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Chapter 1: Introduction 

 

1.1. Background 

A central concern within this dissertation is the firm’s internal decision making, 

particularly in the situation where information relevant to decision making is not contractible. 

This dissertation focuses on the role of individual heterogeneity in the internal decision 

making. The primary interest of previous accounting studies is in information quality, such as 

the quality of performance signals in compensation design. However, information quality is 

determined by the demand and supply, which are associated with decision makers and 

information providers, respectively. Those individuals may have their own preferences 

related to their personal characteristics or their personal relationships with other individuals. 

This dissertation aims to extend the focus of the information quality by considering the 

effects of personal characteristics or relations between employees on information use or 

supply.              

The traditional agency model relies on ex ante incentives to solve moral hazard 

problems. The model of Hölmstrom (1979) offers two insights on the design of incentive 

contracts: (1) risk sharing between principal and agents, and (2) informativeness of 

performance signals. The Hölmstrom model only incorporates individual preferences for risk, 

and largely sidesteps the possibility of agent heterogeneity. Empirical evidence associated 

with the second insight finds that organizational design (e.g.delegation), complicates the 

choices of performance signals (Abernethy et al. 2004; Bouwens and Van Lent 2007; Moers 

2006). More importantly, it is not easy to find appropriate performance signals, and personal 

ex post discretion plays a role (Baker et al. 1994; Prendergast and Topel 1993); this situation 

makes individual heterogeneity salient.    
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There is an increasing amount of evidence that individuals differ from each other on 

multiple dimensions. For example, Ichino and Maggi (2000) find that a given individual’s 

background affects the level of effort. Others show that selecting employees whose 

preferences are in line with those of the firm can help to mitigate control problems (e.g., 

Campbell 2012). In all but the most simple environments, employees work with each other 

and thus in addition to these employees’ own characteristics, interpersonal relations also play 

a role in the work place (Mas and Moretti 2009; Bandiera et al. 2005).  

Individual heterogeneity is a factor in understanding the specifics of the internal 

decision making. This dissertation discusses how personal characteristics and the relations 

among agents affect (1) the way in which individuals use information to make decisions and 

(2) whether individuals are willing to share information. The following three chapters in this 

dissertation use data from the field to shed light on these relations. 

1.2. Outline and Preview  

In chapter 2,
1
 I examine whether managers’ ability affects the informal agreement 

(i.e., relational contracts) that managers maintain in their department by looking at the 

association between managers’ ability and their discretionary decisions in allocating bonuses 

to themselves and to their subordinates. I characterize the relational contracts as on-going 

versus period-by-period contracts by the extent to which individuals (including managers and 

subordinates) trade off long-term gains against short-term payoff. High-ability managers are 

more patient and are more capable of realizing long-term gains than low-ability managers, so 

high-ability (low-ability) is associated with on-going (period-by-period) relational contracts. 

Managers’ bonus decisions are a manifestation of the type of relational contracts in force. I 

consider two (related) decisions: (1) the portion of the bonus pool that managers keep for 

themselves and (2) the degree to which managers differentiate the bonuses they allocate to 

                                                 
1
 This paper is joint work with Margaret Abernethy and Laurence van Lent. 
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their subordinates. I predict that managers’ ability is negatively associated with (1) the 

proportion of the bonus pool that managers keep for themselves, and (2) the degree to which 

department heads differentiate the bonuses they allocate to their subordinates. Using a 

proprietary dataset from a Chinese hospital, we find evidence consistent with the predictions 

on the two types of bonus decisions. 

In chapter 3,
2
 I examine the effects of workforce homogeneity on effort provision and 

learning outcomes using a proprietary dataset from a Chinese manufacturing plant. We obtain 

data on the background of the employees (i.e., their hometown) and on how employees 

entered the firm (using the recruitment channel of referral by current workers or not). We 

argue that workers from the same hometown and referred workers will have lower 

communication and coordination costs when working together. Based on these arguments, we 

measure workforce homogeneity with the degree of hometown homogeneity and the 

proportion of referred workers. We exploit differences in the production layout of the 

manufacturing plant to examine how the effect of workforce homogeneity varies across two 

types of production environments: (1) team-based production with group incentives and (2) 

individual work stations in a manufacturing line along with individual incentives. Our results 

show that workforce homogeneity influences employee learning, but its effect depends on the 

specific production environment along with incentive contracts. However, we do not find 

evidence on the effect of workforce homogeneity on effort provision. 

In chapter 4, I investigate the role of working relations between decision makers and 

information providers, specifically how the working relation affects both decision making 

and information reporting. I use a dataset of used-car loan applications from a car dealership 

in Taiwan where the working relation is shaped by the organizational structures (i.e., 

franchisees or company-owned outlets). Loan applications are submitted via either 

                                                 
2
 This chapter is co-authored with Laurence van Lent and Anne Wu. 
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franchisees or company-owned outlets. The loan rate is the communication device through 

which salespeople influence loan officers’ approval decisions. I argue that loan officers are 

more uncertain about information reporting quality from franchisees than owned outlets’, and 

expect that reporting uncertainty gives rise to both loan officers’ decision biases and 

salespeople’s reporting biases. Consistent with the decision bias hypothesis, I find that loan 

officers, in response to an increase in the loan rate, are more likely to reject franchisees’ 

applications than owned outlets’. Also, franchisees set a lower loan rate but have a higher 

default rate than owned outlets. This finding supports the reporting biases hypothesis that 

salespeople (especially those in franchisees) skew loan rates downward to offset loan 

officers’ decision biases.   

In sum, the three chapters broaden the focus of previous work on the role of 

information quality in internal decision making by emphasizing the effects of personal 

characteristics or relations between employees on information use and information supply.  

1.3. Conclusion 

Firms ex ante design a mechanism to induce agents’ optimal efforts or truth telling. 

This view of mechanism design implies that what we ex post observe in the real world is the 

optimal outcome of the designed mechanism. What my dissertation adds to this framework is 

to demonstrate that inputs (e.g., employees) of this mechanism matters; agent heterogeneity is 

more than a random noise left by the “optimal” mechanism design. Agents are not 

exogenously determined but endogenously chosen by the firm. Hence, my dissertation 

broadly speaks to the match between employees and internal control system. This idea has 

received attention by economists (Lazear 2000), and recently gets more attention in finance 

(Carlin and Gervais 2009) and accounting  (Hales et al. 2014). 

In addition, given that there are many contingencies that firms cannot contract on ex 

ante, firms might apply other means to complement or replace incentive contracts. For 
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example, Hertzberg et al. (2010) find that an Argentina bank applies employee rotation to 

mitigate the misreporting about borrowers’ credit risk, which is not verifiable. However, 

accounting research doesn’t address much about  implications of personnel practice, such as 

hiring, for incentives contracts (Oyer and Schaefer 2011). 

It will be a long journey to understand the role of personnel practices in the internal 

control system. I only consider my dissertation as a step in recognizing the role of agent 

heterogeneity in addition to risk sharing and informativeness of performance signals in 

traditional agency models. A next equally important question that needs to be addressed next 

is how the match between agents and firms characteristics is achieved and whether firms 

apply other control systems to solve or avoid any mismatch between the agent and the firm. 

Empirical research is designed to validate established theory (or to explore avenues 

for theory building). Each theory has different sets of assumptions. Reflecting on the past 

research development, there are many theoretical advances which lack supporting empirical 

evidence. The challenge of empirical work is the access to the right data, which meets the set 

of assumptions in the theory (Bartel et al. 2004). Survey is a common approach to collect data 

on decision making within firms, but surveyed data only accounts for general heterogeneity 

across or within firms with limited specifics of the firms. In addition, it is not clear whether 

the responses are free of any personal biases. As the rich and detailed background 

information of field work allows for a careful assessment of the fit between data and the 

assumption of the theory, I apply field studies in an attempt to narrow the gap between theory 

and empirical research.         

Ichniowski and Shaw (2003) label the approach of field empirical work “insider 

econometrics”. The obvious drawback of this approach is that one is less able to assess the 

generalizability of the results. However, field empirical work offers the greater confidence on 

accuracy of interpretation of empirical results, which is weighted against the drawback. 
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Given the fact that theoretical advancement goes beyond empirical research, I believe that the 

merit of field work outweighs the drawback. 
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Chapter 2: Managerial Ability and Discretionary Bonus Decisions3 

 

2.1. Introduction   

Individual preferences and ability are ‘fundamental determinants of decision making 

in economic models’ (Dohmen et al. 2010). The effect of ability on decision making has 

received little attention in the accounting literature despite its relevance for employee sorting 

and contract design. We argue that a key determinant of the different choices that managers 

make when allocating bonuses is ability.
4

 We test this relation in a setting where 

subordinates’ actions can neither be specified ex ante nor ex post verified. In other words, 

managers must rely on a relational contract, which is defined as informal agreements and 

unwritten codes of conduct, to influence the behaviors of individuals within firms (Baker et 

al. 2002). We make a direct link between relational contracts and a manager’s discretionary 

bonus choices. We investigate the association between managers’ ability and their relational 

contracts with subordinates by examining their discretionary bonus decisions.  

We borrow insights from Gibbons and Henderson’s (2012) description of relational 

contracts and identify two types of relational contracts; one is the ongoing contract (i.e., the 

repeated game) where employees maximize long-term payoff by cooperating with each other; 

the other is the period-by-period contract (i.e., the one-shot game) where employees 

maximize short-term gains by taking opportunistic actions. We recognize that a manager 

faces multiple choices when implementing a relational contract. However, bonus decisions 

reflect an important component of a relational contract given their influential role in shaping 

employees’ behaviors (Roberts 2010). When managers are granted the authority to allocate 

                                                 
3
 This chapter is co-authored with Margaret Abernethy and Laurence van Lent. 

4
 We assume that ability is a characteristic that cannot be mimicked either because it is too costly or infeasible to 

do so for any period of time.  
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bonuses, we argue that the bonus decision allows them to communicate to their subordinates 

their preferences for the type of relational contracts they want with their subordinates.   

We choose a rich and somewhat unique setting in which to study the role of ability in 

discretionary bonus decisions. Ability is particularly salient in professionally dominated 

organizations such as hospitals, law and accounting firms and among academics working in 

universities. Our research site is a large hospital that has multiple clinical departments with 

physicians as heads of departments and a group bonus system based on department 

performance. All clinical heads have formal authority but differ in their ability both in 

relation to other clinical heads and to other clinicians working in their departments. They 

have almost complete discretion to determine how the group bonus is distributed within their 

department. There is a fixed bonus pool for each department based on the department’s prior 

performance. Managers can decide on (1) how much they can keep to themselves, and (2) 

how they distribute the remaining bonus to subordinates. While it is not common for a 

manager to decide on how much bonus they keep for themselves, it is this specific feature 

that allows us to test whether managers’ ability affect choices in the implementation of 

relational contracts. This feature also helps us to overcome the empirical difficulty of 

measuring unobserved relational contracts. Therefore, we present evidence on the association 

between managers’ ability and two choices managers make when allocating bonuses.  

The work performed in clinical units also provides a relevant context within which to 

examine relational contracts, namely, it is difficult both to specify ex ante desired actions and 

measure ex post with any degree of accuracy. Professional judgment and expertise is assumed 

to be critical in this context (Freidson 1970; Scott 1982); it is also recognized that 

professionals, such as physicians, invest heavily in their own human capital (Pizzini 2010).  

We argue that high-ability managers are better able to implement ongoing relational 

contracts for two reasons. First, based on prior research, we expect that high-ability managers 
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are more able to make the right decisions as they have higher levels of knowledge, expertise 

and judgment to guide the actions of their subordinates (Demerjian et al. 2012). Second, 

high-ability managers have the ‘patience’ to engage in a long run game. They recognize the 

long term gains of creating a collaborative work environment where employees cooperate 

rather than compete. Prior empirical research demonstrates that ability varies systematically 

with ‘patience’ (Dohmen et al. 2010). Gibbons and Henderson argue that patience is 

important when choosing the type of relational contract. Managers with patience will prefer 

to implement ongoing relational contracts that have long term payoffs; in other words they 

have the ‘patience’ to wait for the benefits associated with those long term payoffs. Given the 

association between ability and patience, we expect that high-ability managers are more 

willing to implement ongoing relational contracts than low-ability managers. In sum, we 

expect that high-ability managers are both more capable of identifying the right course of 

action for the long run success and have the patience to implement contracts that have long 

term payoffs. Low-ability managers only have the option of period-by-period relational 

contract due to constraints in their ability.  

We link the choice of relational contract to bonus decisions by drawing on Gibbons 

and Henderson’s (2012) description of the Trust game. The bonus decision can be seen as one 

manifestation of the relational contract; it provides a means of communicating the manager’s 

contract preference. We predict that managers who choose an ongoing relational contract will 

communicate their preferences as follows. First, they will keep a smaller share of the bonus 

pool for themselves (i.e., leave more bonuses to subordinates). Keeping a smaller share of the 

bonus shows the manager’s willingness to sacrifice short-term payoff for long-term gains. 

Second, they will distribute the remaining bonus to subordinates more evenly, that is, there 

will be less differentiation among the bonuses provided to subordinates. The even distribution 

of bonus among subordinates encourages cooperation as opposed to competition. We expect 
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high-ability managers to recognize the long term benefits of maintaining a repeated 

relationship, and that low-ability managers are constrained to a one-shot relationship. While 

high and low ability managers manage their organizations with different preference for time 

horizons (i.e. long-term versus short-term), we would expect in this setting that choices that 

encourage collaboration and cooperation among employees would on average have better 

longer term outcomes (e.g. better patient care, increased reputation of the hospital, etc.) than 

bonus decisions that increase competition and opportunism.   

Our empirical findings are consistent with our predictions. We find that high-ability 

managers keep a smaller share of bonus than low-ability managers, and high-ability managers 

distribute bonus to employees more evenly than low-ability managers. We interpret these 

findings as evidence that managers’ ability is associated with the extent to which they are 

capable of building an ongoing relational contract within the department.  

We recognize, however, that the bonus decision is only one manifestation of the 

choices that a manager makes in the implementation of relational contracts. We also 

recognize that ability is most likely to be highly correlated with power and reputation. Prior 

research examines the influence of managerial power and/or reputation as determinants of 

economic decisions within the firm, so there are possibly alternative theoretical explanations 

for our observed relation between ability and bonus decisions. We elaborate further on 

alternative explanations in relation to our findings in Section 2.4.3 of the paper.  

This study contributes to prior research in a number of ways. By assessing the choices 

managers make in determining discretionary bonuses, we are able to shed some light on the 

question of how relational contracts can be implemented within a firm. We also contribute to 

the growing body of research examining how managerial traits influence the economic 

decisions managers make within the firm (Malmendier and Tate 2009; Jia et al. 2014; 
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Malmendier and Tate 2005).
5

 And finally we contribute to research examining the 

determinants of subjectivity in performance measurement and compensation decisions. Only 

a few empirical studies directly investigate determinants of discretion in bonus decisions 

(Gibbs et al. 2004; Rajan and Reichelstein 2006; Bol 2011; Ederhof 2010). Our findings 

indicate that managers’ ability is an important personal characteristic determining the way 

they manage their departments. While ability might be correlated with other personal traits 

(e.g., overconfidence), what sets ability apart is that it is difficult to mimic; there are clear 

markers of ability and thus empirically it is possible to identify differences among managers.  

We also study two types of compensation decisions. Prior studies either discuss how 

managers reward themselves (i.e., seek rents) or how managers reward their subordinates.  

Using a setting where relational contracts are likely to exist, we are able to offer a more 

holistic view of the decisions managers make when allocating bonuses.  

2.2. Hypothesis Development 

2.2.1. Relational Contracts 

Firms have formal decision rights, procedures and rules in place to govern 

organizations, but informal rules and expectations also powerfully affect the behaviors of 

individuals within firms (Hermalin 2013). Baker et al. (2002) term the informal agreements 

and unwritten codes of conduct as “relational contracts”.
6
 The classic example of relational 

contracts is the Toyota production system, under which line workers are asked to become 

“active problem solvers”. However, management cannot define in advance exactly which 

problems line workers might find or how problems should be solved. Another example is 

Lincoln Electric’s “fair” principle in bonus payment practice, but there is no manual to define 

exactly what constitutes a fair bonus for a particular worker in a particular year. Those 

                                                 
5
 Prior literature uses physical traits or past experience (e.g., military services or religion) to measure managers’ 

personal traits (e.g., overconfidence, integrity, or dominance) and documents the effect of these different 

characteristics on corporate investment, financial reporting decisions and tax policies. 
6
 The idea of informal agreements is close to what Hermalin (2013) describes as corporate culture  or leadership.  
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employees take the actions based on their understanding of what is expected or acceptable 

within the given firm, namely the relational contracts. 

There are many variations in the forms that relational contracts can take. In our 

research setting, the high degree of discretion in bonus allocation makes the research setting 

resemble the set-up of the Trust game described by Gibbons and Henderson (2012). We thus 

rely on their description of the Trust game to understand how bonus decisions reflect the 

nature of relational contracts. The trust game works as follows. Managers take the initiative 

and play a strategy of either “Trust” or “Distrust”; employees could respond to managers’ 

Trust by playing either “Honor” or “Betray”. However, if managers play Distrust, the game 

ends. The manager’s strategy depends on her anticipation of employees’ responses. This 

anticipation exactly captures the spirit of a relational contract, namely the informal agreement 

and the unwritten codes of conduct. If managers anticipate that employees will respond with 

“Betray”, they will play “Distrust” as an initial move. If managers anticipate employees’ 

response to be “Honor”, they will play “Trust”. The different anticipations result in two types 

of games: repeated game and one-shot game. In the repeated game, managers play Trust and 

employees respond with Honor; in the one-shot game, managers play Distrust and the 

employees end the game.  

We borrow insights from the Trust game to characterize the relational contracts. In a 

repeated game, individuals (managers and employees) view their collaboration as an ongoing 

relationship; thus they care about the consequences of their actions today on the future. On 

the contrary, in a one-shot game, individuals assume that their relationship will end at any 

random point of time, so they limit their attention to actions that affect the current period. For 

exposition purpose, we identify two discrete types of relational contracts: an ongoing 

relational contract (i.e., a repeated game) and a period-by-period relational contract (i.e., a 

one-shot game). Under an ongoing relational contract, individuals work cooperatively to 
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maximize payoff over time. A period-by-period relational contract is a short-term contract 

where individuals maximize their payoff today by taking opportunistic behaviors. We 

recognize, however, the choice of relational contracts is not binary, but a continuum in terms 

of the extent to which the value of long-term relationship outweighs the short-run temptation 

of opportunistic behaviors. 

2.2.2. Managerial Ability and Relational Contracts 

Given the different types of relational contracts, the relevant question is why they 

vary. As opposed to formal contracts enforced by courts, relational contracts are subject to 

individual influence, so managers’ characteristics play a role in establishing the relational 

contracts. We treat managers’ choice of relational contracts as an economic decision. Ability 

is the characteristic that differentiates managers’ cost function of managing their 

organizations. Some management practices are simply too costly or even infeasible for low-

ability managers. The difference in their cost function clearly predicts a separating 

equilibrium where high-ability managers choose different relational contracts from low-

ability managers. We argue that high-ability managers will choose ongoing relational 

contracts, but low-ability managers will choose period-by-period (i.e., one-shot) relational 

contracts.  

The key distinction between ongoing and period-by-period relational contracts is the 

extent to which individuals trade off long-term gains against short-term payoff. As opposed 

to low-ability managers, high-ability managers have sufficient knowledge to identify the right 

course of action for long-run success. At the same time, high-ability managers have the 

expertise that allows them to coordinate subordinates’ actions through appropriate task 

assignment and timely settlement of any conflicts occurring ex post. Not only are high-ability 

managers better at decision making and task execution (Demerjian et al. 2012) they are more 

patient. Empirical research demonstrates that ‘patience’ and ability co-vary. Patience is 
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critical for ongoing relational contracts (Gibbons and Henderson 2012). The patience of high-

ability managers allows them to wait for gains that accrue over the longer term. In other 

words, high-ability managers will choose to establish ongoing relational contracts because 

they are able to both generate long-term payoff and can wait patiently to realize the long-term 

payoff.              

Conversely, low-ability managers are constrained by their lack of knowledge, 

experience, or expertise. They do not have the ability to develop a viable long-term action 

plan or to coordinate subordinates to implement the action plan. In other words, it is less 

likely for low-ability managers to realize high long-term payoff than for high-ability 

managers. In addition, low-ability managers are less patient, so they value the current payoff 

more than long-term benefits. Therefore, low-ability managers will choose period-by-period 

relational contracts because of the limitation of their ability.     

In sum, we expect that managers’ ability affects their choice of relational contracts; 

high-ability managers will choose ongoing relational contracts, but low-ability managers will 

choose period-by-period relational contracts where the payoffs are immediate.  

2.2.3. Managerial Ability and Discretionary Bonus Decisions 

Relational contracts rely on employees’ following the signals or actions of their 

superior (Hermalin 1998). In that sense, managers will need to  communicate, or provide a 

signal, to their employees as to their preferred type of relational contract and ensure that the 

relational contract chosen is implemented (Hermalin 1998). We know that the choice of 

incentive contract influences employees’ behavior (Carlin and Gervais 2009). When 

managers have discretion in the allocation of bonuses, this discretion allows managers to 

signal to their subordinates what is expected. Therefore, we investigate managers’ choices of 

relational contracts by looking at their discretionary bonus decisions. We discuss how two 
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types of discretionary bonus decisions reflect managers’ choice of relational contracts, 

separately.  

When managers have discretion to reward themselves, they can show whether they 

are willing to sacrifice short-term payoff for long-term payoff by deciding how much bonus 

they keep to themselves. If the manager takes a lower share of the bonus pool then she is 

signaling that she prefers actions that have long run benefits over actions that have short-term 

benefits. She signals that she wants a long-term relationship with the subordinates. There is 

the added benefit that subordinates receive a larger share of the bonus pool which would 

reinforce the importance of directing effort to long-term actions. Given that high-ability 

managers are more patient, we predict that high-ability managers are more likely to sacrifice 

short-term benefits for long-term benefits than low-ability managers and this will be reflected 

in the decision of keeping less bonus to themselves. Our prediction relating to the association 

beween managers’ ability and their decisions in allocating bonuses to themselves is 

summarized as follows:   

H1: Ceteris paribus, managerial ability is negatively associated with the share 

of bonus that managers keep for themselves.  

When managers have discretion to distribute bonus among their subordinates, the 

differentials in bonus allocation communicates preferences for competition or cooperation 

(Main et al. 1993; Lazear 1989). Given the fixed bonus pool, bonus allocation is a zero sum 

game. Giving one individual more reduces the other’s bonus. Therefore, large bonus 

differentials create tournament incentives which foster competition among employees rather 

than cooperation (Main et al. 1993). Managers use the decision on bonus differentials to show 

the extent to which they encourage cooperation or competition.  

The realization of long-term payoff depends on the cooperation among employees. 

Competition might encourage individual effort (Lazear and Rosen 1981), but it also 
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encourages uncooperative behaviors or sabotage among employees (Harbring and Irlenbusch 

2011; Lazear 1989).  While high-ability managers have the expertise to develop action plans 

for the long-term success, they also need to create an environment that encourages 

collaboration and cooperation among subordinates. They will create this environment through 

their bonus allocation decision. It follows that high-ability managers’ preference for 

cooperation over competition will result in lower differentials in the bonus allocation to 

subordinates.  

H2: Ceteris paribus, managerial ability is negatively associated with the 

degree of bonus differentials among employees. 

2.2.4. Performance Implications 

This study focuses on how managers’ ability affects their choice of relational contract 

by looking at their discretionary bonus decisions. It is managers’ ability that determines 

managers’ choices when managing their departments. There is evidence that managerial 

ability is related to performance on a number of dimensions (Demerjian et al. 2012). We 

predict that high-ability and low-ability managers choose different relational contracts to 

maximize their own long-term and short-term payoffs. Our arguments imply that managers 

maximize their utility based on different time horizons. It is thus possible that there may not 

be performance difference between high- and low- ability managers in any given time period, 

respectively. However, in the Trust game, the total payoff of managers and employees in the 

repeated game is higher than that in the one-shot game; that is, ongoing relational contracts 

result in larger welfare gains for the firm than period-by-period relational contracts. 

Under an ongoing relational contract, cooperative collaboration is sustained by the 

‘shadow of the future’ (Gibbons and Henderson 2012). Specifically, individuals take actions 

by considering the consequence of their actions on their future payoff. If a manager seek rents 

or exploit employees or employees exploit other employees, the ongoing relational contract 
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will break down. Therefore, it is less likely for managers and employees to take opportunistic 

behaviors under an ongoing relational contract, which directly translates into lower agency 

costs. Under a period-by-period contract, individuals maximize their payoff in the current 

period and pay less attention to the implication for the future. In that sense, it is more likely 

that people seek private benefits at the expense of the department. Hence, period-by-period 

relational contracts imply more opportunism and result in higher agency costs.  

In sum, we predict that ability (along with their chosen relational contracts) is 

positively associated with departmental performance. However, it is not easy to document the 

hospital’s performance, which includes not only financial performance but also quality of 

medical services (e.g., patient outcomes and hospital reputation), some of which can only be 

easily measured in the short term. Due to the complexity of the hospital performance and data 

limitations, we only present limited empirical evidence on financial performance without a 

formal statement of hypothesis. 

2.3. Research Design 

In this section, we first describe the research site, including the design of the incentive 

plan. Next, we describe the sample and the data used to test our hypotheses. We then explain 

how we measure the variables of interest. We also present descriptive statistics.  

2.3.1. Research Site 

We require a research setting with two features: (1) managers’ ability is measurable, 

and (2) the manager has complete discretion to make performance evaluation and 

compensation decisions. Our research site is a large general hospital in China, with 34 

clinical departments. It has the highest rank in the classification system of Chinese hospitals,
7
 

and it is the only general hospital situated in a largely rural area. Each clinical department has 

                                                 
7
 There are nine levels in the classification system of Chinese hospitals. There are three tiers and each tier has 

three subsidiary levels. The classification is based on a hospital’s ability to provide medical care, such as level 

of service provision, size, medical technology, and medical equipment.   
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a physician as a department head. There are three types of clinical departments: medical, 

surgical, and medical support.
8
 The revenues for the hospital over the investigation period 

(i.e., 2007–2010) have grown by 1.86 times.
9
 Revenues come from both outpatient (40%) and 

inpatient services (60%). The hospital has a profit center reporting structure in which all 

patient revenues are allocated to the departments as earned and all direct costs incurred where 

expended.         

The management of clinical departments requires expert clinical knowledge and a 

management structure based on expertise rather than on a formal hierarchical structure. 

What’s more, in this particular hospital, physicians do not have better outside opportunities in 

the region, resulting in low turnover of the medical staff. These long-term working relations 

further increase the salience of relational contracts at our research site. Once the informal 

agreements or unwritten conducucts have been established, they will have far reaching 

influences on employees’ behaviors. Heads of clinical departments all have the same 

hierarchical authority but may differ in their ability.
10

 We expect that the ability of clinical 

heads will vary across departments in our sample.  

We focus only on the clinical staff, which includes both physicians and nurses. For 

each month, the size of the clinical staff ranges from 480 to 496 individuals. Physicians and 

nurses in the clinical departments receive a fixed salary as well as a bonus determined on a 

monthly basis. The hospital has a group bonus system in which the monthly department 

bonus pool is determined by the monthly department profit. There is no explicit formula for 

                                                 
8
 Medical departments include Pediatrics, Nephrology, Neurology and Gastroenterology. Surgical departments 

include Obstetrics and Gynecology, Urology, Orthopedics, Stomatology, and Neurosurgery. Medical support 

departments include Radiology, Ultra-sonography, and Pathology.  
9
 This revenue growth is partially due to the reform of the rural cooperative medical system (RCMS). Under 

RCMS, the government reimburses the medical spending of listed major medical treatment for those living in 

rural areas. 
10

 Ability as reflected in the expertise of physicians is also of value for the hospital because it is instrumental in 

attracting patients and thus revenue to the hospital. Patients are unable to objectively evaluate service quality 

and thus are attracted to hospitals with high-ability physicians. 
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allocating individual bonuses within the departments. The hospital does not set any 

individual-level performance indicators for either physicians or nurses. The general guideline 

is that department heads should reward a given subordinate according to his contribution to 

the department. However, the hospital does not document any individual-level performance 

data (e.g., revenue generated, number of patients treated, and quality of treatment). 

