4. In particular, we

consider in this chapter a dynamic value hedging problem: The hedger wishes to minimize

the variance of her hedging error, defined as the deviation of the market value of her

investments to the market value of her liabilities, valued at some future time, T . The

variance criterion is commonly used by researchers and practitioners in static settings.

However, in the dynamic setting, the variance criterion might be also easier to interpret

than utility functions. For example, we can measure the hedging quality by looking

at the optimal variance of the hedging error, without resorting to the functional form

of the utility functions and the choice of risk aversion parameters. The latter is not

straightforward to specify for a pension plan. Moreover, the use of the variance criterion is

relevant for hedging longevity risk. An insurance company which sells both annuities and

life insurance products faces longevity risk in two directions. The company loses profits

from the life insurance products in case of unexpected mortality deteriorations, e.g.,

catastrophe events, while it loses profits from the annuities when the life expectancy of

3



Chapter 1: Introduction

their annuitants turn out to be higher than expected. Therefore, the insurance company

would like to minimize the deviation of its hedging error from both directions. A similar

value hedge setting is considered in Cairns (2013) and Cairns et al. (2014) in a static

framework.

An important property of dynamic hedging strategy is time-consistency. A time-

consistent strategy is a strategy that will be followed by the hedger at any time and in

any state of the world. Two types of time-consistent hedger are studied in literature:

naive time-consistent hedger and sophisticated time-consistent hedger (Grenadier and

Wang 2007). In particular, a naive time-consistent hedger places a strategy at the initial

date, and commits herself not to deviate from the initial strategy at later dates, even

when she has the incentive to do so. In contrast, a sophisticated time-consistent hedger

places a strategy at the initial date, taking into account the possibilities of deviating

from the initial strategy at later dates. Therefore, the optimal strategy chosen by the

sophisticated time-consistent hedger is the one that will be followed at later dates when

she re-optimizes using the same objective function. In Chapter 4, we consider the optimal

hedging strategy of a sophisticated time-consistent hedger under the variance criterion.

Despite the rapid growth, the longevity-linked capital market is still at its early stage

of development. As a result, the liquidity of longevity-linked derivatives is currently

rather limited. To cope with this fact, we derive optimal hedging strategies not only

in the case where all assets can be traded continuously, but also in the case where part

of the assets, in particular the longevity-linked derivatives, can only be traded at a

deterministic and lower frequency.

To sum up, this thesis provides findings for forecasting future mortality rates, and

for hedging longevity risk for pension plans, annuity providers, and insurance compa-

nies. The mortality forecasting and the longevity risk hedging are both fast-developing

fields, and there are many possible future research directions along the findings in this

thesis. Interesting directions include the construction of mortality models with more

robust estimations and forecasts with respect to the sample size, especially in the multi-

population context; the robust dynamic longevity risk management; and the dynamic

longevity risk hedging with illiquid assets in a richer setting, for example, with stochastic

trading frequency and transaction costs, etc.

4



Chapter 2

The Choice of Sample Size for

Mortality Forecasting: A

Bayesian Learning Approach3

2.1. Introduction

Compared with the extensive literature on mortality forecasting, relatively little is known

about the choice of sample size for the existing mortality models. Most mortality mod-

els proposed in the past twenty years are based on a “linear extrapolation” approach,

meaning that the evolution of the modeled quantities (such as the log of central death

rates or the logit4 of death probabilities) is assumed to follow a linear trend. Two most

widely used models in this class are the ones proposed by Lee and Carter (1992) (the

Lee-Carter model) and Cairns, Blake, and Dowd (2006) (the CBD model).5 Various

extensions to these two models have been proposed, including Brouhns et al. (2002),

Li and Lee (2005), Renshaw and Haberman (2006), to name a few. See Cairns et al.

(2009), who summarize several most popular models in the linear extrapolation class.

An immediate result of using linear extrapolation models is that the forecasted mor-

tality rates are highly sensitive to the choice of sample size. This phenomenon has been

documented by many authors. In their original paper, Lee and Carter (1992) estimate

the model based on U.S log mortality data from 1900 to 1989. They argue that the length

of the sample size is not critical as long as it is longer than 20 years. However, Lee and

Miller (2001) restrict the sample size to start from 1950, and a better fit is obtained.

3This chapter is coauthored with Anja De Waegenaere and Bertrand Melenberg.
4logit x = log x

1−x for x ∈ (0, 1).
5Besides the linear extrapolation models, there are other classes of mortality models, see, for example,

Börger (2009), Börger et al. (2013), Miltersen and Persson (2005), Bauer et al. (2010), Plat (2011),
and Börger (2010). However, these models have more complex structures and are not considered in this
chapter.
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Chapter 2: The Choice of Sample Size

Baran et al. (2007) forecast the mortality rate of the Hungarian population from 2004

to 2040 using the Lee-Carter model based on mortality data from 1949 to 2003. As a

result, the forecasted mortality rates for males from age 45 to 55 are increasing, which

does not seem to be reasonable. However, when they apply the Lee-Carter model with

data from 1989 to 2003, both forecasted mortality for males and females are decreasing.

Cairns et al. (2006) apply the CBD model to the England & Wales male data, and get

significantly different forecasts when using data from 1961 to 2002 than when using data

from 1981 to 2002. See Pitacco et al. (2009) and van Berkum et al. (2013) for more

thorough summaries.

In this chapter, we aim to answer the following question: If one wishes to fit some

linear mortality model to some data set, what sample size should one choose? To an-

swer this question, we propose a Bayesian learning approach to determine model-specific

posterior distributions of the sample size for a class of linear mortality models.6 In par-

ticular, the sample size is included as an extra parameter into the parameter space of

the mortality model and its (conditional) posterior distribution is updated based on the

historical performance for different forecast horizons. Briefly speaking, we first choose a

set of sample sizes, estimate the mortality model based on each of the sample sizes, then

perform the out-of-sample forecast for different forecast horizons using each model. A

sample size receives a larger posterior probability mass if the corresponding model yields

a larger likelihood in the out-of-sample forecast; this can be seen as a weighted average

of the in-sample fit and the out-of-sample forecast performance.

First of all, this chapter contributes to the literature on sample size determination

for mortality forecasting. Despite its importance, only few studies focus on this topic.

Booth et al. (2002) provide tests for the optimal sample size of the Lee-Carter model.

Denuit and Goderniaux (2005) model the time effect in the Lee-Carter model as a linear

function of time, and look for a sample size such that the adjustment coefficient R2

is maximized. O’Hare and Li (2012) and van Berkum et al. (2013) study structural

changes in mortality rates using several mortality models. In these studies, the authors

first estimate a particular model, and then detect structural breaks in the implied latent

6There is an extensive literature on the topic of Bayesian sample size determination, such as Adcock
(1997), De Santis (2004), Wang and Gelfand (2002), and Weiss (1997), to name a few. However, the
focus of these studies is different from our focus, including, for example, determining the minimal sample
size such that a hypothesis test has enough power or a desired estimation precision can be achieved.

6



Introduction

time process. A common feature of the existing literature is that it looks for a sample size

for which the implied time effect process is close enough to linear so that the underlying

model specification is considered to be valid.

Our method has several advantages compared with the existing studies. First, our

method allows for an age-specific posterior distribution of the sample size, while using

data of all ages in the estimation. All the aforementioned studies determine the optimal

sample size by focusing at the underlying latent time process. Since this time process is

an aggregation of the time effects of the different ages, no age-specific information can be

elicited from it.In our model, age- and gender-specific posterior distributions of sample

sizes can be naturally computed, while data for both genders and multiple ages are used

in the estimation and learning process. Second, we look at the choice of sample size in

a probabilistic way, and thus avoid sharp transitions in the use of data. In O’Hare and

Li (2012) and van Berkum et al. (2013), structural breaks are allowed to exist. If such

a structural break is detected, then only data after this break should be used and data

before the new break will be discarded. In contrast, our method results in a smoother

transition in the use of data when facing a structural break (or other nonlinearities):

When using a Bayesian learning method, a break gains more and more posterior weight

only when more and more subsequent observations support its existence. (We provide

more concrete illustrations via simulation in Section 5.) Third, by choosing different

out-of-sample forecast horizons in the updating process, we may gain better insights in

the suitability of different mortality models. Insensitivity of the posterior distribution

of the sample size to the forecast horizon can be seen as an indicator that the mortality

model is suitable as a forecast model: The selected sample seems to support the linearity

assumption of the model. However, sensitivity of the posterior distribution of the sample

size to the forecast horizon suggests that the linearity assumptions does not fit the data

well, so that the mortality model is not likely to be suitable as a forecast model.

This chapter also contributes to the literature of Bayesian mortality modeling. As will

be discussed later, our method consists of two parts: Estimating the underlying mortality

model for a fixed sample size, and estimating the posterior distribution of the sample

size. There are many existing studies focusing on the first part, i.e., the Bayesian analysis

of mortality models for a fixed sample size. For example, Pedroza (2002), Pedroza

(2006), Czado et al. (2005), Reichmuth and Sarferaz (2008), Kogure et al. (2009), and

7



Chapter 2: The Choice of Sample Size

Kogure and Kurachi (2010) study the Bayesian modelling of the Lee-Carter model and

its several extensions. Moreover, Cairns et al. (2011) propose a Bayesian estimation

method for a two population mortality model. For the Bayesian mortality modelling,

given a fixed sample size, our method extends the state space formulation proposed by

Pedroza (2002) and Pedroza (2006) to a more general setup. Also, correlations among

multiple populations are explicitly allowed for. Our formulation is applicable to various

existing linear mortality models, such as most model specifications studied in Cairns

et al. (2009). (More details are discussed in Section 4.)

Although our method has a wide applicability, we mainly focus on the original Lee-

Carter and the CBD model with the underlying time effect process modeled by a random

walk with drift. The reason is that the simplicity of these model specifications allows us

to demonstrate our approach in a clearer way. We apply our method to U.S. and Dutch

data, and find quite concentrated posterior distributions for most combinations of age,

gender, forecast horizon, and country for both mortality models, where these posterior

distributions turn out to be age- and gender-specific. We also compare the out-of-sample

forecast performance of the Bayesian models and the original models with the optimal

Deviance Information Criterion (Spiegelhalter et al. 2002) ratios for the Dutch data.

In particular, the mean squared errors of the out-of-sample forecasts from 2000 to 2009

are compared. We find that the Bayesian models outperform the original models in the

majority of the cases.

The remainder of the chapter is organized as follows. In the next section a brief

introduction to the Lee-Carter model and the CBD model is provided. In Section 3 we

discuss the importance of sample size determination in more details. In Section 4 a formal

description of the Bayesian model is given. In Section 5 we evaluate the performance of

our method with simulated data. Section 6 presents the empirical results. Key results

of the out-of-sample forecast is reported in Section 7. Section 8 presents the conclusion.

The appendix contains some technical details. Complementary results are presented in

an online appendix.
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2.2. Mortality models

In this section we introduce the notations used in this chapter and give a brief description

of the Lee-Carter (Lee and Carter 1992) and the CBD model (Cairns et al. 2006).

2.2.1. Notation

We construct an index, i, belonging to an index set I, with i = (x, t, g), where x, t,

and g ∈ {m, f} denote age, time, and gender, respectively. In other words, the index

i = (x, t, g) represents the group of individuals aged x at time t with gender g. For any

i = (x, t, g):7

� mi is the crude central death rate. Specifically, mi = Di
Ei

, where Di is the observed

number of deaths for i, and Ei the corresponding exposure.

� qi is the one year death probability, which can be approximated by the crude death

rates via (see, for example, Pitacco et al. 2009)

qi ≈ 1− exp(−mi). (2.1)

� M is the set of the stochastic mortality models considered.

� J ⊂ N is the set of sample sizes. For any J ∈ J , J is the length of the sample

period upon which we estimate a model. For example, if the end year is 1999,

then J = 30 means mortality data from year 1970 to 1999, and J = 20 means

mortality data from year 1980 to 1999. We denote Jmin = min{J ∈ J } and

Jmax = max{J ∈ J }.

� ΘM is the set of parameters for the stochastic mortality model M ∈M. Moreover,

we define ΘM = Θ̃M × J , where Θ̃M is the space of parameters except for the

sample size. The structure of ΘM is model-specific, i.e., its composition varies with

the stochastic mortality model. In the Appendix, we specify the parameter sets for

the Lee-Carter model and for the CBD model.

7We use notations such as qx,t,g and qi interchangeably, according to the specific context. There is
no difference in their meaning.
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2.2.2. The stochastic mortality models

We focus on two most widely used stochastic mortality models: the Lee-Carter model

(Lee and Carter 1992) and the CBD model (Cairns et al. 2006). Therefore, we have

M = {LC,CBD}. In particular, we restrict ourselves to the case where the underlying

latent time process follows a random walk with drift.8 For each model, we fit the model

to both the male and female population, where correlation between these two populations

are explicitly modeled. A brief description of the two models is provided next.

Lee-Carter model

The Lee-Carter model postulates that, for any i = (x, t, g), the central death rate mi is

given by

lnmi = αx,g + βx,gκt,g + εi, εi
i.i.d∼ N (0, σ2

x,g), (2.2)

where εi is the corresponding error term, and N (0, σ2
x,g) is the normal distribution with

mean 0 and variance σ2
x,g. We model the two time varying parameters κt = [κt,m, κt,f ]

′

as a random walk with drift process

κt = d+ κt−1 + ωt, ωt
i.i.d∼ N (0,Σω), (2.3)

where d = [dm, df ]
′, ωt = [ωt,m, ωt,f ]

′, and Σω is the covariance matrix of ωt. In order

to estimate the model, some normalization has to be imposed. In this chapter, we make

the same normalization as in the original paper:

∑
x∈N

βx,g = 1, and
∑
t∈TJ

κt,g = 0,

for g ∈ {m, f}, where N and TJ is the set of ages and years, respectively, where the

subscript J indicates the dependence of the time set on the underlying sample size.

8This restriction is mainly for expositional purposes. In Section 4 we discuss the class of models to
which the Bayesian sample size selection method can be applied.
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CBD model

For any i = (x, t, g), the CBD model (Cairns et al. 2006) postulates that the logit of the

one year death probability qi is given by

logit qi = log(
qi

1− qi
) = κ

(1)
t,g + κ

(2)
t,gx+ εi, εi

i.i.d∼ N (0, σ2
x,g), (2.4)

where we assume that the time varying parameters κt = [κ
(1)
t,m, κ

(2)
t,m, κ

(1)
t,f , κ

(2)
t,f ]′ follow a

random walk with drift process

κt = d+ κt−1 + ωt, ωt
i.i.d∼ N (0,Σω), (2.5)

where d = [d1,m, d2,m, d1,f , d2,f ]
′, ωt = [ω

(1)
m,t, ω

(2)
m,t, ω

(1)
f,t , ω

(2)
f,t ]
′, and Σω is the covariance

matrix of ωt.

2.3. Sample size selection

If the mortality trend is linear, the choice of sample size is simple: We should use the

largest sample size we can (from a statistical point of view). However, when the mortality

trend is not linear, the problem becomes more complicated. For example, if the mortality

data consists of two clear linear segments with different slopes, i.e., there is an obvious

structural break, then we should probably only use the data after the break. However, if

the mortality trend is, for example, accelerating, or there seems to be a structural break

near the end of the sample, i.e., only few observations are available after the suspectable

break, then it is not obvious which sample size one should use. In such cases, it is not

clear, compared with the more recent data, how relevant the older data is to forecasting

the future. A sample size yielding better in-sample fit does not necessarily produce better

forecasts.

2.3.1. Importance of sample size

In this subsection, we illustrate the potential importance of the choice of sample size.

Figure 2.1 displays the best estimates of the expected remaining lifetime for the U.S. and

11



Chapter 2: The Choice of Sample Size

the Dutch population of age 65 in 2010 and 2009, respectively.9 The estimates are based

on the Lee-Carter model using different sample sizes. In the figure we plot the starting

year of the sample on the horizontal axis. In each case, the end year of the sample is

T = 2010 for U.S. data, and T = 2009 for Dutch data. Hence, the corresponding sample

size J equals J = T− starting year +1.We can see that the estimated expected remaining

lifetimes for both genders in both countries increase significantly as the sample size

decreases. In particular, as the sample size decreases from 40 to 10 years, the estimated

expected remaining lifetime increases by about 7.2% and 6.7% for the U.S. and the

Dutch male population, and 4.7% and 2.7% for the female population, respectively. We

see that the forecasts of the Lee-Carter model are sensitive to the underlying sample size.

Therefore, the role of sample size determination is not negligible.

1970 1980 1990 2000

17,6

18,4

19,2

20 Netherlands
US

(a) Male

1970 1980 1990 2000

20,6

21,2

21,8

22,4

Netherlands
US

(b) Female

Figure 2.1: The expected remaining lifetime for the U.S. and the Dutch population of
age 65 in 2010 and 2009, respectively. The left figure reports the result for the male

population and the right figure for the female population. The calculations are based
on the Lee-Carter model using different sample sizes. The x-axis denotes the starting
year of the sample. The end year for the U.S. and the Dutch population are 2010 and

2009, respectively.

2.3.2. Existing methods to select a sample size

Booth et al. (2002) propose a method to find the optimal sample size for the Lee-Carter

model, where the optimal sample size identifies the largest sample size for which the

estimated κ introduced in Section 2 is reasonably close to a linear process. In particular,

the authors first compute for each sample size a measure to quantify the total lack of fit

caused by treating the κ process as a fitted linear process, Stotal, together with the base

9The end years we use are the most recent years for which data is available for these two countries.
The best estimates of the expected remaining lifetime are obtained by extrapolating the κ process,
setting the error terms equal to zero.
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lack of fit caused by using the estimated κ-s, Sbase. Since Stotal includes additional lack

of fit compared to Sbase, the ratio Stotal/Sbase will be larger than or equal to one for all

sample sizes, and the closer this ratio is to one, the closer the κ process is to linear.

Booth et al. (2002) apply their method to Australian data, and find a clear choice

of starting year at around 1968. We apply their method to Dutch and U.S. data. The

results are reported in Figure 2.2. From the figure, we see a sharp drop of the ratio at

1965 for the U.S. male. However, for U.S. females and both Dutch males and females,

the choice of the sample size is not obvious. For the U.S. female, a sharp drop happens

at 1974, but the ratio is not stable afterwards. For the Dutch population, the ratios

are increasing with the sample size, indicating that the decrease of the mortality rate is

probably accelerating for both genders. Therefore, for the U.S. female and the Dutch

data, clear conclusions regarding the choice of sample size cannot be drawn from the

method of Booth et al. (2002), and other methods of determining the sample size seem

to be needed.
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Figure 2.2: The application of the method in Booth et al. (2002) to the Dutch and the
US data. Data from age 21 to 89 and year 1950 to 2009 is used for the Netherlands,

and from year 1950 to 2010 is used for the U.S.. The horizontal axis denotes the
starting year of the sample.

An alternative approach would be to choose the sample size that yields the minimal

DIC (Deviance information criterion) ratio. DIC is a Bayesian version of the AIC (Akaike

information criterion) and BIC (Bayesian information criterion), see, e.g., Spiegelhalter

et al. (2002). Similar to AIC and BIC, it offers a relative estimate of the information lost
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when a given model is used to represent the process that generates the data. As such,

it provides a means for model selection. The details of this approach are explained in

the Appendix. In Section 7, we will compare the out-of-sample forecast accuracy when

sample size is determined based on DIC, to the out-of-sample forecast accuracy resulting

from the Bayesian sample selection method that we propose in this chapter.

2.4. The Bayesian model

In this section, we give a brief introduction to the Bayesian learning approach that we

propose. Throughout the remainder of the chapter, we will use the notation [t1 : t2] =

{t1, t1 + 1, · · · , t2 − 1, t2}, for t1 ≤ t2 ∈ N.

Let mortality model M ∈ M be given, and suppose that we have at our disposal a

set of mortality data indexed by [T0 : T ], i.e., T0 is the starting year of our sample, and

T is the last year for which data is available. For each t ∈ [T0 : T ], we denote by yt the

mortality quantities at time t.10 Moreover, we let Yt be the observed mortality quantities

up to time t, i.e., Yt ≡ {yT0 , yT0+1, ..., yt} = y[T0:t].

The method that we propose allows to determine age- and gender-specific posterior

distributions of the sample size. In such cases, yt equals the mortality quantities for

specific age- and gender-groups only.

2.4.1. The basic idea

The basic idea of the Bayesian learning approach is that part of the latest in-sample

data is reserved for Bayesian learning, y[T̃ :T ] for T̃ ≤ T . We first choose a set of sample

size, and update the posterior distribution of the sample size based on the likelihood of

the data used for learning. For any given mortality model M ∈ M, the procedure is as

follows:

1. Choose:

(a) a set of sample sizes, J ,11

10The mortality quantities will be model dependent: yt includes the log of the central death rates for
the Lee-Carter model and the logit of the one year death probabilities for the CBD model.

11The set of sample sizes can in principle depend on the underlying mortality model. However, for
the purpose of comparison, we impose the same set of sample sizes for each mortality model and for the
same data set.
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(b) a prior distribution over the set J ,

(c) a forecast horizon µ ∈ N,

(d) a value for T̃ ∈ [T0 : T ]; T̃ is the first year in which the prior distributions of

the model parameters and the sample size will be updated.

These choices should satisfy

Jmax + µ ≤ T̃ − T0 + 1. (2.6)

Condition (2.6) ensures that for all sample sizes in the set J , both the data that

is needed to estimate the model, and the data that is needed for the Bayesian

updating of the prior distributions in year T̃ using a forecast horizon of µ years,

are included in the sample period [T0 : T̃ ].

2. Apply the Bayesian learning approach. This learning approach is illustrated in

Figure 2.3.

(a) For each J ∈ J , estimate (the posterior distribution of the parameters of) the

model in year T̃ , based on the sample y[T̃−µ−J+1:T̃−µ]. See line (a) in Figure

2.3.

(b) Derive the posterior predictive distribution of yT̃ , and update the posterior

distribution of J ∈ J , based on the corresponding likelihood with respect to

yT̃ .

(c) Forward by one period. Estimate the model based on the sample y[T̃−µ−J+2:T̃−µ+1]

for each J ∈ J , and update the posterior distribution of J in year T̃+1, based

on the corresponding likelihood of yT̃+1. See line (b) in Figure 2.3.

(d) Continue the process until the final step, where the update is based on the

likelihood of yT . See line (c) in Figure 2.3.

To illustrate the procedure, we give a concrete example. Let [T̃ : T ] = [1991 : 2010],

i.e., consider the Bayesian learning approach where a period of 20 years is used for the

updating procedure. Also, let the forecast horizon be µ = 20 and let the set of sample

sizes be J = {10, 11, · · · , 39}. Hence, the updating process starts at T̃ = 1991. To
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derive the posterior predictive distribution of y1991, we estimate the model based on the

sample y[1962:1971] for J = 10, based on the sample y[1961:1971] for J = 11, and so on up to

J = 39 based on the sample y[1933:1971]. We use these estimates to derive the posterior

predictive distribution of y1971+µ = y1991, and to update the posterior distribution of

J ∈ J . We then repeat this procedure for the cases where the end year of the sample

period used for estimating the model is 1972, 1973, and so on until 1991 in the final step.

Ty J0T
y Ty



J



T+1y  Ty

Ty


J

(a)

(b)

(c)

0T
y

0T
y

1T~y  J

2T~y  J

1Ty  J

Figure 2.3: A brief illustration of the updating procedure of the method.

To sum up, for any given model and forecast horizon, µ, we update the posterior

distribution of the sample size at each step based on the likelihood of the observed data

µ years ahead. Our method can be performed using only one µ, but the use of multiple

µ-s can give extra flexibility. For example, the posterior distribution for a smaller µ

can be used if one is interested in short-term forecasting, and the posterior distribution

for a larger µ can be used if one is interested in long-term forecasting. Alternatively,

the use of different µ-s can serve as a diagnostic test. If for a model M the posterior

distributions of the sample size turn out to be insensitive to different µ-s, this might be

seen as evidence supporting the use of model M as a forecast model. In contrast, if the

posterior distributions are sensitive to the change of µ, namely, the model seems to be

too sensitive to the nonlinearities in the data, then it might not be suitable to be used

as a forecast model.
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2.4.2. The posterior sample size distribution

In this section, we discuss how, starting from a prior distribution for the sample size, the

posterior distribution can be determined in each step of the Bayesian learning process

described in the previous subsection.

