

Tilburg University

Recognition for acyclic context-sensitive grammars is probably polynomial for fixed
grammars
Aarts, E.

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Aarts, E. (1991). Recognition for acyclic context-sensitive grammars is probably polynomial for fixed grammars.
(ITK Research Memo). Institute for Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/012ff806-66e4-4dd7-ae39-49433110ec48

:BM ,~~ ~~CRM ~~~~~5

~ ~~ ~~~.
8419 -J`` ~~`~`.~~,~~
1991 J~~ ~~~

8

hNMll IINI IIIIII III NIII IIIII INh ~n IIII Inl

INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

i; r',:. ~, -;E. - K ~~rr~ t' 4~ ~~ -E
Í-!!.~:~:~- ti.r~ ~ ~

I.T.K. Research Memo
June 1991

Recognition for Acyclic
Context-Sensitive Grammars

is probably Polynomial for
Fixed Grammars

Erik Aarts
no. 8

01991. Institute for Language Technology and Artificial Intelligence,
Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
Phone: t3113 663113, Fax: f3113 663110.

Recognition for Acyclic Context-Sensitive Grammars is Probably
Polynomial for Fixed Grammars

Erik Aarts
Institute for Language Technology and Artificial Intelligence

PoBox 90153
5000 LE Tilburg
The Netherlands

Abstract
Contezt-sensitive grammars in which each rule is of the formaZQ ~ aryj.i are acyclic if the

associated contezt-free grammar with the rules Z~ ry is acyclic. The problem whether an

inputstring is in the language generated by an acyclic contezt-sensitive grammar is probably

polynomial for fized grammars.

Introduction

One of the most well-known classifications of rewrite grammars is the Chomsky hierarchy. Gram-

mars and languages are of type 0(unrestricted), type 1(context-sensitive), type 2(context-free)

or of type 3(regular). Much research has been done involving regular and context-free grammazs.

Context-free languages can be recognized in a time that is polynomial in the length of the input

and the length of the grammar (Eazley, 1970]. Recognition of type 0 languages is undecidable.

We see two majors tracks for the research on grammars which lie between these two very distant

complexity classes.
First, people have tried to put restrictions on context-sensitive grammars in order to generate

context-free languages. Among them are Book [1972], Hibbard [1974] and Ginsburg and Greibach

[1966]. Baker [1974] has shown that these attacks come down to the same more or less. They all

block the use of context to pass information through the string. Book [1973] gives an overview

of attempts to generate context-free languages with non-context-free grammars. How to restrict

permutative grammazs in order to generate context-free languages is described in Mákkinen (1985].
The other track is the track of complexity of recognition. One of the best introductions to

complexity theory is Gazey and Johnson [1979]. They state that recognition for context-sensitive

grammazs is PSPACE-complete (referring to [Kuroda, 1964] and [Kazp, 1972]). Some people have

tried to put restrictions on CSG's so that recognition lies somewhere between PSPACE and P.

Book [1978] has shown that for linear time CSG's recognition is NP-complete even for (some) fixed

grammars. Furthermore there is a result that recognition for growing CSG's is polynomial for fixed
grammars [Dahlhaus and Warmuth, 1986]. This is the tradition I am following.

In this article I will consider one type of restricted context-sensitive grammars, the acyclic
context sensitive grammazs. The complexity of recognition is lower than in the unrestricted case

because we restrict the amount ofinformation that can be sent (and we do not block it by barriers!).

In the unrestricted case we can send messages that leave no irace. After a message that changes 0's

into 1's e.g. we can send a message that does the reverse. In sending a message from one position

in the sentence to another, the intermediate symbols are not changed. In fact they are changed

twice: back and forth. With acyclic csg's, this is not possible and the amount of information that

can be sent is restricted by the grammar.

1

Definitions

A grammar is a 4-tuple, G-(V, E, R, S), where

V is a set of symbols, E C V is the set of terminal symbols.

R C V' x V' is a relation defined on strings. Elements of R aze called rules. S E V is the

staztsymbol.

A grammaz is context-aenaitive if each rule is of the form
aZA--~arypwhereZEV`E;a,p,ryEV';1'~e.
A grammaz is context- f ree if each rule is of the form
Z~rywhere ZEV`E;ryEV' ;ry~e.