Nonetheless, there is one clear rule that limits the department head’s bonus: it cannot be more 

than 3.5 times the average bonus of all subordinates within the department. Apart from this 

restriction, the allocation of the bonuses within the department is completely at the discretion 

of the department head. The department head has to make two decisions: (1) the fraction of 

the bonus pool she keeps for herself and (2) how much to differentiate the bonuses among 

subordinates in the department.
11

 We study the role of ability in both these decisions.  

2.3.2. Data  

The hospital provided us with proprietary archival data. Data are available with 

respect to (1) monthly departmental performance, such as revenue, profit, and cost;
12

 (2) 

monthly salary and bonus data at the individual level; and (3) personnel data, including age, 

tenure, and gender.
13

 In addition to the proprietary archival data, we collect information from 

the hospital’s website on the physicians’ personal details including prizes and their 

memberships in medical professional associations. The hospital also identifies “star” 

physicians on the website. We rely on these data to measure managers’ ability. Data are 

available from 2007 to 2010. Our data cover those formally employed by the hospital, 

including physicians and nurses. We have data for each nurse, physician, and head on a 

monthly basis grouped by department. The average department size in terms of the number of 

                                                 
11

 There is nothing that restricts the sharing of compensation information within the hospital although the 

information is not publicly available. As in most organizations, people care about their relative compensation 

and thus are incentivized to seek information about others’ compensation through informal communication 

channels. We expect this to be the case in our setting.  
12

 The cost data is at an aggregated level and does not separate out direct costs from hospital overhead costs. 
13

 In our sample, only four department heads (out of 34) are female. 
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individuals, which includes heads and subordinates, is 16. The ratio of variable bonus to fixed 

pay at the department level is 2.5 (see Table 1), suggesting that bonuses are an economically 

meaningful part of total compensation.
14

 Each department head’s average salary is about 

twice the average salary of subordinates (see Table 3). There are 230 unique physicians and 

290 unique nurses in our sample.  

<Insert Table 1 here> 

2.3.3. Variable Measurement 

Explanatory Variable: Managerial Ability 

Department heads are the unit of analysis. They all have the same formal authority to 

make department bonus pool allocation decisions; what varies between the department heads 

is their ability. Given prior research demonstrating that the number of ‘stars’ (i.e. a proxy for 

ability) in a team influences team performance, we take also measure of subordinates’ ability 

(Groysberg et al. 2011). We compute the ability of the head and of her subordinates. We have 

two ways to account for subordinates’ ability in our analyses: (1) including heads’ own 

ability and subordinates’ ability (as a control variable) and (2) including the ability of heads 

relative to their subordinates’s ability, namely relative ability. We compute the relative ability 

poxy by measuring the distance between the head’s credentials and those of the subordinates.  

Our ability proxies use observable markers of ability, namely verifiable indicators of 

expertise, competence, reputation and experience. Based on prior research, we use age, 

tenure, education level, and the ranking of the graduate school at which the individual 

completed his degree as indicators of ability (Finkelstein 1992; Bunderson 2003). Table 2 

presents descriptive statistics on these indicators. Age and tenure reflect experience; 

similarly, education level and the graduate school ranking capture competence or expertise in 

an individual’s professional domain. We also use the number of prizes won, the number of 

                                                 
14

 The size of the bonus relative to the fixed salary is consistent with the evidence in Cooke (2004).  
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memberships in professional associations, and whether a given individual is identified as a 

‘star’ physician on the hospital’s website to capture the professional prominence. Together, 

we have seven indicators of ability, which are listed in Appendix 1.  

We construct our empirical measure of “Ability” as follows. First, we perform a 

principal component analysis (promax rotation) on the seven indicators using the physician 

sample, which includes both heads and subordinate physicians.
15

 The seven indicators load 

on three factors, labeled Prestige, Experience, and Education. The rotated factor pattern 

(untabulated) is consistent with the correlation among the seven ability indicators (see Table 

2, Panel A); Membership, Prize, and Star are highly correlated and load on the factor we 

label “Prestige”; Tenure and Age load on the factor we label Experience; Edu_level and 

Edu_ranking load on the factor we label Education. The three factors explain more than 80% 

of the variation in the seven indicators.   

<Insert Panel A of Table 2 here> 

Next, we compute the factor score on each factor for each physician. Hence, each 

physician in the sample has three factor scores, namely for (1) Prestige, (2) Experience, and 

(3) Education. Note that these factor scores have been standardized and allow for 

comparison, but the absolute value of these score does offer an economic interpretation. After 

computing the factor scores of each physician, we use two different methods to create the 

head’s ability measure: (1) the aggregate ability for heads and subordinates and (2) the 

relative ability (Ability_Gap) on each factor. Figure 1 in Appendix 2 schematically illustrates 

the way in which we construct Ability by using the head’s and subordinates’ ability scores.  

<Insert Figure 1 here> 

                                                 
15

 Presumably, department heads have professional skills similar to other physicians, but not to nurses. Nurses 

typically do not have the capacity to decide on the medical treatment or coordinate physicians. Thus, we do not 

include “nurses” when constructing our empirical measure of ability. 
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The head’s aggregate ability (Head_Ability) is the sum of her raw ability score across 

three factors, Head_Prestige, Head_Experience, and Head_Education. Similar to the head’s 

aggregate ability, the subordinate physicians’ aggregate ability (Sub_Ability) is the sum of 

Sub_Prestige, Sub_Experience, and Sub_Education. We use Ability_Gap (i.e., the “relative” 

ability) to describe the head’s ability relative (Head_Ability) to that of the subordinate 

physicians (Sub_Ability). Ability_Gap is the difference between the head’s and the 

subordinate physicians’ aggregate abilty scores. Each head ultimately has six related ability 

scores to construct her Ability_Gap, Head_Prestige, Head_Experience, Head_Education, 

Sub_Prestige, Sub_Experience, and Sub_Education. Given that the head’s relative ability can 

be described vis-à-vis the ability of any member of subordinate physicians, we take the 

maximum score on each factor among subordinate physicians for each department as the 

subordinates’ ability score.  

Clearly, managers’ ability does not vary much over time. Given this time invarient 

feature of managers’ ability, our empirical tests do not rely on change in ability but exploit 

the variations in ability “between” department heads (i.e., cross-sectional tests).  

Relational Contracts: Discretionary Bonus Decisions  

To understand the association between managers’ ability and the relational contracts, 

it is important to capture the component of a bonus that best reflects managers’ choice of 

relational contracts. Recall that the head determines her own bonus; we want to determine if 

she allocates herself an abnormally large share or a lower share. For the allocation bonus 

decision for subordinates we also need a benchmark that will determine the degree of 

differentiation from what would normally be expected. Thus, we use the abnormal bonus to 

capture the part of bonus which deviates from what each individual expects to earn. Based on 

each individual’s abnormal bonus, we further construct two measures that capture (1) the 

abnormal size of the bonus of the manager (Head_Abnm) and (2) the standard deviation of 
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abnormal size of bonus of subordinates (Sub_Abnm). Head_Abnm reflects the extent to which 

heads give up short-term bonus in exchange for long term gains; Sub_Abnm represents the 

degree of heads’ preference for cooperation over competition among subordinates. We treat 

these two measures as manifestation of relational contracts.   

The hospital policy states that bonuses should be based on each individual’s 

“contribution” to the department. To separate abnormal bonus from the total bonuses, our 

empirical strategy is to find the objective referent distribution that might resemble a 

“contribution” distribution. We measure abonormal bonus as the deviation from the referent 

distribution. Fixed salary generally represents the average of a given individual’s productivity 

and thus reflects their contribution to the department’s performance.
16

 Given that there is no 

objective individual performance information available from our research site, we propose 

that the distribution of fixed salary within the department is a reasonable approximation for 

the unobservable normal bonus distribution. For example, the department head usually 

receives a higher salary than the subordinates. Accordingly, subordinates might expect the 

department head to receive a bonus relative to their higher salary. The normal bonus does not 

contain any indication of managers’ choice of relational contracts. As decribed in the bonus 

policy, a valid referent distribution should reflect the individuals’ relative average 

productivity within a department.
17

  

As the bonus pool and the number of employees vary across departments, we need to 

have a scale-free measure to capture the variations in abnormal bonus between departments. 

Given the departmental bonus pool system, what matters is the slice (i.e., the share) of the 

departmental bonus pool that each individual receives. Therefore, our computation of bonus 

                                                 
16

 Department heads do not have discretion in deciding the physicians’ or nurses’ salaries. There is a salary 

schedule in which the prescribed salaries vary with objective achievements that include the education level, 

tenure, and professional certification of a staff member.   
17

 Allocating the bonus equally to each individual within a department is not a good referent distribution because 

it does not capture each individual’s relative contribution. The fixed salary component is a reasonable proxy for 

this. 
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decisions is based on the slice measure. We use the “salary slice” (a proxy for each 

individual’s relative contribution to the department) as the appropriate benchmark to 

determine the size of the abonormal bonus for both the head of the department and the 

subordinates within the department. We take the salary slice
18

 within the department as the 

benchmark and take the difference between the bonus slice (Paid_Bonus_Slice) and the 

salary slice (Salary_Slice) as the abnormal bonus slice for each individual. We define paid 

bonus slice, salary slice, and abnormal bonus slice in the following equations.  
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where subscript i represents each individual, j the department, and t the calendar 

month.  

Turning to the measurement of managers’ choices of relational contracts with two 

types of bonus decisions, we construct the head’s abnormal bonus slice (Head_Abnm) as the 

difference between actual paid bonus slice and salary slice. With respect to the indication of 

cooperation or competition among subordinates, we are interested in the extent to which the 

department head differentiates between subordinates when allocating the remaining bonus to 

subordinate. We measure the department head’s choices for the degree of subordinates’ 

cooperation as the dispersion of the subordinates’ abnormal bonus slices. Specifically, we 

compute the standard deviation of the subordinates’ abnormal bonus slice within a given 

                                                 
18

 The salary slice is smaller than the maximum bonus slice restricted by the hospital’s compensation policy. 

Since the salary slice is not above the enforced cap, the deviation from the salary slice is still at the manager’s 

discretion. Salary slice is qualified to be used to determine the referent distribution.   
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department and use this measure as the proxy for the type of relational contracts which 

managers demostrate in the subordinates’ bonus allocation decision (Sub_Abnm). We assume 

that each department head uses the salary slice as the “referent distribution,” but we 

recognize that this may not be the case in practice. However, since we are interested in 

variations in managers’ choice of relational contracts across department heads, holding our 

computation of abnormal bonus constant across departments helps to capture the variation in 

managers’ choices.  

2.3.4. Descriptive Statistics 

Panel B of Table 2 shows the descriptive statistics of the ability measures. The 

department head’s score on the Prestige factor (1.51) is higher on average than the 

subordinates’ (−0.08). However, this is not the case for Experience and Education factors. 

Evidently, to the extent that the ability of heads and subordinates differs, Prestige is the root 

cause.  

<Insert Panel B of Table 2 here> 

Table 3 presents the descriptive statistics of the bonus allocation. Panel A of Table 3 

shows that the average proportion that the department heads keep for themselves 

(Paid_Bonus_Slice) is 21%. The average maximum bonus percentage prescribed by hospital 

policy would amount to 26% (untabulated). In other words, the department heads, on 

average, do not award themselves the maximum amount possible. Panel C of Table 3 also 

shows that high-ability heads on average allocate a lower bonus to themselves and 

differentiate less among their subordinates than low-ability heads.  

<Insert Table 3 here> 

Table 4 presents the Pearson correlations among variables. There is a negative and 

significant relation between department head’s relative ability (Ability_Gap) and the 

manifestation of relational contracts in two types of discretionary bonus decisions 
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(Head_Abnm, r =−0.36, p<0.01; Sub_Abnm, r =−0.14, p<0.01). This finding too is consistent 

with our hypothesis that high-ability managers (low-ability managers) prefer to maintain an 

ongoing relational contracts (a period-by-period relational contract).  

<Insert Table 4 here> 

2.4. Empirical Models and Results 

 We describe the empirical models and the findings for hypotheses H1 and H2 in 

Ability and Discretionary Bonus Decisions before turning to the tests regarding the 

performance implications of managers’ ability in Performance Effect of Ability.   

2.4.1. Managerial Ability and Discretionary Bonus Decisions 

We test whether differences in ability between heads explain their discretionary bonus 

decisions. We use the abnormal component of managers’ bonus decisions as the dependent 

variable and ability as the variable of interest. We have two models with different dependent 

variables. First, we use the head’s abnormal bonus slice (i.e., Head_Abnm). Second, we use 

the standard deviation of subordinates’ abnormal bonus slice (i.e., Sub_Abnm). We specify 

our two empirical models for H1 and H2 as follows:  

Head_Abnmjt=α0 + α1 Abilityjt+ α2 Dep_Profitjt+α3 Dep_Sizejt  + α4 Physician_ratiojt  

                      + α5 Dep_Medicinej + α6 Dep_Surgeryj + εjt                                         (4) 

Sub_Abnmjt= β0 + β1 Abilityjt+ β2 Dep_Profitjt+ β3 Dep_Sizejt  + β4 Physician_ratiojt   

                    + β5 Dep_Medicinej + β6 Dep_Surgeryj + εjt                                        (5) 

where subscript j represents each department, and t the calendar month. Models (4) 

and (5) are estimated at the department level by pooled OLS regression with robust standard 

errors clustered by department. 

 We include as control variables measures of the department’s current performance, 

department size, and other department characteristics because these variables might 

systematically affect managers’ decisions on abnormal bonus. We include current department 

profit (Dep_Profit), which determines the bonus pool. We include the department size, the 
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number of physicians and nurses (Dep_Size) and the proportion of physicians 

(Physician_ratio). Finally, we use two proxy variables, Dep_Medicine and Dep_Surgery, to 

capture any task, clinical, or risk differences between departments that have the potential to 

influence discretionary bonus decisions. Finally, we include year fixed effects.
19

 

 We have four specifications that differ with respect to the measure of ability. First, we 

include the heads’ and subordinates’ aggregate ability scores (e.g., Head_Ability and 

Sub_Ability). Second, we include the heads’ and subordinate’s raw ability scores on three 

factors. In this specification, there are six variables: Head_Prestige, Head_Experience, 

Head_Education, Sub_Prestige, Sub_Experience, and Sub_Education. Third, we include the 

heads’ relative ability scores on three factors, namely Ability_Gap_Prestige, 

Ability_Gap_Experience, and Ability_Gap_Education. Fourth, we include a single relative 

ability measure, Ability_Gap.   

We base our prediction and interpretations on the first specification where controlling 

for subordinates’ ability (Sub_Ability) we examine the association between departmental 

heads’ ability (Head_Ability) and discretionary bonus decisions. Hypotheses H1 and H2 

predict that Head_Ability is negatively associated with Head_Abnm and Sub_Abnm, 

respectively.  

While we did not hypothesize the effect of the head’s relative ability on the abnormal 

bonus of the head’s discretionary bonus decisions separately, it is straightforward to predict 

that the head’s relative ability is negatively correlated with the abnormal component of the 

head’s discretionary bonus decisions given that the head’s relative ability is the difference 

between the head’s and the subordinates’ aggregate ability. 

                                                 
19

 We check whether our results are sensitive to the inclusion of month fixed effects, which potentially capture 

the impact of hospital-wide profits on the discretionary bonus decisions. Untabulated results are qualitatively the 

same as reported in the primary tables. Details are available upon request. 
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The results of Models (4) and (5) are generally consistent with our hypotheses. With 

respect to the abnormal bonus that the head keep to herself, we hypothesize that Head_Ability 

is negatively associated with Head_Abnm. Table 5 (Panel A) reports the findings of the four 

specifications of Model (4). The results in column (1) of Table 5 Panel A show separate 

effects of the head’s and the subordinates’ aggregate ability. In column (1), the coefficient for 

Head_Ability is significantly negative (−1.102, p<0.01). Heads with high aggregate ability 

have lower abnormal bonus slices than heads with low aggregate ability. While the head’s 

aggregate ability (Head_Ability) reduces Head_Abnm, the subordinate’s aggregate ability 

(Sub_Ability) increases Head_ Abnm (0.850, p<0.1). This result shows that it is not only the 

head’s ability but also the subordinates’ ability that matters when managers decide on the 

type of the relational contracts. Consistent with our H1, keeping all else equal, when dealing 

with subordinates with the same ability, high-ability heads retain a smaller abnormal bonus 

slice than low-ability heads.  

<Insert Panel A of Table 5 here>  

Overall, the negative relationship between Head_Ability and Head_Abnm is consistent 

with our hypothesis. Heads with high ability prefer to give up more bonus to subordinates in 

exchange for future return than heads with low ability, and hence they retain a smaller 

abnormal bonus slice than heads with low ability. 

With respect to the bonus decisions in differentiating between subordinates, we 

hypothesize that a head’s ability reduces the degree of discretionary differentiation in 

subordinates’ bonus. The results of Model (5) are reported in Panel B of Table 5. In column 

(1), the coefficient for Head_Ability is significantly negative (−0.198, p<0.01). Column (1) 

indicates that the head with high aggregate ability (Head_Ability) differentiates between 

subordinates to a lesser extent than the head with low aggregate ability. However, unlike our 

findings for the head’s abnormal bonus slice (Head_Abnm), the subordinates’ aggregate 
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ability (Sub_Ability) does not affect the head’s decisions in differentiating between 

subordinates’ bonuses.  

<Insert Panel B of Table 5 here>  

Overall, the negative relationship between Head_Ability and Sub_Abnm is consistent 

with our hypothesis. Heads with high ability do not want to encourage competition among 

subordinates when they maintain an ongoing relational contract and hence differentiate 

between the subordinates’ bonuses to a lesser extent than heads with low ability choosing a 

period-by-period relational contracts within their department.  

As a whole, the findings support our prediction that the head’s ability is negatively 

associated with (1) the abnormal bonus slice they keep to themselves and (2) the extent to 

which they differentiate when allocating bonuses among subordinates. We interpret those 

findings as evidence that high-ability managers maintain an ongoing relational contract by 

rewarding themselves less and differentiating subordinates less, and that low-ability 

managers are constrained to a period-by-period relational contracts where they reward 

themselves more and differentiate their subordinate more.   

2.4.2. Performance Effects of Managerial Ability  

We hypothesize that managers’ ability is associated with the type of relational 

contracts, and their choice will ultimately influence departmental performance. We are 

interested in the performance effect of different types of relational contracts. However, 

relational contracts are unobservable and discretionary bonus decisions only capture part of 

the contracts. To evaluate the performance implications, we test the performance effects of 

managers’ ability which drives the choice of relational contracts.
20

 We use managers’ ability 

as the independent variable, and financial performance (i.e., Dep_Revenue and Dep_Profit) 

                                                 
20

 Relational contracts are unobservable, and discretionary bonus decisions only capture part of the contracts. In 

that sense, managers’ ability is a better proxy for the choice of relational contracts.  
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as the dependent variable.
21

 We use Model (6) to test the performance consequences of 

discretionary bonus decisions.  

Performancejt=γ 0+ γ1Abilityjt +γ2Dep_Sizejt+ γ3 Physician_ratiojt+ γ4 Dep_Medicinej   

                                   + γ5 Dep_Surgeryj + εjt                                                                        (6) 

where subscript j represents each department, and t the calendar month. Model (6) is 

estimated at the department level by pooled OLS regression with robust stand errors clustered 

by department. The control variables are similar to those in Models (4) and (5).  

Note that Model (6) only shows the association between performance and managers’ 

ability, but does not allow us to draw any causality between them. We predict a positive 

association between the head’s ability and performance (i.e., γ1>0).  

Since subordinates’ ability might affect managers’ discretionary bonus decisions, we 

take this factor into account when evaluating performance implications of managers’ ability. 

We present the empirical results of Model (6) in Table 6. Panels A and B of Table 6 present 

the details of our estimations with the departmental profit (Dep_Profit) and the departmental 

revenue (Dep_Revenue) as the dependent variable, respectively.  

We treat ability either as a continuous variable in columns (1) and (2) or a binary 

viable in column (3) in each panel. In columns (1) and (2) of each panel, we do not find 

significantly positive association between managers’ ability and departmental performance, 

either Dep_Profit or Dep_Revenue. However, when we treat managers’ relative ability as a 

binary variable in column (3), we find that managers with high relative ability are associated 

with higher departmental profits and revenues, respectively (0.046, p<0.1 Panel A; 0.187, 

p<0.1 Panel B). Recognizing the multi-dimensional performance of the hospital and the 

concern with different time horizons, Table 6 provides limited evidence on the performance 

effect of managers’ ability. However, the evidence is consistent with the prediction that high 

                                                 
21

 Hospitals are not only concerned with financial performance, but also with the quality of treatment and 

operating efficiency. However, we do not have access to these data.   
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managerial ability (associated with ongoing relational contracts) is associated with better 

organizational performance than low managerial ability (jointly with period-by-period 

relational contracts).  

<Insert Table 6 here> 

2.4.3. Discussions of Alternative Explanations 

The theoretical foundations of our study are based on the assumption that ‘ability’ 

determines the choices managers make in determining bonus allocations. We view these 

choices as a manifestation of different types of relational contracts. Our arguments are based 

on Gibbons and Henderson’s (2012) description of the Trust game. The major limitation of 

our empirical design is that we do not have a direct measure of the relational contracts in 

force. Alternative arguments are plausible for both types of bonus decisions. We discuss our 

empirical findings in relation to prior literature on the association between personal 

characteristics and discretionary bonus decisions. As managerial ability is correlated with 

their power and reputation, we assess whether these two alternative personal characteristics 

explain our findings.  

Managerial power theory (MPT) would predict that the powerful managers are able to 

seek rents for themselves, so they will keep more bonuses for themselves (Bebchuk et al. 

2011). However, our empirical finding that high ability managers keep a smaller share of 

bonus for themselves than low ability mangers is contradictory to what MPT predicts.  

Another possible mechanism is the disciplining effect of reputation. Reputable 

managers are concerned about potential adverse economic consequence derived from their 

reputation loss (e.g., lower likelihood of career advancement or fewer outside opportunities), 

so they will avoid rewarding themselves with “excessive” bonus (Kuhnen and Niessen 2012). 

In other words, reputable managers will keep less bonus to themselves than managers with 

low reputation. However, it is not clear how managers’ reputation affect the way managers 
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allocate bonus to their subordinates. One possible prediction is that high reputation allows 

managers to justify their discretionary bonus decisions and they are more able to create 

tournament incentives with larger bonus differentials among employees. This conjecture 

results in the positive association between managers’ reputation (ability) and the degree of 

bonus differentials among subordinates, which is inconsistent with our finding.  

In sum, neither managerial power nor reputation explains our empirical findings on 

both types of bonus decisions in a consistent way. Although our empirical analyses are 

subject to some limitations, we do not find that alternative explanations explain our empirical 

findings.  

2.5. Conclusion 

The primary purpose of this study is to examine whether managerial ability influences 

the choice of relational contracts as manifested in discretionary bonus decisions. Data from a 

large hospital in China allow us to study this relation. The hospital grants decision rights to 

clinical managers of departments to allocate bonuses both to themselves and to their 

subordinates. Ability is particularly salient in professionally dominated organizations such as 

hospitals and is thus likely to be an important determinant of behavior.  

In our setting we find that high-ability managers keep less abnormal bonus slice and 

differentiate their subordinates to a lesser extent than low-ability managers. Theoretical 

predictions relating to relational contracts are consistent with these findings. In essence, 

higher ability managers not only have the expertise and judgment to implement repeated 

relational contracts which require collaboration and cooperation among employees in the 

long run, they have the patience to wait for the long term benefits that accrue from these 

contracts. The bonus decision allows the manager to establish the informal agreement within 

the department that long run actions are desired and that the returns from such actions will 

accrue higher payoffs than short run actions.  
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Based on descriptions of the Trust game, we would expect that ongoing relational 

contracts, implemented to create a collaborative working environment, would deliver greater 

long term benefits for the department/hospital than a competitive environment. While we are 

not able to design a direct test on the association between performance and relational 

contracts, our results do provide support for prior research demonstrating that ‘ability’ is 

correlated to positive economic outcomes (Dohmen et al. 2010).  

Our study contributes to prior research in a number of ways. First, we shed some light 

on one dimension of relational contracts by examining how different types of managers 

influence the choices made in the implementation of relational contracts. We contribute to 

empirical research on performance evaluation and compensation design, particularly those 

studies concerned with subjectivity (Bol 2011; Ederhof 2010). We also contribute to more 

recent research in accounting on the effect of managerial traits on economic decisions (Jia et 

al. 2014; Benmelech and Frydman In press) and the literature examining how ‘ability’ affects 

managerial decision making more widely. Our study also speaks to prior research on 

hospitals, particularly studies concerned with the adverse consequences when physicians 

dominate decision making (Ramanujam and Rousseau 2006).  

We limit our study to the impact of discretionary bonus decisions on the financial 

performance of the department; others have demonstrated that physicians with high levels of 

ability and expertise can have a beneficial effect on other professionals in the clinical unit as 

well as on the quality of the work performed (Ramanujam and Rousseau 2006; Nembhard 

and Edmondson 2006). Our results would suggest similar conclusions; high ability physician 

managers are more likely to create a collaborative environment focused on long term 

outcomes than a competitive environment focused on short term outcomes. It is unclear from 

our limited performance data what is most desirable from the perspective of the hospital.  
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A potential limitation of our study is that we use data from one large hospital in 

China. However, we have no reason to believe that our findings would not hold in other large 

hospitals where the decision-making structure is dominated by highly trained physicians. We 

only measure financial performance outcomes. Data restrictions did not enable us to measure 

quality outcomes at the department level, although future research could incorporate both 

efficiency and effectiveness outcomes. Despite these potential limitations, this study 

introduces the idea into the accounting literature that ability is important in discretionary 

bonus decisions. 

  



38 

 

2.6. References 

Baker, G., R. Gibbons, and K. J. Murphy. 2002. Relational Contracts and the Theory of the 

Firm. The Quarterly Journal of Economics 117 (1):39-84. 

Bebchuk, L. A., K. J. M. Cremers, and U. C. Peyer. 2011. The CEO pay slice. Journal of 

Financial Economics 102 (1):199–221. 

Benmelech, E., and C. Frydman. In press. Military CEOs. Journal of Financial Economics. 

Bol, J. C. 2011. The determinants and performance effects of managers’ performance 

evaluation biases. The Accounting Review 86 (5):1549–1575. 

Bunderson, J. S. 2003. Recognizing and utilizing expertise in work groups: A status 

characteristics perspective. Administrative Science Quarterly 48 (4):557-591. 

Carlin, B. I., and S. Gervais. 2009. Work Ethic, Employment Contracts, and Firm Value. The 

Journal of Finance 64 (2):785-821. 

Cooke, F. L. 2004. Public-sector pay in China: 1949–2001. The International Journal of 

Human Resource Management 15 (4-5):895-916. 

Dechow, P. M., S. P. Kothari, and R. L. Watts. 1998. The relation between earnings and cash 

flows. Journal of Accounting and Economics 25 (2):133-168. 

Demerjian, P., B. Lev, and S. McVay. 2012. Quantifying Managerial Ability: A New 

Measure and Validity Tests. Management Science 58 (7):1229-1248. 

Dohmen, T., A. Falk, D. Huffman, and U. Sunde. 2010. Are Risk Aversion and Impatience 

Related to Cognitive Ability? The American Economic Review 100 (3):1238-1260. 

Ederhof, M. 2010. Discretion in bonus plans. The Accounting Review 85 (6):1921-1949. 

Finkelstein, S. 1992. Power in top management teams: Dimensions, measurement, and 

validation. Academy of Management Journal 35 (3):505-538. 

Freidson, E. 1970. Profession dominance: The social structure of medical care. New 

Brunswick: Aldine Transaction. 

Gibbons, R., and R. Henderson. 2012. Relational Contracts and Organizational Capabilities. 

Organization Science 23 (5):1350-1364. 

Gibbs, M., K. A. Merchant, W. A. Van der Stede, and M. E. Vargus. 2004. Determinants and 

effects of subjectivity in incentives. The Accounting Review 79 (2):409-436. 

Groysberg, B., J. T. Polzer, and H. A. Elfenbein. 2011. Too many cooks spoil the broth: How 

high-status individuals decrease group effectiveness. Organization Science 22 (3):722–

737. 

Harbring, C., and B. Irlenbusch. 2011. Sabotage in Tournaments: Evidence from a 

Laboratory Experiment. Management Science 57 (4):611-627. 

Hermalin, B. E. 1998. Toward an economic theory of leadership: Leading by example. The 

American Economic Review 88 (5):1188-1206. 

Hermalin, B. E. 2013. Leadership and Corporate Culture. In The Handbook of Organizational 

Economics, edited by R. Gibbons and J. Roberts. Princeton: Princeton University Press. 