Recall that T̃ is the first year in which the probability distribution of the parameters

θM is updated. Formally, for each M ∈M, we can write the joint posterior distribution

of the parameters θM = (θ̃M , J) in year t ≥ T̃ , given any age x, gender g, and forecast

horizon µ as

p(θ̃M , J |Yt, x, g, µ,M) = p(θ̃M |Yt, J, x, g, µ,M) · p(J |Yt, x, g, µ,M). (2.7)

In particular, our primary interest is in p(J |Yt, x, g, µ,M). This posterior density is

estimated by using an iterative updating algorithm. First, for every x, g, and µ, we

specify the prior distribution p(J |x, g, µ,M). Suppose that we are at time t and we know

p(J |Yt−1, x, g, µ,M). Given J, we estimate the conditional posterior distribution of θ̃M

using data y[t−µ−J+1:t−µ]. This posterior distribution is denoted by p(θ̃M |Yt, J, x, g, µ,M).

Then, we update p(J |Yt−1, x, g, µ,M) to p(J |Yt, x, g, µ,M) using Bayes’ formula

p(J |Yt, x, g, µ,M) ∝ p(yt|Yt−1, J, x, g, µ,M) · p(J |Yt−1, x, g, µ,M), (2.8)

for each J , where

p(yt|Yt−1, J, x, g, µ,M)

= Eθ̃M [p(yt|θ̃M , Yt−1, J, x, g, µ,M)]

=

ˆ
Θ̃M

p(yt|θ̃M , Yt−1, J, x, g, µ,M) · p(θ̃M |Yt−1, J, x, g, µ,M)dθ̃M . (2.9)

We continue the updating procedure until we obtain p(J |YT , x, g, µ,M). At every t ≥
T̃ + 1, we treat the posterior distribution at t− 1 as the corresponding prior distribution

at t for every J , x, g, µ, and M . For the first year in which the density is updated, i.e., for

t = T̃ , p(J |Yt−1, x, g, µ,M) in (2.8) is replaced by the prior distribution p(J |x, g, µ,M).

To sum up, at every time t ≥ T̃ , we first estimate the conditional posterior dis-

tributions p(θ̃M |Yt, J, x, g, µ,M), and use them to update the corresponding posterior
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distribution of the sample size. Because we have no knowledge about the weights of the

sample size ex ante, we let the prior distribution be uniform in most of our analyses.

In Subsection 6.2, we show that the posterior distributions of sample size are relatively

insensitive to the choice of prior distribution.

Estimation of p(θ̃M |Yt, J, x, g, µ,M)

Because p(θ̃M |Yt, J, x, g, µ,M) is the posterior distribution of the rest parameters given

a sample size, standard techniques of Bayesian dynamic modeling can be used. In this

section we propose a general state space formulation which incorporates most existing

linear mortality models. This is the class so-called Time Varying-Vector Auto Regressive

(TV-VAR) models, see, for example, Damien et al. (2013) for a more detailed overview.

Formally, suppose we have at our disposal a set of mortality quantities, y[T0:T ], where

yt is a 2n × 1 vector for each t (containing n ages for both gender), and we would

like to estimate (the posterior distribution of) θ̃M in year T̃ . Given J and µ, we use

data y[T̃−µ−J+1:T̃−µ] in the estimation. Furthermore, assume that the yt process can be

modeled as

yt = BtXt + F ′tzt + εt, εt ∼ N(0,Σε), (2.10)

zt =
∑
i=1:p

Gt,izt−i + ωt, ωt ∼ N(0,Σωt), (2.11)

where, moreover, εt and ωt are allowed to be correlated with each other for every t ∈
[T̃ − µ − J + 1 : T̃ − µ], but where εt and ωt are assumed to be independent of εs

and ωs with s ∈ [T̃ − µ − J + 1 : t − 1]. Model (2.10) – (2.11) includes, for example,

all model specifications studied in Cairns et al. (2011) except for M2A and M3B.12 In

model (2.10) – (2.11), the parameter vector θ̃M is a vector consisting of the components

of Bt, Xt, Ft, [Gt,i]i=1:p, Σωt , zt, and Σεt , for t ∈ [T̃ − µ − J + 1 : T̃ − µ]. Specifically,

Xt is often a time-invariant matrix, such as the αx-s in the Lee-Carter model; zt is a

vector representing the period effects and the cohort effects; Bt, Ft, and Gt are the

corresponding parameters that could either be matrices or vectors, and are often time-

invariant. Equation (2.11) is the vector-latent autoregressive process for the period effects

and the cohort effects. The dimensions of Xt, zt, Bt, Ft, and
∑

i=1:pGt,i depend on the

12The specifications M2A and M3A in Cairns et al. (2011) include a moving averaging part in the
cohort effect process, and are thus not included in the TV-VAR formulation.
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underlying model specifications.

Take the Lee-Carter model for example: in this case p = 1, Bt = In for all t,

Xt = [a1,m, a2,m, ..., an,m, a1,f , a2,f , ..., an,f ]
′ for all t,

Ft =


b1,m b2,m ... bn,m 0 0 ... 0

0 0 ... 0 b1,f b2,f ... bn,f

0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0


for all t, zt = [κt,m, κt,f , dm, df ]

′,

Gt,1 =

 1 0 1 0

0 1 0 1


for all t, and ωt = [ωt,m, ωt,f ]

′. Also, εt is the vector of error terms, Σε is a diagonal

matrix, and Σωt = Σω for all t.

In general, model (2.10) – (2.11) can be estimated using numerical algorithms. The

estimation can be done in two steps. First, the posterior distributions of zt at each

time t can be obtained by backward filtering, see West and Harrison (1997) and Damien

et al. (2013). Second, we can specify the conditional posterior distributions of other

parameters. For example, one can specify the posterior distribution of Σε (conditional

on the other parameters) to be a Wishart distribution, etc. After all conditional posterior

distributions of these other parameters are specified, we can estimate them, together with

the posterior distribution of zt-s, by the Gibbs sampler. This estimation algorithm is

applicable to most existing mortality models. An example can be found in Pedroza

(2006), who fits model (2.10) – (2.11) to a single gender Lee-Carter model. A detailed

sampling procedure of the models used in this chapter can be found in the Appendix.

Estimation of p(J |Yt, x, g, µ,M)

Suppose that we have already estimated model (2.10) – (2.11), and have N draws of the

parameters θ̃M for each J ∈ J . Denote the sample analogue of p(yt|Yt−1, J, x, g, µ,M)
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in Equation (2.9) by pN(yt|Yt−1, J, x, g, µ,M). Then we have

pN(yt|Yt−1, J, x, g, µ,M) ∝ 1

N

N∑
`=1

p(yt|θ̃(`)
M , Yt−1, J, x, g, µ,M), (2.12)

where θ̃
(`)
M is the `-th draw of θ̃M . Then p(J |Yt, x, g, µ,M) can be estimated when we

substitute (2.12) into Equation (2.8), together with the estimate of p(J |Yt−1, x, g, µ,M)

if t > T̃ , or with the uniform prior distribution p(J |x, g, µ,M) if t = T̃ .

2.5. Illustration of posterior distribution of sample size via simulation

In this section, we apply our method to three specific hypothetical scenarios to see what

posterior distributions of the sample size we would obtain in each of these scenarios. In

the first two scenarios we impose a linear structural break in the data – a break in the

middle of the sample and a break near the end of the sample, respectively. Structural

breaks in the middle and at the end of the sample are relevant in practice. For example,

van Berkum et al. (2013) test multiple structural breaks in the Dutch male data for

the years [1950 : 2008] using the Lee-Carter model, and detect breakpoints at year 1970

and 2002. Posterior distributions of sample size with clear peaks are found in these two

scenarios. Besides linear structural breaks, sometimes there might exists accelerating

trends in historical mortality data, which make the detection of linear structural breaks

difficult. To incorporate this situation, we consider an accelerating trend in mortality

rates in the third scenario. Posterior distributions of sample size with clear peaks are

also found.

The basic idea is as follows. We simulate hypothetical true data, using a certain model

specification. We then apply the Bayesian learning approach to determine the posterior

sample size distribution. We allow for cases where in the Bayesian learning approach,

the user uses a model specification that is different from the model specification that

was used to simulate the data. For expositional purposes, we present results only for

the case where the data is simulated based on the CBD model specification, whereas

the Bayesian learning approach assumes the Lee-Carter model.13 When simulating the

13We have also considered cases where the true data is generated with Lee-Carter, and the Bayesian
learning procedure assumes CBD, as well as cases in which there is no model misspecification. In each
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hypothetical true data, we impose trend breaks and an accelerating trend via a parabola

structure by adjusting the specification of the κ(1) process in the CBD model.

We study what posterior distribution of sample size our method would suggest for the

Lee-Carter model in each of these situations. We index the simulated data by the years

[T0 : T ] = [1 : 70], and use a period of 20 years to update the posterior distributions, i.e.,[
T̃ , T

]
= [51 : 70]. Also, we choose J = {10, 11, ..., 50}.

2.5.1. Early linear trend break

Figure 2.4a shows the simulated one year death probabilities based on the CBD model

for Dutch males aged 51 to 60 with a linear structural change at year 30. The starting

year of the simulated data is 2009. In particular, we impose the following structure on

κ
(1)
t,m:

κ
(1)
m,t+1 = κ

(1)
m,t + d1 + ωt, if t ≤ 30, and

κ
(1)
m,t+1 = κ

(1)
m,t + 4× d1 + ωt, if t > 30, (2.13)

with ωt
i.i.d∼ N(0, σ2

ω). The parameter values for d1 and σω are obtained by fitting the

original CBD model to the Dutch male data aged 0 to 90 and years 1970 to 2009. This

yields d̂1 = −0.0204 and σ̂2
ω = 0.00063. We update the posterior distribution using

simulated data from [51 : 70]. The results are shown in the first row in Figure 2.5. The

horizontal axis denotes the starting year. The sample size corresponding to a certain

starting year and forecast horizon µ is computed in the same way as in Figure 2.1: J

= 70− µ− starting year +1. For example, for µ = 10, the starting year 30 is equivalent

to a sample size of 31 years (30 to 60). We see that the posterior distributions become

flatter and flatter, and the peak of the posterior distribution shifts from around 30 to

around 40 as µ decreases from 20 to 1. The reason is that we update the posterior

distribution based on the likelihood with respect to data µ years ahead. Therefore, for a

smaller µ it is more difficult for the model to distinguish between random variations and

the underlying trend in the data, and thus the posterior distributions are less informative.

Moreover, data before year 30 receives only small probability mass for all µ-s, meaning

that data before the break is considered not informative and is therefore discarded. In

other words, the existence of the structural break is detected by our method.

of these cases, the results are similar to the ones presented in this section.
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Figure 2.4: Panel 2.4a and 2.4b display the simulated data based on the CBD model
with a linear structural break at year 30 and 60, respectively. Panel 2.4c display the
simulated data with an accelerating trend. The parameters of the CBD model are

estimated using age 0 to 90 and years 1970 to 2009. The starting values of the
simulated data are Dutch males aged 51 to 60 in 2009. Panel 2.4d reports the results of

the method from Booth et al. (2002) to the non-linear simulated data.
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2.5.2. Late linear trend break

Figure 2.4b shows the simulated one year death probabilities based on the model speci-

fication as in (2.13), but now with the break date at 60. Again, we update the posterior

distribution using the sample [51 : 70], which means that we have only 10 observations

after the trend break.

The results are shown in the second row in Figure 2.5. Since we have only 10 obser-

vations after the break, the forecast horizons 15 and 20 years are not informative. The

interpretation of the results is as follows. For µ = 10, the end of sample in the last up-

date is year 60. In other words, no data after the break is used. In this case, any choice

of sample size yields a similar future mortality trend. However, models based on larger

sample sizes yield a better in-sample fit, and thus receive a larger probability mass. For

µ = 5 and µ = 1, the end-of-sample in the final update is after the break, namely 65

and 69, respectively. Therefore, the model based on a shorter sample size yields more

precise forecasts. From the results, we see that shorter sample sizes receive more and

more probability mass as we change from µ = 10 to µ = 1, meaning that our method

detects the existence of the structural break. However, sample sizes of 40 to 50 years

still receive most probability mass, because very short sample sizes may yield a poor fit.

The result in this case study indicates how our method treats a recent structural

break. When a structural break is detected, our method would not immediately suggest

to use only data after the break. Instead, the posterior distribution shifts gradually in

favor of the break as more and more supportive data is observed. When there are enough

observations after the break, as in Section 5.1, the posterior distributions become more

robust to different µ-s, and suggest that only data after the break should be used.

2.5.3. Accelerating mortality trend

Figure 2.4c shows the simulated data using a CBD model with nonlinear mortality trends.

In particular, we impose

κ
(1)
m,t+1 = a×

(
κ

(1)
m,t

)2

+ κ
(1)
m,t + d1 + ωt, ωt

i.i.d∼ N(0, σ2
ω), (2.14)

with, similarly, d1 = −0.0204 and σ2
ω = 0.00063. Also, we set a = −0.0075. The value of

a is chosen so that the simulated data has a visual indication of an accelerating trend.
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Again, we update the posterior distribution based on the simulated data [51 : 70].

In the case of an accelerating mortality trend, all linear models are misspecified.

Figure 2.4d reports the application of the method from Booth et al. (2002) to the

data in this case. We see that the ratio Stotal/Sbase (as defined in Section 3.2) increases

substantially with sample size, thus the Booth’s method would suggest the use of the

shortest sample size possible in this case. The use of a very short sample size is not

desirable, since it may produce estimations and forecasts that are very sensitive to noises

in the data. To the contrary, the results in the bottom row in Figure 2.5 show that

posterior distributions with clear and concentrated peaks are obtained for all forecast

horizons except for µ = 1, and the posterior means of the sample size are of reasonable

lengths (around 30 years for µ = 10 and 25 years for µ = 20). The reason is that, in our

method, models with smaller sample sizes in general yield more precise point forecasts

but poorer fits (larger variances, etc), and our method is able to identify the sample sizes

which yield the best balance between the in-sample fit and the out-of-sample forecast

performance. However, compared with Section 5.1, we see that the posterior distribution

are flatter in this situation, indicating that the accelerating trend indeed leads to more

ambiguous choice of sample size.
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Chapter 2: The Choice of Sample Size

2.6. Empirical results

In this section, we derive posterior distributions for the sample size for the mortality rates

of the Dutch and the U.S. population. Specifically, we use the one year mortality rates

from 1911 to 2009 for the Dutch population and 1933 to 2010 for the U.S. population,

i.e., T0 = 1911 for the Dutch case and T0 = 1933 for the U.S. case. For both data

sets, we use ages 21 to 89 to fit the Lee-Carter model, and age 60 to 89 to fit the CBD

model. Because the Dutch mortality data is available for a longer period, we choose the

updating period to be 1980 to 1999, and preserve the last 10 years for the out-of-sample

forecast analysis (presented in the next section). However, the U.S. mortality data is

not long enough, so we use 1991 to 2010 for the updating, and no out-of-sample forecast

is performed. Thus, [T̃ : T ] is [1980 : 1999] for Dutch data and is [1991 : 2010] for

U.S data. Moreover, we set JDutch = {10, 11, ..., 50}, JUS = {10, 11, ..., 39}. For both

countries, we determine posterior distributions for the sample size based on forecast

horizons µ ∈ {1, 5, 10, 15, 20}. Due to the limitation of space, we report only the results

for male data.14

2.6.1. Uniform prior

Figure 2.6 reports the conditional posterior distribution of the sample size for Dutch

male data. The figure shows that the posterior distributions of the sample sizes can be

different for different age and model combinations. Similar to the simulation case studies,

we see that in general the posterior distributions become more and more concentrated

as µ increases.

For the CBD model, we see that the posterior distributions are consistent for all

µ-s: most probability mass falls within the starting years [65 : 70], especially for µ ∈
{5, 10, 15, 20}. Moreover, the starting years with high probabilities are similar across

ages. For the Lee-Carter model, we see that data before the year 1965 receives almost

no probability mass, which is in line with the CBD model. However, the posterior

distributions for the Lee-Carter model are much more sensitive to the change of µ-s.

Figure 2.7 reports the posterior distributions for the U.S. male population. For the

CBD model, the starting years which receive high posterior probabilities are earlier for

14The results for female data are available upon request.
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the older ages. This result holds for all µ-s. Moreover, the peaks of the posterior

distributions for the CBD model move forward as µ decreases, instead of being relatively

insensitive to changes in µ as in the Dutch case. One possible explanation is that there

exists a cohort effect in the US data. In particular, younger ages have different mortality

patterns than older ages, and these patterns are better captured by more recent data.

The CBD specification that we use does not model the cohort effect explicitly, and thus

treats it as a kind of nonlinearity. As a result, the peak of the posterior distributions

might be more sensitive to the changes in µ, which indicates a larger degree of model

misspecification. In fact, the existence of a cohort effect in the U.S. data is also confirmed

by Cairns et al. (2009).

From Figures 2.6 and 2.7, we see that, especially for the Lee-Carter model, the

posterior distributions of the sample size are age-specific. This observation is in contrast

to the existing sample size determination studies, where typically a single sample size is

chosen to estimate the mortality model for all ages. In fact, if such age heterogeneity

exists, then one may overlook relevant age-specific information when choosing a single

sample size. As an illustration we consider the method by Booth et al. (2002) who

determine an optimal sample size from the κ process of the Lee-Carter model. As a

sensitivity test, we apply this method to three sub-age groups of the U.S. population.

The three groups are [21 : 40], [41 : 60], and [61 : 90]. Results are reported in Figure 2.8.

We see that while the optimal starting years for the female population are consistent for

all three sub-age groups, the optimal starting years for the male population are different.

In particular, the optimal starting years for the age group [41 : 60] and [61 : 90] are

in mid 1970s and 1960s, indicating that the older ages have an earlier optimal starting

year. Moreover, the optimal starting year for the age group [21 : 40] cannot be clearly

determined for the male population. Therefore, it seems to make sense to be careful

when determining a single starting year for a wide range of ages.
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Chapter 2: The Choice of Sample Size

(a) U.S. Age [21 : 40] (b) U.S. Age [41 : 60] (c) U.S. Age [61 : 90]

Figure 2.8: The application of the method in Booth et al. (2002) to the sub age groups
of the U.S. data. The three sub age groups are [21 : 40], [41 : 60], and [61 : 90],

respectively.

2.6.2. Sensitivity with respect to the prior distribution

In this section, we examine the effect of the choice of prior distribution on the cor-

responding posterior distributions. Due to limitation of space, we report the results of

three forecast horizons, 1, 10, and 20 years, for the Lee-Carter model using Dutch data.15

The results for forecast horizons 5 and 15 years are similar.

For the sensitivity analysis, we consider five sets of prior distributions. Specifically,

for each given (x, g, µ,M), we consider p(Ji+1|x, g, µ,M) = a × p(Ji|x, g, µ,M), where

Ji+1 = Ji + 1 for all i with J1 ≤ Ji ≤ Jmax−1, and a ∈ { 1
1.2
, 1

1.1
, 1, 1.1, 1.2}. In other

words, we look at prior distributions for which the prior probability mass increases (de-

creases) with the sample size. The choices of a allow for great discrepancy among sample

sizes. In particular, we have p(Jmax|x, g, µ,M) ≈ 50p(Jmin|x, g, µ,M) when a = 1.1, and

p(Jmax|x, g, µ,M) ≈ 1764p(Jmin|x, g, µ,M) when a = 1.2.

For each model-population-forecast-horizon combination, we

1. obtain the posterior distribution with different prior distributions for each age,

then take the average posterior distribution among all ages;

15We report the results for the Dutch case since Dutch mortality data appears to be more non-linear
than the U.S. data, and is more sensitive to the choice of prior distribution. The results for the Lee-
Carter model using U.S. data, and for the CBD model using both data sets are available from the
authors upon request.
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2. compute the posterior mean, 5% quantile, and 95% quantile for the averaged pos-

terior distributions;

3. compare the sets of posterior mean and quantiles from all prior distributions.

In principle, we can compare the set of posterior mean and quantiles for all single

ages. However, the results are qualitatively the same for all ages, and we only report

results for the average posterior distribution for the sake of conciseness.

The results are reported in Table 2.1. The first observation is that, for all forecast

horizons, as smaller sample sizes receive larger (smaller) prior probability mass, the pos-

terior distribution shifts towards (away from) them. The shift direction of the posterior

distribution is consistent with the change of prior distribution. Second, the degree of

shift of the posterior distributions is rather small compared to the change of the prior dis-

tributions. In particular, as a changes from 1
1.2

to 1.2 (p(Jmax|x, g, µ,M) becomes about

311 thousand times bigger), the posterior mean and quantiles of starting years change

only from (1962, 1969, 1981) to (1977, 1987, 1990). This analysis indicates that the sam-

ple period is large enough to make the posterior distributions rather robust with respect

to the change of prior distributions. Moreover, as the forecast horizon, µ, increases, the

posterior distribution becomes more stable. Take the sample example discussed above,

but with µ = 20. The posterior distribution changes now from (1957, 1962, 1967) to

(1964, 1968, 1971). The degree of change is even much smaller than the change when

µ = 1. From the sensitivity analysis, we see that, given the sample period used, the

posterior distributions are rather robust to the choice of prior distributions investigated.
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Out-of-sample forecast

2.7. Out-of-sample forecast

After the posterior distributions p(θ̃M |Yt, J, x, g, µ,M) and p(J |Yt, x, g, µ,M) are ob-

tained for each {J, x, g, µ,M} combination, the corresponding posterior predictive dis-

tribution can be derived. For example, for a given (Yt, x, g, µ,M), we have

p(yx,t+1,g|Yt, x, g, µ,M) =∑
J∈J

ˆ
Θ̃M

p(yx,t+1,g|θ̃M , Yt, J, x, g, µ,M)p(θ̃M |Yt, J, x, g, µ,M)p(J |Yt, x, g, µ,M)dθ̃M .

(2.15)

Take the Lee-Carter model as an example. Suppose we have k = 1, 2, ..., K draws of θ̃LC

for each J and µ. Then we have

κ
(k)
t+1(J, µ, LC) ∼ N (κ

(k)
t + d(k),Σ(k)

ω ), (2.16)

and

y
(k)
x,t+1(J, µ, LC) ∼ N (α(k)

x + β(k)
x κ

(k)
t+1,Σ

(k)
εx ), (2.17)

where all parameters in the above equations are drawn from p(θ̃M |Yt, J, x, g, µ, LC), and

where the notation (J, µ, LC) emphasizes the dependence of the parameters upon the spe-

cific model, sample size, and forecast horizon.16 The posterior mean of yx,t+1(J, µ, LC) =

(yx,t+1,m(J, µ, LC), yx,t+1,f (J, µ, LC))′ is thus approximated by

ŷx,t+1,g(J, µ, LC) =
1

K

K∑
k=1

y
(k)
x,t+1,g(J, µ, LC), g ∈ {m, f}, (2.18)

and the weighted posterior mean, ŷx,t+1,g(µ, LC), is approximated by

ŷx,t+1,g(µ, LC) =
∑
J∈J

p(J |yt, x, g, µ, LC)× ŷx,t+1,g(J, µ, LC), g ∈ {m, f}. (2.19)

where we “integrate” out the sample size. We calculate the posterior predictive distribu-

tion similarly for the CBD model.

For the Bayesian model, the mean squared error for period [T+1 : T+S] is calculated

16In the sequel, notation such as (µ,LC) indicates an analogous dependence.
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as

MSE(x, g, µ,M) =
1

S

S∑
t=1

(ŷx,T+t,g(µ,M)− yx,T+t,g)
2, (2.20)

where yx,T+t,g is the observed mortality data at T + t for (x, g), and ŷx,T+t,g(µ,M) is the

posterior mean of yx,T+t,g according to model M and forecast horizon µ.

We perform the out-of-sample forecast for Dutch data for the period [2000 : 2009],

using both the Bayesian models and the original models with the sample size yielding the

minimal Deviance Information Criterion (DIC) ratio. The details of the DIC approach

are explained in the Appendix.

The sample size which yields the minimal DIC ratio is considered as the optimal one,

and is denoted by Jopt. In particular, an optimal sample size is computed for each (g,M)

combination.17 The comparison proceeds as follows. For each (g,M) combination, we

compute the mean squared error,

MSE(Jopt, x, g,M) =
1

S

S∑
t=1

(ŷx,T+t,g(Jopt, g,M)− yx,T+t,g)
2. (2.21)

In Equation (2.21), ŷx,T+i,g(Jopt, g,M) is the posterior mean of yx,T+i,g generated by

model M and the sample size with the minimal DIC, Jopt. The MSE-s generated in

(2.21) are then compared with those generated by the Bayesian models.

The Jopt-s are reported in Table 2.2. We see that the Jopt-s are quite similar for all

model-gender combinations. Moreover, they are rather small: They range from 10 years

to 14 years. Therefore, it seems that there exist non-linearities in the data, and the fits

of the linear Lee-Carter and CBD model deteriorate as the sample size increases. This

observation is in line with Figure 2.2a, where the fit of the method in Booth et al. (2002)

to Dutch data is plotted.