Derivability (~) between strings is defined as follows:
uav ~ u,Qv (u, v, a, ~B E V') ifï (a, (i) E R.

The transitive closure of ~ is denoted by ~. The transitive reflexive closure of ~ is denoted by

~. The language generated by G is defined as

L(G) -{w E E' ~ S~ w}.

A derivation of a string b is a sequence of strings xl, xz, ... , x„ with
S-xl,foralli(1CiGn)x;~x;tl andx„-b.

A context-free grammar is acyclic if there is no Z E V`E such that

Z~ Z. This implies that there is no string a E V' such that a~ a.

We can map a context-sensitive grammaz G onto its associated context-free grammaz G' as follows:

If G is (V, E, R, S) then G' is (V, E, R', S) where for every rule aZp -~ a7~i E R there is a rule

Z~ ry E R~. There aze no other rules in R'.

We call G acyclic iff the associated context-free grammaz G' is acyclic.

The notation we use for context-sensitive rules is as follows: the rule

aZ,Q -~ aryA is written as Z --~ (al][az] . . . [a;] ry [Al][Az] . . . [(~~] with

a - [ai][az] . . . [a,J and Q - [Ai][Qz] . . . [Q~].

Recognition is polynomial

In this section we try to prove that the recognition problem for acyclic context-sensitive grammars

is polynomial. Acyclic CSG will be abbreviated as ACSG. Suppose we have an acyclic context-

sensitive grammaz G- (V, E, R, S).

RECOGNITION FOR A FIXED ACYCLIC CSG
INSTANCE: a string w E E'.
QUESTION: Is w in the language generated by G?

We try to prove that RECOGNITION FOR A FIXED ACYCLIC CSG is polynomial for every

ACSG. We shall give an algorithm that recognizes sentences of some ACSG. We shall show that

the algorithm is polynomial for some "hazd" combinations of grammars and inputs. We aze not

yet able to prove that the algorithm is polynomial for all grammars and inputs.

2

A(standard) algorithm for recognition with context-free gram-

mars

In this section I will give a simple algorithm for recognition of sentences generated by a context-free

grammar. The algorithm is based on the algorithms for chazt pazsing that aze described in Gazdar

and Mellish [1989, chap. 6]. The origin of all these algorithms is Eazley's algorithm [Eazley, 1970].

Chart parsing is also described in Winograd [1983, pp. 116-127].

The basic datastructure that is used in the recognizer is the edge.

An edge E is a 4-tuple, E- (Vl , VZ, M, T), where

Vl and Vz are integers, M E V`E is a symbol (the mother).

T E V' is a list of symbols (the remainder). T is the list oí daughters that E expects.

Maybe it is good to say that this is a little difl'erent from the edges that Gazdaz and Mellish use.

Because we aze not pazsing but recognizing sentences, we are not interested in what has been found

yet but only in what has to be found.
Edges aze in fact partial results. In order to apply a rule bottom-up we must have found all its

daughters. An edge is an element that says that we have found some daughters of a rule but not

all of them. Edges are called inactive when the remainder is empty, otherwise they aze active. The

algorithm uses a chazt and an agenda. Both consist of active and inactive edges.

The algorithm we give is a bottom-up algorithm. It consists of two pazts: the scanner and the

creator of new edges. The scanner reads one input word and does a lexicon lookup. The result is

a set of edges. The edges aze put in the agenda. Then the creator of new edges is stazted. The

creator of new edges moves an edge from the agenda to the chart and if the remainder is empty it

applies two (meta-) rules on it: the Bottom-up Rule and the F4indamental Rule.

The Bottom-up rule
If you aze adding edge C i, j, A, []~ to the chart, then for every rule in the grammaz

of the form B-~ A W, add an edge G i, j, B, W~ to the agendal .

The ~ndamental rule
If you aze adding edge C j, k, B, (] 1 to the chazt, then for every edge in the chazt of

the form C i, j, A, [B~W] ~, add a new edge in the agenda of the form G i, k, A,W ~.