Jia, Y., L. V. Lent, and Y. Zeng. 2014. Masculinity, Testosterone, and Financial 

Misreporting. Journal of Accounting Research 52 (5):1195-1246. 

Kuhnen, C. M., and A. Niessen. 2012. Public opinion and executive compensation. 

Management Science 58 (7):1249-1272. 

Lazear, E. P. 1989. Pay Equality and Industrial Politics. Journal of Political Economy 97 

(3):561-580. 

Lazear, E. P., and S. Rosen. 1981. Rank-Order Tournaments as Optimum Labor Contracts. 

Journal of Political Economy 89 (5):841-864. 

Main, B. G. M., C. A. O'Reilly, and J. Wade. 1993. Top executive pay: Tournament or 

teamwork? Journal of Labor Economics 11 (4):606-628. 



39 

 

Malmendier, U., and G. Tate. 2005. CEO Overconfidence and Corporate Investment. The 

Journal of Finance 60 (6):2661-2700. 

Malmendier, U. 2009. Superstar CEOs. The Quarterly Journal of Economics 124 (4):1593-

1638. 

Nembhard, I. M., and A. C. Edmondson. 2006. Making it safe: The effects of leader 

inclusiveness and professional status on psychological safety and improvement efforts in 

health care teams. Journal of Organizational Behavior 27 (7):941-966. 

Pizzini, M. 2010. Group-based compensation in professional service firms: An empirical 

analysis of medical group practices. The Accounting Review 85 (1):343-380. 

Rajan, M. V., and S. Reichelstein. 2006. Subjective performance indicators and discretionary 

bonus pools. Journal of Accounting Research 44 (3):585-618. 

Ramanujam, R., and D. M. Rousseau. 2006. The challenges are organizational not just 

clinical. Journal of Organizational Behavior 27 (7):811-827. 

Roberts, J. 2010. Designing incentives in organizations. Journal of Institutional Economics 6 

(1):125-132. 

Scott, W. R. 1982. Managing professional work: three models of control for health 

organizations. Health Services Research 17 (3):213-240. 

 

  



40 

 

Appendix 1: Definitions of Ability Indicators 

Factors of Ability 

 

Variable Description 

Prestige Membership The number of memberships of medical 

professional associations, which is shown on 

the hospital’s website 

Prizes The number of prizes, which is shown on the 

hospital’s website 

Star Dummy variable, 1 if the hospital’s website 

indicates the individual is a star 

Education Edu_level Education level, ranges from doctoral degree 

(100) to high school diploma (60).
22

 The larger 

value means higher education level. 

Edu_ranking Based on the top 100 medical schools in China, 

the indicator ranges from 0 to 100. 100 

represents the best medical school. Any 

medical school not listed in the top 100 

medical schools is coded 0. The larger value 

means higher ranking of the school.  

Experience Tenure The number of years employed at the hospital 

Age 

 

The individual’s age 

 

                                                 
22

 Those employees with high school diplomas work in medical support departments and have special skills in 

operating the equipment and analyzing the images. 
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Appendix 2: Ability Composition 

Figure 1 

Conceptual Framework of Ability Composition

Ability_Gap

A. Head_Ability

B. Sub_Ability

a1. Head_Prestige

a2. Head_Experience

a3. Head_Education

b1. Sub_Prestige

b2. Sub_Experience

b3. Sub_Education

  

Variable Definitions: 

Ability_Gap 

 

=Head_Ability-Sub_Ability 

=A-B 

Head_Ability (A) =the department head’s aggregate ability 

=Head_Prestige+Head_Experience+Head_Education 

=a1+a2+a3 

Sub_Ability (B) =the subordinates’ aggregate ability 

=Sub_Prestige +Sub_Experience +Sub_Education 

=b1+b2+b3 

Ability_Gap_Prestige 

 

=the department head’s relative ability on Prestige factor 

=Head_Prestige-Sub_Prestige 

=a1-b1 

Ability_Gap_Experience 

 

=the department head’s relative ability on Experience factor 

=Head_Experience-Sub_Experience 

=a2-b2 

Ability_Gap_Education  

 

=the department head’s relative ability on Education factor 

=Head_Education-Sub_Education 

=a3-b3 
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Appendix 3: Variable Descriptions 

Variable Description 

Dep_Profit =the current departmental profit 
Dep_Revenue =the department monthly revenue 

Dep_Bonus_Pool 
 

=the department bonus based on department monthly 
performance 

=sum of the all individuals’ bonus in the department 
Dep_Sum_Salary =sum of the all individuals’ salary in the department 

Paid_Bonus_Slice =the ratio of each individual’s bonus to the sum of all 
individuals’ bonus in the department  

Salary_Slice =the ratio of each individual’s salary to the sum of all 
individuals’ salary in the same department 

Abnm_Bonus_Slice =Abnormal bonus slice=Paid_Bonus_Slice-Salary_Slice 
Head_Dis =the head’s abnormal bonus slice, which is the 

difference between the head’s actual bonus slice and 
her salary slice 

Sub_Dis =the standard deviation of subordinates’ abnormal bonus 
slice 

Head_Prestige =the department head’s factor score on Prestige factor 

Head_Experience =the department head’s factor score on Experience factor 

Head_Education =the department head’s factor score on Education factor 

Sub_Prestige =the subordinates’ factor score on Prestige factor 

Sub _Experience =the subordinates’ factor score on Experience factor 

Sub _Education =the subordinates’ factor score on Education factor 

Ability_Gap_Prestige =the department head’s relative ability on Prestige factor 

Ability_Gap_Experience =the department head’s relative ability on Experience 
factor 

Ability_Gap_Education =the department head’s relative ability on Prestige factor  

Head_Ability =the department head’s aggregate ability  

Sub_Ability =the subordinates’ aggregate ability  

Ability_Gap =the department head’s aggregate ability relative to the 
subordinates 

High_Ability =Dummy variable, 1 if the Ability_Gap is larger than the 
median; other wise 0 

Dep_Size = the total number of subordinates including physicians 
and nurses 

N_physician =the number of physicians 

N_nurse =the number of nurses 

Physician_ratio =N_physician/Dep_Size 

Dep_Medicine =Dummy variable, 1 if the department is a medical 
department (such as Pediatrics); otherwise 0 

Dep_Surgery =Dummy variable, 1 if the department is a surgical 
department (such as Cardiovascular surgery); otherwise 
0 
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Table 1 Summary Statistics on Variables at the Department Level  

Variable Mean Std. Dev. Minimum Median Maximum 

Dep_Profit* 396,520 392,169 −1,790,577 302,512 3,442,268 

Dep_Revenue* 1,802,587 1,274,811 37,967 1,555,671 7,576,272 

Dep_Bonus_Pool* 116,697 89,448 1,205 91,949 681,808 

Dep_Sum_Salary* 46,060 27,749 5,124 39,650 183,489 

Head_Abnm  4.85 5.84 −22.06 3.59 24.51 

Sub_Abnm  2.02 1.72 0.31 1.57 16.92 

Dep_Size 15.58 9.43 2 13 41 

N_physician 7.33 4.04 2 7 22 

N_nurse 8.25 6.74 0 7 27 
*The values of Dep_Profit, Dep_Revenue, Dep_Bonus_Pool, and Dep_Sum_Salary have been rescaled because 

of confidentiality. The monetary unit is RMB (￥). 

 

Variable Definitions 

Dep_Profit =the departmental profit, which is the basis for bonus pool calculation 

Dep_Revenue =the department monthly revenue 

Dep_Bonus_Pool 

 

=the department bonus based on department monthly performance 

=the sum of the all individuals’ bonus in the department 

Dep_Sum_Salary =the sum of the all individuals’ salaries in the department 

Head_Abnms =the head’s discretionary bonus slice 

Sub_Abnm =the standard deviation of the subordinates’ discretionary bonus slice 

Dep_Size =the total number of subordinates including physicians and nurses 

N_physician =the number of physicians 

N_nurse =the number of nurses 
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Table 2 Summary Statistics on Ability Indicators (Physician Sample) 

Panel A: Correlation among Ability Indicators 

  Membership Prize Star Edu_level Edu_ranking Tenure Age 

Membership 1             

                

Prize 0.61 1.00           

  (0.00)             

Star 0.63 0.79 1.00         

  (0.00) (0.00)           

Edu_level 0.04 0.04 0.08 1.00       

  (0.00) (0.00) (0.00)         

Edu_ranking 0.11 0.10 0.13 0.52 1.00     

  (0.00) (0.00) (0.00) (0.00)       

Tenure 0.16 0.14 0.10 −0.33 −0.27 1.00   

  (0.00) (0.00) (0.00) (0.00) (0.00)     

Age 0.18 0.17 0.13 −0.28 −0.21 0.94 1.00 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)   

P-values are in parentheses. 

 

Panel B: Summary Statistics on Ability Measure (Factor Score) (N=1,422) 

Variable Mean Std. Dev. Minimum Median Maximum 

a1 Head_Prestige 1.51 2.15 −0.28 0.68 5.80 

a2 Head_Experience 0.65 0.54 −0.41 0.60 2.02 

a3 Head_Education 0.16 0.81 −1.96 0.55 1.98 

A Head_Ability 2.32 2.52 −1.58 1.60 8.52 

b1 Sub_Prestige −0.08 0.43 −0.26 −0.24 1.48 

b2 Sub_Experience 1.02 0.75 −1.15 1.09 2.37 

b3 Sub_Education 1.23 0.89 −1.96 0.88 3.21 

B Sub_Ability 2.17 1.20 −1.58 2.35 4.64 

a1-b1 Ability_Gap_Prestige 1.59 2.07 −0.94 0.01 6.04 

a2-b2 Ability_Gap_Experience −0.37 0.79 −2.17 −0.32 1.22 

a3-b3 Ability_Gap_Education −1.07 1.09 −2.70 −1.12 2.33 

A- B Ability_Gap 0.15 2.16 −3.08 −0.59 5.83 
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Table 3 Bonus and Bonus Slice 

Panel A: Head Sample (N=1,422) 

Variable Mean Std. Dev. Minimum Median Maximum 

Salary* (￥) 5,345 1,637 2,420 5,421 9,389 

Paid_Bonus* (￥) 17,426 7,878 294 16,343 63,910 

Paid_Bonus_Slice (%)  21.09 14.08 3.72 17.45 77.62 

Salary_Slice (%)  16.24 10.61 2.88 13.34 54.88 

Abnm_Bonus_Slice (%) 4.85 5.84 −22.06 3.59 24.51 
*The values of Salary and Paid_Bonus have been rescaled because of confidentiality.  

Panel B: Subordinate Sample (Physicians and Nurses) (N=21,020) 

Variable Mean Std. Dev. Minimum Median Maximum 

Salary* (￥) 2,786 577 223 2,704 6,996 

Paid_Bonus* (￥) 6,802 3,538 0 6,246 42,859 

Paid_Bonus_Slice (%)  5.65 4.66 0.00 4.35 64.50 

Salary_Slice (%) 5.98 5.01 0.17 4.52 52.26 

Abnm_Bonus_Slice (%) −0.33 2.13 −25.71 −0.25 23.53 
*The numbers of Salary and Paid_Bonus have been rescaled because of confidentiality.  

Panel C: Descriptive Statistics of Differences between High and Low Ability Sample 

Variable High-Ability  

(Ability_Gap>median) 

Low-Ability 

(Ability_Gap<median) 

t-test 

Mean Std. Dev. Mean Std. Dev. Diff. in Mean 

Dep_Profit* 478,897 420,698 313,211 341,671 165,685 *** 

Dep_Revenue* 2,142,829 1,444,308 1,458,494 962,047 684,335 *** 

Head_Abnm  2.84 5.51 6.88 5.46 −4.04 *** 

Sub_Abnm  1.67 1.20 2.39 2.09 −0.72 *** 

Dep_Size 16.75 8.98 14.39 9.73 2.36 *** 

N_physician 7.98 4.64 6.67 3.20 1.30 *** 

N_nurse 8.77 6.43 7.72 7.01 1.05 *** 

*The values of Dep_Profit, and Dep_Revenue have been rescaled because of confidentiality. The monetary unit 

is RMB (￥). *,**,*** Indicate statistical significance at the 10 percent, 5 percent and 1 percent levels, 

respectively. 

 

Variable definitions: See Appendix 3. 
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Table 4 Pearson Correlation Table (N=1,422) 
  (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) 

(a)Dep_Profit 1                                    

                                       

(b)Dep_Revenue 0.72 1                                  

  (0.00)                                    

(c)Dep_Bonus_Pool 0.78 0.75 1                                

  (0.00) (0.00)                                  

(d)Paid_Bonus 0.60 0.47 0.63 1                  

 (0.00) (0.00) (0.00)                    

(e)Salary 0.29 0.36 0.28 0.24 1                

 (0.00) (0.00) (0.00) (0.00)                  

(f)Dep_Size 0.57 0.65 0.82 0.20 0.31 1                            

  (0.00) (0.00) (0.00) (0.00) (0.00)                              

(g)N_physician 0.62 0.50 0.67 0.19 0.27 0.79 1                          

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)                            

(h)N_nurse 0.44 0.60 0.74 0.17 0.27 0.93 0.50 1                        

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)                          

(i)Paid_Bonus_Slice −0.41 −0.57 −0.57 −0.06 −0.37 −0.76 −0.63 −0.68 1                      

  (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00)                        

(j)Head_Abnm −0.22 −0.34 −0.30 0.14 −0.65 −0.48 −0.42 −0.42 0.73 1                    

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)                      

(k)Sub_Abnm −0.36 −0.38 −0.40 −0.10 −0.28 −0.52 −0.42 −0.47 0.50 0.31 1                 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)                   

(l)Head_Prestige 0.30 0.28 0.21 0.25 0.52 0.15 0.31 0.02 −0.18 −0.37 −0.19 1               

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.37) (0.00) (0.00) (0.00)                 

(m)Head_Experience 0.00 −0.04 −0.04 0.05 0.16 −0.07 0.01 −0.10 0.00 −0.07 0.07 0.05 1             

  ( 0.85 ) (0.12) (0.13) (0.08) (0.00) (0.01) (0.66) (0.00) (0.88) (0.01) (0.01) (0.04)               

(n)Head_Education 0.05 0.17 0.02 0.09 0.40 0.07 −0.09 0.15 −0.22 −0.25 −0.38 0.23 −0.19 1           

  (0.05) (0.00) (0.38) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)             

(o)Sub_Prestige −0.14 −0.24 −0.17 −0.01 0.09 −0.18 −0.12 −0.17 0.07 −0.07 0.02 0.29 0.44 −0.01 1          

  (0.00) (0.00) (0.00) (0.66) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.48) (0.00) (0.00) (0.85)            

(p)Sub_Experience 0.23 0.15 0.27 0.16 0.05 0.22 0.32 0.12 −0.24 −0.08 −0.18 0.22 0.28 0.03 0.21 1      

  (0.00) (0.00) (0.00) (0.00) (0.09) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.20) (0.00)       

(q)Sub_Education 0.35 0.43 0.36 0.27 0.24 0.37 0.33 0.33 −0.38 −0.20 −0.28 0.33 −0.15 0.18 −0.09 −0.13 1    

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)      

(r)Head_Ability 0.27 0.29 0.18 0.25 0.61 0.14 0.24 0.05 −0.22 −0.41 −0.27 0.94 0.20 0.48 0.34 0.26 0.30 1   

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)     

(s)Sub_Ability 0.36 0.33 0.38 0.30 0.24 0.35 0.40 0.25 −0.41 −0.23 −0.32 0.48 0.22 0.16 0.42 0.60 0.63 0.51 1  

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)    

(t)Ability_Gap 0.12 0.15 −0.00 0.13 0.58 −0.04 0.06 −0.09 −0.03 −0.36 −0.14 0.83 0.11 0.47 0.16 −0.03 0.00 0.88 0.04 1 

 (0.00) (0.00) (0.99) (0.00) (0.00) (0.16) (0.04) (0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.22) (0.85) (0.00) (0.12)  
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Table 5 Regressions of Two Types of Abnormal Bonus on Ability 

Panel A: Regression of the Head’s Abnormal Bonus on Ability  
Head_Abnmjt=α0 + α1 Abilityjt+ α2Dep_Profitjt+ α3N_physicianjt+ α4 N_nursejt 

                                  + α5 Dep_Medicinej+ α6 Dep_Surgeryj + εjt                                                                      (4)                                             
Robust standard error is clustered at the department level and reported in parenthesis. We construct the subordinates’ 

ability by taking the maximum score on each factor among the subordinates. *,**,*** Indicate statistical 

significance at the 10 percent, 5 percent, and 1 percent levels, respectively.   

 Head_Abnm Head_Abnm Head_Abnm Head_Abnm 
 (1) (2) (3) (4) 

Head_Ability -1.102***    

 (0.218)    

Sub_ Ability  0.850*    

 (0.459)    

Head_Prestige  -1.052***   

  (0.249)   

Head_Experience  -2.828***   

  (0.999)   

Head_Education  -1.103   

  (0.803)   

Sub_Prestige  0.527   

  (1.080)   

Sub_Experience  1.600*   

  (0.892)   

Sub_Education  1.046   

  (0.740)   

Ability_Gap_Prestige   -1.092***  

   (0.233)  

Ability_Gap_Experience   -2.073***  

   (0.748)  

Ability_Gap_Education   -1.153**  

   (0.514)  

Ability_Gap    -1.115*** 

    (0.223) 

Dep_Profit 2.604 0.810 1.301 2.202 

 (2.442) (2.162) (2.206) (2.399) 

Dep_Size 1.610 0.876 -0.124 1.177 

 (4.150) (3.772) (3.954) (3.840) 

Physician_ratio -1.996 -2.718 -2.838 -2.280 

 (2.712) (3.065) (2.387) (2.457) 

Dep_Medicine -2.159 -3.506 -3.670* -2.515 

 (2.311) (2.457) (2.044) (2.074) 

Dep_Surgery 2.604 0.810 1.301 2.202 

 (2.442) (2.162) (2.206) (2.399) 

Year fixed effects Included Included Included  Included  

Observations 1,422 1,422 1,422 1,422 

Adjusted R
2 

0.422 0.443 0.430 0.420 
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Table 5 Regressions of Two Types of Abnormal Bonus on Ability (continued) 

Panel B: Regression of Dispersion of Subordinates’ Abnormal Bonus on Ability 

Sub_Abnmjt= β0 + β1 Abilityjt+ β2 Dep_Profitjt+ β3 N_physicianjt  + β4 N_nursejt   

                    + β5 Dep_Medicinej + β6 Dep_Surgeryj + εjt                                              (5) 
Robust standard error is clustered at the department level and reported in parenthesis. We construct the subordinates’ 

ability by taking the maximum score on each factor among the subordinates. *,**,*** Indicate statistical 

significance at the 10 percent, 5 percent, and 1 percent levels, respectively. 

  Sub_Abnm Sub_Abnm Sub_Abnm Sub_Abnm 
 (1) (2) (3) (4) 

Head_Ability -0.198***    

 (0.070)    

Sub_ Ability  0.061    

 (0.077)    

Head_Prestige  -0.052   

  (0.059)   

Head_Experience  -0.206   

  (0.241)   

Head_Education  -0.739***   

  (0.187)   

Sub_Prestige  -0.187   

  (0.325)   

Sub_Experience  0.017   

  (0.129)   

Sub_Education  0.037   

  (0.117)   

Ability_Gap_Prestige   -0.164**  

   (0.071)  

Ability_Gap_Experience   -0.120  

   (0.149)  

Ability_Gap_Education   -0.376***  

   (0.132)  

Ability_Gap    (0.0775) 

    (0.099) 

Dep_Profit −0.063 0.019 −0.269 −0.143 

 (0.320) (0.330) (0.307) (0.321) 

Dep_Size -1.342** -1.549*** -1.838*** -1.558** 

 (0.549) (0.447) (0.636) (0.613) 

Physician_ratio -0.088*** -0.097*** -0.097*** -0.093*** 

 (0.014) (0.014) (0.018) (0.017) 

Dep_Medicine -1.786 -2.042** -1.995 -2.024 

 (1.137) (0.909) (1.232) (1.268) 

Dep_Surgery -2.535** -1.848** -2.541** -2.674** 

 (1.140) (0.797) (1.216) (1.261) 

Year fixed effects Included Included Included Included 

Observations 1,375 1,375 1,375 1,375 

Adjusted R
2
 0.428 0.478 0.436 0.421 
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Table 6 Regression of Performance on the Heads’ Ability  

Panel A: Profit and Ability 

Performancejt=γ 0+ γ1Abilityjt +γ2Dep_Sizejt+ γ3 Physician_ratiojt+ γ4 Dep_Medicinej   

                                   + γ5 Dep_Surgeryj + εjt                                                                     (6) 
Robust standard error is clustered at the department level and reported in parenthesis. We construct the subordinates’ 

ability by taking the maximum score on each factor among the subordinates. *,**,*** Indicate statistical 

significance at the 10 percent, 5 percent and 1 percent levels, respectively.  

  Dep_Profit Dep_Profit Dep_Profit 

 (1) (2) (3) 

Head_Ability 0.007   

 (0.005)   

Sub_Ability 0.011   

 (0.013)   

Ability_Gap  0.008  

  (0.005)  

High_Ability   0.046* 

   (0.023) 

Dep_Size 0.011*** 0.012*** 0.011*** 

 (0.003) (0.002) (0.002) 

Physician_ratio 0.056 0.091 0.060 

 (0.054) (0.054) (0.054) 

Dep_Medicine -0.082* -0.062 -0.085 

 (0.046) (0.052) (0.053) 

Dep_Surgery -0.073 -0.049 -0.058 

 (0.045) (0.047) (0.047) 

Year fixed effects Included Included  Included  

Observations 1,422 1,422 1,422 

Adjusted R
2
 0.522 0.508 0.515 
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Table 6 Regression of Performance on the Heads’ Ability (continued) 

Panel B: Revenue and Ability 

Performancejt=γ 0+ γ1Abilityjt +γ2Dep_Sizejt+ γ3 Physician_ratiojt+ γ4 Dep_Medicinej   

                                   + γ5 Dep_Surgeryj + εjt                                                                     (6) 
Robust standard error is clustered at the department level and reported in parenthesis. We construct the subordinates’ 

ability by taking the maximum score on each factor among the subordinates. *,**,*** Indicate statistical 

significance at the 10 percent, 5 percent and 1 percent levels, respectively.  

  Dep_Revenue Dep_Revenue Dep_Revenue 
 (1) (2) (3) 

Head_Ability 0.034   

 (0.023)   

Sub_Ability 0.016   

 (0.045)   

Ability_Gap  0.038  

  (0.023)  

High_Ability   0.187* 

   (0.101) 

Dep_Size 0.031*** 0.034*** 0.031*** 

 (0.006) (0.005) (0.006) 

Physician_ratio -0.366 -0.275 -0.404* 

 (0.227) (0.183) (0.221) 

Dep_Medicine -0.044 0.007 -0.092 

 (0.111) (0.110) (0.140) 

Dep_Surgery -0.166 -0.100 -0.146 

 (0.103) (0.091) (0.091) 

Year fixed effects Included Included  Included  

Observations 1,422 1,422 1,422 

Adjusted R
2
 0.599 0.589 0.596 
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Chapter 3 

Does Workforce Homogeneity Matter for Employee Learning and Effort? 
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Chapter 3: Does Workforce Homogeneity Matter for Employee Learning and 

Effort?23 

 

3.1. Introduction 

 We investigate whether the homogeneity of a given firm’s workforce is associated with 

employee learning and their provision of effort. A workforce is more homogenous when it is 

made up of employees who are more similar on specific characteristics. Firms face a tradeoff 

between the costs and benefits of workforce homogeneity. On the one hand, a more homogenous 

workforce facilitates communication among employees, ultimately allowing workers to learn 

from each other and improve mutual monitoring. On the other hand, when employees are more 

alike, they might find it easier to collude against their bosses, hide information and conspire to 

reduce effort. 

We expect the effect of workforce homogeneity to depend on the unsolved control 

problems of incentive contracts. Firms use incentive contracts to mitigate the most salient 

conflicts-of-interest between employees and their principal. Even well-designed incentive 

contracts cannot address all agency problems, however, and we focus our attention on those 

which remain unsolved. We examine the effect of workforce homogeneity in a setting that offers 

different types of incentive contracts to workers employed in either of two production 

environments. These two production environments are at opposite ends of the spectrum, namely 

a production line with individual workstations and team production in which group members 

perform highly-related tasks. Consequently, we study the influence of incentive contracts and 

production environment jointly.   

                                                 
23

 This chapter is co-authored with Laurence van Lent and Anne Wu. 
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 As Baron and Kreps (2013) observe, firms may foster similarity among their employees 

for many reasons related to psychological or sociological complementarities. Consequently, 

employees more easily share information and find opportunities to work together when the 

workforce is more homogenous. Thus, when their jobs require significant amounts of 

cooperative effort or employees are in frequent contact and need to share abundant information, 

a more homogenous workforce reduces communication costs and facilitates cooperation (Prat 

2002; Ichino and Maggi 2000). By sharing information, employees increase the scope for 

learning from each other’s experiences. In addition, the more frequent interactions between 

coworkers in a homogenous workforce are likely to strengthen mutual monitoring.  

Workforce homogeneity, however, raises its own set of control problems. When 

employees are more similar, the probability increases that they collude and “sabotage” the firm’s 

monitoring systems (Towry 2003). Similarity also reduces the potential to learn from each 

other’s differences, potentially hampering innovation. We argue that whether the costs or the 

benefits of workforce homogeneity will dominate depends on the unsolved control problem in 

each production environment.  

We study the effects of workforce homogeneity using proprietary data from a 

manufacturing plant (referred to as PCM), which is located in a Special Economic Zone in 

China. This plant offers three features that we exploit in our tests. First, the PCM plant is 

structured in two different production environments (corresponding to different parts of the 

manufacturing process). In the first setting, workers are arranged in a production line. Each work 

station in the line performs a relatively stand-alone activity (with inventory buffers between 

stations to ensure that workers are isolated from upstream disruptions). In the production line, 

quality is an important and measured dimension of output. Downstream workers inspect the 
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quality of the work done by earlier work stations. Consistent with the concern for quality in this 

setting, employees are subject to an individual incentive contract, in which each worker’s bonus 

increases in individual production efficiency, but the bonus is reduced when quality is poor. 

When workers share their information with others in the production line, employee learning 

about quality improves, but sharing information also exposes coworkers to bonus penalties. By 

colluding with each other, employees can prevent quality information from being shared. 

In the second setting, the work is organized in groups in which employees perform highly 

related tasks. Collaboration in the group is important for achieving desired outcomes and group 

members can learn about improving efficiency from the experience of working together with 

coworkers. In this setting, employees are subject to a group incentive contract, in which each 

member’s bonus increases in group-level efficiency. Group incentive contracts are vulnerable to 

individual team members free-riding on the efforts of others. Mutual monitoring among team 

members, however, reduces the scope for free-riding. Group members can, however, also collude 

to game the system, for example by reducing effort on those aspect of performance that are not 

measured in the incentive system. 

Second, firms in Special Economic Zones rely strongly on migrant workers, who tend to 

come from rural areas with few opportunities for non-agricultural employment and with limited 

schooling facilities. The jobs offered are usually for unskilled work, which matches the 

background of most migrants. Prospective workers come from across mainland China and thus 

have different hometowns; i.e. different places where they were born and raised. Regional 

differences are strong in China and extend over such important dimensions as language, food, 

economic development, cultural preferences, and shared history. Thus, the hometown of 
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employees captures many of those worker attributes that we a priori expect to influence the 

degree of workforce homogeneity.  

 Third, competition for labor is fierce with demand for unskilled labor exceeding supply in 

the local factor markets. Firms, including PCM, employ multiple strategies to recruit new 

personnel. One important channel is referrals. Current workers frequently encourage job 

candidates to apply for a job at PCM. The literature on recruitment sources has documented that 

current employees seek out in particular those candidates who they believe will be a good fit 

with the firm (Weller et al. 2009). In addition, we rely on prior studies which show that 

socialization processes after the new employee has been recruited are more intense as 

supervisors and peers tend to pay more attention to referred employees (Zottoli and Wanous 

2000). Socialization helps new employees to understand what is defined as expected behavior in 

the firm. In this sense, more intense socialization yields a more homogenous workforce. We thus 

use the recruitment channel (by referral or not) as an observable indicator for otherwise difficult 

to observe dimensions in which employees might be similar. A higher proportion of referred 

workers, then, increase workforce homogeneity.  