In Figure 2.9, we report the comparison of the normalized DIC ratios and the average

posterior distributions for Dutch males data with µ = 1, 10, and 20 using the Lee-

Carter model. The normalized DIC ratios are computed by first taking the negative

of the DIC ratios, then normalize them to sum up to 1. In this way, in contrast to

the original DIC ratios, the higher the normalized ratio, the better the corresponding

sample size. Moreover, the normalized DIC ratios can be also treated as a probability

17The forecast horizon does not play a role in the DIC method.
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Jopt male female
LC 1986 1990

CBD 1990 1990

Table 2.2: The optimal starting year under the DIC criterion for Dutch data. In each
entry, the first number is the optimal starting year for the males population, and the

second number the optimal starting year for the females population.

distribution of the sample size, and can thus be directly compared with the posterior

distributions. We see that, in all scenarios, the normalized DIC ratios are much flatter

than the corresponding posterior distributions, meaning that no particular sample size is

clearly better than others.18 This analysis indicates that, if we would like to determine

an optimal sample size based on DIC, the result is likely to be much more sensitive to

the possible noise in the data and the chosen sample period compared with the posterior

means generated by the Bayesian models. The results for the CBD model are similar

and therefore omitted.

Finally, from Figure 2.10, we see that the out-of-sample forecast performance from

the models with Jopt-s are dominated by the Bayesian model in the majority of cases. For

the females population, the Bayesian CBD model performs quite well. In particular, it

produces the smallest MSE-s for age 55 and 65, with all µ-s. For the males population,

both Bayesian models generate very small MSE-s for the age 85 with all µ-s. The

performance of the Bayesian models are between the two models with Jopt-s with µ ∈
{1, 10}, and are slightly worse than these two models with µ = 20. However, the posterior

distributions of the starting years derived with µ = 20 is more suitable for longer forecast

horizons. Therefore, the out-of-sample performance of 10 years does not necessarily mean

that the posterior distribution is not suitable to be used for forecasting further into the

future.

2.8. Conclusion

In this chapter, we studied the sample size determination of mortality forecasting. In

particular, the sample size is incorporated as an extra parameter into the parameter space

of the Lee-Carter model and the CBD model, and its conditional posterior distribution

18The degree of “flatness” is compared in a heuristic way. We do not formally define a scale of flatness.
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Figure 2.9: The comparison of the normalized DIC ratios (dashed line) and the
posterior distributions of sample size (solid line) for µ ∈ {1, 10, 20} for the Dutch males

population using the Lee-Carter model. We first take the negative of the DIC ratios,
and then normalized them so that they sum up to 1.

is updated based on historical performance for different forecast horizons. Our method

is applicable to many linear mortality models studied in the literature. We focused on

the first generation Lee-Carter and CBD model with the underlying latent time effect

modeled by a random walk with drift: The simplicity of these two models allows us to

illustrate our method more clearly.

We applied our method to Dutch and U.S. data, and found quite concentrated poste-

rior distributions of the sample size for most age, gender, and forecast horizon combina-

tions for both models and data sets. In particular, the posterior distributions of the CBD

model are more insensitive to the changes in forecast horizons than the ones from the

Lee-Carter model, indicating that the CBD model specification might be more robust

to nonlinearities in the data. Moreover, the posterior distributions for both models are

age- and gender-specific, meaning that using a single sample size for all ages might not

be optimal. In particular, for the CBD model we found that the posterior distribution

of the sample size is more concentrated around earlier starting years for older ages. One

possible reason is that there exists a cohort effect in the U.S. data: people in younger

ages have different mortality patterns than people in older ages, and these patterns are

reflected in more recent data. This finding is in line with Cairns et al. (2009).

We carried out an out-of-sample forecast analysis using Dutch data from 2000 to 2009.

In particular, we compared the out-of-sample performance using the Bayesian models and

the original models based on the sample size that gives the minimal Deviance Information

Criterion ratio. We found that the forecasts from the Bayesian models are more precise
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Figure 2.10: The mean squared errors of the out-of-sample forecasts for the Dutch
population aged {65, 75, 85} for the years 2000 to 2009. The mean squared errors are
calculated for the Lee-Carter and the CBD model based on the sample size with the

minimal DIC ratios (LC DIC and CBD DIC), as well as the Bayesian models (LC Baye
and CBD Baye). All mean squared errors are calculated in terms of logit q.
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than the forecasts from the original models in over half of the cases. Therefore, the

forecasts of the Bayesian model seem to be more robust than the ones based on the

optimal sample size under the traditional Deviance Information Criterion.

There are several directions for future research. First, it could be interesting to apply

our method to other mortality models, such as the models studied in Cairns et al. (2011).

Second, when more mortality models are included, it could be interesting to compare

the performance of each model-sample size combination, for example, using Bayes factors

(Kass and Raftery 1995). More insight of the mortality models and the choice of sample

size could be gained by doing this analysis. Third, a further model averaging could be

done: We can average the forecasts produced by all model-sample size combinations

with weights equal to the corresponding likelihood (Hoeting et al. 1999). By doing

this, more robust forecasts might be obtained. Finally, the state-space modeling used in

this chapter can only deal with linear models with Gaussian innovations. However, it is

possible to incorporate particle filters (also known as Sequential Monte Carlo method)

into the current framework. When using particle filtering, the mortality model can be

nonlinear, and the noise distribution can take any form required. For future research,

it would be interesting to explore the optimal choice of sample size in the context of

mortality models with Poisson innovations, such the specifications studied in Brillinger

(1986), to see which sample sizes give the best combination of in-sample fit and out-of-

sample forecasts.

2.9. Appendix

2.9.1. The Gibbs sampler for the mortality models

Lee-Carter model

For each J and µ, θ̃LC = (κ′,d′,α′,β′, vech(Σε)
′, vech(Σω)′)′. In particular, we let Σε

be diagonal for all Bayesian models, so vech(Σε)
′ is the vector of σεx-s in all cases.

Noninformative marginal prior distributions are chosen: p(α′,β′) ∝ 1, p(σ2
εx,g) ∝ 1

σ2
εx,g

for each x and g, and p(d′,Σω) ∝ |Σω|−
3
2 . Moreover, the marginal prior distributions are

assumed to be independent of each other.

Similar to Section 4.2.1, consider the case where we would like to estimate (the poste-
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rior distribution of) θ̃LC in year T̃ . The sample used in the estimation is y[T̃−µ−J+1:T̃−µ].

The Gibbs sampling proceeds as follows:

1. First we simulate the state process κ. Denote by Dt the time t information set

for t ∈ [T̃ − µ − J + 1 : T̃ − µ], κt|Dt−1 ∼ N(at, Rt) the prior of κt at time t,

κt|Dt ∼ N(mt, Ct) the posterior of κt at time t, and yt|Dt−1 ∼ N(f t, Qt) the one

step forecast distribution.19 Then the updating equations for time t are

at =mt−1 + d,

Rt =Ct−1 + Σω,

Qt =F ′RtF + Σε,

At =RtFQ
−1
t ,

f t =α+ Fat,

mt =at + At(yt − f t),

Ct =Rt − AtQtA
′
t. (2.22)

In system (2.22), yt is the log central death rate vector at time t, and

F =

 β′m 0

0 β′g

 ,

where βm and βg are column vectors representing the β-s for male and female,

respectively.

2. Fit the updating system (2.22) for each t ∈ [T̃ − µ − J + 1 : T̃ − µ], then draw

κT̃−µ from N (aT̃−µ, RT̃−µ). For the rest of the t-s, draw κt from

κt|κt+1, y ∼ N (ht, Ht),

where ht = at +Bt(κt+1 − at+1), and Ht = Rt −BtRt+1B
′
t, and Bt = CtR

−1
t+1.

19At the first step, i.e., when t = T̃ − µ − J + 1, the prior distribution of κT̃−µ−J+1 is
N(aT̃−µ−J+1, RT̃−µ−J+1), where aT̃−µ−J+1 and RT̃−µ−J+1 are the best estimates of the mean and
variance of κT̃−µ−J+1, respectively.
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3. For every age x and gender g, draw σ2
εx from

σ2
εx|α,β,κ, y ∼ Inv-Gamma(

J

2
,

∑T̃−µ
t=T̃−µ−J+1

(yx,t,g − αx,g − βx,gκt,g)2

2
).

4. For each gender g, let X = (ι,κg), where ι is a J × 1 vector of ones, and κg is the

vector of κt,g-s. Then for each age x, draw αx,g and βx,g from

(αx,g, βx,g)|y,κg, σ2
εx,g ∼ N ((X ′X)−1X ′y, σ2

εx,g(X
′X)−1).

5. Draw d from

d|κ,Σω ∼ N (
κT̃−µ − κT̃−µ−J+1

J
,
Σω

J
).

6. Draw Σω from

Σ−1
ω |κ,d ∼Wishart(J − 1,

Σ̂−1
ω

J
),

where Σ̂ω = 1
J

∑T̃−µ
t=T̃−µ−J+1

(κt − κt−1 − d)(κt − κt−1 − d)′.

We continue the iteration until convergence is reached. Note that in the above sam-

pling procedure, the initial value of m0 and C0 should be specified. We let them be κ̄

and Σ̂ω obtained from the weight least squared estimation of model (2.2) - (2.3) fitted

to y[T̃−µ−J+1:T̃−µ], respectively.

CBD model

For each J and µ, θ̃CBD = (κ′,d′, vech(Σε)
′, vech(Σω)′)′. Similarly, assume that yt is a

2n× 1 vector for each t. In the context of model (2.10) - (2.11), we have p = 1, Bt = 0
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and Xt = 0 for all t,

Ft =



1 1 ... 1 0 0 ... 0

x1 x2 ... xn 0 0 ... 0

0 0 ... 0 1 1 ... 1

0 0 ... 0 x1 x2 ... xn

0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0


for all t, zt = [κ

(1)
t,m, κ

(2)
t,m, κ

(1)
t,f , κ

(2)
t,f , d

(1)
m , d

(2)
m , d

(1)
m , d

(2)
m , ]′,

Gt,1 =


1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1


for all t, and ωt = [ω

(1)
t,m, ω

(2)
t,m, ω

(1)
t,f , ω

(2)
t,f ]′. Also, εt is the vector of error terms, Σε is a

diagonal matrix, and Σωt = Σω for all t.

Similarly, we choose the noninformative marginal prior distributions p(σ2
εx,g) ∝ 1

σ2
εx,g

for each x and g, and p(d′,Σω) ∝ |Σω|−
3
2 . The marginal prior distributions are assumed

to be independent of each other.

Consider the same case as in Section A.1. The Gibbs sampling procedure for the

CBD model is

1. For t ∈ [T̃ − µ − J + 1 : T̃ − µ], denote by κt|Dt−1 ∼ N(at, Rt) the prior of κt at

time t, κt|Dt ∼ N(mt, Ct) the posterior of κt at time t, and yt|Dt−1 ∼ N(f t, Qt)

the one step forecast distribution.20 The updating equations for time t are

20The prior distribution of κT̃−µ−J+1 is set in the same way as for the Lee-Carter model.
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at =mt−1 + d,

Rt =Ct−1 + Σω,

Qt =F ′RtF + Σε,

At =RtFQ
−1
t ,

f t =Fat,

mt =at + At(yt − f t),

Ct =Rt − AtQtA
′
t. (2.23)

In system (2.23),

F =

 X 0

0 X

 ,

and X = [ι,x]′, where x = [x1, x2, ..., xn]′ is the vector of ages. In our case,

x = [61, 62, ..., 89]′.

2. Fit the updating system (2.23) for all t, and draw the κ process in the same way

as in the Lee Carter model.

3. For every age x and gender g, draw σ2
εx from

σ2
εx|κ,y ∼ Inv-Gamma(

J

2
,

∑
t(yx,t,g − κ

(1)
t,g + κ

(2)
t,gx)2

2
).

4. Draw d from

d|κ,Σω ∼ N (
κT̃−µ − κT̃−µ−J+1

J
,
Σω

J
).

5. Draw σ2
ω from

Σ−1
ω |κ,d ∼Wishart(J − 1,

Σ̂−1
ω

J
),

where Σ̂ω = 1
J

∑T̃−µ
t=T̃−µ−J+1

(κt − κt−1 − d)(κt − κt−1 − d)′.

Again, we continue this procedure until convergence is reached. In this chapter, we set

the iteration times to be 2,000, and convergence is reached in all cases under the criterion

proposed in Gelman and Rubin (1992).
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2.9.2. The DIC approach

Define the deviance as

D(θ̃M |J, g,M) = −2 log(p(YT |θ̃M , J, g,M)) + C (2.24)

for each sample size, gender, and model combination, where θ̃M is the parameter drawn

from the corresponding posterior distribution, p(YT |θ̃M , J, g,M) is the likelihood func-

tion, and C is a constant which will cancel out when comparing different models. For

the computation of the DIC ratios, we let J ∈ {10, 11, ..., 50} in line with the Bayesian

models. Moreover, we use Dutch mortality data from 1950 to 1999 to compute the likeli-

hoods. In other words, p(YT |θ̃M , J,M) in (2.24) is the likelihood of y[1999−J+1:1999] based

on model M .

Following Spiegelhalter et al. (2002), we define

pD(J, g,M) = Eθ̃M [D(θ̃M |J,M)]−D(ˆ̃θM |J,M),

where Eθ̃M [.] is calculated using the posterior distribution of θ̃M given (J,M), and ¯̃θM is

the posterior mean of θ̃M . The Deviance Information Criterion is then defined as

DIC(J, g,M) = Eθ̃M [D(θ̃M |J, g,M)] + pD(J, g,M). (2.25)
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Robust Longevity Risk

Management21

3.1. Introduction

Pension plans and annuity providers (hereafter referred to as “insurer”) are exposed

to longevity risk, i.e., the risk due to unanticipated changes in the mortality rates of

populations. During recent years, longevity risk has imposed greater and greater financial

pressure on the pension and insurance industry due to uncertainty regarding the increase

of population life expectancy and economic changes such as lower interest rates and a

stricter regulatory environment (Bor and Cowling 2013; Plat 2011). The important role

played by longevity risk in asset-liability management calls for more sophisticated risk

management methods.

We consider the longevity risk management of an insurer who chooses to hedge the

longevity risk using survivor swaps as hedging instruments. Compared to traditional

longevity risk transfer approaches, such as buy-outs, hedging using mortality-linked

derivatives22 is cheaper, and may provide more flexibility to the insurer (Cairns et al.

2014). We assume that the insurer uses as objective function the mean-variance or the

mean-conditional-value-at-risk of the hedged liabilities. To be able to evaluate the ob-

jective function the insurer uses an estimated probability law governing the mortality

dynamics. However, the insurer might be concerned about the possible effects of es-

timation inaccuracy (due to sampling error or model misspecification), when using an

estimated probability law. For example, Garlappi et al. (2007) show that mean-variance

portfolios of stock indexes may be highly sensitive with respect to parameter estimations,

which may lower the portfolios’s Sharpe ratios in applications. Similar results are found

21This chapter is coauthored with Anja De Waegenaere and Bertrand Melenberg.
22Mortality-linked derivatives different from survivor swaps, such as longevity bond or q-forward, can

alo easily be incorporated in our model.
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by Glasserman and Xu (2013) using commodity futures. Estimation inaccuracy is an

important concern when it comes to longevity risk management. In the past decades,

many western countries experienced accelerating improvement of life expectancy and/or

structural breaks in mortality rates (van Berkum et al. 2013; Li et al. 2013). As a

consequence, the estimations and point forecasts produced by mortality models based

on linear extrapolation methods (Cairns et al. 2011), probably the most widely used

class of mortality models nowadays, may be rather sensitive to the calibration window.

For instance, Cairns et al. (2006) obtain substantially different estimation results by

fitting the Cairns-Blake-Dowd model to England & Wales males data with two different

calibration windows. Therefore, relying only on an estimated mortality model, and hence

ignoring the corresponding estimation inaccuracy, might result in a poor performance of

one’s hedging strategy if the actual probability distribution turns out to deviate from

the estimated one.

To be robust against such estimation inaccuracy, we consider optimizing the worst-

case value of the objective function, where the worst-case is with respect to a statistical

confidence set around the estimated probability law. The confidence set is constructed

using the Kullback-Leibler divergence, allowing reformulations of the worst-case opti-

mization problems that can easily be solved, using Ben-Tal et al. (2013) and Ben-Tal

et al. (2014). Optimizing the worst-case value of the objective function to deal with

estimation inaccuracy is an application of “robust optimization.” Robust optimization

has been studied extensively in the past two decades, with successful applications to

various fields, such as finance, statistics, and engineering (Mulvey et al. 1995; Garlappi

et al. 2007; Zhu and Fukushima 2009). For a detailed introduction of the subject, see

Ben-Tal et al. (2009).

We apply our robust optimization problem to Dutch male mortality data and compare

the performance of the robust optimizations with their nominal counterparts, when the

insurer optimizes her portfolio ignoring estimation inaccuracy. We consider the hedging

of longevity risk of a few age classes, when survivor swaps for only one age class are

available. In the robust optimization we choose our confidence set to deal with sampling

error in particular, ignoring possible model misspecification.23 We find that the robust

23Also taking into account model misspecification is straightforward, but would require the use of a
much larger confidence set.

46



Introduction

optimizations outperform the nominal optimizations in most scenarios when estimation

inaccuracies exist, i.e., when the actual probability distribution turns out to deviate from

the estimated one.

We also show the impact of population basis risk on the effectiveness of the nominal

and robust optimizations. In our analysis we consider hedging using either customized or

standardized survivor swaps. A customized swap provides the hedger with payments that

match exactly the actual mortality experience in her portfolio; while a standardized swap

provides payments that are linked to the mortality experience of a reference population.

Although being generally cheaper and having better liquidity, the use of standardized

swaps may be less effective than customized swaps due to population basis risk, i.e., the

mismatch of the mortality experience in the reference population and the population in

the hedger’s portfolio. When using standardized instead of customized survivor swaps

in our analysis, the presence of population basis risk indeed leads to worse objective

function values for both the robust and the nominal optimizations, but the ordering in

terms of performance of the nominal and robust optimizations remains unaffected.

This chapter contributes to the rapidly growing literature focusing on longevity risk

management, by explicitly taking estimation inaccuracy in the optimization into account.

Among the many existing studies,24 only few deal with estimation inaccuracy. For exam-

ple, Cairns (2013) derives robust hedging strategies with respect to the re-calibration of

the mortality models at a later stage. Cox et al. (2013) derive an optimal portfolio choice

given a fixed mortality law, and evaluate the effectiveness of the optimal portfolio choice

when the true mortality law is only known to belong to a set of distributions. In contrast,

this chapter applies robust optimization to make the longevity risk management robust

against estimation inaccuracy.

The remainder of this article is organized as follows. Section 3.2 describes the setup,

the construction of the insurer’s liabilities, and the survivor swaps. Section 3.3 presents

the nominal and robust optimization problems. Section 3.4 reports the application of the

robust and nominal optimizations to Dutch male mortality data. Finally we conclude

in section 3.5. The appendix contains the reformulations of the robust optimization

problems that we used to solve these problems.

24For example, Dahl et al. (2008), Li (2014), Cairns (2013), Li and Luo (2012), and Cox et al. (2013).
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3.2. Liabilities and swaps

In this section we specify the cash flow of the insurer’s liabilities and the considered

survivor swaps. We consider two types of survivor swaps: customized swaps and stan-

dardized swaps. The floating legs of the customized swap are contingent on the actual

mortality experience of the insurer’s portfolio specific population, while the floating legs

of the standardized swap are contingent on the mortality experience of the reference

population. Let K = {rp, pp} be the set of populations, where rp denotes the refer-

ence population and pp denotes the insurer’s portfolio specific population. Denote by

p(t, x, k) the probability that a male aged x in year 0 in population k is alive in year t.

We shall assume that p(t, x, k) is observed in year t. However, before year t, p(t, x, k) is

an unobserved random quantity.

Suppose that at time 0 an insurer has sold nx units of an annuity to a group of

individuals aged x. Each of the annuities involves a commitment to pay 1 euro every

year to the annuitant for the rest of his/her life. Denote by X the set of ages of the

cohorts to which the annuities are sold, with |X| = N . r is the fixed annual risk free

interest rate and T is the last year during which a cash flow occurs. T is typically chosen

to be, for example, 100−min{x ∈ X}, i.e., a year after which the number of annuitants

that survive is negligibly small, so that we can ignore the annuity payments afterwards.

We consider an insurer with a sufficiently large number of annuitants nx-s, so that

the micro-longevity risk (i.e., the risk that the actual survival fractions in population k

deviate from the probabilities p(t, x, k)) is negligibly small relative to the macro-longevity

risk (i.e., the risk that the realizations of p(t, x, k) deviate from their best estimates).

Given this assumption, the time 0 (random) discounted liability of the insurer (without

hedging) can be written as

L̃ =
∑
x∈X

nx

T∑
t=1

p(t, x, pp)

(1 + r)t
. (3.1)

At time 0, L̃ is random, since all p(t, x, k) for t ≥ 1 are random.

As hedging instrument for the longevity risk, we consider survivor swaps (Dowd

et al. 2006). Consider a survivor swap contingent on cohort x with maturity T , for

k = rp (standardized) or k = pp (customized). Denote by Fix(x, t, k) and Flt(x, t, k)
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the preset (fixed) and random (floating) payment at year t for t ∈ {1, 2, ..., T − 1, T},
respectively. At date t the fixed rate payer pays Fix(x, t, k) − Flt(x, t, k) to the coun-

terparty if Fix(x, t, k) − Flt(x, t, k) > 0 and vice versa. Following Dowd et al. (2006)

we let the fixed and floating payments be given by Fix(x, t, k) = (1 + τx)EP̃ [p(t, x, k)]

and Flt(x, t, k) = p(t, x, k), respectively, where P̃ is the probability measure used for

pricing. In other words, at year t, and given P̃ , the preset payment is the time 0 best

estimated t-year survival probability of the cohort x multiplied by a number (1 + τx),

while the random payment is the corresponding realized t-year survival probability. For

the formulation and derivation of our optimization problem, we will work with a fixed,

constant risk premium.25 The time 0 (random) discounted cash flows received by the

fixed rate payer, S(x, k), can now be written as

S(x, k) =
T∑
t=1

(1 + τx)EP̃ (p(t, x, k))− p(t, x, k)

(1 + r)t
. (3.2)

In an ideal situation, there are publicly traded survivor swaps for all cohorts x ∈ X.

However, at the current stage, derivative products are available only for a few cohorts.

To incorporate this fact into our framework, we assume that there is a set XS ⊂ X with

|XS| = m ≤ N such that tradeable survivor swaps exist only for the cohorts x ∈ XS.

Aiming to hedge longevity risk, the insurer acts as a fixed rate payer. We denote

by ax the units of swaps for the cohort x ∈ XS held by the insurer at time 0, and a

the m × 1 vector of ax-s. We assume that, as a hedger, the insurer does not take short

positions in the swap, i.e., a ∈ Rm
+ . The insurer’s hedged discounted liabilities are given

by

L̃+
∑
x∈XS

axS(x, k). (3.3)

If XS = X, and k = pp, the longevity risk can be fully hedged by choosing ax = nx for all

x ∈ X, and the hedged discounted liabilities becomes
∑

x∈X nxEP̃ (S(x, pp)).26 However,

in the general case, when XS 6= X and/or k 6= pp, the longevity risk cannot be fully

hedged.

25We will examine the impact of the risk premium on the insurer’s hedging decision in the numerical
study in Section 3.4.

26In this chapter we consider only macro longevity risk. However, if micro-longevity risk, i.e., risk
related to uncertainty in the time of death if survival probabilities are known with certainty, exists, then
the longevity risk cannot be fully hedged even by using customized swaps.
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3.3. Optimal longevity risk hedging

In this section we present the insurer’s optimization problems, as seen from time 0, when

the insurer aims to choose the hedging portfolio a optimally. Let Z(k) be a (m+ 1)× 1

random vector with the 1-st entry L̃ and the other entries S(x, k), for x ∈ XS, with the

same ordering as in a, cf. (3.3). The hedged liabilities can then be written as

L(Z(k),a) = (1 a′)Z(k). (3.4)

At time 0 the hedged liabilities are random. As objective function we shall use the

mean-variance and the mean-conditional-value-at-risk of the random hedged liabilities.

To be able to calculate these objective functions we need the probability distribution

PZ(k) of Z(k), which depends on the random survival probabilities p(t, x, k). We assume

that the insurer does not know PZ(k), but has to estimate it, using a model like the

Lee and Carter (1992)-model. We refer to the estimated distribution as the nominal

distribution, denoted by P̂Z(k). However, the insurer recognizes that her estimates may

be subject to estimation inaccuracy (sampling error or model misspecification), and she

considers the worst-case objective functions, where the worst-case is with respect to

PZ(k) in a confidence set around P̂Z(k).
27 We present the optimization problems for fixed

k ∈ {rp, pp}, and write Z = Z(k) for simplicity of notation. Also, we write P = PZ and

P̂ = P̂Z .