Both the agenda and the chazt can be seen as sets. They need not be ordered and the creator

of new edges can take an azbitrazy edge from the agenda in order to move it to the chazt. In the

algorithm, the chazt and the agenda are represented as lists. When we append the newly created

edges at the back of the agenda, we get some kind of breadth-first behaviour. If we append it on

the front, the result is a depth-first behaviour.

1 W ia a(possibly empty~ liat of symbola. A and B sre symbols.

3

INPUT SENTENCE

~~ z add~remove edge """"" z inspection

When the agenda does not contain edges any more, the creator of new edges gives back control

to the scanner. The scanner reads the next input word, fills the agenda and new edges can be

created again. When there are no input words left anymore, the recognition is almost finished.

The algorithm only has to look whether the chart contains an inactive edge with the startsymbol

as its mother and which spans the complete input. Appendix A contains the Prolog-code of the

algorithm.

The basic algorithm for ACSG

This algorithm is very similaz to the one in the previous section. The definition of an edge is slightly

different:

An edge E is a 4-tuple, E- (Vl, Vz, M, T), where
VI and Va are integers, M E V' is a list of symbols (the to-add-list).
T E V' is a list of symbols (the remainder). T is the list of symbols that E expects.

Only M has been changed. In a context-free grammaz, the lefthand-side of a rule is always a single
constituent. But now we have rules of the form aZp --~ ayQ. The lefthand-side is a list of symbols

(aZ,O) that has to be added in the chazt when the daughters (aryQ) have been found. When M is

a list containing one symbol, we call the edge context-free (and otherwise context-sensitive).
The architecture of the system as depicted in Figure 1 remains the same. The creator of new

edges takes an edge from the agenda. If it is active, the edge is moved to the chazt and the creator
of new edges can take the next edge from the agenda. If the edge is context-free and inactive, the
edge is moved to the chazt and the creator of new edges starts applying the meta-rules:

The Bottom-up rule
If you are adding edge G i, j, [A], [] ~ to the chart, then for every rule in the grammaz
of the form Wl -~ A Wz, add an edge C i, j,W1,W2 1 to the agendaZ.

The)~ndamental rule
If you are adding edge G j, k, [B], []~ to the chart, then for every edge in the chazt of
the form C i, j, WI, [B ~WZ] ~, add a new edge in the agenda of the form C i, k, WI, WZ 1.

But what if the edge is context-sensitive and inactive? The creator of new edges has to apply
the Split rule now.

~W; are liats of symbols. A and B are symbols.

4

The Split rule
Take the edge G i, j, Wl, [] 1 from the agenda and put a number of edges back in the

agenda. These edges connect new vertices and the symbols one sees walking along the

new path are exactly the symbols in the lefthandside of the applied grammaz rule.

This can be made cleaz with an example. Suppose we have read some input words and we have

this chart:
A B C

0 1 2 3

Now we found that the rule E~ B [C] is applicable because we have the inactive context-

sensitive edge G 1, 3, [E, C], []~. The Split rule says we have to put the edges G 1, 4, [E], []~ and

G 4, 3, [C], [] 1 in the agenda. Vertex 4 is a new vertex.
4

0 1 2 3
In the previous section the agenda was organized as a list, but the creator of new edges could

take an arbitrary edge from it (thanks to the fact that all edges in the agenda had the same end

vertex). In this algorithm, we have to be more cazeful. It is obvious that the edge G 1, 4, [E], []~

should be used eazlier to generate new edges than G 4, 3, (C], []~. The edges in the agenda must

be ordered ! It is not very complex to keep the right order in the agenda however: if we apply

the Split rule, we have to append the list of new edges in front of the agenda. The agenda is a

FIFO-stack.
When the scanner has read all ínput words, we have to look again in the chart whether there

is an inactive edge with the startsymbol as its mother spanning the entire input. The Prolog-code

of this algorithm is also in the Appendix, namely in Appendix B.

Problematic grammars

In the previous section a straightforwazd and simple algorithm has been described. The question

is whether this algorithm is polynomial and the answer is no.
Consider the grammar:

1 -~ [1] 0
1--~[2]0
2 ~ [1] 0
2--~[2]0
and the input: 100000

After every scan the number of vertices that has to be added is doubled.