 Our setting thus provides us not only with two very different production environments, 

but also with two plausible empirical proxies to capture workforce homogeneity (namely, the 

hometown background of employees and the proportion of referred workers). To investigate the 

effect of workforce homogeneity on effort and learning in the two production environments, we 

split our sample into two samples corresponding to each setting and examine our predictions 

about workforce homogeneity separately within each sample. Throughout the study, we refer to 

the setting with group production and group-based incentive contracts as the Group environment 
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sample (GROUP), whereas the Production line sample (LINE) comprises those employees 

working on independent activities under an individual incentive contract.  

        In the LINE sample, the unsolved control problem is the potential for coworkers to collude 

by not sharing information about quality. Information sharing, however, is a necessary ingredient 

for learning. We therefore examine how workforce homogeneity influences two types of 

learning, namely about more efficient work procedures and about quality. In the GROUP sample, 

the unsolved control problem is potential free riding on the efforts of team members. A more 

homogenous workforce is expected to improve mutual monitoring. Therefore, in this sample, we 

examine the effect of workforce homogeneity on effort choice. We also consider whether 

workforce homogeneity affects learning about efficiency. Information sharing is not an 

unresolved control problem in this sample, and homogeneity should improve the communication 

among group members necessary for learning. However, homogeneity also reduces the scope for 

learning from others in the group, simply because when group members have less diverse 

experiences from which they can learn. In GROUP, quality is not measured and therefore we 

cannot analyze how workforce homogeneity affects learning about quality. 

 Our results are broadly consistent with the hypothesis that workforce homogeneity is 

associated with employee learning, but we do not find evidence on the association between 

workforce homogeneity and the provision of effort. In the LINE sample, we find that workforce 

homogeneity (when measured using referral ratio) decreases learning about quality. In the 

GROUP sample, we find that a more homogenous workforce improves group learning about 

efficiency. We interpret these findings as demonstrating that studying the effects of workforce 

homogeneity requires finely grained data on the structural arrangements in the firm. It turns out 

to matter how the firm has organized the work (in teams or in a sequence of independent 
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workstations with the associated incentive contracts). The specifics of the production 

environment might reverse the sign on the effect of workforce homogeneity on learning.  

 Our study extends the accounting literature in three ways. First, we document that 

workforce homogeneity has different learning consequences depending on the organization 

design of the firm. This finding complements Campbell (2012) who shows that firms can resolve 

control problems by selecting employees whose preferences are aligned with those of the firm. 

Building on this important insight, we document that a more homogenous workforce can have 

both positive and negative effects on firm performance depending on the specifics of the 

production environment.  

 Second, we highlight that workforce homogeneity does not only matter in determining 

the employee’s effort, but also influence their learning. We document that homogeneity can both 

improve the communication and information exchange that is needed for learning as well as that 

it can harm learning (arguably) by enabling collusion with coworkers.  

 Third, our study provides insights relating to earlier experimental evidence on monitoring 

in teamwork environments (Towry 2003; Zhang 2008). This earlier work focuses on “team 

identity”, i.e., a psychological attachment of team members to the team, and investigates the 

effectiveness of monitoring systems while manipulating team identity. We provide an economic 

perspective and argue that when team members are more homogenous, communication within 

the group improves and, in turn, so does employee learning. A homogenous workforce increases 

the likelihood that a team identity arises. At the same time, our findings show that workforce 

homogeneity might be less beneficial when employees are not working in a team but in 

individual workstations along a production line.   
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3.2. Hypothesis Development 

3.2.1. The Effect of Homogeneity on Effort and Learning 

 Firms have to tradeoff the costs and benefits of workforce homogeneity. Baron and Kreps 

(2013) suggest that most firms are vexed by the question of how much uniformity among 

employees to impose across subunits and locales. The costs of imposing homogeneity on the 

workforce include those associated with not reflecting in the control systems the potentially 

varied tasks in which employees are involved. Campbell (2012) is one of the first studies to 

provide evidence on the potential benefits of homogeneity, namely that firms can reduce control 

problems by selecting employees who share the objectives of the firm. To the extent that firms 

are successful in this pursuit, the resulting workforce will become more homogenous—at least 

on the dimensions of the beliefs, values, and objectives the employees share (Van den Steen 

2010). Ultimately, as the objectives of firm and workforce overlap more, the conflict of interest 

between bosses and subordinates abates and the firm needs to rely less on contractual solutions 

(such as, monitoring systems, performance measures, and incentives) to induce workers to 

provide effort on the job. Homogeneity may also help to establish a social norm or identity 

(Akerlof and Kranton 2005; Akerlof and Kranton 2008), which in turn can be beneficial to 

inducing employees to work (Abernethy et al. 2014).   

Homogeneity of the workforce does not only affect effort through the reduction of 

within-firm agency problems. A more homogenous workforce is able to coordinate activities 

more efficiently, raising the scope for cooperation among coworkers. Homogeneity provides the 

common ground necessary for the exchange of ideas and information as well as for mutual 

support activities that strengthen the robustness of collaborative initiatives. 
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 Workforce homogeneity, however, is not just expected to affect employee effort. 

Learning as well is likely a function of homogeneity. Employees can accumulate knowledge 

while performing their duties via both individual experience and the experience of working with 

others (Reagans et al. 2005). Workforce homogeneity is expected to matter foremost in the 

learning by working with others. Again, language is an important mechanism in this type of 

learning. A common language helps to improve communication efficiency (easing the task of 

learning to coordinate with coworkers) and facilitates the sharing of knowledge between 

coworkers. In a more homogenous workforce, workers will be better able to understand subtle 

non-verbal codes, gestures, and facial expressions. Together, this improved understanding 

smoothens the interaction between coworkers necessary for learning.  

Learning, however, also depends on coworkers to have different knowledge and/or 

experience. Diversity in talents, backgrounds, and skills fosters the kind of experimentation 

learning theory suggests to be crucial for generating new knowledge (Hayes et al. 2006; 

Vanhaverbeke et al. 2006). In balance, which of these effects of workforce homogeneity on 

learning dominates, will depend on the specifics of the production environment. If workers 

conduct relatively routine, well-defined tasks in a highly standardized setting then homogeneity 

is likely to improve learning (given its beneficial effects on coordination and mutual 

understanding). In an environment that is more uncertain, featuring ambiguity and non-routine 

tasks that require combining knowledge and information from many different sources to create 

new knowledge, homogeneity plausibly harms learning.  

The improved opportunities for collusion present another significant potential costs to 

having a more homogenous workforce. Economic theory clarifies that collusion can only be a 

viable equilibrium strategy if agents can enter into long-term relations that are self-enforcing 
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(Mookherjee 2013) Collusion is more probable among agents who for some reason believe that 

they can rely on the counterparty’s promises to act together against the principal. Arguably, these 

beliefs will be stronger in case of coworkers who understand better their mutual backgrounds and 

(language) codes.  

In sum, workforce homogeneity can reduce control problems, increase effort provision, 

and support employee learning. At the same time, homogeneity makes it easier for workers to 

collude against the principal and reduces the opportunity for workers to learn from each other’s 

differences. In the next section, we attempt to predict which of these forces dominates in the two 

production environment and incentive contract arrangements available within our setting. 

3.2.2. Homogeneity in the LINE Sample 

The production tasks for each worker on the line are simple and require only routine 

actions. The key dimensions of worker output (namely their efficiency and quality) are easy to 

measure. Individual incentive contracts are high-powered and penalize workers if they increase 

efficiency at the expense of quality. Thus, in the context of PCM’s line production, we do not 

expect that eliciting optimal effort on the job is a salient contracting problem.  

At the same time, however, in the line production setting, individual productivity 

improvements mainly come from the worker’s own experience on the job. Indeed, as all work 

stations perform their own unique part of the production process, co-workers do not have much 

relevant information about how to improve the efficiency of those tasks that are not their own. 

Thus, we do not expect learning about efficiency to be affected by the workforce homogeneity of 

the production line.  

That said, in line production, “downstream” work stations receive the output of 

“upstream” workers. Thus, quality problems occurring earlier in the production process can be 
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observed at later stages in the production line. Workers, in this fashion, accumulate timely, 

private information about upstream quality, which could be used to improve the manufacturing 

process. For this benefit to materialize, downstream workers need to report their private quality 

information to quality inspectors or shift supervisors.  

The incentive contract in the LINE sample specifies a penalty for quality defects. 

Reporting quality problems to inspectors imposes penalties on the workers who are responsible 

for poor quality. In production lines with high workforce homogeneity, the opportunity for 

workers to collude with each other against supervisors (to withhold the quality information) is 

significant. Without information sharing, learning about quality will be impaired. A more 

homogeneous workforce increases the probability that individuals collude; reporting on poor 

quality reduces the bonus of co-workers, and thus decreases their welfare. By withholding this 

information today, workers count on receiving a reciprocal treatment in the future when their 

own quality might be impaired. What’s more, downstream workers could mask defects or make 

provisionary repairs. This type of behavior is more likely when employees find it easy to 

communicate with each other and coordinate their exploitative actions.  

In addition, private quality information is more likely to be revealed to inspectors and 

supervisors when disputes among co-workers in the line arise. In these cases, bosses have to 

intervene and settle disputes or disagreements. These kinds of frictions between workers disrupt 

the otherwise strong incentives to hide private quality information. Supervisors, in the course of 

the intervention, become more familiar with the details of the production process and obtain 

better insights to potential quality problems. Disputes are more likely to happen when workers 

come from different backgrounds, do not share each other’s dialect or have different views of the 

world. Disputes are also more likely if employees are less successfully socialized by their co-
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workers. When the workforce is more heterogeneous, disputes will be more often resolved in a 

formal way, by involving a supervisor, rather than by informally ironing out any differences.  

Taking these arguments together, our prediction is that workforce homogeneity in a given 

production line impairs the workers’ learning about quality. Workers find it easier to coordinate 

their actions against the firm when they are more similar. They are more likely to prevent the 

leakage of quality information, which in turn will penalize their bonus payments. Learning about 

efficiency, on the other hand, is determined by the workers experience performing his own task 

and is unaffected by the homogeneity of the workforce in the same production line. 

H1a: (LINE setting) Workforce homogeneity is negatively associated with 

learning about quality. 

H1b: (LINE setting) Workforce homogeneity is not associated with learning 

about efficiency. 

3.2.3 Homogeneity in the GROUP Sample 

In the GROUP environment, employees are members of a formal working group, which 

is responsible for completing a distinct part of the production process. To complete the team 

task, employees need to work together and coordinate their individual activities. The 

performance of the group is measured and rewarded at the group-level only. While this joint 

performance measure encourages members to help each other and to “internalize” the spillover 

effects of their actions in the group, it also opens the door to free-riding problems (Baker et al. 

1988). Individual group members bear the full costs when they increase effort, but only receive a 

fraction of the benefits (which decreases in the size of the group). Thus, the individual worker’s 

effort choice is a salient problem in the GROUP sample.  

One consequence of homogeneity is that it reinforces the working of peer pressure. In 

more homogenous groups, peer pressure is likely to be stronger and, in turn, shirking is less 
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prevalent (Kandel and Lazear 1992). Indeed, firms are likely to spend resources on mechanisms 

that enforce group norms that counteract the free riding problem (Waldman 2013). Workforce 

homogeneity may also help to breed altruism in the workplace. Rotemberg (1994) shows that 

when workers are altruistic and the firm uses group incentives, each worker increases effort 

levels because the effect of higher effort on the pay of other workers is internalized. In 

Rotemberg’s model, workers can choose to become altruistic toward specific individuals and it is 

more likely that such happens when team members are more alike (Pedone and Parisi 1997; 

Lewis 1998).   

 Group members improve their productivity not only by becoming more experienced in 

carrying out their own assigned tasks, but also by their interactions with coworkers (Mas and 

Moretti 2009a). In particular, group members are encouraged to share knowledge within the 

group and to learn about coordinating their tasks as measured performance depends on group-

level output. Several studies have pointed out that team homogeneity matters as it improves 

communication among the members and reduces coordination problems (Prat 2002; Hamilton et 

al. 2003; Dahlin et al. 2005).  

On the other hand, there is also evidence that productivity gains are larger when the team 

members are more diverse in skill (Mas and Moretti 2009; Hamilton et al. 2003). Thus, while 

workforce homogeneity is important to foster the socialization processes that facilitate learning 

and provide pressure on group members to keep up with the efforts of their coworkers, it is also 

necessary that workers have different skills or talents.  

 Our prediction about which of these two effects of homogeneity on learning dominates, 

uses the specifics of the research setting. Learning in the PCM setting is much more about 

coordinating activities and becoming more familiar with the work practices of team members, 
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than it is about creating, say, an innovative component of a PC motherboard. Thus, in our setting, 

we expect that the effect of homogeneity on the ease of communication with group members 

dominates. We thus predict that a greater degree of homogeneity at the group-level, reduces free-

riding problems and improves group learning. 

H2a: (Group setting) Workforce homogeneity is positively associated with the 

provision of effort at the group-level. 

H2b: (Group setting) Workforce homogeneity is positively associated with 

learning about efficiency at the group-level. 

3.3. Research Setting, Empirical Measures, and Data 

 The research site for this study is PCM, a passive component manufacturing firm located 

in Shenzhen (in the Guangdong province), a Special Economic Zone on the southern coast of 

China. PCM was established in 2005 and produces components that are used in motherboards of 

personal computers. The production technology is not difficult to replicate and does not require a 

large upfront investment. In other words, the entry barriers to the industry are low and product-

market competition is fierce. At the same time, PCM’s manufacturing process is labor-intensive 

albeit that most employees are low-skilled. Productivity improvements occur through on-the-job 

learning by employees, who accumulate task-specific knowledge.  

3.3.1. Local Labor Market Conditions  

 In China, the workforce consists of a large pool of unskilled labor with relatively low 

productivity (Meng 2012). Workers often leave their regions of origin in the rural areas in 

Western or Central China and migrate to industrial cities (in particular those located in the 

Special Economic Zones). Migration is the key reason for the diversity in background of 

workers.  
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 As more and more firms enter China to benefit from its abundance of (cheap) labor, 

increasingly, personnel has become scarce in some locations. This holds true especially in 

Shenzen. The growing demand for labor in these Special Economic Zones has increased labor 

costs rapidly in the coastal areas. Indeed, in response, some firms are moving their 

manufacturing to western China, closer to those areas where supply is still strong.  

 PCM deals with these tightening conditions on the local labor market by relying on 

various recruitment strategies. Traditional ways to attract labor such as campus visits and the 

posting of vacancies on jobseeker websites are complemented with a policy that uses the current 

workforce to encourage job candidates to apply for a job at PCM. Current PCM workers benefit 

from referring new hires as having more personnel reduces the excessive workloads as well as 

the pressure on current employees to work overtime.  

Employee turnover is high at PCM, which in part is due to the Chinese policy of hukou 

(Meng 2012). Under this policy, individuals have to register in the city where they were born. 

Changing the registered residence (i.e., hukou) is difficult, so it usually remains the individual’s 

official residence. The registered residence recognizes an individual’s entitlements to schooling, 

the right to buy real estate, as well as other social welfare benefits only within the place of 

residence. Thus, individuals tend to be born and raised in the same region, which we label the 

hometown. Effectively, the hukou system constrains labor mobility between urban and rural 

areas. As migrant workers have limited civil rights outside their hometown, they tend to not stay 

long in any other city.  

3.3.2. Measuring Workforce Homogeneity 

 We propose two empirical measures of workforce homogeneity (HMGN). The first, 

hometown homogeneity, exploits the availability of each individual employee’s hukou in the 
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personnel records of the firm. Our second measure, referral ratio, is the fraction of referred 

workers in a group or specific production line.  

Hometown Homogeneity (SAMEHOME) 

 A given individual’s hometown is an official record maintained by the Ministry of Public 

Security that cannot easily be changed. Specifically, the record will not be modified if a person 

lives and works in a province outside their (original) hometown. We rely on this official record 

to measure a worker’s hometown. Figure 1 is a map of China with the dispersion of the 

hometowns (in this case, the home province) of PCM workers. Table 1 provides more detailed 

evidence. 

<Insert Figure 1 and Table 1 here> 

            Over 50 percent of PCM employees originate from three provinces: Guangxi (21 

percent), Hunan (19 percent), and Henan (17 percent). The remainder of the workforce has a 

hometown in one of 16 different provinces. We construct a group-level measure (akin to the 

Herfindahl index of market power) of the degree of hometown homogeneity (SAMEHOME). In 

particular, we measure the size of a “hometown subgroup” in relation to a “group”. In our 

GROUP sample, the group is defined in a straightforward manner as the members of a given 

team that are subject to a common performance measure of group output. However, in the LINE 

sample, we define the set of workers who are employed in the same production line as a “group”.  

Hometown homogeneity (SAMEHOME)= 
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 Sp is the fraction of group members from province p in the group, np represents the 

number of group members from province p, and N equals the total number of group members in 
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the group. SAMEHOME ranges from 1/N, when all group members come from different 

provinces, to 1, when all are from the same province.  

Referral Ratio (RFLratio) 

 We believe that the fraction of workers who join the firm based on a referral by current 

workers also provides a valid measure of workforce homogeneity. This belief is grounded in 

economic theory and in work on socialization processes. Labor markets exhibit substantial two-

sided information asymmetry. Employees have limited information about possible employers 

and employers cannot gain complete information about job applicants (Stigler 1962). By relying 

on current workers to recruit new employees firms are likely to improve the match between 

candidates and the firm and reduce information asymmetry (Fernandez et al. 2000). Prior work 

on recruitment channels shows that current employees are able to provide candidates with the 

kind of insider information about the job that is difficult to obtain otherwise (Pieper 2014; 

Jovanovic 1979). Prospective employees are thus better able to decide whether they will fit the 

firm and get along with their future colleagues. Current workers also have incentives to ensure 

that the job candidates are a good match to the firm, as the applicant’s performance will reflect 

on them. 

            Similar incentives exist post-hire, as the current employee works to ensure that the new 

entrant has the resources and information to do well. Through informal training and mentoring, 

referral hires experience stronger socialization (Granovetter 1973; Louis 1980). Some evidence 

exists that peer pressure is exerted to ensure that new entrants conform to organizational goals 

and to increase the likelihood that they will stay longer with the firm (Kugler 2003). Together 

these matching and socialization mechanisms associated with recruiting new employees through 

referrals are likely to produce a more homogenous workforce.  
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3.3.3. Compensation at PCM 

 PCM’s worker incentive plan comprises a fixed salary and a monthly bonus. Bonuses are 

formula-based, but their computation differs between the two production environments. In the 

LINE sample, the plan awards individual workers a bonus based on their efficiency and the 

defect rate of their work. Specifically, efficiency is computed by comparing the standard hours 

allowed for actual output quantities (Standard Labor Hours) and the actual hours used to 

produce these actual outputs (Actual Labor Hours). The difference between standard and actual 

labor hours is labeled Efficiency Points. Analogously, the Defect Points are computed based on a 

schedule that prescribes the standard rework/repair time for each defect. The individual bonus 

increases with the Efficiency Points and decreases with the Defect Points. Indeed, the formula 

specifies that the bonus equals (Efficiency Points * Bonus Rate) – (Defect Points * Penalty Rate). 

 In the GROUP sample, the plans are based on efficiency only (i.e., there is no penalty for 

defective products). In addition, performance is measured at the group level. Thus, Efficiency 

Points are computed by comparing standard labor hours allowed for the actual group output with 

actual labor hours worked by the group. The group bonus equals Efficiency Points * Bonus Rate. 

3.3.4. Measures of Outcomes  

 We use information from the bonus plans to compute Efficiency and Quality measures of 

output. Specifically, we measure Efficiency as the ratio of standard labor hours allowed for the 

actual level of output (Standard Labor Hours) to the actual labor hours spent on manufacturing 

the actual output quantities (Actual Labor Hours). Using fewer actual hours to produce the same 

amount of actual output improves Efficiency. PCM workers earn a bonus when Efficiency 

exceeds unity; this same value is also used to identify inefficient workers. In the LINE sample, 

Efficiency is defined at the individual level and the measure is superscripted with L; in the 
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GROUP sample, PCM measures Efficiency at the group-level only and we use the superscript G. 

The subscripts i and g correspond to the individual worker and specific group, respectively.  

it

itL

it
or_HoursActual_Lab

abor_HoursStandard_L
Efficiency                                                                         (2.1) 

gt

gtG

gt
or_HoursActual_Lab

abor_HoursStandard_L
Efficiency                                                                       (2.2) 

 PCM refers to the product of Defect Points (in hours) and Penalty Rate as the Defect 

Penalty. This quantity is the basis of PCM’s measure of quality in the LINE sample. Recall that 

PCM only measures quality in these specific parts of the manufacturing process. Importantly, the 

sampling rule to detect quality defects does not vary significantly across products, production 

lines, or work stations. Quality, then, is the ratio of Defect Penalty to Standard Labor Hours. To 

ensure that Quality increases when fewer defects are detected, we multiply this ratio by minus 

one.  
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itL

it
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Quality *1                                                                        (3) 

3.3.5. Measures of Experience and Learning 

 Workers can improve Efficiency as well as Quality by learning from their own experience 

or by learning from the experience of working with others (Reagans et al. 2005; Mas and Moretti 

2009). Individual experience (iTENURE) is measured as the number of months a given worker 

has been employed by the firm. Measuring the experience of working together with others 

(gTENURE) involves somewhat more subtlety. Group members tend to form subgroups along 

the lines of shared (demographic) characteristics within the overall group (Gibson and 

Vermeulen 2003; Lau and Murnighan 2005). At PCM, the worker’s hometown is one of their 

most salient characteristics. We construct our measure of how long group members have been 
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working together based on hometown-subgroups. The key justification for this choice is that 

coordination and communication are much easier within a subgroup than between subgroups; it 

is, however, the exposure to the different expertise of the other subgroup that determines 

learning. Therefore, learning from others will depend on how long members of one subgroup 

have had the opportunity to work together with other subgroups—i.e., it is the overlap between 

the experiences of the subgroups comprising a group that matters. We measure gTENURE by 

first identifying the most experienced worker in each subgroup (the “subgroup representative”). 

We then compute the minimum tenure across these subgroup representatives as this will give us 

a measure of the time that the subgroups have been able to work together.  

We measure learning by assessing how Efficiency and Quality change in relation to these 

two experience measures. 

3.3.6. Data 

 The data used for this study are proprietary and provided by PCM. We obtain data on (1) 

monthly performance for each group (in the GROUP sample) and for each individual (in the 

LINE sample), (2) monthly salary and bonus at the individual level, (3) employee characteristics, 

including tenure, gender, education level, hometown, and the referral status. These data are 

available from 2007 to 2009. We have 1,530 unique employees in the LINE sample; 1,334 of 

these individuals started their employment contract in the sample period (i.e., 2007-09). In the 

GROUP sample, we have data on 340 new employees out of 390 unique individuals.  

 LINE Sample Characteristics 

 Table 2 provides summary statistics on the employees in the LINE sample. The 

proportion of male employees is 0.57. These individuals have enjoyed on average some years of 

high school education (the corresponding mean value on EDUCA is 2.34, or the equivalent of 
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junior high school). The monthly bonus is on average ¥136.71. Bonus payments vary 

considerably, however. The standard deviation is 178.51 and monthly payments range between 

−¥428.13 and ¥1,493.80. Note that bonus payments will be negative whenever the actual labor 

hours spent on a task exceed the standard labor allowed. In addition, PCM imposes a (quality) 

penalty for defective output. The dispersion in bonus payments reflects corresponding 

differences between employees in Efficiency and Quality. Indeed, while mean and median 

Efficiency are about 1.2, some workers complete their task 10 times faster than the standard labor 

hours available. Similarly, some workers are able to complete their job without quality defects 

(corresponding to the maximum value of Quality), while others incur a substantial penalty for 

faulty work. 

<Insert Table 2 here> 

 The summary statistic of tenure is limited to new employees. The maximum tenure 

observed per new employee ranges between 1 and 34 months, with a median of 5 months.
24

 The 

average maximum tenure is longer for those employees who have been referred by coworkers 

(mean=7.1 months) than for those who have been recruited into the firm on their own accord 

(mean=6.05 months). The correlation between Efficiency (Quality) and individual experience 

(i.e., iTENURE) is positive and significant (corr.=0.37, p<0.01 and corr.=0.17, p<0.01, 

respectively). These correlations are consistent with the idea that employees learn to become 

more efficient and to avoid defects over time.  

 Measured separately for each production line, hometown homogeneity is on average 0.23, 

but some groups are completely homogenous (SAMEHOME =1.00). 

GROUP Sample Characteristics 

                                                 
24

 Including all workers in the analysis, this summary statistic has the maximum value 94 months.   
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 Turning to the group production environment, the proportion of women is (1−0.24=) 

0.76. The average level of education is roughly equivalent to junior high school (mean value of 

EDUCA=2.26). The average monthly bonus payment is about ¥118.10, but payments vary 

significantly. The sample minimum (maximum) bonus payment is −¥518.86 (¥473.14). Recall 

that PCM does not measure quality in the group production environment. Negative bonuses, 

therefore, are the result of groups needing longer to complete their tasks than standards allow. 

<Insert Table 3 here> 

As performance is only measured at the group level, we do not have summary statistics 

on Efficiency for the individual group members. Panel C of Table 3, however, reports that group-

level Efficiency ranges between 0.54 and 4.63, and is on average 1.28, suggesting that groups 

tend to complete their activities within the allotted time. Group-level tenure (gTENURE) is not 

significantly associated with group-level Efficiency, suggesting that on average no learning from 

others in the group takes place.  

 The median maximum tenure observed per new employee is 4.5 months for non-referred 

workers and 7 months for referred workers. The hometown homogeneity index varies 

substantially across groups, and ranges between the values of 0.12 and 1.00.  

3.4. Empirical Models and Results 

 The empirical predictions on how workforce homogeneity affects employee learning and 

their provision of effort depend on the joint specifics of the production environment and the 

incentive contracts. Consequently, we introduce our empirical analyses for each of our two 

samples (LINE and GROUP) separately. We examine the LINE production environment in 

Section 3.4.1 and the GROUP environment in Section 3.4.2. 



 

73 

 

3.4.1. LINE Sample: Empirical Models and Findings 

In the LINE sample, we investigate the effect of workforce homogeneity on individual 

learning, so the unit of analysis is individual-calendar month. Both performance dimensions (i.e., 

Efficiency
L
 and Quality

L
) measured at the individual level reflect learning outcomes, but we are 

particularly interested in Quality. As the LINE production environment suggests, learning about 

quality varies with information environment of the production line. The information environment 

is determined by all the workers on the production line. Hence, the workforce homogeneity 

(HMGN) is measured at the “group” level with two proxies, hometown homogeneity 

(SAMEHOME) and the fraction of referred workers (RFLratio). We specify the empirical model 

with the theoretical construct of workforce homogeneity denoted by HMGN, but we conduct the 

analyses with two abovementioned empirical proxies. We specify our models for the LINE 

sample as follows:  

Quality
L

 i,t+1= α0+ α1 iTENUREit + α 2HMGNgt +α3 HMGNgt*iTENUREit  

+CONTROL variables+ εit ,                                                         (4.1) 

Efficiency
L

i,t+1= β0+ β1 iTENUREit + β2HMGNgt + β3 HMGNgt*iTENUREit 

+CONTROL variables+ εit ,                                                         (4.2) 

            where subscript i represents individual, and t the calendar month, respectively. Models 

(4.1) and (4.2) are estimated at the individual level by individual fixed effect OLS regressions 

with robust standard errors. Employees’ ability is the most important individual heterogeneity 

complicating performance (i.e., Quality
L
 and Efficiency

L
). Including individual fixed effects 

controls for time-invariant unobservable heterogeneity and deals with the concern about ability 

differences among individuals. To examine learning effects, it is important to capture each 

individual’s complete “learning profile”. We accomplish this by using the sample of new 

employees who enter the firm during the sample period (2007-2009) (Shaw and Lazear 2008; 
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Seru et al. 2010).
25

 We include as control variables other group characteristics, including the 

number of workers on the same production line (SIZE), average education level (AVG_EDUCA), 

average tenure (AVG_TENURE), and the fraction of male workers (AVG_GENDER). Year and 

production line fixed effects are also included.  

            We expect that employees accumulate their knowledge via their own experience 

(iTENURE) and hence demonstrate better performance on Quality
L
 and Efficiency

L
 over time 

(i.e., α 1>0 and β1>0). We model the effect of tenure on performance as a linear-log function, so 

we use the logarithm of iTENURE in our models. We predict that individual learning about 

quality is a negative function of homogeneity of a workforce on a given production line. Hence, 

we include the interaction term between HMGN and iTENURE in Models (4.1) and (4.2), but 

only expect the coefficient in model (4.1) to be negative (i.e., α3<0).  