In the sequel, we shall solve the optimization problems under the assumption that Z

has a (multivariate) discrete distribution, represented by the I-dimensional probability

vector π, with components πi, i = 1, · · · , I, and outcome space {z1, · · · , zI}, where

P (Z = zi) = πi, i = 1, 2, ..., I. We denote by π̂ the nominal probability vector, so that

P̂ (Z = zi) = π̂i, i = 1, 2, ..., I. To obtain π̂, we first fit a (multi-population) mortality

model, and use the parameter estimates to simulate the future liabilities and payments

of the swaps. Using these simulated values, we then compute π̂ numerically. In Section

3.4.1 we show how π̂ can be determined using Lee and Carter (1992) via simulation and

27The framework used in this paper is closely related to the multiple preference framework studied by
Hansen and Sargent. In Hansen and Sargent (2001), the multiple preference problem characterized by a
penalty function is called the multiplier robust control problem, while the min-max problem considered
in our paper is called the constraint robust control problem. As stated in Hansen and Sargent (2001), for
each constraint robust control problem, there exists a corresponding multiplier robust control problem,
where these two problems have the same solution.
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discretization.

Denote by Π̂ the compact confidence set of probability distributions around P̂ . We

assume that the insurer now optimizes the worst-case objective function with respect to

P ∈ Π̂. The optimization problem considered by the insurer is given by

inf
a∈Rm+

max
P∈Π̂
{EP (L(Z,a)) + λRP (L(Z,a))} (3.5)

where RP is a function representing the risk in the liabilities, and λ quantifies the trade-

off between the expected value and the risk of the liabilities. The nominal optimization,

where the insurer ignores potential estimation inaccuracy and optimizes using P̂ , is given

by

inf
a∈Rm+

{EP̂ (L(Z,a)) + λRP̂ (L(Z,a))}. (3.6)

For the risk measure RP we consider two cases. In the mean-variance case we take

RP = V arP (i.e., the variance of L(Z,a)). In the mean-CVaR case we take RP =

CVaRα,P , given a confidence level α ∈ (0, 1), where CVaRα,P is defined by

CVaRα,P (L(Z,a)) =
1

1− α

ˆ
L(z,a)≥VaRα,P (L(Z,a))

L(z,a)dP (z), (3.7)

with VaRα,P (L(Z,a)), the Value-at-Risk (VaR) of L(Z,a), defined as

VaRα,P (L(Z,a)) = min{d ∈ R|
ˆ
L(z,a)≤d

dP (z) ≥ α}. (3.8)

In the literature on robust optimization, (3.5) is referred to as the robust counterpart

of (3.6). Robust counterparts are attractive alternatives to the nominal optimization

problems, when there is uncertainty about the parameter(s) determining the objective

function and/or constraints (Ben-Tal et al. 2009). In our case the parameter is the

probability distribution of Z.

Before we can solve the robust counterparts, the structure of the uncertainty set, Π̂,

has to be specified. There are many popular structures of the uncertainty set in the

literature.28 We choose our uncertainty set to be characterized by the Kullback-Leibler

divergence (also known as relative entropy). This divergence is used in various fields, such

as statistics (Reid and Williamson 2011), insurance and financial mathematics (Föllmer

28For example, see Zhu and Fukushima (2009) and Ben-Tal et al. (2013).
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and Schied 2004; Mania et al. 2005), and macroeconomics (Hansen and Sargent 2001).

In our context, the uncertainty set can be written as

Π̂ = {π ∈ RI
+|

I∑
i=1

πi = 1,
I∑
i=1

πi log(
πi
π̂i

) ≤ ρ}, (3.9)

for some ρ > 0. From (3.9), we see that the degree of divergence between the candidate

probability distributions and the nominal one is determined by a single parameter, ρ.

Hence, ρ can be interpreted as the degree of ambiguity aversion of the decision maker.

To complete the robust counterpart, we need to choose a specific value for ρ. We

consider the case where the distribution P of Z belongs to a parametrized set of proba-

bility distributions, such as induced by the Lee and Carter (1992)-model. We choose ρ

such that Π̂ in (3.9) becomes an (approximate) confidence set around π̂ of at least level

(1− β). Let {Pθ|θ ∈ Θ ⊂ Re} denote this parametrized set of probability distributions,

i.e., there exists some θ0 ∈ Θ such that PZ = Pθ0 . Denote by θ̂ the Maximum Likelihood

estimate of θ. Moreover, denote by fθ the density function of Pθ with respect to some

σ-finite measure, µ, and f0 = fθ0 . The φ-divergence between fθ and f0 is given by

Iφ(fθ, f0) =

ˆ
φ(
fθ
f0

)f0dµ.

Let f̂0 = fθ̂. As discussed in Ben-Tal et al. (2013), for the φ-s that satisfy certain

conditions, the normalized estimated φ-divergence

2N

φ′′(1)
Iφ(f0, f̂0)

asymptotically follows a χ2
e distribution, with the degree of freedom determined by the

dimension of the parameter set, Θ. The Kullback-Leibler divergence satisfied the required

constraints. Therefore, with φ chosen to be the Kullback-Leibler divergence, µ be the

Lesbegue measure, and the choice of ρ given by

ρ =
χ2
e,1−β

2N
, (3.10)

the set

{θ ∈ Θ|Iφ(fθ, f̂0) ≤ ρ}
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is the (approximate) 1 − β confidence set around θ̂. Furthermore, as discussed in Ben-

Tal et al. (2013), the uncertainty set of the probability vector, Π̂, is a “at least” 1 − β
confidence set around π̂i. In Equation (3.10), χ2

e,1−β is the 1 − β percent critical value

of a χ2 distribution with degrees of freedom e, the dimension of θ, and N is the sample

size (used to estimate θ). In this chapter we only consider estimation inaccuracy due to

sampling error in θ̂. Also taking into account model misspecification is possible, but it

would require a larger choice of ρ, such as ρ =
χ2
I−1,1−β

2N
. For more technical details, we

refer to Ben-Tal et al. (2013).

After specifying Π̂ and ρ, we follow the method proposed in Ben-Tal et al. (2013)

and Ben-Tal et al. (2014) to derive reformulations of the robust optimization problems

(3.5) which can be solved in a tractable way. These reformulations are presented in the

Appendix.

3.4. Performance of the nominal optimization problems and their robust

counterparts

In this section we consider an insurer whose portfolio includes annuitants of different age

classes and who chooses a hedge portfolio of survivor swaps to hedge the corresponding

longevity risk, using one of the optimization problems described in the previous section.

We assume that the insurer models the mortality rates in the reference population by the

Lee-Carter model (Lee and Carter 1992) and the mortality rates in the insurer’s portfolio

by the method proposed in Plat (2009).29 The insurer uses mortality data to estimate the

distribution of the mortality law and to construct the corresponding uncertainty set. In

this section we evaluate the performance of both the nominal optimization problems and

their robust counterparts. We first specify the parametric family of the distribution of the

mortality law, the (empirical) nominal distribution, and the uncertainty set determining

the robust counterpart. Next, we specify the insurer’s portfolio. Finally, we present the

performance evaluation of the nominal and robust hedging strategies.

29We make these choices for illustrative purposes only. Other models can easily be incorporated in
our approach as well. For example, see Cairns et al. (2011) for single population, and Li and Lee (2005),
and Dowd et al. (2011) for multi-population mortality modeling.
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3.4.1. The parametric family, the nominal distribution, and the uncertainty

set

In this subsection we specify the parametric family of the distribution of Z. For given

k ∈ {pp, rp}, Z depends on p(t, x, k) for t = 1, · · · , T and x ∈ X. We first describe

the parametric distribution of p(t, x, k) for k = rp and k = pp, respectively. Then we

construct the induced parametric family of distributions of Z, i.e., the probability vectors

π such that P (Z = zi) = πi, i = 1, 2, ..., I. Finally, we present the uncertainty set Π̂,

see (3.9).

The reference population—First, we model the mortality process of the reference

population, i.e., p(t, x, rp) for t = 1, · · · , T and x ∈ X. Denote by m(t, x, rp) the one-

year crude death rate30 in year t applying to the cohort whose age is x in year 0 in

the reference population rp. The t-year survival probabilities can be approximated by

(Pitacco et al. 2009)

p(t, x, rp) = exp(−
t∑

s=1

m(s, x, rp)).

Let yt bet the N -dimensional column vector with as components log(m(t, x, rp)), x ∈ X.

The Lee-Carter model (Lee and Carter 1992) models this vector yt as31

yt =α+ βκt + εt, εt
iid∼ N(0,Σε)

κt =d+ κt−1 + ωt, ωt
iid∼ N(0, σ2

ω), (3.11)

where α, β are vectors of parameters, εt and ωt are mutually independent i.i.d shocks

(εt is N -dimensional and ωt is one-dimensional), assumed to be normally distributed,

and Σε and σ2
ω are the covariance matrix of εt and the variance of ωt, respectively. The

κ process captures the common time varying trend of the central death rates, and it is

modeled by a random walk process with drift term d and volatility σω. Moreover, we

assume Σε to be a diagonal matrix.

The portfolio specific population—Next, we model the mortality process of the

portfolio specific population, i.e., p(t, x, pp) for t = 1, · · · , T and x ∈ X. Denote by

30Number of deaths over the corresponding exposure.
31In general the κ process appearing in (3.11) can be modeled as any ARIMA(p, d, q) process. How-

ever, the authors state that a ARIMA(0, 1, 0) serves as a reasonable choice. ARIMA(0, 1, 0) is also the
most widely used specification of the Lee-Carter model in the literature of mortality modelling.
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f t the N -dimensional vector containing the ratio of one year death probability of the

reference population over the portfolio population at year t. Plat (2009) fits f t by a one

factor linear model

f t =ι+wϑt + εft

ϑt =δ + ωft , (3.12)

where ι is a N × 1 vector of ones, and ϑt is modeled as a ARIMA(0,0,0) process with

mean δ.32 Moreover, εft
iid∼ N(0,Σεf ) and ωft

iid∼ N(0, σ2
ωf

). We call (3.12) the mortality

factor model.

The nominal distribution—So far, we have specified the parametric form of the dis-

tribution of p(t, x, k), for t ≥ 1, x ∈ X, and for given k ∈ {pp, rp}. In the optimization

problems we use as nominal distribution the estimated induced distribution of Z = Z(k),

for given k ∈ {pp, rp}. We obtain this nominal distribution, P̂ , with P̂ (Z = zi) = π̂i,

i = 1, · · · , I, as follows. First, we estimate the parameter values in (3.11) – (3.12). For

the reference population, we use Dutch male mortality data from 1980 to 2009.33 For the

mortality process of the portfolio population, we make use of Plat (2009), who fits model

(3.12) to Dutch male mortality data of a collective pension portfolio of Dutch insurers

containing about 100,000 male policyholders aged 65 or older (and using the Dutch males

population as reference population). The parameter estimates for δ and σωf in (3.12) can

be found in Equation (3.2) in Plat (2009). Next, we simulate M realizations of p(t, x, k),

for t ≥ 1, x ∈ X, and for k ∈ {pp, rp}, using the two estimated models (3.11) and (3.12).

Based on these realizations of p(t, x, k), we construct the corresponding realizations of

Z.

Finally, we divide the range of the M realizations of Z into I subsets. The values of zi

are obtained by taking the average of all realizations of Z that fall into the corresponding

subset i and the values of π̂i are the frequencies of the realizations of Z falling into

the corresponding subset i. We use M = 50, 000 and I = 1, 000. Since the nominal

distribution P̂ is derived from the two estimated models (3.11) and (3.12), we actually

have P̂ = Pθ̂, with θ̂ the estimated parameters of the two models.

32For the detailed definition of f t and w, as well as the choice of ARIMA process for ϑt process, we
refer to Plat (2009).

33The data is downloaded from the Human Mortality Database (http://www.mortality.org/).
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The uncertainty set—Our uncertainty set is given by (3.9), with ρ given by (3.10),

with e equal to the dimension of θ, the vector of parameters appearing in the two models

(3.11) and (3.12). In principle, all these parameters are subject to estimation errors.

However, as stated in Cairns (2013), most uncertainty of the (single population) mortality

forecasting comes from the estimation of the drift term in the κ process. Also, Lee and

Carter (1992) only take the uncertainty from the κ process into account when calculating

the confidence intervals of the forecast mortality rates. Therefore, we proceed as if

only d and σω in (3.11), and only δ in (3.12) are estimated with possible estimation

inaccuracy. Thus, we proceed as if θ = (d, σ2
ω, δ)

′, where θ is assumed to be estimated

by the maximum-likelihood estimator, so that e = 3 in (3.10), and Π̂, given by (3.9),

follows given this value of ρ. When there is no population basis risk, the estimation of δ

in (3.12) does not play a role, so that we have θ = (d, σ2
ω)′, with e = 2, in this case.

3.4.2. Insurer’s portfolio

We assume that the insurer’s portfolio consists of five Dutch male cohorts aged 64, 65, 66,

67, and 68 in 2009. The annuities start paying out in 2010, i.e., when the cohorts of the

annuitants become 65 to 69, respectively. Only the cohort aged 64 has a corresponding

survivor swap available in the market, the payments of which also start from 2010. In

other words, X = {64, 65, ..., 68} and XS = {64}. We write τ = τ64. We normalize

all nx-s, i.e., the number of annuitant in each cohort, to nx = 1. The maturity of all

annuities and of the survivor swap is 30 years. In other words, we assume that no

cash flows happen after the oldest cohort reaches age 99. The risk free interest rate is

assumed to be constant at r = 4%. We set λ, the risk aversion parameter, to 5 for both

the Mean-Variance and CVaR specifications.

As mentioned in Bauer et al. (2010), there is not yet a standard practice of pricing

survivor swaps at the current stage. However, the prices of the survivor swaps would

clearly affect the optimal hedging strategy. To illustrate this effect, we solve the opti-

mization problems for a set of risk premiums. Dawson et al. (2010) consider the risk

premium of a survivor swap contingent on x = 65 with maturity 50 years to be around

10% (the annual discount rate is assumed to be flat at 3% and mortality data in Eng-

land and Wales is used). Since we consider survivor swaps of a shorter maturity and a
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higher discount rate,34 we consider risk premiums τ ∈ {0, 100, 200, 300, 400, 500} basis

points. Finally, we let α = 95% and β = 5%, i.e., we consider the 95% CVaR and a 95%

confidence interval of the probability distribution.

3.4.3. Comparison of the nominal and robust optimizations

In this subsection we compare the nominal and robust optimal hedging strategies. First,

we compare these hedging strategies, considering both the use of standardized and cus-

tomized swaps. Next, we illustrate the performance of these hedging strategies, when

the actual probability distribution P deviates from the nominal, estimated P̂ , which is

likely to happen in the presence of estimation inaccuracy.

Figure 3.1 shows the optimal hedging strategies (a∗) for the robust (diamonds) and

the nominal (asterisks) optimizations. The left and the right panels display the a∗-s

without and with basis risk, respectively. In all cases the optimal amounts of the swaps

decrease as the risk premium increases. In particular, for CVaR the nominal a∗ becomes

0 when τ ≥ 3% and the robust a∗ becomes 0 when τ ≥ 4%, both with and without basis

risk. Also, in the presence of basis risk, the optimal a∗ becomes smaller, holding other

factors equal. These results are intuitive, since the swap becomes less attractive as its

price increases, and the hedge effectiveness decreases when basis risk is introduced.

Next, we evaluate the performance of the robust and the nominal optimization when

the true underlying probability distribution P differs from the nominal distribution P̂ =

Pθ̂, with θ̂ = (d̂, σ̂2
ω, δ̂). To do so, we consider a range of different hypothetical “true”

probability distributions P = Pθ, allowing for θ 6= θ̂. For each of these hypothetical

true distributions, we evaluate the performance of the robust (a∗r) and the nominal (a∗n)

optimal strategies by determining the value of the mean-variance and the mean-CVaR

objective functions, i.e., we calculate with respect to the true hypothetical distribution

Pθ

EPθ(L(Z,a)) + λRPθ(L(Z,a)) (3.13)

for RPθ = VarPθ and CVaRα,Pθ with a = a∗r and a = a∗n, respectively.

To generate the hypothetical true distributions for the reference population and for

the portfolio-specific population, we let the drift terms in (3.11) and in (3.12) be random

34Dowd et al. (2006) show that, as determined by their method, the magnitude of the risk premium
decreases as the discount rate increases.
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draws from their best-estimate distributions d ∼ N(d̂, σ2
d) and δ ∼ N(δ̂, σ2

δ ). Moreover,

we inflate the variance of ωt in (3.11) by a factor b ∈ {1, 2, 3, 4}. For σ2
d and σ2

δ we use

the (estimated asymptotic) variances of d̂ and δ̂, respectively.35 The choice of b-values is

based on the Bayesian approach from Li et al. (2013) (with the Lee-Carter specification

applied to the Dutch males mortality data from 1970 to 2009), who find that the 95%

quantile of the posterior distribution of σ2
ω is around 3.21σ̂2

ω.36

For each b ∈ {1, 2, 3, 4}, we take 200 random draws of the drift terms d and δ. This

yields 200× 4 = 800 values of θ = (d, σ2
ω, δ). For each of these 800 valuess, we determine

the value of the mean-variance and the mean-CVaR objective functions given in (3.13)

evaluated at a∗n and a∗r, respectively, using P = Pθ as true distribution. Because we

have six risk premiums, we repeat this procedure for each of these values, so that in

total 6 × 800 = 4800 comparisons are made for each k. Due to the large number of

comparisons, we report our results on a (τ, b, k) basis. For any given (τ, b, k), and for

a given specification (mean-variance or mean-CVaR), let Vn and Vr be the vector with

the corresponding 200 values of the objective function in (3.13), evaluated at a∗n and a∗r,

respectively. Tables 3.1a and 3.1b report the mean (standard deviation) of Vr, expressed

as percentage deviation of the mean (standard deviation) of Vn, i.e., it reports

f(Vr)− f(Vn)

f(Vn)
× 100, (3.14)

where f(·) is either the mean or the standard deviation. A negative percentage deviation

means a better performance (lower mean or lower standard deviation) for the robust

optimization. We see that, both with and without population basis risk, a∗r produces

lower means and standard deviations of the objective function values than a∗n for all but

a few cases when b = 1 or τ = 0. Moreover, the relative difference between the robust

and nominal mean objective function values increases with b and τ . The percentage

deviation is 0 for the CVaR specification when τ = 3% and 4% since both a∗r and a∗n

are 0 in these cases. We test the significance of the nonzero differences for each (b, τ, k)

35These are σ̂2
d =

σ̂2
ω

30 and σ̂2
δ =

σ̂2

ωf

30 .
36Moreover, Börger et al. (2011) model the mortality development for multiple populations with a

stochastic trend model and find that, in order to generate wide enough forecast confidence intervals to
include all the extreme historic mortality developments, they have to blow up the volatility of their κ1
process by 2. This κ1 process in their stochastic trend model is comparable to the κ process in our
Lee-Carter model.

58



Conclusion

combination, and find that most differences are significant at the 95% level.37

The results indicate that the robust optimization yields better optimal objective

function values in most situations. The only exceptions are the cases with b = 1 or

τ = 0, where robust optimization produces overconservative results. When the nominal

optimization performs better (when the percentage changes are positive), the degree of

outperformance is very small, as the percentage deviations are very close to 0. However,

when the robust optimization is better, we see much larger differences in the performance.

Moreover, the inclusion of population basis risk increases the optimal values (thus lower

the hedge quality) on average by 9.25% for mean-variance and 9.25% for mean-CVaR,

indicating a lower hedging quality.38 However, as shown in Table 3.1a and 3.1b, robust

optimizations still perform better than the nominal ones in this case.

3.5. Conclusion

In this chaper we study a robust longevity risk management problem for an insurer

with committed annuity payments, who uses survivor swaps as hedging instrument. We

consider as objective functions the mean-variance and the mean-conditional-value-at-

risk of the hedged liabilities. The insurer recognizes that the best estimated probability

law affecting her liabilities may be subject to estimation inaccuracy, and optimizes her

portfolio with respect to the worst-case scenario, where the worst case is with respect to

the set of possible mortality laws determined by the Kullback-Leibler divergence.

We apply the robust optimization problems to Dutch male data and compare their

performance with the corresponding nominal ones, which ignore estimation inaccuracy.

We construct various realistic settings, where the estimated mortality distribution devi-

ates from the actual one, and find that the robust optimization yields better results than

the nominal optimization in almost all scenarios. Moreover, the degree of the outperfor-

mance is higher when the real mortality law is further away from the insurer’s estimate.

The inclusion of basis risk lowers the insurer’s hedge quality by increasing the means

and standard deviations of the optimal values of the objective functions, but the robust

37The only exceptions are the mean-variance specification with (b, τ, k) = (1, 0, 2) and both specifica-
tions with (b, τ, k) = (1, 0, 1).

38Due to limitation of space, the means and std.-s are not reported here. These numbers are available
upon request.
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optimization still performs better in this case.

In this study we only consider static robust risk management. It would be interesting

to develop dynamic robust risk management strategy following, for example, the robust

control framework studied in Hansen and Sargent (2008). Moreover, in this chapter the

hedging objectives are framed in terms of hedging the present value of future liabilities.

We may consider hedging objectives in term of other quantities, such as the future

liability cash flows, or the (weighted) sum of some risk measure of future liabilities.

3.6. Appendix

Mean-CVaR—We shall use the reformulation of the CVaR given by Rockafellar and

Uryasev (2002), which is given by39

CVaRα,P (L(Z,a)) = min
ξ∈R
{ξ +

1

(1− α)
EP ([L(Z,a)− ξ]+)}, (3.15)

where [y]+ = max{y, 0}. The corresponding robust optimization problem is given by

min
a,ξ

max
π

π′L(z,a) + λ[ξ +
1

1− α
I∑
i=1

πiui]

s.t. a ∈ Rm
+ , ξ ∈ R,π ∈ Π̂,

ui ≥ L(zi,a)− ξ, ui ≥ 0, ∀ i ∈ {1, 2, ..., I}. (3.16)

The uncertain vector, π, is linear in (3.16). The derivation of the reformulation of (3.16)

that we use is therefore a direct application of Theorem 1 in Ben-Tal et al. (2013). We

find as reformulation

min
a,ξ,u,ζ,η

λξ + ρζ + η + ζ

I∑
i=1

π̂i exp(
L(zi,a) + λ

1−αui − η
ζ

− 1)

a ∈ Rm
+ , ξ ∈ R, η ∈ R, ζ ≥ 0, (3.17)

ui ≥ L(zi,a)− ξ, ui ≥ 0, ∀i ∈ {1, 2, ..., I}. (3.18)

Mean-variance—The derivation for the robust mean-variance optimization is similar.

39The CVaR exists if EP |L(Z,a)| <∞. This condition holds if 0 ≤ τx <∞ for all x ∈ XS .
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The tractable reformulation is

min
a,η,K,ξ

ηρ+ ξ + η

I∑
i=1

π̂i exp(
λL2(zi,a) + (K + 1)L(zi,a)− ξ

η
− 1) +

K2

4λ

s.t. a ∈ Rm
+ ,K ∈ R, ξ ∈ R, η > 0. (3.19)

Figures
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Figure 3.1: The optimal amount of swaps purchased by the insurer as a function of the
risk premium in basis points. In each plot the diamonds are the optimal a-s for the

robust optimizations (a∗r) and the asterisks are the optimal a-s for the nominal
optimizations (a∗n). The left panels are without basis risk and the right panel with basis
risks. The upper panels show the mean-variance optimal amounts, and the lower ones

the mean-CVaR optimal amounts.
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Customized Standardized Customized Standardized

Risk Premium Mean Std. Mean Std. Mean Std. Mean Std.

0 0.01 -21.33 -0.01 -0.57 0.01 -24.89 0.0001 -0.98

1% 0.01 -51.39 -0.01 -0.439 -0.01 -51.11 -0.0008 -3.20

2% 0.02 -48.00 -0.05 -11.97 -0.4 -46.18 -0.0036 -7.75

3% 0.06 -46.57 -0.10 -20.06 -0.84 -42.71 -0.0082 -9.60

4% 0.19 -45.29 0.20 -33.40 -0.150 -40.87 -0.0146 -22.07

5% 0.21 -43.89 0.27 -33.72 -0.230 -37.88 -0.0226 -21.33

b = 1 b = 2

0 0.01 -25.24 0.01 -0.37 0.01 -21.90 0.02 -3.04

1% -0.30 -46.53 -0.26 -2.10 -0.57 -43.77 -0.48 -8.63

2% -1.12 -42.65 -1.04 -4.26 -2.11 -41.73 -1.97 -4.77

3% -2.40 -39.11 -2.33 -13.17 -4.43 -39.76 -4.35 -8.78

4% -4.08 -41.00 -4.05 -18.81 -7.34 -37.71 -7.34 -49.91

5% -6.06 -39.09 -6.11 -24.99 -10.69 -43.73 -10.81 -67.38

b = 3 b = 4

(a) Mean-variance

Customized Standardized Customized Standardized

Risk Premium Mean Std. Mean Std. Mean Std. Mean Std.