5

i o 0 0 0 0

Obviously the algorithm is not polynomial. This chart, however, is equivalent with the chart:

1, 2

1 0 0

1,2

0

1, 2

0 0

Both chazts contain the same paths. The algorithm we used is too simple and we have to design

an algorithm that "collapses edges" when possible.

Refinements of the basic algorithm

The source code of the refined algorithm is in Appendix C. It is an extension of the previous
algorithm. I shall describe the changes I made one by one:

~ Left-hand-sides in edges are packed. As a result, there is always at most one complete edge

between two points in the agenda and the chart.

~ The agenda is treated as a LIFO-stack. New edges are put on the back. They are taken

from the front. We have to be careful with this: Edges that start in, say, V1 have to wait
on processing of edges that end in V1. We have to search the agenda till we find the first

edge without "predecessor" (fwop). We do not do this when there is already a vertex with
the same outgoing "set of paths".

~ The lefthandsides of edges are packed. Therefore, we have to process a list of list of symbols
that have to be added. This is the point where we have to do some collapsing. We search for

the longest list in the list of lists. The first symbol of this longest list is the symbol we aze
going to add. If necessazy, we create a new vertex and we shift the symbol from all the list
stazting with that symbol.

~ I also implemented a graphic output of the pazser which is easier to read than the output of
redrau. People who aze interested in it can receive it.

6

Conclusions

The question is whether the refined algorithm is polynomial. Unfortunately, I have not been able
to prove this. I can not think of an invariant restricting the size of the agenda or the chart. In one
or another way, we should use the acyclicity of the grammaz rules.

References

Baker, B. S., Non-context-Free Grammazs Generating Context-Free Languages, Inform. and Con-
trol, 24, 231-246, 1974.

Book, R. V., Terminal contezt in contezt-sensitive grammazs, SIAM J. Comput., 1, 20-30, 1972.

Book, R. V., On the Structure of Context-Sensitive Grammars, Internat. J. Comput. Inform. Sci.,

2, 129-139, 1973.

Book, R. V., On the Complexity of Formal Grammazs, Acta Inform., 9, 171-181, 1978.

Dahlhaus, E. and M. K. Warmuth, Membership for Growing Context-Sensitive Grammazs Is Poly-

nomial, Internat. J. Comput. Inform. Sci., 33, 456-472, 1986.

Eazley, J., An Efficient Context-Free Pazsing Algorithm, Comm. ACM, 13(2), 94-102, Feb. 1970.

Gazey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

Gazdaz, G. and C. Mellish, Natural Language Processing in Prolog, Addison Wesley, Reading, MA,

1989.
Ginsburg, S. and S. A. Greibach, Mappings which Preserve Context Sensitive Languages, Inform.

and Control, 9, 563-582, 1966.

Hibbazd, T. N., Context-Limited Grammazs, J. Assoc. Comput. Mach., 21(3), 446-453, July 1974.

Kazp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Computa-

tions, edited by R. E. Miller and J. W. Thatcher, pp. 85-103, Plenum Press, New York,

1972.
Kuroda, S. -Y., Classes of Languages and Linear-Bounded Automata, Inform. and Control, 7,

207-223,1964.

M5lckinen, E., On Permutative Grammazs Generating Context-Free Languages, BIT, 25, 604-610,
1985.

Winograd, T., Language as a cognitive process: syntax, Addison Wesley, Reading, MA, 1983.

7

Appendix A: Context free chart recognition

recognize(String) :-
ecan(String,0,[],Chart,Vend),
initial(Startsymbol),
member(edge(O,Vend,Startsymbol,[]),Chart).

scan([],Vend,Finalchart,Finalchart,Vend).
scan([WordlWorde],VO,Chartin,Finalchart,Vend) :-

V1isVOt1,
findall(edge(VO,Y1,Category,[]), Y. lexicon lookup

word(Category,Word),
lgenda),

extend-edges(lgenda,Chartin,Chartout),
ecan(Words,Vl,Chartout,Finalchart,Vend).

extend-edges([],Finalchart,Finalchart).
extend-edges([Edgellgenda],Chart,Finalchart) :-

member(Edge,Chart),!,
extend-edges(lgenda,Chart,Finalchart).