The results of Models (4.1) and (4.2) are presented in Table 4, and we discuss the results 

separately. Panel A of Table 4 shows that individual experience (iTENURE) is positively 

associated with Quality
L
 across all specifications. We expect that workforce homogeneity 

decreases learning about quality. We present empirical results with two different homogeneity 

proxies, SAMEHOME and RFLratio, respectively. We do not find a significant coefficient for the 

interaction term between SAMEHOME and iTENURE in column (3), but column (5) shows a 

significantly negative coefficient for the interaction term between RFLratio and iTENURE, 

indicating that the fraction of referred workers decreases the extent to which employees improve 

production efficiency over time (−0.135, p<0.05). This finding is consistent with H1a that 

workforce homogeneity is negatively associated with individual learning about quality.  

<Insert Panel A of Table 4 here> 

                                                 
25

 Otherwise, the estimation will be biased by the left-censored observations. That is, we exclude those workers who 

entered the firms before 2007 when investigating the learning effects for the LINE sample.  
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Similarly, Panel B of Table 4 presents robust positive coefficients for iTENURE, 

consistent with the idea that workers improve their efficiency by accumulating more individual 

experience. We do not expect that workforce homogeneity affects learning about efficiency in 

the LINE setting. Consistent with this prediction of H1b, we do not find significant coefficients 

for the interaction terms between SAMEHOME and iTENURE in column (3) and between 

RFLratio and iTENURE in column (5). The empirical evidence indicates that workforce 

homogeneity is not associated with individual learning about efficiency.  

<Insert Panel B of Table 4 here> 

In sum, we find that employees improve the production quality and efficiency by 

accumulating individual experiences. However, employees on the production line made up with 

a more homogeneous workforce (when measured using referral ratio) improve their production 

quality to a lesser extent than employees working with fewer referred workers around them.  

Our current set of analyses cannot distinguish between learning and sample attrition 

explanations for our results (Seru et al. 2010). In addition to learning about quality and/or 

efficiency, employees become over time better able to assess their “fit” with the firm, their 

assigned tasks, and their collaboration with coworkers. As employees learn about whether they 

are a good match to the job, increased sorting is expected, with those who do not fit the work 

well expected to leave the firm. We plan to further explore the effect of sample attrition (or 

employee “learning about fit” in subsequent version of this paper). For now, we only highlight 

that our findings can be explained by both learning on the job and by mismatched employees 

leaving the firm.  
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3.4.2. GROUP Sample: Empirical Models and Findings 

            In the GROUP sample, the unit of analysis is group calendar-month and all variables are 

measured at the group level. Accordingly, we use group performance (i.e., Efficiency
G
) as the 

dependent variable, which captures the outcome of effort provision and learning. The variable of 

interest is workforce homogeneity (HMGN), which is measured as either hometown 

homogeneity (SAMEHOME) or the referral ratio (RFLratio). We specify our model as follows:   

Efficiency
G

g,t+1= γ0+γ1SIZEgt+γ2gTENUREg+γ3 HMGNgt  +γ4 HMGNgt* SIZEgt 

+γ5HMGNgt * gTENUREgt +CONTROL variables+ εgt ,                (5) 

            where subscript g represents each group, and t the calendar month, respectively. Model 

(5) is estimated at the group level by pooled OLS regressions with robust standard errors 

clustered by group. We include as control variables group characteristics, including average 

education level (AVG_EDUCA), dispersion of education level (STD_EDUCA), dispersion of 

tenure (STD_TENURE) and the fraction of male workers (AVG_GENDER). Group and year 

fixed effects are also included.   

            The free-rider problem of group incentive suggests a negative association between group 

size (SIZE) and Efficiency
G
 (i.e., γ1<0), as shirking is expected to be more frequent in a large 

group than in a small group. We expect that homogeneity of group members (HMGN) could 

mitigate the free-rider problem. Thus, we include the interaction term between SIZE and HMGN 

and predict the coefficient to be positive (i.e., γ4 >0).  

            The learning effect implies a positive association between group tenure (gTENURE) and 

Efficiency
G
 (i.e., γ2>0). When group members work together longer, they coordinate with each 

other more efficiently. We hypothesize that group learning increases in the degree of 
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homogeneity of group members. Therefore, we predict the coefficient for the interaction term 

between gTENURE and HMGN to be positive (i.e., γ5 >0).  

            We test Model (5) with different proxies for HMGN, and present the empirical results 

using SAMEHOME or RFLratio as an empirical proxy in Panels A and B of Table 5, separately. 

We discuss the effect of workforce homogeneity on effort provision and learning about 

efficiency based on columns (5) in two panels of Table 5. With respect to the provision of 

employees’ effort, we predict that workforce homogeneity (i.e., SAMEHOME or RFLratio) 

mitigates the free-riding problem. We do not find a significantly positive coefficient either for 

the interaction term between SAMEHOME and SIZE or between RFLratio and SIZE. This 

finding is inconsistent with our prediction of H2a that workforce homogeneity is positively 

associated with the provision of effort at the group-level. 

<Insert Panels A and B of Table 5 here>  

            Turning to the learning effect (about efficiency), we expect that group homogeneity 

increases the positive association between gTENURE and Efficiency
G
. The statistic significance 

of the simple effect of gTENURE depends on the proxy for HMGN. The results in column (5) of 

Panel A of Table 5 show a significantly negative simple effect of gTENURE (-0.239, p<0.01), 

but the coefficient is insignificant when the test is conducted with RFLratio (column (5) in Panel 

B of Table 5). Note that in a regression with interaction terms, the coefficient on the simple 

effect represents the partial effect of gTENURE on Efficiency
G
 whilst holding HMGN (either 

SAMEHOME or RFLratio) constant at zero. The coefficients on the two separate interaction 

terms (i.e., SAMEHOME*gTENURE and RFLratio*gTENURE) are significantly positive (1.352, 

p<0.01 in Panel A; 0.617, p<0.01 in Panel B, respectively). Thus, the effect of gTENURE on 

Efficiency
G
 depends on the magnitude of HMGN, which is either SAMEHOME or RFLratio). 
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To obtain some further insights on these relations, we compute the marginal effects of 

gTENURE across the range of practical values of SAMEHOME and RFLratio, separately. The 

value of SAMEHOME ranges from 0.12 to 1. The marginal effect of gTENURE is positive when 

SAMEHOME is between 0.2 to 1, and becomes statistically significant when SAMEHOME 

equals 0.4. The marginal effect of gTENURE turns positive when RFLratio is above 0.2 (out of 

the range from 0 to 0.5) and becomes statistically significant at RFLratio=0.45. 

These findings suggest that whether a group of people can improve their efficiency 

through accumulating experience of working with their coworkers relies on group homogeneity. 

A working group with a high degree of heterogeneity encounters frictions in communicating and 

coordinating with coworkers, so the group performance may not even improve as the group 

tenure increases. Taken together, consistent with H2b, these findings demonstrate that the effects 

of workforce homogeneity on group learning about Efficiency
G
 are not trivial.   

3.5. Conclusion 

            A new literature on the significance of employee types on incentive outcomes is 

emerging (Oyer and Schaefer 2011; Lazear 1998; Ichniowski et al. 1997; Collins and Clark 

2003; Bartling et al. 2012; Carlin and Gervais 2009). We build on recent work and in particular 

shed light on how workforce homogeneity interacts with the specific combination of incentive 

contracts and production environments. We document that the effect of workforce homogeneity 

differs between production environments along with different incentive contracts. The evidence 

offers insight on the interplay between workforce homogeneity and organizational designs. 

Workforce homogeneity is not exogenously determined.Our findings have implications for 

managers wishing to maximize the effectiveness of incentive contracts. Managers may attempt to 
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influence the characteristics of the workforce by selecting hiring channels and by carefully using 

group dynamics to influence both the provision of effort and learning.  

            Indeed, the primary purpose of this study is to examine whether workforce homogeneity 

affects employee learning and the provison of effort.  We study this question by exploiting three 

features of our research site: (1) the variety of hiring channels, (2) diverse workforce hometown, 

and (3) the presence of two production environments with associated incentive contracts.  We 

document empirical evidence on the effects of the degree of workforce homogeneity on learning 

and effort.          

            Workers with similarity bear low costs in communicating and coordinating with each 

other. The low coordination costs bring either benefits or costs. In the LINE setting, we find that 

hometown homogeneity (measured by the fraction of referred workers) enables workers to 

collude to hide information and hinder production quality improvement across individual 

experience, but we do not find the same evidence when the homogeneity is proxied by 

hometown homogeneity. In the GROUP setting, our empirical evidence does not support the idea 

that workforce homogeneity creates strong mutual monitoring to mitigate the free-rider problem; 

meanwhile a working environment either with a high degree of hometown homogeneity or with a 

high fraction of referred workers indeed facilitates group learning about efficiency. In sum, we 

find workforce homogeneity plays a role in information sharing (i.e., learning effects) and this 

specific mechanism depends on the particular organizational design, which is the union of 

incentive contracts and production environments.  

            We derive our conclusion from field data of one particular manufacturing plant. 

However, we do recognize that management practices differ across firms, so we caution readers 

not to over generalize our empirical results. Despite the limitations, the most evident advantage 
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of this field study is that it offers finely grained data in connection with the possibility for 

researchers to obtain an intimate understanding of the specifics of the production environment in 

which the workers interact in their day to day operations. As such, we attempt to open the black 

box on the question “how” employees’ characteristics matter beyond whether they matter.  
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Appendix 1: Variable Descriptions 

Variables Description 

Efficiency =standard labor hours/actual labor hours 

Quality = -Defect penalty / standard labor hours 

REFERRAL =indicator variable, 1 if the worker is referred by an existing 

worker; 0 otherwise. 

HMGN =workforce homogeneity, measured either as hometown 

homogeneity (SAMEHOME) or the fraction of referred employees 

(RFLratio) 

RFLratio =the fraction of referral workers within a group 

=number of referral workers/ total number of workers 

SAMEHOME =hometown homogeneity of a group 

SIZE =the number of group members 

iTENURE =individual tenure 

gTENURE = group tenure, the overlap tenure among subgroups in the group 

=the minimum tenure among the maximum tenure of all 

subgroups 

RFLratio*SIZE =the interaction term between RFL_Ratio and SIZE 

SAMEHOME*SIZE =the interaction term between SAMEHOME and SIZE 

RFLratio*gTENURE =the interaction term between RFLratio and gTENURE 

SAMEHOME*gTENURE =the interaction term between SAMEHOME and gTENURE 

RFLratio*iTENURE =the interaction term between RFLratio and iTENURE 

SAMEHOME*iTENURE =the interaction term between SAMEHOME and iTENURE 

STD_TENURE =the standard deviation of individual tenure within a group 

EDUCA =Education level, ranges from 1 (primary school) to 5 (bachelor 

degree) 

AVG_EDUCA =the average of education level 

STD_EDUCA =the standard deviation of education level 

GENDER =dummy variable, 1 if the worker is male; 0 otherwise. 

AVG_GENDER =the fraction of male workers 
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Figure 1 

20.78%

19.43%

16.61%

Table 1 Employees’ Hometown Distribution (by Province) 

Province Number of workers (%) 

Guangxi 399 20.78 

Hunan 373 19.43 

Henan 319 16.61 

Hubei 149 7.7 

Guangdong  137 7.14 

Jiangxi 111 5.78 

Sichuan 86 4.48 

Guizhou 80 4.17 

Shanxi 80 4.17 

Gansu 78 4.06 

Yunnan 41 2.14 

Hainan 21 1.09 

Anhui 20 1.04 

Shandong 14 0.73 

Fujian 5 0.26 

Shanxi 4 0.21 

Jiangsu 1 0.05 

Hebei 1 0.05 

Heilongjiang 1 0.05 

Total 1,920 100 
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Table 2 Summary Statistics of the LINE Sample 

Panel A: Individual Characteristics (N=7,319) 

Variable Mean Std. Dev. Minimum Median Maximum 

Efficiency
L
 1.26 0.49 0.00 1.20 10.04 

Quality
L
 -0.18 0.23 -3.00 -0.12 0.00 

BONUS 136.71 178.51 -428.13 83.60 1493.80 
GENDER 0.57 0.50 0.00 1.00 1.00 
EDUCA 2.34 0.69 1.00 2.00 5.00 

Panel B: Maximum Tenure per Each New Employee (in month) 

Referral Status N Mean Std. Dev. Minimum Median Maximum 

Non-Referral 1122 6.05 5.31 1.00 4.00 34.00 
Referral 164 7.10 5.44 1.00 5.00 25.00 

Panel C: Group (Production Line) Characteristics (N=375) 

 Variable Mean Std. Dev. Minimum Median Maximum 

AVG_Efficiency
L
 1.25 0.28 0.04 1.25 2.18 

AVG_Quality
L
 -0.18 0.12 -0.83 -0.16 0.00 

SIZE 19.52 9.00 1.00 19.00 47.00 

RFLratio 0.12 0.14 0.00 0.08 1.00 
SAMEHOME 0.23 0.12 0.11 0.19 1.00 
AVG_TENURE 9.36 5.99 1.00 8.47 41.52 
STD_TENURE 5.80 4.39 0.00 4.91 23.47 
AVG_EDUCA 2.34 0.21 2.00 2.33 3.25 
STD_EDUCA 0.65 0.22 0.00 0.68 1.41 
AVG_GENDER 0.59 0.22 0.00 0.58 1.00 

Panel D: Pearson Correlation Table (P-values are in parentheses.) 

  (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

(a)Efficiency
L
 1                   

                      

(b)Quality
L
 0.12 1                 

  (0.00)                   

(c)iTENURE 0.37 0.17 1               

  (0.00) (0.00)                 

(d)EDUCA -0.07 -0.06 -0.07 1             

  (0.00) (0.00) (0.00)               

(e)GENDER -0.04 -0.20 -0.11 0.21 1           

  (0.00) (0.00) (0.00) (0.00)             

(f)REFERRAL 0.03 0.02 -0.09 -0.06 -0.03 1         

  (0.02) (0.14) (0.00) (0.00) (0.01)           

(g)SAMEHOME -0.02 0.14 0.18 -0.03 0.00 -0.03 1       

  (0.10) (0.00) (0.00) (0.03) (0.87) (0.00)         

(h)AVG_TENURE 0.30 0.19 0.64 -0.11 -0.17 0.01 0.28 1     

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.32) (0.00)       

(i)AVG_EDUCA -0.22 -0.05 -0.28 0.26 0.12 -0.01 -0.10 -0.44 1   

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.51) (0.00) (0.00)     

(j)AVG_GENDER -0.16 -0.09 -0.29 0.08 0.39 -0.06 0.00 -0.44 0.31 1 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.68) (0.00) (0.00)   
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Table 3 Summary Statistics of the GROUP Sample  

Panel A: Individual Characteristics (N=1,869) 

Variable Mean Std. Dev. Minimum Median Maximum 

BONUS 118.10 132.72 -518.86 110.02 473.14 

GENDER 0.24 0.42 0.00 0.00 1.00 
EDUCA 2.26 0.65 1.00 2.00 5.00 

Panel B: Maximum Tenure per Each New Employee (in month) 

Referral status N Mean Std. Dev. Minimum Median Maximum 

Non-Referral 286 6.10 4.66 1.00 4.50 34.00 

Referral 54 7.13 4.56 1.00 7.00 21.00 

Panel C: Group Characteristics (N=110) 

Variable Mean Std. Dev. Minimum Median Maximum 

Efficiency
G
 1.28 0.43 0.54 1.28 4.63 

Quality
G
 NA NA NA NA NA 

RFLratio 0.14 0.12 0.00 0.14 0.50 

SIZE 16.84 6.75 1.00 18.00 38.00 

SAMEHOME 0.25 0.12 0.12 0.22 1.00 

gTENURE 1.14 0.79 0.00 1.10 3.69 

AVG_TENURE 1.65 0.51 0.46 1.63 3.74 

STD_TENURE 0.70 0.26 0.00 0.69 1.53 

AVG_EDUCA 2.25 0.15 1.67 2.26 2.67 

STD_EDUCA 0.61 0.22 0.00 0.63 1.04 

AVG_GENDER 0.26 0.16 0.00 0.26 0.67 

Panel D: Pearson Correlation Table (P-values are in parentheses.) 
  (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

(a)Efficiency
G

 1                   

                      

(b)SIZE -0.08 1                 

 (0.39)                   

(c)RFLratio 0.09 0.25 1               

  (0.36) (0.01)                 

(d)SAMEHOME -0.18 -0.56 -0.01 1             

  (0.06) (0.00) (0.88)               

(e)gTENURE 0.13 -0.11 0.00 0.42 1           

  (0.18) (0.23) (0.99) (0.00)             

(f)AVG_TENURE 0.24 -0.11 0.04 0.32 0.73 1         

  (0.01) (0.26) (0.68) (0.00) (0.00)           

(g)STD_TENURE 0.00 0.32 0.35 -0.21 -0.26 -0.15 1       

  (0.97) (0.00) (0.00) (0.03) (0.01) (0.12)         

(h)AVG_EDUCA 0.18 0.20 0.10 -0.19 -0.01 -0.02 0.07 1     

 (0.05) (0.03) (0.32) (0.05) (0.93) (0.86) (0.47)       

(i)STD_EDUCA 0.11 0.29 0.04 -0.30 -0.14 -0.13 0.00 0.78 1   

 (0.24) (0.00) (0.71) (0.00) (0.16) (0.19) (0.97) (0.00)     

(j)AVG_GENDER 0.03 -0.33 -0.24 0.10 -0.21 -0.13 -0.10 0.07 -0.04 1 

 (0.72) (0.00) (0.01) (0.31) (0.02) (0.18) (0.29) (0.44) (0.65)   
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Table 4 Learning Effects in the LINE Sample 

Panel A: Learning about Quality 

Quality
L

 i,t+1= α0+ α1 iTENUREit + α 2HMGNgt +α3 HMGNgt*iTENUREit  

+CONTROL variables+ εit                                                                    (4.1) 

This model is estimated at the individual level by individual fixed effect regression. Robust standard error is 

reported in parenthesis. *,**,*** Indicate statistical significance at the 10% , 5% and 1% levels, respectively. 

   Quality
L
 Quality

L
 Quality

L
 Quality

L
 Quality

L
 Quality

L
 

   (1) (2) (3) (4) (5) (6) 

iTENURE + 0.034*** 0.034*** 0.056*** 0.034*** 0.055*** 0.077*** 

  

 

(0.011) (0.011) (0.019) (0.011) (0.015) (0.023) 

SAMEHOME 

  

-0.009 0.197 

  

0.197 

  

  

(0.084) (0.166) 

  

(0.168) 

SAMEHOME*iTENURE −     -0.116     -0.116 

    

(0.074) 

  

(0.075) 

RFLratio 

    

-0.025 0.242* 0.237* 

  

    

(0.043) (0.138) (0.139) 

RFLratio*iTENURE −         -0.135** -0.135** 

  

     

(0.063) (0.064) 

SIZE 

 

-0.012 -0.013 -0.013 -0.012 -0.011 -0.011 

  

 

(0.011) (0.015) (0.015) (0.011) (0.012) (0.015) 

AVG_TENURE 

 

0.004** 0.004** 0.005** 0.004** 0.005** 0.005*** 

  

 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

AVG_EDUCA 

 

0.090*** 0.090*** 0.087*** 0.092*** 0.090*** 0.087*** 

  

 

(0.033) (0.033) (0.034) (0.034) (0.034) (0.034) 

AVG_GENDER 

 

-0.002 -0.002 -0.0004 -0.006 -0.013 -0.011 

  

 

(0.034) (0.034) (0.034) (0.036) (0.037) (0.036) 

 Constant 

 

-0.457*** -0.452*** -0.488*** -0.458*** -0.501*** -0.531*** 

  

 

(0.095) (0.109) (0.111) (0.095) (0.102) (0.120) 

Observations    5,857 5,857 5,857 5,857 5,857 5,857 

Number of individuals 

 

1,334 1,334 1,334 1,334 1,334 1,334  

Individual fixed effects 

 

Yes Yes Yes Yes Yes Yes 

Year fixed effects 

 

Yes Yes Yes Yes Yes Yes 

Production line fixed 

effects 

 
Yes Yes Yes Yes Yes Yes 

Adjusted R-squared   0.442 0.442 0.442 0.442 0.443 0.443 

 

  



 

89 

 

Table 4 Learning Effect in the LINE Sample (continued) 

Panel B: Learning about Efficiency 

Efficiency
L

i,t+1= β0+ β1 iTENUREit + β2HMGNgt + β3 HMGNgt*iTENUREit 

+CONTROL variables+ εit                                                                       (4.2) 

This model is estimated at the individual level by individual fixed effect regression. Robust standard error is 

reported in parenthesis. *,**,*** Indicate statistical significance at the 10% , 5% and 1% levels, respectively. 

    Efficiency
L
 Efficiency

L
 Efficiency

L
 Efficiency

L
 Efficiency

L
 Efficiency

L
 

  

 

(1) (2) (3) (4) (5) (6) 

iTENURE + 0.194*** 0.194*** 0.210*** 0.194*** 0.170*** 0.186*** 

  

 

(0.015) (0.016) (0.030) (0.015) (0.020) (0.035) 

SAMEHOME 

  

-0.007 0.142 

  

0.143 

  

  

(0.150) (0.269) 

  

(0.269) 

SAMEHOME*iTENURE  NS     -0.084     -0.086 

  

   

(0.157) 

  

(0.159) 

RFLratio 

    

-0.004 -0.319* -0.323* 

  

    

(0.082) (0.191) (0.190) 

RFLratio*iTENURE NS         0.159 0.160 

  

     

(0.099) (0.098) 

SIZE 

 

0.063*** 0.063*** 0.063*** 0.063*** 0.062*** 0.061*** 

  

 

(0.021) (0.021) (0.021) (0.021) (0.021) (0.022) 

AVG_TENURE 

 

-0.002 -0.002 -0.002 -0.002 -0.0035 -0.003 

  

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

AVG_EDUCA 

 

-0.033 -0.033 -0.035 -0.033 -0.031 -0.033 

  

 

(0.046) (0.046) (0.046) (0.046) (0.046) (0.046) 

AVG_GENDER 

 

-0.059 -0.059 -0.058 -0.060 -0.052 -0.051 

  

 

(0.041) (0.041) (0.042) (0.043) (0.043) (0.044) 

Constant 

 

0.667*** 0.671*** 0.645*** 0.667*** 0.717*** 0.696*** 

  

 

(0.151) (0.160) (0.166) (0.151) (0.155) (0.168) 

Observations 

 

 5,857 5,857 5,857 5,857 5,857 5,857 

Number of individuals 

 

1,334 1,334 1,334 1,334 1,334 1,334  

Individual fixed effects 

 

Yes Yes Yes Yes Yes Yes 

Year fixed effects 

 

Yes Yes Yes Yes Yes Yes 

Production line fixed 

effects 

 

Yes Yes Yes Yes Yes Yes 

Adjusted R-squared   0.650 0.650 0.650 0.650 0.651 0.650 
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Table 5 Effort and Learning Effects in the GROUP Sample 

Panel A: The Effect of Hometown Homogeneity (SAMEHOME) 

Efficiency
G

g,t+1= γ0+γ1SIZEgt+γ2gTENUREg+γ3 HMGNgt  +γ4 HMGNgt* SIZEgt  

 +γ5HMGNgt * gTENUREgt +Control variables+ εgt                             (5)  

This model is estimated at the group level by pooled OLS regression. Robust standard error is clustered at the 

group level and reported in parenthesis. *,**,*** Indicate statistical significance at the 10% , 5% and 1% levels, 

respectively. 

    Efficiency
G
 Efficiency

G
 Efficiency

G
 Efficiency

G
 Efficiency

G
 

  

 

(1) (2) (3) (4) (5) 

SIZE − -0.018* -0.024** -0.025 -0.029*** -0.039 

  

 

(0.008) (0.009) (0.018) (0.009) (0.027) 

gTENURE + 0.008 0.067 0.068 -0.223** -0.239** 

  

 

(0.060) (0.089) (0.093) (0.080) (0.101) 

SAMEHOME 

  

-1.258* -1.311 -4.016** -4.677* 

  

  

(0.684) (1.045) (1.508) (2.566) 

SAMEHOME*SIZE +     0.005   0.047 

  

   

(0.048) 

 

(0.081) 

SAMEHOME*gTENURE +       1.258** 1.352** 

  

    

(0.413) (0.558) 

AVG_TENURE 

 

0.227** 0.201* 0.200* 0.038 0.016 

  

 

(0.089) (0.101) (0.102) (0.099) (0.110) 

STD_TENURE 

 

0.099 0.119 0.118 -0.059 -0.074 

  

 

(0.080) (0.085) (0.086) (0.070) (0.080) 

AVG_EDUCA 

 

1.106 0.987 0.993 0.951 0.993 

  

 

(0.723) (0.775) (0.812) (0.769) (0.847) 

STD_EDUCA 

 

-0.011 -0.027 -0.032 -0.043 -0.093 

  

 

(0.424) (0.450) (0.474) (0.457) (0.514) 

AVG_GENDER 

 

-0.942*** -0.665* -0.663* -0.609* -0.584 

  

 

(0.249) (0.306) (0.311) (0.332) (0.334) 

Constant 

 

-0.763 -0.214 -0.214 1.003 1.100 

  

 

(1.307) (1.315) (1.328) (1.335) (1.369) 

Observations   110 110 110 110 110 

Group fixed effects 

 

Yes Yes Yes Yes Yes  

Year fixed effects 

 

Yes Yes Yes Yes Yes  

Adjusted R-squared   0.205 0.230 0.222 0.261 0.256 
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Table 5 Effort and Learning Effects in the GROUP Sample (continued) 

Panel B: The Effect of Referral Ratio (RFLratio) 

Efficiency
G

g,t+1= γ0+γ1SIZEgt+γ2gTENUREg+γ3 HMGNgt  +γ4 HMGNgt* SIZEgt  

 +γ5HMGNgt * gTENUREgt +Control variables+ εgt                            (5)  

This model is estimated at the group level by pooled OLS regression. Robust standard error is clustered at the 

group level and reported in parenthesis. *,**,*** Indicate statistical significance at the 10% , 5% and 1% levels, 

respectively. 

    Efficiency
G
 Efficiency

G
 Efficiency

G
 Efficiency

G
 Efficiency

G
 

  

 

(1) (2) (3) (4) (5) 

SIZE − -0.018* -0.018* -0.025 -0.017* -0.028 

  

 

(0.008) (0.008) (0.014) (0.008) (0.016) 

gTENURE + 0.008 0.013 0.022 -0.078 -0.098 

  

 

(0.060) (0.06) (0.065) (0.072) (0.056) 

RFLratio 

  

-0.224 -0.852 -0.748 -2.037** 

  

  

(0.491) (0.574) (0.631) (0.860) 

RFLratio*SIZE +     0.0405   0.070 

  

   

(0.035) 

 

(0.052) 

RFLratio*gTENURE  +       0.448** 0.617*** 

  

    

(0.159) (0.171) 

AVG_TENURE 

 

0.227** 0.215* 0.213* 0.260** 0.274*** 

  

 

(0.089) (0.101) (0.103) (0.090) (0.086) 

STD_TENURE 

 

0.099 0.108 0.154 0.128 0.215* 

  

 

(0.080) (0.095) (0.102) (0.097) (0.099) 

AVG_EDUCA 

 

1.106 1.097 1.023 1.113 0.990 

  

 

(0.723) (0.706) (0.681) (0.700) (0.659) 

STD_EDUCA 

 

-0.011 0.000 0.005 -0.018 -0.016 

  

 

(0.424) (0.420) (0.426) (0.420) (0.426) 

AVG_GENDER 

 

-0.942*** -0.951*** -0.896*** -0.888*** -0.769** 

  

 

(0.249) (0.229) (0.253) (0.224) (0.268) 

Constant 

 

-0.763 -0.715 -0.515 -0.780 -0.456 

  

 

(1.307) (1.319) (1.279) (1.294) (1.236) 

Observations   110 110 110 110 110 

Group fixed effects 

 

Yes Yes Yes Yes Yes  

Year fixed effects 

 

Yes Yes Yes Yes Yes  

Adjusted R-squared   0.205 0.198 0.193 0.200 0.204 
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Chapter 4: The Role of Reporting Uncertainty in Information 

Communication: Empirical Evidence on Loan Approval 

Decisions 

 

4.1. Introduction 

Decision rights and information do not always reside in the same party (Aghion and 

Tirole 1997; Baker et al. 1999; Bolton and Scharfstein 1998). When the information in 

question is not verifiable, this separation gives rise to “uncertainty” among decision makers 

(DMs) about the quality of the information being reported by information providers (IPs). 