0 0.01 -53.10 0.01 -1.30 0.02 -47.31 0.04 -1.37

1% -0.03 -5.36 -0.01 -12.63 -0.05 -28.22 -0.08 -10.01

2% 0.02 -36.13 0.12 -41.39 -0.08 -35.69 0.48 -33.92

3% 0.56 -84.40 0.56 -57.39 -0.65 -84.17 0.57 -52.39

4% 0 0 0 0 0 0 0 0

5% 0 0 0 0 0 0 0 0

b = 1 b = 2

0 0.05 -21.33 0.08 1.99 0.07 3.93 0.14 -5.63

1% -0.82 -27.97 -0.61 -6.04 -0.71 -30.96 -0.42 -7.47

2% -0.18 -33.54 -0.98 -40.25 -0.27 -32.31 -1.47 -39.18

3% -2.21 -83.64 -1.66 -59.43 -3.60 -82.55 -2.60 -58.02

4% 0 0 0 0 0 0 0 0

5% 0 0 0 0 0 0 0 0

b = 3 b = 4

(b) Mean-CVaR

Table 3.1: Mean and standard deviation (Std.) of the objective function (3.13)
evaluated at a∗r, expressed as percentage deviation of the mean (in case of the mean) or

the standard deviation (in case of the standard deviation) of the objective function
(3.13) evaluated a∗n. The means and standard deviations are calculated over 200

hypothetical true distributions. Panel (a) presents the mean-variance case and panel
(b) the mean-CVaR case. The table shows the outcomes for different risk premiums,

different b-s, and for k = pp (Customized) and k = rp (Standardized).
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Chapter 4

Dynamic hedging of longevity

risk: the effect of trading

frequency

4.1. Introduction

This chapter considers the question of how to hedge a portfolio of liabilities that are

exposed to longevity risk. Longevity risk is the risk due to unanticipated changes in the

life expectancy of populations. Longevity risk is becoming a challenge to the pension

and annuity industry globally, as pension plans and annuity providers have to make

extra payments to the policy holders if their life expectancy increases unexpectedly. In

particular, pension plans and annuity providers face substantial risk of making payments

longer than anticipated due to the ongoing increase of post-retirement life expectancy.

As reported by the Basel Committee’s Joint Forum in 2013,40 if the life expectancy of a

typical defined benefit pension fund’s members increases by one year, the present value

of its liabilities would increase by 3 to 4%. Estimates of the global amount of annuity

and pension-related longevity risk exposure range from $15 to $25 trillion (CRO Forum

2010; Blake and Biffs 2012).

A pension plan or an annuity provider (hereafter the hedger) can reduce her longevity

risk exposure through the longevity-linked capital market, for example, by trading index-

based longevity-linked instruments. An index-based instrument allows the hedger to ex-

change fixed payments for payments contingent on the actual mortality experience of a

reference population, such as the national population.41 Popular longevity-linked instru-

40See the report, Longevity risk transfer markets: market structure, growth drivers and impediments,
and potential risks, downloaded from http://www.bis.org/publ/joint34.htm at September 30, 2014.

41It is also possible for hedgers to choose customized longevity-linked instruments, by which they
exchange fixed payments for payments contingent on the mortality experience in their liabilities, and
which can completely eliminate their longevity risk exposure. However, a customized longevity-linked
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ments include longevity bonds, q-forwards, and survivor swaps (Menoncin 2008; Dawson

et al. 2010). Compared with other types of risk-transfer methods, such as buy-in and

buy-out transactions, hedging using longevity-linked instruments can reduce the hedger’s

cost and provide her with more flexibility (Cairns et al. 2014). In particular, the hedger

saves the premium which would otherwise be paid to the insurer. Moreover, the hedger

has the opportunity to manage each component of her risk exposure separately, and

adjust her hedging strategy over time. However, when hedging using index-based instru-

ments, two things need to be noticed. First, the hedging strategy depends on population

basis risk, i.e., the mismatch of the mortality experience of the reference population and

the hedger’s portfolio-specific population. Second, due to the fact that the longevity-

linked capital market is in its early stage of development, the liquidity of longevity-linked

instruments is limited at present (Blake and Biffs 2012). As a result, the longevity-linked

instruments typically cannot be traded as frequently as other financial assets. Therefore,

a realistic hedging strategy using index-based longevity-linked instruments at the current

stage should take both the population basis risk and the limited trading frequency into

account.

In this chapter we consider dynamic hedging of longevity risk with index-based

longevity-linked instruments with limited trading frequency. Due to the limitation of

trading frequency, the lack of longevity-linked products, and the population basis risk,

the hedger’s liabilities cannot be perfectly replicated. Therefore, the longevity risk ex-

posure of the hedger cannot be fully eliminated. Instead, we look at the case where the

hedger wishes to minimize her longevity risk exposure. Formally, the hedger wishes to

minimize, in a time-consistent way, the variance of her hedging error, which is defined

as the deviation of the market value of her investments (in longevity-linked instruments

and other financial assets) from the market value of her liabilities, at a specific future

valuation date. The variance criterion is commonly used by researchers and practitioners

in static settings. However, in the dynamic setting, the variance criterion is also easier

to interpret than utility functions. For example, we can measure the hedging quality by

looking at the optimal variance of the hedging error, without resorting to the functional

form of the utility functions and the choice of risk aversion parameters. The latter is not

instrument would be more expensive and more illiquid (Li and Luo 2012), and such instruments are
only available for large risk holders, e.g., the ones with liabilities exceeding around £100 million (Cairns
2013). Therefore, we consider only index-based longevity-link instruments in this chapter.
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straightforward to specify for a pension plan. Moreover, the use of the variance criterion

is relevant for hedging longevity risk. An insurance company which sell both annuities

and life insurance products face longevity risk in two directions. The company loses

profits from the life insurance products in case of unexpected mortality deteriorations,

e.g., catastrophe events, while it loses profits from the annuities when the life expectancy

of their annuitants turn out to be higher than expected. Therefore, the insurance com-

pany would like to minimize the deviation of its hedging error from both directions. A

similar setup of value hedging is considered in Cairns (2013) and Cairns et al. (2014) in a

static framework. A time-consistent strategy, as explained in Strotz (1956), is a strategy

that is chosen at the initial date and will be followed by the hedger at any time and in

any state of the world, when the hedger re-optimizes at later moments using the same

objective function. The variance criterion is widely used in various economic context,

however, no time-consistent solutions to these problems in a multi-period setup were pro-

posed until Basak and Chabakauri (2010, 2012). Previous literature only characterizes

pre-commitment strategies, which optimizes the criterion at the initial date under the

assumption that the hedger will commit herself to follow the initial optimal strategy at

later dates. In this chapter, instead of pre-commitment strategies, we follow Basak and

Chabakauri (2010, 2012) to derive time-consistent optimal strategies to the minimum-

variance criterion, which will be followed when the hedger to re-optimizes the criterion at

later dates. The hedger we consider is commonly called “sophisticated” time-consistent

in the literature (Grenadier and Wang 2007).

Despite the importance of longevity risk management, most of the existing studies

focused on static hedging strategies (Cairns et al. 2014; Li et al. 2014; Li and Luo

2012; Li and Hardy 2011; Blake et al. 2006), which might not take full advantage of the

hedging potential of the capital market. The development of dynamic hedging strategies

is hindered by the fact that for realistic, discrete-time mortality models, it is difficult to

model the evolvement of the value of the longevity-linked contracts over time without

resorting to nested simulation (Cairns 2011). Among the few studies which consider

dynamic management of longevity risk, Dahl et al. (2011) and Wong et al. (2014) study

hedging strategies under continuous-time, multi-population frameworks, while Cairns

(2011) considers a discrete-time, single population framework. In particular, Dahl et al.

(2011) study a quadratic loss function using a general forward mortality setup, and
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consider the limited trading frequency of the longevity-linked instruments. Moreover,

Wong et al. (2014) derive time-consistent solutions to a mean-variance problem, but

consider only continuous trading. Dahl et al. (2011) and Wong et al. (2014) obtain

closed-form solutions of complicated hedging problems. However, there is no empirical

support for their mortality models yet, and it is not clear how their hedging strategies

would perform in practice.

This chapter contributes to the literature by analyzing the effect of trading frequency

in dynamic time-consistent minimum-variance longevity hedging. In particular, we ex-

tend the method proposed by Basak and Chabakauri (2010, 2012) to the situation where

a part of the assets can only be traded at a limited, deterministic frequency, and obtain

semi-closed-form optimal hedging strategies under a forward interest rate and mortality

rate framework. We find a direct analog between the optimal strategies in the continuous

trading case and the constrained case. Moreover, closed-form solutions can be obtained

under reasonable parametric assumptions of the interest rate and mortality rate model.

We evaluate the hedging effectiveness in a numerical illustration, where a one-factor Hull-

White specification is used for the interest rate process, and a three-factor Hull-While

process is used for the mortality process. For the interest rate model, we use parameter

estimates from Driessen et al. (2003), who use U.S. interest rate data. For the mortality

model, we use the estimates in Blackburn and Sherris (2014), who fit a multi-population

mortality model to Australian and Swedish male data. From the numerical study we

find that mild trading frequency constraints, such as a two-year frequency, leads to only

a slight loss (about 3.7%) of the hedging performance compared to continuous trading.

Moreover, even when the longevity bond can only be traded at a very low frequency,

such as a five-year frequency, a dynamic hedge still leads to 23% lower hedging error

than the static hedge, where the hedger has a constant holding of longevity bonds.

The rest of the chapter is organized as follows. Section 2 gives an illustration of

longevity risk and describes the hedger’s optimization problem. Section 3 describes

the hedger’s assets and liabilities. Section 4 gives the optimal hedging strategy to the

benchmark minimum-variance optimization. Section 5 gives the optimal hedging strategy

to the constrained minimum-variance problem. Section 6 gives a numerical illustration

of the hedging strategy and hedge effectiveness. Finally, conclusions are provided in

Section 7.
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4.2. Longevity Risk and the hedger’s problem

Before introducing the hedger’s problem, we first illustrate the existence of longevity risk.

Figure 4.1 shows the one-year death probabilities, i.e., the probability that an individual

dies during a calender year, of the male (left) and female (right) populations aged 65

from 1960 to 2009 in the U.S., the Netherlands, Australia, and Sweden, normalized such

that the ones in year 1960 are equal to one.42 From the figure, we see that there is a

downward trend in the one year death probabilities in all gender and country combina-

tions, indicating that the mortality experience is improving in these countries in the past

50 years. More importantly, we see that the development of the death probabilities are

volatile for all countries: the death probabilities follow country and age-specific trends,

with non-negligible fluctuations in and around the trend. The randomness associated

with the future death probabilities is the cause of longevity risk. The ground-breaking

paper by Lee and Carter (1992) started a rapid development of stochastic mortality

models (Cairns et al. 2011). However, at the current stage, it is still a difficult task to

obtain accurate forecasts of future mortality rates. Therefore, nowadays longevity risk

is a non-negligible risk component for pension plans and annuity providers.

We consider the case where the hedger can invest in a money market account, a set

of zero coupon bonds, and a set of zero coupon longevity bonds contingent on cohort x0

(hereafter longevity bond).43 Before introducing the hedger’s problem, we first introduce

some definitions and notations. Denote by k ∈ {rp, pp} the set of populations. In

particular, k = rp refers to the reference population of the longevity bond, and k = pp

refers to the population in the hedger’s portfolio. A longevity bond is a zero coupon bond

with a random principle repayment, which depends on the actual cumulative survival

probability of a certain cohort in the reference population, at maturity. The survival

probability, the zero coupon bonds, and the longevity bonds are defined as follows.

� sp(x, t, k): the (future) probability that an individual aged x at time t in population

k survives up to time t+s, given that he is alive at time t. The survival probability,

sp(x, t, k), will be observed at time t+ s, but is random beforehand.

42The data is downloaded from the Human Mortality Database: www.mortality.org/.
43Other popular longevity-linked derivatives, such as longevity swaps and q-forwards (Dawson et al.

2010), can also be incorporated in our framework. For example, a forward can be mathematically
regarded as the exchange of the principle repayment of the longevity bond and a preset payment at
maturity.
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Figure 4.1: One-year death probability of the male (left) and female (right) populations
aged 65 for year 1960 to 2009 in the U.S., the Netherlands, Australia, and Sweden. For

each country and gender, the death probability in year 1960 is normalized to one.

� B(t): the time t value of the money market account, with B(0) = 1.

� B(t, T ): the time t price of the zero coupon bond which pays 1 euro at time T with

B(t) = B(t, t).

� L(t, T, x): the time t price of the longevity bond contingent on cohort x, which

pays Tp(x, 0, rp) euros at time T .

In this chapter, we consider a setting where the hedger implements a dynamic hedging

strategy at time 0, and wishes to assess the financial outcome of the hedging strategy

at a specific future valuation date, T0. Without loss of generality, we consider a stylised

hedger with N male participants (pension members or annuitants) in a single cohort

aged x0 at year 0.44 Starting from year T0, the hedger pays each member one euro per

year until the member dies or a terminal date, T1, is reached. Moreover, we assume that

N is large enough, so the number of survivors in year t can be reasonably approximated

by N× tp(x0, 0, pp). In other words, we focus only on macro longevity risk. Cairns (2013)

and Cairns et al. (2014) consider a similar setting, but study static rather than dynamic

44Our setup can be naturally generalized to multiple cohorts and participants of both genders.
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hedging strategies. Similar to Cairns (2013) and Cairns et al. (2014), we assume that the

hedger wishes to minimize the variance of her hedging error, defined as the deviation of

the market value of her investments (in longevity-linked instruments and other financial

assets) from the market value of her liabilities, at T0. We assume that there are M zero

coupon bonds with different maturities, collected in the set T = {τ1, τ2, ..., τM}, available

at any time t. However, due to the fact that the longevity-linked capital market is recently

developed, and there are not yet many tradable products, we assume that there exist

only M̃ ≤M longevity bonds available in the market, with T̃ ⊂ T .

In order to define the dynamics of mortality rates, interest rates, and other rele-

vant quantities, some preliminary setups are necessary. Similar to, for example, Wong

et al. (2014), we fixed a finite horizon T ∗,45 and a complete filtered probability space

(Ω,F , {Ft}t≥0, P ), where F0 is augmented by all the P -null subsets of F , and Ft is the

σ-field generated by an N = nr + nµ-dimensional standard Brownian motion under P ,

W P (t) = (W P
r (t)′,W P

µ (t)′)′. All stochastic processes are assumed to be well-defined,

and adapted to {Ft, t ∈ [0, T ∗]}. The evolvement of the zero coupon bonds is driven by

the nr-dimensional process W P
r (t), while the evolvement of the observed mortality rates

is driven by the nµ-dimensional process W P
µ (t). Furthermore, we assume independence

of W P
r (t) and W P

µ (t) for all t, i.e., the evolvement of mortality rates is assumed to be

independent of the financial markets. We model the money market account as

dB(t) = r(t)B(t)dt, B(0) = 1, (4.1)

where r(t) is the instantaneous spot rate at time t. We assume the existence of a risk

neutral measure, Qλ, with the money market account as the numéraire, by which prices

are determined. The existence of Qλ guarantees the exclusion of arbitrage opportunities.

In particular, Qλ is characterized by the Radon-Nikodym density

(
dQλ

dP
)t = exp(−

ˆ t

0

λ(s)′dW (t)− 1

2

ˆ t

0

‖λ(s)‖2ds), (4.2)

where λ(t) = (λr(t)
′, λµ(t)′)′ is the market price of risk vector with respect to Qλ, satisfy-

ing appropriate regularity conditions (See, for example, Proposition 1.7.31 in Jeanblanc

45We assume that T ∗ ≥ max{T1, τM}, where τM is the longest maturity of the zero coupon bond (and
thus the longevity bond).
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et al. (2009).). In this chapter, we assume that the zero coupon bond market is com-

plete, so M = nr. However, we allow for the situation where M̃ < nµ, in which case the

longevity bond market is incomplete.46 For simplicity of notation, we write Qλ as Q in

the sequel. Let WQ(t) = (WQ
r (t)′,WQ

µ (t)′)′ be an N dimensional process satisfying

dWQ(t) = dW P (t) + λ(t)dt. (4.3)

By Girsanov’s Theorem (Karatzas 1991), WQ(t) is an N -dimensional Brownian motion

under Q. We assume that λr(t) only depends on information regarding the financial

markets, and λµ(t) only depends on information regards the mortality processes. As a

result, WQ
r (t) and WQ

µ (t) are independent for all t.

For simplicity of notation, define Y (t) as the normalized time t discounted market

value of the hedger’s liabilities, i.e., the hedger’s time t market value of liabilities is

N × Y (t) euros. For t ∈ [0, T0], Y (t) can be written as

Y (t) =tp(x0, 0, pp)E
Q
t [B(t, T0)

ˆ T1

T0

B(T0, s)s−tp(x0 + t, t, pp)ds]

=EQ
t [

ˆ T1

T0

B(t, s)sp(x0, 0, pp)ds]. (4.4)

The hedger’s initial assets are assumed to be equal to her initial market value of

liabilities, i.e., w(0) = Y (0).47 At time t, her wealth is

w(t) = u0(t)B(t) + u1(t)′L(t) + u2(t)′B(t) (4.5)

with the self-financing budget constraint

dw(t) = u0(t)dB(t) + u1(t)′dL(t) + u2(t)′dB(t). (4.6)

46The case where the zero coupon bond market is incomplete can be incorporated naturally. When
the longevity bond market is incomplete, λ cannot be uniquely determined by market prices. In this
case, we assume that λ is determined by the market clearing conditions, together with some underlying
no-arbitrage equilibrium conditions. For methods of determining an equivalent martingale measure, see,
e.g., Kallsen (2002).

47We allow initial assets that are not equal to Y (0). In fact, in this paper we do not impose any
solvency constraint on the hedger. Therefore, the hedger’s wealth does not need to be above some
threshold. Moreover, as will be seen later, the optimal variance-minimizing hedging strategy in both the
benchmark case and the constrained case does not depend on w(t) for all t. The only requirement for
the optimization to make sense is that the wealth process is integrable throughout the planning horizon.
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In (4.5) - (4.6), u0(t), u1(t), and u2(t) are the hedger’s holdings of money market account,

longevity bond, and zero coupon bond at time t, respectively. Moreover, L(t) and B(t)

are the M̃ and M dimensional vector containing the time t price of the longevity bonds

and the zero coupon bonds with maturities in T̃ and T , respectively. Given the above

definition, the time T0 hedging error of the hedger is w(T0) − Y (T0), and the objective

of the hedger can be formulated as

min
u∈U

Var0[e−
´ T0
0 r(τ)dτ (w(T0)− Y (T0))], (4.7)

subject to the budget constraint (4.6), where u(t) = (u1(t)′,u2(t)′)′. U is the set of

admissible strategies, i.e., each u ∈ U is F -predictable, and satisfies standard integra-

bility conditions. We consider the variance of the discounted hedging error since, as

mentioned in Basak and Chabakauri (2010), optimizing with the discounted value would

significantly facilitate the derivation of the dynamic hedging strategies. We consider the

hedging problem in two cases: In the benchmark case, both the zero coupon bonds and

the longevity bonds can be traded continuously; while in the liquidity constrained case,

the longevity bonds can only be traded at a predetermined lower frequency.

4.3. Assets and liabilities

In this section, we describe the dynamics of the forward interest rate, the forward mor-

tality rates, the bonds and the hedger’s assets and liabilities.

4.3.1. Forward interest rates and mortality rates

Interest rates

The instantaneous forward interest rate, f(t, T ), is defined as

f(t, T ) = − ∂

∂T
log{B(t, T )}, (4.8)
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and the short rate, r(t), is given by r(t) = f(t, t). Under the Q measure, f(t, T ) is

assumed to follow

f(t, T ) = f(0, T ) +

ˆ t

0

af (s, T )ds+

ˆ t

0

σf (s, T )dWQ
r (s), t ≤ T, (4.9)

with a given initial continuous forward curve f(0, T ), so that r(t) follows the dynamics

r(t) = f(0, t) +

ˆ t

0

af (s, t)ds+

ˆ t

0

σf (s, t)dW
Q
r (s) (4.10)

under the Q measure.

Mortality rates

Following Bauer et al. (2008) and Blackburn and Sherris (2013), denote the forward

force of mortality as

µQ(t, T, x0, k) = − ∂

∂T
log{EQ

t [T−tp(x0 + t, t, k)]}, (4.11)

where EQ
t [.] = EQ[.|Ft] is the time t conditional expectation under the equivalent mar-

tingale measure. Given (4.11), we have

EQ
t [T−tp(x0 + t, t, k)] = exp(−

ˆ T

t

µQ(t, s, x0, k)ds). (4.12)

Let µQ(t, T, x0) = (µQ(t, T, x0, rp), µ
Q(t, T, x0, pp))

′. µQ(t, T, x0) is assumed to follow

µQ(t, T, x0) =µ(0, T, x0) +

ˆ t

0

aµ(s, T, x0)ds+

ˆ t

0

σµ(s, T, x0)dWQ
µ (s),

µ(0, T, x0) >0, (4.13)

where t → aµ(t, T, x0) and t → σµ(t, T, x0) are by assumption a continuous and deter-

ministic vector-valued and matrix-valued function, respectively. The vector of the spot

force of mortality, µ̂Q(t, x0), is given by

µ̂Q(t, x0) ≡ µQ(t, t, x0). (4.14)

Heath et al. (1992) gives a parsimonious dynamic for af (t, T ) under the equivalent
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martingale measure

af (t, T ) = σf (t, T )

ˆ T

t

σf (t, s)
′ds. (4.15)

Following the same argument, we have (see Bauer and Ruß 2006)

aµ(t, T, x0) = σµ(t, T, x0)

ˆ T

t

σµ(t, s, x0)′ds. (4.16)

Preferably, we should calibrate f(t, T ) and µQ(t, T, x0) from existing data of market

prices. However, at the current stage, the price data of longevity-linked instruments

is limited, and it is very difficult to obtain meaningful estimations from them. As an

alternative, following, for example, Bauer et al. (2008), we model the best estimated force

of mortality, µ(t, T, x0), which can be calibrated from historical mortality data, where

the best estimated forward force of mortality (per component) is given by

µ(t, T, x0, k) = − ∂

∂T
log{EP

t [T−tp(x0 + t, t, k)]}, k = rp, pp. (4.17)

where EP
t [.] = EP [.|Ft] is the time t conditional expectation under the physical prob-

ability measure. As shown in Bauer et al. (2008), the relation between µ(t, T, x0) and

µQ(t, T, x0) is

µ(t, T, x0) = µQ(t, T, x0) +

ˆ T

t

σµ(s, T, x0)λµ(s)ds. (4.18)

From (4.13) and (4.18), the dynamic of µ(t, T, x0) is given by

µ(t, T, x0) =µ(0, T, x0) +

ˆ T

t

aµ(s, T, x0)dt+

ˆ T

t

σµ(s, T, x0)dW P
µ (t),

µ(0, T, x0) >0. (4.19)

Similarly, define the best estimated spot force of mortality, µ̂(t, x0), as

µ̂(t, x0) ≡ µ(t, t, x0). (4.20)

In this chapter, we assume that the market price of mortality risk process, (λµ(t))t≥0,

is deterministic for mathematical convenience. Consequently, the risk neutral expected

survival probabilities can be written as deterministic functions of the best estimated
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survival probabilities (Bauer et al. 2008)

EQ
t [T−tp(x0 + t, k)] = e

´ T
t

´ s
t σµ(u,s,x0)λ(u)dudsEP

t [T−tp(x0 + t, k)]. (4.21)

As a result, if the values of (λµ(t))t≥0 are given, then we can price the longevity bond and

the longevity contingent liabilities using the best estimated forward force of mortality,

µ(t, T, x0).