extend-edges([Edgellgenda],Chart,Finalchart) :-
create-neu-edges(Edge,Chart,Edges),

'~ add-edges(lgenda,Edges,NeW-agenda), ~ breadth-first processing
add-edges(Edges,lgenda,Nes~-agenda), ~ depth-first processing
extend-edges(Neu-agenda,[EdgelChart],Finalchart).

create-new-edges(edge(V1,V2,Categoryl,[]),Chart,Edges) :-
findall(edge(V1,V2,Motherl,Tofindl), Y, Bottom-up rule

rule(Motheri,[CategoryllTofindl]),
Edgesi),

findall(edge(VO,V2,Mother2,Tofind2), X Fundamental rule
member(edge(VO,V1,Mother2,[CategoryllTofind2]),Chart),
Edges2),

append(Edgesl,Edges2,Edges).
create-neW-edges(edge(V1,V2,Categoryl,[Category2lTofind]),Chart,[]).

add-edges([],Edges,Edges). Í add-edges - add unless it is a member
add-edges([EdgelEdges],Edgesl,Edges2) :-

member(Edge,Edgesl),!,
add-edges(Edges,Edgesl,Edges2).

add-edges([EdgelEdges],Edgesi,[EdgelEdges2]) :-
add-edges(Edges,Edgesl,Edges2).

?indall(Item,Goal,Items) :-
bagof(Item,Goal,Items),!. Y. built-in predicate, collects Items

findall(I,G,[]). Y satisfying Goal

y, rule(s,[np,vp]). w~rd(np,k'-m). initial(s).
'~ example rules, lexicon, startsymbol

8

Appendix B: Acyclic Context Sensitive chart recognition

recognize(String) :-
retractall(hvn(-)), X hvn - Highest Vertex Number
assert(hvn(0)),
scan(String,0,[],Vend,Chart),
initial(Startsymbol),
member(edge(O,Yend,[Startsymbol],[]),Chart).

scan([],Vend,Finalchart,Vend,Finalchart).
scan([WordlWords],VO,Chartin,Vend,Finalchart) :-

freshnumber(Vi),
Iindall(edge(VO,V1,[Category],[]),

vord(Category,Word),
Agenda),

extend-edges(Agenda,Chartin,Chartout),
scan(Words,Vl,Chartout,Vend,Finalchart).

extend-edges(C7,Finalchart,Finalchart).
extend-edges([Edgel~genda],Chart,Finalchart) :-

member(Edge,Chart),!,
extend-edges(Agenda,Chart,Finalchart).

extend-edges([EdgelAgenda],Chart,Finalchart) :-
Edge - edge(VO,V1,[Category],[]),!, ~ inactive, context-free
create-neu-edges(Edge,Chart,Edges),
add-edges(Edges,Agenda,Necr-agenda),
extend-edges(New-agenda,[EdgelChart],Finalchart).

extend-edges([Edgel~genda],Chart,Finalchart) :-
Edge - edge(VO,Y1,Toadd,[]), ~, inactive, context-sensitive
split(YO,V1,Toadd,Edges),
add-edges(Edges,Agenda,Necr-agenda),
extend-edges(Nev-agenda,Chart,Finalchart).

extend-edges([EdgelAgenda],Chart,Finalchart) :-
Edge - edge(-,-,-,[TofindlRest]), Y, active
extend-edges(lgenda,[EdgelChart],Finalchart).

split(VO,V1,[Category],[edge(VO,V1,[Category],[])]).
split(VO,V1,[Categoryl,Category2lRest],[EdgelEdges]) :-

treshnumber(V2),
Edge - edge(VO,V2,[Categoryi],[]),
split(V2,V1,[Category2lRest],Edges).