The quality of reporting is determined by (1) the IPs’ reporting objectives or (2) the IPs’ 

reporting patterns or styles. The DMs’ uncertainty about reporting quality is thus particularly 

prevalent when they are unfamiliar with the IPs. Specifically, “reporting uncertainty” is 

defined as the extent to which DMs are able to form an expectation about the quality (e.g., 

informativeness) of the information received and hence decreases as their familiarity with the 

IPs increases.
26

 This uncertainty affects not only how DMs use the information, but also how 

the IPs report it. This study examines the role of reporting uncertainty in the information 

communication between DMs and IPs.
27

  

I used data on used-car loan applications from a car dealership in Taiwan (referred to 

as CAR) to empirically examine this issue. CAR runs its used-car loan business through two 

business channels: franchisees and company-owned outlets. There are three parties involved 

in the application process, namely, borrowers, salespeople, and loan officers. All of the loan 

officers are employed by CAR, but the salespeople work at two different business channels. 

                                                 
26

 One example of such uncertainty is when two different IPs have the same information and report it in the 

same way, but the DM has different levels of understanding with the two IPs and hence interprets the same 

information from the two IPs differently. 
27

 This idea is also termed “ambiguity” or “Knightian uncertainty” (Neamtiu et al. 2014; Williams in press). 

DMs’ reporting uncertainty in this study relates to their knowledge rather than to the nature of the information. 

Therefore, I use the term “uncertainty” rather than “ambiguity” to stress the DMs’ views of the quality of the 

information. 
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This study focuses on the information communication between the salespeople (i.e., the IPs) 

and loan officers (i.e., the DMs). The loan officers’ working relationships with the 

salespeople are shaped by organizational structure: they may or may not be colleagues 

depending on whether the salespeople work at a company outlet or a franchise. Intuitively, 

loan officers are closer to the salespeople in outlets than to those at franchises, and they also 

have better knowledge about the former group’s reporting objectives and styles.  

In this setting, the interest rate of a loan (“loan rate”) is an aggregate measure of the 

borrower’s credit risk, as set by the salespeople, and it provides loan officers with additional 

information for their loan approval decisions. The loan rate represents a communication 

device, then, through which salespeople report a borrower’s credit risk to loan officers.
28

 The 

central argument of this study is that closer working relationships offer loan officers more 

knowledge in assessing the quality of the information being reported, and they thus 

experience less uncertainty when using information from company outlets to make decisions. 

Building on this, this study presents evidence on (1) how organizational structures affect the 

extent to which loan officers rely on loan rates to make loan approval decisions and (2) 

whether franchise salespeople set loan rates differently than salespeople working in company 

outlets.  

Fischer and Verrecchia (2000) suggest that when the capital market is uncertain about 

a manager’s reporting objectives, this uncertainty adds noise to the financial report and 

reduces the value relevance of the manager’s report. However, as opposed to their 

predictions, empirical evidence in recent finance and accounting literature demonstrates that 

uncertainty results in behavioral biases in terms of processing the information (Williams in 

                                                 
28

 The loan rate in the loan approval setting is analogous to a financial report in capital markets, which is the 

communication device between firm management and investors.  
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press). People dislike uncertainty and exhibit uncertainty aversion in assuming the worst 

case: they take action to avoid the worst-case outcome (Epstein and Schneider 2008; 

Williams in press).  

In a loan approval setting, loan officers are concerned about accepting bad loans. 

When they do not possess sufficient knowledge to assess the reporting quality of the loan rate 

as a credit risk measure, they impose a “belief” that the salespeople are unwilling to reflect 

the borrower’s credit risk in the interest rates; in other words, that the salespeople are 

compressing the borrower’s credit risk in setting the interest rate. This is the worst-case belief 

because it increases the likelihood of bad loans being approved. Moreover, this belief actually 

causes loan officers to view loan rates as being informative, because one unit of loan rate 

indicates a higher credit risk in cases where salespeople are reluctant to report a borrower’s 

riskiness. Specifically, the bias arising from the worst-case belief is that loan officers view 

information (i.e., the loan rate) as being informative. Since the worst-case belief is associated 

with uncertainty about the reporting, loan officers will view franchisees’ information as being 

more informative than company outlets’ information. Hence, I predict that loan officers 

respond to franchisees’ information more strongly than to outlets’ information. I term this 

prediction the decision bias hypothesis. 

At the other end of the spectrum, salespeople anticipate the loan officers’ response to 

information of uncertain reporting quality (i.e., a higher likelihood of loan rejections) and 

take action to mitigate the adverse effects of decision biases. In their role as the loan rate 

setters, they assess the borrower’s credit risk and determine the loan rate. Foreseeing that loan 

officers overvalue the level of risk embedded in the loan rates offered, salespeople will trend 

those rates downward to correct for decision bias in the information use. Since loan officers 

overvalue the borrower’s credit risk to a greater extent when using information reported by 
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franchisees versus that from company outlets, franchise salespeople are more prone to skew 

the loan rate downward than outlet salespeople. Therefore, I expect that loan rates submitted 

by franchisees to loan officers are lower than those submitted by company outlets. I term this 

the reporting bias hypothesis. 

The empirical strategy for documenting the role of reporting uncertainty is to treat the 

information use and reporting in company outlets as a benchmark for analyzing whether these 

behaviors vary between the two business channels. In other words, the decision and reporting 

biases are measured in terms of “relative” magnitude instead of absolute scale. Note that 

these empirical tests rely on the premise that what differs between franchisees and outlets is 

the degree of loan officers’ uncertainty about the quality of the salespeople’s reporting. I 

discuss this issue in more detail in the section on the research setting (and in Section 4.4.4). 

The empirical findings are consistent with the decision bias and reporting bias 

hypotheses. Specifically, I find that the negative association between loan officers’ approval 

decisions and loan rates is stronger for franchise loans than for company outlet loans and that 

franchise salespeople set lower loan rates than those in outlets. An additional analysis of loan 

defaults captures the net effect of the combination of decision and reporting biases on loan 

performance. I find that the default rate is higher for franchise loans than for outlet loans. 

This particular finding not only corroborates the reporting bias hypothesis, but also suggests 

that the extent to which franchise salespeople skew the loan rate downward exceeds the 

magnitude of the loan officers’ decision biases. This “excess” reporting bias by franchisees 

has a negative consequence: they face higher levels of loan defaults.         

This study documents the role of reporting uncertainty in information communication 

within firms. Empirical evidence on the implications of uncertainty for information use is 

limited; the existing studies have been conducted in lab experiments or the capital market 
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setting (Williams in press). Moreover, it is not clear how those findings apply to internal 

decision making, especially with regard to the sources of uncertainty. This study contributes 

to the literature on the information role of personal relationships. Prior studies suggest that 

personal relationships (e.g., school ties) that have been established based on common past 

experiences offer a channel for private information transfer and result in an information 

advantage (Brochet et al. 2013; Cohen and Frazzini 2008; Cohen et al. 2010).
29

 This study, 

by contrast, highlights the effect of one specific type of personal relationship, as shaped by 

organizational structures, and documents how working relationships bias information 

processing. 

In addition, the previous empirical studies that have investigated information use in 

decision making seem to take information supply as exogenously given.
30

 This study sheds 

light on the interaction between the DMs and IPs in transferring information. This idea is not 

new. Prior literature on voluntary disclosure (Verrecchia 1983) or participative budgeting 

(Chow et al. 1988) has highlighted such strategic interactions with analytical models or lab 

evidence. However, I present instead empirical evidence from naturally occurring data on the 

effects of reporting uncertainty on information use and reporting simultaneously and argue 

that the anticipation of decision bias results in downward biases in setting loan rates. The 

evidence substantiates the general understanding of the interrelation between information use 

and information supply. 

Previous studies on organizational structures have discussed the determinants of a 

firm’s choice for franchised operations or company-owned outlets (Brickley and Dark 1987; 

Campbell et al. 2009; Lafontaine 1992; Martin 1988). The main determinants include 

                                                 
29

 The role is trivial in this setting because information is aggregated and quantified to loan rates. 
30

 Liberti and Mian (2009) focus on a setting where there are subjective and objective signals and investigate 

whether the hierarchical distance affects the extent to which decisions rely on different signals.  
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information asymmetry between headquarters and local units and the difficulty of monitoring 

local units. Taking this choice as exogenously given, this study finds that organizational 

structures shape people’s mutual understanding (or working relationships) and are associated 

with biases in processing information. This study highlights the ex post costs associated with 

the choice of organizational structures.
31

 

4.2. Hypothesis Development 

4.2.1. Reporting Uncertainty and Organizational Structures 

In a firm, the business is run through local units. Those units have information about 

local markets and customers that is important input for corporate decisions, and they occur in 

different organizational structures, depending on the way firms expand their businesses. 

Firms can expand by either franchising or running their own outlets (Martin 1988), so DMs 

receive information from either franchisees or company-owned outlets. Franchisees operate 

as independent organizations separate from the franchisor; outlets act as subordinate units 

under the parent company’s control. The distinct organizational structures shape the levels of 

knowledge DMs have about the IPs in the local units. In the research setting for this study, 

CAR, in which franchisees and outlets co-exist side-by-side, loan officers have more 

knowledge about salespeople’s objectives and behaviors in the company outlets than in the 

franchised operations for various reasons.    

One important reason is associated with the varying degree of CAR’s management 

control over the two business channels. CAR designs the incentive systems for salespeople in 

company outlets, so loan officers have sufficient knowledge about how salespeople in those 

outlets are rewarded. However, in the case of the franchisees, CAR only signs the franchise 

                                                 
31

 Several studies investigate the relationship between organizational form and information characteristics, for 

example, hard versus soft information (Stein 2002; Liberti and Mian 2009; Cerqueiro et al. 2011). 
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contract for listed services with the franchise owner and has little control over how they are 

operated. More importantly, loan officers have only limited knowledge about how 

salespeople are rewarded in franchisees, and this insufficient knowledge increases their 

uncertainty about the quality of the reporting, especially the reporting objectives.   

In addition to the greater knowledge derived from company management control 

when dealing with outlets, loan officers’ understanding of salespeople’s reporting behavior 

benefits from closer proximity,
32

 common language, and a shared culture determined by the 

firm’s boundary (Grinblatt and Keloharju 2001). As applied to capital markets, one 

implication of proximity is that investors are more likely to invest in firms close to them 

because of their familiarity with those firms (so-called “home biases”) (Coval and Moskowitz 

1999). Extending that to this research setting, CAR is in closer organizational proximity to 

the company outlets than to the franchisees. That closer proximity creates advantageous 

conditions for personal interactions.
33

 It is easier for people to sense others’ styles through 

frequent face-to-face interactions than through impersonal contacts (e.g., emails). Loan 

officers have a more enhanced understanding of salespeople in outlets than of franchise 

salespeople.  

Moreover, people within the same firm share a common language and the same 

culture (Crémer et al. 2007; Van den Steen 2010b). Language, no doubt, is the most 

important component in information communication for increasing mutual understanding. 

Each firm has specific “codes” (i.e., a common language) to facilitate coordination between 

agents (Arrow 1974); this specificity decreases communication costs within a firm but 

                                                 
32

 Proximity could be physical or organizational. In close approximation to the hierarchical distance in Liberti 

and Mian (2009), this study treats a firm’s boundaries as a determinant of organizational distance.  
33

 People within a firm meet each other in formal meetings and engage in social activities organized by the firm 

or individuals. 
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increases difficulty in communicating with an external party (Crémer et al. 2007; Weber and 

Camerer 2003).
34

  

The assertion that corporate culture differs from firm to firm can be illustrated by the 

frequency with which mergers fail due to cultural conflicts (Van den Steen 2010a; Weber and 

Camerer 2003). Van den Steen (2010b) defines culture as shared beliefs and values, which 

implies fewer differences among individuals.
35

 Specifically, people with shared beliefs follow 

a similar logic and have the same priorities in doing their work. The missions, strategies, and 

incentive structures of organizations are all part of their culture. Franchisees, as independent 

organizations, have their own objectives separate from those of the DMs, and that difference 

in objectives creates difficulties for the DMs in understanding IP behavior.  

In sum, tighter management control, closer proximity, common language, and shared 

beliefs increase DMs’ understanding about IPs in the same company. Note that the nature of 

loan officers’ knowledge associated with working relationships may not be directly related to 

the parameter of interest (i.e., a borrower’s credit risk in the setting) but refers to a general 

understanding about salespeople’s reporting objectives and behaviors.  

4.2.2. Reporting Uncertainty and Information Use 

There are two different predictions about how DMs will respond to information when 

they are uncertain about the quality of the reporting. The first view treats reporting 

uncertainty as additional noise in the information processing (Fischer and Verrecchia 2000). 

Under that interpretation, DMs will view information of highly uncertain reporting quality as 

                                                 
34

 Weber and Camerer (2003) show that specific codes are developed over time and, more importantly, that 

these codes are only specific to a particular group and differ across groups, consistent with the notion of a 

common language within a firm. In a lab experiment, a pair of subjects (i.e., a manager and an employee) with 

the same set of pictures has to learn to jointly identify a subset of the entire set of pictures. To do this, they have 

to develop a common way of quickly describing the pictures so that the manager can direct the employee to pick 

up a pre-specified picture. In the beginning, the pair uses long expressions to describe the pre-specified picture. 

However, they shorten their expressions over time, and the employee learns to pick up the right picture sooner. 
35

 People who work at the same firm have been hired under the same screening process and work under a 

standard employment policy. They have joint learning experiences, so shared beliefs emerge among them. 
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more noisy (less precise) than information of less uncertain reporting quality. This argument 

predicts that they will put less weight on the information coming from franchisees than on 

that reported by company outlets. This prediction is primarily supported by the analytical 

model in Fischer and Verrecchia (2000), but there are  few empirical studies that document 

this view. Instead experimental and empirical evidence demonstrates people’s biased 

response to uncertainty.   

In one classic experiment, Ellsberg (1961)
36

 demonstrated how people were averse to 

uncertainty (ambiguity). When they make judgmental decisions, such as assessing reporting 

quality, the degree of uncertainty aversion is driven primarily by the state of their general 

knowledge about the given subject (Fox and Tversky 1995; Heath and Tversky 1991).
37

 The 

more people know, the less uncertain they feel. This suggests that DMs’ knowledge about IPs 

increases their confidence in their own judgment regarding reporting quality and reduces their 

uncertainty aversion.  

Uncertainty-averse DMs tend to maximize utility under a worst-case belief (Epstein 

and Schneider 2008).
 
Put differently, DMs do not know whether the worst-case outcome will 

occur or not; however, they choose to believe that it will occur and take corresponding action 

to protect themselves.
38

   

                                                 
36

 Ambiguity aversion can be illustrated by the classic experiment performed by Ellsberg (1961). In his two-urn 

experiment, Urn I has 50 red balls and 50 black ones; Urn II has 100 balls, but the ratio of red to black balls is 

unknown. Participants bet on the urn and the color of the ball jointly. A bet on RedI means that the participant is 

choosing to draw a ball from Urn I and will receive a prize if the ball is red but no prize if it is black. Most 

people prefer to bet on RedI rather than RedII and BlackI rather than BlackII. Ellsberg claims that people feel 

uneasy about bets when they must guess at the odds. Since they are uncertain about the proportion of red to 

black balls in Urn II, they avoid betting on it. This is termed “ambiguity aversion.” Caskey (2009) defines 

ambiguity aversion as a distaste for random outcomes that depend on an unknown probability distribution. 
37

 Uncertainty aversion is triggered by contexts in which there is a contrast between states of knowledge, rather 

than by innate personal traits (Fox and Tversky 1995).  
38

 Gilboa and Schmeidler (1989) explicitly model DMs’ utility function as maximizing the minimum expected 

utility, which is called maxmin expected utility.  
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The definition of worst-case belief depends on the decision context. One 

manifestation in the capital market is investors’ asymmetric reactions to good and bad news. 

With information that conveys good news, investors tend to be suspicious as to their payoff 

(i.e., a worst-case belief) and believe that the information is unreliable.
39

 Therefore, they 

overreact to bad news, believing that it is precise, and underreact to good news, since they do 

not think good news can be precise. In sum, when DMs are uncertain about the quality of the 

information they receive, they choose to believe what is worse for their payoff.  

In loan approval decisions, loan officers, by job design, are responsible for keeping 

default rates under control. In other words, their objective function is to minimize losses from 

loan defaults. They are therefore concerned about accepting bad loans. To a loan officer, the 

worst outcome is that a borrower turns out to truly be risky after the loan has been approved: 

such a case increases losses from loan defaults. That worst outcome is most likely to occur 

when salespeople are sluggish in increasing loan rates in response to a borrower’s higher 

underlying credit risk. The reluctance (perceived or real) to reflect credit risk in the loan rate 

suggests that the changes in the borrower’s underlying credit risk are larger than what the 

change in the loan rate would suggest. The worst-case belief about reporting quality in this 

setting is actually that the loan rate is informative. Hence, decisions are based to a larger 

extent on information of higher reporting uncertainty because of the worst-case belief that the 

reported credit risk measure is informative about the borrower’s credit risk.  

The uncertainty about reporting quality results in decision biases associated with the 

worst-case belief. Since loan officers are more uncertain about the reporting quality from 

                                                 
39

 I will borrow the exposition in Epstein and Schneider (2008) to make the idea concrete. Suppose that DMs 

want to know the parameter θ but only observe a signal 𝑠 = 𝜃 + 𝜖. The noise term is represented by ϵ~N(0,𝜎𝑠
2), 

where 𝜎𝑠
2 ∈ [𝜎𝑠

2, 𝜎𝑠
2

]. DMs do not know the probability over 𝜎𝑠
2 but have a prior belief of its range. They choose 

their belief about the precision of the information from the range. When they observe good news, they choose 

the belief 𝜎𝑠
2
. When receiving bad news, they choose the belief 𝜎𝑠

2 instead. 
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franchisees than from company outlets, they exhibit a higher degree of worst-case belief in 

interpreting franchise information than they do in using outlet information. Since the degree 

of a worst-case belief is associated with the perceived informativeness of the loan rate, loan 

officers’ approval decisions are more strongly influenced by information submitted by 

franchisees than that supplied by outlets. I state the decision bias hypothesis as follows: 

H1: Ceteris paribus, the negative association between loan approval decisions 

and reported borrower credit risk is stronger for franchise loans than for 

company outlet loans. 

4.2.3. Reporting Biases 

I now turn to discussing how IPs report their information in response to the 

anticipation of DM bias. In the loan approval setting, salespeople provide the information 

(i.e., they are the IPs), and loan officers use that information to make decisions (i.e., they are 

the DMs). Their interaction occurs through the reporting of the information (i.e., the risk 

measure reported), which is similar to a financial report in capital markets, in which firm 

managers provide investors with financial information for investing decisions. 

Loan officers are uncertain about the quality of the reporting, so they have a biased 

view about the informativeness of the reported risk measure and are less likely to approve 

loans in response to it. Anticipating this undesirable effect on loan approval probabilities, 

salespeople (especially those in franchises) try to mitigate the adverse consequences 

associated with reporting uncertainty. I argue that salespeople, anticipating loan officers’ 

biases in using the information they provide, distort their reporting to offset the effect of 

decision bias. 

The loan rate is the device that salespeople use to communicate a borrower’s credit 

risk to loan officers. Decision biases occur when loan officers “overvalue” the level of risk 

contained in the loan rate, in the face of uncertainty about the reporting, when using that 
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information to make their decision. Accordingly, salespeople will downplay the level of risk 

by skewing the loan rate downward. I will use an example to demonstrate how this 

anticipation works in a loan approval setting. Suppose the borrower’s true level of credit risk 

is “medium” and the point at which loan officers decide to reject a loan is “high.” If they 

were not worried about loan officers’ decision biases regarding their reporting, salespeople 

would truthfully report the medium level of risk to loan officers. But since they know loan 

officers overvalue the level of risk reported, they are concerned that this borrower will be 

viewed as a high risk and the loan will be rejected. The salespeople therefore report a “low” 

level of risk to the loan officers, thereby demonstrating a “reporting bias.” The loan officers 

overvalue the level of risk, as expected, and escalate the borrower’s low level of risk to a 

medium level: however, they still accept the loan because the case remains below the point 

for loan rejections.  

Anticipating the above situation, salespeople will trend a borrower’s credit risk 

downward (e.g., from medium to low) when initially reporting information to offset loan 

officers’ decision biases in overvaluing the level of risk. Since loan officers exhibit a higher 

degree of worst-case belief toward the risk measures reported by franchisees than toward 

those reported by company outlets, I predict that franchisees skew their risk measures 

downward to a greater extent than outlets. I state the reporting bias hypothesis, which 

concerns the salespeople’s response to the effect of loan officers’ uncertainty about the 

quality of reporting (which accordingly results in the anticipated decision bias), as follows:  

H2: Ceteris paribus, franchise salespeople underreport borrower credit risk to 

a greater extent than salespeople in company outlets do. 
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4.2.4. Biases and Decision Outcomes 

In equilibrium, it is not clear whether reporting biases could perfectly offset decision 

biases or whether the two biases together actually affect decision outcomes. In many models 

of financial reporting, biasing activities do not affect the value relevance of the financial 

reporting (Verrecchia 1983). If DMs and IPs could fully anticipate the distribution of each 

other’s biases, the two types of biases would cancel each other out on average and decision 

outcomes would still be efficient as a whole. These models assume that the users of the 

reports (1) develop rational expectations and (2) have perfect common knowledge about 

preparers’ reporting objectives. Fischer and Verrecchia (2000) show that violations of the two 

assumptions affect the value relevance of information and ultimate decision outcomes.  

This study examines the role of reporting uncertainty (i.e., uncertainty about the 

precision of reported information), which is exactly the violation of the second assumption. 

In this loan approval setting, the loan officers do not have perfect common knowledge about 

the IPs’ reporting objectives and behaviors. This insufficient knowledge results in uncertainty 

aversion on their part, which leads to a biased view about a risk measure’s informativeness. I 

predict that reporting uncertainty affects the ultimate outcome of approval decisions. In other 

words, the two types of biases are not perfectly offset. However, it is not clear ex ante 

whether decision biases or reporting biases are more dominant. Therefore, I do not develop 

any specific predictions about how reporting uncertainty affects decision outcomes through 

the two types of biases. 

4.3. Research Design 

4.3.1. Research Setting  

The research site for this study is CAR, a car dealership in Taiwan. CAR has multiple 

businesses. It sells new cars of one particular make through its outlets and also offers used-
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car loans through two business channels: its own company outlets and franchisees.
40

 The 

company has 964 salespeople working in 66 company-owned outlets, under 6 regional 

offices, and 346 franchise operations across Taiwan.
41

 Figure 1 shows CAR’s organizational 

structure. Loan officers work at either regional offices or headquarters. Headquarters, 

regional offices, and company outlets all fall under CAR’s legal entity: franchise operations 

do not.
42

 I rely on this feature as a proxy for the different degrees of DMs’ reporting 

uncertainty. The separation between decision rights and information and distinctive 

coexistence of the two business channels make CAR’s used-car loan business an appropriate 

setting for studying issues related to reporting uncertainty. 

<Insert Figure 1 here> 

Incentive Structures  

CAR charges franchisees the capital charge rate (i.e., the cost of capital), and 

franchisees are the residual claimants of any remaining profit for loan rates above that rate. 

The capital charge rate is the same across applications within a given franchise operation but 

differs across franchisees. It varies based on a “franchisee rating” set by CAR in annual 

evaluations. Any losses associated with loan defaults (one of the evaluation items) 

downgrade a franchisee’s rating and increase the capital charge rate they will be charged for 

the next period. Loan defaults thus do not affect franchisees’ short-term monetary payoffs but 

do negatively impact future payoffs as a result of the downgraded rating, forcing them to pay 

                                                 
40

 The used-car market suffers from the adverse selection problem (Akerlof 1970). CAR offers franchisees 

particular services, such as quality checks and warranties, to reduce buyers’ concerns about the quality of the 

used cars. CAR does not supply used cars to the franchisees and is not involved in incentivizing the selling of 

used cars. CAR’s insufficient knowledge of how franchisees reward their salespeople might contribute to its 

uncertainty about their reporting. 
41

 Untabulated descriptive statistics show that the median tenure for salespeople is 6 years, and the mean is 3.5 

years; 82% of salespeople are male. 
42

 Headquarters designs the franchise contracts and signs the contracts with franchisees. However, franchise 

operational activities are handled by CAR’s company outlets and regional offices. For example, it is the 

salespeople in CAR outlets who collect the franchise loan applications to submit to loan officers. 



 

107 

 

 

higher capital charge rates to CAR. By contrast, at the company outlets, salespeople’s 

bonuses increase in conjunction with the loan amounts approved, but not with the loan rates. 

Similarly, loan defaults do not directly affect salespeople’s monthly bonuses, but will affect 

the year-end “employee rating,” which is associated with future salary increases and 

promotion options.          

Under the aforementioned incentive structures, both franchisees and outlets would 

like to communicate favorable information about a borrower’s credit risk so as to get loan 

applications approved (for their own monetary benefit). At the same time, both types of 

organizations are penalized for withholding unfavorable information or distorting 

information, limiting salespeople’s incentives for strategically manipulating information. 

More importantly, skewing the loan rate downward is costly for franchisees. It is not clear a 

priori whether both channels still have some incentives for manipulating information or there 

is a systematic difference in their incentives for misreporting borrowers’ credit risk.  

Although franchisees and company outlets differ on several dimensions with respect 

to the economic incentives for misreporting, those differences do not generate a clear 

prediction as to which channel’s information is of poorer quality. In other words, despite the 

fact that incentive structures are designed to counteract salespeople’s economic incentives for 

misreporting information, uncertainties still exist regarding the quality of the reporting. One 

salient difference between the two channels is the loan officers’ degree of knowledge and 

confidence in assessing reports. As argued, loan officers are more uncertain about 

information from franchisees than from outlets. 

For salespeople, setting the loan rate (i.e., the reporting information) is a difficult 

decision. Salespeople (especially those in franchisees) have an incentive to charge borrowers 

a higher loan rate in order to make a higher profit, but a higher loan rate will increase the 
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likelihood of loan officers rejecting the application. This trade-off is more pronounced for 

franchisees than for outlets, because franchisees keep any profit above the capital charge rate. 

This trade-off is also an important factor contributing to loan officers’ uncertainty about the 

quality of reporting from franchisees.           

The loan officers’ key responsibility is to analyze the profiles of loan applications and 

reject risky borrowers. Their bonuses decrease in the event of losses from defaults and 

increase in line with the loan amounts approved. They cannot be so strict as to reject good 

loans but have to be careful enough to reject bad loans. The fact of whether an application is 

from a franchisee or company outlet does not affect their bonus. The objective functions loan 

officers perform remain constant no matter where the loan originates.
43

 In addition, loan 

officers’ approval decisions are not based on an objective credit rating score model. 

Essentially, their greatest concern is about accepting bad loans (i.e., Type II errors), 

while salespeople care much more about having good loans rejected (i.e., Type I errors), 

since the latter type of error decreases their short-term monetary payoff.
44

 This conflict of 

interest between salespeople and loan officers is designed to minimize the total cost of the 

two errors combined (Sah and Stiglitz 1986) and does not vary between the two business 

channels. Although the objectives themselves are the same across the two business channels 

for both loan officers and salespeople, loan officers know more about how outlet salespeople 

deal with these conflicting objectives than they do about how franchise salespeople will.  

Decision Process and Information Structure       

                                                 
43

 Rewarding loan officers based on loan profitability encourages them to accept risky loans to earn higher risk 

premiums. However, that is not what CAR expects loan officers to do. Therefore, the profitability of loans is not 

designed into their objective function. 
44

 As mentioned, accepting bad loans also decreases salespeople’s long-term payoffs through a lower employee 

or franchisee rating. This long-term incentive might mitigate the degree of conflict of interest between loan 

officers and salespeople.  
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There are two stages in the loan approval process and three parties (i.e., borrowers, 

salespeople, and loan officers) involved at different stages. In Stage 1, a salesperson settles 

on a loan rate with a borrower, and the borrower decides whether or not to apply for the loan. 

In Stage 2, the salesperson submits the application to a loan officer, who decides whether to 

accept or reject the application. The official approval process is the same for the two business 

channels.  

This study focuses on the information communication between the salespeople and 

the loan officers: Stage 2 of the decision-making process. At Stage 1 of the process, there is 

an inherent information asymmetry about the borrower’s credit risk between salespeople and 

borrowers. However, this asymmetry exists equally in both business channels, and there is no 

clear evidence that the problem is systematically different between the two channels. Since 

the empirical focus in this study is on a comparison of the two business channels, the issue of 

information asymmetry between salespeople and borrowers can be ignored.  