4.3.2. Assets and Liabilities

Zero Coupon Bond

For any T ∈ T , the time t price of the zero coupon bond with any maturity in T can be

written as

B(t, T ) = exp(−
ˆ T

t

f(t, s)ds), (4.22)

with the dynamics under the equivalent martingale probability measure given by

dB(t, T ) =B(t, T )r(t)dt+B(t, T )σB(t, T )dWQ
r (t), B(T, T ) = 1, (4.23)

with σB(u, T ) = −
´ T
u
σf (u, s)ds. Consequently, the dynamics of the bond under the

physical measure is

dB(t, T ) =B(t, T )(r(t) + bB(t, T ))dt+B(t, T )σB(t, T )dW P
r (t), B(T, T ) = 1, (4.24)

where bB(u, T ) = −
´ T
u
σf (u, s)dsλr(u), and the bond price in (4.22) can be reformulated

as

B(t, T ) = B(0, T ) exp(

ˆ t

0

[r(s)+bB(s)− 1

2
||σB(s, T )||2]ds+

ˆ t

0

σB(s, T )dW P
r (s)). (4.25)

Longevity Bond

A longevity bond contingent on cohort x0 which matures at T pays Tp(x0, 0, rp) at

maturity. Since we consider longevity bonds contingent only on cohort x0, we simplify

the notation by writing L(t, T ) = L(t, T, x0) for all T ∈ T̃ . The price of the longevity
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bond at time t takes the form

L(t, T ) =B(t, T )EQ
t [Tp(x0, 0, rp)]

=B(t, T )tp(x0, 0, rp)E
Q
t [T−tp(x0 + t, t, rp)]. (4.26)

The first equality holds due to the independence of WQ
r (t) and WQ

µ (t). The dynamics of

the longevity bond is given by the following Proposition.

Proposition 1. The price of the zero coupon longevity bond with maturity T ∈ T̃
satisfies

dL(t, T )

L(t, T )
= {r(t) + bB(t, T ) + bL(t, T )}dt+ σB(t, T )dW P

r (t) + σL(t, T )dW P
µ (t), (4.27)

with L(T, T ) = e−
´ T
0 µ̂(s,x0,rp)ds, and with

σL(u, T ) =−
ˆ T

u

σµ,1(u, s, x0)ds

bB(u, T ) =− (

ˆ T

u

σf (u, s)ds)λr(u)

bL(u, T ) =− (

ˆ T

u

σµ(u, s, x0, 1)ds)λµ(u), (4.28)

where σµ(u, s, x0, 1) is the first row of σµ(u, s, x0).

Proof. See Appendix.

From (4.27), we see that, compared to the dynamics of the zero coupon bond, the

longevity bond is in addition affected by the longevity risk premium, bL(t, T ), and the

shocks to the mortality processes, W P
µ (t).

Pension assets and liabilities

As described in Section 2, the hedger’s time t wealth is given by

w(t) = u0(t)B(t) + u1(t)′L(t) + u2(t)′B(t). (4.29)
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For any u(t) ∈ U , w(t) satisfies the stochastic differential equation

dw(t) = {w(t)r(t) + u(t)′aw(t)}dt+ u(t)′σw(t)dW P (t), (4.30)

where aw(t) is a M̃ + M dimensional vector which contains L(t, T )(bB(t, T ) + bL(t, T ))

for T ∈ T̃ in the first M̃ components, and B(t, T )bB(t, T ) for T ∈ T in the last M

component. σw(t) is the (M̃+M)×(nr+nµ) instantaneous covariance matrix containing

four blocks

� σLB(t): the upper-left M̃×nr block, which contains 1×nr vectors, L(t, T )σB(t, T ),

for T ∈ T̃ .

� σB(t): the lower-left M × nr block, which contains 1× nr vectors, B(t, T )σB(t, T ),

for T ∈ T .

� σL(t): the upper-right M̃×nµ block, which contains 1×nµ vectors, L(t, T )σL(t, T ),

for T ∈ T̃ .

� the lower-right M̃ × nµ zero sub-matrix.

For simplicity of notation, we denote by σw(t, 1) and σw(t, 2) the M̃ × (nr + nµ) and

M × (nr + nµ) matrix containing the first M̃ and last M rows of σw(t), respectively.

Moreover, we assume that σB(t) is invertible for any t. Since we assume that M = nr,

this assumption simply means that there is no redundant zero coupon bond in the market.

As discussed in Section 2, the time t discounted market value of pension liabilities,

Y (t), can be formulated as

Y (t) =

ˆ T1

T0

B(t, s)EQ
t [sp(x0, 0, pp)]ds

=tp(x0, 0, pp)

ˆ T1

T0

B(t, s)EQ
t [s−tp(x0 + t, t, pp)]ds

=e−
´ t
0 µ̂(τ,x0,pp)dτ

ˆ T1

T0

B(t, s)EQ
t [s−tp(x0 + t, t, pp)]ds. (4.31)
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4.4. Benchmark optimization problem

In this section we derive the optimal strategy of the benchmark optimization problem,

where all bonds can be traded continuously. First, denote by X(t, x0) the vector of state

variables, which includes the spot interest rate and the spot mortality rate. In a multi-

factor setting, i.e., when nr > 1 or nµ > 1 holds, extra state variables are needed to make

the spot interest rate and mortality rates Markovian (see, e.g., Inui and Kijima 1998).

In our setup, X(t, x0) is an nr + 2nµ-dimensional vector, containing, as components, the

state variables

ηi,r(t) =

ˆ t

0

σi,f (s, t)λi,r(s)ds+

ˆ t

0

σi,f (s, t)dW
P
i,r(s), i = 1, 2, 3, ..., nr,

ηj1,µ(t) =

ˆ t

0

σj,µ(s, t, x0, rp)dW
P
j,µ(s), j = 1, 2, 3, ..., nµ,

ηj2,µ(t) =

ˆ t

0

σj,µ(s, t, x0, pp)dW
P
j,µ(s), j = 1, 2, 3, ..., nµ, (4.32)

where σi,f (s, t), λi,r(s) and σj,µ(s, t, x0, k) are the i-th entry of σf (s, t) and λr(s), and the

j-th entry of σµ(s, t, x0, k), k = rp, pp, respectively. In this section, we simply write the

dynamics of X(t, x0) under the physical measure P as

dX(t, x0) = aX(t,Xt, x0)dt+ σX(t,Xt, x0)dW P (t). (4.33)

The concrete representation of the dynamics can be derived when specific parametric

choices of σf (s, t) and σµ(s, t, x0) are made. An illustration is provided in the next

section. For simplicity of notation, we omit the term x0 in the drift and volatility terms

of the state variables in the sequel.

We first consider the case where the hedger is able to continuously rebalance her

position in both the zero coupon bond and the longevity bond. The hedger solves the

problem

min
u∈U

Var0[e−
´ T0
0 r(τ)dτ (w(T0)− Y (T0))], (4.34)

under the budget constraint (4.6). As stated in Basak and Chabakauri (2012), most of the

existing literature only characterize the pre-commitment dynamic hedging strategy which

minimizes the variance at the initial date. We consider the optimal (time-consistent)
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strategy when the hedger would also minimize the variance at later dates. Applying the

law of total variance to the variance criterion evaluated at time t yields

Vart[e
−
´ T0
t r(τ)dτ (w(T0)− Y (T0))]

=Et[Vart+ε[e
−
´ T0
t+ε r(τ)dτ (w(T0)− Y (T0))]] + Vart[Et+ε[e

−
´ T0
t r(τ)dτ (w(T0)− Y (T0))]

6=Et[Vart+ε[e
−
´ T0
t+ε r(τ)dτ (w(T0)− Y (T0))]]. (4.35)

Intuitively speaking, the time t+ ε variance of the time T0 hedging error is smaller than

the time t variance. Being at time t, the hedger would choose a hedging strategy that

not only accounts for the expected time t+ ε variance of the time T0 hedging error, but

also for the variance of time t+ ε expected hedging error. However, the latter term is not

included anymore in the objective function as the time interval ε elapses, and the hedger

may deviate from the time t optimal strategy at time t+ ε, if she minimizes the variance

at time t + ε. In this chapter, we follow the recursive approach proposed by Basak

and Chabakauri (2010, 2012), Strotz (1956), and Caplin and Leahy (2006) to obtain

time-consistent optimal solutions to the minimum-variance problem. In particular, the

recursive formulation at time t is expressed as the expected future value of the variance

plus an adjustment term, which is the time t variance of the expected terminal net asset

value. For each t ∈ [0, T0], define

Ut ≡ Vart[−e−
´ T0
t r(τ)dτ (Y (T0)− w(T0))]. (4.36)

Substituting the second line in (4.35) into (4.36) yields

Ut = Et[Ut+ε] + Vart[Et+ε[−e−
´ T0
t r(τ)dτ (Y (T0)− w(T0))]]. (4.37)

The hedger minimizes (4.37) subject to the budget constraint (4.6) and (4.33) by back-

ward induction, yielding a time-consistent hedging strategy. In particular, the optimal

hedging strategy, u∗(.), is given by Theorem 1.

Theorem 1. Under the budget constraints (4.6) and (4.33), the minimum-variance op-

timal strategy is given by

u∗(t) = −(σw(t)σw(t)′)−1σw(t)σX(t)′
∂G(t)

∂X(t)
, (4.38)
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where G(t) has the representation48

G(t) = −EQ̃
t [e−

´ T0
t r(τ)dτY (T0)]. (4.39)

Q̃ is a probability measure with the Radon-Nikodym density w.r.t. P

(
dQ̃

dP
)t = exp(−1

2

ˆ t

0

||λQ̃(s)||2ds−
ˆ t

0

λQ̃(s)dW P (s)), (4.40)

with

λQ̃(t) = −aw(t)′(σw(t)σw(t)′)−1σw(t). (4.41)

The corresponding variance of the hedging error is given by

Vart[e
−
´ T0
t r(τ)dτ (Y (T0)− w∗(T0))]

=Et[

ˆ T0

t

e−2
´ s
t r(τ)dτ (

∂G(s)

∂X(s)

′

σX(s)σX(s)′
∂G(s)

∂X(s)

− ∂G(s)

∂X(s)

′

σX(s)σw(s)′(σw(s)σw(s)′)−1σw(s)σX(s)′
∂G(s)

∂X(s)
)ds], (4.42)

where w∗(T0) is the T0 wealth under the optimal hedging strategy.

Proof. The proof follows directly from Proposition 3.1 and 3.2 of Wong et al. (2014),

with the risk aversion parameter φ set to 0. In our case, we have

Γ(t) ≡ G(t) = −Et[e−
´ T0
t r(τ)dτY (T0)−

ˆ T0

t

e−
´ s
t r(τ)dτu∗(s)aw(s)ds],

and Y (t) ≡ w(t).

Without loss of generality, we take a further look at the measure Q̃ given in Theorem

1 for TM = TM̃ = {τ}, i.e., when there is one zero coupon bond and longevity bond

tradable in the market. From the definitions of aw and σw, we have

λQ̃(s) = −aw(t)′(σw(t)σw(t)′)−1σw(t)

=
( ´ T

t σf (t,s)dsbB(t,T )´ T
t σf (t,s)ds′

´ T
t σf (t,s)ds

,
´ T
t σµ,1(t,s,x0)dsbL(t,T )´ T

t σµ(t,s,x0,1)ds′
´ T
t σµ(t,s,x0,1)ds

)′
. (4.43)

Eq (4.43) shows that the measure Q̃ is completely characterized by the price of risk of the

48For notational simplicity, we write G(t,X(t)) as G(t).
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tradable assets, i.e., the zero coupon bond and the zero coupon longevity bond. Although

the risk neutral measure is not unique due to market incompleteness, the measure Q̃ can

be uniquely determined from observable market prices. Moreover, the optimal strategy

given in (4.38) preserves the structure of that in complete markets: when the market

would be complete, i.e., there would exist a unique risk neutral measure Q̄, the optimal

hedging strategy given by the standard no-arbitrage method preserves the same structure

as given in (4.38), with the term G(t) given by

G(t) = −EQ̄
t [e−

´ T0
t r(τ)dτY (T0)] = −B(t, T1)Y (t). (4.44)

In other words, G(t) is the negative unique no-arbitrage discounted value of Y (T0) in this

case, and the hedging error, e−
´ T0
t r(τ)dτ (w∗(T0)− Y (T0)), becomes 0 for all t. Therefore,

we see that the optimal hedging strategy given in Theorem 1 is a simple generalization

of the perfect hedge in the complete market, and minimizes the hedging error when the

market is incomplete. In fact, G(t) can be written as

G(t) = Et[e
−
´ T0
t r(τ)dτw∗(T0)− w(t)]− Et[e−

´ T0
t r(τ)dτY (T0)], (4.45)

where the first term represents the expected trading gains in the assets that the hedger

gives up for hedging the non-tradable liabilities during [t, T0]. For this reason, the mea-

sure Q̃ is called the “hedge-neutral” measure by Basak and Chabakauri (2012).

4.5. Optimal strategy under trading constraint

As mentioned above, the longevity-linked capital market is newly developed, and it might

not be possible for the hedger to trade longevity-linked instruments at the same high

frequency as other financial assets. To cope with this fact, we study the hedging strategies

under a liquidity constraint, under which the hedger can only trade the longevity bond

at fixed and deterministic times t ∈ {t0, t1, ..., tn}. However, following Dahl et al. (2011)

and Ang et al. (2014), we still assume that B(t) and L(t) are F -adapted, i.e., the price

of both the zero coupon bonds and the longevity bonds are observed by the hedger at

any time t, not only at the discrete times ti, i = 1, 2, ..., n. Moreover, the holds of all
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assets are allowed to jump. Assume that the trading opportunity arrives at time t, then

the hedger is able to rebalance u0 and u2 such that

0 = (u0(t)− u0(t−))B(t) + (u1(t)− u1(t−))′L(t) + (u2(t)− u2(t−))′B(t) (4.46)

holds. Therefore, the budget constraint given in Eq (4.6) still implies self-financing in

the constraint case. A similar constrained optimization problem is considered in Dahl

et al. (2011), who consider a quadratic loss function.

4.5.1. The constrained optimal strategy

Denote by û(.) = (û1(.)′, û2(.)′)′ the hedging strategy under the liquidity constraint,

and Û the corresponding admissible set. In this case the hedger solves the optimization

problem

min
û∈Û

Var0[e−
´ T0
0 r(τ)dτ [w(T0)− Y (T0)]] (4.47)

under the constraints (4.6) and (4.33). Denote by σw(s, 1) and σw(s, 2) the M̃×(nr+nµ)

andM×(nr+nµ) matrix containing the upper M̃ and lowerM rows of σw(s), respectively.

Moreover, denote by aw(s, 1) and aw(s, 2) the M̃ and M vector containing the first M̃

and last M components of aw(s). The constrained optimal hedging strategy is given in

the following Theorem.

Theorem 2. Denote G(t) by

G(t) =
n∑

j=i+1

EQ̄
t [

ˆ tj+1

tj

e−
´ s
t r(τ)dτ û∗1(tj)aw(s, 1)ds]− EQ̄

t [e−
´ T0
t r(τ)dτYT0 ]

+û∗1(ti)
′EQ̄

t [

ˆ ti+1

t

e−
´ s
t r(τ)dτaw(s, 1)ds]

≡Gi(t) + û1(ti)
′Hi(t), (4.48)

for t ∈ [ti, ti+1) with tn+1 ≡ T0, and Q̄ the probability measure with Radon-Nikodym

density w.r.t. P given by

(
dQ̄

dP
)t = exp(−1

2

ˆ t

0

||λQ̄(s)||2ds−
ˆ t

0

λQ̄(s)dW P (s)), (4.49)
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with

λQ̄(t) = −aw(t, 2)′(σw(t, 2)σw(t, 2)′)−1σw(t, 2). (4.50)

Moreover, denote the matrices Ai(s) and Bi(s) by

Ai(s) =σw(s, 1)(I − σ̄w(s, 2))σw(s, 1)′ + 2σw(s, 1)(I − σ̄w(s, 2))σX(s)′
∂Hi(s)

∂X(s)

+
∂Hi(s)

∂X(s)

′

σX(s)(I − σ̄w(s, 2))σX(s)′
∂Hi(s)

∂X(s)

Bi(s) =− (σw(s, 1) +
∂Hi(s)

∂X(s)

′

σX(s))(I − σ̄w(s, 2))
∂Gi(s)

∂X(s)
(4.51)

for s ∈ [ti, ti+1), i = 1, 2, · · · , n. Assume that Eti [
´ ti+1

ti
e
−2
´ s
ti
r(τ)dτ

Ai(s)ds] is invertible

for all i. Under the budget constraints (4.29) and (4.33), the minimum-variance optimal

strategy to the problem (4.47) is given by

û∗1(t) =(Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Ai(s)ds])
−1Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Bi(s)ds], t ∈ [ti, ti+1).

û∗2(t) =− (σw(t, 2)σw(t, 2)′)−1σw(t, 2)σX(t)′
∂G(t)

∂X(t)

−(σw(t, 2)σw(t, 2)′)−1σw(t, 2)σw(t, 1)′u∗1(ti), t ∈ [ti, ti+1) (4.52)

for 0 ≤ i ≤ n.

Proof. See Appendix.

The invertibility assumption in Theorem 2 can be satisfied under reasonable parametriza-

tion of the interest rate and mortality rate processes. An illustrating parametric specifi-

cation is given in the next section.

4.5.2. Comparison with the benchmark case

In this subsection, we compare the constrained optimal strategy in (4.52) with the bench-

mark optimal strategy given in (4.38).
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Optimal holding of zero coupon bonds

The benchmark optimal u∗2 given in (4.38) can be formulated as

u∗2(t) =− (σw(t, 2)σw(t, 2)′)−1σw(t, 2)σX(t)′
∂G(t)

∂X(t)

−(σw(t, 2)σw(t, 1)′)−1σw(t, 2)σw(t, 2)′u∗1(t), (4.53)

with the G(t) given in (4.39). Therefore, the structure of the optimal holding of zero

coupon bonds is similar in both cases. In fact, comparing (4.52) and (4.53), we see that,

for any given u1, the optimal holding of the zero coupon bond hedges the interest rate

risk of two parts: the market value of the liabilities (the first part in (4.53)) under the

hedge neutral measure, and the holding of longevity bonds (the second part in (4.53)).

However, the hedge neutral measure also depends on u1. For the benchmark case, we

can write G(t) in (4.39) as

G(t,u1) = EQ̄
t [

ˆ T0

t

e−
´ s
t r(τ)dτu1(s)′aw(s, 1)ds]− EQ̄

t [e−
´ T0
t r(τ)dτY (T0)], (4.54)

with Q̄ defined in (4.49). When evaluated at the optimal u1(t), G(t,u1(t)) becomes (By

Feynman-Kac Theorem)

G(t,u∗1) =EQ̄
t [

ˆ T0

t

e−
´ s
t r(τ)dτu∗1(t)′aw(s, 1)ds]− EQ̄

t [e−
´ T0
t r(τ)dτY (T0)]

=− EQ̃
t [e−

´ T0
t r(τ)dτY (T0)], (4.55)

with Q̃ defined in Theorem 1. Similarly, for the constrained case, we can see from (4.48)

that the constrained hedge neutral measure, denoted by Q̃c, should satisfy the relation

EQ̃c
t [e−

´ T0
t r(τ)dτY (T0)] =

n∑
j=i+1

EQ̄
t [

ˆ tj+1

tj

e−
´ s
t r(τ)dτ û∗1(tj)aw(s, 1)ds]− EQ̄

t [e−
´ T0
t r(τ)dτY (T0)]

+û∗1(ti)
′EQ̄

t [

ˆ T0

t

e−
´ s
t r(τ)dτaw(s, 1)ds] (4.56)

for i = 1, 2, ..., n. From the above analysis, we see that the holding of the longevity bond

affects the corresponding optimal holding of the zero coupon bond via two channels: a

direct channel by introducing extra interest rate risk; and an indirect channel by changing
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the hedge neutral measure.

Optimal holding of longevity bonds

The benchmark optimal u1 given in (4.38) can be formulated as

u∗1(t) = (Ã(t))−1B̃(t), (4.57)

with

Ã(t) =σw(s, 1)(I − σ̄w(s, 2))σw(s, 1)′

B̃(t) =− σw(s, 1)(I − σ̄w(s, 2))σX(s)
∂G(s)

∂X(s)
. (4.58)

Compare (4.57) with (4.52), we see that the structure of the optimal holding of longevity

bonds is similar in both cases. Intuitively speaking, the benchmark optimal u1 mini-

mizes the portfolio’s instantaneous sensitivity with respect to the mortality risk under

the benchmark hedge neutral measure, while the constrained optimal û1 minimizes the

portfolio’s expected accumulated sensitivity with respect to the mortality risk in each

[ti, ti+1) under the constrained hedge neutral measure. The difference between the bench-

mark Ã and B̃ matrix and the constrained A and B matrix given in (4.51) comes from

the difference in the hedge neutral measure. In particular, in both cases, the hedge neu-

tral measure at time t depends on future optimal û1. In the benchmark case, the future

optimal û1 is independent of the optimal û1 at time t. However, for the constrained

case, for every t ∈ [ti, ti+1), the future optimal û1 up to time ti+1 depends on the current

optimal û1.

We have derived the optimal strategy under the trading constraint of longevity bonds.

However, from (4.51) – (4.52), we see that, for i ≤ n− 1, the constrained optimal û1 at

t ∈ [ti, ti+1) depends explicitly on the future optimal û1 (through the term Gi(t)). As a

result, in the application, we need to solve the optimal û1 period by period. However,

the optimal û1 in each period is a rather complicated expression, which makes the appli-

cation inconvenient. As an alternative, we consider the optimization problem under an

additional constraint, which substantially increase the tractability of the optimal strate-

gies. We will see in the next section that satisfying performance of the optimal hedging
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strategy can be achieved under this additional constraint.

4.5.3. The constrained optimal strategy in a special case

In this subsection, we consider the constrained optimization problem under an additional

constraint

Et[W
∗(T0)] = Et[W (T0, û)], t ∈ [0, T0], (4.59)

where W ∗(T0) is the T0 wealth under the benchmark optimal strategy given in (4.38).

Constraint (4.59) means that the hedger only considers the set of constrained strategies

that give the same expected T0 market value of investments as the benchmark optimal

strategy. The optimal strategy under this additional constraint is given by the next

Proposition.

Proposition 2. Under the budget constraints (4.29), (4.33) and (4.59), the minimum-

variance optimal strategy to the problem (4.47) is given by

û∗1(t) =(Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Ai(s)ds])
−1Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Bi(s)ds], t ∈ [ti, ti+1).

û∗2(t) =− (σw(t, 2)σw(t, 2)′)−1σw(t, 2)σX(t)′
∂G(t)

∂X(t)

−(σw(t, 2)σw(t, 2)′)−1σw(t, 2)σw(t, 1)′u∗1(ti), t ∈ [ti, ti+1) (4.60)

under the assumption that Eti [
´ ti+1

ti
e
−2
´ s
ti
r(τ)dτ

A(s, ti)ds] is invertible for any i. The

matrices A(s, ti) and B(s, ti) are given by

A(s, ti) =σw(s, 1)(I − σ̄w(s, 2))σw(s, 1)′

B(s, ti) =− σw(s, 1)(I − σ̄w(s, 2))σX(s)
∂G(s)

∂X(s)
(4.61)

for all i. The G(t) is given in (4.39).

Proof. The proof follows Theorem 2 directly, with the Gi(t) replaced by G(t) for every

i.

Compare (4.61) with (4.58), we see that the constrained optimal û1 in this case looks

more similar to the benchmark optimal û1. Specifically, the constrained optimal û1

now only minimizes the portfolio’s expected accumulated sensitivity with respect to the
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mortality risk, without changing the hedge neutral measure. Indeed, under the additional

constraint (4.59), we have

G(i, t) =Et[

ˆ tj+1

tj

e−
´ s
t r(τ)dτ û∗(s)aw(s)ds]− Et[e−

´ T0
t r(τ)dτYT0 ]

=Et[

ˆ tj+1

tj

e−
´ s
t r(τ)dτu∗(s)aw(s)ds]− Et[e−

´ T0
t r(τ)dτYT0 ]

=G(t). (4.62)

In other words, under the additional constraint (4.59), the constrained optimal strategy

depends on the benchmark hedge neutral measure, and thus the optimal û1 does not

depend on future û1-s anymore.

4.6. Numerical evaluation of the optimal hedging strategies

In Section 4 and 5 we derived optimal hedging strategies using a general HJM framework.

In this section we give a numerical illustration of the optimization problem considered

in Section 4.5.3 using a specific parametrization of the forward interest rate and mor-

tality rate processes. Moreover, we evaluate the hedging effectiveness using parameter

estimates from existing literature.

Parametrization

As the focus of this chapter is the hedging of longevity risk, we impose a simplified

structure for the interest rates. In particular, we define

σf (t, T ) = βeκ(T−t), (4.63)

i.e., we consider a one factor Hull-White specification of the interest rate process. For

the mortality process, we define

σµ(t, T, x0) =

 c11(x0)eω11(T−t) c12(x0)eω12(T−t) c13(x0)eω13(T−t)

c21(x0)eω21(T−t) c22(x0)eω22(T−t) c23(x0)eω23(T−t)

 , (4.64)
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where the ckj(x0) = ckje
akjx0 . ckj-s, akj-s, and ωkj-s are parameters which need to be

determined. The derivation of u∗ in (4.38) and (4.52) under the specifications (4.63) and

(4.64) is rather lengthy, and is left to the Appendix.