9

freshnumber(J) :- '~ generate fresh vertex number
hvn(I),
JisIti,
retract(hvn(I)),
assert(hvn(J)),!.

create-nev-edges(edge(V1,V2,[Category],[]),Chart,Edges) :-
tindall(edge(Y1,V2,Toaddl,Tofindl), X Bottom-up rule

init(Category,Toaddl,Tofindl),
Edgesi),

findall(edge(VO,Y2,Toadd2,Tofind2), y. Fundamental rule
member(edge(VO,V1,Toadd2,[CategorylTofind2]),Chart),
Edges2),

append(Edgesl,Edges2,Edges).

init(Category,Toadd,Tofind) :-
rule(Lhs,Context-left,Rhs,Context-right),
append3(Context-left,Rhs,Context-right,[CategorylTofind]),
append3(Context-left,[Lhs],Context-right,Toadd).

X append3 appends 3 lists (trivial)

'~ rule(s, [] , [ap,vp] , C]) . Word(np,kim) . initial(s) .

10

Appendix C: Refined Acyclic Context Sensitive chart recognition

recognize(String) :-
retractall(hvn(-)),
assert(hvn(0)),
next-vord(String,0,[],Chart,-),!,
Write('I start draving !'),nl,
redrau(Chart).

next-word([],Vend,Finalchart,Finalchart,Vend).
next-WOrd([WordlWords],VO,Chartin,Finalchart,Vend) :-

ireshnumber(V1),
findall(edge(VO,V1,[[Category]],~),
pord(Category,Word),
Agenda),
extend-edges(lgenda,Chartin,Chartout),!,
next-vord(Words,Vi,Chartout,Finalchart,Vend).

extend-edges([],Finalchart,Finalchart).
extend-edges(Agenda,Chart,Chart3) :-

fwop(ágenda,Agenda2,F,Agenda),
extend-edges2(F,Agenda2,Chart,Chart3).

y. First element of a list WithOut Predecessor

fvop([edge(V1,V2,Toa,Tof)IAgi],Agi,edge(V1,V2,Toa,Tof),Ag4) :-
`t member(edge(-,V1,-,-),Ag4).

iwop([edge(V1,V2,Toa,Tof)IAgl],[edge(V1,V2,Toa,Tof)IAg2],F,Ag4) :-
member(edge(-,V1,-,-),Ag4),
fvop(lgi,Ag2,F,Ag4).

extend-edges2(Edge,Agenda,Chart,Finalchart):-
member(Edge,Chart),!,
extend-edges(Agenda,Chart,Finalchart).

extend-edges2(edge(B,E,Listotlists,[III2]),~genda,Chart,Finalchart) :- !,
add-edges([edge(B,E,Listoflists,[III2])],Chart,Chart2),
extend-edges(Agenda,Chart2,Finalchart).

extend-edges2(edge(B,E,[[Listoh]],[]),Agenda,Chart,Finalchart) :- !
neu-edges(edge(B,E,[[Listoh]],[]),Chart,Edges), .
add-edges(Edges,Agenda,Neuagenda),
extend-edges(Neuagenda,[edge(B,E,[[Listoh]],[])IChart],Finalchart).

extend-edges2(edge(B,E,Listoflists,[]),Agenda,Chart,Finalchart) :-
splitgraph(edge(B,E,Listoflists, 0),Listofedges,ágenda),
append(Listofedges,dgenda,Nevagenda),
extend-edges(Nevagenda,Chart,Finalchart).

11

splitgraph(edge(B,E,Lol,[]),Listoiedges,lgenda) :- Y Loe max 3 BK KE BE
searchlongest(Lol,[FIUit],[],0),
Uit `-- [].!.
extract(F,Lo1,Lo12,Lo13), 'G 2 K-E, 3 B-E
sort(Lo12,Lo12s),sort(Lo13,Lo13s),
checkpack(B,E,F,Lo12s,Lo13s,1genda,Listofedges).

splitgraph(edge(B,E,Lol,[]),Listotedges,-) :-
singlestosingles(B,E,Lo1,Listofedges).

extract (-, [] , [] , []) .
extract (F, [[F I Ri] I R2] , [Ri IUitlist] ,K) : -

R1 `~S U .!,
extract(F,R2,Uitlist,K).

extract(F,[[F21R1]IR2],K,[[F21R1]IUitlist]) :-
extract(F,R2,K,Uitlist).

checkpack(B,E,F,Lo12,Lo13,lgenda,[edge(B,E,Lo13,[]),edge(B,K2,[[F]],[])]) :-
Lo13 `-- [] ,
member(edge(K2,E,Lo12,[]),Agenda).