The loan officers’ ability to access information on the borrowers is the same for the 

two business channels. They have access to a database for checking a borrower’s unusual 

transactions with other financial institutions, such as any overdue credit card payments.
45

 In 

addition, they know the loan terms (e.g., loan rates and loan amount) and the borrower’s 

personal information, as provided on application forms. They also receive additional 

documents on the borrower’s credit risk.
46

 One important aspect for loan officers is whether 

or not a borrower has a stable income, so salespeople will provide documents such as tax 

returns and salary slips to demonstrate financial status. Other information is also relevant but 

difficult to document.
 
Some borrowers are self-employed or run small businesses, and there 

                                                 
45

 This database is maintained by the Joint Credit Information Center in Taiwan. It contains nationwide credit 

information and provides credit records to member institutions. 
46

 Personal information includes name, gender, age, and residential addresses. Those items are standard 

requirements regardless of the business channel and not dictated by salespeople’s choices.  
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are no official records about their income when transactions are done on a cash basis. 

Borrowers’ personal lending conditions and credit reputations within the local neighborhood 

also play a critical role, but these variables, too, are difficult to confirm. Salespeople consider 

the relevant information in setting the loan rate. The loan interest rate is thus still informative, 

along with the other information available to the loan officers, in terms of the borrower’s 

credit risk.  

Ultimately, it is up to the loan officers to decide whether or not to accept the loan 

application. In the assessment process, they might raise some clarifying questions or ask for 

supplementary documents. However, it is not practically feasible for loan officers to adjust 

loan rates after salespeople have agreed to the terms with borrowers. Their decision rights are 

limited to approving or rejecting the loans. 

4.3.2. Data 

The dataset in this study covers all loan applications initiated in 2010 and 2011. It 

tracks the entire loan application process and includes applications that were withdrawn by 

borrowers in Stage 1 and rejected by loan officers in Stage 2. Data are available with respect 

to (1) loan characteristics, such as the loan amount (Amount), payment duration (Term), loan 

interest rates (Rate), and final outcome (Default); (2) observable decisions, including loan 

officers’ approval decisions (LoanAccept) and borrowers’ withdrawal decisions 

(BorrWithdrawal); and (3) salespeople’s characteristics, including gender (EmpGender) and 

tenure (EmpTenure).  

Salespeople’s characteristics refer only to the characteristics of salespeople in 

company outlets, because the characteristics of franchise salespeople were not available to 

the car dealership (CAR) or to this study. The data limitations do not come from researcher’s 

constraints. The most important data limitation is the unavailability of borrower 



 

111 

 

 

characteristics that capture their credit risk. This limitation might affect the empirical tests for 

the reporting bias hypothesis, but not necessarily for the decision bias hypothesis. I discuss 

this further in Section 4.4.4.   

I constructed three samples: the full, application, and approval samples. The sample 

construction is exhibited in Figure 2. The full sample includes all applications in Stage 1: that 

is all borrower applications, both those submitted and then withdrawn and those that were 

never withdrawn. The application sample (i.e., applications not withdrawn by the borrowers) 

includes all applications in Stage 2 that were either approved or rejected by loan officers. The 

full and application samples are used for primary empirical tests. Finally, an additional 

analysis of loan defaults is conducted with the approval sample, comprised of only approved 

loan applications, some of which ultimately went to default.  

<Insert Figure 2 here> 

The data was retrieved at the end of 2012, so not all loans have complete payment 

histories. Therefore, I construct a further sample that is limited to approved loans with 

complete payment histories.  

All data are the outcomes in equilibrium. This study argues that it is the decision 

biases that drive reporting biases. However, the sequence of decision and reporting biases can 

never be directly tested with data observed in equilibrium. I rely on the institution 

background to evaluate the possibility of reversed sequence. Setting low interest rates might 

reduce the payoff for franchisees but does not necessarily affect company outlets. Therefore, 

ex ante I do not expect that franchisees have stronger economic incentive to set a lower loan 

rate than outlets. It is less likely that reporting biases occur before decision biases.  

4.3.3. Variable Measurement 

Measure of Information (Credit Risk) Reporting  
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Loan interest rates (Rate) represent the cost of credit risk. The higher the borrower’s 

credit risk, the higher the loan rate. Although salespeople provide loan officers with several 

kinds of documentation (i.e., disaggregate information), the loan rate reflects aggregate 

information about the borrower’s credit risk. Hence, loan officers take the loan rate as a 

measure of the borrower’s credit risk and use this risk measure for their loan approval 

decisions. In other words, salespeople can influence loan officers’ assessment of the 

borrower’s credit risk by setting the loan rate. I take the loan rate (Rate) as a proxy for the 

information reported by the salespeople to the loan officers about a borrower’s credit risk.        

The loan interest rate is not a perfect proxy, however, since it includes a profitability 

element, namely the risk premium. Nonetheless, this level of noise is no different between the 

two business channels, so it is unlikely to affect the empirical inference. Moreover, since loan 

profitability is not included in the loan officers’ incentive structure, the risk premium element 

probably does not interfere with the information about the borrower’s credit risk.  

The reporting bias hypothesis suggests that franchise salespeople are more reluctant to 

report a borrower’s credit risk than outlet salespeople are, and thus keep loan rates low. With 

such reluctance at work, a borrower would have to carry a truly high level of risk for the 

salespeople to raise the loan rate. Accordingly, the level of risk included in a unit of loan rate 

is higher than would normally be expected. This suggests that the franchise loan rates are 

more informative about borrower’s credit risk than company outlet rates. Note that it is the 

downward reporting bias in setting loan rates that increases the informativeness of the loan 

rates in terms of credit risk. Empirical evidence on the information content of loan rates could 

further validate the reporting bias hypothesis.  

Measure of Decisions and Outcomes 
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Loan officers decide whether or not to approve a loan application: LoanAccept is an 

indicator variable indicating a loan officer’s acceptance or rejection of a loan. Borrowers can 

also always withdraw their applications, and BorrWithdrawal is a binary variable identifying 

whether they have chosen to discontinue the loan process. The ultimate outcome of an 

approved loan is whether it is in default or not. Default is the corresponding indicator 

variable. For approved loans with complete payment histories, it indicates the occurrence of 

bad debt expenses. For approved loans without complete payment histories, Default refers to 

cases where a borrower has an overdue payment.  

Measure of Uncertainty about Reporting Quality 

Building on the argument that when loan officers have general knowledge about 

salespeople, it reduces their uncertainty about the quality of the reporting, I rely on the 

business channel (fChannel) through which the loan application arrives to measure the loan 

officers’ uncertainty. Loan officers know whether a loan application has come from a 

franchisee or a company outlet. fChannel is an indicator variable distinguishing loan 

applications from franchisees (fChannel=1) from those submitted through outlets 

(fChannel=0).  

Appendix 2 shows the geographic distribution of company outlets, as well as the 

number of loan applications per region from both business channels across counties in 

Taiwan. CAR has at least one outlet in each county, with the number of outlets in each region 

related to the size of the population. For example, there are multiple outlets in the two highly 

populated cities, Taipei and Kaohsiung, but only one in several less-populated counties. Since 

the demographics of each county may differ, I identify the geographic locations of 

franchisees and outlets, hoping to account for this heterogeneity by including “location” fixed 

effects.          
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While the specific location (i.e., address) of each company outlet could be identified, 

those of the franchisees were not available for this study. However, the franchise salespeople 

must submit their applications to salespeople in a specific outlet. In other words, there is a 

corresponding outlet salesperson for each franchise application. This allowed me to identify 

the relative location of the franchisees by determining which company outlet they were 

closest to. For the franchise operations, then, the location fixed effect is at the county level 

when there is only one company outlet and at a smaller district when there is more than one. 

4.3.4. Descriptive Statistics 

Tables 1 and 2 present summary statistics for the full sample and the application 

sample, respectively. There are 86,040 loan applications, of which 63% and 37% are from 

franchisees and company outlets, respectively. Both franchisees and outlets are substantial 

business channels. In the full sample, 15.7% of applications were withdrawn by the 

borrowers (Panel A, Table 1). Of the remaining applications, 86% were approved by loan 

officers (Panel A, Table 2). The average loan amount in the full sample was NT $284,740 

(around US $9,500). The average annual loan rate (Rate) was 13.4%, with an average 

payment term of 2.6 years (Panel A, Table 1).  

<Insert Table 1 and Table 2 here> 

The summary statistics for the approval sample are reported in Table 3. The average 

default rate of the approval sample is 2%, which decreases to 1.2% in the sub-sample limited 

to approved loans with complete payment histories (Panel A, Table 3). Loans from 

franchisees exhibit a higher default rate than loans from company outlets in the entire 

approval sample, including both complete and incomplete payment histories (Panel B, Table 

3). However, loans from franchisees show a lower default rate for the approval sample with 

only complete payment histories (Panel C, Table 3).  
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<Insert Table 3 here> 

There are some differences in the borrower withdrawal rate and loan approval rate 

between franchisees and company outlets. Panel D of Table 1 shows that outlets (16.1%) 

have a higher borrower withdrawal rate than franchisees (15.5%). This result is consistent 

with what the reporting biases hypothesis would predict. Since franchisees set lower loan 

rates than outlets do, franchisee borrowers are less likely to withdraw their applications than 

outlet borrowers are. In Panel D of Table 2, the loan officers’ approval rate is slightly higher 

for franchisees (86.3%) than for outlets (85.3%). On the whole, although franchisees have a 

lower borrower withdrawal rate and a higher approval rate than outlets, their default rate is 

higher for the entire approval sample (Panel B, Table 3).  

No matter which sample is used for analysis, franchise loan rates are statistically 

lower than outlet loan rates. This finding is in line with the idea that franchise salespeople 

skew their loan rates downward to a greater extent than salespeople in company outlets. 

Furthermore, the interest rate for approved loans is lower for franchisees than for outlets 

(Panel B, Table 3). This suggests that at the same loan rate, loan officers are more likely to 

reject franchise loans than outlet loans, consistent with the result that the loans approved for 

franchisees have a lower loan rate on average.  

As the Pearson correlation table shows (Table 4), the correlation between Default and 

Rate is positive and significant (corr. =0.09, p<0.01), and Rate is significantly and negatively 

correlated with LoanAccept (corr. = -0.17, p<0.01). These correlations are consistent with the 

idea that loan rates reflect a borrower’s credit risk. Although the loan rate is a measure of the 

borrower’s credit risk, it also contains salespeople’s biases. One should be cautious in 

drawing any inference from the differences in the borrowers’ “true” levels of risk between the 

two channels based on the loan rates observed. Given the lower loan rates for franchise loans, 
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it would appear that franchisees have less risky loans. Yet, the higher default rate of those 

loans in the entire approval sample directly contradicts this inference. 

<Insert Table 4 here>  

4.4. Empirical Models and Results 

I use the application and full samples to test the decision bias and reporting bias 

hypotheses, respectively. In addition, I conduct an analysis of the loan defaults to evaluate an 

alternative explanation for the results of the reporting bias hypothesis and examine the net 

effect of the two types of biases on loan outcomes (Default).  

4.4.1. Decision Bias Hypothesis 

I used the application sample to test whether the association between loan officers’ 

approval decisions and the reported risk measure varies between franchisees and company 

outlets. I include LoanAccept as a dependent variable, which indicates whether the 

application is approved by a loan officer or not. Loan rate (Rate) is the proxy for a borrower’s 

credit risk as reported by salespeople. I expect the association between LoanAccept and Rate 

to differ between the two channels (fChannel). To test the difference, I also include the 

business channel (fChannel) and the interaction term between fChannel and Rate. I specify 

the empirical model for the decision bias hypothesis as follows:  

LoanAccepti= α1 Ratei+ α2 fChannelj+ α3 Ratei*fChannelj+ Σαi Controli 

+LocationFEk  +YearFE t+εi ,                                                          (1)                      

where subscript i represents each loan application, j the business channel (i.e., 

franchisee or outlet), k the location that indexes the geographic district, and t the calendar 

year in which the salespeople filed the application.
47

  

                                                 
47

 Since it is a cross-sectional rather than panel dataset, there is no subscript t for each variable. 
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Model (1) is estimated at the loan application level using a linear probability model 

with standard errors clustered by salesperson.
48

 Each loan application has only one 

observation in the dataset, but a single salesperson is likely to deal with multiple loan 

applications. Thus, the standard errors are clustered at the salesperson level. In addition to 

year fixed effects, location fixed effects are included to control for borrower preferences and 

the market competition specific to geographic districts.
49

 

I include characteristics related to loan applications as additional control variables. 

Loan characteristics include the loan amount (Amount), payment term (Term), and borrower’s 

gender (BorrGender). These loan characteristics also affect loan officers’ evaluation of a loan 

applicant’s level of risk.
50

  

Since the loan rate represents the borrower’s credit risk as priced by salespeople, loan 

officers use it as a risk measure in making loan approval decisions. The riskier the loan 

application, the less likely it is to be accepted by loan officers (i.e., α1<0). The decision bias 

emerges because of loan officers’ uncertainty about the reporting quality of the loan rate as a 

risk measure. The decision bias hypothesis predicts that information from franchisees is 

subject to a greater degree of worst-case belief than information from company outlets. Loan 

officers are more likely to reject franchise applications than outlet applications when faced 

with an increase in the loan rate, because they view franchise loan rates as more informative 

than outlet rates. Hence, the empirical prediction would be that LoanAccept is more 

                                                 
48

 Since the coefficient for the interaction term of non-linear models might be misleading (Ai and Norton 2003), 

I report results estimated by a linear probability model as the primary tests. I also re-estimate the empirical 

model using logit regressions and test the difference in the average marginal effects of loan rates between the 

two channels as robustness checks. Detailed results are reported in Table 8.    
49

 As mentioned, there are salespeople in company outlets who deal with franchise applications. I use that match 

to identify the corresponding outlets for franchisees.  
50

 CAR only knows the characteristics for salespeople in its company outlets. Salespeople’s characteristics 

include their gender (EmpGender) and tenure (EmpTenure). Therefore, the primary empirical model does not 

include salespeople’s characteristics.   
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negatively sensitive to Rate for franchisees than for outlets (i.e., α3<0). Table 5 presents the 

results of Model (1).  

<Insert Table 5 here> 

Column (3) of Table 5 reports the results of the full model, which includes an 

interaction term. The main effect of Rate on LoanAccept indicates a negative association 

between loan approval decisions (LoanAccept) and borrower’s credit risk (Rate) (-1.613, 

p<0.01) only for the outlet loan applications (fChannel=0). Given that the coefficient for the 

interaction term between Rate and fChannel is also significantly negative (-0.441, p<0.01), 

the negative association between LoanAccept and Rate also holds for franchise loan 

applications.
51

 This negative coefficient for the interaction term (i.e., α3) shows that in 

response to an increase in loan rates, loan officers are less likely to accept franchise 

applications than outlet applications, which is consistent with the prediction of H1 that 

LoanAccept is more negatively sensitive to Rate for franchise loans than for outlet loans.  

This study investigates whether loan officers use franchisee information differently 

than outlet information, so it focuses on the Rate coefficient as a measure of how DMs 

respond to information. Another interesting issue to look at is whether there is a significant 

difference in the likelihood of loan acceptance between the two business channels. The 

coefficient for fChannel (i.e., α2) is significantly positive (0.061, p<0.01). The combined 

findings suggest that when Rate is 13.83%, the likelihood of loan approval is the same 

between franchisees and company outlets. When Rate goes above or below 13.83%, franchise 

loans are either less or more likely to be approved, respectively, than outlet loans.              

Columns (4) and (5) of Table 5 report results for franchisees and company outlets, 

respectively. This sub-sample analysis allows the coefficients for all variables to vary 

                                                 
51

 The untabulated F statistic (829.63) of the joint test (α1+α3=0) also supports this inference. 
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between the two channels and is used to validate the results in column (3). Consistent with 

the prediction, the coefficients on Rate are significantly negative for both franchisees and 

outlets (-2.034, p<0.01; -1.617, p<0.01, respectively). Also, as the decision bias hypothesis 

predicts, the magnitude of the coefficient on Rate is significantly larger for franchisees than 

for outlets (χ
2=20.00, p<0.01). The separate analyses with applications from each channel are 

consistent with the results reported in column (3).  

In sum, I find that loan approval decisions for franchises are more responsive to the 

information provided than those for outlets. This finding supports the idea that loan officers 

are more uncertain about the quality of the information from franchisees, so they make their 

approval decisions based on a belief that franchise risk measures are more informative and 

react more strongly to the information. Consistent with the decision bias hypothesis, the 

negative association between loan officers’ approval decisions (LoanAccept) and the reported 

risk measure (Rate) is stronger for franchisees than for outlets. 

4.4.2. Reporting Bias Hypothesis 

The reporting bias hypothesis implies that given the same borrower, a salesperson in a 

franchise sets a lower loan rate than a salesperson in a company outlet does. I use the full 

sample to test whether the loan rates are significantly lower for franchise loans than for outlet 

loans. I include Rate as the dependent variable and fChannel as the main explanatory 

variable. The empirical model for the reporting bias hypothesis is summarized in Model (2).   

Ratei= β1 fChannelj+ Σ βi Controli+LocationFEk+YearFE t +νi ,                              (2)  

where subscript i represents each loan application, j the business channel (i.e., 

franchisee or outlet), k the location that indexes the geographic district, and t the calendar 

year in which salespeople filed the application.  
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Model (2) is estimated at the loan application level using OLS regressions with 

standard errors clustered by salesperson. Year and location fixed effects are both included. 

Since loan rates are also determined by other loan terms offered by salespeople and 

salespeople’s abilities to evaluate credit risk, loan characteristics are also included in Model 

(2).  

Importantly, the difference in borrower characteristics between the two channels 

might affect the empirical results. The location fixed effects control for borrower 

characteristics (e.g., wealth or education) specific to the geographical districts. I also control 

for the loan amount (Amount), which is associated with borrower preferences for the class 

and condition of used cars. These controls decrease the likelihood that this estimation is 

influenced by any systematic differences in borrower characteristics between the two 

channels.  

I expect that, all other things being equal, franchisees trend loan rates downward to a 

greater extent than company outlets do (i.e., β1<0). The main interest of the reporting bias 

hypothesis is whether salespeople, in anticipation of loan officers’ decision biases, 

underreport borrowers’ credit risk by setting lower loan rates. I use the full sample to assess 

whether franchise salespeople have a general tendency to set lower loan rates than outlet 

salespeople. The results of Model (2) are summarized in Table 6. Column (1) of Table 6 

reports the results using the full sample, and the significantly negative coefficient for 

fChannel (-0.504, p<0.01) is consistent with the reporting bias hypothesis that franchise 

salespeople tend to set lower loan rates than those in outlets do. 

        <Insert Table 6 here> 

However, not all loan applications in the full sample result in a loan being extended to 

a borrower (referred to here as an “executed” loan). Some applications are withdrawn by 
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borrowers, and some are rejected by loan officers. Only those loans that are not withdrawn by 

borrowers and also approved by loan officers are actually executed. I conjecture that 

franchisees’ tendency to lower a loan rate is weaker when they do not expect the loan to be 

executed. This conjecture predicts that the coefficient in fChannel (i.e., β1) will differ 

between the executed and non-executed loans.  

I split the full sample into executed and non-executed loans in two different ways. 

First, the full sample is split into “borrower non-withdrawal” and “borrower withdrawal” sub-

samples, and the results of the sub-sample analyses are reported in columns (2) and (3), 

respectively. Second, results are shown for the loan applications that were accepted by both 

borrowers and loan officers, as well as the loan applications that were either withdrawn by 

borrowers or rejected by loan officers in columns (4) and (5), respectively.  

Consistent with the results in column (1), the coefficients for fChannel are 

significantly negative across all sub-samples (i.e., executed and non-executed loans), 

suggesting that, in general, franchise salespeople have a stronger tendency to skew loan rates 

downward than salespeople in outlets do. What’s more, the magnitude of the negative 

coefficient for fChannel is significantly larger for executed loans than for non-executed loans, 

regardless of how the executed or non-executed loans were characterized (χ
2=11.32, p<0.01; 

χ
2=18.16, p<0.01, respectively). This finding supports the conjecture that when franchise 

salespeople do not expect the loan to be executed, for whatever reason, there is less need to 

skew the loan rate to offset loan officers’ decision biases.  

The finding that franchise loans have lower loan rates than outlet loans might be 

driven by unobservable differences in the levels of borrower credit risk. It is possible that 

franchise borrowers are systematically less risky than outlet borrowers. However, the 

descriptive statistics of the entire approval sample show that the default rate is statistically 
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higher for franchisees than for outlets. This statistic on loan defaults is inconsistent with that 

alternative explanation. Therefore, it is less likely that any fundamental difference in 

borrower credit risk between the two channels is driving the empirical findings. The formal 

test on loan defaults in the next section further corroborates the descriptive statistics on the 

default rate and discredits the idea that the levels of credit risk are lower for franchise 

borrowers than for outlet borrowers. 

4.4.3. Outcome of Loans: Default  

I conduct an additional analysis on loan defaults using the approval sample. This 

serves two purposes: (1) it offers additional evidence for salespeople’s downward reporting 

bias in setting the loan rate; and (2) it assesses the net consequence of loan officers’ decision 

biases and salespeople’s reporting biases on loan outcomes.  

Reporting Biases and Information Content         

In addition to resulting in different loan rates between the two channels, the 

downward reporting bias affects the information content of those loan rates. When 

salespeople are reluctant to report a borrower’s credit risk, they only slightly adjust the loan 

rate even though the borrower’s credit risk warrants a more considerable adjustment. In other 

words, loan rates developed by franchisees contain more information about the borrower’s 

credit risk than those set by outlets. To test the implication of reporting bias on the 

information content of loan rates, I include loan defaults (Default) as the dependent variable 

and Rate as the variable of interest. I am interested in seeing whether the information content 

of the loan rates differs between the two channels, so I include fChannel and the interaction 

term between Rate and fChannel in the specified Model (3). 

Defaulti= γ1Ratei+γ2fChannelj + γ3 Ratei *fChannelj +Σγi Controli+LocationFEk 

+YearFEt + δi ,                                                                                           (3)          
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where subscript i represents each loan application, j the business channel (i.e., 

franchisee or outlet), k the location that indexes the geographic district, and t the calendar 

year in which salespeople filed the application.  

Model (3) is also estimated at the loan application level using a linear probability 

model with standard errors clustered by salesperson. Year and location fixed effects are both 

included; loan characteristics are also included in Model (3). As described, not all approved 

loans have complete payment histories. Panel A of Table 7 reports the results of Model (3) 

using the approval sample that includes approved loans having both complete and incomplete 

payment histories.  

<Insert Panel A of Table 7 here> 

Column (1) in Panel A of Table 7 reports the results with an interaction term, and 

columns (2) and (3) present the results for franchisees and company outlets, respectively. The 

two sets of results are consistent with each other. Column (1) reports significantly positive 

coefficients for both Rate (0.266, p<0.01) and the interaction term between Rate and 

fChannel (0.177, p<0.01). Columns (2) and (3) likewise show a positive association between 

Default and Rate for franchisees and outlets (0.447, p<0.01; 0.258, p<0.01, respectively). 

What’s more, the coefficient for Rate is higher for franchisees than for outlets (χ
2
=21.01, 

p<0.01). These findings corroborate the idea that loan rates are a measure of the borrower’s 

credit risk and also suggest that franchise loan rates contain more risk information than loan 

rates set by salespeople in outlets. This additional evidence supports the implication of the 

reporting bias hypothesis that franchisees are more reluctant to report credit risk and include 

more risk information in the same unit of loan rates than outlets.  

Net Effects of the Decision and Reporting Biases         
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Another important question, besides determining whether there is an association 

between Default and Rate, is whether salespeople’s biases in setting the loan rate offset loan 

officers’ overvaluation of the level of risk contained in loan rates. In order to examine the net 

effect on loan outcomes, I estimate Model (3) excluding the interaction term between Rate 

and fChannel. Column (4) in Panel A of Table 7 presents the results of a linear probability 

model. The primary interest of this specification lies in whether the ultimate loan 

performance (i.e., Type II decision errors) differs between the two channels. The positive 

coefficient for fChannel (0.008, p<0.01) indicates that franchise loans have a higher default 

rate than outlet loans. This finding demonstrates that the reporting biases on the part of 

franchisees have a negative consequence: loan officers fail to reject the risky loans with 

underreported risk measures, and this leads to more defaults for the franchisees. It seems that 

the franchisees’ downward reporting bias is greater in magnitude than the loan officers’ 

decision bias and results in more decision errors (i.e., acceptance of bad loans).  

I re-estimate Model (3) using only approved loans with complete histories as a 

robustness check: the results summarized in Panel B of Table 7 are qualitatively the same as 

the results using the entire approval sample (in Panel A of Table 7). 

<Insert Panel B of Table 7 here> 

I re-estimate Models (1) and (3) with a non-linear probability model (i.e., logit 

regressions) as a robustness check. The coefficients are reported in Panel A of Table 8. Based 

on these results, I compute the average marginal effects of loan rates on the probabilities of 

LoanAccept and Default for each channel, but test the “interaction effect” with the method 

proposed in Ai and Norton (2003).
52

 The interaction effects documented in Panel B of Table 

                                                 
52

 Detailed explanations can be also found in  Norton et al. (2004) and Karaca-Mandic et al. (2012). 
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8 are generally consistent with the coefficients of the interaction terms of the linear 

probability model reported in Tables 5 and 7.  

 <Insert Table 8 here> 

4.4.4. Discussion 

This study investigates the role of so-called reporting uncertainty in the interaction 

between loan officers and salespeople by examining the differences between two specific 

business channels with regard to (1) the relationship between loan approval decisions and 

loan rates and (2) loan rates. An obvious weakness in the empirical analyses is the lack of a 

direct measure of reporting uncertainty. The empirical tests rely on the premise that the 

business channels are subject to different degrees of reporting uncertainty and therefore serve 

as an appropriate proxy. I discuss whether other differences between the two channels could 

explain the documented findings.   

Endogenous Choice for Franchisees and Company Outlets 

Prior studies suggest that when information asymmetry between headquarters and 

local units is great and monitoring is problematic, firms tend to run their businesses through 

franchising, rather than establishing their own outlets (Campbell et al. 2009; Martin 1988). 

Information asymmetry and monitoring difficulty are associated with geographic distance. As 

the geographic distribution of loan applications in Appendix 2 shows, there is at least one 

company outlet and one franchise in each county. To account for this endogenous choice 

between franchisees and outlets, I include location fixed effects in all of the empirical tests. 

The location fixed effects control for the distance between headquarters and the local units 

and thus reduce concerns about differences in the initial information asymmetry and 

monitoring difficulties across all units.  

Incentive Structures and Loan Approval Decisions 
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The incentive structures for franchisees and outlets suggest a difference in the extent 

to which CAR is compensated for accepting risky loans. As described, CAR is the residual 

claimant in the case of company outlets but not for franchisees. The direct implication is that 

CAR can be compensated with a higher loan rate for accepting risky outlet loans. When a 

risky borrower arrives at a company outlet, CAR, as the residual claimant, may bear a higher 

risk in providing the loan, but it also shares the profit generated by the attendant higher loan 

rate. The same is not true for deals struck by franchisees, however. CAR only charges them 

the capital charge rate, so its payoff is independent of the loan rates set for applications 

received through franchisees. In other words, CAR does not earn risk premiums for 

approving risky borrowers conducting business through the franchise operations. In that 

sense, loan officers are more willing to accept risky loans from outlets than they are to accept 

ones from franchisees. Accordingly, the extent to which CAR can be compensated for 

borrowers’ level of risk might explain the difference in correlation between LoanAccept and 

Rate between the two channels.  

In the current set of empirical analyses, the business channels coincide with the 

incentive structures, so I cannot discern whether the finding is driven by loan officers’ 

uncertainty about the quality of reporting or the risk premiums argument presented above. In 

an attempt to parse out these two explanations, I analyze whether decision biases decrease in 

relation to salespeople’s tenure by only using data from applications obtained from company 

outlets. Salespeople’s tenure captures the variations in loan officers’ reporting uncertainty 

within CAR. Following the same reasoning, I expect decision biases to decrease with tenure. 

The results are reported in Table 9. I sort salespeople into senior and junior groups based on 

the mean of EmpTenure. Indeed, I find that the negative relationship between LoanAccept 

and Rate is stronger for junior salespeople than for senior salespeople. 
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<Insert Table 9 here> 

Salespeople’s tenure might also reflect their ability to evaluate borrowers’ levels of 

risk. However, I do not find a significant difference in the default rate between senior and 

junior salespeople. I take this finding as an indication that seniority on the part of salespeople 

does indeed impact loan officers’ reporting uncertainty. Since all salespeople in CAR outlets 

are subject to the same incentive structure, this finding is consistent with the decision bias 

hypothesis that the association between loan officers’ approval decisions and loan rates varies 

according to salespeople’s seniority, a proxy for reporting uncertainty. In sum, I do not find 

direct evidence suggesting that it is the incentive structure rather than reporting uncertainty 

that explains the documented differences between the two channels.  