Choice of parameter values

For the one factor Hull-White interest rate model, we use the estimation results from

Driessen et al. (2003), who estimate a one-factor Hull-White model from U.S. interest

rate data: β = 0.0095 and κ = −0.009. For the mortality model, we use the estimation

results of the dependent factor model in Blackburn and Sherris (2014), who apply a

three-factor two population model to Australian and Swedish males data. The parameter

values are given by

(ω11, ω12, ω13) = (ω21, ω22, ω23) = (0.1246, 0.08366, 0.1714), (4.65)

and

(c11, c12, c13) =(0.00006657, 0.0002238, 0.000001095)

(c21, c22, c23) =(0.00003435, 0.0003469, 0.000001095). (4.66)

The third factor has the same effect to both populations, and the time sensitivity pa-

rameters, ωij-s, are population neutral.

Besides the specified parameter values, initial forward curves are also needed to gen-

erate future interest and mortality rates. For the interest rate, we generate the forward

curve based on the yield curve on September, 30, 2014, reported by the U.S. Department

of the treasury.49 For the mortality rates, we generate the initial forward curve using

the Lee-Carter (1992) model and mortality data downloaded from the Human Mortality

Database.50 The age groups and sample period chosen to generate the initial forward

curve are the ages 21 to 100 and the years 1965 to 2009, respectively. Finally, we use a

constant vector of price of risk: λ = (0.05333, 0.3008, 0.2898, 0.2788)′.51

49http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield.
50http://www.mortality.org/.
51The price of longevity risk is calibrated in Bauer et al. (2010). For the price of interest risk, De Jong

and Santa-Clara (1999) propose a square root price of risk process, λr(t) = λ̄
√
σ0 + σ1r(t), and calibrate

the parameter values: λ̄ = 47.86, σ0 = 0, and σ1 = 0.0579. We impose a constant price of risk which
equals to the mean of the λr(t) process generated using their parameters, i.e., λr = λr(t).
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Strategy Benchmark Constrained Static Interest Only
Zero Coupon Bond week week week week

Longevity Bond week 1/2/5 year buy and hold no trading

Table 4.1: The trading frequency of zero coupon bond and longevity bond for the four
strategies.

Optimal strategies

For illustration purpose, we consider the case where the hedger trades only one zero

coupon bond and one longevity bond. In particular, we assume that T = T̃ = {T1}.
In other words, both bonds mature at the same date when the last possible payment

in the hedger’s liabilities is made. We evaluate the performance of four strategies: the

benchmark strategy, a constrained strategy, a static strategy, and an interest-only strat-

egy. For each strategy, the zero coupon bond is assumed to be trade weekly, while the

longevity bond is assumed to have different trading frequencies, see Table 4.1.

The interest-only strategy, where the hedger does not trade the longevity bond at all,

is a special case of the benchmark strategy. The optimal interest-only strategy is given

by the next proposition.

Proposition 3. The optimal strategy and the value function in the case where the hedger

only trades zero coupon bonds have the same forms as in (4.38) and (4.42) with u1(t) = 0

and σw(t) = (B(t, T )σB(t, T ), 0nµ) for t ∈ [0, T0].

Proof. The proof follows directly from the proof of Theorem 1.

For the portfolio, we consider payments to the cohort that is aged 55 in the year 2009

and start 10 years from now. In other words, we let x0 = 55 and T0 = 10. Moreover, we

let T1 = 30, i.e., the last possible payment is made when the cohort reaches age 85. Figure

4.2 reports the best estimated survival probabilities of cohort x0 for both populations.

We see that the estimated survival probabilities are different for each population, which

shows the presence of the population basis risk.

We generate 1000 pathes of the state variables, and compute corresponding realiza-

tions of the four optimal strategies.52 The mean optimal strategies for the first three

cases are reported in Figure 4.3, where the left column displays the optimal holdings

52With 1000 realizations, the mean, 1% and 99% quantiles of the time 0 optimal standard deviation
of the hedger’s hedging error under the benchmark strategy is 0.0160, 0.0154 and 0.0168. Confidence
intervals for the optimal standard deviations under other strategies are also small.
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Figure 4.2: The survival probability for the males cohort aged 55 at year 2009. The
solid line and dashed line is the survival probability for the Australian and the Swedish

population, respectively.

of the longevity bond, and the right column reports the optimal holding of the zero

coupon bond. For the constrained case, we only report the optimal holdings for the

2-year frequency, since the patterns for the 1- and 5-year-frequency strategy are very

similar. In each figure, the solid line, the dashed line, and the dotted line represents

the optimal strategy for the benchmark case, the constrained case, and the static case,

respectively. Moreover, the mean optimal strategy, as well as the 5% and 95% quantiles,

in the interest-only case is reported in Figure 4.4. We see that, firstly, for the two dy-

namic strategies, the optimal holding of the longevity bond is decreasing in time. This

observation is intuitive, since as the dates of payment become close, the mortality rates

affecting the liabilities become less uncertain. As a result, the longevity risk exposure in

the liabilities is decreasing over time, and the hedger would gradually reduce her holding

of the longevity bond.

For the zero coupon bond, the patterns are more complicated. The optimal holding

of the zero coupon bond is increasing in the benchmark case, decreasing in the static

case and the interest-only case, and has a decreasing trend with upward jumps in the

constrained case. These observations result from the interaction of two opposite forces.

First, the duration of the liabilities decreases over time, and so does the interest rate

exposure in the liabilities. This effect pushes the hedger to reduce her holding of zero-

coupon bonds. As can be seen most clearly in the interest-only case, the hedger initially
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holds a positive amount of zero-coupon bond to hedge her interest rate risk, and then

gradually reduces her holding. Second, as mentioned in Section 4, the price of the zero

coupon bond and the longevity bond move in the same direction as interest rate changes.

Therefore, the holding of the longevity bond introduces extra interest rate risk, which

needs to be hedged by holding zero-coupon bond in the opposite direction. As can be

seen in the first three cases, the large holding of the longevity bonds at time 0 introduces

extra interest rate risk, which requires the hedger to short the zero coupon bond. If

the holding of the longevity bonds is unchanged over time, as in the static case and the

intervals in the constrained case, the hedger would even short more zero-coupon bonds

as the duration of her liabilities decreases. However, if the holding of the longevity bond

decreases over time, as in the benchmark case and the trading points of the longevity

bond in the constrained case, the hedger would reduce her holdings (in absolute term)

of the zero-coupon bond correspondingly.
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Figure 4.3: The mean optimal strategies for the benchmark case, the constrained case
(2-year frequency), and the static case. The solid line, the dashed line, and the dotted
line represent the optimal strategy in the benchmark case, the constrained case, and

the static case, respectively.

Besides the mean optimal strategies, we also investigate how sensitive the optimal

strategies are to random realizations of the state variables. The optimal strategies turn

out to be with a clear monotonic trend, except for the optimal holding of the zero-

coupon bond in the constrained case. However, even in this case, the optimal holding

is monotonically decreasing between each two consecutive trading points. Therefore, we

examine the sensitivity of the strategies by looking at their confidence intervals. The 5%

and 95% quantiles of the benchmark, the constrained, and the static optimal strategies

are reported from top to bottom in Figure 4.5. In each row, the left column reports
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Figure 4.4: The mean, 5%, and 95% quantiles of the optimal holding of the
zero-coupon bond in the interest-only case.

the optimal holdings of the longevity bond, and the right column reports the optimal

holdings of the zero-coupon bond. Together with Figure 4.4, we see that the confidence

intervals of the optimal strategies in all cases are small. The possible reason is that, with

the parameter estimates we use, the volatilities of the interest rate and mortality rate

forecast are small.

Finally, we evaluate the performance of different hedging strategies. In particular,

the time 0 standard deviation (std.) of the hedger’s hedging error under the benchmark

strategy is 0.0160. This number can be interpreted using the following example. Assume

that a male receives annual pension payment of 46,000 U.S. dollars after he retires,53

then the time 0 std. of the hedger’s hedging error corresponding to one pension member

is 736 U.S. dollars, given that she follows the benchmark hedging strategy. In Table

4.2 we report the ratio of the time 0 std. under the other strategies to the std. of the

benchmark strategy. Continuing the above example, the time 0 std. would be about 3.7%

and 18% higher if she could only trade the longevity bond on a 2-year or 5-year frequency,

respectively. Moreover, if a hedger switches from static hedging (10-year frequency) to

5-year frequency, the optimal std. would be reduced by around 23%. Finally, the std.

would be about 7.44 times higher if the hedger does not hedge longevity risk at all.

From the numerical study, we see that lowering the trading frequency of the longevity

bond from weekly to a 2-year frequency only leads to a slight decrease of the hedging

quality. However, compared with dynamic hedging strategies, even the constrained one, a

53The number is calculated from OECD (2013).
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Figure 4.5: The mean, 5%, and 95% quantiles of the optimal strategies for the
benchmark case, the constrained case (2-year frequency), and the static case (from top

to bottom). In each row, the left figure reports the optimal holding of the longevity
bond, and the right figure reports the optimal holding for the zero-coupon bond.
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1-year 2-year 5-year Static Interest-only
Ratio of the std. 101.09% 103.7% 118.25% 153.54% 743.9%

Table 4.2: The ratio of the time 0 std. of the optimal hedging error relative to the std.
of the benchmark case. In each case, the ratio equals

(Vart[e
−
´ T0
0 r(τ)dτ (Y (T0)− w∗s(T0))]/Vart[e

−
´ T0
0 r(τ)dτ (w∗b (T0)− Y (T0))]), where w∗b (T0)

and w∗s(T0) are the time T0 assets under the benchmark strategy and the corresponding
strategy, respectively.

Benchmark 1-year 2-year 5-year Static Interest-only
W. p. risk 0.0160 101.09% 103.7% 118.25% 153.54% 743.9%

W.o. p. risk 0.0016 145.2% 217.83% 450.77% 821.12% 5307.81%

Table 4.3: The time 0 ratio of std. of the hedging error with and without population
basis risk. The ratios are computed in the same way as in Table 4.2.

static hedging strategy would significantly increase the hedger’s hedging error. Realistic

pension/annuity liabilities typically involve longer planning and payment horizons, as

well as much more diversified pension members. As a result, the effect of the trading

frequency is likely to be more profound in reality.

The effect of population basis risk

In this chapter we evaluate the performance of the hedging strategy with population

basis risk. Now we look at the hedging performance of the strategies in the absence

of population basis risk. In particular, we let both the reference population and the

portfolio-specific population be the Australian males population, and report the results

in Table 4.3. The results where both the reference population and the portfolio specific

population is the Swedish males population are similar, and are thus omitted. We see

that, in the absence of population basis risk, the standard deviation of the hedging

error decreases drastically, especially for the benchmark case. The reason is that the

hedging error resulted from the population basis risk is relatively invariant to the trading

frequency of the longevity bond. Therefore, the existence of the population basis risk

substantially lowers the ratios of the standard deviations. In situation without population

basis risk, the hedging strategies become much more effective, and the effect of trading

frequency becomes much more profound.
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Sensitivity with respect to the longevity risk premium

As discussed above, the longevity-linked capital market is still at its infancy, and existing

market price data is limited. At the current stage, a few methods to calibrate the

longevity risk premium from existing market data are proposed in literature, such as the

the Wang transform (Wang 2002; Lin and Cox 2005; Lin and Cox 2008), and the Sharpe

Ratio method (Cairns et al. 2005; Bayraktar et al. 2009). However, as shown in Bauer

et al. (2010), when calibrated to the UK annuity quote data, the above methods yield

very different risk premiums. Therefore, it is important that the results produced by our

model are robust to the choice of longevity risk premium values.

In order to test the sensitivity of our hedging strategy to the choice of longevity risk

premiums, we evaluate the performance of the hedging strategies under two alternative

sets of longevity risk premium values, λ̃µ,1 = 1
4
λµ and λ̃µ,2 = 4λµ. The time 0 optimal

standard error of the hedger’s hedging error in the benchmark case, as well as the ratios

under the other strategies are reported in Table 4.5. We see that, first, the value function

and the ratios are robust to the change of the longevity risk premium. For example, the

time 0 optimal standard error in the benchmark case changes by only 4.4% when the

longevity risk premium becomes 16 times larger. Second, though only slightly, the value

function of the benchmark case increases with the longevity risk premium. The intuition

is that, as the longevity risk premium increases, the variability of the market value of

the hedger’s liabilities increases. More formally, as the longevity risk premium increases,

the term ∂G(s)
∂Xs

in the optimal strategy (4.38) decreases for all s ∈ [t, T0], and the time

0 variance of the hedger’s net asset value, as given by (4.42), increases.54 Moreover,

the ratios of the standard deviations of other strategies change in the same direction

as the longevity risk premium. Therefore, it seems that the time 0 standard deviation

of the hedger’s hedging error is more sensitive to the longevity risk premium for the

constrained strategies. Finally, the time 0 standard deviation generated by the interest-

only strategy is not affected by the change of the longevity risk premium, thus the ratio

in the interest-only case decreases slightly as the longevity risk premium increases.

To sum up, our numerical results show that the effect of the trading frequency of

54Specifically, the explicit expression of ∂G(s)
∂Xs

is given in Eqs (4.93) to (4.95). When the longevity risk
premium increases, the term α̃µ(t, T0, s) increases for all 0 6= t 6= s 6= T , while all other terms remain
unchanged.
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Benchmark 1-year 2-year 5-year Static Interest-only

λ̃µ,1 0.0159 101.07% 103.65% 118.04% 152.95% 744.395%
λµ 0.0160 101.09% 103.7% 118.25% 153.54% 743.9%

λ̃µ,2 0.0166 101.18% 103.96% 119.30% 156.4% 743.57%

Table 4.4: The time 0 ratio of std. of the hedging error under different longevity risk
premiums. In particular, λ̃µ,1 = 1

4
λµ and λ̃µ,2 = 4λµ. The ratios are computed in the

same way as in Table 4.2.

Benchmark 1-year 2-year 5-year Static Interest-only
Discounted 0.0160 1.0109 1.0370 1.1825 1.5354 7.4390

Undiscounted 0.0192 1.0109 1.0371 1.1827 1.5360 7.4389

Table 4.5: The time 0 std. of the discounted and undiscounted hedging error in the
benchmark case, and the ratio of the standard deviation in the other cases.

dynamic longevity risk hedging are robust to the change of the longevity risk premium.

The undiscounted hedging error

In this chapter we consider the hedger’s discounted hedging error for the tractability of

the optimization problem. Here, we calculate the standard deviations of the hedger’s

undiscounted hedging error under the optimal hedging strategies derived in this section.

In other words, we compute

Var0[w∗(T0)− Y (T0)], (4.67)

where w∗(T0) is the hedger’s T0 wealth under the optimal strategy.

In Table 4.5, we report the optimal standard deviation from the benchmark case, as

well as the ratios of the standard deviation, for both the hedger’s discounted and undis-

counted hedging error. First, we see that the standard deviation in the undiscounted case

is larger than the standard deviation in the discounted case. Second, more importantly,

the ratios of the standard deviation are very similar in these two cases. Therefore, al-

though the optimal strategies we derive is to minimize the standard deviation (variance)

of the hedger’s discounted hedging error, their relative performance remains almost the

same when we do not discount.
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4.7. Conclusion

In this chapter we study the dynamic hedging problem of a portfolio of liabilities exposed

to longevity risk. In particular, we consider the case where a pension sponsor or an

annuity provider (a hedger) wishes to minimize the variance of her hedging error, defined

as the deviation of the market value of her investments in a money market account, zero

coupon bonds, and longevity bonds, from the market value of her liabilities.

Closed-form optimal hedging strategies are obtained for the minimum-variance crite-

rion under a forward mortality framework. In particular, time-consistent strategies are

derived in the benchmark case and a liquidity constrained case. In the benchmark case,

the hedger can rebalance both the zero coupon bonds and the longevity bonds continu-

ously, while in the liquidity constrained case, the hedger can only rebalance the longevity

bonds at a deterministic lower frequency.

The optimal hedges are evaluated in a numerical analysis with a Hull-White speci-

fication and parameter estimates from existing literature. We find that, compared with

the benchmark case, limiting the trading of the longevity bond to a 2-year frequency only

leads to a slight increase of the variance of the hedging error. Moreover, the dynamic

hedging strategies, even when the hedger can only trade the longevity bond at a 5-

year frequency, still significantly outperform the static hedging strategy (of the longevity

bond).

There are several directions for future research. First, in this chapter we evaluate

the hedging strategy using one parametrization of mortality process. To incorporate

model risk, we would need to study forward mortality models with different parametric

specifications, and evaluate the impact of different model specifications on the hedging

effectiveness. Second, it would be interesting to extend the limitation of trading frequency

to more realistic setups. For example, we may extend the deterministic trading times to

stochastic trading times, or consider the case where the hedger faces a (stochastic) trading

constraint regarding the amount of longevity-linked derivatives at each period. Third,

in this chapter we evaluate the performance of the hedging strategies using instruments

with the same maturities as the liabilities. However, at the currently stage, it might

be difficult for the hedger to find counterparties to trade longevity-linked derivatives

with a long maturity. Therefore, for a practical point of view, it would be interesting to
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evaluate the impact of lacking hedging instruments with long maturities on the hedging

of longevity risk. Moreover, in this case, it might be interesting to see what type of

hedging instrument may yield the most satisfying hedging result. Fourth, the dynamic

hedging portfolio could be interpreted as a ”replicating portfolio” of the market-value of

the longevity liabilities. The ”replicating portfolio” can be used in applications such as

calculating the solvency capital requirement.

4.8. Appendix

4.8.1. Proof of Proposition 1

For any T ∈ T̃ , we have, from (4.26),

dL(t, T ) = EQ
t [Tp(x0, 0, rp)]dB(t, T ) +B(t, T )dEQ

t [Tp(x0, 0, rp)]. (4.68)

dB(t, T ) is given in Eq (4.24). Denote by µ(t, s, x0, 1), µ̂(t, 1), aµ(u, t, 1), and σµ(u, t, 1)

the first entry (row) of µ(t, s, x0), µ̂(t), aµ(u, t), and σµ(u, t) for all t, s ∈ [0, T ]. For the

differential of EQ
t [T−tp(x0 + t, t, rp)],

From (4.12), (4.13), and (4.21), we have

log(EQ
t [T−tp(x0 + t, rp)])

=−
ˆ T

t

[µ(t, s, x0, 1)−
ˆ s

t

σµ(u, s, x0, 1)λµ(u)du]ds

=−
ˆ T

t

µ(0, s, x0, 1)ds−
ˆ T

t

ˆ t

0

aµ(u, s, 1)duds−
ˆ T

t

ˆ t

0

σµ(u, s, 1)dW P
µ (u)ds

+

ˆ T

t

ˆ s

t

σµ(u, s, x0, 1)λµ(u)duds. (4.69)

(4.69) can be further written as

=−
ˆ T

0

µ(0, s, x0, 1)ds−
ˆ t

0

ˆ T

u

aµ(u, s, 1)dsdu−
ˆ t

0

ˆ T

u

σµ(u, s, 1)dsdW P
µ (u)

+

ˆ t

0

µ(0, s, x0, 1)ds+

ˆ t

0

ˆ t

u

aµ(u, s, 1)dsdu+

ˆ t

0

ˆ t

u

σµ(u, s, 1)dsdW P
µ (u)

+

ˆ T

t

ˆ s

t

σµ(u, s, x0, 1)λµ(u)duds, (4.70)
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where we interchange the integration order of
´ T
t

´ t
0
aµ(u, s, 1)duds and

´ T
t

´ t
0
σµ(u, s, 1)dW P

µ (u)ds,

and decompose the inner-integration in two parts. Using (4.19), (4.20), and the fact that

ˆ t

0

ˆ t

u

σµ(u, s, 1)dsdW P
µ (u) =

ˆ t

0

ˆ t

0

σµ(u, s, 1)1u≤sdsdW
P
µ (u)

=

ˆ t

0

ˆ t

0

σµ(u, s, 1)1u≤sdW
P
µ (u)ds

=

ˆ t

0

ˆ s

0

σµ(u, s, 1)dW P
µ (u)ds, (4.71)

we can further rewrite (4.70) as

= log(EQ
0 [Tp(x0, rp)])−

ˆ T

0

ˆ s

0

σµ(u, s, x0, 1)λµ(u)duds+

ˆ T

t

ˆ s

t

σµ(u, s, x0, 1)λµ(u)duds

−
ˆ t

0

ˆ T

u

aµ(u, s, 1)dsdu−
ˆ t

0

ˆ T

u

σµ(u, s, 1)dsdW P
µ (u)

+

ˆ t

0

µ(0, s, x0, 1)ds+

ˆ t

0

ˆ s

0

aµ(u, s, 1)duds+

ˆ t

0

ˆ s

0

σµ(u, s, 1)dW P
µ (u)ds

= log(EQ
0 [Tp(x0, rp)])−

ˆ T

0

ˆ s

0

σµ(u, s, x0, 1)λµ(u)duds+

ˆ T

t

ˆ s

t

σµ(u, s, x0, 1)λµ(u)duds

−
ˆ t

0

ˆ T

u

aµ(u, s, 1)dsdu−
ˆ t

0

ˆ T

u

σµ(u, s, 1)dsdW P
µ (u) +

ˆ t

0

µ̂(s, 1)ds. (4.72)

Denote by

ζL(t, T ) =−
ˆ T

0

ˆ s

0

σµ(u, s, x0, 1)λµ(u)duds+

ˆ T

t

ˆ s

t

σµ(u, s, x0, 1)λµ(u)duds

−
ˆ t

0

ˆ T

u

aµ(u, s, 1)dsdu−
ˆ t

0

ˆ T

u

σµ(u, s, 1)dsdW P
µ (u) +

ˆ t

0

µ̂(s, 1)ds, (4.73)

then EQ
t [T−tp(x0 + t, t, rp)] can be written as EQ

0 [Tp(x0, 0, rp)] exp(ζL(t, T )). The differ-

ential of ζL(t, T ) is given by

dζL(t, T ) =[µ̂(t, 1)−
ˆ T

t

σµ(t, s, x0, 1)λµ(t)ds−
ˆ T

t

aµ(t, s, 1)ds]dt

−{
ˆ T

t

σµ(t, s, x0, 1)ds}dW P
µ (t). (4.74)
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Therefore, we have

dEQ
t [T−tp(x0 + t, t, rp)]

=EQ
0 [Tp(x0, 0, rp)]d exp(ζL(t, T ))

=EQ
0 [Tp(x0, 0, rp)] exp(ζL(t, T )){µ̂(t, 1)−

ˆ T

t

σµ(t, s, x0, 1)λµ(t)ds−
ˆ T

t

aµ(t, s, 1)ds

+
1

2
(

ˆ T

t

σµ(t, s, x0, 1)ds)(

ˆ T

t

σµ(t, s, x0, 1)ds)′}dt

−EQ
0 [Tp(x0, 0, rp)] exp(ζL(t, T )){

ˆ T

t

σµ(t, s, x0, 1)ds}dW P
µ (t)

=EQ
t [T−tp(x0 + t, t, rp)]{[µ̂(t, 1)−

ˆ T

t

σµ(t, s, x0, 1)λµ(t)ds]dt

−[

ˆ T

t

σµ(t, s, x0, 1)ds]dW P
µ (t)}, (4.75)

and the differential of EQ
t [Tp(x0, 0, rp)] is given by

dEQ
t [Tp(x0, 0, rp)]

=dtp(x0, 0, rp)E
Q
t [T−tp(x0 + t, t, rp)]

=de−
´ t
0 µ̂(s,1)dsEQ

t [T−tp(x0 + t, t, rp)]

=− µ̂(t, 1)e−
´ t
0 µ̂(s,1)dsEQ

t [T−tp(x0 + t, t, rp)] + e−
´ t
0 µ̂(s,1)dsdEQ

t [T−tp(x0 + t, t, rp)]

=EQ
t [Tp(x0, 0, rp)]{−[

ˆ T

t

σµ(t, s, x0, 1)λµ(t)ds]dt− [

ˆ T

t

σµ(t, s, x0, 1)ds]dW P
µ (t)}.

(4.76)

The differential of L(t, T ) can then be obtained by combining (4.76) and the dynamics

of the zero coupon bond.