checkpack(B,E,F,Lo12,[],Agenda,[edge(B,K2,[[F]],[])]) :-
member(edge(K2,E,Lo12,[]),lgenda).

checkpack(B,E,F,Lo12,Lol3,lgenda,
[edge(B,E,Lo13,[]),edge(B,K,[[F]],[]),edge(K,E,Lo12,[])]) :-

Lol3 `-- [],
`t member(edge(-,E,Lo12,[]),Agenda),
treshnumber(K).

checkpack(B,E,F,Lo12,[],lgenda,
[edge(B,K,[[F]],[]),edge(K,E,Lo12,[])]) :-

`f inember(edge(-,E,Lo12,[]),lgenda),
ireshnumber(K).

singlestosingles(-,-,[],[]).
singlestosingles(B,E,[[F]IR2],[edge(B,E,[[F]],[])IUitlist]) :-

singlestosingles(B,E,R2,Uitlist).

new-edges(edge(V1,V2,[[Category]],[]),Chart,Edges):-
tindall(edge(V1,V2,[Toaddi],Toiindi),

init(Category, [Toaddi] ,Tofindi) ,
Edgesi),

iindall(edge(VO,V2,Toadd2,Totind2),
member(edge(VO,V1,Toadd2,[CategorylTofind2]),Chart),
Edges2),

append(Edgesi,Edges2,Edges).

init(Category,[Toadd],Tofind) :-
rule(Lhs,L1,L2,L3),
append3(L1,L2,L3,[CategorylToiind]),
append3(L1,[Lhs],L3,Toadd).

12

XY.Y.Y.'~.Y,GX XY.Y.Gy.'~Y.Y.Y.'l.'~'~'~'LY.Y. i'~Y.X'~.X X XY.i'LY.'~ Y.Y.'GY.XY.X Y.'~Y.Y.'~.'~'~'~'~'~'~.Y.'l.
X eifect is: add-edges(I,B,C) :- append(B,A,C)
y. second argument (B) has already been packed
Y. C will be packed again
Y. 'I.X'I.X Y. Y. X Y. Y. YX'l. y,'I.Y. X'l. 'l,'l.'l. 'I. 7 Y. Y X Y. Y, Y. Y'I. Y. Y.'I.Í'l.X Y. Y. Y. Y.Y. X'I. Y. X Y. ~ X Y, Y. ~ Y. Y. X'I, X

add-edges([],Edges,Edges).
add-edges([EdgelEdges],Edgesl,Edges2) :-

member(Edge,Edgesl),!,
add-edges(Edges,Edgesi,Edges2).

add-edges([EdgelEdges],Edgesl,Edges2):-
packlhs(Edge,Edgesl,Edges5),!,
add-edges(Edges,Edges5,Edges2).

packlhs (E, [] , [E]) .
packlhs(edge(A,B,C,D),[edge(A,B,E,D)IRest],[edge(A,B,Fs,D)IRest]) :-

append(C,E,F),!,
sort(F,Fs).

packlhs(Edgei,[Edge2lRest],[Edge2lRest2]) :-
packlhs(Edgel,Rest,Rest2).

treshnumber(J) :-
hvn(I),
J is I t 1,
retract(hvn(I)),
assert(hvn(J)),!.

searchlongest([],Current,Current,-).
searchlongest([AlRest2],Uit,Current,Currentlength) :-

length(A,L),
L -~ Currentlength,
searchlongest(Rest2,Uit,Current,Currentlength).

searchlongest([AlRest2],Uit,-,Currentlength) :-
length(l,L),
L ~ Currentlength,
searchlongest(Rest2,Uit,A,L).

redraw([]).
redrav([edge(l,B,C,[])IR]) :- !,

arite(edge(I,B,C,[])),nl,
redraw(R).

redrau([edge(-,-,-,-)IR]) :-
redrav(R).

13

II I M IIÍÍNpIIÍÍIÏÍIÍI IÍI Í IIÍIÍ ~ÍIÍI~ II I
1 7 000 01 1 731 67 7

ITK: P.O. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