Differences in Borrowers’ Underlying Credit Risk 

Data on borrower characteristics are not available for this study, so it is important to 

discuss whether there could be some unknown, systematic difference in the borrowers’ 

underlying credit risk driving the empirical results. This systematic difference might emanate 

from self-selection on the borrowers’ part or salespeople’s preferences in terms of selecting 

borrowers. This data limitation poses a serious threat to the empirical test for the reporting 

bias hypothesis, since lower franchise loan rates might simply represent less risky borrowers. 

I exclude this possibility by showing that franchisees have a higher default rate than outlets.  

In terms of testing the decision bias hypothesis, the data limitation is less of a 

concern. The primary interest of that hypothesis is the quality of the reporting, which 

concerns the way in which loan rates reflect a borrower’s credit risk. Suppose that there were 

indeed some fundamental differences in borrowers’ credit riskiness that were not captured by 

the researchers. As long as loan officers viewed a franchisee’s reporting quality the same as 

an outlet’s, they would not treat the information any differently. What matters is the loan 
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officers’ opinions about how salespeople reflect borrower credit risk in the loan rate, not the 

borrower’s credit risk per se. In other words, differences in borrower credit risk are less likely 

to be a cause driving the difference in loan officers’ responses to the information received.    

4.5. Conclusion  

The prevalence of information transmission in decision making comes from the 

separation of information supply and decision rights. Firms ex ante design mechanisms for 

inducing truthful reporting, but ex post evaluation of the quality of that reporting remain 

difficult for DMs, especially when they lack sufficient knowledge about the providers of 

information (IPs). The primary purpose of this study is to examine the effects of “reporting 

uncertainty” on both the use and the reporting of information. I use data on used-car loan 

applications from a car dealership in Taiwan (CAR) where (1) IPs work in either 

franchisees or company outlets and (2) available data on sequential decisions (i.e., loan 

rates, loan approval decisions, and loan defaults) allows for inferences about the interaction 

between DMs and IPs. I rely on working relationships shaped by different organizational 

structures to capture the degree of reporting uncertainty and argue that reporting uncertainty 

is associated with two types of biases in the processing of information.  

The documented empirical evidence suggests that loan officers are more uncertain 

about the quality of reporting received from franchisees than from outlets and bear greater 

decision biases toward them by overweighting franchise loan rate information when 

approving loans. At the other end of the interaction, franchise salespeople anticipate loan 

officers’ decision biases and slant their loan rates downward (i.e., underreport risk) to reduce 

the foreseen likelihood of loan rejections. However, the higher default rate for franchisees 

suggests that the two types of biases (i.e., decision and reporting bias) do not perfectly offset 
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each other. In sum, this study documents the cost of reporting uncertainty that arises from 

DMs’ insufficient general knowledge about IPs.  

Prior literature on issues related to information transmission has focused on either 

information use or information supply (reporting). This study investigates the implications of 

both simultaneously and sheds some light on their interaction. In addition, it highlights the 

role of reporting uncertainty and documents its cost (i.e., a higher default rate), which is all 

associated with organizational design. In particular, the finding that franchisees are associated 

with higher default rates demonstrates the real effect of reporting uncertainty. Although I 

document the costs associated with franchisees, there might also be benefits to franchising 

(e.g., increased business revenues) which have not been examined in this study. This study 

does not suggest that CAR made a suboptimal decision in franchising its loan business. 

This study uses field data from one particular car dealership in Taiwan. I exploit 

several features of this research site, such as the fact that it possesses two business channels 

with different organizational structures and the organizational separation between 

information supply and decision rights, so as to document evidence on decision biases and 

reporting biases. The evidence is limited to one particular organization, but the underlying 

issue associated with the effects of reporting uncertainty on decision making and reporting 

has broader implications. Recognizing that internal information flow, decision rules, and 

organizational designs vary across firms, the empirical evidence specific to a given firm 

substantiates the general understanding of the interrelation between information use and 

reporting by offering concrete implications for a specific context. 
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Appendix 1: Variable Descriptions 

This table provides descriptions of the primary variables used in this study. 

Variables Description 

BorrWithdrawal =Dummy variable: 1 if the loan application is withdrawn by the 

borrower; 0 otherwise 

LoanAccept =Dummy variable: 1 if the loan application is approved by the loan 

officer; 0 otherwise 

Default =Dummy variable: 1 if a loan default occurs; 0 otherwise. For loans 

with complete payment histories, Default represents the occurrence 

of bad debt expenses; for loans without complete payment histories, 

it refers to cases where payment is overdue.  

fChannel =Dummy variable: 1 if the application was submitted through a 

franchisee; 0 if it was received from a company outlet 

Rate =The loan rate: the proxy for the borrower’s credit risk, which is set 

by salespeople 

Amount =The approved loan amount 

Term =The loan payment term, ranging from 1 to 5 years 

BorrGender =Dummy variable: 1 if the borrower is male; 0 otherwise 

EmpGender =Dummy variable: 1 if the salesperson is male; 0 otherwise 

EmpTenure =The number of years employed at CAR 

logEmpTenure =Log of EmpTenure 

Senior =Dummy variable: 1 if EmpTenure> 6; 0 if EmpTenure≤6 
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Appendix 2: Geographic Distribution of Loan Applications 

This map shows the relative geographic position of each county in Taiwan and identifies the location of CAR’s 

headquarters. The table below presents descriptive statistics on the number of company outlets in each county 

and the number of loan applications received, by county and channel. The statistics are based on the full sample, 

all of the loan applications.  

 

County Number of 

Company Outlets 

Number of Loan Applications 

Franchisees Company Outlets Total 

Taipei 20 11738 53% 10520 47% 22258 

Taoyuan 5 4220 71% 1739 29% 5959 

Hsinchu 3 1956 62% 1177 38% 3133 

Miaoli 2 978 49% 1027 51% 2005 

Taichung 8 8882 63% 5129 37% 14011 

Nantou 2 1505 67% 748 33% 2253 

Changhua 3 2585 68% 1201 32% 3786 

Yunlin 3 1796 62% 1086 38% 2882 

Chiayi 2 2484 66% 1304 34% 3788 

Tainan 5 5528 72% 2142 28% 7670 

Kaohsiung 8 6442 70% 2707 30% 9149 

Pingtung 2 2647 72% 1036 28% 3683 

Yilan 1 1352 68% 650 32% 2002 

Hualien 1 1256 69% 559 31% 1815 

Taitung 1 1236 75% 410 25% 1646 

Total 66 54605 63% 31435 37% 86040 

 

CAR Headquarters 
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Figure 1 CAR’s Organizational Structure 

Figure 1 presents CAR’s organizational structure for its used-car loan business. At the bottom of the structure 

are two business channels: company outlets and franchisees. Franchisees are designated with a dashed line since 

they are independent organizations separate from CAR. Regional offices are positioned between the company 

headquarters and the two business channels in the hierarchy. The term “loan officers” as used in this paper refers 

to the employees responsible for dealing with loan approvals at either the regional offices or headquarters; 

“salespeople” refers to the employees working in either one of the two business channels.  

Headquarters

(HQ)

Regional offices

Company-owned 

outlets
Franchisees 

 
Figure 2 Sample Construction 

Figure 2 illustrates the mapping for the loan application process and the sample construction. The full sample 

includes all applications received from borrowers, those both withdrawn and not withdrawn. The application 

sample includes only those applications that were not withdrawn, which were then either approved or rejected 

by loan officers. The approval sample includes the approved loans, which may or may not ultimately be in 

default.      

Withdrawal

Non-Withdrawal

Accept

Reject

Default

Non-Default

Full Sample
(Stage 1)

Application 
Sample

(Stage 2)

Approval
Sample
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Table 1 Summary Statistics for the Full Sample  

This table presents the descriptive statistics for loan applications in the full sample. Each variable is defined in 

Appendix 1. The full sample includes all loan applications, some of which were subsequently withdrawn by 

borrowers. Panel A outlines the summary statistics for loans from both franchisees and company outlets. 

Separate statistics for franchisees and outlets are reported in Panels B and C, respectively. Panel D reports the 

differences between franchisees and outlets. The symbols *, **, and *** indicate statistical significance at the 

10%, 5%, and 1% levels, respectively. 

Panel A: Full Sample with Both Channels Included (N=86,040) 

Variable Mean P25 Median P75 Std. Dev. 

BorrWithdrawal 0.157 0.000 0.000 0.000 0.364 

fChannel 0.635 0.000 1.000 1.000 0.482 

Rate 0.134 0.111 0.131 0.171 0.034 

Amount (in 100,000) 2.847 1.500 2.500 3.500 1.918 

Term 2.635 2.000 3.000 3.000 1.051 

BorrGender 0.665 0.000 1.000 1.000 0.472 

Panel B: Statistics for Franchisees in the Full Sample (N=54,605) 

Variable Mean P25 Median P75 Std. Dev. 

BorrWithdrawal 0.155 0.000 0.000 0.000 0.362 

Rate 0.133 0.111 0.131 0.161 0.032 

Amount (in 100,000) 2.851 1.500 2.500 3.600 1.854 

Term 2.701 2.000 3.000 3.000 1.071 

BorrGender 0.668 0.000 1.000 1.000 0.471 

Panel C: Statistics for Company Outlets in the Full Sample (N=31,435) 

Variable Mean P25 Median P75 Std. Dev. 

BorrWithdrawal 0.161 0.000 0.000 0.000 0.368 

Rate 0.137 0.111 0.132 0.178 0.035 

Amount (in 100,000) 2.841 1.500 2.400 3.500 2.025 

Term 2.519 2.000 2.500 3.000 1.007 

BorrGender 0.660 0.000 1.000 1.000 0.474 

Panel D: Differences between the Two Channels  

Variable Franchisees Company Outlets t-test 

 Mean Std. Dev. Mean Std. Dev. Diff. in Mean 

BorrWithdrawal 0.155 0.362 0.161 0.368 -0.004 ** 

Rate  0.133 0.032 0.137 0.035 -0.005 *** 

Amount (in 100,000) 2.851 1.854 2.841 2.025 0.010  

Term 2.701 1.071 2.519 1.007 0.183 *** 

BorrGender 0.668 0.471 0.660 0.474 0.008 ** 
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Table 2 Summary Statistics for the Application Sample  

This table presents the descriptive statistics for loan applications in the application sample. The application 

sample includes only those loan applications that were not withdrawn by borrowers. Panel A outlines the 

summary statistics for loans from both channels. Separate statistics for the franchisees and company outlets are 

reported in Panels B and C, respectively. Panel D reports the differences between franchisees and outlets. 

Descriptions of the variables can be found in Appendix 1. The symbols *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Application Sample with Both Channels Included (N=72,515) 

Variable Mean P25 Median P75 Std. Dev. 

LoanAccept 0.860 1.000 1.000 1.000 0.347 

fChannel 0.636 0.000 1.000 1.000 0.481 

Rate 0.133 0.111 0.131 0.162 0.034 

Amount (in 100,000) 2.790 1.500 2.400 3.500 1.835 

Term 2.603 2.000 3.000 3.000 1.042 

BorrGender 0.652 0.000 1.000 1.000 0.477 

Panel B: Statistics for Franchisees in the Application Sample (N=46,149) 

Variable Mean P25 Median P75 Std. Dev. 

LoanAccept 0.863 1.000 1.000 1.000 0.344 

Rate 0.131 0.111 0.131 0.161 0.032 

Amount (in 100,000) 2.803 1.500 2.500 3.500 1.789 

Term 2.673 2.000 3.000 3.000 1.066 

BorrGender 0.656 0.000 1.000 1.000 0.475 

Panel C: Statistics for Company Outlets in the Application Sample (N=26,366) 

Variable Mean P25 Median P75 Std. Dev. 

LoanAccept 0.853 1.000 1.000 1.000 0.354 

Rate 0.136 0.111 0.132 0.178 0.035 

Amount (in 100,000) 2.766 1.500 2.300 3.500 1.913 

Term 2.479 2.000 2.000 3.000 0.988 

BorrGender 0.644 0.000 1.000 1.000 0.479 

Panel D: Differences between the Two Channels  

Variable Franchisees Company Outlets t-test 

 Mean Std. Dev. Mean Std. Dev. Diff. in Mean 

LoanAccept 0.863 0.344 0.853 0.354 0.010 *** 

Rate 0.131 0.032 0.136 0.035 -0.005 *** 

Amount (in100,000) 2.803 1.789 2.766 1.913 0.037 *** 

Term 2.673 1.066 2.479 0.988 0.194 *** 

BorrGender 0.656 0.475 0.644 0.479 0.011 *** 
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Table 3 Summary Statistics for the Approval Sample 

This table presents the descriptive statistics for approved loan applications. Some loans have complete payment 

histories and some do not. The loans with complete payment histories are separated out as a sub-sample of the 

approval sample. Panel A separately outlines summary statistics for all loans that were approved (i.e., the entire 

approval sample) and only those with complete payment histories. Panels B and C report the differences in 

statistics between franchisees and company outlets within the approval sample and the sub-sample with 

complete payment histories, respectively. Descriptions of the variables can be found in Appendix 1. The 

symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Approval Sample 

Variable Approval Sample Complete Histories 

 (N=62,332) (N=19,159) 

 Mean Std. Dev. Mean Std. Dev. 

Default 0.020 0.141 0.012 0.110 

fChannel 0.639 0.480 0.595 0.491 

Rate 0.131 0.033 0.131 0.034 

Amount (in 100,000) 2.794 1.793 2.178 1.846 

Term 2.584 1.043 1.521 0.479 

BorrGender 0.638 0.481 0.648 0.478 

Panel B: Differences between the Two Channels (Approval Sample) 

 Variable Franchisees 

(N=39,837) 
Company Outlets 

(N=22,495) 

t-test 

 Mean Std. Dev. Mean Std. Dev. Diff. in Mean 

Default 0.023 0.150 0.016 0.124 0.007 *** 

Rate 0.129 0.032 0.134 0.035 -0.005 *** 

Amount (in100,000) 2.815 1.770 2.757 1.833 0.059 *** 

Term 2.658 1.068 2.453 0.985 0.205 *** 

BorrGender 0.642 0.480 0.630 0.483 0.012 *** 

Panel C: Differences between the Two Channels (Complete Histories) 

Variable Franchisees Company Outlets t-test 

   (N=11,404) (N=7,755) 

 Mean Std. Dev. Mean Std. Dev. Diff. in Mean 

Default 0.010 0.097 0.014 0.118 -0.005 *** 

Rate 0.135 0.035 0.129 0.033 0.006 *** 

Amount (in100,000) 2.168 1.777 2.185 1.892 -0.018  

Term 1.530 0.480 1.515 0.479 0.015 ** 

BorrGender 0.654 0.476 0.643 0.479 0.012 * 
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Table 4 Pearson Correlation Table (Full Sample) 

Table 4 reports Pearson correlation coefficients among variables using the full sample. Some correlations are 

null because some loans stop in the application process. For example, “borrower-withdrawn loans” cannot be 

approved by loan officers, so the correlation between LoanAccept and BorrWithdrawal is not valid. P-values are 

in parentheses. Please refer to Appendix 1 of this study for descriptions of each variable. 

  (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

(a)Rate 1.00                   

                      

(b)Amount -0.33 1.00                 

  (0.00)                   

(c)Term -0.04 0.403 1.00               

  (0.00) (0.00)                 

(d)BorrGender 0.09 -0.04 -0.01 1.00             

  (0.00) (0.00) (0.06)               

(e)EmpGender -0.03 -0.01 -0.02 0.01 1.00           

  (0.00) (0.12) (0.00) (0.11)             

(f)EmpTenure -0.02 -0.01 -0.03 0.00 0.14 1.00         

  (0.00) (0.00) (0.00) (0.18) (0.00)           

(g)fChannel -0.07 0.00 0.08 0.01 -0.02 -0.02 1.00       

  (0.00) (0.46) (0.00) (0.01) (0.00) (0.00)         

(h)BorrWithdrawal 0.08 0.07 0.07 0.06 -0.03 -0.03 -0.01 1.00     

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)       

(i)LoanAccept -0.17 0.01 -0.04 -0.07 0.00 0.02 0.01 . 1.00   

  (0.00) (0.08) (0.00) (0.00) (0.51) (0.00) (0.00) .     

(j)Default 0.09 -0.01 0.06 0.04 0.00 -0.01 0.02 . . 1.00 

  (0.00) (0.00) (0.00) (0.00) (0.79) (0.00) (0.00) . .   
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Table 5 Loan Approval Decisions (Application Sample) 

LoanAccepti=α1Ratei+α2fChannelj+α3Ratei*fChannelj+ΣαiControli+LocationFEk+YearFEt+εi,        (1) 

Table 5 presents the results for the regression of the loan approval decisions based on loan rates. This model is 

estimated by a linear probability model at the loan application level using the application sample. Columns (1), 

(2), and (3) report results based on the application sample pooled with each of the two business channels. 

Columns (4) and (5) report regression results for franchisees and company outlets, respectively. A Wald test is 

performed to test the difference in the coefficients for Rate between the two channels and the chi-squared value 

is reported. Standard errors are clustered at the salesperson level and reported in parentheses. Please refer to 

Appendix 1 and Figure 2 of this study for descriptions of each variable and a definition of the sample 

construction, respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 

levels, respectively. 

Variables Application Sample Franchisees Company Outlets 

 (1) (2) (3) (4) (5) 

Rate -1.875*** -1.873*** -1.613*** -2.034*** -1.617*** 

  (0.058) (0.058) (0.071) (0.072) (0.078) 

fChannel  0.002 0.061***   

   (0.003) (0.010)   

Rate*fChannel   -0.441***   

    (0.083)   

Amount -0.792*** -0.790*** -0.790*** -0.706*** -0.892*** 

  (0.097) (0.097) (0.096) (0.111) (0.159) 

Term -0.126*** -0.126*** -0.126*** -0.096*** -0.193*** 

  (0.013) (0.013) (0.013) (0.016) (0.025) 

BorrGender -0.042*** -0.042*** -0.043*** -0.042*** -0.045*** 

  (0.003) (0.003) (0.003) (0.003) (0.004) 

Constant 1.192*** 1.190*** 1.155*** 1.198*** 1.185*** 

  (0.017) (0.017) (0.018) (0.018) (0.026) 

            

Test of the difference: Rate    
χ

2
 statistics       

 -0.417***  

20.00 

      

Year fixed effect Yes Yes Yes Yes Yes 

Location fixed 

effect Yes Yes Yes Yes Yes 

Adjusted R
2
 0.043 0.043 0.043 0.048 0.038 

Observations 72,515 72,515 72,515 46,149 26,366 
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Table 6 Loan Rate Setting Decisions (Full Sample)  

Ratei=β1 fChannelj+ΣβiControli+ LocationFEk+YearFEt +νi,                                                                (2) 

Table 6 presents results for the regression of loan rates based on business channels. This model is estimated by 

OLS regressions at the loan application level using the full sample. Column (1) reports the results based on the 

full sample. Columns (2) and (3) show the results for each sub-sample, split according to whether the borrowers 

withdrew their applications or not. Columns (4) and (5) report regression results for loans approved by loan 

officers and for loans rejected by either borrowers or loan officers, respectively. A Wald test is performed to test 

the difference in the coefficients for fChannel between the two sub-samples, and the chi-squared values are 

reported. Standard errors are clustered at the salesperson level and reported in parentheses. Please refer to 

Appendix 1 and Figure 2 of this study for descriptions of each variable and the definition of the sample 

construction, respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 

levels, respectively. 

Variables Full Executed Non-Executed Executed Non-Executed 
 Sample (BorrWithdrawal=0) (BorrWithdrawal=1) (LoanAccept=1) (LoanAccept=0) 

 (1) (2) (3) (4) (5) 

fChannel -0.504*** -0.540*** -0.274*** -0.546*** -0.309*** 

 (0.049) (0.047) (0.088) (0.047) (0.066) 

Amount -0.654*** -0.699*** -0.532*** -0.743*** -0.507*** 

 (0.016) (0.016) (0.025) (0.015) (0.023) 

Term 0.337*** 0.327*** 0.336*** 0.318*** 0.265*** 

 (0.020) (0.020) (0.038) (0.020) (0.033) 

BorrGender 0.522*** 0.506*** 0.299*** 0.471*** 0.208*** 

 (0.022) (0.025) (0.061) (0.027) (0.045) 

Constant 14.49*** 14.50*** 15.30*** 14.41*** 15.66*** 

 (0.206) (0.217) (0.271) (0.208) (0.239) 

      

Test of the difference: 

fChannel  

χ
2
 statistics    

-0.266*** 

11.32 

-0.237*** 

18.16 

      

Year fixed effect Yes Yes Yes Yes Yes 

Location fixed 

effect Yes Yes Yes Yes Yes 

Adjusted R
2
 0.189 0.193 0.196 0.206 0.169 

Observations 86,040 72,515 13,525 62,332 23,708 
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Table 7 Loan Default  

Panel A: Approval Sample with Both Complete and Incomplete Payment Histories 

Defaulti=γ1Ratei+γ2fChannelj+γ3Ratei*fChannelj+ΣγiControli+OutletFEk+YearFEt+δi,                         (3) 

Table 7 shows results for the regression of loan default based on loan rates. This model is estimated by either 

OLS or logit regressions at the loan application level using the approval sample. Columns (1), (4), and (5) report 

results based on the application sample pooled with each of the two business channels. Columns 2 and 3 report 

regression results for franchisees and company outlets, respectively. A Wald test is performed to test the 

difference in the coefficients for Rate between the two channels, and the chi-squared value is reported. Standard 

errors are clustered at the salesperson level and reported in parentheses. Please refer to Appendix 1 and Figure 2 

of this study for descriptions of each variable and the definition of the sample construction, respectively. The 

symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.  

 

Approval 

Sample 

(OLS) 

Franchisees 

 

(OLS) 

Company 

Outlets 

(OLS) 

Approval 

Sample 

(OLS) 

Approval 

Sample 

(Logit) 

Variables (1) (2) (3) (4) (5) 

Rate 0.266*** 0.447*** 0.258*** 0.370*** 20.38*** 

  (0.030) (0.029) (0.031) (0.022) (1.005) 

fChannel -0.016***   0.008*** 0.439*** 

 (0.004)   (0.001) (0.074) 

Rate*fChannel 0.177***     

 (0.038)     

Amount 0.020 -0.029 0.106 0.019 -79.62*** 

 (0.335) (0.465) (0.491) (0.334) (30.57) 

Term 0.795*** 0.872*** 0.604*** 0.795*** 49.28*** 

 (0.063) (0.078) (0.089) (0.063) (3.352) 

BorrGender 0.010*** 0.010*** 0.010*** 0.010*** 0.583*** 

 (0.001) (0.001) (0.002) (0.001) (0.068) 

Constant -0.049*** -0.066*** -0.044*** -0.062*** -8.897*** 

 (0.006) (0.006) (0.007) (0.005) (0.360) 

     

Test of the difference: Rate  
χ

2
 statistics      

0.189*** 

21.01   

      

Year fixed effect Yes Yes Yes Yes Yes 

Location fixed effect Yes Yes Yes Yes Yes 

Adjusted R
2
 /Pseudo R

2
 0.015 0.015 0.014 0.015 0.084 

Observations 62,332 39,837 22,495 62,332 62,332 
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Table 7 Loan Default (continued) 

Panel B: Approval Sample with Complete Payment Histories Only 

Defaulti=γ1Ratei+γ2fChannelj+γ3Ratei*fChannelj+ΣγiControli+OutletFEk+YearFEt+δi,                   (3) 

Variables Approval 

Sample 

(OLS) 

Franchisees 

 

(OLS) 

Company 

Outlets 

(OLS) 

Approval 

Sample 

(OLS) 

Approval 

Sample 

(Logit) 

 (1) (2) (3) (4) (5) 

Rate 0.147*** 0.261*** 0.144*** 0.209*** 0.145*** 

 (0.035) (0.037) (0.036) (0.027) (0.036) 

fChannel -0.010*     

 (0.005)     

Rate*fChannel 0.113**     

 (0.046)     

Amount -0.162 -0.229 0.004 -0.202 0.006 

 (0.273) (0.331) (0.459) (0.274) (0.460) 

Term 0.769*** 0.830*** 0.641** 0.769*** 0.641** 

 (0.177) (0.236) (0.259) (0.177) (0.261) 

BorrGender 0.006*** 0.006** 0.007*** 0.006*** 0.007*** 

 (0.002) (0.002) (0.002) (0.002) (0.002) 

Constant -0.032*** -0.044*** -0.027*** -0.040*** -0.026** 

 (0.008) (0.007) (0.010) (0.007) (0.010) 

      

Test of the difference: Rate  
χ

2
 statistics        

     0.117** 

     5.56   

      

Year fixed effect Yes Yes Yes Yes Yes 

Location fixed 

effect Yes Yes Yes Yes Yes 

Adjusted R
2
 

/Pseudo R
2
 0.008 0.007 

 

0.010 0.008 0.102 

Observations 19,159 11,404 7,755 19,159 18,181 
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Table 8 Re-estimation with Non-linear Probability Models 

Panel A: Loan Withdrawal and Approval Decisions 

Panel A reports the results of Models 1 and 3, re-estimated at the loan application level by logit regressions. 

Standard errors are clustered at the salesperson level and reported in parentheses. Columns 1 and 2 present the 

results for loan approval decisions and loan defaults, respectively. Panel B reports the average marginal effects 

of loan rates on loan approval decisions and loan defaults by channel based on the results of Panel A. Please 

refer to Appendix 1 and Figure 2 of this study for descriptions of each variable and the definition of the sample 

construction, respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 

levels, respectively. 

  LoanAccept Default 

Variables (1) (2) 

Rate -13.77*** 19.73*** 

 (0.593) (1.918) 

fChannel 0.624*** 0.301 

 (0.106) (0.330) 

Rate*fChannel -4.247*** 0.893 

 (0.709) (2.135) 

Amount -5.817*** -79.78*** 

 (0.789) (30.61) 

Term -1.201*** 49.32*** 

 (0.120) (3.359) 

BorrGender -0.404*** 0.583*** 

 (0.0251) (0.0677) 

Constant 4.476*** -8.797*** 

 (0.160) (0.444) 

Year fixed effect Yes Yes 

Outlet fixed effect Yes Yes 

Pr > χ
2
 0.000 0.000 

Pseudo R
2
 5.66% 8.43% 

Log-likelihood -27785.346 -5682.7136 

Observations 72,515 62,332 

Panel B: Average Marginal Effect of the Loan Rate 

  Pr(LoanAccept) Pr(Default) 

Franchisees -2.019*** 0.454*** 

 (0.064) (0.029) 

Company outlets -1.648*** 0.300*** 

 (0.074) (0.036) 

Interaction effects -0.371*** 0.154*** 

 (0.094) (0.058) 
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Table 9 Effect of Salespeople’s Tenure 

These results are estimated at the loan application level by OLS regression. All analyses are limited to the loan 

applications received from company outlets. Columns (1) and (2) use the outlet applications from the approval 

sample. The median of salespeople’s tenure is six years, according to which I split the sample into senior and 

junior salespeople. A Wald test is performed to test the difference in the coefficients for Rate between the sub-

samples, and the chi-squared value is reported. The sample used for Column (3) includes outlet approved loans. 

Standard errors are clustered at the salesperson level and reported in parentheses. Please refer to Appendix 1 and 

Figure 2 of this study for descriptions of each variable and the definition of the sample construction, 

respectively. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively.  

   LoanAccept   Default 

Variables 

(1) 

(Senior=1) 

(2) 

(Senior=0) 

(3) 

Rate -1.393*** -1.958*** 0.258*** 

  (0.093) (0.131) (0.031) 

Senior   -0.0002 

   (0.002) 

Amount -0.606*** -1.417*** 0.107 

  (0.183) (0.275) (0.494) 

Term -0.216*** -0.141*** 0.604*** 

  (0.029) (0.043) (0.088) 

BorrGender -0.040*** -0.052*** 0.010*** 

 (0.005) (0.008) (0.002) 

Constant 1.157*** 1.228*** -0.044*** 

  (0.035) (0.041) (0.006) 

    

Test of the difference: Rate 

χ
2
 statistics  

0.565*** 

12.47 

 

   

Year fixed effect Yes Yes Yes 

Location fixed effect Yes Yes Yes 

Observations 16,430 9,936 22,495 

Adjusted R
2
 0.034 0.047 0.014 

 

 