4.8.2. Proof of Theorem 2

In the presence of the liquidity constraint, û1 is constant in the interval [ti, ti+1). In

this case, we solve the optimization problem in two steps: we first solve the optimal

û2 as a function of û1, then we solve the optimal û1 recursively for each [ti, ti+1) (with

tn+1 = T0). For a fixed û1, in terms of Wong et al. (2014), we have Y (t) ≡ w(t), where

w(t) is given in (4.30) with û1(s) = û1(ti) for s ∈ [ti, ti+1), i = 1, 2, · · · , n. Moreover, we
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have55

Γ(t) ≡ G(û1, t) = Et[

ˆ T0

t

e−
´ s
t r(τ)dτ û′aw(s)ds− e−

´ T0
t r(τ)dτY (T0)],

whereG(û1, t) emphasizes the dependence ofG on û1. Again, the risk aversion parameter

φ in Wong et al. (2014) is set to be 0. In the first step, we only need to optimize with

respect to û2, which is continuously rebalanced. Repeating Proposition 3.1 and 3.2 in

Wong et al. (2014), we obtain the optimal û2:

û2(t) =− (σw(t, 2)σw(t, 2)′)−1σw(t, 2)σX(t)′
∂G(û1, t)

∂X(t)

−(σw(t, 2)σw(t, 2)′)−1σw(t, 2)σw(t, 1)′û1(ti), t ∈ [ti, ti+1), (4.77)

with G(û1, t) represented as

G(û1, t) =
n∑

j=i+1

EQ̄
t [

ˆ tj+1

tj

e−
´ s
t r(τ)dτ û1(tj)aw(s, 1)ds]− EQ̄

t [e−
´ T0
t r(τ)dτYT0 ]

+û1(ti)
′EQ̄

t [

ˆ ti+1

t

e−
´ s
t r(τ)dτaw(s, 1)ds]

≡Gi(û1, t) + û1(ti)
′Hi(t), (4.78)

Next, we proceed to the second step and solve the optimal û1. For each i = 1, · · · , n,

the value function at ti is given by

Jti = min
û1(ti)

Varti{e−
´ T0
ti

r(τ)dτ (w∗(T0)− Y (T0))}, (4.79)

where w∗(T0) is the wealth at T0 under û∗ from ti+1 to T0. To derive the optimal

û∗1, we make use of an alternative formulation of the law of total variance proposed in

Proposition 2 from Basak and Chabakauri (2012) (Equations A15 – A16). From the law

of total variance in (4.35), with an infinitesimally small time interval ε, we obtain the

following differential form

0 =Et[d Vars{e−
´ T0
s r(τ)dτ (w(T0)− Y (T0))}

+Vars{d e−
´ s
t r(τ)dτEs[e

−
´ T0
s r(τ)dτ (w(T0)− Y (T0))]}], (4.80)

55Again, for notational simplicity, we subtract the subscript X(t) from the relevant quantities.
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Letting t = ti, and integrating (4.80) from ti to ti+1, we have (following the notations in

Basak and Chabakauri (2012))

Varti{e−
´ T0
ti

r(τ)dτ (w(T0)− Y (T0))}

=Eti [Varti+1
{e−

´ T0
ti+1

r(τ)dτ
(w(T0)− Y (T0))}]

+Eti [

ˆ ti+1

ti

Vars{d e−
´ s
ti
r(τ)dτ

Es[e
−
´ T0
s r(τ)dτ (w(T0)− Y (T0))]}
ds

ds]. (4.81)

For t ∈ [ti, ti+1), let w∗(T0) be the wealth at T0 under û∗ from ti+1 to T0. Denote by ũ1

the strategy where ũ1 = û∗1 for t ∈ [ti+1, T0] and ũ1 = û1 for a fixed û1 for t ∈ [ti, ti+1),

and denote by ũ2(û1) the strategy where ũ2(û1) = û∗2 for t ∈ [ti+1, T0] and takes the form

(4.77) for the given û1 for t ∈ [ti, ti+1). Moreover, denote by ũ(s) = (ũ1(s)′, ũ2(û1, s)
′)′.

From the integral form of w∗(T0),

w∗(T0)e−
´ T0
t r(τ)dτ =w(t) +

ˆ T0

t

e−
´ s
t r(τ)dτ ũ(s)′aw(s)ds

+

ˆ T0

t

e−
´ s
t r(τ)dτ ũ(s)′σw(s)dW (s), (4.82)

we have

Et[e
−
´ T0
t r(τ)dτw∗(T0)] = w(t) + Et[

ˆ T0

t

e−
´ s
t r(τ)dτ ũ(s)′aw(s)ds].

Therefore, applying Ito’s lemma, we have

d e
−
´ t
ti
r(τ)dτ

Et[e
−
´ T0
t r(τ)dτ (w∗(T0)− Y (T0))]

={...}dt+ e
−
´ t
ti
r(τ)dτ

[σX(t)
∂Ẽi(û1, t)

∂X(t)
+ ũ(s)′σw(t)]dW (t), (4.83)

where

Ẽi(û1, t) ≡ Et[

ˆ T0

t

e−
´ s
t r(τ)dτ ũ(s)′aw(s)ds− e−

´ T0
t r(τ)dτY (T0)]

for t ∈ [ti, ti+1). The term Ẽi(û1, t) is equal to G(t). To see this, apply the Feynman-Kac

Theorem to Ẽi(û1, t), and substitute ũ2(û1, s). Applying again the Feynman-Kac Theo-

rem to the resulting partial differential equation, and recognizing the terminal condition
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Ẽi(û1, ti+1) = Gi(û1, ti+1), we have

Ẽi(û1, t) =EQ̄
t [Gi(û1, ti+1) +

ˆ ti+1

t

e−
´ s
t r(τ)dτ û1(ti)

′aw(s, 1)ds]

=Gi(û1, t) + û1(ti)
′EQ̄

t [

ˆ ti+1

t

e−
´ s
t r(τ)dτaw(s, 1)ds]

=G(û1, t). (4.84)

Substituting (4.83) into (4.81) and computing Vars{d e−
´ s
ti
r(τ)dτ

Es[e
−
´ T0
s r(τ)dτ (w∗(T0)−

Y (T0))] yields

Varti{e−
´ T0
ti

r(τ)dτ (w∗(T0)− Y (T0))}

=Eti [Varti+1
{e−

´ T0
ti+1

r(τ)dτ
(w∗(T0)− Y (T0))}]

+Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

[σX(s)
∂G(û1, s)

∂X(s)
+ ũ(s)′σw(s)]

[σX(s)
∂G(û1, s)

∂X(s)
+ ũ(s)′σw(s)]′ds] (4.85)

Substituting the integral form of w∗(T0) into the time ti+1 value function, Varti+1

{e−
´ T0
ti+1

r(τ)dτ
(w∗(T0) − Y (T0))}, we see that it does not depend on w(ti+1), and thus

does not depend on the strategy û1 on [ti, ti+1). Therefore, we only need to focus on the

second part on the right hand side of (4.85). Substituting the optimal û∗2 into (4.85),

and taking the derivative with respect to û1, we obtain

û∗1(ti) = (Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Ai(s)ds])
−1Eti [

ˆ ti+1

ti

e
−2
´ s
ti
r(τ)dτ

Bi(s)ds]. (4.86)

where the Ai(s) and Bi(s) matrices are given in (4.51).

4.8.3. Optimal hedging strategies under the Hull-White specification

In this section we derive the explicit form of the benchmark and constrained minimum-

variance optimal hedging strategy under the Hull-White specification given in Section

4.6. First, we proceed to solve ∂G(t)
∂X(t)

. Recall that G(t) = EQ̃
t [e−

´ T0
t r(τ)dτY (T0)] and

Y (T0) =T0 p(x0, 0, pp)

ˆ T1

T0

B(T0, s)E
Q
t [s−T0p(x0 + T0, T0, pp)]ds.
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Wee can see that Y (T0) only depends on WQ(s) for s ∈ [T0, T1], while, on the other

hand, e−
´ T0
t r(τ)dτ only depend on WQ(s) for t ∈ [t, T0]. Therefore, by the independence

of WQ
r (t) and WQ

µ (t), G(t) can be written as

− EQ̃
t [e−

´ T0
0 µ̂(ν,x0,pp)dν ]EQ̃

t [e−
´ T0
t r(τ)dτ ]

ˆ T1

T0

EQ̃
t [B(T0, s)]E

Q̃
t {EQ

T0
[s−tp(x0 + t, t, pp)]}ds

=−tp(x0,0,pp) EQ̃
t [e−

´ T0
t r(τ)dτ ]

ˆ T1

T0

EQ̃
t [B(T0, s)]

EQ̃
t {T0−tp(x0 + t, t, pp)EQ

T0
[s−T0p(x0 + T0, T0, pp)]}ds. (4.87)

The second equality of (4.87) holds since T0p(x0, 0, pp) = tp(x0, 0, pp)T0−tp(x0 + t, t, pp),

and T0p(x0 + t, t, pp) and EQ
T0

[s−T0p(x0 + T0, T0, 2) are independent. Before giving the

explicit solution of ∂G(t)
∂X(t)

, we first derive the dynamics of X(t, x0) under equivalent mar-

tingale measure Q.

Proposition 4. Under the specification of the volatilities given in (4.63) and (4.64), the

state variable X(t, x0) is 7 dimensional. In particular, it consists of r(t), µ̂(t, x0), and

ηkj(t, x0) with k = rp, pp, j = 2, 3. The dynamics of these state variables under Q are

dr(t) =[θQr (t)− κr(t)]dt+ βdWQ
r (t)

dµ̂(t, x0, k) =[θQk,µ(t) +
3∑
j=2

(ωk1 − ωkj)ηkj(t)− ωk1µ̂(t, x0, k)]dt+
3∑
j=1

ckj(x0)dWQ
j,µ(t)

dηkj(t) =[ckjλj,µ(t)− ωkjηkj(t)]dt+ ckjdW
Q
j,µ(t), (4.88)

where

θQr (t) =κf(0, t) + f2(0, t) +
β2

2κ
(1− e−2κt)

θQk,µ(t) =µ2(0, t, k) + ωk1µ(0, t, pp) +
c2
k1

2ωk1

(1− e−2ωk1t)

+
3∑
j=2

[
c2
kj

ωkj
e−2ωkjt(1− e−ωkjt) +

ωk1c
2
kj

2ω2
kj

(1− e−ωkjt)2 + ckjλj,µ(t)] (4.89)

for k = rp, pp and j = 2, 3. In (4.89), µ2(0, t, k) is the derivative of µ(0, t, k) with

respective to t.

Proof. See Appendix 4.8.3.
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After having the dynamics of X(t, x0) under the measure Q, we are able to derive

explicit representation of G(t), as well as the derivative ∂G(t)
∂X(t)

. The results are given in

the next Proposition.

Proposition 5. The conditional expectations in G(t) can be solved as

EQ̃
t [e−

´ T0
t r(τ)dτ ] = eαr(t,T0)+βr(t,T0)r(t), (4.90)

EQ̃
t [B(T0, s)] = eα̃r(t,T0,s)+βr(T0,s)e

−κ(T0−t)r(t), (4.91)

and

EQ̃
t {T0p(x0 + t, t, pp)EQ

T0
[s−T0p(x0 + T0, T0, pp)]}

=eα̃µ(t,T0,s)+β̃µ(t,T0,s)µ̂(t,2)+β̃2,η(t,T0,s)η22(t)+β̃3,η(t,T0,s)η23(t). (4.92)

Proof. For the proof and the representation of the relevant quantities, see Appendix

4.8.3.

With the help of Proposition 5, ∂G(t)
∂X(t)

is given by

∂G(t)

∂r(t)
=− tp(x0, 0, pp)e

αr(t,T0)+βr(t,T0)r(t)

ˆ T̃

T0

(βr(t, T0) + βr(T0, s)e
−κ(T0−t))

eα̃r(t,T0,s)+βr(T0,s)e
−κ(T0−t)r(t)eα̃µ(t,T0,s)+β̃µ(t,T0,s)µ̂(t,2)+β̃2,η(t,T0,s)η22(t)β̃3,η(t,T0,s)η23(t)ds,

(4.93)

∂G(t)

∂µ̂(t, pp)
=− tp(x0, 0, pp)e

αr(t,T0)+βr(t,T0)r(t)

ˆ T̃

T0

β̃µ(t, T0, s)e
α̃r(t,T0,s)+βr(T0,s)e−κ(T0−t)r(t)

eα̃µ(t,T0,s)+β̃µ(t,T0,s)µ̂(t,2)+β̃2,η(t,T0,s)η22(t)+β̃3,η(t,T0,s)η23(t)ds, (4.94)

and

∂G(t)

∂η2j(t)
=− tp(x0, 0, pp)e

αr(t,T0)+βr(t,T0)r(t)

ˆ T̃

T0

β̃j,η(t, T0, s)e
α̃r(t,T0,s)+βr(T0,s)e−κ(T0−t)r(t)

eα̃µ(t,T0,s)+β̃µ(t,T0,s)µ̂(t,2)+β̃2,η(t,T0,s)η22(t)+β̃3,η(t,T0,s)η23(t)ds, (4.95)

for j = 2, 3.
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For the constrained û, we need to compute the conditional expectations Eti [
∂G(s)
∂X(s)

]

for s ∈ [ti, ti+1]. This can be done in a similar way as in Proposition 5.

Proof of Proposition 4

In this section, we omit the subscript x0 in the mortality process and related parameters

for the simplicity of notation. However, we still recognize that all mortality processes in

this section are contingent on the cohort x0. From (4.3), (4.8), and (4.19), we can write

r(t) as

r(t) =f(0, t) +
β2

2κ2
(e−κt − 1)2 −

ˆ t

0

βe−κ(t−s)λr(s)ds+

ˆ t

0

βe−κ(t−s)λr(s)ds

+βe−κt
ˆ t

0

eκudW Q̃
r (u)

=f(0, t) +
β2

2κ2
(e−κt − 1)2 + βe−κt

ˆ t

0

eκudWQ
r (u). (4.96)

Denote by gr(t) = f(0, t) + β2

2κ2
(e−κt− 1)2 and Rr(t) =

´ t
0
eκudWQ

r (u). We can write r(t)

as

r(t) = Gr(t, Rr) = g(t) + βe−κtRr(t), (4.97)

with ∂Gr(t,Rr)
∂t

= g′(t)− κβe−κtRr(t),
∂Gr(t,Rr)

∂Rr
= βe−κt, ∂2Gr(t,Rr)

∂R2
r

= 0. Together with the

fact that dRr(t) = eκtdWQ
r (t), we can write

dr(t) = [f2(0, t) +
β2

κ
e−κt(1− e−κt)− κβe−κtRr(t)]dt+ βe−κteκtdWQ

r (t). (4.98)

Using the fact that κβe−κtRr(t) = κ(r(t)− gr(t)), we can further write (4.98) as

dr(t) = [θQr (t)− κr(t)]dt+ βdWQ
r (t), (4.99)

where

θQr (t) = κf(0, t) + f2(0, t) +
β2

2κ
(1− e−2κt).
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For the spot force of mortality process, we have

µ̂(t, k) =µ(0, t, k) +
1

2

3∑
j=1

c2
kj

ω2
kj

(1− e−ωkjt)2 −
3∑
j=1

ckje
−ωkjt

ˆ t

0

eωkjsλj,µ(s)ds

+
3∑
j=1

ckje
−ωkjt

ˆ t

0

eωkjsdWQ
j,µ(s), (4.100)

and

ηkj(t) = −
ˆ t

0

ckje
−ωkj(t−s)λj,µ(s)ds+

ˆ t

0

ckje
−ωkj(t−s)dWQ

j,µ(s) (4.101)

for k = 1, 2 and j = 2, 3. From (4.101) we directly have

dηkj(t) = [−ckjλj, µ(t)− ωkjηkj(t)]dt+ ckjdW
Q
j,µ(t). (4.102)

Moreover, similar to the deviation of dr(t), we have

dµ̂(t, k) = [θQk,µ(t) +
3∑
j=2

(ωk1 − ωkj)ηkj(t)− ωk1µ̂(t, k)]dt+
3∑
j=1

ckjdW
Q
j,µ(t), (4.103)

with

θQk,µ(t) =µ2(0, t, k) + ωk1µ(0, t, 2)− ck1λ1,µ(t) +
c2
k1

2ωk1

(1− e−2ωk1t)

+
3∑
j=2

[
c2
kj

ωkj
e−ωkjt(1− e−ωkjt) +

ωk1c
2
kj

2ω2
kj

(1− e−ωkjt)2 − ckjλj,µ(t)]. (4.104)

Proof of Proposition 5

For EQ̃
t [e−

´ T0
t r(τ)dτ ], we can directly apply Eqs (2.3) to (2.6) and Appendix B in Duffie

et al. (2000). In particular, using the notations in Duffie et al. (2000), we have K0(t) =

θr(t), K1 = −κ, H0 = β2, H1 = 0, ρ0 = 0, and ρ1 = 1. As a result, we have

βr(t, T0) =− 1

κ
(1− e−κ(T0−t))

αr(t, T0) =

ˆ T0

t

θr(s)βr(s, T0)ds− β2

4κ
β2
r (t, T0) +

β2

2κ2
(T − t+ βr(t, T0)) (4.105)

in Eq (4.90).

Using (4.90), we can write the second term as EQ̃
t [B(T0, s)] = EQ̃

t [eαr(T0,s)+βr(T0,s)r(T0)].
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Thus, we need to determine the distribution of r(t) under Q̃. r(T0) can be written as

r(T0) =f(0, T0) +
β2

2κ2
(e−κT0 − 1)2 + βe−κT0

ˆ T0

0

eκudW Q̃
r (u)

=e−κ(T0−t)r(t) + gr(T0)− e−κ(T0−t)gr(t) + βe−κT0
ˆ T0

t

eκudW Q̃
r (u), (4.106)

where

gr(t) = f(0, t) +
β2

2κ2
(e−κt − 1)2. (4.107)

From (4.106), we see that the distribution of r(T0) conditional on r(t) under Q̃ is normal

with mean and variance given as

EQ̃
t [r(T0)] =e−κ(T0−t)r(t) + gr(T0)− e−κ(T0−t)gr(t),

VarQ̃t [r(T0)] =
β2

2κ
e−2κT0(e2κT0 − e2κt). (4.108)

Therefore, we have the representation of EQ̃
t [B(T0, s)] in (4.91) with

α̃r(t, T0, s) = αr(t, T0) + βr(T0, s)(gr(T0)− e−κ(T0−t)gr(t)) +
β2

4κ
β2
r (T0, s)(1− e−2κ(T0−t)).

(4.109)

For the last term, EQ̃
t {T0p(x0 + t, t, pp)EQ

T0
[s−T0p(x0 + T0, T0, pp)]}, we first deal with

two terms inside EQ̃
t {.}, respectively. First, using the dynamics of µ̂(t) under Q derived

in Proposition 4, we can write EQ
T0

[s−T0p(x0 + T0, T0, pp)] as

EQ
T0

[s−T0p(x0 + T0, T0, pp)]

=EQ
T0

[e
−
´ s
T0
µ̂(τ,2)dτ

]

=eαµ(T0,s)+βµ(T0,s)µ̂(T0,2)+β2,η(T0,s)η22(T0)+β3,η(T0,s)η23(T0), (4.110)

with

βµ(T0, s) =
1

ω21

(e−ω21(s−T0) − 1)

βj,η(T0, s) =
1

ω21

(e−ω2j(s−T0) − e−ω21(s−T0)) +
ω2j − ω21

ω21ω2j

(1− e−ω2j(s−T0))

αµ(T0, s) =

ˆ s

T0

[K0(u)β(u, s) +
1

2
β(u, s)′H0(u)β(u, s)]du. (4.111)
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The terms β(u, s), K0(u), and H0(u) in (4.111) are

β(u, s) = (βµ(u, s), β2,η(u, s), β3,η(u, s))
′, (4.112)

K0(u) = (θQ2,µ(u),−c22λ2,µ(u),−c23λ3,µ(u))′, (4.113)

and

H0(u) =


c2

21 + c2
22 + c2

23 c2
22 c2

23

c2
22 c2

22 0

c2
23 0 c2

23

 , (4.114)

respectively. EQ̃
t [T0p(x0 + t, t, pp)] can be solved similarly as EQ

T0
[s−T0p(x0 + T0, T0, 2)].

Denote by

λ̃µ ≡(λ̃1,µ(t), λ̃2,µ(t), λ̃3,µ(t))′

≡
´ T
t
σµ,1(t, s)ds

´ T
t
σµ,1(t, s)ds′λµ(t)´ T

t
σµ,1(t, s)ds′

´ T
t
σµ,1(t, s)ds

, (4.115)

the dynamics of µ̂(t, 2), η22(t), and η23(t) are given by similar expressions as (4.102) to

(4.104), with λµ replaced by λ̃µ. As a result, we have

EQ̃
t [T0p(x0 + t, t, pp)]

=eᾱµ(t,T0)+β̄µ(t,T0)µ̂(t,2)+β̄2,η(t,T0)η22(t)+β̄3,η(t,T0)η23(t), (4.116)

with β̄µ(t, s) = βµ(t, s) and β̄j,η(t, s) = βj,η(t, s) for all 0 ≤ t ≤ s ≤ T and j = 2, 3.

ᾱµ(t, T0) has the same expression as αµ(t, T0) in (4.111) with all λµ replaced by λ̃µ.

To explicitly solve EQ̃
t {EQ

T0
[s−T0p(x0 +T0, 2)]}, we need to know the time t conditional

distribution of µ̂(T0, 2) and η2j(T0)-s under Q̃. Denote by

gQ̃2,µ(t) =µ(0, t, 2) +
1

2

3∑
j=1

c2
2j

ω2
2j

(1− e−ω2jt)2 −
3∑
j=1

c2je
−ω2jt

ˆ t

0

eω2jsλ̃j,µ(s)ds,

gQ̃j,η(t) =− c2je
−ω2jt

ˆ t

0

eω2jsλ̃j,µ(s)ds, (4.117)
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we can write

µ̂(t, 2) =gQ̃2,µ(t) +
3∑
j=1

c2je
−ω2jt

ˆ t

0

eω2jsdW Q̃
j,µ(s)

η2,j(t) =gQ̃j,η(t) + c2je
−ω2jt

ˆ t

0

eω2jsdW Q̃
j,µ(s). (4.118)

Therefore, given µ̂(t), µ̂(T0, 2) and η2j(T0)-s can be written as

η2,j(T0) =e−ω2j(T0−t)η2,j(t) + gQ̃j,η(T0)− e−ω2j(T0−t)gQ̃j,η(t) + c2je
−ω2jT0

ˆ T0

t

eω2jsdW Q̃
j,µ(s)

µ̂(T0, 2) =e−ω21(T0−t)µ̂(t, 2) + gQ̃2,µ(T0)− e−ω21(T0−t)gQ̃2,µ(t)

+
3∑
j=2

(e−ω2j(T0−t) − e−ω21(T0−t))(η2j(t)− gQ̃j,η(t)) +
3∑
j=1

c2je
−ω2jT0

ˆ T0

t

eω2jsdW Q̃
j,µ(s).

(4.119)

Therefore, we see that (µ̂(T0, 2), η22(T0), η23(T0)) is a tri-variate normal distributed vari-

able with variance and covariance given by

VarQ̃t [η2,j(T0)] =
c2

2j

2ω2j

[1− e−2ω2j(T0−t)]

VarQ̃t [µ̂(T0, 2)] =
3∑
j=1

c2
2j

2ω2j

[1− e−2ω2j(T0−t)]

CovQ̃t [µ̂(T0, 2), η2,j(t)] =
c2

2j

2ω2j

[1− e−2ω2j(T0−t)]. (4.120)

After solving both expectations, EQ̃
t {T0p(x0 + t, t, pp)EQ

T0
[s−T0p(x0 + T0, T0, pp)]} can
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be written out explicitly, as shown in (4.92), with

β̃µ(t, T0, s) =β̄µ(t, T0) + βµ(T0, s)e
−ω21(T0−t)

β̃j,η(t, T0, s) =β̄j,η(t, T0) + βµ(T0, s)(e
−ω2j(T0−t) − e−ω21(T0−t)) + βj,η(T0, s)e

−ω2j(T0−t)

α̃µ(t, T0, s) =βµ(T0, s)[g
Q̃
2,µ(T0)− e−ω21(T0−t)gQ̃2,µ(t)−

3∑
j=2

(e−ω2j(T0−t) − e−ω21(T0−t))gQ̃j,η(t)]

+
1

2
{β2

µ(T0, s)VarQ̃t [µ̂(T0, 2)] +
3∑
j=2

(β2
j,η(T0, s)VarQ̃t [η2,j(T0)]

+2βµ(T0, s)βj,η(T0, s)CovQ̃t [µ̂(T0, 2), η2,j(T0)])}

+
3∑
j=2

βj,η(T0, s)[g
Q̃
j,η(T0)− e−ω2j(T0−t)gQ̃j,η(t)] + ᾱµ(t, T0) + αµ(T0, s). (4.121)
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